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Consensual Processes, 2011
ISBN 978-3-642-20532-3

Vol. 268. Olga Poleshchuk and
Evgeniy Komarov
Expert Fuzzy Information Processing, 2011
ISBN 978-3-642-20124-0



Olga Poleshchuk and Evgeniy Komarov

Expert Fuzzy Information

Processing

ABC



Authors

Prof. Olga Poleshchuk
Moscow State Forest University
1st Institutskaya st., 1
Mytishi
Moscow reg.
Russia
E-mail: olga.m.pol@yandex.ru

Dr. Evgeniy Komarov
Moscow State Forest University
1st Institutskaya st., 1
Mytishi
Moscow reg.
Russia
E-mail: komarov@mgul.ac.ru

ISBN 978-3-642-20124-0 e-ISBN 978-3-642-20125-7

DOI 10.1007/978-3-642-20125-7

Studies in Fuzziness and Soft Computing ISSN 1434-9922

Library of Congress Control Number: 2011926910

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the

material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data

banks. Duplication of this publication or parts thereof is permitted only under the provisions

of the German Copyright Law of September 9, 1965, in its current version, and permission

for use must always be obtained from Springer. Violations are liable to prosecution under the

German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from

the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Foreword 

In essence, “Expert Fuzzy Information Processing,” or FIP for short, a work co-

authored by Professors Poleshchuk and Komarov, is an informative, authoritative, 

and up-to-date exposition of concepts and techniques which underlie processing of 

imperfect information—information which in one or more respects is uncertain, 

imprecise, fuzzy, unreliable or incomplete. In the real world, imperfect 

information is the rule rather than exception. Decisions are based in information. 

In this context, Professors Poleshchuk and Komarov's work is an important 

contribution to a better understanding of the remarkable human capability to make 

rational decisions in an environment of uncertainty and imprecision. 

It is a deep-seated tradition in science to draw on probability theory—and only 

probability theory—to deal with problems in which uncertainty plays a significant 

role. The core of this tradition was eloquently stated by a prominent Bayesian, 

Professor Dennis Lindley: “The only satisfactory description of uncertainty is 

probability. By this I mean that every uncertainty statement must be in the form of 

a probability; that several uncertainties must be combined using the rules of 

probability; and that the calculus of probabilities is adequate to handle all 

situations involving uncertainty. Probability is the only sensible description of 

uncertainty and is adequate for all problems involving uncertainty. All other 

methods are inadequate...anything that can be done with fuzzy logic, belief 

functions, upper and lower probabilities, or any other alternative to probability can 

better be done with probability” (Lindley 1987). Is this a valid view? In the 

following, I take the liberty of arguing that the answer is No. In effect, No is the 

reason why the work of Professors Poleshchuk and Komarov is a significant 

addition to the armamentarium of standard probability theory. 

The debut of fuzzy set theory in l965 opened the door to development of fuzzy 

logic. Basically, fuzzy logic is the logic of classes with unsharp boundaries. 

Fuzziness—unsharpness of class boundaries—is distinct from randomness.  A 

class, A, is precisiated (graduated) through association with degrees (grades) of 

membership. Humans have remarkable capability to graduate perceptions. If I am 

asked to mark on the scale from 0 to 1, the degree to which I like my job, I would 

have no difficulty in putting a crisp mark at, say, 0.7, or if allowed, a fuzzy mark 

centering on 0.7, with the understanding that fuzziness of the mark reflects my 

uncertainty about the degree to which I like my job. There is no randomness and 

no probability. 
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A concept which plays a pivotal role in fuzzy logic, but is absent in probability 

theory, is the concept of a linguistic variable. Informally, a linguistic variable is a 

variable whose values are words or phrases in a natural language. For example, 

Age is a linguistic variable if its values are young, old, middle-aged, very old, not 

very old, etc., with the understanding that such values are labels of fuzzy sets in 

the space of reals. When probability is treated as a linguistic variable, its values 

are likely, unlikely, not very likely, usually, etc. Linguistic probabilities are 

closely related to fuzzy quantifiers: most, many, few, not very many, about 5, etc. 

A simple example of a problem which involves linguistic probabilities and fuzzy 

quantifiers is the following. A box contains twenty black and white balls. What I 

know is that most of the balls are white. I draw a ball at random, note its color, 

and put it back. What is the probability that in thirty draws of balls most are 

black? The concept of a linguistic variable opens the door to computation with 

information described in a natural language. Example:  Usually, Robert leaves 

office at about 5 pm. Usually, it takes Robert about an hour to get home from 

work. What is the probability that Robert is home at 6:l5 pm?  Many real world 

probabilities are perception-based and imprecise. The capability of fuzzy logic to 

compute with such probabilities is of major importance in the realm of decision-

making in an environment of uncertainty and imprecision. 

Another concept which plays an important role in fuzzy logic is that of 

possibility, with the understanding that possibility is a matter of degree. The 

concept of possibility is distinct from the concept of probability. In everyday 

discourse, we frequently use expressions such as “It is possible, but not probable 

that ....”  In fuzzy logic we commonly have to deal with possibility distributions of 

probability distributions. Example. Consider the proposition: It is very likely that 

Robert is tall, where the fuzzy set tall plays the role of the possibility distribution 

of the variable Height(Robert). In this proposition, very likely plays the role of 

fuzzy probability of the fuzzy event Height(Robert) is tall. This statement may be 

interpreted as the possibility distribution of the probability distributions of the 

variable Height(Robert). The concept of a possibility distribution plays a key role 

in semantics of natural languages. 

Indisputably, probability theory is a powerful tool for dealing with uncertainty 

and imprecision. But what the foregoing examples point to is that standard 

probability theory has serious limitations when it comes to dealing with problems 

in which uncertainty is caused by fuzziness, that is, unsharpness of class 

boundaries. To circumvent these limitations, it is necessary to add to the 

armamentarium of probability theory concepts and techniques drawn from fuzzy 

logic. In essence, this is what the important work of Professors Poleshchuk and 

Komarov serves to do. 

FIP contains a wealth of information which is new and original. Particularly 

worthy of note is the concept of complete orthogonal semantic spaces which is 

introduced in Chapter 2 and is developed in Chapter 3. Another important concept 

is that of generalized models and rating systems of qualitative and quantitative 

characteristics of groups of objects. A topic which plays an important role in FIP 

is that of multiple hybrid fuzzy least-squares regression. Numerous examples are 
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worked out in detail. An important feature of FIP is its skillful combination of 

formal theory and practical applications. 

The work of Professors Poleshchuk and Komarov is not light reading, but the 

wealth of information which it presents is worth of careful study by readers who 

are faced with problems which standard probability theory cannot or does not 

address. Professors Poleshchuk and Komarov and the publisher, Springer, deserve 

our thanks and congratulations for producing a book which contributes so much to 

our ability to deal with problems in which the decision-relevant information is 

uncertain and/or imprecise. In the real world, such information is the rule rather 

than exception. 

December 24, 20l0          Lotfi A. Zadeh 

Berkeley, CA 



Preface

This book deals with expert evaluation models in the form of semantic spaces with 

completeness and orthogonality properties (complete orthogonal semantic spaces). 

Theoretical and practical studies of some researchers have shown that these spaces 

describe expert evaluations most adequately, and as a result they were often 

included in more sophisticated models of intellectual systems for decision making 

and data analysis. Methods for constructing expert evaluation models of 

characteristics, comparative analysis of these models, studies of structural 

composition of their sets and constructing of generalized models are described. 

Models to obtain rating points for objects and groups of objects with qualitative 

and quantitative characteristics are presented. A number of regression models 

combining elements of classical and fuzzy regressions are presented.  

All methods and models developed by the authors and described in the book are 

illustrated with examples from various fields of human activities. 

This book meant for scientists in the field of computer science, expert systems, 

artificial intelligence and decision making; and also for engineers, post-graduate 

students and students who study the fuzzy set theory and its applications. 

68 Tables. 25 Illustrations. References - 230 items. 

Olga Poleshchuk 

Evgeniy Komarov 



Introduction 

While solving the problems in various areas of activity (engineering, ecology, 

education, medicine, economy etc.) a person can be both an observer of processes 

going on in these areas, or a directly involved participant (expert), i.e. he/she can 

influence the processes through his/her subjective opinion, knowledge and 

experience. With that, being an expert, a person brings a subjective component to 

the processes described or estimated that should be considered. The information 

coming from various experts can contain both accurate and fuzzy data. 

Objectively, the latter prevail because a person uses words of a natural language to 

estimate processes, events and objects. For example, manufacturability — low, 

interface — friendly, qualification — high, compliance — complete, probability 

— high, etc. 

Expert information with fuzzy data (fuzzy expert information) is difficult to 

formalize within the limits of traditional mathematical concepts. Numerical 

characteristics feature intermittent transitions from one linguistic value to another, 

as a result objects with boundary physical values of these characteristics are 

difficult to describe. While mapping linguistic values of qualitative characteristics 

to numerical elements of ordinal scales the information is coarsened, and its 

valuable component characterizing individual experience and knowledge of a 

person, gets lost. Attempts to formalize fuzzy information on the basis of classical 

and judgmental probabilities were not success because of known restrictive 

requirements applied to their use. 

The model approach based on the fuzzy set theory has allowed to eliminate 

these shortages of traditional formalizations of fuzzy information. Successful 

development of the fuzzy set theory has ensured its recognition; however it has 

revealed points, which need to be solved. A section of the fuzzy set theory, which 

permanently faces criticism, is the stage dealing with obtained data formalization 

or building of relevant membership functions. As a rule, requirements to 

formalization models are formulated within the scope of each specific problem, 

and quality of built-up models often depends on experience and skill of 

contributors. Apparently, a reason of such dependence is that formalization 

methods are limited by both a type of the information and the ways experts 

provide it. 

In our book, semantic spaces with completeness and orthogonality properties 

(complete orthogonal semantic spaces) are considered as models of expert 

evaluations of objects. Theoretical and practical studies of some Russian and non-

Russian scientists have shown that these models describe experts’ evaluations best 
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of all, and as a result they are included rather often in more sophisticated models 

used in intellectual systems for decision making and data analysis. 

Chapter 1 contains information related to the fuzzy set theory, cluster and 

regressive analyses. Chapter 2 is devoted to techniques of constructing complete 

orthogonal semantic spaces. 

It is obvious, that models of formalization of the expert information obtained 

from different sources can differ. As a rule, while working out fuzzy models, 

membership functions of formalized concepts are updated and adjusted in the 

course of the real analysis of system behavior. To reduce time and material 

expenditures needed to determine these functions, the authors have developed 

methods of comparative analysis of such models, studies of structural composition 

of their sets and techniques for constructing generalized models. Chapters 3 and 4 

are devoted to these methods. 

Chapter 5 is devoted to obtaining rating points of qualitative and quantitative 

characteristics of objects and groups of objects. The basic problem of obtaining 

rating points is that while using ordinal scales to estimate characteristics, false 

arithmetical operations are employed sometimes, which lead to unstable final 

results. Methods of expert information formalization developed in Chapter 2 allow 

unifying characteristics and correctly handling dimensionless generalized 

quantities, which are values of their membership functions, rather than the values 

of characteristics. 

Chapter 6 is devoted to fuzzy regression analysis methods which have 

considerably expanded a range of application of known classical regression 

analysis methods. However, limited range of input data membership functions in 

the fuzzy regression analysis methods caused a gap which is partially bridged 

here. Two models which combine elements of classical and fuzzy regression 

models are presented. Input and output data of these models are values of 

complete orthogonal semantic spaces. 

All methods and the models developed by the authors are illustrated by 

examples taken from various fields of human activities. 

Historically a practical component of the fuzzy set theory is developed much 

faster than the theoretical one, thus the book draws attention not only to practical 

applications based on new techniques developed by the authors, but also to the 

theoretical aspects. According to the authors, such an approach of presentation 

allows contributors to further develop these methods, and to successfully put them 

into practice.

Olga Poleshchuk 

Evgeniy Komarov 
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Chapter 1 

The Basic Concepts of the Fuzzy Set Theory 

1.1   Uncertainty Classification 

The common feature of problems solvable with active participation of experts is 

presence of the versatile information which is difficult for mathematical 

formalization within the scope of traditional concepts. It is partly connected with 

the fact that while describing or estimating real objects and situations experts use 

words of a natural language to reflect their subjective experience, judgment, sights 

and interests. Use of such words brings uncertainty to information obtained from 

an expert in the form of fuzziness. In usual languages the concepts of uncertainty, 

fuzziness and randomness tend to mix up, however they were differentiated in a 

language of science many years ago. With this assumption, to review such 

philosophical concept as uncertainty, the following classification [1] illustrated by 

Fig. 1.1 is recommended to use. 
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Fig. 1.1 Classification of object description uncertainties 
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Physical uncertainty originates from description of the real world from a point 
of view of an observer. The theory of measuring [2] deals with an imprecision (or 
inaccuracy), and the probability theory deals with randomness [3]. Linguistic 
uncertainty includes uncertainties of natural language concepts and structures. The 
theory of formal grammars deals with ambiguity of sense of phrases. Uncertainty 
of word meanings is handled by theories of fuzzy sets [4] and scaling [2]. 

Before the study of organizational problems connected with human decision-
making and building of automated control systems accompanied with simulating 
of human operator activity started, handling and analysis of information featuring 
physical uncertainty were successfully carried out by methods of the classical 
probability theory and mathematical statistics, and elements of control systems 
were represented within the scope of the classical theory of sets. The probability 
theory was the first theory which deals with uncertainty, more precisely, with its 
variety, which is randomness; consequently, among all similar theories it has been 
better detailed. However, the probability theory is based on a number of 
requirements [3], the satisfaction of which is necessary to ensure adequacy of 
conclusions resulted from analysis of the information formalized by its methods 
[5—7]. Examples of such requirements are given below: 

• guarantees that the observable attributes can be spread to all objects or events 
of the certain type (population); 

• unlimited recurrence (repeatability) of observable attributes under identical 
conditions; 

• independence of events, etc. 

From the very beginning of their history, the methods of probability theory and 
mathematical statistics addressed the study of physical uncertainties (randomness). 
If information is obtained under conditions either artificially created or observer-
independent [8—9], one can speak about adequacy of application of probability 
theory and mathematical statistics methods for the purposes of handling and 
analysis of such information [10—12]. In real situations these conditions are 
seldom met. Standard probability theory is a more than adequate tool when one 
deals with physical, that is, inanimate systems in which human judgment, 
perceptions and emotions do not have a role. But there is another realm, the realm 
of what are called humanistic systems--systems in which human judgment, 
perceptions and emotions play a prominent role. This is the realm of economics, 
education, psychology, law and decision analysis. 

For expert evaluations, objectively an opportunity to provide identical 
conditions for repeated observable attributes is rather small as the opinions, 
judgments of experts and the level of their competence introduce a subjective 
factor into evaluation procedure, and this factor changes conditions of the 
estimating procedure implementation, and thus shall be considered. 

So, classical probabilities were tried to be substituted with non-classical ones 
[13]. Among non-classical probabilities, valence and axiological probabilities are 
most often used. The valence probability expresses expectancy of hypothesis 
realization taking into account a context of actual demonstrations on an object of 
research. In a particular case, when the representative sampling is a sampling of 
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homogeneous events, the valence probability is a statistical (classical) one. The 
axiological probability expresses expectancy of hypothesis realization taking into 
account a context of value judgments advanced by one or several experts 
regarding an object of research. When using such probability, risk of arbitrariness 
and erroneous prognosis of object behavior increases invariably. Besides, analyses 
of expert evaluations showed that thoughts and judgments of experts are  
non-additive, which means that measures used by experts are free from additivity 
property which is inherent to a probability measure. 

Attempts to formalize expert logical-linguistic expressions and value judgments 
of observable properties of a certain object resulted in led emergence of the fuzzy 
set theory developed by L. Zadeh. In 1965 in the “Information and Control” 
journal he published his “Fuzzy Sets” paper [14] which became a powerful 
impetus for theoretical evidences and applied researches in various areas with 
active participation of human experts. 

L. Zadeh relied on a premise saying that outcome of human thinking is not a set 
of numbers, but elements of some fuzzy sets or classes of objects, for which 
transition from "membership" to “non-membership” is not intermittent, but 
continuous. He understood that use of such objects is a means to improve stability 
of mathematical models of real human activity events. 

Distinction between fuzziness and randomness leads to the fact that methods of 
the fuzzy set theory are not similar to probability theory methods, they are simpler 
in many aspects, because they are based on the simpler concept of membership 
function (by L. Zadeh) in comparison with a probability distribution function 
which assumes definition of a probability measure generating this function [15].  

Obviously, the information obtained from experts can contain both accurate and 
fuzzy data. Fuzzy data arise from use of linguistic values of estimated 
characteristics within the scope of professional language of experts. The 
information containing fuzzy data was called the fuzzy expert information. 

The history of the fuzzy set theory can give some examples of the unsuccessful 
practical applications caused by badly considered adherence to the new scientific 
direction. That is why it is necessary to define a class of problems for which its 
use is expedient. This class is characterized with complexity of quantitative 
evaluation of objects and processes considered, presence of information difficult 
to formalize accompanied with uncertainty of nonrandom nature, necessity of 
accounting for individual characteristics and peculiarities of persons (experts) in 
charge of making evaluations.  

1.2   Scales and Admissible Transformations 

Let us consider known scales and admissible transformations of characteristic 
values measured within these scales. It is known that a transformation which 
keeps substantial sense of the given aspect of measurement [16] is called an 
admissible transformation of the measured characteristic values. To measure 
quantitative characteristics the following scales are used, in particular, absolute, 
ratio, interval, difference. 
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The values of quantitative characteristics measured with these scales are 
referred to as physical ones.  

To measure qualitative characteristics the following scales are used, in 
particular, names, ordinal (rank). 

The research conclusions made can be adequate to a reality if and when they do 
not depend on what unit of measurement is preferred by a researcher, i.e. these 
conclusions should be invariant with regard to admissible transformation of the 
characteristic values measured in any scale. Let us give admissible 

transformations of function )(Ф x  in the scales below [17—20]: 

Absolute scale   xx =)(Ф  

Ratio scale    )0()(Ф >= aaxx  

Scale of intervals   );0()(Ф Rbabaxx ∈>+=  

Scale of differences   )()(Ф Rbbxx ∈+=  

Scale of names   )(Ф x  — all one-to-one transformations 

Ordinal (rank) scale   )(Ф x  — all strictly increasing transformations  

When experts use ordinal scales to measure qualitative characteristics, then for 
definition of aggregating indicators average values of score expert evaluations are 
used often enough [21—27]. There are some methods of average computing, in 
particular, arithmetic mean, geometrical mean, harmonic mean, mean square 
value, mode, median. Let us consider application of an arithmetic mean in an 
ordinal scale, being most often used. Let us assume that two entrants got marks 4 
and 3, accordingly, for the one entrance examination, and marks 4 and 5 for the 
other entrance examination. Their total scores and arithmetic mean values of two 
examinations are identical and equal to 8 and 4, accordingly. The conclusion is 
that they have equal rights to matriculation. As examination scores are allotted 
according to an ordinal scale, let us use strictly increasing transformation of this 

scale Ф : ( ) 33Ф = ; ( ) 44Ф = ; ( ) 75Ф = . According to the transformation made 

(which is admissible), the total score and the arithmetic mean of marks of one 
entrant remained unchanged, and the same of the second entrant became equal to 
10 and 5, accordingly. Thus, the second entrant has preferable rights for 
matriculation than the first one. With the admissible transformation completed, the 
result stability is broken that means incorrectness of arithmetical operations in the 
ordinal and nominal scales [28]. 

Having in mind that used of averages in various scales is spread enough, the 
problems [29—32] of achieving average values were set and solved, with results 
of the average comparison being stable with regard to the admissible 
transformations of characteristic values measured in the specific scale. Let u 
provide definitions of mean values according to Kolmogorov and Cauchy. 

For numbers nxxx ...,, 21 , a mean value according to Kolmogorov is the 

following function  

( ) ( ) ( )
,

...211 ⎟⎠
⎞⎜⎝

⎛ +++−

n

xFxFxF
F n

 

where ( )xF  is strictly monotone function; ( )xF
1−  is inverse function to ( )xF . 
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If ( ) xxF = , the average according to Kolmogorov is an arithmetic mean, if 

( ) xxF ln= , it is an geometrical mean, if ( ) xxF /1=  it is a harmonic mean. 

It is proven [18] that according to Kolmogorov, among all mean values only an 
arithmetic mean is possible to use in a scale of intervals, and only power means 
and a geometrical mean are possible to use in a scale of ratios. 

For numbers nxxx ...,, 21 , according to Cauchy, a mean value is the function 

( )nxxxf ...,, 21 , if ( ) ( ) ( )nnn xxxxxxfxxx ...,,max...,,...,,min 212121 ≤≤ . 

It is proven [18] that according to Cauchy, among all mean values only terms of 
a variation series, in particular, a median, can be used in an ordinal scale. Use of 
terms of a variation series to determine an aggregating indicator is often 
noninformational for a number of particular indicators owing to very coarse 
estimate. For example, they are used in educational process, where knowledge is 
estimated in marks from two to five. 

To estimate qualitative and quantitative characteristics, experts use verbal 
scales often enough. Values in verbal scales are words expressing characteristic 
appearance intensity degree. These words are referred to as levels or gradations. 
Let us consider only those verbal scales with which it is possible to define a linear 
order, i.e. “less — more” ratio. 

Problems of definition of sets of verbal scale levels and quantitative values of 
qualitative characteristics appearance within the limits of these levels are main 
ones in expert evaluations [33]. For the purpose of employment of known 
mathematical models of information processing, numerical points are put in 
correspondence to levels of verbal scales. The result of this approach is that the 
verbal scale is mapped to a verbally-numerical scale. Definition of values of the 
points put in correspondence to levels of verbal scales is a separate problem, the 
solution of which influences the stability of the results obtained within the limits 
of a mathematical model, so the justification of use of these values is needed. For 
example, marks “2”, “3”, “4”, “5”, which are put in correspondence to verbal 
values E ("unsatisfactory”), C ("satisfactory”), B (“good”), A (“excellent”), 
compose a verbally-numerical scale in their aggregate. Certainly, it is ought to 
remember that the numbers put in correspondence to verbal levels of qualitative 
characteristics are elements of an ordinal scale and all restrictions mentioned 
above are applicable to them. 

However, if within the scope of a specific problem use of a certain verbally-
numerical scale is justified, in actual practice experts face essential difficulties 
caused by intermittent transitions between levels, not allowing to catch and 
estimate intermediate conditions of the characteristic under evaluation [34]. To 
estimate intermediate conditions, process of artificial fuzzification of numerical 
points corresponding to levels of verbal scales is applied. For example, in 
educational process when evaluating the pupils’ knowledge without any 
limitations imposed on generality of "good" knowledge, not only mark "4”, but 
also the whole range of marks [3.5; 4.5] is quite often used. Such process of points 
fuzzification simulates smoothness of estimating activity of experts, but does not 
facilitate process of exposing real objects with evaluations arranged near the 
boundaries of fuzzy areas. 
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Verbal scales are used often enough to describe physical values of quantitative 

characteristics. For example, in [35. 36], to describe a “steam pressure at inlet” 

(with a range [1.1; 6.7]) parameter of a high pressure preheater intended to 

improve turbine plant efficiency, the verbal scale with levels “low pressure”, 

“pressure close to 4”, ‘high pressure” is used. Another example is the verbal scale 

used to describe event probabilities. As known, an event probability is usually 

expressed by numerical value and varies from 0 to 1. However, for example, when 

speaking about the probability of an enterprise bankruptcy, the manager of this 

enterprise is interested not in a precise figure, which is likely to be little-

informative for him, but in definition of one of verbal levels of bankruptcy 

probability, in particular, "very low", "low", "mean", "high", "very high" [37]. 

With a range of definition (universal set) of quantitative characteristic and 

levels of a verbal scale known, an expert divides this area into non-overlapping 

sets which correspond to verbal levels. However, such approach is featuring with 

essential shortage which lies in the fact that while describing objects with 

boundary values of an indicator, an expert experiences difficulties caused by 

intermittent transitions between values. 

This shortage can be remedied with the fuzzy set theory in which not precise 

intervals of values are put in correspondence to verbal levels of quantitative 

property, but fuzzy sets. The resultant verbal-fuzzy scale is referred to as a 

linguistic scale [38—39]. As a result of such buildings, a quantitative 

characteristic, on the one hand, is corresponded with physical values measured by 

a technical instrument and, on the other hand, with linguistic values "measured" 

by an expert. Each physical value belongs to some linguistic one with certain 

degree of expert confidence. 

Building of a linguistic scale for qualitative characteristics is much more 

complicated. If a verbal-numerical scale for qualitative characteristics represents a 

collection of verbal levels with the corresponded collection of numbers (elements 

of an ordinal scale), then a linguistic scale is a collection of verbal levels with a 

collection of the corresponded fuzzy sets specified at some universe. As 

qualitative characteristics cannot be measured objectively (by instrument), the 

universal sets applicable for them cannot be unambiguously defined, as they do 

for quantitative characteristics. Definition of universal set is made within the 

scope of each qualitative characteristic and requirements of each specific task. 

Thus, expedient values of linguistic scales for qualitative characteristics are fuzzy 

sets. In the mathematical statistics, collections of numerical data and corresponded 

chance quantities are referred to as sampling; similarly, in the fuzzy set theory verbal 

levels and corresponded fuzzy sets are referred to as linguistic values. 

Definition of linguistic values of characteristics (based on the fuzzy set theory) 

makes it possible to operate not with values of the characteristics which are non-

comparable among themselves by substance and content (as they are estimated in 

different scales and having different dimensions), but with dimensionless values 

of membership functions. 
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1.3   Fuzzy Sets 

Though the concept of a set plays a fundamental role not only in the mathematics 
science, it has no rigorous definition. It is considered that this word is commonly 
understood as a quantity of roughly homogeneous (in any sense) elements. 

Within this set it is possible to define subsets and it is necessary to do this 

strictly and explicitly. Let us have a set X  consisting of elements x . Its subset A  

can be defined, for example, by means of characteristic function 

( ) ⎩⎨
⎧

∉

∈
=

.,0

;,1

Ax

Ax
xhA

 

Thus, characteristic function allows mapping of a set to another set of two 
elements: 0 and 1. It can be written as follows: 

( ) { }.1,0: →XxhA  

So, for any element of set X  there are two possibilities: it can either belong or not 
belong to a set A . 

If to consider a set of all subsets, it is possible to apply, in a certain way, 
operations of intersection, union and complement to this set, and those can be 
expressed as operations to corresponding characteristic functions. 

Using sets, we can define various concepts. Let us explain with the following 
example. 

Example 1.1. Formalization of the “normal functioning of an object” concept on the 
basis of the classical theory of sets. Let some parameter be defined at a universal set 
and takes values from 

mX  to 
MX . Then, based on the substantial sense of a problem, 

the concept of “normal functioning of an object” can be defined by means of a set A 
the characteristic function of which is shown in Fig. 1.2.а. 

Under this formalization it is assumed that all users unambiguously understand 

the given concept and agree with boundary values mx  and 
Mx . This assumption 

is met, for example, when boundary values are computed on the basis of an 
approved mathematical model of the process of an investigated object functioning. 

Operations of intersection, union and complement can be interpreted as logical 
connectives "and", "or" and "not”, accordingly. In this case, we mean Boolean 
(two-value, binary) logic. With expressions of some concepts 

naaa ...,,, 21
 in the 

form of sets 
nAAA ...,,, 21 available, it is possible to find the sets corresponding to 

these concepts, in the form of logic functions ( )naaaf ...,,, 21
. 

The theory of sets and corresponding Boolean logic makes the foundation of 
classical mathematics and everything based on it, up to advanced computer 
processors. Models of complicated engineering and physical systems, and chemical 
processes were well described with this language and successfully implemented 
using computers. Insufficient speed, memory size, and also some other engineering 
complexities of implementation of these models were the only problem. 
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Fig. 1.2 Characteristic function of A  set, which formalizes concept of “normal functioning of 
an object”: a — by means of the theory of sets; b — by means of human analysis of a situation  

The situation changed dramatically with the necessity to consider peculiarities 
of human perception, evaluation and analysis of the information as equal part of a 
simulated system. Let us consider an example 1.1 (Fig. 1.2. b) from the point of 
view of the description of a situation made by a human. 

Example 1.1 (cont’d). Let us consider three values: 1x , 2x  and 3x  shown in  

Fig. 1.2.b. 

Certain paradox is obvious: in the model values 1x  and 2x  are different and 2x  

and 3x  are identical (with regard to the “normal functioning of an object" concept 

formalized by means of set A ). Thus, the computer model can "see" actually close 
situations as different ones, and situations different physically as identical ones. If 

there is no unambiguous rule (model) to compute boundary values mx  and 
Mx , 

then considered situation can lead to the situation when the conclusions derived 
from the analysis of such models, will not correspond to perceptions of experts. 

This discordance between the theory of sets language and a human mode of 
thinking is one of causes of unsuccessful attempts in use of mathematical methods 
and computer technologies in those fields of activity where influence of the human 
factor is significant. 
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The solution of the problem was offered by L. Zadeh in 1965. In [14] he 
introduced the concept of a fuzzy set. 

The basic idea of Zadeh consisted in "allowing" a characteristic function to accept 
not only value 0 (complete non-membership) or 1 (complete membership), but also 
intermediate values of a membership from a segment [0. 1]. Thus, he has substituted 
the concept of characteristic function with the concept of membership function  

( ) [ ].1,0:~ →Xx
A

µ
 

According to [14], the set of pairs of the following form is referred to as a fuzzy set A
~

 

( )[ ]{ }.:, ~ Xxxx
A

∈µ
 

From the definition one can understand that specification of a fuzzy subset A
~

 in X  

is equivalent to specification of its membership function ( )x
A
~µ . Following the 

traditional way, we will use the term “fuzzy set” instead of more correct term ”fuzzy 
subset”. 

Value of membership function ( )x
A
~µ  for an element x  to fuzzy set A

~
 is 

referred to as grade of membership x  to A
~

. This value can be interpreted as the 

level of an element correspondence to the concept formalized by a fuzzy set A
~

, 
with the correspondence level being determined by an expert (group of experts). 

Domain of a membership function ( )x
A
~µ  is referred to as universal set X of 

fuzzy set A
~

. 
A set which membership function is equal to zero for all elements of universal 

set X  is referred to as empty set Ø). 
Using fuzzy sets, it is possible to define various concepts in more natural 

manner of perception and description of objects. Let us explain with an example. 

Example 1.2. Formalization of the concept of “normal functioning of an object” on 
the basis of the fuzzy set theory. As in the example 1.1., let a parameter x  be defined 
at universal set X  and take values from 

mX  to MX . The concept of “normal 

functioning of an object” can be defined as fuzzy set A
~

 which membership function 
is shown in Fig. 1.3.  

 

Fig. 1.3 Membership function of a fuzzy set A
~

 formalizing the concept of “normal 
functioning of an object” 
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By comparing Fig. 1.2.b and Fig. 1.3., one can notice the collapse of the 
paradox highlighted when analyzing the example 1.1: being formalized by means 

of fuzzy sets, the model recognizes values 1x  and 2x  are seen as close ones.  

Thus, the computer model based on principles of the fuzzy logic, "perceives" 
actually close situations as similar ones. 

It is worth mentioning that there is a tendency of probability treatment of fuzzy 
set [20]. Obviously there is no sense to compare concepts of probability and fuzzy 
set at the same abstracting level. Let us give more details about this. 

Let ( )PB,X,  is a probability space [3]: P(X)B ⊆  is a field of Borel subsets of 

set X , [ ]1,0B →  is the probability measure P , which satisfies to the conditions: 

1) ;0P(A)X ≥⇔⊆A  

2) ( ) ;0P =φ  

3) if B, ∈BA , then ( ) ( ) ( ) ( )BABABA ∩−+=∪ PPPP . 

According to L. Zadeh, fuzzy set is described by membership function ( )xµ  

taking its values in a point of the segment [0.1]. From the point of view of the 

mapping theory, [ ]1,0B:P →  and [ ]1,0: →Xµ  are absolutely different objects. 

Probability P  is defined with σ -algebra B , and ( )xµ  is a usual function with a 

range of definition X . 

So, it is possible to draw some analogies between the membership function of 
fuzzy set and probability density function of a chance quantity, but not to identify 
them. 

A clear subset of universal set, defined as 

( ){ } [ ].1,0;: ~ ∈≥∈= ααµα xXxA
A                                 

(1.1) 

is referred to as set of α -level (α -cut) of fuzzy set A
~

 with membership function 

( )x
A
~µ ). 

Example 1.3. Definition of α -level sets. Let { }4321 /5,0;/9,0;/7,0;/3,0
~

xxxxA = , 

then { }4324,0 ,, xxxA = ; { }327,0 , xxA = ; { }39,0 xA = . 

It is obvious, that with 21 αα ≥  condition 
21 αα AA ≥  is satisfied. 

The Theorem of Decomposition [40]. Any fuzzy set A
~

 with membership 

function ( )x
A
~µ  can be decomposed by α -level sets 

[ ] α
α

αAA
1,0

~

∈
∪=

                                                  
(1.2)

 

or 

( )
[ ]

( )[ ],
1,0

~ xx AA α
αµµ

α∈
∪=

 

where 
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( )
( )
( )⎩⎨

⎧
<

≥
=

.,0

;,1

~

~

αµ

αµ
µ

α x

x
x

A

A

A

 

The decomposition forms the basis for a method of fuzziness formalization. 
According to this method, the fuzziness is expressed by means of a collection of 
hierarchically ordered definite sets. 

Let us define the basic set-theoretic operations at set ( )XH  of all fuzzy subsets 

of a definite set X . 

Fuzzy sets A
~

 and B
~

 are equal, if for all Xx ∈  the condition ( ) ( )xx
BA
~~ µµ =  

is satisfied. 

The fuzzy set A
~

 belongs to fuzzy set B
~

, BA
~~

⊆ , if ( ) ( )xx
BA
~~ µµ ≤ ; Xx ∈∀ . 

The fuzzy set A
~

 is referred to as complement of fuzzy set A
~

, if 

( ) ( ) .;1 ~~ Xxxx
AA

∈∀−= µµ  

The fuzzy set C
~  is referred to as intersection of fuzzy sets A

~  and B
~ , BAC

~~~
∩= , if 

( ) ( ) ( )xxx
BAC
~~~ µµµ ∧= ; Xx ∈∀ , where ∧  is an operator from triangular norm class. 

Valid binary function [ ] [ ] [ ]1,01,01,0: →×T  is referred to as triangular norm, this 

function satisfies the following conditions: 

1. ( ) ( ) ( )
AAA

TTT ~~~ ,11,,00,0 µµµ ===  (boundedness); 

2. ( ) ( )
DCBA

TT ~~~~ ,, µµµµ ≤ , if CA
~~ µµ ≤ ; DB

~~ µµ ≤  (monotonicity property); 

3. ( ) ( )
ABBA

TT ~~~~ ,, µµµµ =  (commutativity); 

4. ( )[ ] ( )[ ]
CBACBA

TTTT ~~~~~~ ,,,, µµµµµµ =  (associativity). 

The pair [ ]( )T,1,0  forms a commutative semigroup with a unity.  

Examples of triangular norms are: 

1. ( ) ( );,min, ~~~~
BABA

T µµµµ =  

2. ( ) ;, ~~~~
BABA

T µµµµ ×=  

3. ( ) ( ).1,0max, ~~~~ −+=
BABA

T µµµµ  

The fuzzy set C
~

 is referred to as union of fuzzy sets A
~

 and B
~

, BAC
~~~

∪= , if 

( ) ( ) ( ) .;~~~ Xxxxx
BAC

∈∀∨= µµµ  

A real-valued binary function is referred to as triangular conorm, 

[ ] [ ] [ ],1,01,01,0: →×K  if this function satisfies to following conditions: 

1. ( ) ( ) ( )
AAA

KKK ~~~ ,11,,00,0 µµµ ===  (boundedness); 

2. ( ) ( )
DCBA

KK ~~~~ ,, µµµµ ≤ , if 
DBCA
~~~~ , µµµµ ≤≤  (monotonicity property); 

3. ( ) ( )
ABBA

KK ~~~~ ,, µµµµ =  (commutativity); 

4. ( )[ ] ( )[ ]
CBACBA

KKKK ~~~~~~ ,,,, µµµµµµ =  (associativity).  
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Examples of triangular conorms are: 

1. ( ) ( );,max, ~~~~
BABA

K µµµµ =  

2. ( ) ;, ~~~~~~
BABABA

K µµµµµµ ×−+=  

3. ( ) ( )
BABA

K ~~~~ ,,1min, µµµµ =  

Let us obtain following definitions for triangular norm ( )min , and for triangular 

conorm ( )max . 

The fuzzy set C
~

 is referred to as intersection of fuzzy sets A
~

 and B
~

, 

BAC
~~~

∩= , if 

( ) ( ) ( )[ ] .;,min ~~~ Xxxxx
BAC

∈∀= µµµ
 

The fuzzy set C
~

 is referred to as union of fuzzy sets A
~

 and B
~

, BAC
~~~

∪= , if 

( ) ( ) ( )[ ] .;,max ~~~ Xxxxx
BAC

∈∀= µµµ
 

The fuzzy set C
~

 is referred to as a difference of fuzzy sets A
~

 and B
~

, 

BABAC
~~~~~

∪=−= , if 

( ) ( ) ( )[ ] .;1,min~ Xxxxx
BAC

∈∀−= µµµ
 

The fuzzy set C
~

 is referred to as a disjunctive sum of fuzzy sets A
~

 and B
~

, 

( ) ( )ABBABAC −∪−=⊕=
~~~

, if 

( ) ( ) ( )( ) ( ) ( )( )[ ];,1min,1,minmax ~~~~~ xxxxx
BABAC

µµµµµ −−=
 

Xx ∈∀  

Example 1.4. Operations with fuzzy sets. Let  

{ };/5,0;/9,0;/7,0;/3,0
~

4321 xxxxA =  

{ }./2,0;/1;/8,0;/1,0
~

4321 xxxxB =  

Then 

{ };/5,0;/1,0;/3,0;/7,0
~

4321 xxxxA =
 

{ };/8,0;/0;/2,0;/9,0
~

4321 xxxxB =
 

 

{ };/2,0;/9,0;/7,0;/1,0
~~

4321 xxxxBA =∩
 

{ };/5,0;/1;/8,0;/3,0
~

4321 xxxxBA =∪
 

{ };/5,0;/0;/2,0;/3,0
~~~~

4321 xxxxBABA =∩=−
 

{ };/2,0;/1,0;/3,0;/1,0
~~~~

4321 xxxxABAB =∩=−
 

{ }./5,0;/1,0;/3,0;/3,0
~~

4321 xxxxBA =⊕
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Let us consider properties of operations ∪  and ∩ . Let A
~

, B
~

, C
~

 be fuzzy sets, 

then following conditions are satisfied. 

1. Commutativity  

.
~~~~

,
~~~~

ABBAABBA ∩=∩∪=∪  

2. Associativity 

( ) ( ) ( ) ( ).~~~~~~
,

~~~~~~
CBACBACBACBA ∩∪=∪∪∩∩=∩∩  

3. Idempotency 

.
~~~

,
~~~

AAAAAA =∪=∩  

4. Distributivity 

( ) ( ) ( ) ( ) ( ) ( ).~~~~~~~
,

~~~~~~~
CABACBACABACBA ∪∩∪=∩∪∩∪∩=∪∩  

5. .
~~
AA =∪φ  

6. .
~

φφ =∩A  

7. .
~

XXA =∪  

8. .
~~
AXA =∩  

9. Laws of dualization 

.
~~~~

,
~~~~

BABABABA ∩=∪∪=∩  

Unlike definite sets, for fuzzy ones, in the general case:  

.
~~

,
~~

φφ ≠∩≠∩ AAAA  

There is a possibility to construct methods of processing and analysis of fuzzy 
information with use of fuzzy sets and arithmetical operations [15. 41—44]. The 
algebra of fuzzy numbers is the mathematical basis to construct such methods. 

Fuzzy number (FN) A
~

 is referred to as fuzzy subset of set of real numbers R  
possessing membership function 

[ ].1,0:~ →R
A

µ
 

The subset RS A ⊂  is referred to as the support of FN A
~

, if 

( )[ ].0:supp ~ >== xxAS
AA µ

 

FN A
~

 is referred to as positive, if 
ASx ∈∀ , 0>x , and negative, if ASx ∈∀ , 

0<x . 

A subset of the real line R , which defined in the form  
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( ){ } [ ].1,0,: ∈≥∈= ααµα xRxA
A                                

(1.3)
 

is referred to as set of α -level (α -cut) of FN A
~

 with membership function 

( )x
A
~µ , by analogy with (1.1). 

FN A
~

 with membership function ( )x
A
~µ  is referred to as normal, if 

( ) .,1max ~ Rxx
Ax

∈=µ
 

FN A
~

 with membership function ( )x
A
~µ  is referred to as unimodal, if there is a 

unique point Rx ∈ , for which the equality ( ) 0~ =x
A

µ  is satisfied. 

FN A
~

 with membership function ( )x
A
~µ  is referred to as multimodal, if a point 

( ) 1: ~ =∈ xRx
A

µ  is not unique. 

FN A
~

 with membership function ( )x
A
~µ is referred to as tolerant, if there is an 

interval for all points of which the equality ( ) 1~ =x
A

µ  is satisfied. This interval is 

referred to as an interval of tolerance of FN A
~

. 

The expanded binary arithmetical operation denoted as ∇
~

 [15], for fuzzy 

numbers A
~

, B
~

 with membership functions ( )x
A
~µ , ( )x

B
~µ , accordingly, is 

defined as follows: 

( ) ( ) ( )[ ] .,,;
~~~~

~~~ RzyxyzzBAC
BAyxzC

∈∀∧∨=⇔∇=
∇=

µµµ
            

(1.4) 

Based on (1.4), one can define such arithmetical operations as expanded addition, 

subtraction, multiplication and division of FN A
~

, B
~

 with membership functions 

( )x
A
~µ , ( )x

B
~µ , accordingly, for special cases of an intersection operator ∧  in a 

class of triangular norms ( ) ( ) ( )
BABA

xx ~~~~ ,min µµµµ =∧ , and also an union 

operator ∨  in a class of triangular conorms ( ) ( ) ( )
BABA

xx ~~~~ ,min µµµµ =∨ : 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ⎪⎪
⎪
⎭

⎪⎪
⎪
⎬
⎫

≠=⇔=

=⇔⊗=

=⇔−=

=⇔⊕=

=

⋅=

−=

+=

.0,,minmax
~

:
~~

;,minmax
~~~

;,minmax
~~~

;,minmax
~~~

~~
:

~

~~~

~~~

~~~

yxxzBAC

xxzBAC

xxzBAC

xxzBAC

BAyxzC

BAyxzC

BAyxzC

BAyxzC

µµµ

µµµ

µµµ

µµµ

           
 

(1.5)

 

FN of ( )RL − -type [15] are frequently used to solve problems in the various areas. 

The following conditions are superimposed on functions L  and R : 

1. ( ) ( ) ( ) ( ) ;111;100 ==== RLRL  

2. ( )xL  and ( )xR  are nonincreasing functions at [ ]1,0∈∀x .  
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FN A
~

 with the following membership function  

( )

⎪⎪
⎪
⎩

⎪⎪
⎪
⎨

⎧

+>−<

≤≤

>≤
−

<⎟⎟⎠
⎞⎜⎜⎝

⎛ −

>≤
−

<⎭⎬
⎫

⎩⎨
⎧ −

=

.or,0

;,1

;0,10,

;0,10,

21

21

22

11

~

RL

R

RR

L

LL

A

aaxaax

axa

a
a

ax

a

ax
R

a
a

xa

a

xa
L

xµ

                  
 

(1.6)

 

is referred to as tolerance ( )RL − -number.  

FN A
~

 is symbolically written in the form ( )RL aaaaA ,,,
~

21≡   

[or ( ) ( )RLA
aaaax ,,, 21~ ≡µ ], where RL aaaa ,,, 21  are parameters of tolerance 

( )RL − -number A
~

; a segment [ ]21,aa  is a tolerance interval; and La , Ra  are left 

and right coefficients of fuzziness, accordingly; 

⎟⎟⎠
⎞⎜⎜⎝

⎛ −

La

xa
L 1  and ⎟⎟⎠

⎞⎜⎜⎝
⎛ −

Ra

ax
R 2  

are left and right boundaries of membership function of tolerance ( )RL − -number: 

with 0=La  

,01 =⎟⎟⎠
⎞⎜⎜⎝

⎛ −

La

xa
L

 

with 0=Ra  

.02 =⎟⎟⎠
⎞⎜⎜⎝

⎛ −

Ra

ax
R

 

The unimodal A
~

- ( )RL −  number has membership function of tolerance ( )RL − -

number under the condition of 
21 aa = . A unimodal ( )RL − number is written 

symbolically as ( )RL aaaA ,,
~

1≡ . If ( )
RL aaaaA ,,,

~
21≡ , ( )RL bbbbB ,,,

~
21≡ , 

then: 

          1. ( );,,,
~~

2211 RRLL babababaBA ++++≡⊕  

2. ( )RL aaaaA βββββ ,,,
~

21≡  on 0≥β  

3. ( )LR aaaaA βββββ ,,,
~

12≡  on 0<β  
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Fig. 1.4 Membership function of FN: a — ( )RL − -type; b — T -type; c — normal 

triangular type 



1.3   Fuzzy Sets 17

 

By analogy with operation of algebraic product (multiplication), exponentiation 

operation is defined. If for FN A
~

 membership function is A
~µ , then for FN γA

~
 its 

membership function is 
γµ

A
~ . 

Let us give examples of the frequently used FN, or to be exact, membership 
functions which define these FN (fig. 1.4). 

1. Membership function of ( )RL − -type FN (fig. 1.4.a) 
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2. Membership function of T -type FN (FN of trapezoidal type) 

( ) ( ) xxRxL −== 1 , 10 ≤≤ x  (Fig. 1.4.b) 

( )

⎪⎪
⎪
⎩

⎪⎪
⎪
⎨

⎧

+>−<

≤≤

>≤
−

<
−

−

>≤
−

<
−

−

=

.or,0

;,1

;0,10,1

;0,10,1

21
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22

11

~

RL

R

RR

L

LL

A

aaxaax

axa

a
a

ax

a

ax

a
a

xa

a

xa
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3. Membership function of a normal triangular number or normal FN of 
triangular type (Fig. 1.4.c) 

( ) ( ) ( ) ( )RLA
aaaxxxxRxL ,,;10,1 1~ =≤≤−== µ
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1.4   Linguistic Variables and Semantic Spaces 

One of the basic concepts of the fuzzy set theory is the concept of a fuzzy variable 
[4].  

A triple 

{ }AUX
~

,,  

is referred to as a fuzzy variable, where X  – the name of the variable; U  — area 

of its definition (universal set); A
~

 — the fuzzy set of universal set which 
describes possible values of the fuzzy variable. 

On the basis of concept of a fuzzy variable the concept of a linguistic variable 
is introduced. 

A quintuple  

( ){ },,,,, SVUXTX  

is referred to as a linguistic variable, where ( ) { }miXXT i ,1, ==  — a term-set of a 

variable X , i.e. set of terms or titles of linguistic values of the variable (each of 
them is a fuzzy variable with values from universal set U ); 

V  - Syntactic rule generating titles of values of the linguistic variable X ; 

S  - Semantic rule which puts a fuzzy subset of universal set U  in conformity 

to each fuzzy variable with a title from ( )XT . 

Terms iX  are concepts which form a linguistic variable [28]. Membership 

functions of fuzzy sets 
iX

~
 describing possible values of fuzzy variables with titles 

iX  are traditionally referred to as membership functions of concepts 
iX , or 

membership functions of terms iX . According to one of psycholinguistics 

principles, namely, to a principle linguistic complementarity [45], membership 

functions of the same concepts used by different people, do not necessarily 

coincide. 
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As an example of the linguistic variable which is formalization of qualitative 

characteristics, one can see the linguistic variable of "knowledge" shown in  

Fig. 1.5. 

 
 

               Knowledge 

 
 
 
 
 
 

          "unsatisfactorily”                    "satisfactorily”                          “excellent” 

  
 

 
 

Fig. 1.5 A linguistic variable - "knowledge". 

A linguistic variable “RAM space” (memory size) can be considered as an 
example of the linguistic variable which is formalization of quantitative 
characteristics. 

A linguistic variable with the fixed term-set ( ){ }SUXTX ,,,  is referred to as 

semantic space. 
According to the fuzzy set theory, semantic spaces with a wide spectrum of 

practical applications can serve as models of expert evaluations of characteristics; 
these applications include development of expert and intelligence decision making 
support systems, data analysis and complex process control [4. 35. 37. 47—55]. 

A semantic space “probability of maintaining solvency by an emitter of the 
Central bank” can be considered as an example  

( ) { } [ ],1,0,,,,, == UEDCBAXT  

where A— E  — probabilities of maintaining solvency ( A  — very low; B  — 

low; C  — mean; D  — high; E  — very high). 
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Fig. 1.6 Membership functions of semantic space terms-sets: a — “probability of 
maintaining solvency by an emitter of the Central bank”; b — “pressure at the high-
pressure preheater inlet”; c – “system sensor failure probability" 

The choice of universal set is unambiguous here, and term-set membership 
functions (without generality limitation) are shown in Fig. 1.6. a. 
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However, not all models based on semantic spaces, possess the properties 
ensuring successful solutions of practical problems. One such property is 
completeness of model, which consists in a possibility of describing each element 
of universal set in linguistic terms of this space [28. 35]. 

Let us consider a semantic space “steam pressure at inlet” when using a  
high-pressure preheater, which was constructed in [35], 

( ) { } [ ],7,6;1,1,,, == UCBAXT  

Where A  — “low pressure”; B  — “pressure close to 4”; C  — “high input 
pressure”. 

Membership functions of the term-set of this semantic space are shown in  
Fig. 1.6. b. If at the inlet of a high pressure preheater there is pressure equal 1.7, 
this value cannot be described by any of linguistic values of the “steam pressure” 
characteristic. So, we can conclude that the semantic space the membership 
functions of which are shown in Fig. 1.6. b does not possess the completeness 
property which means that each element of universal set can be described within 
the scope of at least one of linguistic terms. 

Another model which poorly describes evaluation processes is a semantic space 
“system sensor failure probability” with terms of "low", "mean", "high" 
probabilities. Membership functions of this space are shown in Fig. 1.6.c. 
According to this model, the probability value equal to a is identified with all 
terms included and consequently it does not have any meaning for further use. 

So, a conclusion can be made that the semantic space which membership 
functions are shown in Fig. 1.6.c, does not possess the property of concepts 
discriminability which means that each element of universal set cannot be 
described within the limits of more than two linguistic terms. 

It is obvious that to solve practical problems, lack of completeness which 
characterizes model of expert evaluations of object’s properties and lack of 
discriminability of concepts incorporated into this model, is the essential gap 
which needs to be bridged. 

1.5   Complete Orthogonal Semantic Spaces 

Theoretical researches of semantic space properties aimed at improving the 
adequacy of evaluations expert models and their usefulness for solution of 
practical problems allow reasonable formulation of requirements to membership 

functions ( )xlµ ; ml ,1=  and their term-sets [28]. 

1. For each concept 
lX  the φ≠lU

�
 exists, where ( ){ }1: =∈= xUxU

ll
µ

�
 is a 

point or a segment. 

2. Let ( ){ }1: =∈= xUxU ll µ
�

, then ( )xlµ  does not decrease at the left and does 

not increase to the right of 
l

U
�

. 

3. ( )xlµ  have no more than two points of discontinuity of the first kind. 

4. For every Ux∈  
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( )∑
=

=
m

l

l x
1

.1µ
 

The semantic spaces with the membership functions being in line with the 
formulated requirements are called complete orthogonal semantic spaces (COSS). 

The requirement 1 means that each concept (term) has at least one standard, 
which is the typical representative (level of expert gradational confidence of a 
typical representative’s membership to corresponding concept is equal to unity). If 
there are several standards, all of them are located closely, instead of being 
scattered over a universal set. 

 

Fig. 1.7 Membership functions of COSS term-set “inlet steam pressure” of the “high 
pressure preheater” 

The requirement 2 says that if units are "close" to each other in universal set, 
they also are "close" by a membership to a certain concept. 

The requirement 3 ensures a possibility of simultaneous processing of fuzzy 
and precise information from unified positions because regular characteristic 
functions can be used as membership functions. 

The requirement 4 ensures, for each unit from universal set, availability of at 
least one concept which describes this unit with nonzero grade of membership. 
Besides, it ensures the discriminability of concepts generating semantic space and 
excludes the use of synonyms or semantically close terms. 

An example is a complete orthogonal semantic space which term-set 
membership functions are shown in Fig. 1.7. 

The formulated requirements to functions of COSS term-set allow defining 
degree of its fuzziness [28] 

( ) ( )[ ] ,
1

21
dxxxf

U
U

ll∫ −= µµζ
                                          

(1.7)
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Where ( ) ( ) ( ) ( ) ( ) ( ) .01;10;max;max

1

21 11
====

≠
≤≤≤≤

ffxxxx l

ll
ml

ll
ml

l µµµµ  

If ( ) ( ) ( ) xxfxRxL −=== 1 , then 

( ) ( )[ ]{ } ,
2

1
1

21 U

U
dxxx

U
U

ll =−−= ∫ µµζ
 

where ∪
�m

l

lUUU
1=

−= . 

As COSS can serve as models of expert evaluation of characteristics, then degree 
of COSS fuzziness is interpreted as mean degree of difficulties of description of 
real objects and situations by an expert and, besides, as a quantity indicator of 
quality of the fuzzy information provided by experts. 

In [28] it is shown that linear transformation of universal set does not change 
degree of fuzziness of the relevant COSS. 

It is worth mentioning that researches of COSS properties and justification of 
their employment for various practical problems are under development. The 
history of these researches repeats history of researches of actually all sections of 
the fuzzy set theory, where the theoretical component always noticeably lagged 
behind the practical one. 
1.6   Overview of Mo del-Building Methods for Membership Functions  

1.6   Overview of Model-Building Methods for Membership 

Functions of Fuzzy Sets and Semantic Spaces 

1.6   Overview of Mo del-Building Methods for Membership Functions  

Important phase of information processing is information formalization, i.e. its 
representation in a form allowing application of means of known mathematical 
theories at subsequent stages of its processing and analysis. For example, if the 
obtained data are values of some chance quantity, the means of probability theory 
and the mathematical statistics are applied; and if they are considered as values of 
some fuzzy variable, means of the fuzzy set theory are applied. 

Complexity of formalization of fuzzy information is that applied building 
methods of membership functions of fuzzy sets and term-sets of semantic spaces 
are beyond the fuzzy set theory, and therefore adequacy of formalization models 
cannot be checked up within the scope of its means. 

Let us consider known building methods of membership functions of fuzzy sets 
and term-sets of semantic spaces which are directly set by a table, a formula, and 
an example [56—59]. 

Example 1.5. Various representations of a fuzzy set. The fuzzy set A
~

 = {business 
success of various strategies of a financial structure development} is possible to 
represent as: 

( ) 3,09,05,02,0.........

4321.................

1~

1

x

x

A
µ
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The same set can be written in two ways  

{ };4/3,0;3/9,0;2/5,0;1/2,0
~

=A  

{ }.4/3,03/9,02/5,01/2,0
~

+++=A  

Example 1.6. Building of fuzzy set on the basis of frequency approach [60—63]. 

Let us consider fuzzy set A
~

 = {the raised demand for cars of the German concern 
"Volkswagen"}. 

Sales volumes of cars of this concern over a certain period are the following: 
"Bora" — 75, "Passat" — 120, "Golf" — 90, "Jetta” — 60, “Touareg” — 90. It is 
clear that the "Passat" model was in maximum demand. By introducing a 

normalization factor 1/120, we’ll obtain fuzzy set A
~

 = {0. 625 / "Bora", 1 / 
"Passat", 0.75 / "Golf", 0.5 / “Jetta”, 0.75 / “Touareg”}. 

In [64], for building of membership function of fuzzy set the probability density 
function of a continuous chance quantity is evaluated over small volume sample. 

Membership function for a certain element of universal set can be defined by 
ratio of a number of experts considering that this element is typical for fuzzy set, 
to a number of all experts who are taking part in a survey [35]. 

Example 1.7. Building of fuzzy set on the basis of an expert group survey. Six 
independent experts estimated the “correspondence to curricula” characteristic for 
seven samples of manuals (1—7). Following outcomes were obtained: 

 

Sample No. Number of experts giving positive (negative) mark

1 2 (4) 

2 4 (2) 

3 5 0) 

4 1 (5) 

5 6 (0) 

6 3 (3) 

7 0 (6) 

 
Thus, this fuzzy set can be written as 

.7/0;6/
2

1
;5/1;4/

6

1
;3/

6

5
;2/

3

2
;1/

3

1

⎭⎬
⎫

⎩⎨
⎧

 

If it is guaranteed that experts are far from random errors, they can be directly 
interrogated about values of membership function. It is important to remember 
about distortions of evaluations which are expressed rather often in the subjective 
tendency to shift them to extremities of an estimating scale [59]. 
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Membership functions can be constructed so that to satisfy the side conditions 
formulated in advance which can be imposed either to form of obtained 
information, or to processing procedure. Examples of such side conditions are as 
follows: 

• Membership function shall reflect affinity to a pre-selected standard, and 
evaluation objects are points in parametrical space [65]; 

• Membership function shall satisfy the conditions of an interval scale [66]; 

• Under paired comparison of objects, if one object is estimated as being  

β  –times stronger than the other one, the latter shall be only estimated as being 

β/1  – times stronger than the first one [67]; 

• Restrictions on elements of paired comparison matrix should be introduced 
when it is not obviously possible to obtain all its values [68], etc. 

Example 1.8. Building of a fuzzy set on the basis of paired comparisons of objects 
[69—70]. An expert estimates the public importance of four innovative projects 
under a scale presented in table 1.1. 

The matrix of paired comparisons is formed as follows: diagonal elements are 
equal to 1, and for the elements which are symmetric versus a diagonal, 

.4,1,4,1,
1

=== ji
a

a
ji

ij

 

Element ija  of a paired comparison matrix is an evaluation of preference of i -

th project over j -th by their public importance with its effect on an investor’s 

image taken into account. 
The expert composed a matrix of paired comparisons in the following form: 

.

1
4

1

6

1

7

1

41
4

1

6

1

641
5

1
7651

⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=A

 
Then, it is necessary to define eigenvalues of the matrix A and to select a 

maximum eigenvalue. Let us equate to zero a determinant 0=−Α Eλ : 

.0715,2914,64

1
4

1

6

1

7

1

41
4

1

6

1

641
5

1
7651

34 =−−−=

−

−

−

−

λλλ

λ

λ

λ

λ
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Table 1.1 A scale of a judgment matrix definition 
 

Evaluation of 

importance 
Qualitative evaluation Note 

1
Identical importance By the given criterion, projects 

have an identical rank 

3
Weak superiority Reasons on preference of a project over the other one are flimsy 

5
Strong (or essential) superiority There are relevant proof of the essential superiority of one of the 

projects 

7 Obvious superiority There are convincing demonstrations in favour of one of the projects

9
Absolute superiority of one of the 
projects over the other is extremely 
evident 

Preference of one of the projects is well-founded  

2. 4. 6. 8 
Intermediate values between the 
adjacent evaluations 

Used when the compromise is necessary 

Then 

;305,1140,0;362,0 21 i+−=−= λλ

.390,4;305,1140,0 43 =−−= λλ i

Let us find an eigenvector for maximum eigenvalue 390,4=λ

.0

390,41
4

1

6

1

7

1

4390,41
4

1

6

1

64390,41
5

1
765390,41

4

3

2

1

=

−

−

−

−

ω

ω

ω

ω

On multiplying the matrixes, we obtain the following set of equations  

=−++

=+−+

=++−

=+++−

,0390,3250,0166,0142,0

;04390,3250,0166,0

;064390,3200,0

;0765390,3

4321

4321

4321

4321

ωωωω

ωωωω

ωωωω

ωωωω

which only has a trivial solution.  

Let us substitute any of equations of the system with the equation 14321 =+++ ωωωω , as a result 

we’ll obtain a solution: 619,01 =ω ; 235,02 =ω ; 101,03 =ω ; 045,04 =ω .

If it is necessary to select a project with the greatest public importance among four projects, the fuzzy set 
is to be considered 

{ }.4/045,0;3/101,0;2/235,0;1/619,0

Then project No. 1 is to be selected because it has the greatest grade of membership to the constructed 
fuzzy set.  

 
In [71—72] values of membership functions of fuzzy set are defined by an 

expert group following the rank orderings of objects. 
Model-building methods of semantic spaces unlike building methods of 

separate fuzzy sets are sparse. It is necessary to outline a model-building 
techniques of linguistic terms of frequency evaluations developed by 
D.A.Pospelov, I.V.Ezhkova [73—74]. A method shortage is lack of formal 
algorithm of membership functions building for terms. Ambiguity of building 
process and of its quality dependence on experience and skills of contributors are 
consequences of that shortage. The method [73—74] was further developed in 
methods of S.G. Svarovsky [75] and I.A.Khodashinsky [76].  
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In these methods connections between membership functions of terms 

(presence of one maxima and fronts which are smoothly damping to zero are only 

supposed for membership functions) are not described, moreover, there is no 

algorithm of deriving of continuous membership functions based on their discrete 

values. A model-building techniques of the semantic spaces developed by А.V. 

Skofenko [77] is based on expert evaluations such as "approximately equal to 

number A ” or “lays approximately in the range between A  and B ”. In methods 

[73—76] connections between membership functions of terms are not described 

thus not allowing winning independence of quality of the constructed models from 

skills of researchers. 

In [78—79] A.N.Borisov and A.N.Averkin offered parametrical definition of 

membership functions of the modified terms of semantic spaces on the basis of 

membership functions of basic terms. 

Considering the essential importance of formalization of the information 

obtained while developing fuzzy models, building methods of COSS membership 

functions will be considered in Chapter 2. 

1.7   Formalization of Fuzzy Conclusions 

Let 
nXXX ...,,, 21  be semantic spaces corresponding to universal sets 

nUUU ...,,, 21 , accordingly, and terms { }
ilX , ni ,1= , ml ,1= , with membership 

functions ( ){ }xilµ . Let Y  be a semantic space with universal set U  and terms 

{ }lY , which have membership functions ( ){ }xlµ . 

The system of fuzzy reasonings can be of two types: nXXX ...,,, 21   

— input information, and Y  — output information, or Y  is input information, 

and nXXX ...,,, 21  — output information. System of approximate reasonings of 

first type [80-81] or system of the reference fuzzy logic reasonings which reflect 
expert experience could be presented as: 
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The second type of this system could be presented as: 
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Let us consider the block diagram of the fuzzy linguistic governor presented in 
Fig. 1.8. 

The numerical information from an object under control comes to fuzzificator. 
It transforms the information to a linguistic form. Further, linguistic values come 
to fuzzy conclusion rule system based on fuzzy expert judgments. As a result, 
membership function comes to “defuzzificator” where it will be transformed to the 
numerical information used to control an object. 

   Numerical               Signal                  Signal                   Numerical  
   information    Control     Object under             Sensor         information 
            Control 
 
 
 
 
 
        Defuzzificator            Fuzzificator 
 
 
 
 
 
               Membership function                                                                          Linguistic value 
     Fuzzy conclusion 
     rules system 
 

 
Fig. 1.8 The block diagram of the fuzzy governor 

Example 1.9. The fuzzy governor. Let us consider a microcontroller operating as 
a governor. Its input analogue signal e  is limited by a range [-1. 1] and is 
converted to a digital signal by an analog-to-digital converter with resolution 0.25; 
the output signal х is formed by the digital-to-analogue converter and has five 
levels:-1, -0.5, 0, 0.5, 1 [82]. Let us denote with eΔ  the first error signal 

difference at the current discrete point of time. 

Let us consider semantic space of an analogue signal with terms: 1A  — "high 

positive”, 2A  — “low positive”, 3A  — "zero", 4A  — “low negative”, 5A  — 

“high negative” and semantic space “the first error signal difference at the current 

discrete point of time” with terms: 1B  — "high positive”, 2B  — “low positive”, 

3B  — "zero", 4B  — “low negative”, 5B  — “high negative”. Membership 

functions of terms of those two spaces are assumed identical, values of 

membership functions ,iA  5,1=i  are presented in Table 1.2.  
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Table 1.2 Membership functions of terms e  

iA
~µ

 
–1 –0.75 –0.5 –0.25 0 0.25 0.5 0.75 1 

1

~
A

µ
 

0 0 0 0 0 0 0.3 0.7 1 

2

~
A

µ
 

0 0 0 0 0.3 0.7 1 0.7 0.3 

3

~
A

µ
 

0 0 0.3 0.7 1 0.7 0.3 0 0 

4

~
A

µ
 

0.3 0.7 1 0.7 0.3 0 0 0 0 

5

~
A

µ
 

1 0.7 0.3 0 0 0 0 0 0 

 
Let us assume that functioning of the governor is defined by following relations; 

e  eΔ  
x  

1A
 1B

 
–1 

2A
 2B

 
–0.5 

3A
 3B

 
0 

4A
 4B

 
0.5 

5A
 5B

 
1 

 
Certainly, collections of relations can be different. Following the formulated 

relations, let us define an output signal of the governor under 25,0=e ; 5,0=Δe . 

Let us find values of membership functions of terms in points 25,0=e ; 5,0=Δe , 

using Table 1.2. We’ll denote ( ) ( )[ ]eBeA iii Δ= ,minα  then: 

( ) ;1;03,0;0min 11 −=== xα  
( ) ;5,0;7,01;7,0min 22 −=== xα  
( ) ;0;3,03,0;7,0min 33 === xα

 
( ) ;5,0;00;0min 44 === xα  
( ) ;1;00;0min 55 === xα

 
 
Output signal of the governor 
 

,kxx =  if .5,1;5,1;max === kiik αα  

Maximum value of iα  is equal to 0.7, therefore the output signal of the governor 

is equal to -0.5. 



30 The Basic Concepts of the Fuzzy Set Theory

 

There are some algorithms of a fuzzy logic conclusion. Let us consider most 
known of them, using system of two fuzzy conclusion rules: 

if X  is 
1

~
A  and Y  is 

1

~
B , then Z  is 1

~
C ; 

    if X  is 
2

~
A  and Y  is 

2

~
B , then Z  is 2

~
C . 

and having denoted membership functions of linguistic values of variables X , Y , 

Z  through 
iA

~µ , 
iB

~µ , iC
~µ , 2,1=i  accordingly. 

Algorithm of Mamdani 

1. Fuzzification. Membership functions 
iA

~µ , 
iB

~µ , 2,1=i  are applied to 

physical (real) values 0x , 0y  of variables X , Y . 

 
2. Fuzzy conclusion 

( ) ( )[ ];,min 0~0~1
11

yx
BA

µµα =
 

( ) ( )[ ].,min 0~0~2
22

yx
BA

µµα =
 

Definition of the truncated membership functions of variable Z : 

( )[ ];,min
1

1
1

~1~ z
CC

µαµ =
 

( )[ ].,min
2

1
2

~2~ z
CC

µαµ =
 

 
3. A composition (union of the truncated membership functions) 

( ) ( ) ( )[ ].,max 1
2

1
1

~~ zzz
CC

µµµ =Σ  

 

4. Defuzzification:  
For a continuous case 

( )

( )
;0 ∫

∫
Σ

Σ

=

U

U

dzz

dzzz

z
µ

µ

 

For a discrete case 

( )

( )
.0 ∑

∑
Σ

Σ

=

i

i

i

ii

z

zz

z
µ

µ
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Fig. 1.9 Membership functions of variables according to Mamdani algorithm: 

a — ( )21

~
,

~
AAX ; b — ( )21

~
,

~
BBY ; c — ( )21

~
,

~
CCZ  

Example 1.10. Application of Mamdani algorithm. Let us assume that ranges of 

values of variables X , Y , Z  are segments [2; 10], [1; 5], [3; 8], accordingly. 

Linguistic values of these variables ( X  — 
21

~
,

~
AA , Y  — 21

~
,

~
BB , Z  — 21

~
,

~
CC ) have 

the membership functions shown in Fig. 1.9. 
 

Let 50 =x ; 8,40 =y , then ( ) 75,05
1

~ =
A

µ ; ( ) 25,05
2

~ =
A

µ ; ( ) 1,08,4
1

~ =
B

µ ; 

( ) 9,08,4
2

~ =
B

µ . 

 
Then 



32 The Basic Concepts of the Fuzzy Set Theory

 

( ) ( )[ ] ( ) ;1,01,0;75,0min,min 0~0~1
11

=== yx
BA

µµα
 

( ) ( )[ ] ( ) .25,09,0;25,0min,min 0~0~2
22

=== yx
BA

µµα
 

 

The composition of the truncated membership functions is presented in Fig. 1.10.  
As a result we’ll obtain: 

( )

( )
=

+−+

+−+

= ∫ ∫∫
∫ ∫∫

2,4

3

8

5,4

5,4

2,4

2,4

3

8

5,4

5,4

2,4

0

25,025,01,0

25,025,01,0

dxdxxdx

xdxxdxxxdx

z

 

( ) ( ) ( )
( ) ( ) ( )

→
+−−−+−

+−−−+−
=

2,45,422,45,425,032,41,0

2,45,42,45,4167,032,405,0
22

223322

 
( )
( )

.86,5
5,4825,0

5,48125,0 22

=
−+

−+
→

 

 

Fig. 1.10 A composition of the truncated membership functions 

Algorithm of Tsukamoto 

It is assumed that membership functions ( )z
C1

~µ , ( )z
C2

~µ  are monotone. 

1. Fuzzification. The same as in Mamdani algorithm. 
2. Fuzzy conclusion (the same as in Mamdani algorithm) 

( ) ( )[ ];,min 0~0~1
11

yx
BA

µµα =
 

( ) ( )[ ].,min 0~0~2
22

yx
BA

µµα =
 

Precise values 1z , 
2z  are derived from the equations 

( );1~1
1

z
C

µα =
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( ).22
2

z
C

µα =
 

3. Definition of a precise value of a conclusion variable  

.
21

2211
0 αα

αα

+

+
=

zz
z

 

Example 1.11. Application of Tsukamoto algorithm. As in the example 1.10, let 
us assume that ranges of values of variables X , Y , Z are segments [2.10], [1.5], 

[3.8], accordingly. Linguistic values of variables ( X  — 
21

~
,

~
AA , Y  — 

21

~
,

~
BB ,  

Z  — 21

~
,

~
CC ) have the membership functions shown in Fig. 1.11. 

Let 50 =x ; 8,40 =y , then ( ) 75,05
1

~ =
A

µ ; ( ) 25,05
2

~ =
A

µ ; ( ) 1,08,4
1

~ =
B

µ ; 

( ) 9,08,4
2

~ =
B

µ . 

( ) ( )[ ] ( ) ;1,01,0;75,0min;min 0~0~1
11

=== yx
BA

µµα
 

( ) ( )[ ] ( ) .25,09,0;25,0min;min 0~0~2
22

=== yx
BA

µµα
 

Let us find 1z , 2z  from the equations: 

;
5

3
11,0 1

~
1

−
−==

z
C

µ
 

.
5

8
125,0 2

~
2

−
+==

z
C

µ
 

Then 5,31 =z ; 25,42 =z , and the defuzzification gives: 

.036,4
25,01,0

25,025,41,05,3
0 =

+

⋅+⋅
=z
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Fig. 1.11 Membership functions of variables according to Tsukamoto algorithm (а—c are 
the same as in Fig. 1.9) 
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Sugeno Algorithm 

 
For this algorithm the following conclusion rules are used:  

if X  is 1

~
A  and y  is 1

~
B  then ybxaz 11 += ; 

  if X  is 2

~
A  and y  is 2

~
B  then ybxaz 22 += . 

1. Fuzzification is the same as in Mamdani algorithm. 
2. A fuzzy conclusion is the same as in Mamdani algorithm.  

( ) ( )[ ];,min 00~1
11

yx
BA

µµα =
 

( ) ( )[ ].,min 0~0~2
22

yx
BA

µµα =
 

Individual outputs of the rules: 

;01011 ybxaz +=
 

.02022 ybxaz +=
 

3. Definition of precise value of a conclusion variable (the same as in 
Tsukamoto algorithm) 

.
21

2211
0 αα

αα

+

+
=

zz
z

 

Larsen Algorithm 
 

1.  Fuzzification is the same as in Mamdani algorithm. 
2.  Fuzzy conclusion is the same as in Mamdani algorithm. 

( ) ( )[ ];,min 00~1
11

yx
BA

µµα =
 

( ) ( )[ ].,min 0~0~2
22

yx
BA

µµα =
 

Definition of particular fuzzy sets: 

( );
1

1
1

1~ z
CC

µαµ =
 

( ).
2

1
2

2~ z
CC

µαµ =
 

3. Composition. Union of truncated membership functions (the same as in 
Mamdani algorithm) 

( ) ( ) ( )[ ].,max 1
2

1
1

~~ zzz
CC

µµµ =Σ  

4. Defuzzification (the same as in Mamdani algorithm):  
for a continuous case 
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( )

( )
;0 ∫

∫
Σ

Σ

=

U

U

dzz

dzzz

z
µ

µ

 

For a discrete case 

( )

( )
.0 ∑

∑
Σ

Σ

=

i

i

i

ii

z

zz

z
µ

µ

 

Simplified Algorithm of a Fuzzy Conclusion 

 
In this algorithm the following derivation rules are used:  

if x  is 
1

~
A , and y  have 

1

~
B  then 1cz = ; 

if x  is 
2

~
A  and y  have 

2

~
B  then 2cz = . 

where 1c , 2c  — some precise (regular) numbers. 

1. Fuzzification is the same as in Mamdani algorithm. 
2. Fuzzy conclusion is the same as in Mamdani algorithm. 

( ) ( )[ ];,min 0~0~1
11

yx
BA

µµα =
 

( ) ( )[ ].,min 0~0~2
22

yx
BA

µµα =
 

3. Definition of precise value of a conclusion variable  

.
21

2211
0 αα

αα

+

+
=

cc
z

 

Methods of handling of the fuzzy information presented as a population of 
approximate judgments are developed well enough. Semantic spaces are usually 

used as nXXX ,....,, 21  and Y . However use of subjective representations of 

membership functions values of semantic space terms to formalize this 
information leads to necessity in intensified development aimed to improve 
adequacy of developed fuzzy models. New relevant outcomes are discussed in 
Chapter 2. 

1.8   Methods of Defuzzification 

Defuzzification of a fuzzy number is referred to as its mapping to a point or a 
segment of the real line. Methods of defuzzification of fuzzy numbers play an 
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essential role for issues of processing and analysis of fuzzy information. There are 
different methods of defuzzification of fuzzy numbers, in particular, a gravity 
method, a minimax method, a method of a maximum of membership function, a 
method of the weighed point etc. [40. 46. 83—93] which have the certain merits 
and demerits described in [87]. Most frequently applied of these methods is the 
gravity method, according to which pointwise value defined under the formula:  

( )

( )
.

1

0

1

0

∫
∫

=

dxx

dxxx

E

µ

µ

                                                        

(1.8)

 

is assigned to fuzzy number with membership function ( )xµ . 

If ( )xL , and ( )xR  in (1.6) are linear functions, and ( ) ( )RL aaaax ,,, 21≡µ , 

then (1-8) looks like: 

( ) ( ) ( ) ( )[ ]
( )

.
2

3

1

12

22

21

2

1

2

2

RL

LRRL

aaaa

aaaaaaaa

E
++−

−+++−
=

             

(1.9)

 

The method of the maximum of membership function is applied to unimodal fuzzy 
numbers; the abscissa of a point of a maximum of its membership function is to be 
taken as an integral index of fuzzy number. In the minimax method a minimum 
value of abscissas of membership function’s maximum points is to be selected as 
an integral index of fuzzy number. The essence of the method of the weighed 
point [87] is that generation of an integral index of a normal triangular number is 
carried out with accounting for weighs of its α -level sets. If the normal triangular 

number B
~  with membership function ( )x

B
~µ  looks like ( ) ( )RLB

bbbx ,,~ ≡µ , the 

corresponding weighed point is defined by the formula: 

( ) ( )[ ] ( ) .11
2

1
1

0

∫ −++−−= αααα dpbbbbB RL

 

Function ( )αp  at 10 ≤≤ α  is referred to as α -levels’ importance distribution 

density function [87]. This function shall be nonnegative and satisfy a 
normalization condition: 

( ) .1
1

0

=∫ αα dp

 

A weighed point for a normal triangular number with membership function 

( ) ( )RLB
bbbx ,,~ ≡µ  and ( ) αα 2=p  is defined in [84] by the formula 
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( ) ( )[ ] ( ).
6

1
11

1

0

LRRL bbbdbbbbB −+=−++−−= ∫ αααα
 

In [93] definition of the weighed point is spread to tolerance ( )RL − -numbers; and 

the new method of defuzzification of fuzzy numbers is proposed which assigns to 
them not a number, but a certain numerical segment called the weighed one. 

According to [93], weighed segment of a tolerance ( )RL − -number 

( )RL aaaaA ,,, 21≡  is the segment [ ]21, AA : 

( ) ( )∫∫ −− ==+=−=
1

0

1

1

0

1

2211 .;;; αααααα dRrdLlraaAlaaA RL

 

(1.10)

 

Before the weighed segment being defined, the known methods of defuzzification 
of fuzzy numbers have allowed definition only pointwise aggregating indexes for 
them. Thereby, for example, they made unimodal numbers with different 
fuzziness coefficients or tolerance numbers indiscernible, i.e. their informational 
singularities were lost, which were necessary to be outlined. In more details, the 
method of defuzzification of fuzzy numbers based on the weighed segments is 
discussed in Chapter 6. 

1.9   Fuzzy Relations and Features of Fuzzy Cluster Analysis 

One of the basic concepts of the fuzzy cluster analysis is the concept of the fuzzy 
relation. Fuzzy relations play an essential role in the problems with the solutions 
rested upon methods of the fuzzy set theory, on traditional methods and the theory 
of clear ratios [94—99]. As a rule, the means of the theory of clear relations is 
used in qualitative analysis of correlations between objects of investigated system 
when they are of dichotomizing nature and, consequently, can be interpreted in 
terms "there is no connection“, “there is a connection”, or when methods of 
quantitative analysis of correlations are inapplicable for any reasons, and 
correlations are derived to a dichotomizing form synthetically. For example, when 
connection between objects takes values from a rank scale, then selection of 
connection force threshold allows this connection to be transformed to a 
demanded kind. However, despite the similar approach allows carrying out the 
qualitative analysis of systems, it leads to loss of the information on connection 
force between objects; therefore it is necessary to make evaluations at different 
connection force thresholds. Methods of data analysis based on the theory of fuzzy 
ratios do not suffer this shortage; they allow carrying out the qualitative analysis 
of systems taking into account distinctions in connection force between objects of 
the system [15]. 

Ordinary (definite) n -ary relation R  between sets nXXX ,....,, 21  is referred to 

as a subset of Cartesian product: 

.....21 nXXXR ×××⊆
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Fuzzy n -ary relation R  between sets nXXX ,....,, 21  is referred to as such fuzzy 

set R  when ( ) nn XXXxxx ×××∈∀ ....,...,, 2121 ; ( ) [ ]1,0,...,, 21 ∈nR xxxµ , 

where { }11 xX = ; { }22 xX = , …, { }nn xX =  are ordinary sets. 

Fuzzy binary relation R  between sets X , Y  is referred to as such fuzzy set R  

when ( ) YXyx ×∈∀ , ; ( ) [ ]1,0, ∈yxRµ , where { }xX = ; { }yY =  are ordinary 

sets. 

If sets { }nxxxX ,...,, 21= ; { }nyyyY ,...,, 21=  are finite, the fuzzy binary 

relation R  can be specified by means of a matrix, which rows and columns are 

put in correspondence with elements of sets X , Y ; and an element ( )
jiR yx ,µ  is 

put as cross-section the of i -th row and j -th column. Thus 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

.

,,,

............

,...,,

,...,,

R

21

22212

12111

⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜

⎝

⎛
=

mnRnRnR

mRRR

mRRR

yxyxyx

yxyxyx

yxyxyx

µµµ

µµµ

µµµ

 

Fuzzy binary relation R  over set X  is referred to as such fuzzy set R , that 

( ) YXyx ×∈∀ , ; ( ) [ ]1,0, ∈yxRµ . 

Let 1R , 2R  are fuzzy binary relations between sets YX ,  and ZY , , 

accordingly. 

Composition of fuzzy relations 1R , 2R  is referred to as such fuzzy set 21 RR D  

when for Xx ∈∀ , Yy ∈∀ , Zz ∈∀  

( ) ( ) ( )[ ],,,,
2121

zyyxzx RR
y

RR µµµ ∧∨=D
 

where ∧  and ∨  are operators of triangular norm and conorm class, accordingly. 

For example, ( max— min )-composition 
21 RR D  is defined by the expression 

( ) ( ) ( ){ }[ ],,,,minmax,
2121

zyyxzx RR
y

RR µµµ =D
 

where Xx ∈ ; Yy ∈ ; Xx ∈ . 

The fuzzy binary relation R  is referred to as reflective, if ( ) 1, =xxRµ ; 

Xx ∈∀ , and symmetric, if ( ) ( )xyyx RR ,, µµ = ; Xyx ∈∀ , . 

One of the important properties of fuzzy binary relations is that they can be 
presented as a population of ordinary binary relations ordered by inclusion and 
representing a hierarchical population of relations [15]. Expansion of fuzzy binary 
relations to a population of ordinary binary relations is based on the concept of  
α -level of a fuzzy binary relation which is represented in the form 

( ) ( ){ }.,:, αµα ≥×∈= yxYXyxR R  
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Theorem of Decomposition [40]. Any fuzzy set A
~

 with membership function 
( )x

A
~µ  can be decomposed on sets of α -level 

[ ] α
α

αAA
1,0

~
∈
∪=

                                                   (1.11) 

or 

( )
[ ]

( )[ ],
1,0

~ xx AA α
αµµ

α∈
∪=

 

where ( )
( )
( )⎩⎨

⎧
<

≥
=

.,0

;,1

αµ

αµ
µ

α x

x
x

A

A

A  

According to (1.11), the fuzzy binary relation R  can be presented as  

[ ] α
α

αRR
1,0∈

∪=
 

or 

( )
[ ]

( )[ ];
1,0

xx RR α
αµµ

α∈
∪=

 

where ( )
( )
( )⎩⎨

⎧
<

≥
=

.,0

;,1

αµ

αµ
µ

α x

x
x

R

R

R . 

A reflective symmetric fuzzy binary relation is referred to as fuzzy binary 
relation of similarity. 

Fuzzy binary relation R  is referred to as transitive, if 

( ) ( ) ( ) Xzyxzyyxzx RRR ∈∀∧≥ ,,,,, µµµ . 

A transitive fuzzy binary relation of similarity is referred to as fuzzy binary 
relation of conformity. 

In actual practice the transitivity requirement is often difficult to meet. In order 
to use expert survey for the purpose of constructing the similarity relation, the 
transitive answers shall be demanded from these experts. Numerous practical 
outcomes [16] are quite opposite: real outcomes of expert surveys are often 
intransitive. However, in applications of fuzzy relations the transitive ones are of 
great importance, because they possess many convenient properties and define 
some correct structure of a set which they are set for. For example, if relation R  
over a set X  characterizes similarity between objects, then transitivity of such 
relation (the similarity relation) ensures a possibility of a partition of set X  on 
disjoint similarity classes (clusters). 

Let R  be similarity relation. Then according to the theorem of decomposition 
for relations of similarity [15] 

( ),α
α

α RR ×∪=
                                                 (1.12) 

where ( )( )
( )

⎩⎨
⎧ =

=×
otherwise.,0

;1,if,
,

yxR
yxR

α
α

α
α   
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Thus, to solve problems of fuzzy cluster analysis, possibility to transform an 
initial intransitive relation to a transitive one is of great interest. Such 
transformation is ensured with operation of transitive closure which was first 
considered in [100—101]. 

The relation ...32 ∪∪∪∪= kRRRRR
�

, where relation k
R  is defined 

recursively as  

,...4,3,; 12 === − kRRRRRR kk DD  

is referred to as transitive closure of a fuzzy binary relation. 

Transitive closure R
�

 of any fuzzy relation R  is transitive and is the least 
transitive relation including R  [15]. In [28] it is proved that a fuzzy relation is 

transitive in the only case when RR
�

= , and if the set X  contains n  elements, 

then  

.32 nRRRRR ∪∪∪=
�

 

Besides, if fuzzy relation R  is reflective, then 1−= nRR
�

. 
Application of fuzzy relations in the cluster analysis is discussed in  

[102—103]. In [100] clusterization procedure based on transitive closure of an 
initial relation of the similarity resulted from the expert survey, is offered. Experts 
compared similarity between portraits of different people, and on the basis of 
paired comparison the similarity matrix was built. Various methods of fuzzy 
clusterization and their connections with traditional methods of the cluster analysis 
and their practical applications are discussed in [104—120]. 

Let us suppose that some experts estimate expression of some characteristics at 
a population of objects. Having in mind that each of these experts has his/her 
individual evaluation criterion, we cannot exclude that the information obtained 
from one expert differs from the information obtained from another. As models of 
an expert evaluation of some characteristic are constructed rested upon this 
information, it is obvious that the models based on information obtained from 
various experts will differ. 

Thus, if within the characteristic limits some expert evaluation models can be 
constructed; there is a necessity of their comparative analysis versus the 
subsequent building of the generalized model. The methods developed by authors 
and allowing to carry out similar researches are discussed in Chapter 3. 
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Chapter 2 

Methods of Expert Information Formalization 
Based on Complete Orthogonal Semantic 
Spaces 

2.1   Fuzzy Numbers Used for Formalization of Linguistic 

Values of Characteristics 

Let us consider tolerance and unimodal ( )RL − -numbers with membership functions 

( )

⎪⎪
⎪⎪
⎪

⎩

⎪⎪
⎪⎪
⎪

⎨

⎧

>
−

∪>
−

<
−

∩<
−

>≤
−

≤⎟⎟⎠
⎞⎜⎜⎝

⎛ −

>≤
−

≤⎟⎟⎠
⎞⎜⎜⎝

⎛ −

=

11,0

;00,1

;0;10,

;0;10,

21

21

22

11

~

RL

RL

R

RR

L

LL

A

a

ax

a

xa

a

ax

a

xa

a
a

ax

a

ax
R

a
a

xa

a

xa
L

xµ

 

and following conditions for functions L  and R : 

1. ( ) ( ) ( ) ( ) ;011;100 ==== RLRL  

2. ( )xL  and ( )xR  are monotonically decreasing functions over set [0,1]. 

Let us denote Λ  for a population of all tolerance and unimodal numbers with 
conditions 1 and 2. 

Let us call elements of the population Λ  as Λ -numbers which are in turn 
subdivided into Λ -tolerance and Λ -unimodal numbers. 

As L  and R  are monotonically decreasing functions, the set of α -level of  

Λ -tolerance number ( )RL aaaaA ,,,
~

21≡  will look like: 

( ){ } [ ]==≥∈ 21
~ ,: ααα αµ AAxRxA
A  

( ) ( )[ ] [ ].1,0,; 1

2

1

1 ∈+−= −− ααα RL aRaaLa                    (2.1) 
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Let us consider arithmetical operations for Λ -tolerance numbers 

( )
11

,,,
~

21 RL aaaaA ≡
, 

( )
22

,,,
~

21 RL bbbbB ≡
. 

The Proposition 2.1. [121] Sum of Λ -tolerance numbers is a Λ -tolerance number. 

The poof. By definition of the expanded union operation for tolerance ( )RL − -

numbers BA
~

,
~

 with membership functions ( )x
A
~µ  and ( )x

B
~µ , accordingly, we’ll 

obtain tolerance ( )RL − -number BA
~~

⊕  with membership function 

( ) ( ) ( )[ ],,minmax ~~ yxz
BAyxz

µµµ
+=

=
 

which is symbolically noted by parameters 

( )
2121

,,,
~~

2211 RRLL babababaBA ++++≡⊕ . Let us show that the function which is 

the left boundary of membership function of this number increases monotonically. 

Let us write out two sets of α -level of number BA
~~

+ , 12 αα >  according to (2.1): 

( ) ( ) ( ) ( ) ( )[ ];;
21211 1

1
21

1
1221

1
21

1
111 RRLL bRaRbabLaLbaBA ααααα

−−−− +++−−+=+
 

( ) ( ) ( ) ( ) ( )[ ].;
21212 1

1

21

1

1221

1

21

1

111 RRLL bRaRbabLaLbaBA ααααα
−−−− +++−−+=+

 

As functions 1L , 2L , 1R , 
2R  are monotonically decreasing, then at 12 αα >  

( ) ( ) ( ) ( ) ;
2121 1

1

21

1

1112

1

22

1

111 LLLL bLaLbabLaLba αααα −−−− −−+>−−+
 

( ) ( ) ( ) ( ) .
2121 1

1

21

1

1222

1

22

1

122 RRRR bRaRbabRaRba αααα −−−− +++<+++
 

Hence, the left boundary of membership function BA
~~

⊕  monotonically increases, 

and the right boundary monotonically decreases, and BA
~~

⊕  belongs to Λ . The 
proposition 2.1 is proved. 

Similarly, it is possible to show that sum of Λ -unimodal numbers is a  

Λ -unimodal number, and the sum of Λ -tolerance and Λ -unimodal numbers is  

Λ -tolerance number. If LLL == 21
, and RRR == 21 , then sum of these numbers is 

( )RL − -number and belongs to Λ . 

The Proposition 2.2. [121] Product (result of multiplication) of Λ -tolerance 
numbers is a Λ -tolerance number. 

The proof. Let us consider a fuzzy number which is the product of Λ -tolerance 

numbers ( )
11

,,,
~

21 RL aaaaA ≡ , ( )
22

,,,
~

21 RL bbbbB ≡ , and let us denote it through 

BAD
~~~

⊗= . Let write out sets of α -level of numbers A
~

 and B
~

 according to (2.1)  

[ ] ( ) ( )[ ];,,
11

1
12

1
11

21
RL aRaaLaAAA ααααα

−− +−==
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[ ] ( ) ( )[ ].,,
22

1

22

1

21

21

RL bRbbLbBBB ααααα
−− +−==

 

The set of α -level of D
~  looks like 

( ) ( )[ ].,,,max,,,,min 2212211122122111

ααααααααααααααααα BABABABABABABABAD =
 
(2.2)

 

Let us prove the proposition for 01 >− Laa , 0<+ Rbb  ( A
~  — a positive number, 

B
~

 — a negative number). The proof of the proposition for other relations between 

numbers BA
~

,
~

 is carried out similarly. In a case 01 >− Laa , 0<+ Rbb  for (2.2) 

we’ll obtain 

[ ]== 21 , ααα DDD
 

( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }.,
2121

1

22

1

11

1

21

1

12 RLLR bRbaLabLbaRa αααα −−−− +−−+=
 

Functions 1L , 
2L , 1R , 

2R  are monotonically decreasing, therefore at 01 >− Laa , 

0<+ Rbb  and 12 αα >  

( ) ( ) ;0
11 2

1

111

1

11 LL aLaaLa αα −− −<−<
 

( ) ( ) ;0
11 1

1
122

1
12 RR aRaaRa αα −− +<+<

 

( ) ( ) ;0
22 2

1
211

1
21 <−<− −−

LL bLbbLb αα
 

( ) ( ) .0
22 1

1

222

1

22 <+<+ −−
RR bRbbRb αα

 

Thus, with 12 αα >  1
1

1
2 αα DD > , 2

1
2

2 αα DD > , and hence, the left boundary of 

membership function D
~  monotonically increases, and the right monotonically 

decreases, that ensures a membership of D
~  to Λ . The proposition 2.1 is proved. 

Similarly, it is possible to prove that product of Λ -unimodal numbers is  

Λ -unimodal number, and product of Λ -tolerance and Λ -unimodal numbers is Λ -
tolerance number. 

Further paragraphs of the Chapter are devoted to methods of formalization of 
expert evaluations of qualitative characteristics and description of values of 
quantitative characteristics in linguistic terms based on COSS. The constructed 
population of fuzzy numbers of Λ  is offered to be used for formalization of 
linguistic values of these characteristics or for building of membership functions 
of COSS terms. 
2.2   For malizatio n of Ex pert Evaluations of Q ualitative C haracteristics  

2.2   Formalization of Expert Evaluations of Qualitative 

Characteristics in a Verbal Scale 
2.2   For malizatio n of Ex pert Evaluations of Q ualitative C haracteristics  

 
As the input information the a posteriori information resulted from expert 
evaluations of a qualitative characteristic X  for a population of objects  
[121—122] is considered. 
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It is assumed that the evaluation was carried out within the limits of a verbal 

scale with levels lX , ml ,1= ; 2≥m  ordered on increase of characteristic 

appearance intensity degree. Levels of a used verbal scale unambiguously specify 

term-set ( ) { }mXXXXT ,...,, 21= . [ ]1,0=U  is selected as universal COSS set. The 

point 0=x  corresponds to a total absence of characteristic X  appearance, and 

consequently it is considered as a typical point of the term 1X . The point 1=x  

corresponds to total presence of characteristic X  appearance, and consequently it 
is considered as a typical point of term 

mX . 

Let us denote relative frequencies of objects’ occurrence for which 

characteristic X  intensity is estimated by levels 
lX  by la , accordingly  

∑
=

=
m

l

la
1

.1
 

Let us assume that fuzzy numbers corresponding to terms 
lX  with membership 

functions ( )xlµ  belong to population Λ  and satisfy a side condition (1*): 

If ( )xL , ( )xR  are nonlinear functions, they have a central symmetry versus the 

point of inflexion. 
Building of membership functions of COSS term-set will be carried out so that 

squares of the figures limited to graphs of functions ( )xlµ  and an axis of abscissas 

be equal to la . It is obvious that the there is an infinite number of membership 

functions meeting such requirements, therefore it is necessary to limit building to 
logical requirements for fuzziness areas between the adjacent terms (or to 
parameters of fuzziness of the fuzzy numbers corresponding to terms). On the one 
hand, there is a desire to make this area as small as possible, then the degree of 
fuzziness (1.7) constructed as a COSS model will be less accordingly. On the 
other hand, it is necessary to rest upon substantial sense of fuzziness area, so we 
propose to calculate a potency (length) of this area for extreme terms as 

( )21,min aa  or ( )mm aa ,min 1− , accordingly, and for mean terms to calculate the 

same base the relations between numbers 11 ,, +− lll aaa ; 2;3 −= ml . Graphs of the 

constructed membership functions will be in a form of curvilinear trapezoids with 

midlines equal to la , ml ,1= . 

Let us construct membership function of term 
mX :  

1. If 1−≤ mm aa , then  
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Fig. 2.1 shows membership functions of term 
mX  for a special case ( ) xxL −=1 ; 

10 ≤≤ x  (membership functions of T -numbers). The special attention is given to 

this special case because of large number of application of T -numbers and normal 
triangular numbers in applied researches.  

 

Fig. 2.1 Membership function ( )xmµ  under conditions: a — 1−≤ mm aa , b —  

1−> mm aa
 

2. If 1−> mm aa , then 



48 Methods of Expert Information Formalization 

 

( )

⎪⎪
⎪⎪

⎩

⎪⎪
⎪⎪

⎨

⎧

≤<⎟⎠
⎞⎜⎝

⎛
+−

⎟⎠
⎞⎜⎝

⎛
+−≤<⎟⎠

⎞⎜⎝
⎛

−−

⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜

⎝

⎛
−+−

⎟⎠
⎞⎜⎝

⎛
−−≤≤

=

−

−−

−

−

−

.1
2

1,1

;
2

1
2

1,2
1

;
2

10,0

1

11

1

1

1

x
a

a

a
ax

a
a

a

x
a

a

L

a
ax

x

m

m

m

m

m

m

m

m

m

m

m

mµ

 

 

Let us construct membership function of term 1−mX : 

1. If ( )21 ,max −− ≥ mmm aaa , then 
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Fig. 2.2 shows membership functions of a term 
1−mX  for the special case 

( ) xxL −= 1 ; ( ) xxR −= 1 ; 10 ≤≤ x . 
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Fig. 2.2 Membership function 1−mµ  under conditions: a — ( )21 ,max −− ≥ mmm aaa ,  

b — 21 −− << mmm aaa , c — mmm aaa << −− 12 , d — ( )21 ,min −− ≤ mmm aaa  
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3. If mmm aaa << −− 12 , then 
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4. If ( )21 ,min −− ≤ mmm aaa , then 
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Similarly to ( )xm 1−µ  membership functions ( )xlµ ; 2,2 −= ml  are constructed. 

Let us construct membership function for term 1X  with even number of terms. 

1. If 21 aa ≤ , then 
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2. If 21 aa > , then 
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With odd number of terms we obtain:  



52 Methods of Expert Information Formalization 

 

1. If 21 aa ≤ , then 
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2. If 21 aa > , then 
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Fig. 2.3 Membership function ( )x1µ  under conditions: a — 21 aa ≤ ; b — 21 aa >  

Fig. 2.3 shows membership functions for special case ( ) xxL −= 1 ; 10 ≤≤ x . 

Let us construct membership functions of COSS terms with linear boundaries, 
i.e. we assume that ( ) ( ) xxRxL −== 1 . Graphs of these membership functions for 

various relations between ( )mlal ,1=  are shown in Fig. 2.1 – 2.3.  

Let us denote ( )
1+ll

a,amin , 11 −= m,l  by 
lb . 

Then 
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Logic of requirements to fuzziness area imposed to construct COSS term-set 
membership functions can be explained with the following simple example: when 
a mean evaluation of knowledge (certificate, diploma etc.) is identified with one of 
the accepted marks «2», «3», «4», «5», the mean evaluation which falls within an 
interval (4; 4.5), for example, is identified with a mark «4», and the mean 
evaluation which falls within an interval [4.5; 5] is identified with a mark «5». If 
an expert has his/her own judgments concerning fuzziness areas between the 
adjacent terms, then the building method is corrected and put into practice. If an 
expert agrees with the interpretation of authors stated herein, or information is 
processed by a person who does not possess expert experience, the information is 
proposed for use without any modifications. 

The described building of COSS membership functions is offered to be applied 
not only in the conditions of availability of a posteriori information submitted to 
processing. The expert can build COSS without such information at the moment 
using the information which he/she enjoyed earlier owing to considerable 
experience gained. 

To estimate qualitative characteristics, verbal-numerical or numerical ordinal 
scales can be used. The model-building techniques of COSS membership 
functions with the use of these scales is invariable. 

Example 2.1. Model-building of COSS “quality of production”. A firm 
manufactures production of the superior, first, second and third quality degrees. 
Over a certain period, 523 production units of the superior quality, 1084 
production units of the first quality, 857 production units of the second quality and 
379 production units of the third quality are manufactured. Let us construct COSS 

“quality of production” with terms 1X = {the third quality}, 2X  = {the second 

quality}, 3X  = {the first quality}, 4X : = {the superior quality}. Let us denote 

with ( )x1µ  a membership function of 1X , with ( )x2µ  - a membership function of 

2X , with ( )x3µ  - a membership function of 3X , and with ( )x4µ  - a 

membership function for 4X . Let us obtain relative frequencies for production 

units of the first - third and superior qualities: 133,01 =a , 301,02 =a , 382,03 =a , 

184,04 =a , accordingly. Then 
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Graphs of the obtained membership functions are shown in Fig. 2.4. a. 
 

Example 2.2. Model-building of COSS “knowledge of students”. 
There are data of progress of 100 students of a certain specialty over a certain 
period of time 

Mark Number of students 

E ("unsatisfactory”) 10 

C ("satisfactory”) 40 

B (“good”) 30 

A (“excellent”) 20 
 

Let us construct COSS “knowledge of students” with terms "E”,"C”, "B”, "A" and 

membership functions ( )x
2
~µ — ( )x

5
~µ , accordingly. ( ) { }5,4,3,2=xT . Based on 

values of relative frequencies, we obtain: 
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Graphs of the obtained membership functions are shown in Fig. 2.4.b. 

 
Fig. 2.4 Membership functions of COSS terms: a— “quality of production”; b — “knowledge 
of students" 
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2.3   Formalization of Expert Evaluations of Qualitative 

Characteristics in a Mark Scale 

2.3   For malizatio n of Ex pert Evaluations of Q ualitative C haracteristics  

Let us assume that appearances (demonstrations) of qualitative characteristics are 
estimated by experts using a mark scale. 

Let us construct COSS on the basis of a posteriori information resulted from an 
evaluation of appearances of qualitative characteristic X  for a population of 

objects 
NYYY ,...,, 21

. The minimum quantity of points which allows evaluation of 

characteristic appearance equals zero, and maximum quantity of points is M . 
Besides it is assumed that the verbal scale is developed for the evaluation 

purposes, with levels 
lX , ml ,1=  arranged in ascending intensity order.  

Let [ ]1,0∈jy , Nj ,1=  represent relative evaluations of appearance of 

characteristic X , which were obtained by dividing mark scale-based evaluations 
by the maximum estimate M . For example, in terms of educational process 
evaluation they can be obtained as a result of testing within the scope of a certain 
school subject, and those evaluation values are equal to the ratio of number of 
properly performed tasks to the total quantity of all tasks performed. 

Let us construct COSS X  with terms lX  (according to levels of a verbal scale) 

and membership functions ( )xlµ  of T -numbers or normal triangular numbers. 

The additional expert information consisting of results of preliminary allocation 
of outcomes obtained to one of levels of a verbal scale and comparison of 
outcomes between each other is required for model-building process. In this case, 
the standard approach of paired comparisons of outcomes of qualitative 
characteristics availability, which is applied to construct membership functions of 
fuzzy sets [49], is used.  

Let us start constructing with term mX  which corresponds to maximum 

characteristic X  appearance intensity degree. Let the point 1=x , i.e. ( ) 11 =mµ be 

considered as the typical one for the membership function of this term. 

Let 
jYY ,...,1 ; 3≥j  are the objects allocated by the expert to level 

mX . Let us 

arrange them in decreasing order of evaluations iy ; ji ,1= . We obtain a 

conditional ordered series 

( ) ( ) ( ) ,,..,, 21 jYYY
 

to which a numerical ordered series corresponds  

( ) ( ) ( ).,..,, 21 jyyy
 

Let us perform paired comparisons of objects of that conditional ordered series 

using Saati scale [123]. Let 9,1=ika , jk ,1=  be Saati scale evaluations of 

characteristic X  superiority availability at an object ( )iX  versus an object ( )kY . If 

objects ( )iY  and ( )kY  have approximately equal characteristic X  appearances, then 
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1=ika ; if the object ( )iY  appearances slightly exceeds those of the object ( )kY , 

then 3=ika . If the characteristic X  appearances of the object ( )iY  exceed those of 

the object ( )kY  to the extent “more”, “noticeably more” or “much more”, then 

9;7;5=ika . Evaluations 8;6;4;2=ika  are intermediate. 

Let us assume ikki aa /1= , compose a matrix of paired comparisons 
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and determine its eigenvalues. For this purpose let us equate a determinant to zero. 
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Let us choose maximum eigenvalue 
maxλ  and determine a corresponding 

eigenvector ( )
jmmm ,1, ,...,ωωω = . For this purpose we’ll solve a set of equations 

written in the matrix form 
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             (2.3) 

It is known [15], that the system (2.3) has a solution and 
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.0, >imω
 

If eigenvector co-ordinates do not belong to a segment [0. 1], we’ll determine 

∑
=
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j
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~ ωω

 
and we obtain 
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m

im

jm ω

ω
ω =

 

We consider im ,
~ω  as grade of membership of the object ( )iY  to term 

mX . As for 

each object ( )iY  evaluations ( ) [ ]1,0∈iy  are determined, let us consider that they 

belong to term mX  with membership degrees im,
~ω , accordingly. 

In all further buildings the assumption is made that co-ordinates of the 
eigenvector corresponding to a maximum eigenvalue belong to the segment [0, 1], 
otherwise normalization is used. 

In order to obtain membership function ( )xmµ  of the term 
mX  the left 

boundary of which looks like mm bxay += , and right, in turn, is 1=x , let us use 

a method of least squares 
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From the system of normal equations 

( ) ( ) ( )

( )⎪⎪⎩
⎪⎪⎨
⎧

=+

=+

⇔

⎪⎪⎩
⎪⎪⎨
⎧

=
∂

∂

=
∂

∂

∑∑
∑∑∑

==

===

.

;

0

0

1

,

1

1

,

11

2

j

i

imm

j

i

im

j

i

imi

j

i

im

j

i

im

m

m

m

m

jbya

yybya

b

F

a

F

ω

ω

 

we obtain unknown coefficients: 
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If the condition ( ) 11 >+= mm bay  is satisfied, membership function of term mX  

will be membership function of T -number: 
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If ( ) 11 ≤+= mm bay , the left boundary of membership function is obtained as 

mm axay −+= 1 , and the unknown coefficient ma  is obtained from an 

optimization problem solved 
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In this case, membership function of term 
mX  will be membership function of a 

normal triangular number: 

( )

⎪⎪⎩
⎪⎪⎨
⎧

≤<
−

−+

−
≤≤

=
.1

1
,1

;
1

0,0

x
a

a
axa

a

a
x

x

m

m

mm

m

m

mµ

 

Definition of the left boundary of membership function of term 
mX  yields an 

unambiguous definition of the right boundary of membership function of term 

1−mX , i.e. 

with 

m

m

m

m
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b
x
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1  

( ) .11 mmm bxax −−=−µ
 

Let us consider the objects allocated by the expert to level 1−mX . Let vjj YY ++ ,...,1  

( )3≥v  be the objects allocated by the expert to level 1−mX , then let us arrange 

them in decreasing order of evaluations iy  ( )vjji ++= ;1 . We obtain a 

conditional ordered series 
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( ) ( ) ( ) ,,...,, 21 vjjj YYY +++  

to which, as we see above , the numerical ordered series corresponds  

( ) ( ) ( ) ,,...,, 21 vjjj yyy +++  

Let us perform paired comparisons of objects of this series using Saati scale, 
determine a matrix of paired comparisons and its eigenvector 

( )vmmm ,11,11 ...,, −−− = ωωω  corresponding to a maximum eigenvalue. Let us 

consider that evaluations [ ]1,0∈iy , vjji ++= ;1  belong to term 1−mX  with 

membership degrees 1−mω , vi ,1= , accordingly. To obtain membership function 

( )xm 1−µ , with the left boundary in the form 11 −− += mm bxay , let us use a method 

of least squares: 

( )( ) .min
1

2

,11111 →−+=∑
=

−−+−−

v

i

immjmm byaF ω
 

From system of normal equations 
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We obtain unknown coefficients 
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is satisfied, we obtain membership function of T -number: 
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if this condition is not satisfied, it is supposed that 
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The unknown coefficient 1−ma  is obtained from the condition 
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In this case we obtain membership function of a normal triangular number 
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Definition of the left boundary of membership function of term 
1−mX  yields an 

unambiguous definition of its right boundary ( )xm 2−µ  of term 2−mX , i.e. at 
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( ) .1 112 −−− −−= mmm bxaxµ
 

The membership functions ( )xlµ ; 2,3 −= ml  is constructed as described above. 
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Let us see in detail building process of membership functions ( )x1µ  and 

( )x2µ . The left boundary of membership function ( )x3µ  unambiguously defines 

the right boundary of membership function ( )x2µ . It is necessary to construct 

membership function ( )x1µ  which will explicitly define the left boundary ( )x2µ , 

or to construct the left boundary of membership function ( )x2µ  with which we 

define ( )x1µ  explicitly. 

Let us construct membership function ( )x1µ . Let right boundary ( )x2µ  look like 

331 bxay −−= , ( )0/ 33 >− ab . Let us consider the objects allocated by an expert to 

level 
1X . Having made paired comparisons of these objects and subsequent 

buildings similar to those above, we obtain linear function 11 bxay += , which is 

the right boundary of required function. If this function satisfies to two conditions: 

( ) 10 >y ; ( ) 0/ 33 <− aby , then 
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If function 11 bxay +=  satisfies the conditions: ( ) 10 >y ; ( ) 0/ 33 ≥− aby , 

membership function ( )x1µ  is defined under the condition 

( ) ( ) 0// 133133 =+−=− babaaby . In this case one of coefficients still remains 

unknown, it is determined from a normal equation. We obtain the membership 
functions 
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If function 
11 bxay +=  satisfies the conditions: ( ) 10 ≤y ; ( ) 0/ 33 <− aby , it is 

supposed that 11 =b , and 1a  is obtained from a normal equation of a 

corresponding optimization problem. Membership functions look like 
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If function 11 bxay +=  satisfies the conditions: ( ) 10 ≤y ; ( ) 0/ 33 ≥− aby , it is 

supposed that 11 =b ; ( ) ( ) 0// 133133 =+−=− babaaby ; 331 /baa = . Then 
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On constructing the COSS membership functions for each evaluation iy , ji ,1=  

it is possible to determine its degrees of membership to COSS terms and to put in 
correspondence that term (or that level of a verbal scale) membership degree of 

which exceeds 0.5. Existence of such term for each evaluation iy  is stipulated by 

characteristics of COSS membership functions. The related outcomes obtained can 
generally not coincide with outcomes of expert preliminary allocations of 

evaluations iy  to levels of a verbal scale. 

Example 2.3. Model-building of COSS “knowledge of students”. A teacher 

appraises knowledge of eight students for a certain with two points: the first ix ; 

8,1=i  is a result of examination and can accept values "F" (“unsatisfactory”), “C” 

“satisfactory”), “B” (good”) and “A” (“excellent”); the second, iy , is a result of 

testing and can take discrete values 1/0 ≤≤ nk , where k  is a number of 

properly performed tasks, n  is a number of all tasks performed (Table 2.1). 

Let us construct COSS “knowledge of students” with terms 1X  = F, 2X  = C, 

3X  = B, 4X  = A. 

Let us start constructing with membership function ( )x4µ  of term 
4X . As to 

level “A” knowledge of only two students are referred to, let us join to them 
outcomes of the students with level "B", and let us suggest the teacher who carried 
out an evaluation to make paired comparisons of knowledge of all four students. 

Having arranged serial numbers of students according to the obtained points iy , 

we obtain a conditional ordinal series 
No. 2, No. 1, No. 4, No. 3. 

to which the numerical ordinal series corresponds 
0.9; 0.8; 0.7; 0.6. 

The teacher makes paired comparisons of knowledge of students from the 
conditional ordinal series using Saati scale. The following matrix of paired 
comparisons is obtained: 
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Table 2.1 Results of students’ knowledge appraising 

No. ix
 iy

 

1 Excellent (“A”) 0.8 

2 Excellent (“A”) 0.9 

3 “good” (“B”) 0.6 

4 “good” (“B”) 0.7 

5 "satisfactory” (“C”) 0.3 

6 "satisfactory” (“C”) 0.1 

7 "satisfactory” (“C”) 0.2 

8 "unsatisfactory” (“E”) 0 

 

We determine eigenvalues of this matrix: 022,41 =λ ; 010,02 −=λ ; 

i0294,0006,03 +−=λ ; i0294,0006,04 −−=λ . Let us select a maximum eigenvalue 

and the corresponding eigenvector ( )109,0;180,0;466,0;859,04 =ω . Let us build 

a line 499,1537,2 −= xy  by four points (0.9; 0.859), (0.8; 0.466), (0.7; 0.180), 

(0.6; 0.109) applying a method of least squares. Let us check a value 

( ) 038,1499,1537,21 =−=y . Apparently, the condition ( ) 11 ≥y  is satisfied, that 

ensures existence at least one point [ ] ( ) 1:1,0 4 =∈ xx µ . Thus, 

( ) ( )0;385,0;1;985,04 ≡xµ . 

By means of membership function ( )x4µ , it is possible to define explicitly the 

right boundary of membership function ( )x3µ , i.e. with 985,059,0 <≤ x  

( ) ( ) xxx 537,2499,21 43 −=−= µµ .
 

Obviously, the further building of ( )x3µ  is not possible as there are no students 

who have got a point “B”, and whose points are 59,0<iy . In this case we come 

to building of membership function ( )x2µ  of term 2X . Let us consider outcomes 

of the pupils who have got points "C" and “E”. Let us arrange them as per 

decreasing points iy . We obtain the following conditional ordinal series 

No.5, No. 7, No. 6, No. 8. 
to which the numerical ordinal number corresponds 

0.3; 0.2; 0.1; 0. 
The teacher makes paired comparisons of knowledge of students from the 

conditional ordinal series using Saati scale. The following matrix of paired 
comparisons is obtained: 
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We determine eigenvalues of this matrix: 008,41 =λ ; 004,02 −=λ ; 

i175,0001,03 +−=λ ; i175,0001,04 −−=λ . Let us select a maximum eigenvalue 

and the corresponding eigenvector ( )093,0;191,0;427,0;879,02 =ω . Let us build 

a line 01,06,2 −= xy  by four points (0.3; 0.879), (0.2; 0.427),  

(0.1; 0.191), (0; 0.093), applying a method of least squares. Let us check the value 

( ) 524,101,0534,159,0 =−=y . With 0=y , 0038,0=x ; with 1=y , 39,0=x . 

 

Thus, the left and right boundaries of membership functions ( )x2µ  and ( )x3µ  

are defined. To complete constructing the functions, let us find the equation of a 
line xy 595,2 −= , which is passing through two points (0.39; 1), (0.59; 0). This 

line will limit membership function ( )x2µ  on the right, and the line 

95,15595,21 −=+−= xxy  will limit membership function ( )x3µ  on the left. 

Thus, 

( ) ( )385,0;2,0;59,03 =xµ ; ( ) ( )2,0;3862,0;39,02 =xµ . 

Membership function ( )x1µ  is defined using function ( )x2µ  in the following 

manner: 

( ) ( )3862,0;0;0038,0;01 =xµ  

2.4   Formalization of Linguistic Values of Characteristics on the 

Basis of Direct Inquiry of a Single Expert Regarding 

Typical Representatives 

2.4   For malizatio n of Ling uistic Values of C haracteristics  

By processing and analyzing the information which can have both qualitative and 
quantitative nature, a person makes different decisions. Quantitative 
characteristics are those which can be measured. For example, enterprise profits 
and losses, age of a person, object weight etc. could be treated as quantitative 
ones. Qualitative characteristics cannot be measured in terms of quantities. For 
example, some of those characteristics are human appearance, human knowledge, 
success of performance of professional duties etc. 

Thus, characteristics are mainly described with different "languages": as a rule, 
for quantitative characteristics we use usual numbers which are referred to as 
physical values of characteristics; for qualitative ones they are words of a natural  
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language which are referred to as linguistic values. Linguistic values can be 
defined also for quantitative characteristics; however, for the qualitative 
characteristics physical values cannot be defined. 

Two model-building methods of qualitative characteristics COSS are described 
above. Formalization of the information based on the expert evaluations of 
appearances of different qualitative characteristics allows operating not with 
values of the characteristics measured in different scales, but with membership 
functions of the concepts applied to an evaluation of characteristics of real objects. 

These methods are inapplicable to construct quantitative characteristic COSS. 
So, we offer to construct membership functions of COSS terms on the basis of 
direct inquiry of a single expert, these COSS’s can be applied to formalize both 
quantitative and qualitative characteristics pari passu. 

It is worth mentioning that a COSS based on inquiry of experts will always 
possess some property of uniqueness, i.e. it reflects judgments of the experts who 
often use the information known to few people who are “in gathering”. 

Actually, if one wants to build COSS "height" = {low, average, high, very 
high} from point of view of Moscow and Tokyo experts, then, obviously, there 
will be two spaces with a different collection of membership functions. If one 
wants to build COSS "profit" = {very low, low, average, high, very high}, the 
money equivalent which is considered as high profit, will dramatically differ for 
different firms. It is just the case when defining similar categories experts use the 
information known to few people only, on the one hand, and unique for a certain 
firm, on the other hand. 

Model-building techniques of COSS term-sets membership functions for 
quantitative and qualitative characteristics have in essence identical approaches 
and differ only in universal sets. 

Let us construct COSS with a title X  and term-set ( ) { }mXXXXT ,...,, 21= , 

where 
mXX ,1

 are terms corresponding to the minimum and maximum intensity 

degree of characteristic appearance within a universal set [ ]baU ,= . 

Let us assume that an expert defines typical intervals ( )21 , ll xx  for terms 
lX ; 

ml ,1= , and these intervals are equal to unity for all points of membership 

function of corresponding terms. For some terms, points (one for each term) can 
be typical rather than intervals. Without loss of generality, typical intervals for 
qualitative characteristics can be defined by the following procedure. Let there be 
a test for demonstration of studied qualitative characteristic for the object (0 is a 
minimum quantity of points which an object can obtain as testing results, i.e. 
complete absence of characteristic appearance; n  is maximum quantity of points, 

i.e. its total availability of the characteristic appearance). Let us normalize all 
possible test points with a maximum point n  and let us give the chance to the 

expert to answer regarding typical intervals for terms 
lX  belonging to [0, 1]. 

The questions asked to the expert can be formulated as follows: “What interval 
of normalized test points you consider typical for a term?”. In case of quantitative 
characteristic the expert defines subsets of universal set which are typical for each 
of terms from his/her point of view. 
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Let us assume that the fuzzy numbers corresponding to COSS terms are Λ -
numbers; and for functions ( )xL , ( )xR  the side condition (1 *) is satisfied (see 

paragraph 2.2]. Membership functions of terms 
lX :  

with even m  
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With odd m  two last membership functions ( )xL , ( )xR  interchange their 

positions. 
Constructed COSS reflects knowledge and subjective judgment of the expert 

taking part in inquiry. 
If deriving of the additional information on the values of membership functions 

in the points of universal set which lies between typical intervals of the adjacent 
terms is possible, then it is also possible to clarify a form of these functions. 
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Let us consider typical intervals ( )21 , ll xx  and ( )2

1

1

1 , ++ ll xx  of the adjacent terms 

lX  and 1+lX , 1,1 −= ml . If one assumes that the right and left boundaries of 

membership function of the fuzzy number, which correspond to terms lX  and 

1+lX  are linear functions, then they have the following explicit analytical form: 
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then boundaries are to be selected as linear functions. If the expert considers that 
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then boundaries are to be selected as the functions shown in Fig. 2.5.а. If the 
expert considers that 
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then boundaries are to be selected as the functions shown in Fig. 2.5.b. 
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Fig. 2.5 Boundaries of membership functions of the adjacent COSS terms:  
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Example 2.4. Model-building of COSS “net current assets/turnover assets ratio”. 
Data on audit and analysis of enterprises of machine-building and food industries, 
and of telecommunications facilities production enterprises was used. The net 
current assets/turnover assets ratio was studied for each enterprise. Based on the 
analysis carried out, let us construct COSS “net current assets/turnover assets 
ratio” using terms "very low", "low", "average", "high", "very high". The experts 
who surveyed the enterprises were provided with intervals of U ratio values, 

which are typical for every term [ ]1,1−=U : [ ] [ ]005,0;1, 1211 −−=bb ; 

[ ] [ ]09,0;0, 2221 =bb ; [ ] [ ]3,0;11,0, 3231 =bb ; [ ] [ ]45,0;35,0, 4241 =bb ; 
[ ] [ ]1;5,0, 5251 =bb

. 
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Then, membership functions ( )xiµ , 5,1=i  for terms “very low”, "low", 

"average", "high", “very high” are T -numbers and look like: 

( ) ( )005,0;0;005,0;11 −−=xµ ; ( ) ( )02,0;005,0;09,0;02 =xµ ; 
( ) ( )05,0;02,0;3,0;11,03 =xµ

; 

( ) ( )05,0;05,0;45,0;35,04 =xµ ; ( ) ( )0;5,0;0,1;5,05 =xµ ,  accordingly. 
2.5   For malizatio n of Ling uistic Values of C haracteristics  

2.5   Formalization of Linguistic Values of Characteristics on the 

Basis of Direct Inquiry of a Single Expert Regarding a 

Partition of Universal Set 

2.5   For malizatio n of Ling uistic Values of C haracteristics  

Formalization of Lin guis tic Values of Characteristics 
Let, for any reasons, an expert has difficulties in defining typical intervals for 
COSS terms, but he/she can divide universal set into disjoint intervals each 
mapped to one of terms and being a set of 0.5-level of the fuzzy number 
corresponding to this term. Let us assume that the fuzzy numbers corresponding to 
COSS terms are Λ -numbers, and the side condition (1*) is satisfied for functions 

( )xL , ( )xR . Let us denote membership functions of terms 
lX  as ( )xlµ , ml ,1= . 

Let us denote length of the interval corresponding to term 
lX  through 
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Let us construct membership functions ( )xlµ  as curvilinear trapezoids with 

midlines equal to lc  
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2. If 1−> mm cc , then 
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Let us construct membership function of term 1−mX :  

1. If ( )21 ,max −− ≥ mmm ccc , then 
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2. If 21 −− << mmm ccc , then 
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3. If mmm ccc << −− 12 , then 
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4. If ( )21 ,min −− ≤ mmm ccc , then 
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Similarly to ( )xm 1−µ  membership functions ( )xlµ , 2,2 −= ml  for term 1X  are 

constructed. 

With even number of terms:  

1. If 21 cc ≤ , then 
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2. If 21 cc > , then 
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With odd number of terms: 

1. If 21 cc ≤ , then 
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2. If 21 cc > , then 
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If additional information on values of membership functions in the points of 
universal set, which lie between typical intervals of the adjacent terms is available, 
the updating of the form of membership functions is made in the same manner as 
the previous method shows. 
2.6   For malizatio n of Ling uistic Values of Properties on t he Basis of Direct Inquiry  

2.6   Formalization of Linguistic Values of Properties on the 

Basis of Direct Inquiry of Expert Groups about Regarding 

Representatives 

2.6   For malizatio n of Ling uistic Values of Properties on t he Basis of Direct Inquiry  

Let k  experts offer intervals of values, which are typical for each of m  terms 

from their point of view. It is possible to represent outcomes of their evaluations 
in the form of the matrix 
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then COSS term-set membership functions are transformed to characteristic 

functions of intervals ( )21, ll xx , ml ,1= . If one of intervals ( ) Ø, 21 =ll xx , then instead 

of intersection operation, r -composition of intervals operation [124] is applied. 

Operation of r -composition of intervals is introduced through union and 
intersection operations as follows: 
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The selection of 2/kr ≈  is obvious because the "most representative" expert 

should prefer an evaluation, which is remote from extreme evaluations and 

occupying "middle" position. If ( ) ( ) ( ) φ≠=∃ −− llllll baxxxxl ,,,: 2
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Let us assume that intervals ( )21, ll xx  and [ ]baU ,=  typical for COSS terms are 

defined. Let us consider that the fuzzy numbers corresponding to COSS terms are 

Λ -numbers, and the side condition (1*) is satisfied for functions ( )xL , ( )xR . Let 

us denote membership functions of terms lX  with ( )xlµ . 

Then with even m  
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With odd m  two last membership functions ( )xL , ( )xR  interchange. 

If obtaining of an additional information on values of membership functions in 
the points of universal set, which lie between typical intervals of the adjacent 
terms is possible, the form of membership functions of terms is updated. 

Example 2.5. Model-building of COSS “pressure at the high-pressure preheater 
inlet”. Let us construct COSS “pressure at the high-pressure preheater inlet” with 
terms “very low pressure”, “low pressure”, “normal pressure”, "high pressure". 

Three experts offer their typical values for each of terms. The first expert: 
{1.1}, {1.7}, {4}, {6.7}. The second expert: [1.1; 1.3], {1.7}, {4}, [6.6; 6.7]. The 
third expert: {1.1}, [1.6; 1.7], {4}, {6.7}. Based on intersections of typical values 
corresponding to each of terms, we obtain COSS which membership functions are 
shown in Fig. 2.6. 
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Fig. 2.6 Membership functions of COSS terms “pressure at the high-pressure preheater inlet” 

2.7   Analogues of Errors of the First and Second Kinds and A 

Reliability Indicator for Models of Expert Evaluations of 

Characteristics 

2.7   Ana log ues of Errors of the F irst and Second Kinds and A Reliabil ity Indicator for Models 

In [28] the quantity indicator of COSS quality is defined, namely, fuzziness 
degree. Let us find analogues of errors of the first and second kinds and reliability 
indicator for models of expert evaluations of characteristics. 
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and concept of a probabilistic geometry, it is possible to consider 
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is analogue of a reliability indicator for models of expert evaluations of 

characteristics ( ){ }mlxX l ,1; == µ ; ( ) ( )l

R

l

L

ll

l aaaax ,,, 21≡µ , defined over 

universal set [ ]ba, .  

The analogue of a reliability indicator is connected with fuzziness degree as 

follows (with ( ) xxf −=1 ): if fuzziness degree of the model is minimum, i.e. is 

equal to zero, the analogue of a reliability indicator is maximum and equal to 
unity; if fuzziness degree is maximum, i.e. equal to 0.5, the analogue of a 
reliability indicator is minimum and equal to 0.25. The certain indicator allows 
essential expanding the information obtained on the basis of fuzziness degree 
because with identical fuzziness degree the models of expert evaluation of 
characteristics can have different values of reliability indicator analogue. 

Example 2.6. Definition of reliability indicator analogue for models of expert 
evaluations of characteristics. Let us consider models of an expert evaluation of 
production quality from the example 2.1 and knowledge of students from the 
example 2.2. For model of production quality evaluation, analogues of errors of 
the first and second kinds are equal to 0.1482, and analogue of a reliability 
indicator is equal to 0.7255. For model of evaluation of students’ knowledge, 
analogues of errors of the first and second kinds are equal to 0.15, and the 
analogue of a reliability indicator is equal to 0.7225. 
2.8   Ex a mples of Application of Complete Orthogonal Semantic Spaces  

2.8   Examples of Application of Complete Orthogonal Semantic 

Spaces in Problems of Information Analysis and Decision 

Making  

2.8   Ex a mples of Application of Complete Orthogonal Semantic Spaces  

Example 2.7. A multicriterion selection of software. [125—127] The current 
software market offers a great many of products for which quality evaluation 
systems of characteristics are developed. Complexity of a software selection is 
explained by a number of the objective and subjective reasons considered in 
details in [128—133]. 

One of such reasons is use of quantitative and qualitative characteristics, to 
measure which the various scales are applied: numerical, ordinal, verbal, etc. At 
that, some characteristics can be provided as values of a membership to levels of 
linguistic (verbal) scales. 

Another reason is discrepancy of quality characteristics, which leads to a selection 
ambiguity and makes additive convolution of comparable indicators spurious. 

Let us show a solution of software multicriterion selection problem on the basis 
of fuzzy conclusion rules.  

Let us consider the following characteristics of software quality: modifiability, 
studiability, completeness. Let us add software price because it is of interest for a 
user along with quality characteristics. 

Modifiability is a characteristic which simplifies introducing of necessary 
modifications and updating and includes concepts of expansibility, structuredness 
and modularity. 
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Studiability is a characteristic which allows minimisation of efforts in studying 
and understanding software programs and documentation and includes 
informativeness, clearness, structuredness and readability. 

Within the scope of four formulated characteristics, one of three software 
products conventionally named as "A", “В” and "C" is selected to analyze 
financial standing of an enterprise.  

For an evaluation of their characteristics the following scales are used: 

• Price — "low", "mean", "high"; 

• Modifiability — "low", "mean", "high"; 

• Studiability — "low", "mean", "high"; 

• Completeness — "incompleteness", “partial completeness”, “basic 
completeness“, "complete completeness". 

Based on the results of the software manufacturer price policy study, COSS was 

constructed with membership functions of terms: ( ) ( )500;0;2500;20001

1 ≡xµ ; 

( ) ( )500;500;3500;30001

2 ≡xµ ; ( ) ( )0;500;5000;40001
3 ≡xµ . Membership 

functions of COSS terms “modifiability” are denoted by ( )x2

1µ , ( )x
2

2µ , ( )x2

3µ , 

accordingly, terms “studiability” - by ( )x
3

1µ , ( )x
3

2µ , ( )x3
3µ , accordingly, and terms 

"completeness" - by ( )x
4

1µ , ( )x
4

2µ , ( )x4

3µ , accordingly. 

Customer survey has yielded following outcomes: if “low price, high 
modifiability, high studiability, and completeness available” or “low price, high 
modifiability, high studiability, and basic completeness available”, or “low price, 
mean modifiability, high studiability, and completeness available” or “low price, 
high modifiability, mean studiability, and completeness available” or “low price, 
high modifiability, high studiability, and completeness available”, or “low price, 
high modifiability, high studiability, and basic completeness available”, or “low 
price, high modifiability, mean studiability and completeness available”, or “low 
price, mean modifiability, high studiability and completeness available”, the 
software is thought proper for purchase. 

Eight fuzzy selection (conclusion) rules are included in the customer 
formulated preference. In total, there are 108 such rules as four characteristics are 
considered, one of which has four linguistic values, and each of three other has 
three values. 

Outcomes of system from eight selection rules are degrees of considered 
software membership to fuzzy set “the software which is thought proper for 
purchase”. When operating with COSS terms membership functions, the 
conjunctions "and" and “or" are treated as operations “min” and “max”, 
accordingly. 

Experts have estimated software products "A", "B", "C" and have obtained the 
following outcomes: 

( ) 68,01

1 =Aµ ; ( ) 32,01

2 =Aµ ; ( ) 74,01

1 =Bµ ; ( ) 26,01
2 =Bµ ; ( ) 46,01

1 =Cµ ; 

( ) 54,01
2 =Cµ ; ( ) 6,02

2 =Aµ ; 
( ) 4,02

3 =Aµ
; ( ) 7,02

2 =Bµ ; 
( ) 3,02

3 =Bµ
; 

( ) 1,02
2 =Cµ ; 

( ) 9,02

3 =Cµ
; ( ) 4,03

2 =Aµ ; 
( ) 6,03

3 =Aµ
; ( ) 1,03

2 =Bµ ; 
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( ) 9,03

3 =Bµ
; ( ) 3,03

2 =Cµ ; 
( ) 7,03

3 =Cµ
; 

( ) 3,04

3 =Aµ
; ( ) 7,04

4 =Aµ  

( ) 2,04

3 =Bµ
; ( ) 8,04

4 =Aµ ; 
( ) 2,04

3 =Cµ
; ( ) 8,04

4 =Cµ . 

To define the "A", “B", "C" values of membership to fuzzy set “the software 
which is thought proper for purchase” with membership function, the following 
rule was applied [15]: 

( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ⎥⎥

⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡

⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜

⎝

⎛
=

.,,,min;,,,min

;,,,min;,,,min

;,,,min;,,,min

;,,,min;,,,min

max

4

4

3

3

2

2

1

2

4

4

3

2

2

3

1

2

4

3

3

3

2

3

1

2

4

4

3

3

2

3

1

2

4

4

3

3

2

2

1

1

4

4

3

2

2

3

1

1
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3

3

3

2

3

1

1

4

4

3

3

2

3

1

1

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

x

µµµµµµµµ

µµµµµµµµ

µµµµµµµµ

µµµµµµµµ

µ

 

The results of computations are as follows: 

( ) 6,0=Aµ ; ( ) 7,0=Bµ ; ( ) 54,0=Cµ . 

On the basis of the obtained results the decision on software “B” purchase is 
made. 

Example 2.8. Definition of analogy degree for products. While solving 
engineering problems, it is often necessary to define analogy degree of a product 

by some parameters a  and b  [35] 

,1
AB

ba
ab

−

−
−=ρ

                                               (2.4) 

where [ ]BA,  is a range of parameter values. 

Advantage of this formula is simplicity of calculations, and its disadvantage is 
that analogy degree only depends on a difference of parameter values and does not 

depend on location of these values over the whole area [ ]BA, . 

This disadvantage is the reason of the fact that outcomes obtained with this 
formula do not always match expert experience. The matter is that a qualified 
expert selects some base values of parameter within a set of parameters and makes 
comparison of products on the basis of selected values. For example, an expert 
selects low, mean and high values, and defines analogy of products depending on 
what linguistic values of parameter its numerical values belong to [35] gives the 
example of definition of analogy degree of products referred as “high pressure 
preheater” by the parameter “inlet steam pressure”. The parameter has a definition 
range [1.1, 6.7]. In this example analogy degrees of products with values (1.1 and 
1.5) and (6.1 and 6.6) are defined. The above formula provides analogy degree 
0.93 for first pair of products and 0.91 for second pair. In [35] it is stated that these 
outcomes do not match the experience of experts. Moreover, based on the analysis 
of expert experience in designing similar products, products of the first pair are 
much less similar to each other than products of the second pair. In [35] a new 
formula to define product analogy degree based on membership functions of  
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term-sets “low pressure”, “pressure close to 4”, “high pressure" of semantic space 
“inlet steam pressure” is offered. However, a shortage of this formula is in lack of 

symmetry attribute, i.e. baab ρρ ≠  [134] contains a formula of product analogy 

degree determination based on COSS term-sets membership functions, which is 
free from this shortage. 

Let us consider [ ]BAU ,=  as a range of parameter values. Based on his/her 

experience, an expert selects m  linguistic values of this parameter and specified 
corresponding typical numerical values for each linguistic value. Typical values 
can be specified by one number or by the entire interval. Depending upon that, 

membership functions of term-sets ( )xlµ , ml ,1=  (see §2.4) are membership 

functions of unimodal or tolerance numbers from population Λ  constructed in 
§2.1. 

Let us identify ( ) ( )ba ll µµ −  as a measure of information loss for values a  and 

b  within the limits of l -th term-set. Let us determine an analogy degree of 

products with values a  and b  for the considered parameter by the formula 

( ) ( )
.

2
1 1

∑
=

−

−=

m

l

ll

ab

ba µµ

ρ
 

From this formula it follows that if a  and b  belong to tolerance areas of one 

function ( ) ( )[ ]1== ba ll µµ , then 1=abρ . 

If a  and b  belong to uncertainty areas of two adjacent functions 

( ) ( ) ( ) ( )[ ]bbaa llll 11 0,10,10,10 ++ <<<<<<< µµµµ , or one of these values 

belongs to tolerance area of one function, and another value – to uncertainty area 
of the adjacent function, then 

( ) ( ).1 ba llab µµρ −−=
                                            (2.5) 

The latter formula follows from characteristics of COSS term-set membership 
functions  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ⎪⎭
⎪⎬
⎫

−=−⇒−

=−⇒=+

=+

++++

+

+

.

1

;1

1111

1

1

babaab

babb

aa

llllll

llll

ll

µµµµµµ

µµµµ

µµ

          (2.6) 

When comparing formulas (2.7) and (2.5), one can see that they are very similar, 
though the first formula operates with the parameter values, the second one — 
with values of their membership functions. The first formula includes a potency 
(length) of a characteristic value range equal to ( B - A ), the second one includes a 

potency of a range of membership functions values equal to 1. In other situations 

0=abρ
. 
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Using COSS membership functions “inlet steam pressure” shown in Fig. 1.8., 
analogy degree of products with values of steam pressure 1.1 and 1.5, and analogy 
degree of products with values of steam pressure 6.1 and 6.6 were calculated. 

Further results are obtained: 34,05,1;1,1 =ρ , 82,06,6;1,6 =ρ . According to [35], 

these results are consistent with the experience of experts. 

Example 2.9. Fuzzy control of technological process of coal beneficiation by a 
separation method. The separation method has been widely spread in coal 
preparation industry throughout the world thanks to it simplicity, cheapness and 
universality. From the automation point of view, separation process is complicated 
enough due to absence of adequate mathematical model and presence of a number 
of difficult-to-control variations (load, granulometric, fractional and chemical 
composition of a raw product), and also lack of operative analysis methods of 
prepared product and wastes. 

Hydraulic separation is a process of separation of raw mixture components in 
vertically pulsing stream of water having an alternating velocity. According to a 
classical trend of the separation theory, the separation coefficient during coal 
beneficiation in the jolting machine is the relative difference in fall final velocities 
depending particle size, density and medium density. Raw coal is loaded on a 
sieve of work bay. Piston or compressed air initiates vertical oscillations of water. 
A mixture of coal, breed and intermediate fractions, which locates on the sieve 
(bed), is entered alternately in loosened and condensed conditions by pulsing 
water stream. Due to press of portions of loaded raw material and also due to 
movement of transport water arriving to the machine with a raw material and 
under-sieve water, the whole bed moves in a horizontal direction being 
simultaneously stratified on heavy and light products. The lower layers of bed 
consisting of heavy products are removed from the jolting machine through a 
discharge unit which located on ends of each stage of the jolting machine. The 
prepared product or a concentrate together with water are discharged through a 
decanting edge. 

The parameters influencing separation process are either hydrodynamic or 
technological. The hydrodynamic parameters are those initiating oscillation 
conditions of medium and fluidization of bed (flow rate of under-sieve water and 
air flow rate are of especially great importance). Technological parameters are 
connected with quality of prepared coal, i.e. their fractional and granulometric 
composition. 

The coal beneficiation fuzzy control model for a separation method is 
developed by the laboratory of fuzzy techniques of Institute of an automation and 
electrometry of the Siberian branch of the Russian Academy of Sciences. 

The control scheme proposed has two hierarchy levels. Lower level consists of 
technological process parameter regulators (unloading of heavy fractions, air and 
water supply). Operation mode of these regulators is set by a top-level fuzzy 
controller based on the information on structure of raw working mixture and 
operative control data (of fractional analysis, indications of ash gauge, etc.). The 
bed level regulator is implemented as two-input fuzzy controller. A bed height 
error signal (difference between set value and actual value) and a bed height error 
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derivative are delivered to an input. Stimuli governing unload velocity are 
delivered to an output. Linguistic values of bed height error and its derivative are 
following: high negative (HN), low negative (LN), zero (Z), low positive (LP), 
high positive (HP). Linguistic values of unload velocity regulation are following: 
tremendously reduce (TR), strongly reduce (SR), moderately reduce (MR), 
slightly reduce (SLR), not to change (NC), slightly increase (SLI), moderately 
increase (MI), strongly increase (SI), tremendously increase (TI). 

Table 2.2 Base of fuzzy logic conclusion rules  

Error Derivative of the error Regulation of unload velocity

HN HN TR 

HN LN SR 

HN Z MR 

HN LP SLR 

HN HP NC 

LN HN SR 

LN LN MR 

LN Z SLR 

LN LP NC 

LN HP SLI 

Z HN MR 

Z LN SLR 

Z Z NC 

Z LP SLI 

Z HP MI 

LP HN SLR 

LP LN NC 

LP Z SLI 

LP LP MI 

LP HP SI 

HP HN NC 

HP LN SLI 

HP Z MI 

HP LP SI 

HP HP TI 

Formalization of input and output linguistic values is carried out based on the 
COSS terms. Controlling output value is formed by fuzzy logic conclusion in 
accordance with the rule base provided in Table 2.2. 

Efficiency of the model was proved experimentally under various technological 
process modes. 



O.M. Poleshchuk and E.G. Komarov: Expert Fuzzy Info. Processing, STUDFUZZ 268, pp. 87–117. 

springerlink.com                                                                © Springer-Verlag Berlin Heidelberg 2011 

Chapter 3 

Methods of Comparative and Fuzzy Cluster 
Analysis of Formalized Information 

3.1   Definition of Comparative Indicators and Indicators of 

Models of Expert Characteristic Evaluations Consistency 

3.1   Definit ion of Co mparative Indicators and Indicators 

As mentioned in Chapter 1, one cannot exclude that while estimating the same 

characteristic at a population of objects by several experts, the information obtained 

from the experts will differ various. As models of expert evaluations of some 

characteristic are constructed based on this information, they will obvious differ. 

Thus, if for one characteristic several models can be constructed, then we have a 

task of their comparative analysis with the subsequent building of a generalized model. 

Let us denote with kΞ  a set the elements of which are k  models of expert 

evaluations of qualitative characteristic or expert description of physical values of 

quantitative characteristic in linguistic terms ( k  COSS)  

( ){ }mlxX ili ,1, == µ
; ki ,1= ; 

( ) ( )il

R

il

L

ilil

il aaaax ,,, 21≡µ
 

where [ ]ilil
aa 21 ,  is a tolerance interval; 

il

R

il

L aa ,  are the left and right parameters of a 

fuzziness, accordingly. 

After determining of set kΞ  it is necessary to carry out comparative analysis of 

its elements. In particular, it is necessary to find to what extent the elements are 

various (similar) pairwise, to what extent all elements are various (similar) in 

aggregate, whether there are essentially differing groups of elements, or structural 

composition of set kΞ  is homogeneous enough. 

For this purpose comparative quantity indicators of expert characteristic 

evaluation models are defined, based on which the fuzzy binary relations of 

similarity and conformity are then constructed. 

As is known (15), a fuzzy set C
~

 is referred to as intersection of fuzzy sets A
~

 

and B
~

, BAC
~~~

∩= , if ( ) ( ) ( )xxx
BAC
~~~ µµµ ∧= , Xx ∈∀  where ∧  is an operator 

of triangular norm class. 

The fuzzy set C
~

 is referred to as association of fuzzy sets A
~  and B

~
, BAC

~~~
∪= , 

if ( ) ( ) ( )xxx
BAC
~~~ µµµ ∨= , Xx ∈∀ , where ∨  is an operator of triangular conorm 

class. 
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Based on these known definitions, let us define operations for set kΞ  elements, 

which form semantic space with term-sets membership functions.  

With intersection of two elements ji XX ∩ ; ki ,1= ; kj ,1=  

( ) ( ) ( )[ ]{ }.,1;;,min mlxxxx jlill =∀= µµµ
 

With intersection of elements 
kXX ∩∩ ...1

 

( ) ( )[ ]{ }.;,...,min 1
,1

xxx kll
ki

∀
=

µµ
 

With union of two elements ji XX ∪  

( ) ( ) ( )[ ] .;,max
,1 ⎭⎬⎫⎩⎨⎧ ∀=

=
xxxx jlil

ki
l µµµ

 

With union of elements 
kXX ∪∪ ...1

 

( ) ( ) ( )[ ] .;,...,max 1
,1 ⎭⎬⎫⎩⎨⎧ ∀=

=
xxxx kll

ki
l µµµ

 

With generalized sum of two elements ji XX +  

( ) ( ){ }.,,, 2211

jl

R

il

R

jl

L

il

L

jliljlil

l aaaaaaaax ++++≡µ
 

With generalized product of an element 
iX  with a positive number c  for COSS 

( ) ( ){ }.,,, 21

il

R

il

L

ilil

l cacacacax ≡µ
 

With generalized linear combination ∑
=

k

i

ii Xc
1

, 0>ic  for COSS 
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111
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1

1 ⎭⎬
⎫
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Let us assume that semantic space Y  with membership functions of term-set 

( )xlη  belongs to semantic space Z  with membership functions of term-set 

( )xvl , if the following conditions are satisfied 

( ) ( ) .,1, mlxvx ll =∀≤η
 

Let us define the quantity indexes characterizing distinctions or similarities of two 

elements of set kΞ  with membership functions ( ){ }mlxil ,1, =µ ; ( ){ }xjlµ  for 

universal set [ ]1,0=U . If universal set is a segment [ ]baU ,= , then it is 

necessary to primarily reduce parameters of membership functions of elements to 

[0.1] by the formula 

( ) .;;; 21 ⎟⎟⎠
⎞⎜⎜⎝

⎛
−−−

−

−

−
≡

ab

a

ab

a

ab
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Let us define index of distinction within the limits of l -th term of two elements as 

loss of the information within the scope of l -th term between these elements 

( ) ( ) ( ) .,

1

0

∫ −= dxxxd jliljlil µµµµ
 

Index of similarity within the scope of l -th term 

( ).,1~
jlil

l

ij d µµκ −=
 

Let us define index of distinction of two elements as information loss between 

these elements 

( ) ( ) ( ) .
2

1
,

1

1

0

∑∫
=

−=
m

l

jlilji dxxxXXd µµ

               

(3.1) 

Index of similarity of two elements 

( ).,1~
jiij XXd−=κ

       
(3.2)

 

Index of consistency of two elements within the scope of l -th term 

( ) ( )[ ]

( ) ( )[ ]
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,min
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dxxx
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Index of consistency of two elements 

( ) ( )[ ]

( ) ( )[ ]
.

,max

,min
1

1
1

0

1

0∑∫
∫

=

=
m

l

jlil

jlil

ij

dxxx

dxxx

m
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µµ
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All indexes vary from zero to unit.  

While solving practical problems the selection of indexes of similarity or 

consistency depends on a task set. 

If it is necessary to determine degree of similarity between two elements of set 
kΞ  (of two COSS’s) within the scope of terms with the greatest carriers, a 

similarity index is recommended to use; and if within the scope of all terms 

irrespective of their carriers, a consistency index is recommended to use. 

If COSS’s are constructed based on direct inquiries of i -th and j -th experts by 

the methods stated in §2.4, 2.5, then indexes defined above are treated accordingly 

as distinction (similarity, consistency) indexes of individual criteria of i -th and j -

th experts or description of characteristics. 
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If COSS’s are constructed to the methods stated in §2.2 and 2.3 based on the 

evaluations of a population of objects within the scope of some qualitative 

characteristic given by i -th and j -th experts, the indexes defined above are 

treated accordingly as distinction (similarity, consistency) indexes of criteria of i -

th and j -th experts. 

If COSS’s are constructed to the methods stated in § 2.2 and 2.3 based on the 

expert evaluation of appearances of qualitative characteristics of i -th and j -th 

populations of objects, the indexes defined above are treated accordingly as 

distinction (similarity, consistency) indexes of appearance of this particular 

qualitative characteristic. 

Let us identify indexes of the general consistency of elements of set kΞ  with 

membership functions, accordingly  

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
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The index κ  is referred to as an additive index of consistency of elements of set 
kΞ . The index κ~  is referred to as a multiplicative index of consistency of 

elements of set kΞ . The variation range of both indexes is a segment [0, 1]. If all 

elements of set kΞ  coincide, indexes are equal to unity. The additive index is 

equal to zero, when membership functions of all terms have no crosscuts; and 

multiplicative index is equal to zero, when membership functions of at least one 

term have no crosscuts. 
3.2   The Fuzzy Cluster Ana lysis of Set of Models of Expert Characteristic  

3.2   The Fuzzy Cluster Analysis of Set of Models of Expert 

Characteristic Evaluations  

3.2   The Fuzzy Cluster Ana lysis of Set of Models of Expert Characteristic  

Building of fuzzy binary relations of similarity and conformity on set of models of 

expert characteristic evaluations allows carrying out the fuzzy cluster analysis of 

this set and, by that, to study its structural composition. 

The Proposition 3.1. [135] Fuzzy sets 1R —
4R  with membership functions, 

accordingly 

( )
ijjiR XX κµ ~,

1
=

; 
( ) ijjiR XX κµ =,

2 ; 
( ) l

ijjiR XX κµ ~,
3

=
; 

( ) l

ijjiR XX κµ =,
4 , 
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where ki ,1= ; kj ,1= ; ml ,1= . 

Define fuzzy binary relations of similarity over set kΞ . 

The proof. Let us prove of reflexivity characteristic for ( )4,1=pR
p , i.e. that  

( ) 1, =iiR XX
p

µ
; 

k

iX Ξ∈
 

( ) ( ) ( ) ( ) ;1
2

1
1,1~,

1

1

0

1
=−−=−== ∑∫

=

m

l

ililiiiiiiR dxxxXXdXX µµκµ

 

( )
( ) ( )[ ]

( ) ( )[ ]
;1

,max

,min
1

,
1

1

0

1

0

2
=== ∑∫

∫
=

m

l

ilil

ilil

iiiiR

dxxx

dxxx

m
XX

µµ

µµ

κµ

 

( ) ( ) ( ) ( ) ;11,1~,

1

0

3
=−−=−== ∫ dxxxdXX ilililil

l

iiiiR µµµµκµ

 

( )
( ) ( )[ ]

( ) ( )[ ]
.1

,max

,min

,
1

0

1

0

4
=== ∫

∫
dxxx

dxxx

XX

ilil

ilil

l

iiiiR

µµ

µµ

κµ

 

Thus, pR  is a set with reflective fuzzy relations. Let us prove symmetry 

characteristic for this set, i.e. that ( ) ( )ijRjiR XXXX
pp

,, µµ = ; 
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Thus, 
pR  are symmetric fuzzy relations. From characteristics of reflexivity and 

symmetry it follows that 
pR  are fuzzy relations of similarity. The proposition 3.1 

is proved. 

Generally, constructed fuzzy relations of similarity pR  are not transitive. Let 

us denote fuzzy relations of similarity which are transitive closures of fuzzy 

relations 
pR  with pR

�
. 

Let us identify elements 
q

XXX ,...,, 21 , kq ≤  of set kΞ  as conform 

(concerning the conformity relation pR
�

) with confidence level ( )1,0∈α , if for all 

ji XX ,  at qi ,1= ; qj ,1=  the relation ( ) αµ ≥jiR
XX ,~  is satisfied. 

Let us consider fuzzy clusterization of a set kΞ  under relations of conformity 
pR

�
. 

For relations 
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Let us write out corresponding matrixes of fuzzy relations of similarity: R 
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As generally, constructed fuzzy relations of similarity with matrixes (3.6) are not 

transitive, let us construct transitive closures of similarity relations pR  based on 

the union of compositions of each considered relations with themselves. The 

possibility of such building methods is considered in [15]. Moreover, since 
pR  are 

reflective fuzzy binary relations (the proposition 3.1), from [15] it follows that 
1−= k

pp RR
�

.
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Let pR
�

 be fuzzy relations of similarity which are transitive closures of fuzzy 

relations of similarity 
pR , they are defined by matrixes 
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Thus, 
pR

�
 define within kΞ  the fuzzy binary relations of similarity, and, 

accordingly, hierarchy of partitioning of set of expert indicator evaluation models 

by equivalence classes.  

That is, according to the decomposition theorem for similarity relations pR̂  it is 

possible to decompose: 
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onto equivalence relations, where .,1,,1
,1

;0

⎩⎨
⎧

=== kjkiijδ  

Populations of units form matrix partitions on minors corresponding to clusters. 

Thus, depending on α -levels of fuzzy relations of similarity, the set kΞ  can be 

divided into clusters of elements similar among themselves with α  levels of 

confidence. 

An application of the method of fuzzy cluster analysis of set kΞ  is check and 

rejection of erroneous information. Under conditions of unsatisfactory consistency 

indexes of elements of this set (value 0.5 can be a threshold of satisfactory 

consistency), it is possible to select falling out elements (models of expert evaluations 

of qualitative characteristics or expert description in linguistic terms of quantitative 

characteristics). The invalidity of information of these models is confirmed by raised 

concordance indexes of elements of set 
kΞ  when being rejected. 

3.3   Building of C omparative Indexes and Indexes of Consistency  

3.3   Building of Comparative Indexes and Indexes of 

Consistency of Formalized Outcomes of an Qualitative 

Characteristic Evaluation for a Population of Objects 

3.3   Building of C omparative Indexes and Indexes of Consistency  

Let us assume that k  experts estimate appearance of qualitative characteristic at a 

population of objects. According to the methods stated in §2.2 and 2.3, k  COSS 

iX ; ki ,1=  can be constructed with membership functions of term-sets 
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( ){ }mlxil ,1; =µ . These COSS’s are elements of set kΞ . Let us consider that for 

each object the expert evaluations are known, and they are levels (terms) of a 

verbal scale over which the evaluation is performed. Thus, if a point given by i -th 

expert to n -th object ( )Nn ,1=  is l -th level of a verbal scale, it is 

unambiguously mapped on membership function ( )xilµ  of l -th COSS term. Let 

us denote a point given by i -th expert to n -th representative of a population 

( ) ( )xx il

n

i µµ = , and a collection of the formalized evaluations given by i -th 

expert 

( ) ( ) ( ){ } ( ) ( ),,,,;,...,, 21

21 in

R

in

L

ininn

i

N

iiii aaaaxxxxM ≡= µµµµ
 

where ( )x
n

iµ  is one of membership functions of i -th element ( )xX ili µ=   

of set kΞ . 

Let us introduce some legends for operations with elements iM  of set kΘ , for 

which a collection N  of fuzzy numbers with membership functions is obtained: 

with cross-section of two elements 
ji MM ∩  
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n

j
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For generalized sum of two elements 
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For generalized product of an element iM  and positive value c  
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For generalized linear combination ( )0
1

>∑
=

i

k

i

ii cMc  

( ) .,,,
111

2

1

1 ⎭⎬
⎫

⎩⎨
⎧ ⎟⎠

⎞⎜⎝
⎛

≡ ∑∑∑∑
====

k

i

in

Ri

k

i

in

Li

k

i

in

i

k

i

in

i

n acacacacxµ

 

On constructing the set kΘ , the elements of which are the formalized results of 

iM  expert evaluations of qualitative characteristic at a population of objects, it is 

necessary to be capable to carrying out the comparative analysis of its elements: to 

what extent those elements are pairwise various (similar); to what extent all 

elements are various (similar) in aggregate; whether there are essentially differing 

groups of elements, or structural composition of set kΘ  is homogeneous enough. 

Let us define quantity indexes for universal set [ ]1,0=U . If the universal set is 

a segment [ ]baU ,= , then, it is necessary to preliminary reduce to [0, 1] the 

parameters of membership functions of set elements based on which the elements 

of set kΘ  are constructed, by the formula: 

( ) .,1;,,, 21 ml
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To determine consistency of two and more expert evaluations, various indexes are 

applied; they are based either on paired comparisons of the rating points assigned 

to the same objects (for example, Kendall coefficient [137]), or on arithmetical 

transformations of rating points (for example, concordance coefficients [138], a 

grade correlation in Kemeni-Snell model [139], Spearman grade correlation 

[140]). Other indexes based on the principles similar to those above are stated in 

[141—145]. 

All defined below quantity indexes between i -th and j -th elements of set kΘ  

are defined on the basis of abstract concepts, namely, values of membership 

functions [135], and operations between membership functions are defined on the 

basis of minimax operators ( )kjki ,1;,1 ==  

Distinction index 

( ) ( ) ( ) ;
1

,
1

1

0

∑∫
=

−=
N

n

n

j

n

iji dxxx
N

MMd µµ

 
Similarity index 
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Consistency index 
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Additive and multiplicative indexes, accordingly 
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All indexes vary from zero to unity. If values of consistency indexes are close to 

zero, it means incompetence of at least several experts or it means a fuzzy 

proposition of evaluation procedure. 
3.4   The Fuzzy Cluster Ana lysis of Set of the For malized Results  

3.4   The Fuzzy Cluster Analysis of Set of the Formalized Results 

of an Evaluation of Qualitative Characteristic of a 

Population of Objects 

3.4   The Fuzzy Cluster Ana lysis of Set of the For malized Results  

Building of fuzzy binary relations of similarity and conformity over a set of 

formalized results of expert evaluations allows to carry out fuzzy cluster analysis 

of this set and, by that, to study its structural composition. 

The proposition 3.2. [135] Fuzzy sets 21, RR  with membership functions 

( )
ijjiR kMM =,

1
µ , ( )

ijjiR kMM
~

,
2

=µ  ( )kjki ,1;,1 == , accordingly, define fuzzy 

relations of similarity over set kΘ . 

The proof. Let us prove that 1R  and 2R  possess characteristics of reflexivity and 
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Thus, 1R  and 2R  are reflective. Let us prove their symmetry 
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Thus, 1R  and 2R  are symmetric. The proposition 3.2 is proved. 

If the constructed fuzzy relations of similarity 21, RR  are not transitive, let us 

denote by 
21 , RR

��
, accordingly, fuzzy relations of similarity which are transitive 

closures of fuzzy relations 
21, RR . Since in accordance with the proposition 3.2 

21, RR  are reflective fuzzy relations, then 
1−= k

pp RR
�

, 2,1=p . 

Let us denote elements qMMM ,...,, 21  ( )kq ≤  of the set kΘ  as similar (versus 

similarity relation R
�

) with confidence level ( )1,0∈α , if for all ji MM ,  

( )qjqi ,1;,1 ==  the relation ( ) αµ ≥jiR
MM ,�  is satisfied. 

Let us consider fuzzy clusterization of a set kΘ  under fuzzy relations of 

similarity 
21, RR

��
. 

In the proposition 3.2 it is proved that ( )
ijjiR kMM

~
,

1
=µ , ( )

ijjiR kMM
~

,
2

=µ  

( )kjki ,1;,1 ==  are values of membership functions of fuzzy relations of 

similarity 21, RR  defined over set kΘ . Let us make a matrix of fuzzy relations of 

similarity for these relations: 
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Generally, constructed fuzzy relations of similarity 
21, RR  are not transitive, 

therefore let us construct their transitive closures 
21, RR

��
, which are fuzzy relations 

of similarity. Transitive closures for 21, RR  are constructed on the basis of 

compositions of each considered relation with themselves. Let us write out 

matrixes of fuzzy relations of similarity 
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which define over kΘ  fuzzy binary relations of similarity and, accordingly, 

hierarchy of partitioning of set of the formalized results of an qualitative index 

expert evaluation for a population of objects by equivalence classes. 

According to (3.12), it is possible to decompose matrixes of relations of 

similarity pR
�

 onto equivalence relations: 
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where ⎩⎨
⎧

=
.1

;0
ijδ  

Populations of objects form partitions of the matrix onto minors corresponding 

to clusters.  

Thus, depending on α -levels of fuzzy similarity relations, the set kΘ  can be 

divided into clusters of similar elements with levels of confidence α . 

3.5   Examples of Practical Application of the Fuzzy Cluster 

Analysis Methods 

Example 3.1. [146] Assignment of boards of examiners. Quality of checks of 

entrants’ exam papers directly depends on to what extent accurate and coordinated 

knowledge evaluation criteria of the examiners appointed to the subject boards 

are. To solve a problem of assigning the boards of examiners the method based on 

the fuzzy cluster analysis is offered. Let us consider pupils’ knowledge on 

mathematics estimated results provided by five examiners within the limits of a 

scale “E”,"C”, "B", “A", summarized in Table 3.1 

Table 3.1 Estimated results of knowledge on mathematics provided by examiners 

No. of an examiner A (“5”) B (“4”) C (“3”) E (“2”) 

1 

2 

3 

4 

5 

48 

50 

50 

48 

42 

110 

87 

99 

100 

99 

90 

120 

92 

97 

93 

36 

27 

43 

39 

50 
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Based on method described in §2.2 and data of Table 3.1, membership 

functions of the formalized individual criteria of examiners ilµ  ( )4,1;5,1 == li  

are obtained, having the following parameters: 

( )126,0;0;063,0;011 =µ ; ( )318,0;126,0;285,0;189,012 =µ ; 

( )169,0;318,0;7465,0;603,013 =µ
; ( )0;169,0;1;9155,014 =µ ; 

( )096,0;0;048,0;021 =µ ; 
( )306,0;096,0;365,0;144,022 =µ ; 

( )176,0;306,0;736,0;671,023 =µ
; ( )0;176,0;1;912,024 =µ ; 

( )153,0;0;0765,0;031 =µ
; 

( )324,0;153,0;315,0;2295,032 =µ
; 

( )175,0;324,0;7375,0;639,033 =µ
; 

( )0;175,0;1;9125,034 =µ
; 

( )137,0;0;0685,0;041 =µ ; ( )341,0;137,0;3075,0;2055,042 =µ ; 

( )168,0;341,0;748,0;6485,043 =µ
; ( )0;168,0;1;916,044 =µ ; 

( )172,0;0;086,0;051 =µ
; 

( )327,0;172,0;3355,0;258,052 =µ
; 

( )151,0;327,0;7735,0;6625,053 =µ
; 

( )0;151,0;1;9245,054 =µ
. 

Since the additive index of the general consistency of criteria (3.4) is equal to 

0.705, it is possible to draw a conclusion that all examiners considered are 

competent. 

Let us calculate indexes of pairwise similarity (3.2) of examiners’ criteria. 

Results of evaluations are summarized in Table 3.2. 

Table 3.2 Elements of a matrix of pairwise similarity of examiners’ criteria 

1 0,890 0,935 0,954 0,882

0,890 1 0,901 0,912 0,882

0,935 0,901 1 0,971 0,938

0,954 0,912 0,971 1 0,926

0,882 0,882 0,938 0,926 1 

Based on the computed indexes of pairwise similarity of examiners’ criteria, let 

us construct a fuzzy binary relation of similarity. Elements of the relation matrix 

are provided in Table 3.3. 

Table 3.3 Elements of a matrix of fuzzy binary relation of examiners’ criteria similarity 

1 0,912 0,954 0,954 0,938

0,912 1 0,912 0,912 0,912

0,954 0,912 1 0,971 0,938

0,954 0,912 0,971 1 0,938

0,938 0,912 0,938 0,938 1 
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Using the decomposition theorem, the constructed relation of similarity is 

decomposed by equivalence relations, and a set of criteria is divided into clusters 

of criteria similar to each other with different confidence levels. The obtained 

results are given below. 

Clusters of similar criteria of examiners with different levels 

Confidence level            Cluster 

0,912 {1,2,3,4,5} 

0,938 {1,3,4,5},{2} 

0,954 {1,3,4},{2},{5} 

0,971 {3,4},{1},{2},{5} 

1 {1},{2},{3},{4},{5} 

Thus, if the board consists of five persons, then with rather high confidence 

level to the researches completed, all examiners can be appointed to the board. If 

the board consists of four persons it is offered to appoint examiners No. 1. 3. 4. 5. 

If the board consists of three or two persons, it is offered to appoint examiners No. 

1, 3, and 4 or No. 3, 4, accordingly. 

Example 3.2. [147] Analysis of expert evaluation results of educational 

process quality. As the input information, results of inquiry of experts within the 

limits of the following ten issues related to the correspondence of training quality 

to modern requirements are considered: 

1. Courseware issued in a high school; 

2. Teaching staff of a high school; 

3.   Teaching of students and availability of PC’s in classrooms of a high  

  school; 

4. Curricula of special academic subjects; 

5. Research activity of faculties and new tramlines of scientific thought in a  

      high school; 

6. Research activity of students covered by science and education  

      integration approach; 

7. Educational process in the field of future professional occupation of  

      students; 

8. Existing scale of an evaluation of students’ knowledge, which influences  

     quality of educational process; 

9. Existing measures of students’ knowledge evaluation control; 

10. Forms of teaching. 

Evaluations of experts are selected from three propositions: "mismatching", 

“partially corresponding”, "corresponding" (Table 3.4). 
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Table 3.4 Relative results of expert opinions  

Relative 

number 
1 2 3 4 5 6 7 8 9 10 

ia1  
0,3 0,4 0,54 0,24 0,4 0,28 0,26 0,28 0,32 0,44 

ia2  
0,12 0,14 0,16 0,16 0,2 0,14 0,12 0,14 0,12 0,08 

ia1  
0,58 0,46 0,3 0,6 0,4 0,58 0,62 0,58 0,56 0,48 

Note: 
i

a1  — "mismatching", 
i

a2  — “partially corresponding”, ia1 — 

"corresponding". 

According to the obtained data 
i

la  ( )3,1;10,1 == li  ten linguistic variables iX  

= «attitude to i -th question» were constructed with membership functions 

denoted through ( )xilµ , accordingly. Table 3.5 summarizes parameters of these 

functions. 

Table 3.5 Parameters of membership functions of linguistic variables 

Question ( )xi1µ
 

( )xi2µ
 

( )xi3µ
 

1 (0; 0,24; 0; 0,12) (0,36; 0,12; 0,12) (0,48; 1; 0,12; 0) 

2 (0; 0,33; 0; 0,14) (0,47; 0,14; 0,14) (0,61; 1; 0,14; 0) 

3 (0; 0,46; 0; 0,16) (0,62; 0,16; 0,16) (0,78; 1; 0,16; 0) 

4 (0; 0,16; 0; 0,16) (0,32; 0,16; 0,16) (0,48; 1; 0,16; 0) 

5 (0; 0,3; 0; 0,2) (0,5; 0,2; 0,2) (0,7; 1; 0,2; 0) 

6 (0; 0,21; 0; 0,14) (0,35; 0,14; 0,14) (0,49; 1; 0,14; 0) 

7 (0; 0,2; 0; 0,12) (0,32; 0,12; 0,12) (0,44; 1; 0,12; 0) 

8 (0; 0,21; 0; 0,14) (0,35; 0,14; 0,14) (0,49; 1; 0,14; 0) 

9 (0; 0,26; 0; 0,12) (0,38; 0,12; 0,12) (0,5; 1; 0,12; 0,12)

10 (0; 0,4; 0; 0,08) (0,48; 0,08; 0,08) (0,56; 1; 0,08; 0) 

General consistency indexes for experts’ opinions within the limits of all ten 

positions are the following: an additive one by (3.4) is equal to 309, a 

multiplicative one by (3.5) — 0.289. Values of these indexes mean that according 

to experts there are essential distinctions between evaluations of correspondence 

of the educational process quality in high school and modern training 

requirements within the scope of considered positions. Results of fuzzy 

clusterization of experts’ opinions are shown below. 
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Confidence level Cluster 

0,59 {1,2,3,4,5,6,7,8,9,10} 

0,63 {1,2,4,5,6,7,8,9,10}, {3} 

0,81 {1,4,6,7,8,9}, {3}, {2,5,10} 

0,83 {1,4,6,7,8,9}, {3}, {2,5}, {10} 

0,88 {1,4,6,8,9}, {3}, {2}, {5}, {10} 

0,92 {1,6,8}, {3}, {2}, {5}, {10},{4,7}, {9} 

1 {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} 

Thus, one can understand that the state of correspondence of computers (needed 

to ensure students’ studies) availability in the classrooms of high school does not 

meet the appropriate requirement to the complete extent. State of correspondence 

of courseware issued by high school, research activity of students, integration of 

science and education spheres, and the existing scale of evaluation of students’ 

knowledge to the current requirements of the training quality is more or less in line. 

Example 3.3. The analysis of results of an expert evaluation of courseware 

quality. Six independent experts estimated characteristic «correspondences to 

curricula» of 20 samples of tutorials. The evaluation was performed within the 

limits of a verbal scale with six levels: “lack of correspondence”, “correspondence 

in accessorial sections”, “correspondence in basic sections”, “correspondence in 

the majority of the basic sections”, “correspondence in all basic sections”, 

“complete correspondence”. 

Table 3.6 Results of an expert evaluation 

Expert 
Tutorials 

1 2 3 4 5 6 

1 6 5 6 5 5 6 

2 4 4 3 3 4 4 

3 1 1 2 1 1 1 

4 6 5 5 5 5 6 

5 2 2 3 2 3 2 

6 5 4 5 4 4 5 

7 1 1 1 2 2 1 

8 6 6 6 6 6 6 

9 5 4 5 5 5 5 

10 3 3 3 3 3 3 

11 3 2 3 2 2 3 

12 5 5 5 5 5 5 

13 6 6 6 6 6 6 

14 6 5 6 4 5 6 

15 3 3 3 1 3 3 

16 4 4 4 4 4 4 
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Table 3.6 (continued) 

17 4 3 4 3 2 4 

18 6 6 6 6 5 6 

19 6 6 6 6 5 6 

20 4 3 3 3 2 4 

Table 3.7 Relative results of expert evaluations 

Expert 
Tutorials 

1 2 3 4 5 6 

1 0,1 0,1 0,05 0,1 0,05 0,1 

2 0,05 0,1 0,05 0,15 0,2 0,05 

3 0,15 0,2 0,3 0,2 0,15 0,15 

4 0,2 0,2 0,1 0,15 0,15 0,2 

5 0,15 0,25 0,2 0,2 0,35 0,15 

6 0,35 0,15 0,3 0,2 0,1 0,35 

Expert evaluations in the form of numbers of the verbal scale levels are given 
in Table 3.6. 

Relative results of expert evaluations within the limits of each level are 
summarized in Table 3.7. Number of a line corresponds to number of the rating 
scale level. 

Six COSS’s 
iX ; 6,1=i  are constructed, which formalize criteria of expert 

evaluations of courseware correspondence to curricula. While constructing, data 
of  Table 3.7 and a method described in § 2.2 were used. Parameters of 

membership functions ( )xilµ ; 6,1=i ; 6,1=l  of term-sets COSS are summarized 

in Table 3.8, and parameters of membership functions of the formalized expert 
results — in Table 3.9. 

Indexes of the general consistency of results are the following: the additive 
index is equal to 0.218, the multiplicative index is equal to 0, that indicates 
availability of significantly differing results. For comparison, the concordation 
coefficient calculated within the expert ranking limits is equal to 0.07. 

Elements of a matrix of a pairwise similarity of the formalized expert results 
are presented below. 

Elements of a matrix of a pairwise similarity of the formalized expert results 

1 0,57 0,75 0,54 0,48 1 

0,57 1 0,61 0,84 0,79 0,57

0,75 0,61 1 0,59 0,59 0,75

0,54 0,84 0,59 1 0,75 0,54

0,48 0,79 0,59 0,75 1 0,48

1 0,57 0,75 0,54 0,48 1 
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Since the matrix obtained is not transitive, its transitive closure is determined 

and by that the similarity relation 1R
�

 is revealed. Using the decomposition 

theorem, 1R
�

 are decomposed to equivalence relations and the obtained results 

presented below. 

Fuzzy clusterization of expert results versus similarity relation 1R
�

 

Confidence

level 
Cluster 

0,61 {1,2,3,4,5,6} 

0,75 {1,3,6}, {2,4,5} 

0,79 {1,6}, {2,4,5},{3} 

0,84 {1,6}, {2,4,},{3},{5} 

1 {1,6}, {2}, {3}, {4}, {5} 

Apparently, 1st and 6th expert results completely coincide, 2nd, 4th and 5th 

expert results are similar, but they differ from the results of 1st and 6th experts. 

Table 3.8 Parameters of membership functions of term-sets of the formalized expert 

approaches  

Membership 

function 1X
 2X

 3X
 

1iµ
 

(0;0,075;0;0,05) (0;0,05;0;0,1) (0;0,025;0;0,05) 

2iµ
 

(0,125;0,05;0,05) (0,15;0,1;0,1) (0,075;0,05;0,05) 

3iµ
 

(0,175;0,225;0,05;0,15) (0,25;0,3;0,1;0,2) (0,125;0,35;0,05;0,1) 

4iµ
 

(0,375;0,425;0,15;0,15) (0,5;0,2;0,2) (0,45;0,1;0,1) 

5iµ
 

(0,575;0,15;0,15) (0,7;0,775;0,2;0,15) (0,55;0,6;0,1;0,2) 

6iµ
 

(0,725;1;0,15;0) (0,925;1;0,15;0) (0,8;1;0,2;0) 

 

4X
 5X

 6X
 

(0;0,05;0;0,1) (0;0,025;0;0,05) (0;0,075;0;0,05) 

(0,15;0,175;0,1;0,15) (0,075;0,175;0,05;0,15) (0,125;0,05;0,05) 

(0,325;0,375;0,15;0,15) (0,325;0,15;0,15) (0,175;0,225;0,05;0,15) 

(0,525;0,15;0,15) (0,475;0,15;0,15) (0,375;0,425;0,15;0,15) 

(0,675;0,7;0,15;0,2) (0,625;0,85;0,15;0,1) (0,575;0,15;0,15) 

(0,9;1;0,2;0) (0,95;1;0,1;0) (0,725;1;0,15;0) 
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Table 3.9 Parameters of membership functions of the formalized results of experts 

Membership 

function 1M
 2M

 3M
 

1

iµ
 

(0,725;1;0,15;0) (0,7;0,775;0,2;0,15) (0,8;1;0,2;0) 

2

iµ
 

(0,375;0,425;0,15;0,15) (0,5;0,2;0,2) (0,125;0,35;0,05;0,1) 

3

iµ
 

(0;0,075;0;0,05) (0;0,05;0;0,1) (0,075;0,05;0,05) 

4

iµ
 

(0,725;1;0,15;0) (0,7;0,775;0,2;0,15) (0,55;0,6;0,1;0,2) 

5

iµ
 

(0,125;0,05;0,05) (0,15;0,1;0,1) (0,125;0,35;0,05;0,1) 

6

iµ
 

(0,575;0,15;0,15) (0,5;0,2;0,2) (0,55;0,6;0,1;0,2) 

7

iµ
 

(0;0,075;0;0,05) (0;0,05;0;0,1) (0;0,025;0;0,05) 

8

iµ
 

(0,725;1;0,15;0) (0,925;1;0,15;0) (0,8;1;0,2;0) 

9

iµ
 

(0,575;0,15;0,15) (0,5;0,2;0,2) (0,55;0,6;0,1;0,2) 

10

iµ
 

(0,175;0,225;0,05;0,15) (0,25;0,3;0,1;0,2) (0,125;0,35;0,05;0,1) 

11

iµ
 

(0,175;0,225;0,05;0,15) (0,15;0,1;0,1) (0,125;0,35;0,05;0,1) 

12

iµ
 

(0,575;0,15;0,15) (0,7;0,775;0,2;0,15) (0,55;0,6;0,1;0,2) 

13

iµ
 

(0,725;1;0,15;0) (0,925,1;0,15;0) (0,8;1;0,2;0) 

14

iµ
 

(0,725;1;0,15;0) (0,7;0,775;0,2;0,15) (0,8;1;0,2;0) 

15

iµ
 

(0,175;0,225;0,05;0,15) (0,25;0,3;0,1;0,2) (0,125;0,35;0,05;0,1) 

16

iµ
 

(0,375;0,425;0,15;0,15) (0,5;0,2;0,2) (0,45;0,1;0,1) 

17

iµ
 

(0,375;0,425;0,15;0,15) (0,25;0,3;0,1;0,2) (0,45;0,1;0,1) 

18

iµ
 

(0,725;1;0,15;0) (0,925;1;0,15;0) (0,8;1;0,2;0) 

19

iµ
 

(0,725;1;0,15;0) (0,7;0,775;0,2;0,15) (0,8;1;0,2;0) 

20

iµ
 

(0,375;0,425;0,15;0,15) (0,25;0,3;0,1;0,2) (0,125;0,35;0,05;0,1) 

 

4M
 5M

 6M
 

(0,675;0,7;0,15;0,2) (0,625;0,85;0,15;0,1) (0,725;1;0,15;0) 

(0,35;0,375;0,2;0,15) (0,475;0,15;0,15) (0,375;0,425;0,15;0,15) 

(0;0,05;0;0,1) (0;0,025;0;0,15) (0;0,075;0;0,05) 
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Table 3.9 (continued) 

(0,675;0,7;0,15;0,2) (0,625;0,85;0,15;0,1) (0,725;1;0,15;0) 

(0,15;0,1;0,2) (0,325;0,15;0,15) (0,125;0,05;0,05) 

(0,525;0,15;0,15) (0,475;0,15;0,15) (0,575;0,15;0,15) 

(0,15;0,1;0,2) (0,075;0,175;0,05; 0,15) (0;0,075;0;0,05) 

(0,9;1;0,2;0) (0;95;1;0,1;0) (0,725;1;0,15;0) 

(0,675;0,7;0,15;0,2) (0,625;0,85;0,15;0,1) (0,575;0,15;0,15) 

(0,35;0,375;0,2;0,15) (0,325;0,15;0,15) (0,175;0,225;0,05;0,15) 

(0,15;0,1;0,2) (0,075;0,175;0,05;0,15) (0,175;0,225;0,05;0,15) 

(0,675;0,7;0,15;0,2) (0,625;0,85;0,15;0,1) (0,575;0,15;0,15) 

(0,9;1;0,2;0) (0;95;1;0,1;0) (0,725;1;0,15;0) 

(0,525;0,15;0,15) (0,625;0,85;0,15;0,1) (0,725;1;0,15;0) 

(0;0,05;0;0,1) (0,325;0,15;0,15) (0,175;0,225;0,05;0,15) 

(0,525;0,15;0,15) (0,475;0,15;0,15) (0,375;0,425;0,15;0,15) 

(0,35;0,375;0,2;0,15) (0,075;0,175;0,05;0,15) (0,375;0,425;0,15;0,15) 

(0,9;1;0,2;0) (0,625;0,85;0,15;0,1) (0,725;1;0,15;0) 

(0,9;1;0,2;0) (0,625;0,85;0,15;0,1) (0,725;1;0,15;0) 

(0,35;0,375;0,2;0,15) (0,075;0,175;0,05;0,15) (0,375;0,425;0,15;0,15) 

Results of the 3rd expert differ from results of all experts, but they are closer to 

results of the 1st and 6th experts. 

Based on the research carried out, the conclusion is drawn that the results 

obtained by the third expert essentially differs from all results. It is confirmed by 

the fact that the system of results without his results included has the following 

general consistency indexes: additive — 0.266, multiplicative — 0.252. 

Considering that results of experts are divided into two similar groups, indexes of 

consistency for two subsystems {2, 4, 5}, and {1, 3, 6} are obtained. The first 

subsystem has additive and multiplicative indexes equal to 0.522 and 0.5204, and 

the second subsystem — 0.503 and 0, accordingly. 

Example 3.4. The analysis of results of an expert evaluation of “large-leaved 

linden” species state. Three experts estimated the state of 40 of “large-leaved 

linden” plants in a center of Moscow. For this purpose the verbal scale with seven 

levels lX  ( )7,1=l  was used: “old dead standing tree”, “recent dead standing 

trees”, "partial mortal (drying)", "very weakened tree", “mean weakened tree”, 

"moderately weakened tree", “vigorous tree without weakening signs”  

[148—149]. The obtained data are provided in Table 3.10. 

Let us denote with 
i

la  ( )7,1;3,1 == ll  a relative amount of the trees referred by 

i -th expert to l -th level of a state. The data obtained are shown below. 
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Relative amounts of trees of each state level of a condition according to three 

experts 
 

1

1a  
1

2a  
1

3a  
1

4a  
1

5a  
1

6a  
1

7a  
2

1a  
2

2a  
2

3a  
2

4a  
2

5a  
2

6a  
2

7a  
3

1a 3

2a  
3

3a  
3

4a  
3

5a  
3

6a  
3

7a  

  1     1      1     3      1     17     7 

  –     –      –     –      –      –      – 

  40  40   40    40     4     40    40 

 1      0       1      1      3    17     3       1 

 –      –       –      –      –     –      –       – 

40             20    20    10   40    20     40 

 1     1       1     13    19    1 

 –     –       –      –      –     – 

 40   40    40    40    40   10 

Based on these data and the method described in§ 2.2, COSS’s iX  ( )3,1=i  are 

constructed, they are formalizations of expert approaches to the plants state 

evaluation. 

Table 3.10 Data of evaluations by three experts of forty “large-leaved linden” trees state 

1th expert   2nd expert  3rd expert 

No. of item

1  2  3   4   5 6 7 1  2  3  4   5   6 7 1   2   3   4   5   6   7 

1   +  + + 

2   + +  + 

3   +  + + 

4 +   +  + 

5 +   +  + 

6  +  +  + 

7 +   +  + 

8  +  +  + 

9   +  + + 

10  +  +  + 

11 +   +  + 

12 +   +  + 

13 +   +  + 

14 +   +  + 

15   +  + + 

16 +   +  + 

17 +   +  + 

18   +  + + 

19 +   +  + 

20 +   +  + 

21  +  +  + 

22   + +  + 

23  +  +  + 

24  +   + + 

25 +   +  + 
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Table 3.10 (continued) 

26  +  +  + 

27  +  +  + 

28 +   +  + 

29  +  +  + 

30  +  +  + 

31 +   +  + 

32  +  +  + 

33  +  +  + 

34  +  +  + 

35  +  +  + 

36 +   +  + 

37  +  +  + 

38 +   +  + 

39  +  +  + 

40  +  +  + 

Table 3.11 Parameters of membership functions of the formalized expert approaches to the 

plants state evaluation 

Membership 

function 1X
 2X

 3X
 

1iµ
 

(0; 0,013; 0; 0,025) (0; 0,025; 0; 0) (0; 0,013; 0; 0,025) 

2iµ
 

(0,038; 0,038; 0,025; 

0,025) 
(0,025; 0,025; 0; 0) 

(0,038; 0,038; 0,025; 

0,025; 

3iµ
 

(0,063; 0,063; 0,025; 

0,025) 
(0,025; 0,050; 0; 0,050) (0,063; 0,063; 0,025; 0,025 

4iµ
 

(0,088; 0,113; 0,025; 

0,075) 

(0,100; 0,100; 0,050; 

0,050) 
(0,088; 0,088; 0,025; 0,025 

5iµ
 

(0,188; 0,275; 0,075; 

0,250) 

(0,150; 0,275; 0,050; 

0,300) 
(0,113; 0,263; 0,025; 0,325 

6iµ
 

(0,525; 0,738; 0,250; 

0,175) 

(0,575; 0,775; 0,300; 

0,150) 
(0,588; 0,850; 0,325; 0,100 

7iµ
 

(0,913; 1,000; 0,175; 0) (0,925; 1,000; 0,150; 0) (0,950; 1,000; 0,100; 0) 

Parameters of membership function of term-sets of the formalized approaches 

are summarized in  Table 3.11. 

Having substituted a sign "+” in Table 3.10 with the parameters of 

corresponding membership functions, we obtain the formalized expert results. 

The additive index (3.24) of general consistency of the formalized evaluation 

results obtained by three experts is equal to 0.53, that is evidence of competence 

of the experts. 
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Elements of a matrix of pairwise similarity and pairwise consistency of expert 

results are presented below. 

Elements of a matrix of pairwise similarity 

1 

0,857 

0,823 

0,857 

1 

0,863 

0,823 0,863 

1 

Elements of a matrix of pairwise consistency 

1 

0,684 

0.635 

0,684 

1 

0,685

0,635 

0,685 

1 

The matrix of pairwise similarity allows to conclude that results of the 2nd and 

3rd experts are of the greatest similarity. It means that they not only refer the most 

representative part of the considered group to the same terms, but also 

representatives within the terms mainly coincide. The matrix of pairwise 

consistency allows to conclude that the greatest consistency is for results of 2nd 

and 3rd experts. These results are similar not only within the limits of a great bulk 

of plants, but also are uniform for all representatives of the group considered. 

Matrixes of pairwise similarity and pairwise consistency are matrixes of fuzzy 

relations of similarity 1R  and 2R over set of the formalized expert evaluations, 

accordingly. To construct fuzzy relations of similarity, transitive closures 1R  and 

2R  — 1R̂  and 2R̂  are to be defined. Outcomes of the fuzzy cluster analysis of the 

formalized expert results under similarity relation 1R̂  and 2R̂  are presented below. 

Fuzzy clusterization of expert evaluations 

α -level Cluster 

Similarity 1R̂  

0,857 

0863 

1 

{1,2,3} 

{1},{2,3} 

{1},{2},{3} 

Similarity 
2R̂  

0,684 

0,685 

1 

{1,2,3} 

{1},{2,3} 

{1},{2},{3} 

The obtained results allow concluding that the plants state evaluation results 

obtained by 2nd and 3rd experts are of the most similarity. 
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Example 3.5. Clusterization of the plant species states on the basis of expert 

evaluations. This problem is directly connected with problems of definition of 

plant species which are the most adapted for severe ecological conditions of a big 

city and problems of planning of various measures to be performed at amenity 

planting objects. Usually it is insufficient just to select the best (in a certain sense) 

specie of plants for specific growth conditions, it is necessary to carry out 

clusterization of these species (on the basis of paired comparison) to define the 

similar species. 

One of prime ecological monitoring problems is the problem of an  

expert evaluation of greenery states [149], it consists in visual inspection of the 

greenery and reference of individual specimens to one of the verbal scale levels. 

For the purpose of such evaluation the scale described in the example 3.1 was 

used. 

In 1997-2001, in Moscow experts inspected seventeen species of woody plants 

and brushwood growing in severe ecological conditions of the Boulevard Ring 

avenue within the municipal program of greenery monitoring (4084 plants were 

inspected) [149]. One of the inspection purposes was making a solution on 

prospectivity of use of these species for city garden. 

Table 3.12 Relative results of the greenery state evaluations 

№ Specie 
1

1ia
 

1

2ia
 

1

3ia
 

1

4ia
 

1

5ia
 

1

6ia
 

1

7ia
 

1 European white birch 0,090 0,180 0,000 0,180 0,180 0,370 0,000 

2 European hawthorn  0,000 0,000 0,040 0,149 0,400 0,260 0,151 

3 European white elm 0,000 0,005 0,014 0,057 0,220 0,650 0,054 

4 Witch elm 0,023 0,000 0,018 0,123 0,220 0,474 0,142 

5 Single-seed hawthorn 0,000 0,000 0,000 0,040 0,240 0,680 0,040 

6 Cotoneaster  0,000 0,000 0,000 0,083 0,125 0,670 0,122 

7 Norway maple 0,023 0,008 0,031 0,160 0,183 0,400 0,195 

8 Tatarian maple 0,000 0,052 0,069 0,069 0,276 0,413 0,121 

9 Canadian maple 0,000 0,000 0,014 0,220 0,324 0,408 0,034 

10 Large-leaved linden 0,002 0,009 0,022 0,087 0,274 0,426 0,180 

11 Little-leaved linden 0,005 0,008 0,050 0,140 0,336 0,392 0,069 

12 Hungarian lilac  0,020 0,010 0,040 0,131 0,354 0,374 0,071 

13 Common lilac 0,000 0,005 0,018 0,074 0,310 0,490 0,103 

14 Cottonwood  0,023 0,058 0,058 0,058 0,151 0,477 0,175 

15 Rough-bark poplar 0,039 0,031 0,035 0,117 0,190 0,432 0,156 

16 European ash  0,000 0,000 0,077 0,000 0,307 0,462 0,154 

17 Black ash 0,003 0,002 0,012 0,161 0,326 0,447 0,049 
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Fig. 3.1 Membership functions of COSS term-set 1X  “a state of European white birch 

plants in the Boulevard Ring avenue” 

The abundance of plants of i -th specie in the greenery of the Boulevard  

Ring avenue which was referred by experts to l -th level, is denoted with 
1

ila  

( )7,1;17,1 == li . The data obtained are summarized in Table 3.12. 

Based on data of Table 3.12, seventeen COSS’s iY  ( )17,1=i  with term-sets lX  

( )7,1=i  were constructed using the method of § 2.2. The fuzzy numbers 

corresponding to term-sets lX  are T -numbers or normal triangular numbers with 

membership functions ( )xilµ , accordingly ( Table 3.13). 

As an example, graphs of membership functions of COSS 1X  term-set are 

shown in Fig. 3.1. 

Using definitions of §3.1, paired comparative characteristics of states of various 

plant species were defined. Elements of the pairwise similarity matrix are given in 

Table 3.14. 

Elements of the pairwise consistency matrix are summarized in Table 3.15. 

The additive index (3.4) of general consistency of states of all plant  

species is equal to 0.11 thus evidencing that states of plant species considerably 

differ. 

Fuzzy clusterization for 17 species of woody plants and brushwood, the states 

of which are formalized above, was made. Fuzzy binary relations of similarity 

over the set of the formalized states are constructed on the basis of matrixes of 

pairwise similarity and pairwise consistency the elements which are provided in 

Table 3.14 and Table3.15, accordingly. 
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Тable 3.13 Parameters of COSS membership functions  

µ
 European white birch European hawthorn European white elm 

1iµ
 

0,000 0,045 0,000 0,090 0,000 0,000 0,000 0,000 0,000 0,000  0,000 0,000 

2iµ
 

0,135  0,270  0,090  0,000 0,000  0,000  0,000  0,000 0,000  0,003  0,000  0,005 

3iµ
 

0,270  0,270  0,000  0,000 0,000  0,020  0,000  0,040 0,008  0,012  0,005  0,014 

4iµ
 

0,270 0,360  0,000  0,180 0,060  0,115  0,040 0,149 0,026 0,048  0,014 0,057 

5iµ
 

0,540 0,540  0,180  0,180 0,264 0,459 0,149 0,260 0,105  0,186 0,057 0,220 

6iµ
 

0,720  1,000  0,180  0,000 0,719  0,774 0,260 0,151 0,406 0,919  0,220 0,054 

7iµ
 

1,000  1,000  0,000  0,000 0,925   1,000  0,151  0,000 0,973  1,000  0,054 0,000 

 

µ
 Witch elm Single-seed hawthorn Cotoneaster 

1iµ
 0,000  0,023  0,000  0,000 0,000  0,000  0,000 0,000 0,000 0,000  0,000 0,000 

2iµ
 

0,023  0,023  0,000  0,000 0,000  0,000  0,000 0,000 0,000  0,000  0,000  0,000 

3iµ
 

0,023  0,032  0,000  0,018 0,000  0,000  0,000  0,000 0,000  0,000  0,000  0,000 

4iµ
 

0,050 0,103  0,018 0,123 0,000 0,020 0,000 0,040 0,000 0,042 0,000 0,083 

5iµ
 

0,226 0,274 0,123  0,220 0,060  0,160  0,040 0,240 0,125  0,146  0,083  0,125 

6iµ
 

0,494 0,787 0,220  0,142 0,400  0,940  0,240 0,040 0,271  0,817 0,125  0,122 

7iµ
 

0,929  1,000 0,142  0,000 0,980  1,000  0,040 0,000 0,939  1,000  0,122  0,000 

 

µ
 Norway maple Tatarian maple Canadian maple 

1iµ
 

0,000  0,019 0,000  0,008 0,000  0,000  0,000 0,000 0,000  0,000  0,000 0,000 

2iµ
 

0,027 0,027 0,008 0,008 0,000 0,026 0,000 0,052 0,000  0,000  0,000 0,000 

3iµ
 

0,035  0,047 0,008  0,031 0,078  0,087 0,052  0,069 0,000  0,007 0,000  0,014 

4iµ
 

0,078  0,142  0,031  0,160 0,156  0,156  0,069  0,069 0,021  0,124  0,014  0,220 

5iµ
 

0,302  0,314 0,160  0,183 0,225  0,328 0,069  0,276 0,344 0,396  0,220  0,324 

6iµ
 

0,497 0,708 0,183  0,195 0,604 0,819 0,276 0,121 0,720 0,949 0,324 0,034 

7iµ
 

0,903  1,000 0,195  0,000 0,940  1,000 0,121  0,000 0,983  1,000  0,034 0,000 
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Тable 3.13 (continued) 

µ
 Large-leaved linden Little-leaved linden Hungarian lilac 

1iµ
 

0,000  0,001  0,000  0,002 0,000 0,003  0,000  0,005 0,000  0,015  0,000  0,010 

2iµ
 

0,003  0,007 0,002  0,009 0,008 0,009 0,005  0,008 0,025  0,025  0,010  0,010 

3iµ
 

0,016  0,022  0,009  0,022 0,017 0,038  0,008  0,050 0,035  0,050  0,010  0,040 

4iµ
 

0,044 0,077 0,022  0,087 0,088 0,133  0,050  0,140 0,090  0,136  0,040  0,131 

5iµ
 

0,164 0,257 0,087 0,274 0,273  0,371  0,140  0,336 0,267 0,378  0,131  0,354 

6iµ
 

0,531  0,730  0,274 0,180 0,707 0,897 0,336 0,069 0,732 0,894 0,354 0,071 

7iµ
 

0,910  1,000  0,180  0,000 0,966  1,000 0,069  0,000 0,965  1,000  0,071  0,000 

 

µ
 Common lilac Cottonwood Rough-bark poplar 

1iµ
 

0,000  0,000  0,000 0,000 0,000 0,012 0,000  0,023 0,000  0,024 0,000  0,031 

2iµ
 

0,000  0,003  0,000 0,005 0,035  0,052  0,023  0,058 0,055  0,055  0,031  0,031 

3iµ
 

0,008 0,014 0,005  0,018 0,110  0,110  0,058  0,058 0,086  0,088  0,031  0,035 

4iµ
 

0,032 0,060  0,018 0,074 0,168 0,168 0,058  0,058 0,123  0,164  0,035  0,117 

5iµ
 

0,134 0,252  0,074 0,310 0,226 0,273  0,058  0,151 0,281  0,317 0,117 0,190 

6iµ
 

0,562  0,846 0,310 0,103 0,424 0,738  0,151  0,175 0,507  0,766  0,190  0,156 

7iµ
 

0,949  1,000  0,103  0,000 0,913  1,000  0,175  0,000 0,922  1,000  0,156  0,000 

 

µ
 European ash Black ash 

1iµ
 

0,000       0,000       0,000       0,000 0,000       0,002        0,000       0,002 

2iµ
 

0,000        0,000        0,000        0,000 0,004       0,004        0,002       0,002 

3iµ
 

0,000       0,077       0,000       0,000 0,006       0,011        0,002       0,012 

4iµ
 

0,077       0,077       0,000       0,000 0,023       0,098        0,012       0,161 

5iµ
 

0,077       0,231        0,000       0,307 0,259       0,341        0,161       0,326 

6iµ
 

0,538       0,769       0,307       0,154 0,667       0,927        0,326       0,049 

7iµ
 

0,923       1,000       0,154       0,000 0,976       1,000        0,049       0,000 
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The pairwise similarity matrix can be recommended for use in the case when an 

expert in charge of the analysis of greenery state, is interested in the similarity of a 

great bulk of representatives of some specific species to each other. In this case 

contributions of the least representative levels will be amortized by contributions 

of the most representative ones, due to their similarity. 

The pairwise consistency matrix can be recommended for use in the case when 

an expert is interested in the complete-scaled picture considering uniform 

contributions of all levels, including the smallest ones, due to their similarity. 

Table 3.14 Elements of the pairwise similarity matrix of plant species states 

1,000 0,364 0,326 0,282 0,352 0,248 0,227 0,318 0,494 0,240 0,427 0,447 0,318 0,238 0,288 0,247 0,424 

0,364 1,000 0,482 0,743 0,436 0,491 0,700 0,717 0,794 0,693 0,820 0,824 0,659 0,593 0,700 0,645 0,775 

0,326 0,482 1,000 0,725 0,918 0,819 0,576 0,582 0,581 0,721 0,581 0,558 0,817 0,644 0,594 0,745 0,689 

0,282 0,743 0,725 1,000 0,655 0,707 0,844 0,773 0,624 0,900 0,706 0,689 0,854 0,794 0,826 0,830 0,760 

0,352 0,436 0,918 0,655 1,000 0,803 0,537 0,550 0,558 0,640 0,531 0,519 0,734 0,620 0,571 0,706 0,626 

0,248 0,491 0,819 0,707 0,803 1,000 0,590 0,573 0,461 0,688 0,474 0,462 0,747 0,641 0,604 0,701 0,543 

0,227 0,700 0,576 0,844 0,537 0,590 1,000 0,746 0,619 0,825 0,707 0,697 0,705 0,789 0,875 0,750 0,667 

0,318 0,717 0,582 0,773 0,550 0,573 0,746 1,000 0,651 0,710 0,764 0,766 0,746 0,765 0,830 0,720 0,755 

0,494 0,794 0,581 0,624 0,558 0,461 0,619 0,651 1,000 0,556 0,857 0,861 0,639 0,483 0,620 0,498 0,868 

0,240 0,693 0,721 0,900 0,640 0,688 0,825 0,710 0,556 1,000 0,631 0,606 0,877 0,774 0,777 0,869 0,693 

0,427 0,820 0,581 0,706 0,531 0,474 0,707 0,764 0,857 0,631 1,000 0,963 0,683 0,567 0,691 0,610 0,871 

0,447 0,824 0,558 0,689 0,519 0,462 0,697 0,766 0,861 0,606 0,963 1,000 0,661 0,571 0,686 0,594 0,852 

0,318 0,659 0,817 0,854 0,734 0,747 0,705 0,746 0,639 0,877 0,683 0,661 1,000 0,683 0,725 0,847 0,763 

0,238 0,593 0,644 0,794 0,620 0,641 0,789 0,765 0,483 0,774 0,567 0,571 0,683 1,000 0,843 0,753 0,574 

0,288 0,700 0,594 0,826 0,571 0,604 0,875 0,830 0,620 0,777 0,691 0,686 0,725 0,843 1,000 0,771 0,675 

0,247 0,645 0,745 0,830 0,706 0,701 0,750 0,720 0,498 0,869 0,610 0,594 0,847 0,753 0,771 1,000 0,611 

0,424 0,775 0,689 0,760 0,626 0,543 0,667 0,755 0,868 0,693 0,871 0,852 0,763 0,574 0,675 0,611 1,000 

Table 3.15 Elements of the pairwise consistency matrix of plant species states 

1,000 0,123 0,208 0,240 0,066 0,045 0,091 0,093 0,162 0,202 0,143 0,173 0,220 0,091 0,130 0,060 0,272 

0,123 1,000 0,313 0,391 0,406 0,501 0,348 0,494 0,668 0,331 0,389 0,398 0,426 0,287 0,355 0,635 0,352 

0,208 0,313 1,000 0,398 0,502 0,494 0,183 0,351 0,381 0,420 0,247 0,234 0,794 0,202 0,181 0,389 0,462 

0,240 0,391 0,398 1,000 0,192 0,287 0,678 0,375 0,244 0,738 0,484 0,566 0,525 0,486 0,484 0,357 0,637 

0,066 0,406 0,502 0,192 1,000 0,733 0,149 0,311 0,513 0,187 0,195 0,187 0,374 0,176 0,159 0,504 0,250 

0,045 0,501 0,494 0,287 0,733 1,000 0,207 0,386 0,439 0,289 0,181 0,177 0,499 0,217 0,213 0,548 0,202 

0,091 0,348 0,183 0,678 0,149 0,207 1,000 0,373 0,261 0,544 0,577 0,690 0,286 0,511 0,566 0,363 0,437 

0,093 0,494 0,351 0,375 0,311 0,386 0,373 1,000 0,406 0,305 0,386 0,395 0,483 0,494 0,517 0,462 0,333 

0,162 0,668 0,381 0,244 0,513 0,439 0,261 0,406 1,000 0,205 0,408 0,405 0,382 0,170 0,244 0,462 0,427 

0,202 0,331 0,420 0,738 0,187 0,289 0,544 0,305 0,205 1,000 0,442 0,392 0,562 0,368 0,363 0,376 0,659 

0,143 0,389 0,247 0,484 0,195 0,181 0,577 0,386 0,408 0,442 1,000 0,804 0,290 0,275 0,346 0,289 0,660 

0,173 0,398 0,234 0,566 0,187 0,177 0,690 0,395 0,405 0,392 0,804 1,000 0,283 0,366 0,404 0,265 0,580 
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Table 3.15 (continued) 

0,220 0,426 0,794 0,525 0,374 0,499 0,286 0,483 0,382 0,562 0,290 0,283 1,000 0,260 0,287 0,481 0,461 

0,091 0,287 0,202 0,486 0,176 0,217 0,511 0,494 0,170 0,368 0,275 0,366 0,260 1,000 0,620 0,324 0,234 

0,130 0,355 0,181 0,484 0,159 0,213 0,566 0,517 0,244 0,363 0,346 0,404 0,287 0,620 1,000 0,352 0,280 

0,060 0,635 0,389 0,357 0,504 0,548 0,363 0,462 0,462 0,376 0,289 0,265 0,481 0,324 0,352 1,000 0,200 

0,272 0,352 0,462 0,637 0,250 0,202 0,437 0,333 0,427 0,659 0,660 0,580 0,461 0,234 0,280 0,200 1,000 

Table 3.16 Elements of the similarity relation 1R̂  matrix 

1,000 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 

0,494 1,000 0,766 0,766 0,766 0,766 0,766 0,766 0,824 0,766 0,824 0,824 0,766 0,766 0,766 0,766 

0,494 0,766 1,000 0,817 0,918 0,819 0,817 0,817 0,766 0,817 0,766 0,766 0,817 0,817 0,817 0,817 

0,494 0,766 0,817 1,000 0,817 0,817 0,844 0,830 0,766 0,900 0,766 0,766 0,877 0,843 0,844 0,869 

0,494 0,766 0,918 0,817 1,000 0,819 0,817 0,817 0,766 0,817 0,766 0,766 0,817 0,817 0,817 0,817 

0,494 0,766 0,819 0,817 0,819 1,000 0,817 0,817 0,766 0,817 0,766 0,766 0,817 0,817 0,817 0,817 

0,494 0,766 0,817 0,844 0,817 0,817 1,000 0,830 0,766 0,844 0,766 0,766 0,844 0,843 0,875 0,844 

0,494 0,766 0,817 0,830 0,817 0,817 0,830 1,000 0,766 0,830 0,766 0,766 0,830 0,830 0,830 0,830 

0,494 0,824 0,766 0,766 0,766 0,766 0,766 0,766 1,000 0,766 0,868 0,868 0,766 0,766 0,766 0,766 

0,494 0,766 0,817 0,900 0,817 0,817 0,844 0,830 0,766 1,000 0,766 0,766 0,877 0,843 0,844 0,869 

0,494 0,824 0,766 0,766 0,766 0,766 0,766 0,766 0,868 0,766 1,000 0,963 0,766 0,766 0,766 0,766 

0,494 0,824 0,766 0,766 0,766 0,766 0,766 0,766 0,868 0,766 0,963 1,000 0,766 0,766 0,766 0,766 

0,494 0,766 0,817 0,877 0,817 0,817 0,844 0,830 0,766 0,877 0,766 0,766 1,000 0,843 0,844 0,869 

0,494 0,766 0,817 0,843 0,817 0,817 0,843 0,830 0,766 0,843 0,766 0,766 0,843 1,000 0,843 0,843 

0,494 0,766 0,817 0,844 0,817 0,817 0,875 0,830 0,766 0,844 0,766 0,766 0,844 0,843 1,000 0,844 

0,494 0,766 0,817 0,869 0,817 0,817 0,844 0,830 0,766 0,869 0,766 0,766 0,869 0,843 0,844 1,000 

0,494 0,824 0,766 0,766 0,766 0,766 0,766 0,766 0,868 0,766 0,871 0,871 0,766 0,766 0,766 0,766 

Table 3.17 Elements of the similarity relation 2R̂  matrix 

1,000 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 0,272 

0,272 1,000 0,502 0,502 0,548 0,548 0,502 0,502 0,668 0,502 0,502 0,502 0,502 0,502 0,502 0,635 0,502 

0,272 0,502 1,000 0,562 0,502 0,502 0,562 0,517 0,502 0,562 0,562 0,562 0,794 0,562 0,562 0,502 0,562 

0,272 0,502 0,562 1,000 0,502 0,502 0,678 0,517 0,502 0,738 0,678 0,678 0,562 0,566 0,566 0,502 0,660 

0,272 0,548 0,502 0,502 1,000 0,733 0,502 0,502 0,548 0,502 0,502 0,502 0,502 0,502 0,502 0,548 0,502 

0,272 0,548 0,502 0,502 0,733 1,000 0,502 0,502 0,548 0,502 0,502 0,502 0,502 0,502 0,502 0,548 0,502 

0,272 0,502 0,562 0,678 0,502 0,502 1,000 0,517 0,502 0,678 0,690 0,690 0,562 0,566 0,566 0,502 0,660 

0,272 0,502 0,517 0,517 0,502 0,502 0,517 1,000 0,502 0,517 0,517 0,517 0,517 0,517 0,517 0,502 0,517 

0,272 0,668 0,502 0,502 0,548 0,548 0,502 0,502 1,000 0,502 0,502 0,502 0,502 0,502 0,502 0,635 0,502 

0,272 0,502 0,562 0,738 0,502 0,502 0,678 0,517 0,502 1,000 0,678 0,678 0,562 0,566 0,566 0,502 0,660 

0,272 0,502 0,562 0,678 0,502 0,502 0,690 0,517 0,502 0,678 1,000 0,804 0,562 0,566 0,566 0,502 0,660 

0,272 0,502 0,562 0,678 0,502 0,502 0,690 0,517 0,502 0,678 0,804 1,000 0,562 0,566 0,566 0,502 0,660 
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Table 3.17 (continued) 

0,272 0,502 0,794 0,562 0,502 0,502 0,562 0,517 0,502 0,562 0,562 0,562 1,000 0,562 0,562 0,502 0,562 

0,272 0,502 0,562 0,566 0,502 0,502 0,566 0,517 0,502 0,566 0,566 0,566 0,562 1,000 0,620 0,502 0,566 

0,272 0,502 0,562 0,566 0,502 0,502 0,566 0,517 0,502 0,566 0,566 0,566 0,562 0,620 1,000 0,502 0,566 

0,272 0,635 0,502 0,502 0,548 0,548 0,502 0,502 0,635 0,502 0,502 0,502 0,502 0,502 0,502 1,000 0,502 

0,272 0,502 0,562 0,660 0,502 0,502 0,660 0,517 0,502 0,660 0,660 0,660 0,562 0,566 0,566 0,502 1,000 

As one can see from Table 3.14 and Table3.15, fuzzy relations 1R  and 2R   

defined by matrixes of pairwise similarity and pairwise consistency, accordingly, 

are not transitive, therefore their transitive closures 1R̂  and 2R̂  which are 

similarity relations, are constructed. Elements of relations matrixes 
1R̂  and 

2R̂  are 

provided in Table 3.16 and Table 3.17, accordingly. 

Fuzzinesses of similarity relations are 433,0ˆ
1 =R , 805,0ˆ

2 =R . As known [15], 
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Owing to higher fuzziness of similarity relation 2R̂ , the decision to use the 

similarity relation 
1R̂  for the further analysis was made. Based on the 

decomposition theorem, all plant species were divided, under relation 
1R̂ , into 

clusters of the similar species based on their state. Results of fuzzy clusterization 

under similarity relation 
1R̂ , are provided in Table 3.18. 

The results obtained allow concluding that the state of “European white birch” 

plants essentially differs from the states of all other plant species. States of “Witch 

elm” and “large-leaved linden” plants, and also states of “little-leaved linden” and 

“Hungarian lilac” plants are similar to each other. Based on the states of other 

plant species one can say with high confidence level that there is no similarity of 

them. 
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Table 3.18 Clusterization of plant species under similarity relation 
1R̂  

Confidence 

level 
Cluster 

0.495 {1}{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} 

0.766 {1}{2,9,11,12,17}{3,4,5,6,7,8,10,13,14,15,16} 

0.818 {1}{2,9,11,12,17}{3,5,6}{4,7,8,10,13,14,15,16} 

0.820 {1}{2,9,11,12,17}{3,5}{6}{4,7,8,10,13,14,15,16} 

0.825 {1}{2}{3,5}{6}{9,11,12,17}{4,7,8,10,13,14,15,16} 

0.831 {1}{2}{3,5}{6}{8}{9,11,12,17}{4,7,10,13,14,15,16} 

0.844 {1}{2}{3,5}{6}{8}{9,11,12,17}{7,15}{14}{4,10,13,16} 

0.869 {1}{2}{3,5}{6}{8}{9}{4,10,13}{11,12,17}{7,15}{14}{16} 

0.872 {1}{2}{3,5}{6}{8}{9}{4,10,13}{11,12}{7,15}{14}{16}{17} 

0.878 {1}{2}{3,5}{6}{7}{8}{9}{4,10}{11,12}{13}{14}{15}{16}{17} 

0.901 {1}{2}{3,5}{4}{6}{7}{8}{9}{10}{11,12}{13}{14}{15}{16}{17} 

0.918 {1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11,12}{13}{14}{15}{16}{17} 

0.964 {1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15}{16}{17} 
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Chapter 4 

Model-Building Techniques of the Generalized 
Characteristic Expert Evaluation Models 

4.1   The Generalized Model of Characteristic Expert 

Evaluations Based on the Least Square Method  

4.1   The Generalize d Model  of Characteristic Expert Evaluations 

The expert evaluations theory has formulated the optimum condition of group 

sampling as per Pareto [135]. This condition means that if ( )kRRRFR ,...,, 21=  is 

the group ranking, which is function of individual rankings kRRR ,...,, 21 , then 
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Let { }kiX i

k ,1; ==Ξ , where iX ; ki ,1=  be models of expert evaluations of 

qualitative characteristic or expert description in linguistic terms of physical 

values of quantitative characteristic with membership functions of term-sets 
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Let us formulate Pareto condition for the optimum generalized model of expert 

evaluations of a qualitative characteristic or expert description of values of 

quantitative characteristic in the linguistic terms, which is constructed on the basis 

of models iX  
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(4.1) 

Let us assume [150] that membership functions of a term-set of the generalized 

characteristic expert evaluations model is related to the same class of functions as 
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membership functions of the term-sets of the set kΞ elements; i.e. if the fuzzy 

numbers corresponding to the term-sets of the set kΞ elements are tolerance or 

unimodal numbers of the group Λ  described in §2.1, then fuzzy numbers 

corresponding to a term-set of the generalized model are also identified as 

tolerance or unimodal numbers of the group Λ . Let us suppose that weight 

coefficients iω  of of set kΞ  elements are revealed. Let us define parameters of 

membership functions ( )l

R

l

L

ll
aaaa ,,, 21

 of a term-set of the generalized model of 

expert qualitative characteristic evaluations or expert description of quantitative 

characteristic values in linguistic terms, from the condition 
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Unknown parameters are determined from system of normal equations at ml ,1=  
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We obtain solutions 
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According to optimization problem solutions, the generalized model is a linear 

combination of the set kΞ  elements (see §3.1). Coefficients of the linear 

combination are weight coefficients of the characteristic expert evaluations 

models which are used to construct the generalized model. Thus, we obtain 
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  (4.5) 

Let us denote the constructed generalized model of expert qualitative 

characteristic evaluations or expert description, in linguistic terms, of physical 

values of quantitative characteristic as optimum by noisiness of the set kΞ  

element parameters. 

Let us prove the fulfillment of the condition (4.1) ensuring Pareto optimality of 

generalized model of an expert evaluation or description of a characteristic. As 
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then from (4.6) it is obtained 
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Thus, the generalized model of expert qualitative characteristic evaluations or 

expert description, in linguistic terms, of physical values of the quantitative 

characteristic constructed in §4.1 with use of the least squares method, is Pareto 

optimal one. 
4.2   Definit ion of Weig ht Coefficients of the For malize d Results  

4.2   Definition of Weight Coefficients of the Formalized Results 

of Expert Qualitative Characteristic Evaluations Based on 

the Similarity Relations 
4.2   Definit ion of Weig ht Coefficients of the For malize d Results  

Let similarity relations with matrixes ( )[ ]kjkiXX jiR ,1,,1,,R
11 === µ ; 

( )[ ]kjkiMM jiR ,1,,1,,R
11 === µ , accordingly, and conformity relations with 

matrixes ( )
jiR XX ,R̂

11 µ= ; ( )
jiR MM ,R̂

11 µ= , accordingly, are constructed based 

on sets kΞ  and kΘ  using similarity indexes.  

Let similarity relations with matrixes ( )[ ]jiR XX ,R
22 µ= ; ( )[ ]

jiR MM ,R
22 µ= , 

accordingly, and conformity relation with matrix ( )
jiR XX ,R̂

22 µ= ; 

( )jiR MM ,R̂
22 µ=  are constructed based on sets kΞ  and kΘ using consistency 

indexes. According to the decomposition theorem, the matrix pR̂ , 2,1=p  can de 

decomposed onto equivalence relations 
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Thus, depending on confidence level α , set kΞ  (COSS set) or kΘ  set (set of 

formalized expert evaluation results of a qualitative characteristic of an object 
group) can be divided into clusters of similar elements. 

Let us define weight coefficients of elements of sets kΞ  and kΘ  depending on 

confidence level within the limits of following criteria: 

I. Weight coefficient of the element which has entered a larger cluster exceeds  

 weight coefficient of the element which has entered a smaller cluster. 

II. If elements have entered the same cluster, their weight coefficients are equal. 

Let us consider various cases: 

1. With confidence level 1<α  all elements enter the same cluster. 

Based on the criterion II, their weight coefficients 

1,,1,
1

== ∑
=

k

i

ii ki ωω
 

are considered equal, i.e. 

.,1,/1 kiki ==ω
 

2. With confidence level 1<α  two clusters of potency (number of elements): 

1−k  and 1 occur. 

Let us assume that elements with indexes 1,1 −= ki  have entered a cluster of 

potency 1−k  . Based on the criterion II, weight indexes iω  are considered equal, 

and based on the criterion I, the weight coefficient of the element with the index 

k  has smaller value than values of weight coefficients 

.1,
1

=∑
=

k

i

ii ωω
 

Let us use Fishburn scale [151] according to which weight coefficients of units 

ranked in decrease of their importance order (within the limits of certain criterion) 

are determined under the formula: 
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(4.7) 

Since the weight coefficient of an element with k  index is the least one, it is 

determined by substitution ki =  in the formula (4.7), hence we obtain 
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Let us compute the sum of weight coefficients of elements with indexes 

1,1 −= ki  using the formula (4.7): 
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4.2   Definition of Weight Coefficients of the Formalized Results 123

 

As elements with these indexes have equal weight coefficients, we obtain 
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(4.10) 

3. With confidence level 1<α  there are several clusters: one cluster of 

potency v  and other clusters of potency 1. 

The largest cluster makes a basis, and according to the criterion II the elements 

belonging to this cluster are considered to have equal weight coefficients. 

According to the criterion I, elements of individual clusters have weight 

coefficients less than weight coefficients of elements of the largest cluster. Let us 

assume that elements with indexes vi ,1=  have entered the largest cluster. Let us 

rank the elements which have entered individual clusters by values of indexes jρ  

or jρ
%

 with kvj ,1+=  
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Indexes jρ  or jρ
%

 of (4.11) are summarized quantity indexes of similarity 

(consistency) of elements ( )ii MX , kvi ,1+= , entering individual clusters, with 

elements from a cluster with potency v . Let us consider that the more jρ  ( )
jρ

%
 is, 

the more importance of element ( )
jj MX  is and, accordingly, the more its weight 

coefficient is. Let us obtain a conditional ordered series of elements kΞ  ranged by 

lack of growth of their weight coefficients 

( ) ( ) ( )kvvv XXXXXX >>>>=== ++ ...... 2121  

or a conditional ordered series of elements 
kΘ , ranged in the same manner 

( ) ( ) ( )....... 2121 kvvv MMMMMM >>>>=== ++  

Weight coefficients of elements with indexes ( ) kvi ,1+=  are determined by 

consecutive substitution of indexes kvi ,1+=  into the formula (4.7). The result 

is  
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Let us compute the sum of weight coefficients of elements with indexes vi ,1=  

from the formula (4.7): 
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Since elements with these indexes have equal weight coefficients, that on dividing 

(4.13) by v , we obtain 
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(4.14) 

4. With confidence level 1<α  some clusters occur, one of them is large 

cluster with potency v  and several clusters which potency is less than v ; 

with that all small clusters have different potencies. 

Let the largest of small clusters have potency d , and other clusters, without 

limiting their generality, have potencies 1≥>>> cbad , accordingly. Applying 

the criteria I and II, we range elements according to their weight coefficients. We 

obtain a conditional ordered series of elements kΞ  (or elements kΘ ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) >==>==>=== ++++++ advdvdvvv XXXXXXX ......... 1121  

( ) ( ) ( ) ( )....... 11 kbadvbadvadv XXXX ==>==> ++++++++++  

Weight coefficients of elements of each cluster are computed in the same manner 

as the weight coefficients of elements of a cluster with potency v  (see item 3). 

We obtain 
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5. With confidence level 1<α  some large clusters with identical amount of 

elements occur: 

a) Two clusters of identical potency v  occur. Let us assume that the first 

cluster consists of elements with indexes vi ,1= , and the second cluster 

consists of elements with indexes vvi 2,1+= . Other elements are 

fractionalized into individual clusters. Let us calculate indexes j
ρ  or jρ

%
 

for elements of two clusters of potency v  with vj 2,1=  
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            (4.15) 

Let us select the maximum index from indexes jρ , vj 2,1=  ( )vjj 2,1, =ρ
%

 and, 

considering that an element corresponding to this index belongs to the first cluster 

of potency v , we obtain a conditional ordered series of elements 
kΞ  (or elements 

kΘ ) 

( ) ( ).......... 1222121 kvvvvv XXXXXXXX >>>===>=== +++  

Individual clusters are ranged similarly to ranging of individual clusters in p. 3. In 

this case it is easy to demonstrate that 
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b) A set of elements with indexes kvi ,12 +=  is fractionalized into clusters 

of different potency. The potency of each cluster is less than v , but it is 

more than ‘1’ or equal to ‘1’. In this case the most powerful cluster is 

selected, and the procedure from p. 4 is carried out to determine weight 

coefficients of elements with indexes kvi ,12 += . Weight coefficients of 

elements of clusters of potency v  remain unchanged 
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c) The set of elements with indexes kvi ,12 +=  is fractionalized into clusters 

with potencies less than v  each, but more or equal to ‘1’y, and among 

these clusters there are several large ones identical in their potencies. Let 

us consider that there are two clusters of potency 1>d  with elements 

( )
jj MX

, dvvj 22,12 ++= . For these elements indexes j
ρ or jρ

%
are 

defined. 
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Then, the procedure of the weight coefficients computation described in p. 5a is 

carried out. Weight coefficients of elements from clusters of potency v  remain 

unchanged 

( )
;,1,

1

12
vi

kk

vk
i =

+

+−
=ω

 ( )
;2,,

1

132
vvi

kk

vk
i =

+

+−
=ω

                (4.19) 

6. With the confidence level equal to ‘1’, k  clusters occur whose elements are 

ranged according to values jρ ,or jρ
%

, kj ,1=  
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Let us range values jρ , kj ,1=  ( )kjj ,1, =ρ
%

 in decreasing order. We obtain a 

conditional ordered series 

( ) ( ) ( ) ( )ki XXXX >>>>> ......21  
or 

( ) ( ) ( ) ( ).......21 ki MMMM >>>>>
 

Weight coefficients of sets kΞ  and 
kΘ  elements are computed by the formula 

(4.7). 

If any ( )
jj ρρ

%
 are equal, then we obtain a conditional equality ( ) ( )lXX == ...1 . 

In this case 
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4.3   Determinatio n of Weig ht Coefficients for Models  of Characteristic 

4.3   Determination of Weight Coefficients for Models of 

Characteristic Expert Evaluations Based on the Fuzziness 

Degrees 

4.3   Determinatio n of Weig ht Coefficients for Models  of Characteristic 

The selection of a principle for determination of weight coefficients depends on 

particular situation, requirements etc. For example, determination of weight 

coefficients for models of expert qualitative characteristic evaluations or expert 

description, in linguistic terms, of physical values of quantitative characteristic 

(elements of set kΞ ) can be carried out on the basis of degrees of the models 

fuzziness (COSS). Fuzziness degree of an evaluation model or characteristic 

description, as known [28], is a quantity index of average degree of difficulties an 
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expert undergoes while describing and estimating real objects within the scope of 

relevant set of linguistic values of the characteristic considered. Therefore we 

believe logical to assign the greatest weight coefficient to an element kΞ  (i.e. to 

the model of expert evaluations of characteristic) with the minimum fuzziness 

degree, and the least weight coefficient to an element kΞ  with maximum 

fuzziness degree. If fuzziness degrees of those elements are equal, weight 

coefficients of those elements are considered equal. 

Fuzziness degree of a characteristic expert evaluations model constructed in the 

form of COSS is defined as follows: 
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where U  is a universal set (a subset on the real number line) 
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f  decreases, and ( ) 10 =f , ( ) 01 =f . 

Let us be limited to reviewing linear membership functions on a set 

( ){ },,1,10: mlxUxU l
l

=<<∈∪= µ
 

and let us assume an integrand be equal ( ) xxf −= 1 . It is the unique linear 

function satisfying to conditions: f  decreases, ( ) 10 =f , ( ) 01 =f . Then according 

to [28] 

.2/ UU=ζ
 

Let us calculate fuzziness degree for each element of set kΞ  and range all its 

elements as per the following principle: the less fuzziness degree of an element is, 

the higher its rank is. Without limiting its generality, we obtain, for example, a 

conditional ordered series 

( ) ( ) ( ) ( ).......11 ki XXXX >>>>>
 

Weight coefficients are computed by the formula (4.7). 

If any elements have identical fuzziness degrees, determination weight 

coefficients is made within the limits of schemes of §4.2. 

If fuzziness degrees of all elements are equal, these elements are considered 

equivalent, and weight coefficients 
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equal, i.e 
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4.4   Building of t he Generalize d Model of Characteristic Expert Evaluations 

4.4   Building of the Generalized Model of Characteristic Expert 

Evaluations Based on the Minimum Information Loss  

4.4   Building of t he Generalize d Model of Characteristic Expert Evaluations 

Let ( ){ }mlxX ili ,1, == µ , ki ,1=  be elements of set kΞ  (models of expert 

evaluations of qualitative characteristic or expert description of quantitative 

characteristic physical values, in linguistic terms), ( ) ( )il

R

il

L

ilil

il aaaax ,,, 21≡µ . 

Let us denote the generalized model within the limits of elements of set kΞ  

defined as COSS ( ){ }mlxfX l ,1, == , ( ) ( )l

R

l

L

ll

l aaaaxf ,,, 21= , ml ,1=  . 

In §3.1 the distinction index of two elements iX and jX  of set kΞ  with 

membership functions ( ){ }mlxil ,1, =µ , ( ){ }mlxjl ,1, =µ , ki ,1= , kj ,1= , 

accordingly, or information loss between elements iX and jX  of set kΞ  
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is defined. 

By analogy to this definition, let us introduce definition of information loss 

between generalized model ( ){ }mlxfX l ,1, ==  and an element 

( ){ }mlxX iii ,1, == µ , ki ,1=  of set kΞ , i.e. 
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Let us denote average value of information losses between elements of set kΞ  and 

the generalized model  
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As information loss occurred while constructing the generalized model within the 

scope of the set kΞ .  

Let us consider that fuzzy numbers with membership functions 
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corresponding to term-sets of set kΞ  elements and to term-set of the generalized 

model, are T -numbers or normal triangular numbers, [ ]1,0=U . 

Let us introduce new parameters of membership functions of term-sets of set 
kΞ  elements and membership functions of term-set of the generalized model, 

which are abscissas of breakpoints of graphs of these membership functions [150]: 
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As 011 =ia , 012 =ia , ki ,1= , we suppose that 011 =a , 012 =a . As 13 =ima , 

14 =ima , ki ,1= , we suppose that 13 =ma , 14 =ma . 

Let us denote a half-sum of a module integral of difference between related 

right boundaries of membership functions of a set 
kΞ  element l -th term and the 

generalized model, on the one hand, and an module integral of difference between 

related left boundaries of membership functions of a set 
kΞ  element ( )1+l -th 

term and the generalized model 1,1 −= ml , on the other hand, as information loss 

within boundaries of l -th and ( )1+l -th terms between a set 
kΞ  element and its 

generalized model. 

Let us consider various cases of disposition of boundaries of membership 

functions (Fig. 4.1) of the adjacent terms of set kΞ  i -th element and boundaries 

of membership functions of the same terms of the generalized model. Let us 

determine information losses depending on the disposition of boundaries of 

membership functions. 

 

Fig. 4.1 Boundaries of membership functions 

If 33 ill aa > , 44 ill aa > , then loss of the information within the boundaries of l -

th and ( )1+l -th terms is equal to square of trapezoid with base 33 ill aa − , 

44 ill aa −  and unit height, i.e. 
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If 33 ill aa < , 44 ill aa < , information loss on boundary of ( )1+l -th terms is equal 

to square of  trapezoid with base 33 lil aa − , 44 lil aa −  and unit height, i.e. 

( ).
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(4.22) 
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If 33 ill aa ≤ , 44 ill aa ≥ , then loss of the information within the boundaries of l -

st and ( )1+l -th terms is equal to the sum of squares of two triangles. 

One triangle has its base equal to 33 lil aa − , and another triangle has its base 

equal to 44 ill aa − , too. Let us determine heights of these triangles. 

As triangles with bases 33 lil aa −  and 44 ill aa −  are similar, we have  
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where 1h  and 2h  are heights of corresponding triangles. Hence, the height of 

triangles with the base 33 lil aa −  is equal to 
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Height of triangles with the base 44 ill aa −  is equal to 
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In this case information loss is equal to 
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If 33 ill aa > , 44 ill aa < , then information loss is equal to 
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Thus, from (4.20) — (4.24) it follows that the general loss of the information 
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Unknown parameters 3la , 4la , 1, −= mll  are solutions of optimization problem 

[150] 
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Solutions meet limits of known methods (152]. 

The generalized model of expert evaluations of qualitative characteristic or 

expert description of quantitative property values in linguistic terms, being 

constructed within the scope of set kΞ  elements, maintains a maxima of the 

information included in the set elements. However, unlike the model constructed 

in §4.2, it generally does not satisfy to Pareto condition. In particular practical 

problems, the fulfillment of Pareto condition for the generalized model 

constructed on the basis of a information loss minimum, is directly verified. 

Besides, the method of determination of generalized model described in §4.2 can 

be applied within the limits of any membership function of fuzzy numbers from 

Λ  group, and the method of the current paragraph can be applied only in case of 

T -numbers or normal triangular numbers. 

Thus, for practical problems, while determining the generalized models within 

the limits of set kΞ  elements, we propose to define models according to methods 

described in §4.2 and §4.4. Then, it is necessary to check Pareto optimality of the 

generalized model constructed on the basis of information loss minimum. After 

that, on the basis of two characteristics, namely, fuzziness degrees of models and 

information loss occurred while constructing the models, we can define the 

optimum generalized model. 
4.5   Building of t he Generalize d For malized Result of Expert Evaluations 

4.5   Building of the Generalized Formalized Result of Expert 

Evaluations of the Qualitative Characteristic Based on the 

Least Squares Method 

4.5   Building of t he Generalize d For malized Result of Expert Evaluations 

Let { }NnM
n

ii ,1, == µ , ki ,1=  be elements of set 
kΘ  (the formalized results of 

expert evaluations of qualitative characteristic of an object group), 

( )in

R

in

L

ininn

i aaaa ,,, 21≡µ , Nn ,1= . Let us construct the generalized formalized 
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outcome of the expert evaluation of qualitative characteristic of N objects group 

{ }NnM
n

,1, == µ , ( ) ( )n

R

n

L

nnn
aaaax ,,, 21=µ , Nn ,1=  on the basis of the 

formalized results iM  of an evaluation made by k  experts of an object group 

within the scope of a qualitative characteristic. 

Let us formulate Pareto condition for the optimum generalized result of M  

expert evaluation of qualitative characteristic of an object group constructed on 

the basis of elements iM , ki ,1=  of the set kΘ : 
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(4.26) 

Let us assume that membership functions of the generalized formalized result of 

an expert evaluation of qualitative characteristic of units group 

{ }NnM n ,1, == µ  belong to the same class of functions as membership 

functions of set 
kΘ  elements, i.e. if 

n

iµ  are membership functions of tolerance or 

unimodal numbers from an Λ  group, then 
nµ , Nn ,1=  are also defined as 

membership functions of tolerance or unimodal numbers from the Λ  group. 

Let within the limits of a method 4.3 weight coefficients iω , ki ,1=  of the set 

kΘ  elements are defined. We determine parameters n

R

n

L

nn aaaa ,,, 21
, Ni ,1=  of 

membership functions of the generalized formalized outcome of an expert 

evaluation of qualitative characteristic of an object group from the condition 
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Parameters are determined from the system of normal equations with Nn ,1= : 
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We obtain the solutions:  

;
1

11 ∑
=

=
k

i

in

i

n
aa ω

 

;
1

22 ∑
=

=
k

i

in

i

n
aa ω

 

;
1

∑
=

=
k

i

in

Li

n

L aa ω
 

.
1

∑
=

=
k

i

in

Ri

n

R aa ω
           

(4.29)
 



4.5   Building of the Generalized Formalized Result of Expert Evaluations 133

 

Thus, the generalized formalized result of an expert evaluation of qualitative 

characteristic of an object group constructed within the limits of set 
kΘ  elements 

is a linear combination of these elements. Linear combination coefficients are 

weight coefficients of set 
kΘ  elements. 

Thus, 
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Let us prove fulfillment of the condition (4.26), which ensures a Pareto optimality 

of generalized formalized result of expert evaluations of qualitative characteristic 

of an object group. Since 
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Then we obtain  
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Thus, the generalized result of expert evaluations of qualitative characteristic of an 

object group constructed within the limits of set 
kΘ  elements is Pareto optimal 

one. 

In order to identify fuzzy evaluations of appearance of qualitative characteristic 

for real objects with one of linguistic values lX , ml ,1=  of an estimated 

attribute, it is necessary to compare membership functions ( )x
nµ , Nn ,1=  with 

membership functions ( )xf l , ml ,1=  of terms lX , ml ,1=  of the generalized 

model constructed within the limits of set kΞ  elements. To compare membership 

functions ( )x
nµ , Nn ,1=  with membership functions ( )xfl , ml ,1= , the 

indexes can be used, without limiting generality,  
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Let us denote a possibility that fuzzy number with membership function ( )x
nµ  is 

equal to fuzzy number 
jX

~
 with membership function ( )xf j

 with 

( ) ( )[ ]xfx j

n =µPos . As known [153], 

( ) ( )[ ] ( ) ( )[ ].,minmaxPos xfxxfx j

n

x
j

n µµ ==
 

If ( ) ( )[ ] γµ == xfx j

nPos , the evaluation of appearance of qualitative 

characteristic of n -th object (with membership function ( )x
nµ , Nn ,1= ) is 

identified using linguistic value 
jX  with possibility γ . 

4.6   A Metho d of Determination of Optimum Sets of C haracteristic 

4.6   A Method of Determination of Optimum Sets of 

Characteristic Linguistic Values  

4.6   A Metho d of Determination of Optimum Sets of C haracteristic 

Experts can apply different sets of their linguistic values to estimate or describe 

characteristics. Some sets bring difficulties to experts due to the insufficiency of 

values, and other sets — due to redundancy of values. As a result of these 

difficulties one should expect growth of fuzziness and mismatch of the 

information provided by experts. 

While estimating of attributes’ appearances by an expert, a natural problem is: 

“What are criteria to choose an optimum range of a linguistic scale applied to 

estimate any characteristic?” In [28], the following criteria of an optimality of set 

of characteristic linguistic values are defined: 

1) set of values used by experts provides minimum uncertainty while 

describing real objects; 

2) set of values which ensure maximum consistency of the expert information. 

In [28], problem of definition of optimum sets of characteristic linguistic values is 

solved only if the first criterion is satisfied. In the present paragraph, while defining 

the optimum sets of characteristic linguistic values the maximin problem is solved. 

For the purpose of the characteristic X  evaluation or description, k  experts 

are involved. 
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The sets  

{ } { } { }nn ZZZTYYYTXXT ,...,,...,,,,,, 2113212211 === −  

of characteristic X  linguistic to be applied to estimate the characteristic 

considered, are formulated. After that, the experts are offered to estimate (or to 

describe) this characteristic sequentially within the limits of each formulated sets 

of its linguistic values.  

Let 

{ } { } { }nn ZZZTYYYTXXT ,...,,...,,,,,, 2113212211 === −  

are COSS term-sets constructed within the limits of these sets based on the 

information obtained from each of k  experts. Let us denote a model of expert 

evaluations of characteristic X  by p -th expert within the limits of term-set iT  

(COSS of p -th expert with a term-set iT ), with 

kpniP
P

i ,1,1,1, =−=
 

and the generalized model of expert evaluations of characteristic X  within the 

limits of term-set iT  with iP , 1,1 −= ni . Let us denote fuzziness degree of the 

model iP  with ( )iTξ , 1,1 −= ni , and index of the general consistency of models 
P

iP , kp ,1=  with ik . 

For a consistency index, we construct COSS with universal set [0.1], terms 

"low", "high" and membership functions of terms ( ) ( )xx 21 ,µµ , without limiting a 

generality, for example, ( ) ( )50,0;0;25,0;01 ≡xµ , ( ) ( )0;25,0;1;75,02 ≡xµ . For 

a fuzziness degree we construct COSS with universal set [0; 0.5], terms "small", 

"big" and membership functions of terms ( ) ( )xx 21 ,ηη , without limiting a 

generality, for example, ( ) ( )20,0;0;20,0;01 ≡xη , ( ) ( )0;20,0;50,0;40,02 ≡xη . 

Let us calculate, within the limits of all sets of linguistic values, the 

characteristic of membership value of fuzziness degrees of the generalized models 

to the term "small" — ( )[ ]11 Tξη , 1,1 −= ni , and membership values of 

consistency indexes of experts’ models to the term "high" — ( )ik2µ , 1,1 −= ni . 

Let us define 

( )[ ] ( ){ } .1,1,,min 211 −== nikT ii µξηθ
 

Then, the set of characteristic linguistic values is considered an optimum set  

(Fig. 4.2), if  

.max
11

i
ni

j θθ
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4.7   Examples of Practical Application of the Developed 

Methods 

Example 4.1. Building of the generalized result of expert evaluations of 

educational literature quality. Let us consider conditions of the example 3.3 and 

the related results obtained. Based on the analysis described in that example, the 

conclusion is drawn that the result of an evaluation of the educational literature 

quality made by the third expert essentially differs from results of evaluation of 

the educational literature quality made by other experts. This conclusion is 

validated with the fact that the result system excluding the results provided by the 

third expert has an additive index of the general consistency 0.266, and 

multiplicative index of the general consistency 0.252. Considering that results of 

experts are fractionalized onto two groups of results similar to each other, let us 

determine consistency indexes of two subsystems {2, 4, 5}, {1, 3, 6}. The first 

subsystem has additive and multiplicative indexes 0.522 and 0.5204, accordingly, 

and the second subsystem - 0.503 and 0, accordingly. 

According to the research carried out, the system of results of the second, 

fourth and fifth experts is considered, and within the limits of their results the 

generalized result of the evaluation is determined. By definition of the experts, 

weight coefficients are equal to following values: 2/12 =ω , 3/14 =ω , 6/15 =ω . 

The generalized result of an evaluation of quality of the educational literature is 

defined as a linear combination of results of the second, fourth and fifth experts. 

This result is summarized in Table 4.1 in the form of parameters of membership 

functions of fuzzy evaluations of each object, the accurate evaluations obtained as 

a result of defuzzification of fuzzy evaluations by a method of a gravity, and 

levels of a verbal scale assigned to each object. 

Example 4.2. Building of the generalized expert approach to an evaluation of 

a condition of “large-leaved linden” plants. Let us consider conditions of an 

example 3.4 and define weight coefficients of expert results within the limits of 

similarity relation 2R̂ . With the confidence level equal to 0.684, expert results 

enter the same cluster, therefore 3/11 =ω , 3,1=i . With the confidence level 

equal to 0.685, results of the second and third experts enter one cluster, therefore 

their weight coefficients are equal: 12/532 == ωω . The weight coefficient of 

result of the first expert 1ω  is equal to 1/6. With the confidence level equal to 

unity, 319,21 =ρ
%

, 369,22 =ρ
%

, 32,23 =ρ
%

, therefore 6/11 =ω , 2/12 =ω , 

3/13 =ω  ( Table 4.2). 

As said above, weight coefficients of expert results within the limits of 

similarity relation 1R̂  coincide with weight coefficients of similarity relation 2R̂ . 

With that, confidence levels are equal 0.857; 0.863; 1, accordingly. 
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Table 4.1 Formalized generalized result of the evaluation  

µ M Defuzzification M Scale  level 

1µ (0,6790;0,7630;0,1750;0,1580) 0,7158 5 

2µ (0,4380;0,4545;0,1750;0,1750) 0,4462 4 

3µ (0;0,0457;0;0,0916) 0,0469 1 

4µ (0,6790;0,7630;0,1750;0,1580) 0,7158 5 

5µ (0,1798;0,1880;0,01085;0,1250) 0,1893 2 

6µ (0,5040;0,1580;0,1750) 0,5040 4 

7µ (0,0623;0,1125;0,0415;0,1250) 0,1127 2 

8µ (0,9210;1;0,1580;0) 0,9171 6 

9µ (0,57590;0,6225;0,1750;1830) 0,6047 5 

10µ (0,2875;0,3290;0,1250;0,1750) 0,3240 3 

11µ (0,1373;0,1625;0,0916;0,1250) 0,1605 2 

12µ (0,6790;0,7630;0,1750;0,1580) 0,7158 5 

13µ (0,9210;1;0,1580;0) 0,9171 6 

14µ (0,6295;0,7053;0,1750;0,1415) 0,6571 5 

15µ (0,1803;0,2218;0,0755;0,1584) 0,2267 2 

16µ (0,5040;0,1580;0,1750) 0,5040 4 

17µ (012450;0,3035;0,1080;0,1750) 0,2949 3 

18µ (0,8658;0,9745;0,1665;0,1700) 0,8769 6 

19µ (0,8658;0,9745;0,1665;0,1700) 0,8769 6 

20µ (0,2450;0,3035;0,1080;0,1750) 0,2949 3

 

Table 4.2 Weight coefficients of expert results within the limits of similarity relation 2R̂  

Confidence

level 
Weight coefficients 

0.684 3,1,3/11 == iω
 

0.685 12/5,6/1 321 === ωωω
 

1 3/1,2/1,6/1 321 === ωωω

Let us define the formalized generalized approach to an evaluation of the 

“large-leaved linden” plants state: 6/11 =ω , 2/12 =ω , 3/13 =ω . Based on the 

values of weight coefficients of expert results, let us define the formalized 

generalized approach of experts to an evaluation of the “large-leaved linden” 

plants state, which has the following membership functions: 
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( ) ( );0125,0;0;019,0;0 1 ≡xf  
( ) ( );0125,0;0125,0;0315,0 2 ≡xf  
( ) ( );0375,0;0125,0;0565,0;044,0 3 ≡xf

 
( ) ( );0458,0;0375,0;0982,0;094,0 4 ≡xf

 
( ) ( );3,0;0458,0;271,0;144,0 5 ≡xf

 
( ) ( );1375,0;3,0;7938,0;571,0 6 ≡xf

 
( ) ( ).0;1375,0;1;9313,0 7 ≡xf

 

Example 4.3. Building of an optimum linguistic scale for the software 

completeness evaluation. For defining the optimum set of the linguistic scale used to 

estimate the software completeness, five experts generated three ranges of this scale: 

1. “incompleteness”, “partial completeness”, “complete completeness”; 

2. “incompleteness”, “partial completeness”, “ basic completeness”, “complete 

completeness”: 

3. “incompleteness”, “partial completeness”, “basic completeness”, “essential 

completeness”, “complete completeness”. 

To estimate a characteristic  “complete completeness” which characterizes degree 

of the software possession, all necessary parts and features required for carrying 

out its explicit and implicit functions, 25 software products for supporting 

financial activity of firms was chosen (Table 4.3). 

Results of the software completeness evaluation made by five experts within 

the limits of a linguistic scale "incompleteness", “partial completeness", “basic 

completeness”, “complete completeness” are summarized in Table 4.4. 

Based on the method described in § 2.2 and data of Table 4.4, membership 

functions of term-sets of five COSS’s (models of expert evaluations of software 

completeness) the graphs of which are represented in Fig. 4.3, were obtained. 

Using definitions of §3.1, an additive index κ  of the general consistency of 

those models and the multiplicative index κ~  of the general consistency of models 

was calculated, 705,0=κ , 695,0~ =κ  respectively. Based on the obtained values 

the conclusion was drawn on a sufficient consistency of models of expert 

evaluations of software completeness. 

Table 4.3 Software 

Item 

No. 
Software Manufacturer 

1 KDCalc Java Knowledge Dynamics 

2 KDCalcNET Knowledge Dynamics 

3 MStockTA MSoftDevelopment 

4 NumberToWords Total Technology 

5 ACCPAS ActiveWebSoftwares 
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Table 4.3 (continued) 

6 AFD BankFinder AFD Software 

7 Check Writer Database Creations 

8 A1BACSAX Al Computer Software 

9 A1 UK Bank Account Validation Al Computer Software 

10 Bonds for NET WebCab 

11 Cashflow Vercom Systems 

12 Approved List Manager Procon Software and Support 

13 Loan Calculator AJE Components 

14 Loan Engine AJE Components 

15 QBIIFUI Massinissa Software 

16 EasyTax Professional Terra Base 

17 FinLib TeraTech 

18 Positively Business Point of Sale Database Creations 

19 Plain OprionSolver Dev Derivicom 

20 Plain OptionSolver XL Derivicom 

21 Portfolio for NET WebCab 

22 Stores Manager Procon Software and Support 

23 Tenders Manager Procon Software and Support 

24 
WebCab Equities. Interest and Real estate (J2SE 

Edition) 

WebCab 

25 WebCab Options and Futures for NET WebCab 

Table 4.4 Expert evaluations of software completeness  

Number of the 

expert 
Incompleteness 

Partial 

completeness 

Basic 

completeness 

Complete 

completeness 

Initial results 

1 4 10 8 3 

2 3 12 8 2 

3 3 10 8 4 

4 4 9 9 3 

5 3 7 10 5 

Relative results 

1 0,16 0,4 0,32 0,12 

2 0,12 0,48 0,32 0,08 

3 0,12 0,4 0,32 0,16 

4 0,16 0,36 0,36 0,12 

5 0,12 0,28 0,4 0,2 
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Fig. 4.3 Membership functions of terms of expert models; a — the first expert; b — the 

second expert; c — the third expert; d — the fourth expert; e — the fifth expert 
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Table 4.5 Elements of a matrix and transitive closure of the expert models pairwise 

consistency matrix  

Matrix elements 

1 0,819 0,875 0,923 0,792 

0,819 1 0,812 0,834 0,768 

0,875 0,812 1 0,938 0,884 

0,923 0,834 0,938 1 0,858 

0,792 0,768 0,884 0,858 1 

Elements of transitive closures 

1 0,834 0,923 0,923 0,884 

0,834 1 0,834 0,834 0,834 

0,923 0,834 1 0,938 0,884 

0,923 0,834 0,938 1 0,884 

0,884 0,834 0,884 0,884 1 

Indexes of pairwise consistency of expert models (Table 4.5) were calculated 

according to the definition (see §3.1). 

As one can see from this matrix, models of the third and fourth experts have the 

greatest index of pairwise consistency. 

Further, the fuzzy binary relation of similarity based on the computed indexes 

of pairwise consistency of expert models is constructed. The matrix of pairwise 

consistency of expert models is not transitive; therefore its transitive closure  

(see the bottom part of Table 4.5) is determined. 

Table 4.6 Fuzzy clusterization of expert models under similarity relation R̂  

Confidence level Cluster 

0,834 {1,2,3,4,5} 

0,884 {1,3,4,5},{2} 

0,923 {1,3,4},{2},{5} 

0,938 {3,4},{1},{2},{5} 

1 {1},{2},{3},{4},{5} 

This matrix defines using set of expert models the fuzzy relation of similarity 

R̂  with fuzziness degree equal to 0.196. Relation R̂  is decomposed onto 

equivalence relations, the results obtained are given in Table 4.6, and weight 

coefficients (see §4.2) of expert models (Table 4.7) are determined based on the 

similarity R̂ . 

Fuzziness degrees of expert models for software completeness evaluations are 

determined: 30,01 =ζ , 26,02 =ζ , 30,03 =ζ , 32,04 =ζ , 30,05 =ζ . 
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Table 4.7 Weight coefficients of models on the basis of similarity relation R̂  

Confidence 

level 
Weight coefficients 

0834 5,1,5/11 == imω
 

0.884 5/1,30/7 25431 ===== ωωωωω
 

0.923 15/1,15/2,15/4 25431 ===== ωωωωω
 

0.938 15/1,15/2,5/1,10/3 25143 ===== ωωωωω
 

1 15/1,15/2,5/1,3/1,15/4 25143 ===== ωωωωω
 

Within the limits of these results weight coefficients (see §4.3) are obtained: 

3/12 =ω , 
5/1531 === ωωω

, 15/14 =ω .
 

Using results described in §4.1, it is possible to construct the generalized model 

of expert evaluations of software completeness in the following form: 

( ){ } ( ) ;4,1,4,1,
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Taking into account the weight coefficients defined within the limits of similarity 

relation, it is possible to obtain following membership functions of generalized 

model 1X : 

( ) ( );132,0;0;066,0;01

1 ≡xf  
( ) ( );328,0;132,0;318,0;198,01

2 ≡xf
 

( ) ( );141,0;328,0;788,0;646,01

3 ≡xf
 ( ) ( ).0;141,0;1;929,01

4 ≡xf  

While using the weight coefficients constructed within the limits of computed 

fuzziness degrees of expert models, the following membership functions of 

generalized model 2
X  are obtained: 

( ) ( );130,0;0;065,0;02

1 ≡xf
 ( ) ( );314,0;130,0;312,0;195,0

2

2 ≡xf  

( ) ( );130,0;314,0;804,0;626,02

3 ≡xf
 

( ) ( ).0;130,0;1;934,0
2

4 ≡xf  

Constructed generalized models 1
X  and 2

X  are Pareto optimal and optimal as per 

the method of the least weighed quadrates of differences between parameters of 

these models and parameters of expert models. 

Using results of §4.4, it is possible to construct generalized model 3
X  of expert 

evaluations of software completeness, which keeps a maxima of the information 

obtained from all experts: 
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( ) ( );137,0;0;067,0;03

1 ≡xf
 

( ) ( );337,0;137,0;312,0;204,03

2 ≡xf
 

( ) ( );170,0;337,0;745,0;649,03

3 ≡xf
 

( ) ( ).0;170,0;1;915,03

4 ≡xf
 

In § 4.4 it was underlined that from the point of view of information losses, 

optimal generalized model does not generally satisfy to Pareto condition. In this 

specific case while comparing 3
X  with models of all experts it becomes clear that 

generalized model 3
X  satisfies to the Pareto condition. Information loss is equal 

to 095,0ɨɩт =σ  while constructing the model 3
X .  

Comparison of information losses 1σ  and 2σ  while constructing the 

generalized models 1X  and 2
X , accordingly, has shown that 106,01 =σ , 

118,02 =σ . Fuzziness of generalized models 1X , 2
X , 3

X  are equal to 0.301; 

0.287; and 0.322, accordingly. Analogues of reliability index (see §2.7) of these 

models are equal 0.114; 0.107 and 0.1685, accordingly. 

With the results of the research carried out, the generalized model of expert 

evaluations of software completeness was represented with model 1X  selected, 

because it is Pareto optimal one, information loss is close to optimum when it was 

constructed, and values of fuzziness degree of 1X  and analogue of a reliability 

index occupies intermediate position between values of fuzziness degrees and 

analogues of reliability index for models 2
X  and 3

X . 

The researches carried out within the limits of the scale "incompleteness", 

“partial completeness”, “complete completeness” allowed obtaining the 

generalized model 4X  with membership functions 

( ) ( );261,0;0;060,0;0
4

1 ≡xf  ( ) ( );432,0;261,0;378,0;321,0
4

2 ≡xf  
( ) ( ).0;432,0;1;810,04

3 ≡xf
 

The additive index to the general consistency of expert models is equal to 0.594, 

the multiplicative index κ~  is equal to 0.563, fuzziness degree of the model 4
X  is 

equal to 0.347. 

While using the scale «complete completeness», «partial completeness», «basic 

completeness», «essential completeness», «complete completeness», the 

generalized model
5

X  was obtained with membership functions 

( ) ( );117,0;0;061,0;05

1 ≡xf  
( ) ( );212,0;117,0;246,0;178,05

2 ≡xf
 

( ) ( );172,0;212,0;645,0;458,05

3 ≡xf
 

( ) ( );162,0;172,0;825,0;817,05

4 ≡xf  
( ) ( ).0;162,0;1;987,0

5

5 ≡xf
 

The additive index κ  to the general consistency of expert models is equal to 

0.604, and the multiplicative index κ~  is equal to 0.582, fuzziness degree of the 

model 5
X  is equal to 0.331. 
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On the basis of comparison of the results obtained within the limits of three 

formulated sets of linguistic values of software quality characteristic «complete 

completeness», the conclusion is drawn that optimum set of a linguistic scale for 

an expert evaluation of software completeness is the set of terms: «complete 

completeness», «partial completeness», «basic completeness», «complete 

completeness». 
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Chapter 5  

Ratings of Objects 

5.1   Obtaining of Rating Points of Objects within the Limits of a 

Qualitative Characteristic 

5.1   Obtaining of Rating Po ints of Objects  

Rating points systems are widely used in various human activities (educational 

process, economics, techniques, etc.) and are of great importance in decision mak-

ing problems [154-166]. These systems make it possible to get available and 

timely information in the form of an aggregative index and to use it in decision 

making problems. The complexity of obtaining rating points for objects with 

qualitative characteristics results from the general complexity of the quantitative 

assessment of qualitative characteristics. This complexity is also associated with 

the necessity of taking into account characteristics and judgements of the survey-

ors who take decisions based on their personal assessment. As a rule, the qualita-

tive characteristics are scored in different scales and are often incomparable in 

principle. The elements of these scales (as a rule, order-type scales) are trans-

formed into scores. Such transformation needs some substantiation because  

stability of the final findings depends on it.  

The following example will make the point clear. Let us suppose that two objects 

got 4 and 3 points for one characteristic and 4 and 5 points for the other characteristic 

correspondingly. As a result of two assessments each object gets the same total score 

that equals 8. The conclusion is made that they have similar rating points and similar 

rating correspondingly. Since we deal with the order-type scale while assessing ob-

jects’ qualitative characteristics, we shall apply strictly increasing transformation Φ  

of this scale, that is acceptable: ( ) ( ) ( ) 75,44,33 =Φ=Φ=Φ . It is known [1] that an  

acceptable transformation of the values of the assessed quality feature is such a trans-

formation that retains subject matter of the type of assessment involved. In accor-

dance with the transformation applied the total score remained the same for object 1 

while it changed for object 2 and has become equal 10 points. Thus the rating point of 

the second object has increased. The stability of the results after the acceptable trans-

formation is violated that testifies to the fact that transformation of verbal scales’ 

elements into scores needs some substantiation.  

Problems of obtaining ratings and rating points of real objects arise while esti-

mating the objects considered within the limits of both quantitative and qualitative 

characteristics.  
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Obtaining of ratings within the limits of quantitative characteristics [167] is  

often enough reduced to determination of scalar integral indexes using vectors of 

partial quantitative evaluations. 

Methods of obtaining ratings within the limits of qualitative characteristics 

[21—27. 168—170] use the approach [167] applied to qualitative characteristic 

evaluation. However, this approach has some restrictions connected with peculi-

arities of scales used to measure qualitative characteristics, those restrictions are 

considered in detail in § 1.2. 

While estimating of qualitative characteristics verbal scales are used rather of-

ten, with numerical points, or elements of ordinal scales, put in correspondence to 

levels of these scales. In the expert evaluation theory, the problem of determina-

tion of the numerical point collections put in correspondence to elements of ordi-

nal scales, is one of main problems [171]. In case of use of an unjustified arbitrary 

collection of numerical points the stability of definitive conclusions is broken. 

Thus, either the choice of a collection of the numerical points put in correspon-

dence to levels of verbal scales should be justified within the limits of each spe-

cific task, or a new approach (excluding necessity of operation with a particular 

collection of numerical points) for determination of rating results should be  

offered. 

Methods [172—174] to obtain rating points of objects and groups of objects by 

one and several qualitative and quantitative characteristics based on their linguistic 

values are described below. These methods allow operating with abstract  

values, namely, values of membership functions of linguistic values of estimated 

characteristics rather than with numerical points. 

Let us consider procedure of qualitative characteristic evaluation be simple, if 

an expert refers an object to a certain verbal level of characteristic manifestation 

and gives certain points corresponding to this level. For example, an expert esti-

mates convenience of software interface within the limits of a verbally-numerical 

scale with four levels of a state: "inconvenient" — 1 point, "inconvenient enough" 

— 2 points, "convenient enough" — 3 points, "convenient" — 4 points. Giving 

certain points, the expert thereby defines a rating point for each object. However it 

is necessary to note, that rather often such simple procedures of qualitative charac-

teristic evaluation give rough and approximate estimate which can be erroneous, 

therefore these procedures need to be sophisticated. 

Let us consider procedure of qualitative characteristic evaluation be complex, if 

it consists of an evaluation of several sub-characteristics composing this character-

istic. An example of complex procedure of qualitative characteristic evaluation is 

a procedure used to evaluate knowledge of students trained within the limits of a 

certain subject by following components: academic achievements during a semes-

ter, testing results on different sections of the subject, participation in research 

work within the limits of this subject etc. The result of a complex evaluation of 

qualitative characteristic can be presented in the form of a vector with co-ordinates 

being intermediate evaluations of the sub-characteristics. Then, a problem of ag-

gregation of separate evaluations into a uniform integral (rating) evaluation and 

assignment of the accepted or specially developed gradation (verbal levels) to  

objects within the limits of the characteristic considered. 
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In this paragraph we offer to construct convolution of comparable components 

of a membership of these evaluations to the fuzzy numbers which formalize lin-

guistic values of estimated qualitative characteristic instead of convolution of the 

intermediate evaluations obtained. 

Let us consider a group N  of objects which are estimated within the limits of 

manifestation of a qualitative characteristic X . Rating points are defined on the 

basis of mark evaluations k  for sub-characteristics, which compose the character-

istic. A minimum quantity of points with which an object can be estimated within 

the scope of i -th sub-characteristic is equal to zero, and a maximum quantity of 

points is equal to 
iZ , ki ,1= . 

Let us denote an evaluation of n -th object Nn ,1=  in the scope of i -th sub-

characteristic ki ,1=  with 
n

iz . Let us normalize evaluations 
n

iz , ki ,1=  and  

present result of the evaluation of n -th object in the form of the vector 

( ) .,1,,...,,,...,, 21

2

2

1

1 Nnmmm
Z

z

Z

z

Z

z n

k

nn

k

n

k

nn

==⎟⎟⎠
⎞⎜⎜⎝

⎛
                

(5.1) 

Let l
X , ml ,1=  be levels of a verbal scale arranged by increase of intensity of 

characteristic X  and applied to the estimate purpose. Within the limits of the 

building method (see § 2.2) of COSS with title X  and membership functions 

( )xlµ , ml ,1=  of terms lX , ml ,1=  is carried out. The fuzzy numbers correspond-

ing to terms lX  are denoted with lX
~

. The amount of terms is defined by an 

amount of accepted (or specially developed) verbal levels of intensity of charac-

teristic manifestations X . According to the requirements to membership functions 

of COSS terms, for vector co-ordinates (5.1) validity of the following equalities 

follows: 

( ) ( ) .,1,
11

kimmmmm
m

l

n

il

n

i

m

l

n

il

n

i

n

i ==⎟⎠
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⎛
⋅= ∑∑

==

µµ
                     

(5.2)
 

Considering a fuzziness attributed to evaluation procedure, let us in (5.2) substi-

tute normalized evaluations 
n

im  in each product ( )n

il

n

i mm µ , ml ,1=  with fuzzy 

numbers lX
~

, ml ,1= , accordingly. Such procedure is referred to as fuzzifying of 

definite data [53J. Then, vector co-ordinates of evaluations of n -th object, Nn ,1=  

are fuzzy numbers  

( ) ( ) .,1,
~

...
~~

11 kiXmXmm m

n

im

n

i

n

i =⊗⊕⊕⊗= µµ
                  

(5.3)
 

Parameters of these numbers are defined by component-wise multiplication of pa-

rameters of fuzzy numbers lX
~

, ( )l

R

l

L

ll
aaaal ,,, 21≡ , ml ,1=  by usual numbers 

( )n

il mµ , ml ,1= , ki ,1= , Nn ,1=  and their subsequent addition, i.e. for (5.3) we 

obtain 
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( ) ( ) ( ) ( ) .,,,~

111
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i amamamamm µµµµ
      

(5.4)
 

The vector of evaluations of n -th object (5.1) is replaced with a new vector of 

fuzzy evaluations: 

( ) .,1,~,...,~,~
21 Nnmmm

n

k

nn =
                                          

(5.5)
 

Each evaluation shall contribute to a total rating point with some weight coeffi-

cient which is determined based on importance of a stage related to the evaluation. 

With the system of preferences not available, stages and related evaluations are 

considered equivalent with weights ki /1=ω , ki ,1= . With the system of prefer-

ences is available, we range stages, each of them aimed at measuring of one sub-

characteristic, in the order of decrease of their contribution to the total evaluation. 

Let us use Fishburn scale and determine weight coefficients of sub-characteristics 

as follows: 

( )
( )

.,1,
1

12
ki

kk

ik
i =

+

+−
=ω

 

Other approaches to determination of weight coefficients are described in [175]. 

Let us determine fuzzy rating of characteristic manifestation X  for n -th object 

by the formula 

NnmmA
n
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n

n ,1,~...~~
11 =⊗⊕⊕⊗= ωω

                              
(5.6)

 

or 
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Let us define a confidential interval for definite rating nx , which characterizes 

characteristic manifestation X  of n -th object, Nn ,1= . From definition of level 

sets for fuzzy number it follows that for confidence level ( ) αη ≥nn x , 10 << α  

rating nx  of characteristic manifestation X  for n -th object, Nn ,1=  is within an 

interval  

( ) ( ),1

2

1

1 αα −− ∆+∆≤≤∆−∆ RxL n

R

n

n

n

L

n

                            
(5.7)

 

where nη  is membership function of fuzzy number 
nA

~
, Nn ,1= . 
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Let us defuzzificate fuzzy numbers 
nA

~
, 

1

~
X , and 

mX
~  using gravity method (1.8). 

It is resulted in definite numbers which will be denoted with nA , Nn ,1= , 1B , 

mB , accordingly. 

Number nA , Nn ,1=  is referred to as point-wise rating of manifestation of 

qualitative characteristic X  for n -th object, Nn ,1= . 

Let us compute normalized rating by the formula 

.
1

1

BB

BA
E

m

n

n
−

−
=

                                                           

(5.8)
 

Evaluation nE  is referred to as a degree of characteristic X  manifestation  

intensity for n -th object. 
nE  range is a segment [0.1]. 

Thus, the method allows quantitative evaluations of qualitative characteristics’ 

manifestations. 

If it is necessary to assign one of qualification levels (one of linguistic values 

lX , ml ,1=  of characteristic X ) to n -th object, we can use the following  

indexes, without limiting a generality,  

( ) ( )[ ]

( ) ( )[ ]
Nnml

dxxx

dxxx

ln

ln

l

n ,1,,1,
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1
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0 === ∫
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µη
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                    (5.9)

 
or 

( ) ( ) .,1,,1,

1

0

Nnmldxxx ln

l

n ==−= ∫ µησ
                      

 (5.10) 

If 
l

n

j

n λλ max=  ( )l

n

j

n σσ max= , the possibility of equality 
nA

~  and 
jX

~
—

( )jn XA
~~

Pos =  is calculated. According to [153] 

( ) ( ) ( )[ ].,minmax
~~

Pos xxXA jn
x

jn µη==
 

If ( ) γ== jn XA
~~

Pos , then qualification level 
jX  is assigned to n -th object with the 

possibility γ . 
5.2   Determinatio n of Object Ratings and Q ualification Levels  

5.2   Determination of Object Ratings and Qualification Levels 

by Several Qualitative Characteristics Measured in Marks 

and Verbal Scales 
5.2   Determinatio n of Object Ratings and Q ualification Levels  

Let us consider a group of objects which are estimated by several qualitative char-

acteristics. To measure these characteristics ordinal scales are used. With  

mark evaluations assigned to objects of the group, problem to aggregate these 



152 Ratings of Objects

 

evaluations in a certain uniform index arises rather often. This index is a final  

rating index of object within the limits of considered characteristics and is used, 

for example, to assign the object with qualification level available among the ac-

cepted ones [23, 25, 174—179]. Building of final ratings based on arithmetical 

operations is incorrect because of incomparability, in sense and content, of object 

evaluations within the limits of different qualitative characteristics. 

Therefore, we offer to construct convolution of comparable abstract values of 

indexes membership to COSS terms as the final rating. Transformation of evalua-

tions of characteristic manifestation to values of COSS membership functions  

corresponds to measurement of these characteristics within a uniform scale and 

ensures adequacy of model below for determination of the general ratings of units 

within the limits of several characteristics. 

The characteristics measured in mark scales. Let qualitative characteristics jY , 

kj ,1=  be estimated for the group of N objects. To estimate these characteristics 

mark scales with elements jj Ky ,0= , kj ,1= , accordingly, are used. Let us intro-

duce normalized marks jjj Kys /= , 
jj Ky ,0= , kj ,1= . Thus, 10 ≤≤ js , 

kj ,1= . Following the evaluation results of all characteristics, it is necessary to 

assign one of the accepted qualification levels 
lX , ml ,1=  to the objects. Levels 

are arranged in ascending order of characteristic manifestation intensity degree. 

Let us construct COSS with terms lX , ml ,1=  using the method described in 

§2.2. Relative contents of objects (probably, of certain ideal group) a priori set 

within the limits of each qualification level are taken as parameters necessary for 

model-building of COSS. For example, if qualification levels are assigned to the 

enterprise employees, necessary parameters for building of COSS can be defined 

on the basis of the selected vacancy jobs within the limits of each qualification 

level. 

Let us denote membership functions of fuzzy numbers lX
~

 corresponding to 

terms lX  with ( ) ( )l

R

l

L

ll

l aaaax ,,, 21≡µ . Let for n -th object, Nn ,1= , manifesta-

tions of characteristics Y , kj ,1=  are estimated by numbers 
n

jy , kj ,1= , 

Nn ,1= , or normalized numbers 
n

js , kj ,1= , Nn ,1= , accordingly. Then ( )n

jl sµ , 

kj ,1= , Nn ,1=  are membership degrees of normalized marks to fuzzy numbers 

lX
~

, ml ,1= . 

Let us introduce the 
nM  matrix, Nn ,1= , with columns being degrees of 

 membership of normalized marks 
n

js , kj ,1=  of n -th object Nn ,1=  to fuzzy  

numbers lX
~

, ml ,1= : 
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Let ( )mXXX
~

,...,
~

,
~Р 21=  be a vector the co-ordinates of which be fuzzy numbers. 

Result of the generalized multiplication of this vector by a matrix (5.11) is the 

vector 
nn MPH ⊗= , ( )n

k

nn

n AAA
~

,...,
~

,
~

H 21= , Nn ,1=  with co-ordinates in the form 

of fuzzy numbers 
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These fuzzy numbers are fuzzy evaluations of manifestation of qualitative  

characteristics Y , kj ,1=  for n -th object. Let us assign corresponding weight to 

each characteristic  

.1,,1,
1

∑
=

==
k

j

jj kj ωω
 

Let us define the fuzzy rating corresponding to manifestation of estimated  

characteristic Y , kj ,1=  for n -th object as follows: 
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From (5.12), (5.13) it follows, that  
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Let us denote parameters of fuzzy number nA
~

, Nn ,1=  in (5.14) with 
n

R

n

L

nn δδδδ ,,, 21  and membership function with ( )xnη , accordingly. Let us determine 

a confidential interval for the definite rating nx  which characterize manifestations 

of characteristics Y , kj ,1=  for n -th object. With confidence level ( ) αη ≥nn x , 

10 << α , rating nx  of manifestations of characteristics Y , kj ,1=  for n -th  

object lies within the interval 

( ) ( ).1
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1 αδδαδδ −− +≤≤− RxL n

R

n

n

n

L

n

                         (5.15) 
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Let us defuzzificate fuzzy numbers 
nA

~
, Nn ,1= , 1

~
X  and 

mX
~

 using gravity 

method (1.8). As a result, we obtain definite numbers to be denoted with 
nA

~
, 

Nn ,1= , 
1B , m

B , accordingly. 

The number nA , Nn ,1=  is referred to as a pointwise rating of manifestation of 

characteristic Y , kj ,1=  for n -th object. 

Let us compute normalized rating by the formula 

.,1,
1

1 Nn
BB

BA
E

m

n
n =

−

−
=

                                            

(5.16) 

Let the evaluation 
nE , Nn ,1=  be referred to as average intensity degree of  

manifestation of characteristics j
Y , kj ,1=  for n -th object, Nn ,1= . Range of 

nE , Nn ,1=  is a segment [0, 1]. Thus, the method allows to obtain quantitative 

evaluations of manifestations of several qualitative characteristics. 

To assign one of qualification levels lX , ml ,1=  to n -th object, it is necessary 

to identify fuzzy number 
nA

~
, Nn ,1=  having membership function nv , Nn ,1=  

with one of fuzzy numbers lX
~

, ml ,1=  with membership functions ( )xlµ , 

ml ,1= . For this purpose, let us calculate identification indexes: 
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or 

( ) ( ) .,1,,1,

1
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Nnmldxxxv ln
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(5.18) 

If  

( ),max,max l

n
l

j

n

l

n
l

j

n σσλλ ==
 

then ( )
jn XA

~~
Pos =  is calculated. 

If ( ) γ== jn XA
~~

Pos , then qualification level 
jX  is assigned to n -th object with 

the possibility γ .  

The described method of obtaining object ratings within the scope of several 

qualitative characteristics is applicable under condition of measurement of all in-

dications in ordinal numerical scales. The example illustrating the described 

method is followed with the method of obtaining object ratings within the scope of 

the several qualitative characteristics measured in verbal scales. 
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Characteristics measured within verbal scales. Let us consider group of N   

objects, the intensity of manifestation of qualitative characteristics jX , kj ,1=  of 

which is estimated. Let 
ijX , jml ,1=  be levels of the verbal scales applied to  

estimate characteristics 
jX , kj ,1= , accordingly. Levels are arranged in ascend-

ing order of intensity of manifestation of these characteristics. 

Let us denote with j

ia  relative numbers of objects of the considered group, 

which are referred to level lj
X  while estimating characteristic 

jX . 

Based on these data, let us construct k  COSS’s with names 
jX , and term-sets 

lj
X . Let us denote membership function of fuzzy number ljX

~
 corresponding to  

l -th object of j -th COSS with ( )xljµ . Let us refer fuzzy numbers ljX
~

 or their 

membership function ( )xljµ  as object evaluations. Let us denote an evaluation of 

n -th object within the limits of characteristic 
jX  with n

jX
~

 and 

( ) ( )n

jR

n

jL

n

j

n

j

n

j aaaax ,,, 21≡µ , Nn ,1= , kj ,1= . Fuzzy number 
n

jX
~

 with membership 

function ( )x
n

jµ  is equal to one of fuzzy numbers 
ljX

~
. Let us denote weight  

coefficients of estimated characteristics with 

.1,
1

=∑
=

n

j

jj
ωω

 

The fuzzy rating of n -th object within the limits of characteristic j
X  is defined 

in the form of fuzzy number 

n

kk

n

n XXA
~

...
~~

11 ⊗⊕⊕⊗= ωω
  

                    (5.19)
 

with membership function  

( ) .,,,
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1
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Let us define a confidential interval for definite rating ny  characterizing manifes-

tations of characteristics 
j

X  for n -th object. With confidence level ( ) αµ ≥nn y , 

10 << α  rating ny  of manifestation of characteristics 
j

X  for n -th object lies 

within the interval 

( ) ( ) .
1

1

1

2

1

1

1

1 ∑∑∑∑
=

−

==

−

=

+≤≤−
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j

n

jjn
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j
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Let us defuzzificate fuzzy numbers 
nA

~ , Nn ,1= , 

kk XXB 11111 ... ⊗⊕⊕⊗= ωω , kmkmm k
XXB
~

...
~~

11 1
⊗⊕⊕⊗= ωω  using grav-

ity method (1.8), and let us denote the obtained definite numbers as 
nA , Nn ,1= , 

1B
, mB

. 

The number 
nA

~
, Nn ,1=  is referred to as a pointwise rating of manifestation 

of qualitative characteristics 
jX  for n -th object. 

Let us determine normalized rating of n -th object by the formula 

.
1

1

BB

BA
E

m

n

n
−

−
=

                                                       

(5.22) 

Let refer the evaluation 
nE  as an average intensity degree of manifestation of 

characteristics 
jX  for n -th object. Range of 

nE  is a segment [0, 1]. Thus, the 

method allows to determine quantitative evaluations of manifestations of several 

qualitative characteristics. 

Let us assume that, by results of an evaluation of all characteristics, it is neces-

sary to assign one of accepted qualification levels 
lD , ml ,1=  to the objects. 

Levels are arranged in ascending order of their rating. Let us construct COSS with 

terms lD , ml ,1=  using the method described in §2.2. relative contents of objects 

(probably, of a certain ideal group) a priori set within the limits of each qualifica-

tion level are taken as parameters necessary for building of COSS’s. Let us denote 

membership functions of fuzzy numbers 
lD

~
, corresponding to terms 

lD , with 

( )xlη . To assign one of qualification levels lD  to n -th object, it is necessary to 

identify fuzzy number with membership function ( )xnµ  and with one of  

term-sets having membership functions ( )xlη . For this purpose let us calculate 

identification indexes: 

( ) ( )[ ]

( ) ( )[ ]∫
∫

=
1

0

1

0

,max

,min

dxxx

dxxx

nl

nl

l

n

µη

µη

λ
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or 

( ) ( ) .

1

0

∫ −= dxxx nl

l

n µησ
  

                      (5.24)

 
If 

( ),max,max l

n
l

j

n

l

n
l

j

n σσλλ ==
   

then, ( )jn DA
~~

Pos =  is calculated. 
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If ( ) γ== jn DA
~~

Pos , qualification level 
jD  is assigned to n -th object with a 

possibility γ . 
5.3   Obtaining of Rating Po ints of Groups of Objects  

5.3   Obtaining of Rating Points of Groups of Objects within the 

Scope of a Qualitative Characteristic 

5.3   Obtaining of Rating Po ints of Groups of Objects  

In §5.1—5.2 methods used to obtain rating points of objects within the limits of 

one and several qualitative characteristics are described. However in practice there 

are problems of obtaining rating points within the limits of one and several  

qualitative characteristics for both individual objects, and groups of objects. 

Let us consider k  groups of objects, for which intensity of manifestation of 

qualitative characteristic X  is estimated within the limits of a verbal scale with 

levels 
lX . Let us denote a relative amount of objects of j -th group referred to 

level lX , with 
j

la , and a relative amount of units of all groups referred to level 

lX , ml ,1= , with 
la . 

Based on la , let us construct COSS X  with terms 
l

X , ml ,1=  and member-

ship functions ( ) ( )l

R

l

L

ll

l bbbbx ,,, 21≡µ  of corresponding fuzzy numbers lX
~

. Let us 

define a fuzzy rating of j -th group of objects within the limits of manifestation of 

qualitative characteristic X  in the form of fuzzy number 
jC

~  with membership 

function 

,...2211 m

j

m

jj

j aaa µµµβ ⊗⊕⊕⊗⊕⊗=
  

(5.25) 

or  
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(5.26) 

Let us define a confidential interval for definite rating jz , characterizing manifes-

tation of characteristic X  for j -th group of objects. With confidence level 

( ) αβ ≥jj z , 10 << α , rating jz  of characteristic X  manifestation for j -th 

group of objects lies within the interval 

( ) ( ) .
1

1

1
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1

1
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Let us defuzzificate fuzzy numbers with membership functions j
β , kj ,1= , 1µ , 

mµ . Let us denote the obtained numbers with jC , kj ,1= , 1B , mB . Let us refer 
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the number 
jC  as pointwise rating of manifestation of qualitative characteristic 

X  for j -th group of objects, kj ,1= . 

Let us determine normalized rating 
jE  of manifestation of qualitative  

characteristic X  for j -th group of objects by the formula 

.
1

1

BB

BC
E

m

j

j
−

−
=

                                            
(5.27)

 

The evaluation 
jE  is referred to as an average intensity degree of manifestation 

of characteristic X  for j -th group of objects. Range of 
jE  is a segment [0, 1]. 

5.4   Obtaining of Rating Po ints of Groups of Objects  

5.4   Obtaining of Rating Points of Groups of Objects within the 

Limits of Several Qualitative Characteristics 

In §5.3 the method of obtaining rating points of groups of objects within the limits 

of one qualitative characteristic is described; in § 5.4 the method of obtaining rat-

ing points of groups of objects within the limits of several qualitative characteris-

tics is offered. 

Let us consider k  groups of objects for which intensity of manifestations of 

qualitative characteristics nXX ,...,1  are estimated. Let us estimate characteristics 

within the limits of verbal scales with number of levels 
mkkk ,...,, 21

. Let us de-

note a relative number of objects of j -th group, referred to j -th level of a verbal 

scale while estimating characteristic 
p

X , mp ,1= , with 
p

ijk , ki ,1= , pkj ,1= , 

mp ,1= , and a relative number of objects of all groups, referred to j -th level of a 

verbal scale while estimating characteristic pX , with 
p

jk . Based on 
p

jk , let us 

construct m  COSS pX  with membership functions of term-sets 
p

jµ . Let us com-

pute membership function of the fuzzy rating describing intensity of manifestation 

of qualitative characteristic pX  for i -th group of objects by the formula 

.,1,...2211 kikkk
p

k

p

ik

pp

i

pp

i

p

i pp
=⊗⊕⊕⊗⊕⊗= µµµλ

 
(5.28) 

Let us denote weight coefficients (importance coefficients) of characteristics 
pX , 

1=Σ pω  with pω , mp ,1= . Let us define membership function of the fuzzy rat-

ing describing intensity of manifestation of qualitative characteristics mXX ,...,1  

for i -th group of objects, as follows: 

....1

1

m

imii λωλωλ ⊗⊕⊕⊗=
   (5.29) 



5.5   Obtaining of Rating Points of Objects 159

 

Let us define a confidential interval for obtaining rating iz  characterizing 

manifestation of qualitative characteristics mXX ,...,1  for i -th group of objects. 

Let ( )i

R

i

L

ii

i ∆∆∆∆≡ ,,, 21λ , then with confidence level ( ) αλ ≥
ii

z , 10 << α  rating 

iz  of manifestation of characteristics mXX ,...,1  for i -th groups of objects lies in 

an interval 

( ) ( ) .1

2

1

1

i

R

i

i

i

L

i
RzL ∆+∆≤≤∆−∆ −− αα

           
(5.30)

 

Let us defuzzificate fuzzy numbers with membership functions 

;,1, kii =λ
 

;... 1

1

11

p

m µωµωη ⊗⊕⊕⊗=
  

....1

1 1

p

kmk p
µωµωδ ⊗⊕⊕⊗=

 

Let us denote the obtained fuzzy numbers with iA , ki ,1= , B , C . Number iA  is 

referred to as a pointwise rating of manifestation of qualitative characteristics 

mXX ,...,1  for i -th group of objects, ki ,1= . 

Let us compute normalized rating for i -th group of objects by the formula 

.
BC

BA
E i

i
−

−
=

                                                          
(5.31)

 

The evaluation iE  is referred to as an average intensity degree of manifestation of 

qualitative characteristics 
mXX ,...,1

 for i -th group of objects. Range of iE , 

ki ,1=  is a segment [0, 1]. 

It is worth mentioning that to operate with various qualitative characteristics, 

authors use abstract concepts — membership functions of linguistic values of 

these characteristics. As known, operations for linguistic values are defined on the 

basis of triangular norms and triangular conorms, and therefore, they are not  

familiar arithmetical operations. 
5.5   Obtaining of Rating Po ints of Objects 

5.5   Obtaining of Rating Points of Objects within the Limits of 

Several Quantitative and Qualitative Characteristics 

5.5   Obtaining of Rating Po ints of Objects 

Let us consider a group of N  objects, for which quantitative characteristics 

l,j,X
j

1=  and intensities of manifestation of qualitative characteristics
vX , 

klv ,1+=  are estimated. In aggregate, estimated characteristics make essential 

influence on characteristic Y , for example, success of functioning of objects, be-

ing estimated within the limits of the scale: 1Y  = “extremely unsuccessful”, 
2Y  = 

“unsuccessful”, 3Y  = “mean successful", 
4Y  = "rather successful", 5Y  =  

"extremely successful". 
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Ranges of values of quantitative characteristics jX  can be non-enumerable sets 

of points jR  of the real values line. 

Using expert information we construct COSS with names jX . If growth of 

characteristic jX  is accompanied with growth of characteristic Y , then «very 

small value of characteristic jX », “small value of characteristic 
jX ", "average 

value of characteristic 
j

X ", "large value of characteristic 
jX ", "very large value 

of characteristic 
jX  “ are COSS terms, and ( )xijµ , 5,1=i  are their membership 

functions. If growth of characteristic jX  is accompanied by decreasing of  

characteristic Y, then “very great value of characteristic 
jX ", "great value of 

characteristic jX "," average value of characteristic 
jX ", "small value of charac-

teristic jX ", "very small value of characteristic 
jX ” are COSS terms, and ( )xijµ , 

5,1=i  are their membership functions. 

Let us denote values of characteristics j
X  for n -th object, Nn ,1=  with 

n

jx , 

and degrees of a membership of these values to COSS terms named 
jX  – with 

( )n

jij
xµ

, 5,1=i , lj ,1= , Nn ,1= . 

Let lvX  be levels of the verbal scales applied to an evaluation of characteristics 

vX , klv ,1+= . Levels are arranged in ascending order of manifestation inten-

sity of relevant characteristic, if its growth is accompanied with Y  growth, and in 

decreasing order if its growth is accompanied with Y decrease. 

Let us construct lk −  COSS’s named vX , having related term-sets lvX , and 

membership functions ( )xlvµ . [ ]1,0=U  is selected as universal COSS sets. Fuzzy 

numbers 
lv

X
~

, 
vml ,1= , klv ,1+=  or their membership functions ( )x

lv
µ

 are re-

ferred to as evaluations of objects. Let us denote an evaluation of n -th object 

within the limits of characteristic 
v

X  with n

vX
~

 and ( ) ( )n

vR

n

vL

n

v

n

v

n

v aaaax ,,, 21≡µ . 

Fuzzy number 
n

vX
~

 with membership function ( )x
n

vµ  is equal to one of fuzzy 

numbers 
lvX

~
, 

vml ,1= , klv ,1+= . 

Let us denote with ( )n

vi xδ , Nn ,1= , klv ,1+= , 5,1=i  the function which 

equal to ‘1’ if an evaluation of n -th object within the limits of characteristic vX  

is fuzzy number ivX
~

, 5,1=i , and equal to zero if an evaluation of n -th object 

within the limits of characteristic vX  is fuzzy number pvX
~

, 5,1=p , ip ≠ . 

Let us denote with jω , kj ,1= , 1
1

=∑
=

k

j

jω  weight coefficients of estimated char-

acteristics. Calculate the following coefficients: 
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δωµωλ
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Let us compute the sum of these coefficients, using characteristics of COSS and 

definition of functions ( )n

vi xδ , Nn ,1= , klv ,1+= , 5,1=i .  
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Based on the above, we may consider coefficients 
n

iλ , 5,1=i , Nn ,1=  as weight 

coefficients of terms of characteristic Y  for n -th object, Nn ,1= . A fuzzy rating 

of n -th object within the limits of characteristics j
X , kj ,1=  is determined as 

fuzzy number 

5511

~
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~~
YYA

nn

n ⊗⊕⊕⊗= λλ
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with membership function 
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where ( )iRiLiii aaaaY ,,,
~

21≡ . 

Let us define a confidential interval for obtaining definite rating ny . If confidence 

level is ( ) αµ ≥nn y , 10 << α , rating ny  of n -th object lies within the interval 

( ) ( ) .11
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Let us defuzzificate fuzzy number nA
~

 using the gravity method; let us denote the 

obtained definite number with nA . 

To recognize success of objects’ functioning it is necessary to identify fuzzy 

number having membership function ( )xnµ  with one of COSS terms named Y  

(with one of fuzzy numbers iY
~

, 5,1=i  with membership functions ( )xiµ , 

5,1=i ). For this purpose let us calculate identification indexes: 
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If 
i

n
i

p

n ββ max= , the state of n -th object is defined by p -th by level of scale  

1Y  = “extremely unsuccessful”, 2Y  =”unsuccessful”, 3Y  = “mean successful”,  

4Y  = "rather successful", 5Y  = "extremely successful", 5,1=p . 

Let us denote ratings of n -th object for phases 1 and 2 with 
1

nA , 
2

nA  accord-

ingly. Depending on ratio of 
1

nA  to 2

nA , it is possible to draw the following con-

clusions: if 
21

nn
AA > , the state of n -th object is worsened; if 

21

nn AA <  the state of 

n -th object is improved; if 
21

nn AA = , the state of n -th object is unchanged. 

5.6   Examples of Practical Application of the Methods 

Developed 

Example 5.1. Obtaining of rating points of trainees through their academic achieve-

ments during a semester. Rating systems of knowledge evaluation are widely applied 

in educational process and play an essential role in the education quality control as-

pects. These systems allow, at any grade level, obtaining accessible and opportune in-

formation in the form of some integral index used for making some administrative 

decisions. Rating systems of knowledge evaluation are purposed for lowering the 

subjectivity between teachers and trainees, and also to eliminate other (probably  

latent) coefficients hindering to objectively evaluate level of training. 
Let us consider a problem of obtaining rating points of knowledge of students 

through their academic achievements during a semester. Calculation-graphic tasks 
(CGT) and tests (T) in linear algebra, analytical geometry and following sections 
of mathematical analysis: limits, derivatives and indefinite integrals, were esti-
mated with marks from zero to ten points. In addition, independent work and 
class-work were evaluated with marks from zero to ten points. Let us assume that 
all types of educational activities have equal weight coefficients. Results of an 
evaluation of knowledge of ten trainees are shown in Table 5.1. 

Using the method described in §2.2, COSS "knowledge of students studying 
higher mathematics” is constructed. Data necessary for model-building are ob-
tained on the base from information available in the previous experience of a 

teacher. Membership functions ( )xlµ , 4,1=l  of term-sets "F", “C”, “B”, “A”, 

accordingly, are membership functions of T  numbers or normal triangular  
numbers and have parameters 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎭⎬

⎫
==

==

.0;2,0;1;9,0;2,0;2,0;7,0

;2,0;2,0;5,0;3,0;2,0;0;1,0;0
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21

xx

xx

µµ

µµ

                    (5.35) 
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Table 5.1 Results of knowledge evaluation of trainees during a semester 

Subject 1 2 3 4 5 6 7 8 9 10 

Linear algebra, CGT  5 7 2 8 9 3 6 0 1 9 

Linear algebra, T 6 7 1 7 8 4 7 2 1 10 

Analytical geometry, CGT  7 8 4 0 9 7 6 4 1 9 

Analytical geometry, T 6 7 6 8 8 8 7 5 1 10 

Limits, CGT 5 6 6 9 9 7 7 6 0 9 

Limits, T 6 6 7 9 9 8 8 6 1 9 

Derivatives, CGT 7 7 7 8 9 8 7 7 1 9 

Derivatives, T 9 9 10 9 9 9 10 10 1 9 

Indefinite integral, CGT 2 3 4 3 5 5 8 8 1 10 

Indefinite integral, T 4 4 5 4 6 6 9 9 0 10 

Independent work 6 6 7 6 8 9 10 10 1 10 

Classwork 7 8 4 4 5 8 9 9 1 9 

Table 5.2 Rating points of knowledge and traditional marks of knowledge evaluation of 

trainees in higher mathematics 

Number of the 

trainee nE
 

Traditional marks of knowledge 

evaluation 

1 0,506 “C” 

2 0,611 “C” 

3 0,475 “C” 

4 0,672 “C” 

5 0,744 “B” 

6 0,661 “C” 

7 0,735 “B” 

8 0,568 “C” 

9 0 “F” 

10 1 “A” 

Using the method described in this paragraph, we obtain the results summarized in 

Table 5.2. 

Example 5.2. Obtaining of experts rating points. Let us consider an issue of staff 

structure [176—179] which consists in obtaining rating points of employees and 

assigning one of four qualification levels 1X , 2X , 
3X , 4X  to each employee. Lev-

els are arranged in ascending order of their relevant ratings. The questionnaire of-

fered to employees consists of five sections related to educational level, scientific 

degree, age, and work experience and language qualifications. 
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1X  — an educational level. Answers: secondary education — 0 points, specialized 

secondary education — 1 point, incomplete higher education — 2 points, bachelor’s 

degree — 3 points, higher education (specialist or master's degree) — 4 points. 

2X  — scientific degree. Answers: none — 0 points, Candidate of Science 

(PhD) — 1 point, Doctor of Science (Grand PhD) — 2 points. 

3X  — age. Answers: more than 45 years — 0 points, 35 - 45 years — 1 point, 

under 35 years — 2 points. 

4X  — employment experience in the considered occupation. Answers: none — 

0 point, less than 5 years — 1 point, 5 years to 10 years — 2 points, 10 to 15 years 

— 3 points, more than 15 years — 4 points. 

5X  — linguistic skill. Answers: none - 0 points; I read and I translate texts 

with dictionary — 1 point; I make myself understood at basic level — 2 points; 

fluent language— 3 points. The management of human resource department con-

sidered the following percentage ratio of employees in frameworks of each level 

as ideal: 1X  — 20 %, 2X  — 30 %, 3X  — 40 %, 4X  — 10 %. Based on the 

above, indexes 2,01 =a , 3,02 =a , 4,03 =a , 1,04 =a  are obtained, and using the 

method described in §2.1, membership functions i
µ , 4,1=i  for corresponding 

terms iX , 4,1=i , are constructed, they are membership functions of T -numbers 

and have parameters: 

( ) ( )2,0;0;1,0;01 =xµ , ( ) ( )3,0;2,0;35,0;3,02 =xµ , 

( ) ( )1,0;3,0;85,0;65,03 =xµ
, ( ) ( )0;1,0;1;95,04 =xµ . 

Weight coefficients for sections of the questionnaire are allocated as following: 

4,01 =ω , 1,02 =ω , 2,03 =ω , 2,04 =ω , 1,05 =ω . Using the methods described 

in §5.5, we obtained the results shown in Table 5.3. 

From Table 5.3. one can see that, for example, the respondents No.6 and No. 12 

have identical number of points 

.6
5

1

=∑
=j

n

jy

 

Table 5.3 Results of questioning of fifteen employees 

No. 
ny1  

ny2

n
y3  

ny4  

n
y5

ns1

ns2

n
s3

ns4

n
s5 ∑ n

jy nE
 

Level 

0 0 2 1 0 0 0 1 1/4 0 3 0,245 0 
2X

 

1 0 2 2 0 1/4 0 1 1/2 0 5 0,388 1 
2X

 

2 0 1 3 1 1/2 0 1/2 3/4 1/3 7 0,465 2 
2X

 

4 1 2 4 3 1 1/2 1 1 1 14 0,949 4 
4X
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Table 5.3 (continued) 

1 0 0 1 1 1/4 0 0 1/4 1/3 3 0,428 1 
2X

 

1 0 2 2 1 1/4 0 1 1/2 1/3 6 0,417 1 
2X

 

3 0 2 3 1 3/4 0 1 3/4 1/3 9 0,647 3 3X
 

0 0 1 0 0 0 0 1/2 0 0 1 0,200 0 
1X

 

0 0 2 1 1 0 0 1 1/4 1 4 0,399 0 
2X

 

4 2 2 4 3 1 1 1 1 1 15 1 4 
4X

 

2 2 0 4 2 1/2 1 0 1 2/3 10 0,567 2 
2X

 

1 0 0 4 1 1/4 0 0 1 1/3 6 0,319 1 
2X

 

0 0 1 4 1 0 0 1/2 1 1/3 6 0,329 0 
2X

 

2 2 0 4 2 1/2 1 0 1 2/3 10 0,567 2 
2X

 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1X

 

If we use of widely applied method of rating computation by the formula 

,
5

1

j

j

n

j

n
yx ω∑

=

=
 

then it appears that the respondents No.6 and No.12 have the identical rating 

points equal to 1.3 in this case, too. 

The developed method of obtaining rating points and assignment of qualification 

levels allows obtaining more information on qualification of employees in compari-

son with a traditional method within the limits of the same information. The respon-

dents No.6 and No.12 are assigned to level 2X , however, they have different rating 

points. Fig. 5.1 shows the functional model of evaluation of correspondence of  

specialists’ training level to requirements of their professional activity sphere. 

Example 5.3. Professional selection of graduates [180—183]. One of the major 

problems of professional selection is the problem of detection of candidates which 

could master a particular specialty within target dates and further effectively fulfill 

their professional duties, by virtue of their educational level within the limits of 

subject matters, and also developmental level of personal qualities and cognitive 

psycho-physiological processes. 

The functional model of multi-criteria professional selection of graduates ac-

counting for fuzzy preferences is shown in Fig. 5.2. 

Let us consider academic performance indexes, cognitive psycho-physiological 

and personality traits of graduates of a certain specialty. The general educational level 

is divided into fundamental sciences education (FE), general professional training 

(GPT) and specialized education (SE). 
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Table 5.4 Academic achievements of graduates within the limits of NSE, SE, and LAE  

Discipline 

(subject) 

“C” 

(satisfactory) 

“B” 

(good) 
“A” (excellent) 

within the limits of NSE 

Higher mathematics 38 32 30 

Physics 41 37 22 

within the limits of SE 

Political science 43 19 38 

Jurisprudence 31 35 34 

within the limits of LAE 

Psychology and Pedagogy 11 39 50 

Philosophy 24 42 34 

Foreign language 33 33 34 

Russian history 16 52 32 

Level of fundamental sciences education of graduates was defined on the basis 

of the analysis of their progress for all period of studies in high school for series of 

general science disciplines: higher mathematics, physics, Russian history, foreign 

language, psychology and pedagogy, philosophy, jurisprudence, political science. 

For more detailed analysis, FE is divided into natural sciences education (NSE), 

social and economic sciences education (SESE) and liberal arts education  

(humanitarian training) (LAE). The considered data of graduates’ progress for 

each of FE series are summarized in Table 5.4 – 5.5. 

According to data from Table 5.4 eight (as per number of disciplines) COSS’s 

are constructed with "knowledge of graduates” titles. All COSS’s have terms 

"C”,"B”, "A" with membership functions of T -numbers or normal triangular 

numbers. Being constructing, fuzzy numbers corresponding to terms “C”, "B”, 

“A” are put in correspondence to the marks of graduates. Applying the method 

considered in §5.2, ratings of graduates are obtained within the limits of NSE, 

SESE, LAE and FE. Weight coefficients of all disciplines are taken equal. For 

analysis of progress of five graduates, their average indexes of progress have 

compared (Table 5.5) to the rating points obtained using the method described  

in §5.2. 

Normalized rating points in Table 5.5 are quantity indexes of average intensity 

degree of manifestation of knowledge by the graduates within the limits of NSE, 

SESE, LAE and FE. From data of Table 5.5 one can understand that the results 

obtained on the basis of fuzzy rating points considerably enlarge the results ob-

tained on the basis of average evaluations. For example, graduates No.3 and  

No.4 have identical average evaluations within the limits of NSE, but different 

normalized ratings. 
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Table 5.5 Progress of five graduates within the limits of FE and their normalized rating points 

Discipline Number of the graduate 

 1 2 3 4 5 

Progress level within the limits of FE 

Higher mathematics 4 5 3 4 5 

Physics 4 4 4 3 5 

Political science 4 3 5 5 4 

Jurisprudence 5 4 5 5 4 

Psychology and Pedagogy 4 3 4 4 5 

Philosophy 5 4 5 5 4 

Foreign language 4 3 4 4 5 

Russian history 4 4 5 5 5 

NSE 4 4,5 3,5 3,5 5 

SE 4,5 3,5 5 5 4 

LAE 4,25 3,5 4,5 4,5 4,75 

FE 4,25 3,83 4,33 4,33 4,58 

Normalized ratings within the limits of 

NSE, SESE, LAE and FE 

NSE 0,541 0,770 0,288 0,266 1 

SE 0,768 0,263 1 1 0,507 

LAE 0,759 0,425 0,870 0,870 0,917 

FE 0,617 0,379 0,682 0,676 0,812 

GPT and SE levels of graduates were defined on the basis of the analysis of 

their progress for all period of studies in high school in the corresponding disci-

plines. For each specialty these disciplines were selected according to curriculums 

and curricula. The list of disciplines within the limits of all educational courses 

can be composed based on the analysis of correlation of testimonials from em-

ployers about professional work of graduates and evaluations of academic 

achievements of graduates for all period of studies. According to progress of 

graduates within the limits of GPT and SE data, the average evaluation marks of 

graduates (Table 5.6 and 5.7) are calculated. 

Applying the method described in § 5.2, normalized ratings of graduates within 

the limits of GPT and SE are obtained. 
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Table 5.6 Progress of all graduates within the limits of GPT and the SE, in %, and five 

graduates separately 

Discipline 

(subject) 

“C” 

(satisfactory) 

“B” 

(good) 
“A” (excellent) 

within the limits of GPT, % 

1 34 31 35 

2 10 23 67 

3 16 45 39 

4 9 41 50 

5 32 36 32 

within the limits of SE, % 

6 25 32 43 

7 21 32 47 

8 9 56 35 

 

Progress of five graduates 

 1 2 3 4 5 

within the limits of GPT, % 

1 4 3 5 4 4 

2 4 4 4 5 5 

3 3 5 3 4 4 

4 4 4 4 4 4 

5 5 5 4 5 5 

average evaluation mark 
 

4 

 

4,2 

 

4 

 

4,4 

 

4,4 

within the limits of SE, % 

6 4 5 4 5 5 

7 3 4 3 4 4 

8 4 3 4 5 4 

average evaluation mark 
 

3,66 

 

4 

 

3,66 

 

4,66 

 

4,33 

Table 5.7 Normalized rating points of five graduates within the limits of GPT and SE 

Number of the graduate 
Rating 

1 2 3 4 5 

within the limits of GPT 0,425 0,542 0,422 0,649 0,649 

within the limits of SE 0,299 0,439 0,299 0,810 0,601 
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Weight coefficients of all disciplines occurred to be equal (Table 5.7). 

Assuming weight coefficients of all considered subjects equal, we obtained 

fuzzy rating points and normalized ratings of five graduates within the limits of 

the general educational level. Parameters of fuzzy rating points are given in the 

columns of Table 5.8. 

The evaluation of cognitive psychophysiological characteristics (general intel-

lectual abilities) of graduates was spent by means of the original instant diagnosis 

mentality test developed in Scientific research institute of professional selection. 

The test is related to the category of general intellectual ability tests. Being tested, 

a person is offered a series of tasks selected so that the adequate evaluation of the 

major intellectual functions are ensured. The mentality test gives the opportunity 

to define a degree of development of such major components of intelligence, as 

thinking logicality, adequate perception, mental speed, spatial perception, literacy. 

All components are evaluated within the limits of a verbally-numerical scale: 

"low" — 2 points, "mean" — 3 points, "high" — 4 points, "very high" — 5 points 

(Table 5.9 and Table 5.10). 

Table 5.8 Normalized and fuzzy ratings of the general educational level of graduates on the 

basis of their progress 

Number of the graduate  

Rating 1 2 3 4 5 

0,497 0,441 0,527 0,694 0,722 

0,426 0,487 0,519 0,674 0,709 

0,532 0,568 0,686 0,747 0,839 

0,113 0,109 0,106 0,088 0,132 

Normalized rating 

Fuzzy rating 

 

 
0,097 0,058 0,113 0,128 0,145 

Table 5.9 Results of graduates testing 

Item “Low” “Mean” “High” “Very high” 

Thinking logicality 20 21 37 22 

Adequate perception 2 4 42 52 

 Mental speed 

Spatial perception 12 8 45 35 

Literacy 42 30 15 13 

Thinking logicality 18 15 43 24 
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Table 5.10 Evaluation of cognitive psychophysiological characteristics of five graduates 

No. of the graduate 
Item 

1 2 3 4 5 

Thinking logicality 3 3 3 3 4 

Adequate perception 4 4 5 4 5 

Mental speed      

Spatial perception 2 3 2 3 3 

Literacy 3 3 2 4 3 

Mean marks 4 3 4 5 5 

Thinking logicality 3,2 3,2 3,2 3,8 4 

Applying the method described in § 5.2, we obtained fuzzy and normalized rating 

points of cognitive psychophysiological characteristics of graduates. Weight coef-

ficients of their components was assumed being equal. Parameters of fuzzy rating 

points are summarized in Table 5.11. 

Besides, academician facilitators of study groups performed expert evaluations 

of developmental level of personal traits of graduates. They evaluated graduates in 

terms of the following qualities: public activity, discipline and promptitude in 

obeying, diligence, consistency and self-control, organizing abilities, group opin-

ion leader, purposefulness, within the limits of a verbally-numerical scale: "low" 

— 2 points, "mean" — 3 points, "high" — 4 points, "very high" — 5 points.  

Table 5.12 shows data resulted from the evaluation by academician facilitators of 

study groups for the personal qualities of graduates, and Table 5.13 — evaluations 

of personal qualities of five graduates whose progress data is presented above. 

Table 5.11 Normalized and fuzzy rating points of cognitive psychophysiological  

characteristics of five graduates 

No. of the graduate 
Rating 

1 2 3 4 5 

Normalized 0,343 0,290 0,367 0,517 0,648 

Fuzzy 0,312 0,271 0,341 0,498 0,613 

 0,376 0,342 0,396 0,539 0,698 

 0,114 0,094 0,029 0,126 0,115 

 0,204 0,126 0,095 0,103 0,118 
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Table 5.12 Results of the evaluation of personal qualities of graduates made by academi-

cian facilitators of study groups, % 

Character traits “Low” “Mean” “High” 
“Very 

high” 

public activity 14 66 16 4 

discipline and promptitude in obeying 6 16 36 42 

diligence 18 30 30 22 

consistency and self-control 16 44 22 18 

organizing abilities 46 28 18 8 

group opinion leader 14 38 42 6 

purposefulness 24 42 20 14 

Table 5.13 Evaluation of personal qualities of five graduates 

Qualities No. of the graduate 

 1 2 3 4 5 

public activity 4 4 3 3 4 

discipline and promptitude in obeying 4 5 4 5 5 

diligence 3 2 3 4 4 

consistency and self-control 4 3 5 5 2 

organizing abilities 2 2 3 5 4 

group opinion leader 4 3 4 3 3 

purposefulness 4 4 4 5 5 

Average marks 3,57 3,27 3,71 4 3,85 

While obtaining fuzzy rating points and normalized ratings of personal qualities of 
graduates, weight coefficients of all components were considered be equal. Parame-
ters of fuzzy ratings are summarized in Table 5.14. 

Table 5.14 Normalized and fuzzy rating points of personal qualities of five graduates 

Rating No. of the graduate 

 1 2 3 4 5 

Normalized 0,585 0,484 0,610 0,754 0,657

Fuzzy 0,574 0,468 0,602 0,732 0,635

 0,598 0,488 0,625 0,768 0,687

 0,104 0,112 0,109 0,096 0,116

 0,136 0,142 0,134 0,094 0,211
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Selection of graduates was carried out within the limits of four formulated fuzzy 

preferences: 

1X  — progress indexes are very important, indexes of cognitive psychophysi-

ological characteristics are very important and indexes of personal qualities are 

absolutely unimportant; 

2X  — Progress indexes are not so important, indexes of cognitive psycho-

physiological characteristics are important enough, and indexes of personal quali-

ties are very important; 

3X  — Progress indexes are rather unimportant, indexes of cognitive psycho-

physiological characteristics are important, and indexes of personal qualities are 

rather unimportant; 

4X  — progress indexes are absolutely unimportant, indexes of cognitive psy-

chophysiological characteristics are important enough, and indexes of personal 

qualities are important, 

The memberships functions ( )xlµ , 6,1=l  constructed in (49) for correspond-

ing linguistic terms "absolutely unimportant", "rather unimportant", "not so impor-

tant", "important enough", "important", "very important" of relative importance 

coefficients for criteria: 

( ) ( );2,0;0;01 ≡xµ  ( ) ( );2,0;2,0;2,02 ≡xµ  
( ) ( );2,0;2,0;4,03 ≡xµ

 ( ) ( );2,0;2,0;6,04 ≡xµ  
( ) ( );2,0;2,0;8,05 ≡xµ

 
( ) ( ).0;2,0;16 ≡xµ

 

were used.  

Membership functions of fuzzy rating progress evaluations, psychophysiologi-

cal characteristics and personal qualities of five graduates are denoted, accord-

ingly, with ( )x
j

1η , ( )xj

2η , ( )xj

3η , 5,1=j . Using the method of ranking [184], 

membership functions ( )xI
JR

µ , 5,1=j , 4,1=i  of fuzzy evaluations of  

five graduates 
i

jR , 5,1=j , 4,1=i  within the limits of four formulated fuzzy 

preferences were described as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( );3

1

2

6

1

61 xxxxxxx jjjR j

ηµηµηµµ ⊗⊕⊗⊕⊗=
 

( ) ( ) ( ) ( ) ( ) ( ) ( );3

6

2

4

1

32 xxxxxxx jjjR j

ηµηµηµµ ⊗⊕⊗⊕⊗=
 

( ) ( ) ( ) ( ) ( ) ( ) ( );3

2

2

5

1

23 xxxxxxx jjjR j

ηµηµηµµ ⊗⊕⊗⊕⊗=
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .5,1,3

5

2

4

1

14 =⊗⊕⊗⊕⊗= jxxxxxxx jjjR j

ηµηµηµµ
 

Results of researches for five graduates were carried out on the basis of i

jR
~

, 

5,1=j , 4,1=i . Fuzzy sets iI , 4,1=i  specified on set of indexes {1, 2, 3, 4, 5}  
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were determined. Values of membership functions ( )jiµ  of these sets are  

interpreted as characteristics of domination degree of j -th graduate within the 

limits of fuzzy preferences iX , 5,1=i , 4,1=j  or characteristics of to what extent 

the j -th graduate is considered the best within the limits of fuzzy preferences 
iX , 

5,1=i , 4,1=j ; k -th the graduate was considered the best within the limits of 

fuzzy preference iX , with the characteristic equal to ‘1’, if ( ) 1:sup =xx I
JR

µ   

belonged to ( )xR
i

k

~
. Values ( )jiµ  with kj ≠  are calculated as follows: 

( ) ( ) ( )[ ].,minmax xxj i
k

i
j RRx

i µµµ =
 

The calculated characteristics ( )jiµ , 5,1=j , 4,1=i  are summarized in  

Table 5.15. 

Based on the analysis carried out, graduate No. 1 is recommended for job place-

ment option 4X , graduate No.2 — job placement option 2X , graduate No. 3 — job 

placement option 2X , graduate No. 4 - job placement options 2X , 3X , 4X , and 

graduate No.5 is recommended for job placement options 1X , 2X , 4X . 

Table 5.15 Characteristics of domination degree of graduates under fuzzy preferences 

Domination degree 

No. of the graduate
1 2 3 4 

1 0,53 0,61 0,77 0,79 

2 0,45 0,76 0,68 0,66 

3 0,73 0,85 0,82 0,83 

4 0,96 1 1 1 

5 1 1 0,98 1 

Example 5.4. [185-186] Obtaining of rating points of plant species in the conditions 

of big cities. Let us consider data from the example 3.5 and obtain rating points of a 

state of considered plant species in plantings of the Boulevard Ring avenue in Mos-

cow, and for comparison – rating points of the state of the same plant species in the 

parkways far from the centre of Moscow (5022 plants were inspected). 

Apparently, because of different ecological conditions in the city centre and in 

suburbs, it was to be expected different rating points for the same plant species 

that is explained through their different adaptation to difficult ecological  

conditions within the big city. 

The relative number of objects of i -th specie in the plantings of the Boulevard 

Ring avenue referred by experts to l -th level of a verbal scale is denoted with 
1

ila , 

17,1=i , 7,1=l . The relative quantity of plants of i -th specie in plantings of  
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other parkways referred to l -th level of a verbal scale is denoted with 
2

ila , 

17,1=i , 7,1=l , the relative quantity of plants of seventeen species in the plant-

ings of the Boulevard Ring avenue referred to l -th level of a verbal scale is de-

noted with 
1

la , 7,1=l , and the relative quantity of plants of seventeen species in 

the plantings of other parkways referred to l -th level of a verbal scale is  

denoted with 
2

la , 7,1=l .  

In Table 3.15 data 
1

ila , 17,1=i , 7,1=l  are shown, in Table 5.16 data 
1

la , 

7,1=l  are shown, in Table 5.17 data 
2

la , 7,1=l  are shown, and in Table 5.18 

data 2

il
a , 17,1=i , 7,1=l  are shown. 

According to Table 3.15 data, COSS= “condition of plantings of the Boulevard 

Ring avenue” is constructed, and according to Table 5.17 data, COSS= “condition 

of plantings in other parkways” is constructed. Fuzzy numbers 1~
lX , 

2~
lX , 7,1=l  

corresponding to terms of COSS “condition of plantings of Boulevard Ring” and 

“condition of plantings in other parkways”, are presented in the form of  

T -numbers or normal triangular numbers. Parameters of membership functions 
1

lµ , 7,1=l  of terms of COSS = “condition of plantings on the Boulevard Ring 

avenue” are given in Table 5.19, and parameters of membership functions for 

terms COSS = “condition of plantings in other parkways” are summarized in  

Table 5.20. 

Membership functions of the fuzzy rating points describing conditions of  

seventeen plant species in plantings of the Boulevard Ring avenue are defined by 

the formula 

.17,1,... 1

7

1

7

1

2

1

2

1

1

1

1

1 =⊗⊕⊕⊗⊕⊗= iaaa iiii µµµλ
                  (5.36) 

Table 5.16 Relative numbers of plants of the Boulevard Ring avenue within the limits of 

levels of a verbal scale 

Place of growth of a plant 
1

1a
 

1

2a
 

1

3a
 

1

4a
 

1

5a
 

1

6a
 

1

7a
 

The Boulevard Ring avenue 0,009 0,010 0,030 0,130 0,289 0,437 0,095 

Table 5.17 Relative numbers of plants in other parkways within the limits of levels of a 

verbal scale 

Place of growth of a plant 2

1a
 

2

2a
 

2

3a
 

2

4a
 

2

5a
 

2

6a
 

2

7a
 

Other parkways 0,004 0,049 0,058 0,269 0,430 0,149 0,042 
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Table 5.18 Relative results of condition evaluation for plant species in other parkways 

№ Name of a specie 
2

1ia
 

2

2ia
 

2

3ia
 

2

4ia
 

2

5ia
 

2

6ia
 

2

7ia
 

1 European white birch 0,009 0,032 0,060 0,100 0,660 0,070 0,069 

2 European hawthorn 0,000 0,009 0,180 0,290 0,450 0,030 0,041 

3 European white elm 0,000 0,020 0,048 0,510 0,296 0,060 0,066 

4 Witch elm 0,022 0,000 0,043 0,365 0,365 0,182 0,023 

5 Single-seed hawthorn 0,000 0,054 0,055 0,363 0,253 0,154 0,121 

6 Cotoneaster 0,000 0,000 0,050 0,230 0,670 0,050 0,000 

7 Norway maple 0,006 0,054 0,030 0,087 0,468 0,235 0,120 

8 Tatarian maple 0,000 0,000 0,000 0,139 0,805 0,028 0,028 

9 Canadian maple 0,000 0,026 0,068 0,273 0,462 0,120 0,051 

10 Large-leaved linden 0,000 0,008 0,061 0,220 0,365 0,262 0,084 

11 Little-leaved linden 0,000 0,027 0,073 0,304 0,419 0,145 0,032 

12 Hungarian lilac 0,014 0,021 0,021 0,119 0,594 0,203 0,028 

13 Common lilac 0,010 0,019 0,060 0,235 0,413 0,255 0,008 

14 Cottonwood 0,000 0,019 0,029 0,466 0,310 0,049 0,127 

15 Rough-bark poplar 0,001 0,160 0,037 0,303 0,417 0,070 0,012 

16 European ash 0,000 0,079 0,048 0,190 0,365 0,270 0,048 

17 Black ash 0,003 0,062 0,074 0,356 0,411 0,067 0,027 

Table 5.19 Parameters of membership functions of term-sets of COSS “condition of  

plantings in the Boulevard Ring avenue” 

Function Parameter of the function 

1

1µ
 

0,000 0,005 0,000 0,009 

1

2µ
 

0,014 0,014 0,009 0,010 

1

3µ
 

0,024 0,034 0,010 0,030 

1

4µ
 

0,064 0,114 0,030 0,130 

1

5µ
 

0,244 0,324 0,130 0,289 

1

6µ
 

0,613 0,858 0,289 0,095 

1

7µ
 

0,953 1,000 0,095 0,000 
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Table 5.20 Parameters of membership function of term-sets of COSS “condition of plant-

ings in other parkways” 

Function Parameter of the function 

2

1µ
 

0,000 0,002 0,000 0,004 

2

2µ
 

0,006 0,029 0,004 0,049 

2

3µ
 

0,078 0,082 0,049 0,058 

2

4µ
 

0,140 0,246 0,058 0,269 

2

5µ
 

0,515 0,736 0,269 0,149 

2

6µ
 

0,885 0,938 0,149 0,042 

2

7µ
 

0,980 1,000 0,042 0,000 

Numbers 
1

ila , 17,1=i , 7,1=l  are shown in Table 3.15 of the example 3.5. 

Membership functions of the fuzzy rating points describing conditions of  

seventeen plant species in plantings of other parkways, are computed by the  

formula 

,17,1,... 2

7

2

7

2

2

2

2

2

1

2

1

2 =⊗⊕⊕⊗⊕⊗= iaaa iiii µµµλ
 

where ⊗ , ⊕  —generalized operations of multiplication and summation,  

accordingly. 

Fuzzy numbers 1

iλ , 
2

iλ , 17,1=i , 1

1

~
X , 1

7

~
X , 2

1

~
X , 2

7

~
X  are defuzzificated by the 

gravity method. The obtained numbers are denoted accordingly with 1

iC , 2

iC , 

17,1=i , 
1

1A , 
1

7A , 
2

1A , 
2

7A . Normalized ratings of seventeen plant species in plant-

ings of the Boulevard Ring avenue and in plantings of other parkways are  

computed by the formula 

.17,1,2,1,
17

1 ==
−

−
= ip

AA

AC
E

pp

pp

ip

i

 

Based on the obtained rating points, each plant specie is assigned to the state rat-

ing in accordance with the approach saying: the higher rating points are, higher the 

rating is. The obtained results are summarized in Table 5.21 and Table 5.22. 

The analysis completed allowed estimating the stability of individual species of 

woody plants and brushwood under conditions of intensive human intervention. 
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Table 5.21 Fuzzy rating points, rating points and a rating of species of woody plants and 

brushwood of the Boulevard Ring avenue 

№ Name of a specie 
1

iλ
 

1

iE
 

Rating 

1 European white birch 0,285 0,399 0,138 0,113 0,349 17 

2 European hawthorn 0,412 0,522 0,147 0,161 0,494 13 

3 European white elm 0,508 0,690 0,224 0,133 0,602 3 

4 Witch elm 0,488 0,635 0,183 0,125 0,572 7 

5 Single-seed hawthorn 0,283 0,516 0,706 0,845 0,613 2 

6 Cotoneaster 0,339 0,563 0,747 0,857 0,654 1 

7 Norway maple 0,324 0,487 0,617 0,730 0,564 9 

8 Tatarian maple 0,273 0,443 0,576 0,706 0,522 11 

9 Canadian maple 0,206 0,376 0,515 0,676 0,464 16 

10 Large-leaved linden 0,327 0,506 0,645 0,777 0,590 5 

11 Little-leaved linden 0,230 0,399 0,532 0,686 0,483 14 

12 Hungarian lilac 0,228 0,393 0,523 0,680 0,477 15 

13 Common lilac 0,285 0,480 0,633 0,779 0,569 8 

14 Cottonwood 0,325 0,502 0,643 0,742 0,577 6 

15 Rough-bark poplar 0,300 0,469 0,603 0,716 0,546 10 

16 European ash 0,318 0,507 0,653 0,788 0,592 4 

17 Black ash 0,230 0,411 0,557 0,715 0,500 12 

Table 5.22 Fuzzy rating points, rating points and rating of species of woody plants and 

brushwood of other parkways  

№ Name of a specie 
2

iλ
 

1

iE
 

Rating 

1 European white birch 0,288 0,488 0,650 0,783 0,562 6 

2 European hawthorn 0,200 0,353 0,486 0,643 0,429 16 

3 European white elm 0,222 0,345 0,470 0,657 0,434 11 

4 Witch elm 0,276 0,426 0,555 0,718 0,504 12 

5 Single-seed hawthorn 0,320 0,440 0,546 0,694 0,512 10 

6 Cotoneaster 0,221 0,425 0,600 0,766 0,512 9 

7 Norway maple 0,408 0,581 0,710 0,817 0,639 1 

8 Tatarian maple 0,256 0,486 0,680 0,838 0,574 4 

9 Canadian maple 0,274 0,437 0,576 0,729 0,514 8 

10 Large-leaved linden 0,381 0,537 0,657 0,785 0,602 2 

11 Little-leaved linden 0,266 0,423 0,557 0,713 0,500 13 

12 Hungarian lilac 0,332 0,531 0,687 0,818 0,602 3 

13 Common lilac 0,317 0,483 0,614 0,754 0,552 7 

14 Cottonwood 0,270 0,395 0,518 0,694 0,482 14 

15 Rough-bark poplar 0,191 0,334 0,466 0,623 0,412 17 

16 European ash 0,350 0,504 0,622 0,746 0,566 5 

17 Black ash 0,207 0,353 0,487 0,654 0,434 15 
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Example 5.5. The analysis of enterprise bankruptcy risk. Let us consider  

characteristic D  — «degree of bankruptcy risk of an enterprise» with linguistic 

values 1D  — "insignificant", 2D  — "low", 3D  — "mean", 4D  — "high". 5D  — 

"highest". This characteristic can be put in correspondence with the characteristic 

C  — «an enterprise condition», and linguistic values lD , 5,1=l  of characteristics 

D  can be put in correspondence with linguistic values 
5C  — “extreme well-

being”, 4C  — “rather well-being”, 3C  — “mean condition”, 2C  — "trouble", 1C  

— “extreme trouble” of characteristic C . Variation range of the characteristic is a 

segment [0.1]. 

According to [187], membership functions of linguistic values lC , 5,1=l  can 

be functions lη , 5,1=l  according to parameters: 

( );10,0;0;15,0;01 ≡η  
( );10,0;10,0;35,0;25,02 ≡η  
( );10,0;10,0;55,0;45,03 ≡η

 
( );10,0;10,0;75,0;65,04 ≡η  
( ).0;10,0;1;85,05 ≡η

 

Experts [187] established that the group of six separate indexes having equal im-

portance for the analysis purpose is sufficient to carry out the complex analysis of 

the chosen enterprises with very high degree of reliability. 

Such indexes are: 

1X  — equity-assets ratio (ratio of owned funds to total balance); 

2X  — net current assets/turnover assets ratio; 

3X  — quick asset ratio (sum of monetary resources and debts to short-term  

liabilities ratio); 

4X  — absolute liquidity ratio (monetary resources to short-term liabilities  

ratio); 

5X  — annual assets turnover (revenues to average annual assets ratio); 

6X  — return on assets (net profit to average annual assets ratio). 

Linguistic values of characteristics jX , 6,1=j  are the following values: jX1  — 

«very low», 
jX 2  — "low", 

jX 3  — “mean”, 
jX 4  — “high”, 

jX 5  — “very high”, 

6,1=j , with corresponding membership functions ljµ , 5,1=l , 6,1=j  

( ),100,0;0;100,0;011 ≡µ  
( ),050,0;100,0;250,0;200,021 ≡µ  

( ),050,0;050,0;450,0;300,031 ≡µ
 

( ),100,0;050,0;600,0;500,041 ≡µ  
( );0;100,0;1;700,051 ≡µ

 ( ),005,0;0;005,0;112 −−≡µ  
( ),020,0;005,0;090,0;022 ≡µ  

( ),050,0;020,0;300,0;110,032 ≡µ
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( ),050,0;050,0;450,0;350,042 ≡µ  
( );0;050,0;1;500,052 ≡µ

 
( ),100,0;0;500,0;013 ≡µ

 
( ),100,0;100,0;700,0;600,023 ≡µ

 
( ),100,0;100,0;900,0;800,033 ≡µ

 
( ),200,0;100,0;300,1;143 ≡µ

 
( );;200,0;;500,153 ∞∞≡µ

 ( ),010,0;0;020,0;014 ≡µ  

( ),020,0;020,0;080,0;030,024 ≡µ  
( ),050,0;020,0;300,0;100,034 ≡µ

 

( ),100,0;050,0;500,0;350,044 ≡µ  
( );;100,0;;600,054 ∞∞≡µ

 
( ),020,0;0;120,0;015 ≡µ

 
( ),020,0;020,0;180,0;140,025 ≡µ

 
( ),100,0;020,0;300,0;200,035 ≡µ

 
( ),300,0;100,0;500,0;400,045 ≡µ

 
( );;300,0;;800,055 ∞∞≡µ

 
( ),0;;0;16 ∞−∞−≡µ

 
( ),004,0;0;006,0;026 ≡µ

 
( ),040,0;004,0;060,0;010,036 ≡µ

 
( ),175,0;040,0;225,0;100,046 ≡µ

 
( ).;175,0;;400,056 ∞∞≡µ

 

Let us consider a machine-building enterprise to be analyzed over two periods — 

the third and fourth quarters of 1998 (period 1 and period 2), and characterized by 

values of indexes 
jX , 6,1=j , presented in Table 5.23. 

In Table 5.24 and Table 5.25 data ( )1

jlj cµ , ( )2

jlj cµ , 5,1=l , 6,1=j  are shown, 

accordingly. 

Table 5.23 Values of financial indexes 

Code number of 

index 
jX  

Name of an index value jX  

Value of index 
jX —

1

jc  over the period 1

Value of index 

jX —
2

jc  over the 

period 2 

1X
 

Equity-assets ratio 0,839 0,822 

2X
 

Net current assets/own means ratio 0,001 -0,060 

3X
 

Quick asset ratio 0,348 0,208 

4X
 

Absolute liquidity ratio 0,001 0,0001 

5X
 

Annual assets turnover 0,162 0,221 

6X
 

Return on assets -4% -4,3% 
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Table 5.24 Values of ( )1

jlj cµ  over the period 1 

Index code number ( )1

1 jj cµ
 

( )1

2 jj cµ
 

( )1

3 jj cµ
 

( )1

4 jj cµ
 

( )1

5 jj cµ
 

1X
 

0 0 0 0 1 

2X
 

0 1 0 0 0 

3X
 

1 0 0 0 0 

4X
 

1 0 0 0 0 

5X
 

0 1 0 0 0 

6X
 

1 0 0 0 0 

7X
 

0,500 0,333 0 0 0,167 

Table 5.25 Values of ( )2

jlj cµ  over the period 2 

Index code number ( )2

1 jj cµ
 

( )2

2 jj cµ
 

( )2

3 jj cµ
 

( )2

4 jj cµ
 

( )2

5 jj cµ
 

1X
 

0 0 0 0 1 

2X
 

1 0 0 0 0 

3X
 

1 0 0 0 0 

4X
 

1 0 0 0 0 

5X
 

0 0 1 0 0 

6X
 

1 0 0 0 0 

7X
 

0,666 0 0,167 0 0,167 

According to data from Table 5.24 and Table 5.25, we obtain the value for  

"enterprise condition” over the period 1 is equal to 0.291, and over the period 2 

equal to 0.287. Over both periods the enterprise is recognized as unsuccessful, and 

degree of bankruptcy risk is estimated as high, and there was some deterioration of 

a condition of the enterprise resulted from overlapping of qualitative growth of 

turnover with a qualitative falling of equity-assets ratio. 
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Chapter 6 

Complete Orthogonal Semantic Spaces in 
Problems of the Fuzzy Regression Analysis 

6.1   The Analysis of Known Methods of Fuzzy Regression 

Analysis 

To analyze relations between qualitative characteristics and the prediction of their 

values the methods of fuzzy regression analysis are used, which being actively 

developed have already considerably expanded boundaries of application of 

classical regression analysis methods, i.e. they allow to construct the regression 

relations on the basis of fuzzy initial information. Besides, this information can be 

of both quantitative and qualitative nature, thus, making possible application of 

methods of fuzzy regression analysis in the theory of expert evaluations and 

ensuring practical applications in various spheres of human activity [188, 189]. 

Methods of fuzzy regression analysis are used to study behavior of complex 

engineering, ecological and other systems with output indexes depending on a 

great many of parameters [188]. These methods are applied to construct regression 

models not only within the limits of the fuzzy initial information, but also within 

the limits of the definite information. In this case the predicted output values are 

provided as fuzzy numbers. Such representation is explained by the fact that the 

real system is always more complex than any of its model not capable of 

combining all entering indexes on which the output index depends.  

The first fuzzy linear regression model [190] excited interest in contributors, 

thus resulting in occurrence of new fuzzy regression models based on outcomes 

obtained in [191—193], and various optimizing criteria. Today, a number of linear 

fuzzy regression models [194-210] is developed, and approaches to building of 

nonlinear fuzzy regression models [210-212] are outlined. In [195, 196, 197, 199, 

203, 209] optimizing criteria are constructed aimed at minimization of fuzziness 

of output model fuzzy values and the subsequent application of linear 

programming methods. In [206], based on [213, 214], interval regression model is 

under construction using methods considered in [203, 208, 209]. 

There appears to be three different approaches under the heading of “Fuzzy 

Regression”: 

(a) Methods that were proposed by H. Tanaka [190] and further elaborated in 

current literature [188, 189, 194, 196-212], where the coefficients of input 
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variables are assumed to be fuzzy numbers. These fuzzy regression models are 

based on the possibility theory instead of the probability theory or they are based 

on both  possibility and probability theories. 

(b) Method proposed by R.J. Hathaway and J.C. Bezdek [215] where first the 

fuzzy clusters determined by an fuzzy c-means clustering (FCM) algorithm define 

how many ordinary regressions are to be constructed, one for each cluster. Next 

each fuzzy cluster is used essentially for switching purposes to determine the most 

appropriate ordinary regression that is to be applied for a new input from amongst 

a number of ordinary regressions determined in the first place. 

(c) Methods proposed by I.B.Turksen [216] and  A. Celikyilmaz [217], where 

the fuzzy functions approach to system modeling was developed. The new fuzzy 

functions approach augments the membership values together with their 

transformations to form a new input variable to find local functions. First the 

given system domain is fuzzy partitioned into c clusters using fuzzy c-means 

clustering algorithm. Then, one regression function is calculated to model the 

behavior of each partition. In [216] linear regression function to estimate the 

parameters of each function is proposed. A new fuzzy system modeling approach 

that identifies the fuzzy functions using support vector machines is proposed in 

[218]. This new approach is structurally different from the fuzzy rule base 

approaches and fuzzy regression methods. Method support vector machines is 

applied to determine the support vectors for each fuzzy cluster obtained by fuzzy 

c-means clustering algorithm. Original input variables, the membership values 

obtained from the  fuzzy c-means clustering algorithm together with their 

transformations form a new augmented set of input variables. Methods proposed 

in [216-217], were investigated in [219]. 

In this chapter we have developed a linear and nonlinear regression models, 

belonging to group (a). The methods of fuzzy regression from this group have 

received a lot of developing in the past years. A major difference between fuzzy 

regression and  ordinary regression [220 ] is in dealing with errors as fuzzy 

variables in fuzzy regression modeling, and in dealing with errors as random 

variables in ordinary regression modeling. The researchers have tried to integrate 

both fuzziness and randomness into regression model. As a result of this the 

hybrid fuzzy least-squares regressions were developed [189, 200—202, 204, 205, 

207, 210-212]. 

In [200, 201] the least squares method is applied to deviations from unity of 

possibilities of equality of observable output normal triangular numbers and model 

output normal triangular numbers. As known, membership function of a normal 

triangular number looks like 

( )
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The possibility of equality of two fuzzy numbers A
~

 and B
~

 with membership 

functions ( )xµ , ( )xη , accordingly, is determined by the formula according  

to [192]: 

( ) ( ) ( )[ ].,minmax
~~

Pos xxBA
x

µη==
 

In [197, 207] the least squares method is applied to deviations of centers of model 

output normal triangular numbers from centers of observable output normal 

triangular numbers. The centre of a normal triangular number with membership 

function (6.1) is the number 1a . In [207] the optimization problem of a relative 

minimum of the sum of fuzziness coefficients of output model normal triangular 

numbers is solved. Fuzziness coefficients of a normal triangular number are 

numbers La , Ra . 

However, the methods of  hybrid regression analysis as a rule are limited by 

consideration of linear regression models and of a slender group of membership 

functions (as a rule triangular fuzzy numbers are considered). Moreover, the 

hybrid regression analysis must provide a way to model the observed fuzzy data, 

such as linguistic descriptions of the type: “good”, “very good”, “excellent”, 

which may be T - fuzzy numbers.  

In practical problems fuzzy data with tolerance membership functions are often 

considered, therefore the problem of their analysis by regression analysis methods 

is acute enough. In connection with reviewing of the limited spectrum of 

membership functions of input data, a gap in methods of fuzzy regression analysis 

occurred which has been partially filled in [194]. 

The model-building method of hybrid fuzzy least-squares regression in the 

form of a system of classical regression equations (for each parameter of 

membership functions of initial fuzzy data) described here in, unlike other 

methods, can be applied both to unimodal, and to tolerance membership functions 

of input data. The method [194] limitations allow constructing regression model 

only with definite coefficients. Obviously, it dramatically limits possibilities of 

model and makes the problem of developing regression models with fuzzy 

coefficients a model of the day. 

Methods of the fuzzy information formalization based on COSS described in 

Chapter 2 allow representing results of an expert evaluation of qualitative 

characteristics in the form of a group of fuzzy numbers explicitly considered in 

§2.1. Thus, these fuzzy numbers can be used as input and output data in a fuzzy 

regression model describing relations between estimated qualitative 

characteristics. 

In order to include T - fuzzy numbers into a hybrid regression, a need for 

developing a new method exists. Therefore, a new linear and nonlinear multiple 

hybrid regressions are proposed and developed in this chapter. The developed 

methods allow to construct relations among qualitative characteristics and to 

predict their meanings. 
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6.2   A Method of Defuzzification of Fuzzy Numbers on the Basis 

of the Weighed Sets 

6.2   A Metho d of Defuzzif ication of Fuzzy Numbers  

Known methods of defuzzification of fuzzy numbers allow obtaining only 

pointwise aggregating indexes for these numbers, thereby, making indiscernible, 

for example, unimodal numbers with different coefficients of fuzziness or 

unimodal numbers with tolerance numbers. Thus, these methods essentially lose 

informational features of fuzzy numbers. 

The development of defuzzification method is aimed in keeping, whenever 

possible, informational features of fuzzy numbers, and to use them for building of 

regression models. 

In [84] for a normal triangular number ( )RL bbbB ,,
~

≡  definition of the weighed 

point is provided 

( ) ( )[ ] ( ).
6

1
11

1

0

LRRL bbbdbbbbB −+=−++−−= ∫ αααα

          
(6.2)

 

Let us consider symmetric ( )RL bb =  triangular numbers with a typical point b . 

Computing by the formula (6.2) weighed points for such fuzzy numbers, we 

obtain that irrespective of values of fuzziness coefficients RL bb , , the weighed 

points are equal to the same number b . 

To have a possibility to determine various indexes for similar numbers, the 

authors have introduced the new concept — the weighed set. 

As known,  

( ){ } [ ]==≥∈= 21 ,: ααα αµ AAxRxA A  
( ) ( )[ ] [ ].1,0,, 1

2

1

1 ∈+−= −− ααα RL aRaaLa                (6.3) 

is referred to as set of α -level of Λ -tolerance number ( )RL aaaaA ,,,
~

21≡ .  

Let us extend definition of the weighed point (6.2) of normal triangular number 

onto Λ -unimodal numbers [93, 221]. 

The number  

( ) ( )[ ] ;2

1

0

11

LRRL lbrbbdbRbLbB −+=+−= ∫ −− αααα

 

( ) ,

1

0

1∫ −= ααα dLl

 

( ) .

1

0

1∫ −= ααα dRr

                                          (6.4) 

is referred  to as weighed point of Λ -unimodal number ( )
RL bbbB ,,

~
≡ .  

As described above, when operating with Λ -tolerance numbers (sometimes 

also with Λ -unimodal numbers) pointwise representation of fuzzy numbers is not 

always informative enough. For reasons given, definition of the weighed set for 

Λ -tolerance numbers is introduced. 
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A collection of the weighed points of all Λ -unimodal numbers belonging to Λ -

tolerance number is referred to as the weighed set of this Λ -tolerance number. 

This definition is extended also on Λ -unimodal numbers. 

The Proposition 6.1. Weighed set of Λ -tolerance number ( )RL aaaaA ,,,
~

21≡  is a 

segment [ ]21, AA , where LlaaA −= 11 , RlaaA += 22 . Let us refer this segment as 

the weighed segment of Λ -tolerance number A . 

The proof. Let us consider two unimodal fuzzy numbers ( )0,,
~

11 LaaB ≡ , 

( )RaaB ,0,
~

22 ≡  which belong to Λ -tolerance number ( )RL aaaaA ,,,
~

21≡ . Let us 

denote sets of α -level of numbers 
21

~
,

~
BB  with [ ]

1

1

11 , aBB αα =  and [ ]2

222 , αα BaB = , 

accordingly, and assign weighed points for these numbers in according with (6.4) 

( ) ( )( ) ( ) ;2 1

1

0

1

1

1

0

1

1

1

0

1

1

11 LLL laadaLadaLadaBA −=−=−=+ ∫∫∫ −−
= ααααααααα

 

( ) ( )[ ] ( ) ,2 2

1

0

1

2

1

0

1

2

1

0

2

222 RRR raadaRadaRadBaA +=+=+=+ ∫∫∫ −−
= ααααααααα

 

Where ( ) ( ) .,

1

0

1

1

0

1
rdRldL == ∫∫ −− αααααα  

Let us consider arbitrary Λ -unimodal number ( )RL bbbB ,,
~

≡  which belongs to 

tolerance number ( )RL aaaaA ,,,
~

21≡ . Let us denote α -level set with [ ]21 , αα BB , and 

the weighed point B
~

 with B . From definition of a membership of one fuzzy 

number to another it follows that 

22

2

1

2

2

1

11

1 ,,, αααααα BBBaBaBB ≥≥≤≤
 

.,
22

,
22

21

212

22

21

1

1

1 BABA
BBBaBBaB

≥≤⇒+
≥

++
≤

+ αααααα

 

The proposition 6.1 is proved. 

The Proposition 6.2. Weighed segment of sum of Λ -tolerance numbers is equal to 

the sum of the weighed segments of these numbers. 

The proof. Let us prove that the sum of Λ -tolerance numbers ( )
11

,,,
~

21 RL aaaaA ≡ , 

( )
22

,,,
~

21 RL bbbbB ≡  with the weighed segments [ ]21, AA , [ ]21, BB , accordingly, has 

the weighed segment [ ]2211 , BABA ++ . Let us denote the weighed segment BA
~~

+  

with [ ]21,CC . Then in accordance with (6.4) 

( ) ( ) ( )[ ] =−−+∫ −−
=

1

0

1

2

1

1111 21
2 αααα dbLaLbaC LL
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;112111 21
BAblalba LL +=−−+=

 

( ) ( ) ( )[ ] =+++∫ −−
=

1

0

1

2

1

1222 21
2 αααα dbRaRbaC RR

 
;222122 21

BAbrarba RR +=+++=
 

( ) ( ) ;,

1

0

1

11

1

0

1

11 ∫∫ −− == αααααα dRrdLl

 

( ) ( ) .,

1

0

1

22

1

0

1

22 ∫∫ −− == αααααα dRrdLl

 

Thus [ ] [ ]221121 ,, BABACC ++= . The proposition 6.2 is proved. 

The Proposition 6.3. Boundaries of the weighed segment of multiplication of Λ -

tolerance numbers are determined by linear combinations of products of 

parameters of these numbers. 

The proof. Let us consider fuzzy number which is the product of ( )
11

,,,
~

21 RL aaaaA ≡  

and ( )
22

,,,
~

21 RL bbbbB ≡ , and let us denote it with BAD
~~~

×= . Let us write out α -level 

sets A
~

 and B
~

 according to (6.3) 

[ ] ( ) ( )[ ];,,
11

1

12

1

11

21

RL aRaaLaAAA ααααα
−− +−==

 

[ ] ( ) ( )[ ].,,
22

1

22

1

21

21

RL bRbbLbBBB ααααα
−− +−==

 

According to multiplication operation for fuzzy numbers of A
~

 and B
~

, α -level set 

D
~

 looks like 

( ) ( )[ ].,,,max,,,,min 2212211122122111

ααααααααααααααααα BABABABABABABABAD =  

Without limiting a generality, let us consider that 0
11 >− Laa , 0

2
<+ Rbb   

( A
~

 — a positive number, B
~

 — a negative number). Proofs of other cases are 

carried out similarly. Let us compute the weighed segment [ ]21 , DD  for Λ -

tolerance number D
~

 ( Λ -tolerancy of number D
~

 is proved in the proposition 2.2): 

( ) ( ) ( ) ( )[ ] =−+−= ∫ −−−−
1

0

1

1

1

2

1

11

1

22121 2112
2 αααααα dRLbaRbaLbabaD LRRL

 
;

2112 112212 LRRL bmabarbalba −+−=
 

( ) ( ) ( ) ( )[ ] =−−+= ∫ −−−−
1

0

1

1

1

2

1

12

1

21212 2112
2 αααααα dLRbaLbaRbabaD RLLR

 
;

2112 211221 RLLR bpabalbarba −−+=
 

( ) ( ) ( ) ( ) ;,;,

1

0

1

22

1

0

1

22

1

0

1

11

1

0

1

11 ∫∫∫∫ −−−− ==== αααααααααααα dRrdLldRrdLl
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( ) ( ) ( ) ( ) .,

1

0

1

2

1

1

1

0

1

1

1

2 ∫∫ −−−− == αααααααα dRLpdRLm

 

The proposition 6.3 is proved. 

Propositions 6.1 – 6.3 are true for Λ -unimodal numbers with the following 

replacements 21 aa = , 
21 bb =   accordingly. 

6.3   Linear Hybrid Fuzzy Least-Squares Regression Model 

In §2.1 the set of Λ -numbers, subdivided into Λ -tolerance and Λ -unimodal 

numbers, is described. 

Let us define an affinity measure for two Λ -tolerance numbers A
~

, B
~

, with the 

weighed segments [ ]21, AA , [ ]21, BB  

( ) ( ) ( ) .
~

,
~ 2

22

2

11 BABABAf −+−=
   (6.5) 
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be output Λ -tolerance numbers, and 
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be input Λ -tolerance numbers, and ( )j

R

j

L

j

j bbba ,,~ ≡  unknown coefficients of 

regression model be Λ -unimodal numbers.  

Relations of input and output data will be in the form [222] 

.
~~...

~~~~
110 mm XaXaaY +++=

   (6.6) 

According to the definition of operations for fuzzy numbers and to the proposition 

2.2, the multiplication of ja~  and 
i

jX
~

, mj ,1= , ni ,1=  gives Λ -tolerance 

numbers. If, for example, ( )ji

R

ji

L

jijii

j xxxxX ,,,
~

21≡ , mj ,1= , ni ,1= , and 

( )j

R

j

L

j

j bbba ,,~ ≡  are positive fuzzy numbers ( )0,01 >−>− j

L

jji

L

ji bbxx , then the 

multiplication of these numbers results in Λ -tolerance numbers with parameters  
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( ) .,1,,1,,,, 2121 nimjbxbxbxbxbxbxbxbx
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R
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jji
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L
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L
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L

jijjijji ==++−+  

Using the proposition 6.1, let us compute the weighed segments 

[ ]i

R

ii

L

i
ryylyy +− 21 ,  for observable output data 

iY
~

. Let us denote weighed segments 

of products of numbers ja~  and 
i

jX
~

 with 

( ) ( )[ ] nimjbbbbbb j

R
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j
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jj

i
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,1,,1,,,,,, 2
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  (6.7) 
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Boundaries of the weighed segments of products 
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given above by coefficients of the parameters considered. 
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of an optimization problem are determined by means of known methods [152]. 
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The developed model is hybrid because it includes elements of fuzzy and classical 

regression models. The similar combination allows defining analogue of a 

standard deviation for observations, analogue of determination coefficient and 

analogue of an evaluation of a standard error for quality assurance of regression 

models with fuzzy input data. 
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is referred to as analogue of a standard deviation for output observations.  
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is referred to as analogue of coefficient of determination.   
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is referred to as analogue of an evaluation of a standard error.  

With definite input data and definite coefficients of regression model, the 

developed hybrid fuzzy least-squares regression model is classical regression 

model, and certain analogues of indexes are a standard deviation of output data, 

determination coefficient and standard error evaluation, accordingly. 

6.4   Linear Hybrid Fuzzy Least-Squares Regression Model on 

the Basis of Nonnegative T -Numbers 

6.4   Linear Hy brid F uzzy Least-Squares Regression Model 

The attention to nonnegative T -numbers is explained by the fact that while 

constructing regression relations for qualitative characteristics, fuzzy numbers 

which are formalizations of linguistic values of these characteristics based on 

COSS can be considered as the initial information. As universal COSS set is the 

segment [0, 1] rather often, the fuzzy numbers corresponding to its terms, are 

nonnegative. 
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is referred to as T -number (fuzzy number of T -type).  

A T -number is symbolically recorded as ( )RL aaaaA ,,,
~

21≡ . The normal 

triangular number is the special case of T -number with 21 aa =  and is 

symbolically recorded as ( )RL aaaA ,,
~

1≡ . With RL aa =  the triangular number is 

referred to as symmetric, and with RL aa ≠  — asymmetric. A T -number is 

referred to as nonnegative under the condition 01 ≥− Laa . 



6.4   Linear Hybrid Fuzzy Least-Squares Regression Model 193
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Relation between input and output data will be determined as 
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Let us consider nonnegative T -number ( )RL xxxxX ,,,
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21≡ , 01 ≥− Lxx  and a 

triangular number ( )RL bbba ,,~ ≡ . 
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The proposition 6.4 is proved.  
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Using propositions 2.1, 2.2, 6.1 - 6.4, let us determine the weighed segments 

(Let us determine the weighed segments, using propositions 2.1, 2.2, 6.1 - 6.4) 
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which characterizes an affinity measure between initial and model output data. It 

is easy to demonstrate that 
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The optimization problem is set as follows: 
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of regression models ja~ , mj ,0=  are found from the system of normal equations: 
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Being transformed (6.9), the system turns out 
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The obtained system is the system of simple equations relating to variables 
j

R

j

L

j bbb ,,  and is solved with well-known methods. 
6.5   Nonlinear Hy brid f uzzy Least-Squares Regression Model  

6.5   Nonlinear Hybrid Fuzzy Least-Squares Regression Model 

Based on Nonnegative T -Numbers 

6.5   Nonlinear Hy brid f uzzy Least-Squares Regression Model  

Let us consider nonnegative T -numbers ( )RL xxxxX ,,,
~

21≡ , 01 ≥− Lxx , 

( )RL zzzzZ ,,,
~

21≡ , 01 ≥− Lzz , a triangular number ( )RL bbba ,,≡ , and let us prove 

propositions,  related to characteristics of the weighed segments of results of 

operations with these fuzzy numbers. 
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The proposition 6.5. Boundaries of the weighed segment [ ]2
~~

1
~~ 22 ,

XaXa
θθ  of product 

of fuzzy numbers a~  and 2~
X  look like  

( ) ( )
;

20

1

6

1

6

1

12

1

3

1 22221
~~ 2 ⎟⎟⎠

⎞⎜⎜⎝
⎛

+
−

+−⎟⎟⎠
⎞⎜⎜⎝

⎛
+

−
+=

qqqq MMq

q

qLMMq

q

qXa
xxxxbxxxxbθ

 

( ) ( )
,

20

1

6

1

6

1

12

1

3

1 2222222
~~ 2 ⎟⎟⎠

⎞⎜⎜⎝
⎛

+
−

++⎟⎟⎠
⎞⎜⎜⎝

⎛
+

−
+=

rrrr MMr

r

rRMMr

r

rXa
xxxxbxxxxbθ

 

where 

⎩⎨
⎧

=

=
=⎩⎨

⎧
<+

≥−
=

;2,

;1,

;0,2

;0,1

qR

qL
M

bb

bb
q q

R

L

 

⎩⎨
⎧

=

=
=⎩⎨

⎧
<+

≥−
=

.2,

;1,

;0,1

;0,2

rR

rL
M

bb

bb
r r

R

L

 

The proof. Let us consider a fuzzy number which is multiplication of the fuzzy 
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21≡ , 01 ≥− Lxx  by itself, and let us denote it with 
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If ( )RL bbba ,,~ ≡  is a negative number, the α -level set Da
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The proposition 6.5 is proved. 

The Proposition 6.6. Boundaries of the weighed segment of product of fuzzy 

numbers a~ , X
~

 and Z
~

 look like 
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The proof. Let us consider a fuzzy number which is product of fuzzy number 

( )RL xxxxX ,,,
~

21≡  by fuzzy number ( )RL zzzzZ ,,,
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21≡ , and let us denote it with 

ZXG
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×= . Let us write out α -level sets X
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 and Z
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 and Z
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 are nonnegative fuzzy numbers, the α -level set of fuzzy number G  
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If ( )RL bbba ,,~ ≡  is nonnegative number, the α -level set Da
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If ( )RL bbba ,,~ ≡  is a negative number, the α -level set Ga
~~  looks like [ ]21 , αα VV , 
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The proposition 6.6 is proved. 

It is worth mentioning that if many nonlinear classical regression models can be 

reduced to linear models by means of corresponding replacements, nonlinear 

fuzzy regression models are more complicated to reduce. 

The matter is that, for example, while multiplying fuzzy numbers it is not 

always possible to set an analytical form for membership function of a fuzzy 

number which is a result out of the multiplication. Since all known linear fuzzy 

regression models assume such possibility, it becomes clear why it is impossible 

to reduce nonlinear models to linear fuzzy regression models on its own. 
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mj ,1= , ni ,1=  are input T -numbers. 

Let us search relation between input and output data in the form 
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According to the proposition 6.5 
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Let us determine the weighed segments [ ]21 ,
ii YY
&& θθ , ni ,1=  for model output data 
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Let us consider a functional 
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then F  is piecewise differentiable function, and solutions of an optimization 

problem are determined by means of known methods [152]. 
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determining model output data iY
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, ni ,1=  a problem of predicting linguistic 

values of this attribute or identification of each fuzzy numbers 
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 with one of 

fuzzy numbers kY
~~

 arises. 
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6.6   Building of a Reference Pattern (Image) of Objects with 

Qualitative Characteristics Using Fuzzy Regression Models. 

Obtaining of Rating Points of Objects Based on the 

Reference Pattern 

6.6   Building of a Reference Pattern (Image) of Objects 

When performing comparative analysis of objects with non-numerical 

characteristics essential complexity is caused by lack of a reference pattern 

(image); in this connection labour-consuming procedures of comparing objects 

with each other are carried out, as a rule. If there are a lot of objects, labour input 

of these procedures increases manifold. 

Let us consider N  objects for which experts estimate appearances of 

qualitative characteristics jX , mj ,1=  having essential impact on some final 

qualitative characteristic Y . 

Let ljX , jml ,1=  be levels of the verbal scales applied to an evaluation of 

characteristics jX , mj ,1= , and lY , kl ,1=  be levels of the verbal scale applied 

to an evaluation of characteristic Y , accordingly. Levels are arranged in ascending 

order of intensity of appearances of these characteristics. 

Let us denote relative numbers of objects of the considered group, which are 

referred to level ljX , jml ,1= , mj ,1=  while estimating the characteristic jX , 

mj ,1= , with 
j

la , jml ,1= , mj ,1= ; 

.,1,1
1

mja
jm

l

j

l ==∑
=  

Based on these data and the method described in §2.2, let us construct COSS with 

names jX , mj ,1=  and term-sets ljX , ml ,1= , mj ,1= . Let us denote with 

( )xljµ  membership function of fuzzy number ljX
~

 corresponding to l -th term-set 

of j -th COSS, ml ,1= , mj ,1= . Let us denote fuzzy numbers ljX
~

, ml ,1= , 

mj ,1=  or their membership functions ( )xljµ ; jml ,1= , mj ,1=  with object 

evaluations. Let us denote with 
n

jX
~

 and ( ) ( )n

jR

n

jL

n

j

n

j

n

j aaaax ,,, 21≡µ , Nn ,1= , 

mj ,1=  an evaluation of n -th unit within the limits of attribute jX . Fuzzy 

number 
n

jX
~

 with membership function ( )xn

jµ  is equal to one of fuzzy numbers 

ljX
~

, jml ,1= , mj ,1= . Let us denote with la , kl ,1=  relative numbers of the 

objects referred to level lY , kl ,1=  while estimating the characteristic Y . 

Based on these data, let us construct COSS with name Y  and term-set lY , 

kl ,1= . Let us denote with ( )xlµ  membership function of fuzzy number lY
~

 

corresponding to term lY , kl ,1= . Let us refer fuzzy numbers lY
~

, kl ,1=  or their 
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membership functions ( )xlµ , kl ,1=  as object evaluations. Among N  objects we 

select those having evaluations ( )kRkLkkk yyyy ,,, 21µ   obtained from experts [the 

higher evaluations of intensity of characteristic Y  appearance]. Without limiting a 

generality, let us consider that they are objects with numbers Mi ,1=  and 

membership functions of values of characteristics jX , kj ,1= , 

( ) ( ){ }i
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i

j
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jij aaaax ,,, 21≡µ
, Mi ,1= , mj ,1= .

 

The reference pattern of successful object within the limits of some final 

characteristic is determined as a group of fuzzy sets (or their membership 

functions) [223] corresponding to appearance of characteristics jX , mj ,1=  i.e. 

( ) ( ){ } .,1,,,, 21 mjxxxxx jRjLjjj =≡µ
 

The functional model of definition of a reference pattern is shown in Fig. 6.1.  

Let us denote the weighed segments of fuzzy numbers with membership 
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Let us denote the weighed segments of fuzzy numbers with membership functions 
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Let us denote the weighed segment of fuzzy number with membership function 
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number obtained by substituting fuzzy numbers with membership functions 

( ) ( )jRjLjjj xxxxx ,,, 21≡µ , mj ,1=  in fuzzy regression model (linear or nonlinear) 
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Fig. 6.1 Functional model of obtaining a reference pattern 

On substituting in the linear model, we obtain 
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Unknown parameters of membership functions ( ) ( ){ }
jRjLjjj xxxxx ,,, 21≡µ  of 

the reference pattern are found from a solution of an optimization problem 

min2
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1 →+ ρρ  

Under conditions 01 ≥− jLj xx , 12 ≤+ jRj xx , 0≥jLx , 0≥jRx , mj ,1= . 

We offer to use the reference pattern given in the form of a group of fuzzy 

numbers ( ) ( ){ }
jRjLjjj xxxxx ,,, 21≡µ , mj ,1=  for the comparative analysis of 

real evaluations of objects with the pattern, obtaining of rating points and 

development of the operating actions aimed at success of objects within the limits 

of the final characteristic Y . 
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where [ ]21, jj BB , mj ,1=  are the weighed segments of the fuzzy numbers making 

in aggregate a reference pattern of objects, with jρ , mj ,1= . 

Let us obtain rating points of n -th object, Nn ,1=  as follows [223, 224]: 

.1
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∑
=

−=
m

j

jjnr ρω
                                                   

(6.10) 

The rating points obtained by the formula (6.10) will differ from the evaluations 

obtained by a principle “the higher individual indexes are, the higher rating points 

are” [225—226]. The rating points constructed on the basis of s reference pattern, 

are quantity indexes of affinity of indexes of estimated objects and indexes of the 

pattern constructed on the basis of real a posteriori data. Therefore, the analysis of 

the objects’ functioning monitoring data based on the obtained rating points 

improve reliability of the prediction of final indexes (in our case, they are indexes 

of characteristic Y ) and control operations on their improving. 

6.7   Examples of Fuzzy Regression Models Employment 

Example 6.1. Prediction of progress of the trainees. The comparative analysis of 

combined (hybrid) and classical regression models. To construct classical and 

hybrid linear regression models, data of progress of 30 trainees in four subjects 

[227] are taken. From these data non-repeating results are selected and 

summarized in Table 6.1. 

Based on the data obtained by a method described in §2.2, four COSS’s are 

constructed, their membership function parameters are summarized in Table 6.2. 

By the method described in §6.4, linear hybrid regression model is constructed 

with definite coefficients: 

,
~~~~

0332211 aXaXaXaY +++=
 

where ja , 3,0=j  are unknown coefficients of regression model. The solution of 

an optimization problem allows obtaining the model 

;
~

133,0
~

466,0
~

352,0
~

321 XXXY ++=
 

.239,0;805,0;454,0 === HSHRS  

According to the method described in §6.4, linear hybrid regression model is 

constructed with fuzzy coefficients 

,
~~~~~~~~

3322110 XaXaXaaY +++=
 

where ( )j

R

j

L

j bbba ,,~ ≡ , 3,0=j  are unknown coefficients of regression model, and 

also normal triangular numbers. The solution of an optimization problem allows 

obtaining the model 
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~
0;104,0;412,00;566,0;0

~
XXY  

( ) ;
~

0;0;130,0 3X+
 

.213,0;827,0;454,0 === HSHRS  

As one can see form the building process, fuzzy regression model with fuzzy 

coefficients has more accurate indexes then regression model with definite 

coefficients.  

The classical linear regression model is constructed  

;394,0428,0301,0 321 XXXY +++=

.509,0;808,0;949,0 === SRSY  

-0.708

 

Table 6.1 Progress data 

No. 1X
 2X

 3X
 

Y  

1 2 3 3 2 

2 3 4 3 3 

3 3 2 2 2 

4 4 4 3 4 

5 5 4 5 5 

6 4 3 3 3 

7 5 5 4 4 

8 5 3 4 3 

9 2 3 3 2 

10 3 4 3 3 

Table 6.2 Parameters of membership functions of evaluations in subjects 

Term 

No. 
1X

 2X
 3X

 
Y  

1 (0;0,10;0;0,10) (0;0,05;0;0,10) (0;0,15;0;0,20) (0;0,10;0;0,15) 

2 (0,20;0,40;0,10;0,30) (0,15;0,45;0,10;0,30) (0,35;0,20;0,30) (0,25;0,60;0,15;0,10) 

3 (0,70;0,80;0,30;0,15) (0,75;0,85;0,30;0,10) (0,65;0,85;0,30;0,05) (0,70;0,90;0,10;0,05) 

4 (0,95;1,00;0,15;0) (0,95;1,00;0,10;0) (0,90;1,00;0,05;0) (0,95;1,00;0,05;0) 

Considering an incorrectness of operating with elements of ordinal scales, we may 

assume that the constructed model does not initially have essential and substantial 

sense. However, in practice similar models are applied rather often. Therefore, the 

classical model is constructed to compare its determination coefficient with values 

of analogue determination coefficient for the fuzzy hybrid regressions (other 
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quality indexes are incomparable), and also to compare the predicted output 

indexes obtained within the limits of all models. At this stage of investigation it is 

clear that fuzzy hybrid regression models have great values of determination 

coefficient analogue in comparison with coefficient of determination of a classical 

model. 

Results of comparison of real output data with the output data obtained within 

the limits of all models are summarized in Table 6.3. 

To recognize fuzzy output values indexes (6.8) are used. 

As one can see from Table 6.3, the model output data obtained based on the 

fuzzy hybrid regression of model with fuzzy coefficients coincide with real output 

data in 90 %. The model output data obtained based on the fuzzy hybrid regression 

of model with definite coefficients, coincide with real output data in 80 %. 

Table 6.3 Real and model output data 

Model value of fuzzy regression Item 

No. 

Initial 

data 

Model value of 

classical regression 
With definite coefficients With fuzzy coefficients 

1 2 2 3 2 

2 3 3 3 3 

3 2 2 2 2 

4 4 3 4 4 

5 5 4 4 4 

6 3 3 3 3 

7 4 5 4 4 

8 3 4 3 3 

9 3 3 3 3 

10 4 4 4 4 

Also, the model output data obtained based on the classical regression of model 

coincide with real output data in 60 %.  

Thus, the carried out analysis of quality classical linear and fuzzy linear hybrid 

regression models (constructed within the limits of the information of educational 

process) allows drawing a conclusion about advantages of the developed fuzzy 

hybrid regression model, and reasonably recommend application of this model for 

processing information of educational process and its reliable prediction. 
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Example 6.2. Prediction of commercial success of software products. 

Development of managerial instructions to assure the success. As input 

characteristics of the software products developed for automation of retail 

business, bank activity, insurance business and I/C account three characteristics 

are taken: 1X  — modifiability, 2X  — studiability and 3X  — functionality. 

Modifiability is a characteristic of software products which simplifies 

introducing of necessary modifications and updating and includes characteristics 

of expansibility, structuredness and modularity. 

Studiability is a characteristic which allows minimization of efforts to study 

and understand software programs and documentation and includes characteristics 

of informativeness, clearness, structuredness and readability. 

Functionality is a characteristic which shows ability of software product to 

fulfill a number of the functions defined in its external declaration and satisfying 

specified or implied demands of users. 

As output characteristic success of software products Y , which includes groups 

of these products with customers, their salesability, and recognising by leading 

experts is considered. 

Table 6.4 The real and formalized data of expert evaluations of software products  

п 1X
 2X

 3X
 

Y  

Actual data 

1 3 4 3 3 

2 3 3 3 3 

3 4 3 5 5 

4 4 4 4 4 

5 5 3 5 5 

6 5 4 4 5 

7 3 4 4 4 

8 4 3 4 3 

9 4 5 3 3 

10 4 5 3 3 

11 3 3 4 4 

12 4 4 3 4 

Formalized data 

1 (0;0,15;0;0,3) (0,375;0,425;0,25;0,35) (0;0,125;0;0,25) (0;0,075;0;0,15) 

2 (0;0,15;0;0,3) (0;0,125;0;0,25) (0;0,125;0;0,25) (0;0,075;0;0,15) 

3 (0,45;0,55;0,3;0,3) (0;0,125;0;0,25) (0,85;1;0,3;0) (0,925;1;0,25;0) 

4 (0,45;0,55;0,3;0,3) (0,375;0,425;0,25;0,35) (0,375;0,55;0,25;0,3) (0,225;0,675;0,15;0,25) 

5 (0,85;1;0,3;0) (0;0,125;0;0,25) (0,85;1;0,3;0) (0,925;1;0,25;0) 

6 (0,85;1;0,3;0) (0,375;0,425;0,25;0,35) (0,375;0,55;0)25;0,3) (0,925;1;0,25;0) 

7 (0;0,15;0;0,3) (0,375;0,425;0,25;0;35) (0,375;0,55;0,25;0,3) (0,225;0,675;0,15;0,25) 
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Table 6.4 (continued) 

8 (0,45;0,55;0,3;0,3) (0;0,125;0;0,25) (0,375;0,55;0,25;0,3) (0;0,075;0;0,15) 

9 (0,45;0,55;0,3;0,3) (0,775;1;0,35;0) (0;0,125;0;0,25) (0,225;0,675;0,15;0,25) 

10 (0,45;0,55;0,3;0,3) (0,775;1;0,35;0) (0;0,125;0;0,25) (0,225;0,675;0,15;0,25) 

11 (0;0,15;0;0,3) (0;0,125;0;0,25) (0,375;0,55;0,25;0,3) (0;0,075;0;0,15) 

12 (0,45;0,55;0,3;0,3) (0,375;0,425;0,25;0,35) (0;0,125;0;0,25) (0;0,075;0;0,15) 

It is assumed that all characteristics have three linguistic values: "low", "mean", 

"high". The choice of input characteristics from a certain set offered is an 

individual separate problem [211] aimed at detecting those which have essential 

impact on the output characteristic. 

Twelve selected software products have been estimated by experts, and the 

obtained data are formalized by the method described in §2.2. Results are 

summarized in Table 6.4. 

By the method described in § 6.5, nonlinear hybrid fuzzy least-squares 

regression model is constructed: 

( ) ( ) ++−= 2

3

2

1

~
0;0;061,0

~
0;0;483,0

~
XXY

 

( ) ( ) ++−+ 132

~
0;022,1;022,1

~~
0;0;121,0 XXX

 

( ) ( ).0;0;017,0
~

0;283,0;283,0 2 ++ X  

By the method described in §6.4, linear hybrid fuzzy least-squares regression 

model is constructed: 

( ) ( ) ++= 1

~
0;0;067,00;0;026,0

~
XY  

( ) ( ) .
~

0;0;234,0
~

507,0;585,0;619,0 32 XX ++
 

On carrying out of the comparative analysis of real output data and the model 

output data obtained within the limits of two constructed models, the nonlinear 

regression model is selected to enable further building process. 

Based on the data of Table 6.4, data iX , 3,1=i  of the software products 

obtaining the higher marks of success (tab. 6.5), is determined. 

Table 6.5 Data of the software products obtaining the higher marks of success 

1X
 2X

 3X
 

(0,45;0,55;0,3;0,3) (0;0,125;0;0,25) (0,85;1;0,3;0) 

(0,85;1;0,3;0) (0;0,125;0;0,25) (0,85;1;0,3;0) 

(0,85;1;0,3;0) (0,375;0,425;0,25;0,35) (0,375;0,55;0,25;0,3) 

For the data of Table 6.5 the weighed segments (tab. 6.6) is obtained.  
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Table 6.6 The weighed segments [ ]i

j

i

j AA 21, , 3,2,1=j  

i  [ ]ii AA 1211,  
[ ]ii AA 2221,  

[ ]ii AA 3231,  

1 [0,4; 0,56] [0,05; 0,165] [0,8; 1] 

2 [0,8; 1] [0,05; 0,165] [0,8; 1] 

3 [0,8; 1] [0,335; 0,483] [0,335; 0,6] 

The reference pattern (image) of successful software product is determined in the 

form: 

( ) .3,2,1,,,, 21 =≡ jxxxx jRjLjjjµ
 

The weighed segments of the reference pattern are denoted with [ ]21, jj AA , 

3,2,1=j , and the weighed segment of fuzzy number with parameters (0.925; 1; 

0.25; 0), formalizing the higher mark of success of software product, 883,01 =C , 

12 =C , is denoted with [ ]21,CC .  

On substituting the reference pattern in constructed nonlinear regression model 

the weighed segment of the obtained result is obtained: 

−+−−−= 2

31

2

1112

2

121 161,004,0161,0483,0 xxxxxD RR  
−−−+− RLL xxxxxxx 3223222

2

3331 02,0121,001,005,0
 

+−+−− LRRR xxxxxx 11132232 085,0852,001,002,0
 

;017,0024,0236,0 221 +−+ Lxx  
++−+−= 2

32

2

1111

2

112 161,004,0161,0483,0 xxxxxD LL  
++−++ LRR xxxxxxx 3213121

2

3332 02,0121,001,005,0
 

+++−+ RLLL xxxxxx 11232231 17,0022,101,002,0
 

.017,0047,0283,0 222 +++ Rxx  

Unknown parameters of membership functions ( ) ( ){ }
jRjLjjj xxxxx ,,, 21≡µ  of the 

reference pattern are obtained from the solution of an optimization problem 

( ) ( ) ( )[ ]+−+−=∑
=

3

1

2

22

2

1121 ,,,
i

j

i

jj

i

jjRjLjj BABAxxxxF

 

( ) ( ) min
2

22

2

11 →−+−+ DCDC  

Under conditions  

3,1;0;0;1;0 21 =≥≥≤+≥− jxxxxxx jRjLjRjjLj  
or 

( ) ( ) ++−=
2

11121 167,04,0,,, LjRjLjj xxxxxxF
 

( ) ( ) ++−+−−+
2

111

2

112 167,08,02167,056,0 LR xxxx  
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( ) ( ) ++−+−−+
2

221

2

112 167,005,02167,012 LR xxxx  

( ) ( ) ++−+−−+
2

221

2

222 167,0335,0167,0165,02 LR xxxx  

( ) ( ) ++−+−−+
2

331

2

222 167,08,02167,0483,0 LR xxxx
 

( ) ( ) +−−+−−+
2

331

2

332 167,0335,0167,012 LR xxxx
 

( ) ( +++−−+ RR xxxxx 112

2

12

2

332 161,0483,0167,06,0
 

+−+−+ 2

3331

2

31

2

1 01,005,0161,004,0 LLR xxxxx
 

−++++ RRRR xxxxxxxx 323323223222 01,002,002,0121,0
 

) +++−+−
2

221111 886,0024,0236,0085,0852,0 LL xxxx  
( −−+−+ 2

32

2

1111

2

11 161,004,0161,0483,0 xxxxx LL  
−−+−+ LRR xxxxxxx 3213121

2

3332 02,0121,001,005,0
 

−−−+− RLLL xxxxxx 11232231 17,0022,101,002,0
 

) min,886,0047,0283,0
2

222 →+−− Rxx  

with 

.3,1;0;0;1;0 21 =≥≥≤+≥− jxxxxxx jRjLjRjjLj  
The solution of the optimization problem determines the reference pattern of 

successful software product: 

( ) ( ),211,0;363,0;789,0;789,01 ≡xµ  
( ) ( ),845,0;0;155,0;155,02 ≡xµ  
( ) ( ).153,0;0;847,0;68,03 ≡xµ

 

Table 6.7 The weighed segments of evaluation results for software products 

n  [ ]nn AA 1211,  
[ ]nn

AA 2221,  
[ ]nn

AA 3231,  

1 [0; 0,2] [0,333; 0,477] [0; 0,167] 

2 [0; 0,2] [0; 0,167] [0; 0,167] 

3 [0,4; 0,6] [0; 0,167] [0; 8,1] 

4 [0,4; 0,6] [0,33; 0,477] [0,33; 0,6] 

5 [0; 8,1] [0; 0,167] [0; 8,1] 

6 [0; 8,1] [0,333; 0,477] [0,333; 0,6] 

7 [0; 0,2] [0,333; 0,477] [0,333; 0,6] 

8 [0,4; 0,6] [0; 0,167] [0,333; 0,6] 

9 [0,4; 0,6] [0; 723,1] [0; 0,167] 

10 [0,4; 0,6] [0; 0,167] [0; 0,167] 

11 [0; 0,2] [0; 0,167] [0,333; 0,6] 

12 [0,4; 0,6] [0,333; 0,477] [0; 0,167] 



218 Complete Orthogonal Semantic Spaces in Problems 

 

For formalized data of Table 5.7 the weighed segments are  obtained and 

summarized in Table 6.7. 

For the reference pattern of successful software product the weighed segments 

are obtained: 

[ ] [ ],824,0;728,0, 1211 =BB  

[ ] [ ],296,0;155,0, 2221 =BB  

[ ] [ ].873,0;68,0, 3231 =BB
 

By the formula (6.10), rating points of software products and the obtained results 

are summarized in Table 6.8. 

Upon the experts’ agreement the weight coefficients jω , 3,1=j  are taken 

equal to 1/3. 

The obtained rating points of software products were used to develop 

managerial instructions aimed at achieving future success of software products 

[228—230]. 

Values of rating points are grouped in three intervals [0; 0.2], [0.2; 0.6],  

[0; 6.1], to which linguistic values: "low", "mean", "high" are assigned, 

accordingly. 

Table 6.8 Rating points of software products and a rating based on the reference pattern 

n Rating points Rating 

1 0,284 10 

2 0,301 9 

3 0,754 2 

4 0,647 5 

5 0,789 1 

6 0,683 3 

7 0,463 8 

8 0,665 4 

9 0,251 11—12

10 0,251 11—12

11 0,481 6 

12 0,468 7 

If the rating point of software product falls in the first interval [0; 0.2], the 

software product comes back to the beginning of previous development cycle. If 

the rating point of software product falls  in the last interval [0.6; 1], the software 

product is transferred to the next development cycle. If the rating point of software 

product falls in the mean interval [0.2; 0.6], the aggregation operator of 

information will be used to develop managerial instructions. 
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Three variables were considered: 1Z — distance between value of characteristic 

1X  of n -th software product, and value of characteristic of the reference pattern 

of software products; 2Z  — distance between value of characteristic 2X  of n -th 

software product, and value of characteristic 2X  of the reference pattern of 

software products; 3Z  — distance from value of characteristic 3X  of n -th 

software product, 12,1=n  to value of characteristic 3X  of the reference pattern of 

software products. 

Each variable accepts three linguistic values "low", "mean", "high", to which 

values 0, 1 and 2 are put in correspondence withy the aim to construct logic 

function. Numerical values of variables 1Z , 2Z , 3Z  were denoted with 
nZ1 , 

nZ2 , 
n

Z3 , 12,1=n , accordingly: 

( ) ( ) ;12,1,
2

1212

2

11111 =−+−= nABABZ nnn

 

( ) ( ) ;12,1,
2

2222

2

21212 =−+−= nABABZ nnn

 

( ) ( ) .12,1,
2

3232

2

31313 =−+−= nABABZ
nnn

 

The interval [0; 0.3] is put in correspondence to linguistic value "low" of variables 

1Z , 2Z , 3Z ; [0.3; 0.95] — to value "mean", and interval [0.95; 2 ] — to value 

"high". 

On agreeing with experts, the logic function F  depending on variables 1Z , 2Z , 

3Z  began to take three values: “the software product is conditionally transferred to 

the next stage and updated routinely”, “an expert is invited to update the software 

program”, “a group of experts is invited to update the software program”. Values 

0, 1 and 2 were put in correspondence to these values. 

The functional model of development of managerial instructions based on the 

rating points is given in Fig. 6.2. 

Experts formulated the following entry conditions ( ) 221 ==ZF , 

( ) 222 ==ZF , ( ) 223 ==ZF , and fuzzy conditions "slightly-increase" for 

behavior of function by each argument. These conditions were formalized by 

means of fuzzy relations, with the related matrixes summarized in Table 6.9. 

As a result of formalization of function behavior conditions and entry 

conditions [230], the following matrixes of the fuzzy relations with related 

elements summarized in Table 6.10, were obtained. 

At the cross-section of a line 1+i  and a column 1+j  of the matrixes  

(Table 6.10) there are the values of confidence degrees saying that function F  

will take value j  with value of arguments 1Z , 2Z , 3Z , equal to i , 2,0=i , 

2,0=j , accordingly. 
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        Return to the            low               Rating                 High          Transition to the 

       stage beginning                                                                               next stage 

                                                                      Mean 

                         Distance to components of the reference 321 ,, ZZZ
 

                        
( )321 ,, ZZZF

 - Operator of the information aggregation 

                                                        Administrative  

                                                              actions 

       Routine updating                Introducing of experts             Introducing of group 

       at the next stage                         for updating                            of experts 

                                                                                                       

 

Fig. 6.2 Functional model of development of managerial instructions based on the rating 

points 

Table 6.9 A matrix of the fuzzy relation describing "slightly-increase” of logic function F  

for arguments 321 ,, ZZZ  

п 0 1 2 

F  for argument 1Z  

0 0,9 1 0,9

1 0 0,9 1 

2 0 0 0,9

F  for argument 2Z  

0 0,7 1 0,7

1 0 0,7 1 

2 0 0 0,7

F  for argument 3Z  

0 0,8 1 0,8

1 0 0,8 1 

2 0 0 0,8
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Table 6.10 A matrix of the fuzzy relation describing values of logic function F  for 

arguments 321 ,, ZZZ  

п 0 1 2 

F  for argument 1Z  (a) 

0 1 0,9 0,9

1 0,9 0,9 0,9

2 0 0 1 

F  for argument 2Z  (b) 

0 1 0,7 0,7

1 0,7 0,7 0,7

2 0 0 1 

F  for argument 3Z  (c) 

0 1 0,8 0,8

1 0,8 0,8 0,8

2 0 0 1 

As a result of formalization of all conditions the relation is obtained with the 

matrix of 27 lines (according to number of possible values of arguments) and 3 

columns (according to number of function values). Matrix elements are values of 

confidence degree saying that function F  will accept any value depending on 

values of arguments 1Z , 2Z , 3Z . For example, to obtain degree of confidence 

saying that function F  will take value 1 at 01 =Z , 02 =Z , 03 =Z , it is necessary 

to take a minimum of an element of the matrix 6.10 (a) placed on the cross-section 

of the first line and the second column, an element of a matrix 6.10 (b) placed on 

the cross-section of the second line and the second column, and an element of a 

matrix 6.10 (c) placed on the cross-section of the first line and the second column. 

On completing all operations the fuzzy relation describing work of an 

aggregation operator of information or functions F , is obtained. Elements of a 

matrix of this relation are summarized in Table 6.11. 

Discussing the obtained results with experts allowed obtaining the aggregation 

operator of information in the form of function of three-value logic with three 

variables. Results of work of this operator are summarized in Table 6.12. 

Managerial instructions based on results of work of the operator are in the form 

of the following logic rules (Table 6.14). 
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Table 6.11 The fuzzy relation describing work of an aggregation operator of information 

(function F ) 

 Function F   
Argument 

0 1 2 

000 1 0,7 0,7 

001 0,8 0,7 0,7 

002 0 0 0,7 

010 0,7 0,7 0,7 

011 0,7 0,7 0,7 

012 0 0 0,7 

020 0 0 0,8 

021 0 0 0,8 

022 0 0 0,9 

100 0,9 0,7 0,7 

101 0,8 0,7 0,7 

102 0 0 0,7 

110 0,7 0,7 0,7 

111 0,7 0,7 0,7 

112 0 0 0,7 

120 0 0 0,8 

121 0 0 0,8 

122 0 0 0,9 

200 0 0 0,7 

201 0 0 0,7 

202 0 0 0,7 

210 0 0 0,7 

211 0 0 0,7 

121 0 0 0,7 

220 0 0 0,8 

221 0 0 0,8 

222 0 0 1 

Table 6.12 Aggregation operator of information 

Argument Function

000 0 

001 0 

002 2 

010 0 

01l 1 
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Table 6.12 (continued) 

012 2 

020 2 

021 2 

022 2 

100 0 

101 0 

102 2 

110 1 

111 1 

112 2 

120 2 

121 2 

122 2 

200 2 

201 2 

202 2 

210 2 

211 2 

121 2 

220 2 

221 2 

222 2 

Table 6.13 Distances from values of software product characteristics to values of reference 

pattern characteristics 

Product number 
nZ1  

nZ2  
n

Z3  

1 0,914 0,254 0,98 

2 0,914 0,202 0,98 

7 0,914 0,254 0,442 

9 0,362 0,905 0,98 

10 0,362 0,905 0,98 

11 0,914 0,202 0,442 

12 0,362 0254 0,98 
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Table 6.14 Logic rules of work with software product for arguments 1Z — 3Z  

Value 
Administrative 

action 
Rule 

number 
1Z  2Z  3Z

 
 

Low Low Low 

—»— —»— Mean 

—»— Mean Low 

Mean Low —»— 

1 

—»— —»— Mean 

The software product is conditionally 

transferred to the next stage and updated 

routinely 

Low Mean Mean 

Mean —»— Low 2 

—»— —»— Mean 

An expert is invited to update software product 

Low Low High 

—»— Mean —»— 

—»— High Low 

—»—

—»—

—»— 

—»— 
Mean High

Mean Low —»— 

—»— Mean —»— 

—»— High Low 

—»— —»— Mean 

—»— —»— High 

High Low Low 

—»— —»— Mean 

—»— —»— High 

—»— Mean Low 

—»— —»— Mean 

Mean High —»— 

High —»— Low 

—»— —»— Mean 

3 

—»— —»— High 

A group of experts is invited to update 

software product 

The developed recommendations were applied to software products with rating 

points provided in Table 6.8. 

According to these recommendations the software products No. 3, 4, 5, 6 and 8 

were transferred to the next development cycle. For other products distances from  
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their values of characteristics to values of corresponding characteristics of the 

reference pattern were determined, and these data were summarized in Table 6.13. 

According to the developed managerial instructions the software products  

No. 7 and No. 11 were conditionally transferred to the next stage, other software 

products were offered to be updated by a group of experts. 
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