

Embedded Systems

Series Editors

Nikil D. Dutt, Department of Computer Science, Donald Bren School

of Information and Computer Sciences, University of California, Irvine,

Zot Code 3435, Irvine, CA 92697-3435, USA

Peter Marwedel, Informatik 12, TU Dortmund, Otto-Hahn-Str. 16,

44227 Dortmund, Germany

Grant Martin, Tensilica Inc., 3255-6 Scott Blvd., Santa Clara, CA 95054, USA

For other titles published in this series, go to

www.springer.com/series/8563

http://www.springer.com/series/8563

Paul Lokuciejewski � Peter Marwedel

Worst-Case
Execution Time
Aware Compilation
Techniques for Real-
Time Systems

Paul Lokuciejewski

Suitbertusstr. 34

40223 Düsseldorf

Germany

Paul.Lokuciejewski@tu-dortmund.de

Peter Marwedel

Embedded Systems Group

TU Dortmund University

Otto-Hahn-Str. 16

44221 Dortmund

Germany

peter.marwedel@tu-dortmund.de

ISBN 978-90-481-9928-0 e-ISBN 978-90-481-9929-7
DOI 10.1007/978-90-481-9929-7
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010936440

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:Paul.Lokuciejewski@tu-dortmund.de
mailto:peter.marwedel@tu-dortmund.de
http://www.springer.com
http://www.springer.com/mycopy

Acknowledgements

Many people have contributed in different ways to this work. We would like to thank

Sascha Plazar, Jan C. Kleinsorge, Lars Wehmeyer, Timon Kelter, Daniel Cordes, and

Florian Schmoll for the numerous technical discussions. Special thanks go to Heiko

Falk for years of intense and inspiring cooperation, discussions and invaluable sup-

port. We would also like to thank the people from AbsInt Angewandte Information

GmbH for the technical discussions and their software support.

This work has been partially funded by the European Community’s ArtistDe-

sign Network of Excellence and by the European Community’s Seventh Framework

Programme FP7/2007-2013 under grant agreement no 216008.

Above all, we are deeply indebted to our families for their love and support help-

ing us to write this book.

Paul Lokuciejewski

Peter Marwedel

Dortmund

June 2010

v

Contents

1 Introduction . 1

1.1 Design of Embedded Real-Time Systems 3

1.1.1 Industrial Practice for Meeting Timing Constraints 5

1.1.2 WCET-Aware Compilation 7

1.1.2.1 Challenges for WCET Minimization 8

1.2 Contribution of This Work . 9

1.3 Outline . 11

2 WCET Analysis Techniques . 13

2.1 Introduction . 13

2.2 Approaches for WCET Analysis 14

2.2.1 Measurement-Based Approach 14

2.2.2 Static Approach . 14

2.2.3 Hybrid Approach . 15

2.3 Basic Concepts for Static WCET Analysis 15

2.3.1 Control Flow . 16

2.3.2 Processor Behavioral Analysis 17

2.3.2.1 Context-Dependent Timing Analysis 18

2.3.2.2 Timing Anomalies 18

2.3.3 Flow Facts . 19

2.3.4 Bound Calculation . 19

2.4 Static WCET Analyzer aiT . 21

3 WCC—WCET-Aware C Compiler 23

3.1 Introduction . 23

3.2 Related Work . 24

3.3 Structure of the WCC Compiler 26

3.3.1 Compiler Frontend ICD-C IR 26

3.3.2 Standard Source Code Level Optimizations 29

3.3.3 Code Selector . 29

3.3.4 Compiler Backend LLIR 30

3.3.5 Standard Assembly Level Optimizations 31

vii

viii Contents

3.3.6 Code Generator . 32

3.4 Integration of WCET Analyzer 33

3.4.1 Conversion from LLIR to CRL2 33

3.4.1.1 Operation Identification 34

3.4.1.2 Exploitation of Memory Hierarchy Specification . 36

3.4.1.3 Loop Transformation 37

3.4.2 Invocation of aiT . 38

3.4.3 Import of Worst-Case Execution Data 39

3.5 Modeling of Flow Facts . 39

3.5.1 Specification of Flow Facts 40

3.5.2 Translation and Transformation of Flow Facts 41

3.6 Static Loop Analysis . 41

3.6.1 Related Work . 42

3.6.2 Abstract Interpretation . 43

3.6.2.1 Modified Abstract Interpretation 44

3.6.3 Interprocedural Program Slicing 46

3.6.4 Polyhedral Evaluation . 48

3.6.4.1 Polyhedral Condition Evaluation 48

3.6.4.2 Polyhedral Loop Evaluation 50

3.6.4.3 Preconditions for Loop Evaluation 50

3.6.4.4 Ehrhart Polynomial Evaluation 51

3.6.4.5 Static Statement Evaluation 52

3.6.5 Experimental Results . 52

3.6.5.1 Determination of Loop Iteration Counts 53

3.6.5.2 Analysis Time 53

3.7 Back-Annotation . 54

3.7.1 Mapping of Low-Level to High-Level Components 55

3.7.2 Back-Annotated Data . 57

3.8 TriCore Processor . 57

4 WCET-Aware Source Code Level Optimizations 61

4.1 Introduction . 62

4.2 Existing Code Optimization Techniques 63

4.3 Procedure Cloning . 64

4.3.1 Motivating Example . 65

4.3.2 Related Work . 68

4.3.3 Standard Procedure Cloning 69

4.3.3.1 Selection of Functions to Be Cloned 70

4.3.4 Impact of Standard Cloning on WCET 71

4.3.5 Experimental Results for Standard Procedure Cloning . . . 72

4.3.5.1 WCET . 73

4.3.5.2 ACET . 74

4.3.5.3 Code Size . 74

4.3.6 WCET-Aware Procedure Cloning 75

4.3.7 Experimental Results for WCET-Aware Procedure Cloning 77

Contents ix

4.3.7.1 WCET . 77

4.3.7.2 Code Size . 78

4.3.7.3 Optimization Run Time 79

4.4 Superblock Optimizations . 79

4.4.1 Motivating Example . 80

4.4.2 Related Work . 81

4.4.3 WCET-Aware Source Code Superblock Formation 82

4.4.3.1 Trace Selection 83

4.4.3.2 Concepts of Superblocks 85

4.4.3.3 Superblock Formation 88

4.4.4 WCET-Aware Superblock Optimizations 91

4.4.4.1 Static Program Analysis 91

4.4.4.2 WCET-SB Common Subexpression Elimination . 92

4.4.4.3 WCET-SB Dead Code Elimination 93

4.4.5 Experimental Results for WCET-Aware Superblock

Optimizations . 94

4.4.5.1 WCET . 94

4.4.5.2 ACET . 96

4.4.5.3 Code Size . 97

4.4.5.4 Optimization Run Time 97

4.5 Loop Unrolling . 97

4.5.1 Motivating Example . 98

4.5.2 Related Work . 99

4.5.3 Standard Loop Unrolling 100

4.5.4 WCET-Aware Loop Unrolling 102

4.5.4.1 Worst-Case Loop Iteration Counts 102

4.5.4.2 I-Cache and Memory Constraints 103

4.5.4.3 Prediction of Unrolling Effects 105

4.5.4.4 Determination of Final Unrolling Factor 107

4.5.4.5 WCET-Aware Unrolling Heuristics 108

4.5.5 Experimental Results for WCET-Aware Loop Unrolling . . 109

4.5.5.1 WCET . 109

4.5.5.2 ACET . 111

4.5.5.3 Code Size . 112

4.5.5.4 Optimization Run Time 113

4.6 Accelerating Optimization by the Invariant Path 113

4.6.1 Motivating Example . 114

4.6.2 Related Work . 115

4.6.3 Invariant Path Paradigm 116

4.6.3.1 IF-THEN Structure 117

4.6.3.2 IF-THEN-ELSE Structure with Statically

Evaluable Condition 118

4.6.3.3 IF-THEN-ELSE Structure with Statically

Non-evaluable Condition 119

4.6.4 Construction of the Invariant Path 119

x Contents

4.6.5 Invariant Path Ratio . 120

4.6.6 Case Study: WCET-Aware Loop Unswitching 121

4.6.7 Experimental Results for WCET-Aware Loop Unswitching 125

4.6.7.1 Optimization Run Time 125

4.6.7.2 WCET . 126

4.6.7.3 Code Size . 127

4.7 Summary . 128

5 WCET-Aware Assembly Level Optimizations 131

5.1 Introduction . 131

5.2 Existing Code Optimization Techniques 132

5.3 Procedure Positioning . 133

5.3.1 Motivating Example . 134

5.3.2 Related Work . 136

5.3.3 Standard Procedure Positioning 137

5.3.4 WCET-Centric Call Graph-Based Positioning 138

5.3.4.1 Greedy WCET-Aware Positioning Approach . . . 139

5.3.4.2 Heuristic WCET-Aware Positioning Approach . . 142

5.3.5 Experimental Results for WCET-Aware Procedure

Positioning . 142

5.3.5.1 WCET . 142

5.3.5.2 ACET . 144

5.3.5.3 Optimization Run Time 144

5.4 Trace Scheduling . 145

5.4.1 Motivating Example . 145

5.4.2 Related Work . 147

5.4.3 Local Instruction Scheduling 148

5.4.3.1 List Scheduling 149

5.4.4 WCET-Aware Trace Scheduling 151

5.4.5 Experimental Results for WCET-Aware Trace Scheduling . 154

5.4.5.1 WCET . 154

5.4.5.2 ACET . 155

5.4.5.3 Code Size . 156

5.4.5.4 Optimization Run Time 156

5.5 Summary . 156

6 Machine Learning Techniques in Compiler Design 159

6.1 Introduction . 159

6.2 Related Work . 161

6.3 Machine Learning Based Heuristic Generation 162

6.3.1 Supervised Learning . 162

6.3.2 Heuristic Generation Based on Supervised Learning 163

6.3.3 Integration and Use of MLB Heuristics in Compilers 163

6.4 Function Inlining . 165

6.4.1 Motivating Example . 165

Contents xi

6.4.2 Standard Function Inlining 166

6.4.2.1 Related Work 167

6.4.3 MLB Heuristic Generation at Source Code Level 168

6.4.3.1 Feature Extraction 168

6.4.3.2 Label Determination 169

6.4.3.3 Model Induction 170

6.4.3.4 Application of WCET-Aware Function Inlining . 171

6.4.4 Experimental Results for WCET-Aware Function Inlining . 172

6.4.4.1 Accuracy of Classification 172

6.4.4.2 Variable Importance Measure 173

6.4.4.3 WCET . 174

6.4.4.4 ACET . 177

6.4.4.5 Code Size . 177

6.4.4.6 Compilation Run Time 178

6.5 Loop-Invariant Code Motion . 178

6.5.1 Motivating Example . 179

6.5.2 Standard Loop-Invariant Code Motion 180

6.5.3 MLB Heuristic Generation at Assembly Level 182

6.5.3.1 Automatic Model Selection 183

6.5.3.2 Feature Extraction 187

6.5.3.3 Label Determination 187

6.5.3.4 Application of WCET-Aware LICM 188

6.5.4 Experimental Results for WCET-Aware LICM 188

6.5.4.1 WCET . 189

6.5.4.2 ACET . 193

6.5.4.3 Compilation run time 193

6.6 Summary . 194

7 Multi-objective Optimizations . 197

7.1 Introduction . 197

7.2 Motivation . 199

7.3 Related Work . 201

7.4 Compiler Optimization Sequence Exploration 202

7.4.1 Adaptive Compilers . 203

7.4.2 Adaptability in WCC . 204

7.4.2.1 Internal Structure of WCC’s Optimizer 204

7.4.2.2 Available Compiler Optimizations 205

7.4.3 Encoding of Optimization Sequences 206

7.4.4 Objective Functions . 208

7.5 Multi-objective Exploration of Compiler Optimizations 208

7.5.1 Multi-objective Optimization 209

7.5.1.1 Pareto Front Approximation 209

7.5.2 Evolutionary Multi-objective Optimization Algorithms . . 210

7.5.3 Statistical Performance Assessment 211

7.5.3.1 Dominance Ranking 214

xii Contents

7.5.3.2 Hypervolume Indicators 214

7.5.3.3 Statistical Hypothesis Testing 215

7.6 Experimental Results for Optimization Exploration 216

7.6.1 Statistical Performance Assessment 218

7.6.2 Analysis of Pareto Front Approximations 220

7.6.3 Analysis of the Optimization Sequences 222

7.6.4 Cross Validation . 223

7.6.5 Optimization Run Time 225

7.7 Summary . 225

8 Summary and Future Work . 229

8.1 Research Contributions . 229

8.1.1 Extensions to WCC Framework 230

8.1.2 WCET-Aware Source Code Level Optimizations 230

8.1.3 WCET-Aware Assembly Level Optimizations 231

8.2 Future Work . 233

Appendix A Abstract Interpretation . 235

A.1 Concrete Semantics . 235

A.2 Abstract Interpretation . 237

A.2.1 Abstract Semantics . 237

A.2.2 Abstract Domain . 238

A.2.3 Calculation of Abstract Semantics 239

Appendix B Transformation of Conditions 241

References . 243

Index . 257

List of Figures

Fig. 1.1 Execution time distribution . 4

Fig. 1.2 Trial-and-error based design process 6

Fig. 1.3 Worst-case execution path switch 8

Fig. 2.1 Workflow of static WCET analyzer aiT 21

Fig. 3.1 Workflow of WCET-aware C compiler WCC 27

Fig. 3.2 Simplified class model of ICD-C IR 28

Fig. 3.3 Simplified class model of LLIR 30

Fig. 3.4 LLIR objective handler . 31

Fig. 3.5 Loop transformation . 38

Fig. 3.6 Polyhedral condition evaluation 49

Fig. 3.7 TriCore TC1796 architecture . 58

Fig. 4.1 Context-sensitive WCET analysis times 67

Fig. 4.2 Example for procedure cloning 70

Fig. 4.3 Relative WCET estimates for standard procedure cloning 73

Fig. 4.4 Relative code size for standard procedure cloning 75

Fig. 4.5 Relative WCET estimates for standard & WCET-aware procedure

cloning . 77

Fig. 4.6 Relative code size for standard and WCET-aware procedure

cloning . 78

Fig. 4.7 Example for inhibited optimization opportunity 81

Fig. 4.8 Example for combination of superblock formation and CSE 81

Fig. 4.9 Drawback of node weight-based approach 84

Fig. 4.10 Failure of existing trace selection approaches 84

Fig. 4.11 Superblock formation at assembly level 87

Fig. 4.12 Superblock formation at source code level 87

Fig. 4.13 Successive source code superblock formation 89

Fig. 4.14 Example for superblock-based CSE 93

Fig. 4.15 Example for superblock-based DCE 94

Fig. 4.16 Relative WCET estimates for SB-CSE 95

Fig. 4.17 Relative WCET estimates for SB-DCE 96

xiii

xiv List of Figures

Fig. 4.18 Impact of loop unrolling on WCET estimation 99

Fig. 4.19 Example for loop unrolling . 101

Fig. 4.20 Relative WCET estimates for WCET-aware loop unrolling 110

Fig. 4.21 Comparison of unrolling strategies 111

Fig. 4.22 Impact of program size unrolling heuristic on ndes 111

Fig. 4.23 Relative code size for WCET-aware loop unrolling 112

Fig. 4.24 Example for invariance of the worst-case execution path 115

Fig. 4.25 Invariance of IF-THEN structure 118

Fig. 4.26 Invariance of IF-THEN-ELSE structure 118

Fig. 4.27 Potential WCEP switch in IF-THEN-ELSE structure 119

Fig. 4.28 Example for loop unswitching 122

Fig. 4.29 WCEP switch in different segments 124

Fig. 4.30 Relative optimization run time without and with invariant path . . 126

Fig. 4.31 Relative WCET estimates for WCET-aware loop unswitching . . . 126

Fig. 4.32 Comparison of standard and WCET-aware unswitching for

transupp . 127

Fig. 5.1 Code example for potential conflict misses 134

Fig. 5.2 Example for cache content eviction before positioning 135

Fig. 5.3 Example for no eviction after positioning 136

Fig. 5.4 Inappropriate positioning based on profiling 139

Fig. 5.5 Relative WCET estimates for WCET-aware positioning 143

Fig. 5.6 Relative optimization run time for WCET-aware positioning . . . 144

Fig. 5.7 Example for trace scheduling . 146

Fig. 5.8 Parallel execution on TriCore pipelines 149

Fig. 5.9 Bookkeeping during trace scheduling 153

Fig. 5.10 Relative WCET estimates for WCET-aware trace scheduling . . . 154

Fig. 5.11 Relative ACET for WCET-aware trace scheduling 155

Fig. 6.1 Overview of machine learning based compiler heuristic generation 164

Fig. 6.2 Negative impact of function inlining on WCET 166

Fig. 6.3 Variable importance measure . 174

Fig. 6.4 Relative WCET estimates for WCET-aware inlining (training set) 175

Fig. 6.5 Relative WCET estimates for WCET-aware inlining (test set) . . . 176

Fig. 6.6 Impact of loop-invariant code motion on WCET 179

Fig. 6.7 Example for loop-invariant code motion 181

Fig. 6.8 Evolutionary parameter optimization 186

Fig. 6.9 WCC framework with integrated machine learning tool 190

Fig. 6.10 Progress of evolutionary parameter optimization 192

Fig. 6.11 Relative WCET estimates for standard and MLB-WCET LICM . 192

Fig. 7.1 Impact of loop deindexing on standard optimization levels 200

Fig. 7.2 Workflow of iterative compilation using an adaptive compiler . . . 203

Fig. 7.3 Internal code representation and optimization within WCC 204

Fig. 7.4 Rigid optimizer structure of conventional compilers 205

Fig. 7.5 Encoding of optimization sequences 207

Fig. 7.6 One-point crossover reproduction 207

List of Figures xv

Fig. 7.7 Pareto fronts . 210

Fig. 7.8 Combining optimization problems and algorithms 212

Fig. 7.9 Example for hypervolume indicator 215

Fig. 7.10 Adaptive WCC for multi-objective compiler optimization

exploration . 217

Fig. 7.11 Distribution of hypervolume indicator for different objective pairs 219

Fig. 7.12 NSGA-II Pareto front approximation for 〈WCET,ACET〉 220

Fig. 7.13 NSGA-II Pareto front approximation for 〈WCET, code size〉 . . . 221

Fig. 7.14 Cross validation for 〈WCET,ACET〉 224

Fig. 7.15 Cross validation for 〈WCET,Code Size〉 225

Fig. 8.1 Relative WCET estimates for entire optimization sequence 232

Fig. A.1 Galois connection . 238

List of Tables

Table 3.1 Available standard source code level optimizations 29

Table 3.2 Available standard assembly level optimizations 32

Table 3.3 Precision of loop analysis . 53

Table 3.4 Run times of loop analysis . 54

Table 4.1 Characteristics of evaluated benchmarks 73

Table 4.2 ACET results for SB-optimizations 96

Table 4.3 Benchmark characteristics . 125

Table 5.1 Characteristics of evaluated benchmarks 143

Table 6.1 Accuracy and class recall based on LOOCV 173

Table 6.2 Training set: overview of the impact on WCET 174

Table 6.3 Relative code size after inlining 177

Table 6.4 Learning algorithms with possible and best parameter settings . 190

Table 6.5 Performance results for different parameter combinations 191

Table 7.1 Dominance ranking results for 〈WCET,ACET〉 and

〈WCET,Code Size〉 using Mann-Whitney rank sum test 218

Table 7.2 Hypervolume indicator results for 〈WCET,ACET〉 and

〈WCET,Code Size〉 using Mann-Whitney rank sum test 219

xvii

Chapter 1

Introduction

Contents

1.1 Design of Embedded Real-Time Systems . 3

1.1.1 Industrial Practice for Meeting Timing Constraints 5

1.1.2 WCET-Aware Compilation . 7

1.2 Contribution of This Work . 9

1.3 Outline . 11

Computer systems are of vital importance to human life. In the previous decades,

computers operated as large mainframes to assist people in their professional ac-

tivities by processing and storing data. Following this era, personal computers have

revolutionized the nineties by providing computation power to a vast portion of the

world population. The trend of miniaturization has continued up to these days, lead-

ing to small and powerful systems that are often integrated into larger products.

While mainframes and desktop computers were stationary, the systems of the fu-

ture change the perception of computer technology. They accompany the user per-

manently everywhere, either as small devices carried around or as part of systems

encountered every day. Due to their disappearance by weaving into larger services,

terms such as pervasive computing or ubiquitous systems [Wei99] have become pop-

ular, expressing the characteristics of this next-generation information technology.

The technical basis for this technology are cooperating embedded systems. The

main characteristics of these systems are their integration into a larger product and

information processing as their field of application [Mar10]. The rapidly increasing

performance and the drop in the price of processors employed in embedded systems

make them attractive to a large number of applications.

The following, incomplete list provides an overview of the major application

domains for embedded systems as well as their properties:

Telecommunication: The most prominent example in this domain are mobile

phones with a continuously growing market. Nowadays, these devices do not only

provide functionality for communication but also features like a digital camera or

internet surfing. Other examples are telecommunication switching centers for the

coordination of different communication services.

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_1, © Springer Science+Business Media B.V. 2011

1

http://dx.doi.org/10.1007/978-90-481-9929-7_1

2 1 Introduction

Consumer Electronics: Modern devices have to cope with an increasing amount

of video and audio data. In addition, companies can only survive on the market

when products with new services and an improved quality are offered. Such high

requirements can only be guaranteed when high-performance embedded systems

are involved. Examples for consumer electronics are navigation systems, PDAs,

television, or game consoles.

Automotive/Avionics: Traditionally, cars were considered as the typical domain of

electrical and mechanical engineers. This view has dramatically changed in the last

years. The current trend in the automotive and avionics domain goes towards the in-

tegration of many services on powerful electronic hardware platforms. Electronics

and software represent a continuously increasing share in the added value of auto-

motive products constituting up to 90% of all automotive innovations [FBH+06].

For example, modern cars like the BMW 7-series are equipped with more than 70

different processors executing more than 60 MB of software [Saa03]. In a similar

fashion, modern aircrafts can not be flown without the assistance of computers.

All these application domains impose high requirements on modern embedded

systems. Among economical requirements, such as low development costs and short

time-to-market [Vah02], the devices must satisfy various non-functional require-

ments. The following are considered to be highly important objectives for current

embedded systems:

• dependability

• temperature efficiency

• energy efficiency

• average-case performance

• worst-case performance

Embedded systems are becoming more and more pervasive, leading to an in-

creasing reliance on their continual provision of correct services. Hence, these sys-

tems have to be highly dependable. For example, the system of a car should be

fault-tolerant, i.e., continue operating correctly after a fault, safe and easy to main-

tain in a reasonable amount of time. In the context of reliability, temperature plays

an important role. Thermal hot spots degrade reliability, but also have a negative

impact on system performance, and increase cooling costs and leakage power. One

way to reduce peak temperatures and the frequency of hot spots is the application

of temperature-aware scheduling policies [HXV+05].

Energy efficiency plays a crucial role for many embedded systems, in particular

in the domain of consumer electronics. Since a significant portion of these devices

operates as portable systems on battery power, the battery lifetime decides about the

success of the product. Devices that have to be frequently charged will be hardly ac-

cepted by the consumer. The energy optimization process can be considered as an in-

terdisciplinary work between hardware and software designers. As demonstrated in

different studies, slow main memory accounts for up to 70% of the system’s power

budget [KC02]. To diminish this effect, system designers place small, low-power

memories close to the processor. A popular example for highly efficient memories

are scratchpads which, however, require explicit support from the compiler for their

1.1 Design of Embedded Real-Time Systems 3

utilization. Examples for energy-aware scratchpad allocation techniques are found

in [WM06, VM07].

Simultaneously, the utilization of small memories has a positive effect on the sys-

tem’s average-case performance. The latter denotes the performance of a system that

is run with a representative set of input data. Due to the increasing performance gap

between large memories and processors [Mac02], the performance of the system is

not governed by the processor but by the slow memory. This effect is known as the

memory wall problem [WM95]. Exploiting small memories reduces the number of

processor idle cycles resulting from the bottleneck to slow memories. Further hard-

ware features found in modern processors to improve the average-case performance

are caches, branch prediction, or speculative execution. These performance enhanc-

ing features automatically shorten the program execution for the average case but

also introduce a variance in the execution time of operations. A well-known example

is a cache-based system where the execution time of an operation may significantly

vary depending on whether a cache hit or cache miss was encountered. Besides

hardware optimization, system designers may improve the performance of software

by the utilization of optimizing compilers. In the previous decades, a large portfolio

of average-case execution time (ACET) optimizations has been developed [ASU86,

PW86, Muc97]. With the increasing popularity of embedded systems, various com-

piler optimizations dedicated to these hardware platforms were presented in the last

years [Leu00].

Embedded systems often interact with their physical environment. To express

their strong link to physics, these systems are also referred to as cyber-physical

systems [Lee07]. In a physical environment, temporal requirements have to be ful-

filled. Primarily in safety-critical application domains, such as automotive or avion-

ics, timing deadlines must be satisfied. Otherwise, physical damage or even loss

of life could occur. For example, it is essential to know if an airbag in a car will

fire fast enough to save lives. To satisfy stringent timing constraints, offline guaran-

tees have to be derived, serving as a specification of the worst-case performance of

the system. This performance is defined by the worst-case input data and a system

state that leads to the maximal execution time of the system. If these offline guar-

antees are known, the system designer can ensure that timing constraints are met by

either reducing the functionality of the original application, or by choosing a hard-

ware platform where the executed tasks do not exceed their deadlines. Due to these

critical timing constraints but also the high performance requirements imposed on

modern embedded systems, their design represents a challenging multi-objective

optimization problem.

In the following, challenges faced in the design process of time-critical embedded

systems are discussed in more detail since the techniques developed in this book aim

at an optimization of these devices.

1.1 Design of Embedded Real-Time Systems

Correct temporal behavior is a necessary property of systems called real-time sys-

tems. By definition, the correctness of a real-time system depends not only on

4 1 Introduction

Fig. 1.1 Execution time distribution

the results of the computation, but also on the time at which the results are pro-

duced [Sta88]. Systems where the deadline must not be missed under any circum-

stances are termed hard real-time systems. An important parameter to reason about

the timeliness is the worst-case execution time (WCET). Figure 1.1 depicts the rel-

evant timing properties of a real-time task which represents a unit of scheduling by

an operating system. A task exhibits a certain variation of execution time depending

on input data and different behaviors of the environment. The horizontal axis repre-

sents possible execution times while the vertical axis denotes their distribution. The

WCET is the longest execution time that can ever occur. To find the maximal exe-

cution time it is, however, not feasible to exhaustively explore all possible execution

times since software of realistic sizes that is run on modern processor architectures

exhibits a too large state space. A simulation of the task with predefined input sets

will possibly not observe the actual WCET. Therefore, these measurements deliver

insufficient results (see WCETMEAS) for the verification of a hard real-time sys-

tem.

To reason about the WCET, formal methods are used instead. They analyze the

system statically in order to derive sound properties of its temporal behavior. How-

ever, due to undecidability it is in general not possible to estimate the WCET, other-

wise one could solve the halting problem. Thus, the WCET can only be computed

for a restricted set of programs that meet certain constraints: the program under

analysis is guaranteed to terminate and recursion depths as well as loop iteration

counts must be explicitly bounded.

But even with these restrictions, it is impossible to compute the actual WCET.

Modern processors are equipped with complex architectural features, such as super-

scalar pipelines or caches, which can often not be precisely analyzed by static meth-

ods. Any encountered uncertainties must be conservatively approximated and yield

overapproximations. Furthermore, a sound approximation of the actual WCET de-

mands an abstraction of possible inputs and initial states of the system. This manda-

tory abstraction introduces another source of imprecision. As a consequence, the

determination of the actual WCET has to be relaxed to the derivation of an up-

per bound on the execution time of the task. These bounds represent the estimated

WCET (cf. WCETEST in Fig. 1.1). The process of estimating the WCET is called

timing analysis.

1.1 Design of Embedded Real-Time Systems 5

A reliable timing analysis must satisfy the following constraints:

• Safeness: WCET ≤ WCETEST

• Tightness: WCETEST − WCET → 0

Safeness is a mandatory property that must be met by any WCET analysis. Tight-

ness serves as a metric for precision since tighter estimations reflect the actual

WCET more precisely.

A notion related to the WCET is the best-case execution time (BCET) which

represents the shortest execution time. In this work, the BCET will be not explic-

itly considered. However, the presented analyses and optimizations can be easily

extended to cover this metric.

1.1.1 Industrial Practice for Meeting Timing Constraints

The goal of the design of embedded real-time systems is the development of an

efficient system with a high worst-case performance, i.e., a system specified by a

low WCET. Optimizing the worst-case performance in the development phase is

crucial for the success of the product. The reduction of the WCET may lead to a

safer system since timing deadlines which may be missed before the optimization

are guaranteed to be satisfied. Moreover, an improved worst-case performance can

significantly cut the product costs since cheaper hardware may be utilized for the

optimized system while still satisfying timing constraints.

However, the current design process fails to deliver embedded real-time systems

with a high worst-case performance. This is due to the fundamental problem of time-

critical system design: the lack of timing in embedded software [Vah08]. The fact

that no notion of time is available constitutes a common problem in the automotive

and avionics application domain.

A prominent example from industry is AUTOSAR [Ric06], an initiative founded

by leading car manufacturers to establish standards for automotive electrics/electro-

nics (E/E) architectures. The initial missing specification of timing requirements in

the meta-models of the project is considered as one of its major weak points [Ric06].

A similar situation can be observed in safety-critical avionics software running on

integrated modular avionics (IMA) architectures [SLPH+05, GP07]. Researchers

have recognized this crucial issue and appeal for a reinvention of computer science

with regard to a clear notion of time [Lee05].

As a consequence of the missing timing-aware software development tools (like

compilers), it is common practice in industrial environments to tune the worst-case

performance by a trial-and-error based approach. This is illustrated in Fig. 1.2. The

design process starts with a specification of the embedded systems software. Due

to the complexity of embedded applications, systems are often modeled graphically

using software engineering tools like ASCET [ETA10]. These tools generate code

in a high-level language, predominantly ANSI C [Sch00], which is translated into

machine code by a compiler.

6 1 Introduction

Fig. 1.2 Trial-and-error

based design process

In the next step, the generated binary executable is utilized for WCET measure-

ments. As it is known that measurements may yield an unsafe under-approximation

of the actual WCET, system designers add a safety margin to the measured value.

This accumulated value, which is considered as the system’s WCET, is used for

the verification of timing constraints. In case of violated constraints, the design has

to be modified based on the developer’s intuition. For this purpose either the soft-

ware specification in the first step or the generated code in the second step (cf.

Fig. 1.2) is manually modified. After another compilation phase, a repetitive ver-

ification of real-time constraints follows. This cyclic process is repeated until the

resulting (measured) WCET promises to meet the system’s timing specifications.

The manual modification of the software specification or the program code is

challenging since the well-known principles of ACET optimizations are not appli-

cable: optimizing the most frequently executed code may not succeed for real-time

systems. Hence, the system designer is faced with the following two central issues:

1. Subject of Optimization: What should be modified in the software to improve

the worst-case performance?

2. Quantification: Which impact does a modification of the software exhibit on the

worst-case performance?

Since the answer to these questions is often not known, the iterative process of

code generation and verification leads to high development times. As the number of

required trials to meet timing constraints is hard to predict, the development time

becomes non-deterministic. This situation does not conform to today’s short time-

to-market periods.

The design shown in Fig. 1.2 may also boost production costs since the devel-

opers are forced to utilize oversized and expensive hardware. This is due to two

reasons. First, manual tuning of code usually yields poorly optimized software. Sec-

ond, the safety margin, which is added to the measured WCET, may be chosen too

large. As a result, system resources are wasted.

The above discussion emphasizes that the current trial-and-error based approach

used in industry is not suitable for an efficient design of competitive embedded real-

time systems. Besides, the common use of WCET measurements is highly unsafe

1.1 Design of Embedded Real-Time Systems 7

since no guarantees can be deduced that the observed run times do not violate timing

constraints.

The first step to improve this industrial design flow would be the substitution of

WCET measurements by a static timing analyses. This way the employed timing

information becomes more precise since a safety margin is not required any more.

Consequently, cheaper hardware can be used for the development. Moreover, the

considered WCET information gets safe, removing the danger of potentially violat-

ing timing constraints. However, this modification of the design flow does not help

to avoid the inefficient trial-and-error based tuning since the need for manual soft-

ware modifications remains. Hence, long development times and low-performance

code persist.

It becomes clear that an automatic code generation minimizing the worst-case

execution time is highly desired. Its application would not only significantly reduce

the time-to-market period but would also allow the utilization of cheaper hardware

for the highly optimized code. In this book, the drastic lack of methods for an au-

tomatic minimization of the WCET estimation of embedded software is addressed.

The proposed WCET-aware compiler automatically reduces the program’s WCET,

thus completely removes the current tedious and error-prone trial-and-error based

design. The idea behind WCET-aware compilation as well as its challenges are pre-

sented in the following.

1.1.2 WCET-Aware Compilation

With the increasing complexity of embedded software, high code quality can only

be achieved with an optimizing compiler. The vital role of compilers is continu-

ously growing with the importance of embedded software. For example, it has been

estimated that embedded software will account for approximately 40% of total de-

velopment costs in a car by 2010 [HKK04].

State-of-the-art compilers offer a vast spectrum of optimizations with the objec-

tive to minimize the average-case execution time or energy dissipation like e.g., the

encc compiler [SW+10]. To enable a WCET-aware code generation, the compiler

requires a tight integration of a static timing analyzer which estimates the WCET of

the program under analysis. The invocation of the WCET analyzer should be per-

formed automatically by the compiler in order to relieve the user from the burden

of a manual configuration and execution of the analyzer. Afterwards, an automatic

import of WCET data should take place to establish a WCET timing model within

the compiler that can be exploited for optimizations.

The WCET awareness in the compiler offers a significant advantage. Any trans-

formation to the code that is executed on an advanced target architecture is highly

non-intuitive regarding its impact on the timing. This leads to the well-know prob-

lem that optimizations performed by current compilers may end up in a degraded

system performance [ZCS03, CFA+07, LOW09]. On the contrary, the existence of

a timing model enables an evaluation of code modifications and an avoidance of

adverse effects.

8 1 Introduction

Fig. 1.3 Worst-case

execution path switch

1.1.2.1 Challenges for WCET Minimization

Compared to traditional compiler optimizations, WCET-aware optimization im-

poses novel challenges to the compiler. The well-known rule “make the common

case fast” [HP03] is not applicable to real-time systems since infrequently executed

portions of the code may significantly contribute to the program’s WCET, turning

them into promising optimization candidates.

To determine the crucial parts of the code, the compiler has to find the worst-case

execution path (WCEP) which is the longest path through the program. Its length

corresponds to the WCET and its shortening is equivalent to the reduction of the

program’s WCET. Other parts of the code that are not lying on the WCEP do not

contribute to the worst-case performance and are not suitable for optimization.

For an effective WCET reduction, it is, however, not sufficient to compute the

WCEP once and conduct all optimization steps on this initial data. The reason is the

instability of the WCEP, also known as the WCEP switch. Figure 1.3 illustrates this

issue with a control flow graph (CFG) where nodes represent basic blocks with their

corresponding WCETs and edges denote control flow dependencies. Bold edges

mark the WCEP. Starting with the CFG in Fig. 1.3(a), a transformation may opti-

mize block b by 30 cycles. As a result, the WCEP switches to the right branch of

the CFG as seen in Fig. 1.3(b). However, the overall WCET of 140 cycles did not

decrease by 30 cycles but only by 20 as the length of the new WCEP amounts to

120 cycles. Optimizations have to be aware of the switch to avoid further transfor-

mations on the outdated WCEP.

To sum up, the challenges that a WCET-aware compiler has to face are the fol-

lowing:

• Existence of a Precise WCET Timing Model

At any point during the optimization process, the compiler requires a detailed

knowledge of the temporal behavior of the program under analysis. The exploited

WCET timing models steer a systematic WCET minimization.

• Novel Optimization Paradigms

Traditional compiler optimizations that predominantly aim at an optimization

of the average-case performance may be not suitable for WCET minimization.

Hence, either their adaption or even a complete redesign becomes inevitable.

1.2 Contribution of This Work 9

• Awareness of WCEP Switches

Code modifications necessitate an update of WCET information to warrant

that optimizations do not operate on an outdated WCEP.

• Multi-objective Optimizations

To suit multiple requirements imposed on the design of modern embedded

real-time systems, a sophisticated compiler should provide the infrastructure

for multi-objective optimizations, comprising the crucial cost functions WCET,

ACET, and code size.

The previous discussion has emphasized the importance of optimizing compilers

to provide the industry with embedded systems that satisfy both high efficiency

requirements and stringent timing constraints. The following section provides an

overview of the contributions of this book towards the optimization of embedded

real-time systems.

1.2 Contribution of This Work

Conventional methodologies are not capable of assisting system designers during

WCET-aware code generation. To overcome the current lack of tools, this work

proposes a compiler framework, analyses, and a wide range of optimizations for

WCET minimization. In detail, the following contributions are made:

• WCET-aware Compiler Framework

The developed WCET-aware C compiler framework WCC represents a rec-

onciliation of a sophisticated compiler and a timing analyzer. WCC is the first

and currently only fully functional WCET-aware compiler (see overview of re-

lated work in Sect. 3.2). It is compliant with the ANSI C standard. Its target

architecture is the Infineon TriCore TC1796 processor [Inf08a], a state-of-the-art

architecture widely employed in the automotive industry. Due to its architectural

features, such as caches and superscalar pipelines, code transformations can be

evaluated in a realistic environment. This is in contrast to other ad-hoc compiler

frameworks used by the research community—these frameworks use simple pro-

cessors without caches and a tight integration of a WCET analyzer is not avail-

able. Extensions to the compiler framework that were developed in the course of

this book will be explicitly pointed out in the respective sections.

• Static Loop Analyzer

The infrastructure of the WCC framework has been extended by a static loop

analysis which was developed in the course of this book. The loop analysis com-

putes loop iteration counts automatically, representing mandatory information for

a static WCET analysis. This way, the user is relieved from an error-prone and

tedious specification of program characteristics turning WCC into a fully auto-

mated development tool.

• Study of Impact of Standard Optimizations on WCET

Due to the current lack of suitable tools, the potential of code transformations

on the temporal behavior of programs is only sparsely dealt with in today’s liter-

ature. Using WCC’s tight binding to a WCET analyzer, the impact of traditional

10 1 Introduction

ACET optimizations on the program’s worst-case behavior is explored. The book

indicates that effects of standard optimizations may considerably differ for both

objectives, the ACET and WCET.

• Novel WCET-aware Source Code and Assembly Level Optimizations

The integration of a detailed WCET timing model enables the development

of novel WCET-aware source code and assembly level optimizations. The book

presents numerous optimizations that are derived from standard optimizations

but have either been extended by WCET concepts or completely redesigned to

better suit a WCET minimization. To exploit the high optimization potential of

compiler optimizations at the source code level, detailed WCET data has to be

imported from the compiler backend into the compiler frontend. For this purpose,

the book proposes a technique called back-annotation. In addition, the book

presents a paradigm called invariant path which helps to accelerate compiler

optimizations suffering from worst-case execution path switches.

• Machine Learning Based Compiler Heuristics for WCET Reduction

The development of heuristics for compiler optimizations which efficiently re-

duce a given objective for a broad range of applications is a tedious task that

requires both a high amount of expertise and an extensive trial-and-error tuning.

Machine learning has shown its capabilities for an automatic generation of heuris-

tics used by optimizing compilers. The advantages of these heuristics are that they

can be easily adopted to a new environment and often outperform hand-crafted

compiler optimizations. In this book, supervised learning approaches are stud-

ied for the first time in the context of an automatic minimization of the WCET.

A machine learning tool is integrated into the WCC framework and exploited for

an automatic generation of machine learning based compiler heuristics for WCET

reduction.

• Multi-objective Exploration of Compiler Optimizations

The quality of the code significantly depends on the choice of compiler opti-

mizations and their order. Modern compilers provide a vast portfolio of optimiza-

tions which exhibit complex mutual interactions and affect different design objec-

tives in a hardly predictable fashion. This book is the first to explicitly address the

multi-objective nature of embedded system design at compiler level by presenting

a multi-objective exploration of compiler optimizations. Using evolutionary algo-

rithms, the WCC framework is exploited for the search of optimization sequences

with conflicting goals. The found solutions represent Pareto front approximations

and indicate which trade-offs between the objectives WCET, ACET, and code

size can be achieved. Providing these automatically generated solutions, the sys-

tem designer is offered an overview of feasible solutions which help to find the

optimization sequence that best suits the system requirements.

All of the proposed optimizations are implemented in the WCC compiler. The

effectiveness of each optimization is demonstrated on a large number of real-life

benchmarks, showing significant improvements for the considered optimization

goals. As the presented optimizations are neither restricted to a particular program-

ming language nor one specific target architecture, they can be easily adapted to

1.3 Outline 11

other environments. Therefore, the overall contribution of this book is to offer re-

searchers, embedded system designers and compiler writers a practical guideline for

the optimization of real-time systems.

1.3 Outline

The remainder of this book is organized as follows:

• Chapter 2 gives an overview of existing timing analysis techniques, introduces ba-

sic concepts encountered with the static WCET analysis, and sketches the work-

flow of aiT, the timing analyzer employed in this book.

• Chapter 3 discusses the infrastructure of the WCET-aware compiler with a special

emphasis on the integration of the timing analyzer, the static loop analysis, and

the back-annotation.

• Chapter 4 presents different WCET-aware source code level optimizations as well

as the invariant path paradigm.

• Chapter 5 discusses WCET-aware assembly level optimizations which are

processor-specific, i.e., they exploit particular architectural features.

• Chapter 6 is dedicated to the automatic generation of machine learning based

compiler heuristics for WCET minimization at both the source code and assembly

level.

• Chapter 7 presents the multi-objective exploration of WCC’s standard source

code and assembly level optimizations for embedded real-time systems.

• Chapter 8 concludes the book and gives directions to important areas for future

work.

Chapter 2

WCET Analysis Techniques

Contents

2.1 Introduction . 13

2.2 Approaches for WCET Analysis . 14

2.2.1 Measurement-Based Approach . 14

2.2.2 Static Approach . 14

2.2.3 Hybrid Approach . 15

2.3 Basic Concepts for Static WCET Analysis . 15

2.3.1 Control Flow . 16

2.3.2 Processor Behavioral Analysis . 17

2.3.3 Flow Facts . 19

2.3.4 Bound Calculation . 19

2.4 Static WCET Analyzer aiT . 21

2.1 Introduction

Besides functional correctness, hard real-time systems have to satisfy timing con-

straints. They can be validated by a schedulability analysis that tests whether all

tasks of the real-time system executed on the given hardware satisfy their timing

constraints. The schedulability analysis requires safe and precise bounds on the ex-

ecution time of each task. In this chapter, common timing analysis techniques found

in academia and industry are discussed. Section 2.2 introduces the three main classes

of approaches for a WCET analysis. The static timing analysis is the only method

that guarantees safe WCET estimates. It does not rely on the execution of the code

under analysis but derives its timing information from the program code combined

with abstract models of the hardware architecture. Section 2.3 defines basic terms

involved in the static analysis. Finally, the workflow of the leading static WCET

analyzer aiT [Abs10], which is also exploited in this work, is presented in Sect. 2.4.

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_2, © Springer Science+Business Media B.V. 2011

13

http://dx.doi.org/10.1007/978-90-481-9929-7_2

14 2 WCET Analysis Techniques

2.2 Approaches for WCET Analysis

The general classification of the approaches for a WCET estimation is based on the

distinction whether the considered task is executed or statically analyzed.

2.2.1 Measurement-Based Approach

This method executes the task on the given hardware or in a simulator and mea-

sures the execution time. Representative sets of input data are provided which are

supposed to cover scenarios where the maximal program execution time can be

measured. This method has two main disadvantages.

First, it is not safe since the input to the program leading to the worst-case behav-

ior is in general not known. To guarantee that the WCET is measured, the program

must be executed with all possible input values which is not feasible in practice.

Second, the measurement often requires an instrumentation of the code, e.g., aug-

mentation with instructions to control hardware timers. However, the certification

of safety-critical systems often specifies that the validation is carried out on exactly

the same code that is utilized in the final product. For example, in the avionic do-

main it is mandatory to use the same code for validation that is also later used in the

airplane (Test what you fly and fly what you test [The04]). Hence, the measurement-

based approach is not applicable in such environments.

Measurement-based approaches are currently the most common techniques

found in industry since the hardware under analysis or the respective simulators

are usually available. However, as there is no guarantee that the maximal program

run time was measured, a safety margin is added to the measured execution times

which often leads to highly overestimated timing results [SEG+06].

2.2.2 Static Approach

The static approach emphasizes the safety aspect and produces bounds on the ex-

ecution time which are guaranteed to be never exceeded by the execution time of

the program under analysis. Unlike the measurement-based approach, the static ap-

proach considers all possible input values to the task. To scale down the complexity

of an exhaustive analysis of all values, the large number of possible input data is

reduced using a safe abstraction. In addition, the static approach does not execute

the code on real hardware or a simulator but analyzes the set of possible control flow

paths through the program. Using abstract models of the hardware architecture, the

path with the maximal execution time can be determined. This longest path is called

the worst-case execution path (WCEP) and its length corresponds to the program’s

WCET. The success of the static approach highly depends on the abstract hardware

models. If they are correct and specify the underlying system precisely, safe upper

2.3 Basic Concepts for Static WCET Analysis 15

bounds on the execution time of a program can be defined. However, it is in general

hard to verify the correctness of the abstract models. Another drawback of the static

analysis is that it might produce overestimated results if conservative decisions due

to a lack of information during the analysis have to be taken. Furthermore, complex-

ity of the static approach might be an issue if large programs are analyzed, leading

to high analysis run times.

Currently, the static approach can be mainly found in academia. However, in-

dustry is recognizing the needs for safe WCET estimations. The growing industrial

interest led to first applications of static WCET analysis in the automotive [BEGL05,

SEG+06] and avionics [HLS00, FHL+01, SLPH+05] domain.

2.2.3 Hybrid Approach

The idea behind hybrid approaches is to combine concepts from the measurement-

based and static approach. The hybrid approach identifies so-called single feasible

paths (SFP) which are program paths consisting of a sequence of basic blocks where

the execution is invariant to input data. To find SFPs at source code level, symbolic

analysis on abstract syntax trees can be used [Wol02]. In the next step, the execution

time of the SFPs is measured on real hardware or by cycle-accurate simulators.

For input-dependent branches, input data for a complete branch coverage must be

supplied. The execution time of these parts is also determined by measurements.

In order to cover potential underestimation during the measurement, an additional

safety margin is added to the measured execution time. Finally, the information

of the SFPs is combined with techniques from the static approach to determine

the longest path. The advantage of the hybrid approach is that it does not rely on

complex abstract models of the hardware architecture. However, the uncertainty of

covering the worst-case behavior by the measurement remains since a safe initial

state and worst-case input can not be assumed in all cases. Moreover, instrumented

code is required which may not be allowed in particular certification scenarios. This

approach is used in the analysis tool suite SymTA/S [Sym10].

2.3 Basic Concepts for Static WCET Analysis

As shown in the previous section, the static approach is the only method to com-

pute safe upper bounds on the execution time of a program. For compiler-based

optimizations aiming at an automatic WCET minimization, reliable worst-case tim-

ing information is compulsory to achieve a systematic WCET reduction. Otherwise,

unreliable timing information may result in adverse optimization decisions. This is

the main reason why the WCET data exploited by the developed optimizations is

computed statically.

Using the static approach for compiler optimizations is further motivated by prac-

tical reasons. First, many WCET-aware compiler optimizations operate iteratively,

16 2 WCET Analysis Techniques

requiring multiple updates of the worst-case timing information. The measurement-

based approach does not provide the desired flexibility for a frequent WCET estima-

tion. Second, both the static WCET estimation and compiler optimizations operate

on similar code and data representations enabling a tight exchange of information

between both approaches.

In the following, basic terms found in the context of static WCET analysis are

introduced. Moreover, specific problems and requirements for this class of timing

analysis are discussed.

2.3.1 Control Flow

A static WCET analysis requires information on the hardware timing such as the

execution time of individual instructions. Thus, the analysis must be performed on

the assembly or machine level of the code. In addition, to statically derive a tim-

ing bound of the program, its possible execution flows must be known. This infor-

mation is provided by a control flow analysis which operates on assembly basic

blocks [Muc97]:

Definition 2.1 (Basic block) A basic block is a maximal sequence of instructions

that can be entered only at the first instruction and exited only from the last instruc-

tion.

As a consequence, the first instruction of a basic block may be the entry point of a

function, a jump target, or an instruction that is immediately executed after a jump or

return instruction. Call instructions represent a special case. Typically, they are not

considered as a branch since the control flow continues at the immediate successor

of the call instruction after the callee was processed. Thus, basic blocks may span

across calls. However, if it can not be guaranteed that the control flow continues

immediately after the call instruction, the call must be considered a basic block

boundary. Examples are calls in the Fortran language with alternate returns or ANSI

C exception-handling mechanisms, like setjmp()/longjmp(), which force the

control flow to continue at a point in the program other than the call’s immediate

successor. Since the original source code language might be unknown at assembly

level, timing analyzers must be conservative, thus handling call instructions as basic

block boundaries.

Basic blocks can also be defined at other abstraction levels of the code. For exam-

ple, high-level basic blocks defined at source code level represent sequential code

consisting of statements.

A common data structure to represent the program’s control flow is given by the

control flow graph (CFG):

Definition 2.2 (Control flow graph) A control flow graph is a directed graph G =

(V ,E, i), where nodes V correspond to basic blocks and edges E ⊆ V ×V connect

2.3 Basic Concepts for Static WCET Analysis 17

two nodes vi, vj ∈ V iff vj is executed immediately after vi . i ∈ V represents the

start node, called source, which has no incoming edges: ∄v ∈ V : (v, i) ∈ E.

In literature, a CFG typically represents the control flow within a single function.

On the contrary, an interprocedural control flow graph (ICFG) [LR91] models the

control flow of an entire program across function boundaries. It constitutes the union

of control flow graphs Gf for each function f augmented by call, return, entry, and

exit nodes. Call nodes are connected to the entry nodes of functions they invoke,

while exit nodes are connected to return nodes corresponding to these calls.

A possible execution path π through the ICFG is defined as follows:

Definition 2.3 (Path) A path π through the control flow graph G = (V ,E, i) is a

sequence of basic blocks (v1, . . . , vn) ∈ V ∗, with v1 = i and ∀j ∈ 1, . . . , n − 1 :

(vj , vj+1) ∈ E.

Using the definition of a path, the term program is defined as follows:

Definition 2.4 (Program) All possible paths through the control flow graph G =

(V ,E, i) starting at i and ending in a sink constitute a program P . A sink represents

a block s ∈ V with ∄v ∈ V : (s, v) ∈ E.

The program path with the maximal length, which is expressed by the number of

execution cycles when this path is executed, is referred to as the worst-case execu-

tion path (WCEP).

2.3.2 Processor Behavioral Analysis

The task of the processor behavioral analysis is the determination of timing se-

mantics of the hardware components that influence the execution time of the pro-

gram under analysis. In particular, processor components such as different memo-

ries (caches, scratchpads, etc.), pipelines, and branch predictions must be taken into

account. The result of this analysis is an upper bound for the execution time of each

instruction or basic block.

The processor behavioral analysis relies on an abstract model of the target ar-

chitecture. For a sound approximation, it is not mandatory to model all of the pro-

cessor’s functionalities precisely. Simplified models may be sufficient if they can

guarantee that timing semantics are handled in a conservative way, i.e., the worst-

case timing is never underestimated.

The static WCET analysis of simple processors without caches and pipelines al-

lows a separate consideration of instructions. To estimate the WCET of the program,

the WCET of each basic block is computed by accumulating the execution times of

its instructions [Sha89]. The consideration of instructions independent of their exe-

cution history is no longer valid for modern processors and may result in a WCET

estimation which is not safe. The reasons are context-dependent execution times of

instructions and timing anomalies.

18 2 WCET Analysis Techniques

2.3.2.1 Context-Dependent Timing Analysis

For modern processors, the execution of instructions depends on its context, i.e.,

which instructions were previously executed. Such situations may arise when a ba-

sic block b with more than one predecessor is executed. Depending on the previ-

ously executed block, the cache or pipeline behavior during the execution of b may

vary, leading to different WCETs. Another example are loops. The first loop exe-

cution may have a higher execution time than the following executions since data

must be initially loaded into the cache, leading to compulsory cache misses. Thus, a

sophisticated WCET analyzer must exploit the knowledge of the execution history

to estimate context-dependent upper timing bounds for instructions.

2.3.2.2 Timing Anomalies

Due to the complexity of hardware and software, timing analysis often only be-

comes feasible when abstraction is introduced. Abstraction allows the handling of

unknown input data and enormous spaces of processor states but comes at the cost

of less precision. Unknown parts of the execution states lead to non-determinism if

decisions during the analysis rely on this unknown information [RWT+06]. The sep-

arate consideration of an instruction may lead to different execution times depend-

ing on different assumptions about the missing information. Intuitively, it would be

assumed that a locally faster execution entails a decrease of the overall program’s

WCET. However, on modern processors this does not need to be true. A timing

anomaly is defined as follows [Lun02, The04]:

Definition 2.5 (Timing anomaly) If the change �Ti of the overall execution time

of an instruction i results in a change �TP of the global execution time of program

P , a timing anomaly occurs if either

• �Ti < 0 → �TP < �Ti ∨ �TP > 0, i.e., the acceleration of i leads to a smaller

acceleration of the program’s execution time or the program runs longer than

before,

• �Ti > 0 → �TP > �Ti ∨ �TP < 0, i.e., the program’s execution time is more

extended than the delay of instruction i or the program execution is accelerated.

The crucial case for a WCET estimation is �Ti < 0 → �TP > 0. It points out

that a consideration of a local worst-case scenario at instruction i is not sufficient

for a safe estimation of the WCET. Since verifying the absence of timing anomalies

is provably hard, timing analyzers are forced to consider all possible scenarios, i.e.,

to follow execution through several successor states whenever a state with a non-

deterministic choice between successor states is detected. This may lead to a state

explosion. A first approach towards a more efficient WCET analysis, which exploits

precomputed information about the abstract model of the hardware in order to safely

discard analysis states, was presented in [RS09].

2.3 Basic Concepts for Static WCET Analysis 19

For modern processors, timing anomalies due to three different processor fea-

tures were observed. Speculation timing anomalies arise when costs of an expensive

branch mis-prediction exceed the costs of a cache miss [HLT+03]. Scheduling tim-

ing anomalies occur when dependent instructions are differently scheduled on the

hardware resources, e.g., pipelines, leading to varying execution times of instruction

sequences [Gra69, Lun02]. Therefore, scheduling anomalies can be observed on

out-of-order architectures. But even in-order architectures may show timing anoma-

lies. For example, on the Motorola ColdFire 5307 processor with its pseudo-round

robin cache replacement strategy, an empty cache may not constitute the worst pos-

sible cache behavior w.r.t. the execution time [The04].

2.3.3 Flow Facts

The static WCET estimation is based on static program analyses which attempt to

determine dynamic properties of the program under analysis without actually exe-

cuting it [CC77]. Some of these properties are not decidable in general. In partic-

ular, the determination of the longest path requires the knowledge of loop iteration

counts. However, a static loop analysis is generally not decidable for a concrete pro-

gram semantics since it includes the proof of termination. Thus, an automatic loop

analysis is only feasible for a restricted set of programs [EE00]. To enable an auto-

matic timing analysis of arbitrary programs, the user is typically forced to support

the WCET analyzer with program annotations about the loop iteration counts. In

a similar way, recursion depths and target addresses of dynamic calls and jumps,

which can not be statically determined, make a user annotation mandatory. If the

program execution is dependent on input data, e.g., in sorting algorithms, the user

annotations must respect all potential values that may be provided to the program.

In literature, information about the dynamic behavior of a program is referred to as

flow facts [Kir03].

Definition 2.6 (Flow facts) Flow facts give hints about possible paths through the

control flow graph of a program P . Flow facts can be expressed implicitly by the

program structure or semantics as well as by additional information provided by

user annotations.

2.3.4 Bound Calculation

In literature, three popular approaches to compute upper bounds on the execution

time of a program P based on its (interprocedural) control flow graph are presented.

All these approaches require additional control flow information about loop iteration

counts and recursion depths which can be either provided by an automatic analysis

or manually annotated flow facts.

20 2 WCET Analysis Techniques

The path-based approach [SEE01] models each possible path in the ICFG explic-

itly. For each of these paths, the path length is computed. The length of the longest

path reflects the WCET. The main drawback of this approach is its complexity since

the number of possible paths grows exponentially with the number of control flow

branches. Therefore, heuristic search methods are possibly required. The tree-based

approach [Sha89, CB02] traverses the abstract syntax tree of a program at source

code level in a bottom-up manner and computes upper timing bounds for connected

code constructs. The computation of the timing bounds is steered by predefined

combination rules which state how the execution times of parent constructs are de-

rived based on the execution times of their child constructs. After the computation,

the current construct is collapsed and its WCET is propagated to its parent con-

structs. This approach makes an integration of flow facts difficult and relies on a

clear mapping between the source and machine code which is not always given for

optimized code.

Another approach, which is nowadays widely used, is the implicit path enumera-

tion technique (IPET) [LMW95]. In this approach, the ICFG of a program is trans-

lated into a system of linear constraints. According to Kirchhoff’s rules, the follow-

ing constraints are generated:

∀v, v′ ∈ V, {(v, v′) ∈ E} : c(v) =
∑

(v,v′)∈E

trav(v, v′) ∧

∀v, v′ ∈ V, {(v′, v) ∈ E} : c(v) =
∑

(v′,v)∈E

trav(v′, v)

c(v) represents the execution count of block v and trav(v, v′) reflects the edge

traversal count of edge e = (v, v′). Using these constraints, the control flow can

be modeled as an integer linear program (ILP) [Chv83]. The equations warrant that

the traversal counts of all incoming edges of v are equal to the traversal counts of

all outgoing edges of v.

The problem to be solved is to maximize the overall flow through the ICFG. For

this purpose, an objective function expressing the estimated WCET WCETest of the

program P is formulated:

WCETest =
∑

v∈V

t (v) · c(v)

t (v) represents the WCET of basic block v computed by the processor behavioral

analysis. This sum is a linear combination since the execution times of the blocks are

constants in the integer linear program. Using the sum as objective function to the

ILP as a maximization problem yields the estimated WCET of P , while the results

for c(v) indicate how often v will be executed on the WCEP. For a more precise

analysis, the model can be extended by execution contexts.

IPET is a flexible approach since it allows an easy addition of complementary

constraints about the control flow, such as information about mutually exclusive

paths that increase the precision of the upper bounds. Unlike the path-based ap-

proach, IPET does not explicitly model paths, thus the order of blocks lying on the

2.4 Static WCET Analyzer aiT 21

Fig. 2.1 Workflow of static

WCET analyzer aiT

WCEP is not apparent. Despite the fact that solving of integer linear programs is

N P -complete, many large ILP problems can be solved in practice with a moderate

amount of effort. For example, the WCET analysis provided by the tool aiT per-

formed on an Intel Xeon 2.4 GHz machine takes 34 seconds for a simple cyclic

redundancy check (CRC) computation [MWRG10] or 181 seconds for the encryp-

tion of a 32 bit message employing the commonly used secure hash algorithm

(SHA) [GRE+01].

2.4 Static WCET Analyzer aiT

A leading static WCET analyzer is the tool aiT that is developed by the company

AbsInt [Abs10]. Since it is used in this work for the calculation of upper timing

bounds, its workflow will be briefly discussed in the following.

The modular architecture of aiT is depicted in Fig. 2.1 and consists of the fol-

lowing steps:

• As input, the timing analyzer expects a binary executable. It is disassembled by

the tool exec2crl in order to construct an interprocedural control flow graph us-

ing the human-readable intermediate format CRL2 (Control Flow Representation

Language) [The02]. Moreover, flow facts from the parameter file called AIS might

be imported to annotate the constructed ICFG with additional information. The

initial CRL2 file is passed to the subsequent stages of aiT which annotate the file

with further analysis results.

• The value analysis is based on an interval analysis to determine a sound approx-

imation of potential values in the processor registers occurring at any possible

program point. The values of the registers are exploited for the computation of

possible addresses used for memory accesses. Moreover, the register values are

exploited for the detection of infeasible paths, i.e., mutually exclusive paths that

are never executed simultaneously in the same context.

• The static loop analysis tries to automatically determine the number of loop iter-

ations for each loop in the ICFG. The analysis is based on pattern matching and

involves results from the value analysis. aiT’s loop analyzer succeeds for simple

loops. Hence, user annotations for the remaining loops are required.

22 2 WCET Analysis Techniques

• The integrated cache/pipeline analysis relies on the register value ranges from

the value analysis. The cache analysis tries to statically precompute cache con-

tents. It performs a must/may analysis to classify memory references into sure

cache hits and potential cache misses [FW99, HLT+03]. The pipeline analysis

uses an abstract model of the target architecture to simulate the behavior of the

pipeline [The04]. Considering timing anomalies and integrating results from the

cache analysis, the pipeline analysis derives upper bounds on the execution time

for each basic block depending on its context.

• The path analysis computes upper bounds for the overall program execution time.

The computation is based on the IPET approach which exploits an ILP using the

ICFG coded in CRL2 as well as timing results from the cache/pipeline analysis.

Chapter 3

WCC—WCET-Aware C Compiler

Contents

3.1 Introduction . 23

3.2 Related Work . 24

3.3 Structure of the WCC Compiler . 26

3.3.1 Compiler Frontend ICD-C IR . 26

3.3.2 Standard Source Code Level Optimizations 29

3.3.3 Code Selector . 29

3.3.4 Compiler Backend LLIR . 30

3.3.5 Standard Assembly Level Optimizations . 31

3.3.6 Code Generator . 32

3.4 Integration of WCET Analyzer . 33

3.4.1 Conversion from LLIR to CRL2 . 33

3.4.2 Invocation of aiT . 38

3.4.3 Import of Worst-Case Execution Data . 39

3.5 Modeling of Flow Facts . 39

3.5.1 Specification of Flow Facts . 40

3.5.2 Translation and Transformation of Flow Facts 41

3.6 Static Loop Analysis . 41

3.6.1 Related Work . 42

3.6.2 Abstract Interpretation . 43

3.6.3 Interprocedural Program Slicing . 46

3.6.4 Polyhedral Evaluation . 48

3.6.5 Experimental Results . 52

3.7 Back-Annotation . 54

3.7.1 Mapping of Low-Level to High-Level Components 55

3.7.2 Back-Annotated Data . 57

3.8 TriCore Processor . 57

3.1 Introduction

Most embedded/cyber-physical systems have to respect timing constraints. System

designers attempt to reduce the WCET of these systems since its reduction leads

to a cut in the production costs: slower and cheaper processors can be used that

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_3, © Springer Science+Business Media B.V. 2011

23

http://dx.doi.org/10.1007/978-90-481-9929-7_3

24 3 WCC—WCET-Aware C Compiler

still satisfy the stringent timing constraints. Compilers play an essential role in the

system design. Previous studies [Pua06, SMR+05, ZKW+05, FK09] have indicated

the high potential for performance optimizations of embedded applications. Due

to this reason, compilers promise to be an effective tool for an automatic WCET

minimization.

Modern compilers fail to accomplish this goal since they are not aware of timing

semantics. Current compiler optimizations mainly focus on the minimization of the

average-case execution time. However, due to the lack of a precise timing model,

the effects of optimizations can not be quantified, thus there is no guarantee for

an improvement of the code performance. Even adverse effects on the transformed

code can often be observed [CSS99, CFA+07, LOW09].

Another reason for the failure of current compilers is the almost unknown impact

of ACET optimizations on the program’s WCET. This uncertainty frequently leads

to the common industrial practice of disabling all compiler optimizations during

code generation of time-critical software.

In this chapter, the lack of code generation tools for embedded real-time systems

is addressed. The WCET-aware C compiler WCC is proposed which enables an

effective and automatic WCET minimization. The key feature of WCC is its tight

coupling to a static WCET analyzer, the tool aiT (cf. Sect. 2.4), which allows an

integration of a precise worst-case timing data into the compiler. Taking the notion

of the program’s worst-case timing behavior into account enables a detailed assess-

ment of code transformations on the WCET on the one hand. On the other hand, the

exploitation of the timing data provides a basis for the development of WCET-aware

optimizations and analyses which aim at an aggressive WCET minimization.

The remainder of this chapter is organized as follows. Section 3.2 gives an

overview of related work to existing frameworks that integrate WCET analyses.

In Sect. 3.3, the basic workflow of WCC, which is similar to standard optimizing

compilers, is presented to provide the reader with an overall overview of the WCET-

aware compilation flow. The integration of a static WCET analyzer into the compiler

framework is discussed in Sect. 3.4. In Sect. 3.5, modeling of flow facts is presented.

A static loop analysis, which was developed in this book to automatically compute

loop iteration counts, is discussed in Sect. 3.6. To exploit optimization potential for

WCET minimization at source code level, WCET timing data has to be translated

from the compiler’s backend into its frontend. This technique, which was developed

in this work, is called back-annotation and will be introduced in Sect. 3.7. Finally, an

overview of WCC’s target architecture, the Infineon TriCore processor, is provided

in Sect. 3.8.

3.2 Related Work

A first approach to integrate a WCET analysis into a compiler was presented

in [Bör96]. The framework expects flow facts in the form of source code pragmas

which are forwarded to the compiler backend. Since no mechanisms to keep flow

3.2 Related Work 25

facts consistent during code transformation are supported, the application of com-

piler optimizations might invalidate the specified flow facts. Moreover, this frame-

work uses a path-based WCET calculation which does not scale well for larger

programs. Also, the target architecture is the Intel 8051 which is a simple and pre-

dictable processor since no cache, branch prediction, and pipeline are available.

In [Kir02], a prototype of a static timing analyzer for programs written in wcetC

was presented. The language wcetC is a subset of C with extensions that allow to

annotate the C code with control flow information that is exploited for the detection

of infeasible paths. The tool cooperates with a C compiler that translates the source

code into object code to perform the timing analysis. Due to missing automatic

mechanisms for flow fact transformation, any structural code transformations by

the compiler must be avoided. The supported platforms are the simple processors

M68000, M68360, and C167.

The interactive compilation system called VISTA [ZKW+04] translates a C

source code into a low-level IR used for code optimizations. The compiler frame-

work integrates a proprietary static WCET analyzer supporting simple processors

without caches like the StarCore SC100. VISTA is equipped with a loop analysis

which is only able to detect simply structured loops. Code containing recursion can

not be analyzed. The employed timing analyzer has a limited scalability, enabling

the analysis of exclusively small program codes. Since the compiler lacks a high-

level representation of the code, no optimization potential for WCET reduction at

source code level can be exploited.

The open-source tool Heptane [CP01] is a static WCET analyzer with multi-

target support for simple processors like StrongARM 1110 or Hitachi H8/300. It

expects a C source code as input that is parsed into a high-level IR. Next, the code

can be translated into a low-level IR. Heptane exclusively supports WCET-aware as-

sembly level optimizations. The WCET can be computed either at source code level

via a tree-based approach using combination rules for source code statements, or an

ILP-based method that operates on a CFG extracted from the task’s binary. Since

the WCET analysis does not support a detection of infeasible paths, the derived

upper bounds may be possibly considerably overestimated. Moreover, compiler op-

timizations are not supported during WCET analysis and must be disabled to avoid

a mismatch between the syntax tree and the control flow graph.

SWEET [Erm03] is a static WCET analyzer with a research focus on flow anal-

ysis. It incorporates different techniques for the calculation of loop iteration counts

and the detection of infeasible paths. Due to the missing import of WCET data into a

compiler framework, the development of compiler optimizations aiming at a WCET

minimization is not possible. The flow analysis is performed on a medium-level in-

termediate representation (MIR) of the code which is carried out after source code

compiler optimizations. To avoid a mismatch between the MIR and the object code

used for the WCET analysis, assembly level optimizations are not allowed. In ad-

dition, SWEET is coupled to a research compiler which is only able to process a

subset of ANSI C [Sch00]. The supported pipeline analysis is limited to in-order

pipelines and does not consider timing anomalies. SWEET’s target architectures are

the ARM9 and NEC V850E processor.

26 3 WCC—WCET-Aware C Compiler

An integration of a static WCET analyzer into a compiler framework was pre-

sented in [PSK08]. The framework, called TUBOUND, allows the application of

source code optimizations since flow facts specified as pragmas in the ANSI C code

are automatically updated. This is achieved by extending supported optimizations

by a mechanism that keeps flow facts consistent. This approach resembles the han-

dling of flow facts in the WCC framework. However, in contrast to WCC’s 21 flow

fact aware source code optimizations, [PSK08] reports about three supported opti-

mizations. Assembly optimizations are not available in TUBOUND due to a missing

compiler backend support. Currently, the tool supports the simple C167 processor

lacking caches and a pipeline.

Chronos [LLM+07] is an open-source static WCET analysis tool which trans-

lates C code into a binary executable and uses the binary code for the timing analy-

sis. The main goal of Chronos is to estimate the WCET for modern processors with

complex micro-architectural features. To this end, the WCET analysis supports the

SimpleScalar simulator infrastructure and models its out-of-order pipeline, its dy-

namic branch prediction, and the processor’s I-cache. The computed WCET data

has been used in the Chronos framework for assembly level optimizations, such as a

WCET-aware scratchpad allocation of data [SMR+05] or I-cache optimizations for

body-area sensor network applications [LJC+10].

3.3 Structure of the WCC Compiler

In this section, the overall structure of WCC is presented. Some components of the

compiler are discussed in more detail to provide the reader with a notion of how

WCET-aware code generation and optimization is realized in WCC. Moreover, the

following discussion indicates how the components that were developed in this book

incorporate into the overall compilation flow.

The overall structure of WCC is depicted in Fig. 3.1. It consists of general com-

ponents that can be found in ordinary optimizing compilers for the production of ef-

ficient assembly code. To support WCET-aware compilation, complementary func-

tionality is required. The functionality comprises the generation and maintenance of

flow facts, the production of input for the WCET analyzer, and the import of a worst-

case timing data into the compiler. In the following, the workflow of WCC that

resembles a traditional compiler design is introduced. These stages are connected

by solid arrows in Fig. 3.1, while components turning WCC into a WCET-aware

compiler are depicted with dashed arrows and will be discussed in the next sections.

3.3.1 Compiler Frontend ICD-C IR

The first step of the workflow is the parsing of ANSI C source files using the ICD-C

compiler frontend [Inf10a], consisting of a parser, an intermediate representation

(IR) of the code, and ACET source code optimizations. The parser is compliant

3.3 Structure of the WCC Compiler 27

Fig. 3.1 Workflow of WCET-aware C compiler WCC

with the ANSI C standard. It comprises a lexical, a syntax, and a semantic analy-

sis [ASU86]. The parsed code is finally translated into a high-level IR of the code.

IRs are required for an automated code optimization and generation since a compiler

requires internal data structures that model relevant characteristics of the program.

Within the frontend, WCC uses a machine-independent high-level IR called ICD-C

IR. Due to its early construction in the compiler chain, the IR is characterized by

its closeness to the source language, enabling a back-transformation into the source

code.

ANSI C constructs are represented by abstract data types. The simplified class

model of the ICD-C IR is shown in Fig. 3.2. A program may consist of multiple

source files represented by compilation units. The body of a function is modeled

by a top compound statement which corresponds to code embedded in curly braces

({}). The abstract statement class represents different statement types and may hold

further statements or expressions which in turn may exhibit a hierarchical structure

to allow the representation of nested expressions as shown in the following example.

Example 3.1 The while-loop statement holding an assignment expression with an

array access on the right hand side is modeled by the ICD-C IR as follows:

28 3 WCC—WCET-Aware C Compiler

Fig. 3.2 Simplified class model of ICD-C IR

The assignment expression is a hierarchical expression consisting of a nested sub-

tree for a[2].

Moreover, as can be seen in Fig. 3.2, the statements within a function can be

accessed via basic blocks. Within the WCC framework, exception-handling mech-

anisms, such as setjmp() (cf. Sect. 2.3.1), are not supported and must not be

contained in the code under analysis. Due to this restriction it can be assumed that

the control flow continues immediately after a call instruction. As a result, call state-

ments in the ICD-C IR do not terminate a basic block.

To preserve the scope and data types of variables, different hierarchical symbol

tables are involved. This allows to associate each identifiers with a particular scope,

such as file scopes or local scope within a compound statement.

The ICD-C framework provides various control flow analyses based on the pro-

gram’s CFG, such as the determination of dominance relations or a reachability

analysis. Moreover, data flow analyses, e.g., def/use chains, are available. For a de-

tailed description of these standard techniques, the reader is referred to [Muc97].

In addition, ANSI C pragmas can be used to annotate the source code with user-

defined information, e.g., flow facts about loop iteration counts that are required by

the timing analyzer (like _Pragma("loopbound min 50 max 100")).

In the parsing stage, this information is attached to the respective code constructs.

This mechanism enables an efficient import of user data into the compiler frontend

without the use of additional overhead such as external files. Another mechanism,

which serves for storage of arbitrary information within the compiler, are so-called

persistent objects. They represent generic containers that can be attached to arbitrary

IR constructs. Within WCC, they are for example automatically filled with WCET

data and assigned to the respective basic blocks. Assigning complementary cost

functions enables the development of multi-objective optimizations.

3.3 Structure of the WCC Compiler 29

Table 3.1 Available standard

source code level

optimizations

O1 Constant Folding

Dead Code Elimination

Local Common Subexpression Elimination

Merge Identical String Constants

Simplify Code

Value Propagation

O2 Create Multiple Function Exit Points

Life Range Splitting

Loop Deindexing

Loop Unswitching

Optimize if-Statements in Loop Nests

Remove Unused Function Arguments

Remove Unused Returns

Remove Unused Symbols

Remove Unused Function Arguments

Struct Scalarization

Tail Recursion Elimination

Transform Head-Controlled Loops

O3 Function Inlining

Function Specialization

Loop Unrolling

3.3.2 Standard Source Code Level Optimizations

To achieve a high code quality, compiler optimizations are essential. The ICD-C

compiler framework is equipped with 21 standard ACET optimizations. Among

others, they comprise data flow optimizations such as dead code elimination or

common subexpression elimination, loop transformations such as loop collapsing or

loop unrolling, and interprocedural optimizations like function inlining or function

specialization. For details about the optimizations, the interested reader is referred

to standard compiler literature [Muc97].

Compiler optimizations are typically classified into optimization levels. The

higher the optimization level, the more optimizations are activated. An overview

of the available source code optimizations in WCC subdivided into the optimization

levels O1, O2, and O3 is depicted in Table 3.1. Optimizations in O3 are code ex-

panding transformations which should be performed with caution if strict code size

constraints are imposed on the system.

3.3.3 Code Selector

To lower the abstraction level of the code, the high-level ICD-C IR is translated into

assembly code. For this purpose, a set of assembly operations has to be found which

30 3 WCC—WCET-Aware C Compiler

Fig. 3.3 Simplified class

model of LLIR

represents a semantically correct translation of a given source code construct having

minimal accumulated costs w.r.t. a given metric. The translation is carried out by a

tree-pattern matching based code selector [FHP92] which accepts a cost-augmented

tree grammar as input and emits an optimal parse of trees in the language described

by the grammar. By parsing the trees in the found order, appropriate operations are

generated—in case of WCC, TriCore assembly code is emitted.

3.3.4 Compiler Backend LLIR

The output of the code selector is an abstract representation of the processor-specific

assembly code. The code representation used in WCC’s compiler backend is the

low-level IR LLIR [Inf10b]. It provides generic data structures for the abstraction of

assembly code. Using a description of the target architecture, the retargetable LLIR

turns into a processor-specific representation, allowing the exploitation of given pro-

cessor features.

The hierarchical design of the LLIR enables an easy maintenance and manipula-

tion of the program structure. A simplified class model of the LLIR is depicted in

Fig. 3.3. An LLIR object is equivalent to a single assembly file and corresponds to

a compilation unit within the ICD-C IR. If the compiled program consists of mul-

tiple source files, a list of LLIR objects has to be managed. Analogous to ICD-C,

a program consists of functions and basic blocks. A basic block holds instructions

which may consist of multiple operations. This capability allows to model bundled

instructions such as required for e.g., VLIW architectures. For WCC’s target ar-

chitecture, the TriCore processor, an instruction holds exactly one operation. The

operations are parameterized with constants, labels, architecture-specific operators,

or registers. The latter are modeled by a separate class since they provide versatile

information relevant for a compiler.

Similar to the ICD-C IR, the LLIR backend is equipped with various static analy-

ses. A control flow analysis allows to iterate over the code structure according to the

program’s control flow. Moreover, relationships among basic blocks, such as reach-

ability or dominance, are computed. In addition, data flow analyses comprising a

livetime analysis and a def/use chain analysis [Muc97] are available.

3.3 Structure of the WCC Compiler 31

Fig. 3.4 LLIR objective

handler

To annotate the assembly code with arbitrary data relevant for the compiler, LLIR

provides the objective mechanism. Objectives are generic containers attachable to

any LLIR component. The assignment of objectives to LLIR components is man-

aged by a so-called objective handler. It is responsible for the adherence of consis-

tency, e.g., disallowing the assignment of multiple objectives of the same type to

one LLIR component, and provides methods to set and get objectives of a certain

objective type. The general structure of this mechanism is depicted in Fig. 3.4. For

a detailed description of this mechanisms, the reader is referred to [Lok05].

Besides the current use for WCET data, the integration of further objectives, such

as energy consumption or ACET, is intended to allow the development of compiler

optimizations pursuing different optimization goals.

3.3.5 Standard Assembly Level Optimizations

The assembly optimizations within WCC are predominantly processor-specific, i.e.,

they operate on the generic LLIR structures but exploit information about the Tri-

Core architecture, e.g., the register file or the instruction set. The optimizations can

be divided into two main classes: those that operate either on a virtual LLIR or a

physical LLIR.

Using the code selector, the high-level IR of the code is typically translated into

a virtual low-level IR. Virtual means that no physical registers but place holders

identifying dependencies among operations are used. Many compiler optimizations

benefit from virtual registers. These registers are not restricted in their number, thus

provide a higher flexibility for the optimizations. The WCC compiler provides nu-

merous standard ACET optimizations performed on the virtual LLIR including data

flow optimizations, such as constant propagation, loop invariant code motion, or

peephole optimizations [Muc97].

Another important optimization, which is mandatory for the generation of high-

performance code, is register allocation. Its goal is to find a suitable mapping of

32 3 WCC—WCET-Aware C Compiler

Table 3.2 Available standard

assembly level optimizations Virtual Redundant Code Elimination

Dead Code Elimination

Constant Propagation

Constant Folding

Loop Invariant Code Motion

Peephole Optimizations

Register Allocation

Physical Generation of 16 bit Operations

Local Instruction Scheduling

virtual registers either to processor-internal registers or to memory. Since the num-

ber of physical registers is limited, the challenge for a register allocation is to map

as many virtual registers to physical registers in order to avoid slow memory ac-

cesses. If more physical registers are required than available, some of the variables

held in registers must be saved to memory in order to make the registers available

for other variables. In the further program execution, the variables are restored back

to registers. The shift of register values to and from memory is performed by load

and store instructions, known as spill code, and should be avoided as much as pos-

sible. WCC’s register allocation is based on graph coloring [Bri92]. The output of

the register allocator is a physical LLIR.

WCC currently performs two optimizations on the physical LLIR. First, 32 bit

operations are possibly converted into equivalent 16 bit operations. For example,

the 32 bit TriCore operation add d8, d8, d9 can be exchanged by the 16 bit

operation add d8, d9, leading to an overall reduced code size. Moreover, local

instruction scheduling operating on basic blocks [CT04] is applied. The optimiza-

tion goal is to find an order of instructions which improves instruction-level paral-

lelism yielding a reduced program execution time. WCC’s scheduler focuses on the

maximal utilization of the superscalar pipeline which can execute up to three opera-

tions in parallel. An overview of the available LLIR optimizations classified by the

IR type is presented in Table 3.2.

3.3.6 Code Generator

The final step of the compiler is the code generator that emits valid TriCore as-

sembly code from internal LLIR data structures. This code can be passed to an

assembler/linker to generate the final binary executable. WCC utilizes the tools

tricore-as and tricore-ld from the TriCore GCC tool chain developed by the com-

pany HighTec [Hig10] for this purpose.

3.4 Integration of WCET Analyzer 33

3.4 Integration of WCET Analyzer

Precise timing data is computed by a static WCET analyzer using its internal worst-

case timing model. To make timing information available in the WCC framework, a

re-implementation of timing analyses from scratch within the compiler is not advis-

able. Rather, the development of complex WCET analyzers should be performed by

timing experts while compiler developers should focus on code generation and op-

timizations. Following this methodology, the WCC compiler and the static WCET

analyzer aiT are two separate tools that are tightly coupled in the compiler backend

for a seamless exchange of information.

The integration of aiT into the compiler framework consists of three main steps:

the translation of the program under analysis into a representation suitable as input

for aiT, the transparent invocation of the timing analyzer, and the import of the

computed worst-case timing information back into the compiler. These steps will be

discussed in more detail in the following.

3.4.1 Conversion from LLIR to CRL2

The WCET analysis requires information on the hardware timing which is available

on assembly/machine code level but not on higher abstraction levels of the code.

For this reason, the timing analysis takes place in WCC’s compiler backend. As

mentioned in Sect. 2.4, aiT expects as input the program under analysis in the inter-

mediate format CRL2 which is the IR of the timing analyzer. Hence, the first step

of the integration of aiT is a conversion of LLIR code into CRL2. The conversion

step replaces the decoder exec2crl from the ordinary workflow of aiT employed as

a stand-alone tool on a binary executable (cf. Fig. 2.1 on p. 21).

It should be noted that aiT’s decoder can not be used since the generation of

the executable would require the application of an external assembler and linker

which may, however, possibly modify the code in an irreproducible way, making an

exchange of information between CRL2 and LLIR infeasible.

The conversion problem is equivalent to the general problem of program compi-

lation. However, in contrast to compilers that aim at translating programs between

(almost) arbitrary programming languages, WCC’s CRL2 conversion translates pro-

grams that are represented at the same abstraction level. Thus, there is no semantic

gap between LLIR and CRL2 which eases the conversion.

Since both LLIR and CRL2 are low-level IRs, a mutual translation of their CFGs

is feasible. Both representations consist of functions, basic blocks, and instructions

holding a single operation. Since CRL2 is usually constructed from a single binary

file, the entire program must be represented by a single CFG. To this end, WCC

conversion places all LLIR instances that were derived from various source files

(compilation units) consecutively into a single CRL2 file.

Due to the analogy of both IRs, the conversion basically traverses the CFG of

the LLIR recursively and generates equivalent CFG components for the CRL2 IR.

34 3 WCC—WCET-Aware C Compiler

To enable an information exchange between the two representations, the conver-

sion stage has to keep track of which CRL2 components were derived from which

LLIR components. To enable a mapping between LLIR and CRL2 blocks, the block

conversion function is introduced.

Definition 3.1 (Block conversion) Given two low-level intermediate representa-

tions P and Q, a set of basic blocks BP ∈ P and a set of basic blocks BQ ∈ Q. The

bijective function blockmap : BP → BQ is called block conversion. The mapping

uses the block label as a unique key.

Due to the bijection, the basic block labels used as key allow a mutual mapping

between blocks of both IRs. Identifying first basic blocks of a function, which have

block labels equal to the names of their surrounding function, makes a mapping

between LLIR and CRL2 functions possible.

However, there are three issues that complicate the mutual translation. The first

two problems stem from the fact that CRL2 is usually generated from a binary

executable, relying on assembler and linker information. The last issue arises from

structural transformations performed by aiT on the CFG which introduce a deviation

to the LLIR CFG.

3.4.1.1 Operation Identification

In the ordinary workflow of aiT as a stand-alone tool, the first step consists of a con-

trol flow reconstruction based on a binary executable. The reconstruction includes

an extraction of machine operations from a byte stream. The found sequences of

bytes are subsequently matched against the processor vendor’s machine code spec-

ification. This automatic approach is flexible since an exchange of the architecture

merely requires a replacement of the machine specification.

An efficient algorithm for this purpose used in aiT was presented in [The00].

It is provided with a set of bit patterns—one for each machine operation to be

recognized—and it recursively computes a decision tree for decoding. In contrast

to a simple approach, checking each pattern in the set until a match was found, the

tree-based approach can reduce the algorithm complexity from O(n) to O(log(n)),

with n representing the size of the set of bit patterns.

The advantage of machine code decoding at machine level is that it can be re-

duced to an efficient bit pattern recognition. If the matching succeeds, the mnemonic

(abbreviation for operation type) and the operation operands are unambiguously

known. Within WCC, the program to be analyzed is represented by LLIR which is

the basis for the construction of CRL2 code. The CRL2 code generation entails two

problems.

First, to enable an efficient generation of CRL2 operations, AbsInt’s code gen-

eration framework including the machine code specification should be exploited.

Within the machine code specification, the specification of each operation o is de-

3.4 Integration of WCET Analyzer 35

fined by a unique identification number Io. Knowing Io allows the extraction of

detailed information about o and a generation of an appropriate CRL2 operation

when further details about the operation parameters are available. Analyzing the

byte stream bs from a binary delivers Io, thus machine code decoding can be con-

sidered as the mapping function mapbs :

mapbs : bs �→ Io

Furthermore, bs reveals the required information about the parameters. In con-

trast, an LLIR operation is represented by its mnemonic and a set of operands. Since

assembler and linker information is missing, the operation identifier Io is not avail-

able. To retrieve this crucial attribute, the machine specification must be exploited

in a reversed manner: Io is determined by finding a matching between LLIR char-

acteristics and the machine specification. Hence, the problem can be formulated as

follows:

Problem 3.1 (LLIR operation identification) Let C be a set of available character-

istics c ∈ C describing LLIR operation oLLIR , and SPEC the machine specification.

The problem of determining the corresponding identifier Io ∈ SPEC for oLLIR is

to find a sufficient set C′ ⊂ C, such that a bijective mapping can be established:

mo : C′ �→ Io

Using all available characteristics C of an operation oLLIR is inefficient since

several characteristics are either irrelevant or redundant. For example, knowing if

the first register parameter is written or read is not a significant information.

Likewise, extracting an insufficient set of characteristics may result in a surjective

or injective mapping to Io. For example, the complex instruction set architecture

(ISA) of the TriCore processor contains four different operations with the mnemonic

AND [Inf08b]:

AND Dc, Da, Db AND Dc, Da, const9

AND Da, Db AND D15, const8

All these AND operations differ by the number and types of parameters, namely data

registers (denoted by Dx or implicit register D15), or constants. As can be seen,

the mere use of the mnemonic does not yield an unambiguous Io in the machine

specification. The distinction between TriCore’s transport operations, like the word-

wide load operations LD.W, is even more complicated since eight versions exist. To

find a specific load operation, further characteristics, such as the addressing mode

or the operation bit width, must be taken into account.

For the TriCore ISA, the operation identification algorithm has to take the fol-

lowing operation characteristics into account:

• mnemonic

• operation bit width (16 or 32 bit)

• number of parameters

• type of data/address registers: general or implicit (D15/A15)

36 3 WCC—WCET-Aware C Compiler

• bit width of constants

• bit width of offsets (for load/store operations)

• addressing mode (for load/store operations)

The second problem emerging during the generation of CRL2 code concerns the

adherence of consistency between the generated CRL2 code and the final binary ex-

ecutable generated from WCC’s LLIR code. The problem is the internal behavior of

an assembler that may translate ambiguous assembly operations differently based

on internal rules that are often not sufficiently documented. A deviation between

the CRL2 code provided as input for aiT and the generated machine code must be

strictly avoided, otherwise the safeness of the estimated WCET is not guaranteed

anymore. For instance, there are two versions of the MOV operation in the TriCore

ISA:

MOV Dc, Db MOV Da, Db

The parameters of these two operations are arbitrary data registers in both cases.

However, the first operation is 32 bits wide, whereas the second operation is a 16

bit operation. Within the LLIR, the bit width information is available and is also

exploited for the generation of the respective CRL2 operation. In contrast, the as-

sembler can optionally handle this operations either as 32 bit or 16 bit wide. To

eliminate such uncertainties, the operation size has to be made explicit to the as-

sembler. Within WCC, this is accomplished by the generation of directives [EF94]

that are interpreted by the assembler, e.g.,

.code32
MOV D9, D8

This directive ensures that the assembler handles this operation as 32 bit wide.

3.4.1.2 Exploitation of Memory Hierarchy Specification

Another challenge for the conversion of LLIR into CRL2 are physical addresses.

When CRL2 is constructed from a binary, the complete physical memory layout

of the program is available. This includes the information about the memory uti-

lized for the storage of code and data, i.e., the physical addresses of basic blocks

and global data objects. Moreover, the assembler and linker resolve symbolic labels

used in the assembly code for references to branch targets and global memory ad-

dresses into physical addresses. Based on this code, an adequate control flow graph

for the determination of the longest path can be constructed. In addition, the knowl-

edge about addresses involved in memory accesses to global data objects enables a

precise WCET estimation.

To make a model of the physical memory layout available within WCC’s back-

end, a memory hierarchy specification is provided (cf. Fig. 3.1). It resembles the

commonly used architecture description languages (ADLs), but provides only a

3.4 Integration of WCET Analyzer 37

simplified timing model of the processor’s memory hierarchy. Rather, key param-

eters relevant for the generation of aiT’s CRL2 input file and for compiler opti-

mizations exploiting memory hierarchies are specified. A detailed memory timing

model is integrated into the cache/pipeline analysis of aiT and is transparent to the

user.

WCC provides a text file interface to specify the available processor memory

hierarchies. The specification describes different regions of the processor’s physi-

cal memory as well as parameters concerning TriCore’s instruction cache [Kle08,

Lok05]. The following attributes can be defined:

• a memory region’s base address and absolute length

• access attributes, e.g., read, write, executable

• memory access times (relevant for optimizations)

• list of assembly sections allocatable to specific memory regions

• I-cache parameters, e.g., capacity, associativity, line size

A fragment of the memory hierarchy specification describing the SRAM data

memory of the TriCore TC1796 processor is shown below:

Data SRAM (DMU)

[DMU-SRAM]

origin = 0xc0000000

length = 0x10000 # 64K

attributes = RWA # read/write/allocatable

sections = .data.sram

Based on this information, the physical memory layout of code represented by the

LLIR can be derived. It is utilized during the generation of CRL2 code for the deter-

mination of physical block addresses. In addition, branch targets of jump operations,

which are represented by symbolic block labels, have to be translated into physical

addresses. In a similar fashion, symbolic labels involved in accesses to global vari-

ables via load/store operations have to be converted.

Using the memory hierarchy specification, code and data can be allocated to

different memory regions. These decisions need not only to be respected by the

WCET analysis but also in the linkage stage for the generation of the binary. To

accomplish a consistent code representation, WCC’s code generator (cf. Fig. 3.1) is

capable to write a suitable linker script that is passed to the finally invoked linker.

3.4.1.3 Loop Transformation

As mentioned previously, aiT performs structural transformations leading to the ef-

fect that the CFG structure of LLIR and CRL2 differ. The transformations aim at

an increased precision for the WCET estimation. Section 2.3.2.1 indicated that the

use of contexts yields an improved timing analysis since the execution history of

instructions is regarded. Due to the structure of CRL2, context information can only

38 3 WCC—WCET-Aware C Compiler

Fig. 3.5 Loop transformation

be attached to CRL2 functions. However, a precise timing analysis also has to dis-

tinguish between different loop iterations. For example, the cache content for the

first iteration may differ from the content in the remaining iterations.

To enable a context-sensitive analysis of loops, aiT modifies the CFG using a loop

transformation. The transformation introduces a new routine and a new call node for

each loop and transforms the loop into a recursive routine [LT79, The02]. The loop

transformation is illustrated in Fig. 3.5. Moving loop blocks Block1 and Block2

into the dedicated routine F.L1 facilitates the annotation of context information.

Moreover, auxiliary nodes (marked by dashed lines) have to be inserted.

The mutual conversion between LLIR and CRL2 needs to be aware of the trans-

formed CFG. When importing WCET data from the annotated CRL2 code back into

LLIR, the newly created loop functions, such as F.L1, have to be distinguished from

real CRL2 functions having a corresponding counterpart in the LLIR. The WCET

data attached to these functions is stored within the LLIR at the corresponding first

basic block representing a loop. For example, WCET data computed for loop F.L1

in Fig. 3.5 would be assigned to the LLIR basic block corresponding to Block1. The

mapping between LLIR and CRL2 basic blocks is trivial by the means of the unique

block labels in both IRs.

In addition, the application of the loop transformation affects the interpretation

of WCET data related to CFG edges which is also imported into the LLIR. Since the

LLIR does not explicitly model control flow edges, WCET data related to a CRL2

edge e = (bsource, btarget) is attached to the LLIR block corresponding to bsource

with a reference to btarget . During the import, edges from/to the auxiliary CRL2

nodes have to be translated using the block conversion function from Definition 3.1.

For example, WCC has to translate the source of the CRL2 edge starting at the loop

entry node from this node to Block2.

3.4.2 Invocation of aiT

After the conversion of the code from LLIR into CRL2, the generated CRL2 file is

automatically passed to aiT. The invocation of the timing analyzer is fully transpar-

3.5 Modeling of Flow Facts 39

ent to the user since the WCC framework steers the application of the required steps

for the WCET analysis.

The compiler user benefits from the encapsulation of the timing analyzer into

WCC. Instead of running a compiler to generate the binary, setting up the configura-

tion parameters for the WCET analyzer, and finally manually invoking the analysis,

all these steps are carried out by WCC in the background. Thus, the user is relieved

from the burden of a manual configuration of a suitable run-time environment for

aiT.

Another benefit of the encapsulation is that the compiler has a deep knowledge

of the code that can be automatically exploited for an automatic computation of

information which improves the precision of the WCET analysis. For instance, the

timing analyzer can be provided with data about infeasible paths or statically known

register values. This information is usually hard to compute manually and, if known

anyway, its propagation to aiT would require a tedious and error-prone specification

via a file interface.

3.4.3 Import of Worst-Case Execution Data

The last step of the integration of a timing analyzer into the compiler is the import

of the worst-case timing data computed by aiT into the backend. For that purpose,

the final CRL2 file, which represents the program’s CFG enriched with WCET data,

is traversed. Using the conversion function from Definition 3.1, a mapping between

basic blocks of both IRs is established enabling an exchange of WCET data. The

imported data is attached to the corresponding LLIR blocks in the form of LLIR ob-

jectives. The exchange of WCET data concerning functions works analogously. The

following information (considered over all execution contexts) is made available

within the LLIR after the import:

• worst-case execution times for the entire program, each function, and each basic

block

• worst-case execution frequency per basic block and CFG edge

• worst-case call frequency per function

• execution feasibility of CFG edges

• safe approximation of register values

• computed I-cache misses per basic block

The approaches presented in this section were published in [FLT06a, FLT06b].

3.5 Modeling of Flow Facts

To make a static WCET analysis feasible, sufficient information about the execu-

tion counts of every instruction must be available. Some flow facts (cf. Sect. 2.3.3)

can be automatically extracted from the structure of the program by means of static

program analyses. However, due to undecidability it is in general impossible to cal-

40 3 WCC—WCET-Aware C Compiler

culate all required information about the control flow of a program. To overcome

this problem, missing flow facts have to be provided as user annotations.

3.5.1 Specification of Flow Facts

The most convenient approach to specify user flow facts is the annotation of the

program at source code level. Defining them at this high abstraction level rather

than at the low level is more intuitive and less error-prone. Moreover, their direct

annotation in the source code is recommended since only a single code base has

to be maintained. The alternative approach of providing user-defined flow facts in

separate files is inconvenient since they introduce additional overhead.

Within WCC, flow facts are inserted into the source code as ANSI C pragmas that

are translated into internal data structures during parsing. The first class of flow facts

are loop bounds limiting the iteration counts of regular loops, i.e., for-, while-,

and do-while-loops with a single entry point and a well-defined termination con-

dition.

Loop bound flow facts denote the minimum and maximum number of loop iter-

ation counts for each loop and use the following EBNF syntax [Sch07]:

LOOPBOUND |= loopbound min NUM max NUM

NUM |= Non-negative Integer

Example 3.2 For the following code snippet with variable loop bounds that depend

on the function parameter arg and the assumption that func was invoked with the

arguments 10 and 100, the user has to specify the loop bound pragma as:

void func(int arg) {

_Pragma("loopbound min 10 max 100")

for (i = 1; i <= arg; i++)

Statement block A

}

To annotate irregular loops and recursive function calls, flow restrictions are in-

troduced. Within WCC, so-called markers are used to restrict the execution counts

of statements relative to other statements:

MARKER |= marker NAME

NAME |= Identifier

Using markers that serve as a reference point within the program, the following

EBNF grammar enables the formulation of relations between statements [Sch07]:

FLOWRESTRICTION |= flowrestriction SIDE COMPARATOR SIDE

COMPARATOR |= >= | <= | =

SIDE |= SIDE + SIDE | NUM * REFERENCE

REFERENCE |= NAME | Function Name

3.6 Static Loop Analysis 41

Example 3.3 To bound a triangular loop, a relationship between a statement A out-

side the loop and a statement B within the loop nest can be expressed by the follow-

ing pragmas:

_Pragma("marker outer")

A;

for (i = 0; i < 10; i++)

for (j = i; j < 10; j++)

_Pragma("marker inner")

B;

_Pragma("flowrestriction 1*inner <= 55*outer");

From the inequation it can be inferred that statement B is executed at most 55 times

as often as statement A.

3.5.2 Translation and Transformation of Flow Facts

The final goal is to pass the flow facts specified at source code level to aiT. As a

consequence, flow facts have to be successively lowered between the available IRs.

The traversed chain of IRs including the deployed tools for the translation is shown

below:

ANSI C
parser
−−−→ ICD-C

code selector
−−−−−−−→ LLIR

converter
−−−−−→ CRL2

In the last step representing the conversion from LLIR into CRL2, flow facts

are also translated and modeled in CRL2. The subsequent WCET analysis exploits

this data to formulate constraints for the ILP model of the IPET approach (cf.

Sect. 2.3.4).

Besides the translation of flow facts, care must be taken when code is modi-

fied at any abstraction level. In particular, compiler optimizations might invalidate

flow facts. For example, loop unrolling changes the number of loop iteration counts.

These modifications must be respected to generate valid flow facts for aiT that reflect

the effective CFG. The consistency of flow facts within WCC is preserved during

code optimizations by extending the respective optimizations by individual flow-fact

update techniques. They ensure that the maintenance of flow facts is simultaneously

performed with code modifications.

3.6 Static Loop Analysis

The WCC compiler framework represents a tool for an automatic WCET minimiza-

tion. The essential component is the static timing analysis which relies on flow facts.

The manual annotation of flow facts in the source code as discussed in Sect. 3.5 is

42 3 WCC—WCET-Aware C Compiler

applicable for smaller programs for which the source code is available. The annota-

tion of larger applications becomes tedious end error-prone. Moreover, this approach

is not suitable for applications automatically generated by graphical specification

tools.

In addition to the mandatory presence of flow facts for the static WCET anal-

ysis, the lack of loop iteration counts prevents a compiler from applying various

standard ACET optimizations. For example, without the knowledge about how of-

ten a loop iterates, WCC is not able to perform an effective loop unrolling [Muc97]

or software pipelining [BGS94]. Thus, full optimization potential can not be ex-

ploited. A related domain of compiler optimizations which rely on the availability

of loop iteration counts is feedback-directed optimization (FDO) [Smi00]. Exploit-

ing this information enables a compiler to focus its optimization efforts on the most

frequently executed program portions.

To relieve the compiler user from the burden of manual flow fact specification for

a WCET analysis and to provide loop iteration counts for compiler optimizations, a

static loop analysis for the ICD-C IR was developed in the course of this book.

The presented loop analysis is based on abstract interpretation, a theory of a

sound approximation of program semantics. Abstract interpretation allows the com-

putation of possible values that may be assigned to a program variable at a certain

program point. Based on this information, the loop analyzer derives loop iteration

counts for each loop in the program. To accelerate the analysis, the analyzed code is

pre-processed using program slicing, a technique that excludes statements irrelevant

for the loop analysis. Moreover, a novel polyhedral loop evaluation is introduced

that further decreases the analysis time.

WCC’s loop analyzer has proven to be of superior quality—among all tools par-

ticipating in the WCET Tool Challenge 2008 [HGB+08], it was the only one which

solved all flow facts related analysis problems.

The rest of this section is organized as follows. A survey of related work is given

in Sect. 3.6.1, followed by an introduction to abstract interpretation in Sect. 3.6.2.

The techniques of program slicing and the novel polyhedral evaluation are presented

in Sects. 3.6.3 and 3.6.4, respectively. Finally, results achieved on real-life bench-

marks are presented in Sect. 3.6.5.

3.6.1 Related Work

In [HSR+98], a pattern-based approach to determine loop iteration counts of as-

sembly programs is presented. It exclusively evaluates instructions that represent

loop code while other instructions are ignored. This way, loops relying on function

parameters can not be analyzed. To overcome this problem, the authors provide a

mechanism allowing to specify value ranges for unknown variables, making their

analysis semi-automatic.

The approach developed in [HSR+98] has been adapted by Kirner [Kir06] to

programs written in the high-level language C. Again, loop analysis does not au-

tomatically succeed for all types of loops. Mandatory information that can not be

3.6 Static Loop Analysis 43

extracted during the static analysis must be provided by the user in the form of

source code annotations.

In contrast to pattern-based loop analyses, an interprocedural data flow based

loop analysis at assembly level is used in [CM07]. The advantage of this approach

is that the success of the static analysis does not strictly rely on pre-defined code

patterns generated by a particular compiler, but on the semantics of the instruction

set for a specific target machine. As stated by the authors, their analysis works best

for well-structured loops and supports only simple modifications of the loop counter.

A different approach for a fully automatic static loop analysis at source code level

was described in [EG97]. The authors involve a data flow analysis which is based on

abstract interpretation. The analysis computes information required to determine

loop bounds. This work was used in [GES+06] to assist static WCET analysis. It

was extended to support a determination of loop bounds for nested loops as well as

a detection of infeasible paths, i.e., paths that are not taken in particular execution

contexts of the program and which should thus be excluded from the WCET analysis

to avoid WCET overestimation.

Further improvements to this loop analysis were presented in [ESG+07]. To ac-

celerate loop analysis, the authors combine different standard program analyses like

program slicing and invariant analysis. WCC’s loop analysis additionally exploits

slicing to enable a fast polyhedral loop evaluation.

3.6.2 Abstract Interpretation

The goal of a program analysis is to extract information about the program behav-

ior. Such an analysis is based on the concrete semantics of a program. However,

properties of concrete semantics of a computer system are in general undecidable

as this computation is related to the halting problem. Another frequent problem of

program analysis is its complexity, resulting from different states that must be con-

sidered (so-called state explosion). For example, a loop with n iterations containing

a branch consists of 2n possible paths each of which may be possibly considered as

a different state.

Therefore, an approximation of program semantics has to be taken into account

which guarantees termination and introduces a manageable computational complex-

ity. Such an approximation should be sound, i.e., the computed properties are guar-

anteed to be true. A well-known theory of deriving such sound approximations is

abstract interpretation [CC77].

To make WCC’s loop analysis feasible for realistic applications, this book ex-

ploits abstract interpretation as the underlying framework for the computation of

loop iteration counts. Using abstract interpretation, the complexity problems en-

countered during the computation of concrete semantics are tackled by replacing

the concrete semantics domain by an abstract domain which require less computa-

tional effort. In addition, it is desirable to force a termination of WCC’s loop anal-

ysis even if the program under analysis does not terminate. This goal is achieved

44 3 WCC—WCET-Aware C Compiler

by a safe extrapolation of the computed results during the analysis. For a detailed

discussion about relevant aspects of abstract interpretation, the reader is referred to

Appendix A.

3.6.2.1 Modified Abstract Interpretation

Abstract semantics is calculated by solving a set of data flow equations for which a

least-fixed point is iteratively determined (cf. Appendix A). The iterative behavior of

the classical abstract interpretation might significantly slow down the analysis such

that it becomes impractical. In particular, such an explosion of analysis times can be

observed for the analysis of loops with high iteration counts where each loop itera-

tion is interpreted individually. The application of widening operators to accelerate

abstract interpretation is not recommended as the operators introduce significant

over-approximation which makes the results of loop analysis useless.

WCC’s loop bound analyzer combines abstract interpretation with mechanisms

to avoid its iterative behavior. These mechanisms rely on polyhedral loop analysis

determining loop iteration counts and variable values by iterating the loop body ex-

actly once. If these techniques succeed in computing loop bounds, classical abstract

interpretation is omitted for a particular loop leading to an accelerated analysis.

Otherwise, classical abstract interpretation needs to be applied.

The classical approach begins with the construction of a complete transition sys-

tem consisting of data flow equations. Within this closed model, the solution is

found by a fixed-point iteration. To avoid the iterative behavior of loops, a more

flexible model of the transition system is required. WCC’s loop analyzer does not

consider the analyzed CFG as a closed monolithic system but subdivides the graph

into smaller chunks for which a separate transition system is constructed and solved.

This approach enables the application of different calculation methods to the indi-

vidual transition systems. In particular, transition systems modeling loops can be

computed by the fast polyhedral evaluation.

Like the classical abstract interpretation, WCC’s loop analysis traverses the CFG

starting at the program entry point. The abstract configuration assigned to this first

program control point represents each variable either by ⊤ (denoting any possi-

ble value depending on the data type of the variable like unsigned int) or an

interval that is defined by the user. The latter specification provides a way to com-

municate with the loop analysis in order to achieve more precise results that reflect

a current environment.

Each node in the CFG represents an ANSI C statement and is associated with an

abstract transition function which specifies the effect of this statement on the given

abstract configuration. The transition functions are designed such that they compute

a safe approximation of the statements’ semantics on the interval domain. A com-

prehensive overview of the transition functions for available ANSI C statements can

be found in [Cor08].

Example 3.4 The following figure gives an example for the abstract transition func-

tion of an if-else-statement based on the modified abstract interpretation.

3.6 Static Loop Analysis 45

θn represents different program control points. The analysis starts with the abstract

configuration ĉθ0
. For configuration ĉθ1

, all values from ĉθ0
which meet the condition

if(a > 0) are assigned. Similarly, ĉθ3
is handled. These two abstract configurations

are passed as input to the compound statement nodes representing the condition’s

then- and else-part, respectively. For these complex nodes, further transition func-

tions are applied. Finally, their outputs represented by the abstract configurations

ĉθ2
and ĉθ4

are merged at the join node leading to the computation of the abstract

configuration ĉθ5
.

If the fixed-point iteration is used as solver for the transition system of a loop,

a counter variable is used in order to determine the number of loop iterations. The

counter is incremented each time the analysis evaluates a transition function at the

first control point within the loop body. If the CFG edge from the loop header node

to the loop’s immediate successor is traversed for the first time, the current value of

the counter variable represents a safe lower bound for the number of loop iterations.

The counter is incremented as long as the loop body is entered and a fixed-point

for its abstract configurations is not achieved. If the fixed-point iteration has found

a solution, the value of the counter variable represents a safe approximation for the

upper bound of the loop iterations.

If the number of loop iterations depends on a variable represented by an interval

with unequal bounds, e.g., generated by a join node, then the number of loop iter-

ations might be variable in the sense that the lower and upper bounds are different.

If a loop is executed in different contexts, its loop bound computation is performed

multiple times and all context-sensitive results are collected. From these iteration

counts, the minimal and maximal value represent the context-insensitive lower and

upper bound loop bounds, respectively, that can be used as flow facts.

If the polyhedral evaluation is used for the analysis of an individual loop (as will

be described in Sect. 3.6.4), the loop iteration counts can be statically computed in

a single step.

To guarantee termination of WCC’s loop analysis, the user can specify an upper

bound ub which represents the maximal number of iterations each loop within the

analyzed program may exhibit. During the analysis of each loop L, ub is taken

into account. If this value is exceeded before the analysis could determine the loop

iteration counts of L, the analysis of L is terminated and no results are available for

this loop. Variables that are modified within L are, similar to the widening operator,

extrapolated to their maximal value range depending on their data type. Afterwards,

46 3 WCC—WCET-Aware C Compiler

the loop analysis continues with subsequent nodes in the CFG following L. This

way, the analysis tries to compute as many results as possible for loops in a given

program.

3.6.3 Interprocedural Program Slicing

The static loop analysis operates on the ICD-C IR. For the acceleration of the loop

analysis, a technique called program slicing [Wei79] is employed.

Definition 3.2 (Program slicing) Program slicing is a static program analysis which

finds statements s ∈ S that are relevant for a particular computation, where S repre-

sents all statements in the program P .

The computation relies on the slicing criterion χ which is defined as:

Definition 3.3 (Slicing criterion) The slicing criterion χ is a pair 〈θ,Var〉 where θ

is a program control point and Var is a subset of program variables at θ .

Within WCC, slicing is applied on the ICD-C IR where θ ∈ S is represented by

a statement. The result of program slicing is called a slice which is defined as:

Definition 3.4 (Slice) For a given program P and a slicing criterion χ = 〈θ,Var〉,
the slice Ŵ defines a subset of P containing all statements s which may affect the

variables in Var, i.e., variables that may either be used or defined at θ .

The fields of applications for slicing are manifold. Nowadays, program slicing

is used for debugging [LW87, RR95], software maintenance [BH93], or compiler

optimizations [FOW87].

An intermediate program representation that enables an efficient program slicing

is the program dependence graph (PDG) [OO84]:

Definition 3.5 (Program dependence graph) A program dependence graph is a

directed graph G = (V ,E, i), where nodes V correspond to statements. Edges

E ⊆ V × V represent either control or data dependencies. i denotes a distinguished

start node.

A control dependence is defined as follows:

Definition 3.6 (Control dependence) Let G be the control flow graph of a pro-

gram P . Let x and y be nodes in G. Node y is control dependent on node x if the

following holds:

• there exists a directed path π from x to y

• y post-dominates every z in π (excluding x and y)

• y does not post-dominate x

3.6 Static Loop Analysis 47

Data dependencies represent essential data flow relationships of a program while

the control dependencies, usually derived from a CFG, serve to indicate relevant

control flow relationships. Taking both types of dependencies into account allows

the efficient determination of a program slice with respect to a slicing criterion.

Example 3.5 The left-hand side of the following figure shows an example code and

its PDG that consists of nodes representing statements and edges modeling data

dependencies (dotted arrows) as well as control dependencies (solid arrows).

By definition, each PDG contains a distinguished entry node that serves as a

starting point for the analysis. The program is sliced with respect to the while-loop

exit condition i < 11, i.e., i is a variable of the slicing criterion. The corresponding

program slice can be found by reversing all edges and performing a Depth First

Search algorithm starting at the node specified by the slicing criterion. All nodes that

are visited are part of the slice. They are marked in gray in the shown figure and are

those statements being relevant for the loop analysis. Statements in the remaining

nodes can be omitted for the loop analysis.

The main drawback of the PDG is its restriction to an intraprocedural slicing.

Since most real applications typically consist of numerous procedures, they can not

be handled by PDGs. To overcome this problem, [HRB88] extended the PDG by

concepts which enable to cross the boundaries of procedures. The interprocedural

program representation is called System Dependence Graph (SDG). It models pro-

gram functions by PDGs and includes additional edges for the function calls as well

as the transfer of values via function parameters and return values.

WCC’s loop analysis applies program slicing on a SDG w.r.t. loop exit condi-

tions. By taking all relevant data and control dependencies into account, the result-

ing program slice contains all statements that are involved in the determination of

loop iteration counts. WCC’s slicing is accompanied by a context-sensitive alias

analysis to support pointers.

Slicing is run before the actual loop analysis for two purposes. First, in a similar

fashion to [SEGL06], it aims at accelerating the loop analysis. By slicing the code in

48 3 WCC—WCET-Aware C Compiler

advance, all superfluous statements are stripped. Considering the relevant subset of

the program, the fixed-point iteration during abstract interpretation can usually find

a solution in shorter time. Second, the integration of the polyhedral loop evaluation,

which is described in the next section, requires simple loop bodies to infer final

abstract states without repetitive iterations. Loop bodies of original applications are

often too complex for this static evaluation but after program slicing, the required

prerequisites are frequently met.

3.6.4 Polyhedral Evaluation

A polyhedron P is an N -dimensional geometrical object defined as a set of linear

equations and inequations. Formally, it is defined as follows [FM03]:

Definition 3.7 (Polyhedron & polytope) A set P = {x ∈ ZN | Ax = a,Bx ≥ b} is

called a polyhedron for matrices A,B ∈ Zm×N and vectors a, b ∈ Zm and N,m ∈ N.

A polyhedron is called a polytope if |P | < ∞.

Polytopes are often employed in compiler optimizations since they can be ex-

ploited to represent loop nests and affine condition expressions. Their formal defini-

tion enables efficient code transformations. Typical fields of application are program

execution parallelization or the optimization of nested loops [FM03].

In this work, polytope models are applied for two purposes. On the one hand, they

allow a precise computation of abstract configurations after processing a condition

node which splits the control flow. On the other hand, for loops that are modeled by

a polytope, its number of iteration counts can be determined statically. This knowl-

edge is exploited by the non-iterative loop evaluation. The remainder of this section

describes these two issues in more detail.

3.6.4.1 Polyhedral Condition Evaluation

The practical use of this approach will be motivated by an example. Assume that

this condition is given:

if ((2 ∗ i + 2 ≤ j NAND j > 15))

It can be represented by a conditional node as shown in Example 3.4. Furthermore,

it should be assumed that abstract interpretation calculated the following abstract

configuration before the evaluation of the condition:

ĉq = {i → [5,15], j → [10,20]}

The evaluation of the condition 2 ∗ i + 2 ≤ j yields for the configuration ĉqtrue

and the values of ĉq the condition [12,32] ≤̂ [10,20]. By definition, the result of

3.6 Static Loop Analysis 49

Fig. 3.6 Polyhedral

condition evaluation

the abstract operator ≤̂ is neither true nor false, thus it must be assumed that both

outgoing edges of the condition node are taken. Due to the missing result of ≤̂, the

value ranges for i and j in the configurations ĉqtrue and ĉqf alse
can not be precisely

approximated. A conservative approximation for i and j in both configurations is to

assume that their value ranges correspond to those computed for ĉq . Such a result is

overestimated and often useless for further computations.

Since an effective determination of variable values for the successors of the con-

dition is not feasible with the means of classical abstract interpretation, polytopes

are used to determine precise values for the variables i and j . To compute polytopes,

the condition must be transformed into the normalized form from Definition 3.7. See

Appendix B for details of the transformation.

The finally transformed example

if (−2 ∗ i + j − 2 ≥ 0 ∧ j − 16 ≥ 0)

allows the construction of the two polytopes −2 ∗ i + j − 2 ≥ 0 and j − 16 ≥ 0

which are combined by the intersection operator ∩. These conditions (respecting

the value ranges for i and j) are depicted in Fig. 3.6 as polytopes and their intersec-

tion is marked as dark area.

The final step is to approximate valid variable values for the abstract configu-

ration that is valid if the condition is evaluated as true. The final polytope (inter-

section) encompasses all combinations of variable values that satisfy the condition.

A safe approximation of values is defined by the extrema of the polytope, namely

its corner points which are (5,16), (7,16), (9,20), (5,20). Performing a join over

the coordinates, the abstract configuration ĉqtrue is defined as:

ĉqtrue = {i → [5,9], j → [16,20]}

The configuration ĉqf alse
is computed equivalently. Compared to the solution found

by the classical abstract interpretation which defines the complete value range for i

and j , this approach significantly increases the precision.

50 3 WCC—WCET-Aware C Compiler

3.6.4.2 Polyhedral Loop Evaluation

A weak point of the classical abstract interpretation is its iterative behavior. To over-

come this problem, the number of loop iterations is statically determined based on a

polyhedral model. This knowledge is used to infer final values of variables modified

in the loop without iterating over them repetitively.

Polyhedral loop evaluation within WCC is motivated by the observation that a

large number of loops consists of statements not affecting the calculation of loop

iterations. Typical examples are initialization procedures found in many embedded

applications. The main task of such procedures is the initialization of arrays and

other data structures. Afterwards, this initialized data is involved in the computation

of output data, e.g., an output stream of an image compression algorithm, but it

is not influencing the execution frequency of loops. Using program slicing, those

statements are recognized to be meaningless for loop analysis and are removed for

further evaluation. This frequently results in loops with almost empty loop bodies.

Loops to be analyzed by the polyhedral evaluation must meet certain constraints,

specifying the structure of the loop and the type of statements in the loop body.

3.6.4.3 Preconditions for Loop Evaluation

The first class of requirements concerns the structure of loops including their con-

ditional statements, e.g., if-statements. These restrictions are imposed by the poly-

tope models and their violation would make a polytope evaluation infeasible, i.e.,

it would not be possible to determine how often a loop iterates and how often loop

body statements within a condition are executed. The following preconditions must

be met:

1. All loop bounds must be either constants or depend on a program variable which

is not modified in the loop.

2. All if-statements must have the format if (C1 ⊕C2 ⊕· · ·) where Cx are condi-

tions that only depend on index variables of the loop nest and are combined with

the logical operators ⊕ ∈ {&&,||}.

3. All conditions Cx depending on index variables must be affine expressions.

It should be noted that these constraints are often met by well-structured loops

found in many embedded applications, thus they do not inhibit a successful appli-

cation of WCC’s polyhedral loop evaluation.

The second class of constraints refers to the loop body statements. If they are

assignment statements, they must be transformable into the ANSI C assignment op-

erators =, + = or − = to ensure that the variable is increased in each loop iteration

by an additive value. Moreover, structs and pointers are not supported in the current

version. Again, these requirements must be met to ensure that a polyhedral evalua-

tion can be performed. Even though these constraints seem to be highly restrictive,

experiments have shown that sliced loop bodies often satisfy them. For a detailed

description of the preconditions, the interested reader is referred to [Cor08].

3.6 Static Loop Analysis 51

3.6.4.4 Ehrhart Polynomial Evaluation

If the conditions are met, the loop iteration counts required for the evaluation of

statements are statically determined in the next step. Results from this phase allow

a fast static evaluation of statements in a single step without the need to analyze the

statements iteratively. The problem of finding the loop iteration counts is equivalent

to computing the number of integer points in a polytope. To efficiently count the

integer points, Ehrhart polynomials [VSB+04] are used. Techniques for transform-

ing polytopes that represent a loop nest into an Ehrhart polynomial are omitted here

since they go beyond the scope of the book.

Taking all integer points of a polytope might yield an over-approximation. The

total number of integer points represents the number of loop iterations if the loop

counter is incremented by one, thus other modifications to the counter must be ade-

quately modeled. Also, additional exit edges that affect the control flow in the loop

body, e.g., in the case of break- or continue-statements, must be taken into

account. They are modeled as further polytopes and their intersection with the poly-

tope representing the loop nest yields the precise solution space. For some loops

found in real-life benchmarks having an empty loop body after program slicing,

counting of integer points is already sufficient to determine the loop iteration counts

statically.

Using these loop iteration counts, execution frequencies of condition-dependent

basic blocks, which might obviously differ from the loop iteration counts, are com-

puted. The conditions are modeled by polytopes and an intersection with the loop

polytope allows to compute execution frequencies for both the then- and else-

part.

Example 3.6 An example for the determination of iteration counts for a nested loop

is depicted in the following figure.

The one-dimensional polytope representing the outer loop holds 8 points. The it-

eration space for the inner loop depends on the outer loop and its corresponding

polytope is indicated by the gray area. Using Ehrhart polynomials, the number of

integer points for this polytope can be computed and equals 92. The shaded polytope

52 3 WCC—WCET-Aware C Compiler

represents the then-part of the if-statement in the inner loop nest. From the number

of integer points it can be inferred that this code fragment is executed 63 times.

3.6.4.5 Static Statement Evaluation

The last step is the static evaluation of statements within the loop based on the loop

iteration counts and basic block execution frequencies from the previous step. The

goal is to evaluate modifications of variables within the loop like assignments b+=a
without a repetitive abstract interpretation. These final variable values are used to

determine iteration counts for loops that are analyzed afterwards.

Example 3.7 Assume that within the if-statement of the code in Example 3.6, the as-

signment a+ = 2 is executed. If the abstract configuration of a before the execution

of the loop nest is known, the final value of a can be statically inferred. For exam-

ple, if {a → [0,5]}, the finally value of a is {a → [126,131]} since this statement is

executed 63 times.

WCC’s loop analysis can be used in two different scenarios. It can either be used

as a stand-alone tool producing loop information in a human-readable form, or as

a module integrated into WCC to assist optimizations or static WCET analyses. In

the latter case, the loop analyzer automatically generates flow facts and passes them

to the compiler relieving the user from manually annotating flow facts. Figure 3.1

on p. 27 depicts the analyzer’s integration into WCC. It operates on the ICD-C

source code level and starts with program slicing marking statements relevant for

loop bound computations. After that, loop analysis based on the modified abstract

interpretation and polytope models using the library Barvinok [Ver09] is performed.

At this point, the loop bound information for the program under analysis can be

generated.

3.6.5 Experimental Results

To indicate the efficacy of WCC’s loop analyzer, evaluations on a large number of

benchmarks were conducted. The benchmarks come from the test suites DSPstone

[ZVS+94], MRTC [MWRG10], MediaBench [LPMS97], MiBench [GRE+01],

UTDSP [UTD10], and WCC’s collection of real-life benchmarks containing mis-

cellaneous applications, e.g., an H263 coder or a G.721 encoder. The different types

of the suites were chosen to point out that WCC’s loop analysis can successfully

handle applications of different domains.

The results show how many loops could be precisely analyzed. All measurements

were performed on a single core of an Intel Xeon CPU with 2.40 GHz and 8 GB

RAM. In total, 96 benchmarks were extensively analyzed and evaluated. For the

sake of clarity, a comprehensive overview of the results is provided and the interest-

ing cases are discussed in more detail in the following.

3.6 Static Loop Analysis 53

Table 3.3 Precision of loop analysis

Benchmark Suite # Benchmarks # Loops Analyzable Exact

MRTC 32 152 100% 99%

DSPStone 37 152 98% 93%

MediaBench/MiBench 6 162 99% 98%

UTDSP 14 88 100% 88%

Misc. 7 153 100% 100%

Total/Average 96 707 99% 96%

3.6.5.1 Determination of Loop Iteration Counts

Table 3.3 presents the evaluation of the loop analysis precision. The table shows

for each benchmark suite the number of benchmarks, the number of contained

loops, the percentage of loops that were successfully analyzed (column Analyzable)

and the percentage of loops for which the loop analysis produces exact non-over-

approximated results (column Exact). All percentages of Table 3.3 relate to column

Loops.

The 96 benchmarks contain 707 loops in total. On average, 99% of those loops

could be successfully analyzed. This means that for those loops, loop analysis pro-

duced safe results in terms of loop iteration counts which are never under-approxi-

mated, but might be over-approximated. The small fraction of 1% loops that could

not be analyzed is mainly due to technical restrictions of WCC’s alias analysis.

The last column of Table 3.3 presents the ratio of loops that are exactly ana-

lyzable, i.e., loops for which precise loop iteration counts were determined. On

average, the analysis produced exact results for 96% of the loops. The remaining

4% of the 707 loops, including the non-analyzable 1% of loops from the previous

column could not be exactly analyzed, i.e., the loop iteration counts were afflicted

with an over-approximation. The main reason for the imprecision comes from the

analysis of pointers which can not always be precisely evaluated in a static analysis.

However, most of the over-approximations introduced only a marginal error ranging

between 8% and 51% w.r.t. the exact results. Thus, the results are still acceptable.

Program slicing was successfully applied to all benchmarks. The number of state-

ments irrelevant for the loop analysis ranges between 2% and 88% showing that

computations in many programs do not affect the loop iteration counts. 21% of the

707 loops could be analyzed with the polyhedral loop evaluation. This number in-

dicates that the constraints for a successful application of this evaluation are not too

restrictive and are often met in real-life applications.

3.6.5.2 Analysis Time

Besides the precision of the analysis, the second crucial issue for static program

analyses is their complexity expressed in terms of analysis time. In general, the anal-

ysis times highly depend on the program structure and the loop iteration counts. If

54 3 WCC—WCET-Aware C Compiler

Table 3.4 Run times of loop analysis

Benchmark Benchmark Suite Basic Slicing Polytope

matmul MRTC 8.4 s 2.4 s (28%) 0.8 s (1%)

hamming Misc. 0.4 s 0.3 s (80%) 0.2 s (62%)

g721 DSPstone 80.2 s 70.5 s (88%) 71.3 s (89%)

fft DSPstone 920.7 s 119.7 s (13%) 110.5 s (12%)

matrix1 DSPstone 0.8 s 0.09 s (12%) 0.03 s (4%)

mult_10_10 UTDSP 4.6 s 3.6 s (78%) 3.7 s (80%)

the polyhedral loop evaluation can not be applied, the analysis based on abstract in-

terpretation must consider each loop iteration separately. On average, smaller bench-

marks require a few seconds for the analysis, while the analysis time for larger

benchmarks such as MiBench’s gsm_encoder takes on average less than 4 min-

utes.

The impact of the different techniques on the analysis run time of some example

benchmarks is shown in Table 3.4. Column Basic represents the absolute run time of

the basic loop analysis based on abstract interpretation. The fourth column (Slicing)

depicts the analysis run time after program slicing, while the last column (Polytope)

indicates the measured run times after the application of the fast polyhedral loop

evaluation (including slicing). In addition, values in parentheses found in the fourth

and fifth column represent the relative run times w.r.t. the third column.

Table 3.4 shows that slicing significantly decreases analysis times. For mat-

mul, a reduction of 72% was achieved. matmul also benefits from the polytope

approach. It contains some loops that can be statically evaluated using the poly-

hedral model, leading to a further reduction in time of 27%. For other benchmarks,

like mult_10_10, slicing reduces the analysis time by 22%. For mult_10_10 the test

whether the polytope approach can be applied was negative, thus slightly increas-

ing the analysis time by 2% and forcing the analysis to switch back to the basic

(iterative) loop evaluation.

Considering all 96 evaluated benchmarks, 38 benchmarks benefit from program

slicing leading to a decreased analysis time. For 13 of these benchmarks, the analysis

time could be further improved by switching from the iterative approach based on

abstract interpretation to the polyhedral approach.

The approach presented in this section was published in [LCFM09].

3.7 Back-Annotation

The integration of a WCET analyzer into WCC’s compiler backend enables the ex-

ploitation of the worst-case timing data by assembly level optimizations. However,

to exploit the high potential of source code level optimizations for WCET minimiza-

tion, the timing data must be translated from LLIR into ICD-C IR. The connection

3.7 Back-Annotation 55

of different abstraction levels of the code and an exchange of data between these lev-

els is carried out in the WCC framework through a process called back-annotation.

In the following, the concepts and implementation of back-annotation developed in

this work are presented.

Problem 3.2 (Back-annotation) Given two code representations Phigh and Plow ,

with Phigh >̂ Plow , where the operator >̂ expresses the relation between the ab-

straction levels of the code representations, i.e., A >̂ B indicates that code rep-

resentation A contains less information than B w.r.t. the execution of program P

on a given target architecture. The problem of the back-annotation is (a) to find a

unique mapping from components of Plow to equivalent components of Phigh such

that backanP : Plow → Phigh, and (b) to exploit this mapping for an information

exchange between the lower- and higher-level code representation.

3.7.1 Mapping of Low-Level to High-Level Components

The connection between the LLIR and the ICD-C IR is established during code

selection. This is the only phase where the compiler has the full knowledge about

structural relationships between the low- and high-level components. To realize the

mapping backan, the back-annotation uses unique identifiers that map an LLIR com-

ponent to a corresponding ICD-C component. The type of the identifiers depends on

the level of granularity on which the back-annotation is performed.

At the most coarse-grained level, mapping of compilation units (source code

files) using the file name as identifier is trivial. During code selection each ICD-C

compilation unit with a unique name is translated into a single LLIR compilation

unit. In a similar way, each high-level function is translated into one low-level func-

tion. Using the unique function name as identifier yields a bijective mapping at this

level of granularity. An exception are ANSI C static functions [Sch00] which may

have identical function names in different compilation units. To achieve unambigu-

ous identification, the function names used for static functions are concatenated with

the compilation unit name.

The finest granularity level exploited for WCC’s back-annotation are basic blocks

using the block mapping function defined as

backanb : blow → bhigh

However, mapping of LLIR and ICD-C blocks is not trivial due to a missing

bijection. The reasons for the encountered n:m mapping are twofold. First, the

definition of basic blocks deviates in both IRs w.r.t. handling of calls. Calls con-

stitute a block’s boundary in the LLIR but not in the ICD-C IR. Second, some

implementation-specific issues complicate the block mapping. For the sake of com-

pleteness, possible scenarios and solutions to them are briefly discussed in the fol-

lowing:

56 3 WCC—WCET-Aware C Compiler

• 1:1 Relation

Sequential code without control flow modifications is represented in the LLIR

and ICD-C IR as a single block. This bijection is exploited and a mapping be-

tween the blocks is achieved using the block label as unique identifier.

• n:1 Relation

Due to different definitions of basic blocks, a source code like

{

a = a / 2;

a + = 100;

a = foo(a);

return a;

}

is represented by two LLIR blocks but a single ICD-C block. Another reason for

this scenario are the logical ANSI C operators AND (&&), OR (||), and the con-

ditional operator (?) which implicitly modify the control flow. At assembly code

level, they are modeled by jump instructions resulting in multiple basic blocks.

However, at source code level a statement constitutes the modular unit of a basic

block, thus block boundaries can not be modeled within a statement. Thus, state-

ments containing these operators are covered by a single ICD-C block. As a con-

sequence, block mapping might be surjective with several LLIR blocks mapped

to a single ICD-C block.

• 0:1 Relation

Assembly level transformations may delete LLIR basic blocks, e.g., a low-

level dead code elimination. Since these modifications to the set of LLIR blocks

are performed after code selection, they do not affect ICD-C blocks. However, to

have a consistent mapping between both IRs, such transformations must notify

the back-annotation which updates the mapping data.

• 1:m Relation

For technical reasons, the header of an ICD-C loop is always modeled by a

separate basic block. Simple loops such as

do {

a − = 1;

sum + = a;

} while (a > 0);

may be differently covered by WCC’s IRs. Within ICD-C IR, the loop body and

the loop header are represented both by a separate basic block. In contrast, this

loop is modeled by a single LLIR basic block since it does not contain any control

flow modifications. For such 1:m relations, the LLIR block must not be mapped

to all m ICD-C blocks since this mapping would equal an undesired duplication

of data. For example, the imported WCET data for the do-while-loop from

the previous example would be twice as large as estimated by aiT, leading to a

falsified worst-case timing model. Thus, timing information is attached to one

3.8 TriCore Processor 57

of the m ICD-C blocks which is called the reference block. Any requests to the

remaining m − 1 ICD-C blocks are forwarded to the respective reference block

in order to access the desired back-annotation information.

3.7.2 Back-Annotated Data

Back-annotation provides a general framework for the exchange of arbitrary infor-

mation between a low-level and high-level IR. Primarily, WCET data and the worst-

case execution counts (WCEC) determined by aiT are imported into the ICD-C IR.

But also other information is exchanged. In detail, WCC’s back-annotation trans-

lates the following data:

• WCET for each basic block, function, compilation unit, and entire program

• Information whether a block lies on the WCEP

• Execution feasibility of blocks and CFG edges

• WCEC per block and CFG edge

• Worst-case call frequencies between functions

• Number of I-cache misses per block encountered during WCET analysis

• Low-level block size in bytes

• Number of spill code instructions per block as generated during register allocation

Due to a missing support of contexts in the LLIR, the WCET-related data listed

above represents values accumulated over all execution contexts. The transfor-

mation of data during back-annotation traverses the LLIR CFG and assigns each

ICD-C block bhigh information annotated at the given LLIR block blow exploiting

backanb : blow �→ bhigh. For the n:1 block relation, data from the n LLIR blocks

is merged according to the following rules (merging for CFG edges works analo-

gously):

• Accumulate WCET information: WCET(bhigh) =
∑n

k=1 WCET(bk
low)

• Assign maximal WCEC: WCEC(bhigh) = max{WCEC(bk
low) | ∀k = 1, . . . , n }

• If at least one WCEP attribute of the n blocks blow is set to true, set WCEP(bhigh) =

true, otherwise WCEP(bhigh) = false

• If at least one infeasible attribute of the n blocks blow is set to false, set

inf (bhigh) = false, otherwise inf (bhigh) = true

In typical embedded applications, the WCEC, WCEP, and infeasible attributes

are equal for all n LLIR blocks.

3.8 TriCore Processor

This chapter concludes with a brief description of the target architecture used in the

WCC compiler framework. Since many of the compiler optimizations discussed in

58 3 WCC—WCET-Aware C Compiler

Fig. 3.7 TriCore TC1796 architecture

the following chapters exploit specific features of the underlying processor, the most

relevant components of the processor will be summarized in the following.

The current implementation of WCC targets the TriCore TC1796 V1.3 proces-

sor [Inf08a] developed by Infineon Technologies. It is a single-core 32 bit DSP ar-

chitecture optimized for embedded systems. The processor’s frequent utilization in

safety-critical automotive applications and its sophisticated architecture providing

high potential for compiler optimizations were the major reasons for its selection as

WCC’s target processor.

TC1796 is a RISC 32 bit load/store Harvard architecture running maximally with

150 MHz. The TriCore instruction set architecture consists of 16 and 32 bit instruc-

tions for high code density. In addition to general-purpose instructions, numerous

DSP-specific instructions, such as multiply-accumulate (MAC), SIMD, or satura-

tion, are available. The processor provides fast hardware controlled context switches

taking 2–4 cycles and a support for a floating point unit.

3.8 TriCore Processor 59

The processor is equipped with a 4-stage pipeline using a triple issue super-scalar

implementation allowing a simultaneous execution of up to 3 instructions, called

bundles. Most instructions are executed either on the integer or load-store pipeline,

while the loop pipeline is dedicated to the execution of zero-overhead loop instruc-

tions.

The register file consists of 32 general purpose registers (GPR) that are divided

into 16 data and 16 address registers. Moreover, two of the 32 bit registers can be

accessed as an extended 64-bit register.

Memory hierarchies play an eminent role in compiler optimizations for embed-

ded systems. An overview of the memory and bus systems of the TC1796 [Inf08a] is

depicted in Fig. 3.7. Next to the CPU, L1 memories, called scratchpads, for program

code (PMI) and data (DMI) are located. In addition to these compiler-controlled

memories, the TC1796 is equipped with a (hardware-controlled) instruction cache.

Further memories are the L2 data memory (DMU) and a program and data Flash.

Additional external memories can be integrated via the external bus unit (EBU).

Besides the TriCore as the core architecture, a first approach to extend the WCC

framework towards a multi-target system was presented in [PLM08]. Using this

methodology, an integration of the ARM7TDMI processor [ARM01] into WCC is

in progress.

Chapter 4

WCET-Aware Source Code Level Optimizations

Contents

4.1 Introduction . 62

4.2 Existing Code Optimization Techniques . 63

4.3 Procedure Cloning . 64

4.3.1 Motivating Example . 65

4.3.2 Related Work . 68

4.3.3 Standard Procedure Cloning . 69

4.3.4 Impact of Standard Cloning on WCET . 71

4.3.5 Experimental Results for Standard Procedure Cloning 72

4.3.6 WCET-Aware Procedure Cloning . 75

4.3.7 Experimental Results for WCET-Aware Procedure Cloning 77

4.4 Superblock Optimizations . 79

4.4.1 Motivating Example . 80

4.4.2 Related Work . 81

4.4.3 WCET-Aware Source Code Superblock Formation 82

4.4.4 WCET-Aware Superblock Optimizations . 91

4.4.5 Experimental Results for WCET-Aware Superblock Optimizations 94

4.5 Loop Unrolling . 97

4.5.1 Motivating Example . 98

4.5.2 Related Work . 99

4.5.3 Standard Loop Unrolling . 100

4.5.4 WCET-Aware Loop Unrolling . 102

4.5.5 Experimental Results for WCET-Aware Loop Unrolling 109

4.6 Accelerating Optimization by the Invariant Path . 113

4.6.1 Motivating Example . 114

4.6.2 Related Work . 115

4.6.3 Invariant Path Paradigm . 116

4.6.4 Construction of the Invariant Path . 119

4.6.5 Invariant Path Ratio . 120

4.6.6 Case Study: WCET-Aware Loop Unswitching 121

4.6.7 Experimental Results for WCET-Aware Loop Unswitching 125

4.7 Summary . 128

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_4, © Springer Science+Business Media B.V. 2011

61

http://dx.doi.org/10.1007/978-90-481-9929-7_4

62 4 WCET-Aware Source Code Level Optimizations

4.1 Introduction

High-performance embedded systems can only be developed when efficiency re-

quirements are pursued at different levels of the system design. A predominant role

is associated with compilers which are responsible for the generation of efficient

machine code. To accomplish this goal, compilers have to feature advanced opti-

mizations. The class of source code optimizations provides a number of benefits

compared to optimizations applied at lower abstraction levels of the code. The most

important issues are briefly discussed in the following.

First, compiler optimizations applied at source code level are characterized by

their portability. Any optimization developed for a particular high-level program-

ming language can be reused in the compiler without any modifications after the

exchange of the target architecture in the compiler backend. Regarding WCET-

aware compilation, portability is also preserved. A prerequisite for WCET-aware

source code level optimizations is a back-annotation (cf. Sect. 3.7) which transforms

WCET data from the low-level IR into the high-level IR. This data is transparent to

the compiler frontend and can be employed for source code optimizations without

further consideration of the underlying hardware. This mechanism makes a compiler

more flexible and fosters reusability of software, leading to a significantly decreased

development time of WCET-optimizing compilers.

Second, the application of source code level optimizations establishes oppor-

tunities for subsequent code transformations. Assembly level optimizations often

benefit from code modifications performed in the compiler frontend. For example,

high-level loop unrolling has shown to have a positive effect on low-level instruction

scheduling since an unrolled loop body increases instruction level parallelism. But

also source code optimizations may benefit from each other. A well-known example

is function inlining. By replacing the function call by the body of the called func-

tion, additional potential for intraprocedural optimizations, such as local common

subexpression elimination, is enabled that would not have been possible without

inlining.

Finally, the high level of abstraction turns out to be advantageous for source

code optimizations. A high-level representation of the code provides more details

about the program under analysis and this knowledge can be exploited for a sophis-

ticated code transformation. To illustrate this issue, consider the transformations of

an ANSI C code snippet performed by loop deindexing (also known as lowering

array-based code to pointer-based code [LPJ96]):

for (int i=0; i<a; ++i) { int *_1=A, *_2=B; {
A[i]=B[i]; → for (int i=0; i<a; ++i)

} *_1++=*_2++;
}

As can be seen on the right-hand side of the example, the access to arrays A and B
has been replaced by pointers. The optimized code allows a translation into more

efficient assembly code since the base address of the arrays is loaded before loop

execution and the pointers can be covered by cheap auto-increment load/store in-

structions. In contrast, loop deindexing is not applicable at assembly level due to

4.2 Existing Code Optimization Techniques 63

missing information about data types such as ANSI C arrays or structs. In addi-

tion, source code optimizations can benefit from static program analyses that are

only available at the high abstraction levels of the code. Examples for such tech-

niques include alias analysis [Muc97] for the evaluation of pointer expressions and

advanced static loop analysis (cf. Sect. 3.6) which can not be efficiently applied to

assembly code.

In this chapter, WCET-aware source code level optimizations applied in WCC’s

frontend ICD-C are presented. All of the presented techniques rely on a back-

annotation which provides WCET information in ICD-C. Section 4.2 gives a sur-

vey of work related to WCET-aware source code level optimizations. In Sect. 4.3,

the optimization procedure cloning is presented. It will be shown that the influence

of cloning may significantly differ on the ACET and WCET of the program. This

knowledge is exploited for a WCET-aware procedure cloning which focuses on an

effective WCET minimization while keeping the inherent code expansion small.

In Sect. 4.4, a structure called superblock is constructed by means of WCEP in-

formation and exploited for WCET minimization. A WCET-aware loop unrolling

that makes extensive use of results from WCC’s static loop analysis as well as in-

formation about the memory hierarchy will be described in Sect. 4.5. In order to

accelerate optimizations prone to a WCEP switch, Sect. 4.6 introduces the concept

of the invariant path and demonstrates its effectiveness for the optimization loop

unswitching. Finally, a short summary in Sect. 4.7 concludes this chapter.

4.2 Existing Code Optimization Techniques

Source code optimizations are popular compiler techniques for the optimization of

the average-case performance. Most standard optimizations improve the code qual-

ity without prioritizing any code sections, i.e., each CFG path is treated equally.

They include for instance value propagation, dead code elimination, or loop col-

lapsing [BGS94]. Another class of optimizations is profiling-based optimization. In

order to identify hot spots in the code, i.e., regions in the code that considerably

contribute to the total execution time of the program, numerous compiler frame-

works interact with profilers. Profiling is typically done at the assembly/machine

code level demanding a back-annotation for the import of execution frequencies

into the compiler frontend. However, an advanced back-annotation, which achieves

a proper mapping between the original source code and the profiled optimized ma-

chine code, is often not available in many compilers. Due to this reason (aka. code

location problem [VRF+08]), the compiler user is often forced to gather profiling

data for non-optimized code which is an undesired restriction.

WCC’s back-annotation does not suffer from the code location problem. The

mapping between the source code and the assembly code is established in the code

selector after ICD-C optimizations were performed. Moreover, any LLIR optimiza-

tions applied in the compiler backend automatically update the mapping informa-

tion (cf. Sect. 3.7). Therefore, a correct connection between both abstraction levels

is given at any time.

64 4 WCET-Aware Source Code Level Optimizations

Unlike ACET optimizations, WCET-aware source code optimizations are hardly

available in today’s compilers. The reasons are twofold. First, a WCET minimiza-

tion relies on an advanced compiler infrastructure that communicates with a WCET

analyzer. Since WCET-aware compilation is still a novel research area, the num-

ber of qualified compilers is marginal as indicated in Sect. 3.2. The few published

works restrict themselves to the domain of low-level optimizations since the com-

piler backend is the location where the WCET analysis takes place, avoiding the

need for a back-annotation. A detailed overview of these optimizations follows in

Chap. 5.

The mandatory existence of a back-annotation is the second reason for the lack

of WCET-aware source code optimizations. To the best knowledge of the author,

besides WCC the TUBOUND compiler framework [PSK08] is the only functional

compiler which supports a back-annotation. However, no source code optimizations

were reported yet.

Besides the approaches developed in this book, two related works concerning

a compiler-based WCET minimization at source code level have been published.

In [FS06], the impact of an ACET optimization on the worst-case performance was

evaluated. The authors applied the optimization loop nest splitting in a standard

compiler to increase the predictability of the code. The optimization transforms

loop nests at source code level such that complex if-then-else-statements are

simplified or even eliminated, leading to a more homogeneous control flow struc-

ture. The static WCET analysis benefits from these code modifications since over-

estimations emerging during the pipeline and branch prediction analysis of jump

instructions are diminished. In addition, the transformed code allows a more ac-

curate specification of flow facts for loops. An evaluation of loop nest splitting on

real-life multimedia applications indicated that the average WCET on an ARM7

processor was reduced by 36.3%, while the average ACET reduction amounts only

to 30.1%.

A compiler-guided trade-off between WCET and code size for an ARM7 proces-

sor was studied by [LLPM04]. The authors observed that applications implemented

with 16 bit THUMB instructions are smaller but also slower than the same code

using the full 32 bit instruction set. They used a simplified timing analyzer to ob-

tain WCET information. This data was employed in their code generator to produce

code that is aware of this trade-off and uses the two instruction sets for different

program fragments.

WCC is currently the only compiler which supports WCET-aware high-level op-

timizations. An overview of the currently available techniques is presented in the

following section.

4.3 Procedure Cloning

Procedure cloning, also known as function specialization, is a well-known compiler

optimization typically applied at source code level. Its goal is the improvement of

4.3 Procedure Cloning 65

the ACET by a reduced function call overhead. Moreover, it is an enabling trans-

formation for other optimizations, i.e., a prior cloning enables the application of

optimizations that would not have been possible without the cloned code. In this

book, procedure cloning is studied in the context of the WCET.

The remainder of this section is organized as follows. Section 4.3.1 discusses

problems emerging during a static WCET analysis of embedded real-time applica-

tions and proposes procedure cloning as a possible solution. An overview of related

work to cloning is presented in Sect. 4.3.2, followed by a description of the standard

cloning algorithm in Sect. 4.3.3. In Sect. 4.3.4, the impact of procedure cloning is

demonstrated on real-life applications. These results indicate that the improvements

come at the cost of a substantial code growth. Therefore, a WCET-aware procedure

cloning, which exploits the benefits of the optimization but significantly limits the

adverse code expansion, is proposed in Sect. 4.3.6. The experimental results of this

optimization are presented in Sect. 4.3.7.

4.3.1 Motivating Example

Static WCET analysis relies on flow facts (cf. Sect. 3.5) which specify loop iteration

counts and recursion depths. Since typical embedded applications spend most of

their execution time in loops, flow facts have a significant impact on the application’s

WCET and their precise specification is mandatory for tight WCET estimations.

However, code structures found in typical applications complicate a precise loop

analysis.

Many embedded real-time applications are data-dominated. Their source code

often contains data-dependent loops:

Definition 4.1 (Data-dependent loop) Let L and F be the set of loops and functions

of a program P , respectively. A loop L ∈ L is called a data-dependent loop if its

loop iteration counts depend on a variable par which is a parameter of function

F ∈ F and L ∈ F . Parameter par affects the loop exit condition which is either

placed in the loop header or the loop body.

A review of these data-dependent applications revealed that functions F contain-

ing data-dependent loops are often called from various locations within P . In ad-

dition, the calls use different values for the arguments translated to the parameters

par of F . Hence, the effective number of loop iterations within F can vary consid-

erably, depending on the execution context, i.e., how and with which parameters F

is called.

Example 4.1 Code from the gsm benchmark found in the MediaBench Suite

[LPMS97] illustrates this situation:

66 4 WCET-Aware Source Code Level Optimizations

void Gsm_Short_Term_Analysis_Filter (. . .) {

. . .

Short_term_analysis_filtering(S, LARp, 13, s);

. . .

Short_term_analysis_filtering(S, LARp, 14, s);

. . .

Short_term_analysis_filtering(S, LARp, 13, s);

. . .

Short_term_analysis_filtering(S, LARp, 120, s);

. . .

}

static void Short_term_analysis_filtering (struct gsm_state * S,

word * rp, int k_n, word * s) {

. . .

for (j = 0; j < k_n; ++j) {

. . .

}

}

The filter function Short_term_analysis_filtering computes the short term resid-

ual signal. It is called four times in Gsm_Short_Term_Analysis_Filter with con-

stant arguments varying between 13 and 120. These arguments are translated in

Short_term_analysis_filtering into the parameter k_n that controls the number of

loop executions of the for-loop.

To enable a precise static program analysis, different calls to functions with data-

dependent loops must be distinguished in order to respect the varying loop behav-

ior. Modern WCET analyzers like aiT support the concept of execution contexts

to represent the history of the invocation of a function. By distinguishing between

different contexts, the variable values that are valid at a certain function call can be

determined. That way, each function call is analyzed separately with precise param-

eter values. The context information is propagated to the code in the function body

enabling a tight analysis of data-dependent loops for which precise loop iteration

counts are regarded.

However, the support of context-sensitivity enhances not only the analysis pre-

cision but also significantly increases its complexity [The02]. In particular, nested

loops can cause a rapid increase of contexts leading to state explosions. For ex-

ample, the loop nest of three nested loops with ten iterations each requires 1000

contexts to be distinguished. Such large numbers of contexts can make a context-

sensitive WCET analysis infeasible since both a vast amount of memory resources

and computation time are necessary.

This phenomenon is depicted in Fig. 4.1. For three complex real-life applications,

the figure shows the time taken for WCET analysis using aiT for different (small)

numbers of considered execution contexts. As can be seen, WCET analyses require

exponential run times for increasing numbers of contexts. For example, the analysis

4.3 Procedure Cloning 67

Fig. 4.1 Context-sensitive WCET analysis times

time for the mpeg2 benchmark took 125 seconds for one and 16,723 seconds for

four distinguished contexts.

In order to decrease the analysis time and to make the WCET analysis feasi-

ble, the number of distinguished contexts can be restricted. However, this loss of

information has a negative effect on the precision of the timing analysis of loops.

Restricting the number of contexts to n means that the first n − 1 loop iterations are

represented by a distinguished context, leading to a precise analysis. If the number

of loop iterations u is larger than n, the remaining u − n + 1 iterations are summa-

rized by the last context. In order to obtain a safe timing estimation, the analyzer

determines the maximal WCET per iteration among the remaining iterations. This

WCET has to be pessimistically assumed for each of the u − n + 1 iterations, pos-

sibly yielding a high overestimation.

But not only the context restriction leads to imprecision during loop analysis.

The structure of loops in real-life applications is often too complex to be analyzed

at assembly level. Therefore, aiT’s loop analysis only succeeds for a limited class

of loops. Due to these reasons, flow facts for most loops require either a manual

specification by the user or by WCC’s static loop analysis. The common form of

flow facts for loops is a [min,max] interval (cf. Sect. 3.5) for each loop, modeling

lower and upper bounds of the possible number of iterations of a loop.

The specification of flow facts for data-dependent loops turned out to suffer from

the interval representation. Since function F containing such loops is called from

many places with possibly different arguments, the effective number of loop itera-

tions within F can vary considerably, depending on how and with which parameters

F is called. However, the flow facts for such a loop must cover all these different

contexts in which the loop may be executed in order to result in safe WCET estima-

tion. Hence, the lower bound of such flow facts must represent the global minimum

of iterations executed by such a loop over all contexts in which F is called, and the

same holds for the upper bound. Since such flow facts for data-dependent loops do

not consider possible different execution contexts of a function F , the flow facts are

safe but lead to a highly overestimated WCET.

Procedure cloning (also known as function specialization) is a standard opti-

mization [Muc97] exploiting functions that are often called with constant values as

68 4 WCET-Aware Source Code Level Optimizations

arguments. If the caller invokes a callee with some constant parameters, the callee

can be cloned by removing the constant parameters from the list of parameters and

importing them into the callee itself. In standard literature, the benefits of cloning

are said to be twofold. First, procedure cloning potentially enables further optimiza-

tions, e.g., constant propagation and constant folding within the clone. Second, the

calling overhead is reduced since the constant parameters are not passed any more

between caller and callee.

In this book, the impact of procedure cloning on the WCETs of embedded real-

time applications is investigated and it is shown that cloning can be highly effective

for the WCET analysis. The transformation creates a specialized version F̂ of F . If

F contains data-dependent loops, the data-dependence of the number of loop iter-

ations is resolved since constant argument values are propagated into the loop exit

conditions. The optimized code becomes more predictable since precise flow facts

for the data-dependent loops in F̂ can be provided. Hence, procedure cloning can

be seen as an approach to make different calling contexts explicit at the source code

level, thus enabling a high-precision WCET analysis of these specialized functions.

An important advantage of this technique is that the WCET reduction is achieved

without noticeably increasing analysis times compared to a context-sensitive analy-

sis as indicated in Fig. 4.1.

In addition, the tightness of the WCET estimates can be further improved by the

elimination of infeasible paths. Such paths are executable according to the control

flow graph but are not feasible when taking the program semantics and possible

input values into account. The propagation of constant function arguments into the

function bodies helps to identify infeasible paths in the function clones, thus im-

proving the static WCET analysis.

4.3.2 Related Work

Procedure cloning was initially published by Cooper in [CHK93] and is now part

of standard literature on compiler construction [Muc97]. Up to now, cloning was

exclusively studied in the context of ACET and code size.

Cooper addressed the problem of interprocedural transformations and exploited

cloning to enable compiler optimizations that could previously only be performed

after function inlining which often entails an undesired code expansion. Before

cloning a function, the compiler evaluates the potential for further optimizations that

would arise if a particular function was cloned. This way, only promising function

candidates are transformed, resulting in high average-case performance improve-

ments and marginal code size increases.

A similar approach was pursued in [SES00]. The authors observed that Fortran

90 subroutine calls can cause serious performance losses if copy-in/copy-out ar-

gument passing is required. To prevent redundant argument copying, a cloning al-

gorithm utilizing data-flow analyses was presented. It enables the identification of

profitable procedure clones and a controlled code growth. The approach presented

4.3 Procedure Cloning 69

in [SD03] explored the impact of procedure cloning on the instruction level paral-

lelism of VLIW and EPIC machines. By merging function clones, multiple inde-

pendent instruction streams were generated which can be executed in parallel.

In [Vah99], procedure cloning was studied in the context of functional partition-

ing. The authors applied the transformation to create function clones that can be

assigned to different processors which execute the calls to these clones. The result

is a performance improvement due to the reduced communication overhead.

A related work to procedure cloning was explored in the field of feedback-

directed optimization [FMP+07]. Motivated by the fact that the behavior of a pro-

gram can vary considerably across different data sets, the authors cloned the most

time-consuming functions during compilation and applied different standard opti-

mizations to them. In a second step, the program was run with different inputs on

different target architectures and the performance of the original and cloned func-

tions was evaluated by measuring their execution time. These performance values

were continuously gathered together with characteristic data about the architecture

and the functions as well as the used optimizations. Finally, this data base could be

exploited to build improved optimizers.

All of these works have in common that an ACET reduction was targeted. Proce-

dure cloning was not yet discussed in the context of compilation and optimization of

embedded real-time systems. After a brief introduction to this standard optimization,

the following sections explore the potential of cloning regarding WCET minimiza-

tion.

4.3.3 Standard Procedure Cloning

Procedure cloning belongs to the class of inter-procedural compiler transformations

where the optimizing compiler generates a specialized copy of the original proce-

dure. Afterwards, the original function calls are replaced by calls to the newly cre-

ated clones. Since constant argument values are propagated into the function body of

the clones, the calling overhead for parameter handling is decreased. Moreover, the

transformed code provides a more beneficial basis for aggressive inter-procedural

data-flow analyses [CHK93] and offers the opportunity for improved optimizations.

In particular, constant propagation and folding, copy propagation and strength re-

duction benefit from the modified code. Also, entire paths might be eliminated when

cloning yields conditions that can be evaluated by the compiler as always false and

thus be never executed.

Figure 4.2 demonstrates transformations performed by procedure cloning. As can

be seen, the function parameters n and p of the original code on the left-hand side

of the figure are substituted by the constants 5 and 2, respectively, within the cloned

function f1. Moreover, the function call is adjusted.

The cloned function body could be further improved by standard compiler opti-

mizations. First, applying strength reduction [BGS94] allows to replace the expen-

sive multiplication by a shift operation. Second, the propagated constant value of n

70 4 WCET-Aware Source Code Level Optimizations

int f(float *x, int n, int p) { int f1(float *x) {
for (i=0; i<n; ++i) { for (i=0; i<5; ++i) {
x[i] = p * x[i]; x[i] = 2 * x[i];
if (i==10) {...} if (i==10) {...}

} }
return x[n]; → return x[5];

} }

int main(void) { int main(void) {
//multiple calls of f(x,5,2); //multiple calls of f1(x);
return f(a, 5, 2); return f1(a);

} }

Fig. 4.2 Example for procedure cloning

could be exploited to simplify the control flow graph. By exposing the value range

of the loop induction variable i, the condition if (i==10) could be evaluated at

compile time as always false and be removed by dead code elimination. This trans-

formation has a positive effect on the processor pipeline since the number of control

hazards entailed with branches is reduced. Finally, the calling overhead is reduced.

The decreased number of arguments minimizes the number of required instructions

for both the caller and the callee.

Besides the improvements concerning the program run time, the optimization has

one drawback. Each specialized copy of the function body increases code size. In

general, it is also not always permitted to remove the original function even if it is

not called anymore in the optimized program. This is due to the uncertainty if the

function might not be invoked from another compilation unit not considered in the

current optimization course. If so, its removal would be illegal.

Hence, this standard compiler optimization should be used with caution, and a

trade-off between the resulting speed-up and the increased code size, especially in

the domain of embedded systems with restricted memories, should be considered.

4.3.3.1 Selection of Functions to Be Cloned

There are different strategies to define how extensively procedure cloning should

be performed. Two factors are relevant for the optimization. First, the maximum

size of the function permitted to be cloned must be specified. This parameter can,

for example, be defined by the number of source code expressions found within the

function. All functions that exceed this parameter are omitted and not considered for

procedure cloning since they may possibly result in a too large code size increase.

The second factor guides the choice of functions to be cloned by setting con-

straints on the occurrence of the constant arguments. It defines how frequently a

particular constant argument must occur within all calls of the function to be cloned.

For example, the user might specify that constant argument values must be present

in more than half of all function calls. If this frequency is not reached, it will not be

considered for optimization and the function will not be cloned for this parameter.

4.3 Procedure Cloning 71

If the code size increase is crucial, the number of additionally generated functions

must be kept minimal. The only candidates for cloning are functions that are called

most of the time with the same constant argument. The extreme case is the choice

of functions that are always invoked with the same constant value for a particular

function parameter.

However, this strict policy of trying to keep the code size small would strongly

restrict the use of procedure cloning for most embedded applications since the con-

stant values for a particular function parameter rarely remain the same, but vary

between a small set of constant values. The second parameter mentioned above,

defining the frequency of the occurrence of identical constant values, must thus be

chosen adequately to allow the application of procedure cloning at all.

Procedure cloning is performed in three stages where each function is analyzed

separately. In the first step, constant arguments and the number of their occurrences

for each function parameter are collected. Hereafter, the collected arguments that

do not meet the specified frequency are removed and omitted for procedure cloning.

This is done by counting all function calls, where the considered argument is used,

and by comparing it to the number of parameter occurrences from the previous

step. In the final stage, all constant arguments that were not removed are used for

procedure cloning. The original function is cloned and assigned a unique function

name. The specialized argument is removed from the parameter list and directly

propagated into the code by replacing the parameter variables by the constant value.

Finally, the original function calls within the source code are redirected to the cloned

functions.

4.3.4 Impact of Standard Cloning on WCET

Primarily, the objective of procedure cloning is to reduce the ACET. Obviously, the

optimization also reduces the actual WCET of the program since the code structure

is improved. However, these improvements resulting from a better code quality yield

a minimal reduction of both the ACET and WCET for typical embedded systems

applications as will be indicated in the following section.

More important for a WCET estimation are the transformations performed by

cloning which generate code that is more accessible for high-precision WCET anal-

yses. The augmented predictability is achieved by tackling two major problems: the

explicit specification of loop bounds and the elimination of infeasible paths. Both

contributions of procedure cloning enhance the tightness of the WCET estimates

since they result in a more accurate description of the program behavior.

Several embedded applications spend large portions of their execution time in

loops. As pointed out in Example 4.1 for the gsm benchmark, many loops are lo-

cated in functions and their number of iterations is often specified by function pa-

rameters. If these functions are invoked with varying constants that correspond to

the respective parameters, the loops exhibit a strongly deviating behavior.

To statically analyze these loops, the timing analyzer must be provided manually

with loop iteration counts. To preserve WCET safeness, the loops are annotated with

72 4 WCET-Aware Source Code Level Optimizations

the maximal number of iteration counts the loop is ever executed with, i.e., the an-

notations must represent the global maximum of iterations for this loop considered

over all execution contexts. The minimal number of iterations specified in the flow

fact annotations serves exclusively for consistency checks of the ILP model during

path analysis and has no effect on the computation of upper execution time bounds.

Example 4.2 For the example from Fig. 4.2, the loop bound flow facts for the orig-

inal code (function f) and the code transformed by procedure cloning (function f1)

have to be specified as follows using WCC’s EBNF grammar (cf. Sect. 3.5):

int f(float *x, int n, int p) {

_Pragma("loopbound min L max U ")

for (i = 0; i < n; ++i) {

↓

int f1(float *x) {

_Pragma("loopbound min 5 max 5")

for (i = 0; i < 5; ++i)

In the original code, L and U represent global minimum and maximum of loop iter-

ations, respectively. The larger the variations between possible loop iteration counts

u, with L ≤ u ≤ U , the higher the overestimation of the estimated WCET. In the

cloned version, precise loop bounds of 5 iterations can be specified.

Yet another code simplification has a positive effect on the tightness of the WCET

estimates. Loops often consist of multiple paths resulting from conditions in the

code. Some paths may have the longest execution time but are not feasible according

to the program semantics. If particular conditions can not be evaluated statically, a

conservative timing analysis with a restricted number of distinguished contexts has

to assume the worst-case scenario where each loop iteration traverses the longest

path. Using procedure cloning, these infeasible paths can be eliminated in the spe-

cialized functions.

For example, the then-part of the if-condition of the specialized function f1
on the right-hand side of Fig. 4.2 is never executed for parameter n = 5. Advanced

data-flow based techniques are capable of detecting and eliminating conditions eval-

uated as always false. Hence, infeasible paths are not considered during WCET

analysis leading to tighter WCET estimations.

4.3.5 Experimental Results for Standard Procedure Cloning

In this section, the effectiveness of standard procedure cloning is demonstrated on

three complex real-life benchmarks. The evaluated benchmarks stem from the Me-

diaBench Suite [LPMS97] which comprises different applications typically found in

4.3 Procedure Cloning 73

Table 4.1 Characteristics of

evaluated benchmarks Benchmark Size [kByte] # Functions # Loops

epic 12.5 6 41

gsm 22.8 36 48

mpeg2 30.4 14 33

Fig. 4.3 Relative WCET

estimates for standard

procedure cloning

the embedded systems domain. The first benchmark is epic, an experimental lossy

image compression utility. The already mentioned gsm benchmark represents an en-

coder and decoder for speech compression, while mpeg2 is a motion estimation for

frame pictures. Table 4.1 lists the benchmarks’ size, and their number of functions

and loops.

The impact of procedure cloning was studied for the TriCore processor using the

WCC infrastructure. Procedure cloning was applied in the compiler frontend using

the ICD-C IR optimizer. The following parameters were used for procedure cloning

(see previous section): maximal function size of 2,000 expressions and a frequency

of 50% (constant argument to be cloned must occur in at least half of all function

calls). Due to the complexity of the timing analysis (cf. Fig. 4.1), the number of

contexts was restricted to one distinguished context (no remarkable improvements

were observed for the distinction of two or three contexts). Considering the run times

of the WCET analysis for the original and cloned version, no significant changes

could be observed.

4.3.5.1 WCET

Figure 4.3 depicts the influence of procedure cloning on the estimated WCET of the

considered benchmarks. The 100% mark corresponds to the WCET estimation of

the original code compiled with the standard optimizations constant folding, con-

stant propagation and dead code elimination [Muc97]. These optimizations are ap-

plied in order to simplify the code structure and to remove dead code which can be

detected even without cloning. The same optimizations are applied before and after

cloning. That way, the explicit impact of cloning can be explored. On average, the

estimated WCET could be reduced by 59.4%.

74 4 WCET-Aware Source Code Level Optimizations

The estimated WCET for epic could be decreased by 55.6%. This is due to the

code structure of epic: it contains a filter function consisting of 32 nested, partially

data-dependent loops that is highly appropriate for cloning. Due to this code struc-

ture, cloning has a dramatic impact on WCET estimates since exact flow facts for

the loops of this filter function representing the hot spot of epic are provided for

static WCET analysis.

The gsm benchmark contains the already presented residual signal filter. This

function is called with strongly varying constants (between 13 and 120) defining

the number of iterations for its loop. Cloning creates specialized function versions

for the frequently used constants. Due to the improved code analyzability after pro-

cedure cloning, the loops can be annotated with exact flow facts. This has a positive

effect on the estimated WCETs. A reduction of 59.2% compared to the WCET of

the non-optimized code was achieved.

The benchmark mpeg2 contains two functions that were optimized by procedure

cloning. The first function implements the full-search motion detection algorithm.

It is invoked with two different constant values (8 and 16) defining the height of

the frame block. Within this function, another procedure is called computing the

distance between these blocks. It is invoked with the same block height constants as

passed to its caller. These values are used to control the number of iteration counts

for multiple loops. After cloning, the code contains a dedicated version of the full-

search implementation for each block size. The loop bounds in the nested functions

can again be defined more precisely, which is automatically carried out by WCC.

The WCET estimate after procedure cloning is reduced by 63.4% compared to the

non-optimized code.

4.3.5.2 ACET

To examine the impact of procedure cloning on the ACET, code before and after

procedure cloning was measured using a cycle-true instruction set simulator. The

improvements of cloning were negligible. On average for all benchmarks, an ACET

decrease of 2.1% was achieved. The small degree of ACET reduction is due to the

fact that cloning did not enable sufficient optimization potential for other optimiza-

tions. The comparison between ACET and WCET results highlights the significantly

different impact of this compiler optimization on the performance metrics ACET

and WCET.

4.3.5.3 Code Size

Finally, the code size is examined. As stated previously, the benefits of procedure

cloning come at the cost of a code size increase. In particular, large function bodies

or functions that are cloned multiple times for different constant arguments may

exhibit a high code expansion.

Figure 4.4 depicts the relative code size, with 100% corresponding to the size of

the benchmarks before cloning. The code size of the epic benchmark rose to 793.7%

4.3 Procedure Cloning 75

Fig. 4.4 Relative code size

for standard procedure

cloning

since a large function with 32 nested loops was cloned multiple times. The size of

gsm was almost unchanged since only few small functions were cloned. Finally, a

code size increase of 127.0% was observed for mpeg2 compared to the code without

extensive cloning. The average code size increase amounts to 273.2%.

For embedded systems with restricted memory resources, high code size in-

creases, such as observed for epic, might not be acceptable. Therefore, a trade-off

between predictability and code growth has to be taken into account and cloning of

inappropriate functions should be possibly omitted.

4.3.6 WCET-Aware Procedure Cloning

Previous sections have highlighted the benefits of procedure cloning on the pre-

dictability of the code but also indicated that the standard optimization may not be

suitable for embedded systems due the emerging code expansion.

The general problem of standard cloning for an improved WCET estimation is

the selection of cloning candidates. Without the notion of timing in the compiler,

the optimizer transforms each function that satisfies a given prerequisite, i.e., call-

ing the function with frequently occurring constant arguments. However, cloning

of functions without data-dependent loops is not promising since marginal WCET

improvements with a simultaneous extensive code increase can be expected.

To cope with this problem, procedure cloning is extended by heuristics that re-

spect the trade-off between predictability and code size. The basic idea behind the

novel WCET-aware procedure cloning developed in this book is to evaluate the im-

pact of a function transformation w.r.t. its benefits on the WCET estimation and the

resulting code growth. To enhance predictability effectively, only functions on the

WCEP are involved. Moreover, cloning begins with the optimization of the function

that promises the highest WCET improvement. In order to control code expansion,

the user may specify the maximally permitted code size increase. Therefore, tak-

ing this parameter into account allows an efficient exploitation of the available free

memory for a more predictable program code.

The workflow of WCET-aware procedure cloning is outlined in Algorithm 4.1.

The optimization is provided with the program P to be transformed and a user-

defined parameter maxFactor representing the maximally permitted code size in-

76 4 WCET-Aware Source Code Level Optimizations

Algorithm 4.1 Algorithm for WCET-aware procedure cloning

Input: P ,maxFactor

Output: optimized P

1: maxSize ← codeSize(P) · maxFactor

2: repeat

3: for all F ∈ WCEP(P) do

4: if F is cloning candidate then

5: P̂ ← P

6: F̂ ← P̂(F)

7: cloning(F̂)

8: updateFlowFacts(F̂) ∧ removeInfeasiblePaths(F̂)

9: WCETAnalysis(P̂)

10: codeSize(P̂)

11: end if

12: end for

13: calculateProfits()

14: Ff ittest ← fittest(P ,maxSize)

15: if Ff ittest �= ∅ then

16: cloning(Ff ittest)

17: end if

18: until Ff ittest == ∅

19: return P

crease. The algorithm consists of three phases. In the first phase (lines 3–12), a vir-

tual cloning of copied functions F̂ (lines 5–6) that lie on the WCEP is carried out.

To cope with possible WCEP switches, cloning is repeated as long as functions on

the WCEP are found. This way, even functions that become part of the longest path

after the successive cloning are covered.

In the second phase (line 13), the impact of cloning on functions on the WCEP

is evaluated. The parameters of function F must satisfy at least one of the following

conditions such that F is considered for WCET minimization:

• used inside a loop exit condition to allow a definition of more precise loop bound

flow facts,

• used inside a conditional expression so that possibly infeasible paths can be re-

moved,

• passed as argument to a callee of F . Cloning for this case does not directly influ-

ence the WCET estimation but provides constant arguments for the callees that

in turn might profit from later cloning.

The evaluation of F is performed by virtually cloning the copy F̂ of F . Within

the copy, flow facts of the data-dependent loops are automatically adjusted using a

static loop analysis and WCC’s flow fact manager (cf. Fig. 3.1 on p. 27). In addition,

infeasible paths are eliminated. The WCC framework uses polytope models for the

detection of conditions that are evaluated as always false [FM03].

4.3 Procedure Cloning 77

Fig. 4.5 Relative WCET

estimates for standard &

WCET-aware procedure

cloning

Based on a comparison between the original program P and P̂ containing F̂ , the

cloning profit �F
clone can be computed:

Definition 4.2 (Cloning profit) Let WCETP , WCET
P̂

be the WCET and CSP ,

CS
P̂

the code size of the original and partially cloned (with function F̂) program,

respectively. The cloning profit �F
clone is computed as follows:

�F
clone =

WCETP − WCET
P̂

CS
P̂

− CSP

Data about the WCET and the code size are made available within ICD-C via

WCC’s back-annotation. If there is a single function clone that replaces the original

function, the size of the optimized code might get smaller resulting in a negative

denominator. In that special case, the denominator is set to 1.

In the last phase (lines 14–18), cloning is performed on the fittest function

Ff ittest that is assigned the highest profit �F
clone > 0. After the transformation, the

optimization starts again in the first phase to capture possible WCEP switches. Al-

gorithm 4.1 warrants the maximally permitted code size increase by considering

maxSize and possibly excluding F from cloning if code restrictions would be ex-

ceeded.

4.3.7 Experimental Results for WCET-Aware Procedure Cloning

To show the benefits of WCC’s WCET-aware procedure cloning, experiments are

conducted on real-life benchmarks and compared with results of standard procedure

cloning from Sect. 4.3.5.

4.3.7.1 WCET

Figure 4.5 shows the impact of standard procedure cloning (first bars per bench-

mark) and WCET-aware cloning (second bars per benchmark) on the estimated

78 4 WCET-Aware Source Code Level Optimizations

Fig. 4.6 Relative code size

for standard and

WCET-aware procedure

cloning

WCET. The parameter maxSize from Algorithm 4.1 was set to 4. Again, the 100%

corresponds to the WCET estimates of the original code compiled with the standard

optimizations constant folding, constant propagation and dead code elimination. On

average, the estimated WCET could be reduced by 57.5% for the considered bench-

marks using WCET-aware cloning. As can be seen, the achieved results for both

optimizations are almost identical. For all three MediaBench benchmarks, standard

cloning could accomplish a slightly smaller WCET compared to the WCET-aware

cloning. On average, standard cloning outperforms WCC’s novel cloning merely by

1.9%.

The reason for this minimal advantage of standard cloning is that the optimization

transforms even functions that do not allow a more precise specification of flow

facts. Hence, standard cloning specializes more functions than the WCET-aware

optimization. The resulting program code exhibits a slightly improved performance

since it benefits from the traditional advantages of cloning such as a reduced calling

overhead. However, as already seen for the ACET results of standard cloning, these

benefits are typically negligible.

4.3.7.2 Code Size

The most interesting question is whether WCET-aware cloning can control the sig-

nificant code size increase entailed with extensive specialization of functions. In

Fig. 4.6, the resulting code size for standard and WCET-aware cloning is depicted.

Analogous for the previous WCET results, 100% corresponds to the code size of

the non-optimized code and maxSize is set to 4. As can be seen, the WCET-aware

cloning could significantly reduce the code expansion for epic and mpeg2.

For epic, the code expansion of 693.7% could be cut down to 298.6%, resulting

in an absolute code size of 39.42 kByte. Such a code size reduction is important

for resource-restricted systems. For example, the optimized code could be allocated

into TriCore’s program scratchpad having a size of 48 kByte while the code af-

ter standard cloning would exceed the scratchpad capacity. Experiments were also

conducted with maxSize = 2, that is, maximally a doubling of the code size was

permitted. In this case, the relative WCET estimation of 49.6% (for maxSize = 4)

increased to 83.4%. This result points out that some crucial functions for a more

4.4 Superblock Optimizations 79

precise WCET analysis were not specialized as they would increase the code size

too heavily.

Using maxSize = 4, similar results were observed for mpeg2. The relative code

size could be decreased from 227.0% (for standard cloning) to 131.6% using the

WCET-aware cloning. On average for all three benchmarks the relative code size

reduction amounts to 209.5% (cf. bar labeled with Average).

These results allow to draw the conclusion that WCC’s WCET-aware procedure

cloning exploits the benefits of cloning for an improved WCET estimation but also

keeps code expansion small by avoiding cloning of functions that do not promise a

noticeably positive effect on the timing analysis. While standard cloning achieved

an average WCET reduction of 59.4% at the cost of a code size increase of 273.2%,

the WCET-aware optimization reduced the estimated WCET by 57.5% with a si-

multaneous code size increase of only 109.5%. Moreover, it could be also seen that

a too heavy restriction of code expansion may prevent a precise WCET estimation.

4.3.7.3 Optimization Run Time

The optimization run time strongly depends on the number of functions that are po-

tential candidates for cloning since they are all evaluated w.r.t. their influence on the

WCET, making multiple runs of the WCET analyzer necessary. For the gsm bench-

marks with few functions, the optimization time of WCET-aware cloning amounts

to 37 minutes on an Intel Xeon 2.4 GHz system with 8 GB RAM. Most time was

spent on the optimization of epic with 221 minutes caused by the large number of

evaluated functions. However, the structure of this application is exceptional and

does not represent the general program structure found in embedded system appli-

cations. On the other hand, WCET optimizations are not performed as frequently as

standard optimizations on general-purpose systems but are run once to generate the

final production code. Thus, the optimization run time is not a key issue and longer

analysis times are acceptable.

The techniques presented in this section led to the publications [LFSP07,

LFS+07, LFMT08].

4.4 Superblock Optimizations

The previous sections have demonstrated the effectiveness of compiler-based

WCET minimization. However, the full optimization potential can often not be ex-

plored by numerous compiler optimizations since they are considerably limited by

basic block boundaries found in the application code. To overcome this problem, a

program structure called superblock has been introduced. It comprises several basic

blocks and allows optimizations across block boundaries. This technique was thor-

oughly studied in the past for ACET minimization and substantial program speedups

were reported [CMH91, CMW+92, CL00, KH06]. To find promising block candi-

dates for superblock formation, block execution counts are required. For ACET

80 4 WCET-Aware Source Code Level Optimizations

minimization, profiling typically identifies assembly blocks on the most frequently

executed path within the program’s control flow graph.

In this book, the concept of superblocks is exploited for the optimization of

embedded real-time systems that have to meet stringent timing constraints. Un-

like profiling-based ACET optimization, WCC’s superblock formation is driven by

WCET data. Moreover, superblocks, which were constructed in the past exclusively

at assembly level, are translated for the first time to source code level. Such an ap-

proach enables an early code restructuring in the optimization sequence providing

more optimization opportunities for subsequent transformations. To benefit from

the new constructs, the widely used compiler optimizations common subexpression

elimination (CSE) and dead code elimination (DCE) are re-designed to operate on

WCC’s WCET-aware superblocks. This adaption allows an effective WCET min-

imization as code optimization is focussed on the most promising portions of the

WCEP.

This section begins with a motivating example to illustrate the benefits of su-

perblocks for compiler optimizations. Section 4.4.2 provides a survey of related

work. In Sect. 4.4.3, the traditional concept of superblocks at assembly level is pre-

sented and extended towards WCET-aware source code superblocks. Section 4.4.4

describes how these superblocks are combined with the compiler optimizations CSE

and DCE. Finally, experimental results obtained using these optimizations are dis-

cussed in Sect. 4.4.4.

4.4.1 Motivating Example

Traditionally, local optimizations can often not be applied across basic block bound-

aries, thus their optimization scope is significantly limited. Extending the optimiza-

tion scope to functions or even the entire program may help to overcome these

limits. However, intra- and inter-procedural optimizations must consider each CFG

path equally in order to preserve program semantics. As a consequence, crucial

paths through the CFG can not be aggressively optimized since optimization op-

portunities are inhibited by less important paths that have a minimal impact on the

program performance. An effective optimization is infeasible unless the distracting

paths are systematically excluded from the analysis.

As an example, consider the code and its CFG shown in Fig. 4.7. The expen-

sive division arg / 3 is computed twice on the WCEP. Thus, it is a candidate for

the compiler optimization common subexpression elimination (CSE) that replaces

multiple identical occurrences of an expression by a single variable that holds that

computed value [Muc97]. However, the application of CSE is inhibited for the di-

vision in Fig. 4.7(a) since the variable arg does not remain unchanged between

the two evaluations of expression arg / 3 if the else-part of the if-condition is

taken. Hence, the WCEP can not be optimized by CSE.

Transforming the code as shown in Fig. 4.8 enables the application of CSE.

The basic block holding the statement j = arg / 3; is duplicated, turning

4.4 Superblock Optimizations 81

Fig. 4.7 Example for inhibited optimization opportunity

Fig. 4.8 Example for combination of superblock formation and CSE

arg / 3 into a common subexpression since it can not be reached from the mu-

tually exclusive path traversing the else-part. Based on the restructured CFG, the

expensive division can be replaced by the previously computed result stored in vari-

able i. This way, the length of the WCEP is shortened at the cost of other paths

leading to a decreased WCET estimation. In literature, this transformation is called

superblock formation. In Fig. 4.8(b), the generated superblock is marked by the

dotted box.

This example shows that optimizations combined with a superblock formation

driven by WCEP information can find more opportunities than traditional code op-

timizations. In the following, this idea will be pursued in more detail.

4.4.2 Related Work

Superblock-Based ACET Minimization The concept of superblocks belongs to

the class of compiler optimizations that has been extensively studied for ACET re-

82 4 WCET-Aware Source Code Level Optimizations

duction. Superblocks are based on the model of traces which represent the most

frequently executed paths in the program. The initial idea was introduced by

Fisher [Fis81] who considered traces as extended regions in the code to perform

instruction scheduling across basic blocks. An improved version of trace schedul-

ing w.r.t. the compilation time and code size increase was presented in [SDJ84].

Different trace selection algorithms were evaluated in [CH88] and one of the first

successful integrations of a trace scheduler into the commercial compiler Multiflow

was presented in [LFK+93].

The main drawback of trace scheduling is the arising overhead for the insertion of

compensation code after scheduling a trace to preserve program semantics. To over-

come this complex bookkeeping, Chang introduced superblocks [CMH91] which

allow an easier instruction scheduling. Moreover, this work discusses ideas for the

exploitation of superblocks by standard optimizations. These ideas serve as moti-

vation for the work presented in this section. Cohn [CL00] presented an extension

to Chang’s approaches w.r.t. superblock-based loop optimizations, while software

pipelining operating on superblock loops was discussed in [CMW+92]. To increase

the size of superblocks, Hwu proposed enlarging optimizations [HMC+93]. All the

presented works have in common that the optimizations are applied in the com-

piler back-end at assembly level and rely on average-case execution counts of basic

blocks.

WCET Minimization The only work considering superblocks for WCET mini-

mization was published by Zhao [ZKW+05]. This paper is most related to this work

but also significantly differs in several ways. Most importantly, Zhao performs the

superblock formation at assembly level while WCC’s superblock construction is

performed early in the compiler’s optimization process at source code level. Thus,

WCC’s approach enables further potential for subsequent optimizations as shown

in [KH06]. Moreover, in [ZKW+05] no novel superblock-based WCET-aware opti-

mizations were developed while this book proposes a novel combination of WCET-

aware superblocks with the optimizations CSE and DCE. In addition, Zhao used

small programs for the evaluation of his approach, thus it is not clear if his approach

also scales well for realistic applications. In contrast, the evaluation of WCC’s su-

perblock optimizations is conducted on large real-life benchmarks, which represent

applications used in industry. As will be shown later, the optimizations can be car-

ried out in an acceptable amount of time. Finally, Zhao tackles the problem of a

switching WCEP in a simplified way by performing a WCET analysis after each

code transformation. This approach is time-consuming and not suitable for larger

applications. In contrast, WCC’s superblock optimizations rely on a fast ILP-based

recomputation of the WCEP after a code modification.

4.4.3 WCET-Aware Source Code Superblock Formation

In this section, the required steps for the WCET-aware formation of superblocks

are discussed. Section 4.4.3.1 introduces traces as the underlying structure of su-

4.4 Superblock Optimizations 83

perblocks and presents an improved trace selection algorithm compared to exist-

ing approaches. Based on the previous section, the concept of superblocks as well

as the differences between assembly and source code superblocks are described in

Sect. 4.4.3.2. Finally, an algorithm for the formation of WCET-aware source code

superblocks is provided in Sect. 4.4.3.3.

4.4.3.1 Trace Selection

Traces are the underlying structure of superblocks.

Definition 4.3 (Trace) Given a control flow graph G = (V ,E) with nodes V corre-

sponding to basic blocks and edges E connecting two nodes vi, vj ∈ V . A trace T is

a sequence of basic blocks T = (ba, . . . , bk), such that for a ≤ i < k, (bi, bi+1) ∈ E.

If there is a loop L, with ∃vk ∈ L : vk ∈ T , then T is restricted by the respective loop

boundaries, i.e., T does not span across basic blocks that lie outside L.

The problem of trace selection is formally defined as follows:

Problem 4.1 (Trace selection) Given a weighted control flow graph G and a set T

of already selected traces, the problem is to find a new trace Tn such that ∄Tk ∈ T :

Tk ∩ Tn �= ∅ holds and the sum of weights of all nodes or edges within trace Tn is

maximized.

In literature, the trace selection problem is handled by greedy heuristics. Popu-

lar trace selection algorithms [CH88] rely on execution counts of basic blocks or

control flow edges between blocks which are typically expressed by block weights

w(bi) or edge weights w(ei), respectively. For a trace Ti , both approaches begin at

a block bstart having the highest execution count w(bstart) and being not part of

any other trace Tj . In the following steps, the trace Ti = (ba, . . . , bstart , . . . , bk) is

alternately extended at both ends. With Traces denoting the set of already selected

traces and δ+(b) denoting the set of outgoing edges from block b, the two trace

selection algorithms for the expansion of a trace at its end (extension at the trace

beginning works equivalently) operate as follows:

• Selection via node weights: Select bnew such that edge (bk, bnew) ∈ E, ∀Tj ∈

Traces : bnew /∈ Tj and w(bnew) = max{w(bi) | (bk, bi) ∈ E}.

• Selection via edge weights: Select bnew such that edge enew = (bk, bnew) ∈ E,

∀Tj ∈ Traces : bnew /∈ Tj and w(enew) = max{w(e) | e ∈ δ+(bk)}, with δ+(bk) =

{(bi, bj) ∈ E | bi = bk}.

The trace selection based on node weights may find less suitable traces than the

edge weight-based selection. This is illustrated in Fig. 4.9 which shows a fragment

of a CFG with blocks and edges labeled with their execution counts which can be

delivered by profiling or a WCET analysis. Starting at the if-condition, the se-

lection based on node weights would select blockA for trace expansion due to the

84 4 WCET-Aware Source Code Level Optimizations

Fig. 4.9 Drawback of node

weight-based approach

Fig. 4.10 Failure of existing

trace selection approaches

higher execution counts of 30. However, as the edge weights indicate, this decision

is unsuitable since the control flow traversing the true-edge to the then-part is exe-

cuted more frequently than the false-edge. Thus, selecting the then-part as done by

the edge weight-based approach is likely to provide a higher optimization potential.

Longest Path Approach But even the edge weight-based selection algorithm may

take inappropriate decisions leading to a trace that does not enable full optimization

opportunities. The general problem with the two presented greedy algorithms is

their limited, local view on the program’s CFG which may miss the construction of

good traces and hence promising superblocks.

Consider the weighted CFG in Fig. 4.10 where blocks are annotated with their

(worst-case) execution times t (in parentheses) and edges with the execution counts.

Starting at the if-condition, both the node and the edge weight-based approach

would select blockA for trace expansion. Such a trace following the false-edge com-

prises code that consumes 6 ∗ 100 cycles + 6 ∗ 220 cycles = 1,920 cycles. However,

if the true-edge were taken, the trace would comprise all three blocks with a length

of 4 ∗ 100 cycles + 4 ∗ 210 cycles + 4 ∗ 220 cycles = 2,120 cycles. Obviously, fo-

cusing on the longer trace promises more optimization potential.

The selection of a trace based on the longest path outperforms the greedy algo-

rithms. However, it requires precise information about the execution time of each

basic block. Typically, profilers used for ACET minimization do not provide this

data, thus the computation of the longest path is not feasible in practice. In contrast,

WCET-aware compilation, which relies on a tight integration of a static WCET an-

alyzer into a compiler framework, has access to a precise worst-case timing data

including the block WCETs.

4.4 Superblock Optimizations 85

In the following, the novel algorithm for trace selection based on the longest

path is presented in an informal manner. The algorithm requires WCET estimations

for each basic block at source code level. This data is provided by WCC’s back-

annotation (cf. Sect. 3.7).

If the starting block is located within a loop, the algorithm finds a trace T within

this loop. Otherwise, an entire function is used for trace selection. The following al-

gorithm describes the former case—the function-wise selection works analogously.

The following steps are required to find the longest path:

1. Find block bstart with the maximal WCET serving as a heuristically promising

starting point for the trace.

2. For loop L, with bstart ∈ L, a directed, acyclic graph GL = (VL,EL) is con-

structed, such that all blocks in L that have the same loop depth as L are added

to VL. Inner loops I of L are represented by a special node bI
loop and are added

to a set Vloop . The set of edges EL contains all edges between blocks b ∈ VL.

Moreover, each edge (vi, vj), with vi /∈ I and vj ∈ I is replaced by an edge

(vi, b
I
loop) and is added to EL. The symmetric case is handled analogously. In

contrast, edges inside inner loops Vloop as well as edges to blocks outside L do

not belong to EL.

3. L is entered through the source block denoted as bsource . Each block having

successors outside L is called bi
sink . Furthermore, a distinguished node bsupersink

is created and connected with all bi
sink .

4. To find the longest path in GL, the WCEP computed by a context-sensitive tim-

ing analyzer is not suitable as trace since it may contain code on multiple mutu-

ally exclusive paths executed in different contexts. To this end, the widely used

implicit path enumeration technique (IPET) (cf. Sect. 2.3.4 on p. 19) is applied

to find the longest path in GL where for each branch only one path is selected. In

this approach, an integer linear program is formulated by translating the control

flow in GL into a system of linear constraints. The objective function represents

the execution time of possible paths in GL. Maximizing this function under the

given constraints yields the longest path in GL. Due to the small number of pos-

sible blocks to be considered, the run time of the IPET approach is typically

negligible amounting to few seconds.

5. The final trace is selected by starting at bstart and adding alternately one block

from the longest path to the beginning and end of the trace. For each lengthening

of the trace, WCC estimates the code size expansion that would occur if this trace

was used for superblock construction. The estimated code size is compared with

a user-defined code expansion restriction to avoid extensive code increases.

6. This algorithm is repeated as long as there are unprocessed blocks which are not

part of any trace and have a WCET > 0. Thus, the algorithm also handles blocks

in inner loops of L and blocks outside L at some point.

4.4.3.2 Concepts of Superblocks

The motivation for the development of superblocks originates from the idea to sim-

plify instruction scheduling performed on traces. Trace scheduling was initially de-

86 4 WCET-Aware Source Code Level Optimizations

veloped by Fisher [Fis81] to enable a more efficient scheduling across basic block

boundaries. Code motion below side exits (conditional branches out of the middle

of the trace) can be handled in a straightforward manner by copying the moved

instructions into the side exits. Handling of instructions moved above side exits

(speculative execution) is also simple. Complex bookkeeping is required when code

is moved below or above side entrances, which are defined as a block bin ∈ T with

a predecessor bp ∈ T and at least one predecessor boff /∈ T .

The bookkeeping associated with side entrances can be avoided if they are re-

moved from the trace. For this purpose, superblocks were developed at assembly

level.

Assembly Superblocks The concept of superblocks was published for the first

time by Chang et al. [CMH91]. The authors describe the structure of a superblock

as a trace that has no side entrances:

Definition 4.4 (Superblock) A superblock S is a trace which can be entered only

at the first basic block bstart , i.e., S is a trace T = (bstart , . . . , bend) such that ∀b ∈

T \ {bstart } : ∀(bi, b) ∈ E : bi ∈ T . In contrast, control from S may leave at one or

more exit points.

Since the size of natural superblocks found in the program code is typically

small, superblock enlarging optimizations [HMC+93] are used. The main technique

is tail duplication which eliminates side entrances of arbitrary traces. For a side en-

trance bin in a trace T = (ba, . . . , btrc, bin, . . . , be), a copy of the tail portion of the

trace from the side entrance to the end bin, . . . , be is created and all side entrance

edges e ∈ {(bpred , bin) ∈ E | bpred �= btrc} are redirected to the corresponding du-

plicated basic block b′
in. Figure 4.11 illustrates the superblock formation at assem-

bly level. On the left-hand side of the figure, a trace is selected (marked in bold).

Using tail duplication, which copies block L3, a superblock is built (cf. dotted box

in Fig. 4.11(b)). The superblock formation at this abstraction level of the code is

easy since merely block labels have to be adjusted, while the code in the duplicated

tail portions remains the same as in the original code.

Source Code Superblocks The definition of basic blocks at source code level

is equivalent to its counterpart at assembly level, making a translation of the su-

perblock concepts possible. Following Definition 4.4, superblocks at source code

level are defined as traces of a high-level control flow graph with no side en-

trances. However, WCC’s source code superblocks differ in one point from the

traditional definition. Unlike Chang’s superblocks [CMH91], a WCC superblock

S = (b0, b1, . . . , bn) may contain inner loops. These loops are represented on the

trace by their loop headers. Hence, a loop L is referred to as an inner loop if its loop

header is a basic block bhead such that bhead = bk with k ∈ 1, . . . , n, and block bk+1

is the next basic block after loop L. This idea of a special handling of inner loops is

similar to Fischer’s trace definition [Fis81] which treats loops as a single operation

called loop representative.

4.4 Superblock Optimizations 87

Fig. 4.11 Superblock formation at assembly level

Fig. 4.12 Superblock formation at source code level

An example for a superblock formation at source code level for the programming

language ANSI C is depicted in Fig. 4.12. Again, the trace including an inner for-

loop is marked in bold on the left-hand side of the figure. In contrast to the assembly

code, basic blocks do not consist of operations but of source code statements. More-

over, basic blocks at this level are not distinguished by unique block labels, making

an explicit control flow modification from one block to another arbitrary block diffi-

88 4 WCET-Aware Source Code Level Optimizations

cult. Compared to the superblock formation at assembly level (cf. Fig. 4.11), which

was easy to perform due to simple duplication of the corresponding tail portion and

the adjustment of the block labels, a tail duplication at source code level is more

elaborate. As can be seen in Fig. 4.12(b), the superblock formation requires a du-

plication and insertion of the statement j = i into the CFG paths other than the

trace.

The triplication of statement j = i could be avoided if, similar to assembly

level, a new basic block holding this statement would be generated and control flow

using goto’s would be redirected to this block. However, this strategy was inten-

tionally avoided. Many compiler optimizations rely on well-structured code and the

insertion of goto’s would make the code unqualified for these transformations.

Thus, the benefit of superblocks to enable other optimizations would be heavily

decreased.

4.4.3.3 Superblock Formation

In the following, the formation of WCET-aware superblocks at source code level is

discussed in more detail. The formation starts with a preprocessing step to enlarge

code fragments suitable for superblocks and to remove code constructs that inhibit

a superblock construction.

Preprocessing The preprocessing phase begins with the application of the well-

known optimizations function inlining, which replaces function calls by the cor-

responding callee bodies, and standard loop unrolling that expands loop bodies.

These optimizations are also proposed for the formation of assembly superblocks

in [HMC+93]. In the next step, programming language constructs that lead to un-

structured code are tried to be eliminated since they prevent a proper superblock

formation. Examples are ANSI C goto-statements. A detailed description for the

elimination of unstructured code can be found in [EH94]. If the undesired con-

struct can not be removed, then functions containing these constructs are omitted

for superblock formation. ANSI C switch-statements without an explicit de-
fault-case also require a special handling. During the superblock formation, code

following a switch-statement is possibly moved into the respective cases of a

switch-statement. To ensure that this code is always executed (like in the original

version) even when no case is entered, an initially empty default-case is added

which can hold a copy of the duplicated code.

Formation Algorithm After preprocessing, a WCET analysis of the compiled

program is performed at assembly level and the WCET information is made avail-

able at source code level using WCC’s back-annotation. This information allows

to order functions w.r.t. their WCETs and to begin the superblock optimizations

with the function exhibiting the highest WCET. Such a strategy is important for

resource-restricted embedded systems since it allows to exploit maximal optimiza-

tion potential before code expansion restrictions are exceeded.

4.4 Superblock Optimizations 89

Algorithm 4.2 Algorithm for WCET-aware source code superblock formation

Input: WCET-aware Trace T

Output: Superblock SB

1: block currBB ← endNode(T)

2: block lastBB ← endNode(T)

3:

4: /* Iterate trace, starting at the end. */

5: while currBB �= startNode(T) do

6: /* Perform tail duplication. */

7: if |δ−(currBB)| > 1 then

8: for all predBB ∈ δ−(currBB) do

9: if predBB == tracePredBlock(currBB) then

10: moveStmt(firstStmt(currBB), lastStmt(lastBB), lastStmt(predBB))

11: else

12: copyStmt(firstStmt(currBB), lastStmt(lastBB), lastStmt(predBB))

13: end if

14: end for

15: end if

16: currBB ← tracePredBlock(currBB)

17: if isPrecededByInnerLoop(currBB) then

18: currBB ← predBeforeLoop(currBB)

19: end if

20: if isConditional(lastStmt(currBB)) then

21: lastBB ← currBB

22: end if

23: end while

24: return T

Fig. 4.13 Successive source code superblock formation

Source code superblock formation is depicted in Algorithm 4.2. Figure 4.13

shows an example CFG and the respective code with a trace marked by the arrows

90 4 WCET-Aware Source Code Level Optimizations

which serves for illustration of the algorithm. The basic idea of the algorithm is to

traverse trace T backwards beginning at the last block and to eliminate found side

entrances by duplicating the so far traversed tail portions of the trace in all CFG

paths other than the trace. The original tail portion is moved behind the predecessor

block on the trace to enlarge the superblock. Following this strategy, the superblock

is iteratively increased by merging it with the predecessor blocks on the trace. The

superblock formation continues as long as the start node of the trace T has not been

reached or code size constraints have been exceeded.

Variable currBB represents a pointer to the basic block that is currently consid-

ered for superblock formation and used to traverse the trace backwards. In Fig. 4.13,

it is marked by the bold box. To keep track of the current tail portion that must

be duplicated, two pointers (currBB and lastBB, lines 1–2) are required that mark

the first and last statement of the tail. If currBB has more than one incoming

edge (δ−(currBB)), tail duplication is performed (lines 7–15). If the predecessor

of currBB is lying on the trace, then all statements (including inner loops) between

the first statements in currBB and last statement in lastBB are moved behind the

last statement of the trace predecessor predBB (lines 9–10). Otherwise, this set of

statements is copied into the other CFG paths being not part of the trace (line 12).

Note that code size constraints were already checked during trace selection using the

longest path approach, hence are not required to be tested again during superblock

formation.

Finally, currBB is set to the next predecessor block on the trace (line 16), while

inner loops are omitted (lines 17–19). Moreover, if the tail end lastBB is inside a

conditional statement c, lastBB is moved out of c to enable a duplication of the

entire conditional statement (lines 20–22).

Figure 4.13(c) shows the situation after the first side entrance elimination to

blockC. Block blockC was moved onto the trace in the then-part of the second if-

condition and copied into the non-trace predecessor (else-part). Moreover, lastBB

was updated to the beginning of its embedded conditional statement.

In the next step, the superblock constructed according to Algorithm 4.2 is passed

to the optimizer. After the optimization, a WCEP recomputation is required to tackle

the path switch which may occur during superblock formation and its optimiza-

tion.

IPET-Based WCEP Update To make sure that subsequent optimizations do not

operate on an outdated WCEP, the timing information must be updated. A frequent

use of a costly WCET analysis is not feasible. Thus, WCC updates the WCEP data

during superblock optimization using the IPET approach. For the underlying ILP

model, which represents the program flow at source code level, the reader is re-

ferred to [Kel09]. The involved ILP model requires WCET information for basic

blocks which are extracted from the initial run of the timing analyzer aiT before the

superblock optimization begins. Since execution contexts are not distinguished, the

solved ILP model is less complex than a full WCET analysis. Hence, the WCEP

recomputation is faster but also less precise. Such trade-offs are typical for com-

piler optimizations where complexity is decreased at the cost of precision. It should

4.4 Superblock Optimizations 91

be noted that the conducted IPET-based computation is not meant to replace a safe

static WCET analysis but should be considered as a fast heuristic which helps to

indicate potential WCEP switches.

For blocks that were modified by the optimizations, estimations of their WCET

are made by the optimizer. The estimation uses the tree-based approach (cf.

Sect. 2.3.4 on p. 19) which computes worst-case timing for constituents of state-

ments based on combination rules that depend on the statement type. After some

iterations (defined by the user), a full WCET analysis is performed to obtain precise

timing information.

4.4.4 WCET-Aware Superblock Optimizations

In this section, the exploitation of WCET-aware superblocks for compiler optimiza-

tions is discussed. Section 4.4.4.1 briefly introduces basic techniques from static

program analysis required for the development of the superblock-based optimiza-

tions common subexpression elimination and dead code elimination. The optimiza-

tions themselves are discussed in Sects. 4.4.4.2 and 4.4.4.3, respectively.

4.4.4.1 Static Program Analysis

Static program analysis tries to determine dynamic properties of the program with-

out actually executing it. For WCC’s superblock optimizations, it must be known

which statements access which storage locations (variables). For high level pro-

gramming languages, such as C, this analysis is not trivial when pointers are taken

into account.

Alias Analysis The goal of this analysis is to determine whether multiple memory

references point to the same memory area. Based on this alias knowledge, it can be

inferred which variables are affected by which statements. Compilers can use these

alias relationships to simplify code. The results of an alias analysis are points-to sets

that are attached to a program variable and indicate to which other variables it points

to.

Def/Use Sets For many compiler optimizations, it is not sufficient to know to

which variables a pointer may point to, but which variables are read or written

by which expressions. These results can be expressed by def/use sets, which rep-

resent sets of symbols from/to which an expression may read/write (USEmay and

DEFmay). A possible computation of def/use sets, which are assigned to expressions

and also integrate results of an alias analysis, is based on so-called syntax directed

definitions [Ton99].

92 4 WCET-Aware Source Code Level Optimizations

Livetime Analysis The last analysis required for the superblock-based optimiza-

tions is the livetime analysis [App97]. It is a classical data flow analysis which

determines for each program point if a variable is live or otherwise dead. More ac-

curately, a variable v is called live on a CFG edge if there is a directed path from

that edge to a use of v that does not contain any redefinition of v. A variable is

live-in at a statement s if it is live on any of the incoming edges of s. A variable

v is called live-out at a statement s if it is live on any of the outgoing edges of

s. LIVE-INmay(s) and LIVE-OUTmay(s) are the corresponding may-sets at s for

all v.

4.4.4.2 WCET-SB Common Subexpression Elimination

The optimization common subexpression elimination (CSE) is a well-known tech-

nique that removes recomputations of common subexpressions and that replaces

them with uses of saved values. A common subexpression denotes an occurrence of

an expression in a program if there is another occurrence of this expression whose

evaluation always precedes this one in execution order and if the operands of this

expression remain unchanged between the two evaluations [Muc97].

Local CSE operates on the limited scope of a single basic block. Global CSE

works on entire functions but side entrances in the control flow graph often can-

cel opportunities for CSE since common subexpressions may be overwritten in the

side entrance path. Superblock-based CSE (SB-CSE) can outperform the local and

global CSE since it operates on multiple basic blocks and removes conflicting side

entrances.

WCC’s SB-CSE is similar to Ghiya’s approach [GH98] and relies on def/use

sets. The optimization traverses a superblock in a top-down manner and updates for

each superblock statement the set of available expressions. Similar to the general

definition of availability in the context of data flow analysis [ASU86], availability

in superblocks is defined as follows:

Definition 4.5 (Available expression) In a superblock SB, an expression e is called

available at statement s ∈ SB iff e was computed in a preceding statement scomp ∈

SB and there is no re-definition of any operands o ∈ e between the evaluation of

scomp and s.

To find available expressions at statement s, a list availList containing available

expressions found during the superblock traversal is maintained. At each expression

e ∈ s it is checked if e redefines any of the operands of the available expressions

availExp ∈ availList, i.e., USEmay(availExp) ∩ DEFmay(e) �= ∅. If so, availExp is

removed from availList. Otherwise, if e equals availExp, a mapping availExp → e

is stored for later replacement. If inner loops are encountered during the superblock

traversal, availList must be possibly updated, i.e., redefined expressions within the

loop are removed from availList. Finally, CSE traverses all collected mappings,

creates a temporary variable t = availExp, and replaces all redundant e1, . . . , en

4.4 Superblock Optimizations 93

Fig. 4.14 Example for superblock-based CSE

by t . An example from the G.721 decoder benchmark for SB-CSE is shown in

Fig. 4.14 (trace is marked). As can be seen, the expression state->b[cnt] can

be reused in the superblock.

4.4.4.3 WCET-SB Dead Code Elimination

Unlike CSE, dead code elimination does not just eliminate redundant computations

but deletes statements completely. In case of the superblock-based DCE (SB-DCE),

statements can be removed from a superblock by either deleting them or by moving

them outside the superblock. By definition, dead statements sdead are statements

with LIVE-OUTmay(sdead) ∩ DEFmay(sdead) = ∅. Results computed by sdead are

not required in the further program flow.

Definition 4.6 (Superblock-dead) A statement sSB
dead is said to be superblock-dead

in superblock SB iff it is not dead and none of its defined variables (DEFmay(s
SB
dead))

is read in SB before being re-defined.

A superblock-dead statement sSB
dead can be removed from a superblock SB by

copying sSB
dead into all control flow paths that exit the superblock and which contain

statements that require the results of sSB
dead [CMH91]. WCC’s SB-DCE algorithm

moves each superblock-dead statement sSB
dead downwards in the superblock passing

all succeeding statements. When a branch statement, i.e., a side exit, is passed, the

algorithm copies sSB
dead into all successor blocks bsucc which

• are not part of SB and

• for which sSB
dead is live at bsucc, i.e., LIVE-INmay(bsucc) ∩ DEFmay(s

SB
dead) �= ∅

The motion of sSB
dead is stopped when the superblock end is reached. If sSB

dead is

live in the superblock end-block bend (LIVE-OUTmay(bend)∩ DEFmay(s
SB
dead) �= ∅),

sSB
dead is kept at the superblock end to preserve data dependencies. Otherwise, sSB

dead

can be completely removed from the superblock. An example for the application

94 4 WCET-Aware Source Code Level Optimizations

Fig. 4.15 Example for superblock-based DCE

of the SB-DCE is depicted in Fig. 4.15. As can be seen, the computation of i
could be removed from the superblock traversing the else-part of the outermost if-

condition.

4.4.5 Experimental Results for WCET-Aware Superblock

Optimizations

This section evaluates the impact of WCC’s WCET-aware superblock optimizations

on the WCET estimates of real-life benchmarks. In total, 55 benchmarks from the

test suites DSPstone [ZVS+94], MRTC [MWRG10], MediaBench [LPMS97], and

UTDSP [UTD10] were involved in the experiments. The experiments were con-

ducted for the TriCore TC1796 processor with enabled I-cache.

For the experiments the following optimization parameters were used: the code

size restrictions allow the maximal superblock size to be 5 times as large as the orig-

inal trace, and a maximal increase of a function and the entire program by a factor

of 3 and 2.5, respectively. Moreover, the timing analyzer aiT was run after each 4th

superblock formation including the application of the superblock optimizations to

update WCET information. For the remaining steps, the IPET-based approach (cf.

Sect. 4.4.3.3) was used. These settings were empirically determined and showed a

good performance.

4.4.5.1 WCET

Due to space constraints, Fig. 4.16 shows the impact of different common subex-

pression elimination strategies on the WCET estimates for a subset of 15 bench-

marks. These benchmarks were chosen since they represent the typical effects of

the optimization of the considered benchmarks. The Average-bars on the right-hand

side of the figure indicate the results averaged for all considered 55 benchmarks.

The 100% mark, which serves as reference, represents the WCET of the bench-

marks compiled with the highest optimization level (O3) and disabled CSE. The

4.4 Superblock Optimizations 95

Fig. 4.16 Relative WCET estimates for SB-CSE

first bars per benchmark (labeled with Std. CSE) represent the results for the stan-

dard local ACET CSE. As can be seen, the WCET improvements are marginal with

an average improvement of 3.4%. The second bars represent the WCET for the code

optimized with O3, disabled CSE, and the WCET-aware superblock formation. An

average WCET improvement of 4.0% was achieved. Based on these results it can be

inferred that the superblock formation is often beneficial for the performance since

it establishes optimization potential for subsequent standard optimizations. This ob-

servation is conform with the results in [KH06].

It should be also noted that superblock formation exploits WCC’s capability to

quantify transformation effects. If the estimated WCET is larger after the code mod-

ification than before, then the modification is rolled back. Thus, the diagram does

not show any results larger than 100%. This capability is not available in many

compilers, thus standard code transformations may yield an undesired performance

degradation.

Best results were achieved for the CSE based on the WCET-aware superblocks

(bars labeled with SB-CSE). WCET improvements of up to 42.1% for the dijk-

stra benchmark were observed. The average improvement for the 55 benchmarks

amounts to 10.2%. This result is remarkable since it increases the optimization po-

tential of a traditional, intensively studied compiler optimization by a factor of 3.

From the comparison between the second and third bars also the conclusion can be

drawn that superblock formation often provides optimization potential which can

only be fully exploited by a tailored superblock-based optimization (cf. e.g., bench-

mark statemate). SB-CSE also exploits WCC’s rollback mechanism to restore the

original program if the optimization increases the estimated WCET for example due

to additional spilling. Thus, WCETs larger than 100% are not observed.

The results for the superblock DCE achieved for the 15 representative bench-

marks are shown in Fig. 4.17. Compared to the 100% reference mark, which rep-

resents the WCET for the highly optimized code using O3 and disabled DCE, the

standard local ACET DCE achieved on average for all 55 benchmarks a WCET re-

duction of 2.0%. The superblock formation amounts to an average WCET reduction

96 4 WCET-Aware Source Code Level Optimizations

Fig. 4.17 Relative WCET estimates for SB-DCE

Table 4.2 ACET results for

SB-optimizations Optimization Level Average ACET

O3 with Std. CSE 97.9%

O3 with SB-Formation w/o CSE 97.5%

O3 with SB-CSE 95.1%

O3 with Std. DCE 98.6%

O3 with SB-Formation w/o DCE 98.2%

O3 with SB-DCE 97.9%

of 4.0%. Again, the most effective WCET reduction was achieved with the DCE

based on the WCET-aware superblocks, yielding an average improvement of 8.8%.

Again, WCC’s rollback mechanism was used if required.

4.4.5.2 ACET

WCC’s superblock formation is driven by WCET data. Thus, it is interesting to

explore its impact on the ACET. As rows one and four in Table 4.2 show, the reduc-

tions of the ACET for standard local CSE and DCE applied to the 55 benchmarks

are comparable with those achieved for the WCET. This is obvious since the local

CSE and DCE do not prioritize any paths, thus they have similar effects on the con-

sidered program execution times. Moreover, a comparison between the ACET and

WCET results for the superblock formation and the superblock-based optimizations

shows that higher improvements are achieved for the WCET reduction. One reason

is that the WCET-aware optimizations focus on the WCEP which might be differ-

ent from the most frequently executed path. This emphasizes the need for tailored

WCET-aware optimizations which might operate differently compared to traditional

ACET optimizations.

4.5 Loop Unrolling 97

4.4.5.3 Code Size

Since the superblock formation is a code expanding transformation, the resulting

code size increase is critical. The code size for SB-CSE and SB-DCE was measured

for two different scenarios. In a first scenario, the same code size restrictions dur-

ing trace selection were utilized as for the previously mentioned WCET and ACET

experiments. For this configuration, an average code size increase of 23% for the

SB-CSE and 28% for the SB-DCE was observed. Larger code size increases were

typically found for smaller benchmarks with a size of few kByte, which is accept-

able for modern systems.

In a second scenario, the code expansion was not limited. Code size increases for

both optimizations of approximately 107% were measured on average. Simultane-

ously, the WCET results are slightly degraded. A possible reason might be adverse

instruction cache overflows cancelling further optimization benefits. Thus, it can be

inferred that a code size restriction is mandatory for a balanced trade-off between

the WCET improvement and the code size increase.

4.4.5.4 Optimization Run Time

Finally, the run time of WCC’s superblock optimizations on an Intel Xeon 2.4 GHz

system with 8 GB RAM was measured. In a first scenario, the WCET analyzer aiT

was run after each 4th superblock formation and optimization as in the previous ex-

periments. In this configuration, the optimization run time increased by 540% com-

pared to the time when standard optimizations are applied instead. This additional

time is acceptable for code optimization of embedded systems where performance

is the primary goal.

To check if no WCEP switches were missed between two runs of the timing ana-

lyzer, aiT was run after each second superblock formation in a second scenario. This

led to an increase of the optimization time by 757% and marginal WCET improve-

ments of less than 1%. Thus, it can be concluded that too frequent WCEP updates

by a costly WCET analysis do not pay off.

The techniques presented in this section have been published in [LKM10].

4.5 Loop Unrolling

Program loops are notorious for their optimization potential on modern high-per-

formance architectures. Compilers aim at their aggressive transformation to achieve

large improvements of the program performance. In particular, the optimization loop

unrolling has shown in the past decades to be highly effective in achieving signifi-

cant increases of the ACET.

Loop unrolling is a code transformation that replicates the body of a loop a num-

ber of times and adjusts the loop-control accordingly. The number of replications is

called the unrolling factor u and the original loop is often termed rolled loop. The

98 4 WCET-Aware Source Code Level Optimizations

main benefits of the optimization are a reduced loop increment-and-test overhead

and an increased instruction level parallelism. The explicit parallelism is considered

as the essential benefit of unrolling since it potentially enables other compiler opti-

mizations. However, loop unrolling is also entailed with negative side-effects. The

main drawbacks are an adverse impact on the instruction cache (I-cache) due to the

inherent code size increase, and additional spill code due to an increased register

pressure. Therefore, sophisticated control mechanisms for an effective unrolling are

required which exploit the benefits of the optimization while avoiding its disadvan-

tages.

In this book, the advanced infrastructure of the WCC framework is utilized for

the development of sophisticated heuristics that focus on an explicit WCET mini-

mization. The presented loop unrolling is completely driven by worst-case timing

information which is not sensitive to input data. Hence, it is more reliable than pre-

vious ACET approaches that rely on profiling information which might change for

different inputs leading to suboptimal or even adverse compiler decisions.

The remainder of this section is organized as follows. In Sect. 4.5.1, the signif-

icance of suitable control mechanisms for unrolling is motivated by a real-life ex-

ample. Section 4.5.2 provides an overview of related work regarding loop unrolling.

Section 4.5.3 provides a brief introduction to standard loop unrolling as found in

many compilers. The novel heuristics for a WCET-aware loop unrolling are pre-

sented in Sect. 4.5.4, followed by experimental results on real-life benchmarks in

Sect. 4.5.5.

4.5.1 Motivating Example

Loop unrolling belongs to the class of traditional code expanding compiler opti-

mizations. Therefore, the compiler user is faced with the question how extensively

loop body duplication should be conducted. A too careful unrolling wastes optimiza-

tion potential while a too heavy transformation cancels optimization merits and even

degrades program performance.

Standard compilers use simplified heuristics to decide how often a loop body is

duplicated. This global decision is used for any loop in the program. However, due

to different structures of program loops and their execution contexts, such as avail-

able processor registers, a global unrolling factor is not sufficient. To accomplish

an effective loop unrolling, an individual assessment of each loop L is required to

determine the most promising unrolling decision. This decision relies on different

parameters characterizing L which are, however, usually not available in standard

compilers.

The degree of unrolling at source code level can be controlled by the number

of ANSI C expressions that the unrolled loop may maximally hold. This limitation

serves as a common unrolling heuristic found in many standard compilers and can

be set by the compiler user as a global optimization parameter.

Figure 4.18 illustrates the influence of unrolling on the WCET estimation for the

fft benchmark from DSPstone [ZVS+94] which contains two loops being unrolling

4.5 Loop Unrolling 99

Fig. 4.18 Impact of loop

unrolling on WCET

estimation

candidates. The results were generated by WCC using O3 as optimization level

during code generation.

The horizontal axis represents the maximal number of permitted expressions in

the body of each finally unrolled loop. Relaxing the unrolling limitation to 60 ex-

pressions allows a single duplication of the body of one of the loops, leading to a

slight increase of the WCET estimation since additional spill code is introduced.

Setting the limitation to 160 expressions yields a further unrolling of both loops.

This transformation enables other optimizations which generate code with a de-

creased number of spilling instructions as a result of the reduced register pressure.

This positive effect on the WCET estimation is cancelled when the loops are further

unrolled at the 240-expression boundary. At this point, further I-cache misses due

to a cache overflow arise.

The observations in Fig. 4.18 point out the importance of suitable unrolling

heuristics. A naive unrolling without the consideration of influencing factors may

even amount to a degradation of the program performance. WCC’s WCET-aware

loop unrolling performed at source code level exploits the benefits of loop unrolling

and prevents its negative effects by integrating information from different parts of

the compiler infrastructure to find a promising unrolling strategy for each individual

loop.

4.5.2 Related Work

Loop unrolling belongs to the class of compiler optimizations that has been ex-

tensively studied for ACET reduction. In [SK04], generalized loop unrolling meth-

ods were presented that allow the optimization of badly-structured loops which are

transformed into well-structured loops before being optimized. A combination of

loop unrolling and automatic scheduling by the compiler was discussed in [LH95].

The positive effects of loop unrolling concerning an increased instruction-level par-

allelism were exploited for instruction scheduling in [MCG+92].

One of the central questions for loop unrolling is how to compute an appropri-

ate unrolling factor. It has been shown that the consideration of I-cache constraints

100 4 WCET-Aware Source Code Level Optimizations

and register pressure is significant for that computation. The problems of automati-

cally selecting an appropriate unrolling factor were addressed in [Sar01]. In addition

to the consideration of I-caches and register availability, the authors used a tech-

nique called unroll-and-jam to produce compact code for nested loops. [KKF97]

described an unrolling heuristic taking information about data dependencies, reuse,

and machine resources into account. Heydemann [HBK+01] presented an integer

linear programming based approach to compute the unrolling factor. However, his

approach exhibits strong limitations. For example, no conditions in the unrolled

loops are allowed, I-cache interference is not respected, and only unrolling factors

being a power of two are considered.

In addition, the selection of an appropriate unrolling factor essentially depends

on the knowledge of loop iteration counts. Many works implicitly assume that loop

iteration counts are given and do not address their determination. In [DJ01], a sur-

vey of different aspects of unrolling was given. One of the main conclusions is that

missing loop bounds considerably decrease optimization potential. They conducted

profiling to gather this crucial parameter. However, as described in Sect. 4.5, pro-

filing information might not be reliable. Moreover, profiling is expensive and thus

often not applicable. To overcome this dilemma, WCC’s static loop analysis is ap-

plied to compute safe and input-invariant loop bounds that are valid for all input

data.

The only work that considers loop unrolling in the context of WCET minimiza-

tion is presented by Zhao et al. in [ZKW+05]. However, this work differs in several

aspects from the approach presented in this book. Most important, Zhao did not

develop a WCET-aware loop unrolling but applied standard ACET unrolling and

studied its impact on the WCET. Moreover, he did not exploit worst-case iteration

counts of loops for an aggressive WCET optimization, but unrolled each loop by a

constant factor of two. Also, his unrolling is applied at the assembly level, and his

target architecture has no caches, making an evaluation of cache effects impossible.

4.5.3 Standard Loop Unrolling

The unrolling factor u defines the number of replications of the loop body. A re-

view of previous literature has shown that there is no standardized definition for the

amount a loop is unrolled. In this book, the term unrolling factor is used as follows:

Definition 4.7 (Unrolling factor) The unrolling factor u specifies how often a loop

body is replicated. If the body of the original loop is replicated n times, then the

unrolling factor is u = n + 1, i.e., the unrolled loop will contain n + 1 loop bodies.

If the loop iteration count of a rolled loop does not correspond to an integral

multiple of the unrolling factor u, then either additional exit conditions must be

added into the unrolled loop body or some left-over iterations must be separately

handled by an additional loop (remainder loop).

4.5 Loop Unrolling 101

for (i=1; i<5; i+=j) {
j = 0;
x[i] = p * x[i-1];

for (int i=1; i<5; ++i) { ++j;
x[i] = p * x[i-1]; → if (i+j>=5) break;

} x[i+1] = p * x[i];
++j;
if (i+j>=5) break;
x[i+2] = p * x[i+1];
++j;

}

Fig. 4.19 Example for loop unrolling

Loop unrolling can be performed at both the assembly or source code level.

WCC’s loop unrolling is performed at source code level in the ICD-C frontend.

Figure 4.19 demonstrates a possible implementation of unrolling of an ANSI C

loop using an unrolling factor of 3. The example points out the difficulties emerging

when an unqualified factor is selected. To control the loop iterations, a costly test of

i is required.

Unrolling a loop positively affects the program performance for many reasons.

The most important are [BGS94, Mow94, Muc97]:

• Reduced loop overhead comprising the increment-and-test instructions

• Reduced number of jumps back to the loop’s entry might improve pipeline be-

havior

• Fundamental code transformation for superscalar processors since unrolling

makes instruction level parallelism explicit

• Improved spatial locality leading to an improved I-cache performance

• Enabled application of other optimizations in unrolled loops

Since optimizations following unrolling might benefit from the unrolled code,

standard literature proposes to execute unrolling as early as possible in an optimiza-

tion sequence [Muc97]. For this reason, loop unrolling within WCC is performed in

the ICD-C frontend.

Despite the large number of positive effects, it has been observed that loop un-

rolling can also have an adverse impact on the program’s performance when the

optimization is not applied elaborately. Since unrolling is a code-expanding transfor-

mation, an aggressive loop unrolling can overflow the I-cache leading to additional

capacity cache misses that did not arise for the rolled loop [DJ01]. An excessive

loop unrolling can also lead to additional spill code when the register working set in

the unrolled loop exceeds the number of available registers [CK94]. Furthermore,

remainder loops should be introduced with caution. They increase the code size but

only a small fraction of the program execution time is spent in this code [Sar01]. It

should be also noted that unrolling can increase the compilation time resulting from

more code that has to be processed by subsequent optimizations. However, this is-

sue is of less importance for embedded systems compilers which primarily focus on

performance improvements accepting longer compilation times.

102 4 WCET-Aware Source Code Level Optimizations

To sum up, a sophisticated loop unroller should take I-cache constraints and the

register pressure into account as well as avoid jumps in order not to cancel the

optimization benefits when loops are unrolled.

4.5.4 WCET-Aware Loop Unrolling

The central question for loop unrolling is which unrolling factor should be used for

each loop. Its computation depends on several parameters:

1. Loop iteration counts of each loop

2. I-cache and free program memory constraints

3. Approximation of spill code generation

In the following sections, these parameters will be discussed in more detail. It

will be shown how these parameters are involved in WCC’s novel heuristics for an

effective WCET-aware loop unrolling.

4.5.4.1 Worst-Case Loop Iteration Counts

The determination of the unrolling factor requires the knowledge about the loop

iteration counts at compile time. This information can be provided either by profil-

ing or by a static loop analysis. Profiling is the most common approach. However,

the use of profiling data limits the scope of application since it is difficult to obtain

reasonable profiles and the generation of this data might have high space and time

requirements [PSKL08].

In contrast, a sophisticated static loop analysis is often not available in most

compilers. Due to the lack of techniques to compute the iteration counts, most com-

pilers only use a small and constant unrolling factor (typically 2 or 4) [HBK+01,

ZKW+05] which avoids negative side-effects due to extensive unrolling but also

does not sufficiently exploit the optimization potential.

Some compilers provide a loop analysis that is only able to analyze simple, well-

structured loops which are rarely found in real-life applications. Thus, many loops

remain unoptimized. WCC’s loop unrolling is combined with its integrated polyhe-

dral loop analyzer (see Sect. 3.6) that is able to detect and analyze most loops found

in today’s embedded systems applications. To the best knowledge of the author, this

book provides the first study that evaluates the effectiveness of a sophisticated loop

analysis in the context of loop unrolling.

As the discussion on procedure cloning indicated in Sect. 4.3, many real-life ap-

plications include data-dependent loops that have variable loop bounds, i.e., loops

that have different iteration counts depending on the context in which a function is

invoked. Many simple loop analyzers found in today’s compilers are able to han-

dle only trivial counting loops and do no support data-dependent loops. Thus, such

compilers can not explore the full optimization potential.

4.5 Loop Unrolling 103

In contrast, WCC’s loop analysis supports data-dependent loops. The analyzer

considers all possible inputs, thus the dynamic behavior of each loop is safely

approximated. Exploiting the computed worst-case (context-sensitive) iteration

counts, an appropriate unrolling factor can be determined that circumvents adverse

test conditions or an introduction of remainder loops. This is illustrated in the fol-

lowing.

Example 4.3 Given the following code example with a data-dependent loop in func-

tion foo:

void foo(int n) { int main(void) {

for(int i = 0; i < n; ++i) { foo(6);

loop body foo(12);

} foo(24); . . .

} }

WCC’s loop analyzer would detect the context-sensitive iterations of 6, 12, and 24

for the for-loop. In order to avoid costly handling of left-over iterations, the un-

rolling factor u is chosen such that the iteration counts correspond to an integral

multiple of u. Possible unrolling factors are u = {2,3,6}.

For the sake of completeness, it should be noted that it is also possible to unroll

loops when the loop counts are not known at compile time. This approach requires

the insertion of additional code calculating the iteration counts during the program

execution. However, as shown in [DJ01], the cost of calculating the loop iteration

counts does not always amortize and potentially leads to a performance degradation.

Moreover, this approach prevents the determination of an unrolling factor that takes

I-cache and spill code constraints into account. Therefore, this class of loops is not

considered within WCC.

4.5.4.2 I-Cache and Memory Constraints

After the loop analysis, an appropriate unrolling factor u has to be calculated based

on the determined loop iteration counts. For loops with constant loop bounds i,

a complete unrolling is practically feasible, by setting u = i. However, such a strat-

egy is often a bad choice mainly due to these two reasons:

• The size of the unrolled loop might exceed the available program memory which

is in particular crucial for embedded systems with restricted memory resources.

• A too heavily unrolled loop body may lead to I-cache thrashing.

In order to circumvent such adverse effects, the optimization must be able to

estimate the code size of the finally unrolled loop. This knowledge allows the cal-

culation of an unrolling factor that restricts the loop size increase to a given I-cache

capacity.

104 4 WCET-Aware Source Code Level Optimizations

The determination of a precise loop size requires knowledge about the involved

assembly instructions. On the one hand, if loop unrolling is applied at assembly

level, the loop size can be easily extracted and used for the I-cache constraints. How-

ever, due to the late application of the optimization, other optimizations performed

previously cannot benefit from the unrolled code. On the other hand, unrolling loops

at the source code level offers optimization opportunities for a larger set of following

optimizations, but a precise estimation of code size at source code level is usually

not possible. Thus, both solutions are not fully satisfactory.

Exploiting Back-Annotation WCC’s loop unrolling takes advantage of both code

abstraction levels. Unrolling takes place at the source code level providing opti-

mization potential for subsequent source code and assembly level optimizations. To

estimate the assembly size of the loop, the compiler transforms each loop into as-

sembly code. At this level, the size of the loop header and loop body can be easily

determined in bytes. Using WCC’s back-annotation (cf. Sect. 3.7), this informa-

tion is imported back into the compiler frontend and made available to the source

code optimizer. Since unrolling is placed in the applied sequence of WCC’s source

code optimizations after all code-expanding transformations, e.g., function inlining

or loop unswitching, a precise estimation of the loop size is possible. This data is

involved in the determination of the unrolling factor to avoid I-cache thrashing.

To decide how extensively loops can be unrolled without violating memory con-

straints, the loop optimizer extracts various information from WCC’s memory hi-

erarchy specification that was introduced on p. 36. The first derived data concerns

the I-cache capacity of the target architecture. Taking this parameter into account,

an appropriate unrolling factor can be chosen that limits the size of the unrolled

loop to the given cache size. Moreover, WCC’s optimizer is provided with detailed

information about the memory usage of the program under analysis. The compiler

constructs a memory usage model of the physical memories available in the under-

lying target architecture. During code generation and code modification, this model

is kept up-to-date such that valid information about memory usage can be extracted

at any time.

Together with the I-cache constraints, the amount of free space in the program

memory is obtained during the calculation of the unrolling factor in order to find

a value that does not exceed the available program memory when the loop is un-

rolled. In addition, the user can parameterize the memory usage considered during

loop unrolling. For example, the user might want to use only half of the I-cache,

or just allow loop unrolling to consume 60% of the free memory. With this flexible

handling of the memory model, WCC’s loop unrolling can be effectively tailored

towards particular memory requirements that are often imposed on embedded sys-

tems.

The flexible memory management makes this code transformation retargetable

since the exchange of the target platform requires exclusively the adjustment of the

compiler’s memory hierarchy specification.

The exploitation of the back-annotation overcomes the common problem con-

cerning the code size estimation at source code level. In [DJ01], the authors crit-

icized ad-hoc approaches that use a conversion factor to estimate the number of

4.5 Loop Unrolling 105

machine-language instructions produced for a source code line. In contrast, WCC

provides precise size information that can be exploited as a reliable cost function.

4.5.4.3 Prediction of Unrolling Effects

Besides I-cache overflows, unrolling can lead to the generation of additional spill

code which may significantly degrade the worst-case performance of the program

(cf. Sect. 3.3.5 on p. 31). These load and store instructions are expensive and should

be avoided, otherwise they may cancel the unrolling benefits and even yield a per-

formance degradation.

A possible approach to avoid negative effects due to spilling was presented in

the course of the discussion about superblock optimizations in Sect. 4.4. When-

ever the application of the optimizations yielded a degraded WCET estimation, the

transformations were completely undone. However, this rollback mechanism is not

sufficient for loop unrolling. To enable an effective unrolling, the compiler should be

capable of predicting the amount of expected spill code depending on the employed

unrolling factor. This way, the most promising factor can be computed.

To predict the effects of loop unrolling at source code level on the register pres-

sure, Sarkar [Sar01] proposed an approach that tries to approximate the amount of

spill code based on the maximal number of simultaneously live fixed- and floating-

point values in the unrolled loop. However, this approach has two main limitations.

First, it is inflexible since its applicability highly depends on the involved register

allocator. If the register allocator is modified or even exchanged by a register allo-

cator pursuing another allocation strategy, then the spill code approximation might

fail. Second, as stated by the author, their approximation is conservative and may

unnecessarily limit the amount of permitted unrolling.

Such ad-hoc approaches are required when information from the compiler back-

end is not present. WCC uses a more realistic prediction of unrolling effects on the

spill code exploiting the back-annotation. The prediction is based on a comparison

between original loops and their unrolled version. During the evaluation, a copy P̂

of the original program P under analysis is created. In a second step, loops in P̂ are

virtually unrolled and a comparison between the original and unrolled loops reveals

if additional spill code was generated.

In detail, for each loop L in P̂ , all context-sensitive loop iteration counts derived

from WCC’s loop analysis are considered. Based on the set S of possible iteration

counts i, the smallest common prime factor (SCPF) for each loop L is determined:

Definition 4.8 (Smallest common prime factor) Let GCDL be the greatest common

divisor ∀i ∈ S of a loop L. The smallest common prime factor SCPFL is the smallest

prime factor of GCDL, if GCDL > 1. Otherwise, SCPFL is 1.

Example 4.4 Given the code from Example 4.3. For the set of context-sensitive loop

iteration counts of the for-loop consisting of the elements {6,12,24}, the greatest

common divisor GCDL = 6. Thus, the smallest common prime factor for this loop

is SCPFL = 2.

106 4 WCET-Aware Source Code Level Optimizations

The utilization of the SCPF for the prediction of unrolling effects is motivated by

WCC’s unrolling strategy that tries to avoid additional conditional jump statements

in the finally unrolled loops. Jumps are required when loops are unrolled with un-

rolling factors that do not evenly divide the number of iterations. Conditional jumps

have several negative effects on the program performance and a static WCET anal-

ysis:

• Jumps degrade pipeline behavior since additional control pipeline hazards are

introduced.

• High penalty cycles may be encountered if jumps are mispredicted by the proces-

sor’s branch prediction.

• Results from static program analyses may become imprecise since computations

at jumps require to be merged.

Thus, the optimization unrolls loops such that additional jumps are not required.

To be consistent with the final unrolling strategy, jumps in the virtually unrolled

loops in P̂ have to be avoided. This could be achieved by employing GCDL as

unrolling factor. However, this factor is often not applicable due to memory re-

source constraints. Some loops have a large GCD of their context-sensitive execu-

tion counts. If the loops were unrolled by this factor, they would possibly exceed the

available program memory which is often strongly restricted when multiple tasks

reside in the same memory. Using SCPF for the evaluation, jumps in the unrolled

loops and memory overflows are typically avoided since the SCPF is usually signif-

icantly smaller than the GCD.

The impact of unrolling on the spill code generation is predicted as follows:

1. Create a copy P̂ of original program P

2. Virtually unroll each loop L̂ ∈ P̂ with u = SCPF

3. Generate assembly code and perform back-annotation for P and P̂

4. Compare each L̂ with respective L

To decide whether additional spill code was generated after unrolling, the spill

code ratio ψL
u for each loop L and a given unrolling factor u is computed:

Definition 4.9 (Spill code ratio)

ψL
u =

∑
spilling instructions ∈ L

unrolling factor u

It was empirically determined that ψL
u is a reliable indicator for an augmented

spill code generation: if ψL
u does not increase for u = SCPF compared to the orig-

inal loop before unrolling, i.e., no additional spilling instructions were generated,

then it is very likely that no extra spill code will be introduced for u > SCPF.

WCC’s spill code estimation is not only more accurate but also more flexible

compared to the approach described by Sarkar [Sar01]. Unlike Sarkar’s estimation,

WCC’s estimation of the spill code is not carried out at the code provided to the

loop unroller. Rather, it is based on the back-annotated spilling-related data of the

4.5 Loop Unrolling 107

Algorithm 4.3 Algorithm for determination of final unrolling factor

Input: L, freePMem, cacheSize

Output: uL
final

1: sizeHeader ← backannotate(L)

2: sizeBody ← backannotate(L)

3: set〈int〉 iterations ← loopAnalysis(L)

4: for i = gcd(iterations) to 1 do

5: sizeUnrolled ← sizeHeader + i · sizeBody

6: if (i − 1) · sizeBody ≤ freePMem and

sizeUnrolled ≤ cacheSize and

gcd(iterations) mod i == 0 then

7: return i

8: end if

9: end for

10: return 1

(possibly further optimized) code that is provided to the register allocator. Hence,

optimizations following unrolling are allowed and their effects on spilling is re-

spected.

Similar to the spill code estimation, virtual unrolling with u = SCPF is applied

by WCC to predict the effects of loop unrolling on the loops’ WCET estimates. This

data is back-annotated into ICD-C and made available to the optimizer.

4.5.4.4 Determination of Final Unrolling Factor

The virtual unrolling of loops serves the purpose of predicting the effects of un-

rolling on the WCET estimation, code size, and spilling when loops are carefully

unrolled using SCPF. However, this unrolling factor is deliberately chosen small

and does not enable a full exploitation of the optimization potential. To this end, a

final unrolling factor uL
final ≥ SCPF for each loop L that maximally replicates the

loop bodies has to be determined.

The determination of the final unrolling factor is shown in Algorithm 4.3. Besides

a loop unrolling candidate L, the algorithm requires information about the status of

the free program memory (freePMem). This data is dynamically computed based

on the memory hierarchy specification and the current state of P . A further input

parameter is the cache size of the target architecture (cacheSize).

After collecting information about the code size (lines 1–2), the algorithm de-

termines context-sensitive iteration counts of loop L (line 4). Next, the algorithm

explores possible unrolling factors (lines 4–9) and returns the maximal factor that

does not violate memory constraints (i.e., free program memory and cache size) and

avoids control jumps for left-over iterations (lines 5–6). Since unrolling is applied

after all code-expanding optimizations, the free program memory can be employed

for the unrolled code.

108 4 WCET-Aware Source Code Level Optimizations

Algorithm 4.4 Algorithm for WCET-aware loop unrolling

Input: P

Output: unrolled P

1: P̂ ← P

2: set〈Loop〉 loopsSCPF ← P̂

3: for all L̂ ∈ loopsSCPF do

4: unrollSCPF (L̂)

5: end for

6: evaluateUnrollingSCPF (loopsSCPF)

7:

8: set〈Loop〉 loopsf inal ← P

9: removeSpillingLoops(loopsf inal)

10: sortByProfit(loopsf inal)

11: for all L ∈ loopsf inal do

12: unrollf inal(L)

13: end for

14: return P

4.5.4.5 WCET-Aware Unrolling Heuristics

Algorithm 4.4 outlines WCC’s final WCET-aware loop unrolling. The algorithm

operates in two phases. In the first phase (lines 1–6), virtual unrolling is conducted

by unrolling all loops from the copied program P̂ using SCPF. These loops are

evaluated (line 6) by collecting information about the impact of unrolling w.r.t. the

WCET estimation, the code size, and the spilling behavior.

This data is exploited in the second phase (lines 8–13). Each loop L of the origi-

nal program P , for which its counterparts L̂ exhibited an increased spill code ratio

ψL
u , is omitted from unrolling since adverse effects of spilling turned out to out-

balance the benefits of unrolling (line 9). In the next step, loops are sorted by their

unrolling profit �L
unroll (line 10):

Definition 4.10 (Unrolling profit) Let WCETL,WCET
L̂

be the WCET and CSL,CS
L̂

the code size of the original and the virtually unrolled loop using the SCPF unrolling

factor uL
SCPF , respectively. Moreover, let uL

final be the final unrolling factor computed

by Algorithm 4.3. The unrolling profit �L
unroll is computed as follows:

�L
unroll =

WCETL − WCET
L̂

CS
L̂

− CSL

·
uL

final

uL
SCPF

The unrolling profit represents the expected benefit concerning the WCET esti-

mates and code size when L is unrolled with the final unrolling factor. It is used to

define the unrolling order, that is, loops with the highest profit are optimized first

using the unrolling factor computed by Algorithm 4.3 (lines 11–13). Since loops

with a higher profit are preferred, the free program memory is primarily utilized for

4.5 Loop Unrolling 109

unrolling of loops that promise the highest decrease of the WCET estimation with

a simultaneously low code expansion. Loops with a negative profit are excluded

since they will likely degrade the worst-case performance. Hence, this strategy is

best suited for embedded real-time systems with restricted resources.

The optimization does not explicitly consider WCEP switches since typically all

loops in a program lie on the worst-case execution path. Thus, the high overhead

of considering potential path switches which usually entails repetitive runs of the

expensive WCET analysis does not pay off. Yet, loops not part of the WCEP do

not contribute to the WCET estimation and should not be transformed. This issue is

respected during optimization by omitting loops with a back-annotated WCET of 0

cycles.

The profit calculation serves as an estimation of unrolling effects before the ac-

tual unrolling. This option is missing in most compilers, thus loops are often un-

rolled that decrease program performance. Using WCC’s profit calculation, it can

be detected in advance if a loop should be unrolled or if its unrolling will likely

decrease the worst-case behavior. The benefits of WCC’s unrolling prediction are

demonstrated in the following by results achieved on real-life benchmarks.

4.5.5 Experimental Results for WCET-Aware Loop Unrolling

This section evaluates the impact of WCC’s WCET-aware unrolling on the

WCET estimates of real-life benchmarks. In total, 45 benchmarks from the test

suites DSPstone [ZVS+94], MRTC [MWRG10], MediaBench [LPMS97], and

UTDSP [UTD10] were involved in the experiments. The code sizes of the con-

sidered benchmarks range from 302 bytes up to 14 kByte with an average code size

of 1.9 kByte per benchmark. The number of innermost loops considered for loop

unrolling ranges between 1 and 15, depending on the benchmark complexity.

The TriCore TC1796 processor, which is the supported target architecture within

the WCC framework, is equipped with a 16 kByte I-cache and 2 MByte program

Flash that was employed for the following experiments. The I-cache size can be

virtually modified for the WCET analysis to evaluate different cache sizes. The Tri-

Core processor does not have a data cache. However, unrolling marginally changes

memory reference patterns, thus D-cache misses can be ignored for unrolling factor

selection [HBK+01].

4.5.5.1 WCET

Figure 4.20 shows the results of unrolling on the estimated WCET. The dark bars

represent the average WCET reduction for all 45 benchmarks when the code is

compiled with the highest optimization level O3 including WCET-aware unrolling

w.r.t. to the code that was generated using the highest optimization level and disabled

unrolling. For the experiments, the I-cache size was modified between 512 bytes

110 4 WCET-Aware Source Code Level Optimizations

Fig. 4.20 Relative WCET estimates for WCET-aware loop unrolling

and 16 kByte in order to demonstrate the impact of unrolling on different cache

architectures.

As can be seen, the WCET can be decreased from 10.2% for the smallest

cache capacity (512 bytes) up to a WCET decrease of 15.4% for the largest cache

(16 kByte). The reason for this increase is obvious. Using larger caches, WCC is

provided with more optimization opportunities since extensive unrolling is less fre-

quently limited by the I-cache constraints. It can also be seen that for larger caches

the WCET reduction becomes smaller. The reason are smaller benchmarks that can

be already fully optimized for modest cache sizes. Relaxing I-cache constraints due

to larger cache capacities does not result in any further benefit.

The results for WCET-aware unrolling were compared with standard ACET

loop unrolling which restricts the size of the unrolled loops to 50 expressions. For

16 kByte I-cache, the standard approach achieved an average WCET reduction of

1.7% (see light bar on the right-hand side of the figure). Hence, WCET-aware loop

unrolling outperforms the standard optimizations by 13.7%.

An interesting question is whether the WCET reductions can be attributed to the

additional information generated by the static loop analysis, or whether the novel,

WCET-aware unrolling heuristics are the main source for the decreased WCET.

Figure 4.21 answers this question by examining the benefits of WCC’s different

unrolling strategies.

The results show the estimated WCET for three different strategies using a

2 kByte I-cache to capture cache effects. 100% corresponds to the WCET of the

benchmarks compiled with the highest optimization level and disabled unrolling.

For the sake of readability, results on a subset of 19 representative benchmarks are

shown. As can be seen, applying WCC’s standard ACET loop unrolling (first bar la-

beled with Standard LU), which uses a simple context-insensitive loop analysis and

restricts the size of the finally unrolled loop to 50 expressions, has minimal positive

effects on the WCET. Integrating WCC’s sophisticated context-sensitive loop anal-

ysis (second bar labeled with Standard LU + LA) into standard unrolling, slightly

improves the average WCET estimation by 2.9%.

Notably improved results are achieved when loop unrolling is extended by

WCC’s novel WCET-aware heuristics represented by the last bar per benchmark.

4.5 Loop Unrolling 111

Fig. 4.21 Comparison of unrolling strategies

Fig. 4.22 Impact of program size unrolling heuristic on ndes

WCET reductions of up to 39.5% are observed. These high WCET reductions

achieved e.g., for the benchmarks edge_detect and fir2dim are the result of a com-

plete unrolling of some loops. The generated straight line code can be effectively

improved by succeeding optimizations and all jumps to loop entries are entirely

eliminated.

Based on a review of the optimized code, it can not be said in general which un-

rolling effects are most beneficial for the performance of the code. For some bench-

marks, like countnegative, the reduced loop overhead was the key factor, while other

benchmarks availed of enabled optimization potential after unrolling.

4.5.5.2 ACET

To indicate the practical use of the program memory heuristics, a system environ-

ment is simulated for which program memory is restricted. This situation is common

for embedded systems that execute multiple tasks residing in the same memory. Fig-

ure 4.22 shows the results for the WCET and ACET when WCET-aware unrolling

112 4 WCET-Aware Source Code Level Optimizations

Fig. 4.23 Relative code size for WCET-aware loop unrolling

is applied together with O3 for the example MRTC benchmark ndes. 100% corre-

spond again to the program’s run times for O3 and disabled unrolling. For the de-

termination of the WCET estimation and the ACET (using a cycle-true simulator),

the standard I-cache of the TC1796 with a capacity of 16 kByte is utilized. First,

it can be seen that with increasing program memory, the reduction of the bench-

mark’s WCET is also increasing. This is expected as with more program memory,

unrolling can be applied more aggressively. Second, from the results it can be in-

ferred that the presented optimization is tailored towards WCET minimization. For

all memory sizes, a higher reduction of the WCET than the ACET is achieved. One

reason for this behavior is that WCC begins to unroll those loops that promise the

highest WCET reduction. Since the program memory is restricted, not all loops can

be unrolled and the transformed loops most beneficial for WCET reduction need not

correspond to the most beneficial loops for ACET reduction.

4.5.5.3 Code Size

Figure 4.23 shows the impact of WCC’s WCET unrolling on the average code size

w.r.t. to the average code size of the benchmarks with disabled loop unrolling that

corresponds to 100%. Six different I-cache configurations ranging from 512 bytes

up to 16 kByte are considered. As expected, the code size increase becomes larger

with an increasing cache size. This is due to the growing potential of unrolling since

loops can be unrolled more aggressively for larger caches without exceeding their

capacity.

It should be noted that the average code size increase is mainly reflecting small

benchmarks, while the code size increase for larger benchmarks is modest. For ex-

ample, the highest increase was found for the small DSPstone benchmark matrix1

with 1261% for the 16 kByte cache, resulting in a final code size of 4114 bytes.

However, this code size is still fully acceptable for modern embedded systems. In

contrast, the code size increase for the largest benchmark, rijndael_encoder from

MediaBench, exhibited only a maximal increase of 6.4%. This is also a typical sce-

nario for other larger benchmarks.

4.6 Accelerating Optimization by the Invariant Path 113

Concerning the absolute code sizes, it can be concluded that WCC’s WCET-

aware unrolling produces enlarged code of a size that is acceptable for modern em-

bedded systems. If, however, stringent memory constraints have to be met, the opti-

mizer can be provided with user-defined parameters that limit the code expansion.

4.5.5.4 Optimization Run Time

Finally, the optimization run time of WCC’s WCET-aware loop unrolling was mea-

sured on an Intel Xeon 2.4 GHz system with 8 GB RAM. Compilation of all 45

benchmarks including a single WCET analysis took 29 minutes when all bench-

marks are compiled with O3 including the standard loop unrolling with a simple

loop analysis. In contrast, the compilation time for the WCET-aware unrolling took

390 minutes in total, using a 16 kByte I-cache.

This increase mainly results from an additional WCET analysis (used for profit

computation), the static loop analysis, and the standard optimizations. Although

the compilation times are depending on the complexity and unrolling factor of the

benchmark, it can be observed that the major fraction of the additional time was

consumed by standard optimizations which have to analyze (in some cases signifi-

cantly) enlarged basic blocks.

However, as the main objective of embedded systems compilers is performance

maximization even at the cost of a longer compilation time, the observed compila-

tion times can be considered as fully acceptable.

The techniques presented in this section have been published in [LM09].

4.6 Accelerating Optimization by the Invariant Path

Compared to traditional compiler optimizations, the previous sections have shown

that WCET-aware optimizations are more demanding. To accomplish a systematic

improvement of the worst-case behavior, a detailed timing notion of the application

under analysis is essential. This data is exploited by a compiler to identify portions

of the code that contribute to the overall program WCET. From the perspective of

a compiler operating on a control flow graph, these crucial portions of the code are

part of the WCEP.

However, for an effective WCET reduction it is not sufficient to determine the

WCEP once and to apply all optimization steps on this initial path. This is due

to WCEP switches that may emerge if code is optimized such that another path be-

comes the longest path. To cope with this problem, the WCEP has to be permanently

updated during optimization. Usually, this update is accomplished by pessimisti-

cally conducting a WCET analysis after each code transformation. This exhaustive

WCEP update is time-consuming and may even turn an optimization into an infea-

sible problem for practical use.

In many situations, however, a code modification does not yield a WCEP switch,

making a WCET analysis superfluous. WCC identifies these situations and exposes

114 4 WCET-Aware Source Code Level Optimizations

those parts of the WCEP that are not prone to a path switch. The respective sub-paths

of the CFG are denoted as invariant path and the exploitation of this knowledge may

significantly cut the run time of WCET-aware code optimizations.

The rest of this section is organized as follows. In Sect. 4.6.1, the stability of the

WCEP w.r.t. code modifications is motivated by an example. An overview of related

work is provided in Sect. 4.6.2. Different path scenarios found in a CFG and their

invariance to a WCEP switch inducing the definition of the invariant path are dis-

cussed in Sect. 4.6.3. The construction of the invariant path and its ratio in the code

of real-life benchmarks is presented in Sect. 4.6.4 and Sect. 4.6.5, respectively. To

demonstrate the practical use of this new concept, the knowledge about the invari-

ant path is exploited in order to accelerate the novel optimization WCET-aware loop

unswitching. The optimization is discussed in Sect. 4.6.6, followed by experimental

results in Sect. 4.6.7.

4.6.1 Motivating Example

Branches in the control flow graph are the source of WCEP switches. They split

the CFG into n mutually exclusive paths π1, . . . , πn and an initial WCEP following

path πk , with 1 ≤ k ≤ n, may switch to path πl , with 1 ≤ l ≤ n ∧ l �= k, when

an optimization shortened the length of πk such that πl becomes the longest path

afterwards.

However, the WCEP switch does not necessarily arise for all branches. Context-

sensitive WCET analyses distinguish between different invocations of functions and

between different loop iterations. Consequently, branches, which can be statically

evaluated during analysis, may show different outcomes depending on the execu-

tion context. In contrast to timing analyzers that aim at a high precision, compilers

usually provide a context-insensitive view of the dynamic behavior of the program.

That way, they manage the high analysis complexity at the cost of precision which

is in general not a compiler’s key objective.

To this end, the import of context-sensitive analysis results into a compiler re-

quires a translation of these results. To warrant correctness, a safe approximation of

the context-sensitive results is required: for each CFG edge, a union of all context-

sensitive WCEP results is computed. This union represents the context-insensitive

WCEP information of each CFG edge. Referring to branches, each mutually exclu-

sive path that was taken during the static WCET analysis in some execution context,

is—from the view of a compiler—an optimization candidate.

Since the semantics of branch conditions does provably not change during pro-

gram optimization, each initial static evaluation of a branch condition will remain

valid. Thus, each mutually exclusive path starting at a statically evaluated branch

that was part of the WCEP before program optimization will also lie on the WCEP

after any code modification. As a consequence, WCEP switches to other mutually

exclusive paths are infeasible. Compilers can exploit this knowledge to avoid redun-

dant path updates by time-consuming WCET analyses.

4.6 Accelerating Optimization by the Invariant Path 115

Fig. 4.24 Example for invariance of the worst-case execution path

Figure 4.24 illustrates the invariance of the WCEP for a simple example program

written in ANSI C. The code on the left-hand side of the figure contains a for-loop

which is executed five times. A static WCET analysis can compute that the loop’s

if-condition evaluates to true for the first three iterations, while false for the re-

maining loop iterations. The right-hand side of the figure shows the corresponding

CFG with the incorporated results of the WCET analysis. The dashed edges mark

the regular control flow while the solid edges represent the WCEP. As can be seen,

the WCEP covers both paths of the if-statement in different contexts. In this sit-

uation, the optimization of neither the then- nor the else-part can lead to a WCEP

switch in this branch. Hence, shortening of both mutually exclusive paths will effec-

tively reduce the program’s WCET. A WCEP recomputation after the modification

of these paths is not required since the risk of operating on an outdated WCEP does

not exist.

This section discussed one branch scenario which is not prone to a WCEP switch.

In the terminology of the WCC framework, such stable parts of the WCEP are called

invariant path. The challenge is to classify all possible branches within a program as

being part of the invariant path or not. Section 4.6.3 provides a thorough discussion

about this kind of classification.

4.6.2 Related Work

The WCEP switch is an inherent problem of WCET-aware optimization. Some re-

lated works do not consider switching WCEPs, thus there is no guarantee that a

WCET reduction with each optimization step is achieved. An example is [PD02]

where the authors proposed two algorithms for static I-cache locking. The employed

heuristics for cache content selection are based on the WCEP, which is determined

116 4 WCET-Aware Source Code Level Optimizations

before the optimization, while subsequent steps operate on this initial, possibly out-

dated WCEP. Another example is D-cache locking for WCET minimization pre-

sented in [VLX03] where a WCEP is not considered at all.

Other works enable an effective WCET minimization by regularly recomputing

the WCEP after each optimization step via a static WCET analyzer. For example,

Falk [Fal09] presented a register allocation which reduces the generation of spill

code on the WCEP. The path information is updated after processing of each basic

block. In [ZWHM04], a code positioning optimization driven by WCET data was

discussed. By rearranging the memory layout of basic blocks, branch penalties along

the WCEP are avoided. Each rearrangement is preceded by a WCET analysis.

A trade-off between precision and optimization run time was presented in

[Pua06]. The author extend the techniques of [PD02] for I-cache locking by tak-

ing the WCEP switch into account. To reduce the optimization time, the WCET

data is not updated after each single code transformation but after n steps, where

n is a user-defined parameter. As the author showed, an updated WCEP is crucial

since experiments with infrequent path updates lead to less effective WCET mini-

mization.

Another elegant approach to cope with the switching path is to formulate the

WCET minimization problem as an ILP model. This way, the WCEP and its

switches are implicitly considered. The few published works based on this tech-

nique comprise the optimal static WCET-aware scratchpad allocation of program

code [FK09] and data [SMR+05]. However, the ILP-based approach can not be ap-

plied to all optimization problems since the formulation of an ILP model is often

too complex or even infeasible for particular problems. Moreover, solving of ILP

models is N P -complete, thus it may be not applicable for some problems in prac-

tice.

None of these papers explicitly addresses the problem of the invariance of the

WCEP. The only paper the author is aware of, which discusses a related topic, was

published by Giegerich et al. [GMW81]. The authors discussed the invariance of

approximative semantics after program transformations. In detail, they constructed

a framework based on abstract program semantics which is invariant to the elimi-

nation of dead code, i.e., the abstract transformation rules are constructed such that

particular flow information remains valid without the need of their recalculation

each time a transformation rule is applied. The paper does not provide any results,

thus it can not be judged how beneficial these concepts are for practical use. More-

over, the concepts presented in [GMW81] are not suitable to identify invariant paths

since they require an analytical modeling of each program transformation as approx-

imative semantics. For compilers with a large number of supported transformations,

this overhead is not feasible.

4.6.3 Invariant Path Paradigm

As motivated previously, branches within a CFG are the locations where a WCEP

switch may emerge. The majority of available WCET-aware compiler optimizations

4.6 Accelerating Optimization by the Invariant Path 117

cope with this problem in a conservative way—they recompute their WCET data

using a static timing analyzer each time code was modified. However, as indicated

in Sect. 4.6.1, particular branch scenarios provably exclude WCEP switches be-

tween their mutually exclusive paths, removing the conservatism to recompute tim-

ing information. In this section, different control flow scenarios found in a CFG are

explored to determine whether they are prone to a path switch.

The stability of the WCEP is expressed within WCC by the concept of the in-

variant path πinv:

Definition 4.11 (Invariant path) The invariant path πinv is a sub-path of the WCEP

that always remains part of the WCEP independent of the applied code modifica-

tions to the program P .

Obviously, any straight-line code that lies on the WCEP and is not part of any

mutually exclusive paths is declared as invariant path. The challenging constructs

found in a CFG constitute control flow branches.

Modeling of branches in a CFG depends on the concrete semantics of a program-

ming language. High-level languages typically use so-called selection statements,

such as ANSI C if-, if-else-, or switch- (general form of if-else) state-

ments, to model mutually exclusive paths. They perform a conditional execution of

the code dependent on a condition expression. Low-level programming languages

model mutually exclusive paths using conditional jump instructions. Other types

of statements/instructions that alter the program’s control flow, like call statements,

are not considered by the invariant path since they are irrelevant for a WCEP switch.

In the following, possible branch types found in WCC’s source language ANSI

C are discussed regarding their invariance properties of the WCEP. However, the

concepts of the invariant path are generic and can be easily adapted to other pro-

gramming languages.

4.6.3.1 IF-THEN Structure

An IF-THEN branching structure is modeled in ANSI C as an if-statement which

represents a conditional execution. Depending on the conditional expression, either

the path through the then-part is executed or the mutually exclusive path bypassing

the then-part is followed. In this scenario, the WCEP either traverses the then-part

or the then-part does not contribute to the WCET.

In terms of the invariant path paradigm, a WCEP that traverses the then-part is

also part of the invariant path πinv since a modification of the code in the then-part

can not yield a path switching. This is because the other feasible path of the if-

statement does not contain any code that might become the new WCEP.

The scenario in which a context-sensitive static analysis computes a WCEP, that

traverses both branch paths in different contexts, is depicted in Fig. 4.25. As can be

seen, the entire branch structure contributes to the invariant path. This knowledge

can be exploited during the WCET-aware optimization. If code in the then-part was

118 4 WCET-Aware Source Code Level Optimizations

Fig. 4.25 Invariance of

IF-THEN structure

Fig. 4.26 Invariance of

IF-THEN-ELSE structure

modified in the previous optimization step, there is no need to update the WCEP

by an expensive WCET analysis for the next step since a WCEP switch can be

excluded.

4.6.3.2 IF-THEN-ELSE Structure with Statically Evaluable Condition

For the branch type resulting from an ANSI C if-else-statement, the context-

sensitive WCET analysis may determine that the WCEP traverses both the then-

and else-part in different execution contexts. This scenario was already discussed in

the motivation (cf. Sect. 4.6.1).

For a WCET optimization that must be aware of a valid WCEP, an if-else-

statement, for which the WCEP traverses both branch paths, is not crucial since

a path switch can not emerge. By treating this selection statement in a context-

insensitive manner, it is known from the WCET analysis that both blocks always

contribute to the program’s WCET. Hence, this type of branch scenario can be de-

clared as part of the invariant path as shown in Fig. 4.26. WCET-aware optimizations

can operate on both paths and there is no risk that transformations on an irrelevant

path are applied. Thus, costly WCEP updates are superfluous.

The other possible scenario is that the static WCET analysis is able to detect

that the condition of the if-else-statement always evaluates to true or false. As

a consequence, one of the two paths is never executed and can be defined as dead

code. Excluding the dead branch path reduces the if-else-statement to an if-

statement, enabling the classification of the remaining path as invariant path.

4.6 Accelerating Optimization by the Invariant Path 119

Fig. 4.27 Potential WCEP

switch in IF-THEN-ELSE

structure

According to WCC’s terminology, this type of branches as well as branches re-

sulting from if-statements are called good-natured since they are not prone to a

path switch. This is the typical situation found in most applications, thus a large

portion of the code can be declared as invariant path.

4.6.3.3 IF-THEN-ELSE Structure with Statically Non-evaluable Condition

The last class of selection statements differs from the previous one in terms of the

WCEP flow. For this scenario, the WCET analysis assumes that for all execution

contexts the WCEP traverses exactly one of the mutually exclusive paths, i.e., either

through the then- or the else-part, while the other path does not contribute to the

WCET. An example with an excluded else-part is depicted in Fig. 4.27.

This situation occurs if the condition of the if-else-statement can not be stat-

ically evaluated by the timing analyzer. In this situation, the timing analysis must

conservatively assume that the longer of the mutually exclusive paths is the WCEP

which is traversed in all contexts. This is the only situation where a WCEP switch

can occur. These types of branch statements are not declared as invariant path.

As illustrated in Fig. 4.27, a code transformation may optimize the then-part such

that the path through the else-part becomes the new WCEP. To make sure that the

next step of the optimization does not operate on an outdated WCEP, a validation of

the path information by a WCET analysis is required.

4.6.4 Construction of the Invariant Path

The construction of the invariant path is performed recursively based on the concepts

discussed in the previous section. The algorithm begins at the entry point of the

program’s CFG—typically the first statement or instruction of the main function—

and traverses the graph in a depth-first search manner.

All blocks lying on the WCEP that are not part of any branch, i.e., straight-

line code fragments that are not control dependent on any branch statement, are

declared by WCC as invariant path since no mutually exclusive paths for a WCEP

120 4 WCET-Aware Source Code Level Optimizations

switch exist. If branches are detected during CFG traversal, it is decided if they can

be classified as invariant path. This decision is exploited in the further search. If a

branch is declared as invariant path πinv, all basic blocks of its mutually exclusive

paths are also declared as πinv as long as no nested branch during the traversal is

reached for which a new classification is conducted. If function calls are encountered

on the WCEP declared as invariant path, their bodies are analogously analyzed.

This way, all basic blocks of the program’s CFG are visited and possibly classified

as invariant path. Within the WCC framework, the invariant path construction is

carried out on the ICD-C IR (cf. Sect. 3.3) by marking basic blocks that are part of

the invariant path. Technically, this is solved by attaching ICD-C persistent objects,

which hold the invariance information, to the respective blocks.

4.6.5 Invariant Path Ratio

The concepts of the invariant path are generic (not restricted to any programming

language) and can be combined with most WCET optimizations that are aware of

the WCEP. Sub-graphs of the WCEP which are declared as invariant path can be

modified without invalidating the WCEP information. To get an impression of how

sensitive benchmarks are to WCEP switches, the fraction of the code that is part

of the invariant path was computed. The computation was performed on 42 bench-

marks from the MRTC and MediaBench Benchmark suites.

The stability of the WCEP can be expressed by the static and dynamic invariant

path ratio of the code. Let IP(b) indicate whether a basic block b contributes to the

invariant path:

IP(b) =

{

1, if block b lies on the invariant path,

0, otherwise.

The static invariant path ratio ratstat is defined as:

Definition 4.12 (Static invariant path ratio) The static invariant path ratio ratstat

represents the fraction of basic blocks b of program P that contribute to the invariant

path:

ratstat =

∑
b∈P IP(b)

|P |

with |P | being the number of basic blocks ∈ P .

In contrast, the dynamic invariant path ratio ratdyn computes the WCET contri-

bution of the invariant path to the overall program’s WCET:

Definition 4.13 (Dynamic invariant path ratio) The dynamic invariant path ratio

ratdyn indicates how many WCET cycles were consumed by blocks b of program P

4.6 Accelerating Optimization by the Invariant Path 121

on the invariant path with respect to the overall WCET:

ratdyn =

∑
b∈P WCETest (b) · IP(b)
∑

b∈P WCETest (b)

The computed static ratio for the 42 benchmarks ranges between 74.1% and

77.9% for code optimized with optimization levels O0 up to O3. For the dynamic

invariant path ratio, it was observed that between 85.4% and 88.8% of the estimated

WCET cycles are spent for the execution of the code declared as invariant path. It is

obvious that the dynamic ratio is in general larger than the static ratio since repeat-

edly executed code, e.g., loops or functions lying on the invariant path, contributes

multiple times to the dynamic ratio.

Such results underline the optimization potential of the invariant path paradigm.

Since more than 85% of the benchmarks’ total WCET is contributed by code clas-

sified as invariant path, only a small fraction of the code (contributing 15% of the

total WCET) is prone to a WCEP switch. Exploiting this knowledge during WCET

minimization allows a reduction of redundant timing analyses to update the worst-

case timing data. Hence, compared to other widely used WCET-aware optimizations

based on a pessimistic WCEP recomputation, the optimization run time can be sig-

nificantly reduced.

To show the practical use of WCC’s invariant path paradigm, the optimiza-

tion WCET-aware loop unswitching was developed. Its combination with the novel

paradigm demonstrates the benefits concerning the optimization run times. The next

section is devoted to WCC’s loop unswitching.

4.6.6 Case Study: WCET-Aware Loop Unswitching

The source code compiler optimization loop unswitching is a well-known control

flow transformation aiming at an ACET reduction. It moves loop-invariant condi-

tion branches outside of the loop [Muc97]. In case of an if-else-statement, the

loop body is replicated and placed inside the respective then- and else-part. The

benefits of the optimization are the reduced number of executed branches improving

pipeline behavior and more opportunities for parallelization of the loop [BGS94].

An example for loop unswitching is shown in Fig. 4.28.

However, the loop replication comes at the cost of code expansion. For this rea-

son, loop unswitching can not be applied exhaustively to all potential loop candi-

dates if strict code size constraints, as often found in the embedded system domain,

must be met. Thus, similar to loop unrolling (cf. Sect. 4.5), a trade-off between the

execution time improvement and the resulting code size increase is required. To do

so, potential unswitching candidates should be evaluated before being optimized,

enabling to unswitch only those loops that promise a high run time improvement

while keeping the code size increase minimal.

Due to the lack of information about execution times and frequencies of the code

under analysis, an effective unswitching is, however, not feasible in most compilers.

122 4 WCET-Aware Source Code Level Optimizations

if (w)
for (i=0; i<100; i++) { for (i=0; i<100; i++) {
x[i] = x[i] + y[i]; x[i] = x[i] + y[i];
if (w) y[i] = y[i] * 2; }
y[i] = y[i] * 2; → else

else for (i=0; i<100; i++) {
y[i] = 1; x[i] = x[i] + y[i];

} y[i] = 1;
}

Fig. 4.28 Example for loop unswitching

Typically, the optimization traverses the program in a depth-first search order and

transforms each found loop as long as a predefined maximal code size restriction

is not exceeded. Using this strategy, an efficient exploitation of the unswitching

potential can not be guaranteed.

Compared to standard unswitching, WCC’s WCET-aware loop unswitching dif-

fers in two ways. First, the optimization focuses not on an ACET but on a WCET re-

duction. Second, the sophisticated infrastructure of WCC including detailed worst-

case timing semantics enables an effective unswitching. Each loop candidate is

virtually unswitched to evaluate the impact of the transformation. Based on this

knowledge, loops promising a high WCET reduction are unswitched first while the

transformation of loops with little positive impact on the WCET is postponed and

possibly omitted.

Moreover, WCC’s loop unswitching addresses the problem of switching WCEPs

by incorporating the invariant path paradigm. A WCEP switch may occur during

the optimization due to code restructuring which has a hardly predictable impact

on the sensitive memory systems of modern processors. The reasons for a potential

path switch are twofold. On the one hand, I-caches might show a different behavior

w.r.t. the incurred cache misses. By shifting the selection statement, the then- and

else-part are mapped to different addresses in the memory compared to the code

before the transformation. Consequently, this code is fetched into different cache

lines and may result in additional/reduced cache misses during the execution of

other mutually exclusive non-WCEPs which turn into the new longest paths.

On the other hand, many processors incur a penalty when performing a fetch to a

misaligned target instruction. In this case, the processor stalls since another access to

memory is required to complete the instruction fetch. In literature, this phenomenon

is known as the line crossing effect and may cause a path switch after a code mod-

ification [ZKW+05]. In the context of unswitching, shifting code rearranges the

memory layout and may introduce additional/reduced misaligned instructions on

the non-WCEPs that yield a path switch.

Exploiting the invariant path paradigm, WCC is capable of classifying program

loops into those which may entail a WCEP switch after loop unswitching and those

where a path switch can be definitely excluded. The optimization of loops from

the second class eliminates the need for pessimistic WCEP recomputations, thus

significantly accelerates the WCET-aware optimization.

4.6 Accelerating Optimization by the Invariant Path 123

Algorithm 4.5 Algorithm for WCET-aware loop unswitching

Input: P ,maxFactor

Output: optimized P

1: maxSize ← codeSize(P) · maxFactor

2: WCETAnalysis(P)

3: set〈Loop〉 UC ← unswitchingCandidates(P)

4: while UC �= ∅ and ∃uc ∈ UC : WCET(uc) > 0 do

5: allOnIP ← checkInvariance(UC)

6: repeat

7: loopf ittest ← fittest(UC)

8: unswitching(loopf ittest ,maxSize)

9: UC ← UC / loopf ittest

10: until UC == ∅ or allOnIP == false

11: WCETAnalysis(P)

12: end while

13: return P

WCC’s WCET-aware loop unswitching is depicted in Algorithm 4.5. It begins

with the calculation of the maximally permitted code size after unswitching (line 1).

After a WCET analysis of program P , worst-case timing data is made available at

the source code level using WCC’s back-annotation (line 2). In the next step, all

unswitching candidates available in P (even /∈ WCEP) are collected in UC (line 3).

The subsequent outer loop of the algorithm (lines 4–12) is executed as long as there

is at least one unswitching candidate lying on the WCEP. From the set UC of candi-

dates, the fittest loop promising the highest WCET reduction is selected (line 7) and

unswitched if code size constraints are not violated (line 8). The fitness of a loop

is determined by the execution counts of the loop-invariant condition branch, with

higher frequencies representing fitter loops. If two branches have the same execu-

tion count, the one with the larger WCET is preferred. In the rare case of even equal

WCETs, the branch with the smaller code size is selected.

The termination condition of the inner loop of Algorithm 4.5 (line 10) checks

whether all collected unswitching candidates are on the invariant path (see allOnIP).

This test is mandatory for an effective WCET minimization since local changes in

the CFG may have an impact on timing properties of another portion of the CFG as

mentioned previously.

This effect is illustrated in Fig. 4.29 where mutually exclusive parts of the CFG

are denoted as segments. The CFG represents a situation as could be possibly found

at the beginning of unswitching. For the sake of simplicity, the CFG nodes repre-

sent either single basic blocks or loops. Gray nodes mark unswitching candidates

with their execution counts. The WCEP traverses all nodes except for node UC3.

WCC’ loop unswitching would begin with node UC1 which has the highest execu-

tion count. After unswitching this node in segment 1, the modified memory layout

may affect segment 2 such that a WCEP switch occurs from node G to UC3. Thus,

in the next step, not the previously collected loop UC2 but UC3 should be consid-

124 4 WCET-Aware Source Code Level Optimizations

Fig. 4.29 WCEP switch in

different segments

ered for unswitching. Obviously, this information is provided after another WCET

analysis following the first transformation (line 11).

Within Algorithm 4.5, variable allOnIP is responsible for the indication of po-

tential WCEP switches among different CFG segments by forcing a new WCET

analysis to keep relevant unswitching candidates updated.

At first glance, checking the invariance of available optimization candidates

might seem restrictive, preventing an extensive exploitation of the invariant path.

However, as shown in Sect. 4.6.5, a large fraction of the code contributes to the

invariant path. Thus, allOnIP can be expected to be often true such that multiple

optimization steps can be performed without a pessimistic WCEP recomputation.

It should be also noted that allOnIP is only relevant for code size critical opti-

mizations that aim at a reduction of the WCET while keeping the increase of the

code size minimal, and where side effects on the memory system are crucial. Like

for WCC’s WCET-aware loop unswitching, always the most promising optimiza-

tion candidate for a WCET minimization should be chosen to maximally improve

the program’s worst-case performance while keeping the code size increase mini-

mal.

However, for many real processors the non-local effects on the memory system

(e.g., line crossing or I-cache misses) are negligible. Moreover, many optimizations

focus on a maximal WCET improvement accepting code expansions. For these two

common cases, the invariant path information can be fully exploited. Since the opti-

mization of the invariant path always reduces the WCET, the compiler can iteratively

optimize these parts of the CFG without performing further WCET analyses. Due

to a possible WCEP switch in the remaining code, the WCET information must be

once updated for the transformed code to check if possibly new optimization candi-

dates occurred that can be optimized next.

Due to the potentially omitted WCET analyses during the optimization, no re-

liable assumptions about the WCET of the transformed code can be made. Thus,

to get a safe WCET estimation of the optimized program, a final WCET analysis

should be performed.

4.6 Accelerating Optimization by the Invariant Path 125

Table 4.3 Benchmark characteristics

Benchmark #Candidates Code Size [Byte] Description

transupp 19 7224 JPEG transformation

wrbmp 6 682 JPEG conversion

block 8 16050 H264 decoding

macroblock 12 18520 H264 decoding

4.6.7 Experimental Results for WCET-Aware Loop Unswitching

To show the effectiveness of the novel paradigm, experiments for WCC’s invariant

path-based WCET-aware loop unswitching were conducted on real-life benchmarks.

The benchmarks stem from the widely used MediaBench suite representing different

applications typically found in the embedded systems domain. They contain typical

kernel routines that are frequently used in larger benchmarks, e.g., the JPEG-2000

image and the H.264 video compression. The characteristics of the four most in-

teresting kernel routines employed for the evaluation are listed in Table 4.3. The

second column of the table indicates the number of candidates for loop unswitch-

ing. For the following experiments, an additional code size increase of 50% was

allowed, i.e., maxFactor = 1.5 (cf. Algorithm 4.5).

4.6.7.1 Optimization Run Time

To demonstrate the positive impact of the invariant path paradigm, the optimization

run times of WCET-aware loop unswitching were measured once with and once

without exploiting invariant path information. The optimization run time encom-

passes the entire optimization process from parsing the source code to the genera-

tion of the optimized assembly code. Typically, most of the time is consumed by

repetitive WCET analyses.

The results depicted in Fig. 4.30 were generated on an Intel Xeon 2.13 GHz

system with 4 GB RAM. The 100% mark corresponds to the optimization time of

standard loop unswitching without any WCET heuristics. The diagram shows the

results for the application of WCC’s WCET-aware loop unswitching without ex-

ploiting the invariant path information (light bars) and when the invariant path in

taken into account (dark bars). It can be seen that for all benchmarks the optimiza-

tion run time could be drastically reduced when the invariant path information is

involved. On average, the run time using invariant path could be reduced by 58%.

The conventional WCET optimization without employing the new paradigm took

on average 872% more run time than standard WCET-unaware unswitching. Tak-

ing the invariant path into account reduces the optimization run time to 379% of

standard unswitching which corresponds to a speed-up by a factor of 2.3.

These significant optimization run time improvements result from the reduced

number of performed WCET analyses. For example, the number of mandatory

126 4 WCET-Aware Source Code Level Optimizations

Fig. 4.30 Relative optimization run time without and with invariant path

Fig. 4.31 Relative WCET

estimates for WCET-aware

loop unswitching

WCET analyses to update the WCEP which was performed for the benchmark mac-

roblock could be reduced from seven analyses down to two analyses, reducing the

optimization time from more than 75 minutes to less than 19 minutes.

4.6.7.2 WCET

Figure 4.31 presents the WCET reduction achieved by WCC’s WCET-aware loop

unswitching, with 100% corresponding to the WCET estimation of the original code

after dead code elimination. All tests were performed assuming an 8 kByte I-cache

of the TriCore processor. Note that the default cache capacity of 16 kByte was re-

duced to take cache effects for the benchmarks under test into account. As can be

seen, an average WCET reduction of 10.4% was achieved for all benchmarks. The

maximal WCET reduction of 17.3% was achieved for the block kernel. It contains

seven loop-invariant if-then-else-statements executed between 4 and 16 times

in the worst case. By unswitching, their execution frequencies could be significantly

reduced.

4.6 Accelerating Optimization by the Invariant Path 127

Fig. 4.32 Comparison of

standard and WCET-aware

unswitching for transupp

4.6.7.3 Code Size

The drawback of loop unswitching is the code size increase. For the four bench-

marks, an average increase of 19.7% was measured. To bound the code expansion,

the WCET-aware loop unswitching may be terminated as soon as the maximally

permitted code size increase is achieved.

The diagram in Fig. 4.32 shows the relationship between the WCET reduction

and the code size increase for each optimization step of unswitching for the bench-

mark transupp. The solid curve represents the measurements for the WCET-aware

loop unswitching, while the dotted curve depicts the measurements for standard

unswitching. The points of the curves represent the relative WCET estimation and

the relative code size w.r.t. the original code (after dead code elimination) deter-

mined after each unswitching of one loop. As can be seen, the WCET-aware opti-

mization transformed 14 out of the 19 unswitching candidates, i.e., the optimization

heuristic decided that unswitching of 5 loops does not promise a WCET reduction.

A comparison between the solid curve and the dashed curve reveals that the

WCET-aware approach is overall more successful in optimizing the WCET than

standard unswitching, since in almost each step a reduction of the WCET estima-

tion was achieved. Only in the last optimization steps a minimal WCET increase

of 0.2% was observed. In contrast, standard unswitching randomly finds better loop

candidates in the first steps than the heuristic of WCC’s WCET-aware unswitching.

However, in the following steps, the standard approach results in a noticeable WCET

increase after unswitching a selection statement. For example, a relative code size

of 105.2% with standard unswitching results in a relative WCET of 95.1%. After

unswitching of two further loops, the code size increases to 110.1% with a simul-

taneous negative effect on the WCET which is increased to 97.1%. This points out

that the new optimization is tailored towards an effective WCET reduction and out-

performs the standard loop unswitching for this objective.

Moreover, the solid curve can be used by system designers to find a suitable

strategy for unswitching which satisfies timing and code size constraints imposed

on the system. Based on that curve, the parameters for the desired optimization

objective can be extracted and used to terminate the optimization when the desired

goals is accomplished.

Ideas from this section have been published in [LGM09].

128 4 WCET-Aware Source Code Level Optimizations

4.7 Summary

This chapter presents novel compiler optimizations applied at source code level

that aim at a reduction of the worst-case execution time. In contrast to traditional

compiler optimizations, the proposed techniques exploit detailed timing informa-

tion of the program under analysis. The WCET data computed by a WCET analyzer

at assembly level is made available at source code level using a technique called

back-annotation. This timing information enables a quantification of effects of code

transformations on the estimated WCET. Hence, an effective improvement of the

program’s worst-case behavior can be achieved. All the proposed techniques were

implemented in the WCC framework and evaluated on real-life benchmarks.

The first optimization studied in this chapter was procedure cloning which may

significantly improve the WCET estimation as the optimization allows a more pre-

cise specification of flow facts. To cope with the inherent code size increase during

cloning, the developed WCET-aware procedure cloning transforms only those func-

tions that promise an improved WCET estimation. An average WCET reduction

of 57.5% with a simultaneous code size increase of only 109.5% was achieved on

real-life benchmarks.

The second presented optimization is based on superblocks which represent

traces consisting of multiple basic blocks. Compiler optimizations benefit from such

a code structure since it extends the optimization scope, thus enables new optimiza-

tion opportunities. In contrast to previous works, the proposed superblocks are con-

structed at source code level and rely on the worst-case execution path. Combining

these WCET-aware superblocks with the compiler optimizations common subex-

pression elimination and dead code elimination yielded an average reduction of the

estimated WCET of 10.2% and 8.8%, respectively, for a total of 55 benchmarks.

WCET-aware loop unrolling was the third proposed optimization. It heavily ex-

ploits the back-annotation to get detailed information about the code size, I-cache

properties, spill code, and the WCETs. Combining this data with loop iteration

counts from a static loop analysis allows the determination of individual unrolling

factors for each loop that promise the highest WCET reduction. For a total of 45

benchmarks, an average WCET reduction of 10.2% was observed while standard

loop unrolling found in modern compilers led to a WCET reduction of only 2.9%.

Finally, the invariant path paradigm was proposed to accelerate WCET-aware

compilation. Optimizations focusing on a WCET minimization must be aware of

WCEP switches during code transformations. Typically, the timing information is

kept up-to-date by pessimistically recomputing the WCEP after each code modifica-

tion. However, a WCEP switch can not occur in many situations. Using the invariant

path, such situations are detected and redundant WCET analyses can be avoided. To

demonstrate the practical use of this new concept, it was integrated into the pro-

posed WCET-aware loop unswitching. Using the invariant path led to a reduction of

the optimization run time by 58% on average for the considered benchmarks. It was

also shown that the invariant path paradigm can be applied to a large fraction of typ-

ical embedded software, making it best suited for a large number of WCET-aware

optimizations.

4.7 Summary 129

All the techniques presented in this chapter are based on standard ACET opti-

mizations available in many optimizing compilers. Using the proposed techniques,

the traditional optimizations can be adapted to minimize the WCET effectively. As

the comparison between the standard and the WCET-aware optimizations clearly

shows, significantly higher WCET reductions can be achieved when the novel tech-

niques are applied. The reason is the systematic optimization of the crucial parts of

the WCEP that promise the largest WCET reductions. As a conclusion, it can be

stated that it is worthwhile to study well-known compiler optimizations at source

code level, looking for opportunities to trim them for an explicit improvement of

the program’s worst-case behavior.

Chapter 5

WCET-Aware Assembly Level Optimizations

Contents

5.1 Introduction . 131

5.2 Existing Code Optimization Techniques . 132

5.3 Procedure Positioning . 133

5.3.1 Motivating Example . 134

5.3.2 Related Work . 136

5.3.3 Standard Procedure Positioning . 137

5.3.4 WCET-Centric Call Graph-Based Positioning 138

5.3.5 Experimental Results for WCET-Aware Procedure Positioning 142

5.4 Trace Scheduling . 145

5.4.1 Motivating Example . 145

5.4.2 Related Work . 147

5.4.3 Local Instruction Scheduling . 148

5.4.4 WCET-Aware Trace Scheduling . 151

5.4.5 Experimental Results for WCET-Aware Trace Scheduling 154

5.5 Summary . 156

5.1 Introduction

In the previous chapter, the eminent role of compilers for code generation of high-

performance embedded systems was highlighted. Compiler optimizations can be

applied at different abstraction levels of the code, and each level has its inherent

strengths. The optimization techniques discussed so far operate at source code level

and benefit from the following characteristics: portability, early application in the

optimization sequence to enable subsequent optimizations, and availability of more

details about the program structure due to the high level of abstraction.

The major shortcoming of source code optimizations is their lack of intrinsic

knowledge about the underlying architecture. Hence, the development of transfor-

mations that exploit processor-specific features is limited or even infeasible at all.

As a result, a maximal optimization potential can not be explored. In contrast, as-

sembly level optimizations operate on a code representation that reflects the finally

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_5, © Springer Science+Business Media B.V. 2011

131

http://dx.doi.org/10.1007/978-90-481-9929-7_5

132 5 WCET-Aware Assembly Level Optimizations

executed code. Thus, the compiler is fully aware of numerous critical details about

the utilized resources during execution.

For example, the assembly code specifies which instructions are executed in

which order. A compiler can exploit this information to reorder instructions such

that the optimized instruction sequences efficiently utilize all processor functional

units during execution. Furthermore, thorough knowledge about the executed in-

structions allows an effective exploitation of the memory hierarchy. Program code

and data can be precisely partitioned and systematically allocated to different on-

chip memories, such as scratchpads or caches.

The full control of assembly level optimizations on the program code has an-

other advantage. Source code optimizations often rely on fuzzy assumptions about

the final machine code since they have little or even no impact on the code selection

and succeeding assembly level optimization. Thus, there is no guarantee that as-

sumptions, for instance, about the final memory layout or the utilization of registers

are valid, possibly yielding misleading optimization decisions. In contrast, assem-

bly level optimizations operate on code after code selection for which the impact

of a modification can be estimated more accurately. Therefore, it can be concluded

that any effective optimizing compiler should improve program code at both source

code and assembly level to achieve a high code quality for embedded systems.

In this chapter, WCET-aware assembly level optimizations performed in WCC’s

compiler backend LLIR are discussed that were developed in the course of this book.

In Sect. 5.2, a survey of existing assembly level optimizations for hard real-time

systems is provided. Section 5.3 introduces the optimization procedure positioning

which improves instruction cache (I-cache) behavior along the WCEP by a suitable

re-arrangement of procedures in memory. To expose a high instruction-level paral-

lelism in the code, Sect. 5.4 presents a global instruction scheduling technique called

trace scheduling that reorders instructions across multiple basic blocks. Finally, this

chapter is concluded in Sect. 5.5.

5.2 Existing Code Optimization Techniques

Assembly level is the primary domain for WCET-aware compiler optimizations.

Typically, a WCET analysis is performed at this level, enabling an easy access to

WCET data. An advanced compiler infrastructure, such as WCC’s back-annotation

(cf. Sect. 3.7), that translates timing information into other code representations is

not required.

The major class of WCET-aware assembly level optimizations aims at an im-

proved utilization of the processor’s memory hierarchy system. Several works focus

on caches. Software-controlled caches enable locking of cache lines to avoid evic-

tions. Campoy et al. [CPI+05] used a genetic algorithm for static I-cache locking,

which may, however, not generate optimal results. Cache locking based on an ex-

plicit consideration of the WCEP was presented in [FPT07]. The authors performed

an iterative approach that decides in each optimization step which parts of the code

should be locked in the I-cache to achieve a high WCET reduction compared to the

5.3 Procedure Positioning 133

original code. To reduce the optimization run time, Puaut [Pua06] performed mul-

tiple I-cache locking steps along the current WCEP before WCET data is updated

via a costly timing analysis. Complementary to I-cache locking, Vera et al. [VLX03]

studied the impact of data cache locking on the WCET. The authors locked the cache

for those parts of data where the static cache analysis fails, thus enhance program

predictability.

To achieve a tighter WCET estimation in multi-task real-time systems, Plazar et

al. [PLM09] proposed a compile-time I-cache partitioning technique. Using their

WCET-aware algorithm, each task is mapped to a non-overlapping cache partition

whose content will not be evicted during a context switch. In [PLM10], Plazar et

al. presented a WCET-aware memory content selection algorithm that allocates pro-

cedures, which promise a high WCET reduction, into cached memory areas, while

keeping the remaining functions in non-cached Flash memory. Suhendra and Mi-

tra [SM08] proposed a combination of cache locking and partitioning mechanisms

to use shared caches in a multi-core architecture in a predictable way.

Besides cache optimizations, fast scratchpad memories (SPM) are exploited for

WCET reduction. A hybrid approach combining integer-linear programming (ILP)

and an iterative heuristic for WCET-centric dynamic SPM allocation was presented

in [DP07]. A fully ILP-based approach was employed by Suhendra et al. [SMR+05].

Based on this model, the authors identified an optimal static scratchpad allocation

of data. In a similar fashion, Falk et al. [FK09] presented an optimal static WCET-

aware scratchpad allocation of program code which was evaluated within WCC for

the TriCore TC1796 processor. A dynamic approach, which copies program code

at run time either into a cache or a scratchpad, was presented in [PP07]. Moreover,

Suhendra et al. [SRM08] exploited dynamic scratchpad allocation techniques in a

multi-task real-time system to improve the performance and predictability of its

memory system.

In [Fal09], Falk considered the problem of WCET reduction at a level of even

finer granularity. The author extended the traditional graph coloring register allo-

cator by WCET-aware heuristics. This iterative approach tries to find a promising

register allocation for each basic block, while avoiding spill code generation on the

WCEP.

5.3 Procedure Positioning

Procedure positioning is a well-known compiler optimization that aims at the im-

provement of the instruction cache behavior by reducing the number of cache con-

flict misses. Caches reduce the average memory access time by exploiting spatial

and temporal locality. The former refers to the reference of contiguous memory lo-

cations. Temporal locality means that recently accessed memory locations are likely

to be accessed in the near future [HP03].

Due to an inappropriate memory layout, the temporal locality may, however, de-

grade cache performance. This situation arises when memory locations being ac-

cessed temporally close to each other are mapped to same cache locations. This

134 5 WCET-Aware Assembly Level Optimizations

Fig. 5.1 Code example for

potential conflict misses
void foo1(int N) {
for (int i=0; i<N; ++i) {
foo2();
foo3();
// remaining code of loop body

}
}

overlapping results in an eviction of cache contents and results in repetitive cache

refills. Using procedure positioning, an improved layout of procedures in memory

is found that avoids overlappings in the cache. As this transformation requires full

control of the program’s memory layout, it is a typical assembly level optimization.

In this section, procedure positioning is exploited for WCET reduction.

The remainder of this section is organized as follows. Section 5.3.1 provides

an example to motivate the benefits of procedure positioning. In Sect. 5.3.2, an

overview of related work regarding compiler-based I-cache optimizations is pro-

vided. The basic idea behind ACET-aware procedure positioning is discussed in

Sect. 5.3.3, followed by a description of novel concepts for a WCET-aware proce-

dure positioning in Sect. 5.3.4. Finally, experimental results on real-life benchmarks

are presented in Sect. 5.3.5.

5.3.1 Motivating Example

The benefits of procedure positioning are motivated by an example. It should be

assumed that the code shown in Fig. 5.1 is executed on a processor with an I-cache.

Without loss of generality, it should be further assumed that the considered cache

is set associative, i.e., a memory block can be placed in a restricted set of places in

the cache. A set is a group of blocks in the cache. A block is first mapped into a set,

and then the block can be placed anywhere within that set. The mapping of memory

blocks into cache sets, called bit selection, is performed by a modulo operation:

set = (Block address) mod (Number of sets in cache)

If there are n blocks in a set, called ways, the cache is called n-way set associa-

tive [HP03].

Depending on the cache replacement strategy, the memory block can be copied

into any of the ways belonging to the determined cache set, i.e., either into way 0 or

way 1 in case of a 2-way set associative cache. The replacement strategy least re-

cently used (LRU) replaces the least recently used entry in a cache set. Furthermore,

it should be assumed that the code from Fig. 5.1 uses a memory layout that is illus-

trated on the right-hand side of Fig. 5.2. Function foo1 is located in memory such

that it is mapped to cache sets 0–5, while functions foo2 and foo3 are mapped to

sets 0–3.

Starting the program execution with an empty I-cache, which utilizes the com-

mon LRU replacement strategy, the for-loop header of function foo1 is copied

5.3 Procedure Positioning 135

Fig. 5.2 Example for cache

content eviction before

positioning

into the cache, beginning at way 0 of cache set 0. Subsequently, function foo2 is

invoked. Since, way 0 of set 0 is already occupied, the first block of foo2 is copied

into the free way 1 of set 0, while the remaining code is copied into ways 0. The

execution of foo3 leads to the first eviction in set 0 since both ways are already

occupied. Due to the LRU replacement strategy, way 0 is chosen. The remaining

code is moved into the free blocks of way 1 of sets 1–3. Finally, the remaining code

of foo1 is executed. Due to missing free ways in both sets, it evicts blocks from

way 0 in sets 1–3, copying the remaining two memory blocks into the free blocks

of cache way 0 of sets 4–5. For the remaining loop iterations of foo1, the eviction of

cache ways is continued. This results in multiple cache conflict misses which entail

multiple accesses to the slow external memory.

The costly eviction of cache blocks can be eliminated by altering the order in

which functions are located in memory. In general, this is accomplished by allo-

cating functions which are accessed within a local time window (temporal local-

ity) contiguously in memory as depicted in Fig. 5.3. Function foo2 is mapped

at a memory address corresponding to set 6. Obviously, locating foo3 contigu-

ously to foo1 would have the same result. This eases the pressure of mapping

multiple memory locations to the same sets. Executing the code from Fig. 5.1, the

entire code for the three functions can be brought into the cache. This memory lay-

out eliminates all set evictions, thus allowing a fast execution due to cache content

reuse.

For direct-mapped caches, the positioning technique might be even more bene-

ficial. In this cache architecture, each set can be considered as holding exactly one

way. Hill and Smith [HS89] reported that direct-mapped I-caches may show a larger

number of conflict misses compared to set-associative caches. Hence, altering the

order of the code in the described manner would eliminate potentially more conflict

misses.

It should be noted that the term function was used in this example to be con-

sistent with ANSI C terminology. Since WCC’s procedure positioning algorithms

136 5 WCET-Aware Assembly Level Optimizations

Fig. 5.3 Example for no

eviction after positioning

are performed at assembly level, the term procedure will be used as a synonym for

function in the following.

5.3.2 Related Work

A large number of ACET optimizations exploit memory hierarchies and aim at

the improvement of both data and instruction cache behavior. The main idea be-

hind these techniques is to enhance spatial and temporal locality. Popular optimiza-

tions for data caches encompass loop interchange, loop tiling, loop fusion or data

prefetching [Muc97].

I-caches mainly benefit from a reorganization of the code at procedure and ba-

sic block level. Tomiyama [TY97] proposed two code placement methods for basic

blocks to reduce the cache miss rate based using ILP. Hwu and Chang [HC89] pro-

posed a compiler with an integrated instruction placement algorithm reducing page

faults. The compiler first groups basic blocks which tend to be executed in sequence

into traces, maximizing the sequential and spatial locality. In a second step, proce-

dures which are executed close to each other in time are placed into the same page.

Thus, inter-function intersections are reduced which also remove potential cache

conflicts among interacting functions.

In [LW94], a cache profiling system identifies hot spots by providing cache per-

formance information at source code level. After an automatic classification into

compulsory, capacity and conflict misses, the profiler suggests appropriate standard

program transformations to improve cache performance. The approach presented by

Mendlson et al. [MPS94] does not rely on profiling data but on static information.

In addition, unlike previously cited works, their approach requires the exact knowl-

edge of the cache architecture. Their idea is to prevent different segments of code

executed in a loop to be mapped into the same cache area by code replication.

Static cache analysis is essential for a WCET analysis of cache-based processors.

Its goal is to classify each memory access as a cache hit or a miss. Ferdinand used

5.3 Procedure Positioning 137

must and may analysis based on abstract interpretation [FHL+01]. The former de-

termines if a memory access is always a cache hit while the latter computes if the

access may be a hit. This approach is also used in aiT, the WCET analyzer integrated

into WCC.

The only work that exploited procedure positioning for WCET reduction was

discussed in [LJC+10]. The authors adopted techniques presented in this section to

optimize applications running on a communication gateway of a wireless body-area

sensor network (BAN). By deriving a good order of different sensor procedures, not

only the WCET but also the power consumption could be reduced.

A related technique to procedure positioning is code positioning of basic blocks

and was employed by Zhao et al. [ZWH+05] to reduce the WCET. They exploited

WCET data to re-arrange the memory layout of basic blocks in such a way that

branch penalties along the WCEP were avoided. The main difference between

Zhao’s work and WCC’s WCET-aware procedure positioning is that Zhao focused

on the reduction of incurred pipeline delays caused by control transfer instructions,

while the techniques discussed in this section eliminate cache conflict misses.

5.3.3 Standard Procedure Positioning

Standard procedure positioning operates on a call graph:

Definition 5.1 (Call graph) A call graph is a weighted, undirected graph G =

(V ,E), where nodes V correspond to procedures and edges E ⊆ V × V con-

nect two nodes vi, vj ∈ V , iff vj is invoked by vi . An edge weight w(eij), with

eij = (vi, vj) ∈ E, represents the call frequency, i.e., how often vi and vj invoke

each other mutually during program execution.

Typically, procedure positioning aims at ACET reduction. To obtain call frequen-

cies for the call graph, profiling is performed. Based on the call graph, procedures

that are combined by an edge with a high weight should be located contiguously in

memory. This way, mutual cache eviction of procedures with a high call frequency

can be reduced.

Procedure positioning has several positive effects on the system. Besides the

already discussed benefits concerning the performance of the I-cache, the altered

memory layout after positioning may also eliminate translation lookaside buffer

(TLB) misses [PH90] that are often used in general purpose systems. Reorganizing

functions contiguously in memory increases the probability that both functions will

be mapped into the same page. Hence, the page working set and potentially TLB

misses are eliminated.

The optimization offers another advantage which is especially relevant for em-

bedded systems. An important objective for embedded systems is energy efficiency

since these systems are often powered by a battery. Code positioning increases the

number of cache hits by removing cache set eviction, thus eliminating cache misses.

138 5 WCET-Aware Assembly Level Optimizations

In contrast to a cache hit, which corresponds to a cache read, the energy model for

a cache miss is given as follows [VM07]:

ECache_miss = 2 ∗ Eread(Cache)

+ linesize(Cache) ∗ (Eread(MM) + Ewrite(Cache))

where Eread(Cache) and Ewrite(Cache) are the energies consumed by the cache

memory for a read and a write access, respectively. Moreover, Eread(MM) repre-

sents the energy consumption for a read access to main memory. In case of a cache

miss, two read accesses are required: the first read identifies the miss while the sec-

ond read finally sends data to the processor once it has been brought into the cache.

A decreased number of cache misses results in less accesses to the main memory.

Verma [VM07] reported that the energy consumption for an access to main memory

compared to accessing a cache may be increased by a factor of 40. Hence, code

positioning may produce code that substantially saves energy consumption.

However, the traditional ACET positioning may be ineffective for WCET reduc-

tion. If the edge weights of the call graph gathered during profiling differ from the

worst-case call frequencies computed during WCET analysis, then inappropriate

optimization steps may be conducted. Due to this reason, a WCET-aware procedure

positioning was developed that explicitly relies on WCET information.

5.3.4 WCET-Centric Call Graph-Based Positioning

In contrast to standard, profiling-based optimizations, WCC’s novel positioning ex-

tracts input data for the call graph from the WCET analyzer aiT. This fundamental

difference makes WCC’s approach not prone to changing inputs. Profiling data is

critical since it reflects the program execution for a particular set of input data, i.e.,

profiling the program under test with varying inputs may yield different results. For

more complex programs that consist of numerous input-dependent execution paths,

it is almost infeasible to find representative input values. This may lead to a call

graph that is annotated with profiling data that does not cover particular program

executions. The optimized code will possibly not improve cache behavior and may

even suffer from a performance degradation.

WCC’s positioning does not rely on representative input data. Edge weights are

computed by a WCET analyzer and are invariant for all program executions. These

frequencies are used for the construction of WCC’s WCET-centric call graph:

Definition 5.2 (WCET-centric call graph) A WCET-centric call graph is a call

graph G = (V ,E) where edge weights correspond to worst-case call frequencies,

i.e., the number of mutual invocations between two procedures on the WCEP.

Those edges with the heaviest weight potentially combine the most promising

functions for optimization.

5.3 Procedure Positioning 139

Fig. 5.4 Inappropriate positioning based on profiling

5.3.4.1 Greedy WCET-Aware Positioning Approach

It is well known that the impact of memory layout modifications on caches is hardly

predictable. Therefore, a greedy approach that evaluates the impact of a particular

procedure rearrangement on the WCET seems promising. In case of an achieved

WCET reduction, the new memory layout is considered as a new starting point for

the next optimization cycle, and the next most promising function for positioning

is considered. Hence, the approach successively reduces the WCET and guarantees

that no degradation of the WCET is accepted.

WCC’s greedy approach is tailored towards a WCET reduction and the procedure

positioning layout might substantially differ from the layout chosen by the existing

ACET positioning optimizations. This situation is illustrated in the following.

Example 5.1 The following figure demonstrates why procedure positioning guided

by profiling data may be inappropriate for WCET reduction and might even yield a

decreased worst-case performance.

Assume the function memory layout given in Fig. 5.4(a) and the corresponding

call graph in Fig. 5.4(b), where the edge weights represent call frequencies obtained

during profiling. In addition, the dotted edges indicate the current WCEP. This call

graph represents a typical if-then-else-statement:

void B(...) {

if (...) {

A();

} else

if (...) {

C(); D();

} else {

E(); F();

}

}

Before optimization, the WCEP traverses the first else-part, i.e., procedures C and

D contribute to the WCET. Hence, the WCEP does not correspond to the most fre-

quently executed path which traverses the if-part. Based on profiling, ACET code

140 5 WCET-Aware Assembly Level Optimizations

Algorithm 5.1 Algorithm for greedy WCET-aware procedure positioning

Input: P

Output: optimized P

1: WCET P ← WCETAnalysis(P)

2: GWCET ← BuildCallGraph(P)

3: Gref ← BuildCallGraph(P)

4: repeat

5: repeat

6: emax ← FindMaxEdge(GWCET)

7: if emax == ∅ then

8: return P

9: end if

10: possibleWCEPSwitch ← true

11: Positioning(emax,Gref , P)

12: WCETnew ← WCETAnalysis(P)

13: if WCETnew > WCET P then

14: RollbackPositioning(P)

15: GWCET ← GWCET \ emax

16: possibleWCEPSwitch ← false

17: else

18: WCET P ← WCETnew

19: end if

20: until possibleWCEPSwitch == true

21: UpdateCallGraph(GWCET , P)

22: until false

positioning would allocate functions A and B contiguously in memory to avoid

conflict misses (cf. Fig. 5.4(c)). This might result in new conflict misses on path

B → {E,F}, outweighing the execution time of the current WCEP B → {C,D}.

Therefore, a modification of the memory layout may result in a different path be-

coming the WCEP whose WCET is even larger than that of the original WCEP

before the transformation. This leads to a WCEP switch (cf. Fig. 5.4(d)) and an in-

creased overall program’s WCET. Thus, a decreased ACET was achieved at the cost

of an increased WCET estimation.

To avoid such adverse effects, WCC’s greedy approach is an iterative algorithm

that processes a single edge of the WCET-centric call graph during each iteration

cycle. Each modification of the memory layout is virtually evaluated w.r.t. its impact

on the program’s WCET, and only beneficial positioning steps are accepted.

WCC’s WCET-aware procedure positioning adopts ideas of the profiling-guided

positioning described by Pettis and Hansen [PH90]. The optimization is depicted in

Algorithm 5.1. The algorithm performs a WCET analysis of program P and con-

structs two WCET-centric call graphs based on the worst-case call frequencies (lines

5.3 Procedure Positioning 141

1–3). As will be shown later, the reference call graph Gref remains unmodified dur-

ing the entire optimization and may be consulted during positioning.

WCET-aware positioning begins with the call graph edge that is weighted with

the maximal worst-case call frequency (line 6). If no such edge exists, the algorithm

is terminated (lines 7–9). Otherwise, this edge is utilized for positioning of pro-

gram P (line 11). Within Positioning, procedures specified by emax are reordered

in such a way that they are allocated contiguously in memory. In the beginning of

the algorithm, all nodes in the call graph GWCET represent single procedures. Af-

ter choosing two procedures to be placed contiguously in memory, both nodes of

GWCET are merged and their edges are coalesced. This situation is illustrated by

the following example.

Example 5.2 A possible WCET-centric call graph is depicted on the left-hand side

of the following figure:

This graph corresponds to Gref in Algorithm 5.1. WCC’s WCET-aware positioning

would begin the positioning of procedures G and H in the first step, and procedures

J and K in the next step. If these two memory layout modifications yield an im-

provement of the estimated WCET, the WCET-centric call graph would be updated

as indicated in the middle of the above figure. As can be seen, nodes G and H as

well as J and K are coalesced. The coalesced nodes guarantee that the contiguous

allocation of the corresponding procedures is preserved for further invocations of

function Procedure in Algorithm 5.1. Moreover, edges are merged by accumulating

the corresponding weights.

The decision for an appropriate procedure order becomes more complicated if

two already coalesced nodes have to be merged. The second node can be placed

before or after the first node. Moreover, the procedure chains (order of procedures

within a node) can be reversed within the coalesced nodes, leading to four potential

decisions in total. To find the most promising memory allocation, the reference call

graph Gref is consulted. It helps to find these two procedures at the end of each

chain that exhibit the greatest worst-case call frequency. In case of the example

above, the maximal call frequency of 5 is observed between procedures G and J.

Hence, the procedure chain of the second node 〈J,K〉 is reversed and placed before

node 〈G,H〉.

After positioning, Algorithm 5.1 performs a timing analysis (line 12) and com-

pares the estimated WCET with the WCET before positioning. If positioning had a

negative impact on the program WCET, the memory layout modification is rolled

142 5 WCET-Aware Assembly Level Optimizations

back and the current edge is removed from the call graph (lines 13–16). In this

case, the algorithm continues with the next edge having the maximal call frequency.

Otherwise, if positioning yielded a WCET reduction, the new memory layout is

preserved and the call graph is updated (line 21). This update warrants that pos-

sible WCEP switches after positioning are taken into account. WCC’s positioning

terminates if no more promising edges are found (lines 7–9).

5.3.4.2 Heuristic WCET-Aware Positioning Approach

Due to the possibly large number of time-consuming WCET analyses of the greedy

approach, also a fast heuristic was developed that just uses the data of the WCET-

centric call graph for the initial input program. In contrast to the greedy approach,

the heuristic performs exactly one WCET analysis to construct the initial call graph.

Hence, this heuristic approach can be considered as a simplification of the greedy

Algorithm 5.1. Instead of evaluating each positioning step w.r.t. the WCET (lines

12–19), the heuristic performs positioning for each edge in the order of the weights.

The speed advantages come at the cost of efficacy. First, the reordering of pro-

cedures is based exclusively on the initial call graph and is performed without a re-

evaluation of its impact on the WCET. Hence, also undesired WCET increases are

accepted. Second, WCEP switches are not considered. Since the call graph is not up-

dated, the heuristic approach operates on an outdated WCET-centric call graph if the

WCEP changes. The applied positionings would then possibly not affect the WCET.

5.3.5 Experimental Results for WCET-Aware Procedure

Positioning

This section evaluates the impact of WCC’s WCET-aware procedure positioning on

the WCET estimates of real-life benchmarks. The experiments were conducted for

the TriCore TC1796 processor with enabled I-cache. The following cache parame-

ters were used: capacity of 8 kByte, 2-way set associativity with a cache line size

of 256 bits, and an LRU replacement strategy. The benchmarks stem from the test

suites MRTC [MWRG10] and MediaBench [LPMS97]. Their characteristics are de-

picted in Table 5.1. The second column indicates the benchmarks’ code sizes while

the third column shows how many procedures each benchmark contains that are

candidates for procedure positioning. These code sizes do not change during opti-

mization since the applied re-allocations of procedures do not require any additional

code.

5.3.5.1 WCET

Figure 5.5 shows the results for greedy and heuristic procedure positioning. 100%

corresponds to the WCET estimates of the original code of the considered real-life

benchmarks compiled with O3. It can be seen that a WCET reduction was achieved

5.3 Procedure Positioning 143

Table 5.1 Characteristics of

evaluated benchmarks Benchmark Size [kByte] # Functions

expint 0.97 3

g721_encode 19.9 26

g723_encode 19.9 26

gsm_decode 34.1 35

gsm_encode 41.9 36

mpeg2 39.8 14

Fig. 5.5 Relative WCET estimates for WCET-aware positioning

for most benchmarks. The greedy algorithm achieved an average WCET reduction

of 10.1%, while the heuristic approach reduced the WCET by 3.1% on average.

The results strongly depend on the initial order of the benchmarks’ procedures.

If the original memory layout already yields a good cache performance, positioning

might lead to smaller improvements than for benchmarks that lead to more cache

conflict misses. Moreover, tiny benchmarks whose text section is small enough to

fit entirely into the cache (e.g., expint) do not profit from this optimization since no

conflict misses can occur. However, applications that completely fit into the (usu-

ally) small I-cache of a resource-restricted embedded system are very uncommon.

For the gsm_encoder benchmark, the greedy algorithm could not achieve an im-

provement and the heuristic approach even slightly worsened the WCET. This is

due to the influence of memory layout modifications on the memory system per-

formance which is hardly predictable. A reordering of procedures might improve

the cache behavior locally but might simultaneously induce new cache misses for

the execution of other code fragments, leading to a degraded overall cache perfor-

mance. Moreover, modifications to the memory layout may introduce additional line

crossing effects (cf. Sect. 4.6.6) that adversely affect the program performance.

For all benchmarks, greedy positioning achieved better results since it does not

allow a degradation of the WCET. This might result in a local optimum missing the

144 5 WCET-Aware Assembly Level Optimizations

Fig. 5.6 Relative optimization run time for WCET-aware positioning

global minimum as could be potentially achieved by the heuristic approach. How-

ever, for the considered benchmarks, this case did not arise. The heuristic approach

might worsen the WCET as experienced for gsm_encoder. Hence, it is worthwhile

to invest time for the optimization to achieve best results, as done by WCC’s greedy

approach.

5.3.5.2 ACET

The impact of WCET-aware positioning was also measured w.r.t. the ACET of the

benchmarks. On average, the greedy approach achieved an ACET reduction of ap-

proximately 4%, while the heuristic approach decreased the ACET by less than 2%.

These results show that WCC’s positioning is tailored towards a WCET reduction

which may be less successful for ACET minimization since the call frequency edge

weights in the call graph may differ for the average- and worst-case.

5.3.5.3 Optimization Run Time

The optimization run time for WCC’s WCET-aware procedure positioning was mea-

sured on an Intel Xeon 2.13 GHz system with 4 GB RAM. Obviously, the heuristic

approach is faster since it relies on a single WCET analysis. In contrast, the opti-

mization run time of the greedy approach strongly depends on the number of evalu-

ations of memory layout modifications that are accompanied by a WCET analysis.

Using the greedy approach, most time was spent for the optimization of mpeg2

which amounts to 182 minutes. For other benchmarks, the optimization time ranged

between 1 and 42 minutes. Hence, the run times are moderate for the optimization

of embedded systems.

Figure 5.6 depicts the relative optimization time for the greedy approach, with

100% being the run time for the heuristic approach. As can be seen, the greedy ap-

proach may increase the optimization time by up to 1,720% which translates to an

5.4 Trace Scheduling 145

absolute optimization time of 25.3 minutes for the benchmark gsm_decoder. How-

ever, as was seen in Fig. 5.5, this additional overhead pays off.

The techniques presented in this section led to the publication [LFM08].

5.4 Trace Scheduling

The execution order of instructions can have a significant effect on the program ex-

ecution time. The reasons are manifold. Instructions may take several execution cy-

cles to deliver their result, thus they block other instructions that are data-dependent

on them. Accesses to memory may delay the execution of instructions. Moreover,

particular combinations of instructions stall a processor pipeline, while others al-

low a simultaneous execution on a superscalar pipeline. Instruction scheduling, also

known as code compaction, is a popular assembly level optimization helping to find

good instruction orders that enhance the number of instructions executed in paral-

lel.

Local instruction scheduling confines its attention to single basic blocks. How-

ever, this limited approach often fails to exploit full instruction-level parallelism

since the number of instructions in a block to be scheduled is limited. To circum-

vent this problem, instruction scheduling can be extended to operate on multiple

basic blocks. The latter is called global scheduling. A prominent example of a

global scheduler is trace scheduling which is a profiling-driven method aiming at

an ACET reduction. In this section, trace scheduling is studied for an improved

WCET.

The remainder of this section is organized as follows. Section 5.4.1 presents a

motivating example to indicate the benefits of scheduling across basic block bound-

aries. An overview of related work on local and global scheduling is provided in

Sect. 5.4.2. The approach of local basic block scheduling is discussed in Sect. 5.4.3,

followed by a presentation of extensions towards a WCET-aware trace scheduling

in Sect. 5.4.4. Finally, experimental results achieved on real-life benchmarks are

provided in Sect. 5.4.5.

5.4.1 Motivating Example

Local instruction scheduling is restricted by basic block boundaries. Thus, even if

the basic block scheduler finds an optimal schedule, the overall instruction-level

parallelism may not be sufficiently exposed. This shortcoming may become a se-

rious concern for superscalar in-order issue processors [HP03] that issue multiple

instructions in program order.

WCC’s target architecture, the Infineon TriCore TC1796, belongs to this class of

processors. Its superscalarity is realized by 3 different pipelines that can execute in-

structions simultaneously: the integer pipeline mainly executes instructions on data

registers, the load/store pipeline handles load/store instructions as well as address

146 5 WCET-Aware Assembly Level Optimizations

Fig. 5.7 Example for trace scheduling

computations, and the loop pipeline is responsible for the zero-overhead loop in-

struction. To exploit this parallelism, the instructions within the program code have

to be placed in the code in a special order.

To demonstrate the strength of trace scheduling, consider Fig. 5.7(a) depicting

a fragment of the CFG taken from the non-optimized assembly code of benchmark

crc [MWRG10] using the TriCore instruction set. The solid boxes and arrows repre-

sent the WCEP, while block L3 does not contribute to the WCET. Using this instruc-

tion order, TriCore’s pipelines can not be utilized in parallel since there is no mix

of instructions in any block that could be simultaneously issued on the integer and

load/store pipeline. Even the local instruction scheduler is not able to generate code

that exhibits an increased parallelism. Based on this instruction order, the length of

the WCEP amounts to 16 cycles as shown by the numbers next to the basic blocks

(for the branch and call instructions, an execution of 2 and 3 cycles, respectively,

was assumed).

Unlike local scheduling, trace scheduling allows the motion of instructions across

block boundaries. Focusing on the WCEP, instructions are moved across blocks

L0, L1, and L2. This way, bundles of instructions are generated that are issued in

the same cycle on different pipelines. For example, the two first instructions mov
D8, 8 and movh.a A12, HI:lin can be simultaneously passed to the integer

and load/store pipeline, respectively. It can also be seen that the motion of the load

instruction ld.w D12, [A12] below the first conditional jump jge D9, D2,
L2 makes a duplication of this instruction into the non-WCEP block L3 mandatory.

Even though the execution time of L3 is increased, the overall length of the WCEP

could be shortened from 16 to 12 cycles. If this fragment of the CFG represents

a frequently executed kernel code, the reduction of 4 cycles may accumulate to a

significant total saving of execution cycles. Hence, this example shows that global

scheduling along the WCEP even at the cost of other paths, which are not part of

the WCEP, is a promising WCET optimization.

5.4 Trace Scheduling 147

5.4.2 Related Work

Processors without an automatic pipeline interlock control, such as the Infineon

PP32 [NGE+99], require an instruction scheduler which adds NOP instructions into

the code to ensure correct program execution. However, the primary goal of instruc-

tion scheduling is typically the enhancement of the instruction-level parallelism to

speed up program execution. Scheduling can be either carried out by hardware at

run time [HP03] or by software at compile time.

Compile-time instruction scheduling is crucial for very long instruction word

(VLIW) machines to achieve an instruction-level parallelism of up to 14 operations

that these machines are capable of issuing in a cycle [CNO+87]. But also for su-

perscalar in-order issue processors, instruction scheduling is mandatory for high

performance. In this book, compile-time instruction scheduling for the latter class

of processors is considered.

If instruction scheduling is performed before register allocation, it is referred to

as prepass scheduling, otherwise postpass scheduling [Muc97]. Running scheduling

after register allocation may limit the optimization since the program code suffers

from artificial data dependencies introduced by the register allocator. On the other

hand, this approach has the advantage that spill code can be properly scheduled.

There are also approaches where instruction scheduling is integrated into the register

allocator [NP93, MPSR95]. However, since both problems are complex enough by

themselves, the combined approach is typically inapplicable for larger programs.

Hence, most compilers treat these transformations separately—this is also done in

WCC.

Earlier works concentrated on local instruction scheduling that operates on sin-

gle basic blocks. However, it was recognized that basic block boundaries are a se-

rious obstacle for achieving good performance. Therefore, global scheduling ap-

proaches were developed. These approaches have in common that they attempt to

reduce the execution time of the most frequently executed path. A popular exam-

ple for a global scheduling approach, which works on a set of basic blocks with

acyclic control flow (aka. global acyclic scheduling), is trace scheduling [Fis81].

Further examples for acyclic approaches are superblock scheduling [HMC+93] (cf.

Sect. 4.4) as well as hyperblock scheduling [MLC+92]. The latter relies on condi-

tional (predicated) instructions. To expose instruction-level parallelism across dif-

ferent loop iterations, cyclic scheduling was developed. Standard techniques are

software pipelining [RTG+07] and modulo scheduling [WHSB92] that overlap the

execution of instructions from multiple iterations of the loop.

Instruction scheduling has also been combined with techniques from machine

learning. Cavazos and Moss [CM04] exploited supervised learning in a Java just-

in-time (JIT) compiler to reduce compilation time by applying local instruction

scheduling only to those basic blocks that promise a significant improvement. More-

over, Russell et al. [RMC+09] used supervised learning to automatically generate

heuristics for superblock scheduling.

148 5 WCET-Aware Assembly Level Optimizations

5.4.3 Local Instruction Scheduling

In this section, fundamental ideas behind local scheduling are discussed since these

concepts serve as basis for WCC’s WCET-aware trace scheduler. Scheduling can

be carried out before or after register allocation. For WCC’s trace scheduling, exe-

cutable code is required since this approach relies on worst-case execution counts

of CFG edges that enable the construction of a critical path. Hence, the following

discussion is based on the assumption that the code under analysis has already been

processed by a register allocator.

For processors without an automatic pipeline interlock, instruction scheduling

is a mandatory compiler technique to preserve program semantics. In contrast, for

processors with automatic locking mechanisms, instruction scheduling serves as an

optimization technique, providing the following positive effects on program perfor-

mance [Muc97, CT04]:

• Avoidance of pipeline stalls by hiding memory and functional unit latencies.

• Filling of branch delay slots with useful instructions to hide delays due to control

flow modifications [HP03].

• Exploitation of superscalarity by increasing number of simultaneously issued in-

structions.

Regarding the TriCore architecture, the first two issues are irrelevant for a sched-

uler. Whenever memory latencies arise during execution, TriCore’s pipelines are

completely stalled, thus there is no opportunity to hide these latencies. Moreover,

most instructions have an execution latency of a single cycle [Inf08a] which keeps

the number of functional unit latencies small. Also, this processor is not equipped

with branch delay slots that could be filled with useful instructions.

In contrast, the exploitation of superscalarity promises a significant enhancement

of instruction-level parallelism. As mentioned in Sect. 5.4.1, the TriCore processor

is equipped with three 4-stage pipelines that are dedicated to the execution of partic-

ular instruction types. If the instructions are ordered in the program code in bundles,

a parallel execution can be achieved. Bundles refer to instruction pairs that consist

of one instruction that is issued on the integer pipeline while the other is issued on

the load/store pipeline. In addition, the loop pipeline can be utilized for the execu-

tion of TriCore’s loop instruction [Inf08b], leading to a further increase of parallel

execution. As will be described in the next section, this strategy is also pursued

in WCC’s instruction scheduler that aims at maximizing the number of bundles in

program code.

Figure 5.8 provides an example for parallel execution of the code depicted

on the left-hand side of the figure. The situation in the four stages of the inte-

ger and load/store pipeline depending on the execution cycles is depicted on the

right-hand side of the figure. While the first instruction sub D4, D5, D6 is

executed separately due to missing bundle candidates, the following instructions

(〈i2,l1〉, 〈i3,l2〉) are executed simultaneously. For more details on the behavior

of TriCore pipelines, the interested reader is referred to [Inf04].

5.4 Trace Scheduling 149

Fig. 5.8 Parallel execution on TriCore pipelines

5.4.3.1 List Scheduling

To generate a schedule, compilers require a representation of the code that describes

relevant dependencies between instructions in order to preserve program semantics.

For this purpose, a dependence graph D can be employed:

Definition 5.3 (Dependence graph) A dependence graph D = (V ,E) of basic block

b is a directed acyclic graph, where nodes V correspond to instructions i ∈ b and

edges E ⊆ V × V connect two nodes vi, vj ∈ V iff there is a data dependency

between vj and vi . The dependencies can be of the following type:

• True dependency (RAW): vi writes an operand that is read by vj .

• Anti-dependency (WAR): vj writes an operand that is read by vi .

• Output dependency (WAW): vi and vj write the same operand.

If the last instruction ilast ∈ b is a branch or call instruction, edges between all

other instructions and ilast are added to preserve control flow. Moreover, each edge

(vi, vj) ∈ E is associated with a label that is the execution latency between instruc-

tions vi and vj .

The dependence graph can be constructed in a top-down manner by beginning

with the first instruction of a basic block b. Whenever a new instruction is consid-

ered, a corresponding node is added to D. This new instruction is compared against

all previous instructions and identified dependencies are modeled as edges between

the respective nodes. The comparison is repeated for all instructions in b. In total,

this approach requires O(n2) steps, where n is the number of instructions in b.

Given a dependence graph D for a basic block, a schedule S maps each node

v ∈ V to a non-negative integer that represents the cycle in which v should be is-

sued. Since optimal local instruction scheduling is N P -complete [PS93], compilers

generate approximate solutions to the instruction scheduling problem using greedy

heuristics. In practice, most scheduling algorithms are based on a well-known tech-

nique called list scheduling [MG04]. This approach has been the dominant paradigm

150 5 WCET-Aware Assembly Level Optimizations

Algorithm 5.2 List scheduling

Input: Dependence Graph D

Output: Instruction Schedule S

1: list < Instructions > ReadyList ← DetermineSourceNodes(D)

2: cycle ← 0

3: while ReadyList
= ∅ do

4: AssignPriority(ReadyList)

5: SortByPriority(ReadyList)

6: for all i ∈ ReadyList do

7: if i can be scheduled then

8: S(i) ← cycle

9: ReadyList ← ReadyList \ i

10: end if

11: end for

12: cycle ← cycle + 1

13: UpdateReadyInstructions(ReadyList)

14: end while

15: return S

for instruction scheduling since the late 1970s for several reasons: it is easy to un-

derstand, can be easily adopted to different processor architectures, has a worst-case

complexity of O(n2), and produces near-optimal results [CT04].

The basic idea behind list scheduling is sketched in Algorithm 5.2. The algo-

rithm operates on a list of ready instructions (ReadyList), i.e., instructions whose

predecessors in the dependence graph have already been scheduled. ReadyList is

initialized with source nodes from D, while the cycle counter is set to 0 (lines 1–2).

Next, list scheduling iterates over ReadyList as long as there are unscheduled in-

structions (line 3). For each cycle, instructions in ReadyList are assigned a priority

(line 4) which determines the order in which the instructions are scheduled by the

greedy algorithm (lines 5–6).

Starting with instruction i having the highest priority, it is checked if i can be

scheduled in the current cycle. Occupied functional units or results not yet gener-

ated by predecessor instructions are possible reasons why scheduling of i must be

postponed. If i can be scheduled, it is added to schedule S (line 8) and removed

from ReadyList (line 9). After processing all ready instructions, the cycle counter

is incremented and the list of ready instructions is updated. Finally, the returned

schedule S is used to reorder instructions in the original program.

One of the critical parts of Algorithm 5.2 is the priority assignment (line 4) that

decides which instructions should be preferred among ready instructions. WCC’s

instruction scheduler combines different heuristics to compute the final instruction

priority. To maximize superscalar execution, instructions that can be executed in

a bundle are assigned a high priority. If more than one possible bundle exists, the

number of immediate successors in the dependence graph D is computed for each

instruction in the bundle. Bundles with a higher accumulated number of successors

5.4 Trace Scheduling 151

are preferred since an issue of such a bundle increases the number of instructions,

which become ready, compared to issuing other instructions.

5.4.4 WCET-Aware Trace Scheduling

Trace scheduling is an extension of local scheduling. Instead of generating a good

schedule for a single basic block, trace scheduling is a more aggressive approach that

reorders instructions across multiple basic blocks. In the past, this global scheduling

approach was studied in the context of an ACET reduction. Using profiling informa-

tion, the run-time behavior of the program under analysis was employed to construct

a trace that represents the most frequently executed path. In the next step, a good

schedule was generated based on this trace.

The concept of traces was already presented in the course of the discussion about

WCC’s superblock optimizations (cf. Sect. 4.4 on p. 79). The techniques presented

here resemble these previously presented optimizations in the sense that the trace

selection is driven by WCET data. However, this time the trace is not constructed at

source code but at assembly level. Moreover, the WCET-aware trace is not employed

for superblock construction but is directly optimized via trace scheduling.

Shifting the focus from a single basic block to a sequence of blocks makes an

extension of the dependence graph necessary. This is due to two reasons. First,

conditional branches become scheduling candidates like all other instructions, thus,

provisions in the dependence graph must be introduced that preserve the relative

order of these instructions. Second, instructions may be moved across conditional

branches which possibly leads to a changed semantics in off-trace paths. These two

issues are formally expressed in the definition of the trace dependence graph T D

for a trace (cf. Definition 4.3 on p. 83):

Definition 5.4 (Trace dependence graph) Given a trace T = (ba, . . . , bk), a trace

dependence graph T D = (VT ,ET) is a dependence graph defined on the node set

VT = {i | i ∈
⋃

b∈T b}. In addition to the data dependence edges, T D contains a set

C of edges that model control flow dependencies between edges:

• Preserve order of branches:

∀i1
branch ∈ T , |succ(i1

branch)| > 1 : ∀i2
branch ∈ T , |succ(i2

branch)| > 1 :

i1
branch <T i2

branch ⇔ (i1
branch, i

2
branch) ∈ C

• Preserve semantics in off-trace paths:

∀imove ∈ T : ∀ibranch ∈ T , |succ(ibranch)| > 1, ibranch <T imove :

∃isucc ∈ succ(ibranch) : isucc /∈ T ∧ DEFmay(imove) ∩ LIVE-INmay(isucc)
= 0)

⇔ (ibranch, imove) ∈ C

with succ(i) being the set of successor instructions of i, and (i1, i2) ∈<T ⇔ i2 fol-

lows i1 in the sequence of trace instructions. DEFmay(i) and USEmay(i) represent

def/use sets, i.e., sets of operands from/to which i may read/write.

152 5 WCET-Aware Assembly Level Optimizations

Algorithm 5.3 Algorithm for WCET-aware trace scheduling

Input: P , timeout,updateWCEP, size

Output: (optimized) P

1: WCETorg ← WCETAnalysis(P)

2: P̂ ← P

3: counter ← 0

4: repeat

5: T ← TraceSelection(P , size)

6: MarkTraceBlocks(P , T)

7: T D ← BuildTraceDependenceGraph(T)

8: S ← ListScheduling(T D)

9: ReorderInstructions(P , S)

10: GenerateCompensationCode(P)

11: if counter == updateWCEP then

12: WCETcurrent ← WCETAnalysis(P)

13: counter ← 0

14: else

15: counter ← counter + 1

16: end if

17: until all blocks ∈ P scheduled or exceeded(timeout) == true

18: if counter
= 0 then

19: WCETcurrent ← WCETAnalysis(P)

20: end if

21: if WCETorg > WCETcurrent then

22: return P

23: else

24: return P̂

25: end if

Based on information from the trace dependence graph, WCC performs its

WCET-aware trace scheduling. The main steps are shown in Algorithm 5.3 and

will be explained in more detail in the following.

WCC’s trace scheduler expects as input a program P and a timeout parameter

used for the terminating condition. Moreover, parameter updateWCEP specifies af-

ter how many trace scheduling iterations the WCET data should be updated by a

timing analysis, while size specifies the maximal number of blocks selected for the

construction of a trace. In the beginning, a WCET analysis for P is performed and

a copy P̂ of the original program is created (lines 1–2). Using this WCET infor-

mation, WCC’s rollback mechanism can be applied if P exhibits a WCET degrada-

tion after WCC’s greedy trace scheduling. Moreover, the determined WCET data is

used to select a WCET-aware trace (line 5) using WCC’s longest path approach (cf.

Sect. 4.4.3.1 on p. 84), while preserving size constraints. Blocks on the current trace

are also marked in P to ensure that blocks that were already scheduled are excluded

from further trace selection (line 6).

5.4 Trace Scheduling 153

Fig. 5.9 Bookkeeping during trace scheduling

Using the identified trace, the trace dependence graph T D is constructed and

passed to the list scheduler (cf. Algorithm 5.2) to find a schedule S that defines the

new order of instructions (lines 7–9). Similar to Fisher’s approach [Fis81], inner

loops are represented on a trace as a single node, called loop representative, and

code motion of instructions below or above these loops is allowed.

During scheduling, instructions could also move below or above a branch instruc-

tion. To ensure correct execution of the off-trace code, insertion of compensation

code may be required (line 10). In literature, this process is referred to as bookkeep-

ing. WCC uses standard approaches for compensation code generation which are

explained in-depth in [Fis81]. For the sake of brevity, technical details are omitted

here, and only a brief overview of the four possible scenarios that may occur (cf.

Fig. 5.9), is provided:

(a) If instruction i is moved below a side exit (conditional branches out of the mid-

dle of the trace) and DEFmay(i) is used before redefined when the side exit is

taken, then copy i between the side exit and all uses of DEFmay(i).

(b) Moving of i above a side exit (speculative execution) is only permitted if

DEFmay(i) is not live in the side exit. In this case, no compensation code is

required.

(c) If instruction i is moved below a side entrance, a rejoin point (location in CFG

behind new position of i where side entrance is moved to) must be identified

and all instructions between the old side entrance and the rejoin point must be

duplicated in a newly created basic block.

(d) If instruction i is moved above a side entrance, then copy i into all off-trace

predecessor blocks of this side entrance.

After the generation of compensation code, Algorithm 5.3 determines the WCET

of the scheduled program if necessary (lines 11–16). Otherwise, the scheduler possi-

bly operates on outdated WCET data. However, this way the optimization run time

can be reduced. WCC’s trace scheduling is repeated as long as neither all blocks

have been scheduled nor the timeout has exceeded (line 17). Finally, it is checked if

WCET information is not obsolete (lines 18–20) and either the original or the op-

timized program is returned (lines 21–25). This mechanism takes care that WCC’s

greedy scheduler does not degrade the worst-case performance of the considered

program.

154 5 WCET-Aware Assembly Level Optimizations

Fig. 5.10 Relative WCET estimates for WCET-aware trace scheduling

5.4.5 Experimental Results for WCET-Aware Trace Scheduling

In this section, the practical use of WCC’s WCET-aware trace scheduling is demon-

strated on real-life benchmarks. The experiments were performed on 20 representa-

tive benchmarks from the test suites DSPstone [ZVS+94], MediaBench [LPMS97],

MiBench [GRE+01], MRTC [MWRG10], and UTDSP [UTD10].

For the experiments, the following optimization parameters were used: the time-

out was set to 2 hours, the WCEP was updated via aiT after each second schedul-

ing of a trace and the size of the selected traces was bounded to 100 basic blocks

(cf. updateWCEP and size in Algorithm 5.3). These settings were also used for the

WCET and ACET result diagrams presented in the following. Moreover, in a second

scenario, the WCEP update was conducted after each 4th scheduling of a trace to

compare the impact of a less frequent WCEP update on the WCET and optimization

run time.

5.4.5.1 WCET

Figure 5.10 compares the impact of WCC’s local and WCET-aware trace schedul-

ing. The 100% base mark corresponds to the estimated WCET of the considered

benchmarks compiled with WCC’s highest optimization level O3 and disabled in-

struction scheduling. The first bars per benchmark represent the results for local

instruction scheduling. As can be seen, the improvements for most benchmarks are

marginal. The best result is achieved for benchmark edge_detect with a WCET im-

provement of 7.6%. Some benchmarks, such as fir_float exhibit even a slight WCET

degradation. A possible reason may be adverse line crossing effects (cf. Sect. 4.6.6).

They can be introduced during scheduling when NOP instructions, which are gen-

erated in WCC’s compiler backend as workaround for silicon bugs, are replaced by

other instructions available in the code, leading to a modified memory layout. On

average for the considered benchmarks, a WCET reduction of 0.4% was observed.

5.4 Trace Scheduling 155

Fig. 5.11 Relative ACET for WCET-aware trace scheduling

Compared to local scheduling, WCET-aware trace scheduling yields significantly

improved results. In most cases, trace scheduling benefits from the extended scope

of multiple basic blocks and outperforms local scheduling. The best result was

achieved for benchmark sqrt for which a reduction of the estimated WCET w.r.t. O3

and local scheduling by 24.9% and 25.0%, respectively, was observed. Unlike local

scheduling, WCET-aware trace scheduling never degrades the worst-case perfor-

mance of a benchmark since any schedules leading to an increase of the WCET

are discarded by WCC’s rollback mechanism. On average for all benchmarks (see

bar labeled with Average), trace scheduling outperforms O3 and local scheduling by

7.1% and 6.7%, respectively.

5.4.5.2 ACET

WCC’s trace scheduling focuses on most promising parts of the WCEP that con-

stitute a trace. As discussed previously, these traces may not be consistent with the

most frequently executed paths that are best suited for ACET reduction. Therefore,

it is interesting to explore the impact of WCET-aware scheduling on the ACET.

The results are shown in Fig. 5.11, with 100% corresponding to the ACET for

O3 and disabled scheduling. Several conclusions can be drawn from this diagram.

Most important, the positive impact of WCET-aware trace scheduling (second bars

per benchmark) on the ACET is clearly smaller than on the estimated WCET. For

example, optimizing benchmark gsm_decode yielded a WCET reduction of 20.3%

but led to an increased ACET of 5.5%, translating to a difference between both

metrics of 25.8%. In addition to gsm_decode, a degradation of the average-case

performance was observed for another benchmark: the ACET of trellis increased by

43.0%. In contrast, such negative scenarios could be avoided for WCET reduction

by using WCC’s rollback mechanism.

On average, WCET-aware trace scheduling achieved an ACET reduction of

merely 0.1%. This result is even worse than for local scheduling (see first bars per

156 5 WCET-Aware Assembly Level Optimizations

benchmark) that could reduce the ACET by 2.0% on average. Moreover, comparing

the average results for WCET and ACET, it becomes clear that WCC’s trace sched-

uler is tailored towards a WCET reduction since the performance improvements for

WCET outperform the ACET reduction by 7.0%. This result conforms with previ-

ous observations in this book: optimizing code for the worst-case performance may

be ineffective for an ACET optimization and vice versa.

5.4.5.3 Code Size

Scheduling instructions across branches may require insertion of compensation

code. Even though it could be expected that the code size is significantly increased

after trace scheduling, the results for the considered benchmarks only exhibit an av-

erage increase of 2.4%. The maximal code expansion was observed for benchmark

lcdnum with 10.0%, while the increase is negligible for other benchmarks. The rea-

son for this marginal increase is that no compensation code is required in many

cases. Or only a small number of instructions must be duplicated which is a small

fraction compared to the total code size. As a consequence, it can be concluded

that trace scheduling is best suited for embedded systems with restricted memory

resources that have to meet high run-time performance requirements.

5.4.5.4 Optimization Run Time

The improvement of the estimated WCET comes at the cost of an increased opti-

mization run time. In a first scenario, which was also used for the aforementioned

results, the WCET data was updated after two traces have been scheduled. WCC’s

WCET-aware trace scheduling of all benchmarks took a total of 107 CPU min-

utes, measured on an Intel Xeon 2.4 GHz system with 8 GB RAM. In contrast, the

optimization run time for all benchmarks compiled with O3 and local scheduling

amounted to 31 minutes. Hence, it can be concluded that most time is spent for

aiT’s timing analyses that update the WCET data. The run time increase of more

than 300% is fully acceptable if high code quality for embedded real-time systems

is required.

In a second scenario, the interval for WCEP updates was increased—aiT was

invoked after four traces have been scheduled. For this configuration, the WCET

improvements were marginally decreased by 1.1%, while the optimization run time

decreased by 11% to 96 minutes. These results conform the observations reported

for WCC’s superblock optimizations (cf. Sect. 4.4.5)—a too frequent WCEP update

by a costly WCET analysis may not always pay off.

5.5 Summary

In this chapter, novel assembly level optimizations were presented that aim at

a reduction of the WCET. Unlike numerous traditional ACET optimizations that

5.5 Summary 157

transform code based on profiling information, WCC’s optimizations are driven by

WCET data. The availability of this timing information entails two main advantages.

On the one hand, it allows a systematic improvement of the code lying on the WCEP.

On the other hand, any modification of the code can be quantified with respect to the

program’s worst-case behavior. Moreover, the presented WCC assembly level op-

timizations exploit processor-specific knowledge about the underlying architecture

in order to generate high quality code that is tailored towards the TriCore proces-

sor. The discussed optimizations were integrated into the WCC framework and their

effectiveness was demonstrated on real-life benchmarks.

The first optimization presented in this chapter was procedure positioning. Its

goal is the improvement of the I-cache behavior by re-arranging procedures in mem-

ory in such a way that mutual cache evictions are minimized. Unlike traditional

profiling-based positioning, WCC’s WCET-aware positioning uses worst-case call

frequencies to construct a call graph that reflects call relationships between pro-

cedures on the WCEP. The optimization was implemented as an iterative, greedy

approach that evaluates each modification of the memory layout as well as a fast

heuristic approach. For the considered benchmarks, the greedy algorithm achieved

an average WCET reduction of 10.1%, while the heuristic approach reduced the

WCET by 3.1% on average.

The second optimization discussed in this chapter was trace scheduling which is a

global instruction scheduling technique. In contrast to local scheduling, which con-

fines its attention to a single basic block, trace scheduling operates on a sequence

of basic blocks called trace. This way, more optimization opportunities are pro-

vided and a higher instruction-level parallelism can be exposed. Contrary to ACET

scheduling relying on profiling data, WCC’s WCET-aware trace scheduling identi-

fies a trace by exploiting WCEP information. Using these traces, an instruction order

is generated that fully utilizes the superscalarity of the TriCore processor. Experi-

ments on real-life benchmarks show that on average WCC’s trace scheduling could

outperform local scheduling by 6.7% which translates to an average reduction of the

WCET w.r.t. the highly optimized code without scheduling of 7.1%.

The results in this chapter point out two important issues. First, it is crucial to use

a specific metric during optimization. If high WCET reduction is the primary goal,

code transformations should be driven by WCET data and not by profiling informa-

tion which may classify other paths than the WCEP as critical. Using this WCET

data allows a systematic improvement of the WCEP even at the cost of other paths.

Second, the exploitation of processor-specific features during code transformation

may yield a significant improvement of the program performance. Hence, high code

quality for embedded systems can only be achieved if an optimizing compiler ap-

plies aggressive code transformations at both the source code and assembly level.

Chapter 6

Machine Learning Techniques in Compiler
Design

Contents

6.1 Introduction . 159

6.2 Related Work . 161

6.3 Machine Learning Based Heuristic Generation . 162

6.3.1 Supervised Learning . 162

6.3.2 Heuristic Generation Based on Supervised Learning 163

6.3.3 Integration and Use of MLB Heuristics in Compilers 163

6.4 Function Inlining . 165

6.4.1 Motivating Example . 165

6.4.2 Standard Function Inlining . 166

6.4.3 MLB Heuristic Generation at Source Code Level 168

6.4.4 Experimental Results for WCET-Aware Function Inlining 172

6.5 Loop-Invariant Code Motion . 178

6.5.1 Motivating Example . 179

6.5.2 Standard Loop-Invariant Code Motion . 180

6.5.3 MLB Heuristic Generation at Assembly Level 182

6.5.4 Experimental Results for WCET-Aware LICM 188

6.6 Summary . 194

6.1 Introduction

The previous sections have demonstrated that the development of heuristics for com-

piler optimizations which efficiently reduce a given objective, such as the WCET

estimation, is a tedious task. This process requires both a high amount of expertise

and an extensive trial-and-error tuning. However, even though the previously pre-

sented optimizations utilize complex analyses and code transformations, it becomes

clear that their transformations are often not optimal—one indicator for the non-

optimality is the common phenomenon of performance degradations after a code

transformation.

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_6, © Springer Science+Business Media B.V. 2011

159

http://dx.doi.org/10.1007/978-90-481-9929-7_6

160 6 Machine Learning Techniques in Compiler Design

The two main reasons why compilers fail to deliver optimal performance are the

following:

• Compiler optimizations have shown to be the source of some of the hardest and

most challenging problems in computer science [SS07]. Since finding optimal

solutions to many optimization problems is provably hard, compiler writers are

forced to use heuristics as approximate solutions. However, heuristics are often

based on abstract models of the underlying complex computer architectures that

are not capable of precisely capturing all relevant architectural features. Using

these inaccurate abstractions leads to a set of universal compiler heuristics that

do not exploit a particular target architecture and might even have a negative

impact on the program to be optimized.

• In typical compilers, optimizations are not performed separately but within a se-

quence of interfering optimizations. Since optimizations may have conflicting

goals, disadvantageous interactions can be observed. However, formal models ex-

pressing interactions between optimizations are hardly known. As a consequence,

compiler writers are forced to either tune a heuristic for a given optimization se-

quence that must not be changed, or their heuristics are based on conservative

assumptions which do not allow the exploration of the program’s optimization

potential.

A solution to this dilemma is the application of machine learning (ML) ap-

proaches to automatically generate heuristics. The key advantage of these tech-

niques is their capability to find relevant information in a high dimensional space,

thus helping to understand and to control a complex system. Providing a set of

characteristics, so-called static features, about the code to be optimized, a machine

learning algorithm automatically learns a mapping from these features to heuristic

parameters.

Using the learning result enhances the flexibility of a compiler framework. Ex-

changing the target architecture or modifying the optimization sequence requires

only an automatic re-learning to adjust heuristics. Thus, machine learning can be

leveraged to reduce the efforts of developing compiler optimizations, an issue which

is crucial in today’s rapidly evolving processor market. Another advantage of these

heuristics is their performance as machine learning based (MLB) heuristics may

often outperform hand-crafted heuristics [MBQ02, SAMO03, CM04].

Up to now, machine learning techniques have been studied in the context of

ACET optimizations. This book is the first to exploit machine learning techniques

for WCET reduction.

In this chapter, an automatic generation of MLB heuristics for WCET-aware

compiler optimizations, which was developed in this book, is presented. Section 6.2

provides an overview of research that pursues a reconciliation of statistical and ma-

chine learning techniques with compiler optimizations. In Sect. 6.3, the general

workflow of machine learning based heuristic generation is introduced. A feasibility

study for the generation of WCET-aware heuristics for the source code optimization

function inlining is presented in Sect. 6.4. Section 6.5 goes even one step further. On

the one hand, this section shows that MLB WCET-aware heuristics can also be eas-

ily constructed at other abstraction levels of the code, namely at assembly level as

6.2 Related Work 161

demonstrated for the optimization loop-invariant code motion. On the other hand,

this section indicates that an automatic selection of appropriate machine learning

algorithms and their parameters can significantly improve the performance of the

generated heuristics. Finally, this chapter is concluded in Sect. 6.6.

6.2 Related Work

MLB Heuristic Generation for ACET Reduction The automatic generation of

optimization heuristics has been studied for different ACET optimizations. Mon-

sifrot et al. [MBQ02] used a supervised classification to generate heuristics for

loop unrolling which decide whether unrolling should be performed or not. This

two-class classification problem was extended by Stephenson [SA05] to find MLB

heuristics that predict the best unrolling factor for a given loop. Machine learn-

ing techniques were also used for instruction scheduling. Russell et al. [RMC+09]

used supervised learning to induce heuristics for superblock instruction scheduling.

In [CM04], supervised learning was employed to generate basic block scheduling

heuristics for a Java just-in-time (JIT) compiler to tackle the trade-off between op-

timization run time and program performance by applying scheduling only to those

blocks that promise a significant improvement. Calder et al. [CGJ+97] exploited

neural networks and decision trees to predict branch behavior based on static fea-

tures associated with each branch.

In [LBO09], a grammar-based mechanism using genetic programming was pre-

sented that automatically extracts features from the internal code representation of

GCC for MLB heuristics. Genetic programming was also utilized for the generation

of compiler heuristics for the optimizations hyperblock formation, register alloca-

tion, and data prefetching [SAMO03].

Other Application Fields of Machine Learning Besides heuristic generation,

machine learning can help to characterize mutual interactions between optimiza-

tions as well as interactions between optimizations and the architecture. For exam-

ple, Vaswani [VTS+07] used empirical regression models to characterize interac-

tions between optimizations in GCC. The drawback of this approach is that each

optimization and the used hardware platform must be formally specified for the re-

gression model. For arbitrary transformations and processors, this requirement is

hard to achieve.

Machine learning can also be applied to determine promising settings for op-

timization flag and parameters. Haneda et al. [HKW05] exploited non-parametric

statistical analysis to decide which GCC compiler flags should be turned on or off.

Cavazos et al. [CO06] used logistic regression to automatically derive a model that

determines which optimizations of a Java JIT compiler should be applied to a func-

tion based on its static features.

162 6 Machine Learning Techniques in Compiler Design

6.3 Machine Learning Based Heuristic Generation

Machine learning is a scientific discipline that can be subdivided into different

classes. The most popular classes are supervised and unsupervised learning as well

as reinforcement learning [Bis08].

Unsupervised learning determines how data is organized and allows its cluster-

ing. For the generation of compiler heuristics, which have to decide if a particular

optimization should be applied or not, unsupervised learning is usually not applica-

ble. Reinforcement learning uses an agent that tries different actions and observes

their consequences that are expressed as rewards. Based on this knowledge, the

agent learns how to act in different situations, e.g., whether a code optimization

should be performed. In this book, the compiler heuristics are generated by means of

supervised learning, a technique that tends to be faster than reinforcement learning

for heuristic generation [SA05]. Moreover, only binary classification, which decides

whether a particular optimization step should be performed or not, is considered.

6.3.1 Supervised Learning

Heuristic generation can be reduced to the problem of supervised classification.

The fundamental idea behind this machine learning based approach is to consider

a compiler heuristic as a function that takes different characteristics describing the

situation found by the optimization as input and computes an output that reflects

the performance of each optimization step. This reduction enables the application

of standard machine learning techniques.

Classifier learning is performed on observations xi of an object i, with i =

1, . . . ,N , that were gathered in the past, together with their binary classification

(or label) yi ∈ {0,1}, where 0 can be mapped to NO and 1 to YES. Each observation

xi represents a vector of p features xi = (x1
i , . . . , x

p

i), with p = 1, . . . ,M . Due to

the given classifications, this learning task is called supervised. A (learning) exam-

ple is a pair 〈xi, yi〉. The set of N examples used for learning is called the training

set. Formally, the supervised learning problem can be described as follows:

Definition 6.1 (Supervised learning) Given a set of possible observations X, a set

of output labels Y , and a training set E = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where

xi ∈ X,yi ∈ Y . Supervised learning is a machine learning technique that finds a

function f : X → Y such that a given performance function EVAL is optimized.

A possible performance function is accuracy which requires another set of ex-

amples, the test set, that was not used in the learning phase. The learned classifier f

is applied to observations from the test set and the computed output labels are then

compared to the true labels. If the true label and the one predicted by the learned

classifier are the same, the observation was classified correctly, otherwise it is an

error. The accuracy of a supervised learner is the ratio of all correctly classified

observations divided by the total number of observations in the test set.

6.3 Machine Learning Based Heuristic Generation 163

For the generation of compiler heuristics, an object i represents an optimization

candidate, such as a function or an instruction, that is characterized by the feature

vector xi . Labels express the effect of optimizing i for a particular cost function.

For example, a reduced program’s WCET after optimizing i may be labeled as YES,

otherwise NO.

6.3.2 Heuristic Generation Based on Supervised Learning

The heuristic generation begins with the obvious decision for which compiler opti-

mization an improved heuristic should be generated. Afterwards, the following steps

as depicted in Fig. 6.1 are conducted:

• Representation of the Program

The first step is a representation of the program under test by internal compiler

data structures. Examples are high- or low-level intermediate representations, ab-

stract syntax trees, or control flow graphs.

• Feature Extraction/Label Determination

Based on the program representation, the developer has to decide which features

best characterize the parts of the program to be optimized and how they can be

extracted. Possible features are the number of successors of a given basic block

or the number of floating point instructions within a block. The features must be

transformed into a proper vector representation, serving as input for the ML tool.

This process is called feature extraction. In addition, for each feature vector a

label representing the desired output has to be determined. The result of this step

is a constructed training set.

• Machine Learning Algorithm/Parameter Selection

The next step in Fig. 6.1 is the selection of a supervised learner and its parame-

ters. The machine learning community has developed a large portfolio of different

learners over the last decades. Moreover, many learners have several user-defined

parameters, leading to models with different performance. Due to the large num-

ber of possible combinations, the selection of the appropriate learning algorithm

is not straightforward.

• Model Induction:

The chosen classifier (learner) induces a prediction model representing a compiler

heuristic which can be used to predict if/how the considered optimization should

be performed for unseen data.

6.3.3 Integration and Use of MLB Heuristics in Compilers

Depending on the type of the induced model, the MLB heuristics can be in integrated

in two different ways into the compiler. If the learning algorithm produces a human

readable model, then the heuristic can be directly integrated into the optimizer of

the compiler. For example, an induced decision tree can be implemented as nested

164 6 Machine Learning Techniques in Compiler Design

F
ig

.
6
.1

O
v
er

v
ie

w
o

f
m

ac
h

in
e

le
ar

n
in

g
b

as
ed

co
m

p
il

er
h
eu

ri
st

ic
g

en
er

at
io

n

6.4 Function Inlining 165

if-then-else constructs. The advantage of such a model representation is that

the heuristic can be compiled and shipped with the compiler without the need of any

external tools. However, many learning algorithms produce models that can not be

simply translated into programming language constructs, thus a direct integration

into the compiler source code is often not feasible.

For the latter class of algorithms, an efficient communication between the com-

piler and the machine learning tool is mandatory. Whenever an optimization deci-

sion based on an MLB heuristic has to be taken, the compiler computes the feature

vector and hands it to the ML tool. The tool uses this data to predict a class and

sends the result back to the compiler. Such an integration of machine learning into

a compiler framework may introduce some overhead during the optimization. How-

ever, if the implementation is efficient, the overall overhead is small. On the other

hand, a reconciliation of a compiler with an ML tool offers a compiler designer a

vast spectrum of supported ML techniques for optimizations and analyses.

6.4 Function Inlining

Function inlining is a well-known transformation replacing the function call by the

body of the callee while storing the arguments in variables that correspond to func-

tion parameters. Due to the reduced calling overhead and the capability of func-

tion inlining to enable other optimizations, most modern compilers apply this trans-

formation for a reduced ACET. However, the introduced structural changes of the

code after the optimization entail hardly predictable interferences with other opti-

mizations and the target architecture. Therefore, the generation of effective inlining

heuristics is challenging.

In this section, it is demonstrated how supervised learning can be utilized for

WCET reduction using the source code optimization function inlining. After a mo-

tivation in Sect. 6.4.1, which indicates possible adverse effects of inlining when

simple heuristics are employed, Sect. 6.4.2 introduces standard function inlining

in more detail and points out the positive and negative effects of the transforma-

tion on the program performance that may occur during inlining. To improve stan-

dard inlining heuristics, MLB WCET-aware inlining heuristics are constructed in

Sect. 6.4.3 and their predominance compared to standard inlining is presented on

real-life benchmarks in Sect. 6.4.4.

6.4.1 Motivating Example

The decision if a particular function should be inlined is made by compiler heuris-

tics. They try to predict if the application of the optimization will be beneficial. The

most common heuristic found in literature [BGS94, Muc97] and many compilers is

the consideration of the callee size. This parameter can be expressed as the num-

ber of source code expressions or assembly instructions. If a predefined threshold

166 6 Machine Learning Techniques in Compiler Design

Fig. 6.2 Negative impact of

function inlining on WCET

is exceeded, function inlining is omitted. Usually, this heuristic is conservative and

allows inlining of only small functions to avoid too severe effects.

However, due to the complex interactions between function inlining and other

optimizations as well as the architecture, a simple heuristic based on the callee

size is not sufficient for an effective run-time optimization. Even worse, the simple

heuristic may inline inappropriate functions which substantially degrade the system

performance.

The negative influence of WCC’s standard function inlining on selected real-

world benchmarks is illustrated in Fig. 6.2. The bars represent relative WCET esti-

mations for the code compiled with the highest optimization level (O3) and enabled

inlining using the simple heuristic based on the callee size which is bounded to 100

expressions. 100% corresponds to the WCET for O3 with disabled inlining. The

code is executed from TriCore’s cached Flash memory.

It can be seen that the WCET was increased by up to 45.7% for the benchmark

cjpeg_jpeg6b_wrbmp compared to the non-inlined version. Thus, the figure empha-

sizes that the optimization might adversely affect the program.

Hence, it is important to correctly decide whether to apply function inlining or

not. One possible solution to find a more accurate heuristic is to invest a lot of effort

into an empirical evaluation of different inlining decisions. Another solution, that

is discussed in the next section, is an automatic generation of inlining heuristics by

machine learning techniques that demand a fraction of effort compared to the hand-

crafted heuristic generation and still produce comparable or even better results. The

task is then to extract features that characterize a function call, thus establishing

the observations to choose an appropriate learning algorithm, and to integrate the

learning result into the compiler.

6.4.2 Standard Function Inlining

Function inlining replaces function call sites by the body of the corresponding

callee. This so-called inline expansion can be either performed by the compiler in

6.4 Function Inlining 167

the high-level or low-level IR, or by the linker. Typically, inlining is applied to re-

duce the ACET due to the following reasons:

• By copying the callee’s function body into the caller, the calling overhead is re-

duced since function call and return instructions as well as the parameter handling

is removed.

• Removing calls and returns reduces control transfers, thus improving the pipeline

behavior.

• Inlining enables other optimizations that could not be applied to the original code

since they were restricted by function boundaries.

The evaluation of the impact of function inlining on the program execution is

challenging since the transformation influences different components, e.g., register

allocation, instruction scheduling, and the usage of the memory hierarchy. Thus,

its consequences are not directly visible but become apparent as side effects. This

complicates the decision of whether a function should be inlined. Although it is

widely believed that function inlining substantially improves the program run time,

different studies, such as [CHT91] as well as the previously presented experiments,

came to the conclusion that its application is not always beneficial.

One of the main drawbacks of this optimization is the increased register pressure.

By inserting additional variables from the inlined function into the caller, possibly

more registers are required. If the callee is inserted in an area with an already high

register pressure, the register allocator is afterwards forced to add spill code. These

additional accesses to the memory degrade the performance. Another problem that

function inlining entails is a possibly degraded I-cache behavior. With an increasing

code size, run-time critical code may not remain in the cache but are evicted by the

inlined function. The resulting cache conflict misses slow down the program execu-

tion. Furthermore, cache performance may suffer from inlining since the locality of

references is decreased.

6.4.2.1 Related Work

The influence of the optimization function inlining on the ACET has been studied in

different publications. In [DH89], equations representing the performance of inlined

versions of the programs have been formulated, revealing which factors affect the

performance of inlined code. The effectiveness of inlining has also been evaluated

in [CHT91]. From their experiments, the authors of both works concluded that this

optimization was not always beneficial for the program performance.

Inlining was also studied in the context of evolutionary algorithms. Cava-

zos [CO05] used genetic algorithms to tune the parameters of inlining heuristics in a

dynamic Java compiler. This publication is close to the work presented in Sect. 6.4.3,

but also differs in several important ways. Most importantly, the goal of WCC’s

WCET-aware inlining is the reduction of the worst-case and not of the average-case

performance. Furthermore, Cavazos employed a genetic algorithm, while WCC uti-

lizes supervised learning of a classifier.

168 6 Machine Learning Techniques in Compiler Design

6.4.3 MLB Heuristic Generation at Source Code Level

In this section, an automatic generation of MLB heuristics for the optimization

WCET-aware function inlining applied at source code level is proposed. The heuris-

tic generation follows the scheme depicted in Fig. 6.1. Moreover, it is shown how

the novel heuristic is integrated into WCC and how inlining is applied to achieve a

high WCET reduction while keeping the code expansion as small as possible.

6.4.3.1 Feature Extraction

The first step is the construction of a training set. For this purpose, examples must

be collected that appropriately characterize the inlining candidates, i.e., callees that

may be inlined.

The feature extraction exploits WCC’s infrastructure. It gathers data from the

high-level intermediate representation ICD-C IR and uses the back-annotation to

obtain information from the compiler backend, such as WCET-related data com-

puted by aiT. In total, 22 features are extracted that are considered to be most signif-

icant for the classification. Numerical features have in general a value range of N0

and are either expressed as absolute numbers or as percentages (relative features).

Among others, the following numerical and binary features are extracted:

• size of caller/callee measured in number of expressions

• number of call sites of the callee in caller

• worst-case execution frequency of inlining candidate in caller

• total WCET of caller/callee

• WCET of a callee for a particular call site, i.e., the product of the callee’s WCET

and the worst-case execution frequency of that call site

• relative WCET of a caller/callee w.r.t. the overall program WCET

• whether a callee is invoked from exactly one call site

• whether the call site is located in a loop

Register Pressure Analyzer As discussed in Sect. 6.4.2, function inlining can

potentially increase the register pressure that is defined as follows:

Definition 6.2 (Register pressure) Let θ be a program control point in the control

flow graph of program P . The register pressure is the number of temporaries, such

as virtual registers, that are live at θ . If the underlying architecture model supports

separate register sets, the register pressure is computed separately for each set.

During the invocation of a function, caller-saved registers are usually saved be-

fore the callee is entered and restored after returning to the caller. This so-called

context save enables the usage of saved registers in the callee. Performing function

inlining and replacing the call site by the callee’s function body makes the context

6.4 Function Inlining 169

save redundant. However, as a consequence, the number of registers that can be ex-

ploited in the inlined function is decreased, leading to a higher register pressure in

the caller.

Increasing the register pressure can potentially lead to a generation of spill code

which has a negative effect on the program run time. Ideally, a WCET-aware inlining

heuristic should be able to predict whether inlining a function yields spill code in

order to prevent the application of this optimization and to anticipate an increase in

the WCET. For this purpose, the register pressure analyzer (RPA) was developed in

the WCC framework.

The RPA takes those registers into account that can be potentially spilled, i.e.,

all address and data registers of the TriCore processor for which the compiler can

produce spill code. Input to WCC’s RPA is the physical LLIR code (cf. Sect. 3.3 on

p. 31) representing the program under analysis. Information about the liveness of

registers is computed by a lifetime analysis [App97].

For feature extraction, the RPA provides significant information concerning the

classification of inlining candidates based on the register allocation. The following

additional features are taken into account:

• number of address/data registers whose lifetimes span a call. Inlining of calls

crossing a high number of lifetimes increases the probability for spilling.

• maximal number of registers that are simultaneously live within a function. In-

lined callees with a high register pressure are more likely to introduce spilling.

6.4.3.2 Label Determination

Besides the feature extraction, each example of the training set must be assigned a

label. The labels in the training set indicate if inlining a function specified by its

feature vector was successful concerning the WCET reduction.

The labels are automatically determined. For this purpose, WCC is run twice. In a

first run, the analyzed program is compiled with the highest optimization level (O3)

and disabled standard function inlining. Next, the overall program WCET WCETref

is computed and serves as reference value. In a second run, the same program is

compiled again with O3 and function inlining disabled for all function calls ex-

cept for the call site i which is the currently considered inlining candidate. For this

generated code where exclusively i was inlined (independent of the callee’s size),

the program’s WCET WCET i is determined. A comparison between both WCETs

indicates the influence of inlining call site i on the estimated WCET.

The binary value of labeli for call site i is determined as follows:

labeli =

{

yes, if WCET i ·100
WCETref

% ≤ 99%

no, otherwise

The value of 100% means that inlining of function call i had no influence on the

WCET. If the value is less than 100%, a WCET reduction was achieved, otherwise

170 6 Machine Learning Techniques in Compiler Design

inlining had a negative impact on the worst-case performance. A threshold of 99%

is used, i.e., if inlining at call site i reduced the program’s WCET by at least 1%,

this call is considered as being beneficial. This strategy is motivated by the potential

code expansion which is a crucial issue in particular for embedded systems. The

threshold ensures that a minimal WCET reduction of less than one percent coming

with a potentially large code size increase is not classified as a positive inlining

example.

The label extraction is automatically performed for all call sites in the bench-

marks of the training set that allow function inlining. For each call, in a first step its

features are extracted and in a second step, the corresponding label is determined.

These examples are collected for all considered benchmarks and serve as input to

the automatic generation of a heuristic.

6.4.3.3 Model Induction

There are several algorithms for supervised learning, leading to the question which

learner should be employed for the heuristic generation. For the feasibility study of

MLB WCET-aware function inlining, the following requirements are desirable:

• highly precise classification

• understandability of the induced model

• easy integration of the model into the compiler

While linear models, which determine a hyperplane in the feature space sepa-

rating positive and negative examples, often deliver highly accurate results even in

high-dimensional spaces, their learning result is hard to understand.

In contrast, partitional approaches like decision trees can be easily interpreted.

A decision tree splits the set of examples according to the values of one feature

(a vector component). In each subspace, this step is recursively repeated until all

examples in a subspace belong to the same class. In other words, a decision tree

consists of a sequence of decisions represented by a tree. Each node in the tree

performs a test on the values of a single or several features, splitting the path based

on possible outputs. Leaves in decision trees represent the final output, which is the

predicted class. To classify an object, the tree is traversed on a particular path from

the root node to a leaf, depending on the test results that are based on the values of

the feature vector.

Ensemble techniques [Bis08] which combine several learning results and clas-

sify according to the majority of the predicted classifications have shown to induce

models of high accuracy. Hence, an ensemble of decision trees is a qualified ap-

proach for the feasibility study of MLB WCET-aware function inlining presented in

this book: it does not only promise a precise classification but the results are also

human readable and can be converted into an if-then-else structure that can

be implemented into WCC’s optimizer.

6.4 Function Inlining 171

Random Forests A popular ensemble technique for decision trees is random

forests [Bre01]. Random forests consist of many unpruned decision trees con-

structed from different bootstrap samples which are obtained from a training set

D of size N by sampling examples from D uniformly and with replacement. In

contrast to standard trees where node splits are based on all features from the train-

ing set, random forests use a randomly chosen subset of features to find the best

split for each node.

This counterintuitive strategy turned out to be highly accurate and generates

results comparable with other state-of-the-art algorithms like Support Vector Ma-

chines or Adaboost [Bis08]. Other important advantages of random forests are their

speed, their robustness against overfitting (i.e., the model is too sensitive to char-

acteristics of training set used to build the model), and their user-friendliness since

just two parameters (number of considered features for node splitting and number

of trees in forest) have to be defined.

To predict novel data, the object under consideration is classified by each of the

trees in the forest and the outputs are aggregated by a majority vote, i.e., the most

frequently predicted class is the final output.

6.4.3.4 Application of WCET-Aware Function Inlining

One of the advantages of random forests is the possibility of transforming the clas-

sification rules into equivalent programming language constructs. Since random

forests are a collection of decision trees representing tests of conditions concern-

ing the features, they can be translated into if-then-else statements that are

incorporated into WCC as optimization heuristics.

To achieve a high WCET reduction simultaneously with a small increase of code

size, WCC combines the MLB heuristics with a complementary code-size related

heuristic for the selection of inlining candidates. Ordinary compilers typically con-

sider inlining candidates in a top-down manner by traversing the program code. In

contrast, WCC starts with the optimization of callees having the largest worst-case

execution counts (WCECs). These are usually functions that promise the largest

WCET reduction due to subsequently applied optimizations that follow inlined. This

way, WCC exploits high optimization potential with the minimal number of trans-

formations, avoiding a too severe code expansion in the first optimization steps. Af-

ter finding such an inlining candidate with maximal WCEC, the novel MLB heuris-

tic is applied to decide if function inlining should be performed.

If it was decided to inline the considered function, a WCET analysis must pre-

cede the next feature extraction in order to update WCET-related data. Otherwise,

the previously computed WCET information can be reused from the previous timing

analysis. Since in many cases inlining is prevented, the required number of WCET

analyses remains small. Compared to a conventional WCET optimization that would

evaluate the impact of each inlining step via a timing analysis, WCC’s classifier can

considerably cut down the optimization run time.

172 6 Machine Learning Techniques in Compiler Design

6.4.4 Experimental Results for WCET-Aware Function Inlining

To indicate the efficacy of WCC’s WCET-aware function inlining, an evaluation on a

large number of different benchmarks was performed. In total, 41 benchmarks were

used for the training set and 40 benchmarks for the (disjunct) test set. The bench-

marks come from the test suites DSPstone [ZVS+94], MRTC [MWRG10], Media-

Bench [LPMS97], MiBench [GRE+01], NetBench [MMSH01], UTDSP [UTD10],

and WCC’s own collection of real-life benchmarks representing miscellaneous ap-

plications, e.g., an H263 coder or a G.721 encoder. The code size of the benchmark

codes ranges between 58 and 17,864 bytes.

The tests during the training phase are conducted using two different types of

memories available in the TriCore TC1796 processor. The first memory is the pro-

gram scratchpad memory (SPM) with a capacity of 48 Kbyte, the second memory

utilized for the experiments is a 1 MByte cached program Flash memory. To take

cache effects, which are crucial for the code expansion during inlining, into account,

the cache capacity for the WCET analysis was reduced from 16 KByte to 2 KByte.

Due to architectural reasons, the system behavior may differ depending on

whether the program is executed from the SPM or Flash. Thus, two different train-

ing sets for each memory type were generated, each of which contains 275 feature

vectors that were extracted from all benchmarks, with approximately 70% of neg-

ative examples, i.e., function inlining had a negative effect on the WCET for these

cases. This number points out that function inlining is an optimization that should

be used with caution. The number of extracted examples ranges from 1 example for

small benchmarks up to 59 examples for larger benchmarks like g721_encode.

WCC’s feature extraction for function inlining takes place at source code level in

the ICD-C IR. Additional features concerning the WCET and code size are provided

by WCC’s back-annotation. Finally, information about the liveness of registers are

generated by WCC’s register pressure analyzer (cf. Sect. 6.4.3) and back-annotated

into the compiler frontend.

The constructed training set was processed by the open-source machine learn-

ing tool RapidMiner [MWK+06] which induced the classification model based on

the learner random forests. For the learner, the following default parameters were

selected: number of decision trees was 13, number of considered features at each

split was log(i) (with i = 22 being the total number of considered features), and the

splitting criterion was the gini index [Bis08].

6.4.4.1 Accuracy of Classification

The quality of a classifier can be estimated by the accuracy which indicates how well

the classification model will perform in the future for unseen examples. To evaluate

WCC’s random forests heuristic, the common approach called leave-one-out cross

validation (LOOCV) [Bis08] is applied. LOOCV eliminates a single example from

the training set of size n, exploits the remaining n − 1 examples to learn a clas-

sifier and finally uses the eliminated example to validate the classification model.

6.4 Function Inlining 173

Table 6.1 Accuracy and

class recall based on LOOCV SPM Flash

Correctly classified examples (accuracy) 84.0% 83.5%

Correctly classified positive examples 36.1% 19.2%

Correctly classified negative examples 97.7% 99.5%

This validation is repeated n times for each example considered once as test set.

The estimated performance of a learner is the average of the measurements of all n

runs. LOOCV is best suited for applications with only a small number of available

learning examples since the learning algorithm can be precisely trained with almost

all examples [SA05].

Table 6.1 summarizes the LOOCV results for the training set constructed for

the SPM and Flash memory. The second row represents the accuracy for all exam-

ples of the training set. The last two rows indicate the so-called class recall for the

positive and negative examples which are examples with the labels YES and NO,

respectively.

In total, 84.0% and 83.5% of the examples could be correctly classified for SPM

and the Flash memory, respectively. It can be observed that the classification error

for positive examples (classifier predicts inlining as beneficial) is significantly larger

than the error for the negative examples. A reason for that is the small number of

positive examples used in the experiments. Thus, the learning algorithm was not

able to generate an accurate model for positive examples as was accomplished for

the negative examples. In general, these results are promising for WCC’s WCET-

aware function inlining since it is very likely that inlining decisions leading to a

degraded worst-case performance will be predicted and thus avoided.

6.4.4.2 Variable Importance Measure

One advantage of random forests is their capability of estimating the importance of

features (aka. variables) for the classification, called impurity measures. The impor-

tance of a feature is determined by its contribution for an effective classification and

reveals if the features chosen for the learning algorithm are appropriate. Figure 6.3

depicts the importance of attributes discussed in Sect. 6.4.3 which is based on the

gini index for the Flash data set. The higher the gini index for a feature, the more

important it was for the classification.

As expected, the most important variable for the classification of inlining can-

didates is the size of the callee. This is also the attribute that is found in inlining

heuristics of most compilers. However, as could be seen for the WCET results, the

exclusive consideration of this attribute is often not sufficient and might lead to an

inappropriate inlining decision.

It can also be seen that attributes concerning the program’s worst-case behavior

are highly important. This underlines that an optimization that is tailored towards

a WCET reduction should take WCET information during the learning phase into

174 6 Machine Learning Techniques in Compiler Design

Fig. 6.3 Variable importance

measure

Table 6.2 Training set:

overview of the impact on

WCET

WCETEST - SPM WCETEST - Flash

Std. Inlining 50 101.7% 100.3%

Std. Inlining 100 104.6% 105.5%

MLB WCET Inlining 92.6% 94.1%

account. Last but not least, Fig. 6.3 reveals that the attribute characterizing the num-

ber of simultaneously live data registers (labeled with Max. live D-regs), being an

indication for potential spill code, is important. Thus, a register pressure analyzer is

a source of crucial information when dealing with code-size critical optimizations.

6.4.4.3 WCET

In order to evaluate the effectiveness of WCC’s machine learning based (MLB)

inlining heuristic and to compare it against the standard ACET inlining heuristics,

the WCET for real-life benchmarks after the code transformation was estimated.

In a first run, a resubstitution estimation was performed. It uses the entire train-

ing set to build a classifier and to estimate the performance of this model. This

performance estimation is usually optimistic compared to the true error rate since

the model is not tested on data that it has not already seen. However, it is often

used as a first indicator which shows how well a particular learning algorithm could

cope with the given training data. If a low performance of the learner, i.e., a high

error rate, is observed, it is likely that the selected learner is not appropriate for the

considered problem.

Table 6.2 shows the overall results achieved for the two memory types SPM

and the cached Flash. The reference value of 100% is the WCET estimation of the

program compiled with the highest optimization level (O3) and disabled function

inlining. In the second row, a standard inlining heuristic was used (optimizing func-

tions smaller than 50 expressions) for the estimation of the relative WCET (average

6.4 Function Inlining 175

Fig. 6.4 Relative WCET estimates for WCET-aware inlining (training set)

for all benchmarks). As comparison, in the third row the standard inlining heuris-

tic was increased to 100 expressions. Finally, the last row represents the relative

WCETs when the standard heuristic is replaced by the MLB WCET-aware inlining

heuristic.

The results point out that WCC’s new heuristic outperforms the standard hand-

crafted heuristic (limiting callee size to 50 expressions) on average by 9.1% for SPM

and by 6.2% for the Flash memory. When the standard inlining heuristic is increased

to 100 expressions for the inlining candidates, WCC’s MLB inlining outperforms

standard inlining on average by 12% for the SPM and 11.4% for the Flash memory.

Moreover, comparing rows two and three in Table 6.2, the conclusion can be drawn

that it is more beneficial to have a conservative heuristic that prefers optimization

of smaller functions since inlining of larger function might have a strong negative

effect on the program run time.

A comparison between the if-then-else constructs representing the SPM

and Flash MLB heuristic, respectively, reveals that the models are similar showing

only slight deviations. These deviations are a result of different labels which influ-

ence the decision tree generation. The differences in the labels are due to the fact

that inlining candidates characterized by equal feature vectors may exhibit a differ-

ent impact for the SPM or cached Flash memory. Due to the similarities of both

heuristics, the following results will be presented for the Flash memory which is the

commonly used storage type in real applications.

Figure 6.4 shows detailed resubstitution results for a selected subset of 26 rep-

resentative benchmarks from the training set, omitting benchmarks for which com-

parable results were achieved for the MLB and standard heuristic. The bars repre-

sent relative WCET estimations for Flash memory, with 100% corresponding to the

WCET for O3 and disabled inlining. The bar labeled with Average indicates the av-

erage WCET results achieved for all 41 benchmarks from the training set. As can be

seen, the MLB heuristic never significantly increases the WCET for all benchmarks

compared to standard inlining.

Three benchmarks are discussed in more detail which summarize the typical im-

pact of the new heuristic. The benchmark crc benefits from the new heuristic since

176 6 Machine Learning Techniques in Compiler Design

Fig. 6.5 Relative WCET estimates for WCET-aware inlining (test set)

inlining is prevented. In contrast, the standard heuristic performs inlining of func-

tion icrc1, leading to additional spill code within a loop that originally contained

the call site. The benchmark expint exhibits a strong WCET reduction of 69.0%

w.r.t. standard inlining. The reason for this WCET improvement is that the appli-

cation of the MLB heuristics enables further optimizations, such as constant prop-

agation and constant folding, that significantly improve the code quality. The only

negative examples encountered during the experiments arose for the benchmarks

matmult and prime where the MLB heuristic prevented inlining although it turned

out to be beneficial as can be seen for standard inlining. This inaccurate decision

can be attributed to the small number of feature vectors (61 positive examples) used

to train the model for classifying an inlining candidate as beneficial. On average,

WCC’s WCET-aware function inlining outperformed standard inlining with the 50-

and 100-expression restriction by 9.6% and 17.7%, respectively.

To provide a more accurate assessment of the generalization ability of the trained

model, the holdout method was utilized. In this method, the training set is used to

derive the model, and the validation is performed on unseen benchmarks from the

test set. A leave-one-out cross validation was not performed since this validation

type requires a tight integration of a machine learning tool into the compiler. How-

ever, this integration was avoided on purpose in this scenario where the application

of the generated MLB heuristics should be independent of a machine learning tool.

Figure 6.5 shows the results of the holdout method on the WCET estimation. Due

to space constraints, a subset of 25 representative benchmarks is depicted. As in the

previous figure, the 100% mark represents the estimated WCET of the benchmarks

compiled with O3 and disabled function inlining. The Average-bar represents the

WCET results averaged for all 40 benchmarks from the test set. The impact of the

standard inlining with the 50-expression restriction yields a slight WCET decrease

of 0.8% on average. Applying the more aggressive standard inlining (labeled with

Std. Inlining 100) results again in a stronger degradation of the worst-case case

performance by 7.3%.

Exploiting the MLB WCET-aware inlining heuristics for the test set leads to sim-

ilar promising results as for the training set. On average, a WCET reduction of 4.0%

6.4 Function Inlining 177

Table 6.3 Relative code size

after inlining Code Size - Flash

Std. Inlining 50 101.3%

Std. Inlining 100 104.5%

MLB WCET Inlining 98.8%

was achieved. It can be seen that significant WCET degradations as experienced by

standard inlining for example for benchmarks bitonic or dijkstra could be avoided.

Moreover, a comparison between the results for the WCET-aware inlining achieved

for the training and test set shows that the WCET reduction is smaller for the test

set. This behavior was expected as the prediction is carried out for unseen data.

However, in general it can be concluded that the classifier works well for new data

since it outperforms the standard inlining heuristic by up to 10.7% on average. Thus,

the MLB heuristic outperforms the commonly used inlining heuristics and similar

promising results are likely for its future application.

6.4.4.4 ACET

To compare the impact of the machine learning based inlining heuristic on the ACET

and WCET, the execution time of the generated code was measured using a cycle-

true simulator. In general, the results for the simulated time turned out to be worse

than for the WCET, with an average ACET reduction of 0.4% over the test set com-

pared against the ACET for O3 and disabled inlining. For some benchmarks, such

as lpc, the MLB heuristic achieved a WCET reduction of 14.4%, but only an ACET

reduction of 8.1%. This difference emphasizes that the new inlining heuristic is

tuned towards an effective WCET reduction and may be less suitable as an ACET

optimization.

6.4.4.5 Code Size

Table 6.3 shows the influence of function inlining on the code size of the bench-

marks from the test set, with 100% being the code size of the benchmark compiled

with O3 and disabled inlining. Unlike standard inlining, WCC’s MLB optimization

could reduce the code size on average by 1.2%, while standard inlining increased the

code size by 1.3% and 4.5% for the 50- and 100-expression heuristic, respectively.

The reasons are twofold:

• MLB heuristic performed in total less function inlining than the standard inliner

since numerous potentially dangerous situations, leading to a WCET degradation

were prevented. This explains why a code size reduction was achieved compared

to standard inlining.

178 6 Machine Learning Techniques in Compiler Design

• Some of the inlined functions are so called one-call functions. These are func-

tions that are invoked exactly once within the source code. If it can be made sure

that these functions are not executed externally from other tasks, as was assumed

for the present experiments, then these functions can be inlined and the original

function code can be removed from the source code. Afterwards, further opti-

mizations can be applied, leading to smaller code compared to the non-inlined

code.

Considering the positive effects of the MLB WCET-aware function inlining on

the code size, adverse effects on the I-cache performance due to code size increases

resulting from inlining can be excluded.

From this information about the code size, it can also be inferred that the ma-

jor effects on the WCET, as depicted in Fig. 6.5, were not the result of a changed

I-cache performance due to code expansion. Rather, different inlining behavior en-

abled different optimizations and led to a modified spill code generation.

6.4.4.6 Compilation Run Time

WCC’s WCET-aware function inlining increases the compilation time compared to

standard inlining. This is mainly due to the feature extraction. If it was predicted

in the previous optimization step to inline a function, the optimized program has

to be passed to aiT in order to obtain updated WCET information. In contrast, the

evaluation of the MLB heuristics, which are simple if-then-else statements,

is negligible. For the optimization of all benchmarks from the test set, an increase

of the compilation time of 248% was observed. This increase is fully acceptable for

the optimization of embedded systems.

The techniques presented in this section led to the publication [LGMM09].

6.5 Loop-Invariant Code Motion

In this section, the study of the potential of machine learning techniques for WCET-

aware compilation is deepened. To emphasize the generality of these techniques,

a different compiler optimization, namely loop-invariant code motion (LICM), is

considered.

Loop-invariant code motion, also known as hoisting, is a popular ACET opti-

mization that can nowadays be found in most compilers. The transformation moves

computations, which produce the same results in each loop iteration, outside of the

loop. Due to the reduced execution counts of the hoisted instruction, but also due

to possible positive effects on the spilling behavior, LICM often provides a speed-

up. However, the transformation may also have an opposed impact on the spilling

behavior, requiring the insertion of additional spill code. Hence, such conflicting

interactions make the generation of suitable LICM heuristics difficult.

To tackle this problem, supervised learning is exploited for the generation of

MLB WCET-aware heuristics for the optimization loop-invariant code motion. The

6.5 Loop-Invariant Code Motion 179

Fig. 6.6 Impact of

loop-invariant code motion on

WCET

main differences between the work presented in this section and Sect. 6.4.3 are the

following:

• Unlike function inlining, LICM is performed in WCC at assembly level. Apply-

ing machine learning techniques also at this abstraction level of the code demon-

strates that these techniques are generic and can be utilized at any level in the

compiler.

• While the MLB inlining heuristics focused on understandability and an easy in-

tegration of the heuristics into the compiler, methods proposed in this section aim

at maximal performance of the induced models.

• To find the best model, various learning algorithms and their parameter settings

are systematically evaluated. This approach makes a seamless integration of a

machine learning tool into the WCC framework necessary.

• Since accuracy may not be the most appropriate performance measure of the in-

duced models in some situations, the evaluation of prediction models for LICM

is based on the estimated WCET.

The remainder of this section is organized as follows. In Sect. 6.5.1, the applica-

tion of LICM is motivated by the impact of the transformation on real-life bench-

marks. Section 6.5.2 introduces the standard loop-invariant code motion in detail

and highlights the optimization’s positive and negative effects on the program code.

Section 6.5.3 discusses the respective heuristic generation at assembly level in more

detail. Furthermore, solutions to the model selection problem, i.e., which learning

algorithms and parameters to select for the model induction, are presented. Finally,

experimental results to evaluate the novel MLB WCET-aware LICM are provided

in Sect. 6.5.4.

6.5.1 Motivating Example

The prevalent strategy to apply LICM whenever possible may degrade performance.

Figure 6.6 shows the estimated WCET for six representative benchmarks compiled

180 6 Machine Learning Techniques in Compiler Design

with O3 and enabled standard LICM. 100% marks the WCET of the benchmarks

without LICM. As can be seen, LICM may have both a positive and negative impact

on the worst-case performance. For example, the benchmark iir_biquad_N_sections

suffers from additional spill code after LICM, leading to a WCET increase of 25.5%.

In contrast, the estimated WCET of benchmark lms decreases by 12.7% due to

a reduced frequency of the loop-invariant instructions and a simultaneously posi-

tive effect of LICM on the register pressure making some spill instructions redun-

dant.

To tackle the difficult task of finding heuristics for loop-invariant code motion,

supervised machine learning is again exploited. The goal is to find a heuristic that

exploits the positive effects of LICM on the one hand and prevents the transforma-

tion for adverse situations on the other hand. In contrast to related works dealing

with optimizations for which different heuristics are well-studied, such as loop un-

rolling, this work can not benefit from any studies which describe strategies for

promising LICM heuristics.

6.5.2 Standard Loop-Invariant Code Motion

Loop-invariant code motion recognizes computations within a loop that produce the

same result each time the loop is executed. These computations are called loop-

invariant code and can be moved outside the loop body without changing the pro-

gram semantics [Muc97, BGS94]. If a computation occurs inside a nested loop, it

may produce the same result for every iteration of the inner loop for each particular

iteration of the outer loop, but different results for different iterations of the outer

loop. The loop invariance of an instruction is defined as follows [App97]:

Definition 6.3 (Loop-invariant) An instruction i is said to be loop-invariant iff for

each operand o of i: (a) o is constant, or (b) all definitions of o that reach i are

located outside the loop, or (c) there is exactly one definition of o that reaches i and

that definition is loop-invariant.

The detection of loop-invariant computations is straightforward if standard com-

piler analyses are available. Besides control-flow analysis, def-use-chains [ASU86],

which are a common representation of data flow information about variables, allow

to determine variable definitions that affect a given use of a variable.

LICM can be applied at source code level to expressions, or at assembly level,

in particular to addressing computations that access elements of arrays. For an eas-

ier understanding, an example for the application of loop-invariant code motion at

source code level is depicted in Fig. 6.7, with loop invariants being underlined.

During the transformation, the loop-invariant expressions are moved outside the

inner and outer loop, leading to the code shown on the right-hand side of the fig-

ure.

6.5 Loop-Invariant Code Motion 181

t1 = 3*l;
for (i=1; i < 100; ++i) { for (i=1; i < 100; ++i) {
m = 2*i + 3*l; m = 2*i + t1;
for (j=1; j < i-1; ++j) { t2 = i - 1;
a[i,j] = j + m+3*i; → t3 = m + 3*i;

} for (j=1; j < t2; ++j) {
} a[i,j] = j + t3;

}
}

Fig. 6.7 Example for loop-invariant code motion

The positive effects of LICM are as follows:

• The shifted loop invariants exhibit a reduced execution frequency.

• The transformation may shorten variable live ranges leading to a decreased reg-

ister pressure. This circumstance may in turn reduce the number of required spill

code instructions.

• Moving code outside a loop reduces the loop’s size which may be beneficial for

the I-cache behavior since more loop code can reside in the cache.

Considering the optimized code in Fig. 6.7, LICM does not only reduce the exe-

cution frequency of the expression 3*l but also decreases the live range of variable

l, if l is not used afterwards.

Besides these positive effects on the code, LICM may also degrade performance.

This is mainly due to two reasons. First, the newly created variables to store the

loop-invariant results outside the loop, such as t1 on the right-hand side of Fig. 6.7,

may increase the register pressure in the loops since their live ranges span across the

entire loop nest. As a result, possibly additional spill code is generated. This is an

issue which is especially relevant for embedded systems with small register files.

The second reason for performance degradation due to LICM is that moving

the loop-invariant code might lengthen other paths of the control flow graph. This

situation can be observed if the invariants are moved from a less executed to a more

frequently executed path, e.g., moving instructions above a loop’s zero-trip test.

Issues like the impact of LICM on the register pressure emphasize the dilemma

compiler writers are faced with during the development of good heuristics. Perform-

ing loop-invariant code motion on the expression 3*l has conflicting goals, and it

can not be easily predicted if this transformation is beneficial.

A review of standard compiler literature [ASU86, Muc97, CT04] revealed that

LICM heuristics are unknown or at least not published. Also, there is no related

work concerning this optimization except standard algorithms describing how the

optimization can be realized in practice. On the software side, a similar situation

can be observed. Most compilers do not model the complex interactions between

different parts of the code and the loop invariants, but perform LICM whenever

invariants are found without using any heuristics that might avoid the adverse ef-

fects.

182 6 Machine Learning Techniques in Compiler Design

6.5.3 MLB Heuristic Generation at Assembly Level

In this section, the generation of MLB heuristics for the optimization WCET-aware

loop-invariant code motion applied at assembly level is discussed. Like for function

inlining presented in the previous section, the heuristic generation conforms with

the workflow depicted in Fig. 6.1 on p. 164. One of the key aspects of this workflow

is the selection and configuration of a machine learning algorithm for the induction

of the binary classification model. In general, the model selection problem can be

formulated as follows:

Problem 6.1 (Model selection) Given a set of parametric machine learning al-

gorithms M L and a set of parameter vectors P A R, with ∀alg ∈ M L : ∃Palg ∈

P A R : Palg = (p
alg

1 , . . . , p
alg
m) and m = |Palg|. All parameters p

alg

i can be as-

signed a parameter value v ∈ Val. For an algorithm alg ∈ M L, a parameter con-

figuration CPa ∈ Pa → Valm is a function CPa = (p
alg

1 → v1, . . . , p
alg
m → vm).

The model selection problem for a given training set E is to find aopt ∈ M L and

Copt ∈ Pa → Valm such that the given performance function EVAL is optimized.

For WCC’s MLB function inlining, which represented the first feasibility study

of machine learning techniques for WCET reduction, the model selection prob-

lem was not explicitly considered. The selection of the learning algorithm random

forests was mainly motivated by the requirements of an easy integration into the

compiler and understandability of the model. A model selection driven by such fac-

tors is up to now common practice in the compiler community.

However, there is no guarantee that the employed learning algorithm yields good

performance in terms of WCET reduction. The problem is the complex structure of

learning algorithms and the non-trivial impact of their parameters on the program

performance when used for prediction. As a consequence, the performance of the

induced model can not be predicted statically with sufficient precision. Also, there is

no golden rule for determination which learner will maximize a given performance

function [BGCSV09, Bis08]. The only reliable way for a performance assessment

is to generate a heuristic and to evaluate it on a set of benchmarks [LBO09].

Hence, the current state for the MLB heuristic generation can be seen as a trial-

and-error approach. The compiler writer chooses a learner, induces a prediction

model and evaluates the impact of the generated heuristic on benchmarks. If the

heuristic did not yield the expected performance results, the compiler writer either

tunes the learner parameters or even selects another learner and repeats the evalu-

ation hoping for better results. Obviously, repeatedly evaluating different learners

manually is time-consuming, error-prone, and it is often not clear if further tuning

pays off. In literature [MBQ02, SA05, MM99, CM04, LBO09], typically one or two

learners are employed without a detailed reasoning why exactly these algorithms in-

cluding their parameters were chosen.

The exploitation of machine learning for heuristic generation is attractive since

it helps to reduce the effort of compiler development. However, the effort is now

6.5 Loop-Invariant Code Motion 183

shifted from the manual tuning of heuristics to the model selection problem of learn-

ing. To address this well-known shortcoming [SS07], an automatic model selection

is proposed in this book.

6.5.3.1 Automatic Model Selection

In this section, the model selection problem is tackled in a systematic way. The

current framework depicted in Fig. 6.1 on p. 164 is extended by an automatic evalu-

ation of the considered learning algorithms and their parameter settings. To this end,

a tight integration of a machine learning tool into the WCC framework is mandatory.

Learning Algorithms The first step of the presented approach is the choice of

algorithms to be involved in the performance assessment. For the present study,

popular learning algorithms are included that have been successfully applied in the

past for various studies and that differ in their functionality, i.e., they train a classifier

based on different principles. Moreover, the learners’ parameters have to be taken

into account since they significantly contribute to the performance of a model as will

be shown later. The following algorithms and their respective parameters [Bis08] are

involved:

1. Decision Trees partition the examples into axes-parallel rectangles by recur-

sively splitting the training set examples into sub-trees (for more details, see

Sect. 6.4.3.3). Frequently, the gini index is used as splitting criterion. Addition-

ally, there may be stopping criteria like the maximal depth of a tree and thresh-

olds for the minimal number of examples in a node for its further split, the min-

imal number of examples in a leaf, the minimal information gain for splitting,

and the number of alternative nodes considered (prepruning alternatives). Fur-

thermore, a confidence level for post tree pruning can be specified.

2. Random Forests consist of several unpruned decision trees which are con-

structed from different bootstrap samples (for more details, see Sect. 6.4.3.3).

The algorithm provides two parameters: the number of trees in the forest and the

number of considered features for node splitting.

3. Linear Support Vector Machines (SVM) find a hyperplane which separates the

examples such that those with the label y = +1 are in the positive half and those

with the label y = −1 are in the negative half of the instance space. The hyper-

plane is determined by W · X + β0. The learning task is to estimate the weight

vector W and β0, such that the error is minimal (i.e., the instances represented

by the feature vector X are placed on the correct side of the hyperplane) and that

the distance between the closest instance and the hyperplane is maximal. Those

examples which are closest to the hyperplane are called support vectors. In order

to allow some misclassified instances, SVM offers a soft margin parameter C

which gives a weight to the error. Internally, SVM compares all examples pair-

wise using a kernel function. For the linear SVM, the kernel function is the dot

product W · X.

184 6 Machine Learning Techniques in Compiler Design

4. SVMs with Radial Base Function (RBF) Kernel operate on not linearly sep-

arable data by including another kernel function into the learning problem of

SVM. RBF covers areas of instances by a Gaussian distribution: KRBF (xi, xj) =

exp(γ (xi, xj)
2). The parameter of the Gaussian’s width, γ , is decisive: for a low

γ , almost every example is covered by its own RBF region, for a large γ , inter-

esting regions cover a set of examples.

5. k-Nearest Neighbor (kNN) stores all examples and classifies a new input by

looking at k most similar examples. The majority class of these k examples be-

comes the predicted class. If k is too small, the error is reduced, but the prediction

becomes biased, e.g., by outliers. If k is too large, the error might also become

large. Thus, the setting of the appropriate k is crucial for the learner’s perfor-

mance.

6. Naive Bayes predicts for a feature vector X the class yi such that the likelihood

P(yi |X) is maximal. According to Bayes’ theorem, it is sufficient to maximize

the probability P(X|yi)P (yi), since the a priori probability of the labels in Y

(e.g., P(yi = YES) or P(yi = NO)) are the same for all training examples. Im-

plicitly, Naive Bayes assumes the independence of all example’s features. Due to

its simple calculation, Naive Bayes is a very fast algorithm and has typically no

parameters for configuration.

Performance Evaluation There are different metrics for performance evaluation

of learners. The standard performance measure of learning algorithms is accuracy

(cf. Sect. 6.3.1). It is calculated on the basis of the examples generated for the test

set by comparing predicted and true labels.

In case of compiler optimizations, program run time is crucial. For embedded

systems acting as real-time systems, the main goal is to find a learner that yields

highest WCET reduction. The performance evaluation of a learner based on the

accuracy may not be appropriate since it does not allow to draw conclusions about

the program’s WCET. This circumstance is shown in the following example.

Example 6.1 It should be assumed that during optimization a heuristic has to decide

whether the optimization steps A, B , C, and D are performed. The impact of these

optimizations on the (worst-case) execution time is shown in the following table:

Optimization Step Performed/YES Not Performed/NO Correct Prediction

A −10 cycles 0 cycles YES

B −10 cycles 0 cycles YES

C −20 cycles 0 cycles YES

D 50 cycles 0 cycles NO

For example, if the optimization step A is performed, which corresponds to the

classification prediction YES, then the execution time is reduced by 10 cycles. Oth-

erwise, if the prediction for A is NO, then the program is not modified and the esti-

6.5 Loop-Invariant Code Motion 185

Algorithm 6.1 Algorithm for benchmark-wise cross validation

Input: Learning algorithms M L,Training set E

Output: best alg, s

1: WCETref ← computeWCETref (E)

2: for all algorithm alg ∈ M L do

3: for all parameter setting s ∈ P A R do

4: performance ← 0

5: for all benchmark b ∈ E do

6: generateHeuristicMLB(alg, s,E \ b)

7: WCETb
MLB ← computeWCETMLB(b)

8: performance ← performance +
WCETb

MLB

WCETb
ref

9: end for

10: evaluation[alg][s] ←
performance

|E|

11: end for

12: end for

13: return min (evaluation)

mated WCET remains unchanged. The last column of the table depicts the correct

predictions leading to the best optimization result.

It should be further assumed that models M1 and M2 induced by two machine

learning algorithms are used for the prediction of the given optimization steps.

Model M1 predicts A, B , and C correctly, leading to an accuracy of 75% and an

overall increase of the program’s WCET of (−10 − 10 − 20 + 50 =) 10 cycles. In

contrast, model M2 predicts C and D correctly, yielding a smaller accuracy of 50%

and an overall positive impact on the WCET of (0 + 0 − 20 + 0 =) − 20 cycles.

Thus, based on accuracy as performance function the wrong conclusion of se-

lecting M1 as the more promising model would be drawn.

Due to this missing correlation between the accuracy and the program (worst-

case) execution time, learners should be evaluated by directly determining the pro-

gram performance instead of their accuracy.

Moreover, the classical N -fold cross validation has to be applied in a modified

fashion for the performance evaluation of learners used as optimization heuristics.

An adequate performance evaluation for the model selection problem (cf. Prob-

lem 6.1) is the so-called benchmark-wise cross validation. Its structure is presented

in Algorithm 6.1.

In the beginning, for each benchmark of the training set E, a reference WCET,

such as the WCET of b when the considered optimization is completely disabled,

is determined (line 1). Next, for each considered learning algorithm alg ∈ M L

(line 2) and its parameter setting s ∈ P A R (line 3), a per-benchmark validation

is conducted. To this end, for each learner/parameter combination a model is in-

duced using all benchmarks from the training set except benchmark b (line 6). To

determine the impact of the generated MLB heuristic, the estimated WCET using

the MLB heuristic is compared against the respective reference WCET (lines 7–8).

186 6 Machine Learning Techniques in Compiler Design

Fig. 6.8 Evolutionary

parameter optimization

This cross validation is performed for all benchmarks of the training set, and the

determined average value represents the impact of an MLB heuristic on the WCET

using a particular learner alg and the respective parameter settings s (line 10). Fi-

nally, Algorithm 6.1 returns alg and s with the minimal relative WCET (line 13),

i.e., the maximal WCET reduction. Hence, the computation in lines 4–10 represents

the performance function EVAL of Problem 6.1 that is to be minimized.

Using this benchmark-wise cross validation is a common approach to estimate

the generalization ability of a learner, i.e., by applying the models to unseen bench-

marks, it can be inferred how well new examples will perform using this model.

Parameter Optimization The naive approach shown in Algorithm 6.1, which

iterates over all parameter settings P A R, can not be feasible in practice since

the number of user-defineable classifier parameters is too large to be exhaustively

searched. To tackle this problem, an evolutionary strategy [Mie08] is proposed that

substitutes the complete set P A R in Algorithm 6.1 by a subset of promising pa-

rameter settings.

This approach is visualized in Fig. 6.8. Each individual in a population pn of

size (pop_size) represents one specific parameter value for a particular learning al-

gorithm, such as value for C and γ in case of the SVM with RBF kernel.

In the beginning, for each learning algorithm, populations of randomly initialized

individuals are generated. Next, each individual is passed to the benchmark-wise

cross validation. The averaged performance value serves as the fitness function for

the individual under analysis.

In the subsequent crossover step, individuals mate with a specified probability

(crossover_prob) using a single cross-over point on both individuals. The produced

children contain the exchanged parameter values of their parents. These children are

added to the current population. Then, all individuals are cloned and the clones are

mutated by adding values from a Gaussian distribution to all parameters.

The newly created individuals during crossover and mutation are passed to the

benchmark-wise cross validation to determine their fitness. To construct populations

for the new generation, individuals from the previous generation as well as the new

individuals take part in the tournament selection. The selection chooses individuals

6.5 Loop-Invariant Code Motion 187

with highest performance (as parents) as long as the number of selected individuals

does not exceed pop_size.

The parameter optimization maintains the best individuals (elitist selection) and

terminates if either a specified maximum number of generations (max_gen) is

reached or there was no improvement over imp generations. Hence, the underly-

ing genetic algorithm of WCC’s parameter optimization is an adoption of standard

genetic algorithms [Hol92].

6.5.3.2 Feature Extraction

The WCC framework for the automatic selection of machine learning models is

generic, i.e., it can be exploited to generate heuristics for a large number of low-

level optimizations without any major adaption. To enable this option, a large set

of features extracted from the compiler must be provided. These features must be

chosen such that they cover a wide range of various characteristics of the program.

For the generation of MLB heuristics for loop-invariant code motion, the features

characterize each instruction being an LICM candidate as well as the basic block to

which the instruction is moved. WCC’s feature extractor generates 73 features in

total which describe characteristics of single instructions, basic blocks, loops, or

functions, depending on which low-level construct is passed to the feature extractor.

The features can be classified as follows (given some examples):

1. Structural features: Type of instruction (arithmetic, load/store, jumps, floating

point, etc.), size of given construct, number of block successors/predecessors,

number of operands in given instruction

2. Liveness analysis related: Liveness information (live-in and live-out) of instruc-

tion, number of defs and uses in instructions/blocks, information about register

live times (for register pressure estimation)

3. Loop features: Loop nest levels, loop iteration counts

4. Misc: Length of critical path in loop, outcome of static branch prediction for

jump instructions

This set of features is variable, i.e., depending on the application, all features or

just a subset can be used. The feature extractor was designed in a flexible way such

that new features can be easily added. For learning algorithms that can only han-

dle numerical values, nominal features are first transformed into discrete numerical

values and then normalized by a linear transformation into [0,1].

6.5.3.3 Label Determination

After feature extraction for the loop-invariant instruction iinv , the label is determined

as follows. Before hoisting iinv , the WCET is estimated for the embedding code

region reg of iinv . The definition of region depends on whether iinv was initially

located in a nested loop or not. If iinv is hoisted from an inner to an outer loop,

188 6 Machine Learning Techniques in Compiler Design

region reg is represented by the basic blocks of the outer loop. Otherwise, if iinv

is moved outside a non-nested loop, then reg consists of all blocks located in the

function f , with iinv ∈ f .

Using outer loops in case of nested loops for reg instead of the entire function

makes the label extraction more reliable since it captures the effects of a particular

LICM more precisely. A decreased WCET after LICM means that the transforma-

tion is beneficial (labeled with YES) for iinv in its current context. The context is

expressed by the static features of the target block btarget to which the instruction

iinv is moved. If the WCET does not change, also the label YES is used to perform

code motion which possibly enables optimization potential for subsequent LICM

candidates. If a WCET increase due to adverse LICM effects was identified, the

feature vector is labeled with NO to indicate that the code motion should be avoided

for similar cases. For the next LICM candidate, iinv is kept in its new position and

the next loop-invariant instruction is considered.

6.5.3.4 Application of WCET-Aware LICM

In contrast to WCET-aware function inlining discussed in Sect. 6.4, WCET-aware

LICM employs more flexible heuristics. The heuristics are not restricted to a small

number of learning algorithms that induce models which can be easily integrated

into a compiler as if-then-else constructs. Rather, any supervised learner de-

riving a classifier model is allowed.

To provide this flexibility, a tight integration of a machine learning tool into

the compiler framework is mandatory. In the beginning of loop-invariant code mo-

tion, the machine learning tool is initialized with the best model determined during

WCC’s automatic model selection, and a socket connection to the WCC frame-

work is established. Next, WCC’s LLIR optimizer traverses the code in a depth-first

search manner and extracts for each LICM candidate its static features. This feature

vector is sent to the ML tool that returns the YES/NO prediction. Based on this infor-

mation, the considered loop-invariant instruction is shifted or not. LICM is repeated

from the beginning as long as loop-invariants are moved.

6.5.4 Experimental Results for WCET-Aware LICM

To demonstrate the practical use of WCC’s WCET-aware LICM, evaluation

on a large number of different benchmarks was conducted. The 39 bench-

marks come from the test suites DSPstone [ZVS+94], MediaBench [LPMS97],

MiBench [GRE+01], MRTC [MWRG10], NetBench [MMSH01], and UTDSP

[UTD10]. On the one hand, the benchmarks were used to construct the data set

for machine learning which serves as training data for the LICM heuristic genera-

tion. On the other hand, this data was used in the cross validation phase to evaluate

the performance of the heuristics for WCET reduction.

6.5 Loop-Invariant Code Motion 189

The training set based on these benchmarks comprised 3,491 examples (LICM

candidates), and its construction took about 50 hours on two Intel Xeon 2.13 GHz

quad cores. It should be noted that this construction represents a unique overhead

since the data set construction has to be performed only once off-line and can be

reused as long as the internal compiler structure or the target architecture is not

modified.

The evolutionary parameter optimization as part of the automatic model selection

was performed for each of the six machine learners discussed in Sect. 6.5.3.1. The

following parameter settings were used for the genetic algorithm (cf. p. 186):

• population size pop_size: 20

• number of generations max_gen: 5

• tournament selection performed on 30% of population size

• crossover probability crossover_prob: 90%

• Gaussian mutation, i.e., adding a random value from a Gaussian distribution to

each element of the individual

• termination if no improvement for 2 generations was observed or max_gen is

reached

Some of these parameter settings, such as for crossover_prob, are default settings

for a search via a genetic algorithm, while other settings, like pop_size, were used

to restrict the search time.

For the benchmark-wise cross validation (cf. Algorithm 6.1), the reference value

WCETref represents the estimated WCET of the benchmark under analysis opti-

mized with highest optimization level (O3) and disabled standard LICM. In con-

trast, WCETMLB is the WCET estimation for this benchmark optimized with O3

using LICM with the new MLB heuristic.

Most of the time for the evolutionary search was consumed by the WCET anal-

yses. For one run of the benchmark-wise cross validation, i.e., inducing 39 models

and using them for the WCET estimation of each benchmark in the test set, about 8

minutes on two Intel Xeon 2.13 GHz quad cores of a system with 8 GB RAM were

required. Depending on the evolution of the evolutionary search, the maximal run

time of 19 hours was observed for the evaluation of the learner random forest.

All experiments were performed in the WCC framework using TriCore’s cached

Flash memory. The employed compiler framework, without modules not relevant

for MLB WCET-aware LICM, is depicted in Fig. 6.9. As can be seen, the feature

extraction is performed in the compiler backend and provides input for the machine

learning tool RapidMiner [MWK+06] that delivers the prediction for LICM.

6.5.4.1 WCET

In a first phase, the machine learning model selection was performed to find the best

learner. Table 6.4 gives an overview of the considered learners, their parameters,

and the explored parameter values by the evolutionary search (column Range). It

should be noted that Naive Bayes does not provide any parameters to be optimized.

190 6 Machine Learning Techniques in Compiler Design

Fig. 6.9 WCC framework with integrated machine learning tool

Table 6.4 Learning algorithms with possible and best parameter settings

However, the algorithm was considered due to its popularity and its specific func-

tionality. Due to the large search space of possible parameter values, it becomes

obvious that an exhaustive search is infeasible.

Table 6.5 summarizes the results of the evolutionary parameter optimizations for

the six considered learners. The results in the second, third, and fourth column rep-

resent the performance values, i.e., the averaged relative WCET results obtained

during the benchmark-wise cross validation when comparing the WCET using the

MLB heuristic with the WCET of code compiled with O3 and disabled LICM (cor-

responding to 100%).

In more detail, the second column (Best) represents the highest improvement of

the WCET observed during the evolutionary search of each learner. These values

were achieved using the parameter combinations shown in the third column of Ta-

ble 6.4. For example, 95.36% for SVM with RBF kernel means that the WCET was

reduced on average by 4.64%. The third and fourth column (Worst, Average) of

Table 6.5 depict the worst and average WCET reduction (over all runs) found by

the evolutionary search. Finally, the last column (Accuracy) describes the classifica-

tion accuracy that was computed for the parameter combination leading to the best

6.5 Loop-Invariant Code Motion 191

Table 6.5 Performance results for different parameter combinations

Learner Best Worst Average Accuracy

Decision Tree 96.17% 99.78% 97.42% 63.16%

Random Forests 96.60% 98.96% 97.69% 60.43%

Linear SVM 98.24% 98.62% 98.34% 53.50%

SVM with RBF kernel 95.36% 98.80% 97.12% 57.78%

kNN 97.32% 98.94% 97.98% 67.48%

Naive Bayes 98.17% 98.17% 98.17% 54.31%

WCET reduction shown in the second column. The bold numbers point out the best

results observed among all learners.

Four main conclusions can be drawn from Table 6.5:

• The best LICM heuristic generated by SVM with RBF kernel could reduce the es-

timated WCET by 4.64%. Compared to standard LICM, which yields on average

a WCET reduction of merely 0.56%, the MLB heuristic improved the perfor-

mance of LICM by a factor of 8.3 could be achieved using the MLB heuristic.

This results confirms the potential of machine learning techniques.

• The WCET improvements significantly vary between the heuristics generated by

different learners. For the considered learners and their best parameters, the rela-

tive WCET for the 39 benchmarks varies for the best parameters between 95.36%

for SVM with RBF kernel as best model and 98.24% for Linear SVM. This dif-

ference of 2.88% can be considered substantial, since an inappropriate choice of

a learner may loose up to 37.9% of average performance compared to the best

learner (achieving a WCET reduction of 4.64%). Thus, a comparison of different

learning algorithms is crucial for an effective heuristic generation.

• A comparison between the second and third column of Table 6.5 emphasizes the

importance of a parameter optimization. For example, the choice of parameter

values for the learner Decision Tree generates LICM heuristics for which the

relative WCET ranges between 96.17% and 99.78%, i.e., selecting inappropri-

ate parameters may waste up to 3.61% on average of the optimization potential

w.r.t. the WCET reduction.

• A comparison between the WCET performance in the Average column and the

accuracy in the last column indicates that there is no direct correlation between

these two performance metrics. For example, the highest accuracy of 67.48%

was achieved for the kNN learner, while its average WCET reduction of 2.02%

is poor compared to the other learners. Thus, finding the best model can only be

accomplished if the model is directly evaluated using the program (worst-case)

execution time.

Figure 6.10 depicts the progress of the evolutionary parameter optimizations over

5 generations for the best learner (SVM with RBF kernel). The plot depicts the fittest

individual (parameter values), i.e., the individual with the highest average perfor-

mance for all benchmarks, in each generation. The 100% mark represents the WCET

192 6 Machine Learning Techniques in Compiler Design

Fig. 6.10 Progress of

evolutionary parameter

optimization

Fig. 6.11 Relative WCET estimates for standard and MLB-WCET LICM

for O3 and disabled LICM. As can be seen, the performance of the fittest individual

is successively improved in the first four generations before no better parameters

can be found in the last generation. This monotonically decreasing curve suggests

that the evolutionary parameter optimization is the right choice for the search of

good parameter values in a large space. Moreover, a comparison between the rel-

ative WCET estimation of 98.72% for the LICM heuristic generated with default

SVM parameter settings (C = 0, γ = 1) and the performance of 95.36% for the

best parameter settings of this learning algorithm found by the evolutionary search

emphasizes the benefits of this approach.

In order to evaluate the effectiveness of WCC’s machine learning based LICM

heuristic, the impact of WCC’s MLB heuristics for LICM on the WCET estimates

(WCETEST) of the considered 39 benchmarks was determined.

Figure 6.11 provides a detailed comparison between standard LICM (labeled

with Std. LICM) and WCC’s MLB WCET-aware LICM (labeled with MLB WCET-

LICM) using the best heuristic generated by the SVM with RBF kernel learner. The

100% base line represents the estimated WCET per benchmark for the highly op-

6.5 Loop-Invariant Code Motion 193

timized code (O3) and disabled LICM. The light bars show standard LICM with

the common LICM strategy that performs the code motion whenever possible. The

dark bars represent the cross validation results, i.e., the MLB heuristic was trained

without the respective benchmark and afterwards applied to it. By learning a model

and validating it on the excluded benchmark, the dark bars indicate how good the

heuristic performs on unseen data. As can be seen in the figure, in most cases the

new MLB WCET-aware LICM outperforms the standard LICM optimization, with

up to 36.98% for the fir benchmark from the MRTC suite. On average, the standard

LICM achieves a WCET reduction of merely 0.56%, while WCC’s MLB WCET-

aware LICM reduces the WCET by 4.64%, as already shown in Table 6.5.

In few cases, standard LICM could slightly outperform the MLB heuristic. For

example, in case of benchmark lpc (from the UTDSP suite) the decision taken by the

novel heuristic led to a situation in the code that requires addition spill code, increas-

ing the WCET by 5.16%. On the contrary, standard LICM hoisted all loop-invariant

instructions resulting in a WCET decrease of 2.63%. Such scenarios may occur due

to mispredictions of the induced model and can be never completely excluded.

6.5.4.2 ACET

Similar to the WCET results, the impact of different LICM strategies on the ACET

was measured using a cycle-true simulator. For the analyzed 39 benchmark, stan-

dard LICM slightly degraded the ACET on average by 0.89%. In a similar way,

the MLB heuristic yielded a marginal ACET increase by 0.48% on average. Even

though the new heuristic marginally improves the standard LICM strategy, the re-

sults for the ACET reduction are poor compared to those achieved for the WCET

reduction. These results allow to draw the conclusion that an effective reduction of

a particular performance metric, such as the ACET or WCET, can be only accom-

plished if this metric is also involved in the automatic model selection. Therefore,

heuristics generated for WCET reduction may not exhibit comparably good results

for ACET reduction and vice versa.

6.5.4.3 Compilation run time

The communication between WCC and RapidMiner is established in an efficient

way using a socket connection. However, this communication still introduces addi-

tional overhead. Furthermore, each LICM decision requires a feature extraction. As

a result, the compilation run time of all benchmarks from the test set using MLB

WCET-aware LICM increases by 136% compared to standard LICM, which is fully

acceptable for embedded system optimization. Most of this overhead is caused by

the interaction with the machine learning tool.

The techniques presented in this section have been published in [LSMM10].

194 6 Machine Learning Techniques in Compiler Design

6.6 Summary

With the growing complexity of software, manual optimization and tuning of pro-

grams for an improved performance became a difficult and tedious task. To relieve

software developers from this burden and to allow them to concentrate on writing

correct software, optimizing compilers have been developed. Today, compiler de-

velopers ironically face similar problems. The development of highly effective op-

timizing compilers becomes a challenging but also a tedious mission. This is due to

the non-trivial interaction between code optimizations and the complex architecture

of today’s systems on the one hand and the mutual, sometimes conflicting, interac-

tions between optimizations on the other hand. Therefore, efficient solutions to this

dilemma are desirable, allowing compiler writers to focus again on the development

of correct and effective optimizations.

In this chapter, machine learning techniques for an automatic generation of com-

piler heuristics were studied for the first time in the context of WCET reduction.

One of the main advantages of these techniques is their simple application. Based on

automated observations of the impact of compiler optimizations on the worst-case

performance of representative benchmarks, appropriate heuristics can be automat-

ically learned—even for complex systems where human understanding is limited.

Another advantage of machine learning techniques is their effectiveness, often lead-

ing to heuristics that outperform their hand-crafted counterparts. Therefore, the ap-

plication of these techniques does not only reduce development time but also helps

to construct high-performance compilers.

The first optimization studied in this chapter was the source code optimization

function inlining. Using WCC’s infrastructure, static features, which characterize a

particular inlining candidate, were gathered from the high-level representation and

the compiler backend using WCC’s back-annotation. Based on these features, the

supervised learning algorithm random forests generated an inlining heuristic that

was directly integrated into the source code of WCC’s optimizer. Regarding the

WCET reduction, the novel MLB WCET-aware heuristic could outperform standard

inlining on average by 11.4% and 10.7% for the training and test set of benchmarks,

respectively.

In a further study, machine learning based heuristics were generated for the op-

timization loop-invariant code motion. Unlike WCC’s inlining, this optimization

is applied at the assembly level to show that the presented techniques work well

on any abstraction level of the code. Moreover, the well-known problem of model

selection—i.e., selecting learning algorithms and their respective parameters—was

explicitly addressed. Using an evolutionary search and systematically evaluating the

performance of the learners based on their impact on the WCET, enabled the gener-

ation of effective LICM heuristics that outperformed standard LICM by a factor of

up to 8.3.

The two studied standard compiler optimizations represent a vast class of opti-

mizations with conflicting goals, i.e., code transformations that may improve but

also degrade program performance. Their traditional heuristics can be often im-

6.6 Summary 195

proved by machine learning. However, as the experiments in this chapter showed,

an MLB heuristic trained for a particular objective, such as WCET, may exhibit poor

performance for another objective. Therefore, it can be concluded that the current

state of today’s compiler-based WCET reduction can be further improved if addi-

tional standard ACET optimizations are extended by MLB WCET-aware heuris-

tics.

Chapter 7

Multi-objective Optimizations

Contents

7.1 Introduction . 197

7.2 Motivation . 199

7.3 Related Work . 201

7.4 Compiler Optimization Sequence Exploration . 202

7.4.1 Adaptive Compilers . 203

7.4.2 Adaptability in WCC . 204

7.4.3 Encoding of Optimization Sequences . 206

7.4.4 Objective Functions . 208

7.5 Multi-objective Exploration of Compiler Optimizations 208

7.5.1 Multi-objective Optimization . 209

7.5.2 Evolutionary Multi-objective Optimization Algorithms 210

7.5.3 Statistical Performance Assessment . 211

7.6 Experimental Results for Optimization Exploration 216

7.6.1 Statistical Performance Assessment . 218

7.6.2 Analysis of Pareto Front Approximations 220

7.6.3 Analysis of the Optimization Sequences . 222

7.6.4 Cross Validation . 223

7.6.5 Optimization Run Time . 225

7.7 Summary . 225

7.1 Introduction

The development of high-performance optimizing compilers is an inherently hard

problem for many reasons. In the previous chapter, one of the reasons, namely in-

sufficient compiler heuristics, was addressed. It was shown that supervised machine

learning can be exploited to automatically generate efficient heuristics that are able

to outperform traditional heuristics. Another key issue why compilers do not deliver

optimal performance are interactions between optimizations, i.e., the effect of an

optimization may depend on the presence or absence of another optimization in the

compilation sequence.

To relieve the compiler user from a search for appropriate compiler optimiza-

tions, conventional compilers are equipped with standard optimization levels such

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_7, © Springer Science+Business Media B.V. 2011

197

http://dx.doi.org/10.1007/978-90-481-9929-7_7

198 7 Multi-objective Optimizations

as O3. These levels are generated by compiler writers based on their experience

and intuition—a process that may be highly challenging as shown in [ITK+03].

However, despite this enormous effort, there is no guarantee that these opti-

mization levels perform well for other architectures and benchmarks. Almagor et

al. [ACG+04] observed that the performance of standard optimization sequences

in many compilers are is below that of best performance-specific optimization se-

quences. Even adverse effects of these sequences on the program performance were

reported [ABC+06, KHW+05, ZCS03, CFA+07]. A reason for this failure is that,

despite years of research, the nature of these interactions is only partially under-

stood [SS07], thus many interactions are ignored during compiler design.

This shortcoming of compilers in the past led to a search for promising com-

piler optimization sequences, known in literature as the phase ordering problem.

The idea behind phase ordering is to generate tailored optimization sequences that

are adapted to the compiler’s environment, that is, the capability to reconfigure the

compiler in such a way that it meets the requirements of a single or a set of applica-

tions being executed on a specific target architecture. To enable this flexibility, the

rigid structure of conventional compilers with its predefined optimization order has

to be extended by the capability to perform optimizations in arbitrary sequences.

Such compilers are referred to as adaptive compilers.

For modern systems, the situation becomes even worse. In addition to the chal-

lenges of finding promising optimization sequences, modern systems have to meet

different requirements. In case of embedded real-time systems, not only the ACET

but also WCET, code size, dependability, and temperature are crucial. However,

compiler optimizations often have a conflicting effect on these objectives, that is,

the improvement of the code w.r.t. one objective may degrade another one. Hence,

finding a satisfying solution is an even more complex task.

This chapter provides a complementary solution for the construction of high-

performance compilers. The extended WCC does not only find good optimization

sequences for a single objective function, but searches for compiler optimization

levels that provide a trade-off between different objectives, namely the WCET,

ACET, and code size. In this work, the class of ACET optimizations was inten-

tionally chosen since it allows to conduct a very first systematic study on the impact

of standard optimizations on the worst-case behavior of a system. Moreover, due to

the use of standard compiler optimizations, the presented techniques can be easily

adopted to other compilers that support similar standard compiler optimizations.

In summary, the advantages of the search techniques proposed in this book are

the following:

• The automatic search for good optimization sequences relieves the compiler de-

veloper/user from this tedious and complex task.

• The determined optimization sequences clearly outperform standard optimization

levels.

• The presented techniques can be easily adopted to other frameworks.

• The results provide insight to developers and researchers of real-time systems.

Due to the comprehensive evaluation of optimizations, this study provides for the

7.2 Motivation 199

first time an answer to the following question: how do standard compiler opti-

mizations affect the WCET compared to other cost functions? Thus, the current

uncertainty of real-time system developers on optimizing compilers can be clari-

fied.

The remainder of this chapter is organized as follows. In Sect. 7.2, it is demon-

strated how WCC’s standard optimization levels fail to deliver optimal performance,

leaving room for further optimization potential. Section 7.3 provides an overview of

related work that addresses the phase ordering problem. In Sect. 7.4, the general

structure of an adaptive compiler is presented and extensions to WCC, which were

developed in the course of this book, are discussed, turning WCC compiler into a

WCET-aware adaptive compiler framework. To cope with the huge search space of

compiler optimizations, Sect. 7.5 presents an automatic approach for compiler op-

timization sequence exploration based on evolutionary multi-objective search algo-

rithms. Experimental results for the exploration of compiler optimization sequences

are provided in Sect. 7.6. Finally, this chapter is summarized in Sect. 7.7.

7.2 Motivation

It is well known that compiler optimizations interact, i.e., the impact of a given

optimization on the program performance depends on whether other optimizations

were performed as well or not. Moreover, the nature of interactions also relies on

the order in which the optimizations are carried out.

Interactions can be classified into those with a positive and a negative influence

on the program performance. Positive interactions typically arise when one opti-

mization enables additional potential for other optimizations. Examples of this class

are loop unrolling or function inlining as was discussed in more detail in Sects. 4.5

and 6.4, respectively.

In contrast, negative interactions occur when one optimization transforms the

code such that a following optimization can not be applied anymore. A typical ex-

ample is the interaction between the optimization register allocation and instruction

scheduling (cf. Sect. 5.4). The application of register allocation on the code creates

false dependencies since independent temporary variables have to be mapped to the

same physical register. As a consequence, the following instruction scheduling is

restricted, avoiding to utilize full parallelism to generate compact code.

But not only interactions between optimizations can degrade performance. Code

transformations may modify program code such that its execution is slowed down

on a particular hardware. Prominent examples are code expanding optimizations

that yield I-cache overflows. For single optimizations, such as WCC’s WCET-aware

loop unrolling (cf. Sect. 4.5), a heavy exploitation of the entire compiler framework

may provide sufficient information to avoid negative interactions with the memory

hierarchies. However, in general many compilers lack a detailed description of the

underlying hardware and the development of sophisticated compiler heuristics is

often non-trivial as shown in Chap. 6. Thus, few interactions with the hardware are

taken into account.

200 7 Multi-objective Optimizations

Fig. 7.1 Impact of loop deindexing on standard optimization levels

To show how standard optimization levels affect different objective functions,

Fig. 7.1 depicts the impact of WCC’s optimization levels on the estimated WCET

and the code size. The baseline of 100% is the average performance of WCC’s 35

representative benchmarks on the corresponding objective functions when no code

optimizations are conducted.

The filled symbols represent WCC’s standard optimization levels O1, O2, and

O3. As can be seen, the two objective functions are conflicting. Increasing the op-

timization level, that is, performing more optimizations, yields a decrease of the

estimated WCET but simultaneously also a code size increase. This behavior is ob-

vious since O3 includes code expanding optimizations, such as loop unrolling or

function inlining.

In a further experiment, the source code optimization loop deindexing (cf.

Sect. 4.1 on p. 62), which is included in WCC’s levels O2 and O3, was completely

disabled. The performance results are represented in Fig. 7.1 by the symbols la-

beled with Std. O2 w/o Deindexing and Std. O3 w/o Deindexing. Surprisingly, the

absence of this transformation has a positive effect on the estimated WCET com-

pared to standard O2, while the code size remains almost unchanged. Considering

the results for O3, disabled deindexing has even an overall positive effect on both

objective functions.

The question why loop deindexing degrades overall performance in the higher

optimization levels is not easy to answer. This is due to the reason that deindexing is

applied in concert with other optimizations, thus complex interactions must be con-

sidered in their entirety and all factors that can influence the nature of the interac-

tions have to be taken into account. However, due to the complexity of this problem,

a human understanding is usually impossible or may lead to wrong conclusions. As

a result, compiler optimization levels may fail to deliver good performance.

In summary, the results presented in Fig. 7.1 allow to draw two main conclusions:

• The standard optimization levels can be improved. A simple deactivation of loop

deindexing already improved the considered objectives. Thus, using arbitrary op-

7.3 Related Work 201

timization sequences, where multiple optimizations are switched off or are ap-

plied in a different order, promises space for further improvements.

• The results indicate that the estimated WCET and code size are conflicting goals.

Therefore, it can be expected that other optimization sequences can further ex-

haust this conflict and yield significant improvements of one objective at the cost

of the other. Such trade-offs could be offered to system designers who select the

sequence that best suits their system.

The severity of the phase ordering problem and the additional optimization po-

tential, which can be expected from more flexible optimization sequences, suggest

a redesign of traditional compilers. The required flexibility to adapt to a given envi-

ronment is offered by adaptive compilers. The following sections discuss this topic

and present extensions to turn WCC into a WCET-aware adaptive compiler.

7.3 Related Work

The phase ordering problem is one of the well-known problems in the compiler

domain. There is a small number of works that attempts to analytically anticipate

the impact of compiler optimizations to find good phase orderings. Whitfield and

Soffa [WS90] developed a framework for examining the interactions of the transfor-

mations based on an axiomatic specification technique. Using these specifications,

it can be inferred which optimizations enable or cancel the application of other opti-

mizations. Bashford [BL99] applied constraint logic programming to model a cou-

pling of different code generation phases, namely code selection, register allocation,

and instruction scheduling. In [Fur05], Fursin used efficient heuristics to search for

promising optimizations in a unified transformation framework which represents a

set of transformations in a unified way. Zhao et al. [ZCS03] presented a framework

that aims at statically predicting the impact of applied optimizations.

Such analytical approaches allow to find optimal optimization solutions. How-

ever, their practical application is constrained by two issues. First, these approaches

only allow the consideration of a selected set of optimizations for which a formal

specification must be given. Second, due to complexity reasons their application

may become infeasible for larger applications.

An alternative approach to search for good compiler optimization sequences is

iterative compilation. In contrast to the analytical approach, this empirical tech-

nique does not rely on any formal models but evaluates different phase orderings by

simulating the program or executing it on the hardware. Hence, all aspects of the

hardware are taken into account.

The general idea behind iterative compilation is to explore the compiler optimiza-

tion space by starting with a set of randomly chosen optimization sequences used

to generate a binary executable. Typically, random sequences are used since good

sequences as starting point are often not known. Measuring a single objective func-

tion, e.g., the ACET [ABC+06, KHW+05, ACG+04, LOW09, ZCS03, CFA+07]

or code size [CSS99], the fitness of each sequence is determined and subsequent

202 7 Multi-objective Optimizations

generations of optimization sequences yielding a higher fitness are computed us-

ing various search algorithms. To reduce the cost of iterative compilation resulting

from the search in the large space, different solutions have been proposed. Kulka-

rni [KHW+05] used genetic algorithms to avoid an exhaustive search. In [ACG+04],

a characterization of the search space was proposed to find good compilation se-

quences more efficiently. To accelerate the search, Leather [LOW09] applied fixed

sampling plans. Agakov et al. [ABC+06] reduced the number of evaluations using

machine learning approaches by focusing on promising areas of the search space.

All these aforementioned publications consider a single objective function. This

approach is, however, not sufficient for modern embedded systems where a trade-off

between different, conflicting optimization objectives is required. The only work ad-

dressing multi-objective compiler optimization level exploration was presented by

Hoste [HE08]. However, Hoste’s work differs in several ways from the adaptive

WCC framework presented in this book. Most importantly, WCC’s main focus is

the improvement of the worst-case behavior of real-time systems, thus the trade-off

between the WCET and other crucial objective functions (ACET, code size) is eval-

uated. Moreover, WCC does not rely on the performance of a single evolutionary

algorithm, but evaluates different multi-objective algorithms by a statistical perfor-

mance assessment to find the algorithm that performs best for a multi-objective

exploration of compiler optimizations. In addition, the adaptive WCC framework

is more flexible. In contrast to the GCC compiler used by Hoste [HE08], where

optimizations are performed in a fixed order and can only be switched on or off,

the adaptive WCC allows the construction of arbitrary optimization sequences. This

leads to an increased complexity of the problem but also allows the exploitation of

a higher optimization potential.

In the domain of WCET minimization, the only work addressing iterative com-

pilation was presented in [ZKW+04]. The authors apply a genetic algorithm to find

a sequence of standard assembly level optimizations that yield the highest WCET

minimization. However, in contrast to the present work, the authors focus on a single

objective function to be optimized and do not consider trade-offs with other objec-

tives. Moreover, just a single evolutionary algorithm is applied. Thus, it is not clear

how good the algorithm performs and whether other algorithms, like Hill climbing,

might even produce better results. Finally, exclusively assembly level optimizations

are considered, neglecting the potential of source code optimizations on the pro-

gram’s WCET.

7.4 Compiler Optimization Sequence Exploration

The structure of modern compilers is more or less rigid since optimizations are ap-

plied to an intermediate representation in a predefined order. This inflexibility is

one of the major reasons why optimizing compilers do not deliver optimal perfor-

mance. To address this problem, compilers must be extended in such a way that

they can adapt to the compiled program and hardware. This adaptability is achieved

7.4 Compiler Optimization Sequence Exploration 203

Fig. 7.2 Workflow of iterative compilation using an adaptive compiler

by searching for promising optimization sequences that lead to a maximal improve-

ment of the considered objectives. Compilers that provide this capability are known

as adaptive compilers.

This section discusses issues related to the exploration of the compiler optimiza-

tion sequence search space. In Sect. 7.4.1, the general structure of adaptive com-

pilers is introduced. Section 7.4.2 provides an overview of extensions, turning the

WCC framework into an adaptive WCET-aware compiler. To find good optimiza-

tion sequences, the adaptive WCC and the evolutionary multi-objective search al-

gorithms communicate in a bidirectional way. The search algorithm generates indi-

viduals, which represent optimization sequences to be evaluated, and passes them

to WCC. The compiler determines the fitness of different optimization sequences

w.r.t. the considered objectives and passes these fitness values back to the search al-

gorithm. Optimization sequence encoding and objective evaluation are presented in

Sects. 7.4.3 and 7.4.4, respectively. Based on this information, evolutionary multi-

objective algorithms, which will be discussed in the next section, select promising

sequences, thus refine the sequence performance.

7.4.1 Adaptive Compilers

The workflow of an adaptive compiler differs from a conventional compiler in sev-

eral respects. The general workflow of an adaptive compiler, as was for example

proposed by Cooper [CST02], is depicted in Fig. 7.2.

Similar to standard compilers, the source code is processed by a compiler front-

end that usually translates the input code into an intermediate representation, en-

abling an easier application of optimizations. However, in contrast to standard com-

pilers, the optimizations are not performed in a fixed order. The search algorithm

selects optimization sequences (of arbitrary order) and provides them to the com-

piler which generates machine code using the backend.

Next, the code is evaluated and one or more objective functions are determined,

depending on whether a single- or multi-objective optimization is applied. Subse-

quently, the determined objective functions serve as input for the search algorithm

that refines its selection of optimization sequences by choosing those optimizations

for the next generation that exhibit an improved performance on the considered

204 7 Multi-objective Optimizations

Fig. 7.3 Internal code

representation and

optimization within WCC

objective(s). This process is repeated until a predefined termination condition is sat-

isfied. Finally, the best optimization sequence is applied to generate the optimized

code.

Due to the enormous number of supported optimizations within modern compil-

ers, the main problem with iterative compilation is the large search space. For exam-

ple, the GNU Compiler Collection (GCC) v4.1 [GCC10] provides 60 compiler flags,

which can be arbitrarily enabled or disabled, yielding 260 possible combinations—

a number of combinations that makes an exhaustive evaluation infeasible.

7.4.2 Adaptability in WCC

To provide adaptability within WCC, the compiler framework has to be extended.

The general structure of the compiler, as shown in Fig. 3.1 on p. 27, remains un-

changed. The extensions concern WCC’s optimization modules. Therefore, to un-

derstand the concepts of iterative compilation in WCC, additional details about the

internal structure of WCC’s optimizer have to be provided.

7.4.2.1 Internal Structure of WCC’s Optimizer

Internally, WCC manages the program code by two different intermediate represen-

tations, the high level IR ICD-C and the low-level IR LLIR. The latter can be further

subdivided into a virtual and physical LLIR. Virtual means that no physical registers

but place holders identifying dependencies among instructions are used. The trans-

lation of a virtual LLIR into a physical LLIR is performed by the register allocation

that assigns each virtual register a physical CPU register.

This compiler structure yields high optimization potential since analyses and op-

timizations can be performed on different abstraction levels of the code. Conse-

quently, the available WCC optimizations are subdivided into classes: each opti-

mization belonging to a particular IR class ClassIR can only be applied to the rep-

resentation IR. This classification is depicted in Fig. 7.3. It should be noted that the

7.4 Compiler Optimization Sequence Exploration 205

Fig. 7.4 Rigid optimizer

structure of conventional

compilers

if(enabled(optimization_A))
perform(optimization_A);

if(enabled(optimization_B))
perform(optimization_B);

if(enabled(optimization_C))
perform(optimization_C);

...

register allocation is also considered as an optimization. However, due to its special

role, as will be described later, it belongs to a separate IR class.

In its initial state as a conventional compiler, WCC performed the optimizations

of each IR class in a rigid order. The compiler optimizer structure for each class

resembles a set of consecutive if-then-statements as shown in Fig. 7.4.

This structure is traversed in a top-down manner. Enabled optimizations are per-

formed always in the same sequence independent of the order they were handed to

the compiler. In addition, optimizations can not be performed multiple times, such

as in {optimization_A, optimization_B, optimization_A}.

To avoid a fixed phase ordering, WCC was extended such that the order of arbi-

trary sequences passed to the compiler is internally preserved, i.e., the optimizations

are executed in exactly the same order as was used for the invocation of the compiler.

The processing order of the available IR classes is still preserved, since this order is

regulated by the compiler workflow. Using this flexibility in each optimization class

allows WCC to adapt to optimization sequences that best suit given requirements.

7.4.2.2 Available Compiler Optimizations

In the following, WCC’s optimizations considered for the compiler optimization

sequence exploration are discussed in more detail.

The optimizations available within WCC are both standard ACET optimizations

and WCET-aware optimizations. This study exclusively focuses on WCC’s ACET

optimizations for two reasons. First, the impact of standard compiler optimizations

on the program’s worst-case performance should be explored to show which trade-

offs w.r.t. other objectives can be achieved. Using standard optimizations, the results

of this study are more general and allow to draw conclusions for similar (standard)

compiler frameworks. Second, WCET-aware optimizations are typically too time-

consuming since they perform a costly static WCET estimation multiple times to

keep their worst-case timing model up-to-date. This makes them less suitable for an

iterative compilation.

WCC provides 21 standard source code optimizations that are applied to the

high-level IR, hence belonging to the class HIR (cf. Fig. 7.3). A detailed overview

of WCC’s source code optimizations is provided in Table 3.1 on p. 29. In addition,

some of the optimizations are parametric. For example, function inlining allows the

specification of the maximal size of the callee function to be inlined. For the se-

quence exploration, each optimization used with a different parameter is considered

206 7 Multi-objective Optimizations

as a distinct optimization. Hence, in total, 30 source code optimizations are distin-

guished: 18 non-parametric and 12 parametric (consisting of 3 optimizations, each

to be invoked with 4 different, fixed parameters).

The next class of optimizations are assembly level optimizations operating on

a virtual low-level IR (see class vLIR in Fig. 7.3). The optimizations are listed in

columns labeled with Virtual in Table 3.2 on p. 32. Including the parametric loop

invariant code motion, which provides a conservative and an aggressive strategy, the

total number of considered optimizations amounts to 7.

Following the workflow in Fig. 7.3, the register allocation is applied next. This

step can be considered as an optimization, but unlike other optimizations, the appli-

cation of the allocator is not optional but mandatory in order to generate valid code.

The adaptive WCC supports two different register allocators which can be freely

selected. Thus, the register allocator is part of the optimization sequence that can

be constructed by the search algorithm. WCC implements a standard graph coloring

based register allocation [Bri92] and a parametric optimal allocation [GW96] (using

two different allocation strategies) leading to three different choices in total for this

optimization class. It should be mentioned that this is the first work that considers

different register allocators during an iterative compilation.

Finally, a local instruction scheduling can be applied as assembly level optimiza-

tion on the physical low-level IR, belonging to the class pLIR. The second pLIR

optimization, the generation of 16 bit instructions is not optional but always applied

by the WCC, hence it could be not considered for the iterative compilation.

It should be noted that all optimizations listed in Table 3.2 are applied in WCC’s

standard optimization level O1. An exception is the register allocation, which must

always be applied, and local instruction scheduling that is activated in O2. Also note

that the order of the optimizations in the Tables 3.1 and 3.2 does not correspond

to the order in which the optimizations are performed by WCC in the particular

optimization levels.

In addition to the discussed optimization classes, each class (except the register

allocation) contains a dummy optimization that, if passed to the compiler, has no

effect on the code. This dummy is used to address the shortcomings of genetic al-

gorithms that might show poor performance resulting from fixed-sequence length

limitations [GSC07]. By including an arbitrary number of dummy optimizations in

each sequence, the sequence length can be considered variable w.r.t. the applied

optimizations.

7.4.3 Encoding of Optimization Sequences

According to Fig. 7.2, the search algorithm maintains a population of optimization

sequences. After compiling the code, the objectives are determined and depending

on their values, some sequences are selected for the next generation. Since an ex-

haustive search of all optimizations is not feasible, evolutionary optimizations have

shown to be a suitable solution to this problem [KHW+05]. In this work, a particu-

lar class of evolutionary algorithms, namely genetic algorithms, is utilized. Genetic

7.4 Compiler Optimization Sequence Exploration 207

Fig. 7.5 Encoding of

optimization sequences

Fig. 7.6 One-point crossover

reproduction

algorithms operate on strings, called chromosomes, to represent their candidate so-

lutions. The strings may for example consist of a series of bits, characters, or integer

values.

The phase ordering naturally maps to the notion of a chromosome and can be

easily encoded as a string where each character denotes a specific optimization. This

problem representation can be easily handled by the genetic algorithm operators

mutation and crossover. Inspired by biological evolution, these operators randomly

modify chromosomes to create the next generation. For more details on genetic

algorithms, the interested reader is referred to standard literature [Hol92].

Figure 7.5 shows a possible encoding for the IR classes of optimizations when

all optimizations are chosen in a sorted order. The numbers in parentheses denote

the number of optimizations (either real or dummy optimization) in the respective

fraction of the chromosome. For the class register allocation (RA) only one opti-

mization is encoded. In the other classes, each optimization as well as the dummy

optimization is encoded by a separate character.

Based on this data, WCC’s compiler optimization level search space consists of

3131 ∗ 88 ∗ 3 ∗ 2 (in the order of ≈ 1053) possible permutations. This huge number

emphasizes that an exhaustive search is beyond any feasible computation.

Using this string encoding, the algorithm for the one-character mutation operator

works as follows:

1. Randomly choose the optimization IR class Class ∈ {HIR, vLIR,RA,pLIR}

2. In Class, choose a character c at a random position

3. Replace c by a character c′ ∈ Class, with c �= c′

Note that mutation might result in sequences where the same character (optimiza-

tion) occurs multiple times in the string. Such optimization sequences are intended

since equal optimizations applied at different positions in the optimization chain

might have a different impact on the code, thus such sequences represent unequal

individuals.

The second operator one-point crossover is performed in a standard, well known

manner by swapping two strings at a randomly chosen position. The reproduction

of two parent chromosomes using a single crossover point is depicted in Fig. 7.6.

208 7 Multi-objective Optimizations

The randomness in the evolutionary operators ensures that the genetic algorithm

does not get stuck in locally optimal solutions and is likely to reach the global opti-

mum if it is run for a sufficient number of generations.

In summary, the goal of the genetic algorithm to create optimization sequences

is twofold. The algorithm

• specifies which optimizations are included in each sequence and whether some

positions in the optimization sequences are filled with dummy optimizations hav-

ing no effect on the code.

• defines for each sequence the order of performed optimizations in each class. In

contrast to WCC’s standard optimization levels, the order inside each IR class is

arbitrary.

7.4.4 Objective Functions

During iterative compilation, the search algorithm requires information about the

quantified objectives when a particular optimization sequence is applied. This infor-

mation serves as fitness function to the evolutionary algorithm. As this work targets

the improvement of the worst-case performance of real-time systems, the WCET has

to be estimated for each generated code using the respective optimization sequence.

This objective is provided by the static WCET analyzer which is tightly integrated

into WCC. Further objectives involved in the optimization sequence exploration are

the program’s ACET and the resulting code size. The ACET is determined by an in-

struction set simulator, while the code size can be easily extracted from the assembly

code.

To accelerate the evaluation of different objectives, maps are utilized which hold

the evaluated objective values for each considered optimization sequence. Whenever

an objective of a sequence has to be determined, that was already evaluated in the

past, a costly re-evaluation is omitted and the objective value is efficiently obtained

from the map.

7.5 Multi-objective Exploration of Compiler Optimizations

The previous section discussed the adaptive WCC framework that can be involved

in compiler optimization sequence exploration. Due to the huge search space, evo-

lutionary search algorithms are used. To satisfy the requirements for the design of

modern embedded real-time systems, multiple objectives have to be considered in

concert. In this section, the multi-objective exploration of compiler optimization

sequences is discussed.

Section 7.5.1 introduces the general idea behind the multi-objective optimization

and defines basic terms. The main characteristics of different popular evolutionary

7.5 Multi-objective Exploration of Compiler Optimizations 209

multi-objective optimization (EMO) algorithms applied in this study are briefly pre-

sented in Sect. 7.5.2. Since the comparison of the quality of EMO algorithms is not

trivial due to their stochastic nature, a performance assessment based on statisti-

cal methods is performed. The results help to find the algorithm that is best suited

for a specific problem. Principles of the performance assessment are provided in

Sect. 7.5.3.

7.5.1 Multi-objective Optimization

In many real-life problems, various objectives exhibit conflicts. In case of code gen-

eration for embedded real-time systems, a trade-off between the WCET, ACET, and

code size has to be taken into account. As a consequence, optimizing the application

w.r.t. a single objective might yield unacceptable results for other objectives, thus

an ideal multi-objective solution, which simultaneously optimizes each objective,

does not exist. To cope with this problem, a set of solutions is determined. These

solutions have the characteristics that on the one hand, each solution satisfies the

objectives at a tolerable level and on the other hand, none of the solutions is domi-

nated by another solution. Solutions meeting these characteristics are called Pareto

optimal solutions.

7.5.1.1 Pareto Front Approximation

Without loss of generality, it should be assumed that all objectives are to be mini-

mized. A translation into a maximization problem can be easily achieved by mul-

tiplying the objectives by −1. Pareto optimality, dominance, and Pareto sets are

formally defined as follows [LTZ+02]:

Definition 7.1 (Pareto optimality, dominance, Pareto set) Let X denote the decision

space (or search space), Z represents the objective space, f : X → Z is a function

that assigns each decision vector x ∈ X a corresponding objective vector z = f (x) ∈

Z, and m denotes the number of objectives under consideration. A decision vector

x∗ ∈ X is Pareto optimal iff there is no other x ∈ X that dominates x∗. x dominates

x∗, denoted as x ≻ x∗, iff fi(x) ≤ fi(x
∗), ∀i = 1, . . . ,m and fi(x) < fi(x

∗) for at

least one index i. The set of all Pareto optimal decision vectors X∗ is called Pareto

set.

In other words, the decision vectors of the Pareto set can not be improved

w.r.t. any other objective function without worsening at least one of the other ob-

jectives. Based on Definition 7.1, the Pareto front is defined as follows:

Definition 7.2 (Pareto front) Let X∗ be a Pareto set. F ∗ = f (X∗) is the set of all

Pareto optimal objective vectors and is denoted as the Pareto front.

210 7 Multi-objective Optimizations

Fig. 7.7 Pareto fronts

In practice, the generation of a set of decision vectors representing the entire

Pareto front is often infeasible due to several reasons. For example, the number of

Pareto optimal decision vectors may be too large and even the determination of a

single Pareto optimum may be N P -hard [KTZ05]. Therefore, the goal is to find a

Pareto front approximation that minimally deviates from the Pareto optimal front.

The relationship between a Pareto optimal front, its approximation, and dominated

solutions for a minimization problem involving two objective functions f1 and f2

is depicted in Fig. 7.7.

In the compiler domain, the Pareto front approximation can be used for two dif-

ferent purposes. On the one hand, it helps compiler writers to find suitable optimiza-

tion levels. By constructing an approximation set for a large number of benchmarks,

particular points from this set that satisfy given trade-offs between the considered

objectives can be chosen. The optimization sequences that represent these points

may be implemented as optimization levels into the compiler and can be used in the

future for new applications. This is also the scenario that is pursued in this work.

On the other hand, Pareto front approximations can be exploited by compiler users

to tune the optimization sequence towards a single application. In contrast to the

construction of optimization levels, the approximation set is computed for a single

application and the most suitable solutions are selected.

7.5.2 Evolutionary Multi-objective Optimization Algorithms

In the past, it was shown that randomized evolutionary multi-objective optimization

(EMO) algorithms are best suited for the approximation of Pareto fronts [KCS06].

The algorithms basically differ in the fitness assignment, their strategy to maintain

elitist solutions which will survive in the next generation, and their promotion of

diversity, i.e., if a uniform distribution of solutions over the Pareto front can be

attained.

The goal of this study is to find the evolutionary multi-objective algorithm that

performs best for WCC’s phase ordering problem. Other works [HE08] studying

7.5 Multi-objective Exploration of Compiler Optimizations 211

the impact of multi-objective optimizations in the context of iterative compilation

exclusively explored a single EMO algorithm. Thus, it is not clear if the selected

algorithm is suitable or if another optimizer would perform better in this problem

domain. To cover a broad spectrum of principles used by evolutionary algorithms, a

large study was conducted where three popular and credible algorithms, which have

been exploited for different application domains in the past, are evaluated. These

state-of-the-art optimization algorithms were chosen since each of them exhibits a

different functionality. In the following, each algorithm will be briefly introduced

and its specific features will be pointed out.

1. Indicator Based Evolutionary Algorithm:

In contrast to other algorithms, the Indicator Based Evolutionary Algorithm

(IBEA) [ZK04] determines fitness values by comparing individuals based on bi-

nary performance measures (called indicators) such as the additive ǫ-indicator.

This technique has two advantages. First, the algorithm can be adapted to the

user’s preferences. Second, a preservation of the diversity of solutions is not re-

quired.

2. Non-dominated Sorting Genetic Algorithm 2:

The fitness assignment of the computationally fast Non-dominated Sorting

Genetic Algorithm (NSGA-II) [DAPM00] involves a non-dominated sorting of

individuals. Besides the low computational requirements, NSGA-II is a parame-

terless approach. The only parameter defines the number of best solutions that a

selection operator determines from a mating pool combining the parent and child

population.

3. Strength Pareto Evolutionary Algorithm 2:

The elitist Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [ZLT01] has

three main characteristics. First, the fitness assignment for each individual i in the

archive (set of Pareto solutions among all so far considered generations, used for

creation of new generations) is based on the number of solutions that i dominates.

Second, the density estimation utilizes a k-th nearest neighbor method. Finally,

an enhanced archive truncation method ensures that extreme points are preserved

in the solution space.

7.5.3 Statistical Performance Assessment

The typical dilemma with multi-objective optimizations is indicated in Fig. 7.8. As

shown on the left-hand side, numerous problem-specific modules exist. These mod-

ules serve as a representation of the problem as well as for the evaluation and vari-

ation of the solutions. An example is a compiler or a design space exploration for

network processor architectures [TCG+02]. Due to their purpose, these modules are

often called variators. To approximate Pareto optimal solutions, each of these mod-

ules can be arbitrarily combined with any evolutionary multi-objective optimization

algorithm.

212 7 Multi-objective Optimizations

Fig. 7.8 Combining

optimization problems and

algorithms

While an algorithm expert is interested in the performance of his novel optimizer

on real-life problems, application engineers are looking for an EMO algorithm that

generates best results for their specific problem. Typically, each user group repre-

sents experts of their own domain, lacking an in-depth knowledge of the other field.

Thus, it is good practice to separate the optimization problem from the algorithm and

allow arbitrary combinations of both parts for an independent performance evalua-

tion.

For the exploration of compiler optimization sequences, a manual combination

and evaluation of WCC and the discussed EMO algorithms is time-consuming and

error-prone. Moreover, a reliable comparison of the quality of the stochastic multi-

objective optimizers is not trivial. An example are crossing Pareto fronts where a

visual comparison is not intuitive anymore. To this end, an automatic and reliable

performance assessment is required.

Since many EMO algorithms (including those that are considered in this study)

are based on a randomized search, a simple comparison of the approximated Pareto

optimal solutions generated for a specific seed is not sufficient to judge about the op-

timizers’ performance. In order to deal with the stochastic nature of the algorithms,

each algorithm has to be run multiple times for each problem with different random

seeds to generate a sample of different Pareto approximation sets. These sets can be

statically analyzed, i.e., a statistical hypothesis testing can be conducted to indicate

if the results are significantly different [KTZ05]. A result is considered significantly

different if it is unlikely that it occurred by chance.

To deal with the fact that complete Pareto fronts can not be determined but have

to be approximated, it is common practice to assume that the given data is consistent

with a simpler explanation, the so-called null hypothesis H0, and then to test how

likely this assumption is. A possible null hypothesis could be of the form “sets A

and B are drawn from the same distribution”. Using statistical hypothesis testing, the

assumed null hypothesis can be rejected, indicating that there is a likely difference

between A and B . For this purpose, statistical testing computes the p-value. This

value represents the probability of obtaining a difference between two sets which is

at least as large as the one that was actually observed, assuming the null hypothesis

is true. The lower the p-value, the less likely the result.

In general, one rejects the null hypothesis if the p-value is smaller than or equal

to a specific threshold, known in literature as the significance level α. A widely

7.5 Multi-objective Exploration of Compiler Optimizations 213

Algorithm 7.1 Statistical hypothesis testing

Input: Significance level α

Output: Assumption about hypotheses

1: Formulate the null hypothesis H0 and the alternative hypothesis HA

2: Determine test statistics that allow an assessment of the truth of H0

3: Use appropriate statistical testing for assumed hypotheses to compute the

p-value

4: result =

{

reject H0 in favor of HA, if p-value ≤ α

accept H0, otherwise

5: return result

used value for α is 5%. Using this level, results that are only 5% likely or less are

considered extraordinary. Since the null hypothesis indicates whether it is likely that

two approximation sets are equal, an opposite hypothesis, the alternative hypothesis

HA, can be implied in addition. Using this hypothesis, the preference of samples can

be tested. For example, the alternative hypothesis may state that “sample A comes

from a better distribution than B”.

The alternative hypothesis is taken to be true (accepted) if and only if the null hy-

pothesis is rejected. Which alternative hypothesis is implied, depends on the statisti-

cal test. For example, the Mann-Whitney rank sum test [Con71], which is conducted

in this book, considers samples pairwise: test(A,B). The underlying alternative hy-

pothesis is that A is better than B .

In general, hypothesis testing consists of four steps as shown in Algorithm 7.1.

Test statistics used in the second step designate an appropriate numerical summary

of the evaluated data sets, i.e., the sets are reduced to a single or a small number of

representative values. The following example demonstrates this approach.

Example 7.1 It should be tested whether the Pareto front approximation set gener-

ated by algorithm A is better than that of algorithm B . This statement is reflected by

the alternative hypothesis. The assumed null hypothesis states that none of the sets

is better than the other. Using statistical hypothesis testing, the following p-values

for the test statistics TA and TB for sets A and B , respectively, are computed:

test(TA, TB) = 0.002 ∧ test(TB , TA) = 0.998

With respect to the significance level of 5% (α = 0.05), the null hypothesis is re-

jected for the first test (p-value = 0.002) in favor of the alternative hypothesis.

Hence, the sets significantly differ and the results suggest that A may be better

than B .

As can be seen in Algorithm 7.1, the assessment of statistical significance of the

considered EMO algorithms relies on test statistics. In the following, two different

approaches for the computation of test statistics are presented.

214 7 Multi-objective Optimizations

7.5.3.1 Dominance Ranking

The first approach is based on dominance ranking [KTZ05]. Its main idea is

to rank the points of the approximation sets based on the dominance rela-

tion. To this end, for each considered EMO algorithm i ∈ {1, . . . , q}, a num-

ber of runs ri ≥ 1 is performed, generating a collection C of approximation sets

A1
1,A

1
2, . . . ,A

1
r1

, . . . ,A
q

1 , . . . ,A
q
rq . From this collection C, each set z is assigned a

rank based on the dominance relations by counting the number of sets which are

better than z. The dominance relation better (⊳) in the context of approximation

sets is defined as follows:

Definition 7.3 (Better relation ⊳) Set A is better than B , denoted as A ⊳ B , iff

every z2 ∈ B is weakly dominated by at least one z1 ∈ A and A is different from B .

z1 weakly dominates z2 iff z1 is not worse than z2 in all objectives.

The rank of each approximation set contained in the collection C is computed as

follows:

rank(Ci) = 1 + |{Cj ∈ C : Cj ⊳ Ci}|

The lower the rank, the better the corresponding approximation set with respect

to the entire collection. Using these results, each approximation set can be reduced

to a single number, representing the respective test statistics. These statistics are

utilized in step 2 of Algorithm 7.1 in order to determine whether these values sig-

nificantly differ, i.e., whether the ranks for one algorithm are significantly smaller

than the ranks for another EMO algorithm.

Using dominance ranking, the question whether one algorithm performs better

than another can be answered. However, its disadvantage is that no quantitative

statements about the difference in quality of the EMO algorithms can be made.

Therefore, it is recommended to perform complementary tests for the performance

assessment that allow a quantification of the results in order to further characterize

the differences in the approximation set distributions [KTZ05]. For this purpose, the

second approach of WCC’s statistical testing exploits quality indicators.

7.5.3.2 Hypervolume Indicators

A quality indicator I is a mapping from the set of all approximation sets � to the

set of real numbers:

I : � → R

In contrast to dominance ranking, the indicators provide a quantitative measure.

That is, given two approximation sets A and B , a comparison of the indicator val-

ues I (A) and I (B) allows to draw the conclusion to which extent one algorithm

outperforms another.

A popular quality indicator, which is also used in this study, is the hypervolume

indicator IH [ZT99]. This indicator computes the hypervolume of the portion of

7.5 Multi-objective Exploration of Compiler Optimizations 215

Fig. 7.9 Example for

hypervolume indicator

the objective space Z that is weakly dominated by an approximation set A, i.e., any

objective vector in Z is weakly dominated by at least one objective vector in A.

To measure the hypervolume, the objective space is bounded by a reference point

R that has to be weakly dominated by all objective vectors in A. The hypervolume

indicator is illustrated in Fig. 7.9.

Larger values of the hypervolume indicator correspond to higher quality. Thus,

for two sets A and B , the result IH (A) > IH (B) implies that A is better than B with

respect to the hypervolume indicator. The difference of the hypervolume indicators

quantify the difference in the quality of the sets.

However, this information comes at the cost of generality. In contrast to domi-

nance ranking, the results of quality indicators represent specific assumptions about

the preferences of the decision maker, called preference information. Hence, these

indicators should be used as a complementary technique to dominance ranking

which yields statements independent of any preference information.

Computation of the hypervolume indicator has been shown to be exponential

in the number of objectives and polynomial in the number of objective vectors in

the approximation sets [KTZ05]. For the considered problem of the optimization

sequence exploration with typically small approximation sets, the optimization run

time of this indicator is negligible.

To address the stochastic nature of the EMO algorithms, the capability of quality

indicators to reduce the dimension of an approximation set to a single value is ex-

ploited. Similar to dominance raking, the algorithms are run with different random

seeds and the generated approximation sets are collected into a set CI . Based on this

collection, an appropriate reference point is selected and the hypervolume indicators

are computed. Finally, statistical testing is conducted on these test statistics.

7.5.3.3 Statistical Hypothesis Testing

WCC’s performance assessment of the stochastic multi-objective optimizers is

based on recommendations proposed in [KTZ05]. Since the results of a single as-

sessment method are often not sufficient, the two previously mentioned approaches

are applied in concert and their results are related to each other in order to obtain

reliable performance statements. The following steps are carried out:

216 7 Multi-objective Optimizations

1. Preprocessing: The computed approximation sets of the three considered EMO

algorithms are collected for runs with different seeds. Based on this collection C,

the lower and upper bounds of the objective vectors are computed. The bounds

are used to normalize all objective vectors, such that all values lie in the interval

[1,2]. Moreover, based on all Pareto solutions in C, a non-dominated front of

objective vectors is determined, serving as reference set for subsequent steps.

The reference set can be seen as an overall Pareto front approximation considered

for all optimizer results.

2. Dominance ranking: For each normalized optimizer approximation set, the

dominance ranking procedure is applied for each pair of the considered EMO

algorithms. The determined test statistics are assessed using the Mann-Whitney

test (cf. step 2 in Algorithm 7.1) to compute the p-value.

3. Application of the hypervolume indicators: For each normalized approxima-

tion set and the reference set, the quality indicator hypervolume is computed for

each pair of the EMO algorithms. The results are visualized to allow a conve-

nient evaluation. Furthermore, statistical tests (cf. Algorithm 7.1) are carried out

based on the Mann-Whitney test.

7.6 Experimental Results for Optimization Exploration

To indicate the efficacy of the found multi-objective optimization sequences, evalu-

ation on a large number of different real-life benchmarks was performed. Similar to

the evaluation of the machine learning based heuristics in Chap. 6, the experiments

were conducted as cross validation. One set of benchmarks, the training set, was

used during the multi-objective search. The determined sequences are subsequently

evaluated on unseen benchmarks, representing the test set. This approach enables

an estimation of the generalization ability, i.e., the results suggest which improve-

ments of the objective functions can be expected for unseen programs. Moreover,

the cross validation conforms with the ideology of standard compiler optimization

levels which are developed to perform well on a large number of future programs.

As in the previous chapters, the benchmarks stem from DSPstone [ZVS+94],

MediaBench [LPMS97], MiBench [GRE+01], MRTC [MWRG10], NetBench

[MMSH01], and UTDSP [UTD10]. The large variety of benchmark suites empha-

sizes WCC’s focus on generality. By covering a large number of different embedded

systems applications during the search, future embedded software should benefit

in a similar fashion from WCC’s novel optimization sequences. For the present

study, the training and test set each consisted of 35 benchmarks, exhibiting a simi-

lar distribution, i.e., from each benchmark suite approximately the same number of

benchmarks was selected for each set.

The fully automated workflow of the employed framework for the multi-

objective exploration of compiler optimizations is depicted in Fig. 7.10. The process

starts with the variator that generates random compiler optimization sequences,

representing the initial population. The optimizations are encoded as strings. The

7.6 Experimental Results for Optimization Exploration 217

Fig. 7.10 Adaptive WCC for multi-objective compiler optimization exploration

sequences are passed to the adaptive WCC framework which is extended by an

adaptive optimizer that can perform code transformations in an arbitrary order (cf.

Sect. 7.4.2). WCC uses these sequences to generate code which is processed by the

WCET analyzer aiT and the TriCore simulator tsim. The estimated WCET, ACET,

and code size (obtained from LLIR) are returned to the variator. This way, the varia-

tor manages for each optimization sequence the corresponding objective values. For

distinction, each sequence is indexed using a unique ID.

In the next step, for each evaluated optimization sequence of a particular gen-

eration, the variator passes the corresponding indices and objective vectors to the

evolutionary multi-objective algorithms. Exclusively based on the objective vectors,

the EMO algorithms compute the approximated Pareto front and return the respec-

tive indices of the Pareto solutions back to the variator. The returned solutions are

finally used by the mutation and crossover operators to generate individuals for the

next generation of optimization sequences. Moreover, the computed Pareto front

approximations serve as input to the statistical performance assessment.

Both, the collection of the EMO algorithms and the performance assessment

are part of the Platform and Programming Language Independent Interface for

Search Algorithms (PISA) framework [BLTZ03]. An existing PISA variator was

re-implemented in order to be applicable with the WCC framework.

For the conducted experiments, the following parameters were used:

• the algorithms IBEA, NSGA-II, and SPEA-2 were run 5 times with different

random seeds

• for each run, each population comprises 50 individuals (optimization sequences)

• the archive [BLTZ03] holds 25 individuals

218 7 Multi-objective Optimizations

Table 7.1 Dominance ranking results for 〈WCET,ACET〉 and 〈WCET,Code Size〉 using Mann-

Whitney rank sum test

〈WCET,ACET〉 〈WCET,Code Size〉

IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2

IBEA – 0.760 0.949 – 0.5 0.5

NSGA-II 0.240 – 0.011 0.5 – 0.016

SPEA2 0.051 0.899 – 0.5 0.984 –

• a one-character mutation (cf. Sect. 7.4.3) with a probability of 10%

• a one-point cross-over probability of 90%

• optimization was run for 50 generations

• statistical performance assessment with a significance level α = 5%

These are common settings for the genetic algorithms used for the exploration of

the compiler optimization space [ZKW+04, HE08].

In the following, the Pareto front approximations found by the three considered

EMO algorithms are evaluated. The multi-objective optimizations are carried out

for the following pairs of objectives: 〈WCET,ACET〉 and 〈WCET, code size〉. The

consideration of 2-dimensional Pareto fronts is motivated by two issues:

• Since the impact of standard optimizations is unknown so far for the trade-off

between the WCET and other objectives, this book is the first case study to inves-

tigate this issue. The results help to understand the basic interferences between

different objectives. Starting with the investigation of more than two objectives

may hide some objective interferences, leading to a lack of the fundamental un-

derstanding.

• Compiler writers typically consider a trade-off between two objective functions,

thus the results of this work are more valuable for them than the presentation of

complex, often not intuitive, objective interferences.

7.6.1 Statistical Performance Assessment

Table 7.1 presents results for dominance ranking computed by the Mann-Whitney

rank sum test for the possible combinations of the considered algorithms IBEA,

NSGA-II, and SPEA2. Columns 2–4 indicate p-values for the objective func-

tions 〈WCET,ACET〉, while columns 5–7 present p-values for the objectives

〈WCET, code size〉.

The statistical tests are performed pairwise w.r.t. the alternative hypothe-

sis [KTZ05] that the dominance ranks for the algorithms in the first column are

significantly better than those for the algorithm in the following columns.

For the objectives 〈WCET,ACET〉, the p-value of 0.011 in the fourth row and

fourth column denotes that the difference between NSGA-II and SPEA2 is signifi-

7.6 Experimental Results for Optimization Exploration 219

Fig. 7.11 Distribution of hypervolume indicator for different objective pairs

Table 7.2 Hypervolume indicator results for 〈WCET,ACET〉 and 〈WCET,Code Size〉 using

Mann-Whitney rank sum test

〈WCET,ACET〉 〈WCET,Code Size〉

IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2

IBEA – 0.899 0.889 – 0.961 0.803

NSGA-II 0.011 – 0.046 0.039 – 0.041

SPEA2 0.111 0.954 – 0.197 0.959 –

cant, implying that NSGA-II outperforms SPEA2. For other optimizer pairs, no sig-

nificant differences were observed. The results for the objectives 〈WCET, code size〉

lead to the same conclusion. NSGA-II outperforms SPEA2 since the dominance

ranking results significantly differ (p-value = 0.016) w.r.t. α = 0.05. Hence, NSGA-

II seems to be the most promising EMO for the given problems. There are also dif-

ferences between other combinations of the algorithms but they are not significant.

The distribution of the results of the hypervolume indicator for different ob-

jective pairs and different algorithms is depicted as boxes in Fig. 7.11, showing

50% of the results around the median. In Fig. 7.11(a), the results for the objec-

tive pair 〈WCET,ACET〉 indicate that NSGA-II covers a larger hypervolume than

IBEA and SPEA2 (box capacity is larger). Thus, it can be assumed that for the

conducted experiments, NSGA-II computes best optimization sequences exhibit-

ing the highest performance. Comparable results are achieved for the objective pair

〈WCET, code size〉, as can be seen in Fig. 7.11(b). The results provide a further

hint that the NSGA-II algorithm outperforms IBEA and SPEA2 for the search of

the compiler optimization space. However, to validate this assumption, statistical

significance testing is required.

To test statistical significance of the quality indicator, Table 7.2 shows results

for the indicators’ hypervolume utilizing the statistical Mann-Whitney tests com-

puted for the objective pairs 〈WCET,ACET〉 and 〈WCET, code size〉. Similar to

the dominance ranking test, the p-values in the table are computed w.r.t. the alter-

native hypothesis that the indicator results for the algorithms in the first column are

significantly better than those for the algorithm in the following columns. It can be

220 7 Multi-objective Optimizations

Fig. 7.12 NSGA-II Pareto front approximation for 〈WCET,ACET〉

observed that there are statistically significant differences for the significance level

of 5% using the hypervolume indicator.

For the objectives 〈WCET,ACET〉, NSGA-II outperforms IBEA (p-value =

0.011) and SPEA2 (p-value = 0.046). For other pairwise tests, no statistical sig-

nificances was discovered. Compared to the dominance ranking results, which also

signified a preference of the NSGA-II algorithm, NSGA-II seems to be the best

choice for the search of Pareto optimal sequences for the objectives WCET and

ACET. These results conform with results reported in [KBT+04] where the authors

observed that NSGA-II typically outperforms SPEA2 for problems with two objec-

tives.

Comparable results for the statistical significance testing of the hypervolume in-

dicator are achieved for 〈WCET, code size〉. As can be seen in the last three columns

of Table 7.2, NSGA-II outperforms IBEA and SPEA-II since the respective p-values

of 0.039 and 0.041 are smaller than the significance level, thus allowing to reject the

null hypothesis in favor of the alternative hypothesis. Hence, NSGA-II also promises

to be the best algorithm for the optimization sequence exploration w.r.t. the WCET

and code size.

7.6.2 Analysis of Pareto Front Approximations

Figure 7.12 visualizes the Pareto front approximations for the training set generated

by the algorithm NSGA-II which achieved best performance assessment results for

the objective functions WCET and ACET. The front approximations are depicted

for the 1st, 20th, and 50th generation and contain the accumulated Pareto solutions

of the 5 runs of the algorithm with different random seeds. The final front for the

50th generation consists of 19 Pareto solutions. The horizontal axis indicates the

relative WCET estimation w.r.t. the non-optimized code, i.e., 100% represents the

WCET with all disabled WCC optimizations. In a similar fashion, the vertical axis

represents the relative ACET w.r.t. to the non-optimized code. Based on this figure,

the following can be concluded:

7.6 Experimental Results for Optimization Exploration 221

Fig. 7.13 NSGA-II Pareto front approximation for 〈WCET, code size〉

• It is worthwhile to invest time in the evolutionary search. While the first gener-

ation achieves average WCET and ACET reductions of 36.9% and 35.0%, re-

spectively, for all benchmarks of the training set, the 50th generation reduces the

WCET and ACET of up to 42.9% and 42.8%, respectively.

• The discovered sequences significantly outperform the standard optimization lev-

els, having the (WCET,ACET)-coordinates (due to space constraints not included

in the figure) (96.0,89.1) for O1, (95.2,90.4) for O2, and (88.4,84.7) for O3.

For example, the performance of O3 is outperformed by 31.3% and 27.5% for

WCET and ACET, respectively, when the extreme situations (circled in Fig. 7.12)

are selected.

• Standard compiler optimizations have a similar impact on the WCET and ACET.

This observation provides an important answer to the question which concerns

all designers of real-time systems: which impact can be expected from standard

ACET optimizations on the system’s worst-case behavior? This case study shows

that similar effects on the average-case and worst-case behavior are likely.

• Even though the effect of standard optimizations on the WCET and ACET is

comparable, the results emphasize the importance of the development of WCET-

aware optimizations. If a maximal WCET reduction is desired, novel optimiza-

tions are required that focus on an aggressive WCET reduction at the cost of a

degraded ACET.

The Pareto front approximation computed by NSGA-II for the objectives WCET

and code size is depicted in Fig. 7.13. The relative WCET estimation w.r.t. the non-

optimized code (corresponds to 100%) is represented by the horizontal axis, while

the relative code size w.r.t. to the non-optimized code is shown on the vertical axis.

Again, Pareto front approximations of the 1st, 20th, and 50th generation are visu-

alized and are constructed of Pareto solutions found in the 5 runs of the algorithm.

The 50th-generation front comprises 53 points. Compared to the Pareto front ap-

proximations for 〈WCET,ACET〉, the interpretation equals in two points:

• The evolutionary search pays off for both objective functions. For the first gener-

ation, a WCET reduction of 21.2% at the cost of the code size increase of 197.4%

can be achieved (left-most solutions of the corresponding front). If code size is

222 7 Multi-objective Optimizations

the crucial objective, a code size reduction of 0.4% with a simultaneous WCET

increase of 4.5% can be observed. For the 50th generation, the following extreme

solutions were observed (marked by circles): a WCET reduction of 30.6% with

a simultaneous code size increase of 133.4%, or a WCET degradation of 9.6%

with a simultaneous code size reduction of 16.9%. Hence, the results for later

generations yield substantially better results.

• The Pareto solutions outperform WCC’s standard optimization levels which are

depicted in Fig. 7.13. The standard optimization levels perform well for the code

size reduction. Using O2, which does not include code expanding optimizations, a

code size reduction of 14.9% can be achieved on average, while NSGA-II reduces

the code size by up to 16.9%. Moreover, WCC’s maximal WCET reduction of

13.6% found by O3 can be outperformed by the found Pareto solutions by 17.0%,

amounting to a WCET reduction of 30.6% as found by NSGA-II.

However, there are also two major differences compared to the results of the

objective pair 〈WCET,ACET〉. The WCET and the code size are typical conflict-

ing goals. If a high improvement of one objective function is desired, a significant

degradation of the other objective must be accepted. This is an important conclusion

for memory-restricted real-time systems. To achieve a high WCET reduction, the

system must be possibly equipped with additional memory to cope with the result-

ing code expansion. Also, compiler writers developing WCET-aware optimizations

must be aware of these conflicting objectives and should always consider the im-

pact of their optimizations on the code size. The second difference is that standard

compiler optimizations available in WCC are not capable of accomplishing a no-

table code size decrease. Therefore, tailored optimizations are required if code size

reduction is a primary goal.

7.6.3 Analysis of the Optimization Sequences

A closer look at the Pareto optimal optimization sequences for the objective pair

〈WCET,ACET〉 reveals the following observations:

• Most of the optimization sequences contain an aggressive loop unrolling or func-

tion inlining in the very beginning. Aggressive means that loops/callees with a

maximal size of 200 expressions (maximal parameter value considered during ex-

ploration) were transformed. This observation conforms with results of Sects. 4.5

and 6.4 where it was shown that these optimizations are enabling optimizations.

• In addition to these two optimizations, the found Pareto sequences often contain

the optimization procedure cloning. Since cloning, unrolling, and inlining are all

contained in WCC’s optimization level O3, it can be concluded that this standard

optimization level holds promising optimizations for maximal WCET/ACET re-

duction.

• Other optimizations frequently found in the Pareto solutions are: instruction

scheduling applied at physical LLIR, ILP-based register allocation (hence the op-

timization’s complexity pays off), and loop-invariant code motion (the potential

of this important optimization was studied in Sect. 6.5).

7.6 Experimental Results for Optimization Exploration 223

• Optimizations that were infrequently contained in the sequences—hence can be

considered less beneficial—are: instruction scheduling applied at virtual LLIR,

loop collapsing, life range splitting, and loop deindexing (cf. Sect. 7.2).

• There is no clear separation which optimizations are best suitable for a particular

objective, hence in general many optimizations have a comparable effect on the

estimated WCET and ACET.

The analysis of the Pareto optimal optimization sequences for the objective pair

〈WCET, code size〉 leads to the following observations:

• Function inlining can often be found in code size-oriented sequences. Although

widely believed that the optimization always yields a code expansion, inlining

can also reduce code size if functions, which are invoked once in the code, are

inlined and further optimized (cf. Sect. 4.5).

• Especially for the code size-oriented solutions, many sequences begin with pro-

cedure cloning of small functions (limited to 20 expression). A possible explana-

tion is that cloning of small function has a negligible impact on the code size but

may significantly improve the estimated WCET (cf. Sect. 4.3), thus overall good

Pareto solutions can be generated that way. Moreover, some of the clones can be

afterwards inlined, possibly leading to a code size decrease.

• In contrast to the WCET-oriented sequences, none of the code size-oriented op-

timization strategies contained loop unrolling. Hence, it can be expected that un-

rolling is likely to yield a code size increase.

• Loop unswitching is another optimization that is rarely found in the code size-

oriented sequences. As shown in Sect. 4.6.6, unswitching also increases code

size, thus should be used with caution if code size is critical.

• As shown above, the objectives WCET and code size have conflicting goals.

Therefore, some standard optimizations, such as peephole optimizations or dead-

code elimination, have a positive effect on both objectives, while other optimiza-

tions should be applied only if improvements of one objective at the cost of the

other one can be tolerated.

7.6.4 Cross Validation

To estimate the generalization ability of the discovered sequences, a cross validation

was performed, i.e., optimization sequences found by NSGA-II in the 50th genera-

tion for the training set are applied to unseen benchmarks from the test set.

Among the large number of solutions constructing a Pareto front approximation,

three solutions are discussed in more detail since they provide typical optimization

scenarios. If the system designer is interested in a maximal reduction of a particu-

lar objective function, an optimization sequence represented by one of the extreme

points from the fronts should be considered. Another alternative is to choose a Pareto

solution from the middle of the front which represents a trade-off between the re-

spective objectives.

224 7 Multi-objective Optimizations

Fig. 7.14 Cross validation for 〈WCET,ACET〉

For the objective pair 〈WCET,ACET〉, the optimization sequences defined by

the extreme points in Fig. 7.12 as well as the trade-off, which is represented by the

solution with the coordinates (58.7,60.9), were evaluated. These three optimization

sequences were applied to each of the 35 benchmarks from the test set. For each

benchmark, the results for the estimated WCET and ACET using the new sequence

were compared with the WCET/ACET results when the benchmark was compiled

with WCC’s highest optimization level O3. The averaged results for all benchmarks,

with 100% being the base line representing results achieved with O3, are shown in

Fig. 7.14. Following results can be observed:

• Using the WCET-oriented optimization sequence, which is represented in

Fig. 7.12 by the left-most Pareto solution with the WCET, ACET coordinate

(57.1,62.8), outperforms WCC’s default optimization level O3 by 28.0% and

18.0% for the estimated WCET and ACET reduction, respectively. It can also be

seen, that the estimated WCET was improved at the cost of ACET.

• The optimization sequence (labeled with WCET-ACET Trade-off) was deter-

mined by NSGA-II as a compromise between the WCET estimation and ACET

for the training set (see solution with coordinate (58.7,60.9) in Fig. 7.12). For

the test set, the results are slightly worse than for the training set, since a relative

WCET estimation of 76.2% and a relative ACET of 80.5% were observed. How-

ever, the optimization level O3 can still be significantly outperformed by 23.8%

and 19.5% for WCET and ACET, respectively. Hence, the discovered optimiza-

tion sequence is a promising candidate for the substitution of WCC’s optimization

level O3.

• The optimization sequence (coordinate (59.9,57.2) in Fig. 7.12) aiming at the

maximal ACET reduction (labeled with ACET-oriented) could achieve the max-

imal ACET reduction of 23.4% among the considered optimization strategies.

This sequence has even a slightly better impact on the average WCET than on the

average ACET. Hence, again O3 can be improved.

Analogously, Fig. 7.15 reflects the performance of the sequences found for

〈WCET,Code Size〉 in Fig. 7.13. Using the WCET-oriented optimization scenario,

7.7 Summary 225

Fig. 7.15 Cross validation for 〈WCET,Code Size〉

WCET reductions of 17.4% can be achieved on average for the test set. However,

this improvement comes at the cost of a code size increase of 58.7%. The opti-

mization sequence labeled with WCET-Code Size Trade-off improves the WCET by

7.8% w.r.t. O3 but also results in a slight code size increase of 1.0%. Concerning the

Code Size-oriented strategy, the WCET and code size can be reduced by 4.25% and

1.9%, respectively, compared to O3.

7.6.5 Optimization Run Time

The run time of the multi-objective exploration of optimization sequences was mea-

sured for each EMO algorithm. Five optimization runs with different seeds, each

computing 50 generations, took about 6 days on a Intel Quad-Core Xeon 2.4 GHz

machine with 8 GB RAM. This optimization run time might seem long. However, it

should be noted that these automatic tests have to be performed once off-line, while

the results (optimization sequences) can be re-used without additional overhead for

a large number of devices. Therefore, the high performance requirements imposed

on today’s systems fully justify the observed optimization times.

The application of the new optimization sequences found by the EMO algorithm

NSGA-II does not considerably increase the compilation time compared to WCC’s

O3. In some cases, like for an extensive loop unrolling or function inlining, slight

increases of the compilation time (typically few seconds) could be observed.

The techniques presented in this chapter were published in [LPF+10].

7.7 Summary

Interactions between optimizations are pervasive in compilers, turning the search for

promising optimization sequences into a challenging task. To relieve the user from

this cumbersome search, compilers are usually equipped with standard optimization

226 7 Multi-objective Optimizations

levels. However, various studies have observed that these levels may exhibit poor

performance or even a performance degradation.

There are several reasons why compilers fail to deliver high performance. One

reason is the application of insufficient compiler optimization heuristics that can be

automatically improved by supervised machine learning, as shown in Chap. 6. An-

other reason is the rigid structure of today’s optimizing compilers with their prede-

fined optimization order that does not allow to adapt to the compiled programs and

the underlying hardware. Moreover, the search space of compiler optimizations is

too large to be manually or exhaustively explored for good optimization sequences.

Besides these typical problems found in traditional compilers, embedded real-time

systems impose new requirements on compilers: due to their multi-objective nature,

multiple (often conflicting) objectives have to be taken into account during code

generation.

This chapter tackles the three latter problems. To provide flexibility within the

optimizing compiler, WCC was extended towards an adaptive compiler. This way,

arbitrary optimization sequences can be generated that best adopt to the require-

ments of specific programs and hardware configurations. To cope with the large

search space but also to address the multi-objective nature, WCC employs a multi-

objective evolutionary search to find Pareto optimal optimization levels. The pre-

sented framework is fully automated and is transparent to the compiler, the applica-

tions, the hardware, and the considered objective functions. Moreover, unlike other

works, the proposed approach performs a reliable assessment of the quality of the

three considered stochastic multi-objective optimizers based on statistical hypothe-

sis testing.

The search for promising optimization sequences was conducted for the objective

pairs 〈WCET,ACET〉 and 〈WCET, code size〉. To analyze generality of the results,

i.e., to estimate how well the identified optimization sequences will perform in the

future for unseen programs, a cross validation was performed: best sequences were

determined for a training set of benchmarks and afterwards evaluated on a new

test set. The results clearly show that WCC’s highest optimization level O3 can

be significantly outperformed when the found sequences are applied. For the test

set, average WCET and ACET reductions of up to 28.0% and 23.4%, respectively,

compared to O3 were observed. Compared to the non-optimized code, this translates

to an average reduction of the WCET and ACET by 37.1% and 38.1%, respectively.

Considering the code size, the average code size of the benchmarks from the test set

could be reduced by 1.9% compared to O3.

This very first comprehensive analysis of the impact of standard compiler op-

timizations on crucial objectives of embedded real-time systems allows to draw

several conclusions. First, the results point out the relation between different ob-

jectives. The impact of standard optimizations on the worst-case and average-case

performance is similar. Hence, this insight helps to clarify the real-time system de-

signers’ uncertainty about the influence of standard compiler optimizations on the

program’s WCET. Second, the observed code size decrease achieved with standard

optimizations was marginal, emphasizing the need for tailored optimizations if a

code reduction is desirable. Third, it was indicated that the WCET and code size

7.7 Summary 227

are conflicting goals, i.e., high WCET reductions are often accompanied by a sub-

stantial code expansion. As a consequence, designers of WCET-aware optimizations

should be aware of this fact and provide mechanisms to control effects on the code

size.

Last but not least, valuable insights for compiler designers concerning promising

optimization sequences were provided. For an effective reduction of the WCET and

ACET, an aggressive inlining and unrolling, procedure cloning, ILP-based register

allocation, instruction scheduling after register allocation, and loop-invariant code

motion seem to be beneficial. On the other hand, optimization sequences aiming at

a reduction of the WCET and code size should include a careful function inlining

and procedure cloning of small functions but also exclude loop unrolling.

Chapter 8

Summary and Future Work

Contents

8.1 Research Contributions . 229

8.1.1 Extensions to WCC Framework . 230

8.1.2 WCET-Aware Source Code Level Optimizations 230

8.1.3 WCET-Aware Assembly Level Optimizations 231

8.2 Future Work . 233

In this book, a compiler framework and optimization techniques for embedded real-

time systems were proposed. The compiler optimizations were performed at source

code and assembly level and achieved an automatic reduction of the program’s

worst-case execution time. Therefore, the developed techniques improve the cur-

rent state of real-time system design which is typically based on a manual, time-

consuming, and error-prone trial-and-error procedure. Section 8.1 summarizes the

contributions of the techniques proposed in this book. Finally, a discussion on di-

rections for future work in Sect. 8.2 concludes this work.

8.1 Research Contributions

Most embedded/cyber-physical systems have to respect stringent timing constraints.

Primarily in safety-critical application domains, such as automotive or avionics, tim-

ing deadlines must be satisfied to guarantee correctness of the system. An important

parameter to reason about the timeliness is the WCET that can be safely estimated

by a static timing analysis.

To meet these constraints, it must be ensured that the WCET of software running

on hard real-time systems does not exceed its deadlines. Within the current design

process, this requirement is typically achieved by a trial-and-error procedure which

implies numerous iterations of software generation and timing evaluation. Since

this procedure is time-consuming and error-prone, an automatic reduction of the

program’s WCET is highly desirable.

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7_8, © Springer Science+Business Media B.V. 2011

229

http://dx.doi.org/10.1007/978-90-481-9929-7_8

230 8 Summary and Future Work

This book addresses the lack of design tools for meeting the timing constraints of

real-time systems. A novel compiler framework, the WCC, was developed which in-

tegrates timing analyses into the code generation and optimization process. Based on

this reconciliation between the compiler and a WCET analyzer, numerous automatic

compiler optimizations were developed that systematically improve the worst-case

performance of an application at both the source code and assembly level. In addi-

tion, different static analysis techniques were presented that deliver auxiliary infor-

mation for an increased optimization potential. Besides the provided automatism,

these compiler optimizations are also more effective than the prevalent trial-and-

error approach since their global view of the application enables the full exploitation

of the optimization potential. In the following, an overview of the contributions of

this work is provided in more detail.

8.1.1 Extensions to WCC Framework

These extensions to the infrastructure of the WCC framework were realized to en-

hance WCET-aware compilation:

Static Loop Analysis automatically determines iteration counts of loops in the ap-

plication which is mandatory for timing analyses. This way, the need for tedious

user-annotations is removed, turning WCC into an automated design framework.

Back-annotation translates WCET and other relevant data from the compiler back-

end into the frontend to enable access to this critical information in WCET-aware

source code level optimizations.

Invariant Path classifies the WCEP into sub-paths where a WCEP switch can not

occur. Exploiting this knowledge, WCET-aware optimizations can be accelerated

since redundant updates of WCET data are eliminated.

Machine Learning techniques were reconciled into the WCC compiler framework

to enable an automatic generation of compiler heuristics for WCET reduction.

Evolutionary Multi-objective Algorithms have been exploited for the generation

of Pareto optimal compiler optimization sequences for the sometimes conflicting

objectives WCET, ACET, and code size. As the experiments showed, the novel op-

timization sequences could significantly outperform WCC’s highest optimization

level O3.

8.1.2 WCET-Aware Source Code Level Optimizations

Up to now, the large potential of compiler optimizations for WCET reduction was

not explored. In this book, the WCC framework with the previously mentioned ex-

tensions was utilized for the development of the following source code level opti-

mizations:

8.1 Research Contributions 231

WCET-Aware Procedure Cloning creates specialized copies of functions, mak-

ing calling contexts explicit at the source code level. This way, more precise flow

facts for data-dependent loops can be specified, leading to an improved WCET

analysis.

WCET-Aware Superblock Optimizations operate on superblocks that consist of

several basic blocks and provide more optimization opportunities than single

blocks. In this book, the superblock formation was applied for the first time at

source code level and was driven by WCET data. This new code structure was

combined with the traditional optimizations common subexpression and dead code

elimination.

WCET-Aware Loop Unrolling obtains detailed knowledge about loop iteration

counts from WCC’s static loop analysis. Moreover, WCC’s back-annotation is in-

volved to obtain detailed information about timing, code size and spill code. Based

on this data, each loop in the program is unrolled with an individual unrolling

factor that promises the highest WCET reduction.

WCET-Aware Loop Unswitching is an optimization that reduces the number of

executed loop-invariant conditional branches by moving them outside the loop and

copying the replicated loop bodies into the respective then- and else-parts. To avoid

a too extensive code expansion but also to achieve high WCET reduction, this

proposed optimization begins with those loops whose transformation promises the

highest WCET reduction. Moreover, WCC’s unswitching is accelerated through

the use of the invariant path paradigm.

WCET-Aware Function Inlining utilizes machine learning based heuristics that

predict whether inlining of the considered function call site promises a WCET

reduction. This way, expensive evaluations of function inlining effects are replaced

by an efficient request to a prediction model.

8.1.3 WCET-Aware Assembly Level Optimizations

As the previous chapters have shown, the exploitation of processor-specific features

during code transformations may be highly beneficial. For this reason, this book

proposed the following WCET-aware optimizations at the assembly level:

WCET-Aware Procedure Positioning aims at the improvement of the instruction

cache behavior by re-arranging procedures in memory in such a way that mutual

cache evictions are eliminated. To achieve a high WCET reduction, the involved

call graph is based on worst-case call frequencies to focus on procedures on the

WCEP.

WCET-Aware Trace Scheduling is a global instruction scheduling approach. Un-

like local scheduling, WCC’s trace scheduling operates on a trace which is con-

structed based on WCET data. By scheduling along this trace, maximal instruction-

level parallelism is exposed on the WCEP.

232 8 Summary and Future Work

Fig. 8.1 Relative WCET estimates for entire optimization sequence

WCET-Aware Loop-Invariant Code Motion reduces the number of executed

loop-invariant instructions by moving them outside the loop. Due to positive but

also negative effects of this transformation on the WCET, the construction of an

effective heuristic is not trivial. To automatically generate a heuristic for WCET re-

duction, machine learning techniques were exploited. To enhance the performance

of the learned heuristics, the parameter settings of the involved machine learning

algorithms were optimized via evolutionary algorithms.

Finally, to demonstrate the high performance of the WCC framework for an

automatic WCET reduction, an overall evaluation of the developed optimization

techniques is presented for the real-life benchmark fir2dim [ZVS+94]. Since the

benchmark does not exhibit any potential for WCET-aware procedure cloning and

unswitching, the optimizations were excluded here. The remaining optimizations

were applied in the following order:

• WCET-aware Function Inlining

• WCET-aware Loop Unrolling

• WCET-aware Superblock DCE

• WCET-aware Superblock CSE

• WCET-aware Loop-Invariant Code Motion (LICM)

• WCET-aware Trace Scheduling

• WCET-aware Procedure Positioning

Figure 8.1 shows the relative WCETs achieved by this combination of the novel

techniques. The baseline of 100% corresponds to the WCET of the non-optimized

code. The first bar represents the relative WCET when the benchmark is compiled

with WCC’s highest optimization level O3. The remaining bars indicate the rela-

tive WCET when additional optimizations are applied on top of O3, i.e., the sec-

ond bar represents the relative WCET for WCET-aware Function Inlining, the third

bar corresponds to the relative WCET for the optimization sequence WCET-aware

Function Inlining and Loop Unrolling etc.

8.2 Future Work 233

As can be seen, standard ACET optimizations performed in O3 achieve a WCET

reduction of 4.8%. Applying additional WCET-aware optimizations leads to a con-

tinuous reduction of the WCET, i.e., the improvements achieved by each optimiza-

tion add up if applied in combination. In total, the WCET of fir2dim could be re-

duced by 50.3%, outperforming O3 by 45.5%. These results emphasize the fact that

even more significant WCET savings can be achieved if the proposed WCET-aware

optimization techniques are not applied separately but in concert.

Besides the achieved savings of the worst-case execution time using the pre-

sented optimization techniques in this book, the contributions of the presented tech-

niques are:

• This work can be seen as a first systematic evaluation of the impact of compiler

optimizations on the worst-case performance of embedded software.

• The achieved reductions of the WCET by the novel optimizations indicated that

it is worthwhile to study well-known compiler optimizations in order to identify

opportunities for trimming them for an explicit improvement of the program’s

WCET.

• The evaluation of the presented optimizations pointed out that WCET-aware op-

timizations may have a different impact on the WCET and ACET. Therefore, it

could be concluded that also traditional ACET optimizations may not be suitable

for an effective WCET reduction, emphasizing the need for techniques tailored

towards the optimization of real-time systems.

• For the proposed optimization techniques, generic algorithms were presented.

Thus, these techniques can be easily integrated into future real-time compilers.

• The proposed techniques help to cut down costs in two different ways. On the

one hand, the proposed framework automates the software generation flow, thus

shortens the real-time system design process. On the other hand, the reduction

of the application’s worst-case performance allows to reduce product costs since

tailored hardware can be utilized.

8.2 Future Work

Despite the high WCET improvements achieved by the proposed techniques, there is

always room for more research, striving for optimality of the program performance.

This book ends with a brief outlook on the most relevant directions for future re-

search, sorted by the individual chapters:

Extensions to WCC Compiler Framework The WCC compiler framework has

shown its capabilities for an effective reduction of the WCET of a single task. How-

ever, real-time systems often operate as multi-task systems where an operating sys-

tem schedules the execution of each single task. To improve the worst-case behavior

of the entire system, a promising research direction is the establishment of a com-

munication between the WCET-aware compiler and the operating system. The re-

sulting exchange of information could improve both the schedulability analysis and

234 8 Summary and Future Work

the tightness of WCET results due to additional data provided to the timing analysis.

Another highly rewarding research direction is the extension of the WCC infrastruc-

ture towards multi-processors. This way, the software design flow for these systems

could be automated and novel WCET-aware optimizations could be developed.

WCET-Aware Source Code Level Optimizations This class of optimizations

has shown to be highly effective for WCET reduction (cf. Chap. 4). Using back-

annotation, assembly level information becomes available at the source code level,

providing opportunities for novel optimization strategies. Therefore, it is a reason-

able research direction to extend further traditional optimizations for a systematic

improvement of the program’s worst-case performance.

WCET-Aware Assembly Level Optimizations The proposed WCET-aware

global instruction scheduling (cf. Sect. 5.4) could be further evaluated for other

parameter settings. For example, the impact of the maximally permitted length of

a trace could be further investigated. Moreover, the trace scheduling could be ex-

tended towards a WCET-aware superblock scheduling to avoid the generation of

compensation code. Another promising research direction is the development of

source code and assembly level optimizations for multi-processor systems to reduce

the WCET. For example, multi-processor scratchpad allocation is an interesting area

which offers high potential for increased predictability of these complex systems.

Machine Learning Techniques in Compiler Design The discussion in Chap. 6

has shown that machine learning can automate the generation of effective heuristics

at both source code and assembly level. Research in this direction should be pur-

sued for other optimizations, e.g., to generate WCET-aware heuristics for the opti-

mizations register allocation or global instruction scheduling. Moreover, the model

selection problem of machine learning—i.e., the choice of learning algorithms and

their respective parameters—could be improved by the feature selection which finds

promising features from the set of extracted features. As shown in [WM07], using an

appropriate representation for training is beneficial for every learner since different

learners show different preferences for the representation of features.

Multi-objective Optimizations The search for Pareto optimal optimization se-

quences as presented in Chap. 7 can be extended in several directions. Up to now,

the experiments were conducted for a single hardware configuration. It would be

interesting to figure out how the optimization sequences change when architec-

tural parameters were modified, such as I-cache capacity or the cache associativity.

Moreover, further objectives that are critical for embedded/cyper-physical systems,

e.g., energy consumption, could be involved in the search for Pareto optimal se-

quences. Also, Pareto fronts of more than two dimensions could be studied. Finally,

approaches to speed-up the search process could be investigated. For this purpose,

techniques known from the context of iterative compilation for a single objective,

such as search space characterization [ACG+04], should be rethought and possibly

adjusted to multi-objective optimization.

Appendix A

Abstract Interpretation

This appendix introduces the mathematical and fundamental theorems underly-

ing abstract interpretation. The presentation is loosely based on [NNH99, CC77,

Gus00]. The goal of the following discussion is to indicate why complexity prob-

lems may be encountered during the computation of concrete program semantics

and to provide a possible solution to these problems. The solution presented in this

work is based on abstract interpretation that reduces computational complexity by

introducing an approximation of program semantics.

The goal of a program analysis is to extract information about the program be-

havior based on the computation of concrete program semantics.

A.1 Concrete Semantics

In a semantics-based program analysis, the program under analysis is described by

states. Given a set VAR of all possible program variables and a set V of possible

values which can be assigned to the program variables, a state is defined as:

Definition A.1 (State) A state σ is an assignment of values to variables such that

σ = {var1 �→ val1, . . . , varn �→ valn}, with var ∈ VAR and val ∈ V . The set STATE

of all variable bindings is defined as: STATE = VAR → V .

A program control point θ corresponds to an edge e ∈ E in a control flow graph

G = (V ,E, i), referring to the next statement in P to be executed. Let PC be the

set of program control points. A configuration is defined as:

Definition A.2 (Configuration) A configuration c of a program P is a pair 〈θ, σ 〉.

The set CONF of configurations of the program is defined as CONF = PC×STATE.

The transition function −→: CONF × CONF models a single execution step of

the program based on the concrete semantics of the programming language of P .

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7, © Springer Science+Business Media B.V. 2011

235

http://dx.doi.org/10.1007/978-90-481-9929-7

236 A Abstract Interpretation

Let π = (θ0, . . . , θt) ∈ V ∗ be a path through the control flow graph where c
∗
−→ c′

denotes the derivation sequence c → ·· · → ck → ·· · → c′ between configurations.

The path semantics P S of P starting at the program control point θ0 with the ini-

tial state σ0 and terminating at the program control point θt is defined as a partial

function from the initial state to a termination state σt :

Definition A.3 (Path semantics) P S[[π]]σ0 =

{

σt if 〈θ0, σ0〉
∗
−→ 〈θt , σt 〉

⊥ otherwise

If the termination point is reached, the path semantics of the program is repre-

sented by the termination state σt , otherwise the path semantics is not defined.

The path semantics is computed for a single configuration. Program analysis

should usually determine properties for sets of initial states. The collecting seman-

tics C S of a program is an abstraction of the path semantics. Instead of collecting the

history of computations in a predefined order, the collecting semantics is skipping

information of execution order and collects all configurations that can be reached

while executing a program. For the collecting semantics, the transition function must

be lifted from individual configurations to sets of concrete states.

Let ℘(CONF) be the power set of set CONF. The set transition function

−→℘ : ℘(CONF) → ℘(CONF) denotes a set of configurations that can be reached

in one transition step from a preceding configuration set. Note, that the set transition

function is monotone by construction since it computes more precise information as

output when more precise information is provided as input. The collecting semantics

C S ∈ ℘(CONF) starting at a program control point θ0 is obtained by applying the

set transition function −→℘ to an initial set C0 of configurations and then forming

a union of the computed sets.

Definition A.4 (Collecting semantics) The collecting semantics C S[[θ0]]C0 for an

initial program control point θ0 and an initial configuration set C0 is defined as:

C S[[θ0]]C0 =
⋃

i≥0

Ci
0

C0
0 = C0

Ci+1
0 = −→℘ Ci

0

with Ci
0 being the set of configurations reached after i steps starting from C0. Note

that the domain used in collecting semantics is a complete lattice [NNH99]:

Definition A.5 (Complete lattice) A complete lattice L = (L,⊑,⊔,⊓,⊥,⊤) is a

partially ordered set (L,⊑) such that all subsets have a least upper bound as well as

a greatest lower bound. Let ⊓L be the least upper bound of L and ⊔L be the greatest

lower bound of L. Then, ⊥ = ⊔∅ = ⊓L is the least element and ⊤ = ⊓∅ = ⊔L is

the greatest element.

A.2 Abstract Interpretation 237

In the concrete domain, the complete lattice L for a superset of CONF is repre-

sented as L = (℘ (CONF),⊆,∪,∩,∅,CONF). The partial order ⊆ orders configu-

rations with respect to their precision, i.e., if A ⊆ B ∈ CONF, then set A is more

precise than set B and A contains fewer configurations.

As an alternative, program analyses often determine properties of the sticky col-

lecting semantics S C S where each program point θ is associated with its possible

set of states: S C S : PC × ℘(STATE).

Definition A.6 (Sticky collecting semantics)

S C S(θi) = {σ | 〈θi, σ 〉 ∈ C S}

The sticky collecting semantics can be calculated by solving a set of recursive

equations, so called data flow equations, that model the effect of all possible transi-

tions to the states at a certain program point. A solution can be found by calculating

the least fixed-point with methods such as the Jacobi iteration.

A common property of the collecting and the sticky collecting semantics is their

precision since they determine all states encountered during iteration. However, in

general they are not computable if the set of concrete initial states is of infinite size.

For a bounded input domain found in practice, the semantics is still not computable

due to feasibility reasons since testing of all inputs can not be performed in an

acceptable time. In addition, it is in general desirable to force a termination of the

analysis even if the program under analysis does not terminate. To overcome the first

problem concerning feasibility, the concrete domain can be replaced by a (smaller,

i.e., less precise) abstract domain. This makes the analysis feasible but usually also

introduces imprecision. The termination of calculation can be achieved by a safe

extrapolation of values during the calculation. Both techniques can be accomplished

with the abstract interpretation which is discussed in the following.

A.2 Abstract Interpretation

Abstract interpretation is a general framework for a sound approximation of con-

crete semantics into abstract semantics. In the following, the abstraction of the col-

lecting semantics is briefly discussed.

A.2.1 Abstract Semantics

The concrete domain Dcon, which is represented by the lattice (℘ (STATE),⊆), can

be described by an abstract domain Dabs = (Dabs,⊑) with a partial order ⊑, i.e.,

a ⊑ b means that a denotes more precise analysis information than b. The abstract

domain Dabs must be a complete lattice, i.e., for all subsets of Dabs least upper

bounds exist that allow a safe and unique combination of analysis results.

238 A Abstract Interpretation

Fig. A.1 Galois connection

In order to relate the abstract and the concrete domain, the respective lattices are

connected via a dual function. The monotone abstraction function α : Dcon → Dabs

maps elements in the concrete domain to approximating elements while respecting

the partial order. The monotone concretization function γ : Dabs → Dcon maps each

abstract state to a set of concrete states which it represents. Since γ is monotone, the

partial order is respected, i.e., if a ⊑ b then γ (a) ⊆ γ (b). The abstraction function

α and the concretization function γ form a Galois connection:

Definition A.7 (Galois connection) Let (L,≤) and (M,⊑) be partially ordered sets

and α : L → M , γ : M → L. L ⇆ M is called a Galois connection if α and γ are

monotone functions and

∀l ∈ L ∧ ∀m ∈ M : l ≤ γ (α(l)) ∧ α(γ (m)) ⊑ m.

Figure A.1 illustrates this definition.

The first condition introduces imprecision when the abstraction and concretiza-

tion function is applied, however it guarantees correctness. Since M is smaller than

L, the loss of precision can usually be not avoided. The second condition ensures

that α determines precise approximations of elements of the concrete domain. How-

ever, the condition also introduces surjection since two elements of the abstract do-

main describe the same element of the concrete domain. To avoid this undesired

situation, the condition is strengthened to α(γ (m)) = m. These stronger require-

ments for α and γ are called the Galois insertion.

A.2.2 Abstract Domain

The choice for a suitable abstract domain used by abstract interpretation depends

on the requirements for the analysis and is often a trade-off between complexity

and precision. Examples are the congruence domain [Gra89] or the octogan do-

main [Min06]. WCC’s loop analyzer operates on the interval domain [CC77] which

provides a good trade-off for the considered problem. Within the interval domain,

possible values of a variable are approximated by an interval i:

i = {⊥} ∪ {[z1, z2] | z1 ≤ z2}

A.2 Abstract Interpretation 239

for z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {∞} and ⊥ representing an empty interval. As shown

in [CC77], the interval domain represents a complete lattice for which the operators

⊓, ⊔, ⊑, ⊤, and ⊥ are defined.

The interval domain allows to specify the abstract state σabs on the interval do-

main analogous to the concrete states:

Definition A.8 (Abstract state) An abstract state σabs is an assignment of intervals

to variables:

STATEabs = (VAR → INTERVAL⊥) ∪ {⊥σ } ∪ {⊤σ }

with VAR the set of program variables, INTERVAL the set of all intervals including ⊥

(empty interval) and ⊤ (any concrete values). In addition, ⊥σ indicates an infeasible

state, while σabs = ⊤σ represents any concrete state.

Using the definition of the abstract states, the abstract configuration is defined as

follows:

Definition A.9 (Abstract configuration) An abstract configuration cabs of a pro-

gram P is a pair 〈θ, σabs〉. The set CONFabs of configurations of the program is

defined as CONFabs = PC × STATEabs .

The construction of an abstract interpretation requires the specification of mono-

tone abstract set transition functions which are the counterpart of concrete transi-

tions. The abstract function is defined as:
abs

−−−→℘ : ℘(CONFabs) → ℘(CONFabs).

The abstract set transition functions specifies how a set of abstract configurations

is computed in one transition step based on a previous set of configurations.
abs

−−−→℘

is defined by abstract operators of a particular abstract domain which are based on

the semantics of a given programming language. For example, the abstract addition

operator +̂ carried out on the interval domain is defined as:

A+̂B = [inf(A) + inf(B), sup(A) + sup(B)]

where inf and sup represent the infimum and supremum of the intervals A and B ,

respectively. For a complete list of abstract operators defined on the interval domain,

the interested reader is referred to [Cor08, Gus00].

A.2.3 Calculation of Abstract Semantics

Analogous to the collecting semantics, the abstract semantics can be calculated as

the fixed-point of a recursive set of abstract data flow equations. The equations re-

semble those of the concrete semantics with the only difference that concrete con-

figurations, states, and transition functions are substituted by the respective abstract

versions.

240 A Abstract Interpretation

In some cases, the fixed-point iteration will not terminate since the data flow

equations do not stabilize [GEL05]. This behavior can often be observed at loop

headers of the CFG where the data flow equations express join points between the

immediate loop predecessor and the loop back-edge. However, as mentioned previ-

ously, abstract interpretation must be constructed such that termination of the anal-

ysis is guaranteed even for non-terminating programs. Another problem might be a

high analysis time which is often encountered for loops with large iteration counts.

The reason is the iterative nature of the classical abstract interpretation relying on

solving of data flow equations. To cope with both problems, the binary widening

operator ▽ [CC92] may be inserted into the abstract data flow equations.

Definition A.10 (Widening operator) The widening operator ▽ ∈ L × L → L for

the lattice of intervals L = {⊥} ∪ {[l, u]| l ∈ Z ∪ {−∞}} ∧ u ∈ Z ∪ {+∞}} ∧ l ≤ u}

is defined as:

⊥ ▽ X = X

X ▽ ⊥ = X

[l0, u0] ▽ [l1, u1] = [if l1 < l0 then − ∞ else l0,

if u1 > u0 then + ∞ else u0]

The widening operator extrapolates unstable bounds to infinity. Its application

may rely on user specifications, e.g., after how many loop iterations without finding

a fixed-point widening should be performed. The main drawback of the operator is

the introduced loss of precision that possibly results in unbounded variable assign-

ments that have to be propagated through the data flow equations. Sometimes, the

results can be improved by the application of the narrowing operator which tries to

improve infinite bounds. However, its application does often not suffice or is even

impossible. Another problem of the widening operator is that there is no generic

way to find suitable implementations of the widening/narrowing operators for ev-

ery type of computations [Gus00]. Therefore, these operators should be used with

caution.

Appendix B

Transformation of Conditions

This appendix gives an example for the computation of polytopes that is used during

WCC’s static loop analysis (cf. Sect. 3.6.4.1).

Given the condition:

if ((2 ∗ i + 2 ≤ j NAND j > 15))

The goal is to transform the condition into the normalized form from Defini-

tion 3.7 (cf. p. 48).

The first step is a transformation of the conditions into an equivalent form

of type if (C1 ⊕ C2 ⊕ · · · ⊕ Cn) where Cx are conditions. The set of oper-

ators ⊕ consists of the elements {∧,∨}. In addition, each expression can be

negated by the NOT operator (x). With the means of propositional calculus and

De Morgan’s laws, it is possible to transform each condition in this equivalent

form.

In the given example condition, the NAND operator does not belong to the set ⊕

of supported operators and must thus be eliminated by the transformation:

x NAND y = x ∧ y

Applying this rule to the example, the transformed condition is obtained:

if ((2 ∗ i + 2 ≤ j ∧ j > 15))

Removing the double negation leads to

if (2 ∗ i + 2 ≤ j ∧ j > 15)

This condition corresponds to the form if (C1 ⊕ C2 ⊕ · · · ⊕ Cn), thus finishing the

first transformation phase.

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7, © Springer Science+Business Media B.V. 2011

241

http://dx.doi.org/10.1007/978-90-481-9929-7

242 B Transformation of Conditions

In a second step, each condition Ci must have the normalized form Cx =
∑N

l=1(cl ∗ il) + c ≥ 0 for constant values cl , c with cl , c ∈ Z and il represent-

ing variables within the conditions. Each affine condition using the comparators

⊕ ∈ {<,≤,>,≥,=}, can be transformed into this normalized form [FM03]. Nor-

malizing the example condition results in

if (−2 ∗ i + j − 2 ≥ 0 ∧ j − 16 ≥ 0)

References

Abs10. AbsInt Angewandte Informatik GmbH, Worst-Case Execution Time Analyzer aiT for

TriCore. http://www.absint.com/ait, March 2010
ABC+06. F. Agakov, E. Bonilla, J. Cavazos et al., Using machine learning to focus iterative op-

timization, in Proceedings of the 4th Annual IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), New York, USA, March 2006, pp. 295–

305
ASU86. A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools

(Addison-Wesley/Longman, Boston, 1986)
ACG+04. L. Almagor, K.D. Cooper, A. Grosul et al., Finding Effective Compilation Sequences,

in Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,

and Tools for Embedded Systems (LCTES), Washington, USA, June 2004, pp. 231–

239
App97. A.W. Appel, Modern Compiler Implementation in C (Cambridge University Press,

New York, 1997)
ARM01. ARM7TDMI-S (Revision 4), Technical Reference Manual. ARM Limited, September

2001
BGS94. D.F. Bacon, S.L. Graham, O.J. Sharp, Compiler transformations for high-performance

computing. ACM Comput. Surv. 26(4), 345–420 (1994)
BL99. S. Bashford, R. Leupers, Phase-coupled mapping of data flow graphs to irregular data

paths. Des. Autom. Embed. Syst. 4(2), 1–50 (1999)
BH93. S. Bates, S. Horwitz, Incremental program testing using program dependence graphs,

in Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL), Charleston, USA, January 1993, pp. 384–396
Bis08. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2008)
BLTZ03. S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA—a platform and programming

language independent interface for search algorithms, in Proceedings of 2nd Interna-

tional Conference on Evolutionary Multi-Criterion Optimization (EMO), Faro, Por-

tugal, April 2003, pp. 494–508
Bör96. H. Börjesson, Incorporating worst case execution time in a commercial C-compiler,

Master’s thesis, Uppsala University, January 1996
BGCSV09. P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to

Data Mining (Springer, Berlin, 2009)
Bre01. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
Bri92. P. Briggs, Register allocation via graph coloring, PhD thesis, Rice University, Hous-

ton, USA, 1992
BEGL05. S. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper, Applying static WCET analysis to

automotive communication software, in Proceedings of the 17th Euromicro Confer-

ence of Real-Time Systems (ECRTS), Palma de Mallorca, Spain, July 2005, pp. 249–

258

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7, © Springer Science+Business Media B.V. 2011

243

http://www.absint.com/ait
http://dx.doi.org/10.1007/978-90-481-9929-7

244 References

CGJ+97. B. Calder, D. Grunwald, M. Jones et al., Evidence-based static branch prediction us-

ing machine learning. ACM Trans. Program. Lang. Syst. 19(1), 188–222 (1997)

CPI+05. A.M. Campoy, I. Puaut, A.P. Ivars et al., Cache contents selection for statically-locked

instruction caches: an algorithm comparison, in Proceedings of the 17th Euromicro

Conference on Real-Time Systems (ECRTS), Palma de Mallorca, Spain, July 2005,

pp. 49–56

CK94. S. Carr, K. Kennedy, Improving the ratio of memory operations to floating-point op-

erations in loops. ACM Trans. Program. Lang. Syst. 16(6), 1768–1810 (1994)

CM04. J. Cavazos, J.E.B. Moss, Inducing heuristics to decide whether to schedule. SIGPLAN

Not. 39(6), 183–194 (2004)

CO06. J. Cavazos, M. O’Boyle, Method-specific dynamic compilation using logistic re-

gression, in Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-

oriented Programming Systems, Languages, and Applications (OOPSLA), Portland,

USA, October 2006, pp. 229–240

CO05. J. Cavazos, M. O’Boyle, Automatic tuning of inlining heuristics, in Proceedings of

the ACM/IEEE Conference on Supercomputing (SC), Seattle, USA, November 2005,

pp. 14–25

CFA+07. J. Cavazos, G. Fursin, F. Agakov et al., Rapidly selecting good compiler optimizations

using performance counters, in Proceedings of the International Symposium on Code

Generation and Optimization (CGO), San Jose, USA, March 2007, pp. 185–197

CH88. P.P. Chang, W.W. Hwu, Trace selection for compiling large C application programs to

microcode, in Proceedings of the 21st Annual Workshop on Microprogramming and

Microarchitecture (MICRO), San Diego, USA, November 1988, pp. 21–29

CMH91. P.P. Chang, S.A. Mahlke, W.W. Hwu, Using profile information to assist classic code

optimizations. Softw. Pract. Exp. 21(12), 1301–1321 (1991)

CMW+92. W. Chen, S. Mahlke, N. Warter et al., Using profile information to assist advanced

compiler optimization and scheduling. Adv. Lang. Compil. Parallel Process. 757, 31–

48 (1992)

Chv83. V. Chvátal, Linear Programming (Freeman, New York, 1983)

CL00. R. Cohn, P.G. Lowney, Design and analysis of profile-based optimization in Com-

paq’s compilation tools for alpha. J. Instr. Level Parallelism 2, 1–25 (2000)

CB02. A. Colin, G. Bernat, Scope-Tree: a program representation for symbolic worst-case

execution time analysis, in Proceedings of the 14th Euromicro Conference on Real-

Time Systems (ECRTS), July 2002, pp. 50–59

CP01. A. Colin, I. Puaut, A modular & retargetable framework for tree-based WCET analy-

sis, in Proceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS),

Delft, The Netherlands, June 2001, pp. 37–44

CNO+87. R.P. Colwell, R.P. Nix, J.J. O’Donnell et al., A VLIW architecture for a trace schedul-

ing compiler. ACM SIGPLAN Not. 22(10), 180–192 (1987)

Con71. W.J. Conover, Practical Nonparametric Statistics (Wiley, New York, 1971)

CT04. K.D. Cooper, L. Torczon, Engineering A Compiler (Morgan Kaufmann, San Fran-

cisco, 2004)

CHT91. K.D. Cooper, M.W. Hall, L. Torczon, An experiment with inline substitution. Softw.

Pract. Exp. 21(6), 581–601 (1991)

CHK93. K.D. Cooper, M.W. Hall, K. Kennedy, A methodology for procedure cloning. Com-

put. Lang. 19(2), 105–117 (1993)

CSS99. K.D. Cooper, P.J. Schielke, D. Subramanian, Optimizing for reduced code space using

genetic algorithms. ACM SIGPLAN Not. 34(7), 1–9 (1999)

CST02. K.D. Cooper, D. Subramanian, L. Torczon, Adaptive optimizing compilers for the

21st century. J. Supercomput. 23(1), 7–22 (2002)

Cor08. D. Cordes, Loop analysis for a WCET-optimizing compiler based on abstract inter-

pretation and polylib (in German), Diploma thesis, TU Dortmund University, April

2008

References 245

CC77. P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints, in Proceedings of the

4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages

(POPL), Los Angeles, USA, January 1977, pp. 238–252

CC92. P. Cousot, R. Cousot, Comparing the Galois connection and widening/narrowing ap-

proaches to abstract interpretation, in Proceedings of the 4th International Symposium

on Programming Language Implementation and Logic Programming (PLILP), Leu-

ven, Belgium, August 1992, pp. 269–295

CM07. C. Cullmann, F. Martin, Data-flow based detection of loop bounds, in Proceedings of

the 7th International Workshop on Worst-Case Execution Time (WCET), Pisa, Italy,

July 2007, pp. 57–62

DH89. J.W. Davidson, A.M. Holler, Subprogram inlining: a study of its effects on program

execution time. Technical report, University of Virginia, Charlottesville, USA, 1989

DJ01. J.W. Davidson, S. Jinturkar, An aggressive approach to loop unrolling, Technical re-

port, University of Virginia, Charlottesville, USA, 2001

DAPM00. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimisation: NSGA-II, in Proceedings of the

6th International Conference on Parallel Problem Solving from Nature (PPSN), Paris,

France, September 2000, pp. 849–858

DP07. J.F. Deverge, I. Puaut, WCET-directed dynamic scratchpad memory allocation of

data, in Proceedings of the 19th Euromicro Conference on Real-Time Systems

(ECRTS), Pisa, Italy, July 2007, pp. 179–190

EF94. D. Elsner, J. Fenlason, Using as—The GNU Assembler. Free Software Foundation

(1994)

EE00. J. Engblom, A. Ermedahl, Modeling complex flows for worst-case execution time

analysis, in Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS), Or-

lando, USA, November 2000, pp. 163–174

Erm03. A. Ermedahl, A modular tool architecture for worst-case execution time analysis, PhD

thesis, Uppsala University, 2003

EG97. A. Ermedahl, J. Gustafsson, Deriving annotations for tight calculation of execution

time, in Proceedings of the 3rd International Euro-Par Conference on Parallel Pro-

cessing (Euro-Par), Passau, Germany, August 1997, pp. 1298–1307

ESG+07. A. Ermedahl, C. Sandberg, J. Gustafsson et al., Loop bound analysis based on a com-

bination of program slicing, abstract interpretation, and invariant analysis, in Pro-

ceedings of the 7th International Workshop on Worst-Case Execution Time Analysis

(WCET), Pisa, Italy, July 2007, pp. 63–68

EH94. A. Erosa, L.J. Hendren, Taming control flow: a structured approach to eliminating

goto statements, in Proceedings of IEEE International Conference on Computer Lan-

guages (ICCL), Toulouse, France, May 1994, pp. 229–240

ETA10. ETAS Group, ASCET Software Products, http://www.etas.de, March 2010

Fal09. H. Falk, WCET-aware register allocation based on graph coloring, in Proceedings

of the 46th Design Automation Conference (DAC), San Francisco, USA, July 2009,

pp. 726–731

FK09. H. Falk, J.C. Kleinsorge, Optimal static WCET-aware scratchpad allocation of pro-

gram code, in Proceedings of the 46th Design Automation Conference (DAC), San

Francisco, USA, July 2009, pp. 732–737

FM03. H. Falk, P. Marwedel, Control flow driven splitting of loop nests at the source code

level, in Proceedings of the Conference on Design, Automation and Test in Europe

(DATE), Munich, Germany, March 2003, pp. 410–415

FS06. H. Falk, M. Schwarzer, Loop nest splitting for WCET-optimization and predictabil-

ity improvement, in Proceedings of the 2006 IEEE/ACM/IFIP Workshop on Embed-

ded Systems for Real Time Multimedia (ESTIMedia), Seoul, Korea, October 2006,

pp. 115–120

http://www.etas.de

246 References

FLT06a. H. Falk, P. Lokuciejewski, H. Theiling, Design of a WCET-aware C compiler, in

Proceedings of the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real

Time Multimedia (ESTIMedia), Seoul, Korea, October 2006, pp. 121–126

FLT06b. H. Falk, P. Lokuciejewski, H. Theiling, Design of a WCET-aware C compiler, in Pro-

ceedings of the 6th International Workshop on Worst-Case Execution Time Analysis

(WCET), Dresden, Germany, June 2006

FPT07. H. Falk, S. Plazar, H. Theiling, Compile-time decided instruction cache locking us-

ing worst-case execution paths, in Proceedings of the 5th IEEE/ACM International

Conference on Hardware/software Codesign and System Synthesis (CODES+ISSS),

Salzburg, Austria, September 2007, pp. 143–148

FBH+06. H. Fennel, S. Bunzel, H. Heinecke et al., Achievements and exploitation of the AU-

TOSAR development partnership, in SAE Convergence, October 2006

FW99. C. Ferdinand, R. Wilhelm, Fast and efficient cache behavior prediction for real-time

systems. Real-Time Syst. 17, 131–181 (1999)

FHL+01. C. Ferdinand, R. Heckmann, M. Langenbach et al., Reliable and precise WCET de-

termination for a real-life processor, in Proceedings of the 1st International Workshop

on Embedded Software (EMSOFT), Tahoe City, USA, October 2001, pp. 496–485

FOW87. J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its use

in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

Fis81. J.A. Fisher, Trace scheduling: a technique for global microcode compaction. IEEE

Trans. Comput. 30(7), 478–490 (1981)

FHP92. C.W. Fraser, R.R. Henry, T.A. Proebsting, BURG: fast optimal instruction selection

and tree parsing. SIGPLAN Not. 27(4), 68–76 (1992)

Fur05. G. Fursin, A heuristic search algorithm based on unified transformation framework, in

Proceedings of the 2005 International Conference on Parallel Processing Workshops

(ICPPW), Oslo, Norway, June 2005, pp. 137–144

FMP+07. G. Fursin, C. Miranda, S. Pop et al., Practical run-time adaptation with procedure

cloning to enable continuous collective compilation, in Proceedings of the GCC De-

velopers’ Summit, Ottawa, Canada, July 2007

GP07. R. Garside, J.F. Pighetti, Integrating modular avionics: a new role emerges, in Pro-

ceedings of the 26th Digital Avionics Systems Conference (DASC), Dallas, USA,

2007, pp. 17–22

GCC10. GCC, GNU Compiler Collection, http://gcc.gnu.org/, March 2010

GH98. R. Ghiya, L.J. Hendren, Putting pointer analysis to work, in Proceedings of the

25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), San Diego, USA, January 1998, pp. 121–133

GMW81. R. Giegerich, U. Möncke, R. Wilhelm, Invariance of approximate semantics with re-

spect to program transformations, in GI - 11. Jahrestagung in Verbindung mit Third

Conference of the European Co-operation in Informatics (ECI), Munich, Germany,

October 1981, pp. 1–10

GW96. D.W. Goodwin, K.D. Wilken, Optimal and near-optimal global register allocation us-

ing 0–1 integer programming. Softw. Pract. Exp. 26(8), 929–965 (1996)

Gra69. R.L. Graham, Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17,

416–429 (1969)

Gra89. P. Granger, Static analysis of arithmetical congruences. Int. J. Comput. Math. 30(30),

165–190 (1989)

GSC07. Y. Guo, D. Subramanian, K.D. Cooper, An effective local search algorithm for an

adaptive compiler, in Proceedings of the 1st Workshop on Statistical and Machine

Learning Approaches Applied to Architectures and Compilation (SMART), Ghent,

Belgium, January 2007, pp. 7–11

Gus00. J. Gustafsson, Analyzing execution-time of object-oriented programs using abstract

interpretation, PhD thesis, Uppsala University, 2000

GEL05. J. Gustafsson, A. Ermedahl, B. Lisper, Towards a flow analysis for embedded system

C programs, in Proceedings of the 10th IEEE International Workshop on Object-

http://gcc.gnu.org/

References 247

Oriented Real-Time Dependable Systems (WORDS), Sedona, USA, February 2005,

pp. 287–300

GES+06. J. Gustafsson, A. Ermedahl, C. Sandberg et al., Automatic derivation of loop bounds

and infeasible paths for WCET analysis using abstract execution, in The 27th IEEE

Real-Time Systems Symposium (RTSS 2006), Rio de Janeiro, Brazil, December 2006,

pp. 57–66

GRE+01. M. Guthaus, J. Ringenberg, D. Ernst et al., MiBench: a free, commercially representa-

tive embedded benchmark suite, in Proceedings of the 4th IEEE International Work-

shop on Workload Characteristics (WWC), Austin, USA, December 2001, pp. 3–14

HKW05. M. Haneda, P. Knijnenburg, H. Wijshoff, Automatic selection of compiler options us-

ing non-parametric inferential statistics, in Proceedings of the 14th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT), Saint Louis,

USA, September 2005, pp. 123–132

HKK04. B. Hardung, T. Kölzow, A. Krüger, Reuse of software in distributed embedded auto-

motive systems, in Proceedings of the 4th ACM International Conference on Embed-

ded Software (EMSOFT), Pisa, Italy, September 2004, pp. 203–210

HSR+98. C. Healy, M. Sjödin, V. Rustagi et al., Bounding loop iterations for timing analysis,

in Proceedings of the 4th IEEE Real-Time Technology and Applications Symposium

(RTAS), Denver, USA, June 1998, pp. 12–21

HLT+03. R. Heckmann, M. Langenbach, S. Thesing et al., The influence of processor archi-

tecture on the design and the results of WCET tools. Proc. IEEE 91(7), 1038–1054

(2003)

HP03. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach

(Morgan Kaufmann, San Francisco, 2003)

HBK+01. K. Heydemann, F. Bodin, P. Knijnenburg et al., UFC: a global trade-off strategy for

loop unrolling for VLIW architecture, in Proceedings of the 10th Workshop on Com-

pilers for Parallel Computers (CPC), Amsterdam, The Netherlands, January 2001,

pp. 59–70

Hig10. HighTec EDV-Systeme GmbH. TriCore PXROS-HR Development Platform, http://

www.hightec-rt.com, March 2010

HS89. M. Hill, A. Smith, Evaluating associativity in CPU caches. IEEE Trans. Comput.

38(12), 1612–1630 (1989)

Hol92. J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge,

1992)

HGB+08. N. Holsti, J. Gustafsson, G. Bernat, C. Ballabriga, A. Bonenfant, R. Bourgade, H.

Cassi, D. Cordes, A. Kadlec, R. Kirner, J. Knoop, P. Lokuciejewski, N. Merriam,

M. de Michiel, A. Prantl, B. Rieder, C. Rochange, M. Sainrat, P. Schordan, WCET

Tool Challenge 2008: Report, in Proceedings of the 8th International Workshop on

Worst-Case Execution Time Analysis (WCET), Prague, Czech Republic, July 2008

HLS00. N. Holsti, T. Langbacka, S. Saarinen, Using a worst-case execution time tool for real-

time verification of the Debie software, in Proceedings of the Conference on Data

Systems in Aerospace (DASIA), Montreal, Canada, May 2000, p. 307

HRB88. S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependence graphs,

in Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation (PLDI), Atlanta, USA, June 1988, pp. 35–46

HE08. K. Hoste, L. Eeckhout, COLE: Compiler Optimization Level Exploration, in Proceed-

ings of the 6th Annual IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), Boston, USA, April 2008, pp. 165–174

HXV+05. W.L. Hung, Y. Xie, N. Vijaykrishnan et al., Thermal-aware task allocation and

scheduling for embedded systems, in Proceedings of the Conference on Design, Au-

tomation and Test in Europe (DATE), Munich, Germany, March 2005, pp. 898–899

HC89. W.W. Hwu, P.P. Chang, Achieving high instruction cache performance with an opti-

mizing compiler. ACM SIGARCH Comput. Archit. News 17(3), 242–251 (1989)

HMC+93. W.W. Hwu, S.A. Mahlke, W.Y. Chen et al., The superblock: an effective technique for

VLIW and superscalar compilation. J. Supercomput. 7, 229–248 (1993)

http://www.hightec-rt.com
http://www.hightec-rt.com

248 References

Inf10a. Informatik Centrum Dortmund. ICD-C Compiler framework, http://www.icd.de/es/

icd-c, March 2010

Inf10b. Informatik Centrum Dortmund. ICD low level intermediate representation backend

infrastructure (LLIR)—developer manual. Informatik Centrum Dortmund, March

2010

ITK+03. K. Ishizaki, M. Takeuchi, K. Kawachiya et al., Effectiveness of cross-platform op-

timizations for a Java just-in-time compiler. ACM SIGPLAN Not. 38(11), 187–204

(2003)

KC02. M. Kandemir, A. Choudhary, Compiler-directed scratch pad memory hierarchy design

and management, in Proceedings of the 39th annual Design Automation Conference

(DAC), New Orleans, USA, June 2002, pp. 628–633

Kel09. T. Kelter, Superblock-based high-level WCET optimizations, Diploma thesis, TU

Dortmund University, September 2009 (in German)

KH06. R. Kidd, W.W. Hwu, Abstract improved superblock optimization in GCC, in GCC

Summit (2006)

Kir02. R. Kirner, The programming language wcetC, Technical report, Technische Univer-

sität Wien, Institut für Technische Informatik, 2002

Kir03. R. Kirner, Extending optimising compilation to support worst-case execution time

analysis, PhD thesis, Vienna University of Technology, 2003

Kir06. M. Kirner, Automatic loop bound analysis of programs written in C, Master’s thesis,

Technische Universität Wien, December 2006

Kle08. J. Kleinsorge, WCET-centric code allocation for scratchpad memories, Diploma the-

sis, TU Dortmund University, September 2008

KTZ05. J. Knowles, L. Thiele, E. Zitzler, A tutorial on the performance assessment of stochas-

tic multiobjective optimizers, in Proceedings of 3rd International Conference on Evo-

lutionary Multi-Criterion Optimization (EMO), Guanajuato, Mexico, March 2005

KCS06. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algo-

rithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

KKF97. A. Koseki, H. Komastu, Y. Fukazawa, A method for estimating optimal unrolling

times for nested loops, in Proceedings of the 1997 International Symposium on Par-

allel Architectures, Algorithms and Networks (ISPAN), Washington, USA, December

1997, pp. 376–382

KHW+05. P.A. Kulkarni, S.R. Hines, D. Whalley et al., Fast and efficient searches for effective

optimization-phase sequences. Trans. Archit. Code Optim. 2(2), 165–198 (2005)

KBT+04. S. Künzli, S. Bleuler, L. Thiele et al., A computer engineering benchmark application

for multiobjective optimizers, in Application of Multi-Objective Evolutionary Algo-

rithms (World Scientific, Singapore, 2004), pp. 269–294

LR91. W. Landi, B.G. Ryder, Pointer-induced aliasing: a problem taxonomy, in Proceed-

ings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), Orlando, USA, January 1991, pp. 93–103

LTZ+02. M. Laumanns, L. Thiele, E. Zitzler et al., Running time analysis of multi-objective

evolutionary algorithms on a simple discrete optimization problem, in Proceedings of

the 7th International Conference on Parallel Problem Solving from Nature (PPSN),

Granada, Spain, September 2002, pp. 44–53

LH95. D.M. Lavery, W.W. Hwu, Unrolling-based optimizations for modulo scheduling, in

Proceedings of the 28th Annual International Symposium on Microarchitecture (MI-

CRO), Ann Arbor, USA, November 1995, pp. 327–337

LBO09. H. Leather, E. Bonilla, M. O’Boyle, Automatic feature generation for machine learn-

ing based optimizing compilation, in Proceedings of the International Symposium on

Code Generation and Optimization (CGO), Seattle, USA, March 2009, pp. 81–91

LOW09. H. Leather, M. O’Boyle, B. Worton, Raced profiles: efficient selection of competing

compiler optimizations, in Proceedings of the ACM SIGPLAN/SIGBED Conference

on Languages, Compilers, and Tools for Embedded Systems (LCTES), Dublin, Ire-

land, June 2009, pp. 50–59

http://www.icd.de/es/icd-c
http://www.icd.de/es/icd-c

References 249

LW94. A.R. Lebeck, D.A. Wood, Cache profiling and the SPEC benchmarks: a case study.

IEEE Comput. 27(10), 16–26 (1994)

Lee05. E.A. Lee, Absolutely positively on time: what would it take? Computer 38(7), 85–87

(2005)

Lee07. E.A. Lee, Computing foundations and practice for cyber-physical systems: a prelim-

inary report, Technical Report UCB/EECS-2007-72, University of California, Berke-

ley, May 2007

LLPM04. S. Lee, J. Lee, C.Y. Park, S.L. Min, A flexible tradeoff between code size and WCET

using a dual instruction set processor, in Proceedings of the 8th International Work-

shop on Software & Compilers for Embedded Systems (SCOPES), Amsterdam, The

Netherlands, September 2004, pp. 244–258

LPMS97. C. Lee, M. Potkonjak, W.H. Mangione-Smith, MediaBench: a tool for evaluating and

synthesizing multimedia and communications systems, in Proceedings of the 30th

Annual International Symposium on Microarchitecture (MICRO), Research Triangle

Park, USA, December 1997, pp. 330–335

LT79. T. Lengauer, R.E. Tarjan, A fast algorithm for finding dominators in a flowgraph.

ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

Leu00. R. Leupers, Code selection for media processors with SIMD instructions, in Proceed-

ings of the Conference on Design, Automation and Test in Europe (DATE), Paris,

France, March 2000, pp. 4–8

LMW95. Y.T.S. Li, S. Malik, A. Wolfe, Efficient microarchitecture modeling and path analysis

for real-time software, in Proceedings of the 16th IEEE Real-Time Systems Sympo-

sium (RTSS), Pisa, Italy, May 1995, pp. 298–307

LLM+07. X. Li, Y. Liang, T. Mitra et al., Chronos: a timing analyzer for embedded software.

Sci. Comput. Program. 69(1–3), 56–67 (2007)

LJC+10. Y. Liang, L. Ju, S. Chakraborty et al., Cache-aware optimization of BAN applications.

ACM Trans. Des. Automat. Electron. Syst. (2010)

LPJ96. C. Liem, P. Paulin, A. Jerraya, Address calculation for retargetable compilation and

exploration of instruction-set architectures, in Proceedings of the 33rd annual Design

Automation Conference (DAC), Las Vegas, USA, June 1996, pp. 597–600

LFMT08. P. Lokuciejewsi, H. Falk, P. Marwedel, H. Theiling, WCET-driven, code-size criti-

cal procedure cloning, in Proceedings of the 11th International Workshop on Soft-

ware & Compilers for Embedded Systems (SCOPES), Munich, Germany, March 2008,

pp. 21–30

Lok05. P. Lokuciejewski, Design and realization of concepts for WCET compiler optimiza-

tion, Diploma thesis, TU Dortmund University, December 2005

LM09. P. Lokuciejewski, P. Marwedel, Combining worst-case timing models, loop unrolling,

and static loop analysis for WCET minimization, in Proceedings of the 22nd Euromi-

cro Conference on Real-Time Systems (ECRTS), Dublin, Ireland, July 2009, pp. 35–

44

LCFM09. P. Lokuciejewski, D. Cordes, H. Falk, P. Marwedel, A fast and precise static loop

analysis based on abstract interpretation, program slicing and polytope models, in

Proceedings of the International Symposium on Code Generation and Optimization

(CGO), Seattle, USA, March 2009, pp. 136–146

LFM08. P. Lokuciejewski, H. Falk, P. Marwedel, WCET-driven cache-based procedure posi-

tioning optimizations, in Proceedings of the 21st Euromicro Conference on Real-Time

Systems (ECRTS), Prague, Czech Republic, July 2008, pp. 321–330

LFS+07. P. Lokuciejewski, H. Falk, M. Schwarzer, P. Marwedel, H. Theiling, Influence

of procedure cloning on WCET prediction, in Proceedings of the 5th IEEE/ACM

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), Salzburg, Austria, October 2007, pp. 137–142

LFSP07. P. Lokuciejewski, H. Falk, M. Schwarzer, M. Peter, Tighter WCET estimates by pro-

cedure cloning, in Proceedings of the 7th International Workshop on Worst-Case Ex-

ecution Time Analysis (WCET), Pisa, Italy, July 2007, pp. 27–32

250 References

LGM09. P. Lokuciejewski, F. Gedikli, P. Marwedel, Accelerating WCET-driven optimizations

by the invariant path paradigm: a case study of loop unswitching, in Proceedings of

the 12th International Workshop on Software & Compilers for Embedded Systems

(SCOPES), Nice, France, April 2009, pp. 11–20

LGMM09. P. Lokuciejewski, F. Gedikli, P. Marwedel, K. Morik, Automatic WCET reduction

by machine learning based heuristics for function inlining, in Proceedings of the 3rd

Workshop on Statistical and Machine Learning Approaches to Architecture and Com-

pilation (SMART), Paphos, Cyprus, January 2009, pp. 1–15

LKM10. P. Lokuciejewski, T. Kelter, P. Marwedel, Superblock-based source code optimiza-

tions for WCET reduction, in Proceedings of the 7th IEEE International Conferences

on Embedded Software and Systems (ICESS), Bradford, UK, June 2010

LPF+10. P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, L. Thiele, Multi-objective ex-

ploration of compiler optimizations for real-time systems, in Proceedings of the

13th IEEE International Symposium on Object/Component/Service-oriented Real-

time Distributed Computing (ISORC), Carmona, Spain, 2010, pp. 115–122

LSMM10. P. Lokuciejewski, M. Stolpe, K. Morik, P. Marwedel, Automatic selection of machine

learning models for WCET-aware compiler heuristic generation, in Proceedings of

the 4th Workshop on Statistical and Machine Learning Approaches to Architecture

and Compilation (SMART), Pisa, Italy, January 2010, pp. 3–17

LFK+93. P.G. Lowney, S.M. Freudenberger, T.J. Karzes et al., The multiflow trace scheduling

compiler. J. Supercomput. 7(1–2), 51–142 (1993)

Lun02. T. Lundqvist, A WCET analysis method for pipelined microprocessors with cache

memories. PhD thesis, Chalmers University of Technology (2002)

LW87. J.R. Lyle, M.D. Weiser, Automatic program bug location by program slicing, in Pro-

ceedings of International Conference on Computers and Applications, Peking, China,

February 1987, pp. 877–882

Mac02. P. Machanick, Approaches to addressing the memory wall, Technical report, School

of IT and Electrical Engineering, University of Queensland, November 2002

MLC+92. S.A. Mahlke, D.C. Lin, W.Y. Chen et al., Effective compiler support for predicated

execution using the hyperblock. ACM SIGMICRO Newsl. 23(1–2), 45–54 (1992)

MCG+92. S.A. Mahlke, W.Y. Chen, J. Gyllenhaal et al., Compiler code transformations for

superscalar-based high performance systems, in Proceedings of the 1992 ACM/IEEE

Conference on Supercomputing, Washington, USA, July 1992, pp. 808–817

MWRG10. Mälardalen WCET Research Group. WCET Benchmarks, http://www.mrtc.mdh.se/

projects/wcet, March 2010

Mar10. P. Marwedel, Embedded System Design, 2nd edn. (Springer, Berlin, 2010)

MM99. A. McGovern, J.E.B. Moss, Scheduling straight-line code using reinforcement learn-

ing and rollouts, in Proceedings of the Conference on Advances in Neural Information

Processing Systems (NIPS), Denver, USA, November 1999, pp. 903–909

MMSH01. G. Memik, W.H. Mangione-Smith, W. Hu, NetBench: a benchmarking suite for net-

work processors, in Proceedings of the International Conference on Computer-Aided

Design (ICCAD), San Jose, USA, November 2001, pp. 39–42

MPS94. A. Mendlson, S.S. Pinter, R. Shtokhamer, Compile time instruction cache optimiza-

tions. ACM SIGARCH Comput. Archit. News 22(1), 44–51 (1994)

Mie08. I. Mierswa, Non-convex and multi-objective optimization in data mining, PhD thesis,

TU Dortmund University, 2008

MWK+06. I. Mierswa, M. Wurst, R. Klinkenberg et al., YALE: rapid prototyping for complex

data mining tasks, in Proceedings of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), Philadelphia, USA, August 2006,

pp. 935–940

Min06. A. Miné, The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100

(2006)

MBQ02. A. Monsifrot, F. Bodin, R. Quiniou, A machine learning approach to automatic pro-

duction of compiler heuristics, in Proceedings of the 10th International Conference

http://www.mrtc.mdh.se/projects/wcet
http://www.mrtc.mdh.se/projects/wcet

References 251

on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA), Varna,

Bulgaria, September 2002, pp. 41–50

MPSR95. R. Motwani, K.V. Palem, V. Sarkar, S. Reyen, Combining register allocation and in-

struction scheduling, Technical report, Stanford University, Stanford, USA, 1995

Mow94. T.C. Mowry, Tolerating latency through software-controlled data prefetching, Tech-

nical report, Stanford University, Stanford, USA, 1994

Muc97. S.S. Muchnick, Advanced Compiler Design and Implementation (Morgan Kaufmann,

San Francisco, 1997)

MG04. S.S. Muchnick, P.B. Gibbons, Efficient instruction scheduling for a pipelined archi-

tecture. ACM SIGPLAN Not. 39(4), 167–174 (2004)

NGE+99. X. Nie, L. Gazsi, F. Engel et al., A new network processor architecture for high-speed

communications, in Proceedings of the IEEE Workshop on Signal Processing Systems

(SiPS), Taipei, Taiwan, October 1999, pp. 548–557

NNH99. F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis (Springer, New

York, 1999)

NP93. C. Norris, L.L. Pollock, A schedular-sensitive global register allocator, in Proceedings

of the 1993 ACM/IEEE Conference on Supercomputing, Portland, USA, November

1993, pp. 804–813

OO84. K.J. Ottenstein, L.M. Ottenstein, The program dependence graph in a software devel-

opment environment. SIGSOFT Softw. Eng. Not. 9(3), 177–184 (1984)

PSKL08. A. Pabalkar, A. Shrivastava, A. Kannan, J. Lee, SDRM: simultaneous determination

of regions and function-to-region mapping for scratchpad memories. Lect. Not. Com-

put. Sci. 5374, 569–582 (2008)

PW86. D.A. Padua, M.J. Wolfe, Advanced compiler optimizations for supercomputers. Com-

mun. ACM 29(12), 1184–1201 (1986)

PS93. K.V. Palem, B.B. Simons, Scheduling time-critical instructions on RISC machines.

ACM Trans. Program. Lang. Syst. (TOPLAS) 15(4), 632–658 (1993)

PH90. K. Pettis, R.C. Hansen, Profile guided code positioning. ACM SIGPLAN Not. 25(6),

16–27 (1990)

PLM08. S. Plazar, P. Lokuciejewski, P. Marwedel, A retargetable framework for multi-

objective WCET-aware high-level compiler optimizations, in Proceedings of the 29th

IEEE Real-Time Systems Symposium WiP (RTSS), Barcelona, Spain, December 2008,

pp. 49–52

PLM09. S. Plazar, P. Lokuciejewski, P. Marwedel, WCET-aware software based cache parti-

tioning for multi-task real-time systems, in Proceedings of the 9th International Work-

shop on Worst-Case Execution Time Analysis (WCET), Dublin, Ireland, June 2009, pp.

78–88

PLM10. S. Plazar, P. Lokuciejewski, P. Marwedel, WCET-driven cache-aware memory

content selection, in Proceedings of the 13th IEEE International Symposium on

Object/Component/Service-oriented Real-time Distributed Computing (ISORC), Car-

mona, Spain, 2010, pp. 107–114

PSK08. A. Prantl, M. Schordan, J. Knoop, TuBound—a conceptually new tool for worst-case

execution time analysis, in Proceedings of the 8th International Workshop on Worst-

Case Execution Time Analysis (WCET), Prague, Czech Republik, July 2008

Pua06. I. Puaut, WCET-centric software-controlled instruction caches for hard real-time

systems, in Proceedings of the 18th Euromicro Conference on Real-Time Systems

(ECRTS), Dresden, Germany, July 2006, pp. 217–226

PD02. I. Puaut, D. Decotigny, Low-complexity algorithms for static cache locking in multi-

tasking hard real-time systems, in Proceedings of the 23rd IEEE Real-Time Systems

Symposium (RTSS), Austin, USA, December 2002, pp. 114–123

PP07. I. Puaut, C. Pais, Scratchpad memories vs locked caches in hard real-time systems:

a quantitative comparison, in Proceedings of the Conference on Design, Automation

and Test in Europe (DATE), Nice, France, March 2007, pp. 1484–1489

252 References

RS09. J. Reineke, R. Sen, Sound and Efficient WCET analysis in presence of timing anoma-

lies, in Proceedings of 9th International Workshop on Worst-Case Execution Time

(WCET) Analysis, Dublin, Ireland, June 2009, pp. 107–117

RWT+06. J. Reineke, B. Wachter, S. Thesing et al., A definition and classification of timing

anomalies, in Proceedings of 6th International Workshop on Worst-Case Execution

Time Analysis (WCET), Dresden, Germany, July 2006

RR95. T. Reps, G. Rosay, Precise interprocedural chopping, in Proceedings of the 3rd ACM

SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT), Wash-

ington, USA, October 1995, pp. 41–52

Ric06. K. Richter, The AUTOSAR timing model—status and challenges, in Proceedings of

the Second International Symposium on Leveraging Applications of Formal Methods,

Verification and Validation (ISOLA), Paphos, Cyprus, November 2006, pp. 9–10

RTG+07. H. Rong, Z. Tang, R. Govindarajan et al., Single-dimension software pipelining for

multidimensional loops. ACM Trans. Archit. Code Optim. 4(1), 7–51 (2007)

RMC+09. T. Russell, A.M. Malik, M. Chase et al., Learning heuristics for the superblock in-

struction scheduling problem. IEEE Trans. Knowl. Data Eng. 21(10), 1489–1502

(2009)

Saa03. A. Saad, Java-based functionality and data management in the automobile. Prototyp-

ing at BMW Car IT GmbH, in Java Spectrum, March 2003

SEGL06. C. Sandberg, A. Ermedahl, J. Gustafsson, B. Lisper, Faster WCET flow analysis by

program slicing. SIGPLAN Not. 41(7), 103–112 (2006)

Sar01. V. Sarkar, Optimized unrolling of nested loops. Int. J. Parallel Program. 29(5), 545–

581 (2001)

Sch00. H. Schildt, C/C++ Programmer’s Reference (McGraw-Hill, New York, 2000)

Sch07. D. Schulte, Modeling and transformation of flow facts within a WCET optimizing

compiler, Diploma thesis, TU Dortmund University, May 2007

SEG+06. D. Sehlberg, A. Ermedahl, J. Gustafsson et al., Static WCET analysis of real-time

task-oriented code in vehicle control systems, in Proceedings of the 2nd International

Symposium on Leveraging Applications of Formal Methods, Verification and Valida-

tion (ISOLA), Paphos, Cyprus, November 2006, pp. 212–219

Sha89. A.C. Shaw, Reasoning about time in higher-level language software. IEEE Trans.

Softw. Eng. 15(7), 875–889 (1989)

SES00. B. Siegfried, M. Eduard, B. Scholz, Probabilistic procedure cloning for high-

performance systems, Technical report, Institute for Software Science, University of

Vienna, November 2000

Smi00. M.D. Smith, Overcoming the challenges to feedback-directed optimization, in Pro-

ceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation

and Optimization (DYNAMO), Boston, USA, January 2000, pp. 1–11

SD03. W. So, A. Dean, Procedure cloning and integration for converting parallelism from

coarse to fine grain, in Proceedings of the 7th Workshop on Interaction between Com-

pilers and Computer Architectures (INTERACT), Anaheim, USA, February 2003,

pp. 27–36

SK04. L. Song, K. Kavi, What can we gain by unfolding loops? SIGPLAN Not. 39(2), 26–33

(2004)

SLPH+05. J. Souyris, E. Le Pavec, G. Himbert et al., Computing the worst case execution time

of an avionics program by abstract interpretation, in Proceedings of the 5th Inter-

national Workshop on Worst-Case Execution Time Analysis (WCET), Palma de Mal-

lorca, Spain, June 2005, pp. 21–49

SS07. Y.N. Srikant, P. Shankar, The Compiler Design Handbook: Optimizations and Ma-

chine Code Generation, 2nd edn. (CRC Press, Boca Raton, 2007)

Sta88. J.A. Stankovic, Misconceptions about real-time computing: a serious problem for

next-generation systems. Computer 21(10), 10–19 (1988)

SEE01. F. Stappert, A. Ermedahl, J. Engblom, Efficient longest executable path search for

programs with complex flows and pipeline effects, in Proceedings of the 2001 Inter-

References 253

national Conference on Compilers, Architecture, and Synthesis for Embedded Systems

(CASES), Atlanta, USA, November 2001, pp. 132–140

SW+10. S. Steinke, L. Wehmeyer et al., The encc Energy aware C compiler homepage, http://

ls12-www.cs.tu-dortmund.de/research/activities/encc, March 2010

SA05. M. Stephenson, S. Amarasinghe, Predicting unroll factors using supervised classifi-

cation, in Proceedings of the International Symposium on Code Generation and Op-

timization (CGO), San Jose, USA, March 2005, pp. 123–134

SAMO03. M. Stephenson, S. Amarasinghe, M. Martin, U.M. O’Reilly, Meta optimization: im-

proving compiler heuristics with machine learning. SIGPLAN Not. 38(5), 77–90

(2003)

SDJ84. B. Su, S. Ding, L. Jin, An improvement of trace scheduling for global microcode

compaction. ACM SIGMICRO Newsl. 15(4), 78–85 (1984)

SM08. V. Suhendra, T. Mitra, Exploring locking & partitioning for predictable shared caches

on multi-cores, in Proceedings of the 45th annual Design Automation Conference

(DAC), Anaheim, California, June 2008, pp. 300–303

SRM08. V. Suhendra, A. Roychoudhury, T. Mitra, Scratchpad allocation for concurrent em-

bedded software, in Proceedings of the 6th IEEE/ACM International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), Atlanta, USA,

October 2008, pp. 37–42

SMR+05. V. Suhendra, T. Mitra, A. Roychoudhury et al., WCET centric data allocation to

scratchpad memory, in Proceedings of the 26th IEEE International Real-Time Sys-

tems Symposium (RTSS), Miami, USA, December 2005, pp. 223–232

Sym10. Symtavision GmbH, Scheduling Analysis for ECUs, Buses and Networks, http://

www.symtavision.com/symtas.html, March 2010

Inf08a. Tc1796 32-bit single-chip microcontroller tricore—data sheet. Infineon Technologies

AG, Document Revision 2008-04 (2008)

The00. H. Theiling, Extracting safe and precise control flow from binaries, in Proceed-

ings of the Seventh International Conference on Real-Time Systems and Applications

(RTCSA), Cheju Island, South Korea, December 2000, pp. 23–30

The02. H. Theiling, Control flow graphs for real-time systems analysis, PhD thesis, Saarland

University, 2002

The04. S. Thesing, Safe and precise WCET determinations by abstract interpretation of

pipeline models, PhD thesis, Saarland University, 2004

TCG+02. L. Thiele, S. Chakraborty, M. Gries et al., A framework for evaluating design tradeoffs

in packet processing architectures, in Proceedings of the 39th Design Automation

Conference (DAC), New Orleans, USA, June 2002, pp. 880–885

TY97. H. Tomiyama, H. Yasuura, Code placement techniques for cache miss rate reduction.

ACM Trans. Des. Automat. Electron. Syst. 2(4), 410–429 (1997)

Ton99. P. Tonella, Effects of different flow insensitive points-to analyses on DEF/USE sets, in

Proceedings of the Third European Conference on Software Maintenance and Reengi-

neering (CSMR), Amsterdam, The Netherlands, March 1999, pp. 62–69

Inf04. Tricore 1 pipeline behaviour & instruction execution timing. Infineon Technologies

AG, Document Revision 2004-06 (2004)

Inf08b. TriCore 1 32-bit unified processor core v1.3 architecture—architecture manual. Infi-

neon Technologies AG, Document Revision 2008-01 (2008)

UTD10. UTDSP Benchmark Suite. http://www.eecg.toronto.edu/~corinna/DSP/

infrastructure/UTDSP.html, March 2010

Vah99. F. Vahid, Procedure cloning: a transformation for improved system-level functional

partitioning. ACM Trans. Des. Automat. Electron. Syst. 4(1), 70–96 (1999)

Vah02. F. Vahid, Embedded System Design: A Unified Hardware/Software Introduction (Wi-

ley, New York, 2002)

Vah08. F. Vahid, Timing is everything—embedded systems demand teaching of structured

time-oriented programming, in Proceedings of the Workshop on Embedded Systems

Education (WESE), Atlanta, USA, October 2008, pp. 1–9

http://ls12-www.cs.tu-dortmund.de/research/activities/encc
http://ls12-www.cs.tu-dortmund.de/research/activities/encc
http://www.symtavision.com/symtas.html
http://www.symtavision.com/symtas.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html

254 References

VTS+07. K. Vaswani, M.J. Thazhuthaveetil, Y. Srikant et al., Microarchitecture sensitive em-

pirical models for compiler optimizations, in Proceedings of the International Sym-

posium on Code Generation and Optimization (CGO), San Jose, USA, March 2007,

pp. 131–143

VRF+08. H. Venturini, F. Riss, J.C. Fernandez et al., A fully-non-transparent approach to the

code location problem, in Proceedings of the 11th International Workshop on Soft-

ware & Compilers for Embedded Systems (SCOPES), Munich, Germany, March 2008,

pp. 61–68

VLX03. X. Vera, B. Lisper, J. Xue, Data cache locking for higher program predictability, in

Proceedings of the ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), San Diego, USA, July 2003, pp.

272–282

Ver09. S. Verdoolaege, Barvinok, http://www.kotnet.org/~skimo/barvinok, September 2009

VSB+04. S. Verdoolaege, R. Seghir, K. Beyls et al., Analytical computation of Ehrhart poly-

nomials: enabling more compiler analyses and optimizations, in Proceedings of the

2004 International Conference on Compilers, Architecture, and Synthesis for Embed-

ded Systems (CASES), Washington, USA, September 2004, pp. 248–258

VM07. M. Verma, P. Marwedel, Advanced Memory Optimization Techniques for Low-Power

Embedded Processors (Springer, Berlin, 2007)

WHSB92. N.J. Warter, G.E. Haab, K. Subramanian, J.W. Bockhaus, Enhanced modulo schedul-

ing for loops with conditional branches. ACM SIGMICRO Newsl. 23(1–2), 170–179

(1992)

WM06. L. Wehmeyer, P. Marwedel, Fast, Efficient and Predictable Memory Accesses: Op-

timization Algorithms for Memory Architecture Aware Compilation (Springer, New

York, 2006)

Wei99. M.D. Weiser, The computer for the 21st century. ACM SIGMOBILE Mobile Comput.

Commun. Rev. 3(3), 3–11 (1999)

Wei79. M.D. Weiser, Program slices: formal, psychological, and practical investigations of

an automatic program abstraction method, PhD thesis, University of Michigan, Ann

Arbor, USA, 1979

WS90. D. Whitfield, M.L. Soffa, An approach to ordering optimizing transformations. ACM

SIGPLAN Not. 25(3), 137–146 (1990)

Wol02. F. Wolf, Behavioral Intervals in Embedded Software: Timing and Power Analysis of

Embedded Real-Time Software Processes (Kluwer Academic, Norwell, 2002)

WM95. W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM

SIGARCH Comput. Archit. News 23(1), 20–24 (1995)

WM07. M. Wurst, K. Morik, Distributed feature extraction in a P2P setting—a case study.

Future Gener. Comput. Syst. 23(1), 69–75 (2007). Special Issue on Data Mining

ZCS03. M. Zhao, B. Childers, M.L. Soffa, Predicting the impact of optimizations for em-

bedded systems, in Proceedings of the ACM SIGPLAN Conference on Languages,

Compilers, and Tools for Embedded Systems (LCTES), San Diego, USA, June 2003,

pp. 1–11

ZWHM04. W. Zhao, D. Whalley, C. Healy, F. Mueller, WCET code positioning, in Proceed-

ings of the 25th IEEE International Real-Time Systems Symposium (RTSS), Lisbon,

Portugal, December 2004, pp. 81–91

ZWH+05. W. Zhao, D. Whalley, C. Healy et al., Improving WCET by applying a WC code-

positioning optimization. ACM Trans. Archit. Code Optim. 2(4), 335–365 (2005)

ZKW+05. W. Zhao, W. Kreahling, D. Whalley et al., Improving WCET by optimizing worst-

case paths, in Proceedings of the 11th IEEE Real Time on Embedded Technology and

Applications Symposium (RTAS), San Francisco, USA, March 2005, pp. 138–147

ZKW+04. W. Zhao, P. Kulkarni, D. Whalley et al., Tuning the WCET of embedded applications,

in Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), Toronto, Canada, May 2004, pp. 472–481

http://www.kotnet.org/~skimo/barvinok

References 255

ZK04. E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, in Proceed-

ings of the 9th International Conference on Parallel Problem Solving from Nature

(PPSN), Birmingham, UK, September 2004, pp. 832–842

ZT99. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study

and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

ZLT01. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolu-

tionary algorithm for multiobjective optimization, in Proceedings of the Conference

on Evolutionary Methods for Design, Optimisation and Control with Application to

Industrial Problems (EUROGEN), Athens, Greece, September 2001, pp. 95–100

ZVS+94. V. Zivojnović, J. Martínez Velarde, C. Schläger et al., DSPstone: a DSP-oriented

benchmarking methodology, in Proceedings of the International Conference on Sig-

nal Processing and Technology (ICSPAT), Dallas, USA, January 1994, pp. 715–720

Index

A

Abstract interpretation, 43, 237

abstract configuration, 239

abstract domain, 238

abstraction function, 237

concretization function, 237

galois connection, 238

galois insertion, 238

narrowing operator, 240

widening operator, 240

ACET, see Average-case execution time

AiT, 21

Alias analysis, 91

Alternative hypothesis, 213

Archive, 211

AUTOSAR, 5

Availability, 92

Average-case execution time, 3

B

Back-annotation, 54, 55, 63, 77, 85, 104, 122,

128, 168, 172, 230

Basic block, 16

BCET, see Best-case execution time

Best-case execution time, 5

Bit selection, 134

Bookkeeping, 82, 153

Bootstrap, 170, 172

Bound calculation

implicit path enumeration, 20

path-based, 19

tree-based, 19, 91

C

Cache, 98, 101, 133, 181, 199

associativity, 134

direct-mapped, 136

may analysis, 21, 137

miss, 18, 99, 109, 122, 133, 135–137, 167

must analysis, 21, 137

replacement strategy, 134

set, 134

spatial locality, 133

temporal locality, 133

way, 134

Call graph, 137

WCET-centric, 138

CFG, see Control flow graph

Chronos, 26

Code location problem, 63

Common subexpression, 92

Common subexpression elimination, 80

superblock-based, 92

Compensation code, 82, 153, 156

Compiler

adaptive, 198, 203, 216

backend, 30, 203

code generator, 32

code selector, 29

frontend, 26, 203

optimizations, 28, 31, 199, 205

parser, 26

Configuration, 235

Context, 17, 38, 66, 114, 118, 119

Context save, 168

Control dependence, 46

Control flow graph, 16

interprocedural, 17

CRL2, 21, 33

Cross validation, 172, 216, 223

benchmark-wise, 185

holdout, 176

leave-one-out (LOOCV), 172

P. Lokuciejewski, P. Marwedel, Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems, Embedded Systems,

DOI 10.1007/978-90-481-9929-7, © Springer Science+Business Media B.V. 2011

257

http://dx.doi.org/10.1007/978-90-481-9929-7

258 Index

CSE, see Common subexpression elimination

Cyber-physical system, 3

D

DCE, see Dead code elimination

Dead code elimination, 80, 93

superblock-based, 93

Decision tree, 170, 183

Def/use chains, 28

Def/use sets, 91

Dependence graph, 149, 150

Dominance ranking, 213

E

Ehrhart polynomial, 50

EMO, see Evolutionary multi-objective

optimization

Ensemble techniques, 170

Evolutionary multi-objective optimization,

208, 210, 230

Execution history, 17

F

Flow facts, 19, 39, 67

Flow restriction, 40

Function inlining, 88, 165, 166, 206

WCET-aware, 171, 231

G

GCC compiler, 202, 204

Genetic algorithm, 189, 206

encoding, 206

fitness, 208

operators, 207

H

Heptane, 25

Hypervolume indicator, 214

I

IBEA, 211

ICD-C IR, 27, 55, 63, 101, 204

ILP, see Integer linear program

Infeasible path, 21, 43, 68, 72

Instruction scheduling, 145, 199

bundle, 148

global scheduling, 145

local scheduling, 32, 145, 147

postpass, 147

prepass, 147

priority assignment, 150

trace scheduling, 85, 145, 146

WCET-aware trace scheduling, 151, 231

Integer linear program, 20

Intermediate representation, 26, 202, 203

Invariant path, 113, 117, 230

construction, 119

dynamic ratio, 120

ratio, 120

static ratio, 120

IPET, 20, 85, 90

Iterative compilation, 201, 205

K

K-Nearest neighbor, 183

L

Lattice, 236

Least recently used replacement strategy, 134

LICM, see Loop-invariant code motion

Line crossing effect, 122, 154

List scheduling, 149

Livetime analysis, 30, 91

LLIR, 30, 55, 204

physical, 31

virtual, 31, 204

Loop analysis, 41, 102, 230

Loop bounds, 40

Loop deindexing, 62, 200

Loop transformation, 37

Loop unrolling, 88, 97

unrolling factor, 97, 99, 100, 102, 103

unrolling profit, 108

WCET-aware, 102, 108, 230

Loop unswitching, 121

WCET-aware, 122, 230

Loop-invariant, 180

Loop-invariant code motion, 178, 180

WCET-aware, 188, 231

M

Machine learning, 160, 161, 230

accuracy, 162, 172, 184

class recall, 173

classification, 162

cross validation, 172

example, 162

feature extraction, 163, 168, 169, 187

heuristic generation, 163, 167

label, 162, 163, 169, 187

learner, 163, 183

model, 163

parameter optimization, 186

reinforcement learning, 161

static features, 160, 163, 168, 187

test set, 162

training set, 162

Index 259

Machine learning (cont.)

unsupervised learning, 161

variable importance measure, 173

Machine learning based heuristics, 160

Mann-Whitney, 213, 215, 218

Memory hierarchy specification, 36, 104

MLB, see Machine learning based

Mnemonic, 34

Model induction, 163

Model selection, 182

N

Naive bayes, 183

NOP, 146, 154

NSGA-II, 211

Null hypothesis, 212

O

Optimizations

assembly, 31, 206

level, 29, 197, 200, 206, 210

source code, 28, 205

Overfitting, 171

P

P-value, 212

Pareto

dominance, 209

front, 209

front approximation, 210

optimality, 209

set, 209

Path, 17

Phase ordering, 198, 201

PISA, 217

Polyhedron, 48

Polytope, 48

Pragmas, 28

Preference information, 215

Procedure cloning, 64, 69

cloning profit, 77

WCET-aware, 75, 230

Procedure positioning, 133

WCET-aware, 231

WCET-aware (greedy), 138

WCET-aware (heuristic), 142

Processor behavioral analysis, 17

Profiling, 100, 136, 138

Program, 17

Program control point, 235

Program dependence graph, 46

Program slicing, 46

slice, 46

slicing criterion, 46

Q

Quality indicators, 214

R

Random forests, 170, 183

RapidMiner, 172, 189

Real-time systems, 3, 198, 208, 229

hard, 3

Reference block, 57

Register allocation, 31, 147, 199, 204, 206

Register pressure, 167, 168, 181

analyzer, 169, 172

Resubstitution estimation, 174

S

Safeness, 5

Scratchpad, 3, 59, 78, 172

Semantics

abstract, 237

collecting, 236

concrete, 235

path, 236

sticky collecting, 237

Significance level, 212

Smallest common prime factor, 105

SPEA-2, 211

Spill code, 31, 95, 98, 101, 105, 106, 167, 169,

181

ratio, 106

Stall, 145, 148

State, 235

State explosion, 18, 43, 66

Statistical hypothesis testing, 215

Statistical performance assessment, 211

Statistical significance, 212

Superblock, 79, 81, 86

assembly level, 86

dead, 93

formation, 88

optimization, 79

source code level, 88

WCET-aware, 82, 88, 91, 230

Supervised learning, 162

Support vector machine, 183

linear, 183

RBF kernel, 183

SWEET, 25

Syntax directed definitions, 91

System dependence graph, 47

T

Tail duplication, 86

Test statistics, 213

260 Index

Tightness, 5

Timing analysis, 4

Timing anomalies, 18

Trace, 81, 83, 151

dependence graph, 151

longest path, 84

loop representative, 86, 153

selection, 83

Transition function, 235

TriCore, 30, 57, 145, 148

TUBOUND, 25

V

Variator, 211

VISTA, 25

VLIW, 147

W

WCC, 26

WCEC, see Worst-case execution cout

WCEP, see Worst-case execution path, 17

WCET, see Worst-case execution time

WcetC, 25

Worst-case execution count, 57

Worst-case execution path, 8

switch, 8, 113

Worst-case execution time, 3

Worst-case execution time estimation

hybrid, 15

measurement-based, 14

static, 14

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Design of Embedded Real-Time Systems
	Industrial Practice for Meeting Timing Constraints
	WCET-Aware Compilation
	Challenges for WCET Minimization

	Contribution of This Work
	Outline

	WCET Analysis Techniques
	Introduction
	Approaches for WCET Analysis
	Measurement-Based Approach
	Static Approach
	Hybrid Approach

	Basic Concepts for Static WCET Analysis
	Control Flow
	Processor Behavioral Analysis
	Context-Dependent Timing Analysis
	Timing Anomalies

	Flow Facts
	Bound Calculation

	Static WCET Analyzer aiT

	WCC-WCET-Aware C Compiler
	Introduction
	Related Work
	Structure of the WCC Compiler
	Compiler Frontend ICD-C IR
	Standard Source Code Level Optimizations
	Code Selector
	Compiler Backend LLIR
	Standard Assembly Level Optimizations
	Code Generator

	Integration of WCET Analyzer
	Conversion from LLIR to CRL2
	Operation Identification
	Exploitation of Memory Hierarchy Specification
	Loop Transformation

	Invocation of aiT
	Import of Worst-Case Execution Data

	Modeling of Flow Facts
	Specification of Flow Facts
	Translation and Transformation of Flow Facts

	Static Loop Analysis
	Related Work
	Abstract Interpretation
	Modified Abstract Interpretation

	Interprocedural Program Slicing
	Polyhedral Evaluation
	Polyhedral Condition Evaluation
	Polyhedral Loop Evaluation
	Preconditions for Loop Evaluation
	Ehrhart Polynomial Evaluation
	Static Statement Evaluation

	Experimental Results
	Determination of Loop Iteration Counts
	Analysis Time

	Back-Annotation
	Mapping of Low-Level to High-Level Components
	Back-Annotated Data

	TriCore Processor

	WCET-Aware Source Code Level Optimizations
	Introduction
	Existing Code Optimization Techniques
	Procedure Cloning
	Motivating Example
	Related Work
	Standard Procedure Cloning
	Selection of Functions to Be Cloned

	Impact of Standard Cloning on WCET
	Experimental Results for Standard Procedure Cloning
	WCET
	ACET
	Code Size

	WCET-Aware Procedure Cloning
	Experimental Results for WCET-Aware Procedure Cloning
	WCET
	Code Size
	Optimization Run Time

	Superblock Optimizations
	Motivating Example
	Related Work
	Superblock-Based ACET Minimization
	WCET Minimization

	WCET-Aware Source Code Superblock Formation
	Trace Selection
	Longest Path Approach

	Concepts of Superblocks
	Assembly Superblocks
	Source Code Superblocks

	Superblock Formation
	Preprocessing
	Formation Algorithm
	IPET-Based WCEP Update

	WCET-Aware Superblock Optimizations
	Static Program Analysis
	Alias Analysis
	Def/Use Sets
	Livetime Analysis

	WCET-SB Common Subexpression Elimination
	WCET-SB Dead Code Elimination

	Experimental Results for WCET-Aware Superblock Optimizations
	WCET
	ACET
	Code Size
	Optimization Run Time

	Loop Unrolling
	Motivating Example
	Related Work
	Standard Loop Unrolling
	WCET-Aware Loop Unrolling
	Worst-Case Loop Iteration Counts
	I-Cache and Memory Constraints
	Exploiting Back-Annotation

	Prediction of Unrolling Effects
	Determination of Final Unrolling Factor
	WCET-Aware Unrolling Heuristics

	Experimental Results for WCET-Aware Loop Unrolling
	WCET
	ACET
	Code Size
	Optimization Run Time

	Accelerating Optimization by the Invariant Path
	Motivating Example
	Related Work
	Invariant Path Paradigm
	IF-THEN Structure
	IF-THEN-ELSE Structure with Statically Evaluable Condition
	IF-THEN-ELSE Structure with Statically Non-evaluable Condition

	Construction of the Invariant Path
	Invariant Path Ratio
	Case Study: WCET-Aware Loop Unswitching
	Experimental Results for WCET-Aware Loop Unswitching
	Optimization Run Time
	WCET
	Code Size

	Summary

	WCET-Aware Assembly Level Optimizations
	Introduction
	Existing Code Optimization Techniques
	Procedure Positioning
	Motivating Example
	Related Work
	Standard Procedure Positioning
	WCET-Centric Call Graph-Based Positioning
	Greedy WCET-Aware Positioning Approach
	Heuristic WCET-Aware Positioning Approach

	Experimental Results for WCET-Aware Procedure Positioning
	WCET
	ACET
	Optimization Run Time

	Trace Scheduling
	Motivating Example
	Related Work
	Local Instruction Scheduling
	List Scheduling

	WCET-Aware Trace Scheduling
	Experimental Results for WCET-Aware Trace Scheduling
	WCET
	ACET
	Code Size
	Optimization Run Time

	Summary

	Machine Learning Techniques in Compiler Design
	Introduction
	Related Work
	MLB Heuristic Generation for ACET Reduction
	Other Application Fields of Machine Learning

	Machine Learning Based Heuristic Generation
	Supervised Learning
	Heuristic Generation Based on Supervised Learning
	Integration and Use of MLB Heuristics in Compilers

	Function Inlining
	Motivating Example
	Standard Function Inlining
	Related Work

	MLB Heuristic Generation at Source Code Level
	Feature Extraction
	Register Pressure Analyzer

	Label Determination
	Model Induction
	Random Forests

	Application of WCET-Aware Function Inlining

	Experimental Results for WCET-Aware Function Inlining
	Accuracy of Classification
	Variable Importance Measure
	WCET
	ACET
	Code Size
	Compilation Run Time

	Loop-Invariant Code Motion
	Motivating Example
	Standard Loop-Invariant Code Motion
	MLB Heuristic Generation at Assembly Level
	Automatic Model Selection
	Learning Algorithms
	Performance Evaluation
	Parameter Optimization

	Feature Extraction
	Label Determination
	Application of WCET-Aware LICM

	Experimental Results for WCET-Aware LICM
	WCET
	ACET
	Compilation run time

	Summary

	Multi-objective Optimizations
	Introduction
	Motivation
	Related Work
	Compiler Optimization Sequence Exploration
	Adaptive Compilers
	Adaptability in WCC
	Internal Structure of WCC's Optimizer
	Available Compiler Optimizations

	Encoding of Optimization Sequences
	Objective Functions

	Multi-objective Exploration of Compiler Optimizations
	Multi-objective Optimization
	Pareto Front Approximation

	Evolutionary Multi-objective Optimization Algorithms
	Statistical Performance Assessment
	Dominance Ranking
	Hypervolume Indicators
	Statistical Hypothesis Testing

	Experimental Results for Optimization Exploration
	Statistical Performance Assessment
	Analysis of Pareto Front Approximations
	Analysis of the Optimization Sequences
	Cross Validation
	Optimization Run Time

	Summary

	Summary and Future Work
	Research Contributions
	Extensions to WCC Framework
	WCET-Aware Source Code Level Optimizations
	WCET-Aware Assembly Level Optimizations

	Future Work
	Extensions to WCC Compiler Framework
	WCET-Aware Source Code Level Optimizations
	WCET-Aware Assembly Level Optimizations
	Machine Learning Techniques in Compiler Design
	Multi-objective Optimizations

	Appendix A Abstract Interpretation
	Concrete Semantics
	Abstract Interpretation
	Abstract Semantics
	Abstract Domain
	Calculation of Abstract Semantics

	Appendix B Transformation of Conditions
	References
	Index
	Cover
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Design of Embedded Real-Time Systems
	Industrial Practice for Meeting Timing Constraints
	WCET-Aware Compilation
	Challenges for WCET Minimization

	Contribution of This Work
	Outline

	WCET Analysis Techniques
	Introduction
	Approaches for WCET Analysis
	Measurement-Based Approach
	Static Approach

	Basic Concepts for Static WCET Analysis
	Hybrid Approach
	Control Flow
	Processor Behavioral Analysis
	Timing Anomalies
	Context-Dependent Timing Analysis

	Bound Calculation
	Flow Facts

	Static WCET Analyzer aiT

	WCC-WCET-Aware C Compiler
	Introduction
	Related Work
	Structure of the WCC Compiler
	Compiler Frontend ICD-C IR
	Code Selector
	Standard Source Code Level Optimizations
	Compiler Backend LLIR
	Standard Assembly Level Optimizations
	Code Generator

	Integration of WCET Analyzer
	Conversion from LLIR to CRL2
	Operation Identification
	Exploitation of Memory Hierarchy Specification
	Loop Transformation

	Invocation of aiT

	Modeling of Flow Facts
	Import of Worst-Case Execution Data
	Specification of Flow Facts

	Static Loop Analysis
	Translation and Transformation of Flow Facts
	Related Work
	Abstract Interpretation
	Modified Abstract Interpretation

	Interprocedural Program Slicing
	Polyhedral Evaluation
	Polyhedral Condition Evaluation
	Polyhedral Loop Evaluation
	Preconditions for Loop Evaluation
	Ehrhart Polynomial Evaluation

	Experimental Results
	Static Statement Evaluation
	Determination of Loop Iteration Counts
	Analysis Time

	Back-Annotation
	Mapping of Low-Level to High-Level Components

	TriCore Processor
	Back-Annotated Data

	WCET-Aware Source Code Level Optimizations
	Introduction
	Existing Code Optimization Techniques
	Procedure Cloning
	Motivating Example
	Related Work
	Standard Procedure Cloning
	Selection of Functions to Be Cloned

	Impact of Standard Cloning on WCET
	Experimental Results for Standard Procedure Cloning
	WCET
	ACET
	Code Size

	WCET-Aware Procedure Cloning
	Experimental Results for WCET-Aware Procedure Cloning
	WCET
	Code Size

	Superblock Optimizations
	Optimization Run Time
	Motivating Example
	Related Work
	Superblock-Based ACET Minimization

	WCET-Aware Source Code Superblock Formation
	WCET Minimization
	Trace Selection
	Longest Path Approach

	Concepts of Superblocks
	Source Code Superblocks
	Assembly Superblocks

	Superblock Formation
	Formation Algorithm
	Preprocessing
	IPET-Based WCEP Update

	WCET-Aware Superblock Optimizations
	Static Program Analysis
	Def/Use Sets
	Alias Analysis

	WCET-SB Common Subexpression Elimination
	Livetime Analysis

	WCET-SB Dead Code Elimination

	Experimental Results for WCET-Aware Superblock Optimizations
	WCET
	ACET

	Loop Unrolling
	Code Size
	Optimization Run Time
	Motivating Example
	Related Work
	Standard Loop Unrolling
	WCET-Aware Loop Unrolling
	Worst-Case Loop Iteration Counts
	I-Cache and Memory Constraints
	Exploiting Back-Annotation

	Prediction of Unrolling Effects
	Determination of Final Unrolling Factor
	WCET-Aware Unrolling Heuristics

	Experimental Results for WCET-Aware Loop Unrolling
	WCET
	ACET
	Code Size

	Accelerating Optimization by the Invariant Path
	Optimization Run Time
	Motivating Example
	Related Work
	Invariant Path Paradigm
	IF-THEN Structure
	IF-THEN-ELSE Structure with Statically Evaluable Condition

	Construction of the Invariant Path
	IF-THEN-ELSE Structure with Statically Non-evaluable Condition

	Invariant Path Ratio
	Case Study: WCET-Aware Loop Unswitching
	Experimental Results for WCET-Aware Loop Unswitching
	Optimization Run Time
	WCET
	Code Size

	Summary

	WCET-Aware Assembly Level Optimizations
	Introduction
	Existing Code Optimization Techniques
	Procedure Positioning
	Motivating Example
	Related Work
	Standard Procedure Positioning
	WCET-Centric Call Graph-Based Positioning
	Greedy WCET-Aware Positioning Approach

	Experimental Results for WCET-Aware Procedure Positioning
	WCET
	Heuristic WCET-Aware Positioning Approach
	ACET
	Optimization Run Time

	Trace Scheduling
	Motivating Example
	Related Work
	Local Instruction Scheduling
	List Scheduling

	WCET-Aware Trace Scheduling
	Experimental Results for WCET-Aware Trace Scheduling
	WCET
	ACET

	Summary
	Code Size
	Optimization Run Time

	Machine Learning Techniques in Compiler Design
	Introduction
	Related Work
	Other Application Fields of Machine Learning
	MLB Heuristic Generation for ACET Reduction

	Machine Learning Based Heuristic Generation
	Supervised Learning
	Heuristic Generation Based on Supervised Learning
	Integration and Use of MLB Heuristics in Compilers

	Function Inlining
	Motivating Example
	Standard Function Inlining
	Related Work

	MLB Heuristic Generation at Source Code Level
	Feature Extraction
	Register Pressure Analyzer

	Label Determination
	Model Induction
	Application of WCET-Aware Function Inlining
	Random Forests

	Experimental Results for WCET-Aware Function Inlining
	Accuracy of Classification
	Variable Importance Measure
	WCET
	ACET
	Code Size

	Loop-Invariant Code Motion
	Compilation Run Time
	Motivating Example
	Standard Loop-Invariant Code Motion
	MLB Heuristic Generation at Assembly Level
	Automatic Model Selection
	Learning Algorithms
	Performance Evaluation
	Parameter Optimization

	Feature Extraction
	Label Determination

	Experimental Results for WCET-Aware LICM
	Application of WCET-Aware LICM
	WCET
	ACET
	Compilation run time

	Summary

	Multi-objective Optimizations
	Introduction
	Motivation
	Related Work
	Compiler Optimization Sequence Exploration
	Adaptive Compilers
	Adaptability in WCC
	Internal Structure of WCC's Optimizer
	Available Compiler Optimizations

	Encoding of Optimization Sequences

	Multi-objective Exploration of Compiler Optimizations
	Objective Functions
	Multi-objective Optimization
	Pareto Front Approximation

	Evolutionary Multi-objective Optimization Algorithms
	Statistical Performance Assessment
	Dominance Ranking
	Hypervolume Indicators
	Statistical Hypothesis Testing

	Experimental Results for Optimization Exploration
	Statistical Performance Assessment
	Analysis of Pareto Front Approximations
	Analysis of the Optimization Sequences
	Cross Validation

	Summary
	Optimization Run Time

	Summary and Future Work
	Research Contributions
	WCET-Aware Source Code Level Optimizations
	Extensions to WCC Framework
	WCET-Aware Assembly Level Optimizations

	Future Work
	Extensions to WCC Compiler Framework
	WCET-Aware Assembly Level Optimizations
	Machine Learning Techniques in Compiler Design
	WCET-Aware Source Code Level Optimizations
	Multi-objective Optimizations

	Appendix A Abstract Interpretation
	Concrete Semantics
	Abstract Interpretation
	Abstract Semantics
	Abstract Domain
	Calculation of Abstract Semantics

	Appendix B Transformation of Conditions
	References
	Index

