

Embedded Systems

Series Editors
Nikil D. Dutt, Department of Computer Science, Donald Bren School

of Information and Computer Sciences, University of California, Irvine,
Zot Code 3435, Irvine, CA 92697-3435, USA

Peter Marwedel, Informatik 12, TU Dortmund, Otto-Hahn-Str. 16,
44227 Dortmund, Germany

Grant Martin, Tensilica Inc., 3255-6 Scott Blvd., Santa Clara, CA 95054, USA

For other titles published in this series, go to

www.springer.com/series/8563

http://www.springer.com/series/8563

Peter Marwedel

Embedded
System Design

Embedded Systems Foundations
of Cyber-Physical Systems

2nd Edition

Dr. Peter Marwedel
TU Dortmund
Informatik 12
Otto-Hahn-Str. 16
44221 Dortmund
Germany
peter.marwedel@tu-dortmund.de

ISBN 978-94-007-0256-1 e-ISBN 978-94-007-0257-8
DOI 10.1007/978-94-007-0257-8
Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:peter.marwedel@tu-dortmund.de
http://www.springer.com
http://www.springer.com/mycopy

Contents

Preface xi

Acknowledgments xxi

1. INTRODUCTION 1

1.1 Application areas and examples 1

1.2 Common characteristics . 4

1.3 Challenges in Embedded System Design 10

1.4 Design Flows . 12

1.5 Structure of this book . 17

1.6 Assignments . 18

2. SPECIFICATIONS AND MODELING 21

2.1 Requirements . 21

2.2 Models of computation . 28

2.3 Early design phases . 35

2.3.1 Use cases . 35

2.3.2 (Message) Sequence Charts 36

2.4 Communicating finite state machines (CFSMs) 39

2.4.1 Timed automata . 40

2.4.2 StateCharts . 42

2.4.3 Synchronous languages 52

2.4.4 SDL: A case of message passing 54

2.5 Data flow . 61

2.5.1 Scope . 61

2.5.2 Kahn process networks 62

2.5.3 Synchronous data flow 64

2.5.4 Simulink . 66

2.6 Petri nets . 67

v

vi EMBEDDED SYSTEM DESIGN

2.6.1 Introduction . 67

2.6.2 Condition/event nets 70

2.6.3 Place/transition nets 71

2.6.4 Predicate/transition nets 76

2.6.5 Evaluation . 78

2.7 Discrete event based languages 78

2.7.1 VHDL . 80

2.7.2 SystemC . 96

2.7.3 Verilog and SystemVerilog 98

2.7.4 SpecC . 100

2.8 Von-Neumann languages . 101

2.8.1 CSP . 102

2.8.2 ADA . 102

2.8.3 Java . 105

2.8.4 Pearl and Chill . 106

2.8.5 Communication libraries 106

2.9 Levels of hardware modeling 107

2.10 Comparison of models of computation 109

2.10.1 Criteria . 109

2.10.2 UML . 113

2.10.3 Ptolemy II . 115

2.11 Assignments . 116

3. EMBEDDED SYSTEM HARDWARE 119

3.1 Introduction . 119

3.2 Input . 120

3.2.1 Sensors . 120

3.2.2 Discretization of time: Sample-and-hold circuits . . . 123

3.2.3 Discretization of values: A/D-converters 127

3.3 Processing Units . 132

3.3.1 Overview . 132

3.3.2 Application-Specific Circuits (ASICs) 135

3.3.3 Processors . 135

3.3.4 Reconfigurable Logic 152

3.4 Memories . 155

3.5 Communication . 157

3.5.1 Requirements . 158

3.5.2 Electrical robustness 159

3.5.3 Guaranteeing real-time behavior 160

3.5.4 Examples . 162

3.6 Output . 164

3.6.1 D/A-converters . 164

Contents vii

3.6.2 Sampling theorem 167

3.6.3 Actuators . 172

3.7 Secure hardware . 173

3.8 Assignments . 173

4. SYSTEM SOFTWARE 177

4.1 Embedded Operating Systems 178

4.1.1 General requirements 178

4.1.2 Real-time operating systems 182

4.1.3 Virtual machines . 186

4.1.4 Resource access protocols 186

4.2 ERIKA . 191

4.3 Hardware abstraction layers 195

4.4 Middleware . 195

4.4.1 OSEK/VDX COM 195

4.4.2 CORBA . 196

4.4.3 MPI . 197

4.4.4 POSIX Threads (Pthreads) 198

4.4.5 OpenMP . 198

4.4.6 UPnP, DPWS and JXTA 199

4.5 Real-time databases . 200

4.6 Assignments . 201

5. EVALUATION AND VALIDATION 203

5.1 Introduction . 203

5.1.1 Scope . 203

5.1.2 Multi-objective optimization 204

5.1.3 Relevant objectives 206

5.2 Performance evaluation . 207

5.2.1 Early phases . 207

5.2.2 WCET estimation 208

5.2.3 Real-time calculus 213

5.3 Energy and power models 217

5.4 Thermal models . 218

5.5 Risk- and dependability analysis 219

5.6 Simulation . 228

5.7 Rapid prototyping and emulation 229

5.8 Formal Verification . 231

5.9 Assignments . 233

6. APPLICATION MAPPING 235

6.1 Problem definition . 235

6.2 Scheduling in real-time systems 238

viii EMBEDDED SYSTEM DESIGN

6.2.1 Classification of scheduling algorithms 238

6.2.2 Aperiodic scheduling without precedence constraints . 242

6.2.3 Aperiodic scheduling with precedence constraints . . 248

6.2.4 Periodic scheduling without precedence constraints . 257

6.2.5 Periodic scheduling with precedence constraints . . . 262

6.2.6 Sporadic events . 263

6.3 Hardware/software partitioning 263

6.3.1 Introduction . 263

6.3.2 COOL . 264

6.4 Mapping to heterogeneous multi-processors 272

6.5 Assignments . 277

7. OPTIMIZATION 281

7.1 Task level concurrency management 281

7.2 High-level optimizations . 285

7.2.1 Floating-point to fixed-point conversion 285

7.2.2 Simple loop transformations 287

7.2.3 Loop tiling/blocking 289

7.2.4 Loop splitting . 291

7.2.5 Array folding . 293

7.3 Compilers for embedded systems 295

7.3.1 Introduction . 295

7.3.2 Energy-aware compilation 296

7.3.3 Memory-architecture aware compilation 297

7.3.4 Reconciling compilers and timing analysis 306

7.3.5 Compilation for digital signal processors 308

7.3.6 Compilation for multimedia processors 310

7.3.7 Compilation for VLIW processors 311

7.3.8 Compilation for network processors 312

7.3.9 Compiler generation, retargetable compilers and de-

sign space exploration 313

7.4 Power Management and Thermal Management 313

7.4.1 Dynamic voltage scaling (DVS) 313

7.4.2 Dynamic power management (DPM) 317

7.5 Assignments . 318

8. TEST 321

8.1 Scope . 321

8.2 Test procedures . 322

8.2.1 Test pattern generation for gate level models 322

8.2.2 Self-test programs 324

8.3 Evaluation of test pattern sets and system robustness 324

8.3.1 Fault coverage . 324

Contents ix

8.3.2 Fault simulation . 325

8.3.3 Fault injection . 326

8.4 Design for testability . 327

8.4.1 Motivation . 327

8.4.2 Scan design . 327

8.4.3 Signature analysis 329

8.4.4 Pseudo-random test pattern generation 330

8.4.5 The built-in logic block observer (BILBO) 331

8.5 Assignments . 332

Appendix A Integer linear programming 335

Appendix B Kirchhoff’s laws and operational amplifiers 337

References 343

About the Author 373

List of Figures 375

Index 383

Preface

Definitions and scope

Until the late 1980s, information processing was associated with large main-

frame computers and huge tape drives. During the 1990s, this shifted towards

information processing being associated with personal computers, PCs. The

trend towards miniaturization continues and the majority of information pro-

cessing devices will be small portable computers, many of which will be in-

tegrated into larger products. Their presence in these larger products, such as

telecommunication equipment, will be less obvious than for the PC. Usually,

technical products must be technologically advanced to attract customers’ in-

terest. Cars, cameras, TV sets, mobile phones, etc. can hardly be sold any

more in technologically advanced countries unless they come with built-in

computers. Hence and according to several forecasts (see, for example [Na-

tional Research Council, 2001]), the future of information and communication

technologies (ICT) is characterized by terms such as

1 ubiquitous computing [Weiser, 2003],

2 pervasive computing [Hansmann, 2001], [Burkhardt, 2001],

3 ambient intelligence [Koninklijke Philips Electronics N.V., 2003],

[Marzano and Aarts, 2003],

4 the disappearing computer [Weiser, 2003],

5 and the post-PC era.

The first term reflects the fact that computing (and communication) will be

everywhere. The expectation is that information will be available anytime,

anywhere. The predicted penetration of our day-to-day life with computing

xi

xii EMBEDDED SYSTEM DESIGN

devices led to the term “pervasive computing”. For ambient intelligence, there

is some emphasis on communication technology in future homes and smart

buildings. These three terms focus on only slightly different aspects of future

information technology. Ubiquitous computing focuses more on the long term

goal of providing information anytime, anywhere, whereas pervasive comput-

ing focuses more on practical aspects and the exploitation of already available

technology. The fourth term refers to the expectation that processors and soft-

ware will be used in much smaller systems and will in many cases even be

invisible. The term post-PC era denotes the fact that in the future, standard-

PCs will be less dominant hardware platforms.

Two basic technologies are needed for next-generation ICT systems:

embedded systems,

and communication technologies.

Fig. 0.1 shows a graphical representation of how ubiquitous computing is in-

fluenced by embedded systems and by communication technology.

Figure 0.1. Influence of embedded systems on ubiquitous computing (©European Commis-

sion)

For example, ubiquitous computing devices -like embedded systems- must

meet real-time and dependability requirements of embedded systems while us-

ing fundamental techniques of communication technology, such as networking.

A comprehensive coverage of communication technologies would require a

separate book. Therefore, this book does not cover communication technolo-

gies, except as a minor topic in few subsections. What are “embedded systems”

anyway? They can be defined as follows [Marwedel, 2003]:

Preface xiii

Definition: Embedded systems are information processing systems em-

bedded into enclosing products.

Examples include embedded systems in cars, trains, planes, and telecommu-

nication or fabrication equipment. Such systems come with a large number

of common characteristics, including real-time constraints, and dependability

as well as efficiency requirements. For such systems, the link to physics and

physical systems is rather important. This link is emphasized in the following

citation [Lee, 2006]:

“Embedded software is software integrated with physical processes. The tech-

nical problem is managing time and concurrency in computational systems”.

This citation could be used as a definition of the term “embedded software”

and could be extended into a definition of “embedded systems” by just replac-

ing “software” by “system”. However, the strong link to physics has recently

been stressed even more by the introduction of the term “cyber-physical sys-

tems” (CPS or “cy-phy” systems for short). Cy-phy systems can be defined as

follows:

Definition: “Cyber-Physical Systems (CPS) are integrations of computation

and physical processes” [Lee, 2007].

The new term emphasizes the link to physical quantities such as time, energy

and space. Emphasizing this link makes a lot of sense, since it is frequently

ignored in a world of applications running on PCs. For cy-phy systems, we

may be expecting models to include models of the physical environment as

well. In this sense, we may think of cy-phy systems to comprise embedded

systems (the information processing part) and the physical environment.

We will refer to the new term whenever we want to emphasize the link to

physics and the environment. In the future, links to chemistry and biology are

likely to be important as well.

This book provides an overview of key concepts for embedded systems as they

are needed for cyber-physical systems. The scope includes specification tech-

niques, hardware components, system software, application mapping, evalua-

tion and validation, as well as exemplary optimizations and test methods.

Importance of embedded and cyber-physical systems

Following the success of ICT for office and work flow applications, embedded

and cyber-physical systems are considered to be the most important applica-

tion area of ICT during the coming years. The number of processors in embed-

ded systems already exceeds the number of processors in PCs, and this trend

is expected to continue. According to forecasts, the size of embedded software

will also increase at a large rate. Another kind of Moore’s law was predicted:

xiv EMBEDDED SYSTEM DESIGN

For many products in the area of consumer electronics the amount of code is

doubling every two years [Vaandrager, 1998]. The increasing importance of

embedded systems is also reflected in a report of the National Research Coun-

cil in the United States [National Research Council, 2001]. According to the

introduction of this report, “Information technology (IT) is on the verge of an-

other revolution. ... networked systems of embedded computers ... have the

potential to change radically the way people interact with their environment

by linking together a range of devices and sensors that will allow information

to be collected, shared, and processed in unprecedented ways. ... The use

... throughout society could well dwarf previous milestones in the information

revolution.”

Statistics regarding the size of the embedded systems market can be found on

relevant web sites. Sites such as “IT facts” [IT Facts, 2010] demonstrate the

importance of the embedded system market. The size of the embedded system

market can be analyzed from a variety of perspectives. Many of the embedded

processors are 8-bit processors, but despite this, even the majority of all 32-

bit processors are integrated into embedded systems [Stiller, 2000]. Already

in 1996, it was estimated that the average American came into contact with 60

microprocessors per day [Camposano and Wolf, 1996]. Some high-end cars

contain more than 100 processors1. These numbers are much larger than what

is typically expected, since most people do not realize that they are using pro-

cessors. The importance of embedded systems was also stated by journalist

Margaret Ryan [Ryan, 1995]:

“... embedded chips form the backbone of the electronics driven world in which

we live. ... they are part of almost everything that runs on electricity”.

According to quite a number of forecasts, the embedded system market will be

much larger than the market for PC-like systems.

In the United States, the National Science Foundation is supporting research on

cyber-physical systems [National Science Foundation, 2010]. In Europe, the

Sixth and the Seventh Framework Programme [European Commission Cordis,

2010] support research and development of embedded systems. Also, the

ARTEMIS joint undertaking [ARTEMIS Joint Undertaking, 2010] was cre-

ated as a public/private partnership between government institutions and com-

panies in order to move research and development in embedded computing

ahead. This initiative demonstrates the huge interest of the European commer-

cial sector in this technology. Similar initiatives exist on other continents as

well.

1According to personal communication.

Preface xv

This importance of embedded/cyber-physical systems is so far not well re-

flected in many of the current curricula. This book is intended as an aid for

changing this situation. It provides the material for a first course on such sys-

tems. Therefore, it has been designed as a textbook. However, it provides

more references than typical textbooks and also helps to structure the area.

Hence, this book should also be useful for faculty members and engineers. For

students, the inclusion of a rich set of references facilitates access to relevant

sources of information.

Audience for this book

This book is intended for the following audience:

Computer science (CS), computer engineering (CE), and electrical engi-

neering (EE) students as well as students in other ICT-related areas who

would like to specialize in embedded/cyber-physical systems. The book

should be appropriate for third year students who do have a basic knowl-

edge of computer hardware and software. This means that the book primar-

ily targets senior undergraduate students. However, it can also be used at

the graduate level if embedded system design is not part of the undergrad-

uate program. This book is intended to pave the way for more advanced

topics that should be covered in follow-up courses. The book assumes a

basic knowledge of computer science. EE students may have to read some

additional material in order to fully understand the topics of this book. This

should be compensated by the fact that some material covered in this book

may already be known to EE students.

Engineers who have so far worked on systems hardware and who have to

move more towards software of embedded systems. This book should pro-

vide enough background to understand the relevant technical publications.

PhD students who would like to get a quick, broad overview of key concepts

in embedded system technology before focusing on a specific research area.

Professors designing a new curriculum for embedded systems.

Curriculum integration of embedded systems

Unfortunately, embedded systems are hardly covered in the latest edition of

the Computer Science Curriculum, as published by ACM and the IEEE Com-

puter Society [ACM/IEEE, 2008]. However, the growing number of applica-

tions results in the need for more education in this area. This education should

help to overcome the limitations of currently available design technologies for

embedded systems. For example, there is still a need for better specification

xvi EMBEDDED SYSTEM DESIGN

languages, models, tools generating implementations from specifications, tim-

ing verifiers, system software, real-time operating systems, low-power design

techniques, and design techniques for dependable systems. This book should

help teaching the essential issues and should be a stepping stone for starting

more research in the area.

Areas covered in this book

This book covers hardware as well as software aspects of embedded systems.

This is in-line with the ARTIST guidelines for curricula: “The development

of embedded systems cannot ignore the underlying hardware characteristics.

Timing, memory usage, power consumption, and physical failures are impor-

tant.” [Caspi et al., 2005].

The book focuses on the fundamental bases of software and hardware. Specific

products and tools are mentioned only if they have outstanding characteristics.

Again, this is in-line with the ARTIST guidelines: “It seems that fundamental

bases are really difficult to acquire during continuous training if they haven’t

been initially learned, and we must focus on them.” [Caspi et al., 2005]. As a

consequence, this book goes beyond teaching embedded system design by pro-

gramming micro-controllers. With this approach, we would like to make sure

that the material taught will not be outdated too soon. The concepts covered in

this book should be relevant for a number of years to come.

The proposed positioning of the current textbook in computer science and com-

puter engineering curricula is explained in a paper [Marwedel, 2005]. A key

goal of this book is to provide an overview of embedded system design and

to relate the most important topics in embedded system design to each other.

This way, we avoid a problem mentioned in the ARTIST guidelines: “The

lack of maturity of the domain results in a large variety of industrial practices,

often due to cultural habits. ... curricula ... concentrate on one technique

and do not present a sufficiently wide perspective. .. As a result, industry has

difficulty finding adequately trained engineers, fully aware of design choices”

[Caspi et al., 2005].

The book should also help to bridge the gap between practical experiences with

programming micro-controllers and more theoretical issues. Furthermore, it

should help to motivate students and teachers to look at more details. While

the book covers a number of topics in detail, others are covered only briefly.

These brief sections have been included in order to put a number of related

issues into perspective. Furthermore, this approach allows lecturers to have ap-

propriate links in the book for adding complementary material of their choice.

The book includes more references than textbooks would normally do. This

way, the book can also be used as a comprehensive tutorial, providing pointers

Preface xvii

for additional reading. Such references can also stimulate taking benefit of the

book during labs, projects, and independent studies as well as a starting point

for research.

Additional information related to the book can be obtained from the fol-

lowing web page:

http://ls12-www.cs.tu-dortmund.de/∼marwedel/es-book.

This page includes links to slides, simulation tools, error corrections, and other

related material. Readers who discover errors or who would like to make com-

ments on how to improve the book should send an e-mail to:

peter.marwedel at tu-dortmund.de

Assignments could also use the information in complementary books (e.g.

[Wolf, 2001], [Buttazzo, 2002], and [Gajski et al., 2009]).

Prerequisites

The book assumes a basic understanding in several areas:

electrical networks at the high-school level (e.g. Kirchhoff’s laws),

operational amplifiers (optional),

computer organization, for example at the level of the introductory book by

J.L. Hennessy and D.A. Patterson [Hennessy and Patterson, 2008],

fundamental digital circuits such as gates and registers,

computer programming (including foundations of software engineering),

fundamentals of operating systems,

fundamentals of computer networks,

finite state machines,

some first experience with programming micro-controllers,

fundamental mathematical concepts (such as tuples, integrals, and linear

equations), and welcome knowledge in statistics and Fourier series,

algorithms (graph algorithms and optimization algorithms such as branch

and bound),

http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book

xviii EMBEDDED SYSTEM DESIGN

the concept of NP-completeness.

These prerequisites can be grouped into courses as shown in the top row in

fig. 0.2.

Figure 0.2. Positioning of the topics of this book

Recommended additional teaching

A course using this textbook should be complemented by an exciting lab, us-

ing, for example, small robots, such as Lego MindstormsTM or similar robots.

Another option is to let students gain some practical experience with finite state

machine tools.

The book should be complemented by follow-up courses providing a more

specialized knowledge in some of the following areas (see the bottom row in

fig. 0.2)2:

control systems,

digital signal processing,

machine vision,

real-time systems, real-time operating systems, and scheduling,

middleware,

application areas such as telecommunications, automotive, medical equip-

ment, and smart homes,

2The partitioning between undergraduate courses and graduate courses may differ between universities.

Preface xix

robotics,

sensors and actuators,

specification languages for embedded systems,

computer-aided design tools for application-specific hardware,

formal verification of hardware systems,

testing of hardware and software systems,

performance evaluation of computer systems,

low-power design techniques,

security and dependability of computer systems,

ubiquitous computing,

impact of embedded systems.

History of the book

The first edition of this book was published in 2003. The field of embedded

systems is moving fast and many new results have become available since then.

Also, there are areas for which the emphasis has shifted. In some cases, a more

detailed treatment of the topic became desirable. New developments have been

taken up when the first German edition of the book was published in 2007.

Therefore it became necessary to publish a major new English release, the

current second edition.

Names used in this book without any reference to copyrights or trademarks

may still be legally protected.

Please enjoy reading the book!

Dortmund (Germany), August 2010

Peter Marwedel

This book is dedicated
to my family members

Veronika, Malte,
Gesine, and Ronja.

Acknowledgments

My PhD students, in particular Lars Wehmeyer, did an excellent job in proof-

reading a preliminary version of this book. Also, the students attending my

courses provided valuable help. Corrections were contributed by David Hec,

Thomas Wiederkehr, Thorsten Wilmer and Henning Garus. In addition, the

following colleagues and students gave comments or hints which were incor-

porated into this book: R. Dömer, N. Dutt (UC Irvine), A. B. Kahng (UC San

Diego), W. Kluge, R. von Hanxleden (U. Kiel), P. Buchholz, M. Engel, H.

Krumm, O. Spinczyk (TU Dortmund), W. Müller, F. Rammig (U. Paderborn),

W. Rosenstiel (U. Tübingen), L. Thiele (ETH Zürich), and R. Wilhelm (Saar-

land University). Material from the following persons was used to prepare this

book: G. C. Buttazzo, D. Gajski, R. Gupta, J. P. Hayes, H. Kopetz, R. Leu-

pers, R. Niemann, W. Rosenstiel, H. Takada, L. Thiele, and R. Wilhelm. PhD

students of my group contributed to the assignments included in this book. Of

course, the author is responsible for all errors and mistakes.

I do acknowledge the support of the European Commission through projects

MORE, Artist2, ArtistDesign, Hipeac(2), PREDATOR, MNEMEE and MAD-

NESS, which provided an excellent context for writing the second edition of

this book.

The book has been produced using the LATEXtype setting system from the

TeXnicCenter user interface. I would like to thank the authors of this software

for their contribution to this work.

Acknowledgments also go to all those who have patiently accepted the author’s

additional workload during the writing of this book and his resulting reduced

availability for professional as well as personal partners.

Finally, it should be mentioned that the Springer company has supported the

publication of the book. Their support has been stimulating during the work

on this book.

xxi

Chapter 1

INTRODUCTION

1.1 Application areas and examples

Embedded and cy-phy systems are present in quite diverse areas. The follow-

ing list comprises key areas in which such systems are used:

Automotive electronics: Modern cars can be sold in technologically ad-

vanced countries only if they contain a significant amount of electronics.

These include air bag control systems, engine control systems, anti-braking

systems (ABS), electronic stability programs (ESP) and other safety fea-

tures, air-conditioning, GPS-systems, anti-theft protection, and many more.

Embedded systems can help to reduce the impact on the environment.

Avionics: A significant amount of the total value of airplanes is due to the

information processing equipment, including flight control systems, anti-

collision systems, pilot information systems, and others. Embedded sys-

tems can decrease emissions (such as carbon-dioxide) from airplanes. De-

pendability is of utmost importance.

Railways: For railways, the situation is similar to the one discussed for

cars and airplanes. Again, safety features contribute significantly to the

total value of trains, and dependability is extremely important.

Telecommunication: Mobile phones have been one of the fastest growing

markets in the recent years. For mobile phones, radio frequency (RF) de-

sign, digital signal processing and low power design are key aspects. Other

forms of telecommunication are also important.

Health sector: The importance of healthcare products is increasing, in par-

ticular in aging societies. There is a huge potential for improving the med-

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 1, © Springer Science+Business Media B.V. 2011

1

http://dx.doi.org/10.1007/978-94-007-0257-8_1

2 EMBEDDED SYSTEM DESIGN

ical service by taking advantage of information processing within medical

equipment. There are very diverse techniques that can be applied in this

area.

Security: The interest in various kinds of security is also increasing. Em-

bedded systems can be used to improve security in many ways. This in-

cludes secure identification/authentication of people, for example with fin-

ger print sensors or face recognition systems.

The SMARTpen® [IMEC, 1997] is another example, providing authenti-

cation of payments (see fig. 1.1).

Figure 1.1. SMARTpen (Original version)

The SMARTpen is a pen-like instrument analyzing physical parameters

while its user is signing. Physical parameters include the tilt, force and

acceleration. These values are transmitted to a host PC and compared with

information available about the user. As a result, it can be checked if both

the image of the signature as well as the way it has been produced coincide

with the stored information. More recently, smart pens locally recording

written patterns became commercially available and these devices are not

necessarily used for authentications.

Consumer electronics: Video and audio equipment is a very important

sector of the electronics industry. The information processing integrated

into such equipment is steadily growing. New services and better qual-

ity are implemented using advanced digital signal processing techniques.

Many TV sets (in particular high-definition TV sets), multimedia phones,

and game consoles comprise powerful high-performance processors and

memory systems. They represent special cases of embedded systems.

Fabrication equipment: Fabrication equipment is a very traditional area in

which embedded/cyber-physical systems have been employed for decades.

Safety is very important for such systems, the energy consumption is less

important. As an example, fig. 1.2 (taken from Kopetz [Kopetz, 1997])

shows a container with an attached drain pipe. The pipe includes a valve

and a sensor. Using the readout from the sensor, a computer may have to

control the amount of liquid leaving the pipe.

Introduction 3

Figure 1.2. Controlling a valve

The valve is an example of an actuator (see definition on page 8).

Smart buildings: Information processing can be used to increase the com-

fort level in buildings, can reduce the energy consumption within build-

ings, and can improve safety and security. Subsystems which traditionally

were unrelated must be connected for this purpose. There is a trend to-

wards integrating air-conditioning, lighting, access control, accounting and

distribution of information into a single system. Tolerance levels of air

conditioning subsystems can be increased for empty rooms, and the light-

ing can be automatically reduced. Air condition noise can be reduced to

a level required for the actual operating conditions. Intelligent usage of

blinds can also optimize lighting and air-conditioning. Available rooms

can be displayed at appropriate places, simplifying ad-hoc meetings and

cleaning. Lists of non-empty rooms can be displayed at the entrance of the

building in emergency situations (provided the required power is still avail-

able). This way, energy can be saved on cooling, heating and lighting. Also

safety can be improved. Initially, such systems might mostly be present in

high-tech office buildings, but the trend toward energy-efficient buildings

also affects the design of private homes. One of the goals is to design so-

called zero-energy-buildings (buildings which produce as much energy as

they consume) [Northeast Sustainable Energy Association, 2010]. Such a

design would be one contribution towards a reduction of the global carbon-

dioxide footprint and global warming.

Logistics: There are several ways in which embedded/cyber-physical sys-

tem technology can be applied to logistics. Radio frequency identification

(RFID) technology provides easy identification of each and every object,

worldwide. Mobile communication allows unprecedented interaction. The

need of meeting real-time constraints and scheduling are linking embedded

systems and logistics. The same is true of energy minimization issues.

Robotics: Robotics is also a traditional area in which embedded/cyber-

physical systems have been used. Mechanical aspects are very impor-

4 EMBEDDED SYSTEM DESIGN

tant for robots. Most of the characteristics described above also apply to

robotics. Recently, some new kinds of robots, modeled after animals or

human beings, have been designed. Fig. 1.3 shows such a robot.

Figure 1.3. Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl für Angewandte

Mechanik, TU München), ©TU München

Military applications: Information processing has been used in military

equipment for many years. In fact, some of the very first computers ana-

lyzed military radar signals.

This set of examples demonstrates the huge variety of embedded and cyber-

physical systems. Why does it make sense to consider all these types of em-

bedded systems in one book? It makes sense because information processing

in these systems has many common characteristics, despite being physically so

different.

1.2 Common characteristics

Common characteristics of these systems are the following:

Cyber-physical systems must be dependable.

Many cyber-physical systems are safety-critical and therefore must be de-

pendable. Nuclear power plants are examples of extremely safety-critical

Introduction 5

systems that are at least partially controlled by software. Dependability is,

however, also important in other systems, such as cars, trains, airplanes etc.

A key reason for being safety-critical is that these systems are directly con-

nected to the physical environment and have an immediate impact on the

environment.

Dependability encompasses the following aspects of a system:

1 Reliability: Reliability is the probability that a system will not fail1.

2 Maintainability: Maintainability is the probability that a failing sys-

tem can be repaired within a certain time-frame.

3 Availability: Availability is the probability that the system is available.

Both the reliability and the maintainability must be high in order to

achieve a high availability.

4 Safety: This term describes the property that a system will not cause

any harm.

5 Security: This term describes the property that confidential data re-

mains confidential and that authentic communication is guaranteed.

Designers may be tempted to focus just on the functionality of systems ini-

tially, assuming that dependability can be added once the design is working.

Typically, this approach does not work, since certain design decisions will

not allow achieving the required dependability in the aftermath. For ex-

ample, if the physical partitioning is done in the wrong way, redundancy

may be impossible. Therefore, “making the system dependable must not be

an after-thought”, it must be considered from the very beginning [Kopetz,

1997].

Even perfectly designed systems can fail if the assumptions about the work-

load and possible errors turn out to be wrong [Kopetz, 1997]. For example,

a system might fail if it is operated outside the initially assumed tempera-

ture range.

Embedded systems must be efficient. The following metrics can be used

for evaluating the efficiency of embedded systems:

1 Energy: Computational energy efficiency is a key characteristic of exe-

cution platform technologies. A comparison between technologies and

changes over time (corresponding to a certain fabrication technology)

can be seen from fig. 1.4 (approximating information provided by H.

De Man [Man, 2007] and based on information provided by Philips).

1A formal definition of this term is provided in Chapter 5 of this book.

6 EMBEDDED SYSTEM DESIGN

Figure 1.4. Energy efficiency as a function of time and technology (©Philips, Hugo de Man,

2007)

Obviously, the number of operations2 per Joule is increasing as tech-

nology advances to smaller and smaller feature sizes of integrated cir-

cuits. However, for any given technology, the number of operations

per Joule is largest for hardwired application specific integrated cir-

cuits (ASICs). For reconfigurable logic usually coming in the form of

field programmable gate arrays (FPGAs; see page 152), this value is

about one order of magnitude less. For programmable processors, it

is even lower. However, processors offer the largest amount of flex-

ibility, resulting from the flexibility of software. There is also some

flexibility for reconfigurable logic, but it is limited to the size of ap-

plications that can be mapped to such logic. For hardwired designs,

there is no flexibility. The trade-off between flexibility and efficiency

also applies to processors: For processors optimized for the applica-

tion domain, such as processors optimized for digital signal processing

2In this context, operations could be 32 bit additions.

Introduction 7

(DSP), power-efficiency values approach those of reconfigurable logic.

For general standard microprocessors, the values for this figure of merit

are the worst. This can be seen from fig. 1.4, comprising values for mi-

croprocessors such as x86-like processors (see “MPU” entries), RISC

processors and the cell processor designed by IBM and Sony.

As a rule of thumb, we can consider devices such as smart phones to be

limited to a power consumption3 of about two Watts and that about half

of this power is required for radio frequency (RF) transmissions, dis-

plays and audio amplifiers, leaving about 1 Watt for computations. This

limitation is caused both by the available battery technology and by the

need to keep devices at comfortable temperatures. Improving battery

technology would allow us to consume power over longer periods, but

the thermal limitation prevents us from going significantly beyond the

two Watts in the near future. Of course, a larger power consumption is

feasible for larger devices. Nevertheless, environmental concerns also

result in the need to keep the power consumption low.

Computational requirements are increasing at a rapid rate, especially

for multimedia applications. De Man and Philips estimated that ad-

vanced multimedia applications need about 10 to 100 billion operations

per second. Fig. 1.4 demonstrates that advanced hardware technologies

provide us with this number of operations per Joule (= Ws). This means

that the most power efficient platform technologies hardly provide the

efficiency which is needed. It also means that we really must use all

sources of efficiency improvements. Standard processors (entries for

MPU and RISC) are hopelessly inefficient.

This situation leads to forecasts (see, for example, the ITRS Roadmap

for Semiconductors [ITRS Organization, 2009]) predicting that availa-

bility of energy will be a key limitation for new mobile applications.

According to this road map, “... these trends imply that computation

performance, in some suitable metric, must be increased by one-to-two

orders of magnitude by 2020. This raises the question of the maxi-

mum attainable performance per joule and suggests a rapprochement

between information theory and thermodynamics”.

2 Run-time efficiency: Embedded systems should exploit the available

hardware architecture as much as possible. Inefficiencies, resulting

from a poor mapping of applications to platforms, should be avoided.

For example, compilers should not introduce overhead, since this would

lead to wasted energy and possibly higher than necessary clock rates.

3Strictly speaking, we are not really “consuming” power or the closely related energy. Rather, we are

converting electrical energy into thermal energy. However, electrical energy is really disappearing.

8 EMBEDDED SYSTEM DESIGN

3 Code size: Dynamically loading additional code to be executed on

embedded system devices is still an exception and limited to cases such

as smart phones and set-top boxes. It is likely to remain an exception,

due to limited connectivity and safety concerns. Therefore, the code

to be run on an embedded system typically has to be stored with the

system. Typically, there are no hard disks for this. Therefore, code-

size should be as small as possible for the intended application. This

is especially true for systems on a chip (SoCs), systems for which all

the information processing circuits are included on a single chip. If the

instruction memory is to be integrated onto this chip, it should be used

very efficiently. However, the importance of this design goal might

change, when larger memory densities (measured in bits per volume

unit) become available. Flash-based memories will potentially have a

large impact.

4 Weight: All portable systems must be lightweight. A low weight is

frequently an important argument for buying a particular system.

5 Cost: For high-volume embedded systems in mass markets, especially

in consumer electronics, competitiveness on the market is an extremely

crucial issue, and efficient use of hardware components and the soft-

ware development budget are required. A minimum amount of re-

sources should be used for implementing the required functionality. We

should be able to meet requirements using the least amount of hardware

resources and energy. In order to reduce the energy consumption, clock

frequencies and supply voltages should be as small as possible. Also,

only the necessary hardware components should be present. Compo-

nents which do not improve the worst case execution time (such as

many caches or memory management units) can frequently be omitted.

Frequently, embedded systems are connected to the physical environment

through sensors collecting information about that environment and actua-

tors controlling that environment.

Definition: Actuators are devices converting numerical values into physi-

cal effects.

This link to the physical environment also motivated the introduction of the

term “cyber-physical system”. Embedded system education focusing on

the programming of micro-controllers is frequently neglecting this link. In

this respect, the new term helps liberating embedded system design from

the programming of micro-controllers.

Many cyber-physical systems must meet real-time constraints. Not com-

pleting computations within a given time-frame can result in a serious loss

of the quality provided by the system (for example, if the audio or video

Introduction 9

quality is affected) or may cause harm to the user (for example, if cars,

trains or planes do not operate in the predicted way). Some time constraints

are called hard time constraints:

Definition: “A time-constraint is called hard if not meeting that con-

straint could result in a catastrophe” [Kopetz, 1997].

All other time constraints are called soft time constraints.

Many of today’s information processing systems are using techniques for

speeding-up information processing on the average. For example, caches

improve the average performance of a system. In other cases, reliable com-

munication is achieved by repeating certain transmissions. These cases in-

clude Ethernet protocols: they typically rely on resending messages when-

ever the original messages have been lost. On the average, such repetitions

result in a (hopefully only) small loss of performance, even though for a cer-

tain message the communication delay can be orders of magnitude larger

than the normal delay. In the context of real-time systems, arguments about

the average performance or delay cannot be accepted. “A guaranteed sys-

tem response has to be explained without statistical arguments” [Kopetz,

1997].

Typically, embedded systems are reactive systems. They can be defined as

follows:

Definition: “A reactive system is one that is in continual interaction with

its environment and executes at a pace determined by that environment”

[Bergé et al., 1995].

Reactive systems can be thought of as being in a certain state, waiting for

an input. For each input, they perform some computation and generate an

output and a new state. Therefore, automata are very good models of such

systems. Mathematical functions, which describe the problems solved by

most algorithms, would be an inappropriate model.

Many embedded systems are hybrid systems in the sense that they include

analog and digital parts. Analog parts use continuous signal values in con-

tinuous time, whereas digital parts use discrete signal values in discrete

time.

Most embedded systems do not use keyboards, mice and large computer

monitors for their user-interface. Instead, there is a dedicated user-inter-

face consisting of push-buttons, steering wheels, pedals etc. Because of

this, the user hardly recognizes that information processing is involved.

Due to this, the new era of computing has also been characterized by the

term disappearing computer.

These systems are frequently dedicated towards a certain application.

10 EMBEDDED SYSTEM DESIGN

For example, processors running control software in a car or a train will

always run that software, and there will be no attempt to run a computer

game or spreadsheet program on the same processor. There are mainly two

reasons for this:

1 Running additional programs would make those systems less depend-

able.

2 Running additional programs is only feasible if resources such as mem-

ory are unused. No unused resources should be present in an efficient

system.

However, the situation is slowly changing for systems such as smart phones.

Smart phones are becoming more PC-like and can hardly be called cyber-

physical systems. Also, the situation is becoming a bit more dynamic in the

automotive industry as well, as demonstrated by the AUTOSAR initiative

[AUTOSAR, 2010].

Embedded systems are under-represented in teaching and in public dis-

cussions. One of the problems in teaching embedded system design is the

comprehensive equipment which is needed to make the topic interesting

and practical. Also, real embedded systems are very complex and hence

difficult to teach.

Due to this set of common characteristics (except for the last one), it does make

sense to analyze common approaches for designing embedded systems, instead

of looking at the different application areas only in isolation.

Actually, not every embedded system will have all the above characteristics.

We can define the term “embedded system” also in the following way: Infor-

mation processing systems meeting most of the characteristics listed above

are called embedded systems. This definition includes some fuzziness. How-

ever, it seems to be neither necessary nor possible to remove this fuzziness.

1.3 Challenges in Embedded System Design

Embedded systems comprise a large amount of software. Nevertheless, em-

bedded system design is not just a special case of software design. Many addi-

tional design goals must be taken into account. For example:

1 Embedded systems really must be dependable. The level of dependability

goes far beyond the traditional level reached for PC-like systems. Examples

of serious cases of undependability include the following:

In one case, the voice control system at Los Angeles airport was lost

for more than 3 hours [Broesma, 2004]. The problem resulted from a

Introduction 11

server running an operating system. A counter in the operating system

kept track of the time since the last reboot. This counter was overflow-

ing after about 48 days. Therefore, the maintenance staff was instructed

to reboot the server every month. Once, the staff forgot to reboot and

this resulted in a system crash.

Many other cases of failing computer systems are reported to the risks

digest, forum on the risks to the public in computers and related Sys-

tems (see [Neumann, 2010] for the most recent edition).

2 Due to efficiency targets, software designs cannot be done independently of

the underlying hardware. Therefore, software and hardware must be taken

into account during the design steps. This, however, is difficult, since such

integrated approaches are typically not taught at educational institutes. The

cooperation between electrical engineering and computer science has not

yet reached the required level. A mapping of specifications to hardware

would provide the best energy efficiency. However, hardware implemen-

tations are very expensive and require long design times. Therefore, hard-

ware designs do not provide the flexibility to change designs as needed. We

need to find a good compromise between efficiency and flexibility.

3 Embedded systems must meet many non-functional requirements such as

real-time constraints, energy/power efficiency and dependability require-

ments. Many objectives must be taken into account during the design. Just

capturing non-functional requirements is already difficult.

4 The link to physics has additional implications. For example, we must

check if we will definitely meet real-time constraints. Managing time is

one of the largest challenges [Lee, 2006].

5 Real systems are profoundly concurrent. Managing concurrency is there-

fore another major challenge.

6 Real embedded systems are complex. Therefore, they comprise various

components and we are interested in compositional design. This means,

we would like to study the impact of combining components. For example,

we would like to know whether we could add a GPS system to the sources

of information in a car without overloading the communication bus.

7 Traditional sequential programming languages are not the best way to de-

scribe concurrent, timed systems.

The table in fig. 1.5 highlights some distinguishing features between the design

of PC-like systems and embedded systems during the mapping of applications

to hardware platforms.

12 EMBEDDED SYSTEM DESIGN

Embedded PC-like

Architectures Frequently heterogeneous Mostly homogeneous

very compact not compact (x86 etc)

x86 compatibility Less relevant Very relevant

Architecture fixed? Sometimes not Yes

Model of computa- C+multiple models (data flow, Mostly von Neumann

tion (MoCs) discrete events, ...) (C, C++, Java)

Optim. objectives Multiple (energy, size, ...) Average performance dominates

Real-time relevant Yes, very! Hardly

Applications Several concurrent apps. Mostly single application

Apps. known at Most, if not all Only some (e.g. WORD)

design time

Figure 1.5. Scope of mapping applications to PC-like and Embedded Systems hardware

Compatibility with traditional instruction sets employed for PCs is less impor-

tant for embedded systems, since it is typically possible to compile software

applications for architectures at hand. Sequential programming languages do

not match well with the need to describe concurrent real-time systems, and

other ways of modeling applications may be preferred. Several objectives

must be considered during the design of embedded/cyber-physical systems.

In addition to the average performance, the worst case execution time, energy

consumption, weight, reliability, operating temperatures, etc. may have to be

optimized. Meeting real-time constraints is very important for cyber-physical

systems, but hardly ever for PC-like systems. Meeting time constraints can be

verified at design time only, if all the applications are known at design time.

Also, it must be known, which applications should run concurrently. For exam-

ple, designers must ensure that a GPS-application, a phone call, and concurrent

data transfers can be executed at the same time without losing voice samples.

In contrast, there is no need to guarantee time constraints for multiple, concur-

rently running software media-players. For PC-like systems, such knowledge

is almost never available.

1.4 Design Flows

The design of embedded systems is a rather complex task, which has to be

broken down into a number of subtasks to be tractable. These subtasks must

be performed one after the other and some of them must be repeated.

The design information flow starts with ideas in people’s heads. These ideas

should incorporate knowledge about the application area. These ideas must be

captured in a design specification. In addition, standard hardware and system

Introduction 13

software components are typically available and should be reused whenever

possible (see fig. 1.6).

Figure 1.6. Simplified design flow

In this diagram (as well as in other similar diagrams in this book), we are

using boxes with rounded corners for stored information and rectangles

for transformations on data. In particular, information is stored in the de-

sign repository. The repository allows keeping track of design models. In

most cases, the repository should provide version management or “revision

control”, such as CVS [Cederqvist, 2006] or SVN [Collins-Sussman et al.,

2008]. A good design repository should also come with a design management

interface which would also keep track of the applicability of design tools and

sequences, all integrated into a comfortable graphical user interface (GUI).

The design repository and the GUI can be extended into an integrated devel-

opment environment (IDE), also called design framework (see, for exam-

ple [Liebisch and Jain, 1992]). An integrated development environment keeps

track of dependencies between tools and design information.

Using the repository, design decisions can be taken in an iterative fashion. At

each step, design model information must be retrieved. This information is

then considered.

During design iterations, applications are mapped to execution platforms and

new (partial) design information is generated. The generation comprises the

mapping of operations to concurrent tasks, the mapping of operations to either

hardware or software (called hardware/software partitioning), compilation, and

scheduling.

Designs should be evaluated with respect to various objectives including per-

formance, dependability, energy consumption, manufacturability etc. At the

current state of the art, none of the design steps can be guaranteed to be cor-

rect. Therefore, it is also necessary to validate the design. Validation consists

14 EMBEDDED SYSTEM DESIGN

of checking intermediate or final design descriptions against other descriptions.

Thus, each new design should be evaluated and validated.

Due to the importance of the efficiency of embedded systems, optimizations

are important. There is a large number of possible optimizations, includ-

ing high-level transformations (such as advanced loop transformations) and

energy-oriented optimizations.

Design iterations could also include test generation and an evaluation of the

testability. Testing needs to be included in the design iterations if testability

issues are already considered during the design steps. In fig. 1.6, test generation

has been included as optional step of design iterations (see dashed box). If

test generation is not included in the iterations, it must be performed after the

design has been completed.

At the end of each step, the repository should be updated.

Details of the flow between the repository, application mapping, evaluation,

validation, optimization, testability considerations and storage of design infor-

mation may vary. These actions may be interleaved in many different ways,

depending on the design methodology used.

This book presents embedded system design from a broad perspective, and it

is not tied towards particular design flows or tools. Therefore, we have not in-

dicated a particular list of design steps. For any particular design environment,

we can “unroll” the loop in fig. 1.6 and attach names to particular design steps.

For example, this leads to the particular case of the SpecC [Gajski et al., 2000]

design flow shown in fig. 1.7.

Figure 1.7. Design flow for SpecC tools (simplified)

Introduction 15

In this case, a particular set of design steps, such as architecture exploration,

communication synthesis and software and hardware compilation are included.

The precise meaning of these terms is not relevant in this book. In the case of

fig. 1.7, validation and evaluation are explicitly shown for each of the steps,

but are wrapped into one larger box.

A second instance of an unfolded fig. 1.6 is shown in fig. 1.8. It is the V-model

of design flows [V-Modell XT Authors, 2010], which has to be adhered to for

many German IT projects, especially in the government sector.

Figure 1.8. Design flow for the V-model (rotated standard view)

Fig. 1.8 very clearly shows the different steps that must be performed. The

steps correspond to certain phases during the software development process

(the precise meaning is again not relevant in the context of this book). Note

that taking design decisions, evaluating and validating designs is lumped into

a single box in this diagram. Application knowledge, system software and sys-

tem hardware are not explicitly shown. The V-model also includes a model

of the integration and testing phase (lower “wing”) of the diagram. This cor-

responds to an inclusion of testing in the loop of fig. 1.6. The shown model

corresponds to the V-model version “97”. The more recent V-model XT al-

lows a more general set of design steps. This change matches very well our

interpretation of design flows in fig. 1.6. Other iterative approaches include the

waterfall model and the spiral model. More information about software engi-

neering for embedded systems can be found in a book by J. Cooling [Cooling,

2003].

Our generic design flow model is also consistent with flow models used in

hardware design. For example, Gajski’s Y-chart [Gajski and Kuhn, 1983] (see

fig. 1.9) is a very popular model.

16 EMBEDDED SYSTEM DESIGN

Figure 1.9. Gajski’s Y-chart and design path (in bold)

Gajski considers design information in three dimensions: behavior, structure

and layout. The first dimension just reflects the behavior. A high-level model

would describe the overall behavior, while finer-grained models would de-

scribe the behavior of components. Models at the second dimension include

structural information, such as information about hardware components. High-

level descriptions in this dimension could correspond to processors, low-level

descriptions to transistors. The third dimension represents geometrical layout

information of chips. Design paths will typically start with a coarse-grained

behavioral description and finish with a fine-grained geometrical description.

Along this path, each step corresponds to one iteration of our generic design

flow model. In the example of fig. 1.9, an initial refinement is done in the

behavioral domain. The second design step maps the behavior to structural

elements, and so on. Finally, a detailed geometrical description of the chip

layout is obtained.

The previous three diagrams demonstrate that a number of design flows are

using the iterative flow of fig. 1.6. The nature of the iterations in fig. 1.6 can

be a source of discussions. Ideally, we would like to describe the properties of

our system and then let some smart tool do the rest. Automatic generation of

design details is called synthesis.

Definition: Synthesis is the process of generating the description of a system

in terms of related lower-level components from some high-level description

of the expected behavior [Marwedel, 1990].

Synthesis, if successful, avoids many manual design steps. The goal of us-

ing this paradigm for designing systems has been considered in the “describe-

and-synthesize” paradigm by Gajski [Gajski et al., 1994]. This paradigm is

in contrast to the traditional “specify-explore-refine” approach, also known as

“design-and-simulate” approach. This second term stresses the fact that man-

ual design typically has to be combined with simulation, for example for catch-

ing design errors. Simulation is more important than in automatic synthesis.

Introduction 17

1.5 Structure of this book

Consistent with the design information flow shown above, this book is struc-

tured as follows: Chapter 2 provides an overview of specification techniques,

languages and models. Key hardware components of embedded systems are

presented in Chapter 3. Chapter 4 deals with system software components,

particularly embedded operating systems. Chapter 5 contains the essentials of

embedded system design evaluation and verification. Mapping applications to

execution platforms is one of the key steps in the design process of embedded

systems. Standard techniques achieving such a mapping are listed in Chapter 6.

This Chapter also includes standard scheduling techniques. Due to the need for

generating efficient designs, many optimization techniques are needed. From

among the abundant set of available optimization techniques, several groups

are mentioned in Chapter 7. Chapter 8 contains a brief introduction to testing

mixed hardware/software systems. The appendix comprises a description of a

standard optimization technique and some prerequisites for understanding one

of the circuits in Chapter 3.

It may be necessary to design special purpose hardware or to optimize pro-

cessor architectures for a given application. However, hardware design is not

covered in this book. Coussy and Morawiec [Coussy and Morawiec, 2008]

provide an overview of recent high-level hardware synthesis techniques.

The content of this book is different from the content of most other books

on embedded systems design. Traditionally, the focus of many books on em-

bedded systems is on explaining the use of micro-controllers, including their

memory, I/O and interrupt structure. There are many such books [Ball, 1996],

[Heath, 2000], [Ball, 1998], [Barr, 1999], [Ganssle, 2000], [Barrett and Pack,

2005], [Ganssle, 2008], [Ganssle et al., 2008], and [Labrosse, 2000].

We believe that, due to the increasing complexity of embedded systems, this

focus has to be extended to include at least different specification paradigms,

fundamentals of hardware building blocks, the mapping of applications to exe-

cution platforms, as well as evaluation, validation and optimization techniques.

In the current book, we will be covering all these areas. The goal is to provide

students with an introduction to embedded systems, enabling students to put

the different areas into perspective.

For further details, we recommend a number of sources (some of which have

also been used in preparing this book):

There is a large number of sources of information on specification lan-

guages. These include earlier books by Young [Young, 1982], Burns and

Wellings [Burns and Wellings, 1990], Bergé [Bergé et al., 1995] and de

Micheli [De Micheli et al., 2002]. There is a huge amount of information on

18 EMBEDDED SYSTEM DESIGN

new languages such as SystemC [Müller et al., 2003], SpecC [Gajski et al.,

2000], and Java [Wellings, 2004], [Dibble, 2008], [Bruno and Bollella,

2009], [Java Community Process, 2002], [Anonymous, 2010b].

Approaches for designing and using real-time operating systems (RTOSes)

are presented in a book by Kopetz [Kopetz, 1997].

Real-time scheduling is covered comprehensively in the books by Buttazzo

[Buttazzo, 2002] and by Krishna and Shin [Krishna and Shin, 1997].

Other sources of information about embedded systems include books by

Laplante [Laplante, 1997], Vahid [Vahid, 2002], the ARTIST road map

[Bouyssounouse and Sifakis, 2005], the “Embedded Systems Handbook”

[Zurawski, 2006], and recent books by Gajski et al. [Gajski et al., 2009],

and Popovici et al. [Popovici et al., 2010].

Approaches for embedded system education are covered in the Workshops

on Embedded Systems Education (WESE); see [Jackson et al., 2009] for

results from the most recent workshop.

The website of the European network of excellence on embedded and real-

time systems [Artist Consortium, 2010] provides numerous links for the

area.

The web page of a special interest group of ACM [ACM SIGBED, 2010]

focuses on embedded systems.

Symposia dedicated towards embedded/cyber-physical systems include the

Embedded Systems Week (see www.esweek.org) and the Cyber-Physical

Systems Week (see www.cpsweek.org).

Robotics is an area that is closely linked to embedded and cyber-physical

systems. We recommend the book by Fu, Gonzalez and Lee [Fu et al.,

1987] for information on robotics.

1.6 Assignments

1 Please list possible definitions of the term “embedded system”!

2 How would you define the term “cyber-physical system”?

3 Use the sources available to you to demonstrate the importance of embed-

ded systems!

4 Compare the curriculum of your educational program with the description

of the curriculum in this introduction. Which prerequisites are missing in

your program? Which advanced courses are available?

http://www.esweek.org
http://www.cpsweek.org

Introduction 19

5 Please enumerate application areas of embedded systems and indicate up

to 5 examples of embedded systems!

6 Please enumerate up to six characteristics of embedded systems!

7 How do different hardware technologies differ with respect to their energy

efficiency?

8 Suppose that your mobile uses a lithium battery rated at 720 mAh. The

nominal voltage of the battery is 3.7 V. Assuming a constant power con-

sumption of 1 W, how long would it take to empty the battery? All sec-

ondary effects such as decreasing voltages should be ignored in this calcu-

lation.

9 The computational efficiency is sometimes also measured in terms of bil-

lions of operations per second per Watt. How is this different from the

figure of merit used in fig. 1.4?

10 Which real-time constraints are called “hard real-time constraints”?

11 How could you define the term “reactive system”?

Chapter 2

SPECIFICATIONS AND MODELING

2.1 Requirements

Consistent with the simplified design flow (see fig. 1.6), we will now describe

requirements and approaches for specifying and modeling embedded systems.

Specifications for embedded systems provide models of the system under de-

sign (SUD). Models can be defined as follows [Jantsch, 2004]:

Definition: “A model is a simplification of another entity, which can be a phys-

ical thing or another model. The model contains exactly those characteristics

and properties of the modeled entity that are relevant for a given task. A model

is minimal with respect to a task if it does not contain any other characteristics

than those relevant for the task”.

Models are described in languages. Languages should be capable of represent-

ing the following features1:

Hierarchy: Human beings are generally not capable of comprehending

systems containing many objects (states, components) having complex re-

lations with each other. The description of all real-life systems needs more

objects than human beings can understand. Hierarchy (in combination with

abstraction) is a key mechanism helping to solve this dilemma. Hierar-

chies can be introduced such that humans need to handle only a small num-

ber of objects at any time.

There are two kinds of hierarchies:

1Information from the books of Burns et al. [Burns and Wellings, 1990], Bergé et al. [Bergé et al., 1995]

and Gajski et al. [Gajski et al., 1994] is used in this list.

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 2, © Springer Science+Business Media B.V. 2011

21

http://dx.doi.org/10.1007/978-94-007-0257-8_2

22 EMBEDDED SYSTEM DESIGN

– Behavioral hierarchies: Behavioral hierarchies are hierarchies con-

taining objects necessary to describe the system behavior. States, events

and output signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems

are composed of physical components.

For example, embedded systems can be comprised of components such

as processors, memories, actuators and sensors. Processors, in turn,

include registers, multiplexers and adders. Multiplexers are composed

of gates.

Component-based design [Sifakis, 2008]: It must be “easy” to derive the

behavior of a system from the behavior of its components. If two com-

ponents are connected, the resulting new behavior should be predictable.

Example: suppose that we add another component (say, some GPS unit) to

a car. The impact of the additional processor on the overall behavior of the

system (including buses etc.) should be predictable.

Concurrency: Real-life systems are distributed, concurrent systems com-

posed of components. It is therefore necessary to be able to specify con-

currency conveniently. Unfortunately, human beings are not very good at

understanding concurrent systems and many problems with real systems

are actually a result of an incomplete understanding of possible behaviors

of concurrent systems.

Synchronization and communication: Components must be able to com-

municate and to synchronize. Without communication, components could

not cooperate and we would use each of them in isolation. It must also be

possible to agree on the use of resources. For example, it is necessary to

express mutual exclusion.

Timing-behavior: Many embedded systems are real-time systems. There-

fore, explicit timing requirements are one of the characteristics of embed-

ded systems. The need for explicit modeling of time is even more obvious

from the term “cyber-physical system”. Time is one of the key dimensions

of physics. Hence, timing requirements must be captured in the specifica-

tion of embedded/cyber-physical systems.

However, standard theories in computer science model time only in a very

abstract way. The O-notation is one of the examples. This notation just re-

flects growth rates of functions. It is frequently used to model run-times of

algorithms, but it fails to describe real execution times. In physics, quanti-

ties have units, but the O-notation does not even have units. So, it would not

distinguish between femtoseconds and centuries. A similar remark applies

to termination properties of algorithms. Standard theories are concerned

Specifications and Modeling 23

with proving that a certain algorithm eventually terminates. For real-time

systems, we need to show that an algorithm terminates in a given amount

of time.

The resulting problems are very clearly formulated in a statement made by

E. Lee: “The lack of timing in the core abstraction (of computer science) is

a flaw, from the perspective of embedded software” [Lee, 2005].

According to Burns and Wellings [Burns and Wellings, 1990], modeling

time must be possible in the following four contexts:

– Techniques for measuring elapsed time:

For many applications it is necessary to check, how much time has

elapsed since some computation was performed. Access to a timer

would provide a mechanism for this.

– Means for delaying of processes for a specified time:

Typically, real-time languages provide some delay construct. Unfortu-

nately, typical implementations of embedded systems in software do

not guarantee precise delays. Let us assume that task T should be

delayed by some amount δ2. Usually, this delay is implemented by

changing task T ’s state in the operating system from “ready” or “run”

to “suspended”. At the end of this time interval, T ’s state is changed

from “suspended” to “ready”. This does not mean that the task actually

executes. If some higher priority task is executing or if preemption is

not used, the delayed task will be delayed longer than δ.

– Possibility to specify timeouts:

There are many situations in which we must wait for a certain event to

occur. However, this event may actually not occur within a given time

interval and we would like to be notified about this. For example, we

might be waiting for a response from some network connection. We

would like to be notified if this response is not received within some

amount of time, say δ. This is the purpose of timeouts. Real-time

languages usually also provide some timeout construct. Implementa-

tions of timeouts frequently come with the same problems which we

mentioned for delays.

– Methods for specifying deadlines and schedules:

For many applications it is necessary to complete certain computations

in a limited amount of time. For example, if the sensors of some car

signal an accident, air-bags must be ignited within about ten millisec-

onds. In this context, we must guarantee that the software will decide

2In this book, we will not distinguish between threads, processes and tasks.

24 EMBEDDED SYSTEM DESIGN

whether or not to ignite the air-bags in that given amount of time. The

air-bags could harm passengers, if they go off too late. Unfortunately,

most languages do not allow to specify timing constraints. If they can

be specified at all, they must be specified in separate control files, pop-

up menus etc. But the situation is still bad even if we are able to specify

these constraints: many modern hardware platforms do not have a very

predictable timing behavior. Caches, stalled pipelines, speculative ex-

ecution, task preemption, interrupts, etc. may have an impact on the

execution time which is very difficult to predict. Accordingly, timing

analysis (verifying the timing constraints) is a very hard design task.

State-oriented behavior: It was already mentioned in Chapter 1 that au-

tomata provide a good mechanism for modeling reactive systems. There-

fore, the state-oriented behavior provided by automata should be easy to

describe. However, classical automata models are insufficient, since they

cannot model timing and since hierarchy is not supported.

Event-handling: Due to the reactive nature of embedded systems, mecha-

nisms for describing events must exist. Such events may be external events

(caused by the environment) or internal events (caused by components of

the SUD).

Exception-oriented behavior: In many practical systems exceptions do

occur. In order to design dependable systems, it must be possible to de-

scribe actions to handle exceptions easily. It is not acceptable that excep-

tions must be indicated for each and every state (such as in the case of

classical state diagrams). Example: In fig. 2.1, input k might correspond to

an exception.

Figure 2.1. State diagram with exception k

Specifying this exception at each state makes the diagram very complex.

The situation would get worse for larger state diagrams with many transi-

tions. Below, we will show how all the transitions can be replaced by a

single one.

Presence of programming elements: Popular programming languages

have proven to be a convenient means of expressing computations that have

Specifications and Modeling 25

to be performed. Hence, programming language elements should be avail-

able in the specification technique used. Classical state diagrams do not

meet this requirement.

Executability: Specifications are not automatically consistent with the

ideas in people’s heads. Executing the specification is a means of plausi-

bility checking. Specifications using programming languages have a clear

advantage in this context.

Support for the design of large systems: There is a trend towards large

and complex embedded software programs. Software technology has found

mechanisms for designing such large systems. For example, object-orien-

tation is one such mechanism. It should be available in the specification

methodology.

Domain-specific support: It would of course be nice if the same speci-

fication technique could be applied to all the different types of embedded

systems, since this would minimize the effort for developing specification

techniques and tool support. However, due to the wide range of application

domains, there is little hope that one language can be used to efficiently

represent specifications in all domains. For example, control-dominated,

data-dominated, centralized and distributed applications-domains can all

benefit from language features dedicated towards those domains.

Readability: Of course, specifications must be readable by human beings.

Otherwise, it would not be feasible to validate whether or not the specifi-

cation meets the real intent of the persons specifying the SUD. All design

documents should also be machine-readable into order to process them in a

computer. Therefore, specifications should be captured in languages which

are readable by humans and by computers.

Initially, such specifications could use a natural language such as English or

Japanese. Even this natural language description should be captured in a de-

sign document, so that the final implementation can be checked against the

original document. However, natural languages are not sufficient for later

design phases, since natural languages lack key requirements for specifi-

cation techniques: it is necessary to check specifications for completeness,

absence of contradictions and it should be possible to derive implementa-

tions from the specification in a systematic way. Natural languages do not

meet these requirements.

Portability and flexibility: Specifications should be independent of spe-

cific hardware platforms so that they can be easily used for a variety of

target platforms. Ideally, changing the hardware platform should have no

26 EMBEDDED SYSTEM DESIGN

impact on the specification. In practice, small changes may have to be tol-

erated.

Termination: It should be feasible to identify processes that will terminate

from the specification. This means that we would like to use specifications

for which the halting problem (the problem of figuring out whether or not a

certain algorithm will terminate; see, for example [Sipser, 2006]) is decid-

able.

Support for non-standard I/O-devices: Many embedded systems use

I/O-devices other than those typically found in a PC. It should be possi-

ble to describe inputs and outputs for those devices conveniently.

Non-functional properties: Actual SUDs must exhibit a number of non-

functional properties, such as fault-tolerance, size, extendibility, expected

lifetime, power consumption, weight, disposability, user friendliness, elec-

tromagnetic compatibility (EMC) etc. There is no hope that all these prop-

erties can be defined in a formal way.

Support for the design of dependable systems: Specification techniques

should provide support for designing dependable systems. For example,

specification languages should have unambiguous semantics, facilitate for-

mal verification and be capable of describing security and safety require-

ments.

No obstacles to the generation of efficient implementations: Since em-

bedded systems must be efficient, no obstacles prohibiting the generation

of efficient realizations should be present in the specification.

Appropriate model of computation (MoC): The von-Neumann model of

sequential execution combined with some communication technique is a

commonly used MoC. However, this model has a number of serious prob-

lems, in particular for embedded system applications. Problems include:

– Facilities for describing timing are lacking.

– Von-Neumann computing is implicitly based on accesses to globally

shared memory (such as in Java). It has to guarantee mutually exclusive

access to shared resources. Otherwise, multi-threaded applications al-

lowing pre-emptions at any time can lead to very unexpected program

behaviors3. Using primitives for ensuring mutually exclusive access

can, however, very easily lead to deadlocks. Possible deadlocks may

be difficult to detect and may remain undetected for many years.

3Examples are typically provided in courses on operating systems.

Specifications and Modeling 27

Lee [Lee, 2006] provided a very alarming example in this direction.

Lee studied implementations of a simple observer pattern in Java. For

this pattern, changes of values must be propagated from some producer

to a set of subscribed observers. This is a very frequent pattern in

embedded systems, but is difficult to implement correctly in a multi-

threaded von-Neumann environment with preemptions. Lee’s code is

a possible implementation of the observer pattern in Java for a multi-

threaded environment:

public synchronized void addListener(listener) {...}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)

}

Method addListener subscribes new observers, method setValue propa-

gates new values to subscribed observers. In general, in a multithreaded

environment, threads can be pre-empted any time, resulting in an arbi-

trarily interleaved execution of these threads. Adding observers while

setValue is already active could result in complications, i.e. we would

not know if the new value had reached the new listener. Moreover, the

set of observers constitutes a global data structure of this class. There-

fore, these methods are synchronized in order to avoid changing the set

of observers while values are already partially propagated. This way,

only one of the two methods can be active at a given time. This mutual

exclusion is necessary to prevent unwanted interleavings of the exe-

cution of methods in a multithreaded environment. Why is this code

problematic? It is problematic since valueChanged could attempt to

get exclusive access to some resource (say, R). If that resource is allo-

cated to some other method (say, A), then this access is delayed until

A releases R. If A calls (possibly indirectly) addListener or setValue

before releasing R, then these methods will be in a deadlock: setValue

waits for R, releasing R requires A to proceed, A cannot proceed before

its call of setValue or addListener is serviced. Hence, we will have a

deadlock.

This example demonstrates the existence of deadlocks resulting from

using multiple threads which can be arbitrarily pre-empted and there-

fore require mutual exclusion for their access to critical resources. Lee

showed [Lee, 2006] that many of the proposed “solutions” of the prob-

lem are problematic themselves. So, even this very simple pattern is

difficult to implement correctly in a multi-threaded von-Neumann en-

vironment. This example shows that concurrency is really difficult to

28 EMBEDDED SYSTEM DESIGN

understand for humans and there may be the risk of oversights, even

after very rigorous code inspections.

Lee came to the drastic conclusion that “nontrivial software written

with threads, semaphores, and mutexes is incomprehensible to humans”

and that “threads as a concurrency model are a poor match for embed-

ded systems. ... they work well only ... where best-effort scheduling

policies are sufficient” [Lee, 2005].

The underlying reasons for deadlocks have been studied in detail in

the context of operating systems (see, for example, [Stallings, 2009]).

From this context, it is well-known that four conditions must hold at

run-time to get into a deadlock: mutual exclusion, no pre-emption of

resources, holding resources while waiting for more, and a cyclic de-

pendency between threads. Obviously, all four conditions are met in

the above example. The theory of operating systems provides no gen-

eral way out of this problem. Rare deadlocks may be acceptable for a

PC, but they are clearly unacceptable for a safety-critical system.

We would like to specify SUDs such that we do not have to care about

possible deadlocks. Therefore, it makes sense to study non-von-Neumann

MoCs avoiding this problem. We will study such MoCs from the next

section onwards. It will be shown that the observer pattern can be easily

implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any

single formal language capable of meeting all these requirements. Therefore,

in practice, we must live with compromises and possibly also with a mixture of

languages (each of which would be appropriate for describing a certain type of

problems). The choice of the language used for an actual design will depend

on the application domain and the environment in which the design has to be

performed. In the following, we will present a survey of languages that can

be used for actual designs. These languages will demonstrate the essential

features of the corresponding model of computation.

2.2 Models of computation

Models of computation (MoCs) describe the mechanism assumed for perform-

ing computations. In the general case, we must consider systems comprising

components. It is now common practice to strictly distinguish between the

computations performed in the components and communication. Accordingly,

MoCs define (see also [Lee, 1999], [Janka, 2002], [Jantsch, 2004], [Jantsch,

2006]):

Specifications and Modeling 29

Components and the organization of computations in such components:

Procedures, processes, functions, finite state machines are possible compo-

nents.

Communication protocols: These protocols describe methods for com-

munication between components. Asynchronous message passing and ren-

dez-vous based communication are examples of communication protocols.

Relations between components can be captured in graphs. In such graphs, we

will refer to the computations also as processes or tasks. Accordingly, rela-

tions between these will be captured by task graphs and process networks.

Nodes in the graph represent components performing computations. Com-

putations map input data streams to output data streams. Computations are

sometimes implemented in high-level programming languages. Typical com-

putations contain (possibly non-terminating) iterations. In each cycle of the

iteration, they consume data from their inputs, process the data received, and

generate data on their output streams. Edges represent relations between com-

ponents. We will now introduce these graphs at a more detailed level.

The most obvious relation between computations is their causal dependence:

Many computations can only be executed after other computations have termi-

nated. This dependence is typically captured in dependence graphs. Fig. 2.2

shows a dependence graph for a set of computations.

Figure 2.2. Dependence graph

Definition: A dependence graph is a directed graph G = (V,E), where V is

the set of vertices or nodes and E is the set of edges. E ⊆ V ×V imposes a

relation on V . If (v1,v2) ∈ E, then v1 is called an immediate predecessor of

v2 and v2 is called an immediate successor of v1. Suppose E∗ is the transitive

closure of E. If (v1,v2) ∈ E∗, then v1 is called a predecessor of v2 and v2 is

called a successor of v1.

Such dependence graphs form a special case of task graphs. Task graphs may

contain more information than modeled in fig. 2.2. For example, task graphs

may include the following extensions of dependence graphs:

1 Timing information: Tasks may have arrival times, deadlines, periods,

and execution times. In order to take these into account while scheduling

30 EMBEDDED SYSTEM DESIGN

computations, it may be useful to include this information in the graphs.

Adopting the notation used in the book by Liu [Liu, 2000], we include pos-

sible execution intervals in fig. 2.3. Computations T1 to T3 are assumed to

be independent. The first number in brackets is the arrival time, the second

the deadline (execution times are not explicitly shown). For example, T1 is

assumed to be available at time 0 and should be completed no later than at

time 7.

Figure 2.3. Graphs including timing information

Significantly more complex combinations of timing and dependence rela-

tions can exist.

2 Distinction between different types of relations between computations:

Precedence relations just model constraints for possible execution sequen-

ces. At a more detailed level, it may be useful to distinguish between con-

straints for scheduling and communication between computations. Com-

munication can again be described by edges, but additional information

may be available for each of the edges, such as the time of the communica-

tion and the amount of information exchanged. Precedence edges may be

kept as a separate type of edges, since there could be situations in which

computations must execute sequentially even though they do not exchange

information.

In fig. 2.2, input and output (I/O) is not explicitly described. Implicitly it

is assumed that computations without any predecessor in the graph might

be receiving input at some time. Also, they might generate output for the

successor and that this output could be available only after the computation

has terminated. It is often useful to describe input and output more explic-

itly. In order to do this, another kind of relation is required. Using the same

symbols as Thoen [Thoen and Catthoor, 2000], we use partially filled cir-

cles for denoting input and output. In fig. 2.4, partially filled circles identify

I/O edges.

3 Exclusive access to resources: Computations may be requesting exclusive

access to some resource, for example to some input/output device or some

communication area in memory. Information about necessary exclusive ac-

cess should be taken into account during scheduling. Exploiting this infor-

mation might, for example, be used to avoid the priority inversion problem

(see page 188). Information concerning exclusive access to resources can

be included in the graphs.

Specifications and Modeling 31

Figure 2.4. Graphs including I/O-nodes and edges

4 Periodic schedules: Many computations, especially in digital signal pro-

cessing, are periodic. This means that we must distinguish more carefully

between a task and its execution (the latter is frequently called a job [Liu,

2000]). Task graphs for such schedules are infinite. Fig. 2.5 shows a task

graph including jobs Jn−1 to Jn+1 of a periodic task.

Figure 2.5. Graph including jobs

5 Hierarchical graph nodes: The complexity of the computations denoted

by graph nodes may be quite different. On one hand, specified computa-

tions may be quite involved and contain thousands of lines of program code.

On the other hand, programs can be split into small pieces of code so that in

the extreme case, each of the nodes corresponds only to a single operation.

The level of complexity of graph nodes is also called their granularity.

Which granularity should be used? There is no universal answer to this. For

some purposes, the granularity should be as large as possible. For example,

if we consider each of the nodes as one process to be scheduled by a real-

time operating system (RTOS), it may be wise to work with large nodes in

order to minimize context-switches between different processes. For other

purposes, it may be better to work with nodes modeling just a single oper-

ation. For example, nodes must be mapped to hardware or to software. If a

certain operation (such as the frequently used Discrete Cosine Transform,

or DCT) can be mapped to special purpose hardware, then it should not be

buried in a complex node that contains many other operations. It should

rather be modeled as its own node. In order to avoid frequent changes of

the granularity, hierarchical graph nodes are very useful. For example, at

a high hierarchical level, the nodes may denote complex tasks, at a lower

32 EMBEDDED SYSTEM DESIGN

level basic blocks4 and at an even lower level individual arithmetic opera-

tions. Fig. 2.6 shows a hierarchical version of the dependence graph in fig.

2.2, using a rectangle to denote a hierarchical node.

Figure 2.6. Hierarchical task graph

As indicated above, MoCs can be classified according to the models of com-

munication (reflected by edges in the task graphs) and the model of computa-

tions within the components (reflected by the nodes in the task graph). In the

following, we will explain prominent examples of such models:

Models of communication:

We distinguish between two communication paradigms: shared memory

and message passing. Other communication paradigms exist (e.g. entan-

gled states in quantum mechanics [Bouwmeester et al., 2000]), but are not

considered in this book.

– Shared memory:

For shared memory, communication is carried out by accesses to the

same memory from all components.

Access to shared memory should be protected, unless access is totally

restricted to reads. If writes are involved, exclusive access to the mem-

ory must be guaranteed while components are accessing shared mem-

ories. Segments of program code, for which exclusive access must

be guaranteed, are called critical sections. Several mechanisms for

guaranteeing exclusive access to resources have been proposed. These

include semaphores, conditional critical regions and monitors. Refer

to books on operating systems (e.g. Stallings [Stallings, 2009]) for a

description of the different techniques. Shared memory-based commu-

nication can be very fast, but is difficult to implement in multiprocessor

systems if no common memory is physically available.

4Basic blocks are code blocks of maximum length not including any branch except possibly at their end and

not being branched into.

Specifications and Modeling 33

– Message passing: For message passing, messages are sent and re-

ceived. Message passing can be implemented easily even if no common

memory is available. However, message passing is generally slower

than shared memory based communication. For this kind of communi-

cation, we can distinguish between the following three techniques:

∗ asynchronous message passing, also called non-blocking com-

munication: In asynchronous message passing, components com-

municate by sending messages through channels which can buffer

the messages. The sender does not need to wait for the recipient

to be ready to receive the message. In real life, this corresponds to

sending a letter or an e-mail. A potential problem is the fact that

messages must be stored and that message buffers can overflow.

There are several variations of this scheme, including communi-

cating finite state machines (see page 54) and data flow models

(see page 61).

∗ synchronous message passing or blocking communication, ren-

dez-vous based communication: In synchronous message pass-

ing, available components communicate in atomic, instantaneous

actions called rendez-vous. The component reaching the point of

communication first has to wait until the partner has also reached

its point of communication. In real life, this corresponds to phys-

ical meetings or phone calls. There is no risk of overflows, but

the performance may suffer. Examples of languages following this

model of computation include CSP (see page 102) and ADA (see

page 102).

∗ extended rendez-vous, remote invocation: In this case, the sender

is allowed to continue only after an acknowledgment has been re-

ceived from the recipient. The recipient does not have to send

this acknowledgment immediately after receiving the message, but

can do some preliminary checking before actually sending the ac-

knowledgment.

Organization of computations within the components:

– Von-Neumann model: This model is based on the sequential execu-

tion of sequences of primitive computations.

– Discrete event model: In this model, there are events carrying a to-

tally ordered time stamp, indicating the time at which the event occurs.

Discrete event simulators typically contain a global event queue sorted

by time. Entries from this queue are processed according to this order.

The disadvantage is that this model relies on a global notion of event

34 EMBEDDED SYSTEM DESIGN

queues, making it difficult to map the semantic model onto parallel im-

plementations. Examples include VHDL (see page 80), SystemC (see

page 96), and Verilog (see page 98).

– Finite state machines (FSMs): This model is based on the notion of

a finite set of states, inputs, outputs, and transitions between states.

Several of these machines may need to communicate, forming so-called

communicating finite state machines (CFSMs).

– Differential equations: Differential equations are capable of modeling

analog circuits and physical systems. Hence, they can find applications

in cyber-physical system modeling.

Combined models: Actual languages are typically combining a certain

model of communication with an organization of computations within com-

ponents. For example, StateCharts (see page 42) combines finite state ma-

chines with shared memories. SDL (see page 54) combines finite state

machines with asynchronous message passing. ADA (see page 102) and

CSP (see page 102) combine von-Neumann execution with synchronous

message passing. Fig. 2.7 gives an overview of combined models which

we will consider in this chapter. This figure also includes examples of lan-

guages for most of the MoCs.

Communication/ Shared memory Message passing

Organization of compo-

nents

synchronous asynchronous

Undefined components Plain text or graphics, use cases

(Message) sequence charts

Communicating finite StateCharts SDL

state machines

(CFSMs)

Data flow (not useful) Kahn networks

SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) VHDL, Verilog (Only experimental systems)

model5 SystemC Distributed DE in Ptolemy

Von-Neumann C, C++, Java C, C++, Java, ... with libraries

model CSP, ADA

Figure 2.7. Overview of MoCs and languages considered

5The classification of VHDL, Verilog and SystemC is based on the implementation of these languages in

simulators. Message passing can be modeled in these languages “on top” of the simulation kernel.

Specifications and Modeling 35

Some MoCs have advantages in certain application areas, while others have

advantages in others. Choosing the “best” MoC for a certain application may

be difficult. Being able to mix MoCs (such as in the Ptolemy framework

[Davis et al., 2001]) can be a way out of this dilemma. Also, models may

be translated from one MoC into another one. Non-von-Neumann models are

frequently translated into von-Neumann models. The distinction between the

different models is blurring if the translation between them is easy.

Designs starting from non-von-Neumann models are frequently called model-

based designs. The key idea of model-based design is to have some abstract

model of the system under design (SUD). Properties of the system can then be

studied at the level of this model, without having to care about software code.

Software code is generated only after the behavior of the model has been stud-

ied in detail and this software is generated automatically. The term “model-

based design” is not precisely defined. It is usually associated with models of

control systems, comprising traditional control system elements such as inte-

grators, differentiators etc. However, this view seems to be too restricted, since

we could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing languages as

examples for demonstrating their features. A related (but shorter) survey is

provided by Edwards [Edwards, 2006]. For a more comprehensive presenta-

tion see [Gomez and Fernandes, 2010].

2.3 Early design phases

The very first ideas about systems are frequently captured in a very informal

way, possibly on paper. Frequently, only descriptions of the SUD in a natu-

ral language such as English or Japanese exist in the early phases of design

projects. They are typically using a very informal style. These descriptions

should be captured in some machine-readable document. They should be en-

coded in the format of some word processor and stored by a tool managing

design documents. A good tool would allow links between the requirements, a

dependence analysis as well as version management.

DOORS® [IBM, 2010b] exemplifies such a tool.

2.3.1 Use cases

For many applications, it is beneficial to envision potential usages of the SUD.

Such usages are captured in use cases. Use cases describe possible applications

of the SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is the goal of

the so-called UML standardization effort [Object Management Group (OMG),

36 EMBEDDED SYSTEM DESIGN

2010b], [Fowler and Scott, 1998], [Haugen and Moller-Pedersen, 2006]. UML

stands for “Unified Modeling Language”. UML was designed by leading soft-

ware technology experts and is supported by commercial tools. UML primarily

aims at the support of the software design process. UML provides a standard-

ized form for use cases.

For use cases, there is neither a precisely specified model of the computations

nor is there a precisely specified model of the communication. It is frequently

argued that this is done intentionally in order to avoid caring about too many

details during the early design phases.

For example, fig. 2.8 shows some use cases for an answering machine6.

Figure 2.8. Use case example

Use cases identify different classes of users as well as the applications to be

supported by the SUD. In this way, it is possible to capture expectations at a

very high level.

2.3.2 (Message) Sequence Charts

At a slightly more detailed level, we might want to explicitly indicate the se-

quences of messages which must be exchanged between components in order

to implement some use of the SUD. Sequence charts (SCs) -earlier called

message sequence charts (MSCs)- provide a mechanism for this. Sequence

charts use one dimension (usually the vertical dimension) of a 2-dimensional

chart to denote sequences and the second dimension to reflect the different

communication components. SCs describe partial orders between message

transmissions. SCs display a possible behavior of a SUD.

6We assume that UML is covered in-depth in a software engineering course included in the curriculum.

Therefore, UML is only briefly discussed in this book.

Specifications and Modeling 37

SCs are also standardized in UML. UML 2.0 has extended SCs with elements

allowing a more detailed description than UML 1.0. Fig. 2.9 shows one of the

use cases of the answering machine as an example.

Figure 2.9. Answering machine in UML

Dashed lines are so-called “life-lines”. Messages are assumed to be ordered

according to their sequence along the life-line. We assume that, in this ex-

ample, all information is sent in the form of messages. Arrows used in this

diagram denote asynchronous messages. This means several messages can be

sent by a sender without waiting for the receipt to be confirmed. Boxes on top

of life-lines represent active control at the corresponding component. In the

example, the answering machine is waiting for the user to pick up the phone

within a certain amount of time. If he or she fails to do so, the machine signals

a pick-up itself and sends a welcome message to the caller. The caller is then

supposed to leave a voice-mail message. Alternative sequences (e.g. an early

termination of the call by the caller or the callee picking up the phone) are not

shown.

Complex control-dependent actions cannot be described by SCs. Other MoCs

must be used for this. Frequently, certain preconditions must be met for a SC

to apply. Such preconditions, a distinction between sequences which might

happen and those which must happen, as well as other extensions are available

in the so-called Live Sequence Charts [Damm and Harel, 2001].

38 EMBEDDED SYSTEM DESIGN

Time/distance diagrams (TDDs) are a commonly used variant of SCs. In

time/distance diagrams, the vertical dimension reflects real time, not just se-

quence. In some cases, the horizontal dimension also models the real distance

between the components.

TDDs provide the right means for visualizing schedules of trains or buses. Fig.

2.10 is an example.

Figure 2.10. Time/distance diagram

This example refers to trains between Amsterdam, Cologne, Brussels and Paris.

Trains can run from either Amsterdam or Cologne to Paris via Brussels. Aachen

is included as an intermediate stop between Cologne and Brussels. Vertical

segments correspond to times spent at stations. For one of the trains, there

is a timing overlap between the trains coming from Cologne and Amsterdam

at Brussels. There is a second train which travels between Paris and Cologne

which is not related to an Amsterdam train.

This example and other examples can be simulated with the levi simulation

software [Sirocic and Marwedel, 2007d]. A larger, more realistic example is

shown in fig. 2.11. This example [Huerlimann, 2003] describes simulated

Swiss railway traffic in the Lötschberg area. Slow and fast trains can be distin-

guished by their slope in the graph. This modeling technique is very frequently

used in practice.

One of the key distinctions between the type of diagrams shown in figs. 2.9

and 2.11 is that fig. 2.9 does not include any reference to real time. UML

was initially not designed for real-time applications. UML 2.0 includes timing

diagrams as a special class of diagrams. Such diagrams enable referring to

physical time. Also, certain UML “profiles” (see page 114) allow additional

annotations to refer to time [Martin and Müller, 2005], [Müller, 2007].

TDDs are appropriate means for representing typical schedules. However, SCs

and TDDs fail to provide information about necessary synchronization. For

example, in the presented example of fig. 2.10 it is not known whether the tim-

Specifications and Modeling 39

Figure 2.11. Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich),

©ETH Zürich

ing overlap at Brussels happens coincidentally or whether some real synchro-

nization for connecting trains is required. Furthermore, permissible deviations

from the presented schedule (min/max timing behavior) can hardly be included

in these charts.

2.4 Communicating finite state machines
(CFSMs)

If we start to represent our SUD at a more detailed level, we need more precise

models. We mentioned at the beginning of this chapter that we need to describe

state-oriented behavior. State diagrams are a classical means of doing this.

Fig. 2.12 (the same as fig. 2.1) shows an example of a classical state diagram,

representing a finite state machine (FSM).

Figure 2.12. State diagram

40 EMBEDDED SYSTEM DESIGN

Circles denote states. We will consider FSMs for which only one of their

states is active. Such FSMs are called deterministic FSMs. Edges denote

state transitions. Edge labels represent events. Let us assume that a certain

state of the FSM is active, and that an event happens which corresponds to

one of the out-going edges for the active state. Then, the FSM will change its

state from the currently active state to the one indicated by the edge. FSMs

may be implicitly clocked. Such FSMs are called synchronous FSMs. For

synchronous FSMs, state changes will happen only at clock transitions. FSMs

may also generate output (not shown in fig. 2.12). For more information about

classical FSMs refer to, for example, Kohavi [Kohavi, 1987].

2.4.1 Timed automata

Classical FSMs do not provide information about time. In order to model

time, classical automata have been extended to also include timing informa-

tion. Timed automata are essentially automata extended with real-valued vari-

ables. “The variables model the logical clocks in the system, that are initialized

with zero when the system is started, and then increase synchronously with the

same rate. Clock constraints, i.e. guards on edges, are used to restrict the

behavior of the automaton. A transition represented by an edge can be taken

when the clocks’ values satisfy the guard labeled on the edge. Clocks may be

reset to zero when a transition is taken” [Bengtsson and Yi, 2004].

Fig. 2.13 shows an example.

Figure 2.13. Servicing an incoming line in an answering machine

The answering machine is usually in the initial state on the left. Whenever a

ring signal is received, clock x is reset to 0 and a transition into a waiting state

is made. If the called person lifts off the hand-set, talking can take place until

the hand-set is returned. Otherwise, a transition to state play text can take place

if time has reached a value of 4.

Specifications and Modeling 41

Once the transition took place, a recorded message is played and this phase is

terminated with a beep. Clock y ensures that this beep lasts at least one time

unit. After the beep, clock x is reset to 0 again and the answering machine is

ready for recording. If time has reached a value of 8 or if the caller remains

silent, the next beep is played. This second beep again lasts at least one time

unit. After the second beep, a transition is made into the final state. In this

example, transitions are either caused by inputs (such as lift-off) or by so-called

clock constraints.

Clock constraints describe transitions which can take place, but they do not

have to. In order to make sure that transitions actually take place, additional

location invariants can be defined. Location invariants x <= 5, x <= 9 and

y <= 2 are used in the example such that transitions will take place no later

than one time unit after the enabling condition became true. Using two clocks

is for demonstration purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [Bengtsson and

Yi, 2004]:

Let C be a set of real-valued, non-negative variables representing clocks. Let

Σ be a finite alphabet of possible inputs.

Definition: A clock constraint is a conjunctive formula of atomic constraints

of the form x◦n or (x− y)◦n for x,y ∈C,◦ ∈ {≤,<,=,>,≥} and n ∈ IN.

Note that constants n used in the constraints must be integers, even though

clocks are real-valued. An extension to rational constants would be easy, since

they could be turned into integers with simple multiplications. Let B(C) be the

set of clock constraints.

Definition [Bengtsson and Yi, 2004]: A timed automaton is a tuple (S,s0,E, I)
where:

S is a finite set of states.

s0 is the initial state.

E ⊆ S×B(C)×Σ×2C ×S is the set of edges. B(C) models the conjunctive

condition which must hold and Σ models the input which is required for

a transition to be enabled. 2C reflects the set of clock variables which are

reset whenever the transition takes place.

I : S → B(C) is the set of invariants for each of the states. B(C) represents

the invariant which must hold for a particular state S. This invariant is

described as a conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed

automata. Timed automata having a large number of clocks tend to be difficult

42 EMBEDDED SYSTEM DESIGN

to understand. More details about timed automata can be found, for example,

in papers by Dill et al. [Dill and Alur, 1994] and Bengtsson et al. [Bengtsson

and Yi, 2004].

Timed automata extend classical automata with timing information. However,

many of our requirements for specification techniques are not met by timed

automata. In particular, in their standard form, they do no provide hierarchy

and concurrency.

2.4.2 StateCharts: implicit shared memory
communication

The StateCharts language is presented here as a very prominent example of

a language based on automata and supporting hierarchical models as well as

concurrency. It does include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [Harel, 1987] in

1987 and later described more precisely in [Drusinsky and Harel, 1989]. Ac-

cording to Harel, the name was chosen since it was “the only unused combina-

tion of flow or state with diagram or chart”.

2.4.2.1 Modeling of hierarchy

The StateCharts language describes extended FSMs. Due to this, they can be

used for modeling state-oriented behavior. The key extension is hierarchy.

Hierarchy is introduced by means of super-states.

Definitions:

States comprising other states are called super-states.

States included in super-states are called sub-states of the super-states.

Fig. 2.14 shows a StateCharts example. It is a hierarchical version of fig. 2.12.

Figure 2.14. Hierarchical state diagram

Specifications and Modeling 43

Super-state S includes states A,B,C,D and E. Suppose the FSM is in state

Z (we will also call Z to be an active state). Now, if input m is applied to

the FSM, then A and S will be the new active states. If the FSM is in S and

input k is applied, then Z will be the new active state, regardless of whether the

FSM is in sub-states A,B,C,D or E of S. In this example, all states contained

in S are non-hierarchical states. In general, sub-states of S could again be

super-states consisting of sub-states themselves. Also, whenever a sub-state

of some super-state is active, the super-state is active as well.

Definitions:

Each state which is not composed of other states is called a basic state.

For each basic state s, the super states containing s are called ancestor

states.

The FSM of fig. 2.14 can only be in one of the sub-states of super-state S at

any time. Super states of this type are called OR-super-states7.

In fig. 2.14, k might correspond to an exception for which state S has to be

left. The example already shows that the hierarchy introduced in StateCharts

enables a compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system de-

scription comprises descriptions of subsystems which, in turn, may contain

descriptions of subsystems. The hierarchy of the entire system can be repre-

sented by a tree. The root of the tree corresponds to the system as a whole, and

all inner nodes correspond to hierarchical descriptions (in the case of State-

Charts called super-nodes). The leaves of the hierarchy are non-hierarchical

descriptions (in the case of StateCharts called basic states).

So far, we have used explicit, direct edges to basic states to indicate the next

state. The disadvantage of that approach is that the internal structure of super-

states cannot be hidden from the environment. However, in a true hierarchical

environment, we should be able to hide the internal structure so that it can

be described later or changed later without affecting the environment. This is

possible with other mechanisms for describing the next state.

The first additional mechanism is the default state mechanism. It can be used

in super-states to indicate the particular sub-states that will become active if

the super-states become active. In diagrams, default states are identified by

edges starting at small filled circles. Fig. 2.15 shows a state diagram using the

7More precisely, they should be called XOR-super-states, since the FSM is in either A,B,C,D or E. How-

ever, this name is not commonly used in the literature.

44 EMBEDDED SYSTEM DESIGN

default state mechanism. It is equivalent to the diagram in fig. 2.14. Note that

the filled circle does not constitute a state itself.

Figure 2.15. State diagram using the default state mechanism

Another mechanism for specifying next states is the history mechanism. With

this mechanism, it is possible to return to the last sub-state that was active

before a super-state was left. The history mechanism is symbolized by a circle

containing the letter H. In order to define the next state for the very initial

transition into a super-state, the history mechanism is frequently combined

with the default mechanism. Fig. 2.16 shows an example.

Figure 2.16. State diagram using the history and the default state mechanism

The behavior of the FSM is now somewhat different. If we input m while the

system is in Z, then the FSM will enter A if this is the very first time we enter S,

and otherwise it will enter the last state that we were in before leaving S. This

mechanism has many applications. For example, if k denotes an exception,

we could use input m to return to the state we were in before the exception.

States A,B,C,D and E could also call Z like a procedure. After completing

“procedure” Z, we would return to the calling state.

Fig. 2.16 can also be redrawn as shown in fig. 2.17. In this case, the symbols

for the default and the history mechanism are combined.

Specification techniques must also be able to describe concurrency conve-

niently. Towards this end, the StateCharts language provides a second class

of super-states, so called AND-states.

Specifications and Modeling 45

Figure 2.17. Combining the symbols for the history and the default state mechanism

Definition: Super-states S are called AND-super-states if the system contain-

ing S will be in all of the sub-states of S whenever it is in S.

An AND-super-state is included in the answering machine example shown in

fig. 2.18.

Figure 2.18. Answering machine

An answering machine normally performs two tasks concurrently: it is moni-

toring the line for incoming calls and the keys for user input. In fig. 2.18, the

corresponding states are called Lwait and Kwait. Incoming calls are processed

in state Lproc while the response to pressed keys is generated in state Kproc.

For the time being, we assume that the on/off switch (generating events key-off

and key-on) is decoded separately and pushing it does not result in entering

Kproc. If this switch is pushed, the line monitoring state as well as the key

monitoring state are left and re-entered only if the machine is switched on.

At that time, default states Lwait and Kwait are entered. While switched on,

the machine will always be in the line monitoring state as well as in the key

monitoring state.

46 EMBEDDED SYSTEM DESIGN

For AND-super-states, the sub-states entered as a result of some event can be

defined independently. There can be any combination of history, default and

explicit transitions. It is crucial to understand that all sub-states will always be

entered, even if there is just one explicit transition to one of the sub-states. Ac-

cordingly, transitions out of an AND-super-state will always result in leaving

all the sub-states.

For example, let us modify our answering machine such that the on/off switch,

like all other switches, is decoded in state Kproc (see fig. 2.19).

Figure 2.19. Answering machine with modified on/off switch processing

If pushing that key is detected in Kwait, transitions are assumed first into state

Kproc and then into the off state. The second transition results in leaving the

line-monitoring state as well. Switching the machine on again results in also

entering the line-monitoring state.

AND-super-states provide the key mechanism for describing concurrency in

StateCharts. Each sub-state can be considered a state machine by itself. These

machines are communicating with each other, forming communicating finite

state machines (CFSMs). This term has been used as the title of this section.

Summarizing, we can state the following: States in StateCharts diagrams

are either AND-states, OR-states or basic states.

2.4.2.2 Timers

Due to the requirement to model time in embedded systems, StateCharts also

provides timers. Timers are denoted by the symbol shown in fig. 2.20 (left).

Specifications and Modeling 47

Figure 2.20. Timer in StateCharts

After the system has been in the state containing the timer for the specified pe-

riod, a time-out will occur and the system will leave the specified state. Timers

can also be used hierarchically.

Timers can be employed, for example, at the next lower level of the hierarchy

of the answering machine in order to describe the behavior of state Lproc.

Fig. 2.21 shows a possible behavior for that state. The timing specification is

slightly different from the one in fig. 2.13.

Figure 2.21. Servicing the incoming line in Lproc

Due to the exception-like transition for hangups by the caller in fig. 2.18, state

Lproc is terminated whenever the caller hangs up. For hangups (returns) by

the callee, the design of state Lproc results in an inconvenience: If the callee

hangs up the phone first, the telephone will be dead (and quiet) until the caller

has also hung up the phone.

The StateCharts language includes a number of other language elements. For

a full description refer to Harel [Harel, 1987]. A more detailed description of

the semantics of StateCharts is described by Drusinsky and Harel [Drusinsky

and Harel, 1989].

2.4.2.3 Edge labels and StateMate semantics

Until now, we have not considered outputs generated by our extended FSMs.

Generated outputs can be specified using edge labels. The general form of an

edge label is “event[condition]/reaction”. All three label parts are optional.

48 EMBEDDED SYSTEM DESIGN

The reaction-part describes the reaction of the FSM to a state transition. Pos-

sible reactions include the generation of events and assignments to variables.

The condition-part implies a test of the values of variables or a test of the cur-

rent state of the system. The event-part refers to a test of current events. Events

can be generated either internally or externally. Internal events are generated as

a result of some transition and are described in reaction-parts. External events

are usually described in the model environment.

Examples:

on-key / on:=1 (Event-test and variable assignment),

[on=1] (Condition test for a variable value),

off-key [not in Lproc] / on:=0 (Event-test, condition test for a state, variable

assignment. The assignment is performed if the event has occurred and the

condition is true).

The semantics of edge labels can only be explained in the context of the se-

mantics of StateMate [Drusinsky and Harel, 1989], a commercial implementa-

tion of StateCharts. StateMate assumes a step-based execution of StateMate-

descriptions. Each step consists of three phases:

1 In the first phase, the impact of external changes on conditions and events

is evaluated. This includes the evaluation of functions which depend on

external events. This phase does not include any state changes. In our

simple examples, this phase is not actually needed.

2 The next phase is to calculate the set of transitions that should be made in

the current step. Variable assignments are evaluated, but the new values are

only assigned to temporary variables.

3 In the third phase, state transitions become effective and variables obtain

their new values.

The separation into phases 2 and 3 is especially important in order to guarantee

a reproducible behavior of StateMate models. Consider the StateMate model

of fig. 2.22.

In the second phase, new values for a and b are stored in temporary variables,

say a’ and b’. In the final phase, temporary variables are copied into the user-

defined variables:

phase 2: a’:=b; b’:=a;

phase 3: a:=a’; b:=b’

Specifications and Modeling 49

Figure 2.22. Mutually dependent assignments

As a result, the values of the two variables will be swapped each time an event

e happens. This behavior corresponds to that of two cross-coupled registers

(one for each variable) connected to the same clock (see fig. 2.23) and reflects

the operation of a synchronous (clocked) finite state machine including those

two registers8.

Figure 2.23. Cross-coupled D-type registers

Without the separation into phases, the same value would be assigned to both

variables. The result would depend on the sequence in which the assignments

were performed. The separation into (at least) two phases is quite typical for

languages that try to reflect the operation of synchronous hardware. We will

find the same separation in VHDL (see page 89). Due to the separation, the

results do not depend on the order in which parts of the model are executed

by the simulation. This property is extremely important. Otherwise, there

could be simulation runs generating different results, all of which would be

considered correct. This could be very confusing in all design procedures.

This is not what we expect from the simulation of a real circuit with a fixed

behavior.

There are different names for this property:

Kahn [Kahn, 1974] calls this property determinate.

8We adopt IEEE standard schematic symbols [IEEE, 1991] for gates and registers for all the schematics in

this book. The symbols in fig. 2.23 denote clocked D-type registers.

50 EMBEDDED SYSTEM DESIGN

In other papers, this property is called deterministic. However, this term is

employed with different meanings:

– This term is used to denote non-deterministic finite state machines,

FSMs which can be in several states at the same time [Hopcroft et al.,

2006].

– Languages may have non-deterministic operators. For these operators,

different behaviors are legal implementations.

– Many authors consider systems to be non-deterministic if their behav-

ior depends on some input not known before run-time.

– In the sense Kahn uses the term “determinate”.

In this book, we prefer to reduce possible confusion by following Kahn9. Note

that StateMate models can be determinate only if there are no other reasons

for an undefined behavior. For example, conflicts between transitions may be

allowed (see fig. 2.24).

Figure 2.24. Conflicting StateCharts transitions

Consider fig. 2.24 (a). If event A takes place while the system is in the left

state, we must figure out, which transition will take place. If these conflicts

would be resolved arbitrarily, then we would have a non-determinate behavior.

Typically, priorities are defined such that this type of a conflict is eliminated.

Now, consider fig. 2.24 (b). There will be a conflict for x=15. Such conflicts

are difficult to detect. Achieving a determinate behavior requires the absence

of conflicts that are resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determi-

nate behavior (e.g. if we have a choice to read from two inputs). In such a case,

we would typically like to explicitly indicate that this choice can be taken at

run-time (see the select statement of ADA on page 104).

Implementations of hierarchical state charts other than StateMate typically

do not exhibit determinate behavior. These implementations correspond to a

9In earlier versions of the book, we used the term “deterministic” together with an additional explanation.

Specifications and Modeling 51

software-oriented view onto hierarchical state charts. In such implementations,

choices are usually not explicitly described.

The three phases described on page 48 have to be repeatedly executed. Each

execution is called a step (see fig. 2.25).

Figure 2.25. Steps during the execution of a StateMate model

Steps are assumed to be executed each time events or variables have changed.

The set of all values of variables, together with the set of events generated

(and the current time) is defined as the status10 of a StateMate model. After

executing the third phase, a new status is obtained. The notion of steps allows

us to define the semantics of events more precisely. Events are generated, as

mentioned, either internally or externally. The visibility of events is limited

to the step following the one in which they are generated. Thus, events

behave like single bit values which are stored in permanently enabled registers

at one clock transition and have an effect on the values stored at the next clock

transition. They do not live forever.

Variables, in contrast, retain their values, until they are reassigned. According

to StateMate semantics, new values of variables are visible to all parts of the

model from the step following the step in which the assignment was made on-

wards. That means, StateMate semantics implies that new values of variables

are propagated to all parts of a model between two steps. StateMate implic-

itly assumes a broadcast mechanism for updates on variables. This means

that StateCharts or StateMate can be implemented easily for shared memory-

based platforms but are less appropriate for message passing and distributed

systems. These languages essentially assume shared memory-based commu-

nication, even though this is not explicitly stated. For distributed systems, it

will be very difficult to update all variables between two steps. Due to this

broadcast mechanism, StateMate is not an appropriate language for modeling

distributed systems.

10We would normally use the term “state” instead of “status”. However, the term “state” has a different

meaning in StateMate.

52 EMBEDDED SYSTEM DESIGN

2.4.2.4 Evaluation and extensions

StateCharts’ main application domain is that of local, control-dominated sys-

tems. The capability of nesting hierarchies at arbitrary levels, with a free choice

of AND- and OR-states, is a key advantage of StateCharts. Another advan-

tage is that the semantics of StateMate is defined at a sufficient level of detail

[Drusinsky and Harel, 1989]. Furthermore, there are quite a number of com-

mercial tools based on StateCharts. StateMate [IBM, 2010a] and StateFlow

[MathWorks, 2010] are examples of commercial tools based on StateCharts.

Many of them are capable of translating StateCharts into equivalent descrip-

tions in C or VHDL (see page 80). From VHDL, hardware can be generated

using synthesis tools. Therefore, StateCharts-based tools provide a complete

path from StateCharts-based specifications down to hardware. Generated C

programs can be compiled and executed. Hence, a path to software-based re-

alizations exists as well.

Unfortunately, the efficiency of the automatic translation is sometimes a con-

cern. For example, we could map sub-states of AND-states to UNIX-pro-

cesses. This would hardly lead to efficient implementations on small proces-

sors. The productivity gain from object-oriented programming is not avail-

able in StateCharts, since it is not object-oriented. Furthermore, the broadcast

mechanism makes it less appropriate for distributed systems. StateCharts do

not comprise program constructs for describing complex computation and can-

not describe hardware structures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mecha-

nisms for removing the limitations of the model. For example, C code can

be used to represent program constructs and module charts of StateMate can

represent hardware structures.

StateCharts allows timeouts. There is no straightforward way of specifying

other timing requirements.

UML includes a variation of StateCharts and hence allows modeling state ma-

chines. In UML, these diagrams are called state diagrams in version 1 of

UML and state machine diagrams from version 2.0 onwards. Unfortunately,

the semantics of state machine diagrams in UML is different from StateMate:

the three simulation phases are not included.

2.4.3 Synchronous languages

2.4.3.1 Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such

diagrams cannot express complex computations. Standard programming lan-

guages can express complex computations, but the sequence of executing sev-

Specifications and Modeling 53

eral threads may be unpredictable. In a multi-threaded environment with pre-

emptive scheduling there can be many different interleavings of the different

computations. Understanding all possible behaviors of such concurrent sys-

tems is difficult. A key reason for this is that, in general, many different exe-

cution orders are feasible, i.e. the execution order is not specified. The order

of execution may well affect the result. The resulting non-determinate be-

havior can have a number of negative consequences, such as, for example,

problems with verifying a certain design. For distributed systems with in-

dependent clocks, determinate behavior is difficult to achieve. However, for

non-distributed systems, we can try to avoid the problems of unnecessary non-

determinate semantics.

For synchronous languages, finite state machines and programming languages

are merged into one model. Synchronous languages can express complex com-

putations, but the underlying execution model is that of finite automata. They

describe concurrently operating automata. Determinate behavior is achieved

by the following key feature: “... when automata are composed in parallel,

a transition of the product is made of the “simultaneous” transitions of all of

them” [Halbwachs, 1998]. This means: we do not have to consider all the

different sequences of state changes of the automata that would be possible if

each of them had its own clock. Instead, we can assume the presence of a single

global clock. Each clock tick, all inputs are considered, new outputs and states

are calculated and then the transitions are made. This requires a fast broadcast

mechanism for all parts of the model. This idealistic view of concurrency has

the advantage of guaranteeing determinate behavior. This is a restriction if

compared to the general communicating finite state machines (CFSM) model,

in which each FSM can have its own clock. Synchronous languages reflect the

principles of operation in synchronous hardware and also the semantics found

in control languages such as IEC 60848 [IEC, 2002] and STEP 7 [Siemens,

2010]. See Potop-Butucaru et al. [Potop-Butucaru et al., 2006] for a survey on

synchronous languages.

2.4.3.2 Examples of synchronous languages: Esterel, Lustre
and SCADE

Guaranteeing a determinate behavior for all language features has been a de-

sign goal for the synchronous languages Esterel [Esterel Technologies Inc.,

2010], [Boussinot and de Simone, 1991] and Lustre [Halbwachs et al., 1991].

Esterel is a reactive language: when activated with an input event, Esterel mod-

els react by producing an output event. Esterel is a synchronous language: all

reactions are assumed to be completed in zero time and it is sufficient to ana-

lyze the behavior at discrete moments in time. This idealized model avoids all

54 EMBEDDED SYSTEM DESIGN

discussions about overlapping time ranges and about events that arrive while

the previous reaction has not been completed. Like other concurrent languages,

Esterel has a parallelism operator, written ||. Similar to StateCharts, communi-

cation is based on a broadcast mechanism. In contrast to StateCharts, however,

communication is instantaneous. Instantaneous in this context means “within

the same clock cycle”. This means that all signals generated in a particular

clock cycle are also seen by the others parts of the model in the same clock

cycle and these other parts, if sensitive to the generated signals, react in the

same clock cycle. Several rounds of evaluations may be required until a sta-

ble state is reached. The propagation of values during the same macroscopic

instant of time corresponds to the generation of a next status for the same

moment in time in StateMate, except that the broadcast is now instantaneous

and not delayed until the next round of evaluations like in StateMate. For

more and updated information about Esterel, refer to the Esterel home page

[Esterel Technologies Inc., 2010].

Esterel and Lustre use different syntactic techniques to denote CFSMs. Es-

terel appears as a kind of imperative language, whereas Lustre looks more

like a data flow language (see page 61 for a description of data flow). Sync-

Charts is a graphical version of Esterel. In all three cases, semantics are ex-

plained by the closely-related underlying CFSMs. The commercial graphical

language SCADE [Esterel Technologies, 2010] combines elements of all three

languages. SCADE is used for a number of safety-critical software compo-

nents, for example by Airbus.

Due to the three simulation phases in StateMate, StateMate has the key at-

tributes of synchronous languages and it is determinate if conflicts are re-

solved. According to Halbwachs, “StateMate is almost a synchronous lan-

guage and the only feature missing in StateMate is the instantaneous broad-

cast” [Halbwachs, 2008].

2.4.4 SDL: A case of message passing

2.4.4.1 Features of the language

StateCharts is not appropriate for modeling distributed communicating finite

state machines. For distributed systems, message passing is the better com-

munication paradigm. Therefore, we will now present a second example of a

language based on communicating finite state machines, an example based on

asynchronous message passing.

This language is called SDL (specification and description language). SDL

was designed for distributed applications. It dates back to the 1970s. Formal

semantics have been available since the 1980s. The language was standard-

Specifications and Modeling 55

ized by the ITU (International Telecommunication Union). The first standards

document is the Z.100 Recommendation published in 1980, with updates in

1984, 1988, 1992 (SDL-92), 1996 and 1999. Relevant versions of the standard

include SDL-88, SDL-92 and SDL-2000 [SDL Forum Society, 2010].

Many users prefer graphical specification languages while others prefer tex-

tual ones. SDL pleases both types of users since it provides textual as well

as graphical formats. Processes are the basic elements of SDL. Processes rep-

resent components modeled as extended finite state machines. Extensions in-

clude operations on data. Fig. 2.26 shows the graphical symbols used in the

graphical representation of SDL.

Figure 2.26. Symbols used in the graphical form of SDL

Figure 2.27. FSM to be described in SDL

As an example, we will consider how the state diagram in fig. 2.27 can be rep-

resented in SDL. Fig. 2.27 is the same as fig. 2.15, except that output has been

added, state Z has been deleted, and the effect of signal k has been changed.

Fig. 2.28 contains the corresponding graphical SDL representation.

Figure 2.28. SDL-representation of fig. 2.27

56 EMBEDDED SYSTEM DESIGN

Obviously, the representation in fig. 2.28 is equivalent to the state diagram of

fig. 2.27.

As an extension to FSMs, SDL processes can perform operations on data. Vari-

ables can be declared locally for processes. Their type can either be pre-defined

or defined in the SDL description itself. SDL supports abstract data types

(ADTs). The syntax for declarations and operations is similar to that in other

languages. Fig. 2.29 shows how declarations, assignments and decisions can

be represented in SDL.

Figure 2.29. Declarations, assignments and decisions in SDL

SDL also contains programming language elements such as procedures. Pro-

cedure calls can also be represented graphically. Object-oriented features be-

came available with version SDL-1992 of the language and were extended with

SDL-2000.

Extended FSMs are just the basic elements of SDL descriptions. In general,

SDL descriptions will consist of a set of interacting processes, or FSMs. Pro-

cesses can send signals to other processes. Semantics of interprocess com-

munication in SDL is based on asynchronous message passing and conceptu-

ally implemented through first-in first-out (FIFO)-queues associated with pro-

cesses. There is exactly one queue per process. Signals sent to a particular

process will be placed into the corresponding FIFO-queue (see fig. 2.30).

Figure 2.30. SDL interprocess communication

Specifications and Modeling 57

Each process is assumed to fetch the next available entry from the FIFO queue

and check whether it matches one of the inputs described for the current state.

If it does, the corresponding state transition takes place and output is generated.

The entry from the FIFO-queue is ignored if it does not match any of the listed

inputs (unless the so-called SAVE-mechanism is used). FIFO-queues are con-

ceptually thought of as being of infinite length. This means: in the description

of the semantics of SDL models, FIFO-overflow is never considered. In actual

systems, however, infinite FIFO-queues cannot be implemented. They must be

of finite length. This is one of the problems of SDL: in order to derive realiza-

tions from specifications, safe upper bounds on the length of the FIFO-queues

must be proven.

Process interaction diagrams can be used for visualizing which of the pro-

cesses are communicating with each other. Process interaction diagrams in-

clude channels used for sending and receiving signals. In the case of SDL, the

term “signal” denotes inputs and outputs of modeled automata.

Example: Fig. 2.31 shows a process interaction diagram B1 with channels Sw1

and Sw2. Brackets include the names of signals propagated along a certain

channel.

Figure 2.31. Process interaction diagram

There are three ways of indicating the recipient of signals:

1 Through process identifiers: by using identifiers of recipient processes in

the graphical output symbol (see fig. 2.32 (left)).

Figure 2.32. Describing signal recipients

The number of processes does not need to be fixed at compile time, since

processes can be generated dynamically at run-time. OFFSPRING repre-

sents identifiers of child processes generated dynamically by a process.

2 Explicitly: by indicating the channel name (see fig. 2.32 (right)). Sw1 is

the name of a channel.

58 EMBEDDED SYSTEM DESIGN

3 Implicitly: if signal names imply the channel names, those channels are

used. Example: for fig. 2.31, signal B will implicitly always be communi-

cated via channel Sw1.

No process can be defined within any other (processes cannot be nested). How-

ever, they can be grouped hierarchically into so-called blocks. Blocks at the

highest hierarchy level are called systems. Process interaction diagrams are

special cases of block diagrams. Process interaction diagrams are one level

above the leaves of the hierarchical description. B1 can be used within inter-

mediate level blocks (such as within B in fig. 2.33).

Figure 2.33. SDL block

At the highest level in the hierarchy, we have the system (see fig. 2.34). A

system will not have any channels at its boundary if the environment is also

modeled as a block.

Figure 2.34. SDL system

Fig. 2.35 shows the hierarchy modeled by block diagrams 2.31, 2.33 and 2.34.

Figure 2.35. SDL hierarchy

Process interaction diagrams are next to the leaves of the hierarchical descrip-

tion, while system descriptions represent their root. Some of the restrictions of

Specifications and Modeling 59

modeling hierarchy are removed in version SDL-2000 of the language. With

SDL-2000, the descriptive power of blocks and processes is harmonized and

replaced by a general agent concept.

In order to support the modeling of time, SDL includes timers. Timers can

be declared locally for processes. They can be set and reset using SET and

RESET primitives, respectively.

Fig. 2.36 shows the use of a timer T.

Figure 2.36. Using timer T

The diagram corresponds to that of fig. 2.28, with the exceptions that timer T

is set to the current time plus p during the transition from state D to E. For

the transition from E to A we now have a timeout of p time units. If these time

units have elapsed before signal f has arrived, a transition to state A is taken

without generating output signal v.

SDL can be used, for example, to describe protocol stacks found in computer

networks. Fig. 2.37 shows three processors connected through a router. Com-

munication between processors and the router is based on FIFOs.

Figure 2.37. Small computer network described in SDL

The processors as well as the router implement layered protocols (see fig.

2.38).

60 EMBEDDED SYSTEM DESIGN

Figure 2.38. Protocol stacks represented in SDL

Each layer describes communication at a more abstract level. The behavior of

each layer is typically modeled as a finite state machine. The detailed descrip-

tion of these FSMs depends on the network protocol and can be quite complex.

Typically, this behavior includes checking and handling of error conditions,

and sorting and forwarding of information packets.

Available tools for SDL include interfaces to UML (see page 113), and SCs

(see page 36). A comprehensive list of tools is available from the SDL forum

[SDL Forum Society, 2009].

Estelle [Budkowski and Dembinski, 1987] is another language which was de-

signed to describe communication protocols. Similar to SDL, Estelle assumes

communication via channels and FIFO-buffers. Attempts to unify Estelle and

SDL failed.

2.4.4.2 Evaluation of SDL

SDL is excellent for distributed applications and has been used, for example,

for specifying ISDN.

SDL is not necessarily determinate (the order, in which signals arriving at some

FIFO at the same time are processed, is not specified).

Reliable implementations require the knowledge of a upper bound on the length

of the FIFOs. This upper bound may be difficult to compute. The timer concept

is sufficient for soft deadlines, but not for hard ones.

Hierarchies are not supported in the same way as in StateCharts.

There is no full programming support (but recent revisions of the standard have

started to change this) and no description of non-functional properties.

It seems like the interest in SDL is decreasing, even though it is very useful as

a reference model.

Specifications and Modeling 61

2.5 Data flow

2.5.1 Scope

Data flow is a very “natural” way of describing real life applications. Data

flow models reflect the way in which data flows from component to component

[Edwards, 2001]. Each component transforms the data in one way or the other.

The following is a possible definition of data flow [Wikipedia, 2010]:

Definition: Data flow modeling “is the process of identifying, modeling and

documenting how data moves around an information system. Data flow mod-

eling examines processes (activities that transform data from one form to an-

other), data stores (the holding areas for data), external entities (what sends

data into a system or receives data from a system), data flows (routes by which

data can flow)”.

A data flow program is specified by a directed graph where the nodes (ver-

tices), called actors, represent computations and the arcs represent commu-

nication channels. The computation performed by each actor is assumed to

be functional, that is, based on the input values only. Each process in a data

flow graph is decomposed into a sequence of firings, which are atomic actions.

Each firing produces and consumes tokens.

For example, fig. 2.39 describes the flow of data in a video-on-demand system

[Ko and Koo, 1996].

Figure 2.39. Video-on-demand system

For unrestricted data flow, it is difficult to prove requested system properties.

Therefore, restricted models are commonly used.

62 EMBEDDED SYSTEM DESIGN

2.5.2 Kahn process networks

Kahn process networks (KPN) [Kahn, 1974] are a special case of data flow

models. Like other data flow models, KPNs consist of nodes and edges. Nodes

correspond to computations performed by some program or task. KPN graphs,

like all data flow graphs, show computations to be performed and their de-

pendence, but not the order in which the computations must be performed (in

contrast to specifications in von-Neumann languages such as C). Edges imply

communication via channels containing potentially infinite FIFOs. Computa-

tion times and communication times may vary, but communication is guaran-

teed to happen within a finite amount of time. Writes are non-blocking, since

the FIFOs are assumed to be as large as needed. Reads must specify a single

channel to be read from. A node cannot check whether data is available before

attempting a read. A process cannot wait for data on more than one port at

a time. Read operations block whenever an attempt is made to read from an

empty FIFO queue. Only a single process is allowed to read from a certain

queue and only a single process is allowed to write into a queue. So, if out-

put data has to be sent to more than a single process, duplication of data must

be done inside processes. There is no other way for communication between

processes except through FIFO-queues.

In the following example, p1 and p2 are incrementing and decrementing the

value received from the partner:

process p1(in int u, out int v){

int i;

i = 0;

for (;;) {

send(i,v); -- send i via channel v

i = wait(u); -- read i from channel u

i = i-1;

}}

process p2(in int v, out int u){

int i;

for (;;) {

i = wait(v);

i = i+1;

send(i,u);

}}

Specifications and Modeling 63

Fig. 2.40 shows a graphical representation of this KPN.

Figure 2.40. Graphical representation of KPN

Obviously, we do not really need the FIFOs in this example, since messages

cannot accumulate in the channels. This example and other examples can be

simulated with the levi simulation software [Sirocic and Marwedel, 2007b].

The restrictions are resulting in the key beauty of KPNs: the order in which

a node is reading data from its channels is fixed by the sequence of read op-

erations and does not depend on the order in which producers are transmitting

data over the channels. This means that the sequence of operations is inde-

pendent of the speed of the nodes producing data. For a given set of input

data, KPNs will always generate the same results, independently of the

speed of the nodes. This property is important, for example, for simulations:

it does not matter how fast we are simulating the KPN, the result will always

be the same. In particular, the result does not depend on using hardware ac-

celerators for some of the nodes and a distributed execution will give the same

result as a centralized one. This property has been called “determinate” and

we are following this use. SDL-like conflicts at FIFOs do not exist. Due to this

nice property, KPNs are frequently used as an internal representation within a

design flow.

Sometimes, KPNs are extended with a “merge”-operator (corresponding to

ADA’s select statement, see page 104). This operation allows for queuing

reads with a list of channels at the same time and waiting for channels to gen-

erate data. Such an operator introduces a non-determinate behavior: the order

of processing inputs is not specified if both inputs arrive at the same time. This

extension is useful in practice, but it destroys the key beauty of KPNs.

In general, Kahn processes require scheduling at run-time, since it is difficult

to predict their precise behavior over time. These problems result from the fact

that we do not make any assumptions regarding the speed of the channels and

the nodes. The question of whether or not finite-length FIFOs are sufficient

for an actual KPN model is undecidable in the general case. Nevertheless,

execution times are actually unknown during early design phases and therefore

this model is very adequate. Useful scheduling algorithms exist [Kienhuis

64 EMBEDDED SYSTEM DESIGN

et al., 2000]. For KPNs, the number of processes is fixed, i.e. it does not

change at run-time.

2.5.3 Synchronous data flow

Scheduling becomes significantly easier and questions regarding buffer sizes

can decidably be answered if we impose restrictions on the timing of nodes

and channels. Synchronous data flow (SDF) [Lee and Messerschmitt, 1987] is

such a model.

SDF can best be introduced by referring to its graphical notation. Fig. 2.41

(left) shows a synchronous data flow graph. The graph is a directed graph,

nodes A and B denote computations * and +. Inputs to SDF graphs are assumed

to consist of an infinite stream of samples. Nodes can start their computations

when their inputs are available. Edges must be used whenever there is a data

dependency between any two nodes.

Figure 2.41. Graphical representations of synchronous data flow

For each execution, the computation in a node is called a firing. For each fir-

ing, a number of tokens, representing data, is consumed and produced. In syn-

chronous data flow, the number of tokens produced or consumed in one firing

is constant. Constant edge labels denote the corresponding numbers of tokens.

These constants facilitate the modeling of multi-rate signal processing appli-

cations, applications for which certain signals are generated at frequencies that

are multiples of other frequencies. For example, in a TV set, some computa-

tions might be performed at a rate of 100 Hz while others are performed at a

rate of 50 Hz. In general, the number of tokens sent to an edge must be equal

to the number of tokens consumed. Let ns be the number of tokens produced

by some sender per firing, and let fs be the corresponding rate. Let nr be the

corresponding number of tokens consumed per firing at the receiver, and let fr

be the corresponding rate. Then, we must have

ns ∗ fs = nr ∗ fr (2.1)

Specifications and Modeling 65

This situation is also visualized in fig. 2.42. The FIFO is needed for buffering

if ns 	= nr. In contrast to Kahn process networks, the size can be computed

easily.

Figure 2.42. Multi-rate SDF model

The term synchronous data flow reflects the fact that tokens are consumed

from the incoming arcs in a synchronous manner (all at the same instant in

time). The term asynchronous message passing reflects the fact that tokens

can be buffered using FIFOs. The property of producing and consuming a

constant number of tokens makes it possible to determine execution order and

memory requirements at compile time. Hence, complex run-time scheduling

of executions is avoided. SDF graphs may include delays, denoted by the

symbol D on an edge (see fig. 2.41 (right)). SDF graphs can be translated

into periodic schedules for mono- as well as for multi-processor systems (see

e.g. [Pino and Lee, 1995]). A legal schedule for the simple example of fig.

2.41 would consist of the sequence (A, B) (repeated forever). A sequence (A,

A, B) (A executed twice as many times as B) would be illegal, since it would

accumulate an infinite number of tokens on the implicit FIFO buffer between

A and B.

SDF is very useful, for example, in modeling multimedia systems. In this case,

each token would correspond to audio or video information, such as an audio

sample or a video frame. The observer pattern, mentioned as a problem for

modeling with von-Neumann languages on page 27, can be easily implemented

correctly in SDF (see fig. 2.43). There is no risk of deadlocks. However, SDF

does not allow adding new observers at run-time.

Figure 2.43. Observer pattern in SDF

SDF models are determinate, but they are not appropriate for modeling control

flow, such as branches etc. Several extensions and variations of SDF models

have been proposed (see, for example Stuijk [Stuijk, 2007]):

66 EMBEDDED SYSTEM DESIGN

For example, we can have modes corresponding to states of an associated

finite state machine. For each of the modes, a different SDF graph could be

relevant. Certain events could then cause transitions between these modes.

Homogeneous synchronous data flow (HSDF) graphs are a special case

of SDF graphs. For HSDF graphs, the number of tokens consumed and

produced per firing is always 1.

For cyclo-static data flow (CSDF), the number of tokens produced and con-

sumed per firing can vary over time, but has to be periodic.

Complex SUDs including control flow must be modeled using more general

computational graph structures.

2.5.4 Simulink

Computational graph structures are also frequently used in control engineer-

ing. For this domain, the Simulink toolbox of MATLAB [The MathWorks Inc.,

2010], [Tewari, 2001] is very popular. MATLAB is a modeling and simulation

tool based on mathematical models including, for example, partial differential

equations. Fig. 2.44 shows an example of a Simulink model [Marian and Ma,

2007].

Figure 2.44. Simulink model

The amplifier and the saturation component on the right demonstrate the inclu-

sion of analog modeling. In the general case, the “schematic” could contain

symbols denoting analog components such as integrators, differentiators. The

switch in the center indicates that Simulink also allows some control flow mod-

eling.

Specifications and Modeling 67

The graphical representation is intuitive and allows control engineers to focus

on the control function, without caring about the code necessary to implement

the function. The graphical symbols suggest that analog circuits are used as

traditional components in control designs. A key goal is to synthesize software

from such models. This approach is typically associated with the term model-

based design, but there is no precise definition for this term.

Semantics of Simulink models reflect the simulation on a digital computer and

the behavior may be similar to that of analog circuits, but possibly not quite the

same. What is actually the semantics of a Simulink model? Marian and Ma

[Marian and Ma, 2007] describe the semantics as follows: “Simulink uses an

idealized timing model for block (node) execution and communication. Both

happen infinitely fast at exact points in simulated time. Thereafter, simulated

time is advanced by exact time steps. All values on edges are constant in

between time steps. This means that we execute the model time step after

time step. For each step, we compute the function of the nodes (in zero time)

and propagate the new values to connected inputs. This explanation does not

specify the distance between time steps. Also, it does not immediately tell us

how to implement the system in software, since even slowly varying outputs

may be recomputed frequently.

This approach is appropriate for modeling physical systems such as cars or

trains at a high level and then simulating the behavior of these systems. Also,

digital signal processing systems can be conveniently modeled with MATLAB

and Simulink. In order to generate implementations, MATLAB/Simulink mod-

els first must be translated into a language supported by software or hardware

design systems, such as C or VHDL.

Components in Simulink models provide a special case of actors. We can

assume that actors are waiting for input and perform their operation once all

required inputs have arrived. SDF is another case of actor-based languages. In

actor-based languages, there is no need to pass control to these actors, like in

von-Neumann languages.

2.6 Petri nets

2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with computa-

tional graphs known as Petri nets. Actually, Petri nets model only control and

control dependencies. Modeling data as well requires extensions of Petri nets.

Petri nets focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal dependen-

cies, which became known as Petri nets [Petri, 1962]. Petri nets do not assume

68 EMBEDDED SYSTEM DESIGN

any global synchronization and are therefore especially suited for modeling

distributed systems.

Conditions, events and a flow relation are the key elements of Petri nets.

Conditions are either satisfied or not satisfied. Events can happen. The flow

relation describes the conditions that must be met before events can happen

and it also describes the conditions that become true if events happen.

Graphical notations for Petri nets typically use circles to denote conditions and

boxes to denote events. Arrows represent flow relations. Fig. 2.45 shows a first

example.

Figure 2.45. Single track railroad segment

This example describes mutual exclusion for trains at a railroad track that must

be used in both directions. A token is used to prevent collisions of trains going

into opposite directions. In the Petri net representation, that token is symbol-

ized by a condition in the center of the model. A partially filled circle (a circle

containing a second, filled circle) denotes the situation in which the condition

is met (this means: the track is available). When a train wants to go to the right

(also denoted by a partially filled circle in fig. 2.45), the two conditions that

are necessary for the event “train entering track from the left” are met. We call

these two conditions preconditions. If the preconditions of an event are met,

it can happen. As a result of that event happening, the token is no longer avail-

able and there is no train waiting to enter the track. Hence, the preconditions

are no longer met and the partially filled circles disappear (see fig. 2.46).

However, there is now a train going on that track from the left to the right and

thus the corresponding condition is met (see fig. 2.46). A condition which is

met after an event happened is called a postcondition. In general, an event

can happen only if all its preconditions are true (or met). If it happens, the

preconditions are no longer met and the postconditions become valid. Arrows

identify those conditions which are preconditions of an event and those that

Specifications and Modeling 69

Figure 2.46. Using resource “track”

are postconditions of an event. Continuing with our example, we see that a

train leaving the track will return the token to the condition at the center of the

model (see fig. 2.47).

Figure 2.47. Freeing resource “track”

If there are two trains competing for the single-track segment (see fig. 2.48),

only one of them can enter.

Figure 2.48. Conflict for resource “track”

70 EMBEDDED SYSTEM DESIGN

In such situations, the next transition to be fired is non-deterministically cho-

sen. Analyses of the net must consider all possible firing sequences. For Petri

nets, we are intentionally modeling non-determinism.

A key advantage of Petri nets is that they can be the basis for formal proofs

about system properties and that there are standardized ways of generating

such proofs. In order to enable such proofs, we need a more formal definition

of Petri nets. We will consider three classes of Petri nets: condition/event nets,

place/transitions nets, and predicate transition nets.

2.6.2 Condition/event nets

Condition/event nets are the first class of Petri nets that we will define more

formally.

Definition: N = (C,E,F) is called a net, iff the following holds:

1 C and E are disjoint sets.

2 F ⊆ (E ×C)∪ (C×E) is a binary relation, called flow relation.

The set C is called conditions and the set E is called events.

Definition: Let N be a net and let x ∈ (C∪E). Then,

1 •x := {y|yFx,y ∈ (C∪E)} is called the pre-set of x. If x denotes an event,
•x is also called the set of preconditions of x.

2 x• := {y|xFy,y ∈ (C∪E)} is called the post-set of x. If x denotes an event,

x• is also called the set of postconditions of x.

The terms preconditions and postconditions are preferred if these sets actually

denote conditions ∈C, that is, if x ∈ E.

Definition: Let (c,e) ∈C×E.

1 (c,e) is called a loop, if cFe∧ eFc.

2 N is called pure, if F does not contain any loops (see fig. 2.49, left).

Figure 2.49. Nets which are not pure (left) and not simple (center and right)

Specifications and Modeling 71

Definition: A net is called simple if no two transitions t1 and t2 have the same

set of pre- and postconditions (see fig. 2.49 (center and right)).

Simple nets with no isolated elements meeting some additional restrictions are

called condition/event nets. Condition/event nets are a special case of bipar-

tite graphs (graphs with two disjoint sets of nodes). We will not discuss those

additional restrictions in detail since we will consider more general classes of

nets in the following.

2.6.3 Place/transition nets

For condition/event nets, there is at most one token per condition. For many

applications, it is useful to remove this restriction and to allow more tokens

per conditions. Nets allowing more than one token per condition are called

place/transition nets. Places correspond to what we so far called conditions and

transitions correspond to what we so far called events. The number of tokens

per place is called a marking. Mathematically, a marking is a mapping from

the set of places to the set of natural numbers extended by a special symbol ω
denoting infinity.

Let IN0 denote the natural numbers including 0. Then, formally speaking,

place/transition nets can be defined as follows:

Definition: (P,T,F,K,W,M0) is called a place/transition net ⇐⇒

1 N = (P,T,F) is a net with places p ∈ P, transitions t ∈ T , and flow relation

F .

2 Mapping K : P → (IN0 ∪{ω})\{0} denotes the capacity of places (ω sym-

bolizes infinite capacity).

3 Mapping W : F → (IN0 \{0}) denotes the weight of graph edges.

4 Mapping M0 : P → IN0 ∪{ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions

can happen and also identify the number of tokens that are generated if a cer-

tain transition takes place. Let M(p) denote a current marking of place p ∈ P

and let M′(p) denote a marking after some transition t ∈ T took place. The

weight of edges belonging to preconditions represents the number of tokens

that are removed from places in the pre-set. Accordingly, the weight of edges

belonging to the postconditions represents the number of tokens that are added

to the places in the post-set. Formally, marking M′ is computed as follows:

72 EMBEDDED SYSTEM DESIGN

M′(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(p)−W (p, t), if p ∈ •t \ t•

M(p)+W (t, p), if p ∈ t• \ •t

M(p)−W (p, t)+W (t, p), if p ∈ •t ∩ t•

M(p) otherwise

Fig. 2.50 shows an example of how transition t j affects the current marking.

Figure 2.50. Generation of a new marking

By default, unlabeled edges are considered to have a weight of 1 and unlabeled

places are considered to have unlimited capacity ω.

We now need to explain the two conditions that must be met before a transition

t ∈ T can take place:

for all places p in the pre-set, the number of tokens must at least be equal

to the weight of the edge from p to t and

for all places p in the post-set, the capacity must be large enough to accom-

modate the new tokens which t will generate.

Transitions meeting these two conditions are called M-activated. Formally,

this can be defined as follows:

Definition: Transition t ∈ T is said to be M-activated ⇐⇒

(∀p ∈ •t : M(p) ≥W (p, t))∧ (∀p′ ∈ t• : M(p′)+W (t, p′) ≤ K(p′))

Activated transitions can happen, but they do not need to. If several transi-

tions are activated, the sequence in which they happen is not deterministically

defined.

The impact of a firing transition t on the number of tokens can be represented

conveniently by a vector t associated with t. t is defined as follows:

t(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−W (p, t), if p ∈ •t \ t•

+W (t, p), if p ∈ t• \ •t

−W (p, t)+W (t, p), if p ∈ •t ∩ t•

0 otherwise

Specifications and Modeling 73

The new number M′ of tokens, resulting from the firing of transition t, can be

computed for all places p as follows:

M′(p) = M(p)+ t(p)

Using “+” to denote vector addition, we can rewrite this equation as follows:

M′ = M + t

The set of all vectors t form an incidence matrix N. N contains vectors t as

columns.

N : P×T → ZZ; ∀t ∈ T : N(p, t) = t(p)

It is possible to formally prove system properties by using matrix N. For exam-

ple, we are able to compute sets of places, for which firing transitions will not

change the overall number of tokens [Reisig, 1985]. Such sets are called place

invariants. Let us initially consider a single transition t j in order to find such

invariants. Let us search for sets R ⊆ P of places such that the total number of

tokens does not change if t j fires. The following must hold for such sets:

∑
p∈R

t j(p) = 0 (2.2)

Fig. 2.51 shows a transition for which the total number of tokens does not

change if it fires.

Figure 2.51. Transition with a constant number of tokens

We are now introducing the characteristic vector cR of some set R of places:

cR(p) =

{

1 iff p ∈ R

0 iff p 	∈ R

With this definition, we can rewrite equation 2.2 as:

74 EMBEDDED SYSTEM DESIGN

∑
p∈R

t j(p) = ∑
p∈P

t j(p)∗ cR(p) = t j · cR = 0 (2.3)

· denotes the scalar product. Now, we search for sets of places such that firings

of any transition will not change the total number of tokens. This means that

equation 2.3 must hold for all transitions t j:

t1 · cR = 0

t2 · cR = 0 (2.4)

...

tn · cR = 0

Equations 2.4 can be combined into the following equation by using the trans-

posed incidence matrix NT :

NT cR = 0 (2.5)

Equation 2.5 represents a system of linear, homogeneous equations. Matrix

N represents edge weights of our Petri nets. We are looking for solution vec-

tors cR for this system of equations. Solutions must be characteristic vectors.

Therefore, their components must be 1 or 0 (integer weights can be accepted

if we use weighted sums of tokens). This is more complex than solving sys-

tems of linear equations with real-valued solution vectors. Nevertheless, it is

possible to obtain information by solving equation 2.5. Using this proof tech-

nique, we can for example show that we are correctly implementing mutually

exclusive access to shared resources.

Let us now consider a larger example: We are again considering the synchro-

nization of trains. In particular, we are trying to model high-speed Thalys trains

traveling between Amsterdam, Cologne, Brussels and Paris. Segments of the

train run independently from Amsterdam and Cologne to Brussels. There, the

segments get connected and then they run to Paris. On the way back from

Paris, they get disconnected at Brussels again. We assume that Thalys trains

must synchronize with some other train at Paris. The corresponding Petri net

is shown in fig. 2.52.

Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively.

Transitions 2 and 9 model trains driving from these cities to Brussels. After

their arrival at Brussels, places 2 and 9 contain tokens. Transition 1 denotes

connecting the two trains. The cup symbolizes the driver of one of the trains,

Specifications and Modeling 75

Figure 2.52. Model of Thalys trains running between Amsterdam, Cologne, Brussels, and

Paris

who will have a break at Brussels while the other driver is continuing on to

Paris. Transition 5 models synchronization with other trains at the Gare du

Nord station of Paris. These other trains connect Gare du Nord with some other

station (we have used Gare de Lyon as an example, even though the situation

at Paris is somewhat more complex). Of course, Thalys trains do not use steam

engines; they are just easier to visualize than modern high speed trains. Fig.

2.53 shows matrix NT for this example.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

t1 1 -1 -1 1

t2 1 -1

t3 1 -1

t4 1 -1 1

t5 1 -1 -1 1

t6 -1 1

t7 1 -1

t8 1 -1

t9 1 -1

t10 1 -1 -1

Figure 2.53. NT for the Thalys example

76 EMBEDDED SYSTEM DESIGN

For example, row 2 indicates that firing t2 will increase the number of tokens

on p2 by 1 and decrease the number of tokens on p3 by 1. Using techniques

from linear algebra, we are able to show that the following four vectors are

solutions for this system of linear equations:

cR,1 = (1,1,1,1,1,1,0,0,0,0,0,0,0)

cR,2 = (1,0,0,0,1,1,0,0,1,1,1,0,0)

cR,3 = (0,0,0,0,0,0,0,0,1,1,0,0,1)

cR,4 = (0,0,0,0,0,0,1,1,0,0,0,1,0)

These vectors correspond to the places along the track for trains from Cologne,

to the places along the track for trains from Amsterdam, to the places along the

path for drivers of trains from Amsterdam, and to the places along the track

within Paris, respectively. Therefore, we are able to show that the number of

trains and drivers along these tracks is constant (something which we actually

expect). This example demonstrates that place invariants provide us with a

standardized technique for proving properties about systems.

2.6.4 Predicate/transition nets

Condition/event nets as well as place/transition nets can quickly become very

large for large examples. A reduction of the size of the nets is frequently

possible with predicate/transition nets. We will demonstrate this, using the so-

called “dining philosophers problem” as an example. The problem is based on

the assumption that a set of philosophers is dining at a round table. In front of

each philosopher, there is a plate containing spaghetti (see fig. 2.54).

Figure 2.54. The dining philosophers problem

Between each of the plates, there is just one fork. Each philosopher is either

eating or thinking. Eating philosophers need their two adjacent forks for that,

so they can only eat if their neighbors are not eating.

This situation can be modeled as a condition/event net, as shown in fig. 2.55.

Conditions t j correspond to the thinking states, conditions e j correspond to

the eating states, and conditions f j represent available forks. Considering the

Specifications and Modeling 77

Figure 2.55. Place/transition net model of the dining philosophers problem

small size of the problem, this net is already very large. The size of this net

can be reduced by using predicate/transition nets. Fig. 2.56 is a model of the

same problem as a predicate/transition net.

Figure 2.56. Predicate/transition net model of the dining philosophers problem

With predicate/transition nets, tokens have an identity and can be distinguished

from each other11. We use this in fig. 2.56 in order to distinguish between the

three different philosophers p1 to p3 and to identify fork f3. Furthermore,

edges can be labeled with variables and functions. In the example, we use

variables to represent the identity of philosophers and functions l(x) and r(x)
to denote the left and right forks of philosopher x, respectively. These two forks

11We could also think of adding a color to each of the tokens.

78 EMBEDDED SYSTEM DESIGN

are required as a precondition for transition u and returned as a postcondition

by transition v. Note that this model can be easily extended to the case of n > 3

philosophers. We just need to add more tokens. In contrast to the net in fig.

2.55, the structure of the net does not have to be changed.

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal depen-

dencies. Standard Petri nets have no notion of time and all decisions can be

taken locally, by just analyzing transitions and their pre- and postconditions.

Therefore, they can be used for modeling geographically distributed systems.

Furthermore, there is a strong theoretical foundation for Petri nets, simplifying

formal proofs of system properties. Petri nets are not necessarily determinate:

different firing sequences can lead to different results. The descriptive power

of Petri nets encompasses that of other MoCs, including finite state machines.

In certain contexts, their strength is also their weakness. If time is to be explic-

itly modeled, standard Petri nets cannot be used. Furthermore, standard Petri

nets have no notion of hierarchy and no programming language elements, let

alone object oriented features. In general, it is difficult to represent data.

There are extended versions of Petri nets avoiding the mentioned weaknesses.

However, there is no universal extended version of Petri nets meeting all re-

quirements mentioned at the beginning of this chapter. Nevertheless, due to

the increasing amount of distributed computing, Petri nets became more pop-

ular than they were initially.

UML includes extended Petri nets called activity diagrams. Extensions in-

clude symbols denoting decisions (just like in ordinary flow charts). The place-

ment of symbols is somewhat similar to SDL. Fig. 2.57 shows an example.

The example shows the procedure to be followed during a standardization pro-

cess. Forks and joins of control correspond to transitions in Petri nets and they

use the symbols (horizontal bars) that were initially used for Petri nets as well.

The diamond at the bottom shows the symbol used for decisions. Activities can

be organized into “swim-lanes” (areas between vertical dotted lines) such that

the different responsibilities and the documents exchanged can be visualized.

It is interesting to note how a technique like Petri nets was initially certainly

not a mainstream technique. Decades after its invention, it has become a fre-

quently applied technique due to its inclusion in UML.

2.7 Discrete event based languages

The discrete event-based model of computation is based on the idea of sim-

ulating the generation of events and the processing of events over time. In

Specifications and Modeling 79

Figure 2.57. Activity diagram [Kobryn, 2001]

this model, we are using a queue of future events. These events are sorted

by the time at which they should be processed. Semantics is defined by re-

moving the events concerning the current time from the queue, performing the

corresponding actions, possibly entering new events into the queue. Time is

advanced whenever no action exists, which should be performed at the current

time.

Hardware description languages (HDLs) are designed to model hardware. They

are typically based on the discrete event model. We will use HDLs as a promi-

nent example of discrete event modeling. The focus will be on the hardware

description language VHDL, and we will briefly cover other HDLs as well.

80 EMBEDDED SYSTEM DESIGN

A key distinction between common software languages and hardware descrip-

tion languages is the need to model time in HDLs. Another distinction comes

from the requirement to describe concurrency among different hardware com-

ponents.

2.7.1 VHDL

2.7.1.1 Introduction

VHDL is a prominent example of HDLs. VHDL uses processes for modeling

concurrency. Each process models one component of the potentially concur-

rent hardware. For simple hardware components, a single process may be

sufficient. More complex components may need several processes for model-

ing their operations. Processes communicate through signals. Signals roughly

correspond to physical connections (wires).

The origin of VHDL can be traced back to the 1980s. At that time, most design

systems used graphical HDLs. The most common building block was the gate.

However, in addition to using graphical HDLs, we can also use textual HDLs.

The strength of textual languages is that they can easily represent complex

computations including variables, loops, function parameters and recursion.

Accordingly, when digital systems became more complex in the 1980s, textual

HDLs almost completely replaced graphical HDLs. Textual HDLs were ini-

tially a research topic at universities. See Mermet et al. [Mermet et al., 1998]

for a survey of languages designed in Europe at that time. MIMOLA was one

of these languages and the author of this book contributed to its design and

applications [Marwedel and Schenk, 1993], [Marwedel, 2008b]. Textual lan-

guages became popular when VHDL and its competitor Verilog (see page 98)

were introduced.

VHDL was designed in the context of the VHSIC program of the Department

of Defense (DoD) in the US. VHSIC stands for very high speed integrated cir-

cuits12. Initially, the design of VHDL (VHSIC hardware description language)

was done by three companies: IBM, Intermetrics and Texas Instruments. A

first version of VHDL was published in 1984. Later, VHDL became an IEEE

standard, called IEEE 1076. The first IEEE version was standardized in 1987;

updates were designed in 1992, in 1997, in 2002 and in 2006 [Lewis et al.,

2007]. VHDL-AMS allows modeling analog and mixed-signal systems by in-

cluding differential equations in the language. The design of VHDL used ADA

(see page 102) as the starting point, since both languages were designed for the

DoD. Since ADA is based on PASCAL, VHDL has some of the syntactical fla-

12The design of the Internet was also part of the VHSIC program.

Specifications and Modeling 81

vor of PASCAL. However, the syntax of VHDL is much more complex and it

is necessary not to get distracted by the syntax. In the current book, we will just

focus on some concepts of VHDL which are useful also in other languages. A

full description of VHDL is beyond the scope of this book. The standard is

available from IEEE (see, for example, [IEEE, 2002]).

2.7.1.2 Entities and architectures

VHDL, like all other HDLs, includes the necessary support for modeling con-

current operation of hardware components. Hardware components are mod-

eled by so-called design entities or VHDL entities. Entities contain processes

used to model concurrency. According to the VHDL grammar, design entities

are composed of two types of ingredients: an entity declaration and one (or

several) architectures (see fig. 2.58).

Figure 2.58. An entity consists of an entity declaration and architectures

For each entity, the most recently analyzed architecture will be used by default.

Using other architectures can be specified. Architectures may contain several

processes.

We will discuss a full adder as an example. Full adders have three input ports

and two output ports (see fig. 2.59).

Figure 2.59. Full-adder and its interface signals

An entity declaration corresponding to fig. 2.59 is the following:

entity full adder is -- entity declaration

port (a, b, carry in: in Bit; -- input ports

sum, carry out: out Bit); -- output ports

end full adder;

Two hyphens (--) are starting comments. They extend until the the end of

the line. Architectures consist of architecture headers and architectural bodies.

82 EMBEDDED SYSTEM DESIGN

We can distinguish between different styles of bodies, in particular between

structural and behavioral bodies. We will show how the two are different using

the full adder as an example. Behavioral bodies include just enough informa-

tion to compute output signals from input signals and the local state (if any),

including the timing behavior of the outputs. The following is an example of

this (<= denotes assignments to signals):

architecture behavior of full adder is -- architecture

begin

sum <= (a xor b) xor carry in after 10 ns;

carry out <= (a and b) or (a and carry in) or

(b and carry in) after 10 ns;

end behavior;

VHDL-based simulators are capable of displaying output signal waveforms

resulting from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler

entities. For example, the full adder can be modeled as an entity consisting of

three components (see fig. 2.60). These components are called i1 to i3 and are

of type half adder or or gate.

Figure 2.60. Schematic describing structural body of the full adder

In the 1987 version of VHDL, these components must be declared in a so-

called component declaration. This declaration is very similar to (and it serves

the same purpose) as forward declarations in other languages. This declaration

provides the necessary information about the component even if the full de-

scription of that component is not yet stored in the VHDL database (this may

happen in the case of so-called top-down designs). From the 1992 version of

VHDL onwards, such declarations are not required if the relevant components

are already stored in the component database.

Connections between local component and entity ports are described in port

maps. The following VHDL code represents the structural body shown in fig.

2.60:

Specifications and Modeling 83

architecture structure of full adder is -- architecture head

component half adder

port (in1, in2: in Bit; carry: out Bit; sum: out Bit);

end component;

component or gate

port (in1, in2: in Bit; o: out Bit);

end component;

signal x, y, z: Bit; -- local signals

begin -- port map section

i1: half adder -- introduction of half adder i1

port map (a, b, x, y); -- connections between ports

i2: half adder port map (y, carry in, z, sum);

i3: or gate port map (x, z, carry out);

end structure;

2.7.1.3 VHDL processes and assignments

VHDL treats components described above as processes. The syntax used

above is just a shorthand for processes. The general syntax for processes is

as follows:

label : -- optional

process

declarations -- optional

begin

statements-- optional

end process ;

Assignments are special cases of statements. In VHDL, there are two kinds of

assignments:

Variable assignments: The syntax of variable assignments is

variable := expression

Whenever control reaches such an assignment, the expression is computed

and assigned to the variable. Such assignments behave like assignments in

common programming languages.

84 EMBEDDED SYSTEM DESIGN

Signal assignments: Signals and signal assignments are introduced in an

attempt to model electrical signals in real hardware systems. Signals asso-

ciate values with instances in time. In VHDL, such a mapping from time to

values is represented by waveforms. Waveforms are computed from signal

assignments. The syntax of signal assignments is

signal <= expression;

signal <= transport expression after delay;

signal <= expression after delay;

signal <= reject time inertial expression after delay;

Whenever control reaches such an assignment, the expression is computed

and used to extend predicted future values of the waveform. In order to

compute future values, simulators are assumed to include a queue of

events to happen later than the current simulated time. This queue is

sorted by the time, at which future events (e.g. updates of signals) should

happen. Executing a signal assignment results in the creation of entries in

this queue. Each entry contains a time for executing the event, the affected

signal and the value to be assigned. For signal assignments not containing

any after clause (first syntactical form), the entry will contain the current

simulation time as the time at which this assignment has to be performed.

In this case, the change will take place after an infinitesimally small amount

of time, called δ-delay (see below). This allows us to update signals without

changing macroscopic time.

For signal assignments containing a transport prefix (second syntactical

form), the update of the signal will be delayed by the specified amount.

This form of the assignment is following the so-called transport delay

model. This model is based on the behavior of simple wires: wires are (as a

first order of approximation) delaying signals. Even short pulses propagate

along wires. The transport delay model can be used for logic circuits, even

though its main application is to model wires. Suppose that we model a

simple or-gate using a transport delay signal assignment:

c <= transport a or b after 10 ns;

Such a model would propagate even short pulses (see fig. 2.61).

Transport delay signal assignments will delete all entries in the queue cor-

responding to the time of the computed update or later times (if we first

execute an assignment with a rather large delay and then execute an assign-

ment with a smaller delay, then the entry resulting from the first assignment

will be deleted).

For signal assignments containing an after clause, but no transport clause,

inertial delay is assumed. The inertial delay model reflects the fact that

Specifications and Modeling 85

Figure 2.61. Gate modeled with transport delay

real circuits come with some “inertia”. This means that short spikes will

be suppressed. For the third syntactical form of the signal assignment, all

signals changes which are shorter than the specified delay are suppressed.

For the fourth form, all signal changes which are shorter than the indicated

amount are removed from the predicted waveform. Suppose that we model

a simple or-gate using inertial delay:

c <= a or b after 10 ns;

For such a model, short spikes would be suppressed (see fig. 2.62).

Figure 2.62. Gate modeled with inertial delay

The implementation of inertial delay relies on the removal of entries in the

predicted waveform. The subtle rules for removals are not repeated here.

In addition to assignments, processes may contain wait statements. Such state-

ments can be used to suspend a process. There are the following kinds of wait

statements:

wait on signal list; suspend until one of the signals in the list changes;

wait until condition; suspend until condition is met, e.g. a = ’1’;

86 EMBEDDED SYSTEM DESIGN

wait for duration; suspend for a specified period of time;

wait; suspend indefinitely.

As an alternative to explicit wait statements, a list of signals can be added to

the process header. In that case, the process is activated whenever one of the

signals in that list changes its value. Example: The following model of an and-

gate will execute its body once and will restart from the beginning every time

one of the inputs changes its value:

process(x, y) begin

prod <= x and y ;

end process;

This model is equivalent to

process begin

prod <= x and y ;

wait on x,y;

end process;

2.7.1.4 The VHDL simulation cycle

According to the original standards document [IEEE, 1997], the execution of a

VHDL model is described as follows: “The execution of a model consists of an

initialization phase followed by the repetitive execution of process statements

in the description of that model. Each such repetition is said to be a simulation

cycle. In each cycle, the values of all signals in the description are computed.

If as a result of this computation an event occurs on a given signal, process

statements that are sensitive to that signal will resume and will be executed as

part of the simulation cycle.”

The initialization phase takes signal initializations into account and executes

each process once. It is described in the standards as follows13:

“At the beginning of initialization, the current time, Tc is assumed to be 0 ns.

The initialization phase consists of the following steps:14

The driving value and the effective value of each explicitly declared signal

are computed, and the current value of the signal is set to the effective

13We leave out the discussion of implicitly declared signals and so-called postponed processes introduced

in the 1997 version of VHDL.
14In order not to get lost in the amount of details provided by the standard, some of its sections (indicated

by “...”) are omitted in the citation.

Specifications and Modeling 87

value. This value is assumed to have been the value of the signal for an

infinite length of time prior to the start of the simulation. ...

Each ... process in the model is executed until it suspends. ...

The time of the next simulation cycle (which in this case is the first simula-

tion cycle), Tn is calculated according to the rules of step e of the simulation

cycle, below.”

Each simulation cycle starts with setting the current time to the next time at

which changes must be considered. This time Tn was either computed during

the initialization or during the last execution of the simulation cycle. Simu-

lation terminates when the current time reaches its maximum, T IME ′HIGH.

According to the original document, the simulation cycle is described as fol-

lows: “A simulation cycle consists of the following steps:

a) The current time, Tc is set equal to Tn. Simulation is complete when Tn =
T IME ′HIGH and there are no active drivers or process resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may occur as a

result.)” ...

In the cycle preceding the current cycle, new future values for some of the

signals have been computed. If Tc corresponds to the time at which these

values become valid, they are now assigned. New values of signals are

never immediately assigned while executing a simulation cycle: they are

not assigned before the next simulation cycle, at the earliest. Signals that

change their value generate so-called events which, in-turn, may enable the

execution of processes that are sensitive to that signal.

c) “For each process P, if P is currently sensitive to a signal S and if an event

has occurred on S in this simulation cycle, then P resumes.

d) Each ... process that has resumed in the current simulation cycle is executed

until it suspends.

e) The time of the next simulation cycle, Tn is determined by setting it to the

earliest of

1 TIME’HIGH (This is the end of simulation time).

2 The next time at which a driver becomes active (this is the next instance

in time, at which a driver specifies a new value), or

3 The next time at which a process resumes (this time is determined by

wait for statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.”

88 EMBEDDED SYSTEM DESIGN

Figure 2.63. VHDL simulation cycles

The iterative nature of simulation cycles is shown in fig. 2.63.

Delta (δ) simulation cycles have been the source of many discussions. Their

purpose is to introduce a infinitesimally small delay even in cases in which the

user did not specify any. As an example, we will show the effect of these cycles

using a flip-flop as an example. Fig. 2.64 shows the schematic of the flip-flop.

Figure 2.64. RS-Flipflop

The flip-flop is modeled in VHDL as follows:

entity RS Flipflop is

port (R: in BIT; -- reset

S: in BIT; -- set

Q: inout BIT; -- output

nQ: inout BIT;); -- Q-bar

end RS Flipflop;

architecture one of RS Flipflop is

begin

process: (R,S,Q,nQ)

begin

Q <= R nor nQ; nQ <= S nor Q;

end process;

end one;

Specifications and Modeling 89

Ports Q and nQ must be of mode inout since they are also read internally, which

would not be possible if they were of mode out. Fig. 2.65 shows the simulation

times at which signals are updated for this model. During each cycle, updates

are propagated through one of the gates. Simulation terminates after three δ
cycles. The last cycle does not change anything, since Q is already ’0’.

< 0ns 0ns 0ns+δ 0ns+2∗δ 0ns+3∗δ

R 0 1 1 1 1

S 0 0 0 0 0

Q 1 1 0 0 0

nQ 0 0 0 1 1

Figure 2.65. δ cycles for RS-flip-flop

δ cycles correspond to an infinitesimally small unit of time, which will always

exist in reality. δ cycles ensure that simulation respects causality.

The results do not depend on the order in which parts of the model are exe-

cuted by the simulation. This feature is enabled by the separation between the

computation of new values for signals and their actual assignment. In a model

containing the lines

a <= b;

b <= a;

signals a and b will always be swapped. If the assignments were performed

immediately, the result would depend on the order in which we execute the as-

signments (see also page 48). VHDL models are therefore determinate. This

is what we expect from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily many δ cycles before the current time Tc is advanced.

This possibility of infinite loops can be confusing. One of the options of avoid-

ing this possibility would be to disallow zero delays, which we used in our

model of the flip-flop.

The propagation of values using signals also allows an easy implementation

of the observer pattern (see page 27). In contrast to SDF, the number of ob-

servers can vary, depending on the number of processes waiting for changes

on a signal.

What is the communication model behind VHDL? The description of the se-

mantics of VHDL relies heavily on a single, centralized queue of future events,

storing values of all signals in the future. The purpose of this queue is not to

implement asynchronous message passing. Rather, this queue is supposed to

be accessed by the simulation kernel, one entry at a time, in a non-distributed

fashion. Attempts to perform distributed VHDL simulations are typically suf-

90 EMBEDDED SYSTEM DESIGN

fering from a poor performance. All modeled components can access values

of signals and variables which are in their scope without any message-based

communication. Therefore, we tend towards associating VHDL with a shared

memory based implementation of the communication. However, FIFO-based

message passing could be implemented in VHDL on top of the VHDL simula-

tor as well.

2.7.1.5 Multi-valued logic and IEEE 1164

In this book, we are restricting ourselves to embedded systems implemented

with binary logic. Nevertheless, it may be advisable or necessary to use more

than two values for modeling such systems. For example, our systems might

contain electrical signals of different strengths and it may be necessary to com-

pute the strength and the logic level resulting from a connection of two or more

sources of electrical signals. In the following, we will therefore distinguish be-

tween the level and the strength of a signal. While the former is an abstraction

of the signal voltage, the latter is an abstraction of the impedance (resistance) of

the voltage source. We will be using discrete sets of signal values representing

the signal level and the strength. Using discrete sets of strengths avoids the

problems of having to solve Kirchhoff’s equations and enables us to avoid

analog models used in electrical engineering. We will also model unknown

electrical signals by special signal values.

In practice, electronic design systems use a variety of value sets. Some sys-

tems allow only two, while others allow 9 or 46. The overall goal of developing

discrete value sets is to avoid the problems of solving network equations (e.g.

Kirchoff’s laws) and still model existing systems with sufficient precision. In

the following, we will present a systematic technique for building up value

sets and for relating these to each other. We will use the strength of electrical

signals as the key parameter for distinguishing between various value sets. A

systematic way of building up value sets, called CSA-theory, was presented by

Hayes [Hayes, 1982]. CSA stands for “connector, switch, attenuator”. These

three elements are key elements of this theory. We will later show how the stan-

dard value set used for most cases of VHDL-based modeling can be derived as

a special case.

1 signal strength (Two logic values)

In the simplest case, we will start with just two logic values, called ’0’ and ’1’.

These two values are considered to be of the same strength. This means: if two

wires connect values ’0’ and ’1’, we will not know anything about the resulting

signal level.

Specifications and Modeling 91

A single signal strength may be sufficient if no two wires carrying values ’0’

and ’1’ are connected and no signals of different strength meet at a particular

node of electronic circuits.

2 signal strengths (Three and four logic values)

In many circuits, there may be instances in which a certain electrical signal is

not actively driven by any output. This may be the case, when a certain wire is

not connected to ground, the supply voltage or any circuit node.

For example, systems may contain open-collector outputs (see fig. 2.66, left).

If the “pull-down” transistor PD is non-conducting, the output is effectively

disconnected. For the tristate outputs (see fig. 2.66, right), an enable signal of

’0’ will generate a ’0’ at the outputs of the and-gates (denoted by &), and will

make both transistors non-conducting. As a result, output A will be discon-

nected15. Hence, using appropriate input signals, such outputs can be effec-

tively disconnected from a wire.

Figure 2.66. Outputs that can be effectively disconnected from a wire

Obviously, the signal strength of disconnected outputs is the smallest strength

that we can think of. In particular, the signal strength of Z is smaller than that

of ’0’ and ’1’. Furthermore, the signal level of such an output is unknown. This

combination of signal strength and signal value is represented by a logic value

called ’Z’. If a signal of value ’Z’ is connected to another signal, that other signal

will always dominate. For example, if two tristate outputs are connected to the

same bus and if one output contributes a value of ’Z’, the resulting value on the

bus will always be the value contributed by the second output (see fig. 2.67).

In VHDL, each output is associated with a so-called signal driver. Computing

the value resulting from the contributions of multiple drivers to the same sig-

15In practice, pull-up transistors may be depletion transistors and the tri-state outputs may be inverting.

92 EMBEDDED SYSTEM DESIGN

Figure 2.67. Right output dominates bus

nal is called resolution and resulting values are computed by functions called

resolution functions.

In most cases, three-valued logic sets {’0’,’1’,’Z’} are extended by a fourth value

called ’X’. ’X’ represents an unknown signal level of the same strength as ’0’ or

’1’. More precisely, we are using ’X’ to represent unknown values of signals

that can be either ’0’ or ’1’ or some voltage representing neither ’0’ nor ’1’16.

The resolution that is required if multiple drivers get connected can be com-

puted very easily, if we make use of a partial order among the four signal values

’0’, ’1’, ’Z’, and ’X’. The partial order is depicted in the Hasse diagram in fig.

2.68.

Figure 2.68. Partial order for value set {’0’, ’1’, ’Z’, ’X’}

Edges in this figure reflect the domination of signal values. Edges define a

relation >. If a > b, then a dominates b. ’0’ and ’1’ dominate ’Z’. ’X’ dominates

all other signal values. Based on the relation >, we define a relation ≥. a ≥ b

holds iff a > b or a = b.

We define an operation sup on two signals, which returns the supremum of

the two signal values. The supremum c of the two values a and b is the weak-

est value for which c ≥ a and c ≥ b holds. For example, sup (’Z’, ’0’)=’0’,

sup(’Z’,’1’)=’1’ etc. The interesting observation is that resolution functions

should compute the sup function according to the above definition. The

supremum corresponds to the connect element of the CSA theory.

16There are other interpretations of ’X’, but the one presented above is the most useful one in our context.

Specifications and Modeling 93

3 signal strengths (Seven signal values)

In many circuits, two signal strengths are not sufficient. A common case that

requires more values is the use of depletion transistors (see fig. 2.69).

Figure 2.69. Output using depletion transistor

The effect of the depletion transistor is similar to that of a resistor providing a

low conductance path to the supply voltage VDD. The depletion transistor as

well as the “pull-down transistor” PD act as drivers for node A of the circuit

and the signal value at node A can be computed using resolution. The pull-

down transistor provides a driver value of ’0’ or ’Z’, depending upon the input

to PD. The depletion transistor provides a signal value, which is weaker than ’0’

and ’1’. Its signal level corresponds to the signal level of ’1’. We represent the

value contributed by the depletion transistor by ’H’, and we call it a “weak logic

one”. Similarity, there can be weak logic zeros, represented by ’L’. The value

resulting from the possible connection between ’H’ and ’L’ is called a “weak

logic undefined”, denoted as ’W’. As a result, we have three signal strengths

and seven logic values {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}. Resolution can again be

based on a partial order among these seven values. The corresponding partial

order is shown in fig. 2.70.

Figure 2.70. Partial order for value set {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}

94 EMBEDDED SYSTEM DESIGN

This order also defines an operation sup returning the weakest value at least as

strong as the two arguments. For example, sup(’H’,’0’) = ’0’, sup(’H’,’Z’) = ’H’,

sup(’H’,’L’) = ’W’.

’0’ and ’L’ represent the same signal levels, but a different strength. The same

holds for the pairs ’1’ and ’H’. Devices increasing the signal strength are called

amplifiers, devices reducing the signal strength are called attenuators.

Ten signal values (4 signal strengths)

In some cases, three signal strengths are not sufficient. For example, there

are circuits using charges stored on wires. Such wires are charged to levels

corresponding to ’0’ or ’1’ during some phases of the operation of the electronic

circuit. This stored charge can control the (high impedance) inputs of some

transistors. However, if these wires get connected to even the weakest signal

source (except ’Z’), they lose their charge and the signal value from that source

dominates.

For example, in fig. 2.71, we are driving a bus from a specialized output.

Figure 2.71. Pre-charging a bus

The bus has a high capacitive load C. While function f is still ’0’, we set φ to

’1’, charging capacitor C. Then we set φ to ’0’. If the real value of function f

becomes known and it turns out to be ’1’, we discharge the bus. The key reason

for using pre-charging is that charging a bus using an output such as the one

shown in fig. 2.69 is a slow process, since the resistance of depletion transistors

is large. Discharging through regular pull-down transistors PD is a much faster

process.

In order to model such cases, we need signal values which are weaker than ’H’

and ’L’, but stronger than ’Z’. We call such values “very weak signal values”

and denote them by ’h’ and ’l’. The corresponding very weak unknown value is

denoted by ’w’. As a result, we obtain ten signal values {’0’, ’1’, ’L’, ’H’, ’l’, ’h’,

’X’, ’W’, ’w’, ’Z’}. Using the signal strength, we can again define a partial order

among these values (see fig. 2.72).

Specifications and Modeling 95

Figure 2.72. Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’}

Five signal strengths

So far, we have ignored power supply signals. These are stronger than the

strongest signals we have considered so far. Signal value sets taking power

supply signals into account have resulted in the definition of 46-valued value

sets [Coelho, 1989]. However, such models are not very popular.

IEEE 1164

In VHDL, there is no predefined number of signal values, except for some

basic support for two-valued logic. Instead, the used value sets can be defined

in VHDL itself and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this

capability of VHDL was applied in this way. In order to simplify exchanging

VHDL models, a standard value set was defined and standardized by the IEEE.

This standard is called IEEE 1164 and is employed in many system models.

IEEE 1164 has nine values: {’0’, ’1’, ’L’, ’H’, ’X’, ’W’, ’Z’, ’U’, ’-’}. The first seven

values correspond to the seven signal values described above. ’U’ denotes an

uninitialized value. It is used by simulators for signals that have not been

explicitly initialized.

’-’ denotes the input don’t care. This value needs some explanation. Fre-

quently, hardware description languages are used for describing Boolean func-

tions. The VHDL select statement is a very convenient means for doing that.

The select statement corresponds to switch and case statements found in

other languages and its meaning is different from the select statement in ADA

(see page 104).

Example: Suppose that we would like to represent the Boolean function

f (a,b,c) = ab+bc

96 EMBEDDED SYSTEM DESIGN

Furthermore, suppose that f should be undefined for the case of a = b = c =’0’.

A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation

’1’ when "10-" -- corresponds to first term

’1’ when "-11" -- corresponds to second term

’X’ when "000"

This way, functions given above could be easily translated into VHDL. Unfor-

tunately, the select statement denotes something completely different. Since

IEEE 1164 is just one of a large number of possible value sets, it does not

include any knowledge about the “meaning” of ’-’. Whenever VHDL tools

evaluate select statements such as the one above, they check if the selecting

expression (a & b & c in the case above) is equal to the values in the when

clauses. In particular, they check if e.g. a & b & c is equal to "10-". In this

context, ’-’ behaves like any other value: VHDL systems check if c has a value

of ’-’. Since ’-’ is never assigned to any of the variables, these tests will never

be true. Therefore, ’-’ is of limited benefit. The non-availability of convenient

input don’t care values is the price that one has to pay for the flexibility of

defining value sets in VHDL itself17.

The nice property of the general discussion on pages 90 to 95 is the following:

it allows us to immediately draw conclusions about the modeling power of

IEEE 1164. The IEEE standard is based on the 7-valued value set described

on page 93 and, therefore, is capable of modeling circuits containing depletion

transistors. It is, however, not capable of modeling charge storage18.

2.7.2 SystemC

Due to the trend of implementing more and more functionality in software,

a growing number of embedded systems includes a mixture of hardware and

software. Most of the embedded system software is specified in C. For exam-

ple, embedded systems implement standards such as MPEG 1/2/4 or decoders

for mobile phone standards such as GSM or UMTS. The standards are fre-

quently available in the form of “reference implementations”, consisting of

C programs not optimized for speed but providing the required functional-

ity. The disadvantage of design methodologies based on VHDL or Verilog is

the fact that these standards must be rewritten in order to generate hardware.

17This problem was corrected in VHDL 2006 [Lewis et al., 2007].
18As an exception, if the capability of modeling depletion transistors or pull-up resistors is not needed, one

could interpret weak values as stored charges. This is, however, not very practical since pull-up resistors

are found in most actual systems.

Specifications and Modeling 97

Furthermore, simulating hardware and software together requires interfacing

software and hardware simulators. Typically, this involves a loss of simulation

efficiency and inconsistent user interfaces. Also, designers must learn several

languages.

Therefore, there has been a search for techniques for representing hardware

structures in software languages. Some fundamental problems must be solved

before hardware can be modeled with software languages:

Concurrency, as it is found in hardware, has to be modeled in software.

There has to be a representation of simulated time.

Multiple-valued logic and resolution as described earlier must be sup-

ported.

The determinate behavior of almost all useful hardware circuits must be

guaranteed.

SystemCT M [SystemC, 2010], [Open SystemC Initiative, 2005] is a C++ class

library designed to solve these problems. With SystemC, specifications can be

written in C or C++, making appropriate references to the class libraries.

SystemC comprises a notion of processes executed concurrently. Simulation

semantics are similar to VHDL, including the presence of delta cycles. The

execution of these processes is controlled via sensitivity lists and calls to wait

primitives. The sensitivity list concept includes dynamic sensitivity lists.

SystemC includes a model of time. Earlier SystemC 1.0 used floating point

numbers to denote time. In the current standard, an integer model of time is

preferred. SystemC also supports physical units such as picoseconds, nanosec-

onds, microseconds etc.

SystemC data types include all common hardware types: four-valued logic (’0’,

’1’, ’X’ and ’Z’) and bitvectors of different lengths are supported. Writing digital

signal processing applications is simplified due to the availability of fixed-point

data types.

Determinate behavior (see page 49) is not guaranteed in general, unless a cer-

tain modeling style is used. Using a command line option, the simulator can

be directed to run processes in different orders. This way, the user can check

if the simulation results depend on the sequence in which the processes are

executed. However, for models of realistic complexity, only the presence of

non-determinate behavior can be shown, not its absence.

Reusing hardware components in different contexts is simplified by the sepa-

ration of computation and communication. SystemC provides channels, ports

98 EMBEDDED SYSTEM DESIGN

and interfaces as abstract components for communication. The introduction of

these mechanisms facilitate so-called transaction-level modeling, as defined by

Grötker et al. [Grötker et al., 2002]:

Definition: “Transaction-level modeling (TLM) is a high-level approach to

modeling digital systems where details of communication among modules are

separated from the details of the implementation of functional units or of the

communication architecture. Communication mechanisms such as buses or FI-

FOs are modeled as channels, and are presented to modules using SystemC in-

terface classes. Transaction requests take place by calling interface functions

of these channel models, which encapsulate low-level details of the information

exchange. At the transaction level, the emphasis is more on the functionality

of the data transfers - what data are transferred to and from what locations -

and less on their actual implementation, that is, on the actual protocol used

for data transfer. This approach makes it easier for the system-level designer

to experiment, for example, with different bus architectures (all supporting a

common abstract interface) without having to recode models that interact with

any of the buses, provided these models interact with the bus through the com-

mon interface.”

SystemC has the potential for replacing existing VHDL-based design flows.

Hardware synthesis starting from SystemC has become available [Herrera et al.,

2003a], [Herrera et al., 2003b]. There are also commercial offerings. Method-

ology and applications for SystemC-based design are described in a book on

that topic [Müller et al., 2003]. SystemC has been standardized as IEEE stan-

dard 1666-2005 [Open SystemC Initiative, 2005].

2.7.3 Verilog and SystemVerilog

Verilog is another hardware description language. Initially it was a propri-

etary language, but it was later standardized as IEEE standard 1364, with ver-

sions called IEEE standard 1364-1995 (Verilog version 1.0) and IEEE standard

1364-2001 (Verilog 2.0). Some features of Verilog are quite similar to VHDL.

Just like in VHDL, designs are described as a set of connected design entities,

and design entities can be described behaviorally. Also, processes are used

to model concurrency of hardware components. Just like in VHDL, bitvec-

tors and time units are supported. There are, however, some areas in which

Verilog is less flexible and focuses more on comfortable built-in features. For

example, standard Verilog does not include the flexible mechanisms for defin-

ing enumerated types such as the ones defined in the IEEE 1164 standard.

However, support for four-valued logic is built into the Verilog language, and

the standard IEEE 1364 also provides multiple valued logic with 8 different

signal strengths. Multiple-valued logic is more tightly integrated into Verilog

Specifications and Modeling 99

than into VHDL. The Verilog logic system also provides more features for

transistor-level descriptions. However, VHDL is more flexible. For example,

VHDL allows hardware entities to be instantiated in loops. This can be used to

generate a structural description for, e.g. n-bit adders without having to specify

n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular

in Europe, Verilog is more popular in the US.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include

numerous extensions to Verilog 2.0. These extensions include [Accellera Inc.,

2003], [Sutherland, 2003]:

additional language elements for modeling behavior,

C data types such as int and type definition facilities such as typedef and

struct,

definition of interfaces of hardware components as separate entities,

standardized mechanism for calling C/C++ functions and, to some extent,

to call built-in Verilog functions from C,

significantly enhanced features for describing an environment (called test-

bench) for the hardware circuit under design (called CUD), and for using

the testbench to validate the CUD by simulation,

classes known from object-oriented programming for use within testben-

ches,

dynamic process creation,

standardized interprocess communication and synchronization, including

semaphores,

automatic memory allocation and deallocation,

language features that provide a standardized interface to formal verifica-

tion (see page 203).

Due to the capability of interfacing with C and C++, interfacing to SystemC

models is also possible. Improved facilities for simulation- as well as for for-

mal verification-based design validation and the possible interfacing to Sys-

temC will potentially create a very good acceptance. Recently, Verilog and

SystemVerilog have been merged into one standard, IEEE 1800-2009 [IEEE,

2009].

100 EMBEDDED SYSTEM DESIGN

2.7.4 SpecC

The SpecC language [Gajski et al., 2000] is based on the clear separation be-

tween communication and computation that should be used for modeling em-

bedded systems. This separation paves the way for re-using components in

different contexts and enables plug-and-play for system components. SpecC

models systems as hierarchical networks of behaviors communicating through

channels. SpecC descriptions consist of behaviors, channels and interfaces.

Behaviors include ports, locally instantiated components, private variables and

functions and a public main function. Channels encapsulate communication.

They include variables and functions, which are used for the definition of a

communication protocol. Interfaces are linking behaviors and channels to-

gether. They declare the communication protocols which are defined in a chan-

nel.

SpecC can model hierarchies with nested behaviors. Fig. 2.73 [Gajski et al.,

2000] shows a component B including sub-components b1 and b2.

Figure 2.73. Structural hierarchy of SpecC example

The sub-components are communicating through integer c1 and through chan-

nel c2. The structural hierarchy includes b1 and b2 as the leaves. b1 and b2 are

executed concurrently, denoted by the keyword par in SpecC. This structural

hierarchy is described in the following SpecC model.

interface L {void Write(int x); };

interface R {int Read(void); };

channel C implements L,R

{int Data; bool Valid;

void Write(int x) {Data=x; Valid=true;}

int Read (void)

{while (!Valid) waitfor (10); return (Data);} }

Specifications and Modeling 101

behavior B1(in int p1, L p2, in int p3)

{void main (void) {/* ...*/ p2.Write(p1);} };

behavior B2 (out int p1, R p2, out int p3)

{void main(void) {/*...*/ p3=p2.Read(); } };

behavior B(in int p1, out int p2)

{int c1; C c2; B1 b1(p1, c2, c1); B2 b2(c1, c2, p2);

void main (void)

{par {b1.main(); b2.main();}}

};

Note that the interface protocol implemented in channel C, consisting of meth-

ods for read and write operations, can be changed without changing behaviors

B1 and B2. For example, communication can be bit-serial or parallel and the

choice does not affect the models of B1 and B2. This is a necessary feature for

IP-reuse.

In order to simplify designs containing software and hardware components, the

syntax of SpecC is based on C and C++. In fact, SpecC models are translated

into C++ for simulation.

At the specification level, SpecC can model any kind of communication and

typically uses message passing. The implementation of simulators is neverthe-

less typically based on a non-distributed system. The communication model of

SpecC has inspired communication in SystemC 2.0.

2.8 Von-Neumann languages

The sequential execution of von-Neumann languages is their common char-

acteristic. Also, such languages allow an almost unrestricted access to global

variables. Model-based design using CFSMs and computational graphs is very

appropriate for embedded system design. Nevertheless, the use of standard

von-Neumann languages is still widespread. Therefore, we cannot ignore these

languages.

However, the distinction between KPNs and properly restricted von-Neumann

languages is blurring. For KPNs, we do also have sequential execution of the

code for each of the nodes. We are still keeping the distinction between KPN

and von-Neumann languages since for KPNs, the emphasis of modeling is on

the communication and details of the execution within the nodes are irrelevant.

For the first two languages covered in this section, communication is built into

the languages. For the remaining languages, focus is on the computations and

communication can be replaced by selecting different libraries.

102 EMBEDDED SYSTEM DESIGN

2.8.1 CSP

CSP (communicating sequential processes) [Hoare, 1985] is one of the first

languages comprising mechanisms for interprocess communication. Commu-

nication is based on channels.

Example:

process A process B

.....

var a .. var b ...

a := 3; ...

c!a; -- output to channel c c?b; -- input from channel c

end; end;

Both processes will wait for the other process to arrive at the input or out-

put statement. This is a case of rendez-vous-based, blocking or synchronous

message passing.

CSP is determinate, since it relies on the commitment to wait for input from a

particular channel, like in Kahn process networks.

CSP has laid the foundation for the OCCAM language that was proposed as

a programming language of the transputer [Thiébaut, 1995]. The focus on

communication channels has been picked up again in the design of the XS1

processor [XMOS Ltd., 2010].

2.8.2 ADA

During the 1980s, the Department of Defense (DoD) in the United States re-

alized that the dependability and maintainability of the software in its military

equipment could soon become a major source of problems, unless some strict

policy was enforced. It was decided that all software should be written in the

same real-time language. Requirements for such a language were formulated.

No existing language met the requirements and, consequently, the design of

a new one was started. The language which was finally accepted was based

on PASCAL. It was called ADA (after Ada Lovelace, who can be considered

being the first (female) programmer). ADA’95 [Kempe, 1995], [Burns and

Wellings, 2001] is an object-oriented extension of the original standard.

One of the interesting features of ADA is the ability to have nested declarations

of processes (called tasks in ADA). Tasks are started whenever control passes

into the scope in which they are declared.

The following is an example (according to Burns et al. [Burns and Wellings,

1990]):

Specifications and Modeling 103

procedure example1 is

task a;

task b;

task body a is

-- local declarations for a

begin

-- statements for a

end a;

task body b is

-- local declarations for b

begin

-- statements for b

end b;

begin

-- Tasks a and b will start before the 1st statement of example1

-- statements for example1

end;

The communication concept of ADA is another key concept. It is based on the

rendez-vous paradigm. Whenever two tasks want to exchange information,

the task reaching the “meeting point” first has to wait until its partner has also

reached a corresponding point of control. Syntactically, procedures are used

for describing communication. Procedures which can be called from other

tasks must be identified by the keyword entry.

Example [Burns and Wellings, 1990]:

task screen out is

entry call (val : character; x, y : integer);

end screen out;

Task screen out includes a procedure named call which can be called from

other processes. Some other task can call this procedure by prefixing it with

the name of the task:

screen out.call(’Z’,10,20);

The calling task has to wait until the called task has reached a point of control,

at which it accepts calls from other tasks. This point of control is indicated by

the keyword accept:

104 EMBEDDED SYSTEM DESIGN

task body screen out is

...

begin

...

accept call (val : character; x, y : integer) do

...

end call;

...

end screen out;

Obviously, task screen out may be waiting for several calls at the same time.

The ADA select-statement provides this capability.

Example:

task screen output is

entry call ch(val:character; x, y: integer);

entry call int(z, x, y: integer);

end screen out;

task body screen output is

...

select

accept call ch ... do...

end call ch;

or

accept call int ... do ..

end call int;

end select;

...

In this case, task screen out will be waiting until either call ch or call int are

called.

Due to the presence of the select-statement, ADA is not determinate. ADA

has been the preferred language for military equipment produced in the West-

ern hemisphere for some time. Recently produced information about ADA is

available from a web sites (see, for example [Kempe Software Capital Enter-

prises (KSCE), 2010]).

Specifications and Modeling 105

2.8.3 Java

For Java, communication can be selected by choosing between different li-

braries. Computation is strictly sequential.

Java was designed as a platform-independent language. It can be executed

on any machine for which an interpreter of the internal byte-code represen-

tation of Java-programs is available. This byte-code representation is a very

compact representation, which requires less memory space than a standard bi-

nary machine code representation. Obviously, this is a potential advantage in

system-on-a-chip applications, where memory space is limited.

Also, Java was designed as a safe language. Many potentially dangerous fea-

tures of C or C++ (like pointer arithmetic) are not available in Java. Hence,

Java meets the safety requirements for specification languages for embedded

systems. Java supports exception handling, simplifying recovery in case of

run-time errors. There is no danger of memory leakages due to missing mem-

ory deallocation, since Java provides automatic garbage collection. This fea-

ture avoids potential problems in applications that must run for months or even

years without ever being restarted. Java also meets the requirement to support

concurrency since it includes threads (light-weight processes).

In addition, Java applications can be implemented quite fast, since Java sup-

ports object orientation and since Java development systems come with pow-

erful libraries.

However, standard Java is not really designed for real-time and embedded sys-

tems. A number of characteristics which would make it a real-time and em-

bedded programming language are missing:

The size of Java run-time libraries has to be added to the size of the ap-

plication itself. These run-time libraries can be quite large. Consequently,

only really large applications benefit from the compact representation of

the application itself.

For many embedded applications, direct control over I/O devices is neces-

sary (see page 26). For safety reasons, no direct control over I/O devices is

available in standard Java.

Automatic garbage collection requires some computing time. In standard

Java, the instance in time at which automatic garbage collection is started

cannot be predicted. Hence, the worst case execution time is very difficult

to predict. Only extremely conservative estimates can be made.

Java does not specify the order in which threads are executed if several

threads are ready to run. As a result, worst-case execution time estimates

must be even more conservative.

106 EMBEDDED SYSTEM DESIGN

Java programs are typically less efficient than C programs. Hence, Java is

less recommended for resource constrained systems.

Proposals for solving the problems were made by Nilsen [Nilsen, 1998]. Pro-

posals include hardware-supported garbage-collection, replacement of the run-

time scheduler and tagging of some of the memory segments.

Currently (in 2010) relevant Java programming environments include the Java

Enterprise Edition (J2EE), the Java Standard Edition (J2SE), the Java Micro

Edition (J2ME), and CardJava [Sun, 2010]. CardJava is a stripped-down ver-

sion of Java with emphasis on security for SmartCard applications. J2ME

is the relevant Java environment for all other types of embedded systems.

Two library profiles have been defined for J2ME: CDC and CLDC. CLDC

is used for mobile phones, using the so-called MIDP 1.0/2.0 as its standard

for the application programming interface (API). CDC is used, for example,

for TV sets and powerful mobile phones. Currently relevant sources for Java

real-time programming include book by Wellings [Wellings, 2004], Dibble

[Dibble, 2008] and Bruno [Bruno and Bollella, 2009] as well as web sites

[Java Community Process, 2002] and [Anonymous, 2010b].

2.8.4 Pearl and Chill

Pearl [Deutsches Institut für Normung, 1997] was designed for industrial con-

trol applications. It does include a large repertoire of language elements for

controlling processes and referring to time. It requires an underlying real-

time operating system. Pearl has been very popular in Europe and a large

number of industrial control projects has been implemented in Pearl. Pearl

supports semaphores which can be used to protect communication based on

shared buffers.

Chill [Winkler, 2002] was designed for telephone exchange stations. It was

standardized by the CCITT and used in telecommunication equipment. Chill

is a kind of extended PASCAL.

2.8.5 Communication libraries

Standard von-Neumann languages do not come with built-in communication

primitives. However, communication can be provided by libraries. There is a

trend towards supporting communication within some local system as well as

communication over longer distances. The use of internet protocols is becom-

ing more popular. Libraries will be described in more detail in the section on

system software (see page 195).

Specifications and Modeling 107

2.9 Levels of hardware modeling

In practice, designers start design cycles at various levels of abstraction. In

some cases, these are high levels describing the overall behavior of the system

to be designed. In other cases, the design process starts with the specification

of electrical circuits at lower levels of abstraction. For each of the levels, a

variety of languages exists, and some languages cover various levels. In the

following, we will describe a set of possible levels. Some lower end levels

are presented here for context reasons. Specifications should not start at those

levels. The following is a list of frequently used names and attributes of levels:

System level models: The term system level is not clearly defined. It is

used here to denote the entire embedded system and the system into which

information processing is embedded (“the product”), and possibly also the

environment (the physical input to the system, reflecting e.g. the roads,

weather conditions etc.). Obviously, such models include mechanical as

well as information processing aspects and it may be difficult to find ap-

propriate simulators. Possible solutions include VHDL-AMS (the analog

extension to VHDL), SystemC or MATLAB. MATLAB and VHDL-AMS

support modeling partial differential equations, which is a key requirement

for modeling mechanical systems. It is a challenge to model information

processing parts of the system in such a way that the simulation model

can also be used for the synthesis of the embedded system. If this is not

possible, error-prone manual translations between different models may be

needed.

Algorithmic level: At this level, we are simulating the algorithms that we

intend to use within the embedded system. For example, we might be sim-

ulating MPEG video encoding algorithms in order to evaluate the resulting

video quality. For such simulations, no reference is made to processors or

instruction sets.

Data types may still allow a higher precision than the final implementation.

For example, MPEG standards use double precision floating point numbers.

The final embedded system will hardly include such data types. If data

types have been selected such that every bit corresponds to exactly one bit

in the final implementation, the model is said to be bit-true. Translating

non-bit-true into bit-true models should be done with tool support (see page

286).

Models at this level may consist of single processes or of sets of cooperating

processes.

Instruction set level: In this case, algorithms have already been compiled

for the instruction set of the processor(s) to be used. Simulations at this

108 EMBEDDED SYSTEM DESIGN

level allow counting the executed number of instructions. There are several

variations of the instruction set level:

– In a coarse-grained model, only the effect of the instructions is sim-

ulated and their timing is not considered. The information available

in assembly reference manuals (instruction set architecture (ISA)) is

sufficient for defining such models.

– Transaction level modeling: In transaction level modeling (see also

page 98), transactions, such as bus reads and writes, and communica-

tion between different components is modeled. Transaction level mod-

eling includes less details than cycle-true modeling (see below), en-

abling significantly superior simulation speeds [Clouard et al., 2003].

– In a more fine-grained model, we might have cycle-true instruction

set simulation. In this case, the exact number of clock cycles required

to run an application can be computed. Defining cycle-true models re-

quires a detailed knowledge about processor hardware in order to cor-

rectly model, for example, pipeline stalls, resource hazards and mem-

ory wait cycles.

Register-transfer level (RTL): At this level, we model all the components

at the register-transfer level, including arithmetic/logic units (ALUs), regis-

ters, memories, muxes and decoders. Models at this level are always cycle-

true. Automatic synthesis from such models is not a major challenge.

Gate-level models: In this case, models contain gates as the basic compo-

nents. Gate-level models provide accurate information about signal tran-

sition probabilities and can therefore also be used for power estimations.

Also delay calculations can be more precise than for the RTL. However,

typically no information about the length of wires and hence no informa-

tion about capacitances is available. Hence, delay and power consumption

calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in

which gates are only used to denote Boolean functions. Gates in such a

model do not necessarily represent physical gates; we are only considering

the behavior of the gates, not the fact that they also represent physical com-

ponents. More precisely, such models should be called “Boolean function

models”19, but this term is not frequently used.

Switch-level models: Switch level models use switches (transistors) as

their basic components. Switch level models use digital values models

19These models could be represented with binary decision diagrams (BDDs) [Wegener, 2000].

Specifications and Modeling 109

(refer to page 90 for a description of possible value sets). In contrast to

gate-level models, switch level models are capable of reflecting bidirec-

tional transfer of information.

Circuit-level models: Circuit theory and its components (current and volt-

age sources, resistors, capacitances, inductances, and frequently possible

macro-models of semiconductors) form the basis of simulations at this

level. Simulations involve partial differential equations. These equations

are linear if and only if the behavior of semiconductors is linearized (ap-

proximated). The most frequently used simulator at this level is SPICE

[Vladimirescu, 1987] and its variants.

Layout models: Layout models reflect the actual circuit layout. Such mod-

els include geometric information. Layout models cannot be simulated

directly, since the geometric information does not directly provide infor-

mation about the behavior. Behavior can be deduced by correlating the

layout model with a behavioral description at a higher level or by extract-

ing circuits from the layout, using knowledge about the representation of

circuit components at the layout level. In a typical design flow, the length of

wires and the corresponding capacitances are extracted from the layout and

back-annotated to descriptions at higher levels. This way, more precision

can be gained for delay and power estimations.

Process and device models: At even lower levels, we can model fabri-

cation processes. Using information from such models, we can compute

parameters (gains, capacitances etc) for devices (transistors).

2.10 Comparison of models of computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For

example, Stuijk [Stuijk, 2007] compares MoCs according to the following cri-

teria:

Expressiveness and succinctness indicate, which systems can be modeled

and how compact they are.

Analyzability relates to the availability of scheduling algorithms and the

need for run-time support.

The implementation efficiency is influenced by the required scheduling

policy and the code size.

Fig. 2.74 classifies data flow models according to these criteria.

110 EMBEDDED SYSTEM DESIGN

Figure 2.74. Comparison between data flow models

This figure reflects the fact that Kahn process networks are expressive: they

are Turing-complete, meaning that any problem which can be computed on a

Turing machine can also be computed in a KPN. Turing machines are used

as the standard model of universal computers [Herken, 1995]. However, ter-

mination properties and upper bounds on buffer sizes of KPNs are difficult to

analyze. SDF graphs, on the other hand, are not Turing-complete. The un-

derlying reason is that they cannot model control flow. However, deadlock

properties and upper bounds on buffer sizes of SDF graphs are easier to ana-

lyze. Homogeneous SDF (HSDF) graphs (graphs for which all rates are equal

to one) are even less expressive, but also easier to analyze.

We could compare MoCs also with respect to the type of processes supported:

The number of processes can be either static or dynamic. A static number

of processes simplifies the implementation and is sufficient if each process

models a piece of hardware and if we do not consider “hot-plugging” (dy-

namically changing the hardware architecture). Otherwise, dynamic pro-

cess creation (and termination) should be supported.

Processes can either be statically nested or all declared at the same level.

For example, StateCharts allows nested process declarations while SDL

(see page 54) does not. Nesting provides encapsulation of concerns.

Different techniques for process creation exist. Process creation can result

from an elaboration of the process declaration in the source code, through

the fork and join mechanism (supported for example in Unix), and also

through explicit process creation calls.

The expressiveness of different data flow oriented models of computation is

also shown in fig. 2.75 [Basten, 2008]. MoCs not discussed in this book are

indicated by dashed lines.

Specifications and Modeling 111

Figure 2.75. Expressiveness of data flow models

None of the MoCs and languages presented so far meets all the requirements

for specification languages for embedded systems. Fig. 2.76 presents an over-

view over some of the key properties of some of the languages.

Behavioral Structural Programming Exceptions Dynamic

Hierarchy Hierarchy Language Supported Process

Language Elements Creation

StateCharts + - - + -

VHDL + + + - -

SpecCharts + - + + -

SDL +- +- +- - +

Petri nets - - - - +

Java + - + + +

SpecC + + + + +

SystemC + + + + +

ADA + - + + +

Figure 2.76. Language comparison

Interestingly, SpecC and SystemC meet all listed requirements. However,

some other requirements (like a precise specification of deadlines, etc.) is not

included. It is not very likely that a single MoC or language will ever meet all

requirements, since some of the requirements are essentially conflicting. A lan-

guage supporting hard real-time requirements well may be inconvenient to use

for less strict real-time requirements. A language appropriate for distributed

control-dominated applications may be poor for local data-flow dominated ap-

plications. Hence, we can expect that we will have to live with compromises

and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly lan-

guage programming was very common in the early years of embedded systems

112 EMBEDDED SYSTEM DESIGN

programming. Programs were small enough to handle the complexity of prob-

lems in assembly languages. The next step is the use of C or derivatives of C.

Due to the ever increasing complexity of embedded system software (see page

xiv), higher level languages are to follow the introduction of C. Object oriented

languages and SDL are languages which provide the next level of abstraction.

Also, languages like UML are required to capture specifications at an early

design stage. In practice, these languages can be used like shown in fig. 2.77.

Figure 2.77. Using various languages in combination

According to fig. 2.77, languages like SDL or StateCharts can be translated

into C. These C descriptions are then compiled. Starting with SDL or State-

Charts also opens the way to implementing the functionality in hardware, if

translators from these languages to VHDL are provided. Both C and VHDL

will certainly survive as intermediate languages for many years. Java does not

need intermediate steps but does also benefit from good translation concepts to

assembly languages. In a similar way, translations between various graphs are

feasible. For example, SDF graphs can be translated into a subclass of Petri

nets [Stuijk, 2007]. Also, they correspond to a subclass of the computation

graph model proposed by Karp and Miller [Karp and Miller, 1966]. Linking

the various models of computation is facilitated by formal techniques [Chen

et al., 2007].

Several languages for embedded system design are covered in a book edited

by M. Radetzki [Radetzki, 2009]. Popovici et al. [Popovici et al., 2010] use a

combination of Simulink and SystemC.

Specifications and Modeling 113

2.10.2 UML

UMLT M is a language including diagrams reflecting several MoCs. Fig. 2.78

classifies the UML diagrams mentioned so far with respect to our table of

MoCs.

Communication/ Shared memory Message passing

Components synchronous asynchronous

Undefined components Use cases

Sequence charts, timing diagrams

Finite state machines State diagrams - -

Data flow (not useful) Data flow diagrams

Petri nets (not useful) Activity charts

Distributed event model - -

Von-Neumann model - -

Figure 2.78. Models of computation available in UML

This figure shows how UML covers several models of computation, with a

focus on early design phases. Semantics of communication is typically impre-

cisely defined. Therefore, our classification cannot be precise in this respect.

In addition to the diagrams already mentioned, the following diagrams can be

modeled:

Deployment diagrams: These diagrams are important for embedded sys-

tems: they describe the “execution architecture” of systems (hardware or

software nodes).

Package diagrams: Package diagrams represent the partitioning of soft-

ware into software packages. They are similar to module charts in State-

Mate.

Class diagrams: These diagrams describe inheritance relations of object

classes.

Communication diagrams (called Collaboration diagrams in UML 1.x):

These graphs represent classes, relations between classes, and messages

that are exchanged between them.

Component diagrams: They represent the components used in applica-

tions or systems.

Object diagrams, interaction overview diagrams, composite structure

diagrams: This list consists of three types of diagrams which are less fre-

quently used. Some of them may actually be special cases of other types of

diagrams.

114 EMBEDDED SYSTEM DESIGN

Available tools provide some consistency checking between the different dia-

gram types. Complete checking, however, seems to be impossible. One reason

for this is that the semantics of UML initially was left undefined. It has been

argued that this was done intentionally, since one does not like to bother about

the precise semantics during the early phases of the design. As a consequence,

precise, executable specifications can only be obtained if UML is combined

with some other, executable language. Available design tools have combined

UML with SDL [IBM, 2009] and C++. There are, however, also some first

attempts to define the semantics of UML.

Version 1.4 of UML was not designed for embedded systems. Therefore, it

lacks a number of features required for modeling embedded systems (see page

21). In particular, the following features are missing [McLaughlin and Moore,

1998]:

the partitioning of software into tasks and processes cannot be modeled,

timing behavior cannot be described at all,

the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gain-

ing importance for embedded systems as well. Hence, several proposals for

UML extensions to support real-time applications have been made [McLaugh-

lin and Moore, 1998], [Douglass, 2000]. These extensions have been consid-

ered during the design of UML 2.0. UML 2.0 includes 13 diagram types (up

from nine in UML 1.4) [Ambler, 2003]. Special profiles are taking the require-

ments of real-time systems into account [Martin and Müller, 2005], [Müller,

2007]. Profiles include class diagrams with constraints, icons, diagram sym-

bols, and some (partial) semantics. There are UML profiles for [Müller, 2007]:

Schedulability, Performance, and Time Specification (SPT) [Object Man-

agement Group (OMG), 2005b],

Testing [Object Management Group (OMG), 2010a],

Quality of Service (QoS) and Fault Tolerance [Object Management Group

(OMG), 2010a],

a Systems Modeling Language called SysML [Object Management Group

(OMG), 2008],

Modeling and Analysis of Real-Time Embedded Systems (MARTE), [Ob-

ject Management Group (OMG), 2009]

UML and SystemC interoperability [Riccobene et al., 2005],

Specifications and Modeling 115

The SPRINT profile for reuse of intellectual property (IP) [Sprint Consor-

tium, 2008].

Using such profiles, we can -for example- attach timing information to se-

quence charts. However, profiles may be incompatible. Also, UML has been

designed for modeling and frequently leaves too many semantical issues open

to allow automatic synthesis of implementations [Müller, 2007].

2.10.3 Ptolemy II

The Ptolemy project [Davis et al., 2001] focuses on modeling, simulation, and

design of heterogeneous systems. Emphasis is on embedded systems that mix

different technologies and, accordingly, also MoCs. For example, analog and

digital electronics, hardware and software, and electrical and mechanical de-

vices can be described. Ptolemy supports different types of applications, in-

cluding signal processing, control applications, sequential decision making,

and user interfaces. Special attention is paid to the generation of embedded

software. The idea is to generate this software from the MoC which is most

appropriate for a certain application. Version 2 of Ptolemy (Ptolemy II) sup-

ports the following MoCs and corresponding domains (see also page 33):

1 Communicating sequential processes (CSP)

2 Continuous time (CT): This model is appropriate for mechanical systems

and analog circuits. It is supported through a set of extensible differential

equation solvers.

3 Discrete event model (DE): this is the model used by many simulators, e.g.

VHDL simulators.

4 Distributed discrete events (DDE). Discrete event systems are difficult to

simulate in parallel, due to the inherent centralized queue of future events.

Attempts to distribute this data structure have not been very successful so

far. Therefore, this special (experimental) domain is introduced. Semantics

can be defined such that distributed simulation becomes more efficient than

in the DE model.

5 Finite state machines (FSM)

6 Process networks (PN), using Kahn process networks (see page 62).

7 Synchronous dataflow (SDF)

8 Synchronous/reactive (SR) MoC: This model uses discrete time, but signals

do not need to have a value at every clock tick. Esterel (see page 53) is a

language following this style of modeling.

116 EMBEDDED SYSTEM DESIGN

This list clearly shows the focus on different models of computation in the

Ptolemy project.

2.11 Assignments

1 Prepare a list of up to 6 requirements for specification languages for em-

bedded systems!

2 Simulate trains between Paris, Brussels, Amsterdam and Cologne, using

the levi simulation software [Sirocic and Marwedel, 2007d]! Modify the

examples included with the software such that two independent tracks exist

between any two stations and demonstrate an (arbitrary) schedule involving

10 trains!

3 Suppose the StateCharts in fig. 2.79 model is given.

Figure 2.79. StateCharts example

Also, suppose that we have the following sequence of input events: b c f h

g h e a b c. In the diagram in fig. 2.80, mark all the states the StateCharts

model will be in after a particular input has been applied! Note that H

denotes the history mechanism.

4 Are StateCharts determinate models if we follow the StateMate semantics?

Please explain your answer!

5 Which three types of Petri nets did we discuss in this book?

6 One of the types of Petri nets allows several non-distinguishable tokens per

place. Which components are used in a mathematical model of such nets?

Hint: N=(P,)

7 How does a compact model of the dining philosopher’s problem look like?

8 CSA theory leads to 2, 3 and 4 logic strengths, corresponding to 4, 7 and 10

logic values. How many strengths and values are we using in IEEE 1164?

Specifications and Modeling 117

M N P Q R S T X Y Z

(Reset) v

b

c

f

h

g

h

e

a

b

c

Figure 2.80. States of the StateCharts example

Please show the partial order among the values of IEEE 1164 in a diagram!

Which of the values of IEEE 1164 are not included in the partial order and

what is the meaning of these values?

9 Which of the following circuits can be modeled with IEEE 1164: comple-

mentary CMOS outputs, outputs with a depletion transistor, open collector

outputs, tristate outputs, pre-charging on buses (if depletion transistors are

used as well)?

10 Suppose that a bus as shown in fig. 2.81 is given. Rectangles containing an

&-sign denote AND-gates.

Figure 2.81. Bus driven by tri-state outputs

Which of the IEEE 1164 values will be on the bus if both enable inputs are

set to ’0’ (ena1 = ena2 = ’0’)? Which of the IEEE 1164 values will be on

the bus if ena1 = ’0’, ena2 = ’1’ and f 2 = ’1’?

11 Simulate a Kahn process network computing Fibonacci numbers, using the

levi simulation software [Sirocic and Marwedel, 2007b].

118 EMBEDDED SYSTEM DESIGN

12 Which of the following languages are using asynchronous message passing

communication: StateCharts, SDL, VHDL, CSP, Petri nets?

13 Which of the following languages use a broadcast mechanism for updating

variables: StateCharts, SDL, Petri nets?

14 Which of the following diagram types are supported by UML: Sequence

charts, record charts, Y-charts, use cases, activity diagrams, circuit dia-

grams?

Chapter 3

EMBEDDED SYSTEM HARDWARE

3.1 Introduction

It is one of the characteristics of embedded and cyber-physical systems that

both hardware and software must be taken into account. The reuse of available

hard- and software components is at the heart of the platform-based design

methodology (see also page 236). Consistent with the need to consider avail-

able hardware components and with the design information flow shown in fig.

3.1, we are now going to describe some of the essentials of embedded system

hardware.

Figure 3.1. Simplified design flow

Hardware for embedded systems is much less standardized than hardware for

personal computers. Due to the huge variety of embedded system hardware,

it is impossible to provide a comprehensive overview of all types of hardware

components. Nevertheless, we will try to provide a survey of some of the

essential components which can be found in most systems.

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 3, © Springer Science+Business Media B.V. 2011

119

http://dx.doi.org/10.1007/978-94-007-0257-8_3

120 EMBEDDED SYSTEM DESIGN

In many of the cyber-physical systems, especially in control systems, hardware

is used in a loop (see fig. 3.2).

Figure 3.2. Hardware in the loop

In this loop, information about the physical environment is made available

through sensors. Typically, sensors generate continuous sequences of ana-

log values. In this book, we will restrict ourselves to information processing

where digital computers process discrete sequences of values. Appropriate

conversions are performed by two kinds of circuits: sample-and-hold-circuits

and analog-to-digital (A/D) converters. After such conversion, information can

be processed digitally. Generated results can be displayed and also be used to

control the physical environment through actuators. Since most actuators are

analog actuators, conversion from digital to analog signals is also needed.

This model is obviously appropriate for control applications. For other ap-

plications, it can be employed as a first order approximation. In the following,

we will describe essential hardware components of cyber-physical systems fol-

lowing the loop structure of fig. 3.2.

3.2 Input

3.2.1 Sensors

We start with a brief discussion of sensors. Sensors can be designed for vir-

tually every physical quantity. There are sensors for weight, velocity, acceler-

ation, electrical current, voltage, temperature, etc. A wide variety of physical

effects can be exploited in the construction of sensors [Elsevier B.V., 2010a].

Examples include the law of induction (generation of voltages in an electric

field), and photoelectric effects. There are also sensors for chemical substances

[Elsevier B.V., 2010b].

Recent years have seen the design of a huge range of sensors, and much of

the progress in designing smart systems can be attributed to modern sensor

technology. It is impossible to cover this subset of cyber-physical hardware

technology comprehensively and we can only give characteristic examples:

Embedded System Hardware 121

Acceleration sensors: Fig. 3.3 shows a small sensor manufactured using

microsystem technology. The sensor contains a small mass in its center.

When accelerated, the mass will be displaced from its standard position,

thereby changing the resistance of the tiny wires connected to the mass.

Figure 3.3. Acceleration sensor (courtesy S. Bütgenbach, IMT, TU Braunschweig), ©TU

Braunschweig, Germany

Rain sensors: In order to remove distraction from drivers, some cars con-

tain rain sensors. Using these, the speed of the wipers can be automatically

adjusted to the amount of rain.

Image sensors: There are essentially two kinds of image sensors: charge-

coupled devices (CCDs) and CMOS sensors. In both cases, arrays of light

sensors are used. The architecture of CMOS sensor arrays is similar to that

of standard memories: individual pixels can be randomly addressed and

read out. CMOS sensors use standard CMOS technology for integrated

circuits [Dierickx, 2000]. Due to this, sensors and logic circuits can be

integrated on the same chip. This allows some preprocessing to be done

already on the sensor chip, leading to so-called smart sensors. CMOS sen-

sors require only a single standard supply voltage and interfacing in general

is easy. Therefore, CMOS-based sensors can be cheap.

In contrast, CCD technology is optimized for optical applications. In CCD

technology, charges must be transferred from one pixel to the next until

they can finally be read out at an array boundary. This sequential charge

transfer also gave CCDs their name. For CCD sensors, interfacing is more

complex.

Selecting the most appropriate image sensor is not so obvious. The image

quality of CMOS sensors has been significantly improved over the recent

years. Therefore, achieving a good image quality is feasible with CCD and

with CMOS sensors. However, CMOS sensors are in general less power

efficient than CCD sensors. Hence, if a very small power consumption is a

target, CCD sensors are preferred. If minimum cost is an issue, CMOS sen-

122 EMBEDDED SYSTEM DESIGN

sors are preferred. Also, CMOS sensors are preferred if smart sensors are

to be designed. Due to their smaller power consumption, compact cameras

with live view displays typically use CMOS sensors [Belbachir, 2010]. For

other cameras, the situation is less clear.

Biometric sensors: Demands for higher security standards as well as the

need to protect mobile and removable equipment have led to an increased

interest in authentication. Due to the limitations of password based se-

curity (e.g. stolen and lost passwords), smartcards, biometric sensors and

biomedical authentication receive significant attention. Biometric authenti-

cation tries to identify whether or not a certain person is actually the person

she or he claims to be. Methods for biometric authentication include iris

scans, finger print sensors and face recognition. Finger print sensors are

typically fabricated using the same CMOS technology [Weste et al., 2000]

which is used for manufacturing integrated circuits. Possible applications

include notebooks which grant access only if the user’s finger print is rec-

ognized [IBM, 2002]. CCD and CMOS image sensors described above are

used for face recognition. False accepts as well as false rejects are an in-

herent problem of biometric authentication. In contrast to password based

authentication, exact matches are not possible.

Artificial eyes: Artificial eye projects have received significant attention.

While some projects attempt to actually affect the eye, others try to provide

vision in an indirect way.

For example, the Dobelle Institute experimented with a setup in which a

little camera was attached to glasses. This camera was connected to a com-

puter translating these patterns into electrical pulses. These pulses were

then sent directly to the brain, using a direct contact through an electrode.

The resolution was in the order of 128 by 128 pixels, enabling blind persons

to drive a car in controlled areas [The Dobelle Institute, 2003].

More recently, the translation of images into audio has been preferred. Ob-

viously, it is less invasive.

Radio frequency identification (RFID): RFID technology is based on the

response of a tag to radio frequency signals [Hunt et al., 2007]. The tag

consists of an integrated circuit and an antenna. The tag provides its identi-

fication to RFID readers. The maximum distance between tags and read-

ers depends on the type of the tag. The technology can be applied wherever

objects, animals or people should be identified.

Other sensors: Other common sensors include: pressure sensors, proxim-

ity sensors, engine control sensors, Hall effect sensors, and many more.

Embedded System Hardware 123

Sensors are generating signals. Mathematically, the following definition ap-

plies:

Definition: A signal σ is a mapping from the time domain DT to a value

domain DV :

σ : DT → DV

Signals may be defined over a continuous or a discrete time domain as well as

over a continuous or a discrete value domain.

3.2.2 Discretization of time:
Sample-and-hold circuits

All known digital computers work in a discrete time domain DT . This means

that they can process discrete sequences or streams of values. Hence, incom-

ing signals over the continuous time domain must be converted to signals over

the discrete time domain. This is the purpose of sample-and-hold circuits.

Fig. 3.4 (left) shows a simple sample-and-hold circuit.

Figure 3.4. Sample-and-hold-circuit

In essence, the circuit consists of a clocked transistor and a capacitor. The

transistor operates like a switch. Each time the switch is closed by the clock

signal, the capacitor is charged so that its voltage h(t) is practically the same

as the incoming voltage e(t). After opening the switch again, this voltage will

remain essentially unchanged until the switch is closed again. Each of the

values stored on the capacitor can be considered as an element of a discrete

sequence of values h(t), generated from a continuous function e(t) (see fig.

3.4, right). If we sample e(t) at times {ts}, then h(t) will be defined only at

those times.

An ideal sample-and-hold circuit would be able to change the voltage at the

capacitor in an arbitrarily short amount of time. This way, the input voltage at a

particular instance in time could be transfered to the capacitor and each element

in the discrete sequence would correspond to the input voltage at a particular

point in time. In practice, however, the transistor has to be kept closed for a

124 EMBEDDED SYSTEM DESIGN

short time window in order to really charge or discharge the capacitor. The

voltage stored on the capacitor will then correspond to a voltage reflecting that

short time window.

An interesting question is this one: would we be able to reconstruct the original

signal e(t) from the sampled signal h(t)? At this time, we revert to the fact that

arbitrary signals can be approximated by summing (possibly phase-shifted)

sine functions of different frequencies (Fourier approximation)1. For example,

fig. 3.5 and fig. 3.6 demonstrate how even a square wave can be approximated

by sine waves of increasing frequencies.

Figure 3.5. Approximation of a square wave by sine waves for K=1 (left) and K=3 (right)

Figure 3.6. Approximation of a square wave by sine waves for K=7 (left) and K=11 (right)

These graphs display a graphical representation of equation 3.1 [Oppenheim

et al., 2009], where p is the period:

e′K(t) =
K

∑
k=1,3,5,7,9,...

(
4

πk
sin(

2πkt

p
)) (3.1)

1The presentation in this book is based on the assumption that a full presentation of the theory of Fourier

approximations cannot be included in a course on embedded systems. Therefore, only the impact of this

theory is demonstrated by using examples. Students would benefit from knowing the theory behind these

examples.

Embedded System Hardware 125

A data processing transformation Tr is said to be linear, if for signals e1(t)
and e2(t) we have:

Tr(e1 + e2) = Tr(e1)+Tr(e2) (3.2)

In the following, we restrict ourselves to linear systems. Then, in order to

answer the question raised above, we study the effect of sampling on each of

the sine waves independently.

Suppose that our input signal corresponds to either of the two functions e3 or

e4:

e3(t) = sin(
2πt

8
)+0.5sin(

2πt

4
) (3.3)

e4(t) = sin(
2πt

8
)+0.5sin(

2πt

4
)+0.5sin(

2πt

1
) (3.4)

The sine waves used in these functions have periods of p = 8,4, and 1, respec-

tively (this can be seen easily by comparing these sine waves with those used

in eq. 3.1). A graphical representation of these functions is shown in fig. 3.7.

Figure 3.7. Visualization of functions e3(t) (solid) and e4(t) (dotted)

Suppose that we will be sampling these signals at integer times. It then so

happens that both signals have the same value whenever they are sampled.

Obviously, it is not possible to distinguish between e3(t) and e4(t) if we sample

at these instances in time as shown and if only the sampled signal is available.

126 EMBEDDED SYSTEM DESIGN

In general, sampled signals will not allow us to distinguish between some slow

signal e3(t) and some other faster varying signal e4(t) if e3(t) and e4(t) are

identical each time we are sampling the signals. The fact that two or more

unsampled signals can have the same sampled representation is called aliasing.

We are not sampling e4(t) frequently enough to notice, for example, that it

has slope changes between integer times. So, from this counterexample we

can conclude that reconstruction of the original unsampled signal is not

feasible unless we have additional knowledge about the frequencies or the

waveforms present in the input signal.

How frequently do we have to sample signals to be able to distinguish between

different sine waves?

Let us assume that we are sampling the input signal at constant time intervals,

such that ps is the sampling period2:

∀s : ps = ts+1 − ts (3.5)

Let

fs =
1

ps

(3.6)

be the sampling rate or sampling frequency.

According to the theory of sampling [Oppenheim et al., 2009], aliasing is

avoided if we restrict the frequencies of the incoming signal to less than

half of the sampling frequency fs:

ps <
pN

2
where pN is the period of the “fastest” sine wave, or (3.7)

fs > 2 fN where fN is the frequency of the “fastest” sine wave (3.8)

Definition: fN is called the Nyquist frequency, fs is the sampling rate.

The condition in equation 3.8 is called sampling criterion, and sometimes the

Nyquist sampling criterion.

Therefore, reconstruction of input signals e(t) from discrete samples h(t) can

be successful only if we make sure that higher frequency components such

2In order to be consistent with the notation in scheduling theory, we denote the period by ps instead of by

Ts. The latter notation is frequently used in digital signal processing.

Embedded System Hardware 127

as the one in e4(t) are removed. This is the purpose of anti-aliasing filters.

Anti-aliasing filters are placed in front of the sample-and-hold circuit (see fig.

3.8).

Figure 3.8. Anti-aliasing placed in front of the sample-and-hold circuit

Fig. 3.9 demonstrates the ratio between the amplitudes of the output and the

input waves as a function of the frequency for this filter.

Figure 3.9. Ideal and realizable anti-aliasing filters (low-pass filters)

Ideally, such a filter would remove all frequencies at and above half the sam-

pling frequency and keep all other components unchanged. This way, it would

convert signal e4(t) into signal e3(t). In practice, such ideal filters do not exist.

Realizable filters will already start attenuating frequencies smaller than fs/2

and will still not eliminate all frequencies larger than fs/2 (see fig. 3.9). Atten-

uated high frequency components will exist even after filtering. For frequen-

cies smaller than fs/2, there may also be some “overshooting”, i.e. frequencies

for which there is some amplification of the input signal. The design of good

anti-aliasing filters is an art by itself.

3.2.3 Discretization of values: A/D-converters

Since we are restricting ourselves to digital computers, we must also replace

signals that map time to a continuous value domain DV by signals that map

time to a discrete value domain D′
V . This conversion from analog to digital

values is done by analog-to-digital (A/D) converters. There is a large range of

A/D converters with varying speed/precision characteristics. In this book, we

will present two extreme cases:

128 EMBEDDED SYSTEM DESIGN

Flash A/D converter: This type of A/D converters uses a large number of

comparators. Each comparator has two inputs, denoted as + and -. If the

voltage at input + exceeds that at input -, the output corresponds to a logical

’1’ and it corresponds to a logical ’0’ otherwise3.

In the A/D-converter, all - inputs are connected to a voltage divider. If

input voltage h(t) exceeds 3
4
Vre f , the comparator at the top of fig. 3.10 (a)

will generate a ’1’. The encoder at the output of the comparators will try

to identify the most significant ’1’ and will encode this case as the largest

output value. The case h(t) > Vre f should normally be avoided since Vre f

is typically close to the supply voltage of the circuit and input voltages

exceeding the supply voltage can lead to electrical problems. In our case,

input voltages larger than Vre f generate the largest digital value as long as

the converter does not fail due to the high input voltage.

Figure 3.10. (a) Flash A/D converter (b) w as a function of h

Now if input voltage h(t) is less than 3
4
Vre f , but still larger than 2

4
Vre f , the

comparator at the top of fig. 3.10 will generate a ’0’, while the next compara-

tor will still signal a ’1’. The encoder will encode this as the second-largest

value.

Similar arguments hold for cases 1
4
Vre f < h(t) < 2

4
Vre f , and 0 < h(t) <

1
4
Vre f , which will be encoded as the third-largest and the smallest value,

respectively. Fig. 3.10 (b) shows the relation between input voltages and

generated digital values.

The outputs of the comparators encode numbers in a special way: if a cer-

tain comparator output is equal to ’1’, then all the less significant outputs

3In practice, the case of equal voltages is not relevant, as the actual behavior for very small differences

between the voltages at the two inputs depends on many factors (like temperatures, manufacturing processes

etc.) anyway.

Embedded System Hardware 129

are all equal to ’1’. The encoder transforms this representation of numbers

into the usual representation of natural numbers. The encoder is actually

a so-called “priority encoder”, encoding the most significant input number

carrying a ’1’ in binary 4.

The circuit can convert positive analog input voltages into digital values.

Converting both positive and negative voltages and generating two’s com-

plement numbers requires some extensions.

A/D-converters are characterized by their resolution. This term has sev-

eral different but related meanings [Analog Devices Inc. Eng., 2004]. The

resolution (measured in bits) is the number of bits produced by an A/D-

converter. For example, A/D-converters with a resolution of 16 bits are

needed for many audio applications. However, the resolution is also mea-

sured in volts, and in this case it denotes the difference between two input

voltages causing the output to be incremented by 1:

Q =
VFSR

n

Where:

VFSR : is the difference between the largest and the smallest voltage,

Q : is the resolution in volts per step, and

n : is the number of voltage intervals (not the number of bits).

Example: For the A/D-converter of fig. 3.10, the resolution is 2 bits or 1
4
Vre f

volts, if we assume Vre f as the largest voltage.

The key advantage of the flash A/D-converter is its speed. It does not need

any clock. The delay between the input and the output is very small and

the circuit can be used easily, for example, for high-speed video applica-

tions. The disadvantage is its hardware complexity: we need n− 1 com-

parators in order to distinguish between n values. Imagine using this circuit

in generating digital audio signals for CD recorders. We would need 216−1

comparators! High-resolution A/D-converters must be built in a different

way.

Successive approximation: Distinguishing between a large number of dig-

ital values is possible with A/D converters using successive approximation.

The circuit is shown in fig. 3.11.

4Such encoders are also useful for finding the most significant ’1’ in the mantissa of floating point numbers.

130 EMBEDDED SYSTEM DESIGN

Figure 3.11. Circuit using successive approximation

The key idea of this circuit is to use binary search. Initially, the most sig-

nificant output bit of the successive approximation register is set to ’1’, all

other bits are set to ’0’. This digital value is then converted to an analog

value, corresponding to 0.5× the maximum input voltage5. If h(t) exceeds

the generated analog value, the most significant bit is kept at ’1’, otherwise

it is reset to ’0’.

This process is repeated with the next bit. It will remain set to ’1’ if the

input value is either within the second or the fourth quarter of the input

value range. The same procedure is repeated for all the other bits. Fig. 3.12

shows an example.

Figure 3.12. Steps used during successive approximation

In fig. 3.12, initially the most significant bit is set to ’1’. This value is kept,

since the resulting V− is less than h(t). Then, the second-most significant

bit is set to ’1’. It is reset to ’0’, since the resulting V− is exceeding h(t).
Next, the third-most significant bit is tried, and so on. Obviously, h(t) must

be constant during the conversion. This requirement is met if we employ

5Fortunately, the conversion from digital to analog values (D/A-conversion) can be implemented very effi-

ciently and can be very fast (see page 164).

Embedded System Hardware 131

a sample-and-hold circuit as shown above. The resulting digital signal is

called w(t).

The key advantage of the successive approximation technique is its hard-

ware efficiency. In order to distinguish between n digital values, we need

log2(n) bits in the successive approximation register and the D/A converter.

The disadvantage is its speed, since it needs O(log2(n)) steps. These con-

verters can therefore be used for high-resolution applications, where mod-

erate speeds are required. Examples include audio applications.

Fig. 3.13 highlights the behavior an A/D-converter when the input signal is that

of equation 3.3. Only the behavior for a positive input signal is shown.

Figure 3.13. h(t) (dashed), step function w(t) (dash-dotted), w(t)−h(t) (solid)

The figure includes the voltage corresponding to the digital value, the origi-

nal voltage, and the difference between the two. Obviously, the converter is

“truncating” the digital representation of the analog signal to the number of

available bits (i.e. the digital value is always less than or equal to the analog

value). This is a consequence of the way in which we are doing comparisons.

“Rounding” converters would need an internal correction by “half a bit”.

Effectively, the digital signal encodes values corresponding to the sum of the

original analog values and the difference w(t)− h(t). This means, it appears

as if the difference between the two signals had been added to the original

signal. This difference is a signal called quantization noise:

quantization noise(t) = w(t)−h(t) (3.9)

132 EMBEDDED SYSTEM DESIGN

|quantization noise(t)| < Q (3.10)

Obviously, it is possible to decrease quantization noise by increasing the res-

olution (in bits) of the A/D-converters. The impact of quantization noise is

frequently captured in the definition of the signal-to-noise ratio (SNR). The

SNR is measured in decibels (tens of a Bel, named after Alexander G. Bell):

SNR (in decibels) = 10 · log
power of the “useful” signal

power of the noise signal
(3.11)

= 20 · log
voltage of the “useful” signal

voltage of the noise signal
(3.12)

In this case, we have used the fact that, for any given impedance R, the power

of a signal is equal to the square of the voltage. Decibels are no physical units,

since the signal-to-noise ratio is dimension-less.

For any signal h(t), the power of the quantization noise is equal to α ·Q, where

α ≤ 1 depends on the waveform of h(t). If h(t) can always be represented

exactly by a digital value, α = 0. If h(t) is always “just a little” below the next

value that can be represented, α may be close to 1.

For example (for α ∼ 1), the SNR of 16-bit CD audio is in the order of:

20 · log(216) = 96 decibels(dB)

For high-quality 24-bit CDs we would obtain an SNR of about 144 dB. Values

of α < 1 and imperfections of A/D-converters may change these numbers a bit.

There are several other types of A/D-converters. They differ by their speed

and their precision [O’Neill, 2006]. Techniques for automatically selecting the

most appropriate converter exist [Vogels and Gielen, 2003].

3.3 Processing Units

3.3.1 Overview

Currently available embedded systems require electrical energy to operate.

The amount of electrical energy used is frequently called “consumed energy”.

Strictly speaking, this term is not correct, since this electrical energy is con-

verted to other forms of energy, typically thermal energy. For embedded sys-

tems, energy availability is a deciding factor. This was already observed in a

Dutch road mapping effort: “Power is considered as the most important con-

straint in embedded systems” [Eggermont, 2002]. The importance of power

Embedded System Hardware 133

and energy efficiency was initially recognized for embedded systems. The fo-

cus on these objectives was later taken up for general purpose computing as

well and led to initiatives such as the green computing initiative. For infor-

mation processing in embedded systems, we will consider ASICs (application-

specific integrated circuits) using hardwired multiplexed designs, reconfig-

urable logic, and programmable processors. These three technologies are quite

different as far as their energy efficiency is concerned. Fig. 3.14 repeats the

information already provided on page 6.

Figure 3.14. Hardware efficiency (©De Man and Philips)

Fig. 3.14 reflects the efficiency/flexibility conflict of currently available hard-

ware technologies: if we want to aim at very power- and energy-efficient de-

signs, we should use ASICs instead of flexible designs based on processors or

re-programmable logic. If we go for excellent flexibility, we cannot be power-

efficient.

The energy E for a certain application is closely related to the power P required

per operation, since

E =
Z

Pdt (3.13)

134 EMBEDDED SYSTEM DESIGN

Let us assume that we start with some design having a power consumption of

P0(t), leading to an energy consumption of

E0 =
Z t0

0
P0(t)dt

after t0 units of execution time. Suppose that a modified design finishing com-

putations already at time t1 comes with a power consumption of P1(t) and an

energy consumption of

E1 =
Z t1

0
P1(t)dt

If P1(t) is not too much larger than P0(t), then a reduction of the execution

time also reduces the energy consumption. However, in general this is not

necessarily always true. The situation is also shown in fig. 3.15: E1 may be

smaller than E0, but E1 can also be larger than E0.

Figure 3.15. Comparison of energies E0 and E1

Minimization of power and energy consumption are both important. Power

consumption has an effect on the size of the power supply, the design of the

voltage regulators, the dimensioning of the interconnect, and short term cool-

ing. Minimizing the energy consumption is required especially for mobile

applications, since battery technology is only slowly improving [ITRS Organi-

zation, 2009], and since the cost of energy may be quite high. Also, a reduced

energy consumption decreases cooling requirements and improves the reliabil-

ity (since the lifetime of electronic circuits decreases for high temperatures).

We will consider ASICs first.

Embedded System Hardware 135

3.3.2 Application-Specific Circuits (ASICs)

For high-performance applications and for large markets, application-specific

integrated circuits (ASICs) can be designed. However, the cost of designing

and manufacturing such chips is quite high. For example, the cost of the mask

set which is used for transferring geometrical patterns onto the chip can amount

to about 105-106 Euros or dollars. In fact, the cost for mask sets has grown ex-

ponentially over the recent years. Also, this approach suffers from long design

times and the lack of flexibility: correcting design errors typically requires a

new mask set and a new fabrication run. Therefore, ASICs are appropriate

only if either maximum energy efficiency is needed and if the market accepts

the costs or if a large number of such systems can be sold. Consequently, the

design of ASICs is not covered in this book.

3.3.3 Processors

The key advantage of processors is their flexibility. With processors, the overall

behavior of embedded systems can be changed by just changing the software

running on those processors. Changes of the behavior may be required in order

to correct design errors, to update the system to a new or changed standard or

in order to add features to the previous system. Because of this, processors

have become very popular.

Embedded processors must be efficient and they do not need to be instruction

set compatible with commonly used personal computers (PCs). Therefore,

their architectures may be different from those processors found in PCs. Effi-

ciency has a number of different aspects (see page 5):

Energy-efficiency: Architectures must be optimized for their energy-effi-

ciency and we must make sure that we are not losing efficiency in the soft-

ware generation process. For example, compilers generating 50% overhead

in terms of the number of cycles will take us further away from the effi-

ciency of ASICs, possibly by even more than 50%, if the supply voltage

and the clock frequency must be increased in order to meet timing dead-

lines.

There is a large amount of techniques available that can make processors

energy efficient and energy efficiency should be considered at various levels

of abstraction, from the design of the instruction set down to the design of

the chip manufacturing process [Burd and Brodersen, 2003]. Gated clock-

ing is an example of such a technique. With gated clocking, parts of the pro-

cessor are disconnected from the clock during idle periods. For example, no

clock is applied to direct memory access (DMA) hardware or bus bridges if

they are not needed. Also, there are attempts, to get rid of the clock for ma-

136 EMBEDDED SYSTEM DESIGN

jor parts of the processor altogether. There are two contrasting approaches:

globally synchronous, locally asynchronous processors and globally asyn-

chronous, locally synchronous processors (GALS) [Iyer and Marculescu,

2002]. Further information about low power design techniques is available

in a book by E. Macii [Macii, 2004] and in the PATMOS proceedings (see

[Monteiro and van Leuken, 2010] for a recent issue).

Two techniques can be applied at a rather high level of abstraction:

– Dynamic power management (DPM): With this approach, processors

have several power saving states in addition to the standard operating

state. Each power saving state has a different power consumption and

a different time for transitions into the operating state. Fig. 3.16 shows

the three states for the StrongArm SA 1100 processor.

Figure 3.16. Dynamic power management states of the StrongArm Processor SA 1100

[Benini et al., 2000]

The processor is fully operational in the run state. In the idle state,

it is just monitoring the interrupt inputs. In the sleep state, on-chip

activity is shutdown, the processor is reset and the chip’s power supply

is shut-off [Wolf, 2001]. A separate I/O-power supply provides power

to power manager hardware. The processor can be restarted by the

power manager hardware by a preprogrammed wake-up event. Note

the large difference in the power consumption between the sleep state

and the other states, and note also the large delay for transitions from

the sleep to the run state.

– Dynamic voltage scaling (DVS): This approach exploits the fact that

the energy consumption of CMOS processors increases quadratically

with the supply voltage Vdd . The power consumption P of CMOS cir-

cuits is given by [Chandrakasan et al., 1992]:

P = α CL V 2
dd f (3.14)

where α is the switching activity, CL is the load capacitance, Vdd

is the supply voltage and f is the clock frequency. The delay of

Embedded System Hardware 137

CMOS circuits can be approximated as [Chandrakasan et al., 1992],

[Chandrakasan et al., 1995]:

τ = k ·CL ·
Vdd

(Vdd −Vt)2
(3.15)

where k is a constant, and Vt is the threshold voltage. Vt has an impact

on the transistor input voltage required to switch the transistor on. For

example, for a maximum supply voltage of Vdd,max=3.3 volts, Vt may be

in the order of 0.8 volts. Consequently, the maximum clock frequency

is a function of the supply voltage. However, decreasing the supply

voltage reduces the power quadratically, while the run-time of algo-

rithms is only linearly increased (ignoring the effects of the memory

system). This can be exploited in a technique called dynamic voltage

scaling (DVS). For example, the CrusoeT M processor by Transmeta

[Klaiber, 2000] provided 32 voltage levels between 1.1 and 1.6 volts,

and the clock could be varied between 200 MHz and 700 MHz in in-

crements of 33 MHz. Transitions from one voltage/frequency pair to

the next took about 20 ms. Design issues for DVS-capable processors

are described in a paper by Burd and Brodersen [Burd and Brodersen,

2000]. According to the same paper, potential power savings will exist

even for future technologies with a decreased maximum Vdd , since the

threshold voltages will also be decreased (unfortunately, this will lead

to increased leakage currents, increasing the standby power consump-

tion). In 2004, six different speed/voltage pairs were provided with the

Intel® SpeedStepT M technology for the Pentium® M [Intel, 2004].

Code-size efficiency: Minimizing the code size is very important for em-

bedded systems, since hard disk drives are typically not available and since

the capacity of memory is typically also very limited6. This is even more

pronounced for systems on a chip (SoCs). For SoCs, the memory and pro-

cessors are implemented on the same chip. In this particular case, memory

is called embedded memory. Embedded memory may be more expensive

to fabricate than separate memory chips, since the fabrication processes for

memories and processors must be compatible. Nevertheless, a large per-

centage of the total chip area may be consumed by the memory. There are

several techniques for improving the code-size efficiency:

– CISC machines: Standard RISC processors have been designed for

speed, not for code-size efficiency. Earlier Complex Instruction Set

6The availability of large flash memories makes memory size constraints less tight.

138 EMBEDDED SYSTEM DESIGN

Processors (CISC machines) were actually designed for code-size ef-

ficiency, since they had to be connected to slow memories. Caches

were not frequently used. Therefore, “old-fashioned” CISC proces-

sors are finding applications in embedded systems. ColdFire proces-

sors [Freescale semiconductor, 2005], which are based on the Motorola

68000 family of CISC processors are an example.

– Compression techniques: In order to reduce the amount of silicon

needed for storing instructions as well as in order to reduce the en-

ergy needed for fetching these instructions, instructions are frequently

stored in the memory in compressed form. This reduces both the area

as well as the energy necessary for fetching instructions. Due to the

reduced bandwidth requirements, fetching can also be faster. A (hope-

fully small and fast) decoder is placed between the processor and the

(instruction) memory in order to generate the original instructions on

the fly (see fig. 3.17, right)7. Instead of using a potentially large mem-

ory of uncompressed instructions, we are storing the instructions in a

compressed format.

Figure 3.17. Decompression of compressed instructions

The goals of compression can be summarized as follows:

∗ We would like to save ROM and RAM areas, since these may be

more expensive than the processors themselves.

∗ We would like to use some encoding technique for instructions and

possibly also for data with the following properties:

· There should be little or no run-time penalty for these tech-

niques.

7We continue denoting multiplexers, arithmetic units and memories by shape symbols, due to their

widespread use in technical documentation. For memories, we adopt shape symbols including an explicit

address decoder (included in the shape symbols for the ROMs on the right). These decoders identify the

address input.

Embedded System Hardware 139

· Decoding should work from a limited context (it is, for exam-

ple, impossible to read the entire program to find the destina-

tion of a branch instruction).

· Word-sizes of the memory, of instructions and addresses must

be taken into account.

· Branch instructions branching to arbitrary destination addresses

must be supported.

· Fast encoding is only required if writable data is encoded. Oth-

erwise, fast decoding is sufficient.

There are several variations of this scheme:

∗ For some processors, there is a second instruction set. This sec-

ond instruction set has a narrower instruction format. An example

of this is the ARM processor family. The ARM instruction set is a

32 bit instruction set. The ARM instruction set includes predicated

execution. This means an instruction is executed if and only if a

certain condition is met (see page 148). This condition is encoded

in the first four bits of the instruction format. Most ARM pro-

cessors also provide a second instruction set, with 16 bit wide in-

structions, called THUMB instructions. THUMB instructions are

shorter, since they do not support predication, use shorter and less

register fields and use shorter immediate fields (see fig. 3.18).

Figure 3.18. Re-encoding THUMB into ARM instructions

THUMB instructions are dynamically converted into ARM instruc-

tions while programs are decoded. THUMB instructions can use

only half the registers in arithmetic instructions. Therefore, register-

fields of THUMB instructions are concatenated with a ’0’-bit8. In

the THUMB instruction set, source and destination registers are

identical and the length of constants that can be used, is reduced

by 4 bits. During decoding, pipelining is used to keep the run-time

penalty low.

8Using VHDL-notation (see page 80), concatenation is denoted by an &-sign and constants are enclosed in

quotes in fig. 3.18.

140 EMBEDDED SYSTEM DESIGN

Similar techniques also exist for other processors. The disadvan-

tage of this approach is that the tools (compilers, assemblers, de-

buggers etc.) must be extended to support a second instruction set.

Therefore, this approach can be quite expensive in terms of soft-

ware development cost.

∗ A second approach is the use of dictionaries. With this approach,

each instruction pattern is stored only once. For each value of the

program counter, a look-up table then provides a pointer to the cor-

responding instruction in the instruction table, the dictionary (see

fig. 3.19).

Figure 3.19. Dictionary approach for instruction compression

This approach relies on the idea that only very few different instruc-

tion patterns are used. Therefore, only few entries are required for

the instruction table. Correspondingly, the bit width of the pointers

can be quite small. Many variations of this scheme exist. Some are

called two-level control store [Dasgupta, 1979], nanoprogramming

[Stritter and Gunter, 1979], or procedure ex-lining [Vahid, 1995].

Beszedes [Beszedes, 2003] and Latendresse [Latendresse, 2004] pro-

vide overviews of known compression techniques.

Run-time efficiency: In order to meet time constraints without having to

use high clock frequencies, architectures can be customized to certain ap-

plication domains, such as digital signal processing (DSP). One can even go

one step further and design application-specific instruction set processors

(ASIPs). As an example of domain-specific processors, we will consider

processors for DSP. In digital signal processing, digital filtering is a very

frequent operation. Let us assume that we are extending the processing

pipeline of fig. 3.4 by such filtering. Naming conventions for the involved

signals are shown in fig. 3.20.

Equation 3.16 describes a digital filter generating an output signal x(t) from

an input signal w(t). Both signals are defined over the (usually unbounded)

Embedded System Hardware 141

Figure 3.20. Naming conventions for signals

domain {ts} of sampling instances. For brevity, we write xs instead of x(ts)
and ws instead of w(ts):

xs =
n−1

∑
k=0

ws−k ∗ak (3.16)

A certain output element xs corresponds to a weighted average over the last

n signal elements of w and can be computed iteratively, adding one product

at a time. Processors for DSP are designed such that each iteration can

be encoded as a single instruction. Let us consider an example. Fig. 3.21

shows the internal architecture of an ADSP 2100 DSP processor.

Figure 3.21. Internal architecture of the ADSP 2100 processor

The processor has two memories, called D and P. A special address gen-

erating unit (AGU) can be used to provide the pointers for accessing these

memories. There are separate units for additions and multiplications, each

142 EMBEDDED SYSTEM DESIGN

with their own argument registers AX, AY, AF, MX, MY and MF. The mul-

tiplier is connected to a second adder in order to compute the series of

multiplications and additions quickly.

For this processor, one iteration is essentially performed in a single cycle.

For this purpose, the two memories are allocated to hold the two arrays w

and a and address registers are allocated such that relevant pointers can be

easily updated in the AGU. Partial sums are stored in MR. The pipelined

computation involves registers A1, A2, MX, and MY.

-- outer loop over sampling times ts

{ MR:=0; A1:=1; A2:=s-1; MX:=w[s]; MY:=a[0];

for (k=0; k <= (n−1); k++)

{MR:=MR + MX * MY; MX:=w[A2]; MY:=a[A1];

A1++; A2--; }

x[s]:=MR;}

The outer loop corresponds to the progressing time. A single instruction

encodes the inner loop body, comprising the following operations:

– reading of two arguments from argument registers MX and MY, multi-

plying them and adding the product to register MR storing partial sums,

– fetching the next elements of arrays a and w from memories P and D

and storing them in argument registers MX and MY,

– updating pointers to the next arguments, stored in address registers A1

and A2,

– testing for the end of the loop.

This way, each iteration of the inner loop requires just a single instruction.

In order to achieve this, several operations are performed in parallel. For

given computational requirements, this (limited) form of parallelism leads

to relatively low clock frequencies. Furthermore, the registers in this ar-

chitecture perform different functions. They are said to be heterogeneous.

Heterogeneous register files are a common characteristic for DSP proces-

sors. In order to avoid extra cycles for testing for the end of the loop,

zero-overhead loop instructions are frequently provided in DSP proces-

sors. With such instructions, a single or a small number of instructions can

be executed a fixed number of times. Processors not optimized for DSP

would probably need several instructions per iteration and would therefore

require a higher clock frequency, if available.

The approach in its presented form would require arrays w and x of unlim-

ited size if {ts} is unbounded. The size of these arrays can be constrained

Embedded System Hardware 143

since we need to access only the n most recent values. Reuse of space in

these arrays is possible with modulo addressing (see below).

3.3.3.1 Digital Signal Processing (DSP)

In addition to allowing single instruction realizations of loop bodies for filter-

ing, DSP processors provide a number of other application-domain oriented

features:

Specialized addressing modes: In the filter application described above,

only the last n elements of w need to be available. Ring buffers can be

used for that. These can be implemented easily with modulo addressing. In

modulo addressing, addresses can be incremented and decremented until

the first or last element of the buffer is reached. Additional increments or

decrements will result in addresses pointing to the other end of the buffer.

Separate address generation units: Address generation units (AGUs) are

typically directly connected to the address input of the data memory (see

fig. 3.22).

Figure 3.22. AGU using special address registers

Addresses which are available in address registers can be used in register-

indirect addressing modes. This saves machine instructions, cycles and

energy. In order to increase the usefulness of address registers, instruc-

tion sets typically contain auto-increment and -decrement options for most

instructions using address registers.

Saturating arithmetic: Saturating arithmetic changes the way overflows

and underflows are handled. In standard binary arithmetic, wrap-around is

used for the values returned after an overflow or underflow. Fig. 3.23 shows

an example in which two unsigned four-bit numbers are added. A carry is

144 EMBEDDED SYSTEM DESIGN

generated which cannot be returned in any of the standard registers. The

result register will contain a pattern of all zeros. No result could be further

away from the true result than this one.

0111

+ 1001

Standard wrap-around arithmetic 10000

saturating arithmetic 1111

Figure 3.23. Wrap-around vs. saturating arithmetic for unsigned integers

In saturating arithmetic, we try to return a result which is as close as possi-

ble to the true result. For saturating arithmetic, the largest value is returned

in the case of an overflow and the smallest value is returned in the case of

an underflow. This approach makes sense especially for video and audio

applications: the user will hardly recognize the difference between the true

result value and the largest value that can be represented. Also, it would be

useless to raise exceptions if overflows occur, since it is difficult to handle

exceptions in real-time. Note that we need to know whether we are dealing

with signed or unsigned add instructions in order to return the right value.

Fixed-point arithmetic: Floating-point hardware increases the cost and

power-consumption of processors. Consequently, it has been estimated

that 80 % of the DSP processors do not include floating-point hardware

[Aamodt and Chow, 2000]. However, in addition to supporting integers,

many such processors do support fixed-point numbers. Fixed-point data

types can be specified by a 3-tuple (wl, iwl,sign), where wl is the total

word-length, iwl is the integer word-length (the number of bits left of the

binary point), and sign s ∈ {s,u} denotes whether we are dealing with un-

signed or signed numbers. See also fig. 3.24. Furthermore, there may be

different rounding modes (e.g. truncation) and overflow modes (e.g. satu-

rating and wrap-around arithmetic).

Figure 3.24. Parameters of a fixed-point number system

Embedded System Hardware 145

For fixed-point numbers, the position of the binary point is maintained after

multiplications (some low order bits are truncated or rounded). For fixed-

point processors, this operation is supported by hardware.

Real-time capability: Some of the features of modern processors used in

PCs are designed to improve the average execution time of programs. In

many cases, it is difficult if not impossible to formally verify that they im-

prove the worst case execution time. In such cases, it may be better not to

implement these features. For example, it is difficult (though not impossi-

ble [Absint, 2002]) to guarantee a certain speedup resulting from the use of

caches. Therefore, many embedded processors do not have caches. Also,

virtual addressing and demand paging are normally not found in embed-

ded systems. Techniques for computing worst case execution times will be

presented in section 5.2.2.

Multiple memory banks or memories: The usefulness of multiple mem-

ory banks was demonstrated in the ADSP 2100 example: the two memories

D and P allow fetching both arguments at the same time. Several DSP pro-

cessors come with two memory banks.

Heterogeneous register files: Heterogeneous register files were already

mentioned for the filter application.

Multiply/accumulate instructions: These instructions perform multipli-

cations followed by additions. They were also already used in the filter

application.

3.3.3.2 Multimedia processors/instruction sets

Registers and arithmetic units of many modern architectures are at least 64 bits

wide. Therefore, two 32 bit data types (“double words”), four 16 bit data types

(“words”) or eight 8 bit data types (“bytes”) can be packed into a single register

(see fig. 3.25).

Figure 3.25. Using 64 bit registers for packed words

Arithmetic units can be designed such that they suppress carry bits at double

word, word or byte boundaries. Multimedia instruction sets exploit this fact by

supporting operations on packed data types. Such instructions are sometimes

called single-instruction, multiple-data (SIMD) instructions, since a single in-

struction encodes operations on several data elements. With bytes packed into

146 EMBEDDED SYSTEM DESIGN

64-bit registers, speed-ups of up to about eight over non-packed data types

are possible. Data types are typically stored in packed form in memory. Un-

packing and packing are avoided if arithmetic operations on packed data types

are used. Furthermore, multimedia instructions can usually be combined with

saturating arithmetic and therefore provide a more efficient form of overflow

handling than standard instructions. Hence, the overall speed-up achieved with

multimedia instructions can be significantly larger than the factor of eight en-

abled by operations on packed data types. Due to the advantages of operations

on packed data types, new instructions have been added to several proces-

sors. For example, so-called streaming SIMD extensions (SSE) have been

added to Intel’s family of Pentium®-compatible processors [Intel, 2008]. New

instructions have also been called short vector instructions. Currently (in

2010), Intel® Advanced Vector Extensions (AVX) are being introduced [In-

tel, 2010a].

3.3.3.3 Very long instruction word (VLIW) processors

Computational demands for embedded systems are increasing, especially when

multimedia applications, advanced coding techniques or cryptography are in-

volved. Performance improvement techniques used in high-performance mi-

croprocessors are not appropriate for embedded systems: driven by the need

for instruction set compatibility, processors found, for example, in PCs spend

a huge amount of resources and energy on automatically finding parallelism in

application programs. Still, their performance is frequently not sufficient. For

embedded systems, we can exploit the fact that instruction set compatibility

with PCs is not required. Therefore, we can use instructions which explicitly

identify operations to be performed in parallel. This is possible with explicit

parallelism instruction set computers (EPICs). With EPICs, detection of

parallelism is moved from the processor to the compiler. This avoids spend-

ing silicon and energy on the detection of parallelism at runtime. As a special

case, we consider very long instruction word (VLIW) processors. For VLIW

processors, several operations or instructions are encoded in a long instruction

word (sometimes called instruction packet) and are assumed to be executed

in parallel. Each operation/instruction is encoded in a separate field of the in-

struction packet. Each field controls certain hardware units. Four such fields

are used in fig. 3.26, each one controlling one of the hardware units.

For VLIW architectures, the compiler has to generate instruction packets. This

requires that the compiler is aware of the available hardware units and to sched-

ule their use.

Instruction fields must be present, regardless of whether or not the correspond-

ing functional unit is actually used in a certain instruction cycle. As a result,

Embedded System Hardware 147

Figure 3.26. VLIW architecture (example)

the code density of VLIW architectures may be low, if insufficient parallelism

is detected to keep all functional units busy. The problem can be avoided if

more flexibility is added. For example, the Texas Instruments TMS 320C6xx

family of processors implements a variable instruction packet size of up to 256

bits. In each instruction field, one bit is reserved to indicate whether or not the

operation encoded in the next field is still assumed to be executed in parallel

(see fig. 3.27). No instruction bits are wasted for unused functional units.

Figure 3.27. Instruction packets for TMS 320C6xx

Due to its variable length instruction packets, TMS 320C6xx processors do

not quite correspond to the classical model of VLIW processors. Due to their

explicit description of parallelism, they are EPIC processors, though.

Partitioned Register Files

Implementing register files for VLIW and EPIC processors is far from triv-

ial. Due to the large number of operations that can be performed in parallel,

a large number of register accesses has to be provided in parallel. Therefore,

a large number of ports is required. However, the delay, size and energy con-

sumption of register files increases with their number of ports. Hence, register

files with very large numbers of ports are inefficient. As a consequence, many

VLIW/EPIC architectures use partitioned register files. Functional units are

then only connected to a subset of the register files. As an example, fig. 3.28

shows the internal structure of the TMS 320C6xx processors. These processors

148 EMBEDDED SYSTEM DESIGN

have two register files and each of them is connected to half of the functional

units. During each clock cycle, only a single path from one register file to the

functional units connected to the other register file is available.

Figure 3.28. Partitioned register files for TMS 320C6xx

Alternative partitionings are considered by Lapinskii et al. [Lapinskii et al.,

2001].

Many DSP processors are actually VLIW processors. As an example, we are

considering the M3-DSP processor [Fettweis et al., 1998]. The M3-DSP pro-

cessor is a VLIW processor containing (up to) 16 parallel data paths. These

data paths are connected to a group memory, providing the necessary argu-

ments in parallel (see fig. 3.29).

Figure 3.29. M3-DSP (simplified)

Predicated Execution

A potential problem of VLIW and EPIC architectures is their possibly large

delay penalty: This delay penalty might originate from branch instructions

Embedded System Hardware 149

found in some instruction packets. Instruction packets normally must pass

through pipelines. Each stage of these pipelines implements only part of the

operations to be performed by the instructions executed. The fact that branch

instructions exist cannot be detected in the first stage of the pipeline. When the

execution of the branch instruction is finally completed, additional instructions

have already entered the pipeline (see fig. 3.30).

Figure 3.30. Branch instruction and delay slots

There are essentially two ways to deal with these additional instructions:

1 They are executed as if no branch had been present. This case is called de-

layed branch. Instruction packet slots that are still executed after a branch

are called branch delay slots. These branch delay slots can be filled with

instructions which would be executed before the branch if there were no de-

lay slots. However, it is normally difficult to fill all delay slots with useful

instructions and some must be filled with no-operation instructions (NOPs).

The term branch delay penalty denotes the loss of performance resulting

from these NOPs.

2 The pipeline is stalled until instructions from the branch target address have

been fetched. There are no branch delay slots in this case. In this organiza-

tion the branch delay penalty is caused by the stall.

Branch delay penalties can be significant. For example, the TMS 320C6xx

family of processors has up to 40 delay slots. Therefore, efficiency can be im-

proved by avoiding branches, if possible. In order to avoid branches originating

from if-statements, predicated instructions have been introduced. For each

predicated instruction, there is a predicate. This predicate is encoded in a few

bits and evaluated at run-time. If the result is true, the instruction is executed.

Otherwise, it is effectively turned into a NOP. Predication can also be found in

RISC machines such as the ARM processor. Example: ARM instructions, as

introduced on page 139, include a four-bit field. These four bits encode vari-

ous expressions involving the condition code registers. Values stored in these

150 EMBEDDED SYSTEM DESIGN

registers are checked at run-time. They determine whether or not a certain

instruction has an effect.

Predication can be used to implement small if-statements efficiently: the con-

dition is stored in one of the condition registers and if-statement-bodies are

implemented as predicated instructions which depend on this condition. This

way, if-statement bodies can be evaluated in parallel with other operations and

no delay penalty is incurred.

The Crusoe processor is a (commercially finally unsuccessful) example of an

EPIC processor designed for PCs [Klaiber, 2000]. Efforts for making EPIC

instruction sets available in the PC sector resulted in Intel’s IA-64 instruction

set [Intel, 2010b] and its implementation in the Itanium® processor. Due to

legacy problems, the main application is in the server market. Many MPSoCs

(see page 151) are based on VLIW and EPIC processors.

3.3.3.4 Micro-controllers

A large number of the processors in embedded systems are in fact micro-

controllers. Micro-controllers are typically not very complex and can be used

easily. Due to their relevance for designing control systems, we introduce one

of the most frequently used processors: the Intel 8051. This processor has the

following characteristics:

8 bit CPU, optimized for control applications,

large set of operations on Boolean data types,

program address space of 64 k bytes,

separate data address space of 64 k bytes,

4 k bytes of program memory on chip, 128 bytes of data memory on chip,

32 I/O lines, each of which can be addressed individually,

2 counters on the chip,

universal asynchronous receiver/transmitter for serial lines available on the

chip,

clock generation on the chip,

many variations commercially available.

All these characteristics are quite typical for micro-controllers.

Embedded System Hardware 151

3.3.3.5 Multiprocessor systems-on-a-chip (MPSoCs)

Further increase of clock rates of processors has recently come to a stand-

still. The large energy consumption of processors using multi-gigahertz clock

speeds is a key reason for this. In order to still improve the overall perfor-

mance, several processors must be employed. This led to the design of chips

comprising multiple processors as well as additional components such as pe-

ripheral devices and memories. Systems implemented in that way are called

MPSoCs (MultiProcessor System-on-a-Chip). For general purpose computing

and PCs, multi-processor systems are typically homogeneous (all processors

are of the same type). The term multi-core system is usually associated with

such systems. For embedded systems, energy efficiency has top priority. En-

ergy efficiency is typically obtained with highly specialized processors. For

example, there may be specialized processors for mobile communication or

image processing. Fig. 3.31 contains a simplified version of the floor-plan of

the SH-MobileG1 chip [Hattori, 2007].

Figure 3.31. Floor-plan of the SH-MobileG1 chip

The chip demonstrates the fact, that highly specialized processors are being

used: there are special processors for MPEG- and JPEG-encoding, for GSM-

and 3G mobile communication etc. In order to save energy, unused areas are

typically powered-down. Using such multi-processor-based systems from ap-

plications written in a sequential language is a challenge, which will be ad-

dressed in Chapter 6. Mapping techniques for such processors are important,

since examples demonstrate that a power efficiency close to that of ASICs can

be achieved. For example, for IMEC’s ADRES processor, an efficiency of

55× 109 operations per Watt (about 50% of the power efficiency of ASICs)

has been predicted [Man, 2007], [IMEC, 2010].

152 EMBEDDED SYSTEM DESIGN

3.3.4 Reconfigurable Logic

In many cases, full-custom hardware chips (ASICs) are too expensive and

software-based solutions are too slow or too energy consuming. Reconfig-

urable logic provides a solution if algorithms can be efficiently implemented

in custom hardware. It can be almost as fast as special-purpose hardware, but in

contrast to special-purpose hardware, the performed function can be changed

by using configuration data. Due to these properties, reconfigurable logic finds

applications in the following areas:

Fast prototyping: modern ASICs can be very complex and the design

effort can be large and takes a long time. It is therefore frequently desirable

to generate a prototype, which can be used for experimenting with a system

which behaves “almost” like the final system. The prototype can be more

costly and larger than the final system. Also, its power consumption can

be larger than the final system, some timing constraints can be relaxed, and

only the essential functions need to be available. Such a system can then be

used for checking the fundamental behavior of the future system.

Low volume applications: If the expected market volume is too small

to justify the development of special-purpose ASICs, reconfigurable logic

can be the right hardware technology for applications, for which software

would be too slow or too inefficient.

Real-time systems: The timing of FPGA-based designs is typically known

very precisely. Therefore, FPGAs can be used to implement timing-predic-

table systems.

Reconfigurable hardware frequently includes random access memory (RAM)

to store configurations during normal operation of the hardware. Such RAM

is normally volatile (the information is stored only while power is applied).

Therefore, the configuration data must be copied into the configuration RAM at

power-up. Persistent storage technology such as read-only memories (ROMs)

and Flash memories will then provide the configuration data.

Field programmable gate arrays (FPGAs) are the most common form of re-

configurable hardware. As the name indicates, such devices are programmable

“in the field” (after fabrication). Furthermore, they consist of arrays of pro-

cessing elements. As an example, fig. 3.32 shows the array structure of Xilinx

Virtex-II arrays [Xilinx, 2007].

The more recent Virtex-5 arrays contain up to 240 × 108 configurable logic

blocks (CLBs) [Xilinx, 2009]. These can be connected using a programmable

interconnect structure. Arrays also contain up to 1200 user input/output con-

nections. In addition, there are up to 1056 DSP blocks comprising 25 × 18

Embedded System Hardware 153

Figure 3.32. Floor-plan of Virtex-II FPGAs

bit multipliers and 16416 kbits of RAM (Block RAM). Each CLB consists of 2

so-called slices (see fig. 3.33).

Figure 3.33. Virtex-5 CLB

Each slice contains four memories. Each memory can be used as a look-up

table (LUT) for implementing a single 6-input logic function or two 5-input

logic functions. All 264 respectively all 232 Boolean functions of 6 or 5 inputs

can be implemented! With the help of multiplexers, several of these memo-

ries can also be combined. Memories can also serve as ordinary RAM or as

shift registers (SRLs). Each slice also includes four output registers and some

special logic for fast additions (see fig. 3.34) [Xilinx, 2009].

Configuration data determines the setting of multiplexers in the slices, the

clocking of registers and RAM, the content of RAM components and the con-

154 EMBEDDED SYSTEM DESIGN

Figure 3.34. Virtex-5 Slice (simplified)

nections between CLBs. Typically, this configuration data is generated from

a high-level description of the functionality of the hardware, for example in

VHDL. Ideally, the same description could also be used for generating ASICs

automatically. In practice, some interaction is required.

Integration of reconfigurable computing with processors and software is sim-

plified if processors are available in the FPGAs. There may be either hard cores

or soft cores. For hard cores, the layout contains a special area implementing

a core in a dense way. This area cannot be used for anything but the hard core.

Soft cores are available as synthesizable models which are mapped to standard

CLBs. Soft cores are more flexible, but less efficient than hard cores.

For example, the Virtex-5 FXT product line from Xilinx contains up to 2

Power-PC processors as hard cores.

Soft cores can be implemented on any FPGA chip. The MicroBlaze processor

[Xilinx, 2008] is an example of such cores.

Embedded System Hardware 155

3.4 Memories

Data, programs, and FPGA configurations must be stored in some kind of

memory. This must be done in an efficient way. Efficient means run-time,

code-size and energy-efficient. Code-size efficiency requires a good compiler

and can be improved with code compression (see page 138). Memory hier-

archies can be exploited in order to achieve a good run-time and energy effi-

ciency. The underlying reason is that large memories require more energy per

access and are also slower than small memories.

Fig. 3.35 shows the cycle time and the power as a function of the size of mem-

ories used as register files [Rixner et al., 2000].

Figure 3.35. Cycle time and power as a function of the register file size

Power and delay for caches can be computed with CACTI [Wilton and Jouppi,

1996]. Generated values include the power and the delay for the data RAM.

These values can be used to predict power and delay for general RAM mem-

ories. Fig. 3.36 shows the results for a larger range of sizes [Banakar et al.,

2002].

Figure 3.36. Power and delay of RAM memory as predicted by CACTI

156 EMBEDDED SYSTEM DESIGN

It has been observed that the difference in speeds between processors and mem-

ories is expected to increase (see fig. 3.37).

Figure 3.37. Increasing gap between processor and memory speeds

While the speed of memories is increasing by only a factor of about 1.07 per

year, overall processor performance has increased by a factor of 1.5 to 2 per

year [Machanik, 2002]. This means that the gap between processor perfor-

mance and memory speeds is becoming larger. However, increasing processor

performance further requires the use of multi-core systems.

Therefore, it is important to use smaller and faster memories that act as buffers

between the main memory and the processor. In contrast to PC-like systems,

the architecture of these small memories must guarantee a predictable real-

time performance. A combination of small memories containing frequently

used data and instructions and a larger memory containing the remaining data

and instructions is generally also more energy efficient than a single, large

memory. Memory partitioning has been considered, for example, by A. Macii

[Macii et al., 2002].

Caches were initially introduced in order to provide good run-time efficiency.

In the context of fig. 3.35 (right) however, it is obvious that caches poten-

tially also improve the energy-efficiency of a memory system. Accesses to

caches are accesses to small memories and therefore may require less en-

ergy per access than large memories. However, for caches it is required that

the hardware checks whether or not the cache has a valid copy of the in-

formation associated with a certain address. This check involves compar-

ing the tag fields of caches, containing a subset of the relevant address bits

[Hennessy and Patterson, 2002]. Reading these tags requires additional en-

ergy. Also, the predictability of the real-time performance of caches is fre-

quently low.

Alternatively, small memories can be mapped into the address space (see fig.

3.38).

Embedded System Hardware 157

Figure 3.38. Memory map with scratch-pad included

Such memories are called scratch pad memories (SPMs). Frequently used

variables and instructions should be allocated to that address space and no

checking needs to be done in hardware. As a result, the energy per access is

reduced. Fig. 3.39 shows a comparison between the energy required per access

to the scratch-pad (SPM) and the energy required per access to the cache.

Figure 3.39. Energy consumption per scratch pad and cache access

For a two-way set associative cache, the two values differ by a factor of about

three. The values in this example were computed using the energy consump-

tion for RAM arrays as estimated by the CACTI cache estimation tool [Wilton

and Jouppi, 1996].

SPMs can improve the memory access times very predictably, if the compiler

is in charge of keeping frequently used variables in the SPM (see page 297).

3.5 Communication

Information must be available before it can be processed in an embedded sys-

tem. Information can be communicated through various channels. Channels

are abstract entities characterized by the essential properties of communica-

tion, like maximum information transfer capacity and noise parameters. The

158 EMBEDDED SYSTEM DESIGN

probability of communication errors can be computed using communication

theory techniques. The physical entities enabling communication are called

communication media. Important media classes include: wireless media (ra-

dio frequency media, infrared), optical media (fibers), and wires.

There is a huge variety of communication requirements between the various

classes of embedded systems. In general, connecting the different embedded

hardware components is far from trivial. Some common requirements can be

identified.

3.5.1 Requirements

The following list contains some of the requirements that must be met:

Real-time behavior: This requirement has far-reaching consequences on

the design of the communication system. Several low-cost solutions such

as standard Ethernet fail to meet this requirement.

Efficiency: Connecting different hardware components can be quite ex-

pensive. For example, point to point connections in large buildings are

almost impossible. Also, it has been found that separate wires between

control units and external devices in cars significantly add to the cost and

the weight of the car. With separate wires, it is also very difficult to add

new components. The need of providing cost efficient designs also affects

the way in which power is made available to external devices. There is

frequently the need to use a central power supply in order to reduce the

cost.

Appropriate bandwidth and communication delay: Bandwidth require-

ments of embedded systems may vary. It is important to provide sufficient

bandwidth without making the communication system too expensive.

Support for event-driven communication: Polling-based systems pro-

vide a very predictable real-time behavior. However, their communication

delay may be too large and there should be mechanisms for fast, event-

oriented communication. For example, emergency situations should be

communicated immediately and should not remain unnoticed until some

central controller polls for messages.

Robustness: Cyber-physical systems may be used at extreme temperatures,

close to major sources of electromagnetic radiation etc. Car engines, for ex-

ample, can be exposed to temperatures less than -20 and up to +180 degrees

Celsius (-4 to 356 degrees Fahrenheit). Voltage levels and clock frequencies

could be affected due to this large variation in temperatures. Still, reliable

communication must be maintained.

Embedded System Hardware 159

Fault tolerance: Despite all the efforts for robustness, faults may occur.

Cyber-physical systems should be operational even after faults, if at all

feasible. Restarts, like the ones found in personal computers, cannot be

accepted. This means that retries may be required after attempts to com-

municate failed. A conflict exists with the first requirement: If we allow

retries, then it is difficult to meet strict real-time requirements.

Maintainability, diagnosability: Obviously, it should be possible to repair

embedded systems within reasonable time frames.

Privacy: Ensuring privacy of confidential information may require the use

of encryption.

These communication requirements are a direct consequence of the general

characteristics of embedded/cyber-physical systems mentioned in Chapter 1.

Due to the conflicts between some of the requirements, compromises must be

made. For example, there may be different communication modes: one high-

bandwidth mode guaranteeing real-time behavior but no fault tolerance (this

mode is appropriate for multimedia streams) and a second fault-tolerant, low-

bandwidth mode for short messages that must not be dropped.

3.5.2 Electrical robustness

There are some basic techniques for electrical robustness. Digital communi-

cation within chips is normally using so-called single-ended signaling. For

single-ended signaling, signals are propagated on a single wire (see fig. 3.40).

Figure 3.40. Single-ended signaling

Such signals are represented by voltages with respect to a common ground

(less frequently by currents). A single ground wire is sufficient for a number

of single-ended signals. Single ended signaling is very much susceptible to

external noise. If external noise (originating from, for example, motors being

switched on) affects the voltage, messages can easily be corrupted. Also, it

is difficult to establish high-quality common ground signals between a large

number of communicating systems, due to the resistance (and inductance) on

the ground wires. This is different for differential signaling. For differential

signaling, each signal needs two wires (see fig. 3.41).

160 EMBEDDED SYSTEM DESIGN

Figure 3.41. Differential signaling

Using differential signaling, binary values are encoded as follows: If the volt-

age on the first wire with respect to the second is positive, then this is decoded

as ’1’, otherwise values are decoded as ’0’. The two wires will typically be

twisted to form so-called twisted pairs. There will be local ground signals,

but a non-zero voltage between the local ground signals does not hurt. Advan-

tages of differential signaling include:

Noise is added to the two wires in essentially the same way. The comparator

therefore removes almost all the noise.

The logic value depends just on the polarity of the voltage between the

two wires. The magnitude of the voltage can be affected by reflections or

because of the resistance of the wires; this has no effect on the decoded

value.

Signals do not generate any currents on the ground wires. Hence, the qual-

ity of the ground wires becomes less important.

No common ground wire is required. Hence, there is no need to establish a

high quality ground wiring between a large number of communicating part-

ners (this is one of the reasons for using differential signaling for Ethernet).

As a consequence of the properties mentioned so far, differential signaling

allows a larger throughput than single-ended signaling.

However, differential signaling requires two wires for every signal and it also

requires negative voltages (unless it is based on complementary logic signals

using voltages for single-ended signals).

Differential signaling is used, for example, in standard Ethernet-based net-

works.

3.5.3 Guaranteeing real-time behavior

For internal communication, computers may be using dedicated point-to-point

communication or shared buses. Point-to-point communication can have a

Embedded System Hardware 161

good real-time behavior, but requires many connections and there may be con-

gestion at the receivers. Wiring is easier with common, shared buses. Typ-

ically, such buses use priority-based arbitration if several access requests to

the communication media exists (see, for example, [Hennessy and Patterson,

2002]). Priority-based arbitration comes with poor timing predictability, since

conflicts are difficult to anticipate at design time. Priority-based schemes can

even lead to “starvation” (low-priority communication can be completely

blocked by higher priority communication). In order to get around this prob-

lem, time division multiple access (TDMA) can be used. In a TDMA-scheme,

each partner is assigned a fixed time slot. The partner is allowed to transmit

during that particular time slot. Typically, communication time is divided into

frames. Each frame starts with some time slot for frame synchronization, and

possibly some gap to allow the sender to turn off (see fig. 3.42, [Koopman and

Upender, 1995]).

Figure 3.42. TDMA-based communication

This gap is followed by a number of slices, each of which serves for commu-

nicating messages. Each slice also contains some gap and guard time to take

clock speed variations of the partners into account. Slices are assigned to com-

munication partners. Variations of this scheme exist. For example, truncation

of unused slices or the assignment of partners to several slides are feasible.

TDMA reduces the maximum amount of data available per frame and partner,

but guarantees a certain bandwidth for all partners. Starvation can be avoided.

The ARM AMBA-bus [ARM Ltd., 2009a] includes TDMA-based bus alloca-

tion.

Communication between computers is frequently based on Ethernet standards.

For 10 Mbit/s and 100 Mbit/s versions of Ethernet, there can be collisions be-

tween various communication partners. This means: several partners are trying

to communicate at about the same time and the signals on the wires are cor-

rupted. Whenever this occurs, the partners must stop communications, wait

162 EMBEDDED SYSTEM DESIGN

for some time, and then retry. The waiting time is chosen at random, so that it

is not very likely that the next attempt to communicate results in another col-

lision. This method is called carrier-sense multiple access/collision detect

(CSMA/CD). For CSMA/CD, communication time can get huge, since con-

flicts can repeat a large number of times, even though this is not very likely.

Hence, CSMA/CD cannot be used when real-time constraints must be met.

This problem can be solved with CSMA/CA (carrier-sense multiple access/

collision avoidance). As the name indicates, collisions are completely avoided,

rather than just detected. For CSMA/CA, priorities are assigned to all part-

ners. Communication media are allocated to communication partners during

arbitration phases, which follow communication phases. During arbitration

phases, partners wanting to communicate indicate this on the media. Partners

finding such indications of higher priority must immediately remove their in-

dication.

Provided that there is an upper bound on the time between arbitration phases,

CSMA/CA guarantees a predictable real-time behavior for the partner having

the highest priority. For other partners, real-time behavior can be guaranteed if

the higher priority partners do not continuously request access to the media.

Note that high-speed versions of Ethernet (≥ 1 Gbit/s) also avoid collisions.

TDMA-schemes are also used for wireless communication. For example, mo-

bile phone standards like GSM use TDMA for accesses to the communication

medium.

3.5.4 Examples

Sensor/actuator buses: Sensor/actuator buses provide communication be-

tween simple devices such as switches or lamps and the processing equip-

ment. There may be many such devices and the cost of the wiring needs

special attention for such buses.

Field buses: Field buses are similar to sensor/actuator buses. In general,

they are supposed to support larger data rates than sensor/actuator buses.

Examples of field buses include the following:

– Controller Area Network (CAN): This bus was developed in 1981 by

Bosch and Intel for connecting controllers and peripherals. It is popular

in the automotive industry, since it allows the replacement of a large

amount of wires by a single bus. Due to the size of the automotive

market, CAN components are relatively cheap and are therefore also

used in other areas such as smart homes and fabrication equipment.

CAN has the following properties:

∗ differential signaling with twisted pairs,

Embedded System Hardware 163

∗ arbitration using CSMA/CA,

∗ throughput between 10kbit/s and 1 Mbit/s,

∗ low and high-priority signals,

∗ maximum latency of 134 µs for high priority signals,

∗ coding of signals similar to that of serial (RS-232) lines of PCs,

with modifications for differential signaling.

CSMA/CA-based arbitration does not prevent starvation. This is an

inherent problem of the CAN protocol.

– The Time-Triggered-Protocol (TTP) [Kopetz and Grunsteidl, 1994]

for fault-tolerant safety systems like airbags in cars.

– FlexRayT M [FlexRay Consortium, 2002] is a TDMA protocol which

has been developed by the FlexRay consortium (BMW, DaimlerChrys-

ler, General Motors, Ford, Bosch, Motorola and Philips Semiconduc-

tors). FlexRay is a combination of a variant of the TTP and the byte-

flight [Byteflight Consortium, 2003] protocol.

FlexRay includes a static as well as a dynamic arbitration phase. The

static phase uses a TDMA-like arbitration scheme. It can be used for

real-time communication and starvation can be avoided. The dynamic

phase provides a good bandwidth for non-real-time communication.

Communicating partners can be connected to up to two buses for fault-

tolerance reasons. Bus guardians may protect partners against partners

flooding the bus with redundant messages, so-called babbling idiots.

Partners may be using their own local clock periods. Periods com-

mon to all partners are defined as multiples of such local clock periods.

Time slots allocated to partners for communication are based on these

common periods.

The levi simulation allows simulating the protocol in a lab environment

[Sirocic and Marwedel, 2007a].

– LIN (Local Interconnect Network) is a low-cost communication stan-

dard for connecting sensors and actuators in the automotive domain

[LIN Administration, 2010].

– MAP: MAP is a bus designed for car factories.

– EIB: The European Installation Bus (EIB) is a bus designed for smart

homes.

Wired multimedia communication: For wired multimedia communica-

tion, larger data rates are required. Example: MOST (Media Oriented

Systems Transport) is a communication standard for multimedia and info-

tainment equipment in the automotive domain [MOST Cooperation, 2010].

Standards like IEEE 1394 (FireWire) may be used for the same purpose.

164 EMBEDDED SYSTEM DESIGN

Wireless communication: This kind of communication is becoming more

popular. Currently (2010), 7 Mbit/s are widely available with HSPA (High

Speed Packet Access). Even higher rates (based, for example, on the long-

term evolution (LTE) technology) are on the horizon.

Bluetooth is a standard for connecting devices such as mobile phones and

their headsets.

The wireless version of Ethernet is standardized as IEEE standard 802.11.

It is being used in local area networks (LANs).

DECT is a standard used for wireless phones in Europe.

3.6 Output

Output devices of embedded/cyber-physical systems include:

Displays: Display technology is an area which is extremely important. Ac-

cordingly, a large amount of information [Society for Display Technology,

2003] exists on this technology. Major research and development efforts

lead to new display technology such as organic displays [Gelsen, 2003].

Organic displays are emitting light and can be fabricated with very high

densities. In contrast to LCD displays, they do not need back-light and

polarizing filters. Major changes are therefore expected in these markets.

Electro-mechanical devices: these influence the environment through mo-

tors and other electro-mechanical equipment.

Analog as well as digital output devices are used. In the case of analog out-

put devices, the digital information must first be converted by digital-to-analog

(D/A)-converters. These converters can be found on the path from analog in-

puts of embedded systems to their outputs. Fig. 3.43 shows the naming con-

vention of signals along the path which we use. Purpose and function of the

boxes will be explained in this section.

Figure 3.43. Naming convention for signals between analog inputs and outputs

3.6.1 D/A-converters

D/A-converters are not very complex. Fig. 3.44 shows the schematic of a sim-

ple so-called weighted-resistor D/A converter.

Embedded System Hardware 165

Figure 3.44. D/A-converter

The key idea of the converter is to first generate a current which is proportional

to the value represented by a digital signal x. Such a current can hardly be used

by a following system. Therefore, this current is converted into a proportional

voltage y. This conversion is done with an operational amplifier (depicted by

a triangle in fig. 3.44). Essential characteristics of operational amplifiers are

described in Appendix B of this book.

How do we compute the output voltage y? Let us first consider the loop indi-

cated by the dashed line in fig. 3.44. The current through any resistor is zero,

if the corresponding element of digital signal x is ’0’. If it is ’1’, the current cor-

responds to the weight of that bit, since resistor values are chosen accordingly.

We can apply Kirchhoff’s Loop Rule (see Appendix B) to the loop turned on

by the least significant bit x0 of x. We have

x0 · I0 ·8 ·R+V−−Vre f = 0 (3.17)

V− is approximately 0 (see Appendix B). Therefore, we have

I0 = x0 ∗
Vre f

8∗R
(3.18)

Corresponding equations hold for the currents I1 to I3 through the other resis-

tors. We can now apply Kirchhoff’s Node Rule (see Appendix B) to the circuit

node connecting all resistors. At this node, the outgoing current must be equal

to the sum of the incoming currents. Therefore, we have

I = I3 + I2 + I1 + I0 (3.19)

I = x3 ∗
Vre f

R
+ x2 ∗

Vre f

2∗R
+ x1 ∗

Vre f

4∗R
+ x0 ∗

Vre f

8∗R

166 EMBEDDED SYSTEM DESIGN

=
Vre f

R
∗

3

∑
i=0

xi ∗2i−3 (3.20)

Now, we can apply Kirchhoff’s Loop Rule to the loop comprising R1, y and

V−. Since V− is approximately 0, we have:

y+R1 ∗ I′ = 0. (3.21)

Next, we can apply Kirchhoff’s Node Rule to the node connecting I, I′ and the

inverting signal input of the operational amplifier. The current into this input

is practically zero, and currents I and I′ are equal: I = I′. Hence, we have:

y+R1 ∗ I = 0 (3.22)

From equations 3.20 and 3.22 we obtain:

y = −Vre f ∗
R1

R
∗

3

∑
i=0

xi ∗2i−3 = −Vre f ∗
R1

8∗R
∗nat(x) (3.23)

nat denotes the natural number represented by digital signal x. Obviously, y

is proportional to the value represented by x. Positive output voltages and bit-

vectors representing two’s complement numbers require minor extensions.

From a DSP point of view, y(t) is a function over a discrete time domain:

it provides us with a sequence of voltage levels. In our running example,

it is defined only over integer times. From a practical point of view, this is

inconvenient, since we would typically observe the output of the circuit of fig.

3.44 continuously. Therefore, D/A-converters are frequently extended by a

“zero-order hold” functionality. This means that the converter will keep the

previous value until the next value is converted. Actually, the D/A-converter

of fig. 3.44 will do exactly this if we do not change the settings of the switches

until the next discrete time instant. Hence, the output of the converter is a step

function y′(t) corresponding to the sequence y(t)9. y′(t) is a function over the

continuous time domain.

As an example, let us consider the output resulting from the conversion of the

signal of equation 3.3, assuming a resolution of 8 steps per polarity. For this

case, fig. 3.45 shows y′(t) instead of y(t), since y′(t) is a bit easier to visualize.

9In practice, due to rise and fall times being > 0, transitions from one step to the next will not be ideal, but

take some time.

Embedded System Hardware 167

Figure 3.45. Step function y′(t) generated from signal e3(t) (eq. 3.3) sampled at integer times

D/A-converters enable a conversion from time- and value-discrete signals to

signals in the continuous time and value domain. However, neither y(t) nor

y′(t) reflect the values of the input signal in-between the sampling instances.

3.6.2 Sampling theorem

Suppose that the processors used in the hardware loop forward values from

A/D-converters unchanged to the D/A-converters. We could also think of stor-

ing values x(t) on a CD and aiming at generating an excellent analog audio

signal. Would it be possible to reconstruct the original analog voltage e(t) (see

fig. 3.8, fig. 3.20, and fig. 3.43) at the outputs of the D/A-converters?

It is obvious that reconstruction is not possible if we have aliasing of the type

described in the section on sampling10. So, we assume that the sampling rate

is larger than twice the highest frequency of the decomposition of the input

signal into sine waves (sampling criterion, see equation 3.8). Does meeting

this criterion allow us to reconstruct the original signal? Let us have a closer

look!

Feeding D/A-converters with a discrete sequence of digital values will result

in a sequence of analog values being generated. Values of the input signal

in-between the sampling instances are not generated by D/A-converters. The

simple zero-order hold functionality (if present) would generate only step func-

tions. This seems to indicate that reconstruction of e(t) would require an in-

finitely large sampling rate, such that all intermediate values can be generated.

10Reconstruction may be possible, if additional information about the signal is available, i.e. if we restrict

ourselves to certain signal types.

168 EMBEDDED SYSTEM DESIGN

However, there could be some kind of smart interpolation computing values

in-between the sampling instances from the values at sampling instances. And

indeed, sampling theory [Oppenheim et al., 2009] tells us that a correspond-

ing time-continuous signal z(t) can be constructed from the sequence y(t) of

analog values.

Let {ts},s = ...,−1,0,1,2, ... be the times at which we sample our input signal.

Let us assume a constant sampling rate of fs = 1
ps

(∀s : ps = ts+1 − ts). Then,

sampling theory tells us that we can approximate e(t) from y(t) as follows:

z(t) =
∞

∑
s=−∞

y(ts)sin π
ps

(t − ts)
π
ps

(t − ts)
(3.24)

This equation is known as the Shannon-Whittaker interpolation. y(ts) is the

contribution of signal y at sampling instance ts. The influence of this contribu-

tion decreases the further t is away from ts. The decrease follows a weighting

factor, also known as the sinc function:

sinc(t − ts) =
sin(π

ps
(t − ts))

π
ps

(t − ts)
(3.25)

which decreases non-monotonically as a function of |t − ts|. This weighting

factor is used to compute values in-between the sampling instances. Fig. 3.46

shows the weighting factor for the case ps = 1.

Figure 3.46. Visualization of eq. 3.25 used for interpolation

Embedded System Hardware 169

Using the sinc function, we can compute the terms of the sum in eq. 3.24.

Fig. 3.47 and fig. 3.48 show the resulting terms if e(t) = e3(t) and processing

performs the identify function (x(t) = w(t)).

Figure 3.47. y′(t) (solid line) and the first three terms of eq. 3.24

Figure 3.48. y′(t) (solid line) and the last three non-zero terms of eq. 3.24

At each of the sampling instances ts (integer times in our case), z(ts) is com-

puted just from the corresponding value y(ts), since the sinc function is zero in

this case for all other sampled values. In between the sampling instances, all of

the adjacent discrete values contribute to the resulting value of z(t). Fig. 3.49

shows the resulting z(t) if e(t) = e3(t) and processing performs the identify

function (x(t) = w(t)).

170 EMBEDDED SYSTEM DESIGN

Figure 3.49. e3(t) (solid), z(t) (dotted), y′(t) (dashed)

The figure includes signals e3(t) (solid line), z(t) (dotted line), and y′(t) (dashed

line). z(t) is based on summing up the contributions of all sampling instances

shown in the diagrams 3.47 and 3.48. e3(t) and z(t) are very similar.

How close could we get to the original input signal by implementing equation

3.24? Sampling theory tells us (see, for example, [Oppenheim et al., 2009]),

that equation 3.24 computes an exact approximation, if the sampling crite-

rion (equation 3.8) is met. Therefore, let us see how we can implement equa-

tion 3.24.

How do we compute equation 3.24 in an electronic system? We cannot com-

pute this equation in the discrete time domain using a digital signal processor

for this, since this computation has to generate a time-continuous signal. Com-

puting such a complex equation with analog circuits seems to be difficult at

first sight.

Fortunately, the required computation is a so-called folding operation between

signal y(t) and the sinc-function. According to the classical theory of Fourier

transforms, a folding operation in the time domain is equivalent to a multipli-

cation with frequency-dependent filter function in the frequency domain. This

filter function is the Fourier transform of the corresponding function in the time

domain. Therefore, equation 3.24 can be computed with some appropriate fil-

ter. Fig. 3.50 shows the corresponding placement of the filter.

The remaining question is: which frequency-dependent filter function is the

Fourier transform of the sinc-function? Computing the Fourier transform of

the sinc-function yields a low-pass filter function [Oppenheim et al., 2009].

So, “all” we must do to compute equation 3.24 is to pass signal y(t) through

Embedded System Hardware 171

Figure 3.50. Converting signals e(t) from the analog time and value domain to the digital

domain and back

a low-pass filter, filtering frequencies as shown for the “ideal filter” in fig.

3.51. Note that the representation of function y(t) as a sum of sine waves

would require very high frequency components, making such a filtering non-

redundant, even though we have already assumed an anti-aliasing filter to be

present at the input.

Figure 3.51. Low-pass filter: ideal (dashed) and realistic (solid)

There is still one problem, though: ideal low-pass filters do not exist. There-

fore, we must live with compromises and design filters approximating the low

pass filter characteristics. Actually, we must live with several imperfections

preventing a precise reconstruction of the input signals:

Ideal low pass filters cannot be designed. Therefore, we must use approxi-

mations of such filters. Designing good compromises is an art (performed

extensively, for example, for audio equipment).

For the same reason, we cannot completely remove input frequencies be-

yond the Nyquist frequency.

The impact of value quantization is visible in fig. 3.49. Due to value quan-

tization, e3(t) is sometimes different from z(t). Quantization noise, as in-

troduced by A/D-converters, cannot be removed during output generation.

Signal w(t) from the output of the A/D-converter will remain distorted by

the quantization noise. However, this effect does not affect the signal h(t)
from the output of sample-and-hold circuits.

Equation 3.24 is based on an infinite sum, involving also values at future

instances in time. In practice, we can delay signals by some finite amount

172 EMBEDDED SYSTEM DESIGN

to know a finite number of “future” samples. Infinite delays are impossible.

In fig. 3.49, we did not consider contributions of sampling instances outside

the diagram.

The functionality provided by low-pass filters demonstrates the power of ana-

log circuits: there would be no way of implementing the behavior of analog

filters in the digital domain, due to the inherent restriction to discretized time

and values.

Many authors have contributed to sampling theory. Therefore, many names can

be associated with the sampling theorem. Contributors include Shannon, Whit-

taker, Kotelnikov, Nyquist, Küpfmüller, and others. Therefore, the fact that the

original signal can be reconstructed should simply be called the sampling the-

orem, since there is no way of attaching all names of relevant contributors to

the theorem.

3.6.3 Actuators

There is a huge amount of actuators [Elsevier B.V., 2010a]. Actuators range

from huge ones that are able to move tons of weight to tiny ones with dimen-

sions in the µm area, like the one shown in fig. 3.52.

Figure 3.52. Microsystem technology based actuator motor (partial view; courtesy E. Ober-

meier, MAT, TU Berlin), ©TU Berlin

It is impossible to provide a complete overview. As an example, we mention

only a special kind of actuators which will become more important in the fu-

ture: microsystem technology enables the fabrication of tiny actuators, which

can be put into the human body, for example.

Using such tiny actuators, the amount of drugs fed into the body can be adapted

to the actual need. This allows a much better medication than needle-based

Embedded System Hardware 173

injections. Fig. 3.52 shows a tiny motor manufactured with microsystem tech-

nology. The dimensions are in the µm range. The rotating center is controlled

by electrostatic forces.

3.7 Secure hardware

The general requirements for embedded systems can often include security

(see page 5). If security is a major concern, special secure hardware may need

to be developed. Security may need to be guaranteed for communication and

for storage [Krhovjak and Matyas, 2006]. Also, security might demand special

equipment for the generation of cryptographic keys. Special hardware security

modules have been designed. One of the goals for such modules is to resist

side-channel attacks such as measurement of the supply current or electromag-

netic radiation. Such modules include special mechanisms for physical pro-

tection (shielding, or sensors to detect tampering with the modules). Special

processors may support encryption and decryption. In addition to the physi-

cal security, we need logical security, typically using cryptographic methods.

Smart cards are a special case of secure hardware that must run using a very

small amount of energy. In general, it is necessary to distinguish between dif-

ferent levels of security and levels of knowledge of “adversaries”. A full pre-

sentation of the techniques for designing secure hardware is beyond the scope

of this book. Interested readers are referred to Gebotys [Gebotys, 2010] and

workshop proceedings [Clavier and Gaj, 2009].

3.8 Assignments

1 It is suggested that locally available small robots are used to demonstrate

hardware in the loop, corresponding to fig. 3.2. The robots should includes

sensors and actuators. Robots should run a program implementing a control

loop. For example, an optical sensor could be used to let a robot follow a

black line on the ground. The details of this assignment depend on the

availability of robots.

2 Why is it so important to optimize embedded systems? Compare differ-

ent technologies for processing information in an embedded system with

respect to their efficiency!

3 Assume that we have an input signal x consisting of the sum of sine waves

of 1.75 kHz and 2 kHz. We are sampling x at a rate of 3 kHz. Will we be

able to reconstruct the original signal after discretization of time? Please

explain your result!

4 Discretization of values is based on A/D-converters. Develop the schematic

of a flash-based A/D-converter for positive and negative input voltages!

174 EMBEDDED SYSTEM DESIGN

The output should be encoded as 3-bit two’s complement numbers, allow-

ing to distinguish between 8 different voltage intervals.

5 Compare the complexity of flashed-based and successive approximation-

based A/D-converters. Assume that you would like to distinguish between

n different voltage intervals. Enter the complexity into the table of fig. 3.53,

using the O-notation.

Flash-based converter Successive approximation converter

Time complexity

Space complexity

Figure 3.53. Complexity of A/D-converters

6 Suppose that we are working with a successive approximation-based 4-bit

A/D-converter. The input voltage range extends from Vmin =1 V (="0000")

to Vmax =4.75 V (="1111"). Which steps are used to convert voltages of

2.25 V, 3.75 V, and 1.8 V? Draw a diagram similar to fig. 3.12 which depicts

the successive approximation to these voltages!

7 Extend the flash-based A/D converter such that it can be used for negative

voltages as well!

8 Suppose a sine wave is used as an input signal to the converter designed in

assignment 4. Depict the quantization noise signal for this case!

9 Create a list of features of DSP-processors!

10 Which components do FPGA comprise? Which of these are used to imple-

ment Boolean function? How are FPGAs configured? Are FPGAs energy-

efficient? Which kind of applications are FPGAs good for?

11 In the context of memories, we are sometimes saying “small is beautiful”.

What could be the reason for this?

12 Develop the following FlexRayT M cluster: The cluster consists of the 5

nodes A, B, C, D and E. All nodes should be connected via two channels.

The cluster uses a bus topology. The nodes A, B and C are executing a

safety critical task and therefore their bus requests should be guaranteed at

the time of 20 macroticks. The following is expected from you:

Download the levi FlexRay simulator [Sirocic and Marwedel, 2007a].

Unpack the .zip file and install!

Start the training module by executing the file leviFRP.jar.

Design the described FlexRay cluster within the training module.

Embedded System Hardware 175

Configure the communication cycle such that the nodes A, B and C have

a guaranteed bus access within a maximal delay of 20 macroticks. The

nodes D and E should use only the dynamic segment.

Configure the node bus requests. The node A sends a message every

cycle. The nodes B and C send a message every second cycle. The

node D sends a message of the length of 2 minislots every cycle and the

node E sends every second cycle a message of the length of 2 minislots.

Start the visualization and check if the bus requests of the nodes A, B

and C are guaranteed.

Swap the positions of nodes D and E in the dynamic segment. What is

the resulting behavior?

13 Develop the schematic of a 3-bit D/A-converter! The conversion should be

done for a 3-bit vector x encoding positive numbers. Prove that the output

voltage is proportional to the value represented by the input vector x. How

would you modify the circuit if x represented two’s complement numbers?

14 The circuit shown in fig. B.4 in Appendix B is an amplifier, amplifying

input voltage V1:

Vout = gclosed ·V1

Compute the gain gclosed for the circuit of fig. B.4 as a function of R and

R1!

Chapter 4

SYSTEM SOFTWARE

Not all components of embedded systems need to be designed from scratch.

Instead, there are standard components that can be reused. These compo-

nents comprise knowledge from earlier design efforts and constitute intellec-

tual property (IP). IP reuse is one key technique in coping with the increasing

complexity of designs. The term “IP reuse” frequently denotes the reuse of

hardware. However, reusing hardware is not enough. Sangiovanni-Vincentelli

pointed out, that software components need to be reused as well. Therefore,

the platform-based design methodology advocated by Sangiovanni-Vincentelli

[Sangiovanni-Vincentelli, 2002] (see page 236) comprises the reuse of hard-

ware and software IP.

Standard software components that can be reused include system software

components such as embedded operating systems (OS) and middleware. The

last term denotes software that provides an intermediate layer between the OS

and application software. We include libraries for communication as a special

case of middleware. Such libraries extend the basic communication facilities

provided by operating systems. Also, we consider real-time databases (see

Section 4.5) to be a second class of middleware. Calls to standard software

components may already need to be included in the specification. Therefore,

information about the application programming interface (API) of these stan-

dard components may already be needed for completing executable specifica-

tions of the SUD.

Consistent with the design information flow, we will describe embedded oper-

ating systems, and middleware in this chapter (see also fig. 4.1).

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 4, © Springer Science+Business Media B.V. 2011

177

http://dx.doi.org/10.1007/978-94-007-0257-8_4

178 EMBEDDED SYSTEM DESIGN

Figure 4.1. Simplified design information flow

4.1 Embedded Operating Systems

4.1.1 General requirements

Except for very simple systems, scheduling, task switching, and I/O require the

support of an operating system suited for embedded applications. Task switch

(or task “dispatch”) algorithms multiplex processors such that each task seems

to have its own processor.

For systems with virtual memory, we can distinguish between different ad-

dress spaces, and between processes and threads. Each process has its own

address space, whereas several threads may share an address space. Con-

text switches which change the address space require more time than those

which do not. Threads sharing an address space will typically communicate

via shared memory. Operating systems must provide communication and syn-

chronization methods for threads and processes. More information about the

just touched standard topics in system software can be found in textbooks on

operating systems, such as the book by Tanenbaum [Tanenbaum, 2001]1.

The following are essential features of embedded operating systems:

Due to the large variety of embedded systems, there is also a large variety of

requirements for the functionality of embedded OSs. Due to efficiency re-

quirements, it is not possible to work with OSs which provide the union of

all functionalities. For most applications, the OS must be small. Hence, we

need operating systems which can be flexibly tailored towards the appli-

cation at hand. Configurability is therefore one of the main characteristics

of embedded OSs. There are various techniques of implementing config-

urability, including2:

1Students who have not attended a course on operating systems may have to browse through one of these

textbooks before proceeding any further.
2This list is sorted by the position of the technique in the development process or tool chain.

System Software 179

– Object-orientation, used for a derivation of proper subclasses: for ex-

ample, we could have a general scheduler class. From this class we

could derive schedulers having particular features. However, object-

oriented approaches typically come with an additional overhead. For

example, dynamic binding of methods does create run-time overhead.

Such overhead may be unacceptable for performance-critical system

software.

– Aspect-oriented programming [Lohmann et al., 2009]: with this ap-

proach, orthogonal aspects of software can be described independently

and then can be added automatically to all relevant parts of the program

code. For example, some code for profiling can be described in a single

module. It can then be automatically added to or dropped from all rel-

evant parts of the source code. The CIAO family of operating systems

has been designed in this way [Lohmann et al., 2006].

– Conditional compilation: In this case, we are using some macro pre-

processor and we are taking advantage of #if and #ifdef preprocessor

commands.

– Advanced compile-time evaluation: configurations could be performed

by defining constant values of variables before compiling the OS. The

compiler could then propagate the knowledge of these values as much

as possible. Advanced compiler optimizations may also be useful in

this context. For example, if a particular function parameter is always

constant, this parameter can be dropped from the parameter list. Partial

evaluation [Jones, 1996] provides a framework for such compiler opti-

mizations. In a sophisticated form, dynamic data might be replaced by

static data [Atienza et al., 2007]. A survey of operating system special-

ization was published by McNamee et al. [McNamee et al., 2001].

– Linker-based removal of unused functions: At link-time, there may be

more information about used and unused functions than during earlier

phases. For example, the linker can figure out, which library functions

are used. Unused library functions can be accordingly dropped and

specializations can take place [Chanet et al., 2007].

These techniques are frequently combined with a rule-based selection of

files to be included in the operating system. Tailoring the OS can be made

easy through a graphical user interface hiding the techniques employed for

achieving this configurability. For example, VxWorks [Wind River, 2010a]

from Wind River is configured via a graphical user interface.

Verification is a potential problem of systems with a large number of de-

rived tailored OSs. Each and every derived OS must be tested thoroughly.

Takada mentions this as a potential problem for eCos (an open source RTOS

180 EMBEDDED SYSTEM DESIGN

from Red Hat [Massa, 2002]), comprising 100 to 200 configuration points

[Takada, 2001]. Software product line engineering [Pohl et al., 2005] can

contribute towards solving this problem.

There is a large variety of peripheral devices employed in embedded sys-

tems. Many embedded systems do not have a hard disk, a keyboard, a

screen or a mouse. There is effectively no device that needs to be sup-

ported by all variants of the OS, except maybe the system timer. Fre-

quently, applications are designed to handle particular devices. In such

cases, devices are not shared between applications and hence there is no

need to manage the devices by the OS. Due to the large variety of devices,

it would also be difficult to provide all required device drivers together with

the OS. Hence, it makes sense to decouple OS and drivers by using special

tasks instead of integrating their drivers into the kernel of the OS. Due to

the limited speed of many embedded devices, there is also no need for an

integration into the OS in order to meet performance requirements. This

may lead to a different stack of software layers. For PCs, some drivers,

such as disk drivers, network drivers, or audio drivers are implicitly as-

sumed to be present. They are implemented at a very low level of the stack.

The application software and middleware are implemented on top of the

application programming interface, which is standard for all applications.

For an embedded OS, device drivers are implemented on top of the kernel.

Applications and middleware may be implemented on top of appropriate

drivers, not on top of a standardized API of the OS (see fig. 4.2).

Figure 4.2. Device drivers implemented on top of (a) or below (b) OS kernel

VxWorks can again serve as an example here. Fig. 4.3 shows a fraction of

the Wind River® Industrial Automation platform [Wind River, 2010a].

Protection mechanisms are not always necessary, since embedded sys-

tems are frequently designed for a single purpose (they are not supposed to

support so-called “multiprogramming”). Therefore, untested programs are

hardly ever loaded. After the software has been tested, it could be assumed

to be reliable. This also applies to input/output. In contrast to desktop

applications, there is no desire to implement I/O instructions as privileged

System Software 181

Figure 4.3. Software stack for Wind River® Industrial Automation Platform

instructions and tasks can be allowed to do their own I/O. This matches

nicely with the previous item and reduces the overhead of I/O operations.

Example: Let switch correspond to the (memory-mapped) I/O address of

some switch which needs to be checked by some program. We can simply

use a

load register,switch

instruction to query the switch. There is no need to go through an OS

service call, which would create a lot of overhead for saving and restoring

the task context (registers etc.).

However, there is a trend towards more dynamic embedded systems. Also,

safety and security requirements might make protection necessary. Special

memory protection units (MPUs) have been proposed for this (see Fiorin

[Fiorin et al., 2007] for an example).

Interrupts can be connected to any process. Using OS service calls, we

can request the OS to start or stop tasks if certain interrupts happen. We

could even store the start address of a task in the interrupt vector address

table, but this technique is very dangerous, since the OS would be unaware

of the task actually running. Also composability may suffer from this: if

a specific task is directly connected to some interrupt, then it may be dif-

ficult to add another task which also needs to be started by some event.

Application-specific device drivers (if used) might also establish links be-

tween interrupts and processes.

Many embedded systems are real-time (RT) systems and, hence, the OS

used in these systems must be a real-time operating system (RTOS).

Additional information about embedded operating systems can be found in a

book chapter written by Bertolotti [Bertolotti, 2006]. This chapter comprises

182 EMBEDDED SYSTEM DESIGN

information about the architecture of embedded operating systems, the POSIX

standard, open-source real-time operating systems and virtualization.

4.1.2 Real-time operating systems

Definition: (A) “real-time operating system is an operating system that sup-

ports the construction of real-time systems” [Takada, 2001].

What does it take to make an OS an RTOS? There are four key requirements3:

The timing behavior of the OS must be predictable. For each service

of the OS, an upper bound on the execution time must be guaranteed. In

practice, there are various levels of predictability. For example, there may

be sets of OS service calls for which an upper bound is known and for

which there is not a significant variation of the execution time. Calls like

“get me the time of the day” may fall into this class. For other calls, there

may be a huge variation. Calls like “get me 4MB of free memory” may

fall into this second class. In particular, the scheduling policy of any RTOS

must be deterministic.

There may also be times during which interrupts must be disabled to avoid

interferences between components of the OS. Less importantly, they can

also be disabled to avoid interferences between tasks. The periods during

which interrupts are disabled must be quite short in order to avoid unpre-

dictable delays in the processing of critical events.

For RTOSs implementing file-systems on hard disks, it may be necessary to

implement contiguous files (files stored in contiguous disk areas) to avoid

unpredictable disk head movements.

The OS must manage the scheduling of tasks. Scheduling can be defined

as mapping from sets of tasks to intervals of execution time, including the

mapping to start times as a special case. Also, the OS possibly has to be

aware of task deadlines so that the OS can apply appropriate scheduling

techniques (there are, however, cases in which scheduling is done com-

pletely off-line and the OS only needs to provide services to start tasks at

specific times or priority levels). Scheduling algorithms will be discussed

in detail in Chapter 6.

Some systems require the OS to manage time. This management is

mandatory if internal processing is linked to an absolute time in the physi-

cal environment. Physical time is described by real numbers. In computers,

3This section includes information from Hiroaki Takada’s tutorial [Takada, 2001].

System Software 183

discrete time standards are typically used instead. The precise requirements

may vary:

1 In some systems, synchronization with global time standards is neces-

sary. In this case, global clock synchronization is performed. Two

standards are available for this:

– Universal Time Coordinated (UTC): UTC is defined by astronom-

ical standards. Due to variations regarding the movement of the

Earth, this standard has to be adjusted from time to time. Several

seconds have been added during the transition from one year to the

next. The adjustments can be problematic, since incorrectly imple-

mented software could get the impression that the next year starts

twice during the same night.

– International atomic time (in French: temps atomic internationale,

or TAI). This standard is free of any artificial artifacts.

Some connection to the environment is used to obtain accurate time

information. External synchronization is typically based on wireless

communication standards such as the global positioning system (GPS)

[National Space-Based Positioning, Navigation, and Timing Coordina-

tion Office, 2010] or mobile networks.

2 If embedded systems are used in a network, it is frequently sufficient

to synchronize time information within the network. Local clock syn-

chronization can be used for this. In this case, connected embedded

systems try to agree on a consistent view of the current time.

3 There may be cases in which provision for precise local delays is all

that is needed.

For several applications, precise time services with a high resolution must

be provided. They are required for example in order to distinguish between

original and subsequent errors. For example, they can help to identify the

power plant(s) that are responsible for blackouts (see [Novosel, 2009]). The

precision of time services depends on how they are supported by a partic-

ular execution platform. They are very imprecise (with precisions in the

millisecond range) if they are implemented through tasks at the applica-

tion level and very precise (with precisions in the microsecond range) if

they are supported by communication hardware. More information about

time services and clock synchronization is contained in the book by Kopetz

[Kopetz, 1997].

The OS must be fast. An operating system meeting all the requirements

mentioned so far would be useless, if it were very slow. Therefore, the OS

must obviously be fast.

184 EMBEDDED SYSTEM DESIGN

Each RTOS includes a so-called real-time OS kernel. This kernel manages the

resources which are found in every real-time system, including the processor,

the memory and the system timer. Major functions in the kernel include the

task management, inter-task synchronization and communication, time man-

agement and memory management.

While some RTOSs are designed for general embedded applications, others

focus on a specific area. For example, OSEK/VDX-compatible operating sys-

tems focus on automotive control. Operating systems for a selected area can

provide a dedicated service for that particular area and can be more compact

than operating systems for several application areas.

Similarly, while some RTOSs provide a standard API, others come with their

own, proprietary API. For example, some RTOSs are compliant with the stan-

dardized POSIX RT-extension [Harbour, 1993] for UNIX, with the OSEK/VDX

standard, or with the ITRON specification developed in Japan. Many RT-kernel

type of OSs have their own API. ITRON, mentioned in this context, is a mature

RTOS which employs link-time configuration.

Available RTOSs can further be classified into the following three categories

[Gupta, 2002]:

Fast proprietary kernels: According to Gupta, “for complex systems,

these kernels are inadequate, because they are designed to be fast, rather

than to be predictable in every respect”. Examples include QNX, PDOS,

VCOS, VTRX32, VxWorks.

Real-time extensions to standard OSs: In order to take advantage of com-

fortable main stream operating systems, hybrid systems have been devel-

oped. For such systems, there is an RT-kernel running all RT-tasks. The

standard operating system is then executed as one of these tasks (see fig.

4.4).

Figure 4.4. Hybrid OSs

This approach has some advantages: the system can be equipped with a

standard OS API, can have graphical user interfaces (GUIs), file-systems

etc. and enhancements to standard OSs become quickly available in the

embedded world as well. Also, problems with the standard OS and its non-

RT tasks do not negatively affect the RT-tasks. The standard OS can even

System Software 185

crash and this would not affect the RT-tasks. On the down side, and this

is already visible from fig. 4.4, there may be problems with device drivers,

since the standard OS will have its own device drivers. In order to avoid

interference between the drivers for RT-tasks and those for the other tasks,

it may be necessary to partition devices into those handled by RT-tasks and

those handled by the standard OS. Also, RT-tasks cannot use the services of

the standard OS. So all the nice features like file-system access and GUIs

are normally not available to those tasks, even though some attempts may

be made to bridge the gap between the two types of tasks without losing

the RT-capability. RT-Linux is an example of such hybrid OSs.

According to Gupta [Gupta, 2002], trying to use a version of a standard

OS is “not the correct approach because too many basic and inappropri-

ate underlying assumptions still exist such as optimizing for the average

case (rather than the worst case), ... ignoring most if not all semantic

information, and independent CPU scheduling and resource allocation”.

Indeed, dependences between tasks are not very frequent for most applica-

tions of standard operating systems and are therefore frequently ignored by

such systems. This situation is different for embedded systems, since de-

pendences between tasks are quite common and they should be taken into

account. Unfortunately, this is not always done if extensions to standard op-

erating systems are used. Furthermore, resource allocation and scheduling

are rarely combined for standard operating systems. However, integrated

resource allocation and scheduling algorithms are required in order to guar-

antee meeting timing constraints.

There is a number of research systems which aim at avoiding the above

limitations. These include Melody [Wedde and Lind, 1998], and (accord-

ing to Gupta [Gupta, 2002]) MARS, Spring, MARUTI, Arts, Hartos, and

DARK.

Takada [Takada, 2001] mentions low overhead memory protection, temporal

protection of computing resources (targeting at preventing tasks from comput-

ing for longer periods of time than initially planned), RTOSs for on-chip mul-

tiprocessors (especially for heterogeneous multiprocessors and multi-threaded

processors) and support for continuous media and quality of service control as

research issues.

Due to the potential growth in the embedded system market, vendors of stan-

dard OSs are actively trying to sell variations of their products (like Windows

Embedded [Microsoft Inc., 2003]) and obtain market shares from traditional

vendors such as Wind River Systems [Wind River, 2010b].

186 EMBEDDED SYSTEM DESIGN

4.1.3 Virtual machines

In certain environments, it may be useful to emulate several processors on a

single real processor. This is possible with virtual machines executed on the

bare hardware. On top of such a virtual machine, several operating systems

can be executed. Obviously, this allows several operating systems to be run on

a single processor. For embedded systems, this approach has to be used with

care since the temporal behavior of such an approach may be more problem-

atic and timing predictability may be lost. Nevertheless, there may be cases in

which this approach is useful. For example, there may be the need to integrate

several legacy applications using different operating systems on a single hard-

ware processor. A full coverage of virtual machines is beyond the scope of this

book. Interested readers should refer to books by Smith et al. [Smith and Nair,

2005] and Craig [Craig, 2006]. PikeOS is an example of a virtualization con-

cept dedicated toward embedded systems [SYSGO AG, 2010]. PikeOS allows

the system’s resources (e.g. memory, I/O devices, CPU-time) to be divided

into separate subsets. PikeOS comes with a small micro-kernel. Several oper-

ating systems, application programming interfaces (APIs) and run-time envi-

ronments (RTEs) can be implemented on top of this kernel (see fig. 4.5).

Figure 4.5. PikeOS virtualization (©SYSGO)

4.1.4 Resource access protocols

4.1.4.1 Priority inversion

There are cases in which tasks must be granted exclusive access to resources

such as global shared variables or devices in order to avoid non-deterministic or

otherwise unwanted program behavior. Such exclusive access is very important

for embedded systems, e.g. for implementing shared memory-based communi-

cation or exclusive access to some special hardware device. Program sections

during which such exclusive access is required are called critical sections.

Critical sections should be short. Operating systems typically provide prim-

itives for requesting and releasing exclusive access to resources, also called

mutex primitives. Tasks not being granted exclusive access must wait until

System Software 187

the resource is released. Accordingly, the release operation has to check for

waiting tasks and resume the task of highest priority.

In this book, we will call the request operation P(S) and the release operation

V(S), where S corresponds to the particular resource requested. P(S) and V(S)

are so-called semaphore operations. Semaphores allow up to n (with n being

a parameter) threads or processes to use a particular resource protected by S

concurrently. S is a data structure maintaining a count on how many resources

are still available. P(S) checks the count and blocks the caller if all resources

are in use. Otherwise, the count is modified and the caller is allowed to con-

tinue. V(S) increments the number of available resources and makes sure that a

blocked caller (if it exists) is unblocked. The names P(S) and V(S) are derived

from the Dutch language. We will use these operations only in the form of

binary semaphores with n = 1, i.e. we will allow only a single caller to use the

resource.

For embedded systems, dependencies between tasks is a rule, rather than an

exception. Also, the effective task priority of real-time applications is more

important than for non-real applications. Mutually exclusive access can lead

to priority inversion, an effect which changes the effective priority of tasks.

Priority inversion exists on non-embedded systems as well. However, due to

the reasons just listed, the priority inversion problem can be considered a more

serious problem in embedded systems.

A first case of the consequences resulting from the combination of “mutual

exclusion” with “no pre-emption” can be seen in fig. 4.6.

Figure 4.6. Blocking of a task by a lower priority task

Bold upward pointing arrows indicate the times at which tasks become exe-

cutable, or “ready”. At time t0, task T2 enters a critical section after requesting

exclusive access to some resource via an operation P. At time t1, task T1 be-

comes ready and preempts T2. At time t2, T1 fails getting exclusive access to

the resource in use by T2 and becomes blocked. Task T2 resumes and after

188 EMBEDDED SYSTEM DESIGN

some time releases the resource. The release operation checks for pending

tasks of higher priority and preempts T2. During the time T1 has been blocked,

a lower priority task has effectively blocked a higher priority task. The ne-

cessity of providing exclusive access to some resources is the main reason for

this effect. Fortunately, in the particular case of figure 4.6, the duration of the

blocking cannot exceed the length of the critical section of T2. This situation

is problematic, but difficult to avoid.

In more general cases, the situation can be even worse. This can be seen, for

example, from fig. 4.7.

Figure 4.7. Priority inversion with potentially large delay

We assume that tasks T1,T2 and T3 are given. T1 has the highest priority, T2

has a medium priority and T3 has the lowest priority. Furthermore, we assume

that T1 and T3 require exclusive use of some resource via operation P(S). Now,

let T3 be in its critical section when it its preempted by T2. When T1 preempts

T2 and tries to use the same resource that T3 is having exclusive access of, it

blocks and lets T2 continue. As long as T2 is continuing, T3 cannot release the

resource. Hence, T2 is effectively blocking T1 even though the priority of T1 is

higher than that of T2. In this example, the blocking of T1 continues as long as

T2 executes. T1 is blocked by a task of lower priority, which is not in its critical

section. This effect is called priority inversion4. In fact, priority inversion

happens even though T2 is unrelated to T1 and T3. The duration of the priority

inversion situation is not bounded by the length of any critical section. This

example and other examples can be simulated with the levi simulation software

[Sirocic and Marwedel, 2007c].

One of the most prominent cases of priority inversion happened in the Mars

Pathfinder, where an exclusive use of a shared memory area led to priority

inversion on Mars [Jones, 1997].

4Some authors do already consider the case of fig. 4.6 as a case of priority inversion. This was also done in

earlier versions of this book.

System Software 189

4.1.4.2 Priority inheritance

One way of dealing with priority inversion is to use the priority inheritance

protocol. This protocol is a standard protocol available in many real-time op-

erating systems. It works as follows:

Tasks are scheduled according to their active priorities. Tasks with the same

priorities are scheduled on a first-come, first-served basis.

When a task T1 executes P(S) and exclusive access is already granted to

some other task T2, then T1 will become blocked. If the priority of T2 is

lower than that of T1, T2 inherits the priority of T1. Hence, T2 resumes exe-

cution. In general, every task inherits the highest priority of tasks blocked

by it.

When a task T2 executes V(S), its priority is decreased to the highest priority

of the tasks blocked by it. If no other task is blocked by T2, its priority is

reset to the original value. Furthermore, the highest priority task so far

blocked on S is resumed.

Priority inheritance is transitive: if Tx blocks Ty and Ty blocks Tz, then Tx

inherits the priority of Tz.

This way, high priority tasks being blocked by low priority tasks propagate

their priority to the low priority tasks such that the low priority tasks can release

semaphores as soon as possible.

In the example of fig. 4.7, T3 would inherit the priority of T1 when T1 executes

P(S). This would avoid the problem mentioned since T2 could not preempt T3

(see fig. 4.8).

Figure 4.8. Priority inheritance for the example of fig. 4.7

Fig. 4.9 shows an example of nested critical sections [Buttazzo, 2002].

190 EMBEDDED SYSTEM DESIGN

Figure 4.9. Nested critical sections

Note that the priority of task T3 is not reset to its original value at time t0.

Instead, its priority is decreased to the lowest priority of the tasks blocked by

it, in this case the priority π1 of T1.

Transitiveness of priority inheritance is shown in fig. 4.10 [Buttazzo, 2002].

Figure 4.10. Transitiveness of priority inheritance

At time t0, T1 is blocked by T2 which in turn is blocked by T3. Therefore, T3

inherits the priority π1 of T1.

Priority inheritance is also used by ADA: during a rendez-vous, the priority of

both tasks is set to their maximum.

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks

operating system used in the pathfinder implements a flag for the calls to mutex

primitives. This flag allows priority inheritance to be set to “on”. When the

software was shipped, it was set to “off”. The problem on Mars was corrected

System Software 191

by using the debugging facilities of VxWorks to change the flag to “on”, while

the Pathfinder was already on Mars [Jones, 1997]. Priority inheritance can be

simulated with the levi simulation software [Sirocic and Marwedel, 2007c].

While priority inheritance solves some problems, it does not solve others.

There may be a large number of tasks having a high priority and there may

even be deadlocks. The priority ceiling protocol [Sha et al., 1990] can be

used instead, but requires processes to be known at design time.

4.2 ERIKA

Several embedded systems (such as automotive systems and home appliances)

require the entire application to be hosted on small micro-controllers5. For

that reason, the operating system services provided by the firmware on such

systems must be limited to a minimal set of features allowing multi-threaded

execution of periodic and aperiodic tasks, with support for shared resources to

avoid the priority inversion phenomenon.

Such requirements have been formalized in the 1990s by the OSEK/VDX Con-

sortium [OSEK Group, 2010], which defined the minimal services of a multi-

threaded real-time operating system allowing implementations of 1-10 kilo-

bytes code footprint on 8-bit micro-controllers. The OSEK/VDX API has been

recently extended by the AUTOSAR Consortium [AUTOSAR, 2010] which

provided enhancements to support time protection, scheduling tables for time

triggered systems, and memory protection to protect the execution of differ-

ent applications hosted on the same micro-controller. This section briefly de-

scribes the main features and requirements of such systems, considering as a

reference implementation the open-source ERIKA Enterprise real-time kernel

[Evidence, 2010].

The first feature that distinguishes an OSEK kernel from other operating sys-

tems is that all kernel objects are statically defined at compile time. In par-

ticular, most of these systems do not support dynamic memory allocation,

and dynamic creation of tasks. To help the user in configuring the system,

the OSEK/VDX standard provides a configuration language, named OIL, to

specify the objects that must be instantiated in the application. When the ap-

plication is compiled, the OIL Compiler generates the operating system data

structures, allocating the exact amount of memory needed. This approach al-

lows allocating only the data really needed by the application, to be put in

flash memory (which is less expensive than RAM memory on most micro-

controllers).

5This section was contributed by G. Buttazzo and P. Gai (Pisa).

192 EMBEDDED SYSTEM DESIGN

The second feature distinguishing an OSEK/VDX system is the support for

Stack Sharing. The reason for providing stack sharing is that RAM memory is

very expensive on small micro-controllers. The possibility of implementing a

stack sharing system is related to how the task code is written.

In traditional real-time systems, the typical implementation of a periodic task

is structured according to the following scheme:

task(x) {

int local;

initialization();

for (;;) {

do instance();

end instance();

}}

Such a scheme is characterized by a forever loop containing an instance of the

periodic task that terminates with a blocking primitive (end instance()), which

has the effect of blocking the task until the next activation. When following

such a programming scheme (called extended task in OSEK/VDX), the task is

always present in the stack, even during waiting times. In this case, the stack

cannot be shared and a separate stack space must be allocated for each task.

The OSEK/VDX standard also provides support for basic tasks, which are spe-

cial tasks that are implemented in a way more similar to functions, according

to the following scheme:

int local;

Task x() {

do instance();

}

System initialization() {

initialization();

...}

With respect to extended tasks, in basic tasks, the persistent state that must be

maintained between different instances is not stored in the stack, but in global

variables. Also, the initialization part is moved to system initialization, be-

cause tasks are not dynamically created, but they exist since the beginning.

Finally, no synchronization primitive is needed to block the task until its next

period, because the task is activated every time a new instance starts. Also, the

task cannot call any blocking primitive, therefore it can either be preempted

System Software 193

by higher priority tasks or execute until completion. In this way, the task be-

haves like a function, which allocates a frame on the stack, runs, and then

cleans the frame. For this reason, the task does not occupy stack space be-

tween two executions, allowing the stack to be shared among all tasks in the

system. ERIKA Enterprise supports stack sharing, allowing all basic tasks in

the system to share a single stack, so reducing the overall RAM memory used

for this purpose.

Concerning task management, OSEK/VDX kernels provide support for Fixed

Priority Scheduling with Immediate Priority Ceiling to avoid the Priority Inver-

sion problem. The usage of Immediate Priority Ceiling is supported through

the specification of the resource usage of each task in the OIL configuration

file. The OIL Compiler computes the resource ceiling of each task based on

the resource usage declared by each task in the OIL file.

OSEK/VDX systems also support Non Preemptive Scheduling and Preemption

Thresholds to limit the overall stack usage. The main idea is that limiting

the preemption between tasks reduces the number of tasks allocated on the

system stack at the same time, further reducing the overall amount of required

RAM. Note that reducing preemptions may degrade the schedulability of the

tasks set, hence the degree of preemption must be a traded off with the system

schedulability and the overall RAM memory used in the system.

Another requirement for operating systems designed for small micro-control-

lers is scalability, which means supporting reduced versions of the API for

smaller footprint implementations. In mass production systems, in fact, the

footprint significantly impacts on the overall cost. In this context, scalabil-

ity is provided through the concept of Conformance Classes, which define

specific subsets of the operating system API. Conformance Classes are also

accompanied by an upgrade path between them, with the final objective of

supporting partial implementation of the standard with reduced footprint. The

conformance classes supported by the OSEK/VDX standard (and by ERIKA

Enterprise) are:

BCC1: This is the smallest Conformance class, supporting a minimum of

8 tasks with different priority and 1 shared resource.

BCC2: Compared to BCC1, this conformance class adds the possibility to

have more than one task at the same priority. Each task can have pending

activations, that is, the operating system records the number of instances

that have been activated but not yet executed.

ECC1: Compared to BCC1, this conformance class adds the possibility to

have Extended tasks that can wait for an event to appear.

194 EMBEDDED SYSTEM DESIGN

ECC2: This Conformance class adds both multiple activations and Ex-

tended tasks.

ERIKA Enterprise further extends these conformance classes by providing the

following two conformance classes:

EDF: This conformance class does not use a fixed priority scheduler but an

Earliest Deadline First (EDF) Scheduler (see section 6.2.2.3) optimized for

the implementation on small micro-controllers.

FRSH: This conformance class extends the EDF scheduler class by pro-

viding a resource reservation scheduler based on the IRIS scheduling algo-

rithm [Marzario et al., 2004].

Anther interesting feature of OSEK/VDX systems is that the system provides

an API for controlling interrupts. This is a major difference when compared to

POSIX-like systems, where the interrupts are exclusive domain of the operat-

ing system and are not exported to the operating system API. The rationale for

this is that on small micro-controllers users often want to directly control inter-

rupt priorities, hence it is important to provide a standard way to deal with in-

terrupt disabling/enabling. Moreover, the OSEK/VDX standard specifies two

types of Interrupt Service Routines (ISR):

Category 1: simpler and faster, does not implement a call to the scheduler

at the end of the ISR;

Category 2: this ISR can call some primitives that change the scheduling

behavior. The end of the ISR is a rescheduling point. ISR1 has always a

higher priority of ISR2.

An important feature of OSEK/VDX kernels is the possibility to fine tune the

footprint by removing error checking code from the production versions, as

well as to define hooks that will be called by the system when specific events

occur. These features allow for a fine tuning of the application footprint that

will be larger (and safer) when debugging and smaller in production when most

bugs will be found and removed from the code.

To support a better debugging experience, the OSEK/VDX standard defines a

textual language, named ORTI, which describes where the various objects of

the operating system are allocated. The ORTI file is typically generated by the

OIL compiler and is used by debuggers to print detailed information about op-

erating system objects defined in the system (for example, the debugger could

print the list of the tasks in an application with their current status).

System Software 195

All the features defined by the OSEK/VDX standard have been implemented

in the open-source ERIKA Enterprise kernel [Evidence, 2010], for a set of em-

bedded micro-controllers, with a final footprint ranging between 1 and 5 kilo-

bytes of object code. ERIKA Enterprise also implements additional features,

like the EDF scheduler, providing an open and free of charge operating system

that can be used to learn, test and implement real applications for industrial

and educational purposes.

4.3 Hardware abstraction layers

Hardware abstraction layers (HALs) provide a means for accessing hardware

through a hardware-independent application programming interface (API). For

example, we could come up with a hardware-independent technique for access-

ing timers, irrespective of the addresses to which timers are mapped. Hardware

abstraction layers are used mostly between the hardware and operating system

layers. They provide software intellectual property (IP), but they are neither

part of operating systems nor can they be classified as middleware. A survey

over work in this area is provided by Ecker, Müller and Dömer [Ecker et al.,

2009].

4.4 Middleware

Communication libraries provide a means for adding communication function-

ality to languages lacking this feature. They add communication functionality

on top of the basic functionality provided by operating systems. Due to being

added on top of the OS, they can be independent of the OS (and obviously

also of the underlying processor hardware). As a result, we will obtain net-

worked embedded systems. There is a trend towards supporting communica-

tion within some local system as well as communication over longer distances.

The use of Internet protocols is becoming more popular.

4.4.1 OSEK/VDX COM

OSEK/VDX® COM is a special communication standard for the OSEK au-

tomotive operating systems [OSEK Group, 2004]6. OSEK COM provides an

“Interaction Layer” as an application programming interface (API) through

which internal communication (communication within one ECU) and external

communication (communication with other ECUs) can be performed. OSEK

COM specifies just the functionality of the Interaction layer. Conforming im-

plementations must be developed separately.

6OSEK is a trademark of Continental Automotive GmbH.

196 EMBEDDED SYSTEM DESIGN

The Interaction layer communicates with other ECUs via a “Network Layer”

and a “Data Link” layer. Some requirements for these layers are specified by

OSEK COM, but these layers themselves are not part of OSEK COM. This

way, communication can be implemented on top of different network proto-

cols.

OSEK COM is an example of communication middleware dedicated toward

embedded systems. In addition to middleware dedicated toward embedded

systems, many communication standards developed for non-embedded appli-

cations can be adopted for embedded systems as well.

4.4.2 CORBA

CORBA® (Common Object Request Broker Architecture) [Object Manage-

ment Group (OMG), 2003] is one example of such adopted standards. CORBA

facilitates the access to remote services. With CORBA, remote objects can

be accessed through standardized interfaces. Clients are communicating with

local stubs, imitating the access to the remote objects. These clients send in-

formation about the object to be accessed as well as parameters (if any) to the

Object Request Broker (ORB, see fig. 4.11). The ORB then determines the

location of the object to be accessed and sends information via a standardized

protocol, e.g. the IIOP protocol, to where the object is located. This informa-

tion is then forwarded to the object via a skeleton and the information requested

from the object (if any) is returned using the ORB again.

Figure 4.11. Access to remote objects using CORBA

Standard CORBA does not provide the predictability required for real-time

applications. Therefore, a separate real-time CORBA (RT-CORBA) standard

has been defined [Object Management Group (OMG), 2005a]. A very essen-

tial feature of RT-CORBA is to provide end-to-end predictability of timeliness

in a fixed priority system. This involves respecting thread priorities between

client and server for resolving resource contention, and bounding the latencies

of operation invocations. One particular problem of real-time systems is that

thread priorities might not be respected when threads obtain mutually exclu-

sive access to resources. The priority inversion problem (see page 186) has

to be addressed in RT-CORBA. RT-CORBA includes provisions for bounding

the time during which such priority inversion can happen. RT-CORBA also

includes facilities for thread priority management. This priority is independent

System Software 197

of the priorities of the underlying operating system, even though it is compati-

ble with the real-time extensions of the POSIX standard for operating systems

[Harbour, 1993]. The thread priority of clients can be propagated to the server

side. Priority management is also available for primitives providing mutually

exclusive access to resources. The priority inheritance protocol just described

must be available in implementations of RT-CORBA. Pools of pre-existing

threads avoid the overhead of thread creation and thread-construction.

4.4.3 MPI

As an alternative to CORBA, the message passing interface (MPI) can be used

for communication between different processors. MPI is a very frequently

used library, initially designed for high-performance computing. It is based on

message passing and allows a choice between synchronous and asynchronous

message passing. For example, synchronous message passing is possible with

the MPI Send library function [MHPCC, 2010]:

MPI Send(buffer,count,type,dest,tag,comm) where:

buffer: is the address of data to be sent,

count: is the number of data elements to be sent,

type: is the data type of data to be sent (e.g. MPI CHAR, MPI SHORT,

MPI INT),

dest: is the process id of the target process,

tag: is a message id (for sorting incoming messages),

comm: is the communication context (set of processes for which destina-

tion field is valid) and

function result: indicates success.

The following is an asynchronous library function:

MPI Isend(buffer,count,type,dest,tag,comm,request) where

buffer, count, type, dest, tag, comm: are same as above, and

the system issues a unique “request number”. The programmer uses this

system assigned “handle” later (in a WAIT type routine) to determine com-

pletion of the non-blocking operation.

For MPI, the partitioning of computations among various processors must be

done explicitly and the same is true for the communication and the distribution

198 EMBEDDED SYSTEM DESIGN

of data. Synchronization is implied by communication, but explicit synchro-

nization is also possible. As a result, much of the management code is explicit

and causes a major amount of work for the programmer. Also, it does not

scale well when the number of processors is significantly changed [Verachtert,

2008].

In order to apply the MPI-style of communication to real-time systems, a real-

time version of MPI, called MPI/RT has been defined [MPI/RT forum, 2001].

MPI-RT does not cover some of the issues covered in RT-CORBA, such as

thread creation and termination. MPI/RT is conceived as a potential layer be-

tween the operating system and standard (non real-time) MPI.

MPI is available on a variety of platforms and also considered for multiple

processors on a chip. However, it is based on the assumption that memory

accesses are faster than communication operations. Also, MPI is mainly tar-

geting at homogeneous multi-processors. These assumptions are not true for

multiple processors on a chip.

4.4.4 POSIX Threads (Pthreads)

The POSIX thread (Pthread) library is an application programming interface

(API) to threads at the operating system level [Barney, 2010]. Pthreads are

consistent with the IEEE POSIX 1003.1c operating system standard. A set of

threads can be run in the same address space. Therefore, communication can

be based on shared memory communication. This avoids the memory copy

operations typically required for MPI. The library is therefore appropriate for

programming multi-core processors sharing the same address space. The li-

brary includes a standard API with mechanisms for mutual exclusion. Pthreads

use completely explicit synchronization [Verachtert, 2008]. The exact seman-

tics depends on the memory consistency model used. Synchronization is hard

to program correctly. The library can be employed as a back-end for other

programming models.

4.4.5 OpenMP

For OpenMP, parallelism is mostly explicit, whereas computation partition-

ing, communication, synchronization etc. are implicit. Parallelism is expressed

with pragmas: for example, loops can be preceded by pragmas indicating that

they should be parallelized. The following program demonstrates a small par-

allel loop [OpenMP Architecture Review Board, 2008]:

void a1(int n, float *a, float *b)

{int i;

System Software 199

#pragma omp parallel for

for (i=1; i<n; i++) /* i is private by default */

b[i] = (a[i] + a[i-1]) / 2.0;

}

This means that (among the approaches just introduced) OpenMP requires the

least amount of effort for parallelization for the user. However, this also means

that the user cannot control partitioning [Verachtert, 2008]. OpenMP is tar-

geted towards shared memory hardware. There are first applications for MP-

SoCs (see, for example [Marongiu and Benini, 2009]).

4.4.6 UPnP, DPWS and JXTA

Universal Plug-and-Play (UPnP) is an extension of the plug-and-play concept

of PCs towards devices connected within a network. Connecting network print-

ers, storage space and switches in homes and offices easily can be seen as the

key target [UPnP Forum, 2010]. Due to security concerns, only data is ex-

changed. Code cannot be transfered.

Devices Profile for Web Services (DPWS) aims at being more general than

UPnP. “The Devices Profile for Web Services (DPWS) defines a minimal set of

implementation constraints to enable secure Web Service messaging, discov-

ery, description, and eventing on resource-constrained devices” [ws4d, 2010].

DPWS specifies services for discovering devices connected to a network, for

exchanging information about available services, and for publishing and sub-

scribing to events.

In addition to libraries designed for high-performance computing (HPC), sev-

eral comprehensive network communication libraries can be used. These are

typically designed for a loose coupling over Internet-based communication

protocols. JXTAT M [JXTA Community, 2010] is an open source peer-to-peer

protocol specification. It defines a protocol by a set of XML messages that

allow any device connected to a network peer to exchange messages and col-

laborate independently of the network topology. JXTA creates a virtual overlay

network, allowing a peer to interact with other peers even when some of the

peers and resources are behind firewalls. The name is derived from the word

“juxtapose”.

CORBA, MPI, Pthreads, OpenMP, UPnP, DPWS and JXTA are special cases

of communication middleware (software to be used at a layer between the op-

erating system and applications). Initially, they were essentially designed for

communication between desktop computers. However, there are attempts to

leverage the knowledge and techniques also for embedded systems. For mo-

bile devices like smart phones, this approach may be appropriate. For “hard

200 EMBEDDED SYSTEM DESIGN

real-time systems”, their overhead, their real-time capabilities and their ser-

vices may be inappropriate.

4.5 Real-time databases

Data bases provide a convenient and structured way of storing and accessing

information. Accordingly, databases provide an API for writing and reading

information. A sequence of read and write operations is called a transaction.

Transactions may have to be aborted for a variety of reasons: there could be

hardware problems, deadlocks, problems with concurrency control etc. A fre-

quent requirement is that transactions do not affect the state of the database

unless they have been executed to their very end. Hence, changes caused by

transactions are normally not considered to be final until they have been com-

mitted. Most transactions are required to be atomic. This means that the end

result (the new state of the database) generated by some transaction must be

the same as if the transaction has been fully completed or not at all. Also, the

database state resulting from a transaction must be consistent. Consistency

requirements include, for example, that the values from read requests belong-

ing to the same transaction are consistent (do not describe a state which never

existed in the environment modeled by the database). Furthermore, to some

other user of the database, no intermediate state resulting from a partial exe-

cution of a transaction must be visible (the transactions must be performed as

if they were executed in isolation). Finally, the results of transactions should

be persistent. This property is also called durability of the transactions. To-

gether, the four properties printed in bold are known as ACID properties (see

the book by Krishna and Shin [Krishna and Shin, 1997], Chapter 5).

For some databases, there are soft real-time constraints. For example, time-

constraints for airline reservation systems are soft. In contrast, there may also

be hard constraints. For example, automatic recognition of pedestrians in auto-

mobile applications and target recognition in military applications must meet

hard real-time constraints. The above requirements make it very difficult to

guarantee hard real-time constraints. For example, transactions may be aborted

various times before they are finally committed. For all databases relying on

demand paging and on hard disks, the access times to disks are hardly pre-

dictable. Possible solutions include main memory databases and predictable

use of flash memory. Embedded databases are sometimes small enough to

make this approach feasible. In other cases, it may be possible to relax the

ACID requirements. For further information, see the book by Krishna and

Shin.

System Software 201

4.6 Assignments

1 Which requirements must be met for a real-time operating system? How

do they differ from the requirements of a standard OS?

2 How many seconds have been added at New Year’s Eve to compensate for

the differences between UTC and TAI since 1958? You may search the

Internet for an answer to this question.

3 Which features of a standard OS like Windows or Linux could be missing

in an RTOS?

4 Find processors for which memory protection units are available! How are

memory protection units different from the more frequently used memory

management units (MMUs)? You may search the Internet for an answer to

this question.

5 Describe classes of embedded systems for which protection should defi-

nitely be provided! Describe classes of systems, for which we would pos-

sibly not need protection!

6 Provide an example demonstrating priority inversion for a system compris-

ing three tasks!

7 Download the levi learning module leviRTS from the levi web site [Sirocic

and Marwedel, 2007c]. Model a task set as described in figure 4.12.

Task Priority Arrival Run time Printer Comm line

tP,P tV,P tP,C tV,C

T1 1 (high) 3 4 1 4 - -

T2 2 10 3 - - 1 2

T3 3 5 6 - - 4 6

T4 4 (low) 0 7 2 5 - -

Figure 4.12. Task set requesting exclusive use of resources

tP,P and tP,C are the times relative to the start times, at which a task requests

exclusive use of the printer or the communication line, respectively (called

∆tP in levi). tV,P and tV,C are the times relative to the start times at which

these resources are released. Use priority-based, preemptive scheduling!

Which problem occurs? How can it be solved?

8 Which impact does the priority inversion problem have on the design of

network middleware?

9 How could flash memory have an influence on the design of real-time

databases?

Chapter 5

EVALUATION AND VALIDATION

5.1 Introduction

5.1.1 Scope

Specification, hardware platforms and system software provide us with the

basic ingredients which we need for designing embedded systems. During

the design process, we must validate and evaluate designs rather frequently.

Therefore, we will describe validation and evaluation before we talk about

design steps. Validation and evaluation, even though different from each other,

are very much linked.

Definition: Validation is the process of checking whether or not a certain

(possibly partial) design is appropriate for its purpose, meets all constraints

and will perform as expected.

Definition: Validation with mathematical rigor is called (formal) verification.

Validation is important for any design procedure, and hardly any system would

work as expected, had it not been validated during the design process. Vali-

dation is extremely important for safety-critical embedded systems. In theory,

we could try to design verified tools which always generate correct implemen-

tations from the specification. In practice, this verification of tools does not

work, except in very simple cases. As a consequence, each and every design

has to be validated. In order to minimize the number of times that we must

validate a design, we could try to validate it at the very end of the design pro-

cess. Unfortunately, this approach normally does not work either, due to the

large differences between the level of abstraction used for the specification and

that used for the implementation. Therefore, validation is required at various

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 5, © Springer Science+Business Media B.V. 2011

203

http://dx.doi.org/10.1007/978-94-007-0257-8_5

204 EMBEDDED SYSTEM DESIGN

phases during the design procedure (see fig. 5.1). Validation and design should

be intertwined and not be considered as two completely independent activities.

Figure 5.1. Context of the current Chapter

It would be nice to have a single validation technique applicable to all vali-

dation problems. In practice, none of the available techniques solves all the

problems, and a mix of techniques has to be applied. In this Chapter, starting

in Section 5.6, we will provide a brief overview of key techniques which are

available. This material will be preceded by an overview of evaluation tech-

niques.

Definition: Evaluation is the process of computing quantitative information of

some key characteristics (or “objectives”) of a certain (possibly partial) design.

5.1.2 Multi-objective optimization

Design evaluations will, in general, lead to a characterization of the design by

several criteria, such as average and worst case execution time, energy con-

sumption, code size, dependability and safety. Merging all these criteria into

a single objective function (e.g. by using a weighted average) is usually not

advisable, as this would hide some of the essential characteristics of designs.

Rather, it is advisable to return to the designer a set of designs among which

the designer can then select an appropriate design. Such a set should, however,

only contain “reasonable” designs. Finding such sets of designs is the purpose

of multi-objective optimization techniques.

In order to perform multi-objective optimization, we do consider an m-dimen-

sional space X of possible solutions of the optimization problem. These dimen-

sions could, for example, reflect the number of processors, the sizes of mem-

ory, types and number of buses. For this space X , we define an n-dimensional

function

f (x) = (f1(x), . . . , fn(x)) where x ∈ X

Evaluation and Validation 205

which evaluates designs with respect to several criteria or objectives (e.g. cost

and performance). Let F be the n-dimensional space of values of these objec-

tives (the so-called objective space). Suppose that, for each of the objectives,

some total order < and the corresponding ≤-order are defined. In the follow-

ing, we assume that the goal is to minimize our objectives.

Definition: Vector u = (u1, ...,un) ∈ F dominates vector v = (v1, ...,vn) ∈ F

iff u is “better” than v with respect to at least one objective and not worse than

v with respect to all other objectives:

∀i ∈ {1, ...n} : ui ≤ vi ∧ (5.1)

∃i ∈ {1, ..,n} : ui < vi (5.2)

Definition: Vector u ∈ F is called indifferent with respect to vector v ∈ F iff

neither u dominates v nor v dominates v.

Definition: A design x ∈ X is called Pareto-optimal with respect to X iff there

is no design y ∈ X such that u = f (x) is dominated by v = f (y).

The previous definition defines Pareto-optimality in the solution space. The

next definition serves the same purpose in the objective space.

Definition: Let S ⊆ F be a subset of vectors in the objective space. v ∈ F is

called a non-dominated solution with respect to S iff v is not dominated by

any element ∈ S. v is called Pareto-optimal iff v is non-dominated with respect

to all solutions F .

Fig. 5.2 highlights the different areas in the objective space, relative to design

point (1).

Figure 5.2. (a) Pareto point (b) Pareto front

206 EMBEDDED SYSTEM DESIGN

The upper right area corresponds to designs that would be dominated by design

(1), since they would be “worse” with respect to both objectives. Designs in

the lower left rectangle (if they would exist) would dominate design (1), since

the would be “better” with respect to both objectives. Designs in the upper left

and the lower right area are indifferent: they are “better” with respect to one

objective and “worse” with respect to the other. Fig. 5.2 (right) shows a set of

Pareto points, i.e., the so-called Pareto front.

Design space exploration (DSE) based on Pareto points is the process of find-

ing and returning a set of Pareto-optimal solutions to the designer, enabling the

designer to select the most appropriate implementation.

5.1.3 Relevant objectives

For PC-like systems, the expected average performance plays a dominating

role during the design of new systems. For embedded and cyber-physical sys-

tems, multiple objectives need to be considered. The following list explains if

and where this objective is discussed in this book:

1 Average performance: An analysis of this objective is frequently based

on simulations. Section 5.6 briefly presents some issues in simulations. An

abundant amount of additional information on the simulation of systems (in

particular of heterogeneous, cyber-physical systems) is available. Due to

the large number of physical effects, it is impossible to provide a complete

list of references.

2 Worst case performance/real-time behavior: Details of the aiT timing

analysis tool will be presented in section 5.2.2.

3 Energy/power consumption: A brief overview of techniques for evaluat-

ing this objective will be presented in section 5.3.

4 Temperatures/thermal behavior: A brief introduction to this topic will

be presented in section 5.4.

5 Reliability: An introduction to the theory of reliability can be found in

section 5.5.

6 Electromagnetic compatibility: This objective will not be considered in

this book.

7 Numeric precision: A minor loss in numerical precision can be tolerated in

several applications. Accepting such a loss can improve the design in terms

of other objectives. As an example, we will discuss the transformation from

floating point to fixed point arithmetic in section 7.2.1. Several similar other

cases exist.

Evaluation and Validation 207

8 Testability: Costs for testing systems can be very large, sometimes larger

even than production costs. Hence, testability should be considered as well,

preferably already during the design. Testability will be discussed in Chap-

ter 8.

9 Cost: Cost in terms of silicon area or real money will not be considered in

this book.

10 Weight, robustness, usability, extendibility, security, safety, environ-

mental friendliness: These objectives will also not be considered.

There may be even more objectives than the ones listed above. The next section

presents several approaches for performance evaluation, with a focus on the

worst case performance.

5.2 Performance evaluation

Performance evaluation aims at predicting the performance of systems. This

is a major challenge (especially for cyber-physical systems) since we might

need worst case information, rather than just average case information. Such

information is necessary in order to guarantee real-time constraints.

5.2.1 Early phases

Two different classes of techniques have been proposed for obtaining perfor-

mance information already during early design phases:

Estimated cost and performance values: Quite a number of estimators

have been developed for this purpose. Examples include the work by Jha

and Dutt [Jha and Dutt, 1993] for hardware, Jain et al. [Jain et al., 2001],

and Franke [Franke, 2008] for software. Generating sufficiently precise

estimates requires considerable efforts.

Accurate cost and performance values: We can also use the real software

code (in the form of some binary) on a close-to-real hardware platform.

This is only possible if interfaces to “software synthesis tools” (compilers)

and hardware synthesis tools exist. This method can be more precise than

the previous one, but may be significantly (and sometimes prohibitively)

more time consuming.

In order to obtain sufficiently precise information, communication needs to be

considered as well. Unfortunately, it is typically difficult to compute commu-

nication cost already during early design phases.

208 EMBEDDED SYSTEM DESIGN

5.2.2 WCET estimation

Formal performance evaluation techniques have been proposed by many re-

searchers. For embedded systems, the work of Thiele et al., Henia and Ernst

et al., and Wilhelm et al. is particularly relevant (see, for example, [Thiele,

2006b], [Henia et al., 2005], and [Wilhelm, 2006]). These techniques require

some knowledge of architectures. They are less appropriate for very early de-

sign phases, but some of them can still be used without knowing all the details

about target architectures. These approaches model real, physical time.

Scheduling of tasks requires some knowledge about the duration of task ex-

ecutions, especially if meeting time constraints has to be guaranteed, as is in

real-time (RT) systems. The worst case execution time (WCET) is the ba-

sis for most scheduling algorithms. Some definitions related to the WCET are

shown in fig. 5.3.

Figure 5.3. WCET-related terms

The worst case execution time is the largest execution time of a program for any

input and any initial execution state. Unfortunately, the WCET is extremely

difficult to compute. In general, it is undecidable whether or not the WCET

is finite. This is obvious from the fact that it is undecidable whether or not

a program terminates. Hence, the WCET can only be computed for certain

programs/tasks. For example, for programs without recursion, without while

loops and with loops having statically known iteration counts, the WCET can

be computed. But even with such restrictions, it is usually practically impos-

sible to compute the WCET. The effect of modern processor architectures’

pipelines with their different kinds of hazards and memory hierarchies with

limited predictability of hit rates is difficult to precisely predict at design time.

Computing the WCET for systems containing caches, pipelines, interrupts and

virtual memory is an even greater challenge. As a result, we must be happy if

we are able to compute good upper bounds on the WCET.

Such upper bounds are usually called estimated worst case execution times,

or WCETEST . Such bounds should have at least two properties:

Evaluation and Validation 209

1 The bounds should be safe (WCETEST ≥ WCET).

2 The bounds should be tight (WCETEST -WCET ≪ WCET)

Note that the term “estimated” does not mean that the resulting times are un-

safe.

Sometimes, architectural features which reduce the average execution time but

cannot guarantee to reduce the WCET are completely omitted from the real-

time designs (see page 145). Computing tight upper bounds on the execu-

tion time may still be difficult. The architectural features described above also

present problems for the computation of WCETEST .

Accordingly, the best-case execution time (BCET) and the corresponding es-

timate BCETEST are defined in an analogous manner. The BCETEST is a safe

and tight lower bound on the execution time.

Computing tight bounds from a program written in a high-level language such

as C without any knowledge of the generated assembly code and the underlying

architectural platform is impossible. Therefore, a safe analysis must start from

real machine code. Any other approach would lead to unsafe results.

In the following, we will study WCET estimation more closely. The presenta-

tion is based on the description of the tool aiT by R. Wilhelm [Wilhelm, 2006].

The architecture of aiT is shown in fig. 5.4.

Figure 5.4. Architecture of the aiT timing analysis tool

210 EMBEDDED SYSTEM DESIGN

Consistent with our remark about the problems with high-level code, aiT starts

from an executable object file comprising the code to be analyzed. From this

code, a control-flow graph (CFG) is extracted. Next, loop transformations are

applied. These include transformations between loops and recursive function

calls as well as virtual loop unrolling. This unrolling is called “virtual” since

it is performed internally, without actually modifying the code to be executed.

Results are represented in the CRL (control flow representation language) for-

mat. The next phase employs different static analyses. Static analyses read the

AIP-file comprising designer’s annotations. These annotations contain infor-

mation which is difficult or impossible to extract automatically from the pro-

gram (for example, bounds of complex loops). Static analyses include value-,

cache-, and pipeline analyses.

A value analysis computes enclosing intervals for possible values in registers

and local variables. The resulting information can be used for control-flow

analysis and for data-cache analysis. Frequently, values such as addresses are

precisely known (especially for “clean” code) and this helps in predicting ac-

cesses to memories.

The next step is cache and pipeline analysis. In the following, we will present

a few details about the cache analysis.

Suppose that we are using an n-way set associative cache (see fig. 5.5)1.

Figure 5.5. Set associative cache (for n=4)

We consider that part (row) of the cache corresponding to a certain index

(shown in bold in fig. 5.5). We assume that eviction from that part of the cache

1We assume that students are familiar with concepts of caches.

Evaluation and Validation 211

is controlled by the least recently used (LRU) strategy. This means that among

all references for a particular index, the last n referenced memory blocks are

stored in that part of the cache. We assume that the necessary LRU man-

agement hardware is available for each index and that each index is handled

independently of other indexes. Under this assumption, all evictions for a par-

ticular index are completely independent of decisions for other indexes. This

independence is extremely important, since it allows us to consider each of the

indexes independently.

Let us now consider a partial cache and a particular index. Suppose that we

have information about potential entries for each of the cache ways (columns).

Furthermore, consider control flow joins. What do we know about the con-

tent of the partial cache after the join? We must distinguish between may- and

must-information and the corresponding analysis. Must-analysis reveals the

entries which must be in the cache. This information is useful for comput-

ing the WCET. May-analysis identifies the entries which may be in the cache.

This information is typically used to conclude that certain information will

definitely not be in the cache. This knowledge is then exploited during the

computation of the BCET. As an example of must- and may-analysis, we con-

sider must information at control flow joins. Fig. 5.6 shows the corresponding

situation. Entries on the left are assumed to be younger than the ones on the

right.

Figure 5.6. Must-analysis at program joins for LRU-caches

In fig. 5.6, memory object c is assumed to be the youngest object for one path

to the join and a assumed to be the youngest object for the other path to the

join. The age of the other entries is defined accordingly. What do we know

about the “worst” case after the join? A certain entry is guaranteed to be in the

cache only if it is guaranteed to be in the cache for both paths. This means that

the intersection of the memory objects defines the result of the must-analysis

after the join. As a worst case, we must assume the maximum of the ages

along the two paths. Fig. 5.6 shows the result. Obviously, this analysis has to

use sets of entries for each of the cache ways.

Let us now consider may-analysis for control flow joins. Fig. 5.7 depicts the

situation.

212 EMBEDDED SYSTEM DESIGN

Figure 5.7. May-analysis at program joins for LRU-caches

Some object being in the cache on either of the two paths to the join may be in

the cache after the join. This means that the set of objects which may be in the

cache after the join consists of the union of the objects that were in the cache

before the join. As a best case, we use the minimum of the ages before the

join. Fig. 5.7 shows the result.

For any reference to a memory block b, the accessed memory block moves to

the youngest position, and all the other memory blocks age by 1.

Static analyses also comprise pipeline analysis. Pipeline analysis has to com-

pute safe bounds on the number of cycles required in order to execute machine

code in the machine pipeline. Details of pipeline analysis are explained by R.

Wilhelm [Wilhelm, 2006] and S. Thesing [Thesing, 2004].

The overall result of static analyses consists of bounds on the execution times

for each of the basic blocks of a program. Results are written to the PER-file

shown in fig. 5.4.

aiT’s next phase uses these bounds in order to derive worst case execution times

for the entire program. This step is based on an ILP model (see page 335). In

this model, the overall execution time is used as the objective function. The

overall execution time is calculated as the sum over the execution-time esti-

mates of basic blocks multiplied by their execution frequencies. The execution

time of basic blocks is defined as the WCET of a single execution of the block

(as computed during static analysis) multiplied by the the worst case execu-

tion count of that block. Only some of the execution counts of blocks can be

determined automatically. Therefore, building the ILP model relies on addi-

tional designer-provided information, e.g. about loop bounds. This informa-

tion is read in from the external AIP-file. Constraints model relations between

blocks. This technique for modeling execution time is called implicit path

enumeration, since the problem of enumerating the potentially large number

of execution paths is avoided. The ILP problem defined in this way can be

solved with some standard ILP solver maximizing the objective function. The

generated maximum yields a safe upper bound on the overall execution time.

aiT also provides a visualization of the results in the form of annotated control

flow graphs. These graphs can be analyzed by the designer in order to optimize

the system under design.

Evaluation and Validation 213

5.2.3 Real-time calculus

Thiele’s real-time calculus (RTC) is based on the description of the rate of

incoming events2. This description also includes fluctuations of this rate. To-

wards this end, the timing characteristics of a sequence (or stream) of events

are represented by a tuple of arrival curves:

α u(∆),α l(∆) ∈ IR ≥ 0,∆ ∈ IR ≥ 0

These curves represent the maximal resp. the minimal number of events arriv-

ing within a time interval of length ∆. There are at most α u(∆) and at least

α l(∆) events arriving within the time interval (t, t + ∆) for all t ≥ 0. Fig.

5.8 shows the number of possibly arriving events for some possible models of

arriving events.

Figure 5.8. Arrival curves: periodic stream (left), periodic stream with jitter J (right)

For example, in the case of periodic event streams with period p, there is a

maximum of a single event happening in time interval (0, p)3. Similarly, there

is an upper bound of two events within time interval (p,2p). Now, let us

consider the lower bound for time interval (0, p). There is possibly not a single

event in this interval. Hence, the bound is zero. For time interval (p,2p), there

has to be at least one event. Therefore, the bound is one. So, for ∆ = 0.5p, there

will be at least zero and at most one incoming event (see fig. 5.8 (left)). In the

case of periodic event streams with jitter J, these curves are shifted by this

amount (see fig. 5.8 (right)). The upper bound is shifted to the left, the lower

bound is shifted to the right. The jitter is assumed not to be accumulating. We

2Our presentation of the real-time calculus is based on Thiele’s presentation in the book edited by Zu-

rawski [Thiele, 2006b]. Resulting considerations at the system level have been called modular performance

analysis (MPA).
3We leave out the subtle discussion of dis-continuities at ∆ = n∗ p.

214 EMBEDDED SYSTEM DESIGN

are using bars on top of symbols (like α) for all entities referring to incoming

events.

Available computational and communication service capacity can be described

by service functions:

β u(∆),β l(∆) ∈ IR ≥ 0,∆ ∈ IR ≥ 0

These functions allow us to model situations in which the available service

capacity is fluctuating. Fig. 5.9 shows the communication capacity of some

time division multiple access (TDMA) bus (see page 161). Allocation is done

periodically with a period of p. Bus arbitration allocates this bus during a time

window s time units long. During this window, the bus achieves a band width

of b.

Figure 5.9. Service functions for a TDMA bus

The upper bound is obtained if the bus is allocated exactly at the time we are

starting our observation. The transfered amount is then increasing linearly.

The lower bound is obtained if the bus was just deallocated when we started

our observation of length ∆. Then we must wait p− s time units until the bus

gets allocated again.

Separate methods are required to determine α and β for streams of (“external”)

events arriving at the system to be modeled. Their computation is not part of

RTC. In contrast, bounds for events generated within the system are derived by

the calculus (see below).

Up till now, there is no information about the workload required by each of

the incoming events. This workload is represented by additional functions

γ u(e),γ l(e)∈ IR≥ 0 for each sequence e of incoming events. This information

can be derived from bounds on the execution time of code required for each

of the events. Fig. 5.10 shows an example of such functions. This example is

based on the assumption that between three and four time units are required

for processing a single event.

Accordingly, the workload for a single event varies between three and four time

units, the work load for two events varies between six and eight time units, etc.

Evaluation and Validation 215

Figure 5.10. Work load characterization

The dashed lines are not part of the function, since it is defined only for an

integer number of events. The work load resulting from an incoming stream of

events can now be easily computed. Upper and lower bounds are characterized

by the functions

α u(∆) = γ u(α u(∆)) and (5.3)

α l(∆) = γ l(α l(∆)) (5.4)

There should be enough computational or communication capacity to handle

this work load. The number of events which can be processed with the avail-

able computational capacity can be computed as

β u(∆) = (γ l)−1(β u(∆)) and (5.5)

β l(∆) = (γ u)−1(β l(∆)) (5.6)

Equations 5.5 and 5.6 use the inverse of functions γ u and γ l to convert bounds

on the available capacity (measured in real time units) into bounds measured

in terms of the number of events that can be processed.

Based on this information, it is possible to derive the properties of outgoing

streams of events from incoming streams of events. Suppose the incoming

stream is characterized by bounds [α l,α u]. We can then compute character-

istics of the outgoing streams such as the corresponding bounds [α l′ ,α u′] of

the outgoing stream of events and the remaining service capacity, available for

other tasks. This remaining capacity is derived by transforming service curves

[β l ,β u] into service curves [β l′ ,β u′] (see fig. 5.11). This remaining service

capacity can be employed for lower priority tasks to be executed on the same

processor.

216 EMBEDDED SYSTEM DESIGN

Figure 5.11. Transformation of event stream and service capacities by real-time components

According to Thiele et al., outgoing streams and remaining service capacities

are bounded by the following functions [Thiele, 2006b]:

α u′ = [(α u⊗β u)⊘β l]∧β u (5.7)

α l′ = [(α l⊘β u)⊗β l]∧β l (5.8)

β u′ = (β u −α l)⊘0 (5.9)

β l′ = (β l −α u)⊗0 (5.10)

Operators used in these equations are defined as follows:

(f⊗g)(t) = inf 0≤u≤t{ f (t −u)+g(u)} (5.11)

(f⊗g)(t) = sup0≤u≤t{ f (t −u)+g(u)} (5.12)

(f⊘g)(t) = supu≥0{ f (t +u)−g(u)} (5.13)

(f⊘g)(t) = inf u≥0{ f (t +u)−g(u)} (5.14)

∧ denotes the minimum operator.

In essence, these equations characterize outgoing streams and capacities. These

equations have been adopted from communications theory. Proofs regard-

ing these equations are provided by Network Calculus [Le Boudec and Thiran,

2001]. The easiest way of using these equations is to download a Matlab tool-

box [Wandeler and Thiele, 2006].

The same theory also allows to compute the delay caused by the real-time

components as well as the size of the buffer required to temporarily store in-

Evaluation and Validation 217

coming/outgoing events. This way, performance and other characteristics of

the system can be computed from information about the components.

A second performance analysis method has been proposed by Henia, Ernst

et al. In this so-called SymTA/S approach [Henia et al., 2005], the different

curves in Thiele’s approach are replaced by standard models of event streams

such as periodic event streams, periodic event streams with jitter and periodic

streams with bursts. SymTA/S explicitly supports the combination and integra-

tion of different kinds of analysis techniques known from real-time research.

5.3 Energy and power models

Energy models and power models are essential for evaluating the correspond-

ing objectives. The two models are closely related, as can be seen from equa-

tion 3.13. Such models are needed for optimizations aiming at a reduction

of power and energy consumptions. They are also required for optimizations

trying to reduce operating temperatures.

One of the first power models was proposed by Tiwari [Tiwari et al., 1994].

It is based on measurements on a real system. Measured values are then

associated with executed instructions. The model includes so-called base

costs and inter-instruction costs. Base costs of an instruction correspond

to the energy consumed per instruction execution if an infinite sequence of

instances of that instruction is executed. Inter-instruction costs model the

additional energy consumed by the processor if instructions change. This

additional energy is required, for example, due to switching functional units

on and off. This power model focuses on the consumption in the processor

and does not consider the power consumed in the memory or in other parts

of the system.

Another power model was proposed by Simunic et al. [Simunic et al.,

1999]. That model is based on data sheets. The advantage of this approach

is that the contribution of all components of an embedded system to the

energy consumption can be computed. However, the information in data

sheets about average values may be less precise than the information about

maximal or minimal values.

A third model has been proposed by Rusell and Jacome [Rusell and Ja-

come, 1998]. This model is based on precise measurements of two fixed

configurations.

Still another model was proposed by Lee [Lee et al., 2001]. This model

includes a detailed analysis of the effects of the pipeline. It does not include

multicycle operations and pipeline stalls.

218 EMBEDDED SYSTEM DESIGN

The energy model by Steinke et al. [Steinke et al., 2001] is based on precise

measurements using real hardware. The consumption of the processor as

well as that of the memory are included. This model has been integrated

into the energy-aware compiler encc from TU Dortmund.

The energy consumption of caches can be computed with CACTI [Wilton

and Jouppi, 1996].

The Wattch power estimation tool [Brooks et al., 2000] estimates the power

consumption of microprocessor systems at the architectural level, without

requiring detailed information at the circuit or layout level.

Several commercial tools provide power estimation.

Power estimation is used in power management algorithms (see page 313).

These examples lead to the following general conclusion: for some real, ex-

isting hardware, precise power models can be generated with a limited effort.

However, during design space exploration, such hardware is typically not avail-

able and the resulting power models may be imprecise4.

5.4 Thermal models

The quest for higher performances of embedded systems has increased the

chances of components becoming hot during their operation. Temperatures of

the various components of embedded systems can have a serious impact on

their usability. In the worst case, overheated components can cause damages

to other systems. For example, they may cause fire hazards. Overheated com-

ponents can also cause the embedded systems themselves to fail. However,

hot components might also have other consequences, even in the absence of

immediate failures. For example, the useful system life might be shortened,

sometimes by rather large factors.

The thermal behavior of embedded systems is closely linked to the transforma-

tion of electrical energy into heat. Therefore, thermal models are usually linked

to energy models. Thermal models are based on the laws of physics. Thermal

conductance is the key quantity considered in thermal modeling. The thermal

conductance of a certain material reflects the amount of heat transfered through

a plate (made from that material) of area A and thickness L when the temper-

atures at the opposite sides differ by one Kelvin. The reciprocal of thermal

conductance is called thermal resistance. For stacked plates in close contact,

the effective overall thermal resistance is the sum of the individual resistances.

4Deviations of about 50% are sometimes mentioned in discussions.

Evaluation and Validation 219

This means, thermal resistances add up like electrical resistances in an elec-

trical network. This correspondence also extends to masses storing heat: such

masses correspond to capacitors of electrical networks. As a result, thermal

modeling typically uses equivalent electrical models and employs well-known

techniques for solving electrical network equations (see, for example, Chen et

al. [Chen et al., 2010]).

Tools for thermal modeling include HotSpot [Skadron et al., 2009], a tool which

can be integrated with power simulators such as Wattch (see page 218). Both

tools can be interfaced to the SimpleScalar functional simulator [Simple Scalar

LLC, 2004]. Validation of thermal models requires precise temperature mea-

surements [Mesa-Martinez et al., 2010].

5.5 Risk- and dependability analysis

Embedded and cyber-physical systems (like other products) can cause damages

to properties and lives. It is not possible to reduce the risk of damages to zero.

The best that we can do is to make the probability of damages small, hopefully

orders of magnitude smaller than other risks. This task is expected to become

more difficult in the future, since decreasing feature sizes of semiconductors

will be resulting in a reduced reliability of semiconductor devices [ITRS

Organization, 2009]. Transient as well as permanent faults are expected to

become more frequent. Shrinking feature sizes will also cause an increased

variability among device parameters. Therefore, dependability analysis and

fault tolerant designs are becoming extremely important [Mukherjee, 2008],

[Garg and Khatri, 2009] . Faults within semiconductors might lead to fail-

ures of the system. The terms faults, failures and the related terms error and

service were defined by Laprie et al. [Laprie, 1992], [Avižienis et al., 2004].

Definitions:

“The service delivered by a system (in its role as a provider) is its behavior

as it is perceived by its user(s); ... The delivered service is a sequence of the

provider’s external states. ... Correct service is delivered when the service

implements the system function”.

“A service failure, often abbreviated here to failure, is an event that occurs

when the delivered service of a system deviates from the correct service. ...

A service failure is a transition from correct service to incorrect service”.

An error exists if one of the system’s states is incorrect and may lead to its

subsequent service failure.

“The adjudged or hypothesized cause of an error is called a fault. Faults

can be internal or external of a system.”

220 EMBEDDED SYSTEM DESIGN

Some faults will not cause a system failure.

As an example, we might consider a transient fault flipping a bit in memory.

After this bit flip, the memory cell will be in error. A failure will occur if the

system service is affected by this error.

In line with these definitions, we will talk about failure rates when we consider

systems that do not provide the expected system function. We will talk about

faults whenever we consider the underlying reasons that might cause failures.

There is a large number of possible reasons for faults, some of them resulting

from reduced feature sizes of semiconductors. Errors will not be considered

in the remaining part of this book.

For many applications, a rate of a catastrophe has to be less than 10−9 per hour

[Kopetz, 1997], corresponding to one case per 100,000 systems operating for

10,000 hours. Reaching this level of dependability is only feasible if design

evaluation also comprises the analysis of the reliability, the expected life-time

and related objectives. Such an analysis is usually based on the probability of

failures.

More precisely, we consider the probability densities of failures. Let x be the

time until the first failure. x is a random variable. Let f (x) be the probability

density of this random variable.

As an example, we are frequently using the exponential probability density

f (x) = λe−λx. For this density function, failures are becoming less and less

likely over time (after some time, it is likely that the system is not working any

more and a system which is not working cannot fail). This density function is

frequently used since it has nice mathematical properties and since the actual

time dependency of the failure rate is often unknown. In the absence of knowl-

edge about the latter, a constant rate is assumed, leading to the exponential

density function. The exponential distribution will possibly be inexact, but it

is assumed that it does typically provide at least a first rough approximation of

the real system. Fig. 5.12 (left) shows this density function.

Figure 5.12. Density function and probability distribution for exponential distributions

Evaluation and Validation 221

The probability distribution is frequently more interesting than the density.

This distribution represents the probability of a system not working at time

t. It can be obtained by integrating the density function until time t.

F(t) = Pr(x ≤ t) (5.15)

F(t) =
Z t

0
f (x)dx (5.16)

For example, for the exponential distribution we obtain:

F(t) =
Z t

0
λe−λxdx = −[e−λx]t0 = 1− e−λt (5.17)

Fig. 5.12 (right) contains the corresponding function. As time advances, this

probability approaches 1. This means that, as time progresses, it becomes

likely that the system will have failed.

Definition: The reliability R(t) of a system is the probability of the time until

the first failure being larger than t:

R(t) = Pr(x > t), t ≥ 0 (5.18)

R(t) =
Z ∞

t
f (x)dx (5.19)

F(t)+R(t) =
Z t

0
f (x)dx+

Z ∞

t
f (x)dx = 1 (5.20)

R(t) = 1−F(t) (5.21)

f (x) = −
dR(t)

dt
(5.22)

For the exponential distribution, we have R(t) = e−λt (see fig. 5.13).

Figure 5.13. Reliability for exponential distributions

The probability for the system to be functional after time t = 1/λ is about 37%.

222 EMBEDDED SYSTEM DESIGN

Definition: The failure rate λ(t) is the probability of a system failing between

time t and time t +∆t.

λ(t) = lim
∆t→0

Pr(t < x ≤ t +∆t|x > t)

∆t
(5.23)

Pr(t < x ≤ t +∆t|x > t) is the conditional probability for the system failing

within this time interval provided that it was working at time t. For conditional

probabilities, there is the general equation Pr(A|B) = Pr(AB)/Pr(B), where

Pr(AB) is the probability of A and B happening. Pr(AB) is equal to F(t +
∆t)−F(t) in our case. Pr(B) is the probability of the system working at time

t, which is R(t) in our notation. Therefore, equation 5.23 leads to:

λ(t) = lim
∆t→0

F(t +∆t)−F(t)

∆tR(t)
=

f (t)

R(t)
(5.24)

For example, for the exponential distribution we obtain5:

λ(t) =
f (t)

R(t)
=

λe−λt

e−λt
= λ (5.25)

Failure rates are frequently measured as multiples (or fractions) of 1 FIT, where

“FIT” stands for Failure unIT and is also known as Failures In Time. 1 FIT

corresponds to 1 failure per 109 hours.

However, failure rates of real systems are usually not constant. For many sys-

tems, we have a “bath tub”-like behavior (see fig. 5.14).

Figure 5.14. Bath tub-like failure rates

5This result motivates denoting the failure rate and the constant of the exponential distribution with the

same symbol.

Evaluation and Validation 223

For this behavior, we are starting with an initially larger failure rate. This

higher rate is a result of an imperfect production process or “infant mortality”.

The rate during the normal operating life is then essentially constant. At the

end of the useful product life, the rate is then increasing again, due to wear-out.

Definition: The Mean Time To Failure (MTTF) is the average time until the

next failure, provided that the system was initially working. This average can

be computed as the expected value of random variable x:

MTTF = E{x} =
Z ∞

0
x f (x)dx (5.26)

For example, for the exponential distribution we obtain:

MTTF =
Z ∞

0
xλe−λxdx (5.27)

This integral can be computed using the product rule (
R

uv′ = uv−
R

u′v where

in our case we have u = x and v′ = λe−λx). Therefore, equation 5.27 leads to

the following equation:

MTTF = −[xe−λx]∞0 +
Z ∞

0
e−λxdx (5.28)

= −
1

λ
[e−λx]∞0 = −

1

λ
[0−1] =

1

λ
(5.29)

This means that, for the exponential distribution, the expected time until the

next failure is the reciprocal value of the failure rate.

Definition: The Mean Time To Repair (MTTR) is the average time to repair

a system, provided that the system is initially not working. This time is the

expected value of the random variable denoting the time to repair.

Definition: The Mean Time Between Failures (MTBF) is the average time

between two failures.

MTBF is the sum of MTTF and MTTR:

MTBF = MTTF+MTTR (5.30)

Figure 5.15 shows a simplistic view of this equation: it is not reflecting the fact

that we are dealing with probabilistic events and actual MTBF, MTTF, and

MTTR values may vary randomly.

224 EMBEDDED SYSTEM DESIGN

Figure 5.15. Illustration of MTTF, MTTR and MTBF

For many systems, repairs are not considered. Also, if they are considered, the

MTTR should be much smaller than the MTTF. Therefore, the terms MTBF

and MTTF are frequently mixed up. For example, the life-time of a hard disk

may be quoted as a certain MTBF, even though it will never be repaired. Quot-

ing this number as the MTTF would be more correct. Still, the MTTF provides

only very rough information about dependability, especially if there are large

variations in the failure rates over time.

Definition: The availability is the probability of a system being in an opera-

tional state.

The availability varies over time (just consider the bath tub curve!). Therefore,

we can model availability by a time-dependent function A(t). However, we are

frequently only considering the availability A for large time intervals. Hence,

we define

A = lim
t→∞

A(t) =
MTTF

MTBF
(5.31)

For example, assume that we have a system which is repeatedly available for

999 days and then needs one day for repair. Such a system would have an

availability of A = 0.999.

Allowed failure rates can be in the order of 1 FIT. This may be several orders

of magnitude less than the failure rates of chips. This means that systems

must be more reliable than their components! Obviously, the required level of

reliability makes fault tolerance techniques a must!

Obtaining actual failure rates is difficult. Fig. 5.16 shows one of the few pub-

lished results [TriQuint Semiconductor Inc., 2010].

This figure contains failure rates for different Gallium-Arsenide (GaAs) de-

vices with the hottest transistor operating at a temperature of 150 C. This

example is used here to demonstrate that there exist devices for which the

assumptions of constant failure rates or a bath tub-like behavior are oversim-

Evaluation and Validation 225

Figure 5.16. Failure rates of TriQuint Gallium-Arsenide devices (courtesy of TriQuint, Inc.,

Hillsboro), ©TriQuint

plifying. As a result, citing a single MTTF number may be misleading. The

actual distribution of failures over time should be used instead. In the par-

ticular case of this example, failure rates are less than 100 FIT for the first

20 years (175,300 hrs) of product life time, despite the high temperature. FIT

numbers are actually very much temperature dependent and temperatures up to

275 C and known temperature dependences have been used at Triquint to com-

pute failure rates for periods larger than the time available for testing. Triquint

claims that their GaAs devices are more reliable than average silicon devices.

Reports on FIT testing are also available for Xilinx FPGAs (see, for example,

[Xilinx, 2009]).

It is frequently not possible to experimentally verify failure rates of complete

systems. Requested failure rates are too small and failures may be unaccept-

able. We cannot fly 105 airplanes 104 hours each in an attempt to check if

we reach a failure rate of less than 10−9! The only way out of this dilemma

is to use a combination of checking failure rates of components and formally

deriving from this guarantees for a reliable operation of the system. Design-

and user-generated failures also must be taken into account. It is state of the

art to use decision diagrams to compute the reliability of a system from that of

its components [Israr and Huss, 2008].

Damages are resulting from hazards (chances for a failure). For each possible

damage caused by a failure, there is a severity (the cost) and a probability. Risk

can be defined as the product of the two. Information concerning the damages

resulting from component failures can be derived with at least two techniques

[Dunn, 2002], [Press, 2003]:

226 EMBEDDED SYSTEM DESIGN

Fault tree Analysis (FTA): FTA is a top-down method of analyzing risks.

The analysis starts with a possible damage and then tries to come up with

possible scenarios that lead to that damage. FTA is based on modeling a

Boolean function reflecting the operational state of the system (operational

or not operational). FTA typically includes symbols for AND- and OR-

gates, representing conditions for possible damages. OR-gates are used if

a single event could result in a hazard. AND-gates are used when several

events or conditions are required for that hazard to exist. Fig. 5.17 shows an

example6. FTA is based on a structural model of the system, i.e. it reflects

the partitioning of the system into components.

Figure 5.17. Fault tree

The simple AND- and OR-gates cannot model all situations. For exam-

ple, their modeling power is exceeded if shared resources of some limited

amount (like energy or storage locations) exist. Markov models [Bremaud,

1999] may have to be used to cover such cases. Markov models are based

the notion of states, rather than on the structure of the system.

Failure mode and effect analysis (FMEA): FMEA starts at the compo-

nents and tries to estimate their reliability. Using this information, the re-

liability of the system is computed from the reliability of its parts (corre-

sponding to a bottom-up analysis). The first step is to create a table contain-

ing components, possible failures, probability of failures and consequences

on the system behavior. Risks for the system as a whole are then computed

from the table. Figure 5.18 shows an example.

Tools supporting both approaches are available. Both approaches may be used

in “safety cases”. In such cases, an independent authority has to be convinced

6Consistent with the ANSI/IEEE standard 91, we use the symbols &, =1 and ≥1 to denote and-, xor-, and

or-gates, respectively.

Evaluation and Validation 227

Component Failure Consequences Probability Critical?

...

Processor metal migration no service 10−7 /h yes

...

Figure 5.18. FMEA table

that certain technical equipment is indeed safe. One of the commonly re-

quested properties of technical systems is that no single failing component

should potentially cause a catastrophe.

Safety requirements cannot come in as an afterthought, but must be considered

right from the beginning. The design of safe and dependable systems is a topic

by its own. This book can only provide a few hints into this direction.

According to Kopetz [Kopetz, 2003], the following must be taken into account:

For safety-critical systems, the system as a whole must be more dependable

than any of its parts. Allowed failures may be in the order of 1 failure per 109

hours of operation. This may be in the order of 1000 times less than the failure

rates of chips. Obviously, fault-tolerance mechanisms must be used. Due to the

low acceptable failure rate, systems are not 100% testable. Instead, safety must

be shown by a combination of testing and reasoning. Abstraction must be used

to make the system explainable using a hierarchical set of behavioral models.

Design faults and human faults must be taken into account. In order to address

these challenges, Kopetz proposed the following twelve design principles:

1 Safety considerations may have to be used as the important part of the

specification, driving the entire design process.

2 Precise specifications of design hypotheses must be made right at the be-

ginning. These include expected failures and their probability.

3 Fault containment regions (FCRs) must be considered. Faults in one FCR

should not affect other FCRs.

4 A consistent notion of time and state must be established. Otherwise, it will

be impossible to differentiate between original and follow-up errors.

5 Well-defined interfaces must hide the internals of components.

6 It must be ensured that components fail independently.

7 Components should consider themselves to be correct unless two or more

other components pretend the contrary to be true (principle of self-confi-

dence).

228 EMBEDDED SYSTEM DESIGN

8 Fault tolerance mechanisms must be designed such that they do not create

any additional difficulty in explaining the behavior of the system. Fault

tolerance mechanisms should be decoupled from the regular function.

9 The system must be designed for diagnosis. For example, it has to be pos-

sible to identify existing (but masked) errors.

10 The man-machine interface must be intuitive and forgiving. Safety should

be maintained despite mistakes made by humans.

11 Every anomaly should be recorded. These anomalies may be unobservable

at the regular interface level. This recording should involve internal effects,

since otherwise they may be masked by fault-tolerance mechanisms.

12 Provide a never-give up strategy. Embedded systems may have to provide

uninterrupted service. The generation of pop-up windows or going off line

is unacceptable.

For further information about dependability and safety issues, consult books

[Laprie, 1992], [Neumann, 1995], [Leveson, 1995], [Storey, 1996], [Geffroy

and Motet, 2002] on those areas.

There is an abundant amount of recent publications on the impact of reliability

issues on system design. Examples include publications by Huang [Huang and

Xu, 2010], Zhuo [Zhuo et al., 2010], and Pan [Pan et al., 2010].

5.6 Simulation

Simulation is a very common technique for evaluating and validating de-

signs. Simulation consists of executing a design model on appropriate com-

puting hardware, typically on general purpose digital computers. Obviously,

this requires models to be executable. All the executable models and languages

introduced in Chapter 2 can be used in simulations, and they can be used at

various levels as described starting at page 107. The level at which designs

are simulated is always a compromise between simulation speed and accuracy.

The faster the simulation, the less accuracy is available.

So far, we have used the term behavior in the sense of the functional behavior

of systems (their input/output behavior). There are also simulations of some

non-functional behaviors of designs, including the thermal behavior and the

electro-magnetic compatibility (EMC) with other electronic equipment. Due

to the integration with physics, there is a large range of physical effects which

may have to be included in the simulation model. As a result, it is impossible

to cover all relevant approaches for simulating cyber-physical systems in this

book. Law [Law, 2006] provides an overview of approaches and topics in

simulations on digital systems.

Evaluation and Validation 229

For cyber-physical systems, simulations have serious limitations:

Simulations are typically a lot slower than the actual design. Hence, if we

interface the simulator with the actual environment, we can have quite a

number of violations of timing constraints.

Simulations in the physical environment may even be dangerous (who

would want to drive a car with unstable control software?).

For many applications, there may be huge amounts of data and it may be

impossible to simulate enough data in the available time. Multimedia appli-

cations are notoriously known for this. For example, simulating the com-

pression of some video stream takes an enormous amount of time.

Most actual systems are too complex to allow simulating all possible cases

(inputs). Hence, simulations can help us to find errors in our designs. They

cannot guarantee absence of errors, since simulations cannot exhaustively

be done for all possible combinations of inputs and internal states.

Due to these limitations, there is an increased emphasis on validation by formal

verification (see page 231). Nevertheless, sophisticated simulation techniques

continue to play a key role for validation (see, for example, Braun et al. [Braun

et al., 2010]).

5.7 Rapid prototyping and emulation

Simulations are based on models, which are approximations of real systems. In

general, there will be some difference between the real system and the model.

We can reduce the gap by implementing some parts of our SUD more precisely

than in a simulator (for example, in a real, physical component).

Definition: Adopting a definition phrased by McGregor [McGregor, 2002],

we define emulation as the process of executing a model of the SUD where

at least one component is not represented by simulation on some kind of host

computer.

According to McGregor, “Bridging the credibility gap is not the only reason for

a growing interest in emulation—the above definition of an emulation model

remains valid when turned around— an emulation model is one where part

of the real system is replaced by a model. Using emulation models to test

control systems under realistic conditions, by replacing the ... (real system) ...

with a model, is proving to be of considerable interest to those responsible for

commissioning, or the installation and start-up of automated systems of many

kinds.”

230 EMBEDDED SYSTEM DESIGN

In order to improve credibility further, we can continue replacing simulated

components by real components. These components do not have to be the final

components. They can be approximations of the real system itself, but should

exceed the precision of simulations.

Note that it is now common to discuss the “emulation” of one computer on

another computer by means of software. There is a lack of a precise definition

of the use of the term in this context. However, it can be considered consistent

with our definition, since the emulated computer is not just simulated. Rather,

a speed faster than simulation speed is expected.

Definition: Fast prototyping is the process of executing a model of the SUD

where no component is represented by simulation on some kind of host com-

puter. Rather, all components are represented by realistic components. Some

of these components should not yet be the finally used components (otherwise,

this would be the real system).

There are many cases in which the designs should be tried out in realistic en-

vironments before final versions are manufactured. Control systems in cars

are an excellent example for this. Such systems should be used by drivers

in different environments before mass production is started. Accordingly, the

automotive industry designs prototypes. These prototypes should essentially

behave like the final systems, but they may be larger, more power consuming

and have other properties which test drivers can accept. The term “prototype”

can be associated with the entire system, comprising electrical and mechanical

components. However, the distinction between rapid prototyping and emula-

tion is also blurring. Rapid prototyping is by itself a wide area which cannot

be comprehensively covered in this book.

Prototypes and emulators can be built, for example, using FPGAs. Racks con-

taining FPGAs can be stored in the trunk while test drivers exercise the car.

This approach is not limited to the automotive industry. There are several other

cases in which prototypes are built from FPGAs. Commercially available em-

ulators consist of a large number of FPGAs. They come with the required

mapping tools which map specifications to these emulators. Using these emu-

lators, experiments with systems which behave “almost” like the final systems

can be run. However, catching errors by prototyping and emulation is already

a problem for non-distributed systems. For distributed systems, the situation is

even more difficult (see, for example, Tsai [Tsai and Yang, 1995]).

Evaluation and Validation 231

5.8 Formal Verification

Formal verification7 is concerned with formally proving a system correct, us-

ing the language of mathematics. First of all, a formal model is required to

make formal verification applicable. This step can hardly be automated and

may require some effort. Once the model is available, we can try to prove

certain properties.

Formal verification techniques can be classified by the type of logic employed:

Propositional logic: In this case, models consist of Boolean functions.

Tools are called Boolean checkers, tautology checkers or equivalence

checkers. They can be used to verify that two representations of Boolean

functions (or sets of Boolean functions) are equivalent. Since propositional

logic is decidable, it is also decidable whether or not the two representa-

tions are equivalent (there will be no cases of doubt). For example, one

representation might correspond to gates of an actual circuit and the other

to its specification. Proving the equivalence then proves the effect of all

design transformations (for example, optimizations for power or delay) to

be correct. Boolean checkers can cope with designs which are too large to

allow simulation-based exhaustive validation. The key reason for the power

of Boolean checkers is the use of Binary Decision Diagrams (BDDs) [We-

gener, 2000]. The complexity of equivalence checks of Boolean functions

represented with BDDs is linear in the number of BDD-nodes. In contrast,

the equivalence check for functions represented by sums of products is NP-

hard. BDD-based equivalence checkers have therefore replaced simulators

for this application and handle circuits with millions of transistors.

First order logic (FOL): FOL includes ∃ and ∀ operators. Typically, in-

tegers are also allowed. Some automation for verifying FOL models is

feasible. However, since FOL is undecidable, there may be cases of doubt.

Popular techniques include the Hoare calculus.

Higher order logic (HOL): Higher order is based on lambda-calculus and

allows functions to be manipulated like other objects [University of Cam-

bridge, 2010]. For higher order logic, proofs can hardly ever be automated

and typically must be done manually with some proof-support.

Propositional logic can be used to verify stateless logic networks, but cannot

directly model finite state machines. For short input sequences, it may be suf-

ficient to cut the feed-back loop in FSMs and to effectively deal with several

7This text on formal verification is based on a guest lecture given by Tiziana Margaria-Steffen at TU Dort-

mund.

232 EMBEDDED SYSTEM DESIGN

copies of these FSMs, each copy representing the effect of one input pattern.

However, this method does not work for longer input sequences. Such se-

quences can be handled with model checking.

For model checking, we have two inputs to the verification tool:

1 the model to be verified, and

2 properties to be verified.

States can be quantified with ∃ and ∀; numbers cannot. Verification tools can

prove or disprove the properties. In the latter case, they can provide a counter-

example. Model checking is easier to automate than FOL. It has been imple-

mented for the first time in 1987, using BDDs. It was possible to locate several

errors in the specification of the future bus protocol [Clarke et al., 2005].

As a next step, there have been attempts to integrate model checking and higher

order logic. In this integrated model, HOL is used only where it is absolutely

necessary.

Clarke’s EMC-system [Clarke and et al., 2003] (see fig. 5.19) is an example of

this approach.

Figure 5.19. Clarke’s EMC system

This system accepts properties to be described as CTL formulas. CTL-formulas

include two parts:

a path quantifier (this part specifies paths in the state transition diagram),

and

a state quantifier (this part specifies states).

Example: M,s |= AGg means: In the transition graph M, property g holds

for all paths (denoted by A) starting at state s and all states (denoted by G).

Extensions are needed in order to also cover real-time behavior and numbers.

Evaluation and Validation 233

This technique could be used, for example, to prove properties of the railway

model of fig. 2.52 (see page 75). It should be possible to convert the Petri

net into a state chart and then confirm that the number of trains commuting

between Cologne and Paris is indeed constant, confirming our discussion of

Petri net place invariants on page 73.

5.9 Assignments

1 Let us consider an example demonstrating the concept of Pareto-optimality.

In this example, we study the results generated by task concurrency man-

agement (TCM) tools designed at the IMEC research center (Interuniversi-

tair Micro-Electronica Centrum). TCM tools aim at establishing efficient

mappings from applications to processors. Different multi-processor sys-

tems are evaluated and represented as sets of Pareto-optimal designs. Wong

et al. [Wong et al., 2001] describe different options for the design of an

MPEG-4-player. The authors assume that a combination of StrongARM-

Processors and specialized accelerators should be used. Four designs meet

the timing constraint of 30 ms (see figure 5.20).

Processor combination 1 2 3 4

Number of high speed processors 6 5 4 3

Number of low speed processors 0 3 5 7

Total number of processors 6 8 9 10

Figure 5.20. Processor configurations

These different designs are shown in fig. 5.21.

Figure 5.21. Pareto points for multi processor systems 2 und 3

234 EMBEDDED SYSTEM DESIGN

For combinations 1 and 4, the authors report that only one mapping of

tasks to processors meets the timing constraints. For combinations 2 and

3, different time budgets lead to different task to processor mappings and

different energy consumptions.

Which area in the objective space is dominated by at least one design of

configuration 3? Is there any design belonging to configuration 2 which is

not dominated by at least one design of configuration 3? Which area in the

objective space dominates at least one design of configuration 3?

2 Which conditions must be met by computations of WCETEST ?

3 Let’s consider cache states at a control flow join! Fig. 5.22 shows abstract

cache states before the join.

Figure 5.22. Abstract cache states

Now let us look at abstract cache states after the join. Which state would a

must-analysis derive? Which state would a may-analysis derive?

4 Consider an incoming “bursty” event stream. The stream is periodic with a

period of p. At the beginning of each period, two events arrive with a sep-

aration of d time units. Develop arrival curves for this stream! Resulting

graphs should display times from 0 up to 3∗p.

5 Suppose that you are working with a processor having a maximum perfor-

mance of b.

(a) How do the service curves look like if the performance can deteriorate

to b′, due to cache conflicts?

(b) How do the service curves change if some timer is interrupting the

executed program every 100 ms and if servicing the interrupt takes 10

ms? Assume that there are no cache conflicts.

(c) How do the service curves look like if you consider cache conflicts like

in (a) and interrupts like in (b)?

Resulting graphs should display times from 0 up to 300 ms.

Chapter 6

APPLICATION MAPPING

6.1 Problem definition

Once the specification has been completed, design activities can start. This

is consistent with the simplified design information flow (see fig. 6.1). Map-

ping applications to execution platforms is really a key activity. Therefore we

underline the importance of this book chapter.

Figure 6.1. Simplified design flow

For embedded systems, we are frequently expecting that the system works with

a certain combination of applications. For example, for a mobile phone, we

expect being able to make a phone call while the Bluetooth stack is transmitting

the audio signals to a head set and while we are looking up information in

our “personal information manager” (PIM). At the same time, there may be a

concurrent file transfer or even a video connection. We must make sure that

these applications can be used together and that we are keeping the deadlines

(no lost audio samples!). This is feasible through an analysis of the use cases.

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 6, © Springer Science+Business Media B.V. 2011

235

http://dx.doi.org/10.1007/978-94-007-0257-8_6

236 EMBEDDED SYSTEM DESIGN

It is a characteristic of embedded and cyber-physical systems that both hard-

ware and software must be considered during their design. Therefore, this type

of design is also called hardware/software codesign. The overall goal is to

find the right combination of hardware and software resulting in the most effi-

cient product meeting the specification. Therefore, embedded systems cannot

be designed by a synthesis process taking only the behavioral specification into

account. Rather, available components must be accounted for. There are also

other reasons for this constraint: in order to cope with the increasing com-

plexity of embedded systems and their stringent time-to-market requirements,

reuse is essentially unavoidable. This led to the term platform-based design:

“A platform is a family of architectures satisfying a set of constraints imposed

to allow the reuse of hardware and software components. However, a hard-

ware platform is not enough. Quick, reliable, derivative design requires using

a platform application programming interface (API) to extend the platform to-

ward application software. In general, a platform is an abstraction layer that

covers many possible refinements to a lower level. Platform-based design is a

meet-in-the-middle approach: In the top-down design flow, designers map an

instance of the upper platform to an instance of the lower, and propagate de-

sign constraints” [Sangiovanni-Vincentelli, 2002]. The mapping is an iterative

process in which performance evaluation tools guide the next assignment.

In this book, we focus on embedded system design based on available execu-

tion platforms. This reflects the fact that many modern systems are being built

on top of some existing platform. Techniques other that the ones described

in this book must be used in cases where the execution platform needs to be

designed as well. Due to our focus, the mapping of applications to execution

platforms can be seen as the main design problem.

In the general case, mapping will be performed onto multiprocessor systems.

We can distinguish between two different classes of multiprocessor systems:

Homogeneous multiprocessor systems: In this case, all the processors in

the system provide the same functionality. This is the case for the multi-

or many-core architectures considered in PC-like systems. Code compati-

bility between the different processors is the key advantage here: it can be

exploited during run-time scheduling of tasks (including load balancing)

and is also an advantage for fault-tolerant designs. We can just reallocate

processors at run-time, if a processor fails. Also, the design of the processor

platform and development tools is easier, if all processors are of the same

type.

Heterogeneous multiprocessor systems: In this case, processors are of

different types. The improved efficiency of this approach is the key reason

for accepting not to have all the advantages of homogeneous multiprocessor

Application mapping 237

systems. Heterogeneous processors are the most efficient programmable

platforms.

Even for platform-based design, there may be a number of design options.

We might be able to select between different variants of a platform, where

each variant might have a different number of processors, different speeds of

processors or a different communication architecture. Moreover, there may be

different applicable scheduling policies. Appropriate options must be selected.

This leads us to the following definition of our mapping problem [Thiele,

2006a]:

Given:

a set of applications,

use cases describing how the applications will be used,

a set of possible candidate architectures:

– (possibly heterogeneous) processors,

– (possibly heterogeneous) communication architectures, and

– possible scheduling policies.

Find:

a mapping of applications to processors,

appropriate scheduling techniques (if not fixed), and

a target architecture (if not fixed).

Objectives:

Keeping deadlines and/or maximizing performance, as well as

minimizing cost, energy consumption, and possibly other objectives.

The exploration of possible architectural options is called design space ex-

ploration (DSE). The case of a completely fixed platform architecture can be

considered as a special case.

Designing an AUTOSAR-based automotive system can be seen as an example:

In AUTOSAR [AUTOSAR, 2010], we have a number of homogeneous execu-

tion units (called ECUs) and a number of software components. The question

238 EMBEDDED SYSTEM DESIGN

is: how do we map these software components to the ECUs such all real-time

constraints are met? We would like to use the minimum number of ECUs.

The application mapping problem is a very difficult one and currently only

approximations for an automated mapping are available. In the following, we

will present building blocks for such a mapping:

standard scheduling techniques,

hardware/software partitioning, and

advanced techniques for mapping sets of applications onto multi-processor

systems.

We will start with standard scheduling techniques which can be used in various

contexts.

6.2 Scheduling in real-time systems

As indicated above, scheduling is one of the key issues in implementing em-

bedded systems. Scheduling algorithms may be required a number of times

during the design of such systems. Very rough calculations may already be

required while fixing the specification. Later, more detailed predictions of ex-

ecution times may be required. After compilation, even more detailed knowl-

edge exists about the execution times and accordingly, more precise schedules

can be made. Finally, it may be necessary to decide at run-time which task is

to be executed next. In contrast, in time-triggered systems, RTOS scheduling

may be limited to simple table look-ups for tasks to be executed. Scheduling

is similar to performance evaluation in that it cannot be constrained to a single

design step.

Scheduling defines start times for each task and therefore defines a mapping τ
from nodes of a task graph G = (V,E) to time domain Dt :

τ : V → Dt (6.1)

6.2.1 Classification of scheduling algorithms

Scheduling algorithms can be classified according to various criteria. Fig. 6.2

shows a possible classification of algorithms (similar schemes are described in

books on the topic [Balarin et al., 1998], [Kwok and Ahmad, 1999], [Stankovic

et al., 1998], [Liu, 2000], [Buttazzo, 2002]).

The following is a list of criteria, the first four of which are linked to fig. 6.2.

Application mapping 239

Figure 6.2. Classes of scheduling algorithms

Soft and hard deadlines: Scheduling for soft deadlines is frequently based

on extensions to standard operating systems. For example, providing task

and operating system call priorities may be sufficient for systems with soft

deadlines. We will not discuss these systems further in this book. More

work and a detailed analysis are required for hard deadline systems. For

these, we can consider periodic and aperiodic systems.

Scheduling for periodic and aperiodic tasks: In the following, we will

distinguish between periodic and aperiodic tasks.

Definition: Tasks which must be executed once every p units of time are

called periodic tasks, and p is called their period. Each execution of a

periodic task is called a job.

Definition: Tasks which are not periodic are called aperiodic.

Definition: Aperiodic tasks requesting the processor at unpredictable times

are called sporadic, if there is a minimum separation between the times at

which they request the processor.

This minimum separation is important, since tasks sets without such a sep-

aration can possibly not be scheduled. There may be not enough time to

execute tasks if tasks become executable at arbitrarily short time intervals.

Preemptive and non-preemptive scheduling: Non-preemptive schedulers

are based on the assumption that tasks are executed until they are done. As a

result the response time for external events1 may be quite long if some tasks

have a large execution time. Preemptive schedulers must be used if some

tasks have long execution times or if the response time for external events

1This is the time from the occurrence of an external event until the completion of the reaction required for

the event.

240 EMBEDDED SYSTEM DESIGN

is required to be short. However, preemption can result in unpredictable

execution times of the preempted tasks. Therefore, restricting preemptions

may be required in order to guarantee meeting the deadline of hard real-

time tasks.

Static and dynamic scheduling: Dynamic schedulers take decisions at

run-time. They are quite flexible, but generate overhead at run-time. Also,

they are usually not aware of global contexts such as resource requirements

or dependences between tasks. For embedded systems, such global con-

texts are typically available at design time and they should be exploited.

Static schedulers take their decisions at design time. They are based on

planning the start times of tasks and generate tables of start times forwarded

to a simple dispatcher. The dispatcher does not take any decisions, but

is just in charge of starting tasks at the times indicated in the table. The

dispatcher can be controlled by a timer, causing the dispatcher to analyze

the table. Systems which are totally controlled by a timer are said to be

entirely time triggered (TT systems). Such systems are explained in detail

in the book by Kopetz [Kopetz, 1997]:

“In an entirely time-triggered system, the temporal control structure of all

tasks is established a priori by off-line support-tools. This temporal con-

trol structure is encoded in a Task-Descriptor List (TDL) that contains

the cyclic schedule for all activities of the node2 (Figure 6.3). This sched-

ule considers the required precedence and mutual exclusion relationships

among the tasks such that an explicit coordination of the tasks by the oper-

ating system at run time is not necessary.” Figure 6.3 includes scheduled

task start, task stop and send message (send) activities.

Figure 6.3. Task descriptor list in a time-triggered system

2This term refers to a processor in this case.

Application mapping 241

“The dispatcher is activated by the synchronized clock tick. It looks at the

TDL, and then performs the action that has been planned for this instant

....”

The main advantage of static scheduling is that it can be easily checked if

timing constraints are met:

“For satisfying timing constraints in hard real-time systems, predictabil-

ity of the system behavior is the most important concern; pre-run-time

scheduling is often the only practical means of providing predictability in a

complex system” [Xu and Parnas, 1993].

The main disadvantage is that the response to sporadic events may be quite

poor.

Independent and dependent tasks:

It is possible to distinguish between tasks without any inter-task communi-

cation and other tasks. For embedded systems, dependencies between tasks

are the rule rather than an exception.

Mono- and multi-processor scheduling: Simple scheduling algorithms

handle the case of single processors, whereas more complex algorithms also

handle systems comprising multiple processors. For the latter, we can dis-

tinguish between algorithms for homogeneous multi-processor systems and

algorithms for heterogeneous multi-processor systems. The latter are able

to handle target-specific execution times and can also be applied to mixed

hardware/software systems, in which some tasks are mapped to hardware.

Centralized and distributed scheduling: Multiprocessor scheduling al-

gorithms can either be executed locally on one processor or can be dis-

tributed among a set of processors.

Type and complexity of schedulability test: In practice, it is very impor-

tant to know whether or not a schedule exists for a given set of tasks and

constraints.

A set of tasks is said to be schedulable under a given set of constraints,

if a schedule exists for that set of tasks and constraints. For many ap-

plications, schedulability tests are important. Tests which always return

precise results (called exact tests) are NP-hard in many situations [Garey

and Johnson, 1979]. Therefore, sufficient and necessary tests are used in-

stead. For sufficient tests, sufficient conditions for guaranteeing a schedule

are checked. There is a (hopefully small) probability of indicating that

scheduling cannot be guaranteed even if a schedule exists. Necessary tests

are based on checking necessary conditions. They can be used to show that

no schedule exists. However, there may be cases in which necessary tests

are passed and the schedule still does not exist.

242 EMBEDDED SYSTEM DESIGN

Cost functions: Different algorithms aim at minimizing different func-

tions. Maximum lateness is a frequently used cost function.

Definition: Maximum lateness is defined as the difference between the

completion time and the deadline, maximized over all tasks. Maximum

lateness is negative if all tasks complete before their deadline.

6.2.2 Aperiodic scheduling without precedence
constraints

6.2.2.1 Definitions

Let {Ti} be a set of tasks. Let (see fig. 6.4)

ci be the execution time of Ti,

di be the deadline interval, that is, the time between Ti becoming available

and the time until which Ti has to finish execution.

li be the laxity or slack, defined as

li = di − ci (6.2)

Again, upward pointing arrows denote the time at which tasks becomes

available. Downward pointing arrows represent deadlines.

Figure 6.4. Definition of the laxity of a task

If li = 0, then Ti has to be started immediately after it becomes executable.

Let us first consider3 the case of uni-processor systems for which all tasks

arrive at the same time. If all tasks arrive at the same time, preemption is

obviously useless.

3We are using some of the material from the book by Buttazzo [Buttazzo, 2002] for this section. Refer to

this book for additional references.

Application mapping 243

6.2.2.2 Earliest Due Date (EDD)-Algorithm

A very simple scheduling algorithm for this case was found by Jackson in 1955

[Jackson, 1955]. The algorithm is based on Jackson’s rule:

Given a set of n independent tasks, any algorithm that executes the tasks in

order of nondecreasing deadlines is optimal with respect to minimizing the

maximum lateness.

The algorithm following this rule is called Earliest Due Date (EDD). If the

deadlines are known in advance, EDD can be implemented as a static schedul-

ing algorithm. EDD requires all tasks to be sorted by their deadlines. Hence,

its complexity is O(n log(n)).

Proof of the optimality of EDD:

Let τ be a schedule generated by any algorithm A. Suppose A does not lead to

the same result as EDD. Then, there are tasks Ta and Tb such that the execution

of Tb precedes the execution of Ta in τ, even though the deadline of Ta is earlier

than that of Tb (da < db). Now, let us consider a schedule τ′. τ′ is generated

from τ by swapping the execution orders of Ta and Tb (see fig. 6.5).

Figure 6.5. Schedules τ and τ′

Lmax(a,b) = fa − da is the maximum lateness of Ta and Tb in schedule τ. For

schedule τ′, L′
max(a,b) = max(L′

a,L
′
b) is the maximum lateness among tasks Ta

and Tb. L′
a is the maximum lateness of task Ta in schedule τ′. L′

b is defined

accordingly. There are two possible cases:

1 L′
a > L′

b: In this case, we have

L′
max(a,b) = f ′a −da

Ta terminates earlier in the new schedule. Therefore, we have

L′
max(a,b) = f ′a −da < fa −da.

The right side of this inequality is the maximum lateness in schedule τ.

Hence, the following holds:

L′
max(a,b) < Lmax(a,b)

2 L′
a ≤ L′

b:

244 EMBEDDED SYSTEM DESIGN

In this case, we have:

L′
max(a,b) = f ′b −db = fa −db (see fig. 6.5).

The deadline of Ta is earlier than the one of Tb. This leads to

L′
max(a,b) < fa −da

Again, we have

L′
max(a,b) < Lmax(a,b)

As a result, any schedule (which is not an EDD-schedule) can be turned into

an EDD-schedule by a finite number of swaps. Maximum lateness can only

decrease during these swaps. Therefore, EDD is optimal among all scheduling

algorithms.

6.2.2.3 Earliest Deadline First (EDF)-Algorithm

Let us consider the case of different arrival times for uni-processor systems

next. Under this scenario, preemption can potentially reduce maximum late-

ness.

The Earliest Deadline First (EDF) algorithm is optimal with respect to min-

imizing the maximum lateness. It is based on the following theorem [Horn,

1974]:

Given a set of n independent tasks with arbitrary arrival times, any algorithm

that at any instant executes the task with the earliest absolute deadline among

all the ready tasks is optimal with respect to minimizing the maximum lateness.

EDF requires that, each time a new ready task arrives, it is inserted into a queue

of ready tasks, sorted by their deadlines. Hence, EDF is a dynamic scheduling

algorithm. If a newly arrived task is inserted at the head of the queue, the

currently executing task is preempted. If sorted lists are used for the queue,

the complexity of EDF is O(n2). Bucket arrays could be used for reducing the

execution time.

Fig. 6.6 shows a schedule derived with the EDF algorithm. Vertical arrows

indicate the arrival of tasks.

At time 4, task T2 has an earlier deadline. Therefore it preempts T1. At time 5,

task T3 arrives. Due to its later deadline it does not preempt T2.

Proof of the optimality of EDF:

Let τ be a schedule generated by some algorithm A, where A is different from

EDF. Let τEDF be a schedule generated by EDF. Now, we partition time into

disjoint intervals of length 1. Each interval comprises times within the range [t,

t+1). Let τ(t) be the task which -according to schedule τ- is executed during the

interval [t, t+1). Let E(t) be the task which at time t has the earliest deadline

Application mapping 245

Figure 6.6. EDF schedule

among all tasks. Let tE(t) be the time (≥ t) at which task E(t) is starting its

execution in schedule τ.

τ is not an EDF-schedule. Therefore, there must be a time t at which we are

not executing the task having the earliest deadline. For t, we have τ(t) �= E(t)
(see fig. 6.7). Deadlines are represented by downward pointing arrows.

Figure 6.7. Schedule τ

The basic idea of the proof is to show that swapping τ(t) and E(t) (see fig. 6.8)

cannot increase maximum lateness.

Let D be the latest deadline. Then, we can generate τEDF from τ by at most D

swaps of the following algorithm:

for (t=0 to D-1) {

if (τ(t) �= E(t)) {

τ(tE) = τ(t);

τ(t) = E(t); }}

246 EMBEDDED SYSTEM DESIGN

Figure 6.8. Schedule after swapping tasks τ(t) and E(t)

Using the same arguments as for Jackson’s Rule we can show that swapping

does not increase maximum lateness. Therefore, any non-EDF schedule can be

turned into an EDF-schedule with increasing maximum lateness. This proves

that EDF is optimal among all possible scheduling algorithms. We can show

that swapping will keep all deadlines, provided they were kept in schedule τ.

First of all, we consider task E(t). It will be executed earlier than in the old

schedule and, hence, it will meet the deadline in the new schedule if it did so

in the old schedule. Next, we consider task τ(t). τ(t) has a deadline larger than

E(t). Hence, τ(t) will meet the deadline in the new schedule if E(t) met the

deadline in the old schedule.

6.2.2.4 Least Laxity (LL) algorithm

Least Laxity (LL), Least Slack Time First (LST), and Minimum Laxity First

(MLF) are three names for another scheduling strategy [Liu, 2000]. According

to LL scheduling, task priorities are a monotonically decreasing function of

the laxity (see equation 6.2; the less laxity, the higher the priority). The laxity

is dynamically changing and needs to be dynamically recomputed. Negative

laxities provide an early warning for deadlines to be missed. LL scheduling

is also preemptive. Preemptions are not restricted to times at which new tasks

become available.

Fig. 6.9 shows an example of an LL schedule, together with the computations

of the laxity.

At time 4, task T1 is preempted, as before. At time 5, T2 is now also preempted,

due to the lower laxity of task T3.

It can be shown (this is left as an exercise in [Liu, 2000]) that LL is also an

optimal scheduling policy for mono-processor systems in this sense that it will

find a schedule if one exists. Due to its dynamic priorities, it cannot be used

with a standard OS providing only fixed priorities. Furthermore, LL schedul-

ing -in contrast to EDF scheduling- requires the knowledge of the execution

Application mapping 247

Figure 6.9. Least laxity schedule

time. Its use is therefore restricted to special situations where its properties are

attractive.

6.2.2.5 Scheduling without preemption

If preemption is not allowed, optimal schedules may must leave the processor

idle at certain times in order to finish tasks with early deadlines arriving late.

Proof: Let us assume that an optimal non-preemptive scheduler (not having

knowledge about the future) never leaves the processor idle. This scheduler

must schedule the example of fig. 6.10 optimally (it must find a schedule if one

exists).

Figure 6.10. Scheduler needs to leave processor idle

For the example of fig. 6.10 we assume we are given two tasks. Let T1 be

a periodic process with an execution time of 2, a period of 4 and a deadline

interval of 4. Let T2 be a task occasionally becoming available at times 4∗n+1

and having an execution time and a deadline interval of 1. Let us assume that

248 EMBEDDED SYSTEM DESIGN

the concurrent execution of T1 and T2 is not possible (for example, since we are

using a single processor). Under the above assumptions our scheduler has to

start the execution of task T1 at time 0, since it is supposed not to leave any idle

time. Since the scheduler is non-preemptive, it cannot start T2 when it becomes

available at time 1. Hence, T2 misses its deadline. If the scheduler had left the

processor idle (as shown in fig. 6.10 at time 4), a legal schedule would have

been found. Hence, the scheduler is not optimal. This is a contradiction to the

assumptions that optimal schedulers not leaving the processor idle at certain

times exist. q.e.d.

We conclude: In order to avoid missed deadlines the scheduler needs knowl-

edge about the future. If no knowledge about the arrival times is available a

priori, then no online algorithm can decide whether or not to keep the pro-

cessor idle. It has been shown that EDF is still optimal among all scheduling

algorithms not keeping the processor idle at certain times. If arrival times

are known a priori, the scheduling problem becomes NP-hard in general and

branch and bound techniques are typically used for generating schedules.

6.2.3 Aperiodic scheduling with precedence
constraints

6.2.3.1 Latest Deadline First (LDF) algorithm

We start with a task graph reflecting tasks dependences (see fig. 6.11). Task T3

can be executed only after tasks T1 and T2 have completed and sent messages

to T3.

Figure 6.11. Precedence graph and schedule

This figure also shows a legal schedule. For static scheduling, this schedule

can be stored in a table, indicating to the dispatcher the times at which tasks

must be started and at which messages must be exchanged.

An optimal algorithm for minimizing the maximum lateness for the case of

simultaneous arrival times was presented by Lawler [Lawler, 1973]. The al-

gorithm is called Latest Deadline First (LDF). LDF reads the task graph and

Application mapping 249

inserts tasks with no successors into a queue. It then repeats this process,

putting tasks whose successors have all been selected into the queue. At run-

time, the tasks are executed in an order opposite to the order in which tasks

have been entered into the queue. LDF is non-preemptive and is optimal for

mono-processors.

The case of asynchronous arrival times can be handled with a modified EDF

algorithm. The key idea is to transform the problem from a given set of de-

pendent tasks into a set of independent tasks with different timing parameters

[Chetto et al., 1990]. This algorithm is again optimal for uni-processor sys-

tems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic

and Ramamritham [Stankovic and Ramamritham, 1991] can be used.

6.2.3.2 As-soon-as-possible (ASAP) scheduling

A number of scheduling algorithms have been developed in other communi-

ties. For example, as-soon-as-possible (ASAP), as-late-as-possible (ALAP),

list (LS), and force-directed scheduling (FDS) are very popular in the high-

level synthesis (HLS) community (see [Coussy and Morawiec, 2008] for re-

cent HLS results). ASAP and ALAP scheduling do not consider any resource

or time constraints. LS considers resource constraints while FDS considers a

global time constraint.

We will demonstrate the first three of these using a simple expression as an

example. Consider a 3 × 3 matrix (see fig. 6.12).

a b c

A = d e f

g h i

Figure 6.12. 3 × 3 matrix

The determinant det(A) of this matrix can be computed as

det(A) = a∗ (e∗ i− f ∗h)+b∗ (f ∗g−d ∗ i)+ c∗ (d ∗h− e∗g)

The computation can be represented as a data flow graph (see fig. 6.13). We

assume that each arithmetic computation represents a simple “task”.

We assume that all matrix values are available immediately (for example, they

might be stored in registers).

250 EMBEDDED SYSTEM DESIGN

Figure 6.13. Computation of the determinant of A

ASAP, as used in HLS, considers a mapping of tasks to integer start times4

> 0. Therefore, scheduling provides a mapping:

τ : V → IN (6.3)

where G = (V,E) is the data flow graph.

For ASAP scheduling, all tasks are started as early as possible. The algorithm

works as follows:

for (t=1; all tasks are scheduled; t++) {

s={all tasks for which all inputs are available};

set start time of all tasks in s to t;

}

For the sake of simplicity, we assume that all additions and subtractions of

our example have an execution time of 1, whereas multiplications have an

execution time of 2. Fig. 6.14 shows the resulting scheduled data flow graph

for our example of fig. 6.13.

During the first iteration of the ASAP algorithm, all tasks not depending on

other computations are set to start at time 1. During the second round, inputs

4Each integer is assumed to correspond to one clock cycle of some synchronous automaton.

Application mapping 251

Figure 6.14. ASAP schedule for the example of fig. 6.13

from multiplications are not yet available. During the third round, subtractions

are scheduled to start at time 3. This process continues until the final addition

is scheduled to start at time 7.

ASAP scheduling can also be applied to real life: it means that all tasks are

started as early as possible, without any consideration of resource constraints.

6.2.3.3 As-late-as-possible (ALAP) scheduling

As-late-as-possible is the second simple scheduling algorithm. For ALAP

scheduling, all tasks are started as late as possible. The algorithm works as

follows:

for (t=0; all tasks are scheduled; t- -) {

s={all tasks on which no unscheduled task depends};

set start time of all tasks in s to t - their execution time + 1;

}

Add the total number of time steps needed to all start times.

The algorithm starts with tasks on which no other task depends. These tasks

are assumed to finish at time 0. Their start time is then computed from their

execution time. The loop then iterates backwards over time steps. Whenever

we reach a time step, at which a task should finish the latest, its start time

is computed and the task is scheduled. After finishing the loop, all times are

252 EMBEDDED SYSTEM DESIGN

shifted towards positive times such that the first task starts at time 1. We could

also consider ALAP scheduling as a case of ASAP scheduling starting at the

“other” end of the graph.

Fig. 6.15 shows the resulting scheduled data flow graph for our example of fig.

6.13.

Figure 6.15. ALAP schedule for the example of fig. 6.13

For the ALAP schedule, the four “tasks” at the right start one time unit later.

6.2.3.4 List scheduling (LS) scheduling

List scheduling is a resource-constrained scheduling technique. We assume

that we have a set M of resource types. List scheduling assumes that each task

can be executed only on a particular resource type. List scheduling respects

upper bounds Bm on the number of resources for each type m ∈ M.

List scheduling requires the availability of some priority function reflecting

the urgency of scheduling a particular “task” v ∈V,G = (V,E). The following

urgency metrics are in use [Teich, 1997]:

Number of successor nodes: this is the number of nodes below the current

node v in the tree.

Path length: the path length for a node v ∈V is defined as the length of the

path from starting v to finishing the entire graph G. In fig. 6.16, this infor-

mation has been added. Path length is typically weighted by the execution

time associated with the nodes, assuming that this information is known.

Application mapping 253

Figure 6.16. Path lengths for the example of fig. 6.13

Mobility: mobility is defined as the difference between the start times for

the ASAP and ALAP schedule. Fig. 6.17 shows the mobility for our exam-

ple. Obviously, scheduling is urgent for all but four nodes. This means that

all other nodes will have the same priority and that mobility provides only

rough information about the order in which we should schedule tasks.

Figure 6.17. Mobility for the example of fig. 6.13

254 EMBEDDED SYSTEM DESIGN

List scheduling requires the knowledge of the graph G = (V,E) to be sched-

uled, a mapping from each node of the graph to the corresponding resource

type m ∈ M, an upper bound Bm for each m, a priority function u reflecting the

urgency of the nodes v ∈ V , and the execution time of each node v ∈ V . List

scheduling then tries to fit nodes of maximum priority into each of the time

steps such that the resource constraints are not violated [Teich, 1997]:

for (t=0; all tasks are scheduled; t++) { //loop over time steps

for (m ∈ M) { //loop over resource types

Ct,m = set of tasks of type m still executing at time t;

At,m = set of tasks of type m ready to start execution at time t;

Compute set St ⊆ Ai,m of maximum priority such that

|St |+ |Ct,m| ≤ Bm.

Set start times of all v ∈ St to t: τ(v) = t;

} }

Fig. 6.18 shows the result of list scheduling as applied to our example in fig.

6.13.

Figure 6.18. Result of list scheduling for the example of fig. 6.13

Application mapping 255

In fig. 6.13 we assume a resource constraint of B∗ = 3 for multiplications and

multipliers and of B+,− = 2 for all other “tasks”. Due to the resource con-

straint, three multiplications are starting at time 3 instead of at time 1. The

resource constraint for other operations does not have any impact. Remember

that multiplications need two time steps.

6.2.3.5 Force-directed scheduling

For force-directed scheduling (FDS) [Paulin and Knight, 1987], we assume

that a time constraint is given and that we would like to find a schedule keep-

ing that resource constraint while minimizing the demand for resources. FDS

considers each resource type separately.

FDS starts with a “probability” P(v, t) reflecting the likelihood that a certain

operation v is scheduled at a certain time step t. This “probability” is equal to

1 divided by the size of R(v), where “range” R(v) is the set of time steps at

which this operation could be started:

P(v, t) =

{

1
|R(v)| if t ∈ R(v)

0 otherwise

R(v) is the interval between the time step allocated by ASAP scheduling and

the time step allocated by ALAP scheduling. From this “probability”, we com-

pute a so-called “distribution” reflecting the total resource pressure for a cer-

tain resource m at control step t. This “distribution” is simply the sum of the

probabilities over all operations requiring resource type m:

D(t) = ∑
v∈V

P(v, t)

Fig. 6.19 shows distributions for our running example.

For example, for a time constraint of 8, the three multiplications on the right

(which are not on the critical path) have a probability of 0.5 for the two time

steps for which they are feasible. The distribution D(1) is 5, due to the four

multiplications on the critical path and the two multiplications having a proba-

bility of 0.5.

Next, FDS defines “forces” such that operations (or tasks) are moved away

from time steps of high resource pressure to time steps with a lower resource

pressure. In our example, multiplications which are not on the critical path are

shifted towards later start times. However, for a total time constraint of 8, this

does not lower the number of multipliers needed, since multiplies are assumed

to last 2 time steps. For a time constraint of 9, we would reduce the number of

256 EMBEDDED SYSTEM DESIGN

Figure 6.19. Distributions for the example of fig. 6.13

multipliers if compared to the multipliers needed for ASAP scheduling. Details

about FDS can be found in [Paulin and Knight, 1987] and follow-up papers.

FDS has a number of restrictions. For example, FDS is still based on the simple

resource model where each task can be mapped only to a single resource type.

At this time, some general remarks regarding the applicability of scheduling

techniques from high-level synthesis (HLS) to task scheduling are appropriate.

HLS techniques

are designed to take dependencies between “tasks” into account,

are designed for “multi-processor” scheduling,

are usually based on simplified resource (processor) models (i.e. require a

one-to-one mapping between “tasks” and “processors”),

typically use heuristics not guaranteeing optimality,

are typically fast,

almost never exploit global information about periodicity etc. and

techniques more advanced than ASAP, ALAP and LS include techniques

for handling control (loops etc).

Application mapping 257

6.2.4 Periodic scheduling without precedence
constraints

6.2.4.1 Notation

Next, we will consider the case of periodic tasks. For periodic scheduling,

objectives relevant for aperiodic scheduling are less useful. For example, min-

imization of the total length of the schedule is not an issue if we are talking

about an infinite repetition of jobs. The best that we can do is to design an

algorithm which will always find a schedule if one exists. This motivates the

definition of optimality for periodic schedules.

Definition: For periodic scheduling, a scheduler is defined to be optimal iff it

will find a schedule if one exists.

Let {Ti} be a set of tasks. Each execution of some task Ti is called a job. The

execution time for each job corresponding to one task is assumed to be the

same. Let (see fig. 6.20)

pi be the period of task Ti,

ci be the execution time of Ti,

di be the deadline interval, that is, the time between a job of Ti becoming

available and the time after which the same job Ti has to finish execution.

li be the laxity or slack, defined as

li = di − ci (6.4)

Figure 6.20. Notation used for time intervals

If li = 0, then Ti has to be started immediately after it becomes executable.

Let µ denote the utilization for a set of n processes, that is, the accumulated

execution times of these processes divided by their period:

µ =
n

∑
i=1

ci

pi

(6.5)

258 EMBEDDED SYSTEM DESIGN

Let us assume that the execution times are equal for a number of m proces-

sors. Obviously, equation 6.6 represents a necessary condition for a schedule

to exist:

µ ≤ m (6.6)

Initially, we will restrict ourselves to a description of the case in which tasks

are independent.

6.2.4.2 Rate monotonic scheduling

Rate monotonic (RM) scheduling [Liu and Layland, 1973] is probably the most

well-known scheduling algorithm for independent periodic processes. Rate

monotonic scheduling is based on the following assumptions (“RM assump-

tions”):

1 All tasks that have hard deadlines are periodic.

2 All tasks are independent.

3 di = pi, for all tasks.

4 ci is constant and is known for all tasks.

5 The time required for context switching is negligible.

6 For a single processor and for n tasks, the following equation holds for the

accumulated utilization µ:

µ =
n

∑
i=1

ci

pi

≤ n(21/n −1) (6.7)

Fig. 6.21 shows the right hand side of equation 6.7.

The right hand side is about 0.7 for large n:

lim
n→∞

n∗ (21/n −1) = loge(2) = ln(2) (=∼ 0.7) (6.8)

Then, according to the policy for rate monotonic scheduling, the priority of

tasks is a monotonically decreasing function of their period. In other words,

tasks with a short period will get a high priority and tasks with a long period

Application mapping 259

Figure 6.21. Right hand side of equation 6.7

will be assigned a low priority. RM scheduling is a preemptive scheduling

policy with fixed priorities.

Fig. 6.22 shows an example of a schedule generated with RM scheduling. Task

T2 is preempted several times.

Figure 6.22. Example of a schedule generated with RM scheduling

Double-headed arrows indicate the arrival time of a job as well as the deadline

of the previous job. Tasks 1 to 3 have a period of 2, 6 and 6, respectively.

Execution times are, 0.5, 2, and 1.75. Task 1 has the shortest period and,

hence, the highest rate and priority. Each time task 1 becomes available, its

jobs preempt the currently active task. Task 2 has the same period as task 3,

and neither of them preempts the other.

Equation 6.7 requires that some of the computing power of the processor is

not used in order to make sure that all requests are honored in time. What

is the reason for this bound on the utilization? The key reason is that RM

scheduling, due to its static priorities, will possibly preempt a task which is

close to its deadline in favor of some higher priority task with a much later

deadline. The task having a lower priority can then miss its deadline.

Fig. 6.23 shows a case for which not enough idle time is available to guarantee

schedulability for RM scheduling. One task has a period of 5, and an execution

260 EMBEDDED SYSTEM DESIGN

time of 3, whereas the second task has a period of 8, and an execution time of 3.

Figure 6.23. RM schedule does not meet deadline at time 8

For this particular case we have µ = 3
5
+ 3

8
= 39

40
, which is 0.975. 2 ∗ (2

1
2 − 1)

is about 0.828. Hence, schedulability is not guaranteed for RM scheduling

and, in fact, the deadline is missed at time 8. We assume that the missing

computations are not scheduled in the next period.

Such missed deadlines cannot happen if the utilization of the processor is very

low and, obviously, they can happen when the utilization is high, as in fig. 6.23.

If the condition of equation 6.7 is met, the utilization is guaranteed to be low

enough to prevent problems like that of fig. 6.23. Equation 6.7 is a sufficient

condition. This means: we might still find a schedule if the condition is not

met. Other sufficient conditions exist [Bini et al., 2001].

RM scheduling has the following important advantages:

It is possible to prove that rate monotonic scheduling is optimal for mono-

processor systems.

RM scheduling is based on static priorities. This opens opportunities for

using RM scheduling in an operating system providing fixed priorities,

such as Windows NT (see Ramamritham [Ramamritham et al., 1998],

[Ramamritham, 2002]).

If the above six RM-assumptions (see page 258) are met, all deadlines will

be met (see Buttazzo [Buttazzo, 2002]).

RM scheduling is also the basis for a number of formal proofs of schedulability.

The idle time or spare capacity of the processor is not always required. It is

possible to show that RM scheduling is also optimal, iff instead of equation

(6.7) we have

µ ≤ 1 (6.9)

Application mapping 261

provided that the period of all tasks is a multiple of the period of the task having

the next higher priority. This requirement is met, for example, if tasks in a TV

set must be executed at rates of 25, 50 and 100 Hertz.

Equations 6.7 or 6.9 provide easy means to check conditions for schedulability.

Designing examples and proofs is facilitated if the most problematic situations

for RM scheduling are known.

Definition: Time t is called critical time instant for task Tj if the response

time of this task is maximized if the task becomes available at this time.

Lemma: For each task Tj, the response time is maximized if Tj becomes avail-

able at the same time as all tasks having a higher priority.

Proof: Let T = {T1, ...,Tn} be a set of periodical tasks for which we have:

∀i : pi ≤ pi+1. The response time of Tn will be increased by tasks of a higher

priority . Consider task Tn and some task Ti of a higher priority (see fig. 6.24).

Figure 6.24. Delaying task Tn by some Ti of higher priority

The number of preemptions is potentially increasing if the time interval be-

tween the availability of Tn and Ti is reduced (see fig. 6.25). For example, the

delay is 2ci for fig. 6.24 and 3ci for fig. 6.25.

Figure 6.25. Increasing delay of task Tn

The number of preemptions and hence also the response time will be maxi-

mized if both tasks become available at the same time.

Arguments concerning Tn and Ti can be repeated for all pairs of tasks. As

a result, Tn becomes available at its critical instant in time if it is released

concurrently with all other tasks of higher priority. q.e.d.

262 EMBEDDED SYSTEM DESIGN

Therefore, the proof of optimality of RM scheduling needs to consider only

the case in which tasks are released concurrently with all other tasks of higher

priority.

6.2.4.3 Earliest deadline first scheduling

EDF can also be applied to periodic task sets. Toward this end, we may con-

sider a hyper period.

Definition: Hyper periods are defined as the least common multiple (lcm) of

the periods of the individual tasks.

For example, the hyper period for the example of fig. 6.23 is 40. Obviously,

it is sufficient to solve the scheduling problem for a single hyper period. This

schedule can then be repeated for the other hyper periods. It follows from the

optimality of EDF for non-periodic schedules that EDF is also optimal for a

single hyper period and therefore also for the entire scheduling problem. No

additional constraints must be met to guarantee optimality. This implies that

EDF is optimal also for the case of µ = 1. Accordingly, no deadline is missed

if the example of fig. 6.23 is scheduled with EDF (see fig. 6.26). At time 5, the

behavior is different from that of RM scheduling: due to the earlier deadline

of T2, it is not preempted.

Figure 6.26. EDF generated schedule for the example of 6.23

Since EDF uses dynamic priorities, it cannot be used with an operating system

providing only fixed priorities. However, it has been shown that operating

systems can be extended to simulate an EDF policy at the application level

[Diederichs et al., 2008].

EDF can be easily extended to handle the case when deadlines are different

from the periods.

6.2.5 Periodic scheduling with precedence
constraints

Scheduling dependent tasks is more difficult than scheduling independent tasks.

The problem of deciding whether or not a schedule exists for a given set of de-

Application mapping 263

pendent tasks and a given deadline is NP-complete [Garey and Johnson, 1979].

In order to reduce the scheduling effort, different strategies are used:

adding additional resources such that scheduling becomes easier, and

partitioning of scheduling into static and dynamic parts. With this ap-

proach, as many decisions as possible are taken at design time and only

a minimum of decisions is left for run-time.

Obviously, we can also try to exploit HLS-based techniques for periodic pro-

cesses as well.

6.2.6 Sporadic events

We could connect sporadic events to interrupts and execute them immediately

if their interrupt priority is the highest in the system. However, quite unpre-

dictable timing behavior would result for all the other tasks. Therefore, special

sporadic task servers are used which execute at regular intervals and check

for ready sporadic tasks. This way, sporadic tasks are essentially turned into

periodic tasks, thereby improving the predictability of the whole system.

6.3 Hardware/software partitioning

6.3.1 Introduction

According to the general problem description on page 237, application map-

ping techniques must support the mapping to heterogeneous processors. Stan-

dard scheduling techniques do not support such a mapping very well. It is

supported, however, by hardware/software partitioning techniques. Therefore,

we will present an example of such a technique in this section.

By hardware/software partitioning we mean the mapping of task graph nodes

to either hardware or software. Applying hardware/software partitioning, we

will be able to decide which parts must be implemented in hardware and which

in software. A standard procedure for embedding hardware/software partition-

ing into the overall design flow is shown in fig. 6.27. We start from a common

representation of the specification, e.g. in the form of task graphs and informa-

tion about the platform.

For each of the nodes of the task graphs, we need information concerning the

effort required and the benefits received from choosing a certain implemen-

tation of these nodes. For example, execution times must be predicted (see

page 207). It is very hard to predict times required for communication. Nev-

ertheless, two tasks requiring a very high communication bandwidth should

preferably be mapped to the same components. Iterative approaches are used

264 EMBEDDED SYSTEM DESIGN

Figure 6.27. General view of hardware/software partitioning

in many cases. An initial solution to the partitioning problem is generated,

analyzed and then improved.

Some approaches for partitioning are restricted to mapping task graph nodes

either to special purpose hardware or to software running on a single processor.

Such partitioning can be performed with bipartitioning algorithms for graphs

[Kuchcinski, 2002].

More elaborate partitioning algorithms are capable of mapping graph nodes

to multi-processor systems and hardware. In the following, we will describe

how this can be done using a standard optimization technique from operations

research, integer linear programming (see Appendix A). Our presentation is

based on a simplified version of the optimization proposed for the codesign

tool COOL [Niemann, 1998].

6.3.2 COOL

For COOL, the input consists of three parts:

Target technology: This part of the input to COOL comprises information

about the available hardware platform components. COOL supports mul-

tiprocessor systems, but requires that all processors are of the same type,

since it does not include automatic or manual processor selection. The

type of the processors used (as well as information about the correspond-

ing compiler) must be included in this part of the input to COOL. As far

as the application-specific hardware is concerned, the information must be

sufficient for starting automatic hardware synthesis with all required pa-

rameters. In particular, information about the technology library must be

given.

Application mapping 265

Design constraints: The second part of the input comprises design con-

straints such as the required throughput, latency, maximum memory size,

or maximum area for application-specific hardware.

Behavior: The third part of the input describes the required overall behav-

ior. Hierarchical task graphs are used for this. We can think of, e.g. using

the hierarchical task graph of fig. 2.6.

COOL uses two kinds of edges: communication edges and timing edges.

Communication edges may contain information about the amount of infor-

mation to be exchanged. Timing edges provide timing constraints. COOL

requires the behavior of each of the leaf nodes5 of the graph hierarchy to be

known. COOL expects this behavior to be specified in VHDL6.

For partitioning, COOL uses the following steps:

1 Translation of the behavior into an internal graph model.

2 Translation of the behavior of each node from VHDL into C.

3 Compilation of all C programs for the selected target processor type,

computation of the resulting program size, estimation of the resulting ex-

ecution time. If simulations are used for the latter, simulation input data

must be available.

4 Synthesis of hardware components: For each leaf node, application-

specific hardware is synthesized. Since quite a number of hardware com-

ponents may have to be synthesized, hardware synthesis should not be too

slow. It was found that commercial synthesis tools focusing on gate level

synthesis were too slow to be useful for COOL. However, high-level syn-

thesis (HLS) tools working at the register-transfer-level (using adders, reg-

isters, and multiplexer as components, rather than gates) provided sufficient

synthesis speed. Also, such tools could provide sufficiently precise values

for delay times and required silicon area. In the actual implementation,

the OSCAR high-level synthesis tool [Landwehr and Marwedel, 1997] was

used.

5 Flattening the hierarchy: The next step is to extract a flat task graph

from the hierarchical flow graph. Since no merging or splitting of nodes

is performed, the granularity used by the designer is maintained. Cost

and performance information gained from compilation and from hardware

5See page 43 for a definition of this term.
6In retrospect, we now know that C should have been used for this, as this choice would have made the

partitioning for many standards described in C easier.

266 EMBEDDED SYSTEM DESIGN

synthesis are added to the nodes. This is actually one of the key ideas of

COOL: the information required for hardware/software partitioning is

precomputed and it is computed with good precision. This information

forms the basis for generating cost-minimized designs meeting the design

constraints.

6 Generating and solving a mathematical model of the optimization prob-

lem: COOL uses integer linear programming (ILP) to solve the optimiza-

tion problem. A commercial ILP solver is used to find values for deci-

sion variables minimizing the cost. The solution is optimal with respect

to the cost function derived from the available information. However, this

cost includes only a coarse approximation of the communication time. The

communication time between any two nodes of the task graph depends on

the mapping of those nodes to processors and hardware. If both nodes are

mapped to the same processor, communication will be local and thus quite

fast. If the nodes are mapped to different hardware components, commu-

nication will be non-local and may be slower. Modeling communication

costs for all possible mappings of task graph nodes would make the model

very complex and is therefore replaced by iterative improvements of the

initial solution. More details on this step will be presented below.

7 Iterative improvements: In order to work with good estimates of the com-

munication time, adjacent nodes mapped to the same hardware component

are now merged. This merging is shown in fig. 6.28.

Figure 6.28. Merging of task nodes mapped to the same hardware component

We assume that tasks T1, T2 and T5 are mapped to hardware components

H1 and H2, whereas T3 and T4 are mapped to processor P1. Accordingly,

communication between T3 and T4 is local communication. Therefore, we

merge T3 and T4, and assume that the communication between the two tasks

does not require a communication channel. Communication time can be

now estimated with improved precision. The resulting graph is then used

Application mapping 267

as new input for mathematical optimization. The previous and the current

step are repeated until no more graph nodes are merged.

8 Interface synthesis: After partitioning, the glue logic required for inter-

facing processors, application-specific hardware and memories is created.

Next, we will describe how partitioning can be modeled using a 0/1-ILP model

(see Appendix A, page 335). The following index sets will be used in the

description of the ILP model:

Index set V denotes task graph nodes. Each v ∈V corresponds to one task

graph node.

Index set L denotes task graph node types. Each l ∈ L corresponds to one

task graph node type. For example, there may be nodes describing square

root, Discrete Cosine Transform (DCT) or Discrete Fast Fourier Transform

(DFT) computations. Each of them is counted as one type.

Index set M denotes hardware component types. Each m ∈ M corresponds

to one hardware component type. For example, there may be special hard-

ware components for the DCT or the DFT. There is one index value for the

DCT hardware component and one for the DFT hardware component.

For each of the hardware components, there may be multiple copies, or

“instances”. Each instance is identified by an index j ∈ J.

Index set KP denotes processors. Each k ∈ KP identifies one of the proces-

sors (all of which are of the same type).

The following decision variables are required by the model:

Xv,m: this variable will be 1, if node v is mapped to hardware component

type m ∈ M and 0 otherwise.

Yv,k: this variable will be 1, if node v is mapped to processor k ∈ KP and 0

otherwise.

NYl,k: this variable will be 1, if at least one node of type l is mapped to

processor k ∈ KP and 0 otherwise.

Type is a mapping V → L from task graph nodes to their corresponding

types.

In our particular case, the cost function accumulates the total cost of all hard-

ware units:

268 EMBEDDED SYSTEM DESIGN

C = processor costs + memory costs + cost of application specific hardware

We would obviously minimize the total cost if no processors, memory and

application specific hardware were included in the “design”. Due to the con-

straints, this is not a legal solution. We can now present a brief description of

some of the constraints of the ILP model:

Operation assignment constraints: These constraints guarantee that each

operation is implemented either in hardware or in software. The corre-

sponding constraints can be formulated as follows:

∀v ∈V : ∑
m∈M

Xv,m + ∑
k∈KP

Yv,k = 1 (6.10)

In plain text, this means the following: for all task graph nodes v, the fol-

lowing must hold: v is implemented either in hardware (setting one of the

Xv,m variables to 1, for some m) or it is implemented in software (setting

one of the Yv,k variables to 1, for some k).

All variables are assumed to be non-negative integer numbers:

Xv,m ∈ IN0, (6.11)

Yv,k ∈ IN0 (6.12)

Additional constraints ensure that decision variables Xv,m and Yv,k have 1 as

an upper bound and, hence, are in fact 0/1-valued variables:

∀v ∈V : ∀m ∈ M : Xv,m ≤ 1 (6.13)

∀v ∈V : ∀k ∈ KP : Yv,k ≤ 1 (6.14)

If the functionality of a certain node of type l is mapped to some proces-

sor k, then this processors’ instruction memory must include a copy of the

software for this function:

∀l ∈ L,∀v : Type(v) = cl,∀k ∈ KP : NYl,k ≥ Yv,k (6.15)

In plain text, this means: for all types l of task graph nodes and for all nodes

v of this type, the following must hold: if v is mapped to some processor k

Application mapping 269

(indicated by Yv,k being 1), then the software corresponding to functionality

l must be provided by processor k, and the corresponding software must

exist on that processor (indicated by NYl,k being 1).

Additional constraints ensure that decision variables NYl,k are also 0/1-

valued variables:

∀l ∈ L : ∀k ∈ KP : NYl,k ≤ 1 (6.16)

Resource constraints: The next set of constraints ensures that “not too

many” nodes are mapped to the same hardware component at the same

time. We assume that, for every clock cycle, at most one operation can

be performed per hardware component. Unfortunately, this means that the

partitioning algorithm also has to generate a partial schedule for executing

task graph nodes. Scheduling by itself is already an NP-complete problem

for most of the relevant problem instances.

Precedence constraints: These constraints ensure that the schedule for

executing operations is consistent with the precedence constraints in the

task graph.

Design constraints: These constraints put a limit on the cost of certain

hardware components, such as memories, processors or area of application-

specific hardware.

Timing constraints: Timing constraints, if present in the input to COOL,

are converted into ILP constraints.

Some additional, but less important constraints are not included in this list.

Example: In the following, we will show how these constraints can be gener-

ated for the task graph in fig. 6.29 (the same as the one in fig. 2.6).

Figure 6.29. Task graph

Suppose that we have a hardware component library containing three compo-

nents types H1, H2 and H3 with costs of 20, 25 and 30 cost units, respectively.

Furthermore, suppose that we can also use a processor P of cost 5. In addition,

270 EMBEDDED SYSTEM DESIGN

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Figure 6.30. Execution times of tasks T1 to T5 on components

we assume that the table in fig. 6.30 describes the execution times of our tasks

on these components.

Tasks T1 to T5 can only be executed on the processor or on one application-

specific hardware unit. Obviously, processors are assumed to be cheap but

slow in executing tasks T1, T2, and T5.

The following operation assignment constraints must be generated, assuming

that a maximum of one processor (P1) is to be used:

X1,1 +Y1,1 = 1 (Task 1 either mapped to H1 or to P1)

X2,2 +Y2,1 = 1 (Task 2 either mapped to H2 or to P1)

X3,3 +Y3,1 = 1 (Task 3 either mapped to H3 or to P1)

X4,3 +Y4,1 = 1 (Task 4 either mapped to H3 or to P1)

X5,1 +Y5,1 = 1 (Task 5 either mapped to H1 or to P1)

Furthermore, assume that the types of tasks T1 to T5 are l = 1,2,3,3 and 1,

respectively. Then, the following additional resource constraints are required:

(6.17)NY1,1 ≥ Y1,1

NY2,1 ≥ Y2,1

NY3,1 ≥ Y3,1

NY3,1 ≥ Y4,1

NY1,1 ≥ Y5,1 (6.18)

Equation 6.17 means: if task 1 is mapped to the processor, then the function

l = 1 must be implemented on that processor. The same function must also be

implemented on the processor if task 5 is mapped to the processor (eq. 6.18).

We have not included timing constraints. However, it is obvious that the pro-

cessor is slow in executing some of the tasks and that application-specific hard-

ware is required for timing constraints below 100 time units.

Application mapping 271

The cost function is:

C = 20∗#(H1)+25∗#(H2)+30∗#(H3)+5∗#(P)

where #() denotes the number of instances of hardware components. This num-

ber can be computed from the variables introduced so far if the schedule is also

taken into account. For a timing constraint of 100 time units, the minimum cost

design comprises components H1, H2 and P. This means that tasks T3 and T4

are implemented in software and all others in hardware.

In general, due to the complexity of the combined partitioning and scheduling

problem, only small problem instances of the combined problem can be solved

in acceptable run-times. Therefore, the problem is heuristically split into the

scheduling and the partitioning problem: an initial partitioning is based on

estimated execution times and the final scheduling is done after partitioning. If

it turns out that the schedule was too optimistic, the whole process has to be

repeated with tighter timing constraints. Experiments for small examples have

shown that the cost for heuristic solutions is only 1 or 2 % larger than the cost

of optimal results.

Automatic partitioning can be used for analyzing the design space. In the fol-

lowing, we will present results for an audio lab, including mixer, fader, echo,

equalizer and balance units. This example uses earlier target technologies in

order to demonstrate the effect of partitioning. The target hardware consists

of a (slow) SPARC processor, external memory, and application-specific hard-

ware to be designed from an (outdated) 1µ ASIC library. The total allowable

delay is set to 22675 ns, corresponding to a sample rate of 44.1 kHz, as used

in CDs. Fig. 6.31 shows different design points which can be generated by

changing the delay constraint.

The unit λ refers to a technology-dependent length unit. It is essentially one

half of the closest distance between the centers of two metal wires on the chip

(also called half-pitch [ITRS Organization, 2009]). The design point at the

left corresponds to a solution implemented completely in hardware, the design

point at the right to a software solution. Other design points use a mixture of

hardware and software. The one corresponding to an area of 78.4 λ2 is the

cheapest meeting the deadline.

Obviously, technology has advanced to allow a 100% software-based audio

lab design nowadays. Nevertheless, this example demonstrates the underlying

design methodology which can also be used for more demanding applications,

especially in the high-speed multimedia domain, such as MPEG-4.

272 EMBEDDED SYSTEM DESIGN

Figure 6.31. Design space for audio lab

6.4 Mapping to heterogeneous multi-processors

Currently (in 2010), mapping to heterogeneous multi-processors still is a re-

search topic. Overviews of the state of art in this area are provided by the

Workshops on Mapping of Applications to MPSoCs, organized by the Artist-

Design European Network of Excellence. The following information is based

on the first [Marwedel, 2008a] and the second [Marwedel, 2009a] workshop in

this series as well as on a summary of the first workshop [Marwedel, 2009b].

The different approaches for this mapping can be classified by two criteria:

mapping tools may either assume a fixed execution platform or may design

such a platform during the mapping and they may or may not include auto-

matic parallelization of the source codes. Fig. 6.32 contains a classification of

some of the available mapping tools by these two criteria.

The DOL tools from ETH Zürich [Thiele, L. et al., 2009] incorporate

Automatic selection of computation templates: Processor types can be

completely heterogeneous. Standard processors, micro-controllers, DSP

processors, FPGAs etc. are all possible options.

Automatic selection of communication techniques: Various interconnec-

tion schemes like central buses, hierarchical buses, rings etc. are feasible.

Application mapping 273

Architecture fixed/ Fixed Architecture Architecture to be

Auto parallelizing designed

Starting from a given

model

HOPES, mapping to CELL

proc., Q. Xu, T. Simunic

COOL, DOL, SystemCo-

designer

Auto-parallelizing Mnemee, O’Boyle and

Franke

Daedalus

MAPS

Figure 6.32. Classification of mapping tools and authors’ work

Automatic selection of scheduling and arbitration: DOL design space

exploration tools automatically choose between rate monotonic scheduling,

EDF, TDMA- and priority-based schemes.

The input to DOL consists of a set of tasks together with use cases. The output

describes the execution platform, the mapping of tasks to processors together

with task schedules. This output is expected to meet constraints (like memory

size and timing constraints) and to minimize objectives (like size, energy etc).

Applications are represented by so-called problem graphs. Fig. 6.33 shows a

simple DOL-problem graph. This graph models communication explicitly.

Figure 6.33. DOL problem graph

In addition, possible execution platforms are represented by so-called archi-

tecture graphs. Fig. 6.34 shows a simple hardware platform together with its

architecture graph. Again, communication is modeled explicitly.

Figure 6.34. DOL architecture graph

274 EMBEDDED SYSTEM DESIGN

The problem graph and the architecture graph are connected in the specifica-

tion graph. Fig. 6.35 shows a DOL specification graph.

Figure 6.35. DOL specification graph

Such a specification graph consists of the problem graph and the architecture

graph. Edges between the two subgraphs represent feasible implementations.

In total, implementations are represented by a triple:

An allocation α: α is a subset of the architecture graph, representing hard-

ware components allocated (selected) for a particular design.

A binding β: a selected subset of the edges between specification and ar-

chitecture identifies a relation between the two. Selected edges are called

bindings.

A schedule τ: τ assigns start times to each node v in the problem graph.

Example: Fig. 6.36 shows how the specification of fig. 6.35 can be turned into

an implementation.

In DOL, implementations are generated with evolutionary algorithms [Bäck

and Schwefel, 1993], [Bäck et al., 1997], [Coello et al., 2007]. With such al-

gorithms, solutions are represented as strings in chromosomes of “individu-

als”. Using evolutionary algorithms, new sets of solutions can be derived from

existing sets of solutions. The derivation is based on evolutionary operators

such as mutation, selection and recombination. The selection of new sets of

solutions is based on fitness values. Evolutionary algorithms are capable of

solving complex optimization problems not tackable by other types of algo-

rithms. Finding appropriate ways of encoding solutions in chromosomes is not

easy. On one hand, the decoding should not require too much run-time. On

the other hand, we must deal with the situation after the evolutionary transfor-

Application mapping 275

Figure 6.36. DOL implementation

mations. These transformations could generate infeasible solutions, except for

some carefully designed encodings.

In DOL, chromosomes encode allocations and bindings. In order to evaluate

the fitness of a certain solution, allocations and bindings must be decoded from

the individuals (see fig. 6.37).

Figure 6.37. Decoding of solutions from chromosomes of individuals

In DOL, schedules are not encoded in the chromosomes. Rather, they are de-

rived from the allocation and binding. This way overloading evolutionary al-

gorithms with scheduling decisions is avoided. Once the schedule has been

computed, the fitness of solutions can be evaluated.

The overall architecture of DOL is shown in fig. 6.38.

Initially, the task graph, use cases and available resources are defined. This

can be done with a specialized editor called MOSES. This initial information

is evaluated in the evaluation framework EXPO. Performance values computed

by EXPO are then sent to SPEA2, an evolutionary algorithm-based optimiza-

276 EMBEDDED SYSTEM DESIGN

Figure 6.38. DOL tool

tion framework. SPEA2 selects good candidate architectures. These are sent

back to EXPO for an evaluation. Evaluation results are then communicated

again to SPEA2 for another round of evolutionary optimizations. This kind

of ping-pong game between EXPO and SPEA2 continues until good solutions

have been found. The selection of solutions is based on the principle of Pareto-

optimality. A set of Pareto-optimal designs is returned to the designer, who can

then analyze the trade-off between the different objectives. Fig. 6.39 shows the

resulting visualization of the Pareto-front.

The functionality of the SystemCodesigner [Keinert et al., 2009] is somewhat

similar to that of DOL. However, it differs in the way specifications are de-

scribed (they can be represented in SystemC) and in the way, the optimizations

are performed. The mapping of applications is modeled as an ILP model. A

first solution is generated using an ILP optimizer. This solution is then im-

proved by switching to evolutionary algorithms7.

Daedalus [Nikolov et al., 2008] incorporates automatic parallelization. For

this purpose, sequential applications are mapped to Kahn process networks.

Design space exploration is then performed using Kahn process networks as

an intermediate representation.

Other approaches start from a given task graph and map to a fixed architec-

ture. For example, Ruggiero maps applications to cell processors [Ruggiero

and Benini, 2008]. The HOPES-system is able to map to various proces-

sors [Ha, 2007], using models of computation supported by the Ptolemy tools.

Some tools take additional objectives into account. For example, Xu considers

the optimization of the dependable lifetime of the resulting system [Xu et al.,

2009]. Simunic incorporates thermal analysis into her work and tries to avoid

too hot spots on the MPSoC [Simunic-Rosing et al., 2007]. Further work in-

cludes that of Popovici et al. [Popovici et al., 2010]. This work uses several

levels of modeling, employing Simulink and SystemC as languages.

7A more recent version uses a satisfiability (SAT) solver for the same purpose.

Application mapping 277

Figure 6.39. Pareto front of solutions for a design problem, ©ETHZ

Auto-parallelizing approaches for fixed architectures include the Mnemee tool

set [Mnemee project, 2010] and work at the University of Edinburgh [Franke

and O’Boyle, 2005]. MAPS tools [Ceng et al., 2008] combine automatic par-

allelization with a limited DSE.

6.5 Assignments

1 Suppose that we have a set of 4 tasks. Arrival times Ai, deadlines di and

execution times ci are as follows:

T1: A1=10, d1=18, c1=4

T2: A2=0, d2=28, c2=12

T3: A3=6, d3=17, c3=3

T4: A4=3, d4=13, c4=6

278 EMBEDDED SYSTEM DESIGN

Generate a graphical representation of schedules for this task set, using Ear-

liest Deadline First (EDF) and Least Laxity (LL) scheduling algorithms!

For LL scheduling, indicate laxities for all tasks at all context switch times.

Will any task miss its deadline?

2 Suppose that we have a task set of six tasks T1 to T6. Their execution times

and their deadlines are as follows:

T1: d1=15, c1=3

T2: d2=13, c2=5

T3: d3=14, c3=4

T4: d4=16, c4=2

T5: d3=20, c3=4

T6: d4=22, c4=3

Task dependencies are as shown in fig. 6.40. Tasks T1 and T2 are available

immediately.

Figure 6.40. Task dependencies

Generate a graphical representation of schedules for this task set, using the

Latest Deadline First (LDF) algorithm!

3 Suppose that we have a system comprising two tasks. Task 1 has a pe-

riod of 5 and and execution time of 2. The second task has a period of

7 and an execution time of 4. Let the deadlines be equal to the periods.

Assume that we are using Rate Monotonic Scheduling (RMS). Could any

of the two tasks miss its deadline, due to a too high processor utilization?

Compute this utilization and compare it to a bound which would guarantee

schedulability! Generate a graphical representation of the resulting sched-

ule! Suppose that tasks will always run to their completion, even if they

missed their deadline.

Application mapping 279

4 Consider the same task set as in the previous assignment. Use Earliest

Deadline First (EDF) for scheduling. Can any of the tasks miss its dead-

line? If not, why not? Generate a graphical representation of the resulting

schedule! Suppose that tasks will always run to their completion.

5 Consider a set of tasks. Let V = {v} be the index set for tasks. Let L = {l}
be the set of task types and let Type : V → L be a mapping from tasks to

their types. Assume that M = {m} and KP = {k} denote the set of hard-

ware component types and processors, respectively. Describe the following

elements of the hardware/software partitioning model used by COOL:

(a) Which decision variables are required?

(b) Which variables model whether or not tasks of type l are mapped to

processor k?

(c) What does the objective function look like?

(d) Which equations are required to ensure that each task will be imple-

mented in either hardware or in software?

(e) Which equations are required to ensure that tasks are mapped to a cer-

tain processor only if the software for the type of task is available on

that processor?

Chapter 7

OPTIMIZATION

In order to make embedded systems as efficient as required, many optimiza-

tions have been developed. Only a small subset of those can be mentioned

in this book. In this chapter, we will present a selected set of such optimiza-

tions. As indicated in our design flow, these optimizations complement the

tools mapping applications to the final systems, as described in Chapter 6 and

as shown in fig. 7.1.

Figure 7.1. Context of the current Chapter

7.1 Task level concurrency management

As mentioned on page 31, the task graphs’ granularity is one of their most

important properties. Even for hierarchical task graphs, it may be useful to

change the granularity of the nodes. The partitioning of specifications into

tasks or processes does not necessarily aim at the maximum implementation

efficiency. Rather, during the specification phase, a clear separation of con-

cerns and a clean software model are more important than caring about the im-

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 7, © Springer Science+Business Media B.V. 2011

281

http://dx.doi.org/10.1007/978-94-007-0257-8_7

282 EMBEDDED SYSTEM DESIGN

plementation too much. For example, a clear separation of concerns includes

a clear separation of the implementation of abstract data types from their use.

Also, we might be using several tasks in a pipelined fashion in our specifica-

tion, where merging some of them might reduce context switching overhead.

Hence, there will not necessarily be a one-to-one correspondence between the

tasks in the specification and those in the implementation. This means that a

regrouping of tasks may be advisable. Such a regrouping is indeed feasible by

merging and splitting of tasks.

Merging of task graphs can be performed whenever some task Ti is the im-

mediate predecessor of some other task Tj and if Tj does not have any other

immediate predecessor (see fig. 7.2 with Ti = T3 and Tj = T4). This trans-

formation can lead to a reduced overhead of context-switches if the node is

implemented in software, and it can lead to a larger potential for optimizations

in general.

Figure 7.2. Merging of tasks

On the other hand, splitting of tasks may be advantageous for the following

reasons:

Tasks may be holding resources (like large amounts of memory) while they

are waiting for some input. In order to maximize the use of these resources, it

may be best to constrain the use of these resources to the time intervals during

which these resources are actually needed. In fig. 7.3, we are assuming that

task T2 requires some input somewhere in its code.

Figure 7.3. Splitting of tasks

In the initial version, the execution of task T2 can only start if this input is

available. We can split the node into T ∗
2 and T ∗∗

2 such that the input is only

required for the execution of T ∗∗
2 . Now, T ∗

2 can start earlier, resulting in more

Optimization 283

scheduling freedom. This improved scheduling freedom might improve re-

source utilization and could even enable meeting some deadline. It may also

have an impact on the memory required for data storage, since T ∗
2 could re-

lease some of its memory before terminating and this memory could be used

by other tasks while T ∗∗
2 is waiting for input.

One might argue that the tasks should release resources like large amounts

of memory anyway before waiting for input. However, the readability of the

original specification could suffer from caring about implementation issues in

an early design phase.

Quite complex transformations of the specifications can be performed with

a Petri net-based technique described by Cortadella et al. [Cortadella et al.,

2000]. Their technique starts with a specification consisting of a set of tasks

described in a language called FlowC. FlowC extends C with process headers

and intertask communication specified in the form of READ- and WRITE-

function calls. Fig. 7.4 shows an input specification using FlowC.

Figure 7.4. System specification

The example uses input ports IN and COEF, as well as output port OUT. Point-

to-point interprocess communication between processes is realized through a

uni-directional buffered channel DATA. Task GetData reads data from the en-

vironment and sends it to channel DATA. Each time N samples have been sent,

their average value is also sent via the same channel. Task Filter reads N values

from the channel (and ignores them) and then reads the average value, multi-

plies the average value by c (c can be read in from port COEF) and writes the

result to port OUT. The third parameter in READ and WRITE calls is the num-

284 EMBEDDED SYSTEM DESIGN

ber of items to be read or written. READ calls are blocking, WRITE calls are

blocking if the number of items in the channel exceeds a predefined threshold.

The SELECT statement has the same semantics as the statement with the same

name in ADA (see page 104): execution of this task is suspended until input

arrives from one of the ports. This example meets all criteria for splitting tasks

that were mentioned in the context of fig. 7.3. Both tasks will be waiting for

input while occupying resources. Efficiency could be improved by restructur-

ing these tasks. However, the simple splitting of fig. 7.3 is not sufficient. The

technique proposed by Cortadella et al. is a more comprehensive one. Using

their technique, FlowC-programs are first translated into (extended) Petri nets.

Petri nets for each of the tasks are then merged into a single Petri net. Using

results from Petri net theory, new tasks are then generated. Fig. 7.5 shows a

possible new task structure.

Figure 7.5. Generated software tasks

In this new task structure, there is one task which performs all initializations:

In addition, there is one task for each of the input ports. An efficient imple-

mentation would raise interrupts each time new input is received for a port.

There should be a unique interrupt per port. The tasks could then be started

directly by those interrupts, and there would be no need to invoke the operating

system for that. Communication can be implemented as a single shared global

variable (assuming a shared address space for all tasks). The overall operating

system overhead would be quite small, if required at all.

The code for task Tin shown in fig. 7.5 is the one that is generated by the Petri

net-based inter-task optimization of the task structure. It should be further

optimized by intra-task optimizations, since the test performed for the first if-

Optimization 285

statement is always false (j is equal to i-1 in this case, and i and j are reset to 0

whenever i becomes equal to N). For the third if-statement, the test is always

true, since this point of control is only reached if i is equal to N and i is equal to

j whenever label L0 is reached. Also, the number of variables can be reduced.

The following is an optimized version Tin:

Tin () {

READ (IN, sample, 1);

sum += sample; i++;

DATA = sample; d = DATA;

L0: if (i < N) return;

DATA = sum/N; d = DATA;

d = d*c; WRITE(OUT,d,1);

sum = 0; i = 0;

return;

}

The optimized version of Tin could be generated by a very clever compiler.

Unfortunately, hardly any of today’s compilers will perform this optimization.

Nevertheless, the example shows the type of transformations required for gen-

erating “good” task structures. For more details about the task generation, refer

to Cortadella et al. [Cortadella et al., 2000].

Optimizations similar to the one just presented are described in the book by

Thoen [Thoen and Catthoor, 2000] and in a publication by Meijer et al. [Meijer

et al., 2010].

7.2 High-level optimizations

There are many high-level optimizations which can potentially improve the

efficiency of embedded software.

7.2.1 Floating-point to fixed-point conversion

Floating-point to fixed-point conversion is a commonly used technique. This

conversion is motivated by the fact that many signal processing standards (such

as MPEG-2 or MPEG-4) are specified in the form of C-programs using floating-

point data types. It is left to the designer to find an efficient implementation of

these standards.

For many signal processing applications, it is possible to replace floating-point

numbers with fixed-point numbers (see page 144). The benefits may be signif-

286 EMBEDDED SYSTEM DESIGN

icant. For example, a reduction of the cycle count by 75% and of the energy

consumption by 76% has been reported for an MPEG-2 video compression al-

gorithm [Hüls, 2002]. However, some loss of precision is normally incurred.

More precisely, there is a trade-off between the cost of the implementation and

the quality of the algorithm (evaluated e.g. in terms of the signal-to-noise ratio

(SNR), see page 132). For small word-lengths, the quality may be seriously

affected. Consequently, floating-point data types may be replaced by fixed-

point data types, but the quality loss has to be analyzed. This replacement was

initially performed manually. However, it is a very tedious and error-prone

process.

Therefore, researchers have tried to support this replacement with tools. One of

such tools is FRIDGE (fixed-point programming design environment) [Willems

et al., 1997], [Keding et al., 1998]. FRIDGE tools have been made available

commercially as part of the Synopsys CoCentric tool suite [Synopsys, 2010].

In FRIDGE, the design process starts with an algorithm described in C, includ-

ing floating-point numbers. This algorithm is then converted to an algorithm

described in fixed-C. Fixed-C extends C by two fixed-point data types, using

the type definition features of C++. Fixed-C is a subset of C++ and provides

two data types fixed and Fixed. Fixed-point data types can be declared very

much like other variables. The following declaration declares a scalar vari-

able, a pointer, and an array to be fixed-point data types.

fixed a,*b,c[8]

Providing parameters of fixed-point data types can (but does not have to) be

delayed until assignment time:

a=fixed(5,4,s,wt,*b)

This assignment sets the word-length parameter of a to 5 bits, the fractional

word-length to 4 bits, sign to present (s), overflow handling to wrap-around

(w), and the rounding mode to truncation (t). The parameters for variables that

are read in an assignment are determined by the assignment(s) to those vari-

ables. The data type Fixed is similar to fixed, except that a consistency check

between parameters used in the declaration and those used in the assignment

is performed. For every assignment to a variable, parameters (including the

word-length) can be different. This parameter information can be added to the

original C-program before the application is simulated. Simulation provides

value ranges for all assignments. Based on that information, FRIDGE adds

parameter information to all assignments. FRIDGE also infers parameter in-

formation from the context. For example, the maximum value of additions is

considered to be the sum of the arguments. Added parameter information can

be either based on simulations or on worst case considerations. Being based

on simulations, FRIDGE does not necessarily assume the worst case values that

Optimization 287

would result from a formal analysis. The resulting C++-program is simulated

again to check for the quality loss. The Synopsys version of FRIDGE uses

SystemC fixed-point data types to express generated data type information.

Accordingly, SystemC can be used for simulating fixed-point data types.

An analysis of the trade-offs between the additional noise introduced and the

word-length needed was proposed by Shi and Brodersen [Shi and Brodersen,

2003] and also by Menard et al. [Menard and Sentieys, 2002].

7.2.2 Simple loop transformations

There is a number of loop transformations that can be applied to specifications.

The following is a list of standard loop transformations:

Loop permutation: Consider a two-dimensional array. According to the

C standard [Kernighan and Ritchie, 1988], two-dimensional arrays are laid

out in memory as shown in fig. 7.6. Adjacent index values of the second

index are mapped to a contiguous block of locations in memory. This lay-

out is called row-major order [Muchnick, 1997]. Note that the layout for

arrays is different for FORTRAN: Adjacent values of the first index are

mapped to a contiguous block of locations in memory (column major or-

der). Publications describing optimizations for FORTRAN can therefore

be confusing.

Figure 7.6. Memory layout for two-dimensional array p[j][k] in C

For row-major layout, it is usually beneficial to organize loops such that

the last index corresponds to the innermost loop. A corresponding loop

permutation is shown in the following example:

288 EMBEDDED SYSTEM DESIGN

for (k=0; k<=m; k++) for (j=0; j<=n; j++)

for (j=0; j<=n; j++) ⇒ for (k=0; k<=m; k++)

p[j][k] = ... p[j][k] = ...

Such permutations may have a positive effect on the reuse of array elements

in the cache, since the next iteration of the loop body will access an adja-

cent location in memory. Caches are normally organized such that adjacent

locations can be accessed significantly faster than locations that are further

away from the previously accessed location.

Loop fusion, loop fission: There may be cases in which two separate loops

can be merged, and there may be cases in which a single loop is split into

two. The following is an example:

for (j=0; j<=n; j++) for (j=0; j<=n; j++)

p[j]= ... ; {p[j]= ... ;

for (j=0; j<=n; j++) ⇔ p[j]= p[j] + ...}

p[j]= p[j] + ...

The left version may be advantageous if the target processor provides a

zero-overhead loop instruction which can only be used for small loops.

The right version might lead to an improved cache behavior (due to the

improved locality of references to array p), and also increases the potential

for parallel computations within the loop body. As with many other trans-

formations, it is difficult to know which of the transformations leads to the

best code.

Loop unrolling: Loop unrolling is a standard transformation creating sev-

eral instances of the loop body. The following is an example in which the

loop is being unrolled once:

for (j=0; j<=n; j++) for (j=0; j<=n; j+=2)

p[j]= ... ; ⇒ {p[j]= ... ;

p[j+1]= ...}

The number of copies of the loop is called the unrolling factor. Unrolling

factors larger than two are possible. Unrolling reduces the loop overhead

(less branches per execution of the original loop body) and therefore typ-

ically improves the speed. As an extreme case, loops can be completely

unrolled, removing control overhead and branches altogether. Unrolling

typically enables a number of following transformations and may there-

fore be beneficial even in cases where just unrolling the program does not

Optimization 289

give any advantages. However, unrolling increases code size. Unrolling is

normally restricted to loops with a constant number of iterations.

7.2.3 Loop tiling/blocking

It can be observed that the speed of memories is increasing at a slower rate

than that of processors. Since small memories are faster than large memories

(see page 155), the use of memory hierarchies may be beneficial. Possible

“small” memories include caches and scratch-pad memories. A significant

reuse factor for the information in those memories is required. Otherwise the

memory hierarchy cannot be efficiently exploited.

Reuse effects can be demonstrated by an analysis of the following example.

Let us consider matrix multiplication for arrays of size N × N [Lam et al.,

1991]:

for (i=1; i<=N; i++)

for(k=1; k<=N; k++){

r=X[i,k]; /* to be allocated to a register*/

for (j=1; j<=N; j++)

Z[i,j] += r* Y[k,j]

}

Let us consider access patterns for this code. The same element X[i,k] is used

by all iterations of the innermost loop. Compilers will typically be capable of

allocating this element to a register and reuse it for every execution of the in-

nermost loop. We assume that array elements are allocated in row major order

(as it is standard for C). This means that array elements with adjacent row (right

most) index values are stored in adjacent memory locations. Accordingly, ad-

jacent locations of Z and Y are fetched during the iterations of the innermost

loop. This property is beneficial if the memory system uses prefetching (when-

ever a word is loaded into the cache, loading of the next word is started as well).

Fig. 7.7 shows access patterns for this code.

For one iteration of the innermost loop, the black areas of arrays Z and Y are

accessed (and loaded into the cache). Whether or not the same information is

still in the cache for the next iteration of the middle or outermost loops depends

on the size of the cache. In the worst case (if N is large or the cache is small),

the information has to be reloaded for every execution of the innermost loop

and cache elements are not reused. The total number of memory references

may be as large as 2 N3 (for references to Z), N3 (for references to Y), and N2

(for references to X).

290 EMBEDDED SYSTEM DESIGN

Figure 7.7. Access pattern for unblocked matrix multiplication

Research on scientific computing led to the design of blocked or tiled algo-

rithms [Xue, 2000], which improve the locality of references. The following

is a tiled version of the above algorithm:

for (kk=1; kk<= N; kk+=B)

for (jj=1; jj<= N; jj+=B)

for (i=1; i<= N; i++)

for (k=kk; k<= min(kk+B-1,N); k++){

r=X[i][k]; /* to be allocated to a register*/

for (j=jj; j<= min(jj+B-1, N); j++)

Z[i][j] += r* Y[k][j]

}

Fig. 7.8 shows the corresponding access pattern.

Figure 7.8. Access pattern for tiled/blocked matrix multiplication

The innermost loop is now restricted so that it accesses less array elements

(those shown in black). Like above, references to X are replaced by references

to r. If a proper blocking factor is selected, elements of Z and Y are still in

the cache when the next iteration of the innermost loop starts. The blocking

Optimization 291

factor B can be chosen such that the elements of the innermost loops fit into

the cache. In particular, it can be chosen such that a B × B sub-matrix of Y

fits into the cache. This corresponds to a reuse factor of B for Y, since the

elements in the sub-matrix are accessed B times for each iteration of i. Also,

a block of B row elements of Z should fit into the cache. These will then be

reused during the iterations of k, resulting in a reuse factor of B for Z as well.

This reduces the overall number of memory references to at most 2 N3/B (for

references to Z) and N2 (for references to X). In practice, the reuse factor may

be less than B. Optimizing the reuse factor has been an area of comprehensive

research. Initial research focused on the performance improvements that can

be obtained by tiling. Performance improvements for matrix multiplication by

a factor between 3 and 4.3 was reported by Lam [Lam et al., 1991]. Possible

improvements are expected to increase with the increasing gap between pro-

cessor and memory speeds. Tiling can also reduce the energy consumption of

memory systems [Chung et al., 2001].

7.2.4 Loop splitting

Next, we discuss loop splitting as another optimization that can be applied

before compiling the program. Potentially, this optimization could also be

added to compilers.

Many image processing algorithms perform some kind of filtering. This fil-

tering consists of considering the information about a certain pixel as well as

that of some of its neighbors. Corresponding computations are typically quite

regular. However, if the considered pixel is close to the boundary of the image,

not all neighboring pixels exist and the computations must be modified. In a

straightforward description of the filtering algorithm, these modifications may

result in tests being performed in the innermost loop of the algorithm. A more

efficient version of the algorithm can be generated by splitting the loops such

that one loop body handles the regular cases and a second loop body handles

the exceptions. Figure 7.9 is a graphical representation of this transformation.

Figure 7.9. Splitting image processing into regular and special cases

Performing this loop splitting manually is a very difficult and error-prone pro-

cedure. Falk et al. have published an algorithm [Falk and Marwedel, 2003] to

perform a procedure which also works for larger dimensions automatically. It

is based on a sophisticated analysis of accesses to array elements in loops. Op-

292 EMBEDDED SYSTEM DESIGN

timized solutions are generated using genetic algorithms. The following code

shows a loop nest from the MPEG-4 standard performing motion estimation:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++) {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9;) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (x3<0 ‖ 35<x3‖y3<0‖48<y3)

then block 1; else else block 1;

if (x4<0‖ 35<x4‖y4<0‖48<y4)

then block 2; else else block 2;

}}}}}}

Using Falk’s algorithm, this loop nest is transformed into the following one:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++)

if (x>=10‖y>=14)

for (; y<49; y++)

for (k=0; k<9; k++)

for (l=0; l<9;l++)

for (i=0; i<4; i++)

for (j=0; j<4;j++) {

then block 1; then block 2}

else {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9;) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (0 ‖ 35<x3 ‖0‖ 48<y3)

then block 1; else else block 1;

Optimization 293

if (x4<0‖ 35<x4‖y4<0‖48<y4)

then block 2; else else block 2;

}}}}}}

Instead of complicated tests in the innermost loop, we now have a splitting

if-statement after the third for-loop statement. All regular cases are handled

in the then-part of this statement. The else-part handles the relatively small

number of remaining cases.

Fig. 7.10 shows the number of cycles that can be saved by loop nest splitting

for various applications and target processors.

Figure 7.10. Results for loop splitting

For the motion estimation algorithm, cycle counts can be reduced by up to

about 75 % (to 25 % of the original value). Obviously, substantial savings are

possible. This potential should certainly not be ignored.

7.2.5 Array folding

Some embedded applications, especially in the multimedia domain, include

large arrays. Since memory space in embedded systems is limited, options

for reducing the storage requirements of arrays should be explored. Fig. 7.11

represents the addresses used by five arrays as a function of time. At any par-

ticular time only a subset of array elements is needed. The maximum number

of elements needed is called the address reference window [De Greef et al.,

1997b]. In fig. 7.11, this maximum is indicated by a double-headed arrow.

294 EMBEDDED SYSTEM DESIGN

Figure 7.11. Reference patterns for arrays

A classical memory allocation for arrays is shown in fig. 7.12 (left). Each array

is allocated the maximum of the space it requires during the entire execution

time (if we consider global arrays).

Figure 7.12. Unfolded (left), inter-array folded (center), and intra-array folded (right) arrays

One of the possible improvements, inter-array folding, is shown in fig. 7.12

(center). Arrays which are not needed at overlapping time intervals can share

the same memory space. A second improvement, intra-array folding [De Greef

et al., 1997a], is shown in fig. 7.12 (right). It takes advantage of the limited sets

of components needed within an array. Storage can be saved at the expense

of more complex address computations. The two kinds of foldings can also be

combined.

Other forms of high-level transformations have been analyzed by Chung, Be-

nini and De Micheli [Chung et al., 2001], [Tan et al., 2003]. There are many

additional contributions in this domain in the compiler community.

In particular, function inlining replaces function calls by the code of the called

function. This transformation improves the speed of the code, but results in an

increase in the code size. Increased code sizes may be a problem in SoC tech-

nologies. Traditional inlining techniques rely on the user identifying functions

Optimization 295

to be inlined. This is a problem in systems on a chip, since the size of the in-

struction memory is very critical for such systems. Hence, it is important to be

able to constrain the size of the instruction memory and to let design tools find

out automatically which of the functions should be inlined for a certain size of

the memory. Known approaches for this include techniques by Teich [Teich

et al., 1999], Leupers et al. [Leupers and Marwedel, 1999], Palkovic [Palkovic

et al., 2002], and Lokuciejewski [Lokuciejewski et al., 2009]. These tech-

niques can be either integrated into a compiler or can be applied as a source-

to-source transformation before using any compiler.

7.3 Compilers for embedded systems

7.3.1 Introduction

Obviously, optimizations and compilers are available for the processors used

in PCs and compiler generation for commonly used 32-bit processors is well

understood. For embedded systems, standard compilers are also used in many

cases, since they are typically cheap or even freely available.

However, there are several reasons for designing special optimizations and

compilers for embedded systems:

Processor architectures in embedded systems exhibit special features (see

page 135). These features should be exploited by compilers in order to

generate efficient code. Compilation techniques might also have to support

compression techniques described on pages 138 to 140.

A high efficiency of the code is more important than a high compilation

speed.

Compilers could potentially help to meet and prove real-time constraints.

First of all, it would be nice if compilers contained explicit timing models.

These could be used for optimizations which really improve the timing be-

havior. For example, it may be beneficial to freeze certain cache lines in

order to prevent frequently executed code from being evicted and reloaded

several times.

Compilers may help to reduce the energy consumption of embedded sys-

tems. Compilers performing energy optimizations should be available.

For embedded systems, there is a larger variety of instruction sets. Hence,

there are more processors for which compilers should be available. Some-

times there is even the request to support the optimization of instruction sets

with retargetable compilers. For such compilers, the instruction set can be

specified as an input to a compiler generation system. Such systems can

296 EMBEDDED SYSTEM DESIGN

be used for experimentally modifying instruction sets and then observing

the resulting changes for the generated machine code. This is one partic-

ular case of design space exploration and is supported, for example, by

Tensilica tools [Tensilica Inc., 2010].

Some first approaches for retargetable compilers are described in the first book

on this topic [Marwedel and Goossens, 1995]. Optimizations can be found in

books by Leupers et al. [Leupers, 1997], [Leupers, 2000a]. In this section, we

will present examples of compilation techniques for embedded processors.

7.3.2 Energy-aware compilation

Many embedded systems are mobile systems which must run on batteries.

While computational demands on mobile systems are increasing, battery tech-

nology is expected to improve only slowly [ITRS Organization, 2009]. Hence,

the availability of energy is a serious bottleneck for new applications.

Saving energy can be done at various levels, including the fabrication process

technology, the device technology, circuit design, the operating system and

the application algorithms. Adequate translation from algorithms to machine

code can also help. High-level optimization techniques such as those presented

on pages 285 to 295 can also help to reduce the energy consumption. In this

section, we will look at compiler optimizations which can reduce the energy

consumption (frequently called low power optimizations). Energy models are

very essential ingredients of all energy optimizations. Energy models were

presented in Chapter 5. Using models like those, the following compiler opti-

mizations have been used for reducing the energy consumption:

Energy-aware scheduling: the order of instructions can be changed as

long as the meaning of the program does not change. The order can be

changed such that the number of transitions on the instruction bus is min-

imized. This optimization can be performed on the output generated by a

compiler and therefore does not require any change to the compiler.

Energy-aware instruction selection: typically, there are different instruc-

tion sequences for implementing the same source code. In a standard com-

piler, the number of instructions or the number of cycles is used as a crite-

rion (cost function) for selecting a good sequence. This criterion can be re-

placed by the energy consumed by that sequence. Steinke and others found

that energy-aware instruction selection reduces the energy consumption by

some percent [Steinke, 2003].

Optimization 297

Replacing the cost function is also possible for other standard compiler

optimizations, such as register pipelining, loop invariant code motion etc.

Possible improvements are also in the order of a few percent.

Exploitation of the memory hierarchy: As already explained on page

155, smaller memories provide faster access and consume less energy per

access. Therefore, a significant amount of energy can be saved if memory

hierarchies are exploited. Of all the compiler optimizations analyzed by

Steinke [Steinke et al., 2002b], [Steinke et al., 2002a], the energy savings

enabled by memory hierarchies are the largest. It is therefore beneficial to

use small scratch-pad memories (SPMs) in addition to large background

memories. All accesses to the corresponding address range will then re-

quire less energy and are faster than accesses to the larger memory. The

compiler should be responsible for allocating variables and instructions to

the scratch pad. This approach does, however, require that frequently ac-

cessed variables and code sequences are identified and mapped to that ad-

dress range.

7.3.3 Memory-architecture aware compilation

7.3.3.1 Compilation techniques for scratch-pads

The advantages of using scratch-pad memories (SPMs) have been very clearly

demonstrated [Banakar et al., 2002]. Therefore, the exploitation of scratch-pad

memories (SPMs) is the most prominent case of memory hierarchy exploita-

tion. Available compilers are usually capable of mapping memory objects to

certain address ranges in the memory. Towards this end, the source code typ-

ically has to be annotated. For example, memory segments can be introduced

in the source code by using pragmas like

pragma arm section rwdata = "foo", rodata = "bar"

Variables declared after this pragma would be mapped to read-write segment

"foo" and constants would be mapped to read-only segment "bar". Linker

commands can then map these segments to particular address ranges, includ-

ing those belonging to the SPM. This is the approach taken in compilers for

ARM processors [ARM Ltd., 2009b]. This is not a very comfortable approach

and it would be nice if compilers could perform such a mapping automati-

cally for frequently accessed objects. Therefore, optimization algorithms have

been designed. A survey has been presented at the HiPEAC summer school

[Marwedel, 2007]. Available SPM optimizations can be classified into two

categories:

298 EMBEDDED SYSTEM DESIGN

Non-overlaying (or “static”) memory allocation strategies: For these strate-

gies, memory objects will stay in the SPM while the corresponding appli-

cation is executed.

Overlaying (or “dynamic”) memory allocation strategies: For these strate-

gies, memory objects are moved in and out of the SPM at run-time. This

is a kind of “compiler-controlled paging”, except the migration of objects

happens between the SPM and some slower memory and does not involve

any disks.

7.3.3.2 Non-overlaying allocation

For non-overlaying allocation, we can start by considering the allocation of

functions and global variables to the SPM. For this purpose, each function and

each global variable can be modeled as a memory object. Let

S be the size of the SPM,

s fi and svi be the sizes of function i and variable i, respectively,

g be the energy consumption saved per access to the SPM (that is, the dif-

ference between the energy required per access to the slow main memory

and the one required per access to the SPM),

n fi and nvi be the number of accesses to function i and variable i, respec-

tively,

x fi and xvi be defined as

x fi =

{

1 if function i is mapped to the SPM

0 otherwise
(7.1)

xvi =

{

1 if variable i is mapped to the SPM

0 otherwise
(7.2)

Then, the goal is to maximize the gain

G = g

(

∑
i

n fi · x fi +∑
i

nvi · xvi

)

(7.3)

while respecting the size constraint

Optimization 299

∑
i

s fi · x fi +∑
i

svi · xvi ≤ S (7.4)

The problem is known as a knapsack problem. Standard knapsack algorithms

can be used for selecting the objects to be allocated to the SPM. However,

equations 7.3 and 7.4 also have the form of an integer linear programming

(ILP) problem (see Appendix A) and ILP-solvers can be used as well. g is a

constant factor in the objective function and is not needed for the solution of

the ILP problem. The corresponding optimization can be implemented as a

pre-pass optimization (see fig. 7.13).

Figure 7.13. Pre-pass optimization

The optimization impacts addresses of functions and global variables. Compil-

ers typically allow a manual specification of these addresses in the source code.

Hence, no change to the compiler itself is required. The advantage of such a

pre-pass optimization is that it can be used with compilers for many different

target processors. There is no need to modify a large number of target-specific

compilers.

This model can be extended into various directions:

Allocation of basic blocks: The approach just described only allows the

allocation of entire functions or variables to the SPM. As a result, a ma-

jor fraction of the SPM may remain empty if functions and variables are

large. Therefore, we try to reduce the granularity of the objects which are

allocated to the SPM. The natural choice is to consider basic blocks as

memory objects. In addition, we do also consider sets of adjacent basic

blocks, where adjacency is defined as being placed next to each other in

the instruction address space by the compiler. We call such sets of adjacent

blocks multi-blocks. Fig. 7.14 shows the three multi-blocks M12, M23 and

M123 for basic blocks BB1, BB2 and BB3.

The ILP model can be extended accordingly:

Let

300 EMBEDDED SYSTEM DESIGN

Figure 7.14. Basic blocks and multi-blocks

– sbi and smi be the sizes of basic blocks i and multi-blocks i, respec-

tively,

– nbi and nmi be the number of accesses to basic block i and multi-blocks

i, respectively,

– xbi and xmi be defined as

xbi =

{

1 if basic block i is mapped to the SPM

0 otherwise
(7.5)

xmi =

{

1 if multi-block i is mapped to the SPM

0 otherwise
(7.6)

Then, the goal is to maximize the gain

G = g

(

∑
i

n fi · x fi +∑
i

nbi · xbi +∑
i

nmi · xmi +∑
i

nvi · xvi

)

(7.7)

while respecting the constraints

∑
i

s fi · x fi +∑
i

sbi · xbi +∑
i

smi · xmi +∑
i

svi · xvi ≤ S (7.8)

∀ basic blocks i : xbi + x f f ct(i) + ∑
i′∈multiblock(i)

xmi′ ≤ 1 (7.9)

where f ct(i) is the function containing basic block i

and multiblock(i) is the set of multi-blocks containing basic block i

The second constraint ensures that a basic block is mapped to the SPM only

once, instead of potentially being mapped as a member of the enclosing

function and a member of a multi-block.

Optimization 301

Experiments using this model were performed by Steinke et al. [Steinke

et al., 2002b]. For some benchmark applications, energy reductions of up

to about 80% were found, even though the size of the SPM was just a small

fraction of the total code size of the application. Results for the bubble sort

program are shown in fig. 7.15.

Figure 7.15. Energy reduction by compiler-based mapping to scratch-pad for bubble sort

Obviously, larger SPMs lead to a reduced energy consumption in the main

memory. The energy required in the processor is also reduced, since less

wait cycles are required. Supply voltages have been assumed to be constant.

Partitioned memories [Wehmeyer and Marwedel, 2006]: Small memories

are faster and require less energy per access. Therefore, it makes sense to

partition memories into several smaller memories. The ILP model can be

extended easily to also model several memories. We do not distinguish be-

tween the various types of memory objects (functions, basic blocks, vari-

ables etc.), in this case. An index i represents any memory object. Let

– S j be the size of the memory j,

– si be the size of object i (as before),

– e j be the energy consumption per access to memory j,

– ni the number of accesses to object i (as before),

– xi, j be defined as

xi, j =

{

1 if object i is mapped to memory j

0 otherwise
(7.10)

302 EMBEDDED SYSTEM DESIGN

Instead of maximizing the energy saving, we are now minimizing the over-

all energy consumption. Hence, the goal is now to minimize

C = ∑
j

e j ∑
i

xi, j ·ni (7.11)

while respecting the constraints

∀ j : ∑
i

si · xi, j ≤ S j (7.12)

∀i : ∑
j

xi, j = 1 (7.13)

Partitioned memories are advantageous especially for varying memory re-

quirements. Storage locations accessed frequently are called the working

set of an application. Applications with a small working set could use a

very small fast memory, whereas applications requiring a larger working

set could be allocated to a somewhat larger memory. Therefore, a key ad-

vantage of partitioned memories is their ability to adapt to the size of the

current working set.

Furthermore, unused memories can be shut down to save additional en-

ergy. However, we are considering only the “dynamic” energy consump-

tion caused by accesses to the memory. In addition, there may be some

energy consumption even if the memory is idle. This consumption is not

considered here. Therefore, savings from shutting down memories are not

reflected in equations 7.11 and 7.12.

Link/load-time allocation of memory [Nguyen et al., 2005]: Optimizing

code at compile time for a certain SPM size has a disadvantage: the code

might perform badly if we run it on different variants of some processor, if

these variants have differently sized SPMs. We would like to avoid requir-

ing different executable files for the different variants of the processor. As

a result, we are interested in executables which are independent of the SPM

size. This is feasible, if we perform the optimization at link-time. The pro-

posed approach computes the ratio of the number of accesses divided by

the size of a variable at compile-time and stores this value together with

other information about variables in the executable. At load time, the OS

is queried for the size of the SPM. Then, the code is patched such that as

many profitable variables as possible are allocated to the SPM.

Allocation of the stack: In order to really reduce the energy consumption,

all frequently accessed memory objects must be allocated to some small

Optimization 303

memory. The stack must be included in this consideration. Otherwise, stack

accesses will limit the overall improvements that are feasible. There are at

least two approaches for this: Steinke [Steinke et al., 2002b] computed the

worst case stack size using a stack size analyzer. Stacks which are small

enough can then be allocated to the SPM. Avissar et al. [Avissar et al.,

2002] proposed to partition the stack into frequently and less frequently

accessed elements. Infrequently accessed elements will stay in the slower

main memory, while frequently accessed variables will be allocated to the

SPM. This scheme requires two stack pointers, one for each memory. In

order to prevent the overhead of updating two pointers for each function

call, splitting of the stack is avoided for “short” functions.

Allocation of the heap [Dominguez et al., 2005]: Remarks regarding fre-

quent accesses to the stack also apply to the heap. Heap elements which

are frequently accessed should also be allocated to efficient memory layers.

We could use a heap size analyzer in order to compute bounds on the heap

size. Small, frequently accessed heaps can be allocated to the SPM entirely.

However, heaps are frequently too large for this approach. Dominguez et

al. propose a second approach. In their approach, programs are partitioned

into regions.Regions are delimited by so-called program points. The se-

lection of program points is crucial for this approach. Program points can

be defined as [Udayakumaran et al., 2006]: “(i) the start and end of each

procedure; (ii) just before and just after each loop (even inner loops of

nested loops); (iii) the start and end of each if statement’s then part and

else part, as well as the start and end of the entire if statement; and (iv) the

start and end of each case in all switch statements in the program, as well

as the start and end of the entire switch statement”.

In [Dominguez et al., 2005], some space is kept available in the SPM and

each time a code region is entered, heap elements to be moved in and out

of the SPM are copied as needed. The copying is done such that pointers to

heap elements will always remain valid.

Consideration of the impact on timing predictability [Wehmeyer and Mar-

wedel, 2006]: Most of the SPM allocation algorithms allocate memory such

that we know at compile time, whether a memory access will be to a fast

or to a slow memory. Therefore, it is possible to predict the speed of mem-

ory accesses more precisely than for caches. As a result, the worst case

execution times of SPM-based systems are typically better that those of

cache-based systems.

304 EMBEDDED SYSTEM DESIGN

7.3.3.3 Overlaying allocation

Large applications may have multiple hot spots (multiple areas of code con-

taining compute-intensive loops). Non-overlaying approaches fail to provide

the best possible results in this context. For such applications, the SPM should

be exploited for each of the hot spots. This requires an automatic migration

between the layers in the memory hierarchy. There are several approaches for

overlaying allocation:

Tiling of large arrays [Kandemir et al., 2001], [Chen et al., 2006]: SPMs

can be problematic when large arrays are used, which do not completely fit

into the SPM. Algorithms presented so far will not allow subsets of arrays

to be copied into the SPM. This has been changed with Kandemir’s pro-

posal to combine tiling with SPM allocation. His technique allows copying

slices of arrays into the SPM. In [Kandemir et al., 2001], tiling was uncon-

ditionally applied. In [Chen et al., 2006], the authors propose to suppress

tiling for irregular array accesses for which tiling would be inefficient.

Multiple hierarchy levels [Brockmeyer et al., 2003]: The speed difference

between large and small memories is increasing. Therefore, it makes sense

to introduce multiple memory hierarchy levels. The MHLA (memory hier-

archy layer assignment) tool of IMEC tries to find an appropriate allocation

of variables to the different memory layers. MHLA automatically selects

subsets of arrays which can be copied to faster memory layers before loops

are entered. A new version of this tool is currently being designed in the

Mnemee project [Mnemee project, 2010].

Region-based memory object migration [Udayakumaran et al., 2006]:

This approach is also based on regions (see page 303) and program points.

For each program point, it is considered which variables should be moved

out of the SPM and which variables should be moved into the SPM (code

is modeled as a kind of variable).

Verma’s approach [Verma and Marwedel, 2004] is similar to the one by

Udayakumaran. However, the selection of the memory objects to be copied

is based on a global ILP model, instead of a more local, heuristic optimiza-

tion.

7.3.3.4 Multiple threads/processes

The above approaches are still limited to handling a single process or thread.

For multiple threads, moving objects into and out of the SPM at context switch

time has to be considered. Verma [Verma et al., 2005] proposed three different

approaches:

Optimization 305

1 For the first approach, only a single process owns space in the SPM at

any given time. At each context switch, the information of the preempted

process in the occupied space is saved and the information for the process

to be executed is restored. This approach is called the saving/restoring

approach. This approach does not work well with large SPMs, since the

copying would consume a significant amount of time and energy.

2 For the second approach, the space in the SPM is partitioned into areas for

the various processes. The size of the partitions is determined in a special

optimization. The SPM is filled during initialization. No further compiler-

controlled copying is required. Therefore, this approach is called the non-

saving approach. This approach makes sense only for SPMs large enough

to contain areas for several processes.

3 The third approach is a hybrid approach: The SPM is split into an area

jointly used by processes and a second area, in which processes obtain some

exclusively allocated space. The size of the two areas is determined in an

optimization.

Verma’s approaches require a fixed set of processes to be known at compile

time. The next step is to allow processes to enter and to leave the system.

Pyka et al. [Pyka et al., 2007] describe run-time SPM allocation performed by

an SPM memory manager (SPMM) to be integrated into the operating sys-

tem. Pyka’s approach allows space for pre-compiled libraries to be allocated

in the SPM, in contrast to earlier algorithms. Unfortunately, Pyka’s algorithm

requires an additional level of indirection. Despite the overhead of this addi-

tional level of indirection, a reduction of the energy consumption by 25 % to

35 % with respect to a four-way set associative cache has been obtained.

This additional level of indirection can be avoided if a memory management

unit (MMU) is available. Egger et al. [Egger et al., 2006] developed a tech-

nique exploiting MMUs: At compile time, sections of code are classified as

either benefiting or not benefiting from an allocation to the SPM. The code

benefiting is stored in a certain area in the virtual address space. Initially, this

area is not mapped to physical memory. Therefore a page fault occurs when

the code is accessed for the very first time. Page fault handling then invokes the

SPMM and the SPMM allocates (and deallocates) space in the SPM, always

updating the virtual-to-real addresses translation tables as needed.

In general, exploitation of SPM requires tool support, but leads to efficient de-

signs. Caches can be taken advantage of without such support. Future systems

might contain mixtures of caches and SPMs.

306 EMBEDDED SYSTEM DESIGN

7.3.4 Reconciling compilers and timing analysis

Almost all compilers which are available today do not include a timing model.

Therefore, the development of real-time software typically has to follow an it-

erative approach: software is compiled by a compiler which is unaware of any

timing information. The resulting code is then analyzed using a timing ana-

lyzer such as aiT [Absint, 2010]. If the timing constraints are not met, some of

the inputs to the compiler run must be changed and the procedure has to be re-

peated. We call this “trial-and-error”-based development of real-time soft-

ware. This approach suffers from several problems. First of all, the number

of required design iterations is initially unknown. Furthermore, the compiler

used in this approach is “optimizing”, but a precise evaluation of objectives

apart from the code size is impossible. Hence, compiler writers can only hope

that their “optimizations” have a positive impact of the quality of the code in

terms of relevant objectives. Due to the complex timing behavior of modern

processors, this hope is hardly supported by evidence. Finally, the “trial-and-

error”-based development of real-time software requires the designer to find

appropriate modifications of the input to the compiler such that the real-time

constraints will eventually be met.

This “trial-and-error”-based approach can be avoided, if timing analysis is in-

tegrated into the compiler. The is the aim of the development of the worst case

execution time aware compiler WCC at TU Dortmund. Developing a com-

pletely new timing analyzer independent of the existing ones would be a waste

of efforts. Therefore, WCC is based on the integration of the timing analyzer

aiT into an experimental compiler for the TriCore architecture. Fig. 7.16 shows

the resulting overall structure.

Figure 7.16. Worst case execution time aware compiler WCC

Optimization 307

WCC uses the ICD-C compiler infrastructure [ICD Staff, 2010] to read and

parse C source code. The source is then converted into a “high-level inter-

mediate representation” (HL-IR). The HL-IR is an abstract representation of

the source code. Various optimizations can be applied to the HL-IR. The op-

timized HL-IR is passed to the code selector. The code selector maps source

code operations to machine instructions. WCC so far focuses on the support of

the Infineon TriCore architecture. TriCore instructions are represented in the

low-level intermediate representation LLIR. In oder to estimate the WCETEST ,

the LLIR is converted into the CRL2 representation used by aiT (using the

converter LLIR2CRL). aiT is then able to generate WCETEST for the given

machine code. This information is converted back into the LLIR representa-

tion (using the converter CRL2LLIR). WCC uses this information to consider

WCETEST as the objective function during optimizations. This can be done in

a straightforward manner for optimizations at the LLIR-level. However, many

optimizations are performed at the HL-IR-level. WCETEST -directed optimiza-

tions at this level require using back-annotation from the LLIR-level to the

HR-IR-Level. ICD-C includes this back-annotation.

WCC has been used to study the impact of optimizing for a reduced WCETEST

in the compiler. The numerous results include a study of the impact of em-

ploying this objective for register allocation [Falk, 2009]. Results indicate a

dramatic impact, as can be seen from fig. 7.17.

Figure 7.17. Reduction of WCETEST by WCET-aware register allocation

WCETEST can be reduced down to 68.8% of the original WCETEST on the

average by just using WCET-aware register allocation in WCC. The largest re-

duction yields a WCETEST of only 24.1% of the original WCETEST . The com-

bined effect of several such optimizations has been analyzed by Lokuciejewski

et al. [Lokuciejewski and Marwedel, 2010]. For the considered benchmarks,

Lokuciejewski found a reduction of down to 57.1% of the original WCETEST .

308 EMBEDDED SYSTEM DESIGN

7.3.5 Compilation for digital signal processors

Features of DSP processors are described on page 143. Compilers should ex-

ploit these in order to optimize code with respect to the objectives mentioned

in Chapter 5. Techniques for this can be demonstrated using address genera-

tion units as examples. The possibility of generating addresses “for free” has

an important impact on how variables should be laid out in memory. Fig. 7.18

shows an example.

Figure 7.18. Comparison of memory layouts

We assume that in some basic block, variables a to d are accessed in the se-

quence (b,d,a,c,d,c). Accessing these variables with register-indirect address-

ing requires, first of all, loading the address of b into an address register (see

fig. 7.18, left). The instruction referring to variable b is not shown in fig. 7.18,

since the current focus is on address generation. Therefore, the generation of

the address for the access to the next variable (d) is considered next. Assuming

that there is just a single address register A, A has to be updated to point to

variable d. This requires adding 2 to the register. Again, we ignore the instruc-

tion loading the variable, and we immediately consider the access to a. For

this, we must subtract 3, and for the next access we must add 2. Assuming that

the auto-increment and -decrement range is restricted to ± 1, only the last two

accesses shown in fig. 7.18 can be implemented with these operations. In total,

4 instructions for calculating addresses are needed.

In contrast, for the layout in fig. 7.18 (right), 4 address calculations are auto-

increment and -decrement operations which will be executed in parallel with

some operation in the main data path. Only 2 cycles are needed for address

calculations with an offset larger than 1. Again, the instructions actually using

the variables are not shown.

How do we generate such clever memory layouts? Algorithms doing this typ-

ically start from an access graph (see fig. 7.19).

Such access graphs have one node for each of the variables and have an edge

for every pair of variables for which there are adjacent accesses. The weight

of such edges corresponds to the number of adjacent accesses to the variables

connected by that edge.

Optimization 309

Figure 7.19. Memory allocation for access sequence (b, d, a, c, d, c) for a single address

register A

Variables connected by an edge of a high weight should preferably be allocated

to adjacent memory locations. The number of address calculations saved in this

way is equal to the weight of the corresponding edge. For example, if c and d

are allocated to adjacent locations, then the last two accesses in the sequence

can be implemented with auto-increment and -decrement operations.

The overall goal of memory allocation is to find a linear order of variables

in memory maximizing the use of auto-increment and -decrement operations.

This corresponds to finding a linear path of maximum weight in the variable

access graph. Unfortunately, the maximum weighted path problem in graphs

is NP-complete. Hence, it is common to use heuristics for generating such

paths [Liao et al., 1995b], [Sudarsanam et al., 1997]. Most of them are based

on Kruskal’s spanning tree heuristic. This is Liao’s algorithm:

1 Sort edges of access graph G = (V,E) according to their weight.

2 Construct a new graph G′ = (V ′,E ′), starting with G′ = G and E ′ = 0.

3 Select an edge e of G of highest weight; If this edge does not cause a cycle

in G′ and does not cause any node in G′ to have a degree > 2 then add this

node to E ′ otherwise discard e.

4 Goto 3 as long as not all edges from G have been selected and as long as

G′ has less than (|V |−1) edges.

Implicitly, all nodes are assumed to be connected by an edge of weight 0.

This ensures that the algorithm continues even if parts of the graph become

disconnected. The order of the variables in memory corresponds to the order

of the variables along the generated linear path.

An application of this algorithm to the example of fig. 7.19 is shown in fig.

7.20.

Edge (c,d), due to its weight, is the first edge added to the empty graph G′.

Among all edges of weight 1, the sequence is arbitrary. Suppose (a,c) is added

310 EMBEDDED SYSTEM DESIGN

Figure 7.20. Sequence of steps in Liao’s algorithm

next (see fig. 7.20 (center)). (a,d) may be the next edge considered. Its inclu-

sion in G′ would cause a cycle and it is discarded. Finally, (b,d) is added. The

algorithm stops with 3 edges added to a graph of 4 nodes.

The algorithm just sketched only covers a simple case. A tie-break heuristic

for edges of equal weight was published by Leupers and Marwedel [Leupers

and Marwedel, 1996]. Extensions of the basic algorithm cover more complex

situations, such as:

n > 1 address registers [Leupers and Marwedel, 1996],

also using modify registers present in the AGU [Leupers and Marwedel,

1996], [Leupers and David, 1998],

extension to arrays [Basu et al., 1999],

larger auto-increment and -decrement ranges [Sudarsanam et al., 1997].

Memory allocation, as described above, improves both the code-size and the

run-time of the generated code. Other proposed optimization algorithms ex-

ploit further architectural features of DSP processors, such as:

multiple memory banks [Sudarsanam and Malik, 1995],

heterogeneous register files [Araujo and Malik, 1995],

modulo addressing [Quilleré and Rajopadhye, 2000],

instruction level parallelism [Leupers and Marwedel, 1995],

multiple operation modes [Liao et al., 1995a].

Other optimization techniques are described by Leupers [Leupers, 2000a].

7.3.6 Compilation for multimedia processors

In order to fully support packed data types as described on page 145, com-

pilers must be able to automatically convert operations in loops to operations

Optimization 311

on packed data types. Taking advantage of this potential is necessary for gen-

erating efficient software. A very challenging task is to use this feature in

compilers. Compiler algorithms exploiting operations on packed data types

are extensions of vectorizing algorithms originally developed for supercom-

puters. Some algorithms for multimedia and SIMD short vector extensions

have been described [Fisher and Dietz, 1998], [Fisher and Dietz, 1999], [Leu-

pers, 2000b], [Krall, 2000], [Larsen and Amarasinghe, 2000].

Automatic parallelization of loops for the M3-DSP (see page 148) requires

the use of vectorization techniques, which achieve significant speedups (com-

pared to the case of sequential operations, see fig. 7.21) [Lorenz et al., 2002],

[Lorenz et al., 2004]. For application dot product 2, the size of the vectors was

too small to lead to a speedup and no vectorization should be performed. The

number of cycles can be reduced by 94 % for benchmark example if vectoriza-

tion is combined with an exploitation of zero-overhead-loop instructions.

Figure 7.21. Reduction of the cycle count by vectorization for the M3-DSP

Due to the increased number of processors with SIMD extensions, compi-

lation for SIMD instructions has received significant attention [Ren et al.,

2006], [Nuzman et al., 2006]. In particular, compilation for the CELL pro-

cessor has revived interest in such compilation techniques (see, for example,

Eichenberger et al. [Eichenberger et al., 2005]). Furthermore, compiler writ-

ers addressed implications of the availability of short vector instructions on

Pentium®-compatible processors [Gerber et al., 2005]. It is not possible to

provide a full overview of this dynamic research area.

7.3.7 Compilation for VLIW processors

VLIW architectures (see page 146) require special compiler optimizations:

312 EMBEDDED SYSTEM DESIGN

A key optimization required for TMS 320C6xx compilers is to allocate,

at compile time, the functional unit that should execute a certain opera-

tion. Due to the two data paths (see fig. 3.28), this implies a partition-

ing of the operations into two sets [Jacome and de Veciana, 1999], [Jacome

et al., 2000], [Leupers, 2000c] and also includes an allocation to one of the

register files.

VLIW processors frequently have branch delay slots. For VLIW proces-

sors, the branch delay penalty is significantly larger than for other proces-

sors, because each of the branch delay slots could hold a full instruction

packet, not just a single instruction. For example, for the TMS 320C6xx,

the branch delay penalty is 5 × 8 = 40 instructions. In order to avoid this

large penalty, most VLIW processors support predicated execution for a

large number of condition code registers. Predicated execution can be em-

ployed to efficiently implement small if-statements. For large if-statements,

however, conditional branches are more efficient, since these allow mutual

exclusion of then- and else-branches to be exploited in hardware alloca-

tion. The precise trade-off between the two methods for implementing

if-statements can be found with proper optimization techniques [Mahlke

et al., 1992], [August et al., 1997], [Leupers, 1999].

Due to the large branch delay penalty, inlining (see page 294) is another

optimization that is very useful for VLIW processors.

Significant effort has been invested into the design of compilers for the

Intel IA-64 EPIC architecture (see [Dulong et al., 2001] as an example).

Due to the peculiarities of the architecture, special optimization techniques

are required.

The Trimaran compiler infrastructure [Trimaran, 2010] is a platform for

research on compilation techniques for instruction level parallelism and

VLIW as well as EPIC architectures.

7.3.8 Compilation for network processors

Network processors are a new type of processors. They are optimized for high-

speed Internet applications. Their instruction sets comprise numerous instruc-

tions for accessing and processing bit fields in streams of information. Typi-

cally, they are programmed in assembly languages, since their throughput is of

utmost importance. Nevertheless, network protocols are becoming more and

more complex and designing compilers for such processors supports the design

of network components. The necessary bit-level details have been analyzed by

Falk, Wagner et al. [Falk et al., 2006].

Optimization 313

7.3.9 Compiler generation, retargetable compilers
and design space exploration

When the first compilers were designed, compiler design was a totally manual

process. In the meantime, some of the steps involved in generating a compiler

have been automated or supported by tools. For example, lex and yacc and

more recent versions of these tools (see [Johnson, 2010]) provide a standard

means for parsing the source code. Generating machine instructions is another

step which is now supported by tools. For example, tree pattern matchers

such as olive [Tjiang, 1993] can be used for this task. Despite the use of such

tools, compiler design is typically not a fully automated process.

However, there have been many attempts to design retargetable compilers. We

distinguish between different kinds of retargetability:

Developer retargetability: In this case, compiler specialists are responsi-

ble for retargeting compilers to new instruction sets.

User retargetability: In this case, users are responsible for retargeting the

compiler. This approach is much more challenging.

More information about retargetable compilers and their use for design space

exploration can be found in a book by Leupers and Marwedel [Leupers and

Marwedel, 2001]. Commercial products include those that are available from

Tensilica Inc. [Tensilica Inc., 2010].

7.4 Power Management and Thermal
Management

7.4.1 Dynamic voltage scaling (DVS)

Some embedded processors support dynamic power management (see page

136) and dynamic voltage scaling (see page 136). An additional optimization

step can be used to exploit these features. Typically, such an optimization step

follows code generation by the compiler. Optimizations in this step require

a global view of all tasks of the system, including their dependencies, slack

times etc.

The potential of dynamic voltage scheduling is demonstrated by the following

example [Ishihara and Yasuura, 1998]. We assume that we have a processor

which runs at three different voltages, 2.5 V, 4.0 V, and 5.0 V. Assuming an

energy consumption of 40 nJ per cycle at 5.0 V, equation 3.14 can be used to

compute the energy consumption at the other voltages (see table 7.22, where

25 nJ is a rounded value).

314 EMBEDDED SYSTEM DESIGN

Vdd [V] 5.0 4.0 2.5

Energy per cycle [nJ] 40 25 10

fmax [MHz] 50 40 25

cycle time [ns] 20 25 40

Figure 7.22. Characteristics of processor with DVS

Furthermore, we assume that our task needs to execute 109 cycles within 25

seconds. There are several ways of doing this, as can be seen from figures 7.23

to 7.25. Using the maximum voltage (case a), see fig. 7.23), it is possible to

shut down the processor during the slack time of 5 seconds (we assume the

power consumption to be zero during this time).

Figure 7.23. Possible voltage schedule

Another option (case b)) is to initially run the processor at full speed and then

reduce the voltage when the remaining cycles can be completed at the lowest

voltage (see fig. 7.24).

Figure 7.24. Second voltage schedule

Finally, we can run the processor at a clock rate just large enough to complete

the cycles within the available time (case c), see fig. 7.25).

The corresponding energy consumptions can be calculated as

Ea = 109 ×40 ·10−9 = 40 [J] (7.14)

Eb = 750 ·106 ×40 ·10−9 +250 ·106 ×10 ·10−9 = 32.5 [J] (7.15)

Optimization 315

Figure 7.25. Third voltage schedule

Ec = 109 ×25 ·10−9 = 25 [J] (7.16)

A minimum energy consumption is achieved for the ideal supply voltage of

4 Volts. In the following, we use the term variable voltage processor only

for processors that allow any supply voltage up to a certain maximum. It is

expensive to support truly variable voltages, and therefore, actual processors

support only a few fixed voltages.

The observations made for the above example can be generalized into the fol-

lowing statements. The proofs of these statements are given in the paper by

Ishihara and Yasuura.

If a variable voltage processor completes a task before the deadline, the

energy consumption can be reduced1.

If a processor uses a single supply voltage Vs and completes a task T just

at its deadline, then Vs is the unique supply voltage which minimizes the

energy consumption of T .

If a processor can only use a number of discrete voltage levels, then a voltage

schedule using the two voltages which are the two immediate neighbors of the

ideal voltage Videal can be chosen. These two voltages lead to the minimum en-

ergy consumption except if the need to use an integer number of cycles results

in a small deviation from the minimum2.

The statements can be used for allocating voltages to tasks. Next, we will

consider the allocation of voltages to a set of tasks. We will use the following

notation:

1This formulation makes an implicit assumption in lemma 1 of the paper by Ishihara and Yasuura explicit.
2This need is not considered in the original paper.

316 EMBEDDED SYSTEM DESIGN

N : the number of tasks

EC j : the number of executed cycles of task j

L : the number of voltages of the target processor

Vi : the ith voltage, with 1 ≤ i ≤ L

Fi : the clock frequency for supply voltage Vi

D : the global deadline at which all tasks must have been completed

SC j : the average switching capacitance during the execution of task j

(SCi comprises the actual capacitance CL and the switching activ-

ity α (see eq. 3.14 on page 136))

The voltage scaling problem can then be formulated as an integer linear pro-

gramming (ILP) problem (see page 335). Towards this end, we introduce vari-

ables Xi, j denoting the number of cycles executed at a particular voltage:

Xi, j : the number of clock cycles task j is executed at voltage Vi

Simplifying assumptions of the ILP-model include the following:

There is one target processor that can be operated at a limited number of

discrete voltages.

The time for voltage and frequency switches is negligible.

The worst case number of cycles for each task are known.

Using these assumptions, the ILP-problem can be formulated as follows:

Minimize

E =
N

∑
j=1

L

∑
i=1

SC j ·Xi, j ·V
2
i (7.17)

subject to

∀ j :
L

∑
i=1

Xi, j = EC j (7.18)

and

N

∑
j=1

L

∑
i=1

Xi, j

Fi

≤ D (7.19)

The goal is to find the number Xi, j of cycles that each task j is executed at a

certain voltage Vi . According to the statements made above, no task will ever

Optimization 317

need more than two voltages. Using this model, Ishihara and Yasuura show

that efficiency is typically improved if tasks have a larger number of voltages

to choose from. If large amounts of slack time are available, many voltage

levels help to find close to optimal voltage levels. However, four voltage levels

do already give good results quite frequently.

There are many cases in which tasks actually run faster than predicted by their

worst case execution times. This cannot be exploited by the above algorithm.

This limitation can be removed by using checkpoints at which actual and worst

case execution times are compared, and then to use this information to po-

tentially scale down the voltage [Azevedo et al., 2002]. Also, voltage scaling

in multi-rate task graphs was proposed [Schmitz et al., 2002]. DVS can be

combined with other optimizations such as body biasing [Martin et al., 2002].

Body biasing is a technique for reducing leakage currents.

7.4.2 Dynamic power management (DPM)

In order to reduce the energy consumption, we can also take advantage of

power saving states, as introduced on page 136. The essential question for ex-

ploiting DPM is: when should we go to a power-saving state? Straight-forward

approaches just use a simple timer to transition into a power-saving state. More

sophisticated approaches model the idle times by stochastic processes and use

these to predict the use of subsystems with more accuracy. Models based on

exponential distributions have been shown to be inaccurate. Sufficiently accu-

rate models include those based on renewal theory [Simunic et al., 2000].

A comprehensive discussion of power management was published (see, for

example, [Benini and De Micheli, 1998], [Lu et al., 2000]). There are also ad-

vanced algorithms which integrate DVS and DPM into a single optimization

approach for saving energy [Simunic et al., 2001].

Allocating voltages and computing transition times for DPM may be two of

the last steps of optimizing embedded software.

Power management is also linked to thermal management. Thermal manage-

ment relies on temperature information being available at run-time. This infor-

mation is then used to control the generation of additional heat, and possibly

has an impact on cooling mechanisms as well. Controlling fans can be con-

sidered as a very simple case of thermal management. Also, systems may be

shutting down completely, if temperatures are exceeding maximum thresholds.

More advanced systems may be reducing the clock frequencies and voltages.

For multiprocessor systems, tasks may be automatically migrated between var-

ious processors. In all of these cases, the objective “temperature” is evaluated

at run-time and used to have an impact at run-time. Avoiding overheating is

318 EMBEDDED SYSTEM DESIGN

the goal of the work reported by Merkel et al. [Merkel and Bellosa, 2005] and

by Donald et al. [Donald and Martonosi, 2006].

7.5 Assignments

1 Consider the following program:

1 #include <stdio.h>

2 #define DATALEN 15

3 #define FILTERTAPS 5

4 double x[DATALEN] = { 128.0, 130.0, 180.0, 140.0, 120.0,

5 110.0, 107.0, 103.5, 102.0, 90.0,

6 84.0, 70.0, 30.0, 77.3, 95.7 };

7 const double h[FILTERTAPS]={0.125,-0.25,0.5,-0.25,0.125};

8 double y[DATALEN]; // result;

9 int main(void)

10 {int i,n;

11 for(i=0;i<DATALEN;++i)

12 {y[i]=0;

13 for(n=0;n<FILTERTAPS;++n)

14 if ((i-n)>=0) y[i]+=h[n]*x[i-n];

15 }

16 for(i=0;i<DATALEN;++i) printf("%.2f ",y[i]);

17 return 0;

18 }

Perform at least the following optimizations:

Removal of the if in the innermost loop (line 14)

Loop unrolling (line 13)

Constant propagation

Floating-point to fixed-point conversion

Avoidance of all accesses to arrays

Please provide the optimized version of the program after each of the trans-

formations and do also check for consistent results!

2 Suppose that variables {a, b, c, d, e, f} are accessed in the sequence

Optimization 319

(c a e d f a d a d e c b f d e d f b a d a).

Also, assume that our processor has the following characteristics:

There is a single address register AR.

All accesses to the memory must be via AR.

Post-increment and post-decrement by 1 can be encoded in all load-

and store-instructions.

All other changes of AR need an extra instruction and an extra cycle.

Using Liao’s algorithm, compute a variable order minimizing the total num-

ber of explicit address calculations! Include a graphical representation of

the effect of each of the steps of the algorithm.

Create an assembly language program generating the indicated sequence of

variable references. All references are assumed to be reading (not writing)

the memory. Use the following assembly instructions (semantics indicated

on the right):

ld r,(AR); register[r]:= memory[AR]

ld r,(AR)++; register[r]:= memory[AR]; AR++;

ld r,(AR)- -; register[r]:= memory[AR]; AR- -;

li AR,constant; AR:=constant;

addi AR,constant; AR:=AR+constant; //constant can be negative

3 Suppose that your computer is equipped with a main memory and a scratch

pad memory. Sizes and the required energy per access are shown in the

table in fig. 7.26.

Memory Size in bytes Energy per access

Scratch pad 4096 (4k) 1.3 nJ

Main memory 262,144 (256 k) 31 nJ

Figure 7.26. Memory characteristics

Also, let us assume that we are accessing variables as shown in the table in

fig. 7.27.

Which of those variables should be allocated to the scratch pad memory,

provided that we use a static, non-overlaying allocation of variables? Use

integer the linear problem (ILP) model to select the variables. Your re-

sult should include the ILP model as well as the results. You may use the

lp solve program [Anonymous, 2010a] to solve your ILP problem.

320 EMBEDDED SYSTEM DESIGN

Variable Size in bytes Number of accesses

a 1024 16

b 2048 1024

c 512 2048

d 256 512

e 128 256

f 1024 512

g 512 64

h 256 512

Figure 7.27. Variable characteristics

4 Loop unrolling is one of the potentially useful optimizations. Please name

two potential benefits and two potential problems!

Chapter 8

TEST

8.1 Scope

The purpose of testing is to make sure that a manufactured embedded system

behaves as intended. Testing can be done during or after the fabrication (fab-

rication testing) and also after the system has been delivered to the customer

(field testing). Testing of embedded systems needs special attention for several

reasons:

Embedded/cyber-physical systems integrated into a physical environment

may be safety-critical. Therefore, their malfunctioning can be much more

dangerous than, say, the malfunctioning of office equipment. As a result,

expectations for the product quality are higher than for non-safety critical

systems.

Testing of timing-critical systems has to validate the correct timing behav-

ior. This means that just testing the functional behavior is not sufficient.

Testing embedded/cyber-physical systems in their real environment may be

dangerous. For example, testing control software in a nuclear power plant

can be a source of serious, far-reaching problems.

Preparations for testing should be done no later than at the end of the design

phase. Preferably, necessary support for testing should even be considered

earlier, intertwined with the design process and using testability as one of the

objectives for evaluating designs. In order not to overload Chapter 5, we have

moved all aspects of testing into this separate Chapter. The presentation cor-

responds to considering testing only at the very end of the design flow (see

fig. 8.1), even though an earlier consideration during an actual design would

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8 8, © Springer Science+Business Media B.V. 2011

321

http://dx.doi.org/10.1007/978-94-007-0257-8_8

322 EMBEDDED SYSTEM DESIGN

be advisable. However, an early consideration is not always common practice,

and, therefore, fig. 8.1 might also correspond to an actual design flow.

Figure 8.1. Design flow with testing at its very end

In testing, we are typically denoting the system under design (SUD) as the de-

vice under test (DUT). To the DUT, we are applying a set of specially selected

input patterns, so-called test patterns to the input of the system, observe its

behavior and compare this behavior with the expected behavior. Test patterns

are normally applied to the real, already manufactured system. The main pur-

pose of testing is to identify systems that have not been correctly manufactured

(manufacturing test) and to identify systems that fail later (field test).

Testing includes a number of different actions:

1 test pattern generation,

2 test pattern application,

3 response observation, and

4 result comparison.

8.2 Test procedures

8.2.1 Test pattern generation for gate level
models

In test pattern generation, we try to identify a set of test patterns which distin-

guishes a correctly working from an incorrectly working system. Test pattern

generation is usually based on fault models. Such fault models are models of

possible faults. Test pattern generation tries to generate tests for all faults that

are possible according to a certain fault model.

The stuck-at-fault model is a frequently used fault model. It is based on the

assumption, that any internal wire of an electronic circuit is either permanently

Test 323

connected to ’0’ or ’1’. It has been observed that many faults actually behave as

if some wire was permanently connected that way.

As an example, consider the circuit shown in fig. 8.21.

Figure 8.2. Test pattern at the gate level

Suppose that we would like to check if there is a stuck-at-1 fault for signal f .

Toward this end, we try to set f to ’0’ by setting a = b =’0’. As a result, f

should be ’1’ if there is this fault, and otherwise it should be ’0’. In order to

observe this difference, we must propagate it to the output signal i. For this to

happen, we must set e to ’1’ and to set either c or d to ’1’. h and i will be ’1’

if there is no fault and ’0’ otherwise. The test pattern comprises all values of

inputs a to e. The D-algorithm can be used to generate this test pattern [Lala,

1985].

Many techniques for test pattern generation are based on the stuck-at-fault

model. However, CMOS technologies require more comprehensive fault mod-

els. In CMOS technologies, faults can turn combinatorial devices into devices

having internal states. This problem can occur, if wires are broken (this case

is known as stuck-at-open fault). As a result of this, gates of transistors can

become disconnected. Such transistors will be conducting or non-conducting,

depending on the charge stored on the gate before the wire was broken. In this

way, the gate “remembers” the input signal due to stored charges. Furthermore,

there may be transient faults and delay faults (faults changing the delay of a

circuit). Delay faults may be the result of cross-talk between adjacent wires.

Fault models exist which take such hardware faults into account [Krstić and

Cheng, 1998].

While good fault models exist for hardware testing, the same is not true for

software testing.

1Please remember: consistent with standard ANSI/IEEE 91, the symbols ≥1 and & denote or-, and and-

gates, respectively.

324 EMBEDDED SYSTEM DESIGN

8.2.2 Self-test programs

One of the key problems of testing modern integrated circuits is their limited

number of pins, making it more and more difficult to access internal compo-

nents. Also, it is getting very difficult to test these circuits at full speed, since

testers must be at least as fast as the circuits themselves. The fact that many

embedded systems are based on processors provides a way out of this dilemma:

processors are capable of running test programs or diagnostics. Such diagnos-

tics have been used to test main frame machines for decades. Fig. 8.3 shows

some components that might be contained in some processor.

Figure 8.3. Segment from processor hardware

In order to test for stuck-at-faults at the input of the ALU, we can execute a

small test program:

store pattern of all ’1’s in the register file;

perform xor between constant "0000...00" and register,

test if result contains ’0’ bit,

if yes, report error;

otherwise start test for next fault

Similar small programs can be generated for other faults. Unfortunately, the

process of generating diagnostics for main frames has mostly been a manual

one. Some researchers have proposed to generate diagnostics automatically

[Brahme and Abraham, 1984], [Krüger, 1986], [Bieker and Marwedel, 1995],

[Krstic and Dey, 2002], [Kranitis et al., 2003], [Bernardi et al., 2005].

8.3 Evaluation of test pattern sets and system
robustness

8.3.1 Fault coverage

The quality of test pattern sets can be evaluated using fault coverage as a

metric. Fault coverage is the percentage of potential faults that can be found

for a given test pattern set:

Test 325

Coverage =
Number of detectable faults for a given test pattern set

Number of faults possible due to the fault model

In practice, achieving a good product quality requires fault coverages in the

area of at least 98 to 99 %. The requirements may be higher for particular

systems. Also, special fault models may be necessary for certain hardware

components (e.g. for batteries).

In addition to achieving a high coverage, we must also achieve a high correct-

ness coverage. This means that a fault-free system must be recognized as such.

Otherwise, it would be possible to achieve a 100% coverage by classifying all

systems as faulty.

In order to increase the number of options that exist for system validation, it

has been proposed to use test methods already during the design phase. For

example, test pattern sets can be applied to software models of systems in

order to check if two software models behave in the same way. More time-

consuming formal methods need to be applied only to those cases in which the

system passed this test-based equivalence check.

8.3.2 Fault simulation

It is currently not feasible (and it will probably not be feasible) to completely

predict the behavior of systems in the presence of faults or to analytically com-

pute the coverage. Therefore, the behavior of systems in the presence of faults

is frequently simulated. This type of simulation is called fault simulation.

In fault simulation, system models are modified to reflect the behavior of the

system in the presence of a certain fault.

The goals of fault simulation include:

to know the effect of a fault of the components at the system level. Faults

are called redundant if they do not affect the observable behavior of the

system, and

to know whether or not mechanisms for improving fault tolerance actually

help.

Fault simulation requires the simulation of the system for all faults feasible

for the fault model and also for a possibly large number of different input pat-

terns. Accordingly, fault simulation is an extremely time-consuming process.

Different techniques have been proposed to speed up fault simulation.

One such technique applies to fault simulation at the gate level. In this case,

internal signals are single bit signals. This fact enables the mapping of a signal

326 EMBEDDED SYSTEM DESIGN

to a single bit of some machine word of a simulating host machine. AND-

and OR-machine instructions can then be used to simulate Boolean networks.

However, only a single bit would be used per machine word. Efficiency is im-

proved with parallel fault simulation. In parallel fault simulation, n different

test patterns are simulated at the same time, if n is the machine word size. The

values of each of the n test patterns are mapped to a different bit position in the

machine word. Executing the same set of AND- and OR-instructions will then

simulate the behavior of the Boolean network for n test patterns instead of for

just one.

8.3.3 Fault injection

Fault simulation may be too time-consuming for real systems. If actual systems

are available, fault injection can be used instead. In fault injection, real existing

systems are modified and the overall effect on the system behavior is checked.

Fault injection does not rely on fault models (even though they can be used).

Hence, fault injection has the potential of generating faults that would not have

been predicted by a fault model.

We can distinguish between two types of fault injection:

local faults within the system, and

faults in the environment (behaviors which do not correspond to the specifi-

cation). For example, we can check how the system behaves if it is operated

outside the specified temperature or radiation ranges.

Several methods can be used for fault injection:

fault injection at the hardware level: Examples include pin-manipulation,

electromagnetic and nuclear radiation, and

fault injection at the software level: Examples include toggling some mem-

ory bits.

The quality of fault injection depends on the “probe effect”: probing might

have an impact on the behavior of the system. This impact should be as small

as possible and essentially be negligible.

According to experiments reported by Kopetz [Kopetz, 1997], software-based

fault injection was essentially as effective as hardware-based fault injection.

Nuclear radiation was a noticeable exception in that it generated errors which

were not generated with other methods.

Test 327

8.4 Design for testability

8.4.1 Motivation

Ideas for test pattern generation for Boolean circuits have been presented in

section 8.2.1. For circuits implementing state machines (automata), test pat-

tern generation is more difficult. Verifying whether or not two finite state ma-

chines are equivalent may require complex input sequences [Kohavi, 1987].

For example, consider the state chart of fig. 2.27, shown again in fig. 8.4 for

convenience:

Figure 8.4. Finite state machine to be tested

Suppose that we would like to test the transition from state C to state D. This

requires us to get into state C first, by applying an appropriate sequence of

input patterns. Next, we must generate input event i and check, if output y is

generated. Also, we need to check if we reached state D. This procedure is

rather complicated, takes a lot of time and is susceptible to interference with

other errors2.

This example demonstrates: If testing comes in only as an afterthought, it may

be very difficult to test a system. In order to simplify tests, special hardware can

be added such that testing becomes easier. The process of designing for better

testability is called design for testability, or DfT. Special purpose hardware

for testing finite state machines is a prominent example of this.

8.4.2 Scan design

Reaching certain states and observing states resulting from the application of

input patterns is very much simplified with scan design. In scan design, all

flip-flops storing states are connected to form serial shift registers (see fig. 8.5).

The circuit contains three D-type flip-flops DFF and one multiplexer at each of

the flip-flop inputs. Using the control input of the multiplexers (shown at the

bottom of the multiplexer inputs), we can either connect the flip-flops to the

2The overall test of this FSM is simplified by the fact that this FSM contains a linear chain of transitions

(c.f. to the assignments of this chapter).

328 EMBEDDED SYSTEM DESIGN

Figure 8.5. Scan path design

network generating the next state from the current state and the current input

or we can connect flip-flops to form a serial chain. Setting the multiplexers

to scan mode, we can load state bit after state bit into the scan chain (one bit

at every clock tick). This way, we can load any state into the three flip-flops

serially. In a second phase, we can apply an input pattern to the FSM while the

multiplexers are set to normal mode. After the next clock tick, the FSM will

be in a new state. This new state can be serially shifted out in the third and

final phase, using the serial mode again (one bit per clock tick). The net effect

is that we do not need to worry about how to get into certain states and how

to observe whether or not the Boolean function δ for computing the next state

has been correctly implemented while we are generating tests for the FSM.

Effectively, the fact that we are dealing with state-based systems has an impact

only on the two (simple) shift phases, and test pattern generation for (stateless)

Boolean networks can be used for checking for correct outputs. This means

that it is sufficient to use test pattern generation methods for Boolean functions

(stateless networks) instead of caring about complex input sequences etc.

Scan design is a technique which works well for single chips. For board-level

integration it is necessary to have some technique for connecting scan chains

of several chips. JTAG is a standard which does exactly this. The standard

defines registers at the boundaries of all chips and a number of test pins and

control commands such that all chips can be connected in scan chains. JTAG

is also known as boundary scan [Parker, 1992].

Test 329

8.4.3 Signature analysis

In order to also avoid shifting out the response of the device under test (DUT),

responses can be compacted. A setup like the one shown in fig. 8.6 can be

used.

Figure 8.6. Testing a device under test (DUT)

Generated test patterns are used as inputs (or so-called stimuli) to the DUT. The

response of the DUT is then compacted to form a signature, which character-

izes the response. This response is later compared to the expected response.

The expected response can be computed by simulation.

The compaction is typically performed with linear feedback shift registers (LF-

SRs), shift registers with an XOR-feedback. Fig. 8.7 shows a 4-bit LFSR (left)

and the associated state diagram (right) [Lala, 1985].

Figure 8.7. Linear feedback shift register for response compaction

Dashed lines denote an input of ’1’, uninterrupted lines denote an input of ’0’.

The selected feedback yields all possible signatures.

During testing, the response of the system tested is sent to the input of the

LFSR. The LFSR will then generate a signature reflecting the response. Due

to storing the signature instead of the full response, several response patterns

can be mapped to the same signature. What is the probability of obtaining a

correct signature from an incorrect response?

In general, an n-bit signature generator can generate 2n signatures. For an

m-bit response of the DUT, the best that we can do is to evenly map 2(m−n)

330 EMBEDDED SYSTEM DESIGN

responses to the same signature. Suppose that we expect a certain signature to

be generated for the correct response of the system. Then, 2(m−n)−1 incorrect

responses would also map to the same signature. There is a total of 2m −
1 incorrect responses if responses are m-bit long. Hence, the probability of

an incorrect response to map to the correct signature (provided patterns map

evenly to signatures) is

P = Pr

(

other patterns mapping to the same signature

total number of other patterns

)

(8.1)

=
2(m−n)−1

2m −1
(8.2)

≈
1

2n
for m ≫ n (8.3)

This means that the probability of generating correct signatures from an incor-

rect test response is very small if the shift register is long.

8.4.4 Pseudo-random test pattern generation

For chips with a large number of flip-flops, it can take quite some time to shift-

in the test patterns. In order to speed up the process of generating patterns on

the chip, it has been proposed to also integrate hardware for generating test

patterns on the chip.

For example, pseudo-random patterns (also generated by LFSRs) can be used

as test patterns. For example, we can modify the circuit of fig. 8.7 as shown in

fig. 8.8.

Figure 8.8. Linear feedback shift register for test pattern generation

The circuit generates all possible test patterns, except the pattern consisting

of all zeros. The pattern consisting of all zeros has to be avoided, since the

Test 331

generator would get stuck once it arrives at this pattern. The generated patterns

are typically exercising systems to be tested much better than simple counters.

8.4.5 The built-in logic block observer (BILBO)

The built-in logic block observer (BILBO) [Könemann et al., 1979] has been

proposed as a circuit combining test pattern generation, test response com-

paction and serial scan capabilities. A BILBO with three D-type flip-flops is

shown in fig. 8.9.

Figure 8.9. BILBO

Modes of BILBO registers are shown in table 8.10. The 3-bit register shown

in fig. 8.9 can be in scan path, reset, linear-feedback shift register (LFSR) and

normal mode. In LFSR mode, it can be used for either generating pseudo-

random patterns or for compacting responses from inputs (Z0 to Z2). In this

case, compaction is based on parallel inputs instead of the sequential inputs

we have considered so far. Purpose and behavior of compaction from parallel

inputs is similar to that for serial inputs.

c1 c2 Di

’0’ ’0’ ’0’ ⊕Qi−1 = Qi−1 scan path mode

’0’ ’1’ ’0’ ⊕’1’ = ’0’ reset

’1’ ’0’ Zi ⊕Qi−1 LFSR mode

’1’ ’1’ Zi ⊕ ’1’ = Zi normal mode

Figure 8.10. Modes of BILBO registers

Typically, BILBOs are used in pairs (see fig. 8.11).

One BILBO generates pseudo-random test patterns, feeding some Boolean net-

work with these patterns. The response of the Boolean network is then com-

pressed by a second BILBO connected to the output of the network. At the end

332 EMBEDDED SYSTEM DESIGN

Figure 8.11. Cross-coupled BILBOs

of the test sequence, the compacted response is serially shifted out and com-

pared with the expected response. The expected response can be computed by

simulation.

During a second phase, the roles of the two BILBOs can be swapped. During

this phase, the connection shown as a dashed line in fig. 8.11 is used. In normal

mode, BILBOs can be used as state registers.

DfT hardware is of great help during the prototyping and debugging of hard-

ware. It is also useful to have DfT hardware in the final product, since hardware

fabrication never has a zero defect rate. Testing fabricated hardware signifi-

cantly contributes to the overall cost of a product and mechanisms that reduce

this cost are highly appreciated by all companies.

8.5 Assignments

1 Consider the circuit shown in fig. 8.2. Generate a test pattern for a stuck-

at-0 fault at signal h!

2 Which state diagram corresponds to the LFSR shown in fig. 8.12?

Figure 8.12. LFSR

3 Specify test patterns and expected responses for the FSM shown in fig.

8.4. These patterns must be specified as a sequence of pairs (test pattern,

Test 333

expected response). Events shown in fig. 8.4 can be used as test patterns.

We assume that the FSM will be in the default state after power-on. Provide

a complete test for all transitions! Note that the special chain-like structure

of the FSM simplifies testing.

Appendix A
Integer linear programming

Integer linear programming (ILP) is a mathematical optimization technique

applicable to a large number of optimization problems.

ILP models provide a general approach for modeling optimization problems.

ILP models consist of two parts: a cost function and a set of constraints. Both

parts involve references to a set X = {xi} of integer-valued variables. Cost

functions must be linear functions of those variables. So, they must be of the

general form

C = ∑
i

aixi, with ai ∈ IR,xi ∈ IN0 (A.1)

The set J of constraints must also consist of linear functions of integer-valued

variables. They must be of the form

∀ j ∈ J : ∑
i

bi, jxi ≥ c j with bi, j,c j ∈ IR (A.2)

Def.: The integer linear programming (ILP-) problem is the problem of

minimizing the cost function of eq. (A.1) subject to the constraints given in

eq. A.2. If all variables are constrained to being either 0 or 1, the correspond-

ing model is called a 0/1-integer linear programming model. In this case,

variables are also denoted as (binary) decision variables.

Note that ≥ can be replaced by ≤ in equation (A.2) if constants bi, j are mod-

ified accordingly. Also, the case of negative variables xi (that is, allowing xi

to have any integer value) can be transformed into the case of non-negative

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

335

http://dx.doi.org/10.1007/978-94-007-0257-8

336 EMBEDDED SYSTEM DESIGN

variables shown above by multiplying constants by -1. Applications requiring

maximizing some gain function C′ can be changed into the above form by

setting C = −C′.

For example, assuming that x1, x2 and x3 must be integers, the following set of

equations represent a 0/1-IP model:

C = 5x1 +6x2 +4x3 (A.3)

x1 + x2 + x3 ≥ 2 (A.4)

x1 ≤ 1 (A.5)

x2 ≤ 1 (A.6)

x3 ≤ 1 (A.7)

Due to the constraints, all variables are either 0 or 1. There are four possible

solutions. These are listed in fig. A.1. The solution with a cost of 9 is optimal.

x1 x2 x3 C

0 1 1 10

1 0 1 9

1 1 0 11

1 1 1 15

Figure A.1. Possible solutions of the presented ILP-problem

ILP is a variant of linear programming (LP). For linear programming, variables

can take any real values. ILP and LP models can be solved optimally using

mathematical programming techniques. Unfortunately, ILP is NP-complete

(but LP is not) and ILP execution times may become very large.

Nevertheless, ILP models are useful for modeling optimization problems as

long as the model sizes are not extremely large. Modeling optimization prob-

lems as integer linear programming problems makes sense despite the com-

plexity of the problem: many problems can be solved in acceptable execution

times and if they cannot, ILP models provide a good starting point for heuris-

tics. Execution times depend on the number of variables and on the number

and structure of the constraints. Good ILP solvers (like lp solve [Anonymous,

2010a] or CPLEX) can solve well-structured problems containing a few thou-

sand variables in acceptable computation times (e.g. minutes). For more in-

formation on ILP and LP, refer to books on the topic (e.g. to Wolsey [Wolsey,

1998]).

Appendix B
Kirchhoff’s laws and operational amplifiers

Our presentation of D/A-converters on page 164 assumes some basic knowl-

edge about operational amplifiers. This knowledge is frequently lacking among

computer science students and therefore the necessary fundamentals are pre-

sented in this appendix. These fundamentals require an understanding of Kirch-

hoff’s laws, of which students will also be reminded in this appendix.

Kirchhoff’s laws

Kirchoff’s laws provide a means for analyzing electrical circuits. The first rule

is Kirchhoff’s Current Law, also called Kirchhoff’s Junction Rule, or Kirch-

hoff’s First Law. The rule applies to junctions such as the one shown in fig.

B.1.

Figure B.1. Junction in an electrical circuit

Kirchhoff’s Current Law: At any point in an electrical circuit, the sum of

currents flowing towards that point is equal to the sum of currents flowing

away from that point [Jewett and Serway, 2007]. Formally, for any node in a

circuit we have:

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

337

http://dx.doi.org/10.1007/978-94-007-0257-8

338 EMBEDDED SYSTEM DESIGN

∑
k

ik = 0 (B.1)

If Kirchhoff’s law is used in the form of equation B.1, currents denoted by ar-

rows pointing away from the node must be counted as negative, and this count-

ing is independent of the direction into which electrons are actually flowing.

Example: for the currents of fig. B.1, we have

i1 + i2 − i3 + i4 = 0 (B.2)

i1 + i2 + i4 = i3 (B.3)

This invariance exists due to the conservation of electrical charge. Without

this rule, the total electrical charge would not remain constant, and the voltage

would increase.

Kirchhoff’s second rule applies to loops in a circuit. It is known as Kirchhof’s

Voltage Law, Kirchhoff’s Loop Rule or Kirchhoff’s Second Law. Fig. B.4

shows an example.

Figure B.2. Loop in an electrical circuit

Kirchhoff’s Voltage Law: The sum of the potential differences (voltages)

across all elements around any closed circuit must be zero [Jewett and Serway,

2007]. Formally, for any loop in a circuit we have:

∑
k

Vk = 0 (B.4)

If we traverse voltages against the arrow direction, we have to count them as

negative. Example: for the schematic of fig. B.2, we have

V1 −V2 −V3 +V4 = 0 (B.5)

Appendix B: Kirchhoff’s laws and operational amplifiers 339

The underlying reason for this invariance is the conservation of energy. With-

out this rule, we could accelerate charge in the loop and the charge would

accumulate energy without any energy consumption elsewhere.

In general, it is not relevant into which direction electrons are actually flowing

and which of two terminals is actually positive with respect to some other

terminal. Arrows can be selected in an arbitrary way. We just have to make sure

that we respect the direction of the arrows when we apply Kirchhoff’s laws. If

arrows for voltages and currents across components are pointing in opposite

directions, the equation for that component has to take that into account. For

example, Ohm’s law for resistor R3 in fig. B.2 reads as follows, due to the

opposite directions of voltage and current arrows:

I3 = −V3

R3
(B.6)

Of course, we will typically try to define the direction of voltages and currents

such that we avoid having too many minus signs.

Operational amplifiers

In electronics, there is frequently the need to amplify some signal x(t) in order

to obtain some amplified signal y(t) = a ·x(t), with a > 1. a is called the gain.

Designing different circuits for each and every gain would be a laborious task.

Therefore, designers are frequently using a general amplifier which can be

easily configured to have the required gain. Such a general amplifier is called

operational amplifier, or op-amp for short. Op-amps are designed for a very

large maximum gain. The required actual gain can be adjusted with a proper

selection of a few hardware components in the circuit surrounding the op-amp.

More precisely, an operational amplifier is a component having two signal in-

puts and one signal output. In addition, there are at least two power supply

inputs (see fig. B.3).

Figure B.3. Operational amplifier

340 EMBEDDED SYSTEM DESIGN

Op-amps amplify the difference between the voltages at the two signal inputs

with respect to ground by a gain g:

Vout = g · (V+−V−) (B.7)

g is called the open loop gain and is typically very large (104 < g < 106).

For an ideal op-amp, g would approach infinity. Furthermore, op-amps usually

come with a very high input impedance (> 1MΩ). Hence, we can frequently

ignore signal input currents. For an ideal op-amp, the input impedance would

be infinity and input currents would be zero.

Op-amps have been commercially available for decades, both as separate in-

tegrated circuits and within other circuits. They differ by their speed, their

voltage ranges, their current drive capability, and other characteristics. The ac-

tual gain of the circuit is selected with external resistors. Fig. B.4 shows how

this can be done.

Figure B.4. Operational amplifier with feed back

Any small voltage between the two signal inputs is amplified by a large fac-

tor. Via resistor R1, the resulting output voltage is feed back. Feed back is to

the inverting input and therefore, any positive voltage V− results in a negative

voltage Vout and vice versa. This means that the feed back will work against

the input voltage, and it does so very strongly, due to the large amplification.

Therefore, the feed back will reduce the voltage at the input pin. The question

is: by how much? We can use Kirchhoff’s rules to find the resulting voltage

V− (see fig. B.5).

Due to the characteristics of op-amps, we have

Vout = −g ·V− (B.8)

Due to Kirchhoff’s law for the loop shown by a dashed line in fig. B.5, we have

Appendix B: Kirchhoff’s laws and operational amplifiers 341

Figure B.5. Op-amp with feed back (loop highlighted)

I ·R1 +Vout −V− = 0 (B.9)

Note that we include a minus sign for V− since we are traversing a segment of

the loop against the direction of the arrow. From equations B.8 and B.9, we get

I ·R1 +(−g) ·V−−V− = 0 (B.10)

(1+g) ·V− = I ·R1 (B.11)

V− =
I ·R1

1+g
(B.12)

V−,ideal = lim
g→∞

I ·R1

1+g
(B.13)

= 0 (B.14)

This means that, for an ideal op-amp, V− is 0. Due to this, the inverting signal

input is called virtual ground. Nevertheless, this input cannot be connected to

ground, since this would change the currents.

Computing the actual gain of the circuit in fig. B.4 is left as an exercise for

Chapter 3.

References

[Aamodt and Chow, 2000] Aamodt, T. and Chow, P. (2000). Embedded ISA support for en-

hanced floating-point to fixed-point ANSI C compilation. 3rd ACM Intern. Conf. on Compil-

ers, Architectures and Synthesis for Embedded Systems (CASES), pages 128–137.

[Absint, 2002] Absint (2002). Absint: WCET analyses. http://www.absint.de/wcet.htm.

[Absint, 2010] Absint (2010). aiT worst-case execution time analyzers. http://www.absint.de/

ait.

[Accellera Inc., 2003] Accellera Inc. (2003). SystemVerilog 3.1 - Accellera’s extensions to

Verilog®. http://www.eda.org/sv/SystemVerilog 3.1 final.pdf.

[ACM SIGBED, 2010] ACM SIGBED (2010). Home page. http://www.sigbed.org.

[ACM/IEEE, 2008] ACM/IEEE (Dec. 2008). Computer science curriculum 2008: An in-

terim revision of CS 2001. Association for Computing Machinery, IEEE Computer Society,

http://www.acm.org/education/curricula/ComputerScience2008.pdf .

[Ambler, 2003] Ambler, S. (2003). The diagrams of UML 2.0. http://www.agilemodeling.com/

essays/umlDiagrams.htm.

[Analog Devices Inc. Eng., 2004] Analog Devices Inc. Eng. (2004). Data Conversion Hand-

book (Analog Devices). Newnes.

[Anonymous, 2010a] Anonymous (2010a). Introduction to lp solve 5.5.0.14. http://lpsolve.

sourceforge.net.

[Anonymous, 2010b] Anonymous (2010b). RTJS home page. http://www.rtsj.org.

[Araujo and Malik, 1995] Araujo, G. and Malik, S. (1995). Optimal code generation for em-

bedded memory non-homogenous register architectures. 8th Int. Symp. on System Synthesis

(ISSS), pages 36–41.

[ARM Ltd., 2009a] ARM Ltd. (2009a). AMBA 2 specification. http://www.arm.com/products/

solutions/AMBA Spec.html.

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

343

http://www.absint.de/wcet.htm
http://www.absint.de/ait
http://www.absint.de/ait
http://www.eda.org/sv/SystemVerilog_3.1_final.pdf
http://www.sigbed.org
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
http://www.rtsj.org
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://dx.doi.org/10.1007/978-94-007-0257-8

344 EMBEDDED SYSTEM DESIGN

[ARM Ltd., 2009b] ARM Ltd. (2009b). Realview compilation tools compiler reference guide.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.swdev/index.html.

[ARTEMIS Joint Undertaking, 2010] ARTEMIS Joint Undertaking (2010). Home page.

https://www.artemis-ju.eu/organisation.

[Artist Consortium, 2010] Artist Consortium (2010). Home page. http://www.artist-

embedded.org.

[Atienza et al., 2007] Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C., Mamagkakis, S.,

Hidalgo, J. I., Catthoor, F., Soudris, D., and Lanchares, J. (2007). Optimization of dynamic

data structures in multimedia embedded systems using evolutionary computation. In 10th

Int. Workshop on Software & Compilers for Embedded Systems (SCOPES), pages 31–40.

[August et al., 1997] August, D. I., Hwu, W. W., and Mahlke, S. (1997). A framework for

balancing control flow and predication. Ann. Workshop on Microprogramming and Microar-

chitecture (MICRO), pages 92–103.

[AUTOSAR, 2010] AUTOSAR (2010). Automotive open system architecture. http://www.

autosar.org.

[Avissar et al., 2002] Avissar, O., Barua, R., and Stewart, D. (2002). An optimal memory al-

location scheme for scratch-pad-based embedded systems. Transactions on Embedded Com-

puting Systems.

[Avižienis et al., 2004] Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004).

Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33.

[Azevedo et al., 2002] Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum,

A., and Nicolau, A. (2002). Profile-based dynamic voltage scheduling using program check-

points. Design, Automation and Test in Europe (DATE), pages 168–175.

[Bäck et al., 1997] Bäck, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of Evolutionary

Computation. Oxford Univ. Press.

[Bäck and Schwefel, 1993] Bäck, T. and Schwefel, H.-P. (1993). An overview of evolutionary

algorithms for parameter optimization. Evolutionary computation, pages 1–23.

[Balarin et al., 1998] Balarin, F., Lavagno, L., Murthy, P., and Sangiovanni-Vincentelli, A.

(1998). Scheduling for embedded real-time systems. IEEE Design & Test of Computers,

pages 71–82.

[Ball, 1996] Ball, S. R. (1996). Embedded Microprocessor Systems - Real world designs.

Newnes.

[Ball, 1998] Ball, S. R. (1998). Debugging Embedded Microprocessor Systems. Newnes.

[Banakar et al., 2002] Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., and Marwedel,

P. (2002). Scratchpad memory: a design alternative for cache on-chip memory in embedded

systems. 10th Intern. Symp. on Hardware/software Codesign (CODES), pages 73–78.

[Barney, 2010] Barney, B. (2010). POSIX threads programming. https://computing.llnl.gov/

tutorials/pthreads.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.swdev/index.html
https://www.artemis-ju.eu/organisation
http://www.artist-embedded.org
http://www.artist-embedded.org
http://www.autosar.org
http://www.autosar.org
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads

References 345

[Barr, 1999] Barr, M. (1999). Programming Embedded Systems. O’Reilly.

[Barrett and Pack, 2005] Barrett, S. and Pack, D. (2005). Embedded Systems - Design and

Applications with the 68HC12 and HCS12. Prentice Hall.

[Basten, 2008] Basten, T. (2008). Opening remarks, 2nd Artist workshop on models of

computation and communication. Eindhoven, http://www.es.ele.tue.nl/˜tbasten/mocc2008/

presentations/mocc.pdf.

[Basu et al., 1999] Basu, A., Leupers, R., and Marwedel, P. (1999). Array index allocation

under register constraints in dsp programs. Int. Conf. on VLSI Design, pages 330–335.

[Belbachir, 2010] Belbachir, A. N., editor (2010). Smart cameras. Springer.

[Bengtsson and Yi, 2004] Bengtsson, J. and Yi, W. (2004). Timed automata: Semantics, al-

gorithms and tools. In: J. Desel, W. Reisig and G. Rozenberg (eds.): ACPN 2003, Springer

LNCS, 3098:87–124.

[Benini et al., 2000] Benini, L., Bogliolo, A., and De Micheli, G. (2000). A survey of design

techniques for system-level dynamic power management. IEEE Trans. Very Large Scale In-

tegr. Syst., 8(3):299–316.

[Benini and De Micheli, 1998] Benini, L. and De Micheli, G. (1998). Dynamic Power Man-

agement – Design Techniques and CAD Tools. Kluwer Academic Publishers.

[Bergé et al., 1995] Bergé, J.-M., Levia, O., and Rouillard, J. (1995). High-Level System Mod-

eling. Kluwer Academic Publishers.

[Bernardi et al., 2005] Bernardi, P., Rebaudengo, M., and Reorda, S. (2005). Using infrastruc-

ture IPs to support SW-based self-test of processor cores. Workshop on Fibres and Optical

Passive Components, pages 22–27.

[Bertolotti, 2006] Bertolotti, I. C. (2006). Real-time embedded operating systems: Standards

and perspectives. In: R. Zurawski (ed.): Embedded Systems Handbook, CRC Press.

[Beszedes, 2003] Beszedes, A. (2003). Survey of code size reduction methods. ACM Comput-

ing Surveys, pages 223–267.

[Bieker and Marwedel, 1995] Bieker, U. and Marwedel, P. (1995). Retargetable self-test pro-

gram generation using constraint logic programming. 32nd annual Design Automation Con-

ference (DAC), pages 605–611.

[Bini et al., 2001] Bini, E., Buttazzo, G., and Buttazzo, G. (2001). A hyperbolic bound for

the rate monotonic algorithm. 13th Euromicro Conference on Real-Time Systems (ECRTS),

pages 59–73.

[Boussinot and de Simone, 1991] Boussinot, F. and de Simone, R. (1991). The Esterel language.

Proc. of the IEEE, Vol. 79, No. 9, pages 1293–1304.

[Bouwmeester et al., 2000] Bouwmeester, D., Ekert, A. and Zeilinger, A. (eds.) (2000). The

Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quan-

tum Computation. Springer.

http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf
http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf

346 EMBEDDED SYSTEM DESIGN

[Bouyssounouse and Sifakis, 2005] Bouyssounouse, B. and Sifakis, J., editors (2005). Embed-

ded Systems Design, The ARTIST Roadmap for Research and Development. Lecture Notes

in Computer Science, Vol. 3436, Springer.

[Brahme and Abraham, 1984] Brahme, D. and Abraham, J. A. (1984). Functional testing of

microprocessors. IEEE Trans. on Computers, pages 475–485.

[Braun et al., 2010] Braun, A., Bringmann, O., Lettnin, D., and Rosenstiel, W. (2010).

Simulation-based verification of the MOST netinterface specification revision 3.0. Design,

Automation and Test in Europe (DATE).

[Bremaud, 1999] Bremaud, P. (1999). Markov Chains. Springer Verlag.

[Brockmeyer et al., 2003] Brockmeyer, E., Miranda, M., and Catthoor, F. (2003). Layer assign-

ment techniques for low energy in multi-layered memory organisations. Design, Automation

and Test in Europe (DATE), pages 1070–1075.

[Broesma, 2004] Broesma, M. (Sep. 2004). Microsoft server crash nearly causes 800-plane

pile-up. Techworld, http://www.techworld.com/opsys/news/index.cfm?newsid=2275.

[Brooks et al., 2000] Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a framework

for architectural-level power analysis and optimizations. 27th Int. Symp. on Computer Archi-

tecture (ISCA), pages 83–94.

[Bruno and Bollella, 2009] Bruno, E. and Bollella, G. (2009). Real-Time Java Programming:

With Java RTS. Prentice Hall.

[Budkowski and Dembinski, 1987] Budkowski, S. and Dembinski, P. (1987). An introduction

to Estelle: A specification language for distributed systems. Computer Networks and ISDN

Systems, 14(1):3 – 23.

[Burd and Brodersen, 2000] Burd, T. and Brodersen, R. (2000). Design issues for dynamic

voltage scaling. Int. Symp. on Low Power Electronics and Design (ISLPED), pages 9–14.

[Burd and Brodersen, 2003] Burd, T. and Brodersen, R. W. (2003). Energy efficient micropro-

cessor design. Kluwer Academic Publishers.

[Burkhardt, 2001] Burkhardt, J. (2001). Pervasive Computing. Addison-Wesley.

[Burns and Wellings, 1990] Burns, A. and Wellings, A. (1990). Real-Time Systems and Their

Programming Languages. Addison-Wesley.

[Burns and Wellings, 2001] Burns, A. and Wellings, A. (2001). Real-Time Systems and Pro-

gramming Languages (Third Edition). Addison Wesley.

[Buttazzo, 2002] Buttazzo, G. (2002). Hard Real-time computing systems. Kluwer Academic

Publishers, 4th printing.

[Byteflight Consortium, 2003] Byteflight Consortium (2003). Home page. http://www.

byteflight.com.

[Camposano and Wolf, 1996] Camposano, R. and Wolf, W. (1996). Message from the editors-

in-chief. Design Automation for Embedded Systems.

http://www.techworld.com/opsys/news/index.cfm?newsid=2275
http://www.byteflight.com
http://www.byteflight.com

References 347

[Caspi et al., 2005] Caspi, P., Sangiovanni-Vincentelli, A., Almeida, L., and et al. (2005).

Guidelines for a graduate curriculum on embedded software and systems. ACM Transactions

on Embedded Computing Systems (TECS), pages 587–611.

[Cederqvist, 2006] Cederqvist, P. (2006). The CVS manual - version management with CVS.

Network Theory Ltd.

[Ceng et al., 2008] Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid,

G., Meyr, H., Isshiki, T., and Kunieda, H. (2008). MAPS: an integrated framework for MP-

SoC application parallelization. In 45th annual Design Automation Conference (DAC), pages

754–759.

[Chandrakasan et al., 1992] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. (1992).

Low-power CMOS digital design. IEEE Journal of Solid-State Circuits, 27(4):119–123.

[Chandrakasan et al., 1995] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. (1995). Low

power CMOS digital design. Kluwer Academic Publishers.

[Chanet et al., 2007] Chanet, D., Sutter, B. D., Bus, B. D., Put, L. V., and Bosschere, K.

D. (2007). Automated reduction of the memory footprint of the linux kernel. ACM Trans.

Embed. Comput. Syst., 6(4):23.

[Chen et al., 2006] Chen, G., Ozturk, O., Kandemir, M., and Karakoy, M. (2006). Dynamic

scratch-pad memory management for irregular array access patterns. Design, Automation

and Test in Europe (DATE), pages 931–936.

[Chen et al., 2007] Chen, K., Sztipanovits, J., and Neema, S. (2007). Compositional spec-

ification of behavioral semantics. Design, Automation and Test in Europe (DATE), pages

906–911.

[Chen et al., 2010] Chen, X., Dick, R., and Shang, L. (2010). Properties of and improvements to

time-domain dynamic thermal analysis algorithms. Design, Automation and Test in Europe

(DATE).

[Chetto et al., 1990] Chetto, H., Silly, M., and Bouchentouf, T. (1990). Dynamic scheduling of

real-time tasks under precedence constraints. Journal of Real-Time Systems, 2.

[Chung et al., 2001] Chung, E.-Y., Benini, L., and De Micheli, G. (2001). Source code trans-

formation based on software cost analysis. Int. Symp. on System Synthesis (ISSS), pages

153–158.

[Clarke and et al., 2003] Clarke, E. and et al. (2003). Model checking@CMU. http://www-2.cs.

cmu.edu/˜modelcheck/index.html.

[Clarke et al., 2005] Clarke, E. M., Grumberg, O., Hiraishi, H., Jha, S., Long, D. E., McMil-

lan, K. L., and Ness, L. A. (2005). Verification of the futurebus+ cache coherence protocol.

Formal Methods in System Design, 6(2):217–232.

[Clavier and Gaj, 2009] Clavier, C. and Gaj, K. (2009). Int. workshop on cryptographic hard-

ware and embedded systems (CHES).

[Clouard et al., 2003] Clouard, A., Jain, K., Ghenassia, F., Maillet-Contoz, L., and Strassen,

J. (2003). Using transactional models in SoC design flow. In: [Müller et al., 2003], pages

29–64.

http://www-2.cs.cmu.edu/~modelcheck/index.html
http://www-2.cs.cmu.edu/~modelcheck/index.html

348 EMBEDDED SYSTEM DESIGN

[Coelho, 1989] Coelho, D. R. (1989). The VHDL handbook. Kluwer Academic Publishers.

[Coello et al., 2007] Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. v. (2007). Evolu-

tionary Algorithms for Solving Multi-Objective Problems. Springer.

[Collins-Sussman et al., 2008] Collins-Sussman, B., Fitzpatrick, B., and Pilato, C. (2008).

Version control with subversion – for subversion 1.5. http://svnbook.red-bean.com/en/1.5/

svn-book.pdf.

[Cooling, 2003] Cooling, J. (2003). Software Engineering for Real-Time Systems. Addison

Wesley.

[Cortadella et al., 2000] Cortadella, J., Kondratyev, A., Lavagno, L., Massot, M., Moral, S.,

Passerone, C., Watanabe, Y., and Sangiovanni-Vincentelli, A. (2000). Task generation and

compile-time scheduling for mixed data-control embedded software. 37th Design Automa-

tion Conference (DAC), pages 489–494.

[Coussy and Morawiec, 2008] Coussy, P. and Morawiec, A. (2008). High-Level Synthesis.

Springer.

[Craig, 2006] Craig, I. D. (2006). Virtual Machines. Springer.

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into message

sequence charts. Formal Methods in System Design.

[Dasgupta, 1979] Dasgupta, S. (1979). The organization of microprogram stores. ACM Com-

puting Surveys, Vol. 11, pages 39–65.

[Davis et al., 2001] Davis, J., Hylands, C., Janneck, J., Lee, E. A., Liu, J., Liu, X.,

Neuendorffer, S., Sachs, S., Stewart, M., Vissers, K., Whitaker, P., and Xiong, Y.

(2001). Overview of the Ptolemy project. Technical Memorandum UCB/ERL M01/11;

http://ptolemy.eecs.berkeley.edu.

[De Greef et al., 1997a] De Greef, E., Catthoor, F., and Man, H. (1997a). Memory size reduction

through storage order optimization for embedded parallel multimedia applications. Proc.

Workshop on Parallel Processing and Multimedia, pages 84–98.

[De Greef et al., 1997b] De Greef, E., Catthoor, F., and Man, H. D. (1997b). Array placement

for storage size reduction in embedded multimedia systems. IEEE Int. Conf. on Application-

Specific Systems, Architectures and Processors (ASAP), pages 66–75.

[De Micheli et al., 2002] De Micheli, G., Ernst, R., and Wolf, W. (2002). Readings in Hard-

ware/Software Co-Design. Academic Press.

[Deutsches Institut für Normung, 1997] Deutsches Institut für Normung (1997). DIN 66253,

Programmiersprache PEARL, Teil 2 PEARL 90. Beuth-Verlag; English version available

through http://www.din.de.

[Dibble, 2008] Dibble, P. C. (2008). Real-Time Java Platform Programming: Second Edition.

BookSurge Publishing.

[Diederichs et al., 2008] Diederichs, C., Margull, U., Slomka, F., and Wirrer, G. (2008). An

application-based EDF scheduler for OSEK/VDX. Design, Automation and Test in Europe

(DATE), pages 1045–1050.

http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://ptolemy.eecs.berkeley.edu
http://www.din.de

References 349

[Dierickx, 2000] Dierickx, B. (2000). CMOS image sensors - concepts, Photonics West 2000

short course. http://www.cypress.com/?rID=14527.

[Dill and Alur, 1994] Dill, D. and Alur, R. (1994). A theory of timed automata. Theoretical

Computer Science, pages 183–235.

[Dominguez et al., 2005] Dominguez, A., Udayakumaran, S., and Barua, R. (2005). Heap data

allocation to scratch-pad memory in embedded systems. Journal of Embedded Computing,

1(4):521–540.

[Donald and Martonosi, 2006] Donald, J. and Martonosi, M. (2006). Techniques for multicore

thermal management: Classification and new exploration. SIGARCH Comput. Archit. News,

34(2):78–88.

[Douglass, 2000] Douglass, B. P. (2000). Real-Time UML, 2nd edition. Addison Wesley.

[Drusinsky and Harel, 1989] Drusinsky, D. and Harel, D. (1989). Using statecharts for hardware

description and synthesis. IEEE Trans. on Computer Design, pages 798–807.

[Dulong et al., 2001] Dulong, C., Shrivastav, P., and Refah, A. (2001). The making of a com-

piler for the Intel® ItaniumT M processor. Intel Technology Journal Q3, http://download.

intel.com/technology/itj/q32001/pdf/art 4.pdf.

[Dunn, 2002] Dunn, W. (2002). Practical Design of Safety-Critical Computer Systems. Relia-

bility Press.

[Ecker et al., 2009] Ecker, W., Müller, W., and Dömer, R. (2009). Hardware-dependent software

- Principles and practice. Springer.

[Edwards, 2001] Edwards, S. (2001). Dataflow languages. http://www.cs.columbia.edu/

˜sedwards/classes/2001/w4995-02/presentations/dataflow.ppt.

[Edwards, 2006] Edwards, S. (2006). Languages for embedded systems. In: R. Zurawski (ed.):

Embedded Systems Handbook, CRC Press.

[Egger et al., 2006] Egger, B., Lee, J., and Shin, H. (2006). Scratchpad memory management

for portable systems with a memory management unit. 9rd ACM Intern. Conf. on Compilers,

Architectures and Synthesis for Embedded Systems (CASES), pages 321–330.

[Eggermont, 2002] Eggermont, L. (2002). Embedded systems roadmap. STW, http://www.stw.

nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf.

[Eichenberger et al., 2005] Eichenberger, A. E., O’Brien, K., O’Brien, Kevin, Wu, P. , Chen,

T., Oden, P. H., Prener, D. A., Shepherd, J. C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao,

P., and Gschwind, M. (2005). Optimizing compiler for a CELL processor. Proceedings of

the 14th International Conference on Parallel Architectures and Compilation Techniques

(PACT’05), pages 161–172.

[Elsevier B.V., 2010a] Elsevier B.V. (2010a). Sensors and actuators A: Physical. An Interna-

tional Journal.

[Elsevier B.V., 2010b] Elsevier B.V. (2010b). Sensors and actuators B: Chemical. An Interna-

tional Journal.

http://www.cypress.com/?rID=14527
http://download.intel.com/technology/itj/q32001/pdf/art_4.pdf
http://download.intel.com/technology/itj/q32001/pdf/art_4.pdf
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.stw.nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf
http://www.stw.nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf

350 EMBEDDED SYSTEM DESIGN

[Esterel Technologies, 2010] Esterel Technologies (2010). Scade suiteT M - the standard

for the development of safety-critical embedded software in aerospace & defense, rail

transportation, energy and heavy equipment industries. http://www.esterel-technologies.com/

products/scade-suite.

[Esterel Technologies Inc., 2010] Esterel Technologies Inc. (2010). Homepage. http://www.

esterel-technologies.com.

[European Commission Cordis, 2010] European Commission Cordis (2010). Seventh Frame-

work Programme (FP7). http://cordis.europa.eu/fp7.

[Evidence, 2010] Evidence (2010). Erika enterprise. http://erika.tuxfamily.org.

[Falk, 2009] Falk, H. (2009). WCET-aware register allocation based on graph coloring. Pro-

ceedings of the 46th Design Automation Conference (DAC), pages 726–731.

[Falk and Marwedel, 2003] Falk, H. and Marwedel, P. (2003). Control flow driven splitting of

loop nests at the source code level. Design, Automation and Test in Europe (DATE), pages

410–415.

[Falk et al., 2006] Falk, H., Wagner, J., and Schaefer, A. (2006). Use of a Bit-true Data Flow

Analysis for Processor-Specific Source Code Optimization. In 4th IEEE Workshop on Em-

bedded Systems for Real-Time Multimedia (ESTIMedia), pages 133–138, Seoul/Korea.

[Fettweis et al., 1998] Fettweis, G., Weiss, M., Drescher, W., Walther, U., Engel, F., Kobayashi,

S., and Richter, T. (1998). Breaking new grounds over 3000 MMAC/s: a broadband mobile

multimedia modem DSP. Intern. Conf. on Signal Processing Application & Technology (IC-

SPA), available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9340.

[Fiorin et al., 2007] Fiorin, L., Palermo, G., Lukovic, S., and Silvano, C. (2007). A data pro-

tection unit for NoC-based architectures. In 5th IEEE/ACM Int. Conf. on Hardware/software

Codesign and System Synthesis (CODES+ISSS), pages 167–172.

[Fisher and Dietz, 1998] Fisher, R. and Dietz, H. G. (1998). Compiling for SIMD within a

single register. Annual Workshop on Lang. & Compilers for Parallel Computing (LCPC),

pages 290–304.

[Fisher and Dietz, 1999] Fisher, R. J. and Dietz, H. G. (1999). The Scc compiler: SWARing

at MMX and 3DNow! Annual Workshop on Lang. & Compilers for Parallel Computing

(LCPC), pages 399–414.

[FlexRay Consortium, 2002] FlexRay Consortium (2002). Flexray® requirement specification.

version 2.01. http://www.flexray.de.

[Fowler and Scott, 1998] Fowler, M. and Scott, K. (1998). UML Distilled - Applying the Stan-

dard Object Modeling Language. Addison-Wesley.

[Franke, 2008] Franke, B. (2008). Fast cycle-approximate instruction set simulation. In 10th

Int. Workshop on Software & Compilers for Embedded Systems (SCOPES), pages 69–78.

[Franke and O’Boyle, 2005] Franke, B. and O’Boyle, M. F. (2005). A complete compiler

approach to auto-parallelizing C programs for multi-DSP systems. IEEE Transactions on

Parallel and Distributed Systems, 16:234–245.

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://cordis.europa.eu/fp7
http://erika.tuxfamily.org
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9340
http://www.flexray.de

References 351

[Freescale semiconductor, 2005] Freescale semiconductor (2005). ColdFire® family program-

mer’s reference manual. http://www.freescale.com/files/dsp/doc/ref manual/CFPRM.pdf.

[Fu et al., 1987] Fu, K., Gonzalez, R., and Lee, C. (1987). Robotics. McGraw-Hill.

[Gajski and Kuhn, 1983] Gajski, D. and Kuhn, R. (1983). New VLSI tools. IEEE Computer,

pages 11–14.

[Gajski et al., 1994] Gajski, D., Vahid, F., Narayan, S., and Gong, J. (1994). Specification and

Design of Embedded Systems. Prentice Hall.

[Gajski et al., 2000] Gajski, D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. (2000). SpecC:

Specification Language Methodology. Kluwer Academic Publishers.

[Gajski et al., 2009] Gajski, D. D., Abdi, S., Gerstlauer, A., and Schirner, G. (2009). Embedded

System Design. Springer, Heidelberg.

[Ganssle, 2008] Ganssle, J., editor (2008). Embedded Systems (World Class Designs). Newnes.

[Ganssle, 2000] Ganssle, J. G. (2000). The Art of Designing Embedded Systems. Newnes.

[Ganssle et al., 2008] Ganssle, J. G., Noergaard, T., Eady, F., Edwards, L., Katz, D. J., Gentile,

R., Arnold, K., Hyder, K., and Perrin, B. (2008). Embedded Hardware - Know it all. Newnes.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractabil-

ity. Bell Labaratories, Murray Hill, New Jersey.

[Garg and Khatri, 2009] Garg, R. and Khatri, S. (2009). Analysis and Design of Resilient VLSI

Circuits. Springer.

[Gebotys, 2010] Gebotys, C. (2010). Security in Embedded Devices. Springer.

[Geffroy and Motet, 2002] Geffroy, J.-C. and Motet, G. (2002). Design of Dependable comput-

ing Systems. Kluwer Academic Publishers.

[Gelsen, 2003] Gelsen, O. (2003). Organic displays enter consumer electronics. Opto & Laser

Europe, June; availabe at http://optics.org/cws/article/articles/17598.

[Gerber et al., 2005] Gerber, R., Bik, A. J. C., Smith, K., and Tian, X. (2005). The Software

Optimization Cookbook Second Edition. High Performance Recipes for IA 32 Platforms.

Intel Press.

[Gomez and Fernandes, 2010] Gomez, L. and Fernandes, J. (2010). Behavioral Modeling for

Embedded Systems and Technologies. IGI Global.

[Grötker et al., 2002] Grötker, T., Liao, S., and Martin, G. (2002). System design with SystemC.

Springer.

[Gupta, 2002] Gupta, R. (2002). Tasks and task management. Course ICS 212, Winter

2002, UC Irvine, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=

rep1&type=pdf.

[Ha, 2007] Ha, S. (2007). Model-based programming environment of embedded software for

mpsoc. Asia and South Pacific Design Automation Conference (ASP-DAC), pages 330–335.

http://www.freescale.com/files/dsp/doc/ref_manual/CFPRM.pdf
http://optics.org/cws/article/articles/17598
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf

352 EMBEDDED SYSTEM DESIGN

[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of reactive systems, a

tutorial and commented bibliography. Tenth International Conference on Computer-Aided

Verification, CAV’98, LNCS 1427, Springer Verlag; see also: http://www.springerlink.com/

content/5127074271136j71/fulltext.pdf.

[Halbwachs, 2008] Halbwachs, N. (2008). Personal communication. South American Artist

School on Embedded Systems, Florianopolis.

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The

synchronous dataflow language LUSTRE. Proc. of the IEEE Trans. on Software Engineering,

79:1305–1320.

[Hansmann, 2001] Hansmann, U. (2001). Pervasive Computing. Springer Verlag.

[Harbour, 1993] Harbour, M. G. (1993). RT-POSIX: An overview. http://www.ctr.unican.es/

publications/mgh-1993a.pdf.

[Harel, 1987] Harel, D. (1987). StateCharts: A visual formalism for complex systems. Science

of Computer Programming, pages 231–274.

[Hattori, 2007] Hattori, T. (2007). MPSoC approaches for low-power embedded SoC’s. Int.

Forum on. Application Specific Multi Processor SoC, http://www.mpsoc-forum.org/2007/

slides/Hattori.pdf.

[Haugen and Moller-Pedersen, 2006] Haugen, O. and Moller-Pedersen, B. (2006). Introduction

to UML and the modeling of embedded systems. In: R. Zurawski (ed.): Embedded Systems

Handbook, CRC Press.

[Hayes, 1982] Hayes, J. (1982). A unified switching theory with applications to VLSI design.

Proceedings of the IEEE, Vol. 70, pages 1140–1151.

[Heath, 2000] Heath, S. (2000). Embedded System Design. Newnes.

[Henia et al., 2005] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and Ernst, R.

(2005). System level performance analysis - the SymTA/S approach. IEEE Computers and

Digital Techniques, pages 148–166.

[Hennessy and Patterson, 2002] Hennessy, J. L. and Patterson, D. A. (2002). Computer Archi-

tecture – A Quantitative Approach. Morgan Kaufmann Publishers Inc.

[Hennessy and Patterson, 2008] Hennessy, J. L. and Patterson, D. A. (2008). Computer Orga-

nization – The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.

[Herken, 1995] Herken, R. (1995). The Universal Turing Machine: A half-century survey.

Springer.

[Herrera et al., 2003a] Herrera, F., Fernández, V., Sánchez, P., and Villar, E. (2003a). Embed-

ded software generation from SystemC for platform based design. In: [Müller et al., 2003],

pages 247–272.

[Herrera et al., 2003b] Herrera, F., Posadas, H., Sánchez, P., and Villar, E. (2003b). Sys-

temic embedded software generation from SystemC. Design, Automation and Test in Europe

(DATE), pages 10142–10149.

http://www.springerlink.com/content/5127074271136j71/fulltext.pdf
http://www.springerlink.com/content/5127074271136j71/fulltext.pdf
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

References 353

[Hoare, 1985] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall Interna-

tional Series in Computer Science.

[Hopcroft et al., 2006] Hopcroft, J., Motwani, R., and Ullman, J. D. (2006). Introduction to

Automata Theory, Languages, and Computation. Addison Wesley.

[Horn, 1974] Horn, W. (1974). Some simple scheduling algorithms. Naval Research Logistics

Quarterly, Vol. 21, pages 177–185.

[Huang and Xu, 2010] Huang, L. and Xu, Q. (2010). AgeSim: A simulation framework for

evaluating the lifetime reliability of processor-based SoCs. Design, Automation and Test in

Europe (DATE).

[Huerlimann, 2003] Huerlimann, D. (2003). Opentrack home page. http://www.opentrack.ch.

[Hüls, 2002] Hüls, T. (2002). Optimizing the energy consumption of an MPEG application (in

German). Master thesis, CS Dept., Univ. Dortmund, http://ls12-www.cs.uni-dortmund.de/

publications/theses.

[Hunt et al., 2007] Hunt, V. D., Puglia, A., and Puglia, M. (2007). RFID: a guide to radio

frequency identification. Wiley.

[IBM, 2002] IBM (2002). Security: User authentication. http://www.pc.ibm.com/us/security/

userauth.html.

[IBM, 2009] IBM (2009). What’s new in Rational Rhapsody 7.5.1. http://www.ibm.com/

developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1.

[IBM, 2010a] IBM (2010a). IBM Rational StateMate. http://www.ibm.com/developerworks/

rational/products/statemate/.

[IBM, 2010b] IBM (2010b). Rational DOORS. http://www-01.ibm.com/software/awdtools/

doors/.

[ICD Staff, 2010] ICD Staff (2010). ICD-C compiler framework. http://www.icd.de/es/icd-c.

[IEC, 2002] IEC (2002). IEC 60848 – GRAFCET specification language for sequential function

charts. http://webstore.iec.ch/preview/info iec60848{ed2.0}b.pdf.

[IEEE, 1991] IEEE (1991). IEEE graphic symbols for logic functions std 91a-1991.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895.

[IEEE, 1997] IEEE (1997). IEEE Standard VHDL Language Reference Manual (1076-1997).

IEEE.

[IEEE, 2002] IEEE (2002). IEEE Standard VHDL Language Reference Manual (1076-2002).

IEEE.

[IEEE, 2009] IEEE (2009). IEEE Standard for SystemVerilog- unified hardware design, speci-

fication, and verification language. http://www.ieee.org.

[IMEC, 1997] IMEC (1997). LIC-SMARTpen identifies signer. IMEC Newsletter, http://

www2.imec.be/content/user/File/Newsletters/newsletter 18.pdf.

http://www.opentrack.ch
http://ls12-www.cs.uni-dortmund.de/publications/theses
http://ls12-www.cs.uni-dortmund.de/publications/theses
http://www.pc.ibm.com/us/security/userauth.html
http://www.pc.ibm.com/us/security/userauth.html
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www.ibm.com/developerworks/rational/products/statemate/
http://www.ibm.com/developerworks/rational/products/statemate/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/
http://www.icd.de/es/icd-c
http://webstore.iec.ch/preview/info_iec60848{ed2.0}b.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895
http://www.ieee.org
http://www2.imec.be/content/user/File/Newsletters/newsletter_18.pdf
http://www2.imec.be/content/user/File/Newsletters/newsletter_18.pdf

354 EMBEDDED SYSTEM DESIGN

[IMEC, 2010] IMEC (2010). ADRES multimedia processor & 3mf multimedia platform.

http://www2.imec.be/content/user/File/ADRES 3MF.pdf.

[Intel, 2004] Intel (2004). Enhanced Intel® SpeedStep® Technology for the Intel®

Pentium® M Processor - White paper. ftp://download.intel.com/design/network/papers/

30117401.pdf.

[Intel, 2008] Intel (2008). Motion estimation with Intel® streaming SIMD exten-

sions 4 (Intel® SSE4). http://software.intel.com/en-us/articles/motion-estimation-with-intel-

streaming-simd-extensions-4-intel-sse4.

[Intel, 2010a] Intel (2010a). Intel® AVX. http://software.intel.com/en-us/avx.

[Intel, 2010b] Intel (2010b). Intel Itanium processor family. http://www.intel.com/itcenter/

products/itanium.

[Ishihara and Yasuura, 1998] Ishihara, T. and Yasuura, H. (1998). Voltage scheduling problem

for dynamically variable voltage processors. Intern. Symp. on Low Power Electronics and

Design (ISLPED), pages 197–202.

[Israr and Huss, 2008] Israr, A. and Huss, S. (2008). Specification and design considerations

for reliable embedded systems. Design, Automation and Test in Europe (DATE), pages 1111–

1116.

[IT Facts, 2010] IT Facts (2010). Home page. http://www.itfacts.biz.

[ITRS Organization, 2009] ITRS Organization (2009). International technology roadmap for

semiconductors (ITRS). http://public.itrs.net.

[Iyer and Marculescu, 2002] Iyer, A. and Marculescu, D. (2002). Power and performance

evaluation of globally asynchronous locally synchronous processors. Int. Symp. on Computer

Architecture (ISCA), pages 158–168.

[Jackson, 1955] Jackson, J. (1955). Scheduling a production line to minimize maximum tardi-

ness. Management Science Research Project 43, University of California, Los Angeles.

[Jackson et al., 2009] Jackson, J., Marwedel, P., and Ricks, K. (2009). Workshop on embedded

system education. http://www.artist-embedded.org/artist/WESE-09.html.

[Jacome et al., 2000] Jacome, M., de Veciana, G., and Lapinskii, V. (2000). Exploring per-

formance tradeoffs for clustered VLIW ASIPs. IEEE Int. Conf. on Computer-Aided Design

(ICCAD), pages 504–510.

[Jacome and de Veciana, 1999] Jacome, M. F. and de Veciana, G. (1999). Lower bound on

latency for VLIW ASIP datapaths. IEEE Int. Conf. on Computer-Aided Design (ICCAD),

pages 261–269.

[Jain et al., 2001] Jain, M., Balakrishnan, M., and Kumar, A. (2001). ASIP design methodolo-

gies: Survey and issues. 14th Int. Conf. on VLSI Design, pages 76–81.

[Janka, 2002] Janka, R. (2002). Specification and Design Methodology for Real-Time Embed-

ded Systems. Kluwer Academic Publishers.

[Jantsch, 2004] Jantsch, A. (2004). Modeling Embedded Systems and SoC’s: Concurrency and

Time in Models of Computation. Morgan Kaufmann.

http://www2.imec.be/content/user/File/ADRES_3MF.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/avx
http://www.intel.com/itcenter/products/itanium
http://www.intel.com/itcenter/products/itanium
http://www.itfacts.biz
http://public.itrs.net
http://www.artist-embedded.org/artist/WESE-09.html

References 355

[Jantsch, 2006] Jantsch, A. (2006). Models of embedded computation. In: R. Zurawski (ed.):

Embedded Systems Handbook, CRC Press.

[Java Community Process, 2002] Java Community Process (2002). JSR-1 – real-time specifi-

cation for Java. http://www.jcp.org/en/jsr/detail?id=1.

[Jewett and Serway, 2007] Jewett, J. W. and Serway, R. A. (2007). Physics for scientists and

engineers with modern physics. Thomson Higher Education.

[Jha and Dutt, 1993] Jha, P. and Dutt, N. (1993). Rapid estimation for parameterized compo-

nents in high-level synthesis. IEEE Transactions on VLSI Systems, pages 296–303.

[Johnson, 2010] Johnson, S. C. (2010). The Lex & Yacc Page. http://dinosaur.compilertools.

net.

[Jones, 1997] Jones, M. (1997). What really happened on Mars Rover Pathfinder. In: P.G.

Neumann (ed.): comp.risks, The Risks Digest, Vol. 19, Issue 49; available at http://research.

microsoft.com/en-us/um/people/mbj/mars pathfinder/Mars Pathfinder.html.

[Jones, 1996] Jones, N. D. (1996). An introduction to partial evaluation. ACM Comput. Surv.,

28(3):480–503.

[JXTA Community, 2010] JXTA Community (2010). Home page. https://jxta.dev.java.net.

[Kahn, 1974] Kahn, G. (1974). The semantics of a simple language for parallel programming.

Proc. of the Int. Federation for Information Processing (IFIP), pages 471–475.

[Kandemir et al., 2001] Kandemir, M., Ramanujam, J., Irwin, M. J., Vijaykrishnan, N., Kadayif,

I., and Parikh, A. (2001). Dynamic management of scratch-pad memory space. 38th annual

Design Automation Conference (DAC), pages 690–695.

[Karp and Miller, 1966] Karp, R. M. and Miller, R. E. (1966). Properties of a model for parallel

computations: Determinancy, termination, queueing. SIAM Journal of Applied Mathematics,

14:1390–1411.

[Keding et al., 1998] Keding, H., Willems, M., Coors, M., and Meyr, H. (1998). FRIDGE:

A fixed-point design and simulation environment. Design, Automation and Test in Europe

(DATE), pages 429–435.

[Keinert et al., 2009] Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt,

C., Teich, J., and Meredith, M. (2009). SystemCodesigner - an automatic ESL synthesis

approach by design space exploration and behavioral synthesis for streaming applications.

ACM Transactions on Design Automation of Electronic Systems, 14:1–23.

[Kempe, 1995] Kempe, M. (1995). Ada 95 reference manual, ISO/IEC standard 8652:1995.

(HTML-version), http://www.adahome.com/rm95/.

[Kempe Software Capital Enterprises (KSCE), 2010] Kempe Software Capital Enterprises

(KSCE) (2010). Ada home: The web site for Ada. http://www.adahome.com.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C Program-

ming Language. Prentice Hall.

http://www.jcp.org/en/jsr/detail?id=1
http://dinosaur.compilertools.net
http://dinosaur.compilertools.net
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/Mars_Pathfinder.html
https://jxta.dev.java.net
http://www.adahome.com/rm95/
http://www.adahome.com

356 EMBEDDED SYSTEM DESIGN

[Kienhuis et al., 2000] Kienhuis, B., Rijjpkema, E., and Deprettere, E. (2000). Compaan:

Deriving process networks from Matlab for embedded signal processing architectures. Proc.

8th Int. Workshop on Hardware/Software Codesign (CODES), pages 29–40.

[Klaiber, 2000] Klaiber, A. (2000). The technology behind CrusoeT M processors.

http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/

crusoetechwp.pdf.

[Könemann et al., 1979] Könemann, B., Mucha, J., and Zwiehoff, G. (1979). Built-in logic

block observer. IEEE Int. Test Conf., pages 261–266.

[Ko and Koo, 1996] Ko, M. and Koo, I. (1996). An overview of interactive video on demand

system. www.ece.ubc.ca/˜irenek/techpaps/vod/vod.html.

[Kobryn, 2001] Kobryn, C. (2001). UML 2001: A standardization Odyssey. Communica-

tions of the ACM (CACM), available at http://www.omg.org/attachments/pdf/UML 2001

CACM Oct99 p29-Kobryn.pdf, pages 29–36.

[Kohavi, 1987] Kohavi, Z. (1987). Switching and Finite Automata Theory. Tata McGraw-Hill

Publishing Company, New Delhi, 9th reprint.

[Koninklijke Philips Electronics N.V., 2003] Koninklijke Philips Electronics N.V. (2003). Am-

bient intelligence. http://www.research.philips.com/technologies/projects/ambintel.html.

[Koopman and Upender, 1995] Koopman, P. J. and Upender, B. P. (1995). Time division mul-

tiple access without a bus master. United Technologies Research Center, UTRC Technical

Report RR-9500470, http://www.ece.cmu.edu/˜koopman/jtdma/jtdma.html.

[Kopetz, 1997] Kopetz, H. (1997). Real-Time Systems – Design Principles for Distributed

Embedded Applications. Kluwer Academic Publishers.

[Kopetz, 2003] Kopetz, H. (2003). Architecture of safety-critical distributed real-time systems.

Invited Talk; Design, Automation and Test in Europe (DATE).

[Kopetz and Grunsteidl, 1994] Kopetz, H. and Grunsteidl, G. (1994). TTP –a protocol for

fault-tolerant real-time systems. IEEE Computer, 27:14–23.

[Krall, 2000] Krall, A. (2000). Compilation techniques for multimedia extensions. Interna-

tional Journal of Parallel Programming, 28:347–361.

[Kranitis et al., 2003] Kranitis, N., Paschalis, A., Gizopoulos, D., and Zorian, Y. (2003).

Instruction-based self-testing of processor cores. Journal of Electronic Testing, 19:103–112.

[Krhovjak and Matyas, 2006] Krhovjak, J. and Matyas, V. (2006). Secure hardware - pv018.

http://www.fi.muni.cz/˜xkrhovj/lectures/2006 PV018 Secure Hardware slides.pdf.

[Krishna and Shin, 1997] Krishna, C. and Shin, K. G. (1997). Real-Time Systems. McGraw-

Hill, Computer Science Series.

[Krstić and Cheng, 1998] Krstić, A. and Cheng, K. (1998). Delay fault testing of VLSI circuits.

Kluwer Academic Publishers.

[Krstic and Dey, 2002] Krstic, A. and Dey, S. (2002). Embedded software-based self-test for

programmable core-based designs. IEEE Design & Test, pages 18–27.

http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
http://www.ece.ubc.ca/~irenek/techpaps/vod/vod.html
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.research.philips.com/technologies/projects/ambintel.html
http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html
http://www.fi.muni.cz/~xkrhovj/lectures/2006_PV018_Secure_Hardware_slides.pdf

References 357

[Krüger, 1986] Krüger, G. (1986). Automatic generation of self-test programs: A new feature

of the MIMOLA design system. 23rd annual Design Automation Conference (DAC), pages

378–384.

[Kuchcinski, 2002] Kuchcinski, K. (2002). System partitioning (course notes). http://www.cs.

lth.se/home/Krzysztof Kuchcinski/DES/Lectures/Lecture7.pdf.

[Kwok and Ahmad, 1999] Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algorithms for

allocation directed task graphs to multiprocessors. ACM Computing Surveys, 31:406–471.

[Labrosse, 2000] Labrosse, J. (2000). Embedded Systems Building Blocks - Complete and

Ready-to-use Modules in C. Elsevier.

[Lala, 1985] Lala, P. (1985). Fault tolerant and Fault Testable Hardware Design. Prentice Hall.

[Lam et al., 1991] Lam, M. S., Rothberg, E. E., and Wolf, M. E. (1991). The cache performance

and optimizations of blocked algorithms. Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 63–74.

[Landwehr and Marwedel, 1997] Landwehr, B. and Marwedel, P. (1997). A new optimization

technique for improving resource exploitation and critical path minimization. 10th Int. Symp.

on System Synthesis (ISSS), pages 65–72.

[Lapinskii et al., 2001] Lapinskii, V., Jacome, M. F., and de Veciana, G. (2001). Application-

specific clustered VLIW datapaths: Early exploration on a parameterized design space. Tech-

nical Report UT-CERC-TR-MFJ/GDV-01-1, Computer Engineering Research Center, Uni-

versity of Texas at Austin.

[Laplante, 1997] Laplante, P. (1997). Real-Time Systems: Design and Analysis - An Engineer’s

Handbook. IEEE Press.

[Laprie, 1992] Laprie, J. C., editor (1992). Dependability: basic concepts and terminology in

English, French, German, Italian and Japanese. IFIP WG 10.4, Dependable Computing and

Fault Tolerance, In: volume 5 of Dependable computing and fault tolerant systems, Springer

Verlag.

[Larsen and Amarasinghe, 2000] Larsen, S. and Amarasinghe, S. (2000). Exploiting superword

parallelism with multimedia instructions sets. Programming Language Design and Imple-

mentation (PLDI), pages 145–156.

[Latendresse, 2004] Latendresse, M. (2004). The code compression bibliography. http://www.

iro.umontreal.ca/˜latendre/compactBib.

[Law, 2006] Law, A. M. (2006). Simulation Modeling & Analysis. McGraw-Hill.

[Lawler, 1973] Lawler, E. L. (1973). Optimal sequencing of a single machine subject to prece-

dence constraints. Managements Science, Vol. 19, pages 544–546.

[Le Boudec and Thiran, 2001] Le Boudec, J. and Thiran, P. (2001). Network Calculus. Springer,

LNCS # 2050.

[Lee, 1999] Lee, E. A. (1999). Embedded software – an agenda for research. Technical report,

UCB ERL Memorandum M99/63.

http://www.cs.lth.se/home/Krzysztof_Kuchcinski/DES/Lectures/Lecture7.pdf
http://www.cs.lth.se/home/Krzysztof_Kuchcinski/DES/Lectures/Lecture7.pdf
http://www.iro.umontreal.ca/~latendre/compactBib
http://www.iro.umontreal.ca/~latendre/compactBib

358 EMBEDDED SYSTEM DESIGN

[Lee, 2006] Lee, E. A. (2006). The future of embedded software. ARTEMIS Conference,

Graz, http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware Lee

Graz.ppt.

[Lee, 2007] Lee, E. A. (2007). Computing foundations and practice for cyber-physical systems:

A preliminary report. Technical Report UCB/EECS-2007-72, EECS Department, University

of California, Berkeley.

[Lee, 2005] Lee, E. A. (July, 2005). Absolutely positively on time. IEEE Computer.

[Lee and Messerschmitt, 1987] Lee, E. A. and Messerschmitt, D. (1987). Synchronous data

flow. Proc. of the IEEE, vol. 75, pages 1235–1245.

[Lee et al., 2001] Lee, S., Ermedahl, A., and Min, S. (2001). An accurate instruction-level

energy consumption model for embedded ROSC processors. ACM SIGPLAN Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1–10.

[Leupers, 1997] Leupers, R. (1997). Retargetable Code Generation for Digital Signal Proces-

sors. Kluwer Academic Publishers.

[Leupers, 1999] Leupers, R. (1999). Exploiting conditional instructions in code generation for

embedded VLIW processors. Design, Automation and Test in Europe (DATE), pages 23–27.

[Leupers, 2000a] Leupers, R. (2000a). Code Optimization Techniques for Embedded Proces-

sors - Methods, Algorithms, and Tools. Kluwer Academic Publishers.

[Leupers, 2000b] Leupers, R. (2000b). Code selection for media processors with SIMD instruc-

tions. Design, Automation and Test in Europe (DATE), pages 4–8.

[Leupers, 2000c] Leupers, R. (2000c). Instruction scheduling for clustered VLIW DSPs. Int.

Conf. on Parallel Architectures and Compilation Techniques (PACT), pages 291–300.

[Leupers and David, 1998] Leupers, R. and David, F. (1998). A uniform optimization technique

for offset assignment problems. Int. Symp. on System Synthesis (ISSS), pages 3–8.

[Leupers and Marwedel, 1995] Leupers, R. and Marwedel, P. (1995). Time-constrained code

compaction for DSPs. Int. Symp. on System Synthesis (ISSS), pages 54–59.

[Leupers and Marwedel, 1996] Leupers, R. and Marwedel, P. (1996). Algorithms for address

assignment in DSP code generation. IEEE Int. Conf. on Computer-Aided Design (ICCAD),

pages 109–112.

[Leupers and Marwedel, 1999] Leupers, R. and Marwedel, P. (1999). Function inlining under

code size constraints for embedded processors. IEEE Int. Conf. on Computer-Aided Design

(ICCAD), pages 253–256.

[Leupers and Marwedel, 2001] Leupers, R. and Marwedel, P. (2001). Retargetable Compiler

Technology for Embedded Systems – Tools and Applications. Kluwer Academic Publishers.

[Leveson, 1995] Leveson, N. (1995). Safeware, System Safety and Computers. Addison Wesley.

[Lewis et al., 2007] Lewis, J., Rashba, E., and Brophy, D. (2007). VHDL-2006-D3.0 Tutorial.

Tutorial at Design, Automation, and Test in Europe (DATE), http://www.accellera.org/apps/

group public/download.php/934/date vhdl tutorial.pdf.

http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf

References 359

[Liao et al., 1995a] Liao, S., Devadas, S., Keutzer, K., and Tijang, S. (1995a). Code optimiza-

tion techniques for embedded DSP microprocessors. 32nd Design Automation Conference

(DAC), pages 599–604.

[Liao et al., 1995b] Liao, S., Devadas, S., Keutzer, K., Tijang, S., and Wang, A. (1995b). Stor-

age assignment to decrease code size. Programming Language Design and Implementation

(PLDI), pages 186–195.

[Liebisch and Jain, 1992] Liebisch, D. C. and Jain, A. (1992). Jessi common framework design

management: the means to configuration and execution of the design process. In Conf. on

European Design Automation (EURO-DAC), pages 552–557. IEEE Computer Society Press.

[LIN Administration, 2010] LIN Administration (2010). Home page. http://www.lin-subbus.

org/.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multi-

programming in a hard real-time environment. Journal of the Association for Computing

Machinery (JACM), pages 40–61.

[Liu, 2000] Liu, J. W. (2000). Real-Time Systems. Prentice Hall.

[Lohmann et al., 2009] Lohmann, D., Hofer, W., Schröder-Preikschat, W., and Spinczyk, O.

(2009). CiAO: An aspect-oriented operating-system family for resource-constrained embed-

ded systems. In USENIX Annual Technical Conference.

[Lohmann et al., 2006] Lohmann, D., Scheler, F., Schröder-Preikschat, W., and Spinczyk,

O. (2006). PURE Embedded Operating Systems - CiAO. Proc. International Workshop on

Operating System Platforms for Embedded Real-Time Applications, (OSPERT).

[Lokuciejewski et al., 2009] Lokuciejewski, P., Gedikli, F., Marwedel, P., and Morik, K. (2009).

Automatic WCET Reduction by Machine Learning Based Heuristics for Function Inlining.

In 3rd Workshop on Statistical and Machine Learning Approaches to Architectures and Com-

pilation (SMART), pages 1–15.

[Lokuciejewski and Marwedel, 2010] Lokuciejewski, P. and Marwedel, P. (2010). WCET-aware

Source Code and Assembly Level Optimization Techniques for Real-Time Systems. Springer.

[Lorenz et al., 2004] Lorenz, M., Marwedel, P., Dräger, T., Fettweis, G., and Leupers, R.

(2004). Compiler based exploration of DSP energy savings by SIMD operations. In ASP-

DAC ’04: Proceedings of the 2004 Asia and South Pacific Design Automation Conference,

pages 838–841, Piscataway, NJ, USA. IEEE Press.

[Lorenz et al., 2002] Lorenz, M., Wehmeyer, L., Draeger, T., and Leupers, R. (2002). Energy

aware compilation for DSPs with SIMD instructions. LCTES/SCOPES, pages 94–101.

[Lu et al., 2000] Lu, Y.-H., Chung, E.-Y., Šimunic, T., Benini, L., and De Micheli, G. (2000).

Quantitative comparison of power management algorithms. In Design, Automation and Test

in Europe (DATE), pages 20–26.

[Machanik, 2002] Machanik, P. (2002). Approaches to addressing the memory wall. Technical

Report, November, Univ. Brisbane.

[Macii et al., 2002] Macii, A., Benini, L., and Poncino, M. (2002). Memory Design Techniques

for Low Energy Embedded Systems. Kluwer Academic Publishers.

http://www.lin-subbus.org/
http://www.lin-subbus.org/

360 EMBEDDED SYSTEM DESIGN

[Macii, 2004] Macii, E., editor (2004). Ultra low-power electronics and design. Springer.

[Mahlke et al., 1992] Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and Bringmann, R.

A. (1992). Effective compiler support for predicated execution using the hyperblock. 25th

annual Int. Symp. on Microarchitecture (MICRO), pages 45–54.

[Man, 2007] Man, H. D. (2007). From the heaven of software to the hell of nanoscale physics:

an industry in transition. . .Keynote, HiPEAC ACACES Summer School, L’Aquila.

[Marian and Ma, 2007] Marian, N. and Ma, Y. (2007). Translation of Simulink mod-

els to component-based software models. 8th Int. Workshop on Research and Education

in Mechatronics REM, http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%

20Models%20to%20Component-based%20Software%20Models.pdf, pages 262–267.

[Marongiu and Benini, 2009] Marongiu, A. and Benini, L. (2009). Efficient OpenMP support

and extensions for MPSoCs with explicitly managed memory hierarchy. Design, Automation

and Test in Europe (DATE), pages 809–814.

[Martin and Müller, 2005] Martin, G. and Müller, W., editors (2005). UMLT M for SoC Design.

Springer.

[Martin et al., 2002] Martin, S. M., Flautner, K., Mudge, T., and Blaauw, D. (2002). Com-

bined dynamic voltage scaling and adaptive body biasing for lower power microprocessors

under dynamic workloads. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM international

conference on Computer-aided design, pages 721–725, New York, NY, USA. ACM.

[Marwedel, 1990] Marwedel, P. (1990). A software system for the synthesis of computer struc-

tures and the generation of microcode (in German). habilitation thesis, Universität Kiel,

1985, Reprint: Report Nr.356, CS Dept., TU Dortmund.

[Marwedel, 2003] Marwedel, P. (2003). Embedded System Design. Kluwer Academic Publish-

ers.

[Marwedel, 2005] Marwedel, P. (2005). Towards laying common grounds for embedded system

design education. ACM SIGBED Review, pages 25–28.

[Marwedel, 2007] Marwedel, P. (2007). Memory-architecture aware compilation. Tuto-

rial, HiPEAC ACACES Summer School, L’Aquila, http://ls12-www.cs.tu-dortmund.de/

publications/papers/2007-marwedel-acaces.zip.

[Marwedel, 2008a] Marwedel, P. (2008a). 1st workshop on mapping of applications to MP-

SoCs. http://www.artist-embedded.org/artist/-map2mpsoc-2008-.html.

[Marwedel, 2008b] Marwedel, P. (2008b). MIMOLA - a fully synthesizable language. in: Prab-

hat Mishra, Nikil Dutt (Ed.): Processor Description Languages - Applications and Method-

ologies, Morgan Kaufmann, pages 35–63.

[Marwedel, 2009a] Marwedel, P. (2009a). 2nd workshop on mapping of applications to MP-

SoCs. http://www.artist-embedded.org/artist/-map2mpsoc-2009-.html.

[Marwedel, 2009b] Marwedel, P. (2009b). Mapping of applications to MPSoCs. IP-Embedded

Systems Conference, Grenoble, http://ls12-www.cs.tu-dortmund.de/publications/papers/

2009-ip-esc-marwedel.pdf.

http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://ls12-www.cs.tu-dortmund.de/publications/papers/2007-marwedel-acaces.zip
http://ls12-www.cs.tu-dortmund.de/publications/papers/2007-marwedel-acaces.zip
http://www.artist-embedded.org/artist/-map2mpsoc-2008-.html
http://www.artist-embedded.org/artist/-map2mpsoc-2009-.html
http://ls12-www.cs.tu-dortmund.de/publications/papers/2009-ip-esc-marwedel.pdf
http://ls12-www.cs.tu-dortmund.de/publications/papers/2009-ip-esc-marwedel.pdf

References 361

[Marwedel and Goossens, 1995] Marwedel, P. and Goossens, G., editors (1995). Code Gener-

ation for Embedded Processors. Kluwer Academic Publishers.

[Marwedel and Schenk, 1993] Marwedel, P. and Schenk, W. (1993). Cooperation of synthesis,

retargetable code generation and test generation in the MSS. European Design and Test Conf.

(EDAC-EUROASIC), pages 63–69.

[Marzano and Aarts, 2003] Marzano, S. and Aarts, E. (2003). The New Everyday. 010 Publish-

ers.

[Marzario et al., 2004] Marzario, L., Lipari, G., Balbastre, P., and Crespo, A. (2004). IRIS: a

new reclaiming algorithm for server-based real-time systems. Real-Time Application Sympo-

sium (RTAS 04).

[Massa, 2002] Massa, A. J. (2002). Embedded Software Development with eCos. Prentice Hall.

[MathWorks, 2010] MathWorks, T. (2010). Stateflow 7.3. http://www.mathworks.com/

products/stateflow.

[McGregor, 2002] McGregor, I. (2002). The relationship between simulation and emulation.

Winter Simulation Conference, pages 1683–1688.

[McLaughlin and Moore, 1998] McLaughlin, M. and Moore, A. (1998). Real-Time Extensions

to UML. http://www.ddj.com/184410749.

[McNamee et al., 2001] McNamee, D., Walpole, J., Pu, C., Cowan, C., Krasic, C., Goel, A.,

Wagle, P., Consel, C., Muller, G., and Marlet, R. (2001). Specialization tools and techniques

for systematic optimization of system software. ACM Trans. Comput. Syst., 19(2):217–251.

[Meijer et al., 2010] Meijer, S., Nikolov, H., and Stefanov, T. (2010). Throughput modeling to

evaluate process merging transformations in polyhedral process networks. Design, Automa-

tion and Test in Europe (DATE).

[Menard and Sentieys, 2002] Menard, D. and Sentieys, O. (2002). Automatic evaluation of the

accuracy of fixed-point algorithms. Design, Automation and Test in Europe (DATE), pages

529–535.

[Merkel and Bellosa, 2005] Merkel, A. and Bellosa, F. (2005). Event-driven thermal manage-

ment in SMP systems. Proceedings of the Second Workshop on Temperature-Aware Com-

puter Systems (TACS’05).

[Mermet et al., 1998] Mermet, J., Marwedel, P., Ramming, F. J., Newton, C., Borrione, D., and

Lefaou, C. (1998). Three decades of hardware description languages in Europe. Journal of

Electrical Engineering and Information Science, 3:106pp.

[Mesa-Martinez et al., 2010] Mesa-Martinez, F. J., Ardestani, E. K., and Renau, J. (2010).

Characterizing processor thermal behavior. In ASPLOS ’10: Proceedings of the fifteenth edi-

tion of ASPLOS on Architectural support for programming languages and operating systems,

pages 193–204, New York, NY, USA. ACM.

[MHPCC, 2010] MHPCC, M. (2010). SP parallel programming workshop - message passing

interface (MPI). http://www.mhpcc.edu/training/workshop/mpi/MAIN.html.

[Microsoft Inc., 2003] Microsoft Inc. (2003). Windows® embedded home. http://www.

microsoft.com/windowsembedded.

http://www.mathworks.com/products/stateflow
http://www.mathworks.com/products/stateflow
http://www.ddj.com/184410749
http://www.mhpcc.edu/training/workshop/mpi/MAIN.html
http://www.microsoft.com/windowsembedded
http://www.microsoft.com/windowsembedded

362 EMBEDDED SYSTEM DESIGN

[Mnemee project, 2010] Mnemee project (2010). Memory maNagEMEnt technology for adap-

tive and efficient design of Embedded systems. http://www.mnemee.org.

[Monteiro and van Leuken, 2010] Monteiro, J. and van Leuken, R., editors (2010). Integrated

circuit and system design: power and timing modeling, optimization and simulation : 19th

international workshop, PATMOS 2009. Springer LNCS 5953.

[MOST Cooperation, 2010] MOST Cooperation (2010). Home page. http://www.

mostcooperation.com/home.

[MPI/RT forum, 2001] MPI/RT forum (2001). Document for the real-time message passing

interface (MPI/RT-1.1). http://www.mpirt.org/drafts/mpirt-report-18dec01.pdf.

[Muchnick, 1997] Muchnick, S. S. (1997). Advanced compiler design and implementation.

Morgan Kaufmann Publishers, Inc.

[Mukherjee, 2008] Mukherjee, S. (2008). Architecture Design for Soft Errors. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA.

[Müller, 2007] Müller, W. (2007). UMLT M for SoC and embedded systems design. DATE 2007

Friday Workshop, http://www.c-lab.de/uml-soc/uml-date07/date07-uml-workshop.pdf.

[Müller et al., 2003] Müller, W., Rosenstiel, W., and Ruf, J. (2003). SystemC – Methodologies

and Applications. Kluwer Academic Publications.

[National Research Council, 2001] National Research Council (2001). Embedded, Everywhere.

National Academies Press.

[National Science Foundation, 2010] National Science Foundation (2010). Cyber-Physical Sys-

tems (CPS). http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm.

[National Space-Based Positioning, Navigation, and Timing Coordination Office, 2010] Na-

tional Space-Based Positioning, Navigation, and Timing Coordination Office (2010). Global

positioning system. http://www.gps.gov.

[Neumann, 1995] Neumann, P. G. (1995). Computer Related Risks. Addison Wesley.

[Neumann, 2010] Neumann, P. G., editor (2010). The risks digest, forum on the risks to the

public in computers and related Systems. http://catless.ncl.ac.uk/risks.

[Nguyen et al., 2005] Nguyen, N., Dominguez, A., and Barua, R. (2005). Memory allocation for

embedded systems with a compile-time-unknown scratch-pad size. Int. Conf. on Compilers,

architectures and synthesis for embedded systems (CASES), pages 115–125.

[Niemann, 1998] Niemann, R. (1998). Hardware/Software Co-Design for Data-Flow Domi-

nated Embedded Systems. Kluwer Academic Publishers.

[Nikolov et al., 2008] Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose,

R., Zissulescu, C., and Deprettere, E. (2008). Daedalus: toward composable multimedia

MP-SoC design. In 45th annual Design Automation Conference (DAC), pages 574–579.

[Nilsen, 1998] Nilsen, K. (1998). Adding real-time capabilities to Java. Commun. ACM,

41(6):49–56.

http://www.mnemee.org
http://www.mostcooperation.com/home
http://www.mostcooperation.com/home
http://www.mpirt.org/drafts/mpirt-report-18dec01.pdf
http://www.c-lab.de/uml-soc/uml-date07/date07-uml-workshop.pdf
http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
http://www.gps.gov
http://catless.ncl.ac.uk/risks

References 363

[Northeast Sustainable Energy Association, 2010] Northeast Sustainable Energy Association

(2010). Zero-energy building award. http://zeroenergybuilding.org.

[Novosel, 2009] Novosel, D. (2009). Timing the power grid. http://www.pserc.wisc.edu/

documents/general information/presentations/smartr grid executive forum/.

[Nuzman et al., 2006] Nuzman, D., Rosen, I., and Zaks, A. (2006). Auto-vectorization of inter-

leaved data for SIMD. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on

Programming language design and implementation, pages 132–143, New York, NY, USA.

ACM.

[Object Management Group (OMG), 2003] Object Management Group (OMG) (2003).

CORBA® basics. http://www.omg.org/gettingstarted/corbafaq.htm.

[Object Management Group (OMG), 2005a] Object Management Group (OMG) (2005a).

Real-time CORBA specification, version 1.2, jan. 2005. http://www.omg.org/cgi-bin/doc?

formal/05-01-04.ps.

[Object Management Group (OMG), 2005b] Object Management Group (OMG) (2005b).

UMLT M profile for schedulability, performance, and time specification, version 1.1. http://

www.omg.org/cgi-bin/doc?formal/05-01-02.pdf.

[Object Management Group (OMG), 2008] Object Management Group (OMG) (2008).

OMG systems modeling language (OMG SysMLT M). http://www.omg.org/spec/SysML/1.1/

changebar/PDF.

[Object Management Group (OMG), 2009] Object Management Group (OMG) (2009). A

UMLT M profile for MARTE: Modeling and analysis of real-time embedded systems - 1.0.

http://www.omg.org/spec/MARTE/1.0/PDF.

[Object Management Group (OMG), 2010a] Object Management Group (OMG) (2010a). Cat-

alog of UMLT M profile specifications. http://www.omg.org/technology/documents/profile

catalog.htm.

[Object Management Group (OMG), 2010b] Object Management Group (OMG) (2010b). Uni-

fied modeling language (tm) resource page. http://www.uml.org.

[O’Neill, 2006] O’Neill, A. (2006). Analog to digital types. IEEE tv (for members only),

http://www.ieee.org/portal/ieeetv/viewer.html?progId=81045.

[Open SystemC Initiative, 2005] Open SystemC Initiative (2005). IEEE 1666 LRM.

http://www.systemc.org/downloads/lrm.

[OpenMP Architecture Review Board, 2008] OpenMP Architecture Review Board (2008).

OpenMP application program interface. http://www.openmp.org/mp-documents/spec30.

pdf.

[Oppenheim et al., 2009] Oppenheim, A. V., Schafer, R., and Buck, J. R. (2009). Digital Signal

Processing. Pearson Higher Education.

[OSEK Group, 2004] OSEK Group (2004). OSEK/VDX - communication (version 3.0.3).

http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf.

[OSEK Group, 2010] OSEK Group (2010). Home page. http://www.osek-vdx.org.

http://zeroenergybuilding.org
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
http://www.omg.org/spec/SysML/1.1/changebar/PDF
http://www.omg.org/spec/SysML/1.1/changebar/PDF
http://www.omg.org/spec/MARTE/1.0/PDF
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.uml.org
http://www.ieee.org/portal/ieeetv/viewer.html?progId=81045
http://www.systemc.org/downloads/lrm
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://www.osek-vdx.org

364 EMBEDDED SYSTEM DESIGN

[Palkovic et al., 2002] Palkovic, M., Miranda, M., and Catthoor, F. (2002). Systematic power-

performance trade-off in MPEG-4 by means of selective function inlining steered by address

optimisation opportunities. Design, Automation and Test in Europe (DATE), pages 1072–

1079.

[Pan et al., 2010] Pan, S., Hu, Y., and Li, X. (2010). IVF: Characterizing the vulnerability

of microprocessor structures to intermittent faults. Design, Automation and Test in Europe

(DATE).

[Parker, 1992] Parker, K. P. (1992). The Boundary Scan Handbook. Kluwer Academic Press.

[Paulin and Knight, 1987] Paulin, P. and Knight, J. (1987). Force-directed scheduling in auto-

matic data path synthesis. 24th annual Design Automation Conference (DAC).

[Petri, 1962] Petri, C. A. (1962). Kommunikation mit Automaten. Schriften des Rheinisch-

Westfälischen Institutes für instrumentelle Mathematik an der Universität Bonn.

[Pino and Lee, 1995] Pino, J. L. and Lee, E. A. (1995). Hierarchical static scheduling of

dataflow graphs onto multiple processors. IEEE Int. Conf. on Acoustics, Speech, and Sig-

nal Processing, pages 2643–2646.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. (2005). Software Product Line

Engineering. Springer, ISBN-10: 3540289011.

[Popovici et al., 2010] Popovici, K., Rousseau, F., Jerraya, A. A., and Wolf, M. (2010). Em-

bedded Software Design and Programming of Multiprocessor System-on-Chip. Springer.

[Potop-Butucaru et al., 2006] Potop-Butucaru, D., de Simone, R., and Talpin, J.-P. (2006).

The synchronous hypothesis and synchronous languages. In: R. Zurawski (ed.): Embedded

Systems Handbook, CRC Press.

[Press, 2003] Press, D. (2003). Guidelines for Failure Mode and Effects Analysis for Automo-

tive, Aerospace and General Manufacturing Industries. CRC Press.

[Pyka et al., 2007] Pyka, R., Faßbach, C., Verma, M., Falk, H., and Marwedel, P. (2007).

Operating system integrated energy aware scratchpad allocation strategies for multi-process

applications. Int. Workshop on Software & Compilers for Embedded Systems (SCOPES),

pages 41–50.

[Quilleré and Rajopadhye, 2000] Quilleré, F. and Rajopadhye, S. (2000). Optimizing memory

usage in the polyhedral model. ACM Transactions on Programming Languages and Systems,

22:773–815.

[Radetzki, 2009] Radetzki, M., editor (2009). Languages for Embedded Systems and their

Applications. Springer.

[Ramamritham, 2002] Ramamritham, K. (2002). System support for real-time embedded sys-

tems. In: Tutorial 1, 39th Design Automation Conference (DAC).

[Ramamritham et al., 1998] Ramamritham, K., Shen, C., Gonzalez, O., Sen, S., and Shirgurkar,

S. B. (1998). Using Windows NT for real-time applications: Experimental observations and

recommendations. IEEE Real-Time Technology and Applications Symposium (RTAS), pages

102–111.

References 365

[Reisig, 1985] Reisig, W. (1985). Petri nets. Springer Verlag.

[Ren et al., 2006] Ren, G., Wu, P., and Padua, D. (2006). Optimizing data permutations for

SIMD devices. ACM SIGPLAN Notices, 41(6):118–131.

[Riccobene et al., 2005] Riccobene, E., Scandurra, P., Rosti, A., and Bocchio, S. (2005). A

UMLT M 2.0 profile for SystemC: toward high-level SoC design. In 5th ACM Int. Conf. on

Embedded Software (EMSOFT), pages 138–141.

[Rixner et al., 2000] Rixner, S., Dally, W. J., Khailany, B. J., Mattson, P. J., and Kapasi,

U. J. (2000). Register organization for media processing. 6th High-Performance Computer

Architecture (HPCA-6), pages 375–386.

[Ruggiero and Benini, 2008] Ruggiero, M. and Benini, L. (2008). Mapping task graphs to

the CELL BE processor. http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/

Map2mpsoc-08-ruggiero.pdf.

[Russell and Jacome, 1998] Russell, T. and Jacome, M. F. (1998). Software power estimation

and optimization for high performance, 32-bit embedded processors. Int. Conf. on Computer

Design (ICCD), pages 328–333.

[Ryan, 1995] Ryan, M. (1995). Market focus – insight into markets that are making the news

in EE Times. EE Times (was available at http://eetimes.com/columns/mfocus95/mfocus11.

html).

[Sangiovanni-Vincentelli, 2002] Sangiovanni-Vincentelli, A. (2002). The context for platform-

based design. IEEE Design & Test of Computers, page 120.

[Schmitz et al., 2002] Schmitz, M., Al-Hashimi, B., and Eles, P. (2002). Energy-efficient map-

ping and scheduling for DVS enabled distributed embedded systems. Design, Automation

and Test in Europe (DATE), pages 514–521.

[SDL Forum Society, 2009] SDL Forum Society (2009). List of commercial tools. http://

www.sdl-forum.org/Tools/Commercial.htm.

[SDL Forum Society, 2010] SDL Forum Society (2010). Home page. http://www.sdl-forum.

org.

[Sha et al., 1990] Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance protocols:

An approach to real-time synchronisation. IEEE Trans. on Computers, pages 1175–1185.

[Shi and Brodersen, 2003] Shi, C. and Brodersen, R. (2003). An automated floating-point

to fixed-point conversion methodology. Int. Conf. on Audio Speed and Signal Processing

(ICASSP), pages 529–532.

[Siemens, 2010] Siemens (2010). Simatic step 7 programming software. http://www.

automation.siemens.com/simatic/industriesoftware/html 76/products/step7.htm.

[Sifakis, 2008] Sifakis, J. (2008). A notion of expressiveness for component-based design.

Workshop on Foundations and Applications of Component-based Design, ES-Week,

http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-

WFCD-ArtistDesign-Oct192008.pdf.

[Simple Scalar LLC, 2004] Simple Scalar LLC (2004). Home page. http://www.simplescalar.

com.

http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
http://eetimes.com/columns/mfocus95/mfocus11.html
http://eetimes.com/columns/mfocus95/mfocus11.html
http://www.sdl-forum.org/Tools/Commercial.htm
http://www.sdl-forum.org/Tools/Commercial.htm
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.simplescalar.com
http://www.simplescalar.com

366 EMBEDDED SYSTEM DESIGN

[Simunic et al., 2000] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and De Micheli, G.

(2000). Energy efficient design of portable wireless devices. Intern. Symp. on Low Power

Electronics and Design (ISLPED), pages 49–54.

[Simunic et al., 2001] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and De Micheli,

G. (2001). Dynamic voltage scaling and power management for portable systems. Design

Automation Conference (DAC), pages 524–529.

[Simunic et al., 1999] Simunic, T., Benini, L., and De Micheli, G. (1999). Cycle-accurate

simulation of energy consumption in embedded systems. Design Automation Conference

(DAC), pages 876–872.

[Simunic-Rosing et al., 2007] Simunic-Rosing, T., Coskun, A. K., and Whisnant, K. (2007).

Temperature aware task scheduling in MPSoCs. Design, Automation and Test in Europe

(DATE), pages 1659–1664.

[Sipser, 2006] Sipser, M. (2006). Introduction to the Theory of Computation. Thomson Course

Technology, Parts One and Two.

[Sirocic and Marwedel, 2007a] Sirocic, B. and Marwedel, P. (2007a). Levi Flexray®

simulation software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/

leviFRP.zip.

[Sirocic and Marwedel, 2007b] Sirocic, B. and Marwedel, P. (2007b). Levi KPN simulation

software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.

zip.

[Sirocic and Marwedel, 2007c] Sirocic, B. and Marwedel, P. (2007c). Levi RTS simulation

software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.

zip.

[Sirocic and Marwedel, 2007d] Sirocic, B. and Marwedel, P. (2007d). Levi TDD simulation

software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.

zip.

[Skadron et al., 2009] Skadron, K., Stan, M. R., Ribando, R. J., Gurumurthi, S., Huang, W.,

Sankaranarayanan, K., Tarjan, D., Burr, J., Ghosh, S., Velusamy, S., and Link, G. (2009).

Hotspot 5.0. http://lava.cs.virginia.edu/HotSpot/index.htm.

[Smith and Nair, 2005] Smith, J. J. and Nair, R. (2005). Virtual Machines: Versatile Platforms

For Systems And Processes. Morgan Kaufmann Publishers.

[Society for Display Technology, 2003] Society for Display Technology (2003). Home page.

http://www.sid.org.

[Sprint Consortium, 2008] Sprint Consortium (2008). Open SoC design platform for reuse and

integration of IPs. http://www.sprint-project.net.

[Stallings, 2009] Stallings, W. (2009). Operating Systems: Internals and Design Principles.

Prentice Hall.

[Stankovic and Ramamritham, 1991] Stankovic, J. and Ramamritham, K. (1991). The Spring

kernel: a new paradigm for real-time systems. IEEE Software, 8:62–72.

http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviFRP.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviFRP.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.zip
http://lava.cs.virginia.edu/HotSpot/index.htm
http://www.sid.org
http://www.sprint-project.net

References 367

[Stankovic et al., 1998] Stankovic, J., Spuri, M., Ramamritham, K., and Buttazzo, G. (1998).

Deadline Scheduling for Real-Time Systems, EDF and related algorithms. Kluwer Academic

Publishers.

[Steinke, 2003] Steinke, S. (2003). Analysis of the potential for saving energy in embed-

ded systems through energy-aware compilation (in German). PhD thesis, TU Dortmund,

http://hdl.handle.net/2003/2769.

[Steinke et al., 2002a] Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M.,

and Marwedel, P. (2002a). Reducing energy consumption by dynamic copying of instructions

onto onchip memory. Int. Symp. on System Synthesis (ISSS), pages 213–218.

[Steinke et al., 2001] Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel, P. (2001). An

accurate and fine grain instruction-level energy model supporting software optimizations.

Int. Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS).

[Steinke et al., 2002b] Steinke, S., Wehmeyer, L., Lee, B.-S., and Marwedel, P. (2002b). As-

signing program and data objects to scratchpad for energy reduction. Design, Automation

and Test in Europe (DATE), pages 409–417.

[Stiller, 2000] Stiller, A. (2000). New processors (in German). c’t, 22:52.

[Storey, 1996] Storey, N. (1996). Safety-critical Computer Systems. Addison Wesley.

[Stritter and Gunter, 1979] Stritter, E. and Gunter, T. (1979). Microprocessor architecture for a

changing world: The Motorola 68000. IEEE Computer, 12:43–52.

[Stuijk, 2007] Stuijk, S. (2007). Predictable Mapping of Streaming Applications on Multipro-

cessors. Dissertation, TU Eindhoven.

[Sudarsanam et al., 1997] Sudarsanam, A., Liao, S., and Devadas, S. (1997). Analysis and

evaluation of address arithmetic capabilities in custom DSP architectures. Design Automa-

tion Conference (DAC), pages 287–292.

[Sudarsanam and Malik, 1995] Sudarsanam, A. and Malik, S. (1995). Memory bank and reg-

ister allocation in software synthesis for ASIPs. Intern. Conf. on Computer-Aided Design

(ICCAD), pages 388–392.

[Sun, 2010] Sun (2010). Java technology concept map. http://java.sun.com/new2java/

javamap/Java Technology Concept Map.pdf.

[Sutherland, 2003] Sutherland, S. (2003). An overview of SystemVerilog 3.1. EEdesign, May,

available at http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=

16501063.

[Synopsys, 2010] Synopsys (2010). System studio. http://www.synopsys.com/apps/docs/

pdfs/ip/system studio ds.pdf.

[SYSGO AG, 2010] SYSGO AG (2010). PikeOS RTOS and Virtualization Concept. http://

www.sysgo.com.

[SystemC, 2010] SystemC (2010). Home page. http://www.SystemC.org.

http://hdl.handle.net/2003/2769
http://java.sun.com/new2java/javamap/Java_Technology_Concept_Map.pdf
http://java.sun.com/new2java/javamap/Java_Technology_Concept_Map.pdf
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.synopsys.com/apps/docs/pdfs/ip/system_studio_ds.pdf
http://www.synopsys.com/apps/docs/pdfs/ip/system_studio_ds.pdf
http://www.sysgo.com
http://www.sysgo.com
http://www.SystemC.org

368 EMBEDDED SYSTEM DESIGN

[Takada, 2001] Takada, H. (2001). Real-time operating system for embedded systems. In: M.

Imai and N. Yoshida (eds.): Tutorial 2 – Software Development Methods for Embedded

Systems, Asia South-Pacific Design Automation Conference (ASP-DAC).

[Tan et al., 2003] Tan, T. K., Raghunathan, A., and Jha, N. K. (2003). Software architectural

transformations: A new approach to low energy embedded software. Design, Automation

and Test in Europe (DATE), pages 11046–11051.

[Tanenbaum, 2001] Tanenbaum, A. (2001). Modern Operating Systems. Prentice Hall.

[Teich, 1997] Teich, J. (1997). Digitale Hardware/Software-Systeme. Springer.

[Teich et al., 1999] Teich, J., Zitzler, E., and Bhattacharyya, S. (1999). 3D exploration of

software schedules for DSP algorithms. 7th Int. Symp. on Hardware/Software Codesign

(CODES), pages 168–172.

[Tensilica Inc., 2010] Tensilica Inc. (2010). Home page. http://www.tensilica.com.

[Tewari, 2001] Tewari, A. (2001). Modern Control Design with MATLAB and SIMULINK. John

Wiley and Sons Ltd.

[The Dobelle Institute, 2003] The Dobelle Institute (2003). Home page. http://www.dobelle.

com (no longer accessible).

[The MathWorks Inc., 2010] The MathWorks Inc. (2010). Simulink - simulation and model-

based design. http://www.mathworks.com/products/simulink.

[Thesing, 2004] Thesing, S. (2004). Safe and Precise WCET Determination by Abstract Inter-

pretation of Pipeline Models. Pirrot Verlag.

[Thiébaut, 1995] Thiébaut, D. (1995). Parallel programming in C for the transputer. http://

cs.smith.edu/˜thiebaut/transputer/descript.html.

[Thiele, 2006a] Thiele, L. (2006a). Design space exploration of embedded systems. Artist

Spring School on Embedded Systems, Xi-an, http://www.artist-embedded.org/docs/Events/

2006/ChinaSchool/4 DesignSpaceExploration.pdf.

[Thiele, 2006b] Thiele, L. (2006b). Performance analysis of distributed embedded systems. In:

R. Zurawski (Hrg.): Embedded Systems Handbook, CRC Press, 2006.

[Thiele, L. et al., 2009] Thiele, L. et al. (2009). SHAPES @ TIK. http://www.tik.ee.ethz.ch/˜

shapes/dol.html.

[Thoen and Catthoor, 2000] Thoen, F. and Catthoor, F. (2000). Modelling, Verification and

Exploration of Task-Level Concurrency in Real-Time Embedded Systems. Kluwer Academic

Publishers.

[Tiwari et al., 1994] Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded

software: A first step towards software power minimization. IEEE Trans. On VLSI Systems,

pages 437–445.

[Tjiang, 1993] Tjiang, W.-K. (1993). An olive twig. Technical Report, Synopsys.

[Trimaran, 2010] Trimaran (2010). An infrastructure for research in backend compilation and

architecture exploration. http://www.trimaran.org.

http://www.tensilica.com
http://www.dobelle.com
http://www.dobelle.com
http://www.mathworks.com/products/simulink
http://cs.smith.edu/~thiebaut/transputer/descript.html
http://cs.smith.edu/~thiebaut/transputer/descript.html
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.tik.ee.ethz.ch/~shapes/dol.html
http://www.tik.ee.ethz.ch/~shapes/dol.html
http://www.trimaran.org

References 369

[TriQuint Semiconductor Inc., 2010] TriQuint Semiconductor Inc. (2010). FAQ 11: What

is the MTBF for gallium arsenide devices? http://www.triquint.com/company/quality/faqs/

faq 11.cfm.

[Tsai and Yang, 1995] Tsai, J. and Yang, S. J. H. (1995). Monitoring and Debugging of Dis-

tributed Real-Time Systems. IEEE Computer Society Press.

[Udayakumaran et al., 2006] Udayakumaran, S., Dominguez, A., and Barua, R. (2006). Dy-

namic allocation for scratch-pad memory using compile-time decisions. ACM Transactions

in Embedded Computing Systems, V:472–511.

[University of Cambridge, 2010] University of Cambridge (2010). HOL4. http://hol.

sourceforge.net.

[UPnP Forum, 2010] UPnP Forum (2010). UPnP T M resources. http://www.upnp.org/

resources/default.asp.

[V-Modell XT Authors, 2010] V-Modell XT Authors (2010). V-Modell XT Gesamt 1.3.

http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf.

[Vaandrager, 1998] Vaandrager, F. (1998). Lectures on embedded systems. in Rozenberg, Vaan-

drager (eds), LNCS, Vol. 1494.

[Vahid, 1995] Vahid, F. (1995). Procedure exlining. Int. Symp. on System Synthesis (ISSS),

pages 84–89.

[Vahid, 2002] Vahid, F. (2002). Embedded System Design. John Wiley& Sons.

[Verachtert, 2008] Verachtert, W. (2008). Introduction to parallelism. Tutorial at Design, Au-

tomation, and Test in Europe (DATE).

[Verma and Marwedel, 2004] Verma, M. and Marwedel, P. (2004). Dynamic overlay of scratch-

pad memory for energy minimization. 8th IEEE/ACM Int. Conf. on Hardware/software

Codesign and System Synthesis (CODES+ISSS), pages 104–109.

[Verma et al., 2005] Verma, M., Petzold, K., Wehmeyer, L., Falk, H., and Marwedel, P. (2005).

Scratchpad sharing strategies for multiprocess embedded systems: A first approach. In IEEE

3rd Workshop on Embedded System for Real-Time Multimedia (ESTIMedia), pages 115–

120.

[Vladimirescu, 1987] Vladimirescu, A. (1987). SPICE user’s guide. Northwest Laboratory for

Integrated Systems, Seattle.

[Vogels and Gielen, 2003] Vogels, M. and Gielen, G. (2003). Figure of merit based selection of

A/D converters. Design, Automation and Test in Europe (DATE), pages 1190–1191.

[Wandeler and Thiele, 2006] Wandeler, E. and Thiele, L. (2006). Real-Time Calculus (RTC)

Toolbox.

[Wedde and Lind, 1998] Wedde, H. and Lind, J. (1998). Integration of task scheduling and file

services in the safety-critical system MELODY. EUROMICRO ’98 Workshop on Real-Time

Systems, IEEE Computer Society Press, pages 18–25.

[Wegener, 2000] Wegener, I. (2000). Branching programs and binary decision diagrams –

Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications.

http://www.triquint.com/company/quality/faqs/faq_11.cfm
http://www.triquint.com/company/quality/faqs/faq_11.cfm
http://hol.sourceforge.net
http://hol.sourceforge.net
http://www.upnp.org/resources/default.asp
http://www.upnp.org/resources/default.asp
http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf

370 EMBEDDED SYSTEM DESIGN

[Wehmeyer and Marwedel, 2006] Wehmeyer, L. and Marwedel, P. (2006). Fast, Efficient and

Predictable Memory Accesses. Springer.

[Weiser, 2003] Weiser, M. (2003). Ubiquitous computing. http://www.ubiq.com/hypertext/

weiser/UbiHome.html.

[Wellings, 2004] Wellings, A. (2004). Concurrent and Real-Time Programming in Java. Wiley.

[Weste et al., 2000] Weste, N. H. H., Eshraghian, K., Michael, S., Michael, J. S., and Smith, J.

S. (2000). Principles of CMOS VLSI Design: A Systems Perspective. Addision-Wesley.

[Wikipedia, 2010] Wikipedia (2010). Structured systems analysis and design method. http://

en.wikipedia.org/wiki/Structured Systems Analysis and Design Methodology.

[Wilhelm, 2006] Wilhelm, R. (2006). Determining bounds on execution times. In: R. Zurawski

(Ed.): Embedded Systems Handbook, CRC Press, 2006.

[Willems et al., 1997] Willems, M., Bürsgens, V., Keding, H., Grötker, T., and Meyr, H. (1997).

System level fixed-point design based on an interpolative approach. Design Automation Con-

ference (DAC), pages 293–298.

[Wilton and Jouppi, 1996] Wilton, S. and Jouppi, N. (1996). CACTI: An enhanced access and

cycle time model. Int. Journal on Solid State Circuits, 31(5):677–688.

[Wind River, 2010a] Wind River (2010a). VxWorks. http://www.windriver.com/products/

vxworks.

[Wind River, 2010b] Wind River (2010b). Web pages. http://www.windriver.com.

[Winkler, 2002] Winkler, J. (2002). The CHILL homepage. http://psc.informatik.uni-jena.de/

languages/chill/chill.htm.

[Wolf, 2001] Wolf, W. (2001). Computers as Components. Morgan Kaufmann Publishers.

[Wolsey, 1998] Wolsey, L. (1998). Integer Programming. Jon Wiley & Sons.

[Wong et al., 2001] Wong, C., Marchal, P., Yang, P., Prayati, A., Catthoor, F., Lauwereins,

R., Verkest, D., and Man, H. D. (2001). Task concurrency management methodology to

schedule the MPEG4 IM1 player on a highly parallel processor platform. 9th Int. Symp. on

Hardware/Software Codesign (CODES), pages 170–177.

[ws4d, 2010] ws4d (2010). Web services for devices. http://www.ws4d.org.

[Xilinx, 2008] Xilinx (2008). MicroBlaze processor reference guide. http://www.xilinx.com/

support/documentation/sw manuals/mb ref guide.pdf.

[Xilinx, 2009] Xilinx (2009). Device reliability report - second quarter 2009. http://www.

xilinx.com/support/documentation/user guides/ug116.pdf.

[Xilinx, 2009] Xilinx (May, 2009). Virtex-5 user guide, v 4.7. http://www.xilinx.com/support/

documentation/user guides/ug190.pdf.

[Xilinx, 2007] Xilinx (Nov., 2007). Virtex-II Platform User Guide, V 2.2. http://www.xilinx.

com/support/documentation/user guides/ug002.pdf.

http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
http://www.windriver.com/products/vxworks
http://www.windriver.com/products/vxworks
http://www.windriver.com
http://psc.informatik.uni-jena.de/languages/chill/chill.htm
http://psc.informatik.uni-jena.de/languages/chill/chill.htm
http://www.ws4d.org
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug002.pdf
http://www.xilinx.com/support/documentation/user_guides/ug002.pdf

References 371

[XMOS Ltd., 2010] XMOS Ltd. (2010). Home page. http://www.xmos.com/.

[Xu and Parnas, 1993] Xu, J. and Parnas, D. L. (1993). On satisfying timing constraints in hard

real-time systems. IEEE Transactions on Software Engineering, 19:70–84.

[Xu et al., 2009] Xu, Q., Huang, L., and Yuan, F. (2009). Lifetime reliability-aware task alloca-

tion and scheduling for MPSoC platforms. Design, Automation and Test in Europe (DATE),

pages 51–56.

[Xue, 2000] Xue, J. (2000). Loop tiling for parallelism. Kluwer Academic Publishers.

[Young, 1982] Young, S. (1982). Real Time Languages – design and development. Ellis Hor-

wood.

[Zhuo et al., 2010] Zhuo, C., Sylvester, D., and Blaauw, D. (2010). Process variation and

temperature-aware reliability management. Design, Automation and Test in Europe (DATE).

[Zurawski, 2006] Zurawski, R., editor (2006). Embedded Systems Handbook. CRC Press.

http://www.xmos.com/

About the Author

Peter Marwedel

Peter Marwedel was born in Hamburg, Germany. He received his

PhD in Physics from the University of Kiel, Germany, in 1974.

From 1974 to 1989, he was a faculty member of the Institute for

Computer Science and Applied Mathematics at the same Univer-

sity. He has been a professor at TU Dortmund, Germany, since

1989. He holds a chair for embedded systems at the Computer

Science Department and is also chairing ICD e.V., a local com-

pany specializing in technology transfer. Dr. Marwedel was a

visiting professor of the University of Paderborn in 1985/1986

and of the University of California at Irvine in 1995. He served

as Dean of the Computer Science Department from 1992 to 1995.

Dr. Marwedel has been active in making the DATE conference

successful and in initiating the SCOPES and the Map2MPSoCs

series of workshops. He started to work on high-level synthesis in 1975 (in the context of

the MIMOLA project) and focused on the synthesis of very long instruction word (VLIW)

machines. Later, he added compilation for embedded processors (with emphasis on retar-

getability) to his scope. His projects also include synthesis of self-test programs for proces-

sors. Work on multimedia-based training led to the design of the levi multimedia units (see

http://ls12-www.cs.tu-dortmund.de/teaching/download/index.html). He is a cluster leader for

ArtistDesign, a European Network of Excellence on Embedded and Real-Time Systems. He

is also leading projects on efficient compilation for embedded systems. The focus is on the

exploitation of the memory architecture and timing predictability. He won the teaching award

of his university in 2003.

Dr. Marwedel is an IEEE Fellow, a DATE Fellow, a senior member of ACM, and a member of

Gesellschaft für Informatik (GI).

He is married and has two daughters and a son. His hobbies include model railways and pho-

tography.

E-mail: peter.marwedel@tu-dortmund.de

Web-site: http://ls12-www.cs.tu-dortmund.de/˜marwedel

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

373

http://ls12-www.cs.tu-dortmund.de/teaching/download/index.html
mailto:peter.marwedel@tu-dortmund.de
http://ls12-www.cs.tu-dortmund.de/~marwedel
http://dx.doi.org/10.1007/978-94-007-0257-8

List of Figures

0.1 Influence of embedded systems on ubiquitous computing (©European Com-

mission) . xii

0.2 Positioning of the topics of this book . xviii

1.1 SMARTpen (Original version) . 2

1.2 Controlling a valve . 3

1.3 Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl für Angewandte

Mechanik, TU München), ©TU München 4

1.4 Energy efficiency as a function of time and technology (©Philips, Hugo de

Man, 2007) . 6

1.5 Scope of mapping applications to PC-like and Embedded Systems hardware . 12

1.6 Simplified design flow . 13

1.7 Design flow for SpecC tools (simplified) . 14

1.8 Design flow for the V-model (rotated standard view) 15

1.9 Gajski’s Y-chart and design path (in bold) 16

2.1 State diagram with exception k . 24

2.2 Dependence graph . 29

2.3 Graphs including timing information . 30

2.4 Graphs including I/O-nodes and edges . 31

2.5 Graph including jobs . 31

2.6 Hierarchical task graph . 32

2.7 Overview of MoCs and languages considered 34

2.8 Use case example . 36

2.9 Answering machine in UML . 37

2.10 Time/distance diagram . 38

2.11 Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich),

©ETH Zürich . 39

2.12 State diagram . 39

2.13 Servicing an incoming line in an answering machine 40

2.14 Hierarchical state diagram . 42

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

375

http://dx.doi.org/10.1007/978-94-007-0257-8

376 EMBEDDED SYSTEM DESIGN

2.15 State diagram using the default state mechanism 44

2.16 State diagram using the history and the default state mechanism 44

2.17 Combining the symbols for the history and the default state mechanism . . . 45

2.18 Answering machine . 45

2.19 Answering machine with modified on/off switch processing 46

2.20 Timer in StateCharts . 47

2.21 Servicing the incoming line in Lproc . 47

2.22 Mutually dependent assignments . 49

2.23 Cross-coupled D-type registers . 49

2.24 Conflicting StateCharts transitions . 50

2.25 Steps during the execution of a StateMate model 51

2.26 Symbols used in the graphical form of SDL 55

2.27 FSM to be described in SDL . 55

2.28 SDL-representation of fig. 2.27 . 55

2.29 Declarations, assignments and decisions in SDL 56

2.30 SDL interprocess communication . 56

2.31 Process interaction diagram . 57

2.32 Describing signal recipients . 57

2.33 SDL block . 58

2.34 SDL system . 58

2.35 SDL hierarchy . 58

2.36 Using timer T . 59

2.37 Small computer network described in SDL 59

2.38 Protocol stacks represented in SDL . 60

2.39 Video-on-demand system . 61

2.40 Graphical representation of KPN . 63

2.41 Graphical representations of synchronous data flow 64

2.42 Multi-rate SDF model . 65

2.43 Observer pattern in SDF . 65

2.44 Simulink model . 66

2.45 Single track railroad segment . 68

2.46 Using resource “track” . 69

2.47 Freeing resource “track” . 69

2.48 Conflict for resource “track” . 69

2.49 Nets which are not pure (left) and not simple (center and right) 70

2.50 Generation of a new marking . 72

2.51 Transition with a constant number of tokens 73

2.52 Model of Thalys trains running between Amsterdam, Cologne, Brussels, and

Paris . 75

2.53 NT for the Thalys example . 75

2.54 The dining philosophers problem . 76

2.55 Place/transition net model of the dining philosophers problem 77

2.56 Predicate/transition net model of the dining philosophers problem 77

2.57 Activity diagram [Kobryn, 2001] . 79

2.58 An entity consists of an entity declaration and architectures 81

2.59 Full-adder and its interface signals . 81

2.60 Schematic describing structural body of the full adder 82

2.61 Gate modeled with transport delay . 85

List of Figures 377

2.62 Gate modeled with inertial delay . 85

2.63 VHDL simulation cycles . 88

2.64 RS-Flipflop . 88

2.65 δ cycles for RS-flip-flop . 89

2.66 Outputs that can be effectively disconnected from a wire 91

2.67 Right output dominates bus . 92

2.68 Partial order for value set {’0’, ’1’, ’Z’, ’X’} 92

2.69 Output using depletion transistor . 93

2.70 Partial order for value set {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’} 93

2.71 Pre-charging a bus . 94

2.72 Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’} 95

2.73 Structural hierarchy of SpecC example . 100

2.74 Comparison between data flow models . 110

2.75 Expressiveness of data flow models . 111

2.76 Language comparison . 111

2.77 Using various languages in combination . 112

2.78 Models of computation available in UML 113

2.79 StateCharts example . 116

2.80 States of the StateCharts example . 117

2.81 Bus driven by tri-state outputs . 117

3.1 Simplified design flow . 119

3.2 Hardware in the loop . 120

3.3 Acceleration sensor (courtesy S. Bütgenbach, IMT, TU Braunschweig), ©TU

Braunschweig, Germany . 121

3.4 Sample-and-hold-circuit . 123

3.5 Approximation of a square wave by sine waves for K=1 (left) and K=3 (right) 124

3.6 Approximation of a square wave by sine waves for K=7 (left) and K=11 (right) 124

3.7 Visualization of functions e3(t) (solid) and e4(t) (dotted) 125

3.8 Anti-aliasing placed in front of the sample-and-hold circuit 127

3.9 Ideal and realizable anti-aliasing filters (low-pass filters) 127

3.10 (a) Flash A/D converter (b) w as a function of h 128

3.11 Circuit using successive approximation . 130

3.12 Steps used during successive approximation 130

3.13 h(t) (dashed), step function w(t) (dash-dotted), w(t)−h(t) (solid) 131

3.14 Hardware efficiency (©De Man and Philips) 133

3.15 Comparison of energies E0 and E1 . 134

3.16 Dynamic power management states of the StrongArm Processor SA 1100

[Benini et al., 2000] . 136

3.17 Decompression of compressed instructions 138

3.18 Re-encoding THUMB into ARM instructions 139

3.19 Dictionary approach for instruction compression 140

3.20 Naming conventions for signals . 141

3.21 Internal architecture of the ADSP 2100 processor 141

3.22 AGU using special address registers . 143

3.23 Wrap-around vs. saturating arithmetic for unsigned integers 144

3.24 Parameters of a fixed-point number system 144

3.25 Using 64 bit registers for packed words . 145

378 EMBEDDED SYSTEM DESIGN

3.26 VLIW architecture (example) . 147

3.27 Instruction packets for TMS 320C6xx . 147

3.28 Partitioned register files for TMS 320C6xx 148

3.29 M3-DSP (simplified) . 148

3.30 Branch instruction and delay slots . 149

3.31 Floor-plan of the SH-MobileG1 chip . 151

3.32 Floor-plan of Virtex-II FPGAs . 153

3.33 Virtex-5 CLB . 153

3.34 Virtex-5 Slice (simplified) . 154

3.35 Cycle time and power as a function of the register file size 155

3.36 Power and delay of RAM memory as predicted by CACTI 155

3.37 Increasing gap between processor and memory speeds 156

3.38 Memory map with scratch-pad included . 157

3.39 Energy consumption per scratch pad and cache access 157

3.40 Single-ended signaling . 159

3.41 Differential signaling . 160

3.42 TDMA-based communication . 161

3.43 Naming convention for signals between analog inputs and outputs 164

3.44 D/A-converter . 165

3.45 Step function y′(t) generated from signal e3(t) (eq. 3.3) sampled at integer

times . 167

3.46 Visualization of eq. 3.25 used for interpolation 168

3.47 y′(t) (solid line) and the first three terms of eq. 3.24 169

3.48 y′(t) (solid line) and the last three non-zero terms of eq. 3.24 169

3.49 e3(t) (solid), z(t) (dotted), y′(t) (dashed) . 170

3.50 Converting signals e(t) from the analog time and value domain to the digital

domain and back . 171

3.51 Low-pass filter: ideal (dashed) and realistic (solid) 171

3.52 Microsystem technology based actuator motor (partial view; courtesy E. Ober-

meier, MAT, TU Berlin), ©TU Berlin . 172

3.53 Complexity of A/D-converters . 174

4.1 Simplified design information flow . 178

4.2 Device drivers implemented on top of (a) or below (b) OS kernel 180

4.3 Software stack for Wind River® Industrial Automation Platform 181

4.4 Hybrid OSs . 184

4.5 PikeOS virtualization (©SYSGO) . 186

4.6 Blocking of a task by a lower priority task 187

4.7 Priority inversion with potentially large delay 188

4.8 Priority inheritance for the example of fig. 4.7 189

4.9 Nested critical sections . 190

4.10 Transitiveness of priority inheritance . 190

4.11 Access to remote objects using CORBA . 196

4.12 Task set requesting exclusive use of resources 201

5.1 Context of the current Chapter . 204

5.2 (a) Pareto point (b) Pareto front . 205

5.3 WCET-related terms . 208

5.4 Architecture of the aiT timing analysis tool 209

5.5 Set associative cache (for n=4) . 210

5.6 Must-analysis at program joins for LRU-caches 211

List of Figures 379

5.7 May-analysis at program joins for LRU-caches 212

5.8 Arrival curves: periodic stream (left), periodic stream with jitter J (right) . . 213

5.9 Service functions for a TDMA bus . 214

5.10 Work load characterization . 215

5.11 Transformation of event stream and service capacities by real-time components 216

5.12 Density function and probability distribution for exponential distributions . . 220

5.13 Reliability for exponential distributions . 221

5.14 Bath tub-like failure rates . 222

5.15 Illustration of MTTF, MTTR and MTBF . 224

5.16 Failure rates of TriQuint Gallium-Arsenide devices (courtesy of TriQuint,

Inc., Hillsboro), ©TriQuint . 225

5.17 Fault tree . 226

5.18 FMEA table . 227

5.19 Clarke’s EMC system . 232

5.20 Processor configurations . 233

5.21 Pareto points for multi processor systems 2 und 3 233

5.22 Abstract cache states . 234

6.1 Simplified design flow . 235

6.2 Classes of scheduling algorithms . 239

6.3 Task descriptor list in a time-triggered system 240

6.4 Definition of the laxity of a task . 242

6.5 Schedules τ and τ′ . 243

6.6 EDF schedule . 245

6.7 Schedule τ . 245

6.8 Schedule after swapping tasks τ(t) and E(t) 246

6.9 Least laxity schedule . 247

6.10 Scheduler needs to leave processor idle . 247

6.11 Precedence graph and schedule . 248

6.12 3 × 3 matrix . 249

6.13 Computation of the determinant of A . 250

6.14 ASAP schedule for the example of fig. 6.13 251

6.15 ALAP schedule for the example of fig. 6.13 252

6.16 Path lengths for the example of fig. 6.13 . 253

6.17 Mobility for the example of fig. 6.13 . 253

6.18 Result of list scheduling for the example of fig. 6.13 254

6.19 Distributions for the example of fig. 6.13 . 256

6.20 Notation used for time intervals . 257

6.21 Right hand side of equation 6.7 . 259

6.22 Example of a schedule generated with RM scheduling 259

6.23 RM schedule does not meet deadline at time 8 260

6.24 Delaying task Tn by some Ti of higher priority 261

6.25 Increasing delay of task Tn . 261

6.26 EDF generated schedule for the example of 6.23 262

6.27 General view of hardware/software partitioning 264

6.28 Merging of task nodes mapped to the same hardware component 266

6.29 Task graph . 269

6.30 Execution times of tasks T1 to T5 on components 270

6.31 Design space for audio lab . 272

380 EMBEDDED SYSTEM DESIGN

6.32 Classification of mapping tools and authors’ work 273

6.33 DOL problem graph . 273

6.34 DOL architecture graph . 273

6.35 DOL specification graph . 274

6.36 DOL implementation . 275

6.37 Decoding of solutions from chromosomes of individuals 275

6.38 DOL tool . 276

6.39 Pareto front of solutions for a design problem, ©ETHZ 277

6.40 Task dependencies . 278

7.1 Context of the current Chapter . 281

7.2 Merging of tasks . 282

7.3 Splitting of tasks . 282

7.4 System specification . 283

7.5 Generated software tasks . 284

7.6 Memory layout for two-dimensional array p[j][k] in C 287

7.7 Access pattern for unblocked matrix multiplication 290

7.8 Access pattern for tiled/blocked matrix multiplication 290

7.9 Splitting image processing into regular and special cases 291

7.10 Results for loop splitting . 293

7.11 Reference patterns for arrays . 294

7.12 Unfolded (left), inter-array folded (center), and intra-array folded (right) ar-

rays . 294

7.13 Pre-pass optimization . 299

7.14 Basic blocks and multi-blocks . 300

7.15 Energy reduction by compiler-based mapping to scratch-pad for bubble sort . 301

7.16 Worst case execution time aware compiler WCC 306

7.17 Reduction of WCETEST by WCET-aware register allocation 307

7.18 Comparison of memory layouts . 308

7.19 Memory allocation for access sequence (b, d, a, c, d, c) for a single address

register A . 309

7.20 Sequence of steps in Liao’s algorithm . 310

7.21 Reduction of the cycle count by vectorization for the M3-DSP 311

7.22 Characteristics of processor with DVS . 314

7.23 Possible voltage schedule . 314

7.24 Second voltage schedule . 314

7.25 Third voltage schedule . 315

7.26 Memory characteristics . 319

7.27 Variable characteristics . 320

8.1 Design flow with testing at its very end . 322

8.2 Test pattern at the gate level . 323

8.3 Segment from processor hardware . 324

8.4 Finite state machine to be tested . 327

8.5 Scan path design . 328

8.6 Testing a device under test (DUT) . 329

8.7 Linear feedback shift register for response compaction 329

8.8 Linear feedback shift register for test pattern generation 330

8.9 BILBO . 331

8.10 Modes of BILBO registers . 331

List of Figures 381

8.11 Cross-coupled BILBOs . 332

8.12 LFSR . 332

A.1 Possible solutions of the presented ILP-problem 336

B.1 Junction in an electrical circuit . 337

B.2 Loop in an electrical circuit . 338

B.3 Operational amplifier . 339

B.4 Operational amplifier with feed back . 340

B.5 Op-amp with feed back (loop highlighted) 341

Index

A/D-converter, 127, 129, 131, 132

abstraction, 21

abstraction levels, 107

ACID-property, 200

actor, 61

actuator, 8, 162, 163, 172

ADA, 33, 34, 50, 63, 80, 95, 102, 104, 111, 190

address generation unit, 143, 310

address register, 309

addressing mode, 143

ALAP, 251

aliasing, 126

AMBA-bus, 161

analyzability, 109

answering machine, 36, 40

anti-aliasing, 127

API, 106, 177, 180, 184, 195, 198, 200, 236

application area, 1, 10, 13, 19

application domains, 25

application mapping, xiii, 235, 238, 263

application-specific circuit (ASIC), 133, 135

arithmetic

fixed-point ∼, 144, 285

floating-point ∼, 285

saturating ∼, 143, 144

ARM, 139, 150, 161

arrival curves, 213

artificial eye, 122

ARTIST guidelines, xvi

ASAP, 249

ASIC, 6, 133, 135, 152

assignment

signal ∼, 84

audience, xv

automata, 24, 40, 42, 53, 57

AUTOSAR, 10, 237

availability, 5, 224

babbling idiot, 163

basic block, 32, 299, 308

bath tub, 223

BCET, 209, 214

behavior

determinate ∼, 48, 53, 97

deterministic ∼, 40, 50

non-functional ∼, 26

real-time ∼, 160

BILBO, 331

Binary Decision Diagram (BDD), 108, 231, 232

binding, 274

Bluetooth, 164

body biasing, 317

boundary scan, 328

branch delay penalty, 149, 312

broadcast, 51, 53, 54

building

smart ∼, xii, 3

built-in logic block observer, 331

bus guardian, 163

cache, 138, 145, 156, 157, 208, 210, 287–289,

291, 295, 303, 305

CACTI, 155, 157

CAN, 162

CardJava, 106

causal dependence, 29

CFSM, 34

channel, 33, 57

charge-coupled devices (CCD), 121

Chill, 106

CISC, 137

clock synchronization, 183

code size, 8, 301, 310

ColdFire, 137

common characteristics, 4

P. Marwedel, Embedded System Design, Embedded Systems,

DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

383

http://dx.doi.org/10.1007/978-94-007-0257-8

384 EMBEDDED SYSTEM DESIGN

communication, 22, 29, 32, 33, 106, 157

non-blocking ∼, 33

compiler, 285, 291, 295, 297

energy-aware ∼, 296

for digital signal processor, 308

retargetable ∼, 295, 313

component-based design, 22

composability, 181

compression, 138

dictionary-based ∼, 140

computer

disappearing ∼, xi, 9

computing

pervasive ∼, xi

concurrency, 22, 28

condition/event net, 70

configurability, 178

configuration

link-time ∼, 184

context switch, 178, 282

contiguous files, 182

controller area network, 162

COOL, 263, 264, 279

CORBA, 196

cost, 8, 267

estimated ∼, 207

function for scheduling, 242

function of integer linear programming,

271

model for energy, 217

model of COOL, 265

model of integer programming, 335

of ASICs, 135

of communication, 158

of damages, 225

of energy, 134

of floating point arithmetic, 144

of second instruction set, 140

of testing, 332

of wiring, 162

coverage, 324

critical section, 32, 186

critical time instant∼, 261

CSA-theory, 90

CSDF, 66

CSMA/CA, 162

CSMA/CD, 162

CSP, 102, 115

CTL, 232

curriculum, xv

cyber-physical system, xiii, xiv, 1, 4, 5, 8, 10,

22, 34, 119, 120, 158, 159, 164,

206, 207, 219, 228, 229

D/A-converter, 130, 164

damage, 225

data flow, 61

cyclo-static ∼, 66

homogeneous synchronous ∼, 66

synchronous ∼, 64, 115

DCT, 267

deadline, 23, 182, 239, 243, 244, 258, 260, 262

deadline interval, 242, 257

deadlock, 27, 191

decibels, 132

DECT, 164

delay, 23

inertial ∼, 84

transport ∼, 84

delta cycle, 87–89, 97

dependability, 4, 26, 219, 227

dependence graph, 29

depletion transistor, 93

design flow, 12, 15, 119, 204, 235

design for testability, 327

design framework, 13

design space exploration, 206, 237

determinate, 49, 65, 89, 102, 104

deterministic, 40, 50, 182

non-∼, 70, 72

device under test, 322

DfT, 327

diagnosability, 159

diagram

activity, 78

deployment ∼, 113

Hasse ∼, 92

sequence, 37

time/distance ∼, 38

use case ∼, 35

diagrams

of UML, 114

dictionary, 140

differential signaling, 159

dining philosophers problem, 76, 77

discrete event, 33, 34, 78, 115

dispatcher, 241

display, 164

DOL, 272, 275

DPWS, 199

DSE, 206, 237, 277

DSP, 140, 142, 143

DUT, 322, 329

dynamic power management (DPM), 317

dynamic voltage scaling (DVS), 136, 137, 313,

314

Earliest Deadline First, 244, 262, 273, 278

Earliest Due Date, 243

early design phases, 35

eCos, 179

ECU, 237

EDD, 243

EDF, 244, 262, 273, 278

efficiency, 5, 26, 158

Index 385

code size ∼, 8

code-size ∼, 137

energy ∼, 5, 135, 156

run-time ∼, 7, 140

electro-magnetic compatibility (EMC), 228

embedded system(s)

hardware, 119

market of ∼, xiv

embedded systems, xii

emulation, 229

energy, 5, 12, 132–136, 138, 143, 146, 147, 151,

152, 155–157, 173, 204, 217, 218,

226, 234, 237, 273, 286, 291, 295,

296, 317

energy efficiency, 133

energy model, 217, 296

EPIC, 146

error, 219

Estelle, 60

Esterel, 53, 115

European installation bus (EIB), 163

evaluation, 203, 204

event, 24, 68, 70, 87

evolutionary algorithm, 274, 276

exception, 24, 43, 44, 105

executability, 25

expressiveness, 109, 110

failure, 219

failure mode and effect analysis (FMEA), 226

failure rate, 222

Failure unIT (FIT), 222

fault, 219

coverage, 324

injection, 326

model, 323

simulation, 325

stuck-at ∼, 332

tolerance, 159

tree, 226

tree analysis (FTA), 226

field programmable gate arrays, 152, 272

FIFO, 57, 59, 60, 62, 65

in SDL, 56

finite state machine, 46

finite state machine (FSM), 29, 34, 39, 42, 44,

55, 56, 115, 231

FIT, 222

flash A/D converter, 128

FlexRayT M , 163, 174

follow-up courses, xviii

formal verification, 231

Fourier approximations, 124

FPGA, 6, 152, 230, 272

gain, 339

garbage collection, 105

gated clocking, 135

GPS, 183

granularity, 31

green computing, 133

GSM, 162

hardware

secure ∼, 173

hardware abstraction layer, 195

hardware description language, 80

hardware in the loop, 120

hardware/software codesign, 236

hardware/software partitioning, 263

hazard, 225

healthcare, 1

hierarchy, 21, 31

in SDL, 58

in StateCharts, 42

leaf, 43, 58, 265

history mechanism, 44

HLS, 249, 250, 256, 263, 265

HOPES, 276

HSDF, 66, 110

HSPA, 164

hyper period, 262

ICT, xi

IEEE 91, 49

IEEE 802.11, 164

IEEE 1076, 80

IEEE 1164, 90, 117

IEEE 1364, 98

IEEE 1394, 163

IEEE 1666, 98

IEEE 1800-2009, 99

ILP, 212, 266–269, 276, 299, 304, 316, 319, 335

implicit path enumeration, 212

inlining, 312

input, 24, 26, 30, 43, 53, 57, 64, 81, 102

instruction level parallelism, 310

instruction set architecture (ISA), 108

instruction set level, 107

integer linear programming, 316, 335

integrated development environment, 13

intellectual property, 177

interrupt, 181, 182

ITRON, 184

ITRS, 7, 219, 271, 296

Java, 27, 105, 106

job, 239, 257

JTAG, 328

Kahn process network, 62, 65, 102, 110, 115,

276

Kirchhoff’s laws, 165, 166, 337–339

knapsack problem, 299

KPN, 62, 65, 102, 110, 115, 276

386 EMBEDDED SYSTEM DESIGN

lab, xviii

language, 21

actor-based ∼, 67

synchronous ∼, 52

laxity, 242, 257

LDF, 248

levi simulation, 38, 63, 116, 163, 188, 191, 201

LFSR, 329, 332

LIN (Local Interconnect Network), 163

linear feedback shift register, 329

linear transformation, 125

locality, 290

location invariants, 41

logic

first-order ∼, 231

higher order ∼, 231

multi-valued ∼, 90

propositional ∼, 231

reconfigurable ∼, 152

long-term evolution (LTE), 164

loop

blocking, 289

fission, 288

fusion, 288

permutation, 287

splitting, 291

tiling, 289

unrolling, 288

lp solve, 336

LST, 246

Lustre, 53

M-activated, 72

machine

virtual, 186

maintainability, 5, 159, 223

MAP, 163

MAPS, 277

marking, 71

MATLAB, 107

maximum lateness, 242

may-analysis, 234

memory, 155

bank, 145

hierarchy, 297

layout, 308

memory protection unit, 181

merge operator, 63

message passing

asynchronous ∼, 33

message passing, 29, 32–34, 54, 65, 90, 101

asynchronous ∼, 33

synchronous ∼, 102

message sequence charts (MSC), 36

micro-controller, 17, 150

middleware, 177, 195, 199

MIMOLA, 80

Mnemee, 277

mobility, 253

model, 21

discrete event ∼, 33, 78

layout level ∼, 109

of computation, 26, 28

switch-level ∼, 108

model of computation, 34, 109

model-based design, 35, 67, 101

modes, 66

modular performance analysis, 213

module chart, 52

MOST (Media Oriented Systems Transport),

163

MPI, 197

MPI/RT, 198

MPSoC, 151, 272, 276

MSC, 36

MTBF, 223

MTTF, 223

MTTR, 223

multi-core, 151

multi-objective optimization techniques, 204

multiply/accumulate instruction, 145

Multiprocessor system-on-a-chip, 151

must-analysis, 234

mutex primitives, 186

mutual exclusion, 30, 68

nanoprogramming, 140

net

simple ∼, 71

NP-hard, 231, 241, 248

Nyquist frequency, 126

object orientation, 25

observer, 65, 89

Occam, 102

op-amp, 166, 339

open collector circuit, 91

OpenMP, 198

operating system

driver, 180

embedded ∼, 178

kernel, 184

real-time ∼, 181, 182

operational amplifier, 166, 339

optimization, 264, 266, 267, 291, 295, 296, 310,

312, 313, 317, 335, 336

high-level ∼, 285

OSEK, 184, 191, 195

Pareto front, 206

Pareto-optimality, 205, 233, 276

path length, 252

Pearl, 106

period, 239, 247, 257–259, 261, 262, 278

periodic schedule, 31, 242

Index 387

pervasive computing, xii

Petri net, 67, 78, 283

place invariant, 73

place/transition net, 71

platform-based design, 119, 177

portability, 25

POSIX Threads, 198

post-PC era, xii

post-set, 70

postcondition, 70

power, 133, 296

power model, 217

pre-charging, 94

pre-set, 70

precondition, 70

predecessor, 29

predicate/transition net, 76

predicated execution, 148, 312

predictability, 182, 196, 208, 241, 263

prefetching, 289

prerequisites, xvii

priority ceiling protocol, 191

priority encoder, 129

priority inheritance, 189, 197

priority inversion, 186

privacy, 159

procedure ex-lining, 140

process, 178

processing units, 132

processor, 135, 295

cell ∼, 6, 7, 276

digital signal ∼, 143

multimedia ∼, 145, 310

network ∼, 312

very long instruction word ∼, 146, 311

VLIW ∼, 311

program

self-test ∼, 324

protection, 180

Pthreads, 198

Ptolemy, 34, 115, 276

quantization noise, 131

rapid prototyping, 229

readability, 25

real-time, 105

behavior, 158

capability, 145

constraint, 8

CORBA, 196

data bases, 177

databases, 200

hard ∼ constraint, 9

kernel, 184

POSIX, 197

real-time calculus, 213

real-time operating system (RTOS), 18, 179,

181, 182, 184, 185, 284

register file, 145, 147, 310

register-transfer level, 108

reliability, 5, 220, 221, 224–226

rendez-vous, 33, 103

requirement

non-functional ∼, 11

requirements, 21

resolution, 129

resolution function, 92

resource allocation, 185

robotics, 3, 18

robustness, 158, 159

row major order, 287, 289

RT-Linux, 185

RTOS, 31, 181, 182

safety, 5, 181, 227

safety case, 226

sample-and-hold circuit, 123

sampling, 125, 126

sampling criterion, 126, 167

sampling rate, 126

sampling theorem, 167

SAT, 276

satisfiability, 276

Scade, 53

scan design, 327

scan path, 328

schedulability tests, 241

scheduling, 182, 238

aperiodic ∼, 242

as-late-as-possible ∼, 251

as-soon-as-possible ∼, 249

dynamic ∼, 240

earliest deadline first ∼, 262

force-directed ∼, 255

instruction ∼, 296

latest deadline first ∼, 248

least laxity ∼, 246

list ∼, 252

non-preemptive ∼, 239

optimal ∼, 257

periodic ∼, 257

rate monotonic ∼, 258, 273, 278

without preemption, 247

scratch pad memory (SPM), 157, 301

SDF, 64, 112, 115

homogeneous ∼, 110

SDL, 54, 58, 60, 112

secure hardware, 173

security, 5, 181

select-statement, 95, 104

semantics

SDL ∼, 56

StateMate ∼, 47

VHDL ∼, 86

388 EMBEDDED SYSTEM DESIGN

sensor, 8, 120

acceleration ∼, 121

bio-metrical ∼, 122

image ∼, 121

service, 219

shape symbol

for memories, 138

shared memory, 32

short vector instructions, 146

signal, 123

signal-to-noise ratio (SNR), 132, 286

signaling

differential ∼, 160

single-ended ∼, 159

signature analysis, 329

SIMD-instructions, 145

simulation, 228

bit-true ∼, 107

cycle-true ∼, 108

Simulink, 66, 276

sine wave, 124

slack, 242, 257

slides, xvii

SNR, 132

SoC, 8, 105, 137

SpecC, 14, 100

specification languages, 21

SPM, 297–305

sporadic event, 263

sporadic task server, 263

SSE, 146

state, 24

ancestor ∼, 43

AND-∼, 44

AND-super ∼, 45

basic ∼, 43

default ∼, 43

diagram, 24, 40

OR-super ∼, 43

super ∼, 42, 43

StateCharts, 42, 116

StateMate, 47

statement

select ∼, 50

stuck-at-fault, 323

successive approximation, 129

successor, 29

SUD, 21

SymTA/S, 217

synchronization, 22

synthesis, 16

system

dedicated ∼, 9

embedded ∼, 10

hybrid ∼, 9

reactive ∼, 9, 115

time triggered ∼, 240

system level, 107

system on a chip (SoC), 8, 105, 137, 294

SystemC, 96, 107, 276

SystemCodesigner, 276

SystemVerilog, 99

TAI, 183, 201

task, 104

aperiodic ∼, 239

concurrency management, 281

periodic ∼, 239, 257

sporadic ∼, 239, 241

task graph, 29, 269

node splitting, 282

TDD, 38

TDMA, 161, 162, 273

termination, 26

test, 321

test pattern, 322

test pattern generation, 322

pseudo-random ∼, 330

testability, 327

thermal conductance, 218

thermal management, 317

thermal model, 218

thermal resistance, 218

thread, 28, 178

THUMB, 139

time, 23, 29, 86, 97, 106

time division multiple access, 161

time services, 183

timed automata, 41

timeout, 23

timer, 46, 59

in SDL, 59

timing analysis, 24, 209

timing behavior, 22

timing information, 29

TLM, 98

TPG, 322

transaction-level modeling, 98, 108

TTP, 163

two-level control store, 140

ubiquitous computing, xi

UML, 36, 38, 52, 60, 78, 112–114

UML profile, 114

unified modeling language, 113

Universal Plug-and-Play, 199

UPnP, 199

use case, 35, 237

user-interface, 9

UTC, 183, 201

V-model, 15

validation, 203

variable voltage processor, 315

Verilog, 98

Index 389

VHDL, 49, 80, 86, 88, 265

architecture, 81

entity, 81

port map, 82

signal driver, 91

VHDL-AMS, 107

virtual ground, 341

VLIW, 146, 311

von-Neumann languages, 101

von-Neumann model, 33

VxWorks, 179, 184

Wattch, 218

WCC, 306, 307

WCET, 208–212, 214

weight, 8

Wind River Systems, 185

Windows Embedded, 185

Worst Case Execution Time (WCET), 208

Y-chart, 15

zero-energy-building, 3

zero-overhead loop instruction, 142, 288, 311

	Contents
	Preface
	Acknowledgments
	 Introduction
	Application areas and examples
	Common characteristics
	Challenges in Embedded System Design
	Design Flows
	Structure of this book
	Assignments

	 Specifications and Modeling
	Requirements
	Models of computation
	Early design phases
	Use cases
	(Message) Sequence Charts

	Communicating finite state machines (CFSMs)
	Timed automata
	StateCharts: implicit shared memory communication
	Synchronous languages
	SDL: A case of message passing

	Data flow
	Scope
	Kahn process networks
	Synchronous data flow
	Simulink

	Petri nets
	Introduction
	Condition/event nets
	Place/transition nets
	Predicate/transition nets
	Evaluation

	Discrete event based languages
	VHDL
	SystemC
	Verilog and SystemVerilog
	SpecC

	Von-Neumann languages
	CSP
	ADA
	Java
	Pearl and Chill
	Communication libraries

	Levels of hardware modeling
	Comparison of models of computation
	Criteria
	UML
	Ptolemy II

	Assignments

	 Embedded System Hardware
	Introduction
	Input
	Sensors
	Discretization of time: Sample-and-hold circuits
	Discretization of values: A/D-converters

	Processing Units
	Overview
	Application-Specific Circuits (ASICs)
	Processors
	Reconfigurable Logic

	Memories
	Communication
	Requirements
	Electrical robustness
	Guaranteeing real-time behavior
	Examples

	Output
	D/A-converters
	Sampling theorem
	Actuators

	Secure hardware
	Assignments

	 System Software
	Embedded Operating Systems
	General requirements
	Real-time operating systems
	Virtual machines
	Resource access protocols

	ERIKA
	Hardware abstraction layers
	Middleware
	OSEK/VDX COM
	CORBA
	MPI
	POSIX Threads (Pthreads)
	OpenMP
	UPnP, DPWS and JXTA

	Real-time databases
	Assignments

	 Evaluation and Validation
	Introduction
	Scope
	Multi-objective optimization
	Relevant objectives

	Performance evaluation
	Early phases
	WCET estimation
	Real-time calculus

	Energy and power models
	Thermal models
	Risk- and dependability analysis
	Simulation
	Rapid prototyping and emulation
	Formal Verification
	Assignments

	 Application mapping
	Problem definition
	Scheduling in real-time systems
	Classification of scheduling algorithms
	Aperiodic scheduling without precedence constraints
	Aperiodic scheduling with precedence constraints
	Periodic scheduling without precedence constraints
	Periodic scheduling with precedence constraints
	Sporadic events

	Hardware/software partitioning
	Introduction
	COOL

	Mapping to heterogeneous multi-processors
	Assignments

	 Optimization
	Task level concurrency management
	High-level optimizations
	Floating-point to fixed-point conversion
	Simple loop transformations
	Loop tiling/blocking
	Loop splitting
	Array folding

	Compilers for embedded systems
	Introduction
	Energy-aware compilation
	Memory-architecture aware compilation
	Reconciling compilers and timing analysis
	Compilation for digital signal processors
	Compilation for multimedia processors
	Compilation for VLIW processors
	Compilation for network processors
	Compiler generation, retargetable compilers and design space exploration

	Power Management and Thermal Management
	Dynamic voltage scaling (DVS)
	Dynamic power management (DPM)

	Assignments

	 Test
	Scope
	Test procedures
	Test pattern generation for gate level models
	Self-test programs

	Evaluation of test pattern sets and system robustness
	Fault coverage
	Fault simulation
	Fault injection

	Design for testability
	Motivation
	Scan design
	Signature analysis
	Pseudo-random test pattern generation
	The built-in logic block observer (BILBO)

	Assignments

	Integer linear programming
	Kirchhoff's laws and operational amplifiers
	References
	About the Author
	List of Figures
	Index
	Cover
	Contents
	Preface
	Acknowledgments
	Introduction
	Application areas and examples
	Common characteristics
	Challenges in Embedded System Design
	Design Flows
	Structure of this book
	Assignments

	Specifications and Modeling
	Requirements
	Models of computation
	Early design phases
	Use cases
	(Message) Sequence Charts

	Communicating finite state machines (CFSMs)
	Timed automata
	StateCharts: implicit shared memory communication
	Synchronous languages
	SDL: A case of message passing

	Data flow
	Scope
	Kahn process networks
	Synchronous data flow
	Simulink

	Petri nets
	Introduction
	Condition/event nets
	Place/transition nets
	Predicate/transition nets

	Discrete event based languages
	Evaluation
	VHDL
	SystemC
	Verilog and SystemVerilog
	SpecC

	Von-Neumann languages
	CSP
	ADA
	Java
	Communication libraries
	Pearl and Chill

	Levels of hardware modeling
	Comparison of models of computation
	Criteria
	UML
	Ptolemy II

	Assignments

	Embedded System Hardware
	Introduction
	Input
	Sensors
	Discretization of time: Sample-and-hold circuits
	Discretization of values: A/D-converters

	Processing Units
	Overview
	Processors
	Application-Specific Circuits (ASICs)
	Reconfigurable Logic

	Memories
	Communication
	Requirements
	Electrical robustness
	Guaranteeing real-time behavior
	Examples

	Output
	D/A-converters
	Sampling theorem
	Actuators

	Assignments
	Secure hardware

	System Software
	Embedded Operating Systems
	General requirements
	Real-time operating systems
	Virtual machines
	Resource access protocols

	ERIKA
	Hardware abstraction layers
	Middleware
	OSEK/VDX COM
	CORBA
	MPI
	OpenMP
	POSIX Threads (Pthreads)
	UPnP, DPWS and JXTA

	Real-time databases
	Assignments

	Evaluation and Validation
	Introduction
	Scope
	Multi-objective optimization
	Relevant objectives

	Performance evaluation
	Early phases
	WCET estimation
	Real-time calculus

	Energy and power models
	Thermal models
	Risk- and dependability analysis
	Simulation
	Rapid prototyping and emulation
	Formal Verification
	Assignments

	Application mapping
	Problem definition
	Scheduling in real-time systems
	Classification of scheduling algorithms
	Aperiodic scheduling without precedence constraints
	Aperiodic scheduling with precedence constraints
	Periodic scheduling without precedence constraints
	Periodic scheduling with precedence constraints

	Hardware/software partitioning
	Introduction
	Sporadic events
	COOL

	Mapping to heterogeneous multi-processors
	Assignments

	Optimization
	Task level concurrency management
	High-level optimizations
	Floating-point to fixed-point conversion
	Simple loop transformations
	Loop tiling/blocking
	Loop splitting
	Array folding

	Compilers for embedded systems
	Introduction
	Energy-aware compilation
	Memory-architecture aware compilation
	Reconciling compilers and timing analysis
	Compilation for digital signal processors
	Compilation for multimedia processors
	Compilation for VLIW processors
	Compilation for network processors

	Power Management and Thermal Management
	Dynamic voltage scaling (DVS)
	Compiler generation, retargetable compilers and design space exploration
	Dynamic power management (DPM)

	Assignments

	Test
	Scope
	Test procedures
	Test pattern generation for gate level models

	Evaluation of test pattern sets and system robustness
	Self-test programs
	Fault coverage
	Fault simulation
	Fault injection

	Design for testability
	Motivation
	Scan design
	Signature analysis
	Pseudo-random test pattern generation
	The built-in logic block observer (BILBO)

	Assignments

	Integer linear programming
	Kirchhoff's laws and operational amplifiers
	References
	About the Author
	List of Figures
	Index

