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Notation Index

a=2r/3 - phase shift between 3-phase symmetrical sine curves

a=v=r - acceleration vector

A, &m, &(‘ - virtual work, its mechanical and electrical component

A - vector potential of a magnetic field

ALA, - skew symmetric matrices: 2- and 3- dimentional
respectively

B - magnetic induction vector

C - electrical capacity

D - viscous damping factor

e, - electromotive force (EMF) induced in k-th winding

E - total energy of a system

£ - analytical notation of holonomic constraints function

F.F, - vector of external forces, i-th component of this
vector

fisff, - frequency of voltage (current): feeding line, stator,
rotor

4 - acceleration vector of earth gravitation force

g - number of branches of electric network

h - number of holonomic constraints

i=0 - electric current as a derivative of electrical charge

i, - excitation current, armature current

I - symbolic value of sinusoidal current

I - matrix of inertia of a rigid body

i=[,i,i,] - vector of a 3-phase stator currents

i,=, i,] - vector of a 3-phase stator currents in a star connected
system

i,=li, i,] - vector of a 3-phase rotor currents in a star connected
system

i=[i i,..i1 - vector of a m-phase rotor currents

i,.1,0, - vectors of transformed stator, rotor currents in O,u,v
axes

i s 'mv - vectors of transformed stator, rotor currents to u,v

axes
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- current density vector

- Jacobi matrix of a transformation
- stiffness coefficient of an elastic element
- magnetic coupling coefficients for stator and rotor

- moment of forces

- main field inductance coefficients of stator, rotor
phase windings

- inductance matrices for a stator and rotor phase
windings systems

- matrices of mutual inductances between stator and ro-
tor phase windings

- matrices of mutual inductances between stator and
rotor phase windings transformed to 0,u,v axes

- number of slots in a stator and rotor of electrical

Notation Index

- vector of transformed stator and rotor currents to

- vector of transformed stator and rotor currents to d,q
- vector of transformed stator and rotor currents to x, y

- vector of stator currents transformed to the field
oriented x 5y, axes

- moment of inertia, moment of inertia of a motor’s

- pulse width factor in PWM control method

- Lagrange’s function, its mechanical and electrical

- leakage inductances of stator and rotor windings
respectively

- self-inductance of stator and rotor windings,
magnetizing inductance

- angular momentum of a body

- number of bars (phases) in a squirrel-cage rotor

- modulation coefficients: of an amplitude and fre-
quency respectively
- mass of i-th particle and total mass of a body

- number of nonholonomic constraints in a system
- number of pole pairs in electrical machine

- vector of momentum of mechanical system

- electric power

- generalized force acting along the k-th coordinate
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- electric charge of the k-th element characterized by
electrical capacity

- electric current in k-th winding as a derivative of re-
spective charge

- vector of electrical charges of a system, vector of
electric currents

- number of pulses of power electronic converter

- k-th generalized coordinate, - velocity, - acceleration
respectively

- vectors of generalized coordinates, velocities, accel-
erations of a system

- vector of virtual displacements for generalized coor-
dinates

- virtual displacement for k-th generalized coordinate

- phase winding resistance for stator and rotor respec-
tively

- radius-vector pointing i-th particle, radius-vector for
whole system in Cartesian coordinates

- vector of virtual displacements of a system in Carte-
sian coordinates

- vector of reaction forces of constraints in a system

- slip of an induction motor rotor motion in respect to
magnetic field

- total number of degrees of freedom

- number of mechanical, electrical degrees of freedom
of a system

- action function of a system

- kinetic energy, its electrical and mechanical compo-
nent

- kinetic co-energy, its electrical and mechanical com-
ponent

- electromagnetic torque of a motor, load torque

- break torque, starting torque, rated torque of an induc-
tion motor

- period of a single pulsation sequence in PWM control
method

- friction force

- orthogonal matrices of transformation for stator and
rotor variables
- electric voltage, voltage supplied to k-th winding

- stator and rotor voltages respectively
- rated voltage, stator rated voltage
- phase to phase voltages in 3-phase electrical system

- stator’s phase to phase voltages in 3-phase system
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- phase voltage of stator’s winding

- feeding line voltage
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- average value of rectified voltage in a 6 pulse 3-phase

system
- symbolic value of sinusoidal voltage

- potential energy of a system, its mechanical and elec-

trical component

- stator’s voltage vector, stator’s phase voltages vector

rotor windings

u,,...,u, | - vector of rotor voltages, vector of phase voltages of

- vector of stator voltages transformed to O,u,v system

of axes

- vector of stator voltages transformed to u,v system

of axes

- vector of stator voltages transformed to x,y system

of axes

- vector of stator voltages transformed to x,,y, field

oriented axes
- vector of velocities of a system
- number of nodes of an electric network
- reactance of a winding

- reactance of a stator, rotor and magnetizing one

respectively

- vector of coordinates in a primary coordinate system

- number of stator’s, rotor’s teeth of SRM machine

- angles determining axis position of windings

- switch on and switch off control angles of SRM

machine
- phase shift angle

- virtual displacement of k-th Cartesian coordinate in

unified coordinate system

- vector of Cartesian coordinates in unified system of

coordinates &

- energy efficiency factor of a system
- rotation angle

- rotational speed of a rotor

- number of a magnetic field harmonic

- field orientation angle of x ,y, axes (vector control)

- leakage coefficient of windings
- scalar potential of electromagnetic field
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- analytical notation of nonholonomic constraints
- field angle (DTC)

- flux linkage of k-th winging

- excitation flux

- flux linkage vector of stator windings

- flux linkage vector of rotor windings

- u,v transformed flux linkage vectors of stator and ro-
tor windings

- O,u,v transformed flux linkage vectors of stator and
rotor windings

- d,q transformed flux linkage vectors of stator and
rotor windings

- x,y transformed flux linkage vectors of stator and ro-
tor windings

- a,f transformed flux linkage vectors of stator and
rotor windings

- AC supply line pulsation

- pulsation of stator, rotor sinusoidal voltages, currents

- reference pulsation (angular speed) in transformed
0,u,v system

- electrical angular speed of a rotor

- synchronous speed of rotating magnetic field, idle run
speed

- vector of angular velocity of rigid body

- ideal idle run speed of an induction motor’s rotor

- angular speed of a rotor
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Chapter 1
Introduction

Abstract. First Chapter is an introductory one and it generally presents the scope
of this book, methodology used and identifies potential readers. It also develops
interrelations between modern electric drives, power electronics, mechatronics and
application of control methods as the book to some degree covers all these fields.
The content is concentrated around electromechanical energy conversion based on
Lagrange’s method and its clear and subsequent application to control of electric
drives with induction machines, brushless DC motors and SRM machines. It does
not cover stepper motors and synchronous PM drives. All computer simulation re-
sults are outcome of original mathematical models and based on them computa-
tions carried out with use of MAPLE™ mathematical package.

Electrical drives form a continuously developing branch of science and technol-
ogy, which dates back from mid-19th century and plays an increasingly important
role in industry and common everyday applications. This is so because every day
we have to do with dozens of household appliances, office and transportation
equipment, all of which contain electrical drives also known as actuators. In the
same manner, industry and transport to a large extent rely on the application of
electrical drive for the purposes of effective and precise operation. The electrical
drives have taken over and still take on a large share of the physical efforts that
were previously undertaken by humans as well as perform the type of work that
was very needed but could not be performed due to physical or other limitations.
This important role taken on by the electrical drive is continuously expanding and
the tasks performed by the drives are becoming more and more sophisticated and
versatile [2,11,12,13,20]. Electrical drives tend to replace other devices and means
of doing physical work as a result of their numerous advantages. These include a
common accessibility of electrical supply, energy efficiency and improvements in
terms of the control devices, which secures the essential quality of work and fit in
the ecological requirements that apply to all new technology in a modern society
[1]. The up-to-date electrical drive has become more and more intelligent, which
means fulfillment of the increasingly complex requirements regarding the shaping
of the trajectories of motion, reliable operation in case of interference and in the
instance of deficiency or lack of measurement information associated with
the executed control tasks [4,8,16,21]. This also means that a large number of
components are involved in information gathering and processing, whose role is to



2 Introduction

ensure the proper operation, diagnostics and protection of the drive. The reasons
for such intensive development of electrical drives are numerous and the basic
reason for that is associated with the need of intelligent, effective, reliable and un-
disturbed execution of mechanical work. Such drives are designed in a very wide
range of electrical capacity as electromechanical devices with the power rating
from [mW] to [MW]. Additionally, the processes are accompanied by multi-
parameter motion control and the primary role can be attributed to speed regula-
tion along with the required levels of force or torque produced by the drive. The
present capabilities of fulfilling such complex requirements mostly result from the
development of two technological branches, which made huge progress at the end
of the 20™ century and the continuous following developments. One of such areas
involves the branch of technological materials used for the production of electrical
machines and servomotors. What is meant here is the progress in the technology
of manufacturing and accessibility of inexpensive permanent magnets, in particu-
lar the ones containing rare earth elements such as samarium (Sr) and neodymium
(Nd). In addition, progress in terms of insulation materials, their service lives and
small losses for high frequencies of electric field strength, which result from con-
trol involving the switching of the supply voltage. Moreover, considerable pro-
gress has occurred in terms of the properties of ferromagnetic materials, which are
constantly indispensable for electromechanical conversion of energy. The other
branch of technology which has enabled such considerable and quick development
of electrical drive is the progress made in microelectronics and power electronics.
As a result of the development of new integrated circuits microelectronics has
made it possible to gather huge amount of information in a comfortable and inex-
pensive way, accompanied by its fast processing, which in turn offers the applica-
tion of complex methods of drive control. Moreover, up-to-date power electronics
markets new current flow switches that allow the control over large electric power
with high frequency thus enabling the system to execute complex control tasks.
This occurs with very small losses of energy associated with switching, hence
playing a decisive role in the applicability of such devices for high switching fre-
quencies. The versatility and wide range of voltages and currents operating in the
up-to-date semiconductor switches makes it possible to develop electric power
converters able to adapt the output of the source to fulfill the parameters resulting
from instantaneous requirements of the drive [5,7,23]. Among others this capabil-
ity has led to the extensive application of sliding mode control in electrical drive
which very often involves rapid switching of the control signal in order to follow
the given trajectory of the drive motion [22].

Such extensive and effective possibility of the development of electrical drives,
which results from the advancements in electronics and a rapid increase in the ap-
plication range of the actuating devices, has given rise to the area of mechatronics.

Mechatronics can either be thought of as a separate scientific discipline or a
relevant and modern division of the electrical drive particularly relating to elec-
tronics, control and large requirements with regard to the dynamic parameters of
the drive [19].

It is also possible to discuss this distinction in terms of the number of degrees
of freedom of the device applied for the processing of information followed by
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electric power conversion into mechanical work. In a traditional electrical drive
we have to do with a number of degrees of freedom for the electric state variables
and a single one for the mechanical motion. In standard electrical machines the
variables include: angle of the rotation of the rotor or translational motion in a lin-
ear motor. In mechatronics it is assumed that the number of the degrees of me-
chanical freedom can be larger, i.e. from the mechanical viewpoint the device
executes a more complex capabilities than simply a rotation or translational mo-
tion. In addition, in mechatronics it is not necessary that the medium serving for
the conversion of energy is the magnetic field. Mechatronic devices may operate
under electric field, which is the case in electrostatic converters [14,15]. In con-
clusion, it can be stated that mechatronics has extended the set of traditional de-
vices in the group of electrical drives to cover a wider choice of them as well as
has supplemented extra methods and scope of research. However, it can be stated
beyond doubt that mechatronics constitutes nowadays a separate scientific disci-
pline which realizes its aim in an interdisciplinary manner while applying equally
the findings of computer engineering, electronics and electromechanics in order to
create a multi-dimensional trajectory of the mechanical motion. Such understand-
ing of mechatronics brings us closer to another more general scientific discipline
as robotics. What is important to note is that if a manipulator or a robot has elec-
trical joint drives, in its electromechanical nature it constitutes a mechatronic
device.

Concurrently, robotics has even more to it [18]. Not to enter the definitions and
traditions in this discipline, what is generally meant is the autonomous nature of
the robots in terms of its capability of recognition of its environment and scope of
decision making, i.e. the application of artificial intelligence. By looking at a ma-
nipulator or a robot produced in accordance with up-to-date technology we start to
realize its capabilities with regard to its orientation in space and organization of
the imposed control tasks. However, one should also give merit to its speed, preci-
sion, repeatability and reliability of operation, all of which relate to mechatronics.

The reference to robotics in a book devoted to electrical drive results from the
fact that in its part devoted to theory and in the presented examples a reference is
made to the methods and solutions originating from robotics, the focus in which
has often been on the motion in a multi dimensional mechanical systems with con-
straints [3].

The following paragraphs will be devoted to the presentation of the overview of
the current book, which contains 4 chapters (besides the introduction) devoted to
the issues of the up-to-date electrical drives and their control.

Chapter 2 covers the issues associated with the dynamics of mechanical and
electromechanical systems. The subjects of the subsequent sections in this chapter
focus on mechanical systems with a number of degrees of freedom as well as
holonomic and non-holonomic constraints. The presented concept covers a physi-
cal system which is reduced to a set of material points and a system defined as a
set of rigid bodies. A detailed method of the development of a mathematical mod-
els is introduced involving Lagrange’s functions and equations departing from the
principle of least action for a charged material particle in the magnetic field. Sub-
sequently, this concept has been extended to cover macroscopic systems capable
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of accumulation of energy of the magnetic and electric fields in the form of kinetic
and potential energy, respectively. The dissipation of energy and transformation of
the dissipation coefficients into terms of the state variables are taken down to the
negative term of the virtual work of the system. This is a way that is formally cor-
rect from the point of methodology of research. Additionally, it proves effective in
the practice of the formulation of the equations of motion. The section devoted to
electromechanical systems has been illustrated by numerous examples whose
difficulty level is intermediate.

In general, the examples of the application of theory in the book are quite
numerous and have been selected in a manner that should not pose excessive diffi-
culty while maintaining them at a level that can serve for the purposes of illustrat-
ing specific characteristics of the applied method but are never selected to be
trivial.

Chapter 3 focuses on induction machine drives. The presented mathematical
models have been developed with the aid of Lagrange’s method for electrome-
chanical systems. The models transformed into orthogonal axes are presented in a
classical manner along with the models of an induction machine for which the
variables on one side, i.e. stator’s or rotor’s are untransformed and remain in the
natural-phase coordinates. This plays an important role in the drive systems sup-
plied from power electronic converters. The adequate and more detailed modeling
of the converter system requires natural variables of the state, i.e. untransformed
ones in order to more precisely realize the control of the drive. These models, i.e.
models without the transformation of the variables on one side of the induction
motors are presented in their applications in the further sections in this book. The
presentation focuses on various aspects of their supply, regulation and control with
the application of converters. The classical subject matters include presentation of
DC braking, Scherbius drive, as well as the operation of a soft-starter. Concur-
rently, the up-to-date issues associated with induction machine drives cover two -
level and three-level Voltage Source Inverters (VSI), Sinusoidal Pulse Width
Modulation (SPWM), Space Vector Modulation (SVM), Discontinuous Space
Vector Modulation (DSVM) and PWM Current Source Inverter (CSI ) control.
Further on, beside VC methods the Direct Torque Control (DTC) is presented
in theory and in examples. The final section of Chapter 3 is devoted to the presen-
tation of structural linearization of a model of induction motor drive along with
several state observers applicable for the induction motor.

Chapter 4 is devoted to permanent magnet brushless DC motor drives and con-
trol of such drives. Firstly, the characteristics and properties of the up-to-date
permanent magnets (PM) are presented together with simplified methods applied
for their modeling. The example of a pendulum coil swinging over a stationary
PM serves for the purposes of presenting the effect of simplifications in the model
of the magnet on the trajectories of the motion of such an electromagnetic system.
Further on, the transformed d-g model of a BLDC machine is derived along with
an untransformed model in which the commutation occurs in accordance with the
courses of the natural variables of the machine. The presentation of the mathe-
matical model of BLDC does not cover the subject of nonholonomic constraints in
this type of machines. In a classical DC machine with a mechanical commutator
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the occurrence of such constraints involving the dependence of the configuration
of electrical circuits on the angle of the rotation of the rotor is quite evident. Con-
currently, in an electronically commuted machine the supply of the particular
windings of the armature is still relative to the angle of the rotation of the rotor;
however, the introduction of nonholonomic constraints in the description is no
longer necessary. Commutation occurs with the preservation of the fixed
structure of electrical circuits of the electronic commutator coupled with the phase
windings of the machine’s armature and the switching of the current results from
the change of the parameters of the impedance of the semiconductor switch in the
function of the angle of rotation. This chapter focuses on the characteristics and
dynamic courses illustrating the operation of BLDC motors with a comparison be-
tween the results of modeling drives with the aid of two-axial d-¢ transformation
as well as untransformed model. On this basis it is possible to select a model for
the simulation of the issues associated with the drive depending on the dimension
of the whole system and the level of the detail of the output from modeling. The
presented static characteristics and dynamic courses of BLDC drives focus on
adequate characterizing the capabilities and operating parameters of such drives
without control. Subsequently, research focuses on the control of BLDC drives
and the presentation of the control using PID regulator, control with the given
speed profile and the given profile of the position as well as inverse dynamics con-
trol. The illustrations in the form of dynamic courses are extensive and conducted
for two different standard BLDC motors.

The final chapter, i.e. Chapter 5 is devoted to the presentation of switched re-
luctance motor (SRM) drives. Before the development of the mathematical model,
magnetization characteristics of SRM motors are presented and the important role
of non-linearity of characteristics in the conversion of energy by the reluctance
motor is remarked. Subsequently, the presentation follows with the mathematical
model accounting for the magnetic saturation reflected by magnetization charac-
teristics with regard to the mutual position of the stator and rotor teeth. This is
performed in a way that is original since the inductance characteristics that are
relative to two variables are presented here in the form of a product of the function
of the magnetic saturation and the function of the rotor’s position angle. Such an
approach has a number of advantages since it enables one to analyze the effect of
particular parameters on the operation of the motor. The derived model of the
SRM motor does not account for magnetic coupling between phase windings;
however, from the examples of two standard SRM motors it was possible to indi-
cate a little effect of such couplings on the characteristics and operation of the mo-
tors. In this manner such simplifications included in the mathematical model are
justified. The further sections of this chapter focus on a number of issues regard-
ing the dynamics and control of SRM drives. The presentation includes a solution
to the problem of the pulse based determination of the starting sequence during
starting SRM drive for the selected direction of the rotation of the motor, direct
start-up with the limitation of the current as well as braking and discussion of the
issue of very specific generator regime of operation. The presentation also covers
the selection of the regulation parameters for SRM with the aim of gaining high
energy efficiency and reducing torque ripple level. The section devoted to the
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control involves the presentation of sliding control applied for this drive type, cur-
rent control as well as DTC control and the possibility of limiting the pulsations of
the torque as a result of applying specific control modes. In addition, the presenta-
tion briefly covers sensor and sensorless control of SRM drive and the application
of state observers while providing for the exclusion of the position sensor.

Following this brief overview of the content it is valuable that the reader notes
that the book contains a large number of examples in the area of dynamics and
control of specific drives, which is reflected by waveforms illustrating the specific
issues that are presented in the figures. All examples as well as illustrations come
from computer simulations performed on the basis of mathematical models devel-
oped throughout the book. This has been performed for standard examples of
motors the detailed data and parameters of which are included in the particular
sections of the book. Computer simulations and graphical illustrations gained on
this basis were performed in MAPLE™ mathematical programming system,
which has proved its particular applicability and flexibility in this type of model-
ing. All calculations were performed on the basis of programs originally devel-
oped by the author.

As one can see from this short overview, the scope of this book is limited and
does not involve some types of drives used in practice, i.e. stepper motor drives
and synchronic machine drive with permanent magnets. The missing types of
drive have similar characteristics in terms of the principle of energy conversion
and mathematical models to SRM motor drives and BLDC drives, respectively.
However, the details of construction and operation are dissimilar and only a little
effort can enable one to apply the corresponding models in this book in order to
develop dedicated programs for computer simulations and research of the two
missing drive types.

A final remark concerns the target group of this book, which in the author’s
opinion includes students of postgraduate courses and Ph.D. students along with
engineers responsible for the design of electrical drives in more complex industrial
systems.
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Chapter 2
Dynamics of Electromechanical Systems

Abstract. Chapter is devoted to dynamics of mechanical and electromechanical
systems. Sections dealing with mechanical systems concern holonomic and non-
holonomic objects with multiple degrees of freedom. The concept of an object
represented by a system of connected material points and the concept of a rigid
body and connected bodies are presented. The Lagrange’s method of dynamics
formulation is thoroughly covered, starting from d’Alembert’s virtual work prin-
ciple. Carefully selected examples are used to illustrate the method as well as the
application of the theory. Electromechanical system’s theory is also introduced on
the basis of the Lagrange’s equation method, but starting from the principle of
least action for a electrically charged particle in a stationary electromagnetic field.
Subsequently, the method is generalized for macroscopic systems whose operation
is based on electric energy and magnetic co-energy conversion. Nonlinear systems
are discussed and the concept of kinetic co-energy is explained. Energy dissipation
is introduced as a negative term of the virtual work of the system, and transforma-
tion of dissipation coefficients to the terms of generalized coordinates are pre-
sented in accordance with Lagrange method. Finally a number of examples is
presented concerning electromechanical systems with magnetic and electric field
and also selected robotic structures.

2.1 Mechanical Systems

2.1.1 Basic Concepts

Discrete system - is a system whose position is defined by a countable number of
variables. In opposition to discrete system a continuous system (or distributed pa-
rameters’ system) is defined as a system with continuously changing variables
along coordinates in space. Both these concepts are a kind of idealization of real
material systems.

Particle — is an idealized object that is characterized only by one parameter —
mass. To define its position in a three-dimensional space (3D) three variables are
necessary. This idealization is acceptable for an object whose mass focuses closely
around the center of the mass. In that case its kinetic energy relative the to linear
(translational) motion is strongly dominant over the kinetic energy of the
rotational motion. Besides, it is possible to consider large bodies as particles
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(material points) in specific circumstances, for example when they do not rotate or
their rotation does not play significant role in a given consideration. This is the case
in the examination of numerous astronomical problems of movement of stars and
planets.

Rigid body — is a material object, for which one should take into account not
only the total mass M , but also the distribution of that mass in space. It is impor-
tant for the rotating objects while the kinetic energy of such movement plays an
important role in a given dynamical problem. In an idealized way a rigid body can
be considered as a set of particles, of which each has an specific mass m;, such that
Xm; = M. Formally, the body is rigid if the distances d;; between particles i,j are
constant. The physical parameters that characterize a rigid body from the me-
chanical point of view are the total mass M, and a symmetrical matrix of the
dimension 3, called the matrix of inertia. This matrix accounts for moments of in-
ertia on its diagonal and deviation moments, which characterize the distribution of
m; masses within the rigid body in a Cartesian coordinate system.

Constraints — are physical limitations on the motion of a system, which restrict
the freedom of the motion of that system. The term system used here denotes a
particle, set of connected particles, a rigid body or connected bodies as well as
other mechanical structures. These limitations defined as constraints are diverse:
they can restrict the position of a system, the velocity of a system as well as the
kind of motion. They can be constant, time dependent or specific only within a
limited sub-space. Formally, the constraints should be defined in an analytical
form to enable their use in mathematical models and computer simulations of mo-
tion. Hence, they are denoted in the algebraic form as equations or inequalities.

Cartesian coordinate system - is the basic, commonly used coordinate system,
which in a three dimensional space (3D) introduces three perpendicular straight
axes. On these axes it is possible to measure the actual position of a given particle
in an unambiguous way using three real numbers.

Position of the particle P; in that system is given by a three dimensional vector,
so called radius-vector r;:

r, =r;(x;,y;,2;) 2.1

Its coordinates are, respectively: x;, y;, z; ; see Fig. 2.1.
In complex mechanical systems, consisting of a number of particles: i=1,2,....N
the generalized position vector for the whole system is defined as follows:

r=(r,r,... Ty ) = (X1, Y1521, X0, Y2520 X385 YN 5 238 )

which is placed in an abstract 3N space. For a more convenient operation of this
kind of notation of the system’s position, especially in application in various
summation formulae, a uniform Greek letter ¢; is introduced:

r; =($3-2-83i01583)

As a result of above, the position vector for the whole system of particles takes the
following form:
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r =(r,ry,...,ry) =
: (.1, v) 2.2)
=E =(£1.62.63. 845 S3n-2:83n-1,63n)
y (531.) Pz (.)CI, yza Zx':)
y‘;
(Ga-1)
x § (Sxa)
Fig. 2.1 Cartesian coordinates of a particle
Velocity and acceleration of a system
The formal definition of a velocity of a system is given below:
. . r;(t+At)—r;(t
v, =1; =lim,,_, L+AD -5 (@) (2.3)

At

Because time 7 is a parameter of any motion, differentiation and calculation of
derivatives in respect to time is a frequent operation in dynamics. Hence tradition-
ally, the time derivative is briefly noted by a dot above a variable that is differenti-
ated in respect to time, in the following form:

U 2.4)

Acceleration is the time derivative of the velocity, which means it is the second
derivative of the position in respect to time:

a;, =V, =—T; =¥ (2.5)

According to the Newton’s Second Law of Dynamics, which describes the relation
between motion and its cause, i.e. the applied force (or torque), in the description
of dynamics there is no need or place for higher order derivatives of the position
of a body than ones of the second order — i.e. acceleration. This also means that in
dynamics one has to do only with the position r, velocity r and the acceleration
I, time 7 as a parameter of motion, and forces (torques) as causes of motion.
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2.1.2 Constraints, Classification of Constraints and Effects of
Their Imposition

Constraints are physical limitations of motion that reduce the freedom of motion
of a given system. The system denotes here a mechanical unit such as a particle, a
set of connected particles, a rigid body or a set of connected rigid bodies. The
limitations imposed by the constraints are various in nature so they may restrict
the freedom of position, type of motion, as well as velocity; they act in a limited
space and even are variable in time. For formal purposes, in order to perform ana-
Iytical description of motion the constraints are denoted as equations or inequali-
ties and a classification of the constraints is introduced. The general form of an
analytical notation used to present constraints acting in a system is following:

fE )R or fFEZHRO (2.6)

where:

f - is the analytical form of constraints function,
r,= - position vector of a system,

F,Z - velocity vector of a system,
R - the relation belonging to the set R e {:,<, ><, 2>

Stiff or bilateral constraints vs. releasing or unilateral constraints. This is a classi-
fication in respect to a relation R . Stiff constraints are expressed by the equality

relation
fe00)=0  f(s00) {<><2}0 2.7

while releasing constraints are ones that contain the relation of inequality.

Geometric vs. kinematical constraints. This classification accounts for the ab-
sence or presence of velocity in a relation of constraints. In case that the velocity
is there the constraints are called kinematical

f(o,r0) RO f(xe) RO (2.8)

and without explicit presence of velocity they are named geometric constraints.

Time depending (scleronomic) vs. time independent (reonomic) constraints.
This is a division that takes into account the explicit presence of time in the rela-
tion of constraints:

fa,r)y RO f(o,0,H)R 0 2.9

In that respect the first relation of (2.9) presents scleronomic constraints and the
second one reonomic constraints.

Holonomic vs nonholonomic constraints. It is the basic classification of con-
straint types from the theory of dynamical systems point of view. The division of
mechanical systems into holonomic and nonholonomic systems follows.

Holonomic constraints are all geometric constraints and those kinematical
constraints that can be converted into geometric constraints by integration.
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f@xe) RO - geometric constraints
f(r,r,0) R 0 - those of kinematical constraints, for which exists: (2.10)
F(r,) - such that: dF = f

Nonholonomic constraints are all kinematical constraints that could not be inte-
grated and hence cannot be converted into geometric ones. The formal division is
clear, but it is more difficult to offer the physical explanation for this distinction.
Simply speaking one can say that holonomic constraints restrict the position of a
system and the velocity of that system in a uniform manner, while nonholonomic
ones impose restrictions on the velocity without restricting the position. Conse-
quently, one can say that nonholonomic constraints restrict the manner of motion
without limiting the position in which such motion can result. For further applica-
tions, nonholonomic constraints will be denoted in the following form:

9 (&5 6066 =0 j=1b (2.11)

and in a specific case of the linear nonholonomic constraints:
0= h&+D;  j=1..b (2.12)
i=1

- where h; in the general case are functions of position coordinates and time.

To verify whether it is possible to integrate linear kinematical constraints it is
sufficient to check if they are in the form of the Pfaff’s differential equations with
total differentials.

2.1.3 Examples of Constraints

Example 2.1. In a planar system (Fig.2.2) two steel balls are connected by a stiff
rod. One has to define the analytical form for constraint notation and to define
them in accordance with the presented classification.

(X2, y2)

y =

0

Fig. 2.2 System of two massive balls constrained by a stiff rod
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a)  for balls connected with a stiff rod with the length /

|rl —r2| =1 hence:

(5 =x2)" + (3 = y,)? =12 =0 (2.13)
As a consequence, the examined case presents geometric, stiff, time independent
constraints.
b)  for balls connected with a cord of length / whose thickness is negligible
the equation (2.13) is replaced with an inequality in the form:

(x;—x3)% + (3 —¥,)* =1 <0 (2.14)

Hence the case represents releasing (unilateral) constraints. It is possible to differ-
entiate the equation for constraints (2.13) with respect to time, hence the following
form is obtained:

(X =22) % = (X = X)X + (¥ = ¥2) Y = (Y = ¥2) ¥, =0 (2.15)

This represents kinematic constraints resulting from geometric constraints (2.13),
which can take also more general form:

f151+f252 +f3§3 +f4§.4 =0

For the above equation the following condition is fulfilled:

I
— = =) k,m=123,4 (2.16)
agm afk

which means that the conditions for the total differential are met. The equation
(2.15) takes the form of the Pfaff’s differential equation, which is quite self-
evident due to its origin. As a result, constraints given by (2.15) are holonomic.

Example 2.2. A classical example of nonholonomic constraints can be illustrated
by the slipless motion of a flat plate on a plane. The relations between the coordi-
nates in this case are presented in Fig. 2.3. The description of the slipless motion
of a plate on a surface I applies 6 coordinates: x,y,z, which determine points of
tangency of the plate and the plane and angles a,0,¢ which define: rotational angle
of the plate, inclination of the plate surface and angle of intersection between the
plate surface and the Cartesian coordinate system, respectively. This system is
limited by the following constraints:

fir z=0
f>: Rdasing=dx (2.17)
f31 Rdocosgp=dy

The equation f; for the constraints obviously presents holonomic constraints, while
the constraints f5, f; can also take the following form:

Rassing = x Roccosp=1y (2.18)

which represents nonholonomic constraints, since angle ¢ constitutes a coordinate
of the system in motion and does not form a value that is input or a function.
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ZA

x P(xﬂ y, Z)
Fig. 2.3 Flat plate in slipless motion on a plane

Therefore, the two equations (2.18) cannot be integrated separately without prior
establishment of a solution to the system of the equations of motion. One can note
that the constraint equation f; enables one to eliminate variable z from the system
of equations and; thus, it can be disregarded in the vector of system‘s position. At
the same time, constraints equations f> and f; do not impose a limitation on the po-
sition of the system, while they constrain the motion, so that it is slipless. One can
further observe that that the equations for nonholonomic constraints (2.18) can be
transformed to take the form:

R*0* =i +y2 =12 (2.19)

which eliminates angle ¢ from constraint equation and denotes velocity of the mo-
tion of the tangency point P over a plane in which a plate rolls. This equation en-
ables one to interpret nonholonomic constraints but does not offer grounds for
their elimination. Equations for nonholonomic constraints are also encountered in
electrical and electromechanical systems in such a form that the electrical node in
which the branches of electrical circuits converge is movable and its position is
relative to a mechanical variable. This type of nonholonomic constraints is en-
countered e.g. in electrical pantographs of rail vehicles and mechanical commuta-
tors in electrical machines involving sliding contact.

2.1.4 External Forces and Reaction Forces; d’Alembert Principle

2.1.4.1 External Forces and Reaction Forces

External forces are forces (torques) acting upon the components of a system. In
this form they constitute the cause of motion in accordance with the Newton’s
second law. Reaction forces of constraints (Fig. 2.4) form the internal forces act-
ing along the applied constrains and operate so that the system preserves the state
which results from the imposed constraints. Hence, reaction forces of constraints
do not constitute the cause of the motion but result in the preservation of the sys-
tem in conformity with the constraints. In ideal circumstances the forces of
constraint reactions do not exert any work associated with the motion of a system,
which is applied in d’ Alembert principle discussed later.
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Y=

0

Fig. 2.4 Equilibrium between reaction forces of constraints R;,R, resulting in constant dis-
tance / between balls in motion

2.1.4.2 Virtual Displacements

The introduction of the notion of virtual displacements, i.e. ones that are compati-
ble with constraints is indispensable in analytical dynamics due to their role in
elimination of constraint reaction forces occurring in constrain based systems
[12,13,16]. The vector of virtual displacements is denoted analogically to the con-
struction of the position vector (2.2)

&:(&l’&Z’&3""’&N) (2.20)
where:
5"[ = (&i’@}i’&i) = (553,'—2’5535—1’5535)

The vector of virtual displacements is constructed by the increments of variables
which fulfill the following conditions:

1° - possess infinitesimal value
2° - are compatible with constraints
3° - their displacements occur within fixed a moment of time

These conditions also mean that virtual displacements are also referred to as in-
finitesimal displacements, i.e. small testing displacements which occur consis-
tently with applied constraints without accounting for their duration. As a result, it
is possible to compare work exerted by a system for various vectors of virtual dis-
placements. Virtual displacements do not necessarily have to overlap with sections
of actual paths of motion but need to be consistent with potential paths from the
kinematics perspective. From the statement of consistency between virtual dis-
placements and constraints the following relation can be established:

f+da)-f(r)=0

which upon resolving into Taylor series relative to Jr and omission of higher
powers (0r), (or)’,... leads to the statement of the relation between virtual dis-
placements for a given j-th equation of constraints
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N af 3N af
L&, =0 LS =0 221
;ari ;=0 or ;a@ £ 21)

The relation (2.21) also means that any equation for holonomic constraints, f;,
j=1,...,h enables one to find an expression for a particular virtual displacement by
use of the remaining ones

1
é‘gk = —a—(a“&fl +aj,25§2 +...+ aj’k_lé‘fk_l +aj’k+15§k+1 +...+ aj’n5§n) (222)
J.k
of .
where: ajy =i
T 0g,

2.1.4.3 Perfect Constraints

It is only possible to define perfect constraints in a system in which friction forces
are either missing or in the case where the inherent friction forces can be consid-
ered as external forces. After this prerequisite is fulfilled, it is possible to define
perfect constraints. Such constraints satisfy the condition that total work exerted
on the virtual displacements is equal to zero:

N
D R&, =0 (2.23)
i=1

An example of perfect constraints include a rigid connection of material points
which is not subjected to tension or bending. Historically, the concept of perfect
constraints originates from d’Alembert principle and forms a postulate confirmed
by numerous examples.

2.1.4.4 d’Alembert Principle

It constitutes the first analytical statement of the motion of a system in which par-
ticles are constrained. In order to eliminate forces of constraint reactions the prin-
ciple applies the notion of perfect constraints. For a material point (particle) with
mass m the equation of motion directly results from Newton’s second law of
motion:

mr=F

For a system with N material points limited by constraints, the above equation can
be restated for every material point to account for the resulting force of constraint
reactions R beside the external force F

mi, =F,+R,  i=1..N (2.24)
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The unknown constraint reaction forces do not yield it possible to directly apply
equations (2.24). After summation of the equations it is possible to eliminate con-
straint reaction forces on the basis of the notion of the perfect constraint (2.23)

N
D (mf, ~F,—R)&, =0
i=1

N
which gives: Z(mi'r'i ~F)ér, =0 (2.25)

Virtual displacements are not separate entities but are related to one another by
equations resulting from the constraints. Hence, d’ Alembert principle is expressed
by the system of equations:

N
Z( & —F); =0
' (2.26)

This is a set of differential - algebraic equations on the basis of which it is possible
to obtain equations of motion e.g. using Lagrange indefinite multiplier method.
This can be performed as follows: each of & algebraic equations in (2.26) is multi-
plied by indefinite factor 4; and summed up:

N

h
i —&' 0 2.27
Z 2 Ao (2.27)

The expression in (2.27) is subsequently subtracted from the equation of motion,
thus obtaining:

Z Z/l —)& 0 (2.28)

=1

For the resulting sum of N parenthetical expressions multiplied by subsequent vir-
tual displacements Jr;, the following procedure is followed: for the first # expres-
sions in parentheses i=1,...,h the selection of multipliers 4; should be such that the
value of the expression in parenthesis is equal to zero. In consequence, for the
remaining parenthetical expressions the virtual displacements or;, i=h+1,...,N are
already independent, hence, the parenthetical expressions must be equal to zero.
The final equations of motion take the form:

m;¥, =F, +z/1 = i=h+1...N (2.29)
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h
The term thereof: Zﬂi—] constitutes the reaction force of nonholonomic
=R
constraints for equations (2.24). In a similar manner it is possible to extend
d’Alembert principle to cover systems limited by nonholonomic constraints

(2.11-2.12). As a result the following expression is obtained:

. h af nh a
miri=Fi+z/1ja—r-f+Zﬂ,a—?=o i=h+1..N (2.30)
= i

=1 i

where: ¢, - nonholonomic functions of constrain type (2.12)

M, - indefinite multipliers for nonholonomic constraints

d’Alembert principle leads to the statement of a system of equations with
constraints; however, this procedure is time-consuming and quite burdensome
since the obtained forms of equations are extensive and complex due to the selec-
tion of coordinates of motion that is far from optimum. This can be demonstrated
in a simple presentation.

Example 2.3. In a planar system presented in Fig. 2.5 a set of two balls of mass m
and m, are connected by a stiff rod. They are put in motion under the effect of ex-
ternal forces F; and F,, in which gravity pull and friction force are already ac-
counted for. The equation of motion are subsequently stated in accordance with
d’ Alembert principle.

Solution: the single equation of constraints stated in accordance with (2.13)
takes the form:

fir =x)+ -y =12 =0
The vector of Cartesian coordinates for this system is as follows:

r=(r.r,)=2(£.%.5.5)

F_z(xz,yz)

¥

0

Fig. 2.5 Set of two balls connected by a stiff rod
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The system of differential - algebraic equations written in accordance with (2.29)
takes the form:

mX = Fi, + 24 (x —x;)
myy =F, +24(y - ¥2)
myiy = Fy, + 22, (—x, +X,) 2.31)
My, = Fyy + 24 (=3 + ¥5)

(o =x2)? + (= 3,)* =12 =0

The equation of holonomic constraints eliminates one of the Cartesian coordinates
since it is an dependent variable in the description of dynamics. At this points, let
us assume that it is y,, hence:

Fyy—m,y, [
=——— ; y=nFVP-n-x)’
2(y1=y2)

By introducing these variables into (2.31) we obtain

mx, +om,y, =F . +afF,,
myy+myy, =F, +F,,

. . 2.32
myX, —0myy, =F,, —aF,, ( )

Y2=0 v_LVlz_(xl _xz)z

R )

Yi—= X2

where: a=a)=

The resulting system of equations of motion still requires the elimination of y,, y,,

which is only an algebraic problem. This set of equations is very complex in its
analytical notation despite the fact that it presents a very simple mechanical sys-
tem. This is associated with the necessity of application of Cartesian coordinates,
which is not the most adequate choice for the case of equations containing
constraints, in particular from the point of view of simple notation of dynamic
equations. A favorable option in this respect is offered by the introduction of gen-
eralized coordinates and expression of the equations of motion in the form of
Lagrange’s equations.

2.1.5 Number of Degrees of Freedom and Generalized
Coordinates

The most general definition states that the number of degrees of freedom in a
system is made up of the number of independent virtual displacements Jo¢ (2.20).
For a holonomic system it also represents the number of coordinates (variables)
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necessary and sufficient in order to define the position of a system. In accordance
with this description every equation for holonomic constraints reduces the number
of degrees of freedom by one (see 2.21, 2.22). This can be defined by the relation

s=n—h (2.33)
where:

s - the number of degrees of freedom of a holonomic system

n - the number of coordinates necessary for description of the position of an
unconstrained system

h - the number of holonomic constraints

Under such assumptions regarding the number of degrees of freedom, the equation
of nonholonomic constraints (2.11, 2.12) also leads to the reduction of the degrees
of freedom despite the fact that the position of the system is not limited. This also
means that the number of degrees of freedom of nonholonomic systems is lower
than the number of coordinates necessary for the description of the position of
such a system. For the time being we shall, however, focus on holonomic systems.

Generalized coordinates form the vector of q = (¢1,9»,...,g;), and the compo-
nents of this vector include any variables that fulfill three pre-requisites:

1° the number s of generalized coordinates is equal to the number of de-
grees of freedom
2° generalized coordinates are selected in such a manner that they are com-
patible with constraints present in the system, i.e. they fulfill the condition of
identity with the equations of constraints

fi(x(@)=0 (2.34)

3° generalized coordinates need to be linearly independent, which means that the
selection of them has to enable one to uniformly express Cartesian coordinates
r = r(q), alternatively E = Z(q), or coordinates of the primary description
X = X(q), which gives

§;i=¢i@nq)  or  x;=x;(q..qy) (2.35)

Formally it means that the functional Jacobian matrix

{ﬁ} or else {%} (2.36)
gy, 9q;

- is of s order in the entire area of the variation of coordinates.

The second of the equations (2.35) defines the so called primary description
coordinates, which form an alternative to the Cartesian coordinate system, as they
involve an arbitrary set of variables for the description of the position of a system,
without an imposed limitation on the number of coordinates used in such a de-
scription. The practical selection of generalized coordinates can be performed in a
number of ways and tends to be much easier than it is implied from the study
of formal requirements (2.34-2.36). Among Cartesian, polar, spherical or other
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variables used in the description of a physical model of a system (which means all
coordinates of the primary description) it is necessary to select such s of inde-
pendent variables which are compatible with constraints and offer a comfortable
source for the description of the position of a system. For the case of holonomic
constraints the geometry of the constraints often suggests the selection of such
variables. After an appropriate selection of the variables the resulting equations
are succinct and short, while for other selection the resulting equations of motion
might be complex and involve a lot of other components. However, the total num-
ber of equations of motion remains constant (or the total order of a system of
equations), which amounts to s equations of the second order for a holonomic sys-
tem. The appropriate selection of the generalized coordinates in such a manner
that simple and short forms of equations ensue can be found later in the text.

Transformational formulae — are functional relations which express the rela-
tions between Cartesian coordinates of motion (r, E) or coordinates of primary de-
scription (X) and the vector of generalized coordinates. Similar transformational
formulae account for the relations between velocities, which can be gained for
holonomic constraints by differentiation of relations regarding position with re-
spect to time. The transformational formulae which are expressed by equations
(2.35) for position could be completed by explicit relation to time for the purposes
of the general consideration. Such instances are non-isolated systems, e.g.

E=E(q,9;,----9;5,t) or X=X(q,,95,---95.t) (2.37)

From these relations transformational formula for velocity ensues in the form

. ~dy, . 0y
&= Z k+— and g, = Hig 44 (2.38)
= dqy, ot

Similarly, during the calculation of the variation of variables (2.35), the result
takes the form of virtual displacement of Cartesian coordinates (of the primary de-
scription) expressed in terms of virtual displacements (variations) of generalized
coordinates

S8 = Z ag, or 8 = z i &Ik (2.39)

One can note that the transformational formulae for virtual displacements (2.39)
are the same as the ones resulting from the calculation of total differential of vari-
ables for transformational formulae (2.35) not accounting for time. One also
should note at this point that independence of virtual displacements for general-
ized coordinates comes as a consequence of the fulfillment of constraint equations
by the generalized coordinates

oq=(8,,9q;,....09,) (2.40)

and hence they can assume arbitrary values with the role of indefinite multipliers.
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2.1.6 Lagrange’s Equations

Lagrange’s equations are based on generalized coordinates q and apply their inde-
pendence as well as independence of virtual displacements Jdq. Lagrange’s equa-
tions for a mechanical system can be derived from d’Alembert principle for
holonomic systems by calculating variation from transformational formulae for
Cartesian coordinates (2.35). After introduction of the transformation of virtual
displacements into the first of equations (2.26)

&, = zaqk &, = (2.41)

we obtain:

ZZ(m ~F, )—&zk =0 (2.42)

k=1 i=1

Concurrently, the second equation in d’Alembert principle (2.26) disappears due
to the independence of variation dq;, which formally means that generalized coor-
dinates fulfill these constraints. As a result of the transformation of (2.42) we
obtain:

s N
> Zmii‘i%—z ,aq 8, = (2.43)

The second of the expressions in parenthesis denotes generalized force (not
accounting for friction forces) acting along the generalized coordinate

P’,FiF.ﬂ or f’k=%F,% (2.44)
R = 99

This constitutes the total of projection of all external forces expressed in a Carte-
sian system towards the generalized coordinate. Since the transformational formu-
lae are in the general case non-linear, partial derivatives in (2.44) give the formulae
of force projection. Concurrently, the first component in the bracket in (2.43) can
be transformed as follows

Lo e df. o)~ . dfo
St =T v me -

i=1 o an i=1 an =1 aqk
N . N .

=>m, i[ti aij >m, [i’i ij = (2.45)
i=1 d 9k i=1 94y
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The expressions in brackets denote kinetic energy of the system in the Cartesian
coordinates

T= Z%m[r’ﬁ (2.46)

This energy associated with velocities of system masses has to be expressed in
relation to generalized velocities and generalized coordinates, by employing trans-
formational formulae (2.37-2.38). After these transformations the following is ob-
tained

T =T(4,q.7) (2.47)
As a result from the initial equation (2.43) we get

Z d 9TG.a.n @A) 5 \g —o k=1, g (2.48)
=\ dt  9q, 04,

which in the consideration of independence of virtual displacements leads to s
separate equations in the form

d (aT(q,q,nj_ M@0 _ 5 (2.49)
dt\ 9q, g,

Potential forces (2.50) acting in the system, which are derivatives of a potential
U(q,t) with respect to position, can be easily integrated into equations of motion.
In this case these forces are omitted in the consideration of external forces F.

_9U(q,1)

P, = 34, (2.50)
The result takes the following form:
doT-U) JdT-U) _p
dt  dq, 9q, ¢
or finally i(a—LJ—a—LZPk, k=1...s 2.51)
dt\dq, ) dq,

which is called Lagrange’s equation for an examined dynamic system. General-
ized force P, does not include the component resulting from potential external
forces, which was already incorporated in the form of (2.50). The component
U(q,?) denoting the potential energy of the system has been incorporated also into
the first expression of Lagrange’s equation (2.51) for symmetry, despite the
fact that its differentiation with respect to ¢, returns the result zero. Function L

defined as

L(4.9,1) =T7(q,9.1) - U(q.1) (2.52)
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is called Lagrange’s function for a mechanical system. In the classical mechanics
it determines the difference between the kinetic and potential energy of a system.
Lagrange’s equations are widely applied in the studies of dynamic properties and
control of mechanical systems, as well as electromechanical ones, including
servomechanisms, manipulators and robots. Besides, they form one of the two
fundamental methods used for the statement of dynamic models. Lagrange’s equa-
tions in the form (2.51) could be extended [12,16] to cover systems limited by
nonholonomic constraints in the form (2.11, 2.12).

F6rnnbn i) =0 (2.53)

If (2.53) represents holonomic constraints, it is possible to integrate it and the
function takes the form F(&,&,,...,¢ ,1)=0 such that F= f . It is notable that
the conditions that these constraints impose on virtual displacements are identical

oF K of
L sE =0 I se =0 (2.54)
gag 620 or Dopd

since:

o, o _or
f=F= z =, =0 hence s

After the introduction of generalized coordinates these formulae are omitted as a
result of the fulfillment of the equation of constraints. However, if kinematic con-
straints of the type (2.53) were not integrated, the introduction of generalized
coordinates would not result in the omission of the equation type (2.53); in fact, it
is then transformed into the equation of nonholonomic constraints in generalized
coordinates:

‘//J(ql,qZ,,qc,ql,qz,,qc,t)zo lenh (255)

¢
and in the case of linear ones: ¥ ; = zhik q; +d,

k=1

where: nh - is the number of nonholonomic constraints
c=n-h - is the number of generalized coordinates
s = n-h-nh - is the number of degrees of freedom

As a result of the expansion of the equations (2.55) into multiple variable Taylor
series or by analogy to (2.54) one can demonstrate that these equations can be
used to relate the virtual displacements of generalized coordinates dg;

a C
Z Vidr, =0 or D hydg =0 j=l..nh (2.56)
k=1
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The present virtual displacements are not independent as it was the case for
holonomic constraints and, hence, the value of the particular parentheses (2.48)
need not be equal to zero, which has given the equations of motion (2.49) in case
of holonomic constraints. In these circumstances, as well as in the derivation of
equations of motion on the basis of d’Alembert principle (2.28) we will apply the
method of indefinite multipliers. All nh components in relation (2.56) will be mul-
tiplied by successive indefinite multipliers x; and subsequently added to equations
(2.51). As aresult, we obtain ¢ expressions in parenthesis in (2.57).

c nh

d AL, q.1) OL(4,q.1) Y,
; dt  dq, 9q : ,Z_I: 7 9q, :

For example, in the first ni2 components of the sum in (2.57) the selection of y; is
made so that the value of expressions in parenthesis is equal to zero. The corre-
sponding dependent variations are dg;, j=1,...,nh. In that case the remaining varia-
tions of generalized variables are already independent and the corresponding
parenthesis of the sum (2.57) have to be equal to zero. As a result, the equations of
motion take the form
. . nh
d 8L(q,q,t) _ dL(q,q,1) _p, +Zﬂj 81/.11
dt  9q, o4, g, (2.58)

k=1...s, j=1...nh

j=

The resulting system of equations consists of s Lagrange’s equations in the form
(2.58) and nh equations of nonholonomic constraints in generalized coordinates
(2.55), in which the unknown include s in g, variables and nh in 4; multipliers. In
equation (2.58) the potential forces in the form (2.50) have already been separated

from generalized forces f’A and integrated into Lagrange’s function L, while the

non potential components of generalized forces P, are preserved. For the case of
nonholonomic linear constraints the equations of motion for a system with non-
holonomic constraints, accounting for (2.56), take the following form:

d 9L(4,q.1) 0L(4,q.7) &
- =P + h
a9, 94, e+ D Hh

k=1..s, j=l..nh

= (2:59)

2.1.7 Potential Mechanical Energy

Potential mechanical energy, i.e. accumulated energy regardless of velocity, can
be stored in two ways: in gravitational field and in the form of elastic tension. In
the gravitational field the potential energy is accumulated during the displacement
of mass towards increasing potential. This energy equal to the work exerted during
this displacement is:



2.1 Mechanical Systems 27

b b
U= j Fdl= J'm gradg d1 = m(p(b) - p(a)) (2.60)

For the case of constant gravitational field, i.e. one with constant vector of gravita-
tional acceleration g, potential energy is expressed as

U = m(p(b) — p(a)) = mg(h(b) —h(a)) = mgh = mgh (2.61)

where h is the vector called the height of a point above the reference level meas-
ured in the parallel direction to the vector of gravitational acceleration g. For a
solid of mass M the height of the center of mass S is associated with the potential
energy of the solid as a total.

Potential energy in elastic element is associated with the work accumulated
during its elastic strain. The symbol of this component is a spring (Fig. 2.6).

b
U= J'F(x)dx (2.62)

For a spring with linear characteristics the force that a spring exerts is proportional
to deformation (extension, compression, torsion) in relation to the stationary
state of the spring denoted as x,. The elastic modulus of an spring k [N/m] is
defined as the slope of its stress-strain curve in the elastic deformation region. As
a consequence

F=kAx hence U= J.k(i—xo)d?( :%k(x—xo)2 (2.63)

o0

X0

LN

Fig. 2.6 Accumulation of potential energy in an elastic element

For the case of parallel connection between springs the total extension of all
springs is identical and the force affecting the springs is the sum of the forces
needed for the elastic strain, thus

F=F +F, +...F, =k AX+k,Ax+...+k,Ax=(k; + k, +...+ k, )Ax

and the resultant elastic strain is
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k=£=k1+k2+...+kn (2.64)
Ax

For the case of serial connection of springs, we have:

F=F =F,=...=F, Ax = AX| + AX, +...+ AX,,
F, =kAx, F,=k,Ax, ... F, =kAx,
hence:
4 1 - - -
k 1=FZAxi=kll+k21+...+k,,l (2.65)

2.1.8 Generalized Forces, Exchange of Energy with Environment

Generalized forces resulting from the transformation of Cartesian forces acting on
a system (2.44) are presented in detail earlier in the book i.e. during the derivation
of Lagrange’s equations. In this section they will be extended to cover friction
forces, which is required as a result of consideration of perfect constraints using
d’Alembert principle. The exchange of energy with the environment occurs as a
result of work exerted on the system by external forces and friction forces, the ef-
fect of the latter is always negative, i.e. results in dissipation of energy of a sys-
tem. Potential forces may be integrated into Lagrange’s function by consideration
of potential energy (2.61-2.63), while the right hand side of Lagrange’s equations
is reduced only to consideration of active forces. However, potential energy is also
capable of playing the role of exchange of energy with the environment, if it is ex-
plicitly relative to time U(q,?) - this is the case in non-isolated systems. We shall,
however, take into consideration friction forces, which occur in virtually any sys-
tem, have often nonlinear characteristics and tend to require notation in a complex
way. The most basic system used for the notation of friction forces associated with
motion is based on an assumption that they are proportional to the velocity. This
case is denoted with the term viscous friction, which takes the form

F, =-D§ (2.66)

The exchange of energy with the environment due to external forces is calculated
on the basis of virtual work JA exerted by these forces on the particular virtual
displacements:

3N
A=) (F, D), (2.67)

i=1

The transformation of virtual work into generalized coordinates applies transfor-
mational formulae of velocity (2.38) and virtual displacements (2.39) under the
assumption that the reference system is inertial and, as a result, d&,/dr=0.
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Hence:

: I 3 9%
Z(ZF Zz P 67, (2.68)

m=1 i=]

The first component of virtual work (2.68) is already familiar to us and known as
generalized force (2.44) acting in the direction of k-th generalized coordinate,
while the second component denotes transformed friction forces. Furthermore, it is
possible to identify the transformed friction coefficient

9¢; 94,
D 2.69
km — ; aqk aqm ( )

Generalized force accounting for friction for k-th generalized coordinate could be
noted as:

P =B =) Dy (2.70)
m=1

The virtual work of a dynamic system (2.68) can also be written in the form of a
matrix using Jacobian matrix of the transformation of a coordinate system

dA=(5q)" " (F-DJq)=(5q)" P=(F-DJq)' Jag=P" & 2.71)

where:
9% .. 9%
o] |9 . %
J=|==|=] : - - is the Jacobian matrix of transformation
dacl tog, e,
aQI aQs“
=1...3N k=1,..,s
D =diag [Dl D, -- Dn] - diagonal matrix of coefficients of viscous friction
F= [F1 F, - F, ]T - vector of external forces in Cartesian coordinates.

As a result of the statement of virtual work in the form (2.71) we obtain the
vector of generalized forces accounting for viscous friction with components from
(2.68). It is particularly complex to transform friction forces in which there are co-

efficients of mutual friction (2.69), or in the vector form of expression J”DJq in

relation (2.71). In numerous practical cases friction coefficient can be derived
directly for generalized variables q without reference to transformation of losses
resulting from friction expressed in Cartesian coordinates.
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2.1.9 Examples of Application of Lagrange’s Equations Method
Jor Complex Systems with Particles

Example 2.4. We shall one more time consider a system of two balls connected
with a stiff rod of length I (Example 2.3, Fig. 2.5). The equations of motion for
this system obtained from d’ Alembert principle in the Cartesian coordinates (2.32)
are very complex and of little use for computing the trajectory of this system. At
present for the development of a mathematical model we shall use the method of
Lagrange’s equations with a different selection of coordinates (Fig. 2.7).

il

71(351,)/1)

2(x2,)2) X
Fig. 2.7 Planar system containing two masses connected with a stiff rod

For this system the vector of position takes the form

r=(r,5,) = (X, 5, %, Y2) =E=(§],$,,83,84)s

which means that the number of coordinates in the description of unconstrained
system amounts to n = 4. In this system we have one equation of holonomic con-
straints:

fit nem|=lor (q-x)? + (3 -y =17 =0 (2.72)

Hence, the number of the degrees of freedomis: s=n—-h=4-1=3.
Cartesian coordinates of particle of mass m; and angle ¢ are assumed as the
generalized coordinates:

q4=(4-92.93) = (x1,y1.9) (2.73)
Transformational formulae of the type (2.35) are following:
§=q & =q
& =x,=x, +Isingp=gq, +lsing,
Sa=yy =Yy —lcosp =g, —1cosqs
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and for velocities, respectively:

fl =5]1 éz =q'2
& =1y =% +1§cosp= g, +1g; cos g (2.74)
&y =3, =y, +l@sing = g, +14;sings

Generalized coordinates are compatible with constraints, which can be verified by
direct substitution of (2.74) into constraints equation (2.72); this also derives from
the independence of virtual displacements of generalized coordinates considered
as infinitesimal displacements. The kinetic energy of this system takes the follow-
ing form

) )
Tz%ml(xl +y; )+%m2()c2 +y3),

which after introduction of generalized velocities from (2.74) leads to the expres-

sion

T =L(my +my) i +37) +Lmyl* @ + myl (i, cos @+ y, sin ) (2.75)
U=0 hence L=T-U=T

The vector of generalized forces in the right hand side of Lagrange’s equations
will be determined from relation (2.71). The vector of external forces and matrix
of damping coefficients are

F= [Fxl Fyl FX2 F}'z}r
D zdiag[Dxl Dy, D, Dyz}r

whereas Jacobian matrix of transformation

1 0 0
: 0 1 0
y=| |2 (276)
g, 1 0 Icosg
0 1 Ising

Let us additionally assume that: D,; = Dy; = D, Dy =Dy =D,.
In this case on the basis of (2.71) we shall obtain the vector of generalized
forces:

B F,+F,—(D;+D,)x —Dyl¢pcosep
P, [(Fy cos @+ F 5 sin @) — D,l(x, cos @+ y; sin g+ ¢@l)

Hence, using (2.51), we are able to state Lagrange’s equations:
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1° for q, = X, i a_L _a_L=P1
dt\ ox, ) ox
d . .

(my +my) ¥, +m,l(Hcosp—@* sing) =
=F,+F,,— (D +D,)x, —D,lgppcos¢p

2° for g, =y di(g_.LJ_g_L:Pz
1\ dy, V1
d . o
E((m1 +my)y, +my@lsin (p): P,
(my +m,) ¥, +myl($sin @+ @* cos @) =
=Fy, +Fy,, —(Dy+D,)y, —Dylgsing
o d(oJL) OL
DI L
%(m212¢+ myl(x, cos@+ y, sin (p))— myl@(—x; sin@+ y, cosp) =P

myl? (§+ (X, cos@+ ¥, sin@)/1) =
=1(F, cos@+F,, sin @) — D,l(x; cosp+ y; singp+19)

The above equations of motion can be restated more simply by introduction of
H=my [(m +m,):

1° for g, =x;:

X+ ul(@cosp— @’ sing) =
= pt/my(Fyy + Foy =(Dy + D), = Dylpcos )

2° for g, =y,
¥1 + ul(@sin @+ ¢ cos ) = | N 278)
= wImy(F,y + F,y —(Dy + Dy)3, — Dyl gpsin o)
3° for g3=¢
@+ (X, cosp+y,sing)/l =

= ((sz cos @+ F, sin @) — D, (x; cos @+ y; sin (p+l(b))/(m21)
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The resulting system of equations of motion (2.78) can be verified for specific
cases, for instance by immobilizing a particle of mass m;,, then: x; = y; = const. In
this case the first two equations of motion (2.78) enable one to calculate reaction
forces at the fixation point:

1° for ¢, =x,: F, =myl(@cosp—@>sing)—F , +D,lpcos e
2° for g, =y;: Fy=myl(@sing+ @ cos ) — Fy, + Dylgsing

The equation 3° after introduction of gravitational force F,, = -m,g and under the
assumption that F,, = 0 constitutes the equation of damped motion for pendulum:

3° for g; =¢: ¢=—§sin(/)—&qb (2.79)
l m,
The conducted interpretation of equations leads to the identification of the particu-
lar terms and indicates how useful the model could be despite the complex form of
the equations. However, the equations are much more simple than the ones in Car-
tesian coordinates, as shown in the discussion of d’ Alembert principle (2.32).

Example 2.5. A planar mechanical system is given whose physical model is pre-
sented in Fig. 2.8. The system consists of a pendulum of mass m, attached to mass
m, sliding along a horizontal bar. The motion being limited by spring of stiffness k
and free length of dj, and coefficient of viscous friction D;. The coefficient of vis-
cous friction of the pendulum is equal to D,. The two forces operating in the sys-
tem include gravity force G and the force of lateral pressure Q. The task involves
the development of a mathematical model of the system motion using Lagrange’s
equations.

mi(x1, Y1)

V<

ma(xz2, y2)

Q

=My g

Fig. 2.8 Planar system of pendulum with mobile pivot

This system consists of two mobile masses, which in unconstrained state re-
quires n = 4 coordinates in order to describe the position:

r=(r,1,) = (X1, y1, X, Y,) = (£1,6,,85.84)
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In this case, there are two equations of holonomic constraints:
fii % =0
fri (=) 4y —y)? =12 =0
Hence, the number of degrees of freedom is
s=n—-h=4-2=2
The following variables are adopted as generalized coordinates:
q4=(91.92) = (¥, ) (2.81)

which are independent and compatible with constraints. The transformational for-
mulae (2.35) take the following form

(2.80)

£ =0 & =lcosg 53 =—I@sin@
SH=q $y=y +ising §4=5’1+I¢COS(P

The kinetic energy of the system is

(2.82)

T =4m G +37) +3my (i3 +53)
while the potential energy of the system is associated with the spring
U =$k(y—d,)®

After the introduction of generalized coordinates (2.81) Lagrange’s function takes
the following form:

L=T-U-=
. . . (2.83)
= %(ml +m2)y12 +%m2 (1¢* + 2lpy, cosp) —%k()’l _do)2

The virtual work exerted by the system accounts for external forces and forces of
viscous friction

F:[Fxl Fyl Fx2 VZ]T 0 0 myg Q]
0. ) ) .
&A= (myg x2+Q 22 _ Dy 3), +(myg x2+Q ~D,p)p=
M o (2.84)
=(Q-D,y,), + (—ngl sin@g+ Qlcosp— Dz(p)&p
R 153

The equations of motion stated by aid of Lagrange’s method are as follows:

1° for g, =y
oL ) JL _p
dr aY1 aY1

d . .
E((ml +my)y +m2(,/)lcos¢))+ k(y;—dy)=hH
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2° for g, =¢
d{dL) oL
—| — __=P2
dt\d¢ ) d¢
t

After calculating time derivatives and introduction of generalized forces P, P,, we
obtain

1° §,0my +my) +myl(¢pcos@—@* sing) +k(y, —dy) =0 —D, 3,

(2.85)
2° y,cos@p+@l+gsing=(Qlcosp—D,p)/ m,l

The above equations have been simulated in the mathematical package. The se-
lected motion curves for input data and initial conditions given below are pre-
sented in Fig. 2.9 ... Fig. 2.12.

my =45[kg] m, =30[kg] g =9.81[m/s2] 0=-10.0[N]
k=300.0[N/m] [=03[m] d,=05[m] D, =D,=50[Ns/m]
y(0)=0.5[m] ¥,(0)=0.0[m] @0)=1.7[rad] @0)=0.0[1/s]

0.557
0.57
0.457
yi[m]
0.4

0.357

5] °

Fig. 2.9 Position y; of the pendulum attachment point

100 3
01
hi[de ]
phi[deg] 0
201

A . . . .
o 2 g 8 10
207 5]
404 U

Fig. 2.10 Sway angle ¢ for the pendulum
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E tfs]
e ﬁ/\re/\ I 10
v

u]
-100 7

omega[deg/s]

Fig. 2.11 Angular velocity ¢ of the pendulum swing

\D 40phiaj o

Fig. 2.12 Trajectory of the pendulum

2.1.10 Motion of a Rigid Body

2.1.10.1 Fundamental Notions

Rigid body — in a concept of discrete systems it is a set of material points (parti-
cles) whose distances remain constant. This idealization tends to be correct within
a certain range of external forces affecting such a system both for flexible bodies
with high rigidity and brittle ones. In order to determine the position of a body it is
sufficient to determine three points on such a body that are not situated along a
single straight line. Each successive point situated in such a body requires the de-
termination of three coordinates for the identification of its position; however, it
is kept at three constant distances from the previously determined points on
this body. Hence, the number of degrees of freedom in accordance with (2.33) is
equal to

s=n—-h=9-3=6 (2.86)

just as it is the case for three particles whose relations are determined by constant
distances (Fig. 2.13). As a consequence, the number of degrees of freedom of such
a body amounts to 6 (2.86); however, the description of the position of the body
does not usually apply Cartesian coordinates related to three selected points on the
body. The typical procedures followed in order to obtain the required 6 coordi-
nates involves the determination of three Cartesian coordinates for a selected point
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on the body O,, with a local system of coordinates Ox,y,z;, associated with this
body as well as three angles for the description of the orientation of the system on
the body in relation to the basic Oxyz system. In brief, one can say that the first
three coordinates determine the position of the body while the successive three
define the orientation of the body in space. In order to establish the angles of the
orientation of the body (or the local system O,x,y,z, on the rigid body) a standard
technique is to be applied, which involves the determination of Euler angles
or navigation angles system RPY (roll, pitch, yaw) [1,6,20]. The angles determine
the elementary revolute motion: in the first case with respect to current axes in
the successive order of xy’z”, while in the latter case with respect to constant

axes zyx.
Zh 7
— o~
P ]
b1 b2
Xb 0
— 7 Yb
7/ b3
¥ n —
7‘3 ER
Y
0

X

Fig. 2.13 Rigid body with local coordinates system and three points determining the posi-
tion of the body

2.1.10.2 Motion of a Mass Point on a Rigid Body

The differential displacement of a point on a rigid dr; could be made up of the dis-
placement of the initial position of a local system on rigid dR, and the differential
vector of revolution dt; which accompanies the revolute motion of a rigid body.
The differential vector of revolute motion (Fig. 2.14) is expressed as

;| =1 sin6dg dr; =doXxr, (2.87)
Hence: dr,, =dR,+drt, or dr,=dR,+dpxr,

As a result of dividing the differential displacements by the differential of time dt
we obtain the velocity of the motion of an i-th point on a rigid body
V, =V, +@OXry, (2.88)
where: v, is a linear velocity of O, point with respect to the basic Oxyz system and
i
o=22

= 2.
0 (2.89)
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is the angular speed of the rigid body. The axis determined by the direction of the
differential angle dg of the revolute motion of a rigid, or angular speed o, is called
the instantaneous axis of rigid body’s revolute motion.

i \Instantaneous axis of rotation

S|

dp

Oy

Fig. 2.14 Motion of a point on a rigid body resulting from its revolute motion

The center of mass S on a rigid body is a specific point which, can either belong
to the rigid or not; however, it has to fulfill the following condition

MR =>"mr, or R =ﬁ2miri (2.90)

The center of mass on a rigid body has some particular characteristics:

1° The potential energy U of a rigid could be expressed as the potential energy
of the total mass M of rigid focused at the center of mass at point S. This regards a
rigid body situated in gravitational field with constant vector g of gravitational ac-
celeration (Fig. 2.15).

U Z_ngihi =—gzmihs _gzmirbi =—gh52mi =—ghgM = Mghg
i i i i
0
Finally: U =Mghg (2.91)

2° Center of mass S is also the center of the body’s weight under constant
gravitational field in the state of balance between torques due to gravity forces.
Hence it represents the equilibrium state of a stationary rigid in gravitational field.

M= mr, xg =[Zmirbi}< g=0 (2.92)

3° After differentiation (2.90) with respect to time, we obtain

v =ﬁ2mivi (2.93)
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=)

Fig. 2.15 Rigid body in gravitational field — potential energy

This means that the total momentum of a rigid body can be expressed as the prod-
uct of solid’s mass and velocity of the center of mass vg

p=Mvg (2.94)

If the local system associated with a rigid body is situated in the center of mass,
and v, = 0, which, consequently, gives p = 0. This means that the center of mass is
the point around which the internal momentum of a rigid is equal to zero.

2.1.10.3 Kinetic Energy of a Rigid Body

It is possible to express kinetic energy of a rigid body in a more synthetic manner
than through the sum of kinetic energies of conventional mass points m; with the
total mass amounting to M, which are distributed in space but remain at constant

Z &
P,my

—
s Pbi .
W ! Zp

2
(=3

Xp

¥

Fig. 2.16 Dependent and independent elements in relation to coordinate system situated on
arigid body
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distances. However, one can note that angular speed o refers to the rigid as a
whole, which means that it is not relative to the location of the coordinate system
on arigid (Fig. 2.16).

For any point of mass m; from (2.88) it follows that

V, =V, +@Xr, 1)

Using another system on a rigid with origin in O], this velocity v; can be noted as

’ ’ 4 .-
V; =Vt Xry, (ii)
By substitution in (i) r, =a-+r,; we obtain:
7 cee
V,=Vyt+toXatoxXr, (1)

The comparison of the results in (ii) with (iii) gives:
V) =V, +oXa o= (2.95)

Hence, it results that angular speed ® of rigid’s revolute motion is the same along
the entire area of the body and is not relative to the position of the local coordinate
system associated with it.

The kinetic energy of the rigid is equal to

T= %Zm[i‘f
Using (2.88) we obtain

T =%Zmi(vo +oxr,)’ =
i

(2.96)
:%véZmi +Zm,~v0coxrbi +%Zmi(mxrbi)(mxrbi)

The first term in (2.96) is equal to T = %Mvé and denotes the kinetic energy of a

mass point equal to the mass M of the total rigid body moving at the velocity of
the point O,, in which the local coordinate system is located. The second term of
the expression (2.96) is equal to zero for the case when point O, overlaps with the
center of mass S (r; = rg;). As a result:

T, :zmivomxrbi :Zmirsl-vsxa): ZmirSi VeXxm=0 (2.97)
i i i

[ —
0

Concurrently, the third term
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2 2 2
T3:%Zmi((a)yzi_wzyi) +(@x; —0,7;)" +(0,y; —0,x; ):
i
2, .2
Zmi()’i +z;) _zmixiyi _Zmixizi
i i i
T 2 9 (2.98)
® _zmixiyi Zmi(xi +z;) _zmiyizi ©

i i i
2, .2
_§ m;x;z; _E m;y;z; § m; (X7 +y;)
L i i i

I

[

denotes the kinetic energy of the revolute motion around center of mass S with an-
gular speed o = [ 0, w, @.]". The elements present along the main diagonal of
the matrix of inertia L, i.e. I, I,, I. are called the moments of inertia of a rigid with
respect to x,y,z axes, respectively. As a result

L= m(7+2]) (2.99)

is the moment of inertia with respect to x axis and is calculated as the sum of the
partial masses m; multiplied by the square of the distance of the particular masses
from x axis. Apart from the main axes there are the so called moments of devia-
tion, e.g.

D, =Y mxy, (2.100)

The matrix of inertia I is symmetrical and positively determined

Ix _ny _sz
1=|-D, I, -D, 2.101)
_sz _Dyz Iz

The kinetic energy of a rigid body in free motion, under the assumption of a local
coordinate system in the center of mass S, takes the form:

T=1Mvi+lo'I0 (2.102)

where I denotes the matrix of inertia of a rigid body with respect to axes of Carte-
sian coordinates system intersecting at the rigid body’s mass center S. For any ir-
regularly shaped rigid body it is possible to select such directions of the axes of
the Cartesian coordinate system O,x,y;,z, for which all moments of deviation are
equal to zero; as a result, they disappear. For such axes the term principal axes of
inertia is used
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I'= I, (2.103)

In this case the kinetic energy of a rigid body associated with its revolute motion
has only three terms:

T3 =%(1x'w§' + Iy/a)i, +IZ,w§,) (2104)

For an irregularly shaped body the identification of the directions corresponding to
the principal axes of inertia involves finding a solution to the characteristic equa-
tion for a square matrix I (2.101), i.e. the establishment of eigenvectors and eigen-
values using the methods of linear algebra. The term asymmetric top has been
coned for such irregularly shaped rigid bodies for which the three principal mo-
ments of inertia /., I, I are different. The term symmetrical top is used with re-
gard to a rigid body whose two principal moments of inertia are identical and the
third is denoted with another value, while the term spherical top is used for a rigid
whose all moments of inertia are equal. The identification of the center of mass
and principal axes of rigid body’s inertia is much simplified when the rigid dis-
plays the characteristics of symmetry (under the assumption of constant density
and regular distribution of elementary masses). For the case of a body possessing
an axis of symmetry the center of mass is situated along this axis and, hence, it
represents one of the principal axes of inertia. For the case of a rigid body with a
symmetry plane this plane contains two principal axes of inertia, while the third
one is perpendicular to the intersection of the two axes. The final part of the pre-
sent considerations regarding the motion of a rigid body will focus on the relation
between the matrix of inertia I for the case when the initial point of the local sys-
tem overlaps with the center of mass and the matrix of inertia I' calculated with
respect to the coordinate system with parallel axes, while the initial point of the
system is displaced from the center of mass by vector a, such that

4 . .
r,; =rg +a, which gives:

2

a —-aa, -a.a,

’_ 2

I'=Ig+M|-a.a, a —-a,a, (2.105)
—a.a, —aya, a

In this case the expression used for the description of the total energy of a rigid
body, according to (2.97) includes

T, =) m(rg +a)v, X0 =Ma(v, xo) (2.106)

L

and the total kinetic energy accounts for three components:

T=1Mvy+Ma(v,xo)+le'To (2.107)
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2.1.10.4 Motion of a Rigid Body around an Axis

Free motion of a rigid body or a system of rigid bodies is represented in a number
of engineering issues in aviation, ballistics, space research, etc.; however, the most
numerous group of engineering problems is concerned with the motion of a rigid
body around a constant axis. This is the case in rotating machines, wheel bearings
in a car, industrial manipulators and robots. In such cases the direction of the
vector of angular speed ® is in conformity with the axis of revolute motion deter-
mined by the line of the bearings and reaction forces in bearings secure the main-
tenance of the constant direction of angular speed vector. The expression account-
ing for kinetic energy in motion around a constant axis is considerably simplified
as it only involves one term of T3 (2.104) representing a single component of an-
gular speed

’1, (2.108)

where I is the moment of inertia of a rigid body with respect to the current axis of
revolute motion. For the case when the axis of revolute motion does not intersect
with the center of mass S the moment of inertia I, can be determined from the re-
lation (2.105), while angular speed has just a single component

I, =1Ig+Ma* (2.109)

where: I - moment of inertia for an axis intersecting the center of mass S, parallel
to the axis of the rigid body’s revolute motion
a - distance between the two axes.

The same result can be derived from relation (2.107) under the assumption of the
coordinate system in the center of mass S, so that

T=iMw’a’> +10’ls =L@’ (15 +Ma?) (2.110)
This result is known in literature under the term Konig’s theorem.

2.1.10.5 Rigid Body’s Imbalance in Motion around a Constant Axis

In the considerations of the motion of a rigid body around a constant axis we have
to do with problems associated with static and dynamic imbalance. The case of
static imbalance (Fig. 2.17) is dealt with in the case when the axis of the rigid
body’s revolution does not cross its center of mass S, but is parallel to one of the
principal axes of inertia.

In this case centrifugal force rotating along the center of mass is exerted on the
bearings

F= =— =—Ma’r @2.111)

and it imposes two parallel forces on the bearings.



44 2 Dynamics of Electromechanical Systems

Fig. 2.17 State of static imbalance of a rigid body in motion around a constant axis

In a more complex case of dynamic imbalance the axis of rigid body’s revolu-
tion overlaps its center of mass, but is not parallel to the principal axis of inertia.
To simplify things, one can say that the bearings’ axes of revolution are askew in
relation to the axis of the rigid body’ symmetry. However, it can be strictly estab-
lished that dynamic imbalance is the case when angular momentum L is askew in
relation to the vector of angular speed ® . In order to calculate the effects of dy-
namic imbalance it is necessary to apply the notion of angular momentum. For a
system of particles the angular momentum is defined as

L= rxmyv, (2.112)

using the expression which determines the velocity for a particle in a rigid body
(2.88) and limiting the scope to revolute motion we obtain:

L=Io (2.113)

where I is the matrix of rigid body’s inertia (2.101), and @ is the vector of angular
speed expressed in the same axes as the matrix of inertia. It is notable that any
change in the angular momentum for a system, not accounting for energy losses, is
associated with the necessity of applying moment of force in the form

M= @ (2.114)

dt

In a system accounting for losses the applied moment of force overcomes the
moment of frictional resistance and potentially the moment associated with the
exerted work; however, it is only its surplus or deficit that affects a change in the
momentum in the system. The case of dynamic imbalance for a rigid with circular
section, which has been slightly exaggerated, is presented in Fig. 2.18. For this
case the angular momentum L does not overlap with the vector of angular speed @
due to various values of the moment of inertia in this disk for the principal axes of
inertia.
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Fig. 2.18 Dynamic imbalance of a rotating disk

The angular speed ® of a disk is distributed along the principal axes of inertia is
W, = ®cosY W, =wsin ¥

As a consequence, the components of the angular momentum L can be determined
as

Ly =L L, =L, I >1,

In this case moment M is associated with maintenance of a steady direction of an-
gular speed o and results in a pair of reaction forces in bearings. It is expressed as

M:ﬂzLxm (2.115)
dt

The value of this moment is
|M| = wLsin ¢ = wLsin(— 0)
By application of relations

L,

L
cosd=—L sind =—=
L L

we finally obtain:

M =1’ (I, - 1,)sin20 (2.116)

From formula in (2.116) it stems that the maximum value of this moment, which
tends to orthogonalize orientation of a disk, occurs for the skewness angle
§ = 45°, which is the greater the bigger the difference between the moments of in-
ertia for the principal axes. Certainly the moment resulting from centrifugal forces
is relative to the square of angular speed. This moment acts on the bearings with
forces whose directions are opposite (a pair of forces). The forces rotate as a re-
sults of the revolution of the disk (Fig. 2.18), according to vector product (2.115).
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2.1.11 Examples of Applying Lagrange’s Equations for Motion of
Rigid Bodies

Example 2.6. For the third time the system of two balls connected by a stiff rod,
referred to in Example 2.1 and Example 2.4 will be examined. This time the sys-
tem despite being planar, will be considered as a rigid body. Due to two-
dimensional nature of this examination and distribution of the masses along a
straight line the number of degrees of freedom amounts to s = 3 in contrast to
s = 6 in the three dimensional cases. The kinetic energy of the system is expressed
in a way specific for a rigid body (2.102)

T =L 0my +my) (x5 + y5) + L 15° 2.117)

Under the assumption of generalized coordinates q = (x,, v, 8), including the posi-
tion of the center of mass and angle of rigid body’s revolution, the kinetic energy
expressed in (2.117) is not associated with the necessity of transforming variables.
In the circumstances of the lack of elements which accumulate potential energy
(gravitational forces are accounted for in the external forces), Lagrange’s function
for the system is equal to the kinetic energy (2.117):

L=T-U=T

Y

Fig. 2.19 System of two balls connected by stiff rod considered as a rigid body

Concurrently, transformational formulae are needed in order to determine general-
ized force on the basis of data from external forces expressed in Cartesian coordi-
nates

T
2 F2]

F=[F, F, F, F) =[F, F, F, F,

X
For this purpose we have to determine the position of the center of mass S along
the rod which connects the two balls

mby =myly ="M L=_—"™_ 4
=1+l ! my +m, 2 my +m,
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and the moment of inertia for the system

Ig=ml? +myl2 =72 2 (2.118)

so that the transformation of coordinates (2.35) in this case takes the form

$y =y =ys+lsind $4=yy =5 —lsin?d .
Subsequently, following from (2.44)
4
9¢;
QxS =zFiaT=Fxl +Fx2
9¢;
Oy —Z -a——F L+
= é: I, =F,l,)sin0+(F,l, — F,,l v
Qﬂ_z iS5 =(Fyly = Fyoly)sin 0+ (Fyl, — Fyyl5 ) cos
i=1
we obtain equations of motion in the following form
For g, = xg:
d oL dL .
= = + =F +F
i axs axs =0y (my +my)Xg x1 T2
d dL JL ..
s s
for g5 =&
d oL dL
=0y =
dr 3 90

= 1519 (Fuly = Foly)sin+(Fy, L) — F 1, )cos &

This is the simplest form of the equations of motion among the three examined
models (2.32, 2.78, 2.120) since generalized coordinates are selected in such a
way that the form of notation of kinetic energy that is most succinct.

Example 2.7. 1t involves a model of dynamics for a spherical manipulator. The
kinematic model of the manipulator, containing variables and parameters, is pre-
sented in Figs. 2.20 and 2.21. This manipulator is shown in its nominal position,
which means that the values of coordinates in the joints are equal to zero.
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Fig. 2.20 Kinematic model of a spherical manipulator
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Fig. 2.21 Moments of inertia in particular members of manipulator in Fig. 2.20

The first two joints in this manipulator are revolute joints, while the third one is
a translational joint. The successive joints of the local motion of the manipulator
and the end effector in this model are represented by mass M at the end of the final
member. Fig. 2.21 presents the particular joints and contains a representation of
the moments of inertia in respect to the axes along which the manipulator’s
motion occurs. The moments of inertia Jsy, Js, Jsy3, Js;3 are determined for
the axes crossing the centers of mass S, and S;. Hence, the kinetic energy of the
manipulator can be determined as the sum of four terms which correspond to the
four members: T = T1+T,+ T3+T);, which can be expanded to

_1 22 1 22 2 1 22 2 2 1 -2
T=5J,400 +5J 5000 cOs™ @y +5my (X5 + 5 +25)+5 5005 +
) .2 2.2, a2
+ 4T 3@ €OS” @y + 5T 5305 +Emy (B3 + 3 +23) + (2.121)

22 .2
+5 M (Xyy + Vi +2i)
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where: Tgo =(X5,¥2,22) 5 Tg3=(x3,¥3,23) 5 Tpr =(Xpr, Yars2ur)

are the respective Cartesian coordinates of the center of mass S5, S; and the mass
M. This system has 3 degrees of freedom and the generalized coordinates are

q4=(91.92.93) = (@, ©5,93) (2.122)

which denote angular variables in the first two joints and a linear variable in a
translational joint. Prior to the presentation of transformational formulae it would
be useful to introduce the convention of abbreviations used for the notation of
trigonometric functions which are commonly used in robotics, namely:

cosgp, =>cl ; sing, =52, etc. (2.123)

which tends to considerably shorten the notation associated with transformation of
coordinates. The transformational formulae for the coordinates of center of mass
S,, S5 and M, which apply the notation as in (2.123) are the following:

Xy =1ycle2 x5 =(g3 —az)clc2 Xy =qzclc2
v, =1,51c2 v3 =(g3 —az)slc2 Yy =q3slc2 (2.124)
2, =H +1,s2 23 =H +(q3—a3)s2 2y = H +¢q3s2

and for speed, respectively:
Xy==bLf,  X=qxcle2—(g3—a3)f, Xy =qxclc2—q;f,
ya=bf, V3 =q3s1c2+(g3 —a3) fy Yu =q3slc2+qs f, (2.125)
L =h@ye2 3 =q352+(q3—a3)Pc2 2y =352+ q30,c2
fx = (@102, 01, 05) = P5lc2+ @ycls2

where: .. . .
fy = 1(@1,0,,0,,0,) = ¢iclc2 — @, 5152

The potential energy in this system, associated with gravity forces acting on
members 2 and 3 of the manipulator and on mass M, is

U=m,g(H +1,52)+mz8(H +(q; —a3)s2)+ Mg(H + q;52)
which can be transformed to take the form
U = const + gs2(myl, + msy(q; —az) +Mgqs) (2.126)

Lagrange’s function for the manipulator accounting for (2.121), (2.125) and
(2.126) takes the form:

L=T-U =%¢12{le +(62)2(]02z +J g3, +m3(q; _93)2 +MQ32)}+
%(b%{]ozy +J g3, +my(q3 —as)’ +Mq32}+ (2.127)

143 (my + M) — gs2(myl, +ms(q5 —az) + Mgs)

. — 2 _ 2
Where. J02Z —lez + JSZZ Jozy —lez + ]Szy
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The exchange of energy with the environment surrounding the manipulator occurs
as a result of virtual work relative to external force F=-F,, the driving torques M;,
M, and force F; originating from drives on the joints and friction forces. First, we
will calculate the generalized forces for the particular generalized coordinates re-
sulting from the external force. They take the form

ox

Q, =—F =2 =F gyslc2
v 90
0,, =-F, PM P goels2 (2.128)
09,
0xy,
Q;=-F, =—F.clc2
dq3

while the overall virtual work of the system is:

A =04100, + 000, + Q303 = (M, + F,g351c2— D)6, + (2.129)
My, + Fq5cls2 = Dy,)00, + (F; — Fcle2— D3q3) 85

Familiar with the expressions (2.127), (2.129) we are able to state the equations of
motion:

1°for g, =¢;:

ao o,
di g, 0, "

and following the operations we obtain:
¢1{Jz1 +(c2)* (T, +J 53, +my(g3—az)* + M‘ISZ)}:

+@10,520,)J 00, +J 53, +m3(q3 _03)2 +M6132) -
— 203,43 (c2)* (m5(q3 — az) + Mqy) + M, + F q351c2 — Dy,

As a result:
(bl{]zl +(02)2]z(93)}= KP529,)J (q3) —
—2¢q3 (02)2M3(43)+ M, + F,q351c2— D¢,
2° for g, =¢,:
d L OJL
——— = =0m»
dtop, Jp,

P17, (@)} ==2024:M 5 (q3) =L 61 5,)T (g3) -
8c2(myly + M3(q3))+M, + F .qscls2 =D, ¢,

(2.130)



2.1 Mechanical Systems 51

3° for linear variable g5 :

dr dg; dq5

Gy (my + M) =M;(q;)(@L(c2)* +¢3) —
—8s2(my+M)+E; — F.clc2— D544

J.(q3) =T pn. + 53, +my(qs —az)* + Mq;
where: T (q3) =T o0y + T g3, +m3(q3 —az)* + Mq;3
M (q3) =m3(q3 —az) + Mq;

The resulting equations are quite complex despite the fact that the manipulator has
only three degrees of freedom. The model’s complexity is becoming greater fol-
lowing an increase in the number of degrees of freedom and with the greater num-
ber of revolute joints in the kinematic chain of the manipulator. Hence, in order to
avoid laborious transformations and calculations in the formalized course of
model’s statement using Lagrange’s equations it is possible to program the model
in a programming language handling symbolic operations [1,11] and input the data
regarding the kinematics and parameters of the examined object. The resultant
equations of manipulator motion can be verified for a number of particular in-
stances by determining the values of selected variables and interpreting the terms
in equations whose sum is not equal to zero. Let us assume for instance that the
angular speed of the revolution of the vertical axis of the manipulator is
@, = const , while the third joint — the translational one is immobile: g; = const

and for simplification purposes zero value of force F. In this case the equation of
motion for the second member takes the form

#1743 f=

B . 2.131)
=—2075Q20y)J (q3)— gc2(myly + M5(g3))+ M, — Dy,

It can be concluded that the arm of the manipulator is lowered under the effect of
gravity force, the moment of centrifugal force relative to (/)12 tries to preserve the
arm in the horizontal position (¢, = 0) and that this moment is the highest for an-
gle p, = 45°, which is quite logical. An active role is played by the driving mo-
ment M, and the passive role is attributed to the moment of friction. The members
of the equation have physical interpretation and the correct sign denoting the sense
of a moment. From the first of the equations (2.130) it is possible to calculate
moment M, needed in order to maintain constant angular speed @, =const of

manipulator’s motion

M| ==¢0,5Q29,)J . (q3) + Dy, (2.132)
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This equation serves in order to determine the torque required to overcome the
frictional resistance and changing the angular momentum associated with the mo-
tion of the second member with the velocity equal to ¢, . The final equation for
variable Q3 makes it possible to determine the value of required force F;, neces-
sary at the point where the translational joint is fixed, in order to make it immo-
bile, which is

F; = —M;(q3)(@F (c2)* +3) + gs2(M +my) (2.133)

The case dealt with here involves reaction to the centrifugal force relative to both
angular speeds in revolute joints and to the gravity force. The derived equations of
manipulator’s motion (2.130) could well be applicable for the selection of drive in
manipulator’s joints and in discussion of issues associated with its control.

2.1.12 General Properties of Lagrange’s Equations

2.1.12.1 Laws of Conservation

An isolated system is a system which neither affects nor is affected by other exter-
nal systems. For such a system Lagrange’s function is not explicitly relative to
time

L=1(q,q) (2.134)

In an isolated system we don’t have to do with external forces, neither in an active
form or as frictional forces, hence, Lagrange’s equation takes the following form:

d 0L(q.q) _9L(q.9) _
dt  dqy 94,

0 (2.135)

Let us assume that for a coordinate g; Lagrange’s function is not relative to this
variable, but only depends on speed ¢, then

dd@ae _, . 949

o aéj 2% cons ( )

J
and this kind of coordinate is denoted with the term cyclic coordinate. This con-

stant value, which is a derivative of Lagrange’s function according to generalized
velocity is called generalized momentum

i= _ang,q) (2.137)

4
From equations (2.136) it stems that the generalized momentum for a cyclic coor-
dinate is constant. The occurrence of cyclic coordinates in Lagrange’s function
depends on the selection of generalized coordinates (coordinate system); conse-
quently, the constancy of certain components of generalized momentum is relative
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to the adopted reference system. It has been demonstrated [8,12,13] that the total
momentum for an isolated system is constant. This also means that for cyclic co-
ordinates the components of momentum are constant, while for the remaining
components of momentum the exchange of momentum occurs in such a manner
that the total momentum of a system remains constant. Let us refer again to La-
grange’s function for an isolated system (2.134) and calculate the total differential
for this function with respect to time

dL JL . oL ..
- = = +z_. 9
dt k aqk k aqk

The substitution of B_L according to Lagrange’s equation (2.135) gives
di

dL oL . oL .
dt _zdt(aqu —~ 94, 20 U _Z_[_ij

which results in the relation:
oL .
- —Qk L|=0

This can be restated using the definition of momentum (2.137):

Zpkc']k — L = const (2.138)
k

Hence, in an isolated system the following value is constant

E= pig-L (2.139)
k

and is called the energy of a system. We can transform the expression used in

(2.139)
. . oL . dT

Pedr =) Gi=——=) qp——=2T (2.140)
Zk: K9k ; £ 3, Zk: £ 340

This is so due to the fact that the function of kinetic energy 7(q,q) is a homogenous
function of the second order (and, consequently, quadratic form) of the velocity for
the case when it is not explicitly relative to time. In accordance with the Euler’s for-
mula for homogenous functions of n order the following relation is satisfied

Zf afg,) =nf (&) (2.141)
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and for a function of the order n =2 the relation in (2.140) is satisfied. By appli-
cation of (2.140) in the formula stating energy (2.139) we obtain

E=2T-L=T+U (2.142)

This result could have been anticipated as it means that the total energy of an iso-
lated system (L =L(q,q),r = r(q)) consists of the sum of kinetic and potential

energy. In an isolated system the law of conservation of generalized momentum is
fulfilled [8,13], whereas this property can easily be demonstrated in a Cartesian
coordinate system both for particles and rigid bodies in revolute motion. However,
if a certain generalized coordinate is a system is expressed in terms of revolute an-
gle: g; = ¢ , then equation (2.137) denotes generalized angular momentum. For a
cyclic angular coordinate the appropriate component of angular momentum in an
isolated system is constant. As a consequence, Lagrange’s equations (2.51),
(2.135) denote either the equations of forces for the case when the generalized co-
ordinate g, has a linear measure (i.e. it is translational) or equations for moments
of forces (torques) for generalized coordinates in the form of angular variables
(characteristic for revolute motion).

2.1.12.2 Characteristics of Lagrange’s Functions and Equations

The equations for both mechanical and electromechanical systems stated in the
form of Lagrange’s equations possess a number of specific properties useful for
the purposes of stating and controlling them as well as in various issues associated
with the dynamics applying Lagrange’s equations, and in particular for a control
of dynamic objects.

1° Lagrange’s function does not have a unambiguous expression. For function
L and for function

L':L+diF(q,t) (2.143)
t

the equations of motion expressed using Lagrange’s method are in the same form.
It is possible to verify by direct substitution of L and L' in (2.144).

2° Lagrange’s equation preserves an invariable general form. For a holonomic
system it is following

d L oL
arog, g g (149

regardless of the selection of the vector of generalized coordinates
q = (41,95, - -,g5)- If unambiguous transformation were to be used

u;=u;(q,....q5) j=1l.s

having a non-zero determinant of Jacobean matrix for this transformation in a spe-
cific area of variance, there is a reverse transformation such that ¢,=q(uy,us,. .. us).
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Then Lagrange’s function L = L(a,u) takes another specific form, however, the
general form of Lagrange’s equations

ia—.L—a—L=VJ-, j=Ll.s
dtauj Buj

remains the same. The specific form of the particular equations for the successive
variables of the two vectors of generalized coordinates q = (g1,9»,...,g;) and
u = (Uy,U,...,Us) is evidently different.

3° The resulting form of Lagrange’s equation for a holonomic system with s
degrees of freedom, while Lagrange’s function is not explicitly relative to time,
ie. L=1L(q,q), can be stated in the form of a matrix equation, where the respec-

tive matrices have the dimension of sXxs:

B(@)q+C(q.9)q+G(q) =7 (2.145)
The matrices display the following properties [20]:

a) the matrix of inertia B(q) is a symmetrical and positively determined one and is

relative only to the vector of generalized coordinates q. From that it results that
matrix of inertia is always reversible. Moreover, there are such scalar quantities
n1(q) and 7,(q) that the following limitation is satisfied

m@I<B(q) <7, (I (2.146)
b) the matrix W =B(q) - 2C(q,q) (2.147)

- is skew-symmetric. This plays a role in the control of various systems and can
serve in order to control the correctness of the developed equations of motion.

c) the equations of motion (2.145) resulting from Lagrange’s equations are linear
due to their structural parameters. This also means that that there is a constant
vector @ of dimension p and a matrix function Y(q,q,q) of dimensions nX p

such that
B(q)q +C(q,9)q + G(q) = Y(q,4.9)0 =7 (2.148)

The function Y(q,q,q) is denoted with the term regressor, while the vector @

consists of appropriate combinations of structural parameters such as dimensions,
masses and moments of inertia. The dimension p of the vector ® is not uniformly
defined and, hence, the identification of the adequate parameter set for this system
in a way that dimension p is minimized plays a practical role.

d) The equations of motion (2.145) possess the property of passivity. This means
that the following mapping satisfies the relation:

T
Iq(u)r(u)du >-p, (2.149)
0
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for the case of constant f. The evidence of that [3,17] is given by differentiation with
respect to time of the total energy of a system (2.142) E = %qTB(q)q +U(q) and
demonstration that due to the property (2.147)

E=q"t (2.150)

which after integration of (2.149) gives H(T) - H(0)> -H(0) = -B since the total en-
ergy H(T) is always greater than zero. The property of passivity (2.149) is relevant
in the evidence of the stability of dynamic systems during their control [17].

Example 2.8. Let us undertake the matrix notation of the model consisting
Example 2.5 of a pendulum of mass m;, attached to mass m; sliding along a hori-
zontal bar. The dynamic equations for this object (2.85) in the matrix form are the

following:
my+m, mylcos |y, N 0 —mylgsing | y, N
mylcosp  myl* | ¢| |0 0 @
, |
B C(q,
(@) . (9.9 2.151)
+ k(y1—dy) _ Q—-Dyy,
myglsing | | Qlcosp— D,
G(q) T
. 0 —myl@si
Since B :{ L Mot psin (p}
—myl@sin @ 0

. .. 0 +1
B—2C=mzl(psm¢{1 O}

and hence the last matrix is skew-symmetric. The matrix of inertia B(q) is posi-
tively determined, which results from the value of its determinant
det(B(q)) = (m, + my)m,1* — (mylcos@)* >0

As a result, it is always reversible regardless of the value of angle ¢. The equa-
tions of motion from the perspective of the linear combination of the parameters
(2.148) can be represented for the following vector of parameters

0/ =6, 0, 0, O,=(m+my, mil k myl*] (2.152)
In this case the regressor takes the form:

. .. .2 .
.. cosS@— @~ sin -d, 0
YVi@.gq=|" PP e (2.153)
0 Yy cosp+gsing 0 Q
If the parameter @4 = m,l®, which is similar to ®, = myl, were to be omitted from
(2.152), which should be associated with the requirement of good familiarity with
dimension /, the vector of parameters would take a shorter form
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0, =0, 0, O;|=[m+m, m,l k| (2.154)

Consequently, the matrix of the regressor is following

. . _ -2 . _
Y, Gqq =]’ Peosemeising yi—dy (2.155)
0 Yy cosp+@l+gsing 0

However, during the practical process of estimating parameters of the mathemati-
cal model a considerable problem may be associated with the determination of the
damping of transients. Hence damping coefficients may be incorporated into ma-

0 D,

(2.147) does not hold. For the new vector of parameters

trix C(q,q). As a result C'(q,q) :{ } . In this case the property

0, =6, ©, ©; O, O]=[m+m, mi k D D,]

the regressor amounts to

. _ 22 . _ .
YVigq=  Posemosne nmde o0 (2.156)
yicos@+@l+ gsing 0 0 ¢

=)

In conclusion, for the mathematical model (2.151) of a pendulum sliding along a
horizontal bar (Fig. 2.8) three options for linearity of Lagrange’s equations (2.148)
were demonstrated on the basis of various structural parameters.

Example 2.9. In a similar manner we shall analyze the equations of manipulator
motion from Example 2.7. The corresponding matrices (2.145) formed on the ba-
sis of equations (2.130) are presented below. The matrix of inertia

Ji +(cosy)* J,(q3)
B(q)= J,(q3) (2.157)
msy+M
is diagonal, positively determined and, hence, it is possible to state that it satisfies
the requirements (2.146)
Ji
Jooy +Js3y <B(g)<
my+M
Jl + Jz(quax)

S ]y(Q?;mdx)
msy+M
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The matrix
Ca.0=
—%%S(Z(pz)fz(%)+q3(02)2M3(q3) —%?"15(2{02)]1((]3) ¢1(02)2M3(Q3) (2.158)
%@ sQ2py)J . (q3) q3M5(q3) 9,M5(q3)
—¢1(02)2M3(43) - 9M5(q3) 0

J.(@3)=J oo +J 3. +m3(q3 —a3)* +Mq3
where: Jy(q3)=J g2y + I 53, +m5(q3 —c13)2 +Mq32
M;(q;) =m;(q; —az) + Mq;

In accordance with (2.147) the matrix W =B —2C isa skew-symmetric one:

0 P5Q2p)J . (q3) =201(c2)* M5(q3)
W=|-¢ s2¢,)J (q3) 0 —2¢,M 1(q53) (2.159)
2¢1(02)2M3(613) 20,M 5(q3) 0
Moreover,
0
Gl@=¢g 62(m212 +M3(613))
s2(my+M)

M, + F,qsslc2— D, ¢,

T=|M, + F,q5c1s2—D, ¢, (2.160)

E, — F.clc2 — D54,

The equations of motion expressed in terms of the linear regression, in respect to
parameters (2.148), may be presented for various compositions of the vector of pa-
rameters ® in the context of the intended program for parameter estimation or for
the purposes of design of control. For a six-dimensional vector with parameters

T
o =[le Jor: ¥ g3; Jooy +Js3y, Myl my M] (2.161)
the function of the regressor takes the form:
Y (4, 4.9) = (2.162)
B (7P -sQo)pg, 0 0 (g3 —”3)2((02)2¢1 =520)9,9, )‘*’2(52)2(‘13 —a3)P1q3
0 1520,)¢7 @, g2 (q3-a3)’ (¢2 +193s2p, ))+(‘Iz —a3)(29,q5 +8c2)
0 0 0 0 Gy —(q5 —a3)(€2)* @ + @3 )+ gs2

23224, ~32) @6, )+ 2013052
43 \@y +193520,) )+ 432245 + gc2)
G3—a3(c2)* pf +@7) + gs2
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Other options for selecting the content of the ® vector are also available. The se-
lection of them is relative to whether some of the parameters in a model are
known with high precision or which should be the subject of a formal estimation
and contained in ©.

2.2 Electromechanical Systems

2.2.1 Principle of Least Action: Nonlinear Systems

The purpose of this chapter is to provide grounds for the statement about the rele-
vance of Lagrange’s equations with regard to electromechanical systems. Another
objective is to indicate the variability of parameters in the Lagrange’s function for
systems with non-linear parameters, i.e. the ones in which the parameters are rela-
tive to the vector of the system’s variables. The principle of least action, also
known as principle of stationary action or Hamilton’s principle is found in the ma-
jority of handbooks in the field of theoretical mechanics [8,12,16] to be central to
the synthesis of the laws of motion. In classical mechanics it is derived from gen-
eral properties of space [13]. Every mechanical system is characterized by func-
tion L(q,q,?) relative to the vector of velocity and generalized coordinates and
perhaps time present in the explicit form, known as Lagrange’s function. This is
the same function that was obtained from the derivation of Lagrange’s equations
(2.45-2.52) but it can also be derived from Galileo’s theory of relativity on the ba-
sis of the general properties of homogenous and isotropic space. For any system in
motion a functional is defined, which represents a set of functions mapped onto a
set of real numbers (Fig. 2.22) called an action.

)
S= [Lg.q.t)d
*a

mapping g I

Set of real
numbers

iR}

Set of trajectories

{90}

. a(t)

q(t) q

Fig. 2.22 Graphical representation of a functional: mapping S and a set of trajectories

ld.af
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S = j L@, q.0)dt (2.163)

h

This functional is a mapping of a set of trajectories {ﬁ,fj} into a set of real num-
bers {‘Ji} which result from the integration of Lagrange’s function along the par-

ticular trajectories. All trajectories belonging to the set have the same class of
continuity C', which means that they are continuous and possess a continuous de-
rivative; in addition to which, at the instants determined as #,,f, they converge at
the same points in space q;,q»; see Fig. 2.22. The principle of least (stationary) ac-
tion states that for any actual path of motion q(#) an action (2.163) assumes the

smallest value of all possible trajectories belonging to the set {(~1(~1} This also

means formally, that in the statement of prerequisites of any motion realized in na-
ture is that the first variation of the functional of action disappears.

5}
5 = é'J.L(q,q,t)dt -0 (2.164)

h

For the variation of integral (2.164) one can further state that:

[}
> L s+ 2L 5 =0 (2.165)
s g 94
1
. . d .
Under the assumption that &g = d—(&]) , the second term of this integral can be
t
integrated by parts
oL d " Hd o
= dt 2.166
(a dtéqjd I(dta Jéq ( )
i}

Since at instants #,#, all paths of motion converge at the subsequent initial and fi-
nal point, then: dg; (t;) =0 and dq; (t,) =0, i=1,....s.

After consideration of this fact the first term (2.166) is equal to zero, and inte-
gral (2.165) takes the form

Ho(or d oL
I Z oq, i gy S
k=1 qk t q i
The independence of variation of variables (virtual displacements), d¢g; leads to the
relation

d oL oL _

= k=1... 2.167
dr 8qk aqk y ( )
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which is a familiar form of Lagrange’s equation for a stationary system (without
an exchange of energy with the environment). This result means that the actual re-
alization of motion occurs along a trajectory for which the expenditure of action
(2.163) of the system is the least possible one. Thus, in the sense of differential
description of motion for this case the differential equation of the second order in
the form of Lagrange’s equation (2.167) has to be fulfilled. This is a familiar
result; however, it is more limited in comparison to the equation in (2.51) which
accounts for external forces operating in the system. Nevertheless, it was derived
on the basis of a general principle, which is valid in classical as well as relativistic
mechanics [12,13,16] and in electromagnetism as well. This gives a solid founda-
tion to extend the method of Lagrange’s equation onto calculation of electrome-
chanical systems, which is the fundamental object of the study of electrical drives.

2.2.1.1 Electrically Uncharged Particle in Relativistic Mechanics

Deriving from the general postulates associated with relativistic mechanics and
in particular from the postulate that action S of a mechanical system may not be
relative to the selection of any inertial reference system and, hence, it has to be an
invariant of Lorentz transformation [13,16], Lagrange’s function for a particle can
be stated in the following form

2
L=-mc? 1—[—) (2.168)

Concurrently, the action on the particle is
5} [}
S=.[Ldr=—mc2_|',/1—(v/c)2 dt (2.169)
h h

where:

m - is the rest mass of a particle
¢ - is the velocity of light in vacuum

Since always the velocity of a particle v is considerably lower than the speed of
light, it is possible to expand Lagrange’s function (2.168) so that it takes the form
of Taylor’s power series of a small quantity (v/c”). As a result of such expansion
we obtain:

2 4
L=—mc2+%mv2 +%mv2(1) +%mv2(zj +... (2.170)
c c

For small velocities v << ¢ only the first two terms of the power expansion of La-
grange’s function are relevant in comparison to the following ones; however, the
first term in them, as a constant value, does not contribute anything due to the in-
definite form of Lagrange’s function (2.143). Hence the result takes the form of
familiar classical result well known in mechanics L = Y2 mv 2, which denotes
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kinetic energy of a particle. The calculation of particle’s momentum according to
the general definition (2.137) results in:

:izgzm (2.171)
which when expanded into power series with respect to (v /c?), yields that
p=mvy +%mv(%)2 +§mv(§}4 +... (2.172)
For small velocities v << ¢ this results in the classical shape
p=mv (2.173)

The calculation of the total energy of a particle in accordance with relation (2.139)
gives the result, which is relevant to our considerations

2
E=qp-L=vp-L=—2"°¢__ (2.174)
1[1—(\//0)2
By expansion into power series (1.174), this gives
1 3 vy
E=mc*+—mv’> +=mv?| = | +... (2.175)
2 8 c

This energy consists of rest mass energy E, = mc” and the energy associated with
the velocity of particle’s motion. The relevance of this result is associated with the
fact that the comparison between expressions in (2.170) and (2.175) offers a con-
clusion that Lagrange’s function for a particle in motion is equal to its kinetic
energy only for the case of classical mechanics. In the relativistic mechanics the
expressions in (2.168) and (2.174) are completely different. The formal reason for
this is related to nonlinearity of parameters, or more precisely, nonlinearity of
mass, which increases along with speed as illustrated by the formula for the parti-
cle’s momentum. An illustration of this is found in Fig. 2.23.

From Fig. 2.23 one can conclude that surface areas that illustrate kinetic energy
and the supplementary term denoted as co-energy overlap only for small velocities
of a particle in motion. This is the case when the function of kinetic energy is a
homogenous function of velocity (2.140). Accordingly, from formula (2.175) one
can conclude that this is so only when the expansion into power series may omit
the terms containing (v /c)**. In practice this means that equality between kinetic
energy and kinetic term in Lagrange’s function takes place only in case when the
mass of the particle is constant, which is represented by a linear system in
the sense of involvement of constant parameters. In systems with non-linear pa-
rameters relative to velocity q, Lagrange’s function does not account for kinetic
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Fig. 2.23 Kinetic energy and co-energy of a particle in motion

energy; however, in accordance with (2.171) the integral of system’s momentum
takes the form

T'=L=IpdV:J.pdq (2.176)

This integral denotes the kinetic term of Lagrange’s function written as 7" and
is called kinetic complementary energy: co-energy. Its graphical representation
(Fig. 2.23) takes the form of the surface area under the curve denoting the relation
between the momentum of a system and velocity. From both the formal point of
view and its graphical illustration it is clear that kinetic energy T is equal to kinetic
co-energy 7" only for a system with constant parameters.

T'=T m=const (2.177)

Concurrently, the total energy of particle is equal to
T=Ivdp=jqdp (2.178)

which can be integrated and the result takes the form (2.174), and the one in
(2.175) after power expansion. Both functions of co-energy (2.176) and kinetic
energy (2.178) add up to form a rectangle, which results from formula (2.174) and
has also a graphical representation in Fig. 2.23. This also justifies the definition at-
tributed to co-energy, which states that it completes the function of energy to the
bound of a rectangle.

T'+T =pq (2.179)

The result of these considerations conducted for motion of a particle in relativistic
mechanics shows that kinetic co-energy 7" (2.176) is involved in the Lagrange’s
function for a system whereas kinetic energy 7 is not. The distinction between ki-
netic co-energy and kinetic energy is only necessary in non-linear systems whose
parameters are relative to generalized velocities. In the examined case of a particle
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in motion mass m relative to the velocity forms the only variable parameter. In en-
gineering practice associated with issues of electric drives we have to do with such
low velocities that the relativistic variation in mass is insignificant and, as a result,
we assume that 7' = T for mechanical variables. The studies conducted here have
an even more comprehensive application besides theoretical considerations, as
in electromagnetism we have to do with systems with non-linear parameters, in
particular with inductance of the windings containing ferromagnetic core, which is
relative to the current applied to the windings.

2.2.1.2 Electrically Charged Particle in Electromagnetic Field

In contrast to the previously considered example we shall assume here that a parti-
cle with rest mass m has an electric charge Q. The external electromagnetic field
is so strong and its source is so remote that the charge Q, which is carried along
with the particle, does not affect a change of the field. Scalar potential
¢(r, 1) describes the interaction between the field and immobile charge, while
vector potential A(A,, A, A,) describes the interaction with electric charge in mo-
tion (electric current). It is possible to define the four quantities describing elec-
tromagnetic field in the form of a four-vector that is transformed in accordance
with to the rules of Lorentz transformations [13]. For an electromagnetic field is
called a four-potential, where the scalar potential ¢ is considered as the zero term
of this four-potential

A¥ =(g,A) A=A(,1) (2.180)

Such formal notation referred to in theoretical physics proves very useful in trans-
formation of fields and studies devoted to general properties of electromagnetic
interactions. For the purposes of our study it is relevant to note that Lagrange’s
function for a charged particle in electromagnetic field is expressed with the aid of
four-potential of field in the following form:

1%

2
L=-mc? 1{?} +OVA-Q¢ (2.181)

The first two terms of Lagrange’s function include kinetic co-energy of a particle
with an electric charge of Q. This is the familiar mechanical kinetic co-energy
(2.168) while the second term is the magnetic kinetic co-energy of the charge in
motion. The term kinetic co-energy is used for the reason of its relation to the ve-
locity v. From the two kinetic terms we subtract the potential electric energy of the
charged particle, as in the expression of Lagrange’s function. On the basis of La-
grange’s function we can calculate particle’s momentum in the following form

ﬁ=a—L—m—V+QA (2.182)

v VI-(v/c)?

The momentum of a charged particle, hence, involves two terms, i.e. the familiar
mechanical momentum (2.171) and the magnetic momentum of a particle. The
term associated with electric field is absent from the formula, which comes at no
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surprise, since the interaction with the scalar potential is static. Concurrently, the
total energy (2.174) of a charged particle is

2
E=vib_p-__me

——+09¢
dv JI-(v/e)?

In conclusion, the total energy includes the potential energy associated with the
scalar potential of the field ¢ beside the energy of the particle’s mass. We will
proceed to see what will result from Lagrange’s equation for a charged particle in
the field, whose Lagrange’s function is expressed in the form in (2.181). The ex-
amined system is stationary (does not account for exchange of energy with envi-
ronment) and the equation of motion can take the form

doL_oL
dr 9y, or
b

(2.183)

(2.184)

The right-hand side of the equation is equal to

?)_L =VL=0Qgrad(vA)—Q grad¢
r

The first term in this equation, in accordance with vector identity [18], may be ex-
pressed by the relation

V(AB) =(AVB) + (BVA)+ AX(VxB)+Bx(VxA)

. o . . oL
The expression which is considered here is > and hence v = const. As a conse-
r

quence

grad(vA) = (VWA) + vxrot A

At the same time, the left hand side of the equation (2.184) takes the form

d dp 0A
—((P+0A)=—+0—+0(VW)A
dt(p 0A) o Qat O(vV)
After the combination and simplification of the two sides of the equation we
obtain

@ = Q(—a—A— grad ¢+ VXrotAJ
dt ot
. oA
By defining: E= v grad ¢ H=rotA (2.185)
t

to be the subsequent vectors of electrical and magnetic fields, we finally obtain

%:Q(E+ vxH) (2.186)
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which gives an equation of motion for a charged particle in the electromagnetic
field. The right hand side of the equation represents Lorentz force with which a
field interacts with an electric charge. The content in this chapter indicates how
notions of dynamics in the form of Lagrange’s equations can be applied to prob-
lems in electrodynamics. The issues dealt with here will be transferred to macro-
scopic scale for the application in electromagnetic lumped parameter systems.

2.2.2 Lagrange’s Equations for Electromechanical Systems in the
Notion of Variance

Chapter 2.2.1 presents the principles of variance and their application in respect to
a single particle with an aim of indicating that principle of least action involves
both mechanics and electromechanical systems. This statement can be further ex-
tended from a singular particle to cover electromechanical systems, including
macroscopic technical devices serving often for power generation and conversion.
Beside machines such as electric power generators and motors used in electric
drives, electromechanical devices include electromechanical measurement sys-
tems, servo-drives, industrial manipulators and robots as well. In addition, modern
engineering tools include Micro/Nano-Electro-Mechanical Systems (MEMs,
NEMs) [2], which attract a steadily growing interest. Such devices are different
from the standard electromechanical drive in several ways despite the fact that the
principle of operation is the same. First of all, the major task attributed to them is
not associated with transformation of electric power. Instead, they tend to be used
to perform precise action in a coordinated and controlled manner, including ma-
nipulation and measurement on a macro- or micro- scale. In addition, they have a
greater number of degrees of mechanical freedom than the case is for standard
electric drives, where the number of degrees of freedom is normally equal to one.
In contrast, in standard manipulators the number of degrees of freedom amounts to
5-6 [1,11,20].

Industrial manipulators, and in particular mobile robots, have a very complex
control and information processing technology embedded in them, which is based
on a number of internal and external sensors. In addition, they have systems,
which apply artificial intelligence algorithms to promote autonomic decision re-
garding control parameters. Moreover, the driving systems are designed in a way
that promotes energy saving in order to enable permanent operation using an in-
ternal source of energy in some cases. Such drives are sometimes referred to as ac-
tuators, which emphasizes the role of the drive based on articulated joints of the
devices. More and more attention and research is dedicated to the application of
actuators on a micro- and nano-scale in computer technology, medicine and even
biotechnology. Such electromechanical systems apply a great number of electronic
and power electronics devices as a result of the need to meet the requirements as-
sociated with fast changing motion and necessity of saving power. In fact, this
branch of engineering which concurrently involves mechanics, electric drive, elec-
tronics and computer engineering for the purposes of control is nowadays referred
to as mechatronics [9,14,23].
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The transfer from the principles of the motion of particles in electromagnetic
field to electromechanical devices used in technology is associated with the need
of stating assumptions regarding quasi-stationary character of electromechanical
processes and deriving volume integrals from field quantities. Thus, a transfer can
be made to the discreet model of the system. This problem is dealt with in the lit-
erature in this field [16,24]. The principle of stationary (least) action expenditure
for non-stationary electromechanical systems states that

j (8L +8A)di =0 (2.187)

h

where: JL - is the variance of Lagrange’s function for an electromechanical
system, JA- is not a variance of any function but represents work expenditure per-
formed on virtual displacements, which realize an exchange of energy with the
environment, called virtual work of an electromechanical system.

Under the assumption that processes are quasi-stationary in nature, Lagrange’s
function for an electromechanical system includes only two structural compo-
nents: a mechanical one associated with the mass and elastic strain of the elements
of the system and an electromechanical one related to the electric charge (electric
field) and electric current (magnetic field). However, it does not involve a term
that accounts for the electromagnetic field. In summary, it is simply a total of La-
grange’s functions for the mechanical and the electrical part of the system

L=L,+L, (2.188)

The mechanical term L,, in Lagrange’s function is represented by the difference
between kinetic mechanical co-energy T, and the potential energy U,,. In a simi-

lar manner, electrical term of Lagrange’s function is expressed as the difference
between kinetic co-energy 7, associated with magnetic field (electric currents)

and potential electrical energy U, associated with electric charges. Hence, the spe-
cific form of equation (2.188) takes the form

L=(T,+T)—-U, +U,) (2.189)

where: T, ,T’ - are kinetic co-energies for the mechanical and electric variables

m?

U,., U, - are potential energies: mechanical and electrical.

Mechanical kinetic co-energy and potential energy have already been covered in
detail. In the current section we will discuss magnetic kinetic co-energy and elec-
trical potential energy which commonly represent the electrical part of Lagrange’s
function of the entire system. The number of degrees of freedom is the algebraic
sum, which can be obtained by adding the number of degrees of freedom for the
mechanical and electrical parts:

§=s,+s, (2.190)
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This is so since there aren’t any specific variables of electromechanical nature; the
variables are discreet and separate. The mutual interaction between the mechanical
and electrical parts of the system as well as processes of energy conversion are re-
alized by the so called electromechanical couplings, which result from the fact that
electromagnetic energy is relative to the mechanical variable and, as a conse-
quence, the equations are linked. This issue is covered in more detail later in this
chapter.

2.2.2.1 Electric Variables

The selection of electric variables for characterizing an electromechanical system
is implied by the form of Lagrange’s function for a single particle in the field
(2.181). The description of potential energy involves charge Q, while the expres-
sion of kinetic energy involves a charge vQ in motion. Hence, the proposed vari-
ables in macroscopic description of electromagnetic phenomena are

0 [C]
O=i [A]

which denote electric charge and electric current, respectively. The function of the
charge in the electrical term of Lagrange’s function is similar to the role of the po-

(2.191)

sition in a mechanical system, and Q - electric current is an equivalent to me-

chanical velocity, which in fact is the velocity of the charge. Such a selection of
variables is natural and harmonic both in terms of formal similarity and physical
role in a system accounting for coordinates in the description of mechanical mo-
tion. The electrical variables, including electric charges Q and their time deriva-

tives, i.e. electric currents Q =i are present in electric circuits which are also

known as electric networks. The role of the variables of the primary description in
electric networks is played by charges on the branches Q,,, which occur on the par-
ticular branches of the network

Qb = (le,sz, --"ng )

where: g - is a number of branches.

At the same time, the generalized coordinates include the selected charges
along the branches, which form the vector of generalized coordinates with the
length s,

q, =00, ---,0,) (2.192)

The role of constraints in an electrical network is played by equations formed in
accordance with Kirchhoff's first law, which states that the algebraic sum of cur-
rents flowing through a node of an electric network is equal to zero (Fig. 2.24)

Zij =0 (2.193)
J
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Fig. 2.24 Representation of constraints in electrical network formed in accordance with
Kirchhoff's first law

The kinematic equations of constraints (2.193) originating from Kirchhoff's first
law can be integrated. Since the nodes in the network do not accumulate electric
charge the result is

D>0,=0 Y 80,=0 (2.194)
J J

The number of the degrees of freedom s, in an electrical network is related to the
number of branches g and the number of nodes w and is equal to

s, =g—w+l (2.195)

The selection of generalized coordinates is subjected to the standard conditions
determined by the relations in (2.34-2.36). The transformational formulae type
(2.37) are linear, which results from linearity of the equations of constraints (2.193
—2.194). As a result, they take the same form for electric charges Q, electric cur-

rents Q and virtual displacements 0Q:

Q,=r(q,)
Q, =f(d,) (2.196)
éQb :f(&le)

2.2.2.2 Virtual Work of an Electrical Network

Virtual work represents the exchange of energy with the environment. The role of
external forces is played by electric voltages u or electromotive forces e. A dissi-
pation of energy takes place under the effect of current flow through resistances R,

which for the flowing current 0 play the similar role as the friction coefficients in
resisting mechanical motion.
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A, = Zg:(ui ~ R0y, )JQbi (2.197)

i=1

The summation is performed along all branches of electrical network. After the ap-
plication of transformational formulae (2.196) and simplification of algebraic ex-
pressions, we obtain virtual work in the form of the sum of the terms in parenthesis,
each of which represents generalized force for a given generalized coordinate

A, = Z[”k _szlQl]é‘Qk (2.198)
k=1 I=1

where: uy - is the total voltage for a k-th mesh in a network
Ry, - is the mutual resistance of k,/ meshes of the network.

Example 2.10. Let us apply the presented method for the determination of the
number of degrees of freedom, selection of generalized coordinates and virtual
work for an electrical network, which corresponds to the topology of a 3-phase
bridge rectifier presented in Fig. 2.25.

For the examined network the number of nodes is w = 6 and the number of
branches is equal to g = 10. Hence, the number of degrees of freedom amounts to
s, = g —-w +1 = 5. The branches are marked with arrows to show the direction of
current flow indicated with a plus sign. The vector of currents in the branches,
which play the role of velocity in the primary coordinate system, is the following:

Qb = (QI,QZ, --~aQ10)

Five linearly independent charges are indicated as the generalized coordinates. For
example such coordinates include

q. = (%"]2"]3#4"]5): (01,05.04,06.010)

and the corresponding vectors of currents and virtual displacements are:

q, = (Ql,Q3,Q4aQ6aQ10) &le = (5Q1,6Q3,5Q4’§Q6’5Q10) (2.199)

x 10

45 6

0

Ao {0

Fig. 2.25 Diagram of electric network representing a 3-phase bridge rectifier
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The vector of generalized currents (2.199) plays the role of a set of mesh currents
in the method of analysis of electrical networks familiar from electrical engineer-
ing. The mesh currents corresponding to vector ¢, of generalized currents are in-
dicated in Fig. 2.25. This system contains 6 nodes yielding the relations (2.193)
resulting from Kirchhoff's first law:

Q1+Q7:Q4 Q1+Q2+Q3:0 Q2+Q8:Q5 (2.200)
Q3+Q9=Q6 Q4+Q5+Q6=Q10 Q7+Q8+Q9=Q10

One of the above equations is linearly dependent on the remaining ones and can
serve to play the role of a control node. The resulting transformational formulae

(2.196) for the currents take the form
Q:2=—.Q.1,_'Q.3 .Q.s ='Q.10fQ'4TQ.6 'Q'7 fQ'4_Q.1 (2.201)
Q=01 +03+010-04 =0 Q9=0s—D5

In accordance with (2.196) the same functional relations are fulfilled for virtual
displacements

5Q2:_5Q1,_5Q3 5Q5:6Q10_5Q4_6Q6 6Q7:6Q4_5Q1
003 =0, +00; + 30,y — 00, — g g = s — 0,

Let us assume that every branch has a certain resistance R;, where [/ denotes the
number of this branch and supply voltages in branches 1,2,3 are presented along
with their sense in Fig. 2.25. The virtual work in the coordinates of primary de-
scription, i.e. with the use of branch currents and voltages is equal to

(2.202)

3 9
A= 2(61 ~R,0,)50, + Z(—RzQz )80, +(—ejo — Riy010) 00
=1 =4

Since transformational formulae (2.201-2.202) are linear, the virtual work of this
system can be easily obtained by direct substitution. After substitution we have:

A= (”1)ng +(V3)§Q3 +(”4)5Q4 +(V6)5Q6 +(”10)5Q10

Since virtual displacements (2.199) are independent, each of the terms in paren-
theses corresponds to the right-hand side of Lagrange’s equation for a k-th gener-
alized coordinate. Assuming at the current stage of the study that the system does
not account for passive elements but sources and resistances, we obtain oA =0.
From the independence of dQ;, k = 1,...,s, it results that all terms in r; have to be
equal to zero. The result forms the statement of the equations of motion for the
system of an electrical network given in the diagram in Fig. 2.25. The equations
are found below:
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n: e —e—L(R+Ry+R; +Rg)—i3(Ry + Rg) +

r3: e3—ey—i3(Ry + Ry + Rg + Ry) —ij(Ry + Rg) +

ry: —ig(Ry+Rs+R; +Rg)+i)(Ry +Rg) +

rg: —Ig(Rs+Rg+ Ry +Ry)+i3(Rg +Ry)+

Ho: —e€—lo(Rs+Rg+Rjy)+(Rs+Rg)(iy+ig)—
—Re(i; +i3)=0

(2.203)

These equations apply the traditional notation i = Q for the electric current. The

verification of the equations in (2.203) is quite problematic. However, one can
easily note the symmetry of the network and the corresponding selection of gener-
alized variables. This symmetry can be perceived in equations (2.203), which
confirms the correctness of the equations gained. It is sufficient to substitute the
subscripts 1 — 3, 4— 6, 7 — 9 in equations r;, r; and a change in their positions
will be followed by an unchanged result. In a similar manner we can undertake the
procedure in ry, r¢. Equation r|o can also be transformed in a similar manner while
remaining in the same form.

2.2.3 Co-energy and Kinetic Energy in Magnetic Field
Converters

In electromagnetic converters we have to do with low frequencies of electric cur-
rent and, as a result, with slowly variable electromagnetic fields. This enables one
to consider fields as stationary and separately consider each of the field’s compo-
nent, i.e. magnetic field and electric one. The source of the first one is the vector
potential A relative to electric currents, while the source of the latter one is the
scalar potential ¢ depending on electric charges.

2.2.3.1 Case of Single Nonlinear Inductor

Let us first consider an individual inductor with the current Q =i, which forms

the source of a magnetic linkage W with its coils (Fig. 2.26). Departing from the
instantaneous power supplied to the coil

P:eQ

where e = o is electromotive force induced by magnetic field on the coil, we
t

obtain the delivered power as the integral of the instantaneous power
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t t t
T, :IPd? =J'eQ'd? =J'?Q'd7
0 0 0 !

The above expression indicates that energy of field 7, is not relative to time; how-
ever, it is relative to the current values of variables ¥ and Q . Hence, it is a func-

tion of the state. In the examined integral it is possible to undertake a change of
the variables, which gives

e

v
T = J' 0d¥ (2.204)
0

where ¥ is an independent variable and Q = Q(q’) .

Subsequently, we have to determine Lagrange’s function for the examined in-
ductor. This function is represented by the integral of magnetic field momentum
with respect to time. The momentum of the field for a single charged particle in
accordance with (2.182) is equal to QA. For the charges massively moving in a
conductor it is possible to derive the notion of the density of electric current
j[A/m?] and the Lagrange’s function is expressed as

L = I J];a(j)dj V:J.A(j)jdv (2.205)
V0 \4

The formula in (2.205) is also relevant with regard to non-linear environments
with electromagnetic field since the expression for vector potential A(j) does not
assume the superposition from the currents in space V. This potential involves the
magnetic properties of a material in space, so that rof(A(j)) = B, in contrast to
vacuum (2.185), where vectors B, H are linearly dependent. It was indicated in
more detail in [16] that this vector based approach can lead to the discreet model
of Lagrange’s function as a result of the following course of reasoning

[Aamiav =[] A fias= [¥(iids
14 S\! N

where S denotes the internal cross-section of the conductor which carries the elec-
tric current. As a result, we obtain

9
L =T = J'\P(Q')dQ' (2.206)
0

This Lagrange’s function is equal to the co-energy of the magnetic field 7”. From
the relation (2.206) it results that in the discreet system the magnetic linkage ¥
plays the role of magnetic field momentum and, hence, forms an equivalent of
the term for magnetic momentum of a charged particle (2.182). The energy and
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co-energy of the magnetic field sum up to form a rectangle just as the case of the
motion of a particle (2.179). An illustration of this is found in Fig. 2.26.

T +T, =¥YQ (2.207)

The momentum of the magnetic field (magnetic linkage) is the function of the
current Q and can be determined with the use of a parameter called inductance
coefficient

Y =M)Q (2.208)

where: M (Q) = g—z - is an incremental inductance coefficient.

The case is similar for that of the mechanical momentum of a particle, which
can be determined using a parameter — particle’s mass. For the case of the linear
magnetization characteristics the inductance coefficient is constant. As a result,

Y=M Q and the energy of the magnetic field is equal to:
1, = [0dMO) =L mO?
Thus, co-energy is: T, = J-‘I’dQ = %MQ.2 (2.209)

and the relation 7, =T, is fulfilled.
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Fig. 2.26 Illustration of the relation between the energy 7, and co-energy 7 of the mag-
netic field for an inductor with non-linear magnetization curve

One can note at this point that there is a complete analogy to momentum, en-
ergy and kinetic co-energy in mechanics for the case of a particle in motion. The
non-linear case in mechanics takes place for sufficiently high velocities (2.171),
(2.176-2.179), where the mass m is considerably relative to the velocity v.
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2.2.3.2 The Case of a System of Inductors with Magnetic Field Linkage

A very large number of electromechanical devices such as electrical machines and
transformers have a number of magnetically linked windings. This is associated
with the much more effective transformation of energy for the case of application
of multi-phase systems in electric network and machines. Such linkages do not
play a small, or even a marginal role; however, it is their function to decide on the
operating principle of such devices. Hence, it is essential to take them sufficiently
into consideration in the mathematical models and during the design of such sys-
tems. In the generalized case magnetic linkage is associated with all windings,
which can be presented in an abstract form in Fig. 2.27. The calculation of energy
or co-energy for such a linked system usually poses a difficult task and is often
conducted using programs for electromagnetic calculations in non-linear environ-
ments, which are based on finite elements method or edge variables method. Effi-
cient dedicated 2D and 3D programs have been developed to handle both methods
beside accessible free and trial software. Such programs make it possible to de-
termine the field in the form of a spatial distribution of vectors of magnetic poten-
tial A, field intensity H, or the vector of magnetic induction B. It is also
possible to obtain the integrated parameters such as co-energy and energy of
a field, inductance of the windings and ponderomotoric forces encountered in a
system.

Fig. 2.27 System of n magnetically linked inductors

In the examined case we have to do with the task concerning the statement of
generalized forms which enable one to determine the functions of co-energy and
energy of a magnetic field in the function of generalized coordinates and their
time derivatives — electric currents. The basis for the derivation of such formulae
lies in the fact that energy and co-energy of a field are the functions of the state
(2.204) and as such are not relative to the means used to obtain a certain state
(temporal functions) but depend on the instantaneous state as determined by
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variables ‘I’,Q . Hence for simplification of the mathematical statement, in a sys-

tem of linked inductors the particular currents Qk should be successively raised

from zero to the final value, while the remaining variables are being kept at a
steady level. This is conducted in succession from inductor 1 to the last one, which
is denoted as n, while the current variable is denoted with a sign placed above its

name Q in order to distinguish it from the remaining variables.

o 5 . .
T/ = I ¥,(0,,0.0,....0)d0, + I Y, (01, 05,0,...,0)d0, + ..
0 0

O - - 9, - .
+ J'\Pk 01,0y 04,0,...0)dO, +...+ I‘I’n(Ql,QZ,...,Qn)dQ,,
0

0

This can be restated in a more abbreviated form:

n

o) - .
Te’:zJ.\Pk(Qlan,...,Qk,0,...,O)ko (2.210)

k=l ¢
The calculation of the magnetic energy of the system of inductors may involve a
similar procedure, i.e. integration of the term type J.Qd‘I’ or simply the use of
formula in (2.207). Thus, we obtain
T, =¥0-T, (2.211)

For a system of linked inductors we define mutual inductance coefficients

M, =— 2.212
20, ( )
while in the linear case : My, = %
1

where: W), is a component of the linkage ¥, resulting from current ;.

The co-energy of the field in the linear case results directly from relation
(2.210) and the definition of inductance coefficients (2.212) and is clearly equal to
the magnetic energy of the field

(o) I % - -
T,=T, = _[MqudQl + _[(leQl +M»0,)d0, +...
0 0
. 2.213
Qk . . o g ( )
+ J'(M,dQI + My 0y +oo ot M 0,)dO, +...
0
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By integration we obtain:
’ 52 52 52 52
T'(’3 =TE Z%MIIQI +%M22Q2 +'+%Mkak +...+%M,an +
+M 50,05 + M ;005 +... A ML00, +
+M 30,05 + ... A M,,0,0, + (2.214)

+...+M,,0,,0,
which can be restated more briefly as:

T€/=T€ =% Mlele (2.215)
k=1 I=1

In the expression (2.215) for energy and co-energy of a system of linked inductors
one can apply the relation My, = Mj. As a result of expansion we obtain: for

k=1 —>%Mkk ka , while for k#[— Mk,Qk Q, , which leads to the correct results
such as in (2.214).

2.2.4 Potential Energy in Electric Field Converters

Electric potential energy is associated with quasi-static displacement of an electric
charge Q in an electric field in the direction of the rising potential. In accordance
with (2.183) this energy for a single particle is equal to Q ¢, where §(r, ¢) is the
scalar potential of a field. This charge is considered as a small (testing) one as
it itself does not affect the scalar potential. The discreet element related to the
accumulation of electric energy (electric field) is the capacitor, whose ability to
accumulate a charge is characterized by parameter C called the electric capacity.
The capacity of a capacitor is expressed by the relation of the accumulated charge
to the voltage between the electrodes in a capacitor

Y
C= 2.216
U ( )
while for a linear capacitor
Q
C= 2217
U ( )

the capacity is a constant value. The potential energy associated with the charged
capacitor can be derived from electric power P = uQ supplied during charging:

U, = j).qutN =ju%d? :judé (2.218)

0
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From relation in (2.218) it results that the potential energy related to an electric
field in a capacitor is the function of the state and depends only to the voltage and
charge in that capacitor. For this macroscopic case, in contrast to the elementary
charge in an external field, charge Q affects the potential in the charged capacitor
as a result of charging. Hence, in (2. 218) the relation u = Q/C(Q) is fulfilled.

Thereby, using (2.218) we obtain U, J.
c (Q)

For a linear capacitor this gives a form that is popular and often referred to

0 5.2
J'—é a0 =4 (2.219)

2.2.5 Magnetic and Electric Terms of Lagrange’s Function:
Electromechanical Coupling

It is now possible to determine the electromechanical term L, of Lagrange’s func-
tion in an electromechanical system. It consists of the kinetic co-energy 7, related

to magnetic field (2.206) and a term for potential energy U, of the electric field
(2.219) deduced from this term

L=T -U, (2.220)

The application of Lagrange’s function in its electromechanical part is associated
with a need of making two remarks. For linear magnetic circuits (without mag-
netic saturation) the co-energy of the magnetic field 7, is equal to the energy of

the field 7,; hence, the distinction is not necessary. The second remark is that in
connection with low frequencies of voltage and current alternation in electrome-
chanical systems we have to do with quasi-stationary fields, which means that the
fields are virtually not coupled. As a result, we have to do with the magnetic term
of the Lagrange’s function, the electric term, while the electromagnetic term asso-
ciated with the coupled fields is absent.

Electromechanical coupling. The ability of electromechanical converters to
convert energy occurs as a result of electromechanical couplings. This means that
in equations for electrical circuits there are voltages resulting from mechanical
motion, while in equations of motion for mechanical variables (displacement, rota-
tion) there are torques or forces resulting from currents or electric charges. The
occurrence of couplings is associated with the fact that co-energies or energies of
electromagnetic nature are relative to mechanical variables. Let us consider a de-
vice with n coupled windings, whose inductance coefficients are relative to a me-
chanical variable, for instance angle of rotation ¢. This is the case in electrical
multi-phase machines

=12 My(@0.0 (2.221)

k=1 I=1
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In equations involving electrical variables this results in the addition of another
term in the k-th equation

d(dT, |_d[x -]
Z{anJ—dt[ZMk/((/’)QJJ—

=1
= ZMkl (@0, + ("z ,((,D)

in which we have to do with two terms for voltage induced in the winding: the
first term comes from variation of the current in time di; /dt and is denoted as the

(2.222)

voltage of transformation, while the other one associated with angular velocity ¢

of converter’s motion is denoted with the term rotation induced voltage. In the
equation for the mechanical variable ¢ we have to do with the term

=—i2[ M,d«o)JQkQ, (2.223)

k=1 I=1

It means the torque resulting from the interaction of electric currents or, according
to a different interpretation, from the effect of the interaction of magnetic field and
electric currents. The latter interpretation is quite self-evident when we take into
consideration a converter with non-linear characteristics of magnetization. In this
case it is necessary to apply Lagrange’s function accounting for co-energy 7T of

the magnetic field and in accordance with (2.210) we can calculate:

o)
oL OJT, 0|~ S - >
—=—=— Y, (¢,0,,0,,...,0,,0,...,0)d 2.224

In a similar manner, if the capacity of a capacitor in a converter with electric field
is relative to a mechanical variable, for example the distance between the elec-
trodes, we have also to do with electromechanical coupling. The electrical energy
of a capacitor with a mobile electrode is expressed by formula

0’
=1 2.22
Ve=2 C(x) (2.225)

where x is a mechanical variable.
In this case in the equation for the electric variable we have an electric term:

Ww,_ 0
0 C(x)

as a result of which the voltage is relative to the position x of an electrode. In the
equation for a mechanical variable we obtain the following term:
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1729C™)
2 C*x) ox ? x

2 2
W, _Q a( 1 ng 1 9C(x) (2.226)

ox 2 dx\ C(x)

which denotes the mechanical force of attraction of the mobile electrode of a ca-
pacitor expressed in [N]. This is confirmed by the dimensional analysis of formula

(2.226):
F A VA
e
m Vm m m
The similar principle applies to the electrostatic voltmeter for example. Electro-

mechanical couplings are encountered in all examined converters since they con-
stitute the idea governing their operation.

2.2.6 Examples of Application of Lagrange’s Equations with
Regard to Electromechanical Systems

Example 2.11. For an electrical system forming a network presented in Fig. 2.28
we will state differential equations of motion using Lagrange’s equation method.
The lumped parameters R,L,C in this network are constant.

The elements present in the branches of the network in Fig. 2.28 are numbered
in accordance with the numbers of branches in this network. The number of
branches amounts to g = 5, while the number of nodes w = 3. Hence, the number
of the degrees of freedom is equal to

s=g-w+l1=3

Fig. 2.28 Electrical network with lumped parameters

The vector of the coordinates of the primary description (2.35), i.e. charges Q; in
the particular branches takes the form

X=[0,,0,,....051" (2.227)

and, by parallel, the vectors of electric currents Qi and virtual charges 0Q; are:
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X=[0,,0,,....051" X =[80,,80;,...,0051" (2.228)

The selection of the generalized coordinates can be undertaken in various ways.
The selection of currents in the branches with inductances L as generalized veloci-
ties leads to the decoupling of the equations of motion with respect to the deriva-
tives of the currents and, as a consequence, we obtain a diagonal matrix of induc-
tance. Given such selection, we have

q=[0,.0;.0,1"
q=10,,05,0,1" (2.229)
8q =[80,,805,60,1"

The constraints in this system result from the equations for currents established for
the Kirchhoff’s first law (2.193). Two of them serve for the calculation of trans-
formational formulae (2.196), which in the examined case leads to the relation

Qz = Q1 —Q3 Qs = Q3 —Q4 (2.230)

For the third node, which was not applied for the derivation of transformational
formulae for currents (2.230), it is possible to undertake the verification of the
formulae by checking whether the balance will be zero as a result of restatement
of this formula in the form of currents being generalized velocities. The equations
in (2.230) can be integrated and directly lead to the derivation of transformational
formulae for electric charges and virtual displacements of the charges:

Qz =Q1—Q3 é‘Qz =§Q1_5Q3

(2.231)
05s=0;-0, d&05=050;-80,
Lagrange’s function for the examined system takes the form:
L=T,-U,=+L,0} +1L,0; +11,0; -
L @-09)7 108 (0,-0,)° (2.232)

1
2 C2 2 C3 2 CS

This Lagrange’s function has already been expressed in generalized coordinates
using (2.231). The virtual work in the coordinate system of the primary descrip-
tion takes the form:

0A = (u; — R0))0, +(—R,0,)80, +(~R305)80; +
+ (_64 - R4Q4)5Q4 + (_65 - R5Q5 )5Q5

After the application of transformational formulae (2.230-2.231), we obtain:
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A= (”1 — (R, +Ry))0, + Ry, )5Q1 +

+ (_ es— (R, + R; +R5)Q3 +R2Q1 +R5Q4 )5Q3 + (2.233)
+(‘35 —e,—(Ry +R5)Q, +R5Q3)5Q4 = ZﬁkﬁQk
k=13,4

The correctness of thus calculated virtual work can be verified by using closed
loop currents method. The equations of motion for this electrical network can be
formulated in the following manner:

1° for ¢, =0 : ia—L—a—L:ﬁl
di 90, 90
FIACECE )
L1Q1 C =u;— (R + RO, + R, 05
2
dl1 Q1 Q3 . .
or: —(R,+R,)i; +R,i
Li— dt C, (R, 20 213
2° Similarly, for: g, =05 ia—?—a—L: 133 (2.234)
dt 0Q; 00;
L 00y 0 0:-0s
dt C, C3 Cs
3° and for: g3 =0, 4 B'L oL 134
dt 00, aQ4
di, 0;-0 . .
[,—t-=2_=4 — (R, +R5)iy +Rsi
4 C. (R4 5)iy 513

These equations should be complemented by the following defining equations:
4°-6° O =iy 3 O3=i5 ; Oy=iy (2.235)

Let us further assume that between the inductors L; and L; there is a magnetic
linkage in the form drafted in Fig. 2.29.

This is a negative linkage described by mutual inductance —M;;. This means
that the current in the first and third branch in the direction of current flow marked
with an arrow leads to the decrease of the energy of the magnetic field. Accord-

ingly, the new form of Lagrange’s function L isthe following

L :L_M13Q1Q3
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where L is the Lagrange’s function (2.232). As a consequence, the equations 1°
and 2° in the system in (2.234) have changed:

diy L0

1° L—t-M =u, — (R, +R,))0, + R,C
ldl 13 dl C2 1 ( 1 Z)Ql 2Q3

20 L3ﬂ—M dll Ql O Q3 Q3 Q4 (2.236)
dt dt C, C3 Cs

The resulting equations are linked by their derivatives whereas the remaining
equations in the system (2.234-2.235) remain unchanged. Figs. 2.30 and 2.31 pre-
sent examples of waveforms for this network supplied with constant voltage
of u; =80[V], e, =40[V] and e5 =20[V]. The values of the parameters are as

follows:
R =10[Q] R, =20[Q] R, =5[Q] R, =20[Q] Ry =40[Q]
L, =10[mH] Ly=20[mH] L, =80[mH]

C,=20{uF] C;=50[uF] C5=30[uF]

. 'M 13 .
Ql '/\‘ Q3
Y Y Y LYY YT

L Ls

Fig. 2.29 Magnetic linkage of windings L, and L, in the network in Fig. 2.28

1.6
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1.2
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0f~"nooe 0004 0.006 tn[.n]'tua 001 0012 0018
E]

i1,i2,i3[A]

Fig. 2.30 Curves of electric currents for the network in Fig. 2.28 under constant supply
voltage, switched under zero initial conditions
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uCluC2.uCav] a4

20

0 00 0004 0006 OODE 001 002 0014
i[s]

Fig. 2.31 Curves of voltages on capacitors for network in Fig 2.28 under constant supply
voltages

Following Figs. 2.32 and 2.33 present the curves for switching under alternat-
ing voltage u; with the amplitude of U; = 80[V], f= 50 [Hz], ¢y = 0.36, while the
remaining voltages are constant e, = 40 [V], and es = 20 [V] and the circuits’ pa-
rameters remain unchanged.

1,57
"o
0.5
0
e 01 2 0.04 05
-1
1,53

Fig. 2.32 Curves of electric currents for network in Fig 2.28 after switching alternating
voltage u,, while the remaining voltages are constant and circuits’ parameters unchanged

&0
U A SN A LN L

0 .

ufv]
-100

Fig. 2.33 Curves of voltages on capacitors for network in Fig. 2.28 after switching alternat-
ing voltage u, while the remaining voltages are constant and circuits’ parameters unchanged
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Example 2.12. The examined electromechanical system is a symmetrical cylinder
of mass m with a coil wound around it. This cylinder is rolling down along an in-
clined plane with an angle of a. The coil consists of z turns and is fused in contact
into the side surface of the cylinder in a way that does not interfere with potential
motion of the cylinder. The cylinder is made of non-magnetic material whose
magnetic permeability is equal to that of the air. The motion occurs in a constant
magnetic field, whose induction vector B is perpendicular to the base of the plane.
First, we will establish the equations of motion for the system, whose kinematic
diagram is presented in Fig. 2.34.

Let us assume that the motion is slipless and the axis of the cylinder for the du-
ration of the motion is parallel to y axis which goes along the horizontal edge of
the plane. This system is characterized by the following parameters:

m - mass of cylinder including coil

J - cylinder’s moment of inertia in relation to the central axis
r - cylinder’s radius

[ - length of cylinder along the axis

R - resistance of the winding

L,- inductance coefficient of the winding

z - number of the coil’s turns

o - angle of plane’s inclination

Fig. 2.34 Cylinder with coil wound around it on an inclined plane under constant magnetic
field

Under such assumptions the constraints imposed on the system are holonomic and
the system has two independent virtual displacements:

0g - for the rev olute motion of a cylinder
00 - for the electric charge in an coil

From the above we can derive generalized coordinates in the form
q=(9,0) (2.237)

The virtual work of the system is

A = (-D@)dp + (~RQ)XQ
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and the kinetic mechanical energy is

T, =+mi’+1J¢° (2.238)

m =7

Kinetic co-energy of the magnetic field, which is an equivalent to the magnetic
energy due to linearity of the environment, has two terms and just as the field is a

superposition of two fields: one from the current Q in the coil and the external
field with constant flux density B.

T,=T,=1L,0*+0¥.(p)=1L,0%+Q¥,, cos(p—,) (2.239)

where: ¥.(¢) - denotes the flux associated with the coil originating from the exter-
nal field. The potential energy U, is associated with the mass of the cylinder in the
gravitational field

U,, = mgh(¢)=mg(h, —@rsino) (2.240)
The above relation contains the following terms:
@, - initial value of the angle of revolution
h, - initial elevation of the cylinder’s center of mass S above the mount
Y., =2Blrz - maximum value of the external field linked with the coil.
After transformational formulae are taken into account x=¢@r, x=¢@r, La-

grange’s function in generalized coordinates takes the form:

L=(T,+T,)-U, =1 +mr*)¢” +

G . (2.241)
+ %LwQ + Q‘Ilzm COS((D_ (00) - mg(ho —@rsin o)
Hence, the resulting equations of motion are the following
R d oL JdL
1 Q=g o=
dtop Jdo
(J +mr?)p+ QW sin(p— @) —mgrsina=—-Dg
hence: e 0¥, sin(¢—@,) +mgrsina— D¢
J +mr*
d oL dL :
20 =0: S = =R 2.242
=0 dt 90 00 Q (2242

d . .
E(LWQ +¥,, cos(@—@y))=—RO

d. Y, .. .
—i, =—psin(p—@y)-T,i,
dt w Lw 4 ((0 ¢0)

where: iW:Q T,=R/L,
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The expression: M,=-i, ¥, sin(¢p-¢,) (2.243)

denotes electromagnetic torque which brakes the cylinder during its rolling motion
down the plane. The mean value of this torque is different from zero since the cur-
rent i,, in the coil is the alternating current. It is possible to select ¥, in such a
way that the mean velocity €, is constant and in that case the time function of the
current i,, is periodical, as resulting from (2.242). Given an approximated curve of
the current i, in the steady state in the form

iy = D i SIN(Q Kt +6,)
k

and for the rotation angle ¢ = Q,, t+¢, it is possible to determine electromagnetic
torque acting upon the cylinder from the formula (2.243)

—_1
Me __T\sz *

x {Zimk (cos(Q,, (k =1t + 6, +@y) —cos(Q,, (k +1)t +6, —@,)
k

} (2.244)

The basic components of this torque for k =1 are the constant torque and the
variable one corresponding to the double of the mean angular velocity:

Me\k:l = —%‘sziml (005(91 + @) —cos(2Q 1+ 6, — @, ))

For the mathematical model of the system presented in (2.242) the parameters
have been calculated for a hollow cylinder with the density of p = 1.2 [kg/dem’].
The basic dimensions of the structure are presented in Fig. 2.35. The parameters of
the system are following:

Scu=1.5 [sz] - cross-section of the winding

m=7.0[kg] - mass of the cylinder

z=150 - number of turns in the coil

R=4.51[Q] - resistance of the winding

L,=0.04 [H] - inductance of the winding

J=0.032 [Nmsz] - central moment of inertia of the cylinder

J. = J +mr* [Nms®] - moment of inertia of the cylinder in respect to tangency
line of rolling motion

r=0.075 [m] - radius of the cylinder

cz = 12.42 [Wb/T] - constant value which relates flux with flux density
a=0.3 - angle of plane’s inclination

The illustrations of the results of computer simulations for this system are pre-
sented in Figs. 2.36-2.43. They involve two types of motion. For the first set (Figs.
2.36-2.39) the motion takes place under a strong magnetic field, i.e. for B = 0.25
[T] and is stationary in the sense of possessing periodic characteristics.
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15 cm

Fig. 2.35 Schematic diagram of cylinder containing coil

However, it is clearly non-uniform in the function of the angle of revolution
and the current in the winding differs much from the sinusoidal shape due to the
considerable effect of the angular velocity, which is periodic but far from steady.
Under a weaker field (B = 0.12 [T]) the motion is much faster but also stationary,
velocity has a variable term with a lower value and the current presents a curve
more reminding a sinusoid.

L 5 10 15 o0
5]
Fig. 2.36 Angle of cylinder revolution for flux density B = 0.25[T]

G LLL
41_5 W ](“J}F:] ]{41'5 20

Fig. 2.37 Current curve in coil for flux density B = 0.25[T]
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Fig. 2.38 Angular velocity of cylinder’s motion for flux density B = 0.25[T]
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Fig. 2.39 Electromagnetic torque decelerating cylinder’s motion for flux density B =
0.25[T]
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Fig. 2.40 Angle of cylinder revolution for flux density B = 0.12[T]

Example 2.13. Dynamics of a contactor with electromechanical drive. Fig. 2.44
presents a model of a contactor with non-linear magnetization characteristics. It
consists of an electromagnet, movable jumper of mass m, a system of constant
springs with stiffness k;, coefficient of viscous damping D;, and springs and
dampers acting within the range of small width of the gap x for decelerating and
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Fig. 2.41 Current curve in coil for flux density B = 0.12[T]
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Fig. 2.42 Angular velocity of cylinder motion for flux density B = 0.12[T]
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Fig. 2.43 Electromagnetic torque decelerating the motion of cylinder for flux density
B =0.12[T]

damping the elastic collision of the jumper against the core. Their stiffness coeffi-
cients are defined as k, and k3 and damping ones as D, and D;. An adequate selec-
tion of the springs and dampers plays a key role in the securing the correct opera-
tion of the electromechanical system of the contactor beside the characteristics of
magnetization in the function of the width of the gap x as presented in Fig. 2.45.

This system has two degrees of freedom: one associated with the mechanical
motion and the other one for the electric charge in the coil of the winding. Hence,
the generalized coordinates follow in the form
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q=x0)

where: x - is the width of the air gap
Q- is the electric charge in the winding

U

R L
I:L YT T

=

=

T

o,
<
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%

B

2

bumper

Fig. 2.44 Electromechanical system consisting of a contactor with a movable jumper
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Fig. 2.45 Characteristics of magnetization of contactor’s circuit for various values of air
gap from the opening to closing of the gap

Lagrange’s function for the system involves the kinetic co-energy of the mag-
netic field, kinetic energy of the moveable jumper and potential energy of the
jumper in the gravitational field as well as potential energy of the system of
springs given by the function Uy(x).

9 . .
L= J'\P(Q',x)dQ +imi* —mg(c—x)-U (%) (2.245)
0
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Thi(x—dy)? x<d,
U,(x) =41k (x=d))* +L1k,(x—d,)’ x<d, (2.246)
Lk (x=d))? +3ky(x=dy))? +L1ks(x—d3)*  x<dy

The relations in (2.245-246) apply the following symbols:

m - mass of the movable jumper
dy, dy, d; - constants which determine the free length of the springs
¢ - a constant.

The virtual work of the system involves the exchange of energy with the environ-
ment and contains two terms: an electrical and a mechanical one

SA =, + A, = P&+ Py (2.247)

The mechanical term of virtual work contains viscous damping coefficient D re-
sulting from the motion of the jumper and dampers with considerable damping co-
efficients D, and D;, which account for damping of the impact between jumper
and electromagnetic core for small gap width just as for the case of the springs

A, =P (x)F={—(D, + D, )idx x<d, (2.248)

The electric term of virtual work is formulated for the circuit of the coil
8, =(u-RQ)XQ (2.249)

while the energizing is provided for in two ways: by AC and DC with the voltage
converted from a doubling rectifier

B { 1 COS(aX + @) (2.250)

B U,» |cos(at + a)|

The equation of motion for the mechanical variable takes the form:

d(dL) oL
10 = N —_ — ——:P
h=x dt(a)'cj )

and after the introduction of Lagrange’s function (2.245):

0
d . ) oo U, (x)
~m) !axw(x,Q)dQ mg + =222 = P (x)

which can be transformed to take the final form:
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mx=F,+mg+

—k(x—d))-D;x . x<d, (2.251)
+ _kl(.x_dl)_kz(.x—dz)_(Dl+D2)x dez
ki (x—dy) —ky(x—dy) — k3 (x—d3)— (D, + Dy + D)k x<d,s
Qa T
where: F, = I =W (x.0)d0 (2.252)
X
0

- is the pull force of the electromagnet.
The equation for variable Q - electric charge results from the general form:

o _o- dfoL)_ oL _
? 9 =0 dt(aQJ ag e
or: %(‘I’(X,Q)) =u-RQ

After differentiation, we obtain

) 8‘1’(x.,Q) i V(.0 _ "
a0 dx

-RO (2.253)

In the equations of motion we have to do with derivatives of the characteristics of

o . . O¥(x, G .
magnetization with respect to the current of the coil % and with respect to

¥ (x,0)
ox
the pull force of the actuator. In the examined case of the characteristics of magneti-
zation (Fig. 2.45) approximation was carried out analytically using spline functions of
the third degree, thanks to which the derivatives according to the coil current are con-
tinuous. However, the derivatives of the magnetization characteristics with respect to
the width of the gap x are calculated as the differential values A¥/Ax by linear ap-
proximation of the quotients between the particular characteristics. Fig. 2.46 presents
the force of jumper pull calculated in accordance with relation (2.252) in the function
of the relative width of the gap x, expressed as the per cent of the gap width in the
state of complete opening of the contactor, for several values of the current

Q =5,10,...,30[A]. On the basis of the mathematical model with the equations of

motion (2.250-2.253) and characteristics of magnetization from Fig. 2.45 a number of
simulations was conducted for the examined system of the contactor with electrome-
chanical drive involving shutting of the movable jumper after the voltage is applied.
The calculations were performed for the supply of both alternating current as well as
the voltage converted from a doubling rectifier, which leads to the flow of direct cur-
rent in the winding with only a small alternating component. The appropriate opera-
tion of a contactor is associated with the necessity of an adequate selection of supply

the width of the air gap , which after integration (2.252) corresponds to
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voltages and parameters regarding both springs and dampers. For the supply of the
contactor with alternating voltage the amplitude during switching it on is U,,; = 230
[V], while after the jumper has shut, the value increases to U,,; = 400 [V] in order to
maintain the closure state.

airgap[¥]
1] &0 100

20

-100

FeN] 2001

300

Wﬂ

<001

Fig. 2.46 Characteristics of pull force of contactor in the function of relative width of air

gap for constant values of coil current Q =5,10,...,30[A]

For the case of supply with rectified voltage the situation is reversed:
for the switching on of contactor the amplitude of alternating voltage undergoing
rectification is equal to U,,; = 32 [V] while after the shutting of the jumper is re-
duced by a half. The various values of the supply voltages are necessary to pre-
serve the appropriate operation of the contactor during the shutting of the jumper
and subsequently to keep it in the closed state. They result from the required flux
density in the air gap and an indispensable value of the current necessary to initi-
ate the fast motion of the jumper and subsequently to its stable maintenance in the
closed state, overcoming strong springs’ push, with only small power losses.
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10 ﬁ 1[x]
lag, . 0.4 0.6 0.8
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Fig. 2.47 Current waveform for powering on contactor with alternating voltage 230 [V]
during shutting of the jumper and switching voltage to 400 [V] after shutting
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Fig. 2.48 Velocity curve of the jumper for powering on contactor with alternating voltage
400 [V] during shutting of jumper and subsequent switching of voltage to 400 [V] after shutting

gaplem] e
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Fig. 2.49 Position of the jumper (width of air gap) for powering on contactor with alternat-
ing voltage for conditions presented in Figs. 2.47 and 2.48

The presented illustrations adequately characterize the operation of a contactor
under the supply of alternating voltage and indicate a need to increase the voltage
after shutting of the jumper in order to ensure the sufficient force for the mainte-
nance of the closed position under small oscillations of the position.

FelN] ~

Fig. 2.50 Electromagnet’s pull-in force for powering on contactor with alternating voltage
230 [V] during jumper shutting and switching voltage to 400 [V] after shutting
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The instant of switching the voltage to a higher one is indicated by all presented
curves; however, it is most clearly discernible for the case of the curves of current,
velocity of the jumper and the force of electromagnetic pull. The case of the appli-
cation of rectified voltage to the contactor is illustrated in Figs. 2.51 — 2.54.
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Fig. 2.51 Current waveform for the contactor to which rectified voltage of amplitude 32 [V]
was applied during shutting and switched to 16 [V] after closure of jumper
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Fig. 2.52 Position of the jumper for powering on contactor with rectified voltage of ampli-
tude 32 [V] during shutting and switched to 16 [V] afterwards
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Fig. 2.53 Jumper’s velocity for energizing contactor with rectified voltage of amplitude 32
[V] during jumper shutting and switched to 16 [V] after shutting
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Fig. 2.54 Pull-in force of the electromagnet for energizing contactor with rectified voltage
for conditions described as in previous figures

Example 2.14. Parallel plate motion electrostatic actuator. Fig. 2.55 presents the dia-
gram of an electromechanical actuator with a parallel plate motion in a capacitor. In
the discussed system the moving electrode of mass m and surface S moves in the ver-
tical direction and is subjected to the force of gravity. The dielectric found between
the plates of the capacitor has a dielectric constant &, which in the calculations regard-
ing the motion of this actuator is equal to the dielectric constant of vacuum &, The
circuit of the actuator supply includes: resistance R, additional capacitor with the ca-
pacity of C and a small inductance of the circuit L;. The role of the capacity C con-
sists in the stabilization of the motion of the electrode and, more precisely, an in-
crease of the range of the stationary operation of the actuator. Inductance L; only
assumes a small value since it is formed by the inductance of the energizing wires. In
addition, studies have shown that the application of appropriate method of integration
for stiff differential equations makes it possible to disregard this inductance.

k2 & k/2

R L
O—DM H I 1 1
Tu Q X 3

7

Fig.2.55 Diagram of electrostatic actuator with parallel plate motion in vertical direction

Under the assumption of the full symmetry of the system and resulting parallel
motion of the movable electrode, the system has only two degrees of freedom: one
for the mechanical motion described by generalized coordinate x, which denotes
the distance between the electrodes and the other one for electric charge defined
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by the generalized coordinate Q. Hence, the vector of generalized coordinates
takes the form

q=(x0) (2.254)

Lagrange’s function for the system described in the generalized coordinates is de-
fined as:

+—LQ*——=L — =2 k(x—x,)—mgx (2.255)

where:

X, - is the free length of the springs
0, =0, =0 - electric charge of each of the capacitors; electrical generalized

coordinate

C(x)= —S - capacity of a capacitor with moveable electrode (actuator)
X

eS . .
C, =C(xy) =— - nominal capacity of the actuator for x = x, .
Xo
The virtual work of the system, which realizes the exchange of energy with the
environment for the examined system, is equal to

A = (u—RQ)S0 + (-Dx)Sx (2.256)

The differential equations of motion of the system are following:
forg; =x

a_a_,
dtox ox "
1° 2
i(mx)+li 0 +k(x—x,)+mg =—Dx
dt C(x)
|
F,
As a result, this gives:
. 10° .
mx=———k(x—x,)—mg—Dx (2.257)
2¢e8
F,

where F. is the electrostatic force of pull of the moveable electrode;
for g, =Q

doL oL _

dt aQ 00 ¢
2° .
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which yields:
C C .
L, 0+ 9 |=y-R
O+0— ( c i )J Q
Following the statement that: Cy/C = o and by assuming that
G _x (2.258)
C(x) x
one obtains
LS£+2 o+ |=u—Ri (2.259)
dt C, X

For the case when we assume that L; = 0, the equation of motion for the electric
circuit takes the following form:

a9 _ g[mij 0 (2.260)
dt T, Xy ) R
where: d—QZi T =RC,
dt '

Stationary state, stability of the system. Under the assumption that the stationary
state exists for x = const, Q = const, from equations (2.257, 2.259) we can estab-
lish the conditions for the stability of the system:

F,=F,+F, (2.261)
1,1
where: Fo=20°— 5 Fi=-k(x=x) : Fy=-mg
Concurrently, 0=Y& =X (2.262)
a+z Xo

The examination of the possible solutions to equation (2.261) in the function of
the distance between the electrodes and for actuator parameters, such as the supply
voltage U and o = Cy/C, leads to the graphical representation of forces F, and F|
in Figs. 2.56 and 2.57. Their points of intersection represent the possible equilib-
rium points for the system (for F, = 0, which denotes the actuator in the horizontal
motion). These are the three possible cases of the actuator’s operation range 0 < z
< 1 determined by variable z = x / xo. The first case is relevant for the situation
when there are two points of intersection of curves representing forces F, and Fi.
The stationary point of operation is the one for which the relation

oOF. OF,
S 9k
dz 0z

is fulfilled, since in such a case the resultant force restores the system to its initial
position after it has been put out of balance. This condition is satisfied for the

(2.263)
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points of the intersection between curves for F, and F, whose location is closer to
the value of z = 1. In the second case there is just a single point of the intersection
of the curves within the area of actuator operation, which is stationary, as it fulfills
the condition in (2.263). The third case is encountered when there are no points of
intersection between the two curves and the reason for this is too high a voltage
applied to the system followed by a complete short circuit between the plates
in the actuator. Fig. 2.56 presents static characteristics for o = 1.2 and various val-
ues of the voltage U = 40, 50, 60, 64.5, 70 [V]. The loss of the stability of the
operation for actuator takes place for U = 66 [V]. Fig. 2.57 presents the curves for
a single value of the supply voltage U = 50 [V] and ratio of the capacities equal to
a=0.8,009,1.0, 1.2, 1.4, 1.6. For a = 1.4 there are two intersection points: a sta-
tionary one for z = 0.6 and a non-stationary state for z = 0.12. In order to examine
more precisely the control of actuators by means of changing the supply voltage,
that is, in order to determine the characteristics, the equation (2.261) has been
transformed using (2.262) to take the form

Vk+By2+UCy12x3 =0 (2.264)

where: f = (mg - k (x, - axg))/x, - is a design constant.
This equation (2.264) involves variable y, which is a linear function of the dis-
tance x between the electrodes of an actuator and depends also on the ratio a

y=zt+toa=xlxy+ta (2.265)

The calculation of characteristics and curves for dynamic states that follow have
been conducted for actuator with the following parameters:

k = 0.0001 [Nm] - for a horizontal motion actuator

k = 0.1 [Nm] - for a vertical motion actuator
m=0.4[g], xo=5 [mm], Cy= 1.8 [pF], S = 10 [cm?],
€ =gy=28.85E-12 [C/Vm], g = 9.81 [m/s’]

ge 07
e 07
de 7
FeFs a-17
2ed7?
1207

-1e-El?j 02 04 D& 08 1 ™12

Fig. 2.56 Characteristics of electrostatic force F, and spring force F, in the function of the rela-
tive distance z between electrodes for a = 1.2 and for supply voltages U = 40,50,60,64.5,70
[V]. The case of the horizontal motion actuator (without the effect of gravity)
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Fig. 2.57 Characteristics of electrostatic force F, and spring force F in the function of the
relative distance between the electrodes for supply voltage U = 50 [V] and o = 0.8, 0.9, 1.0,
1.2, 1.4, 1.6. The case of the horizontal motion actuator

The free length of spring x, has been selected in such a way that in the initial state
under zero voltage the width of the gap is x = x,, , hence

X, =Xy +mglk (2.266)

The vertical motion of the actuator is a drawback since it is associated with the
need to install a relatively stiff spring, whose free length x, (2.266) should not be
ridiculously large in comparison to the travel of the actuator, i.e. in the range
0 < x < x¢, which corresponds to 5 [mm] in the examined case. Hence, the large
stiffness of the spring for a vertical motion system results in the need to supply
high voltage to control the actuator. The horizontal motion system needs a rela-
tively less tense spring and this results in the considerably lower voltages for the
control of the moving electrode.

Fig. 2.58 presents the characteristics of control in the function of voltage U for
a system in vertical motion (accounting for gravity, k = 0.1 [N/m]) for various
values of parameter a = Cy/C. The line that goes across the curves is the boundary
line of stability of the control. If the boundary is exceeded by the moving elec-
trode a short-circuit with the permanent electrode follows. The next Fig. 2.59 pre-
sents similar characteristics for a horizontal motion actuator (with no gravity,
k = 0.0001 [N/m]). The characteristics are similar, however, for a system in the
horizontal motion of the electrode the control voltages tend to be considerably
lower.

The two characteristics indicate that the use of a capacitor C put in a series with an
actuator results in a beneficial extension of the range of the balanced control and is
improved in terms of the precision; however, it is associated with a need of applying
higher voltage. The dynamic curves have been modeled on the basis of the equations
of motion (2.257-2.259) and solved using Rosenbrock procedure for stiff differential
equation systems. Such a need results from the large span of the time constant values
encountered in the system, which is associated with the small value of capacity C.
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Fig. 2.58 Control characteristics z = f{U) for a capacity vertical motion actuator (subjected
to gravity force), for various values of parameter a = 0.2,0.4,...,2.4. The line illustrating the
boundary of the stability is presented
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Fig. 2.59 Control characteristics z = f{U) for a capacity actuator as in Fig. 2.58, but for a
horizontal motion system which applies a less tense spring

The application of this procedure makes it possible to disregard parameter Lj,
which denotes residual inductance in the circuit and, consequently, calculate
charge Q of the capacitors from equation (2.260). Thus, one gains very similar
curves of the actuator’s motion in both cases. The set of curves in Figs. 2.60-2.68
presents the actuator motion operating in a horizontal motion system for a slowly
increasing supply voltage u = Uy + Au t = 50 + 0.025¢ [ V], for a = 1.2. The loss of
stability is recorded for voltage around 70 [V], i.e. for a value similar to the one
gained for static characteristics (Fig.2.59), which amounts to U = 66 [V].
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Fig. 2.60 Waveform for charge Q in the function of time for slowly increasing voltage for
the horizontal motion actuator

fia-15
6213
42-131
82-137
22-137
12-139

iA]

o 200 400 00 =0 1000
t[=]

Fig. 2.61 Waveform for current i = Q in the function of time for slowly increasing voltage

for the horizontal motion actuator

In contrast, one can compare the results for the same actuator for a fast increas-
ing voltage, i.e. u = Uy + Au t = 50 + 2.5¢ [V], for which case the loss of the sta-
bility occurs for the voltage of U = 160 [V] after around 50 [s], much above the
threshold of static stability.
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Fig. 2.62 Distance x between electrodes in the actuator in the function of time for slowly
increasing voltage for the horizontal motion actuator
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Fig. 2.63 Velocity of motion x of moving electrode in the actuator in the function of time
for slowly increasing voltage for the horizontal motion actuator
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Fig. 2.64 Trajectory of charge Q for voltage u = U+ u t = 50+0.025 t [V] (slow increase)
in the horizontal motion actuator
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Fig. 2.65 Waveform of charge Q in the function of time after switching on voltage U =
2100 [V] in an vertical motion actuator

For the actuator in the system in vertical motion the role of the gravity pull is
considerable; hence, it is necessary to apply more tense springs to prevent the use
of too long ones (2.266). The figures that follow present the curves of the motion
of the moving electrode after an abrupt application of the voltage of U = 2100 [V],
a = 1.2. This value exceeds a little the value of U = 2091 [V] determined on the
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Fig. 2.66 Position x of the moving electrode in the function of time after switching on volt-
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Fig. 2.68 Trajectory of electric charge after switching on voltage U = 2100 [V] in the verti-
cal motion actuator and loss of stability of the position of the moving electrode. The bound-

ary of the stability for this

caseis U = 2091 [V]

basis of equation (2.264) as the value of the static stability. In this case we have to
do with a fast loss of stability (within 4 [s]) and short-circuit between the elec-

trodes of the actuator.
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The presented characteristics and dynamic curves of the electromechanical ac-
tuator with variable width of the air gap indicate the extent of the difficulty associ-
ated with the control of such an actuator. It tends to operate better in the system
with the horizontal motion of the electrode and for stable operation it requires the
use of a capacitor in series which affects the range of the control in a very benefi-
cial manner. The cost to cover as a result of the use of such a capacitor with a ade-
quate capacity a = (1+1.2+1.4) is associated with the need to supply higher values
of the voltage for the control of the actuator’s displacement. Capacity actuators
play nowadays increasing role in various MicroElectroMechanical Systems
(MEMS) like head positioning systems or micro switches etc.[2,4,7,10,14,15].
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Chapter 3
Induction Machine in Electric Drives

Abstract. Chapter deals with electrical drives with induction machines. After
short introduction concerning basic construction variants and general problems of
modeling induction motor drives, mathematical models are developed on a basis of
previously introduced Lagrange’s method. Models transformed in a classical way
are presented by use of orthogonal transformation along with the options govern-
ing free parameters of these transformations. Subsequently, other models are de-
veloped, in which only one side electrical variables are transformed — stator’s or
rotor’s, while the other side remains untransformed, with natural variables. These
models are applied in simulation and presenting various problems of drive systems
with electronic power converters and for other external asymmetry cases. Some of
them are classical drive problems like DC breaking, operation of Scherbius drive
or soft-start systems. Other concern modern systems with electronic power con-
verters, more precisely and successfully modeled and computed in this way. They
are drives with two- and three-level voltage source inverters used in PWM control
(SVM, DPWM) as well as current source inverters — CSI. These kinds of models
are also applied to present vector control (VC) or field oriented control (FOC) and
direct torque control (DTC) of induction motor drives. Abovementioned problems
are widely illustrated by examples computed for various dynamic states, with and
without automatic control, and for that purpose four induction motors of different
rated power are presented. Finally a problem of structural linearization of induc-
tion motor drive is covered, beside a number of useful state observer systems that
are discussed.

3.1 Mathematical Models of Induction Machines

3.1.1 Introduction

The history of construction and application of induction motors in electric drive
dates back as far as over 100 years and the induction machine constitutes the basic
unit energized from alternating current in a symmetrical three-phase power distri-
bution system. Beside the three-phase layout some small size machines can be
supplied from a single phase for household applications and two-phase machines
can be used in the drives of servomechanisms. The practical meaning of three-
phase induction machines is emphasized by the fact that they consume nearly 70%



110 3 Induction Machine in Electric Drives

of the generated electric power. The name given to induction motor originates
from the single sided power supply to such machines most frequently occurring
from the direction of the stator. Inside the rotor there is a fixed winding which
generates electric power as a result of induced voltages resulting from magnetic
flux that changes (rotates) in relation to the rotor’s windings. The mutual interac-
tion of magnetic field in the air gap with the currents in rotor’s windings leads to
the origin of electromagnetic torque 7,, which sets the rotor in motion. In the in-
duction motor the air gap between the stator and rotor is as narrow as it is techni-
cally possible for the requirements of the mechanical structure, since the energy
powering the rotor by the magnetic field has a considerably high value. This field
should have a high value of flux density in the gap which requires an adequate
magnetizing current, that is approximately proportional to the width of the air gap
0. Three-phase induction motors find an application in all branches of industry and
in municipal utility management as well as in farming and service workshops.
This group of machines involves devices produced within a wide range of power
ratings from under 100 [W] and can reach as much as 20 [MW]. The traditional
induction machines were applied in drives that do not require the control of rota-
tional speeds. This was due to the cost and problems associated with the use of
such control devices while securing the maintenance of high efficiency of trans-
forming electric energy into mechanical one. The course of events has changed
considerably over the past 20 years. The increase of accessibility and relative fall
in the prices of power electronic switches such as SCRs, GTOs, MOSFETs and
IGBTs was followed by continuous development of diverse electronic converters
[2,9,10,14,51,69,83,84,86,95]. Their application makes it possible to transform
electric power with the parameters of the supply network into variable parameters
required at the input of induction motors to meet the needs of the effective control
of rotational speed. Such control sometimes known as scalar regulation is dis-
cussed in detail in Section 3.3. The following stage in the development of the
control systems of induction machines focused on the improvement of the power
electronic devices involved in the execution of commands and, in particular, with
the development of processors for transferring information, including signal proc-
essors adaptable for industrial applications. As a result, it was possible not only to
design and implement dynamic control of drives containing induction motors but
also develop control that tracks the trajectory of the position and rotor speed. This
type of control is encountered mostly in two varieties [13,18,74,76,96,99,100]
Field Oriented Control (FOC) and Direct Torque Control (DTC). The methods
applied in this respect are discussed in Section 3.4.

3.1.2 Construction and Types of Induction Motors

A typical induction machine is a cylinder shaped machine whose ratio of the di-
ameter to length is in the range of 1.2-0.8. Induction motors are built to meet the
requirements of various numbers of phases; however, most commonly they are
three-phase machines. The air gap between the stator and the rotor is as small as it
is achievable and windings are located in the slots (Fig 3.1) of the stator and rotor.
The ferromagnetic circuit is made of a laminated elastic steel magnetic sheets in
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order to limit energy losses associated with alternating magnetization of the iron
during the operation of the machine. Very important role is played by the wind-
ings, which are engineered in several basic types. In the stators of high voltage
machines they are often made in the form of bars from isolated rectangular shaped
conductors formed into coils inserted into the slots of the stator. In this case the
slots are open, rectangular and it is possible to insert the ready made rigid coils
into them in contrast to the semi-closed slots applied in windings made of coil
wire. The material which conducts the current is the high conductivity copper.
Another important classification is associated with the single and two layer wind-
ings. For the case of single layer winding the side of the coil occupies the entire
space available in the slot, while in two layer windings inside the slot there are
two sides belonging to two different coils, one above the other, while the sides
could belong to the same or different phases of the winding. In machines with
higher capacity we usually have to do with windings in two layers. Still another
classification of windings in induction motors is associated with integral and frac-
tional slot windings [101,102,103,104]. Integral slot winding is the one in which
the number of slots per pole and phase is an integer number. Most induction ma-
chines apply integral slot windings since they offer better characteristics of mag-
netic field in the air gap. Fractional slot windings are used in the cases when the
machine is designed in a way that has a large number of poles but it is not justified
to apply too large a number of slots in a small cross section. Another reason for
the application of fractional slot windings is associated with economic factors
when the same ferromagnetic sheets are used for motors with various numbers of
pole pairs. In this case for a given number of slots and certain number of pole
pairs we have to do with fractional slot windings.

However, the most important role of an engineer in charge of the design of an
induction machine is to focus on the development of such a winding whose mag-
netic field in the air gap resulting from the flow of current through a winding fol-
lows as closely as possible a sine curve (Fig 3.2). The windings in the rotors of
induction motors are encountered in two various models whose names are adopted
by the types of induction motors: slip-ring motor and squirrel-cage motor. The
winding in a slip-ring motor is made of coils just as for a stator in the form of a
three phase winding with the same number of pole pairs as a winding in a stator
and the terminals of phases are connected to slip rings.

With these rings and by adequate butting contact using brushes slipping over
the rings it is possible to connect an external element to the windings in a rotor.
This possibility is used in order to facilitate the start-up of a motor and in many
cases also to control its rotational speed. The squirrel cage forms the other variety
of an induction motor rotor’s winding that is more common. It is most often made
of cast bars made of aluminum or, more rarely of bars made from welded copper
alloys placed in the slots. Such bars are clamped using rings on both sides of the
rotor. In this way a cage is formed (Fig 3.3); hence, the name squirrel cage was
coned. The cage formed in this way does not enable any external elements or sup-
ply sources to be connected. It does not have any definite number of phases, or
more strictly speaking: each mesh in the network formed by two adjacent bars and
connecting ring segments form a separate phase of the winding. Hence, a squirrel



112 3 Induction Machine in Electric Drives

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

\A

3
N
3

¢ 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Fig. 3.2 Shape of a magnetic field produced in the air gap of a three-phase induction ma-
chine and its fundamental harmonic for a 24 slot stator with the number of pole-pairs p = 2
and for a 36 slot stator and p =1

cage winding with m bars in a detailed analysis could be considered as a winding
with m phases. Moreover, a squirrel cage winding does not have a defined number
of pole pairs. In the most basic analysis of an induction motor one can assume that
a squirrel cage winding is a secondary winding that passively adapts in response to
the magnetic field as a result of induced voltages and consequently currents. It is
possible to further assume that the magnetic field in an air gap with p pole pairs
induces in the bars of a cage a system of voltages and currents with p pole pairs as
well. Since the number of phases in the rotor is basically arbitrary as the winding
is not supplied from an external source this is also a three-phase winding similar to
the winding in a stator. Hence, in its basic engineering drawing along the circum-
ference of the stator the magnetic field in the air gap of the induction motor is



3.1 Mathematical Models of Induction Machines 113

described by sine curve with p times recurrence during the round of the gap’s
circumference (Fig 3.2). The difference between the actual shape of the magnetic
field in the air gap and the fundamental harmonic of the order p = p is approxi-
mated by a set of sine curves, forming the higher harmonics of the field, whose
spectra and amplitudes can be calculated by accounting for all construction details
of the stator and rotor of a machine. The basic reason for the occurrence of higher
harmonics of the field in the air gap is associated with the discreetly located con-
ductors in the slots and their accumulation in a small space, the particular span of
the coils carrying currents and non-homogenous magnetic permeance in the air
gap [80]. This air gap despite having its constant engineering width J is in the
sense of the magnetic permeance relative to the dimensions of the slots in the sta-
tor and rotor. The higher harmonics of the magnetic field in the air gap account for
a number of undesirable phenomena in induction machines called parasitic phe-
nomena. They involve asynchronous and synchronous parasitic torques that de-
form the basic characteristics of the electromagnetic torque [80], as well as addi-
tional losses resulting from higher harmonics and specific frequencies present in
the acoustic signal emitted by the machine.

Fig. 3.3 A frequent shape of a squirrel-cage winding of a rotor of induction motor

In the currently manufactured induction motors parasitic phenomena are en-
countered on a relatively low level and do not disturb the operation of the drive.
Hence, in the discussion of the driving characteristics the induction motor is repre-
sented by a mathematical model whose magnetic field displays monoharmonic
properties. The only harmonic is the fundamental one with the number p = p,
which is equal to the number of pole pairs. The limitation of parasitic phenomena
and construction of a machine that is virtually monoharmonic comes as a result of
a number of engineering procedures, of which the most basic one involves an ap-
propriate selection of a number of slots in the stator and rotor. The numbers in
question are N, and N,, respectively and they are never equal to each other and
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their selection depends largely on the designed number of pole pairs p. Consider-
able progress has been made in the design and engineering of induction motors
over their more than 100 year old history. The measure of this progress not only
involves the limitation of parasitic phenomena but also an increase the effective-
ness of the structures in terms of the torque rating per kilogram of the machine’s
mass, long service life, energy efficiency, ecological characteristics, progress in
the use of insulation materials, which makes it possible to supply from converters
with high frequency and amplitude of voltage harmonics.

3.1.3 Fundamentals of Mathematical Modeling

3.1.3.1 Types of Models of Induction Machines

Mathematical modeling plays a very important role in the design, exploitation and
control of electric drives. Modeling and computer simulation, whether with regard
to electric drive or in other branches of engineering, that is adequate and effective
reduces the time needed and the cost of gaining an optimum design of a drive and
its control system. Thus, new opportunities are offered in terms of reducing lead
times in the prototype testing phase of the design. The modeling of an induction
motor is complex to the degree that we have to do with an electromechanical de-
vice with a large number of degrees of electrical freedom, represented by charges
and electric currents in phase windings and, additionally, that can account for
magnetic linkages. The latter are delivered by the magnetic field in the ferromag-
netic material in which the windings of the stator operate and the ferromagnetic
core is often in the condition of magnetic saturation. The simultaneous and com-
prehensive accounting for electromagnetic and electromechanical processes in an
induction motor that involves saturation of the active iron in the stator and rotor,
energy losses during alternate magnetization, precise mapping of linkages between
the windings, the non-steady working regime of the rotor and the potential effect
of the heat generated on the properties of the system is in fact too complex and too
costly and, hence, even in the most advanced models of induction machines these
processes tend to be simplified. The basic and most common simplification con-
sists in the distinction made between the magnetic and electric field due to the
small frequencies of the alternation of the field. For that reason, the field is con-
sidered to be magnetostatic. Moreover, there is a tendency to simplify the issues
associated with energy losses during the alternate magnetization of the iron, and
sometimes it is disregarded. Phase windings in a machine are most commonly
considered as electric circuits with lumped parameters and their connection with
the magnetic field is expressed by flux linkage w;, where subscript k denotes the
number of the adequate winding. Overall, the problem is associated with the de-
termination of the flux linkage as the function of electric currents in the particular
phase windings of a machine [90]. The issue of the mechanical motion of a rotor is
not a complex phenomenon since a typical induction motor has only a single de-
gree of mechanical freedom — angle of rotation of the rotor 6,. In mathematical
modeling of a an induction machine drive we take into consideration two cases:
non-homogenous motion of the rotor in the dynamic states — for example during
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start-up or braking of the motor and motion under a constant angular speed, i.e. in
a steady condition of the drive in operation. As a consequence of not accounting
for the parasitic torques with synchronic characteristics we do not take into con-
sideration small oscillations of the speed around the balance state; this comes as a
consequence of their marginal role in a designed drive. The basic and the common
foundation during the development of a mathematical model of an induction ma-
chine is the assumption of its geometrical and material symmetry. This allows
very largely to simplify the model and it is most often followed in the issues asso-
ciated with the electric drive. Abandoning of the assumptions of symmetry during
the modeling of an induction machine is necessary only in special circumstances,
such as modeling of emergency conditions for a drive and for example in the stud-
ies devoted to the tolerance of the engineering structure of the machine to its char-
acteristics and potential emergencies. Such an example encountered during the
analysis of an induction machine is the study of the effect of the asymmetry of the
air gap between the stator and rotor to the resulting forces of magnetic pull and
bearing’s wear. The assumption of the symmetry also enables one to limit the area
of calculation undertaken with an aim of developing field models and determina-
tion of boundary conditions for such calculations. Due to the presented impedi-
ments and complications the models of induction motors usually account for a
number of simplifications which form an adaptation of the examined question and
can lead to the statement of an answer. In this respect we can identify three gen-
eral categories of mathematical modeling of a drive. The categories include: mod-
els serving for the optimization of the construction characteristics of a motor, sec-
ondly, models used for the determination of electromechanical characteristics
and, thirdly, models whose object is to apply an induction motor drive control.
The presented three categories of models can be described as follows: a mathe-
matical model of an induction motor aimed at the optimization of its construction
with regard to the structure of a magnetic circuit is, as a rule, a field based model
whose solution is presented in 3D or 2D space, with a particular emphasis on the
shape of a ferromagnetic core along with the design of the stator’s and rotor’s slots
as well as spatial distribution of the windings. The ferromagnetic material is con-
sidered as non-linear taking into account its characteristics of magnetization. The
considerations tend to more frequently involve a magnetic hysteresis loop and less
often the occurrence of eddy currents [17,49]. Hence, calculations are performed
for fixed positions of the stator in relation to the rotor or a constant speed of the
motion, while the current density in the windings is as a rule constant over the en-
tire cross-section of the winding in the slot. For the case of winding bars with
large dimensions we have to account for the non-homogenous distribution of the
current density in the radial direction. The construction of a typical induction mo-
tor due to the plane-parallel field representation enables one to perform field cal-
culations in 2D space without affecting the precision of the results. The calcula-
tions apply professional software suites using Finite Elements Method (FEM) or
Edge Elements Method (EEM). Such software contains procedures making it pos-
sible to gain various data and images regarding field characteristics in a particular
subject, to obtain a number of integrated parameters such as the value of energy
and co-energy of the magnetic field, electromagnetic torque, forces calculated by
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means of various methods and inductance of the windings in the area of calcula-
tion [24,48]. As one can conclude from this description, field models are applica-
ble not only with an aim of improving the engineering and considering details of
material parameters but can also provide valuable data in the form of lumped pa-
rameters for the calculation of the problems encountered in the drive. In particular,
relevant insight is offered by the data regarding the inductance of the windings
and its relation to the magnetic saturation. The mathematical models serving for
the determination of electromechanical characteristics of a drive, both in static
and dynamic states, as a rule are formed as models with lumped parameters. The
reason is that in this case the engineering details are related to in an indirect way
using a small number of parameters, which subsequently combine a number of
physical properties of a machine. During the determination of characteristics, in
particular the mechanical ones, the parasitic phenomena are frequently accounted
for in the form of additional elements of electromagnetic torque derived from
higher harmonics of the magnetic flux and harmonics associated with variable
terms expressed by other elements in the permeneance of the air gap. The models
which are applicable for stating the characteristics in many cases have to be
precise in terms of energy balance since one of their application is in the determi-
nation of the losses of energy and efficiency of the drive. The analysis of lumped
parameters is performed by a number of specialized calculation methods. This is
based on field calculations in the electrical machines for the specific conditions of
operation [37,48,91]. The mathematical models applied in the issues associated
with drive control tend to be the most simplified models. As a principle, they dis-
regard the losses in the iron, the phenomena of magnetic saturation and nuances in
the form of multi-harmonic spectrum of the magnetic field in the air gap. Such
models take the form of a system of ordinary differential equations. The models
are transformed using the properties of the machine’s symmetry into systems of
equations, in which the form of the equations is relatively simple in the sense of
the assumption of constant parameters of a system, the number and structure of
expressions. Thus, the models correspond to the requirements of the control sys-
tem due to its interaction with the transformed measurement signals derived from
feedback in the system. The rationale for using the possibly most uncomplicated
(in terms of calculations) models in the questions of control is associated with the
fact that they are later used for the calculation of the vector of state variables of
the drive in real time. The mathematical models of the induction motor find an in-
creasingly wider application in the modern methods of control concerned with lin-
earization through non-linear feedback of the dynamic model of a drive, which, in
reality, has a non-linear structure. A type of this kind of control is also named con-
trol with inverse dynamics. An arising question is concerned with the practical ap-
plication of models that do not account for a number of phenomena in induction
machines including magnetic saturation. The solution proposed involves the con-
temporary control methods, also applied in electric drive, which are more resistant
to the uncertainty of the parameters of the model and disturbances along the
measurement paths. Such models include robust and adaptive control
[22,45,53,57,65,75,105], in which case the mathematical model is combined with
estimation of the parameters in real time. The currently solved tasks in drive
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control apply the following procedure: simple and functional control models in
terms of calculations are accompanied with the correction of discrepancies result-
ing from parameter estimation using signals that are easily accessible by way
of measurement. From the point of view of the current book the principal interest
focuses on the mathematical models designed for determination of the characteris-
tics of the drives and the ones applied for the purposes of control.

3.1.3.2 Number of Degrees of Freedom in an Induction Motor

The question of the number of the degrees of freedom (2.33) is encountered in
systems with lumped parameters whose motion (dynamics) is described by a sys-
tem of ordinary differential equations. For the case of an induction machine
(Fig.3.4) this means one degree of freedom of the mechanical motion s,, = 1, for
variable 6, denoting the angle of rotor position and the adequate number of the de-
grees of freedom s, for electric circuits formed by the phase windings. For the case
when both the stator and rotor have three phases and the windings are independ-
ent, in accordance with the illustration in Fig. 3.4a, the number of electric degrees
of freedom is s,; = 6. The assumption that electric circuits take the form of phase
windings with electric charges Q; as state variables does not exclude the applica-
bility of a field model for the calculation of magnetic fluxes y; linked with the par-
ticular windings of the motor. This possibility results from the decoupling of the
magnetic and electric fields in the machine and the consideration of electric

currents i, :Q; in the machine as sources of magnetic vector potential (2.180),
(functions that are responsible for field generation).

a)

Fig. 3.4 Diagram with cross-section of induction motor: a) 3-phase stator and rotor wind-
ings b) rotor squirrel-cage windings

In this case we have to do with field-circuit models [48], in which the model
with lumped parameters describing the dynamics of an electromechanical system
(in this study the induction motor) is accompanied by an interactively produced
model of the electromagnetic field in which the present flux linkages y; are
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defined. Hence, the model of an induction motor whose diagram is presented in
Fig 3.4a has
s=s, +s,=7 3.1

m e

degrees of freedom. In this place one can start to think about the state encountered
in the windings of a squirrel cage motor (Fig. 3.4b), which does not contain a
standard three-phase winding, but has a cage with m = N, number of bars. The
squirrel cage winding responds to the MMFs produced by stator winding current.
The induced EMFs in squirrel cage windings display the same symmetry proper-
ties on condition that the squirrel cage of the rotor is symmetric in the range of an-
gular span corresponding to a single pole of the stator winding or its total multiple.
Hence, the resulting number of degrees of freedom s,, for a symmetrical squirrel
cage winding [101] is expressed by the quotient

m _u
—=— S, =U 3.2)
2p v 4 (

where: m - the number of bars in the symmetrical cage of a rotor

u,v - relative prime integers

The number of the degrees of freedom of the electric circuits of a rotor’s squirrel-
cage winding sy, = u corresponds to the smallest natural number of the bars in a
cage contained in a span of a single pole of the stator’s winding or its multiple.
This is done under the silent assumption that the stator’s windings are symmetri-
cal. If the symmetry is not actually the case, the maximum number of the degrees
of freedom of a cage is equal to
Sy =m+1 (3.3)
which corresponds to the number of independent electric circuits (meshes), in ac-
cordance with (2.195), in the cage of a rotor (Fig 3.4b).
For the motor in Fig. 3.4b, we have p = 2, N, = m = 22, hence the quotient:
n =£ =E =4 and, as a result, the number of electric degrees of
2p 4 2 v
freedom for a squirrel cage winding amounts to sy, = # = 11. This means that in
this case the two pole pitches of the stator contain 11 complete slot scales or slot
pitches of the rotor, after which the situation recurs. The large number of the de-
grees of freedom of the cage makes it possible to account in the mathematical
model for the parasitic phenomena [80], for example parasitic synchronic torques.
However, if we disregard deformations of the magnetic field in the air gap and as-
sume that it is a plane-parallel and monoharmonic one with the single and basic
harmonic equal to p = p, then in order to describe such a field we either need only
two coordinates or two substitutive phase windings, in most simple cases orthogo-
nal ones. For such an assumption of monoharmonic field the number of the
degrees of freedom decreases to s,, = 2 regardless of the number of bars in the ro-
tor’s cage. In the studies of induction motor drives and its control the principle is
to assume the planar and monoharmonic field in the air gap. Nevertheless, at the
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stage when we are starting to develop the mathematical models of induction ma-
chines, it is assumed for the slip ring and squirrel cage machines that the rotor’s
winding is three-phased (as in Fig. 3.4a) for the purposes of preserving a uniform
course of reasoning. Hence, as indicated earlier, under the assumptions of a planar
and monoharmonic field in the air gap, slip-ring and squirrel-cage motors are
equivalent and can be described with a single mathematical model with the only
difference that the winding of a squirrel-cage motor is not accessible from outside,
in other words, the voltages supplying the phases of the rotor are always equal to
zero. According to (2.189) and (2.210), Lagrange’s function for a motor with three
phase windings in the stator and rotor can take the form:

6

=400+ %
2

k=1

and the virtual work (2.198) expressing the exchange of energy is equal to:

W, (0p...0,.0....0,0,)d0, (3.4)

O"—‘»@'

6
S =(-T,-D6,)50, + ¥ (u, — R0, )0, 3.5)

k=1

where:

q=(01, 0y,...,06, 0,) - vector of generalized coordinates
J - moment of inertia related to the motor’s shaft,

T, - load torque on the motor’s shaft,

D - coefficient of viscous damping of the revolute motion,
R). - resistance of k-th phase winding,

Qk =1i,,u,; -electric current and supply voltage of k-th phase winding,

v, - magnetic flux linked with k-th winding.
The model in this form already contains two simplifications, i.e. it disregards iron
losses associated with magnetization of the core and changes of the windings’
resistances following a change in their temperature.

From the above the equations of motion for electric variables follow in the
form:

d| oL oL :
SN =y~ RO, k=16 3.6
dt (an J 00, e~ RO G0

with the capacitors missing from the system aa—L =0.
k

Whereas, according to (3.4) and using the designation for currents i,, = .m , we
obtain
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oL
_.=l//k(il,...,ik,o,...,o,ar)+
00,
0 37
+Zj.a WGy 15 550,...,0,0,)d])
=k %
If k-th winding were the final one, as for k = n = 6, then
BL
=Y (ll’ n’ar) (38)
an
The resulting equation takes the form
oL
vi(lseeniy,0,) =——=y; (if,...,i,0,...,0,6,) +
00,
ol (3.9)
+ Tiyensl ,l ,0,...,0,6, di,
,Zk;'l'..alk%(l 15 )di,
0

From the comparison of (3.8) —(3.9) it results that for the simplicity of notation we
should treat the equation in (3.7), which is currently considered, as the final one.
In this case the equation for the circuits of an induction motor takes the form

d . . .
(v, (oo, 0,)) =1, — Ry, (3.10)
dt

After the differentiation of the left-hand side we obtain

=u — Ryl

Zﬁla‘{/k ﬂ+a‘//k 6,
= di,, dt 9d6,
k=1,...,6

@3.11)

The left-hand side expressions (3.11) denote electromotive forces induced in k-th
phase winding as a result of the variations in time of flux linkage. The first terms
are derived from the variations of the currents and are called electromotive forces
of transformation, while the final term is related to the angular speed of the rotor

9, =€, and is called the electromotive force of rotation. The equation for the
torque expressed with variable 6, takes the following form

df oL 9L _ 5 pg,
dr\ 36, | 26,

and, consequently,
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d < , :
dt(Je )‘%Z Wy iy vy 050,06, )i, ==T, = D6, ,

r k=

S —C

LN

Which, in case of constant moment of inertia J, can be denoted alternatively as

J6, =T, -T,- D8, (3.12)

where:

6
Tezkz;

is the electromagnetic torque produced by the induction motor. In spite of the fact
that the resulting equations of motion are stated for a system with lumped parame-
ters and in this case for 7 variables corresponding to 7 degrees of freedom of the
motor, they can find a very broad application. This results from the general form
of the flux linkage associated with the particular phase windings y;, = (ij,...,i,, 6,).
It could be gained by various methods accounting for the saturation and various
engineering parameters of the magnetic circuit. For a squirrel-cage motor, for the
case if one needed to account for the existing parasitic torques, it would be neces-
sary to abandon the starting assumption of the monoharmonic image of the field in
the air gap and, hence increase, the number of equations for the phases of the rotor
from 3 to sy, as it results from (3.2).

) . .
ﬁwk(ll, lk l’lk’ . 0 o )dlk (3.13)

O —_—

3.1.4 Mathematical Models of an Induction Motor with Linear
Characteristics of Core Magnetization

3.1.4.1 Coefficients of Windings Inductance

In a majority of issues associated with the motion of an induction machine, in par-
ticular in the issues associated with the control of drives with induction motors, we
can assume a simplification involving an approximation of the characteristics of
motor magnetization using linear relation. Hence, the definition of the coefficients
of self-inductance and mutual inductance of the machine’s windings follows in the
form

M, = 473 =Y (3.14)
i, i

For k = [ this coefficient is named the self-inductance coefficient and includes two
terms:

My =Ly +My (3.15)
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where L, is the leakage inductance, which results from the magnetic flux linked
solely to k-th phase winding. In contrast, for k # [ this coefficient is denoted as
mutual inductance coefficient

Mkl =My (3.16)

The determination of the coefficient of the inductance of an induction machine
could be derived from measurements on an existing machine or could be based
on calculations, which is already possible at the stage of motor design. The
experimental studies, which can serve in order to determine the coefficients of
winding inductance, involve the measurements of the characteristics of the idle
running of a motor, short circuits — for the purpose of stating the inductance of the
leakage and other tests — for instance of the response to a voltage step function. On
this basis it is possible to establish the approximate parameters of a machine, in-
cluding the inductance of the windings as well as to apply the methods for the es-
timation of the parameters from selected measurement characteristics [37]. The
calculation methods involve the calculation of the field in the machine using field
programs [92], which provides information regarding integrated parameters, in-
cluding inductance. For an induction motor it is sufficient to assume calculations
of plano-parallel field (2D) with supplementary data and corrections regarding the
boundary section of the field in the machine. In particular this concerns leakage
inductance of the end winding section of the windings. Moreover, a number of
analytical methods has been developed for the calculation of the field and induc-
tance coefficients in an induction motor, thus providing valuable information for
induction motor models. However, these tend to be less precise than the ones that
result from field calculations since they account only for the major term of the en-
ergy of the magnetic field, i.e. the energy of the field in the machine’s air gap. In
the fundamental notion (Fig. 3.2), under the assumption of monoharmonic distri-
bution of the field in the gap, the coefficients of mutual inductance take the form:

M, =M cos(a, — o) (3.17)

where: M - value of inductance coefficient for phase coincidence
oy, - angles which determine the positions of the axes of windings &,/

In accordance with Fig. 3.4 these angles are:

o,,0,,05=0, 2w /3p, =27 /3p (3.18)
a,.05,05=6., 0, +21/3p, 6, -27/3p '

- for the stator’s windings and rotor’s windings, respectively.

The number of the pole pairs p reflects p-time recurrence of the system of
windings and spatial image of the field along the circumference of the air gap. On
the basis of relations in (3.15 — 3.18), the matrix of the inductance coefficients of
stator’s windings takes the form
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1 -1 1
2 2
M, =Lyl;+M|-5 1 -3 (3.19)
-1 _1
2 2
and similarly, for the windings in the rotor
1
Lot
M, =Ly15+M, -+ 1 -1 (3.20)
_1 _1
2 2

At the same time, mutual inductance matrices between stator and rotor windings
are relative to the angle of rotation 6,

M, =M i =
cos po, cos(pl. +2x/3) cos(pl,—2m/3) 321)
=M, |cos(pb, —27/3) cos po, cos(pf,. +2x/3)
cos(pB,+2x/3) cos(pb,.—2x/3) cos po,

In the above equations:

L, L,, - are leakage inductance coefficients of stator and rotor windings

M;, M, - main field inductance coefficients of stator’s and rotor’s windings

M;, - mutual inductance coefficient of stator’s and rotor’s windings for full
linkage between the windings (aligned position of windings’ axes)

1; - unitary matrix with dimension 3.

3.1.4.2 Model with Linear Characteristics of Magnetization in Natural
(phase) Coordinates

At the beginning it is necessary summarize the simplifying assumptions for this
model of the induction motor, starting with the most important ones:

- complete geometrical and material symmetry of the electromagnetic struc-
ture of the motor

- linear characteristics of magnetization of the electromagnetic circuit

- planar and monoharmonic distribution of the field in the air gap, resulting in
a single harmonic with the number p = p

- disregarding of the losses in the iron

- disregarding of the external influence (for example temperature) on the
parameters of the motor.

Since, in accordance with the second assumption, we consider a linear case of
magnetization, on the basis of (3.14) the following relation is satisfied
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Vi= Z‘//k/ = szlil (3.22)
] I

Using the relation (3.22), the flux linkages of windings of the stator and the rotor
can be recorded in the matrix form

¥ ph = [l//sl Vo '/ISS]T = Msphis +Msrphir

. (3.23)
¥ ph = [‘//rl WrZ WrS] = Mrsphls + Mrphlr

. _[. . . ]T
L, =g I l53
T [ . . ]T
L= 1o lr3

- with vectors of phase currents of the stator and rotor, respectively.
With the aid of (3.23) the equations of the electric circuits of the induction mo-
tor can take the following matrix form

U

Cody ,
sph = R +E(Msphls +Msrph (Hr)lr)

J (3.24)
Urph = Rrir + E(Mrsphis (er) + Mrphir )

U, R.I 0 i M, M;,,,(6,) || i,

ph ={ sz 03 }{Y}Li ph i ( {} (3.25)
Urph 03 Rr13 1, dt Mrsph (Hr) Mrph 1,
where: 03,15 - zero matrix and unitary matrix with dimension 3.

Usph = [usl Ug us3]T

Urph = [url U MrS]T

or

On the basis of (3.13) and (2.215), the electromagnetic torque of the motor can
take the following form:

6 6 .
.. _ T T a Msph MS!‘ph(ar) ls _
T, ﬁ{%zzﬂhz(@)lklz}—%[ls I, £|:Mrsph(6r) M i |7

k=1 (=1 ph

.7 0 p) )
:%{lz ae srph(e )l +lrph aa mph(ﬁr)ls}
(3.26)

Since both terms of the quadratic form (3.26) are equal, then

T, :if{%M”ph (ar)Ji, (3.27)
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The equation concerning the revolute motion (3.12) remains unchanged, it is
necessary only to apply a more detailed expression (3.27) to determine electro-
magnetic torque of the motor.

3.1.4.3 Transformation of Co-ordinate Systems

Most of the dynamic curves and solutions with regard to control are not conducted
in phase coordinates, such as the case of the mathematical model in (3.25), (3.27),
but they are stated in the transformed coordinates. There are several reasons for
that: an adequately selected transformation is capable of transforming the system
(3.24) that contains periodically variable coefficients (trigonometric functions)
into a system with constant parameters. Thus, there is no need to apply large com-
puting power and the cost thereof is reduced, which is particularly relevant in the
issues of drive control in real time. In addition, as one can conclude from the form
of mutual inductance matrix of the windings (3.17, 3.21), that their order is not 3
but only 2. They have one dimension too many, which can be concluded by add-
ing up all the rows in each of the matrices. The physical reason is self-evident: in
order to describe a monoharmonic planar field it is sufficient to use two variables.
Hence, the field can be produced by currents in two phase windings that are not
situated along a single axis (perpendicular axes are most applicable). The early
applications of the transformation of the coordinate systems originate from Park
and served in order to analyze the operation of synchronous generators. The gen-
eral theory of transformation of coordinate systems in multi-phase electric ma-
chines is based on the Floquet’s theorem. From it results that for linear systems of
ordinary differential equations with time periodic coefficients it is possible to

identify such a transformation T(H,,Q',) for which in the new defined coordinates

the machine’s equations are independent of the angle of rotation of the rotor [53].
In the particular cases (monoharmonic field distribution) it is possible to gain this
result by the application of transformation 7(6,), i.e. only relative to the position of
the rotor. The examples of solutions and applications in this area are multiple and
can be found in the bibliography [76,80,82]. From the technical point of view it is
only sensible to apply orthogonal transformations in electric drive. This means the
ones whose matrices fulfill the condition that

T'=T17 (3.28)

This is the case when the vectors which form the matrix of transformation T are
orthogonal and have an elementary length, that is:

v,v;=0 for i#j and wv;v;=1 for i=j i,j=123 (3.29)

where v; is the column (row) of the matrix T. This property is indispensable since
orthogonal transformations preserve the scalar product and square form for the
transformed vectors. The scalar product for the case of an electric machine corre-
sponds to the instantaneous power delivered to the clamps of the machine
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i
P=[”1 Uy ”3] Ly |=updy tuyly tusl;
I3

As a result of transformation of the above expression, using orthogonal transfor-
mation T, we obtain:

p=UTTTi=U"i =u,i, +ugiz+u,i, (3.30)
I3

T
U =TU=[ua ug u;,]
where

oF . . . . |T

i =Ti =[1a ig 17]
are transformations of the vectors of the voltage and current of a three-phase elec-
tric machine. Concurrently, electromagnetic torque in the multi-phase machine is
in the algebraic sense expressed by the quadratic form

T, =iTiMi =iTTTTiMTTTi =i™™M7i" (3.31)
26, 706, T
where
M'=T'MT M =%M (3.32)

is the transformed matrix of the derivatives of mutual inductance between the
windings. As one can conclude from (3.32), the variables have been transformed
into the form i", while due to the orthogonality of the matrix of transformation T
the electromagnetic torque remains unchanged. Under the assumptions adopted at
the beginning of this chapter the machine has a monoharmonic field in the air gap,
which results in the fact that the matrix of mutual inductance between the stator
and rotor is relative only to argument p@, of the periodic functions. This enables
one to easily identify the orthogonal transformation of T such that orders the
mathematical model in the sense of leading to the constant coefficients of the dif-
ferential equations. This study applies the following orthogonal matrices of the
transformation:
- for the quantities relative to 3-phase windings in the stator

1 1 1
7 7 G
T, =,/=| cos(w.t) cos(w.t—a) cos(w,t+a) (3.33)

—sin(w,t) —sin(@,t—a) -—sin(w.t+a)

- for quantities relative to 3-phase windings in the rotor
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1 1 1
R 7 7
T, =,/=| cos(w.t—pb,) cos(w,t—pb.—a) cos(w.t—pb, +a) (3.34)
—sin(@w,t— pb,) —sin(w,t—pb.—a) —sin(w.t—pb,+a)

where: w, - is an arbitrary pulsation that constitutes the degree of freedom of the
planned transformation
a = 2r/3 - argument of the symmetric phase shift.

The transformation of the particular phase variables occurs in the following way:

Z&‘ uv =T§‘ZY = s su sV r
50 sbsph [ZAo <y <y ] (3.35)

— _ T
ZrOuv - Trerh - [ZrO Zru er]

Next, we will proceed to see how this works for a system of symmetric 3-phase
sinusoidal voltages of frequency f; supplying stator’s windings:

U

sOuv = TsUsph = Ts [Msl Usr Ms3]T (336)
that is:

1 1 1

wl ol B " @

Uy, |=.=| cos(w,t) cos(wt—a) cos(wt+a) |*
U, —sin(@,t) —sin(w,t—a) -—sin(w,t+a)
(3.37)
cos(ayt+7y) 0
*U i | COS(@st +y—a) | = EU"”’/' cos[(w, — @)t +7¥]
cos(at+y+a) sin[(@, — @)t +¥]

where: w, = 27f.

As a result of the transformation the voltage uy,y = 0, and voltages ug, and uy,
form an orthogonal system. In general, transformations of T, T, (3.33), (3.34) lead
to the restatement of the phase variables in the stator’s or rotor’s windings for two
perpendicular axes ‘u,v’ which are in revolute motion with the arbitrary angular
speed of w, - as it was presented in Fig. 3.5. The third of the transformed axes —
axis ‘0’ is perpendicular to axes ‘u,v’ and acts in the axial direction; hence, it does
not contribute to the planar field of the machine.
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Fig. 3.5 Illustration of the orthogonal transformation of 3-phase windings of AC machine
into rotating ‘u,v’ axes

3.1.5 Transformed Models of Induction Motor with Linear
Characteristics of Core Magnetization

3.1.5.1 Model in Current Coordinates

Firstly, we transform equations (3.24) for electric variables — currents iy, i,. For the
equations of the stator windings

I — e
Tstph = RsISTslx +Z TsMxpth Txlx +TSM h(er )Tr Trlr -

Srp)

(3.38)

d . .
- (E Tx ) TsMxpth Tslx + TsMsrph (er )TrT Trl r

M

sOuv srOuy

The above transformations apply the property of the orthogonal matrix:
TT' =T'T =1, and similarly for the matrix of transformation T,. From equation
(3.38) we obtain:

UsOm RslAOuv (ddl - a)cAS J(MsOuvisOuV + MeruvirOMV) (339)

S‘ uv T l? = [iﬁ‘ iYM YV]T
where: 0 ph B0 T (3.40)

. . . T
rOm Trl ph — [l 0 b U ]



3.1 Mathematical Models of Induction Machines 129

MsOuv = TsMsphTsT = L

L =L_+L, -self-inductance of stator’s windings

L =3M, -inductance of magnetization

0

Meruv = TsMsrph (ar )TrT = Lm 1 (341)

0 0 0
iT‘Y=\wa —sin(@,t) —sin(wt—a) —sin(@,t+a) |= 0. A;T, (3.42)

i —cos(w,t) —cos(w,t—a) —cos(w.t+a)
0 0 0
while: A;=|0 0 1] -isaskew-symmetric matrix
0 -10

and (di - a)CA;J - is an operator acting on the right-hand side expression.
; 3

Acting in a similar manner for the phase circuit of the rotor, after transforma-
tion, and employing

iTr = (wc - par )A3Tr

dt
we obtain:
d .
0=R eruv [_t - (wc - per )AS J( rvOuv souw T MrOuv rOuv ) (343)
LOT
where: M,y, =T.M hTT L, (3.44)

L =L_+L, -self-inductance of rotor’s windings
d : . . . .
o (w. — pB.)A, | - operator acting on the right-hand side expression.
t

The quadratic form of the (3.27) is transformed likewise:

d
ae (6 )TTT 1, = p 90uv( A3)lr0uv

Lsouy »Om

T =TT o
—
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which finally results in a relation

T,=pL, i, —igyi) (3.45)

AV ru Au rv

From equations (3.39-3.45) after their transformation it results that the zero se-
quence equations are not involved in the conversion of energy and these equations
are autonomic

d
Uso = RSiSO +d_LO'sisO
y ! (3.46)
0= RriOr +5L0'rir0

The axial current iy occurs only for the case of asymmetry in the power supply
(3.37), in addition to which, it is present only in the case when the windings of the
stator are not connected in a star. Otherwise, the equations of constraints eliminate
the possibility of the occurrence of iy, even in case of the existing voltage u,. For
this reason in further part of mathematical modeling of induction motor we will
account only for two terms representing electric quantities in the axes ‘u,v’:

Umv = Rcimv +(i_w A j(Lv suv +Lmimv)
’ o dt

(3.47)
OZRViVMV ( (a) pe )A j( WL suv+Lriruv)
and for the equation for the revolute motion
er = me (ixvim gy rv) T[ DQr (3.48)
——

T,
where: Q =6, - is the angular speed of rotor’s revolution
. . . r . . . 0T T
lsuv = [lSM l‘YV] lruv = [lm lrv] USMV = [um MSV]

0 : . . . .
A, = [ . O} - is a skew-symmetric matrix of dimension 2.
The dimension of the state vector of the model (3.47-3.48) of the induction motor
is s = 5, which comes as a consequence of the lack of equations for the zero cur-
rents iy, i,o.

3.1.5.2 Models in Mixed Coordinates

The transformation of flux linkages of phase winding (3.23) in a similar manner to
the procedure with equations (3.38) leads to relations which determine axial fluxes
in the function of axial currents
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\va Lc Lm i suy k_ ! i suy
h = h . ; = Lm s . ; (3 49)
\Pruv Lm Lr Loy 1 L Loy

L
k, :Tm are called coefficients of magnetic coupling for stator
and rotor windings.
Equations (3.47) using (3.49) can be restated and take the form

m

where: k, =—"

suy

U, =Ri +(i—wcA2)‘I’
’ dt
(3.50)
0= Rriruv + [i_ (wc - pQr )AZJ\P”{V
dt
In equations (3.50) we have to do both with axial currents iy, i,,, and axial fluxes

Yns P - that is with a double set of variables. In order to eliminate one of them,
we need a relation that is the reverse to the one in (3.49):

1

. — -1
Louy =L1_O_ kr ‘Ilsuv (3.51)
i L, o |_; L|¥ '

ruy m ruy

s

where: o =1-k_ k, is called the coefficient of windings’ leakage.

a) Mixed coordinates ¥ ,i,,

For the elimination of variables ¥ _,i = from equations (3.50) we apply the fol-

ruv ® = ruy

lowing relations:

1 . . 1 1,
¥, =E(‘1{mv —Loiy,) i, = L—‘P o (3.52)
Using (3.52) and transforming the result into the standard form, we obtain:
W = Ugy = Ryl + 0, ALY,
i, = ﬁ(ar +pQ.A, Y, —é(as +a, )iy, + (3.53)

s

: US‘MV
+ (wc - pQr)AZIsuv +T

S

By stating (3.53) in the form of equations with a single dimension and supple-
menting with the equation of motion we obtain the model:
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Vi =Ugy — Rslsu ta.yy,
W =Ug — Rsisv -0V,

isu =_(arl//su + per//sv)__(as ta, )isu + (wc _pQr)isv + Lt (3.54)
Lo o} Lo

. 1 1 . s U,

lyy = (arl/lw _pQr'//m)__(av +ar)l9v _(a)c _pQr)lm +—

) Lo ! ) o } ! Lo

: 1 . .
Qr :7[p(‘//sulsv _‘//svlsu)_Tl _DQr]
-

The above calculation of the torque applies following property of the skew-
symmetric matrix A,:

i’ A,i=0

b) Mixed coordinates i, ¥,
This time we should eliminate variables i,,,, ¥, from equations (3.50). This is
done using the following relations:

i, =—Y,, ki

ruy resuy

\Psuv = qulruv —oL,i

m= suy

After substitution and transformations we obtain:

\P = _ar‘Pruv +L,0,i +(C()C - pQr)AZ\Pruv

ruy m=rresuy

(3.55)

suy

il 4 P a)cAZIsuv +
o Lo

S

suy

i =Lkr (o, + pQ,A,)¥

s

which results in a single dimensional equations and the overall model containing
the equation of motion:

l//m ==Y, + Lmarisu + (wc - pQr )l//rv

Yy =—0Y,, + Lmarisv - (wc - pQr)‘//ru

. U

im =— (aer + pQrer) - yim + wciw +— (3.56)
) Lo ) o Lo

kg, P

Iy = rYrv W) =Vl =Wl ™—

sV L‘YO' 4 Pii Y L‘YO'

: 1 . .
Qr =7[pkr (l//mlsv _'//rvlsu)_Tl _DQr]
T,

e

Below is a summary of coefficients used in the above models:
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s (3.57)
o=1-kik, 7=l(a‘y+ar(1—a))
o
The models presented using the system of equations (3.54), (3.56) serve not only

for the purposes of the calculations of the dynamics of the drive but also are
applied in modern methods of induction motor control.

3.1.5.3 Model in Flux Coordinates

In order to obtain a model in flux coordinates it is necessary to eliminate currents
i, 1,0, from equation (3.50) by using for this purpose relations in (3.51). As a re-
sult we obtain:

\I.Jsuv = Usuv + ias (kr\Pruv - \Psuv )+ a)cAZ‘Psuv

| o (3.58)
\I.Jruv =—0, (ks \Psuv - \Pruv )+ (C()L. - pQr )AZ\Pruv

o

The complete model accompanied by the equation of the revolute motion is
presented below:

'/./xu Sug, + lax (krl//m Vi )+ oy,
o
. 1
Vs =l + ;as (krl//rv Yy )_ oY,
. 1
Viu =Ear (ksl//su _'//rll)+(a)c _pQr)'//rv (359)

. 1
Vi :;ar(kxyjsv _er)_(a)c - pQV)‘//m

1 pk,

Q,=—[
J Lo

('//sv'//m - '//sul//rv) _Tl - DQr]

T,

e

3.1.5.4 Special Cases of Selecting Axial Systems ‘u,v’

Angular speed o, encountered in transformations T, T, (3.33), (3.34) as a free pa-
rameter makes it possible to comfortably conduct calculations and interpret the
results for the statement of the speed of the revolution of orthogonal axes ‘u,v’
(Fig. 3.5). For this purpose we apply three basic substitutions encountered in the
following stages

a) w, =0 . Equations in a,f axes

One of the commonly applied solution regarding the selection of an axial
system is associated with immobilization of the system ‘u,v’ with respect to the
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motor’s stator. In this case we have to do with the system of axes denoted as a,f
combined with the stator of the machine. Before substituting @, = 0 the equations
of motion for the phase circuits (3.47) are presented in a matrix form:

USUV — RS O iSMV + LS Lﬂ1 d isuv
0 - O Rr i ruy LWL Lr dt i ruy

w, L w.L, Asig,,
(wc _pQr)Lm (wc _pQr)Lr A2imv

After the substitution . = 0 and rearrangement we obtain equations in o,/ axes in
the standard form:

d wzﬁ 1 Uw(ﬁ _
dt i roff GL kr U sof
a, -k, | i —kk, —k, | Al
_1 s bsop +pQ,| T s 172 of
o\~ kras a, rD!ﬂ kr 1 A21r0{ﬂ
Voltages U, result from the system of sine voltages (3.37) after applying trans-
formation T, with . = 0. The curves for currents iy, i, have a pulsation w,in

the steady state, which results from the voltage U,,s. The complete mathematical
model of the induction motor in the axial coordinates is found below:

(3.60)

(3.61)

: 1 1 .

Lsa =Ls_o_usa O_(arlva kr rlra pQ (k Yﬂ +kslrﬂ))

ig= Loy — ki + pQ, (kok iy ki)

sp LSU sp P sp s®lyg T PR&, rlsa ro

: k, 1 ( . . )

Ly =— I O_um 5 kpOgigg + 0,0y, + pQ, (K ip +ig) (3.62)
.k, I ,

Lp :_L Gusﬂ - U( k aslsﬁ +arlrﬂ pQ (kr sa lrot))

1 . .o
= 7[me (l‘rﬂlra - lsalrﬂ) - Tl - DQr]
T,

e

In a similar manner on the basis of equations (3.56, 3.59) following substitution
. = 0, we may have the equations of motion for the motor in a,f axes for mixed
and flux coordinates.

b) w. = pQ, . Equations in d,q axes

Following the substitution w, = pQ, in the equations of motion, the system of or-
thogonal equivalent axes ‘u,v’ is stiffly related to the rotor and, hence, it has been
given the name ‘d,q’ system. This system is most commonly applied in the de-
scription of the dynamics of synchronous machines and axis ‘d’ is then situated
consistently with the longitudinal axis of the machine’s rotor. The system of axes
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‘d,q’ in this case can be effectively applied with regard to the induction motor as
well. In this case for powering stator windings with symmetric sinusoidal system
of 3-phase voltages (3.37) in stator the currents’ curves we have to do with pulsa-
tion w,

@, =G, — pL, = WS 363
s=1-pQ, /o, =1-Q, /o, (5-63)

which is called the slip pulsation of an induction motor. Slip s reflects a relative
delay in rotation speed €, of the rotor in respect to the magnetic field rotation
speed ;= w,/p. Slip s during the standard operation of an induction motor ranges
from a fraction of a percent to a few per cent of one. Concurrently, w, is the physi-
cal pulsation of rotor currents.

For instance one can note the equations for a motor expressed in axes ‘d,q’ in
mixed coordinates iy, ¥,,. On the basis of equations (3.56) and following the
substitution w. = pQ),, we obtain:

Via =—C ¥y + Lmarisd
'//rq = _arl//rq + Lmarisq

. k U,

iy =—"(a,y,, +pQ —yiy +pQ,i, +—L 3.64
sd LSO' ( Wra TP ry/rq) Visa T P32, sq LSU ( )
i—k’(a - pQ )—i—Qi+ﬁ

sq Lo rl//rq PRV v sq pacylgg Lo

s s

. 1 . .
Qr :7[pkr(‘//rdlsq _‘//rqlsd)_Tl _DQr]
T,

e

c) . = w,. Equations of motion in ‘x,y’ axes

The axial system ‘x,y’ is a system which rotates with the speed w; = pwy, that is
the p-multiple of the magnetic field speed in the air gap. In case of supplying
phase windings with a symmetric sinusoidal system of 3-phase voltages, after the
application of transformation (3.37), voltage U,, is constant. As a result, the elec-
tric variables i, ¥, in the steady state play the role of constant functions. In the
transient state their variability is reflecting envelope curves of alternating quanti-
ties in the phase windings. The mathematical model based on the system of coor-
dinates ‘xy’ is beneficial to conduct numerical calculations of dynamic curves,
since the practical computing concern the envelopes of the phase curves and it is
possible to conduct them with a much larger integration step. As an example, it is
possible to take into consideration the mathematical model of a motor in flux co-
ordinates (3.59) expressed in the “xy’ axial system:



136 3 Induction Machine in Electric Drives

. o
Ve = ?( S )+ @y Wsy U,
. o
l//sy ?( rl//)y l//sy )_ oy, + Uy,
.« ~
Vix =?(ks'//sx l//rx)+sa?v Vi (3.65)

V./ry = %(ks‘//sy Vi )_ SO Y

1

- p r
Q, = J[L WV —VulWn) =T —DQ,]

The models of the induction motor presented in ‘xy’ system are particularly appli-
cable in the control, which comes as a consequence of the simplicity of the equa-
tions for the motor in this system. This is especially discernible for Field Oriented
Control (FOC) techniques.

3.1.6 Mathematical Models of Induction Motor with
Untransformed Variables of the Stator/Rotor Windings

There is a number of practical reasons why it is beneficial to preserve untrans-
formed variables on one of the sides of an induction motor. This means that the
variables which define the electric state in the stator’s or rotor’s windings remain
in the form of natural variables, while the state of the connections between the
windings is maintained by the introduction of adequate equations with constraints
resulting from Kirchhoff’s laws (2.193). The preservation of the untransformed
variables and the resulting equations of motion for a single side enables one to de-
rive the so-called internal asymmetry within windings, which are defined using
natural variables. Hence, it is possible either to incorporate arbitrary lumped ele-
ments in the particular phase windings or apply asymmetrical supply voltages with
arbitrary waveforms. In particular, as a result of this, it is possible to perform the
calculations for the braking with direct current for any connections between phase
windings, operation under single-phase supply, operating with an auxiliary phase
for capacitor starting a single-phase motor, analysis of a series of emergency is-
sues and select safety measures. However, the most important application of the
mathematical models of this type is in the modeling of electronic power converters
in combination with the supplied machine, in which power transistors or silicon
controlled rectifiers (SCRs) are designed for the control of voltages and currents in
the particular windings. This type of modeling, which has been the object in nu-
merous research, can be most effectively conducted in the circumstances of pre-
serving a fixed structure of an electric system by the introduction of resistances
with variable values corresponding to the state of the examined power electronic
switches in the particular branches of electric circuits. In the blocking state they
assume high values limiting the flow of current across a certain branch, while in
the conducting state the values are small, i.e. ones which correspond to the pa-
rameters of conduction calculated on the basis of the data for such components
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taken from manufacturers’ catalogues. This type of modeling is associated with a
number of impediments in numerical calculations of the curves of examined vari-
ables due to time constants in the particular electric circuits, whose values differ
by several orders of magnitude, as a result of application of high value blocking
resistance. For this reason these models apply stiff methods of integration for Or-
dinary Differential Equations (ODFs). Another solution to be applied involves the
use of simple single-step procedures for the solution of stiff systems with a small
step size. In any case, however, power semiconductor switches encountered in the
branches of electric motors are more easily modeled for the case when variables
for a given circuit are the phase variables. The reason is associated with the fact
that the state of a given power semiconductor switch is relative to the control sig-
nals and forward current in this element. In the issues of control of squirrel-cage
induction motors semiconductor systems are members of the circuits of the stator
in a machine, while the variables concerning squirrel-cage windings of the rotor
are transformed to the orthogonal axes u,v . However, if control occurs in the rotor
of a slip-ring motor and the control elements are situated there (including the con-
verter), it is beneficial to have untransformed variables (phase currents) in the
rotor. But then the electric variables of the stator’s windings could as well be
transformed into orthogonal axes u,v for the purposes of succinct notation.

3.1.6.1 Model with Untransformed Variables in the Electric Circuit of the
Stator

We shall assume that we deal with a 3-phase motor with windings connected in a
star. As a result, when the currents of the phase windings 1 and 2 are considered as
state variables, the system of stator windings is characterized with constraints
(Fig. 3.6)

or more briefly: i, =W;i, (3.66)
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Msl

U | _ 1 -1 0 ;
uoy| (001 =1 *?
ﬁV’—JuX:%

u

or more briefly: Uy, =W, U, (3.67)

As a result of the introduction of the equations of constraints (3.66-3.67) and the
transformation of the currents of stator windings, we obtain for the stator’s system
of equations (3.24):

W,

u

*U

.. d . .
sph = Rsls +E(Msphls +Msrph(0r)lr)

. d
WuUsph = R‘YWMW[ISIZ +d_ WuMsph

. T e
Wilx12 + WqurphTr Trlr
- t —_—

Ui Rz M, M, 1200 Ly

Asa consequence:

. d . .
Us12 = Rs121s12 +E(Ms121s12 + Msr12uvlmv) (368)
In equations (3.68):
Rsl _Rs2
Ry, = (3.69)
Rs3 Rx2 + RX3

makes it possible to account for non-homogenous resistances in the stator’s phase
windings, and for the case of symmetry R;; = Ry, = Rg; and, hence:

1 -1
R, =R, 3.70
s12 s|:1 21| ( )
1 -1
Mx12 = Ls |:1 2 :| Ls = LOS +Lm (371)

3 W2

w2 2 (3.72)

0 2

Similar transformations are performed for the system of equations in the rotor’s
circuits (3.24):

M =L

sr12uv

T, *

. d . .
0= err +Z(erph (ar)lx +Mrphlr)

and, consequently:
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d
0=R,T,i,+i T,M,, T/ T, —(—T,JM,phT,TT,i,Jr

+di TersphWiisIZ _(diTrersphWiiSIZ
7 N — t

rsuvl2

In the following transformations we apply two relations:

1° Connection of stator’s windings in a star makes it possible to eliminate the
zero sequence equation.

2° %(Tr)z(wc _pér )AZTr

which for the system a,f— w =0 gives

d .
—I(T, )=—p6. A,T 3.73
dt ( r ) pU. AL, ( )
As a result, the equations of the rotor’s circuits take the form:
. d . .
0= erruv + _(M ruvdruy + Mrsule'le )+
dt (3.74)

+ pérAZ (Mruviruv + MrsuleisIZ )

L % 0

where: M. =|" M, ,=L 3.75
ruv |: Lr:| rsuvl2 ‘m ﬁ ( )

It is important to note that: M, # M, , since W, # W, .

As a result, the system of equations for the electric circuits of the induction mo-
tor for this case can be noted as

Ugo Rsl _Rs2 00 isl
Ugrs RsS Rs2 +Rs3 00 is2
0 0 L @ ﬁ Rr perLr lru
0 PorSm _ 30| |-p0L, R i,
3.76
{1 _1} E -2 n 570
LS‘ Lﬂ1 2 2 lél
N 1 2 ﬁ d is2
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The electromagnetic torque expressed in these variables takes the form:
Te = me [(@lsl +42 is2 )lru - \/%islirv] (3.77)

The equations for an induction motor in the form (3.76) make it possible to ac-
count for semiconductor elements of converters using variable values of resis-
tances Ry, Ry, R, encountered in phase windings in a fixed structure system.

3.1.6.2 Model with Untransformed Variables of Electric Circuit of the Rotor

This model finds application in the issues regarding internal asymmetries and con-
trol of drives with a slip-ring induction machine. For example, it is applied in the
calculations of the start-up of a slip-ring motor with asymmetric resistances during
the start-up, atypical systems of connections between phase windings of the rotor,
analysis of cascade systems with a slip-ring motor, for instance the Scherbius cas-
caded system. In the discussed example the electric variables of the stator’s cir-
cuits undergo axial transformation along u,v axes, while the variables of the ro-
tor’s circuits remain untransformed. Under the assumption of the star connection
of rotor windings, we have to introduce equations of constraints. This time to en-
sure symmetry of the resulting equations the reference phase is the one denoted
with the number 2 and, as a consequence, the current constraints offer the elimina-
tion of the current i,,, while voltage constraints refer inter-phase voltages to the
terminals of phase winding 2:

U

U2 _ 1 -1 0
- U, (3.78)
ug| |0 -1 1
| U3
or
Url3 = Wur Urph (379)

In this case, in contrast to (3.66, 3.67) the following is fulfilled:
W, =W/, (3.80)

which results in the symmetry of matrices in equations (3.88). The assumption of
the similar course of action as in section 3.1.6.1 leads to the transformation of the
system of equations in the following way:

T

N

“U,, =R, +%(Msphis M, (6,)i,)

(er)wirirB

srph

T,U,,, =R, T,i, 4 TM,,, T] T;i, + M
N —— dt —

i i
Usou sO0uy Mo, Lsouy M 013
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where:

0 0
Msr()uvl?; =gl‘m Sinper +\/§COSp9r 2Sinp0r (3 81)
—cosp0r+\/§sinp0r —2cos po, ’
i3= [irl ir3] i, =W,i;

After the equation for the zero sequence is disregarded, we obtain:

U =R;i +Msuv diisuv +M d irl3 - pérAZMsruvlfiirIS (382)

suv — Dstsuy sruvl3
t dt

0 1
where: A, =
-1 0

is a skew-symmetric matrix applied with regard to the relation:

d .
E(Msmvl?; ) = _parAZ M

sruvl3

For rotor’s equations we obtain:

W,

ur*U Rrir +%(Mrphir+Mrsis)

rph =

WurUrph = WurRrWirirIS +
-

U3 R, 3
J (3.83)
. Trns
+E WuerphWirer + WuersTs Tsls
M, 3 M, 130u Lo
For an asymmetric matrix of resistance of rotor’s windings R, we obtain
R,,=W,RW,=| 1 % £ (3.84)
r13 = YWur=%r YVir T R2 R2 +R3 .

which for the case of the symmetry of the resistance can be reduced to the form:
R =R| | (3.85)
r13 = tr 1 2 .

In a similar way matrix M,,; takes the form:

Concurrently, matrix M,30,, due to its symmetry (3.80) fulfills the relation:
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M rs130uy = MfrOuvlS (386)

After abandoning the zero sequence equation for the stator currents the equations
for the electric circuits of the rotor take the form:

. d ., d. : .
Ur13 = Rr131rl3 + Mrl3 erlfi + Mrsl3uv leuv + per MrslSuvAZIsuv (387)

The above equation applies the relation Ag =-A,.

As a result of the combination of (3.82) with (3.87), we obtain a system of
equations for electric circuits of the slip-ring motor with untransformed variables
of the electric circuits of the rotor:

u

10
R{ } vK(6,)
u | 7|01

N4

©
=<

v
<

21
urlz VKT(gr) Rr|: :|
Ur3a 12

~. o~~~
< B
—_

(3.88)

su

1 0 I,
L, xN(@,) .
+ ’ 0 1 d lSV

2 1] |arli
WNT@) L, d|in
12

L3

where: V=— pé,Lm x=

(cos p@. —x/gsin pO,.) 2cos pe,}

K(@,)=
(sin p @, +x/§cos p6,.) 2sinpéb,

(sin p@, ++/3 cos p6.)  2sin pé, }

N(8,)=
: l:(—cospH,er/gsian,) —2cos po,

The expression for the electromechanical torque takes the form:

T, =2 pL,,[cos p8, (Li, (V3iy, +ig) +irsig) +

(3.89)
+sin par (% irl (isv - \/gisu )+ ir3isv )]

The characteristic property of equations (3.88-3.89) for a slip-ring induction motor

with untransformed circuits of the rotor is the dependence of these equations on

the angle of the rotation of the rotor 8,.
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3.2 Dynamic and Static Characteristics of Induction Machine
Drives

The mathematical models of induction machines developed in the preceding sec-
tions will be applied here in the simulations and calculations of typical dynamic
states and static characteristics of the drive. In the first stage the presentation will
involve dynamic characteristics calculated for standardized electromechanical pa-
rameters of a drive. In the subsequent section the equations of motion will be
reduced to the steady state and on this basis an equivalent circuit diagram of an
induction motor will be derived together with static characteristics, typical pa-
rameters and graphical images for the characteristics.

3.2.1 Standardized Equations of Motion for Induction Motor
Drive

Despite the common operating principle and a unique description in the form of a
mathematical model, induction machines form a class that is considerably distinc-
tive. The range of the rated powers varies from a fraction of a [kW] to the ma-
chines exceeding 10 [MW]. Concurrently, speed ratings resulting from the number
of pole pairs applied in the construction, typically range for a machine from p=1
to p=6 pole pairs, and particular manufacturers offer machines with a higher num-
ber of pole pairs. Rated voltages applied to supply the primary windings also tend
to very across the machines in accordance with the standardized series of voltages,
while the majority of the motor run off a 230/400 [V] supply voltage or a high
voltage of 6 [kV]. In addition, induction machines are differentiated by the struc-
ture of the windings of the secondary side (rotor) and in particular by the shape
and profile of the cross-section of the bars in the squirrel-cage rotor. This part is
responsible for the increase in the value of resistance R,, which is the basic pa-
rameter which characterizes the mathematical model and for the fact that this pa-
rameter is considerably relative to the frequency of the currents in the cage’s bars.
Squirrel-cage machines, which are distinguished by the tall and slender shape or
particular profiles that tend to become thinner towards the air gap are character-
ized by resistance R,, whose value increases for higher current frequencies in the
cage occurring during motor’s start-up. For high frequencies of the current in the
cage the leakage reactance definitely dominates in the impedance of the bar in the
cage rotor and the current is displaced towards the air gap, which brings a reduc-
tion of the active cross-section of the bar and increases resistance. Section 3.1 has
dealt with the development of the mathematical models of a motor with constant
resistance of rotor’s windings R, hence, they are relevant for slip-ring and single-
cage motors with a weak effect of current displacement. Their application with re-
gard to squirrel-cage motors, for instance deep slot motors introduces a consider-
able error in particular in terms of the characteristics at the phase of start-up and
small angular velocities of the rotor. In industrial practice, double-cage induction
motors are applied in order to improve the start-up properties [36]. In the upper
cage such motors have bars with a smaller diameter, which for higher current fre-
quencies have higher resistance levels. As a result, more complex mathematical
models are necessary for their modeling.
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In order to rationally perform the standardization of the parameters [82] of
various induction motors the equations of motion in flux coordinates (3.56) will be
inconsiderably transformed and expressed in the system o.f, (w. = 0). It is neces-
sary to rescale the variables regarding the axial fluxes by dividing them by the
rated voltage U,,:

o=ylU,, (3.90)

As a result, the equations for the axial fluxes take the form:
. 1
Py = — O (qu)ru — P )+ Ug, /Usn
o

¢xv = ia‘r (kr(DrV _¢sv)+ Ugy /Usn
o (3.91)

1
Dy = ;ar (ksqosu ™ )_ pQr(Drv

1
(e ;ar (kS(DSV P )+ pQr¢m

In a similar manner, the equation of rotor’s motion is transformed and it is multi-
plied by p, hence standardized to the reference of one pole pair machine:

- krUszn
pQr =§ I)L—O_((oquom _¢su¢rv)_Tl _DQr

This equation is transformed to take the form:

. T D
@, =Cpy (q)sv¢ru - ¢su¢)rv) - _l/ ——Q, (392)
JJ
p pk.U 2 p 2wa2
where: Com = SN = SN (3.93)
J Lo J kg
is the electromechanical constant for an induction motor, while
,J , D , T
== D== T/=- (3.94)
p p p

represent, respectively: moment of inertia, coefficient of viscous damping and
load torque derived for the number of pole pairs p = 1.

T, - is the break torque of the motor in a steady state (3.130)
o, = pC; - is the angular velocity of the rotor expressed in terms of a motor
with a single pole pair, called ‘electrical angular speed’.

This version of the equations of motion (3.91) represents standardized equations
for an induction motor for which the entire class of single-cage motors, not
accounting for current displacement in the rotor’s cage, are expressed in terms of a
single synchronous velocity (for p = 1) regardless of the values of the rated
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voltage and the number of pole pairs. This is achieved as a result of dividing axial
fluxes y by the rated voltage Uy, (3.90). In this model we have to do with the fol-
lowing independent parameters relative to the design of induction motors:

ks, k, - coefficients of magnetic coupling of windings (3.57)
0, o, - coefficients of damping (3.57) (inverse of the time constants)
c.n €lectromechanical constant for a drive (3.93)

The above parameters are standardized, synthetic parameters of the mathematical
model of an induction motor in its most simple version that does not account for
the magnetic saturation of the core and current displacement in the rotor’s cage.
They cover each individual motor and make it possible to calculate its dynamic
and static characteristics. Other parameters used in the modeling of an induction
motor, for example coefficient of windings’ leakage o (3.57) are relative to the
ones presented in (3.94) or are involved in them already (for instance number of
pole pairs p). The presented method of standardization of equations and parame-
ters is based on [82]. On the basis of the calculations of parameters (3.94) con-
ducted on of data gained from industrial catalogues from several meaningful
manufacturers for a few dozen of squirrel-cage motors with various power ratings
and rated voltages, the table found below has been developed (Table 3.1).

Table 3.1 Standardized parameters of typical induction squirrel-cage motors

Rated power/ 1 10 100 1000 3000
standarized
parameters
[kW] [kW] [kW] [kW] [kW]
ky=k, [-] 0.96 0.975 0.978 0.981 0.983
o, [1/5] 13.0 5.0 2.3 1.4 1.1
o, [1/5] 15.0 6.0 3.0 1.7 1.3
c x10° [8_4] 40.0 18.0 4.5 1.8 0.9
o [-] 0.080 0.050 0.042 0.035 0.030
7 [-] 210 190 80 55 42

It contains standardized parameters for a wide range of squirrel-cage induction
motors with basic design and a small influence of current displacement in the ro-
tor’s cage. Beside the basic parameters (3.94) it contains relative parameters
(3.57), which are encountered in several versions of the mathematical model. The
data in Table 3.1 give mean values of the parameters for the group of examined
motors with the number of pole pairs p = 1...5. The research that follows serves
for the purpose of setting an example and illustration and is based on four motors
from the group of 60 motors that were used for the preparation of Table 3.1. The
selected motors are representative of the groups of small, medium and large power
ones, respectively. Their parameters are presented below; one can make an effort
to compare them with the parameters in Table 3.1.
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Small power motor (S1)

P, =55[kW] U, =400[V] I,=113[A] T, =55.3[Nm]

n, =950[r/min] p=3 s, =005

o, =54 [1/s] @, =70 [1/s] L,=0.167 [H] L, =0.1627 [H]
0=0052 k, =k, =0974 R, =090 [Q] R, =1.17 [Q]

Cop =32x10° [s™] T =0.04 [Nms?*] (3.95)
T,/T,=35 T,/T,=27 I,/1,=58

Medium power motor - high voltage (S2H)

P, =315[kW] U, =6000[V] I, =36.5[A] T, =2034[Nm]

n, =1480[r/min] p=2 s, =0.014

o, =16 [I/s] a =3.1[1/s] L,=12393 [H] L, =1.208 [H]
0c=00492 k =k =0975 R, =193 [Q] R, =3.85 [Q] (3.96)
c, =3.15x10°[s™*] J=5.5[Nms’]

TIT =21 T,/T =10 I,/1 =48

Medium power motor — low voltage (S2L)

P, =560[kW] U, =400[V] I,=975[A] T, =3590[Nm]

n, =1450[r/min] p=2 s, =0.034

a =1.7[/s] o =25][1/s] L =3342 [mH] L, 6 =3.275 [mH]
c=0040 k, =k, =098 R, =57 [mQ] R, =8.4 [mQ] (3.97)
c, =3.1x10°[s*] J =14.0[Nms’]

el

1,/T,=28 T,I/T,=12 1,/1,=57
High power motor (§3)

P, =2500 (kW] U, =3400[V] I,=490[A] T, =8000[Nm]

n, =2920[r/min] p=1 s, =0.028

o, =12 [I/s] a, =16 [1/s] L,=0.0719 [H] L, =0.07085 [H]
0=0030 k, =k, =0985 R, =0086 [Q] R, =0.115 [Q] (3.98)
oy =1.1x10% [s™] T =45.0[Nms?*]

T,/T,=29 T,/T,=10 1,/1,=57
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3.2.2 Typical Dynamic States of an Induction Machine Drive —
Examples of Trajectories of Motion

Equations of motion for an induction machine drive presented in Section 3.1.5 for
various coordinate systems have 5 degrees of freedom: four for electric variables
in axes u,v of the transformed system of electric variables of a machine and one
degree of freedom for the mechanical variable in the form of the angle of rotation
of the rotor. It is possible to have to do with more than one coordinate of the me-
chanical motion, for instance under the assumption of a flexible drive shaft, where
the angles of shaft rotation on the side of the motor and on the side of the drive are
different and this difference corresponds to the torsion angle of the shaft. The par-
ticular dynamic states formally constitute distinct initial conditions for a system of
ordinary differential equations that form the mathematical model of a drive. The
number of these states can be infinite for various initial conditions; however, from
the practical point of view a few of them are encountered most frequently and
hence they deserve a more in-depth analysis here. The typical dynamic states for
an induction machine drive include: start-up from standstill, motor start-up under
non-zero rotational speed, change of a load, reversal — i.e. change in the direction
of rotation and electrical braking. In the first order we will discuss dynamic states,
which can be easily and effectively solved using models with transformed vari-
ables of the stator and rotor. The presentation will cover, respectively: start-up
from a standstill, start-up under angular speed different from zero (repeated start-
up and reversal) and drive regime of operation under cyclic variable load. The fol-
lowing stage will include the presentation of dynamic states, which can be
conveniently calculated on the basis of models in which single side of a motor is
untransformed. Such cases include the issue of a soft-start and DC braking of an
induction motor.

3.2.2.1 Start-Up during Direct Connection to Network

A computer simulation of this dynamic state is performed for zero initial condi-
tions. It is possible to conduct calculations by application of various versions of
the mathematical model in a transformed coordinate system. It is beneficial to ap-
ply the model in current coordinates in a,f axes (3.61) or in flux coordinates
(3.59). Both systems are in the standard form and the application of the a,f system
enables one to achieve the natural frequency of voltages in the transformed sys-
tem. The calculations of the current curves require the application of a reverse
transformation T,” (3.33) under the assumption that w. = 0, i5p = 0. For the case of
the model in (3.59) with flux coordinates, the transformation of T,”, which leads to
transformation of currents in the axial a,f system has to be preceded by the trans-
formation of (3.51) to convert flux variables into axial currents. As a result, we
obtain:
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The examples of trajectories of the motion presented in this section apply a model
in the flux coordinates (3.91-3.92), while phase currents are obtained using (3.99).
The calculations of the trajectories of start-up from a stall was conducted for three
induction motors with respective, small, medium and large power, whose parame-
ters are given in (3.95), (3.97) and (3.98), respectively. Fig. 3.7 presents the curves
of the phase current, electromagnetic torque and angular speed for an unloaded
small power motor whose moment of inertia on the shaft is J = 3J;, where J; de-
notes the moment of inertia of the motor’s rotor. The waveforms of the same type
are presented in Figs. 3.8 and 3.9 for medium and large power motors. In Fig. 3.8
for the medium power motor the trajectory of electromagnetic torque, i.e. the rela-
tion of the torque and angular speed is additionally presented.
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Fig. 3.7 a) phase current b) electromagnetic torque ¢) angular velocity during free accelera-
tion after direct connecting to the supply network, for the small power motor. Motor is
unloaded and J = 3J
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Fig. 3.8 a) phase current b) angular velocity c) electromagnetic torque time history d)
torque trajectory, during free acceleration after direct connecting to the supply network, for
the medium power motor, while 7; = 0 and J = 2J;
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Fig. 3.9 a) phase current b) electromagnetic torque c) angular velocity, during free accelera-
tion after direct connecting to the supply network, for the high power motor, while 7; = 0
and J = 2J;



150 3 Induction Machine in Electric Drives

One can note the considerable oscillatory changes of electromagnetic torque
with a large initial value (4...6 T,) and a frequency similar to the network voltage
during the direct connection of the induction motor to the supply network. This re-
sults from the occurrence of an aperiodic component of the magnetic flux gener-
ated by the stator’s windings ¥, in association with slowly increasing flux of the
rotor’s windings ¥,. The oscillatory state of the torque occurs until the instant
when the two fluxes reach a steady state during the rotation over a circular
trajectory.

This is well illustrated in Fig. 3.10 by the presentation of fluxes ¥, ¥, during
the start-up of the small and large power motors. This figure refers to the start-up
curves presented in Figs. 3.7 and 3.9. The presented torque waveforms during di-
rect connection to the network pose a hazard to the mechanical parts of the drive
such as the shaft, clutch as well as the very device that is connected. For this
reason the direct connection is more and more frequently replaced with the meth-
ods of soft-start, which are more widely discussed in the further part of this
subsection.

d)

Fig. 3.10 Magnetic flux vector trajectory in the air gap of induction motor during free ac-
celeration after direct connection to the network: a) ¥, b) ', for the small power motor c)
Y, d) ¥, for the high power motor
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3.2.2.2 Reconnection of an Induction Motor

Reconnection is the term which denotes the dynamic state encountered during en-
gaging a motor during coasting i.e. for a non-zero angular speed. One can note the
difference between a reconnection: resulting from a breakdown in power supply
for 0.3...1 [s], when the magnetic field in the motor from the weakening current of
the cage does not decay completely and a reconnection after a breakdown of
power supply of over 1 [s], when the magnetic field decays completely. For fast
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Fig. 3.11 Reconnection of the small power induction motor at the synchronous speed and
zero current initial conditions: a) stator current b) electromagnetic torque c¢) angular speed
d) stator flux ¥, e) rotor flux ¥, trajectory
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reconnections one has to take into account non-zero initial conditions for electric
variables on the rotor’s windings (¥, i,) since the formed electromagnetic torque
is then considerably dependent on the phase of the voltage connected to the sta-
tor’s terminals. Just as in the case of synchronizing a synchronous machine with
the network it is possible to undertake a reconnection in accordance with the
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Fig. 3.12 Reconnection of the high power induction motor at the synchronous speed and
zero current initial conditions: a) stator current b) angular speed c) electromagnetic torque
d) torque-speed trajectory e) stator flux ¥, f) rotor flux trajectory ¥,
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phase, whose characteristics include low values of the connection currents and
electromagnetic torque. In contrast, in the most adverse case, such reconnection
can occur in the circumstances of the opposition between the phases of network
voltages and the one on the motor’s terminals. In the latter case we have to do
with a large connection current, which is hazardous for the drive due to a torque
surge. For this reason it is best to avoid fast and direct reconnections of an induc-
tion motor into the network. For large power motors the duration period of the
hazardous reconnection lasts for about 0.8-1.0 [s], while for small and medium
size ones the breakdown the time is 0.5 [s]. The reconnection of the motor after
the period of the voltage breakdown over 1 [s] could be considered as the connec-
tion from the zero initial conditions of electric variables. The curve of the current
and torque after such a reconnection is relative to the angular speed Q,(0) after
which the reconnection has occurred; however, it does not exceed the values that
are present during the direct connection of a motor during standstill.

The curves of the currents, electromagnetic torque and angular speed and mag-
netic fluxes in the stator and rotor after connection to the network for synchronous
speed are presented in Figs. 3.11 and 3.12 for small and large power motors, re-
spectively.

3.2.2.3 Drive Reversal

The term reversal denotes turning on a drive under a speed that is reverse to the di-
rection of the rotation resulting from the sequence of phases of the supply network
after turning on. A reversal may be associated with the needs of a technology or
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Fig. 3.13 Reversal of the medium power induction motor drive (J = 2J,): a) stator current
b) rotor flux c) relative rotor speed d) torque-speed trajectory
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may form a type of braking resulting from a counter current. In this case the rever-
sal should be discontinued when the rotational speed of the drive is close to zero
and before the drive starts its rotation in the opposite direction. The dynamic
curves of the current and electromagnetic torque in the initial phase of the reversal
are similar to the values of the curves for these values during start-up under direct
turning on. The calculations of the trajectories of the drive motion apply zero ini-
tial conditions for currents (fluxes), by assuming an adequately long interval in the
supply (1 [s] or more) and an angular speed similar to the synchronous speed but
with a negative sign. Examples of curves during the reversal of a middle power
induction motor (3.97) are presented in Fig 3.13.

3.2.24 Cyclic Load of an Induction Motor

Load on a motor may contain a variable term. In this case steady operation state,
understood as fixed point, is not achieved by a drive on its characteristics. In con-
trast, the drive operates in a closed trajectory when the operating regime becomes
steady. For high inertia of the drive and a relatively small variable term of the load
torque the trajectory of the motion is close to a fixed point. In the opposite case
the trajectory of the drive’s motion forms a curve that considerably diverges from
static characteristic. The trajectory is relative to the value of the variable term, fre-
quency of the load variation and moment of inertia relative to the motor’s shaft.
The examples of the drive regime of operation for a large component of variable
load are presented in Figs. 3.15, 3.16, 3.17. Fig. 3.14 that precedes them presents
the stepwise variable load torque acting on the induction machine’s shaft. Fig.
3.15 presents the dynamic curve for the mean load equal to the rated torque in the
cycle of the load, in which for 7,, = 0.27, the load torque is equal to T}, = 4.27,,
and in the remaining part of the cycle 7}, = 0.27, with the frequency of the
torque variation f; =3 [Hz]. The trajectory of the electromagnetic torque in respect
to angular speed forms a closed curve with the shape of an eight. Fig. 3.16 pre-
sents the cases of the identical load on a drive but for frequency f; =6 [Hz] and f;
=15 [Hz]. As a consequence, there is a considerable reduction and limitation of
the trajectory loop. Fig. 3.17 presents a variable load with the frequency of f; =3
[Hz] and f; =2 [Hz] at the boundary of drive break.

T
Tlmax
Tlmin L —e- /
i -
o=l

Fig. 3.14 The cyclic load torque of the drive
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Fig. 3.15 Induction motor drive characteristics under periodic load changes: f; = 3[Hz], T},
=T, Timax = 4.2 T,: a) phase current b) rotational speed c¢) torque time history d) torque-
speed trajectory

3.2.2.5 Soft-Start of an Induction Motor for Non-simultaneous Connection
of Stator’s Windings to the Network

As it was mentioned earlier (3.2.2.1), the direct connection of an induction motor
to the supply network results in the high value of an oscillatory component of
electromagnetic torque during start-up. Besides, there is considerable value of the
start-up current. This is well illustrated in Figs. 3.7-3.9 for small, medium and
high power motors. The oscillations of the electromagnetic torque can be consid-
erably limited and, hence, it is virtually possible eliminate their effect as a result of
the application of synchronized connection of phase windings in the network. In
the first stage, two clamps of the stator’s windings are connected with a suitable
synchronization with the network and in the second stage the third clamp is con-
nected with an adequate phase delay. A computer simulation of the examples that
illustrate this issue can be conveniently conducted by use of a model of an induc-
tion motor with untransformed electric variables of the stator’s windings. This
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model is presented in equations (3.76-3.77), while the notation used for stator’s
windings follow the ones in Fig. 3.6. Under the assumption that the voltage of the
supply network Uy, is given in the form of the function

TefTn
TefTn

a)

TefTn

b)

Fig. 3.16 Induction motor electromagnetic torque under periodic load changes for various
frequency values: a) f; = 6[Hz] b) f; = 15[Hz]
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Fig. 3.17 Induction motor performance under periodic load changes close to the break

torque loading: a) f; = 3[Hzl, Tjpax = 52 Ty, Ty = 1.87 T, b) f; = 2[Hz], T)po = 3.5 T, Thar
=1.85T,
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Uy =U,, sin(o;t+7) (3.100)
the soft-start of the motor follows for the phase angle:
y=xnr7 } =046...050 , (3.101)
while the connection of the remaining, third, clamp follows with a phase delay:
0=2x/3-y, yx,=043...0.36 (3.102)
.
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Fig. 3.18 Delay soft-start of the small power induction motor (J = 3J)): a) phase current b)
angular speed c) electromagnetic torque d) stator flux trajectory e) and rotor flux trajectory
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Fig. 3.19 Delay soft-start of the medium power induction motor (J = 2Jy): a) electromag-
netic torque b) stator flux trajectory c) rotor flux trajectory

The values of coefficients y;, y, are determined as a result of the calculations in-
volving simulations for selected squirrel-cage motors; their extreme values are
relevant with regard to motors from a small to large power. The instances of such
connections, result in a virtual lack of aperiodic component in the generated mag-
netic flux ¥, ¥,. This issue has been illustrated using examples based on computer
simulations for motors from small to large power, and the obtained results are pre-
sented in Figs. 3.18, 3.19 and 3.20.

One can easily note the smooth curve of the current without the aperiodic com-
ponent and small oscillations of the electromagnetic torque at the initial stage of
the start-up. This comes as a consequence of the curve of trajectories of magnetic
fluxes presented in the figures. This type of start-up, that is associated with the
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Fig. 3.20 Delay soft-start of the high power induction motor (J = J,): a) phase current b)
electromagnetic torque c) stator flux trajectory d) and rotor flux trajectory

need to apply power semiconductor switches, has considerably more advantages
than direct connection, and this can be concluded from a comparison between the
above illustrations and results presented in Figs. 3.7, 3.8, 3.9 for the same motors.

3.2.2.6 DC Braking of an Induction Motor

Braking using direct current involves DC supply to the suitably connected stator’s
windings in such a way that enables the potentially high constant magnetic flux in
which the rotor is put in motion. The current produced by rotor windings as a con-
sequence of induction combines with the magnetic field thus producing braking
torque, which approaches idle run for a DC supply, i.e. the condition when the
rotor is stalled. Fig.3.21 presents two typical layouts from among the list of the
possible connections between the stator’s windings for braking.

The modeling is based on equations (3.76-3.77) for an induction motor for
untransformed currents of stator’s windings. For a three-phase system of connec-
tions (Fig. 3.21a), we directly apply equations (3.76-3.77) by assuming that:

Ugy =Upe U3 =0 iz =—iy—i (3.103)

For two-phase power supply during braking (Fig. 3.21b) the following constraints
are applicable:

Ip ==y Uz =Upc (3.104)
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Fig. 3.21 Connection of induction motor stator windings for the DC three-phase breaking
and the two-phase breaking
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Fig. 3.22 3-phase DC breaking of the small power induction motor with J = 5J, ipc = 21,.:
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Consequently, the stator windings connected in a star have a single degree of
freedom, for which we assume the variable i ;. Using (3.104) and after elimination
of the latter of equations (3.76), we obtain the model for this type of braking:

Upe Ry +R,, 0 0 iy
0 |=|-pb,L, f R, po.L |i, |+
0 _per \/_ _pérLr Rr i"’
(3.105)
2L, L \/_ L, Tiy
+| L3 0 i I
5 dt| .
-L,% 0 L, Iy

Te :_me\/Eisl (%iru + %irv)

On the basis of the obtained versions of the mathematical model, simulations were
conducted for braking of a small and large power motors (3.95, 3.98) for a braking
current, which in the steady state is equal to ipc = 2I,. The characteristic wave-
forms are presented in Figs. 3.22 to 3.25.
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Fig. 3.23 2-phase DC breaking of the small power induction motor with J = 5/, ipc = 21,..:
a) stator current i;; b) magnetizing current i,, c) MMF trajectory i,/ i,,, d) electromagnetic
torque e) rotational speed
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Fig. 3.25 2-phase DC breaking of the high power induction motor with J = 1.5J, ipc = 21,
a) stator current i;; b) magnetizing current i,, c) MMF trajectory i,,, / i,,, d) electromagnetic
torque e) rotational speed

The closer familiarity with the results of calculations for DC breaking leads to
the following general conclusions:

- 2-phase braking is considerably more effective than 3-phase braking with di-
rect current; however, its characteristics include oscillations of torque and speed in
the final phase of braking. This results from the lack of damping of the clamped
circuits in the windings in phase 2 and 3

- magnetizing current during braking is quite small and is definitely smaller
than the magnetizing current during symmetric motor regime. After the rotor is
stalled the magnetizing current reaches the value of ipc. Hence, the saturation of
the magnetic circuit over the entire range of speeds during braking is similar to
characteristics of motor regime of operation and the applied models with constant
parameters remain in the same precision range as during motor regime. This
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concerns the supply of the motor with the direct voltage, for which current ipc
does not exceed several times the rated current.

- considerable differences are absent from the dynamic curves of braking for
small and large power motors. Smaller motors tend to brake more dynamically, in
accordance with the larger value of the electromechanical constant c,, (3.93).

3.2.3 Reduction of a Mathematical Model to an Equivalent
Circuit Diagram

A dynamic system, such as electric drive described with ordinary differential
equations for given initial conditions and input functions, is characterized with a
specific trajectory of the motion. This trajectory represents the history of all vari-
ables in a system. The steady state of such a system occurs when the trajectory is
represented by a fixed point, that is

o' @l={a}
or by a periodic function with the period of 7, when
" =¢" (3.106)

For an electric drive this occurs when variables in a system forming the vector of
generalized coordinates q are either constant functions or periodically variable
ones. In a induction motor drive we can assume in an idealized way that the steady

state occurs when the angular speed is constant, i.e. Q = 9,_ = const and the elec-

tric currents which supply the windings are periodic functions with the period in
conformity with the voltages enforcing the flow of the currents.

One can note that the history of both the supply voltages and the resulting cur-
rents is relative to the transformation of the co-ordinates of the system, as
presented in the models of the motor in a.f, d,q or x,y axes (3.61 — 3.65). In a x,y
system rotating with the speed o, = w,; = pw, the symmetric system of sinusoidal
voltages supplying phase windings as a result of transformation (3.37) is reduced
to constant voltages. In such coordinate system the steady state literally means a
fixed point on the trajectories of all variables. The situation will be different for a
steady state in the case of asymmetry of the supply voltages or cyclically variable
load torque. In such a case the steady state will be characterized by periodically
variable waveforms of electric currents and angular speed, while in the speed
waveform the constant component will form the predominant element. The ac-
quaintance with steady states is relevant for the design and exploitation of a drive
since it provides information regarding its operating conditions and, hence, forms
the basis for the development of strategies regarding methods of drive control. The
familiarity with the steady states makes it possible to determine the characteristics
of the drive, i.e. functional relations between variables that form the sets of con-
stant points on a trajectory and ones that are time invariable. For the reasons given
here the steady state of the induction motor drive can be conveniently described in
axial coordinates x,y. Therefore, we will take as the starting point the transformed
equations (3.60) in current coordinates, which after the substitution w. = w, gives:
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usxy — Rs 0 isx)' +
0 0 R, |1,y

. . (3.107)
+ d Lx Lm lsxy X s X m A21sxy
d[ Lm Lr irxy SXWL SX r Azi rxy
where: X =0L X =0oL X =0lL,
while 5= &P (3.108)
w,

- is the slip of the rotor speed in relation to the rotating magnetic field (see 3.63).
We assume that the steady state forms the fixed point of the trajectory ¢'(q)=q,

hence, it denotes the constant angular speed Q, = const and the constant slip s =
const. This condition is possible due to the constant values of currents iy, i, and,
as a result, the constant electromagnetic torque 7,. This requires the constant sup-
ply voltages after the transformation of x,y, which take the following form in ac-

cordance with (3.37):
Ugy 3 cosy
u, = =,|=~2U 3.109
- L} 2" ””Liw} o1

The form of voltages (3.109) suggests the introduction of complex values:

U, =ug+juy, =3U e =430, (3.110)
where: U, - is the RMS value of the voltage supplying the phase of the motor.
Subsequently, we can substitute:

ig=1 =i, +jiy, i, =1 =i, +ji (3.111)

In the following transformations of equations (3.107) the latter of the equations in
each pair is multiplied by the imaginary unit j and is added to the first of the equa-
tions, thus giving the equations for a complex variable. For the stator we obtain:

U,=RI +jXI,+jX,I, (3.112)

d

Here we have applied: dii =0, d—[ . =0, which results from the steady state
t t

s

Tiw] [ i
Asi = =| S
215)(} |:_1 :||:-]le:| |:—l.sx:|

which after addition of row vectors leads to:

A,

and

lsxy = —Jl-

As we perform similar operations for the other pair of equations, i.e. rotor’s equa-
tions, and dividing this equation by slip s, we obtain:
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O=&L,+ijLY+jX,£, (3.113)
s

This makes it possible to develop an equivalent circuit for an induction motor in
the steady state as a result of merging equations (3.112, 3.113) in the form of a
two port, using a common magnetizing reactance term jX,,. The equivalent circuit
in the form in Fig. 3.26, beside the voltage and current relations presented in every
two port, also realizes in an undisturbed manner the energetic relations occurring
in the steady state. This comes as a result of the application of orthogonal trans-
formations that preserve scalar product and quadratic forms in the transformation
of equations.

Fig. 3.26 Equivalent circuit of an induction motor for the steady state

In this circuit we have to do with a resistance term R, /s, which realizes in the
energetic sense both Joule’s losses in the rotor windings and the mechanical out-
put of the drive transferred via the machine’s shaft as the product of torque 7, and
the angular speed of the shaft Q,. Hence the resistance term can be divided into
two terms: R,, R,(1-s)/s, which realize the losses of the power in the stator’s wind-
ings and mechanical power P,, as it is presented in Fig. 3.27. The following
components of the electric power are encountered in the equivalent diagram:

Joule’s losses in Joule’s losses in
stator windings rotor windings
R R,/
O_‘:l_m 1—s
e
U

Input P Pf magnetic m

power 1 field power mechanical power

Fig. 3.27 Equivalent circuit of induction motor with physical interpretation of electric
power components
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P = |Q Sl 5| cos @ input power
P, =1 ?RS Joule’s losses in stator windings
P =I7R,/s air gap field power (3.114)
P, =1 er Joule’s losses in rotor windings
2, l=s :
P,=I,R — mechanical power
Pl =Lt Pf

The energy balance for a 3-phase machine is preserved due to the fact that
U, = ﬁ U ,,, hence, the transformed power is three times higher than the power

of a single phase. In the analysis of the expression for the mechanical power out-
put of an induction motor drive we can distinguish the following areas of opera-
tion:

1. for O0<s<l1 Pf >0, P,>0 - motorregime

2. for s<0 P, <0, P,<0 - generating regime
3. for s>1 Py >0, P,<0 -braking regime

4. for s=1 Pf >0, P,=0 -stall of the motor
5. for s=0 Pf =0, P,=0 -idlerun

From the expression for the mechanical power we can calculate the motor’s torque
in the steady state:
P p 1

T,=—" =L’ = (3.115)
Q w s

r s

The equivalent circuit can additionally be useful in the calculation of the stator
and motor currents:

v

I, = — (3.116)
X
R +jX, +—"—r
‘ R, /s+jX,
I, =-I _ (3.117)

TR s+ X,

It would be valuable to present the currents in the standardized parameters (3.57)
since as a consequence of such presentation it is possible to depart from the par-
ticular design of an induction motor. The standardized parameters assume values
in the ranges presented in Table 3.1. In this case the relations (3.116-3.117) take
the form:
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I = ws Qs
oOX, 5@ (1-0)
o+ jo,+———-
so, — ja, (3.118)
=1k —"%
]sws +]ar

Currents [,,I, represent symbolic values of stator and rotor currents for steady

state sine curves. The electromagnetic torque in the steady state can be derived
from relation (3.45)
T, = Ly (igyire —isyiny) = pL, I(I 1) (3.119)

sylrx

Using relations (3.116, 3.117) presenting stator and rotor currents we obtain:

Rr
5 2
pUs N
e = (3.120)
(2N (RS &—LX,)Z +(L&+LRY)2
X, s k. - kg s k.
where: X,=0X, (3.121)

- is a blocked-rotor reactance.
The electromagnetic torque can also be presented using standardized parame-
ters (3.59), and takes this form:

ar
- o
e S—— (3.122)
s (T o)+ (T +ay)?
a, S N

s

The expressions (3.120), (3.122) representing electromagnetic torque relative to
supply voltages and motor parameters are frequently subjected to certain simplifi-
cations in order to simplify the analysis of these expressions. The basic procedure
applies disregarding of the resistance of the stator winding R, and, subsequently,
o, in some or all terms of this expression. A detailed analysis of this type of sim-
plification will be conducted later on during the determination of the characteris-
tics of the drive regime.

3.2.4 Static Characteristics of an Induction Motor

Static characteristics concern the steady state of a drive and give in an analytic or
graphic form the functional relations between the parameters characterizing motor
regimes. Typical static characteristics can for instance indicate the relations be-
tween electromagnetic torque, current and the capacity of a motor or between effi-
ciency and the slip, voltage supply and the power output of the drive and the like.
One can note that static characteristics constitute a set of constant points along a
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trajectory {q,. € q} for selected variables of the state g; or their functions, that illus-

trate the values that are interesting from the point of view of the specific regimes
of a machine, for example electromagnetic torque 7,. Static characteristics collect
the end points of trajectories for which the system reaches a steady state. They do
not provide information regarding the transfer from a specific point on the charac-
teristics to another one, how much time it will take and whether it is attainable.
Hence, in static characteristics we do not have to do with such parameters as mo-
ment of inertia J, and the electromagnetic torque 7, and load torque 7; are equal
since the drive is in the state of equilibrium, i.e. it does not accelerate or brake (see
3.12). For example, very relevant characteristics are presented using functions
(3.120, 3.122). They illustrate the electromagnetic torque for an induction machine
depending on a number of parameters. A typical task involves the study of the re-
lation between the characteristics of the electromagnetic torque and the slip 7,(s)
for constant remaining parameters, since it informs of the driving capabilities of
the motor in the steady state. The relation between machine’s torque and slip T,(s)
gives the maximum of this function for two slip values called break torque slip or
pull-out slip.

(3.123)

(3.124)

The root term y in formulae (3.123, 3.124) is the factor for correction of the value
of the break torque slip as a result of the of stator windings resistance R, influence.
Since leakage coefficient is o =0.08...0.03 (see Table 3.1) the following ine-

quality is fulfilled
( I;‘ j>>(§sJ (3.125)
O- s s

In addition, these relations are inversely proportional to the square root of the fre-
quency of the supply source. Two degrees of simplification that are applicable in
the development of static characteristics of an induction motor result from the pre-
sented estimates. The first of them is not very far-reaching and involves disregard-
ing of resistance R; in the terms denoting torque (3.120, 3.122) and break torque
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slip (3.123, 3.124), in which this effect is smaller in accordance with the estima-
tion in (3.125). In this case we obtain:

(3.126)

The most extensive simplification concerns the case when the resistance of the
stator windings is completely disregarded, i.e. R; = 0. In this case we obtain:

Rr
, R
T, = PUs 1 o and s, _ik R (3.127)
o (L X )2+ ()2 ky, 0X
k, kg s

Fig. 3.28 presents static characteristics of the motor’s torque in the function of the
slip for a small power induction motor for the three examined variants of simplifi-
cation regarding resistance R;. One can note the small difference between the
curve for the torque marked with solid line (i.e. the one presenting relations with-
out simplifications (3.120,3.122)), and dotted line (i.e. the one presenting the re-
sult of calculations on the basis of formulae (3.126) involving the first degree of
simplification). However, when the resistance of stator windings is totally disre-
garded (R, = 0) in accordance with formulae (3.127), the error in the characteris-
tics of torque 7, is considerable, as the relative involvement of resistance R in the
stall impedance of small power motor is meaningful.

2- o
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& _2_
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b 7~
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© ong” £

Fig. 3.28 Torque-slip characteristics for the small power induction motor illustrating sim-
plifications concerning stator resistance Rj: R, taken into consideration completely,
according to (3.120, 3.122); =e===eee into consideration taken only the most significant com-
ponent containing R;, according to (3.126); -------- R, totally disregarded (3.127)
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It is noteworthy that for R; = O the characteristic of motor torque becomes an
odd function of the slip s, so it is symmetrical in relation to the point of the idle
run s = 0. Accounting for resistance R, torque waveform on the side of the motor
regime (s>0) is considerably smaller in terms of absolute values than for the case
of generating regime, i.e. for s<0. In addition, on the side of the generator regime
the effect of the first degree of simplification accounting for resistance R; is more
clearly discernible than for the case of the motor regime, which can be simply in-
terpreted by analyzing relations (3.120, 3.122). The presented effect of the resis-
tance of stator windings on the characteristics of the torque increases along with
the reduction of the pulsation of the supply voltage w; and becomes very high for
small frequencies. This subject will be covered in more detail later. This effect is
graphically presented in Fig. 3.29 in the range of the supply frequencies 1 < f; <50
[Hz].
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Fig. 3.29 Characteristic of the break-torque slip s, versus pulsation of the supply voltage w;
for the small power motor

The formulae for the break-torque slip and motor torque accounting for simpli-
fications concerning the resistance can be additionally presented in formulae con-
taining standardized parameters. The equivalent of the formulae (3.126) takes the
form:

ar
. a,
T,= pU;d-0) Sa and
Y o)+ @ ra,)
S
2
s, =12 @5 (3.128)

o0\ (a, /o) + @}

Concurrently, formulae (3.127) are replaced with the form which disregards
resistance R;, by introducing a; = 0:
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ar
, a,
2k k
Tg — pUs s"™vr S p and
X (ow)?+(Z)
sy =22 (3.129)

In the latter case it is easy to calculate the value of the break-torque:

2 2
pUZkk,  pkik, (ﬂ J

20X, 0, 20L,\ o,
P T

T,(s,)=T, =

(3.130)

Formula (3.130) constitutes the basic rule applicable for adjusting the RMS value
of sinusoidal supply voltage U, of the motor to the frequency of this voltage f; in
such a manner, that guarantees a constant break-torque value of 7. Hence, the re-
lation takes the form:

Us = U , which, subsequently gives:
a)S a)Sf’l
v =u, In (3.131)

During the course of action that follows in the discussion of frequency based con-
trol of motor’s rotational speed it will become evident that this rule is completely
insufficient within the range of small supply frequencies. This is so due to the ris-
ing share of the resistance R; in the impedance of the motor stall along with the
decrease in the frequency of supply. The relation denoting the break-torque with-
out simplifications, in which resistance R; is not disregarded, is much more com-
plex than the one in (3.130). The greater complexity of the relation results from
the substitution of the break-torque slip s, (3.123) in the expression denoting the
electromagnetic torque of the motor. As a result we obtain:

. 2
, kK
1, = S8n(@)pU kK, = . (3.132)
GLS ( as‘ ] ( a“ a)v ]
X o x
where coefficient y results from (3.123) and is given by the relation:
7= (3.133)
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Under the simplifying assumption that R; = 0, we have a; = 0 and y = 1 and, as a
consequence, break-torque expression (3.132) is reduced to this form (3.130). The
relation in (3.133) is applied to indicate the effect of resistance R, on the break-
torque 7, more clearly. The following illustrations in Fig. 3.30 show voltage-
frequency relations required to provide constant value of nominal break-torque 7,
in the function of stator voltage pulsation w,. For the motor regime of operation
the required voltage is clearly higher than for the generator regime. From Fig. 3.30
we can also see that smaller motors, within low frequency range, require much
higher supply voltages than large motors to sustain the nominal level of T, A
close inspection of Fig. 3.30b indicates that for higher pulsations w, the differ-
ences between motors disappear, but still there is constant discrepancy between
the symmetrical ‘ideal’ V-line for o, = 0 and the curves, for which stator resis-
tance R; was accounted for. For the motor operation the required voltages are
higher while for generator operation they are lower in comparison to the ‘ideal’ V-
line. One might say that the actual V-line for which resistance R; is included is
shifted in the direction of lower pulsations w; in respect to the ‘ideal’ V-line for
which R; is completely ignored.

a0 e a0 O 100 200 a0 4 N 20 4
a) omega [1/5] b) omega [1/5]

Fig. 3.30 Voltage-pulsation curves indicating the a stator voltage level required to sustain a
nominal break-torque 7}, while w, pulsation changes. The curves are presented for different
induction motors with a, = 18.8, 5.4, 1.7, 1.2, 0.0 : a) for full range of stator voltage pulsa-
tion w;, b) range of w, limited to low values

Subsequently, Fig. 3.31 presents the characteristics of the motors in the func-
tion of the slip in two versions: completely accounting for parameter R; - smaller
characteristic in each pair, and the one totally disregarding resistance, i.e. for
R, = 0 - with the above presented characteristic. For nominal value of o, = 2xf,,
the distinctive difference between the two versions take place for the small power
motor.
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Fig. 3.31 Torque-slip curves (relative values) for the three induction motors: small, medium
and high power. The effect of R; = 0 simplification is illustrated for f; = 50 [Hz]

Subsequently, Fig. 3.32 presents the characteristics of stator current for the
three motors accounting for resistance R;. The relation (3.134) is applied in this
case, which comes as a consequence of (3.118):

, (e
(UY+ s
_US A s

1 = (3.134)

X o\ o
’ aza)f+(') +2a,
N

a
kk +o’|| — | +1
s S,

When the resistance of stator windings is disregarded (a, = 0), the relation which
defines the current in the stator windings takes a considerably more succinct form,
which is additionally easy to verify for the two extreme motor states, i.e. for s = 0
and s = oo.

(3.135)

Self reactance of the stator windings X is encountered in a multitude of relations
concerning induction motors. The value of this parameter can be easily determined
from calculations or manufacturers’ data for idle run. From the equivalent diagram
(Fig. 3.26) of the motor it results that

Yy

TE=Zy=R+jX, X =Zysingy (3.136)
=0
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Fig. 3.32 Stator current-slip curves (relative values) for the three exemplary motors accord-
ing to (3.134) presented in relative values, for f; = 50 [Hz]

where U ,I,,Z,,9, denote voltage, current, impedance and phase angle for the
idle run of the motor. If the phase angle during idle run is not familiar, it is possi-
ble to use assessment relevant for the rated frequency: R, << X; and calculate in an
approximated way:

Yo
IO

X (3.137)

N

3.3 Methods and Devices for Forming Characteristics of an
Induction Motor

By its very nature resulting from solid rotor windings and lack of power supply to
its windings, an induction motor is most suitable for operation under steady condi-
tions and with a small slip. In such a case the angular speed results from the fre-
quency of the supply to the stator windings, number of pole pairs and value of the
slip. Traditionally, it was applied in drives in which neither frequent changes of
speed nor variable control were required (examples of such devices include
pumps, blowers, compressors, belt conveyors, cranes, industrial hoists). There was
virtually no possibility of controlling induction motors within wide range of
speeds while concurrently preserving high energetic efficiency until 1970s. Drives
in which the control of speed was necessary most frequently applied slip ring in-
duction motors, in which it is possible to control rotational speed as a result of use
of external elements. However, such systems are either complex, costly and prob-
lematic in control due to the use of cascaded systems. Alternatively, they have
lower energetic efficiency due to additional resistance in the rotor’s circuit. In ad-
dition, the start-up properties of an induction motor under direct connection to the
network are adverse due to the initial period of oscillations of electromagnetic
torque with a high amplitude and high value of the start-up current. Despite these
drawbacks the induction motor has become the most common machine in electric
drive systems due to the fundamental advantages including long service life and
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reliability as well as low price and accessible supply source. Following the devel-
opment of power electronics and control elements enabling arbitrary shaping of
voltages and currents, induction motors became widely applied in complex drives
due to a new angular speed control potential and general robustness at heavy duty.
This section will be devoted to the presentation of the methods of forming charac-
teristics of induction motors and will cover the devices that make it possible to
realize the required characteristics. The possibility of modeling characteristics re-
sults directly from the relation defining angular speed

Q. :a)f(l—s):ﬂ(l—s) (3.138)
' p

S

where: wp =

- synchronous angular speed of a rotating field. Each of the

values in relation (3.138) offers the possibility of modeling mechanical character-
istics: number of pole pairs p, slip s as well as the frequency f; of the supply volt-
ages. The control of slip s is possible to a large extent as a result of the external in-
terference in the rotor circuit and also voltage changes but within a small range of
rotational speeds. The presentation of methods used for modeling characteristics
associated with rotor slip changes will follow in the subsequent sections. Concur-
rently, a separate section will be devoted to an extensive presentation of control as
a result of modifying the frequencies of the supply voltages. The application of the
various number of pole pairs p for changing motor speed appears to be most
straightforward to explain. A series of synchronous speeds w; for a given supply
frequency consists of a discreet values. For the successive number of pole pairs p
= 1,2,3,4,5,6,... and for example for the frequency of the supply f; = 50 [Hz] they
are, approximately:

o, =314.16, 157.1, 104.7, 78.5, 628, 524,...

This finds application in multi-pole motors, in which the windings can be
switched to two or three synchronous speeds, which leads to a stepwise change of
rotor speed. This type of drive is applied in cranes and industrial hoists mainly
with two speeds — transit speed with a higher value and a slower approach speed.

3.3.1 Control of Supply Voltage

The control of the supply voltage can offer only limited possibility of adjusting ro-
tational speed of an induction motor. This results from the basic mechanical char-
acteristic of the motor (Fig. 3.28) which indicates that the slip under a given load
can be increased up to the limit of s < s,, which means it has to keep below the
break-torque slip beyond which a loss of the stability occurs and the motor stops.
In addition, this type of control is achieved at the expense of efficiency loss since
under a constant load the losses in the motor are AP > P;s. This comes as a con-
sequence of the increase of the current and losses in the motor windings. At the
same time, the control of the supply voltage is currently used in order to reduce
the start-up current and perform a soft-start. This is realized with the use of
an electronic device called a soft-starter. A diagram of such a device is found in
Fig. 3.33.
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Fig. 3.33 Basic diagram of a soft-starter for an induction motor

The introduction of semiconductor elements (SCRs, IGBTs, GTOs, MOSFETs
etc.) for the two directions of current flow for each line supplying the motor wind-
ings makes it possible to employ current flow with a selected delay angle a in rela-
tion to the zero crossing of the supply voltage curve. As a result, at some expense
of altering the current and voltage from sinusoidal shape, it is possible to control
the value of voltage and synchronize the motor with the network at the instant of
connecting the particular motor phase windings during start-up. Soft-starters may,
accordingly, realize the following functions related to the start-up and stopping of
an induction motor:

- synchronization of the connection of particular phase winding to the network
and thus enabling the reduction of the variable component of the torque (see
3.2.25)

- limitation of the start-up current in a selected range,

- braking with the use of direct current (see section 3.2.2.6) and conduct con-
trolled stop of a drive.

Not all of the above functions have to be realized by a single type of soft starter.
In the most economic versions designed for smaller drives, a soft starter some-
times contains switches in the two supply lines, which only leads to limitation of
the start-up currents and does not provide symmetry of the supply voltages. The
following Figs. 3.34-3.38 present the examples of application of a soft-starter for
an medium power induction motor with a delay angle a = 40° and the basic value
of the moment of inertia J = J,. The figures present a comparison between start-
up versions without synchronization during the connection of phases to the net-
work and the one with synchronization involving the connection of line L, L, for
phase angle J,, = 0.48x [rad] and a later connection of the third supply line L; for
angle: d3=a + J,, -0.1 [rad]. As a result, we obtain a very soft starting curve dur-
ing the initial stage of the start-up of the motor (Fig. 3.34) accompanied by a very
favorable torque waveform (Fig. 3.36). The synchronized connection for such
a large delay angle o = 40° also results in the reduction of the duration of the
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start-up (Fig. 3.35, Fig. 3.36) since the value of the constant component of the
motor torque increases during the initial stage of the start-up. The current wave-
form in the phase winding of the motor for such a supply is presented in Fig.
3.37. The delay angle in the range of around 40° is virtually the sharpest one for
which it is possible to conduct start-up of the motor during idle run within a sen-
sible time, due to the considerable reduction of the value of electromagnetic
torque of the motor. The approximate illustration of the effect of delay angle o on
characteristics of the motor is presented in Fig. 3.38. Soft-starters find application
in drives with an easy start-up due to the considerable reduction of the torque fol-

lowing the fall of the value of the supply voltage.

il
2

]

ix3in

a)

3
ilfln 2 _
B0 L
. . _
k
2
3
4

b)

Fig. 3.34 Line current of the medium power induction motor during free acceleration with a soft
starter (o = 40°): a) without synchronization b) with synchronization: §=0.487; 5;=a + §,,- 0.1
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Fig. 3.35 Relative velocity curve for the medium power motor during the soft-start free
acceleration, under conditions like in Fig. 3.34
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Fig. 3.36 Electromagnetic torque curve for the medium power motor during the soft-start
free acceleration, under conditions like in Fig. 3.34
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Fig. 3.37 Steady-state line current for the medium power motor during the soft-start free
acceleration, under conditions like in Fig. 3.34

A Relative values

0 10°  20°  30°  40° «

Fig. 3.38 Induction motor starting characteristics (relative values) for the medium power
motor during the soft-start free acceleration in relation to delay angle a: a) starting current
b) break torque c) starting torque d) idle run free-acceleration time
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3.3.2 Slip Control

It is possible to control slip in an induction motor when electric power is delivered
through the rotor windings to the external devices. This comes as a consequence
of the fact that for a constant electromagnetic torque 7, and constant supply fre-
quency f, the power P, delivered by the rotating field from the stator to the rotor
has to remain constant. This is so since in the steady state

T =% (3.139)

After some power is extracted from the rotor windings, the electric power
P, = Py s increases and the mechanical power P, = Py (1-s) decreases, which is
possible as a result of an increase of slip s, i.e. the reduction of the rotational speed
of the rotor. As we can see, the control of the slip is only possible in slip-ring mo-
tors, due to access to the rotor windings from outside. The other possibility associ-
ated with power supply to the rotor is hardly ever practically encountered. It is
possible for instance in a motor with power supply from two sides and this case
will not be discussed in this book [25,28,62,67]. The process of power extraction
from windings is conducted in two ways. An inclusion of an additional resistance
R, in the rotor circuit is the oldest method of performing soft-start and possibly
speed control; however, it is accompanied by huge losses associated with the pro-
duced heat. Another method involves power output to external devices whose role
is to transform the power to useful forms, for instance its return to the supply net-
work. Such devices, which used to be electromechanical, now predominantly are
power electronic ones are called cascades. One of them is the Scherbius drive, and
is a subject in the latter part of this section.

3.3.2.1 Additional Resistance in the Rotor Circuit

This method of control results in changes of static characteristics of the torque
presented in Fig. 3.39. According to (3.123, 3.124, 3.127) the break-torque slip s,
increases proportionally to the increase of the resistance of rotor windings R,
while the break-torque 7, does not change. This comes as a consequence of the
maintenance of the constant relation o, /s, which means that slip s rises propor-
tionally to the increase of a,. This in a way results in the change of the scale of the
slip which extends the characteristics of the torque in the direction of higher val-
ues of the slip. This leads to an improvement of motor start-up since the start-up
current is reduced for s = 1 and the static start-up torque increases. Unfortunately,
the operation of the motor in the steady state with an additional resistance in order
to reduce the rotational speed is not applied since it results in the reduction of
the energetic efficiency of the drive. This is so because for an induction motor the
following relation is maintained:

n<l-s (3.140)
which means that for instance the reduction of rotor speed €, to reach the half of

the synchronic speed «w; with the use of resistance based control leads to the reduc-
tion of the efficiency to 7 < 0.5, which is unacceptable.
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Fig. 3.39 Torque-slip characteristics of a wound induction motor with additional external
resistance in the rotor for a,; = a,+(1...20); a,; includes additional resistance R; connected
to the slip-rings

3.3.2.2 Scherbius Drive

As a result of the application of Scherbius drive it is possible to control the speed
of a slip-ring induction motor as a consequence of electric power extraction from
rotor windings and its return after the desired transformation into the network. In
its historical model the Scherbius drive contains an electromechanical frequency
converter connected on one side to the rotor of an induction motor and the other
one to the supply network into which the power returns. In a modern solution of
the Scherbius drive (Fig. 3.40), the currents of the rotor windings are rectified in a
3-phase rectifying bridge and subsequently supply a converter which returns the
energy into the network via an adapting transformer. Between the two bridges
there is an inductor that smoothens the flow of the current and whose role is to se-
cure the continuity of current flow across the rotor even for small mechanical load
of the motor shaft. The control parameter is delay angle a of the thyristor bridge,
which for the desired inverter mode is contained in the range:

90° < <180—u

where u is the emergency angle which prevents the inverter back-feed and has to
be bigger then the maximum calculated commutation angle. Such control corre-
sponds to the feeding of voltage U, (a) into the rotor, which offers a possibility of
controlling the slip of an idle run sy. The slip during idle run s, corresponds to the
theoretical idle run of an induction motor in which there is an equilibrium between
the mean values of electromotive forces E, and voltage at the output of the inverter

U, (a).
32 32

U,(@)=-Ujcosa——,
z

Since E, =U,ys,

’
L

then: Sy =— cosox (3.141)

r0

For the case of an adequately selected transformer rate supplying the inverter the
following is fulfilled: U7 = U,y "and, as a consequence:
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5y =—cosa =cos 3

where f = 180-a is the inverter advancing angle. An increase of the control angle
o of the thyristor, leads to an increase of the slip s, of the idle run thus shifting the
mechanical characteristics of the motor in the direction of lower rotational speeds.
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Fig. 3.40 Diagram of a semiconductor Scherbius drive
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Fig. 3.41 Diagram of the simplified Scherbius drive for mathematical modeling

The control of the semiconductor cascaded drive has been modeled in a simpli-
fied form (Fig 3.41), where an inverter is reduced to lumped elements L, Ry,
U,(a). An induction motor is modeled so that the electric variables of the stator are
transformed into orthogonal axes u,v while we have to do with natural variables
i1, I,2, I,3 in the rotor windings. This model is discussed in subsection 3.6.2 and is
described by the system of equations in (3.88-3.89). The combination of the model
of a slip-ring motor with a bridge on the side of the rotor and a circuit of direct
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current for an inverter is described by a system of equations with s, = 7 electrical
degrees of freedom and a single s,, = 1 degree of freedom for the rotational motion
of the rotor. The generalized coordinates for the electric component of the model
are the transformed currents of the stator windings iy, i, phase currents of the
rotor windings i,;, i,3 currents of the rectifier bridge i, i3 and the current i, in the

inverter circuit.

This model for electric circuits can take the form of a matrix equation:

Ug, R, 0 v(cT—x/gs 7) 2vet
U, 0 R, v(sT+\/§cT) 2vsT
0 vct—+3s7) v(sT++3cT) 2R +R,+R; R, +Rs
0 |= 2vet 2vsT R, + R; 2R, + Rs + R
0 0 0 —R, — Rs —R;
0 0 0 —Rs —Rs—Ry
Lua@] [0 0 Ry Ry
0 0 0 i, |
0 0 0 i,
—R,—R; —Rs R; i
—R;s —Rs — Ry R; iy |+
R, +R, +R, +R; R, + R; -R,—Rs | i
R, +R;s Ry, +Ry+Rs+R, —R,—Rs | i
R, +R; —R,—R;s R, +R,+Rs || iy |
[ L, 0 x(sT+ x/gcz') 2XST
0 L, x(—cT+ \/gs’r) —-2xcT
x(sT+3¢7) x(—cT+~3s7) 2L +L, Ly+1L,
+ 2xsT —2xcT Ly+L, 2Ly + L,
0 0 2L, L,
0 0 - L, -2L,
| 0 0 L, L,
0 0 o 1 [i,]
0 0 0 i
—2L, -1, L, i
-L, -2L, L, % i (3.142)
4L, 2L, -2L, i
2L, 4L, -2L, i
—2L, -2L, 2Ly+L,| |i,
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where:

V2 V2

v:Tpéer XZTL'" sT=sin(pl,) ct=cos(pb,)

The term which expresses the electromagnetic torque takes the form:

T, = QPLW ¥
2 (3.143)

* [c r(i,l W3i, +iy,)+2i i, )+ sr(i,l Gy, —/3i,,) +2i si, )]

On the basis of this model calculations were conducted with an aim of finding
electric and mechanical transients of the drive and static characteristics as well, for
various states of control of the inverter bridge. The calculations were carried out
for a medium power slip-ring motor with the following parameters:

U =6000[V] I =53[A] P =450[kW] T, =2920[Nm]
J =35[Nms’] U, =525[V] I, =545[A] cosg =0.88

p=2 n, =1473[rev/min]  77,=0.93  J =35[Nms’]

The static characteristics of this motor are presented in Fig. 3.39. The parameters
determined on the basis of the motor’s ratings are:

R,=12[Q] R, =0989[Q]
L,=104[H] L =L, =10703[H]

and the parameters of the bridge are:
L,=03[H] L,=0.01[H] R,=0.2[Q]

The dynamic calculations were conducted for the drive’s moment of inertia
J =3J, =105 [Nmsz]. Fig 3.42 presents the start-up of the drive under a load
T, = 0.15 T,, and control angle a corresponding to U"; = 2400 [V]. Hence, the slip
of the idle run, calculated according to (3.141), is equal to:

where U"; is the voltage of the inverter bridge expressed in stator windings volt-
age terms. In consequence the angular speed of the idle run is

Q,=w.(1-s,) :%(l—so) =110.6[rad / s]
' p
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Fig. 3.42 Starting of the 450 [kW] Scherbius drive with sy = 0.3, 7, = 0.157,, J = 3Jg
a) stator current b) rotor current ¢) bridge current d) DC link current e) angular speed f)
electromagnetic torque
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Subsequently, Fig. 3.43 presents the waveforms of electric and mechanical
variables of the drive in steady state for U"; = 1200 [V], which corresponds to
so =0.148 and Q, = 133.8 [rad/s], respectively for the load of 7; = 0.5 T,,.
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Fig. 3.43 Steady state time-curves of the 450 [kW] Scherbius drive with sy = 0.15, 7} =
0.5T,, J = 3J: a) stator current b) rotor current c) bridge current d) DC link current e) rela-
tive speed f) electromagnetic torque

One can note that start-up of this drive does not normally occur in a cascaded
system, as in the example in Fig. 3.42 but in system with an additional resistance
R, in the rotor circuit, which ensures a faster start-up with a larger motor torque.
After this initial stage of start-up rotor is reconnected to the Scherbius drive sys-
tem. As indicated by the comparison of static characteristics of the torque
(Fig. 3.39) with the start-up characteristics in the Scherbius drive system, in the
latter case the motor develops much smaller torque due to the deformations of the
rotor currents from the sine curve accompanied by a considerable decrease of
voltages associated with the components of semiconductor bridges in the rotor.

To give an illustration of a transient operation of the Scherbius drive a stepwise
change in control of inverter voltage was introduced. The output voltage of the in-
verter changed abruptly from U”; = 1200 [V] to U"; = 2400 [V], without a
change of the load being 7; = 0.5 T,. The drive has to slow down due to the
change of the idle slip value from s, = 0.15 to s, =0.25. The resulting transients

are presented in Fig. 3.44.
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Fig. 3.44 Transient characteristics of the Scherbius drive during inverter control change
from sy~ 0.15 to sy~ 0.25: a) stator phase current b) rotor phase current c) bridge current d)
DC link current e) relative rotor speed f) relative electromagnetic torque

Static mechanical characteristics of the semiconductor Scherbius drive were
determined on the basis of a series of calculations of the steady state for various
inverter bridge control angles. An illustration is found in Fig. 3.45.



188 3 Induction Machine in Electric Drives

\
m\

201

500 1000 1800 2000 2500

Te[Nm]

Fig. 3.45 Torque-speed characteristics the Scherbius drive for U", = 0, 600, 1200, 1800,
2400, 3000, 4200, 4800 [V] or equivalent idle run slip values: sy = 0.0, 0.074, 0.148, 0.296,
0.370, 0.444, 0.518, 0.594

3.3.3 Supply Frequency f; Control

One of the fundamental methods applied for control of angular speed of an induc-
tion motor in accordance with (3.138) is based on changing the frequency f; of the
voltage supply to the stator’s windings. Although it was difficult to execute in the
past, this method has become widespread as a result of the application of various
power electronic converters. It finds application in induction motor drives in the
range of power ratings from a fraction of a [kW] to powerful machines exceeding
10 MW [10]. Depending on the power output and design it is possible to apply
various solutions of inverters and various frequencies of energy conversion in the
range from several hundred to 30 [kHz] for small and medium power devices. In
this chapter an emphasis will be on the basic solutions applied in induction drives
with power inverters, including:

- direct frequency converters — cycloconverters,
- two-level voltage source inverters,

- three-level voltage source inverters,

- PWM current source inverters.

This list of converter drives does not form the complete record of the applied
drives — in particular with regard to large power drives but contains the most
common ones. Moreover, resonance based current inverters and load commuted
inverters are applied in addition to the listed ones. For each one of the systems it is
possible to apply several methods of control realizing the various voltages wave-
forms and output currents. The issues thereof are very extensive and are widely
discussed in the references [10,14,22,51,52,97].

3.3.3.1 Direct Frequency Converter—Cycloconverter

The role of a cycloconverter is the conversion of 3-phase alternating voltage and
current of the supply network with the frequency f; into single-phase voltage and
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current of a load with the frequency of f; without conversion into direct current. In
order to obtain a 3-phase system of voltages and currents supplying the motor on
the output of a converter it is necessary to apply three separate conversion unit or
two units in the economical versions of a converter [52]. Each of such units con-
sists of 2 antiparallel groups of controlled rectifiers most common of which in-
clude 6-pulse rectifiers (g = 6). The necessity of using two antiparallel rectifying
groups results from the need of symmetric conducting currents in two opposite di-
rections. Thyristors (SCRs) are applied in the rectifying groups of the converter
and hence in a typical frequency converter we have to do with current commuta-
tion. This comes as a consequence of the fact that the typical application of a con-
verter is the controlled large power induction or synchronous motor drive with a
capacity of up to a dozen MW. A SCR-Silicon Controlled Rectifier is a power
electronic component with the highest operating voltages and high conduction cur-
rents; hence, it is used in large power converters. One of the standard applications
of a frequency converter in a 3-phase load (ac motor) is presented in Fig. 3.46.
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Fig. 3.46 A 3-phase cycloconverter with a 6-pulse rectifier bridges and separated outputs.
The system with inductors limiting the circulating current

This is a converter with bridge rectifying units and separate phases of the load,
which, however, is supplied from a transformer with a single secondary winding.
Between the rectifiers supplying the windings of the motor there are inductors
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limiting the impact of the equalizing current in the circuit of the antiparallel recti-
fier units since in this solution both of them are controlled by the delay angle over
the entire range of the operating conditions of the converter. This is a solution that
does not require detection of the instant of the load current crossing zero and a
subsequent separate control of the two rectifier units. Another solution of the
cycloconverter system is presented in Fig. 3.47. In this case the 3-phase load is
connected in a star, which leads to the supply of particular systems of the antipar-
allel converters from separate secondary windings of the transformer in order to
avoid shorts.
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Fig. 3.47 A 3-phase cycloconverter with a 6-pulse rectifier bridges and the Y - connected
output, which requires 3 separate secondary windings of the supply transformer. The
system without circulating currents and consequently without inductors

Inductors are not applied between antiparallel systems, which means that such
units do not involve simultaneous control of both rectifying bridges. Each of them
feeds the current into one direction of conducted current that is singular for it. This
is associated with a need to apply more advanced control of the converter, which
involves the detection of the instant of a current flow direction change, and a short
break during the conduction of both bridges in this period to restore blocking
ability. The basic distinction in the applied control system involves selection the
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control method of a cycloconverter with equalizing currents or without them and it
is possible to use one or the other in every type of converter. However, the limita-
tion of the equalizing current is associated with the need to use massive and ex-
pensive inductors designed for conducting currents with large values. This
requirement leads to a tendency to apply a system without equalizing currents.
The principle for the control of cycloconverters results from the adequate control
of a 3-phase rectifier in such a way that ensures an output voltage whose basic
harmonic is a sine waveform with the frequency of f;. Since the output voltage and
current originate from co-operation of the two rectifying units (bridges) forming
the input of a single phase of a load, it is necessary to control both of them, simul-
taneously or in succession, in order to ensure that they supply uniform output volt-
age within the range of the basic harmonic:

U sm

-Uyg, sin(w,t) =U 4, cosa,

sin(wgt) =U 44 cos o

for the unit 1 and unit 2 respectively. Hence control angles a;, o, are:

o = arccos(m, sin(@;m ;1))

i (3.144)
o, = arccos(—m, sin(@,mt))
or o =TT—0y (3.145)
U, . .
where: m, = —" - amplitude modulation factor
Uao
my = I - frequency modulation factor
L
U, - maximum value of the basic harmonic of the output

voltage of a converter

U,o=——U, - mean voltage of the rectifying unit (¢ = 6) for delay
V4

U, - RMS voltage of the secondary side of a transformer.

The delay angle waveform of the rectifier group 1 is presented in Fig. 3.48 in the
function of the phase angle of the output voltage.

The figures that follow present how the output voltage is formed by the units 1
and 2 of antiparallel rectifiers. Rectifier unit 1 performs the descending section of
the modulated voltage, while unit 2 is responsible for the ascending section of the
voltage by application of 3-phase voltages of the supply network. Both voltages
for these units of the converter generate an identical harmonic of the output volt-
age with the frequency of f;, while in the range of the higher harmonics the wave-
forms are different. Hence, the equalizing current occurs in the antiparallel system
of the rectifying units for the case of controlling both groups over the entire period
of the output voltage.
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From the illustration of the transformed voltage curves, whose basic frequency
is f; it results that the content of higher harmonics in the output voltage is high and
increases along with the decrease of the amplitude modulation factor m,. The
analysis of the output frequency indicates that the dominant part is occupied by
harmonics with the frequencies of

fix =dfL 2k, k=012,... (3.146)

which for a low output frequency f; means that the major higher harmonics have a
frequency around gf;. This means around 300 [Hz] for a converter with 6-pulse
rectifying units and the frequency of the supply network of f; = 50 [Hz].

Practical considerations lead to the limitation of the upper boundary of the out-
put frequency to around 0.4 f; and the adaptation of voltage U, of the transformer
supplying the converter to this frequency. This comes as a consequence of the
principle in (3.131), which defines the adaptation of the value of the supply volt-
age to the frequency, while preserving an adequate surplus of voltage. The aim of
this is to apply a potentially high amplitude modulation factor m, and, thus, the
limitation of the amplitudes of higher harmonics of the output voltage.
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3.3.3.2 Two-Level Voltage Source Inverter

Voltage Source Inverter — VSI is a power electronic device capable of transform-
ing the DC voltage and direct current into voltage and alternating current with the
desired characteristics. It is possible to design single- and multiphase inverters. 3-
phase inverters are commonly applied for the supply of induction motors. The ba-
sic diagram of a 2-level voltage inverter is presented in Fig. 3.52.

This inverter is commonly referred to as VSI inverter since it forms the source
with voltage characteristics and the voltage curve on the output (load) is not rela-
tive to the value of the load current in a wide range of operating conditions. This is
made possible due to the powerful voltage source with small internal impedance
additionally boosted by a capacitor with adequately large capacity C; on the input
of the inverter. A 3-phase inverter has 3 branches with two semiconductor
switches and free-wheeling diodes presented in Fig. 3.52. The control switches
apply IGBTs (Isolated Gate Bipolar Transistors) or GCTs (Gate Commuted Thy-
ristors) or MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) de-
pending on required working conditions, firstly supply voltage, load current and
switching frequency. An output voltage filter with capacitors with the capacity of
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Fig. 3.52 Diagram of a 2-level 3-phase voltage source inverter (VSI)

C;is connected to the load. The name for a two-level converter comes as a conse-
quence of the fact that voltages U, U,g, Usg can only assume two values, i.e. Uy
or 0. Regardless of the specific manner of control of the inverter’s gates at any in-
stant only one of the semiconductor switches can conduct current in a specific
branch. The commutation involves the process in which in a single branch one of
the switches terminates the conduction while the other switch starts the conduction
process only after an adequate break to prevent shorts. At any instant with the only
exception of the commutation break in the inverter we have to do with conduction
of three semiconductor switches, i.e. one in each branch. The desired waveform of
the output voltage is gained as a result of an adequate control of inverter semicon-
ductor switches. For the supply of an induction motor drive it is desirable to have
3-phase voltage with a sine waveform having controllable frequency and ampli-
tude. The basic method applied for the modeling of the output voltage consists in
Pulse Width Modulation—(PWM) [3,6,39,41,44,59,85]. Under standard conditions
it involves adequate switching of the potential U and potential O at the output by
semiconductor switches from the inverter branches in a short intervals correspond-
ing to a small fraction of the period of the output voltage. Concurrently, there is a
large number of modulation methods, some of which will be discussed in this sec-
tion. Every modulation method should result in output voltages close to 3-phase
symmetrical sinusoidal system with small content of higher harmonics. The other
postulate regards the application of possibly small number of switchings between
the control semiconductor elements corresponding to a single cycle of the output
voltage. Every commutation in an inverter branch is associated with resistive
losses in the power electronic switches, hence the effort to make transition period
short. Also the commutation is associated with losses in the dielectric in the wind-
ings’ insulation leading to wear of the insulation layer. Hence, the postulate of the
limitation of the number of connections follows. The discussion here will focus on
sinusoidal PWM (SPWM) modulation in which the triangular carrier signal is
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modulated with the sinusoidal waveform as well as several varieties of the space
vector modulation (SVM) [50,55,70,71,72,73,87]. The first of the listed methods
has its origin in the analogue technique of control and was thus undertaken in this
area, while the other one corresponds to the digital technique of control.

3.3.3.2.1 Sinusoidal Pulse Width Modulation (SPWM). Sinusoidal pulse width
modulation (SPWM-Sinusoidal PWM) involves appropriate employment of the
crossing points between saw carrier signal and sinusoidal modulation wave. When
modulation voltages u,,, 4, 4,3 are higher then the voltages of the carrier wave.
U, > U (3.147)

ni saw

the potential of the output semiconductor switch i = 1,2,3 assumes the value of the
supply U,. In the opposite case this potential has the value of 0 since the ground
semiconductor switch of the adequate branch of the inverter is in the ON state.
The formation of the carrier wave is presented in Fig. 3.53. The output voltage re-
sults from the difference of the potential between the appropriate pairs of output
points between inverter’s branches i = 1,2,3 like:

Up=U,; —Usg (3.148)

100 200 [deg] 300 A00 800
;
0.8
0.6
uzG
0.4]
0.2
o 100 200 .4 300 400 500
[deg]

Fig. 3.53 Formation of an output voltage by the Sinusoidal PWM
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Fig. 3.53 (continued)

In the description of the inverter’s mode of operation we apply amplitude and
frequency modulation factors

m, =—" msz (3.149)

saw fsuw

When the carrier frequency f;,, is an integer multiple of the output frequency f; we
have to do with synchronic modulation. The case when m,<1 is called proper
modulation and in that case the frequency of switching is

fswch = fsuw = fs /mf (3150)

while for m,>1 we have to do with overmodulation, the switching frequency is
smaller than it results from (3.150), and the voltage waveform is distorted. The
highest attainable RMS value of the output voltage basic harmonic with the fre-
quency of f; is equal to [10,52]

U,=0612U, for m,=1 (3.151)

which indicates a relatively small application of the supply voltage. Concurrently,
higher harmonic orders in this curve for the synchronic modulation [10] amount to
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kim,£2  k=2n-1

(3.152)
[/m,£1  1=2n n=123,...

and do not contain low order harmonics being the multiple of f;. In order to in-
crease the inverter’s scope of application of the supply voltage a method with the
injection of the third harmonic of the modulating voltage has been developed,
[34,39,61,89], whose illustration is found in Fig. 3.54. As a result, the saw carrier
wave is modulated with the voltage of

U,, = i, Sin(@,1) + 11,5 sin(3 @, 1) (3.153)

m.

in a manner that ensures the wave u,, of the modulating voltage does not exceed
the voltage of the carrier wave Uy,,. This condition is fulfilled when

<04u <U

ml Up =

(3.154)

Upz = saw

The introduction of the third harmonic into the modulating voltage results in the
distortion of the voltage waveforms in relation to the reference potential U,g, Uy,
Usc. However, it does not result in the distortion of the output voltages in the load
Ui,, U,s, Us; since the compensation of the effect of the third harmonic according
to (3.148).

Um,Usaw
1
0.8
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0.4
02
0 100 M0 [deg] 30 a0 500
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0.8
0.6
V26 g
0.2
0 100 200 [deg] 30 400 800
1 ey -
0.8
usc °
0.4
0.2
o 100 200 [dag] 30 400 800

Fig. 3.54 Forming an output voltage by the SPWM method with a 3 harmonic injection
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Fig. 3.54 (continued)

In the result we have to do with an increase of the output voltage to

U, =0.707U, (3.155)
which means that it is over 15% more comparing with (3.151).

3.3.3.2.2 Space Vector Modulation (SVM). Two-level voltage inverter has three
branches, each of which is in one of conduction states. The conduction states of an
inverter can be determined as:

S,eL0 k=123 (3.156)

For example the state S; = 1 means that in the first branch the upper semiconduc-
tor switch is in the conduction state and the output potential is equal to U, = U,.
Concurrently, S, = 0 means that the ground semiconductor switch in the second
branch is ‘ON’ and then U,; = 0. In this method the inverter’s output short time
(T,) averaged voltage vector V; could be defined and effectively constructed by
use of a concept of the space vector (complexor) V,, which is determined by the
basic harmonic Uy, of the required output voltage and the states of the particular
branches S, S,, S3:

Vi = (S, +5,¢" + 837U, ,, (3.157)
Since there are 3 branches, each of which can be in either of two states, the

instantaneous outputs V, from the inverter can assume any of 8 states illustrated
graphically in Fig. 3.55, in accordance with (3.157).
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Fig. 3.55 Space vector plane with the switching states <51,5,,9;> defined for each vector

Along with the given vector V,, Fig. 3.55 presents the states of the inverter’s
branches for which either one occurs. There are also two zero states of the inverter
outputs V,, Vg for which semiconductor switches in all branches connect the load
either to the ground (G) or positive (P) supply bar. In result the output voltages are
equal to zero. Directly from the states of the branches it is possible to determine
output voltages

Ugin 1 -1 0S¢
Uy -1 0 1|8;
In a similar manner, we can establish phase voltages:
u 2 -1 -1||S
s1 Ud 1
I/[Sz :T -1 2 -1 Sz (3159)
Ugs -1 -1 2|8,

The relation (3.159) illustrates voltage waveform presented in Fig. 3.56. The first
harmonic has the amplitude of

VA

which corresponds to the length of vector V, of the voltage star presented in Fig.
3.55. The amplitude of this value is achievable only for phase angles 6 = kx/3. The
instantaneous position of vector V; is determined by a phase angle §. The method
of modulation using space vectors SVM will be presented on the example of the
synthesis of vector V situated in the first sector of the voltage star of the inverter.
In the other sectors the situation is similar, as a value of phase angle 8 could be
reduced to the range of the first sector. This vector is synthesized by adequately
selected switching times of the states that determine vectors V; and V, as well as
zero vectors Vg and V. This is illustrated in Fig 3.57.
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Fig. 3.57 A method of synthesis of the V, vector in the first segment of the space vector
plane

The construction of short time averaged vector V involves the fact that within
sufficiently short pulsation time 7,,, which corresponds to a fraction of the total
cycle, voltages V, V, and V, or V5 are switched on for the selected duration ¢,, ¢,
t,. These intervals are obviously relative to the instant position of vector V deter-
mined by angle 6. As a matter of simplification it is assumed that within a single
pulsation time the angle @ is invariable. The determination of time intervals #,, t,, ,
is performed using the relation:

Tst =t.V, +tyV2 +t,V,

(3.161)
T,=t,+1,+1,
T
. . j=
where: V, =U,e'’ v, =£Udejo Vv, =£Ude :
V4 V4

t, - is a sum of the intervals of the occurrence of zero vectors V, Vs.
After solving (3.161), we obtain:

=7 Ui 7 e (3.162)
U
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The maximum value of voltage U, needs to be selected in a way that ¢, > 0. In ad-
dition, the highest admissible value of amplitude modulation factor for a linear
range of inverter control needs to result from this condition. The maximum value
of time intervals ¢, = ¢, occurs for 6 = 7/6 (see 3.166) and then:

I, ti, _ U, o

—_—= —<1 (3.163)
Tp Ud \/g
Defining for this case the amplitude modulation factor as
U, =
m, =——-— (3.164)
Uy 3
from (3.163) we obtain the following condition:
U, =£Udma =U maxMa O<m, <1 (3.165)

/4
The time intervals (3.163) reflecting sinusoidal inverter control are equal to:

t,=T,m, sin(E - 9)
3

t,=T,m,sin@ (3.166)

t
t, =T, —t,—t, —”zl—macos(z—ej
J » 6
Output frequency results from control of the angle 6 = w, ¢ = 2z f; t, while the am-
plitude of the sinusoidal waveform results from an adequate selection of factor m,,.
The maximum amplitude of the sinusoidal voltage for m, = 1 is Uy ., according to
(3.165). Alternatively it could be calculated as:

V3243 V3

=U, , ~—=2"[7, ==
Yy T2 Y
- and it is the value of the amplitude of the phase voltage, while

U, =30, =>U, 09550,
T

U U, =0.551U, (3.167)

§max

- is amplitude value of line-to-line voltage, and finally
_ Ui
V2

- is the RMS value of the output voltage, which is over 10% higher than (3.151)
for the case of control using sinusoidal pulse width modulation (SPWM).

From the above relations it results that for a motor with the rated voltage Uy,
the voltage U, delivered to the inverter should be, respectively:

U, =400 [V] U, =600 [V]
U,, =6000[V] U, =9000 [V]

U, ~0.675U,

(3.168)

-thatis U;~ 1.5 U,.
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3.3.3.2.3 Switching Sequence in the Pulsation Cycle. The basic requirements to
be met by an inverter’s control system are the following:

- wide range of linear operation,

- small number of switchings per cycle of output voltage aimed at reducing
energy losses during commutation,

- limitation of the amplitudes of the harmonics of voltage and current of the
load associated with switching frequency,

- limitation the incidence and amplitude of lower harmonics of the output
voltage associated with load frequency f;.

6-pulse switching sequence

A standard solution involves 6-pulse switching sequence for a single pulsation
cycle. The duration #, of the zero vectors V, or Vg in this cycle is divided into
three parts: % at the beginning and the end of a cycle and %2 in the mid section of
the cycle. The characteristic property in this case is that the change of inverter
state occurring between the individual pulses requires only a single switching. An
example of the waveform for a single pulsation cycle in 6-pulse sequence is pre-
sented in Fig. 3.58. As one can note, for this kind switching sequence the begin-
ning and termination of the cycle come with the V, <000> state. In addition, it in-
volves only a single switching for each successive pulse and there is symmetry in
relation to the mid period of pulsation. For the entire period of the output voltage
of the inverter the 6-pulse switching sequence is presented in Table 3.2.

171 ?8 I71
<100> <111> <100>
12 /2 12
— + +Sector 1
J 1 (/le
Usc
Usg
| — Uz
U3
jl _ _ j Uz
Vo Va2 Va2 Vo
<000> <110> <110> <000>
1/4 1,/2 1,/2 t/4

Fig. 3.58 Exemplary 6-pulse sequence in a pulse cycle in the I-st sector of the inverter’s
operation
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Table 3.2 Six-pulse switching sequence with minimum number of commutations

Switched vector with the duration of a pulse
Sector | ; /4 1,12 1,14
Vo |V v, Vi |V, Vi Vo
I

t, /2 1,12 1,12 1,12

I VO V3 V2 V8 V2 V3 VO
1,12 1. /2 t./12 1,12

VO V3 V4 VS V4 V3 VO
i 1,12 1,12 0,2 | 1,/2
t,/2 1,12 1,12 |1,/2

VO VS V6 VS VG VS VO
v 112 1,12 0,12 |12

VI

1,12 1,12 1,12 1,12

The transfer from vector V, to any odd vector V,.,; requires just a single
switching, just as in the case of the transfer from vector Vg to an even vector V.
Hence, the switching sequences for the method presented in Table 3.2 require only
one switching between the pulses. The transfers between the sectors occur without
the necessity of switching. For the examined control of the inverter the frequency
of switching is

Sfaw =06-N-f; (3.169)

where: N - is number of switching cycles corresponding to a period of output volt-
age.

The presented method has only one disadvantage, as it does not fulfill one of
the postulates presented earlier. Within a complete period 7, the output voltage
does not form an antisymmetric function, i.e. one for which flwt+7/2) = -f(wf)
since in the opposite sectors e.g. I-IV, III-VI etc. the segments are not identical but
have opposite signs. One can note this by referring to Table 3.2 where for active
vectors the relation V; — V.35, which secures antisymmetry, is not fulfilled for
sectors I — [+3. This is graphically presented in Fig. 3.59 for sector IV.
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;5 ?8 ?5
<001> <111> <001>
1.2 /2 112
= o/ = sector IV
Uig
Usg
| U3G
Utz
Uas
U31
?0 ?4 ?4 17()
<000> <011> <011> <000>
/4 12 12 1./4

Fig. 3.59 Six-pulse sequence in a pulse cycle of the IV sector

From the comparison between the sequence of the pulses in sector I (Fig. 3.58)
and sector IV (Fig. 3.59) and the shape of the output voltage it is clear that the
signals corresponding to the voltages have equal values with opposite signs; how-
ever, their phase shifts are different. This results in originating even order harmon-
ics in the output voltage with frequencies being the multiple of f;. The amplitudes
of these harmonics are not considerable and are acceptable in small and medium
power drives; however, in high power drives they cannot be accepted due to ex-
ceeding the requirements of the standard values of current deformations. For this
reason, there is a number of 6-pulse control cycles ensuring the absence of even
numbered harmonics in the voltages generated by the inverter. One of such cycles
will be presented in the section that follows.

6-pulse switching sequence eliminating even harmonics

In this kind of control an increased number of switchings in a sequence comes as a
result of the elimination of the even harmonics in the output voltage. This elimina-
tion most easily occurs as a result of the adjustment of pulses in the opposite
sectors in a way that ensures that they are realized by opposite vectors in the volt-
age star. This is illustrated in Table 3.3.
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Table 3.3 Six-pulse switching sequence with elimination of even harmonics

Switched vector with the duration of a pulse
Sector | 1 /4 1,12 1,14
Vo Vi \D) Vi |Va Vi Vo
I
t./2 1,12 1,12 1,12
VO V3 V2 V8 V2 V3 VO
1
1,12 1. /2 t./12 1,12
Vo | Vs v, Vi |V, \E Vo
1 0,12 | 1,02 0,12 | 1,02
VS V4 VS VO VS V4 VS
v 012 | 1,02 1012 | 1,02
VS V6 VS VO VS V6 VS
v .12 |1,02 0,12 |12
VI V8 V6 Vl VO V1 V6 VS
1,12 |12 1,12 | t,/2

The operating principle in this method is presented in Fig. 3.60 on the basis of
the example of the sequence of pulses in sectors II and V. The presented courses
ensure that the resulting voltage waveform is an odd function; hence, it does not
contain even harmonics. An increase of the number of swithings occurs during the
transfer from sector III to IV and from sector VI to sector I since there is a change
of the zero vector from V, to Vg and the reverse. This leads to the increase of the
switching frequency by

Af,, =6-f (3.170)

4-pulse switching sequence (DSVM)

This method of inverter control can lead to a further limitation of the number of
switchings. During a single cycle of switching one of the nodes of the inverter
does not change the state and the switching occurs in the two remaining ones. For
this reason this mode of control is called discontinuous SVM (DSVM). We can
distinguish two types of switching cycles: type A — when a branch that is not in-
volved in switching remains at the level of potential G and type B when the
branch that does not switch is connected to a high potential P. This is illustrated in
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Fig. 3.60 Six pulse switching sequence with
strated for the II and V sector

Us;

Vs Vo
<001> <000>

elimination of even order harmonics, demon-

Fig. 3.61. Both types of switching sequences equally form the basic harmonic of

the output voltage while its shape is di

fferent in the range of higher harmonics

since in each type of sequence a different sector is divided into two time sections.

One can also note that the negation of th

e switching sequence type A in sector I is

transformed into the sequence of switchings (DSVM) type B in sector IV, etc.

Table 3.4 contains a summary of the swi
output voltage.

tching sequences for the full period of the
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Table 3.4 Four-pulse switching sequence—type A for a minimum switching frequency

Switched vector with a duration of a pulse
Sector
1,12 1,12

Vo Vi v Vi Vo

I 1,12 ‘) 1,12
1 VO V3 V2 V3 VO

1,12 t, 1,12

1 1,12 ‘ 1,12

1,12 t, 1,12
VO VS VG VS VO

v 1,12 ‘) 1,12
Vo v, Vs \Y] Vo

Vi (/2 tx 1,12

The advantage of the switching sequence presented in Table 3.4 is the limita-
tion of the switching frequency, which is

fow=4-N-f; (3.171)

However, the disadvantage regards the shape of the voltage, which does not form
an antisymmetric function and results in the origin of even harmonics type 2k f..
The lack of the antisymmetry of the voltage curve is clearly visible in Table 3.4 as
s result of the comparison between the voltages in the opposite sectors, e.g. -1V,
II-V, or III-VI. This drawback can be eliminated by the application of the type B
sequences e.g. in sectors IV to VI. This is summarized in Table 3.5.
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Fig. 3.61 Four-pulse switching sequence of the A - and B - type, presented for the I-st
sector

The application of the switching sequence presented in Table 3.5 results in an
increase of the number of inverter switchings per period of the output voltage. Fol-
lowing the transfers from sectors III — IV and VI — I we have to do with switch-
ing regarding zero vectors, i.e. Vo — Vg and Vg — V, respectively. This results in
an increase of frequency expressed by (3.170). Fig. 3.62 illustrates the application
of 4-pulse switching sequence with elimination of even harmonics of the voltage,
for voltages generated in sectors III and VI of the phase plane.
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Table 3.5 Four-pulse switching sequence — type A and B combined, for eliminating even
harmonics of 2k f; order in an output voltage

Section Switched vector with a duration of a pulse

Vo v v, v Vo

I 0,12 1,12 f 1,12 1,12
VO V3 V2 V3 VO

1 1,12 1,12 ‘, 1,12 1,12

1 1,12 1,12 f, 1,12 1,12

v 1,12 t. 12 ty 112 t, 12
VS V6 VS V6 VS

v 1,12 1,12 ‘, 1,12 1,12
VS V6 Vl V6 V8

Vi 1,12 1,12 f 1,12 1,12

Vo 3 Ta T3 T
<000> <010><011> <010> <000>
W2 2ty 2 t,/2 Sector I

Fig. 3.62 Four pulse switching sequence with elimination of even numbered harmonics,
demonstrated for the opposite sectors III and VI
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Fig. 3.62 (continued)

3.3.3.2.4  Exemplary Curves of Inverter Currents. The output waveforms of a
3-phase load current supplied from an inverter depend the control method, i.e. the
number N of pulse sequences per period of the curve, amplitude modulation factor
m, and the load. The examples of the waveforms under a load type R, L and the
output frequency of the inverter f; = 50 [Hz] are presented in the figures that fol-
low in this way illustrating the effect of the number N of the sequences of pulses
and modulation factor m,.

iDCA] 5

o 0045 005 005 Dt['gf 008l 007 0075
a)

i1,i2,i8[4]

b)

Fig. 3.63 Performance of a two-level VSI inverter with DSVM and even harmonics elimi-
nation control for N = 18, f; = 50 [Hz], m, = 0.85 : a) DC source current b) 3-phase load
currents
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Fig. 3.64 Like in Fig. 3.63, but for N = 48
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Fig. 3.65 Like in Fig. 3.63, but for N = 120

i1,i2,i3[A]

MmO N Em

a)
Fig. 3.66 Performance of two-level VSI inverter for the over-modulation control area.
Comparison of 3-phase load currents for: a) m, = 1.05 b) m, = 1.25 ¢) m, = 2.0
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Fig. 3.66 (continued)

3.3.3.3 Induction Motor Supplied from 2-Level Voltage Inverter

The mathematical model for the simulations of the operation of a VSI inverter —
induction motor drive is based on the diagram presented in Fig. 3.52 and on the
system of equations with untransformed variables of the electric circuits of the sta-
tor (3.76-3.77). However, some changes have been implemented. In the place of
the filter Cy connected to the load there are capacitors C placed parallel to every
branch of the inverter. In addition, inductance Ly and resistance Rpc are intro-
duced to play the role of residual parameters of the DC voltage source. Moreover,
residual inductance L, between the branches of the inverter bridge has been
introduced. The controlled switches present in the inverter branches have been
simulated with resistance with a controlled value: a fraction of an ohm in the con-
duction state and several kQ in the blocking state, so that it approximately corre-
sponds to the actual operating conditions of an inverter. This mathematical model
of a drive system is described using 16 state variables, 15 of which are electrical
ones. Together, they form a vector of the state variables:

Y= [lDC’QZ’Q3’14’ZS’l6’l7’lru’lrv’a)e’Qll""’QM] (3.172)
where:

ipc - DC source current
0, — Q3 - charge of the main capacitor C,

is, Is, Ig, I7 - mesh current in the inverter’s branches selected so, that the currents
of the motor’s stator are equal to:

g =is—iy I3 =ig—iy (3.173)

i 1 - transformed axial currents of the rotor
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w, = pQ, - electric angular speed of the rotor

O11,...Q16 - capacitor C charges on the six branches with inverter switches.
The model for electric variables may be presented in the matrix form:

d

U=—
dt

(LY)+Z(w,)Y (3.174)

Since inductance L matrix is constant, calculations are conducted using the algo-
rithm

Y=L"(U-Z(w,)Y) (3.175)

where:

U - vector of supply voltages

Z(w,) - impedance matrix of the system relative to the speed of rotor and resis-
tances, whose values depend on control of semiconductor switches

L -constant parameters’ inductance matrix of the system.

These equations are further supplemented with an equation for the mechanical
motion

@, =T, -T,-Dw,)!J (3.176)

where:
Te = me{(_gixl _\/Eiﬁ)iru _\/gislier (3.177)

- denotes electromagnetic torque of the motor

T, - is a load torque

D - is a coefficient of viscous damping

J - is a moment of inertia of the rotating parts of the drive.

This mathematical model was applied for simulation calculations of the drive in
operation. The testing involved several methods of inverter control presented ear-
lier in the book. The exemplary waveforms presented in figures regard control
with 4-pulse switching sequence (DVSM) and elimination of harmonics with even
numbers (Fig. 3.62). The term N in the description of the figures denotes the num-
ber of the sequences of pulses per period of the output voltage of an inverter.

During the simulation calculations the residual inductances Lpc, L, assume the
values in the range of 0.5% - 1% of the inductance of the block-rotor state
L, = oL, (3.121), while blocking resistance R, from 4 [kQ] to 20 [kQ], depending
on the rated voltage of the motor. The voltage Upc supplying the inverter corre-
sponds to the voltages determined from (3.168). Below is a presentation of some
results of simulations for small and medium power motors.
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Fig. 3.67 Starting of a small power (S1) motor fed by VSI; f;= 50 [Hz], Upc = 600 [V], T;
=05T,,J=2J, N=120: a) DC source current b) stator currents c) electromagnetic
torque d) angular speed e) torque-speed trajectory



216 3 Induction Machine in Electric Drives

is[A] 200

A,

o
a0
b)
Te[Nm]
)
] - %EE (\{\m
ot ¢ 200
) o 8 mgiilm] 120 10
) u"“'ufg"“l[eia SV Aj)uu

Fig. 3.68 Direct starting of a medium power (S2H) motor fed by VSI; fi= 50 [Hz], Upc =
9000 [V], T; = 0.2, J = 1.5 J,, N = 120: a) DC source current b) stator currents c) electro-
magnetic torque d) angular speed w, e) torque-speed trajectory
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Fig. 3.69 Medium power (S2H) motor — transition to generating mode; f;= 50 [Hz], Upc =
9000 [V], T, =0.5T, — - 0.75T,, J = 1.5 J;, N = 120: a) DC source current b) stator currents
¢) angular speed d) electromagnetic torque e) torque-speed trajectory



218 3 Induction Machine in Electric Drives

ide[A]
a)
is[A]
b)
120004
10000
20004
TeNm]
0004
20004
a 01 02 0.3 0.4 05
9 tl=]
- 12000
10000
omegaltis] ] Tefm] .o
4000
4
2000
0™ 01 02 ﬁ 04 05 0D & @ 100 120 140 160
s omega[1/s]
d) €)

Fig. 3.70 VSI controlled U/f starting of the medium power (S2H) motor. 7, = T, f,=2...50
[Hz], k, = 0.1...0.95, J = 1.5 J,, N = 120: a) DC source current b) stator currents c) elec-
tromagnetic torque d) angular speed e) torque-speed trajectory f) steady-state DC current g)
steady state stator currents
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Fig. 3.70 (continued)
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Fig. 3.71 VSI controlled U/f starting of the medium power (S2H) motor. 7; = 0.5 T, f,=
25...50 [Hz], k, = 0.15...0.95, J = 1.5 J,, N = 60: a) DC source current b) stator currents c¢)
electromagnetic torque d) angular speed e) torque-speed trajectory f) steady-state DC cur-
rent g) steady state stator current
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3.3.3.4 Three-Level Diode Neutral Point Clamped VSI Inverter

Multi-level voltage inverters [81,86,93] are applied for the supply of high power
drives ranging around several MW. Basically, there are two types of multi-level
inverters. One of them is a H-bridge cascaded inverter and the other one - a diode
clamped inverter [10,33,56,64]. The advantage of the application of the latter type
is associated with the possibility of high output voltage without serial connection
of the semiconductor switches, lower values of the voltage dV/dt derivative for
switchings as well as lower total harmonic distortion (THD) level, which deter-
mines the degree of waveform distortion resulting from higher order harmonics. It
is possible to apply inverters with diode clamped neutral point in the form of three
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as well as multi-level ones [8,88], however, only the systems based on three-level
design have found common applications in high-power drives. The name for
the three-level inverter comes as a consequence of the fact that the output clamp 1,
2 or 3 can be connected to the positive potential of the source P, to the neutral
point G or to the negative potential of the supply N. The neutral potential G is
gained as a result of capacitor-based division of the supply voltage Upc and
appropriate control of switches in a way that balances the fluctuations of the
potential at this point.

3.3.3.4.1 Structure and Operating Principle of a Three-Level Inverter. The dia-
gram of a three-level inverter with diode clamped neutral points G is presented in
Fig. 3.72.

Po
+ o4 T T3 T5
Ubc =
2 1 T3 5
1
UDC G 2
y 3
Une| | T2 T4 T
2 T2 T4 T6
Neo

Fig. 3.72 Three-level diode clamped VSI

The particular branches contain four IGBT or GTO (Gate Torn Off) switches
per each branch connected in a series. The neutral point G is formed by the upper
and lower pairs of switches in branches being connected via diodes to the mid part
of a capacity voltage divider. The state of a particular branch of an inverter is de-
termined as a result of the algebraic description of operation using a respective
variable S, S, S; corresponding to the branch number. Under normal operating
conditions of an inverter there are possible three states such that variables S, S5,
S; may assume the values in the set <1,0,-1>. A branch assumes state ‘1’when the
two upper switches in a branch are in the ON state — in that case the clamp of the
load is connected to point P with the positive potential of the source. The ‘0 state
of the branch means that the two middle switches in a specific branch are in the
ON state — in this case the output clamp is connected to the neutral G using a up-
per or lower clamping diode depending on the direction of the current flow. A
branch variable assumes the value of ‘-1’ for the case when both lower switches in
a branch are in ON state and, as a consequence, the load clamp is connected to the
negative rail of the source with potential N. This is illustrated in Table 3.6.
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Table 3.6 Possible states of the branch in three-level VSI inverter with a diode clamped

neutral point

3 Induction Machine in Electric Drives

S; S;=0 S;=-1
T, on off off
T, on on off
Ty’ off on on
T, off off on

where:

x - denotes an upper side switch
y - denotes a lower side switch
i = 1,2,3 - is the number of a branch

One can note that in a given branch the switches T, T)', and T; , Ty are in the ON

state in a complementary manner. Since the switches in an inverter are selected for
lower blocking voltage then the total voltage of Upc, the following rules are ob-
served:

- the balance between the voltages in pairs T, T; and Ty ,T)', occurs as a result

of parallel connection of resistor voltage divider or on the basis of a specific selec-
tion of switches in each branch of an inverter. This selection involves the require-
ment that leakage current of the switches 7', and T, has to be lower then the

leakage current of the switches 7, and Ty'

- the direct switching between the states 1 and —1 is prohibited. Between these
states the inverter must pass through zero state.

Since the inverter has 3 branches and each of them can assume any of three
states, the total number of inverter states is equal to

LS =33=27 (3.178)

Each of these states can be described using a vector <S 1»52,8 3> . This involves the
following states:
a) zero states described with vectors:
V, =(0.0,0)
Vor =(L, 1, 1)
Von = {(-1-1-1)

(3.179)
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b) 6 states for the major star pattern voltages:
Vi =(L-1-1) Vv, =(11-1)
Vi, =(-1L1-1)  V, =(-111) (3.180)
Vs, =(-1-11) Vg =(1-11)
c) 6 states for the middle star pattern voltages:
Viy =(L0-1)  V,, =(0,1-1)
Vay =(-L10)  V,,, =(-10.I) (3.181)
Vi =(0-11) Vg, =(1-1,0)

d) 6 states for the minor star pattern voltages type P:

Vigp =(10.0) V5 =(11,0)
Vigp =(0.10)  V,5 =(0,1,1) (3.182)
Vsgp =(0.0,1)  Vigp =(10,1)
e) 6 states for the minor star pattern voltages type N:
Vigy =(0-1-1)  V,5, =(0,0,-1)
Vigy =(-10-1) V5 =(~1,0,0) (3.183)
Vsgv =(=1-10)  Vggy =(0,-1,0)
The graphical representation of the vector forming these star patterns is based on
the relation (3.157), where U, is the phase voltage of the minor star pattern volt-
ages. This is illustrated in Fig. 3.73.

The angular (and time) diagrams for the instantaneous output voltages are ob-
tained from the following relation:

uin] 1 -1 0TS,
Ugps | = 2’” 0 1 -1(8S, (3.184)

Similarly, for phase voltages of the 3-phase load:
Uy 2 -1 -1\,
U
U, =% -1 2 -1/, (3.185)
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VSL VSM Ver

Fig. 3.73 Space vector plane for a three level VSI inverter

The application of the relations (3.184) and (3.185) with regard to vectors
(3.180), which determine major pattern voltages leads to the voltage waveforms
(Fig. 3.74) for such a cycle of operation. The switching sequence is performed
every wgt = 7/3. A similar course of action undertaken for middle pattern voltages
(3.181) gives voltage curves presented in Fig. 3.75. For the two sets of vectors
(3.182), (3.183) that determine states of minor pattern voltages the voltage curves
are identical in terms of the shape and form to the waveforms in major pattern
voltages (Fig. 3.74); however, the amplitudes of these voltages are reduced by a
half. The summary of the characteristics presenting three configuration models for
a 3-phase inverter is presented in Table 3.7.
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Fig. 3.74 Voltage curves for the major pattern switching of a three-level VSI: line-to-line
voltages (3-step) and phase voltages (4-step)
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Fig. 3.75 Voltage curves for the middle pattern switching of a three-level VSI: line—to—line
voltages (4-step) and phase voltages (3-step)

As it results from data in Table 3.7, the relations between the voltages for the
particular switching models are:

NG

Umiddle /Umujor (1h, RMS) =——
2 (3.186)

Umim)r U

major

(max,lh, RMS) = %

3.3.34.2  SVM Control of 3-Level VSI Voltage Inverter. As presented in Fig.
3.73, for the control of a three-level inverter with space vector modulation (SVM)
we have 24 active vectors and 3 zero ones when compared to the total of 6 active
and 2 zero vectors in a two-level inverter. The general rules regarding the control
are similar to the previously considered case:

- there is a single pair of switching at a time (see Table 3.6), direct transition
from state ‘1’ to ‘-1’ and reverse is forbidden

- transfer of the vector from a switching sequence to another one, both within a
single control region and during the transfer between the neighboring regions,
should not require more than a single pair of switching,

- switching within a control sequence is configured in a way that limits the fluc-
tuations of the potential of the neutral point G to a maximum degree. This issue is
not encountered in two-level inverters and occurs in three-level ones due to the
capacitor based setting of the neutral level of the potential of point G.
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Table 3.7 Output voltages for two- and three-level inverters

Inverter

Output voltage U, /U,

shape maximum 1h * RMS - step
type *[J
a th (V). .. RMS (V) ..
2
3-level i~1 10 \on.sm
. V3 3
major 3 step 1
star 3 0955 — = =0.675
z ,[\/_
3 . 0.955 L 0.707
3-level z E e
medium 4 step 1 3 3
star —=0.955 ——==0.675
T 72
3 1
3-level £ =0.551 ﬁ =~ (.408
. b3
minor 3 step 172 3
star — =0.478 =(.338
27 Zﬂ'ﬁ
2 level 3 step 1 like for the major star
Output voltage U, /U,
Tnverter shape maximum 1h * RMS - step
type %
a th (V). .. RMS (V) ..
2 2
3-level — = 0637 - =0471
major 4 step 2/3 G
star V3 0551 31 039
T T
V3 1. 0.408
3-level — = 0.551 \/g =V
. b3
medium 3 step 172 \/_
star V3 0551 \El~0390
V1 2r
1
3-level Pl 0.318 —3J_ =0.236
minor 4 step 1/3
star B o076 21 0195
2 o
2 level 4 step 2/3 like for the major star
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The situation of the synthesis of the short time averaged (T,) output voltage V,
using vectors present in the voltage stars for the sector I of a complex plane is pre-
sented in Fig. 3.76.

For the case of the 3-level inverter the control sector in the complex plane is di-
vided into 4 smaller triangles called regions and defined as a,b,c,d. In each of the
regions there are 3 constitutive vectors and the total number of them in each sector
is equal to 5. In the sector I they are: Vs, Vi1, Viy, Vas, Vo and in addition the
zero vectors. The indices S, L, M denote the small, large and medium voltage star,
respectively. The vectors in the small star may occur either of two versions N or P;
for instance: Vygp) = <1,1,0> ; V500, = <0,0,-1>.

Calculation of time intervals for SVM inverter control

Time intervals t,, f,, #, of the duration of particular vectors in the pulse sequence
lasting 7, are relative to angle 0 of the vector V, position and its magnitude. In or-
der to maintain the postulate of the control by means of a single switching pair it is
possible to apply only the vectors pointing the apexes of the triangle forming a re-
gion. The switchings between the 1,-1 states can occur only in two stages by
switching through the zero state. The method used for the calculation of time in-
tervals t,, t,, t. will be presented for vector V; situated in region d as in Fig. 3.76.
The time interval ¢, regards the vector with the minimum value of angle 0, ¢, with
the medium value, and ¢, for the highest value of angle 6.

Var <l 1-1>

y \/ <100> D
Vo <000> Vs <0-1-1> Vi <1-1-1>

Fig. 3.76 Division of a sector I into 4 regions a, b, ¢, d as an illustration for constitution of
an output voltage vector V

The sum of the time intervals

t,+t,+t, =T, (3.187)
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is equal to the period of the pulsation sequence 7,. For instance for region d the
following vector equation is valid:

V,e’T, =Vise”'t, + V70 + V0™t

Regarding V; as a phase vector

1 V3

1
V4 T T
the vector equation assumes the form:

V3
—=T,U,(cos@+ jsinf) =

\/5 PV J

1 V3 3

:ﬁUde-i—UdTy( +j )+ UdT( +j—

@ 2

(3.189)

After the introduction of amplitude modulation coefficient (3.164): m, = gs T
a3

and separation of (3.189) into the real and imaginary part, we obtain:

1 V3 1

m,T cos@=—T +T,—+T, —
a-p X y z
V3 2 23 (190)
m,T, sin@ = %Ty +%Tz
The solution of the system (3.190), (3.187) makes it possible to determine time in-
tervals t,, t,, t, for region d. The summary of the time intervals for the entire Sector
I is presented in Table 3.8.

Table 3.8 Time intervals t,, t,, z, for SVM inverter control in a,b,c,d regions of the I-st sec-
tor of the 3-level inverter

Region t, t r, formulae

a1 (Vig)— (Vo) — (Vas) = W=

=>T,m T, (1—w3) —>T,w, m sin(z—ﬁ)
b (Vi)— (Vig)—> (Viyg ) = =

-7, (wl—l) %TP(Z—W3) =>T,w, 2:;1“ sin(0)
¢ <V1M > - <V25> - <V2L> - Wy =

—>prl —>Tp(2—w3) —>Tp(w2—l) - sin(£+(9)
d [ (Vg)— (Vig ) — (Vp5)— 3

—>Tp(l—w2) —>Tp(w3—1) —>Tp(1—wl)
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If a vector V; is situated in one of the latter regions, angle € has to be reduced
to a value within a range of 0 < § < #/3 and formulae from Table 3.8 should be ap-
plied for an appropriate region, changing the numbers of indexes in V vectors, ac-
cordingly.

Switching sequence over a pulsation period

The matters in this case is are more complex in comparison to the two-level in-
verter since due to the necessity of limiting the fluctuations of the potentials of the
neutral point G it is necessary to balance the time intervals of the duration of vec-
tor in the minor star in version N as well as in P. This occurs differently in regions
b and ¢, where there is a single constitutive vector of the minor star than in regions
a and d, where there are two constitutive vectors of the minor star. An example of
6-pulse control in the pulsation sequence for region b, i.e. one in which there is
one constitutive vector of the minor star, is presented in Fig. 3.77. The balanced
realization of vector Vs is ensured as a result of performing the switching
sequence <1,1,0> and <0,0,-1> with the identical summarized duration. The situa-
tion is different for regions a and d, where there are two constitutive vectors form-
ing the minor voltage star. In this case the region divides into two symmetrical
parts and for each of them the realization of P and N is balanced for the vector of
the minor star that is dominant in each of the halves in a region. Concurrently, the
other vector of the minor star is unbalanced in the half of the region in which it
plays a less important role. This is presented in Fig. 3.78 for Sector I, subregion
d2, i.e. for the half of the region d that lies closer to vector V.

VlM VIS VIM
<1 0-1> <0-1-1> <1 0-1> Sector 1
112 12 1.2 Region b
0 UlG

0 Ux

— 0 U3G

0 U

— 0 Us

—0 Us

EIS EIL ?IL i;IS
<100> <1-1-1> <1-1-1> <100>
1,/4 12 42 1,/4

Fig. 3.77 Six-pulse sequence of pulse cycle in the region b of the first sector
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Fig. 3.78 Six-pulse sequence of a pulse cycle in the subregion d2 of the first sector

In this subregion the vector V,g is considered in the same manner as zero vectors
and the time interval of its duration is divided into two realizations: <1,1,0> and
<0,0,-1> with the equal duration. The presented realizations of the sequence of
switching are not unique and can be designed in another manner, for instance by
accounting for the elimination of even numbered harmonics of the output voltage.
A more detailed presentation of the issues in this section is found in references,
e.g. [10,38,39,70].

3.3.3.5 Current Source Inverter with Pulse Width Modulation (PWM)

The inverters applied in the electric drive for the supply of induction motors can
be generally grouped into voltage source inverters (VSI — section 3.3.2 and 3.3.3)
and current source inverters (CSI). At the same time, CSIs are designed as load
commuted inverter (LCI) and ones with imposed commutation with pulse width
modulation (PWM) [106]. Further on, current source inverters with pulse width
modulation generate AC current with the desired frequency and amplitude. The
semiconductor switches of a PWM current inverter have to provide a possibility of
current shut-off and have to have reverse voltage blocking capacity. The current
models apply reverse blocking Gate Commuted Thyristors (GCT) while formerly
they applied GTO thyristors. PWM current source inverters display a number of
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advantages and are therefore commonly applied in industrial drives for several
reasons:

- in contrast to VSI inverters they do not use high frequency switched voltage
to the motor’s windings but tend to supply AC with a smooth waveform to the
windings; hence, the problem with the high value of du/dt derivative is absent,

- they have a considerably simple engineering structure and the switches do not
need the application of freewheeling diodes,

- due to the necessity of applying an in-series inductor there is no hazard of
short-circuiting on inverter or motor clamps.

The drawbacks of this solution include:

- necessity of applying in-series inductor designed for a load current value and
a capacitor filter at the output,

- relatively slow reaction time in response to control due to the presence of an
inductor in the DC circuit.

This type of inverter (CSI-PWM) is successfully applied in medium and large
power drives where we have to do with considerable load over the entire cycle of
operation and a relatively fast control of the motor’s angular speed is not required.

3.3.3.5.1 Structure and operating principle of CSI — PWM inverter. The diagram
of CSI current inverter with PWM control is presented in Fig. 3.79. A silicon con-
trolled rectifier (SCR) with an adequate current output, an inductor Ly with

GCT T2 T4 T6 — _|_ Cf
Ly | Ls|| Ls
L 7
SCR |~ vgid| CSI
] PWM M
Rectifier 3~
- Inverter _L
TTT
i Cr

Control [«

T

Fig. 3.79 Diagram of a PWM current source inverter (CSI): inverter motor connections and
overall control system
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adequate inductance and a controller that regulates the current form the current
source for the inverter. PWM-CSI inverter serves merely for the switching of the
current to energize particular windings while the capacitor filter assembly C; pro-
vides the current in the phase windings which are not supplied from the CSI in-
verter in a given time period. This procedure is followed in such a manner since at
any instant except for the commutation period, only one switch of the positive
group (anode group of the inverter) and one in the ground group (cathode one) is
in the ON state. For the current source supply, the situation when two switches in
a group are in the ON state, results in the loss of the ability to control in the sense
of current diffusion into the two windings. In turn, if only one switch in the entire
CSI inverter were in the ON state, the current flow forced by the source will result
in a very strong overvoltage resulting in its failure. For this reason, the adequate
control of the CSI inverter has to secure continuity of current flow through an in-
verter and motor in a way that only two switches are in the conduction state, each
one in a different branch and another group of switches.

3.3.3.5.2  Control of CSI — PWM Inverter. Most common are 3 methods of in-
verter control [4,10,39]: trapezoidal pulse-width-modulation (TPWM), control us-
ing selective harmonics elimination (SHE) and space vector modulation (SVM).
Each of the methods has a number of advantages and drawbacks to them. The
trapezoidal PWM modulation can be realized in real time or in the form of a look-
up table. In addition, it displays good dynamic characteristics; however, it does
not give the possibility of current by-passing, which limits the dynamics of drive
control. The method of selected harmonic elimination offers the best results in
terms of suppressing higher order harmonics of the current; although it must oper-
ate on the basis of previously prepared look-up tables and, hence, the dynamic
properties deteriorate. The method of space vector modulation operates in real
time and has excellent dynamic properties; however, it does not lead to a small
level of higher order harmonics in the current. Fig. 3.80 presents the principle
governing the control using trapezoidal PWM. In the description of this control we
apply amplitude and frequency modulation factors in the form:

m, =—= mg S (3.191)

saw fS(lW’

where: Uy, fiaw - denotes the amplitude and frequency of the saw carrier wave.
As indicated in Fig. 3.80, the switch in a branch of the inverter is in the ON state
for a flat section of the top base of the trapezoid as well as for its the rising slope
when it is higher than the signal of the saw carrier wave. As a result, the number
N, pulses corresponding to a half of the current period is equal to:

=Ly (3.192)

N =L1saw
P 3]4‘5

It is beneficial when the integer number of periods of saw carrier wave corre-
sponds to one of the slopes of the trapezoid, i.e. when: 1/m; = 6n, n = 1,2,3....
This case illustrates a symmetrical and synchronic switching and hence the major
harmonics [10] of the output current have the frequencies of
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Fig. 3.80 Illustration of a trapezoidal pulse-width modulation (PWM)

3.3.3.5.3 Exemplary curves of induction motor drive supplied from CSI-PWM. The
illustrations that follow present the start-up curves of a medium-power induction mo-
tor (S2L) with the application of CSI current inverter controlled by means of PWM
modulation. The induction motor supplied from CSI inverter with small inertia and
low load torque as well as from capacitors with low value of capacity tends to operate
in an unstable way. An illustration of this is found in Fig. 3.81.
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Fig. 3.81 Starting of the CSI PWM fed induction drive without any feedback, with J = J,,
T/T, = 0.2, C; = 100 [uF] for medium power motor (3.96): a) DC current b) electromag-
netic torque c) stator currents d) angular speed e) torque-speed trajectory
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Fig. 3.81 (continued)

The higher the inertia, capacity of a filter capacitor C; and the negative feed-
back in relation to the speed, the more stabilized is the operation of the drive after
start-up — see Fig. 3.82.
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Fig. 3.82 Starting of the medium power (3.96) CSI PWM drive with J = 3J, T/T, = 0.2,
C; = 150 [pF]: a) DC current b) electromagnetic torque c¢) stator currents
d) angular speed e) torque-speed trajectory
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Fig. 3.82 (continued)

The examples presented in Figs. 3.82 and 3.83 indicate that the appropriate se-
lection of the motor’s parameters and feedback lead to the stabilization of the
drive even for relatively small load 7, /T, = 0.25. The current Ipc, = 98 [A] is the
input value for stabilization of the inverter supply current after start-up.
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Fig. 3.83 Starting of the medium power (3.96) CSI PWM drive with DC current stabiliza-
tion after start-up with J = 3J,, T)/T, = 0.2, C; = 150 [uF], Ipc, = 98 [A]: a) DC current b)
electromagnetic torque c) stator currents d) ) angular speed e) torque-speed trajectory
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Fig. 3.83 (continued)

3.4 Control of Induction Machine Drive

3.4.1 Vector Control

The theoretical fundamentals of vector control, also referred to as Field Oriented
Control (FOC), were developed in 1970s and 80s and subsequently followed by
attempts conducted on induction machine drives. However, huge progress and
wide application of the system was preceded by the development and greater ac-
cessibility of fast power electronic semiconductor switches which form the basis
of power converters in engineering. On the other hand, this type of control is
strictly relative to the use of fast microprocessors to process numerical data of
mathematical models and measured data from sensors recording selected signals
(variables) in a drive. As a consequence, the application of these methods has
largely expanded following an increase in the capacity of signal processors. There-
fore, it was possible to fulfill the prerequisites for the implementation of advanced
induction machine drive control systems as late as 1990s [13,42,68,76,87,99]. The
idea of vector control forms a response to the difficulties associated with the
control of a 3-phase squirrel cage induction machine, which has a number of ad-
vantages despite not being susceptible to control by means of easily accessible
methods such as control of supply voltage and frequency in a manner that offers
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quick response, oscillation free and agreement with the designed pattern in terms
of torque, acceleration and angular speed. The principle governing vector control
is the following: from the physical values with sine spatial distribution along the
air gap, which can be presented in the form of rotating vectors (complexors), the
flux linkage with rotor windings ¥, is identified and along this direction the axis
x, of the rotating two-axial system is situated. The axis y, for this system, which is
established perpendicular to this direction and the angle of orientation p, deter-
mines the position of this specific system with reference to a selected two axial
system (u,v,0). Strictly speaking, this forms a particular case of the (x,y,0) system
rotating with the speed of the magnetic field, oriented in the space so that the ro-
tor’s flux linkage ¥, is presented in the x, axis (Fig. 3.84), hence the name for
Field Oriented Control originated. In this new coordinate system the complexor of
the stator’s current i is made up of the terms i,,, i,,. The physical relevance of the
entire undertaking is the following: the term i,, of the stator current forms the
magnetizing current and directly affects the value of the rotor’s flux | ¥, I.

Concurrently, the term i,, of the stator current that is perpendicular to it directly
affects the value of the motor’s electromagnetic torque 7,. As a result, the control
of the value of the flux in an induction motor is decoupled from control of torque
in a way that follows the model of a separately excited DC machine. In this anal-
ogy the term i, of the stator current corresponds to the excitation current of ir of
the DC machine, while the term i,, corresponds to the armature current i,. In a DC
commutator machine the control procedure is conducted in an easy way since the
orientation is a result of the specific design of a machine. The axes of the excita-
tion and armature windings remain perpendicular as a result of the positioning of
pairs of brushes collecting the armature current perpendicular to the axis of the
excitation winding, which is wound at the machine stator’s salient poles.

AV
Yo
iy

=

Fig. 3.84 Rotor magnetic flux ¥, and stator current i, orientation in the field oriented con-
trol method

The cost to be incurred with the simplified control of DC current machine is as-
sociated with the overcoming problems with commutation, brushes, possibility of
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sparking at the commutator and necessity of regular inspecting such devices. On
the other hand, in an induction machine there are difficulties associated with
measurements and control. The steps to follow include: identification, orientation
of the rotating system in space in the sense of determination of the orientation an-
gle p followed by adequate decisions regarding the opening of the converter’s
switches with three-phase output in a way that this corresponds to the decoupled
control by means of i, i,, currents in a two-phase x,, y, system. This occurs in a
quite complex control system that is currently applied in numerous versions differ-
ing in terms of specific values measured in the system and calculated on-line. The
two basic varieties of applying field vector orientation method called direct vector
control and indirect vector control will be discussed later in this chapter.

3.4.1.1 Mathematical Model of Vector Control

The specific property of vector control is associated with the orientation of a sys-
tem (Fig. 3.84) by establishing angle p, which determines the direction of the axis
of the rotor flux ¥,. The focus of the considerations here is a system of equations
for a motor expressed in mixed co-ordinates i;, ¥, (3.56) rotating with the speed of
the field, i.e. for . = w, = p€. It takes the following form:

‘/'/rx =0V, + Lmarisx + pQO SWry

'/'/ry = _arl//ry + Lmarisy - pQO SV

Iy = PO, + pQW,) — Vi + PQi, +k£st (3.194)

r

l:sy = ﬂ(ar'//ry - per/rx) - yisy - pQOisx +k£Usy

r

. T, D
Q, = i~V )——Lt——=Q

r=H (l//rx sy l//ry sx) J J

T,

where: - = pk, /J B=k I(Lo) Q =0/p=2xflp.

For vector control we apply a coordinate system, which takes into account the
angle of orientation p, rotor flux ¥, and, additionally, rotation angle 6, of the rotor.
A transformation is established:

(ls’ylr): l//rx’y/ry’isx’isy’gr - er’Qr’p’y/r’ixp’iyp (3195)

where: - iy, i, - are the components of stator current in a field oriented system x,,
¥,. In order to establish the transformation (3.195) we apply the following rela-
tions:

p= arctan(ﬁJ (3.196)

rx

W, =W+ (3.197)
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L _| cosp  sinp Iy (3.198)
iy | |=sinp cosp iy '

After the calculation of derivatives and substitutions, we obtain:

and

0.=Q,

Qr =HY Ly, _7(Tl +DQr)
—

p= Lal// - pQgys

r (3.199)
l/./r =0y, +Lmarlxp
1 i
ly=—U,+,.py, —,+pQ,i,+L,a, e
p Oils p p Wr

. il
i xp)p

1
o =Epr_pﬂQ %yp pQ l mar

§ r

From the very form of the model (3.199) for the vector control it is possible to di-
rectly derive the following conclusions:

- control is possible only when ¥, > 0
- the term representing electromagnetic torque

T, =puy,iy, (3.200)
is very simple in the same way as the one for electromagnetic torque in a sepa-

rately excited DC machine

- magnetic flux of the rotor ¥, is relative only to the current i,,. There is a com-
plete analogy with reference to the excitation flux and excitation current in a sepa-
rately excited DC machine. In the steady state

Y =L i (3.201)

‘m “xp >
- and for p =0, machine’s slip is equal to

_L ar \/7

20, P (3.202)
0

r

- voltages U,,, U,, are transformed in accordance with (3.198).

3.4.1.2 Realization of the Model of Vector Control

Vector control of an induction motor is realized on the basis of a mathematical
model (3.199) which applies control signals from sensors and quantities calculated
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on-line in the signal processor. In the up-to-date solutions of vector control the
measured signals include the currents and voltages supplying stator windings or,
alternatively, rotor’s angular speed or its angle of rotation measured by an en-
coder, which calculates the pulses corresponding to the units of the angle of rota-
tion [53]. Among the calculated quantities there must be the angle of rotor orienta-
tion p, which secures the orientation of the system x,, y, in accordance with the
rotor’s flux linkage ¥,. The assigned values in the control process include the ro-
tor’s flux ‘P, ., and the reference torque 7, ,.; while the subscript ref denotes the
reference value.

3.4.1.2.1 Direct Vector Control System. The diagram of such a control system is
presented in Fig. 3.85. The control procedure involves the measurement of the
values of stator current i 53 and voltage ug; 3. On the basis of this and applying
the relation

¥ =U, —Ri, +pQ,A,¥,

(3.203)
Y, =Y,-0Li,

we can calculate the terms ‘¥, ¥,y of the rotor flux. Subsequently, we can calcu-

late orientation angle p, flux ¥, and three-phase currents are transformed to the

constituent terms i, iy, in a two-axis w field oriented system. This method is

called direct field control since it involves the calculation of the flux V..
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Fig. 3.85 Block diagram of a direct vector control system

3.4.1.2.2 Indirect Vector Control System. The diagram of this control manner is
presented in Fig. 3.86. The control procedure involves the measurement of the
values of stator current iy 53 and angular speed €,. This system maps the deriva-
tive of the orientation angle p , which is subsequently integrated and added to

the phase angle of stator voltage 6, and applied for the transformation of stator
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currents to two-axial field-oriented components iy, iy,. The system does not in-
volve the determination of flux W, and for this reason this version of the field con-

trol method is denoted as indirect.
Transf.
X Y, p_) p @
—1,23

Trigon.
€os, sin

Transf.
1,23,> =
—Xp ¥p
i
ypref
a}" Lm
Wy ref

Fig. 3.86 Block diagram of an indirect vector control system

3.4.1.3 Formalized Models of Vector Control

3.4.1.3.1 Asymptotic Decoupling of Flux and Speed Control. If we name the par-
ticular variables in the model (3.199) in the following way:

(9,,9,,‘1’,,l'xp,iyp,/?)=(xo,x1,xg,xg,x4,x5) (3.204)
we can obtain the equations of the model in the form:
Xy =X
X =MXyx4—a
.)kz S —(Zr Xy + Lmar.x:z,
Xy ==Yx3+v, (3.205)
Xy =—yXgtvy
. X
i5 =0, L, = p(Q —x)
X2

m=pk.1J a=(T, +Dx))/J
2

1 . Lyp

where: Vy :apr + peryp +0{rﬁ‘1’r +(Zer \P_r
— 1 Qi QY iXp i}'p
Vy _O_Tpr AL pﬁ rtr _aer \P—

s r
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The mathematical model of the drive (3.205) can be broken down into two subsys-
tems — one associated with the control of the flux with the output of x, =¥,

xz =—0{r Xy +L 0{,)63

, (3.206)
X3 =—YX3+tV,

and the system of the control of rotor position or angular speed:
‘)'CO = .xl
X =UXyXy—a (3.207)

.X4 =_}/X4 +Vy

The decoupling of the two systems (3.206) and (3.207) occurs in the asymptotic
sense, i.e. for a strictly controlled flux. As a result, we can assume that:
Xy = Xof This situation fully resembles the control of excitation flux and speed in
a separately excited DC motor. In the case of which, however, the decoupling oc-
curs as a result of the engineering design of the machines and requires a commuter
and brushes for armature. In contrast, the decoupling in this case results from the
application of the equation for the orientation angle x5 = p and transformation of
the variables. One can note here that in the presented system variable x5 = p is not
followed and is uncontrolled. The familiarity with it is necessary for the transfor-
mation of physical quantities to the state variables and, hence, it needs to be con-
ducted separately.

3.4.1.3.2 Input-Output Decoupling. In the system (3.199) we now will introduce
new variables:

Zl = er
i = Qr
zy=u"¥,i,, —a
’ w (3.208)
i4 = \Pr
zs=—o, ¥, +a.L,i,
=P

Since the flux is determined in polar coordinates, it is necessary that ¥, > 0, which
secure the existence of an inverse transformation:

er =2
Qr =2
Lp = (z5 +0,24) (3.209)
. 1
iy, =——(z3+a)
24
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After the introduction of transformation (3.208) we obtain:

le =2
le =23
Z’3 S V\,
. . (3.210)
4 = %5
Z.S = Vx
te=a,L, (23 +a)— p(Qy —2,) (1 z2)
where:
v, ==, +Y)zs + &, (@, pL, — V24 + p2a(25 + & z4) +
2
L k.
+(0!r mJ %(23 +a)2 + sy pr
H 2y o
1
v, =@, + 7z +a)—z2ziup{ﬂ+(ar +Z—5J—J+ (3.211)
24 aer

+kﬁﬂpr —-b

r

a=T,+Dx)!J b=a (z3+a)=§Te

In the presented system (3.210) we have to do with input-output decoupling and
independent control of the two outputs: z; = 8, and z4 = ¥, In this version of con-
trol input to state decoupling does not occur since variable x4 = p remains unob-
served and uncontrolled. The control requires that z; = ¥, > 0. The control signals
vy, Vy are strictly relative to the variables of the state and their derivatives:

vX’Vy :f(ZZ’Z3’Z4’Z5’a’b)zf(‘yr9‘i}r9Qragr9Te9Te)

Such relations tend to be very complex and involve quantities that are difficult to
measure in the drive. They make it possible to derive control variables on the basis
of measurements using state observers. The cost of the simple and linear control of
the I/0 system, as presented above, is associated with complex control signals and
necessity of their combining from various sources (observers/estimators/sensors).

3.4.1.3.3 Input to State Linearization by Dynamic Feedback. The achievement of
input to state linearization by dynamic feedback for an induction motor drive is
associated with the need to apply other set of variables than those applied before,
i.e. ones accounting for orientation angle p. Therefore, the currently applied pri-
mary variables (technically outputs) include:

yl :Qr Zl :p (3212)

These primary variables need to be differentiated until the latest of the derivatives
presents the control inputs, which ensures the controllability the system. For the
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adopted variables (3.212) it will require the differentiation of each variable three
times and consideration of the control voltage vy, as an additional variable in the
system:

X6 =V, (3.213)

while its time derivative x4 =V, will be the control value subjected to integra-

0
tion by dynamic feedback at the input of the system. This is symbolically illus-
trated in Fig. 3.87.
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and
, observers
signals block M
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v—p— -
» Vyp y
"\ powcer

Fig. 3.87 Linearized and decoupled FOC system of an induction motor with an integrator of
the v signal

For variables (3.212) and an additional y, =6, , the decoupled and linearized
FOC system of an induction motor takes the following form:

Yo =N
V=Y,
Ja=v [s7]
. (3.214)
1 =2,
Z.2 =23
. -3
3=vy [s77]
where in accordance with the definition of variables (3.212)
a*Q, d'e,
1= i = art
! ! (3.215)
d3p
V) =—,5
dr

In order to determine control quantities vy, v, it is necessary to conduct subsequent
differentiations in accordance with (3.215), by application of formulae (3.205) for
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X1, X5. As a result, we obtain:
vy =uo L, (e, +3Y)x3x, — Qe + )Xy Xg + 20100, L, X3x6 +

+2u(a, + ) xyx, + por, L x,v, +Ux,V, b

X3 X X
Vo = (aer )2 3—24|:20[an1 = 3(ar - 7):| +
Xy Xy

(3.216)

X, X x

+ aer(ar - y)z x_4+ 2aan1(ar - 7)2 X_G(ar - 7_0'er fJ-f-
2 2 b3

+ piler, x4 (L% = xy) 3%y (¥ = 7 )] = pb—

—vx(a,Lm)zx—‘z‘Jrﬁ oL

s yYr~m X,
On the basis of (3.216) it is possible to calculate the control quantities:
t
v, [Als] vy [A/s?] Xg =J.17ydz' [A/s] (3.217)
0
The determination of the controls is quite complex and requires the familiarity of
X, =Y,, x3 = iy, x4 = iy, as well as the first and second derivative of the load

torque, i.e. b=a, b. The prerequisite for the control is condition ¥, > 0, just as in

the previous cases. This type of control is difficult to realize, however, due to the
observability of the system and selection of the variable z; = p it ensures the orien-
tation of the system as a result of its control. It is to some degree easier to realize
the linearized system with reduced dynamics of the system after realizing the sta-
bilization of the motor excitation current, i.e. i,, current, which is responsible for
flux ¥,, as presented in the following chapter.

3.4.1.3.4 Linearization of a Reduced System with a Stabilized Excitation Current.
We will examine a FOC control system in which a separate control is used for the
stabilization of the excitation current

lp = lyref (3.218)
Then, the model of the drive (3.205) is reduced to:
(6rsgrs\Prsiypsp)=(-x()sx19x27x35-x4) (3219)
XO = xl
X =1Xy%3—a
X, =—0, Xy + L,0,w, (3.220)
)'63 = W2

. X
x4 =a,L, x_z_ Py —xp)
3
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where: - w; = i, ., W, - are the control values. The system (3.220) involves new
variables, such as (3.212):

»=Q, L=p (3.221)
As a result of calculations of time derivatives of variables (3.221), we obtain:
Zl =2
Iy = —HO X)Xy = b+ e, L, x3wy + 1 X Wy

=y, (3.222)

R A ) 243 1
Yo =0 L, —=+Upx,x3—a—(a,.L,) — w +a, L, —w,
X3 Xy X2

After the introduction of input quantities in the form:

u = :uaer'XSWI T U X Wy — UO L Xy X5 -b

X 1 X (3.223)
Uy = —(Oler)2 —;wl +a,.L,—w, + arsz L4 upxyx;—a
X2 X2 X3

we obtain a decoupled and linearized drive control system of the reduced order:

Z'l =2
. -3
=u [s
L= s (3.224)
=X
V= [s7]
The input equations can take the following form:
/uaerx?; HX, —HO, XXy -b
e X oL, | M|+ x (3.225)
Uy - _(aer)z_; — %) (ZfLm—S-l'lusz)CS_a ’
X5 Xy Xy
This equation (3.225) offers the possibility of calculating the controls:
X
' a,L,x; (a,L,)* =
|:wlj|_ l;p 3 1 HO Ly X5 ( r m) xg .
wy | |2 W(x a,L,
? dt ) —HXy
X, (3.226)

U+ 1o, X, x5 +b
27 X3
Uy —aerx——,upxzx3 +a
2

where: - W(x)ZZILl((Zer)Z% x,=¥ >0

2



3.4 Control of Induction Machine Drive 247

Despite more simple control method in this equation, it requires that the values
of rotor flux x, = ¥,, transformed current x; = i,,, load torque a = (T;+7)/J and its
derivative b=a are familiar. The control of the variable y; = Q, should occur
around the natural values of the angular speed resulting from the load and condi-

tions of power supply.

3.4.2 Direct Torque Control (DTC)

3.4.2.1 Description of the Method

Direct Torque Control (DTC) forms a very effective and relatively simple method;
hence, is more and more commonly applied in the control of induction motor
drives [19,74,79,100]. The power device responsible for the control in this system
is most often a two-level voltage inverter (Fig. 3.52). The output quantities in-
clude: stator flux vector ¥; and motor’s electromagnetic torque 7,. Eight possible
states of inverter form the pool of input vectors to execute control in accordance
with relation (3.157) and Fig. 3.55. The basis of the analysis of DTC control
method is the term for electromagnetic torque expressed in flux coordinates,
which in accordance with model (3.59) takes the form:

Te = pﬂ(y/svw"u Vs l//rv) =
=pBY XY, = pfY |x|¥,|sin(p, -0, (3.227)
@r

where: @7 = ¢,-¢, - is a field angle.

Direct Torque Control (DTC) involves the control of the stator flux module ¥
and its position on the u,v plane. In this method it is assumed that the changes of
stator flux occur considerably faster than the changes of rotor flux ¥,. On the basis
of the first of the equations (3.53)

¥ =U,-Ri, +0A,¥,
and the second one of (3.55)
¥, =—a,¥, +L,0,i, +(w,— pQ,)A,Y,

we can conclude that the change of stator flux AW, occurs directly under the effect
of applying an adequate stator voltage over a specific period AfU; and this is an
instant effect. Concurrently, the change of rotor field vector AW, occurs under the
effect of the change of the stator current or rotor speed. The change of the rotor
speed in the examined time scale of a single control pulse occurs totally unnotice-
ably while the change of the stator current occurs with a time constant of 1/0, =
L/R;, which means a considerable delay (see Table 3.1). Hence, depending on the
angular position of vector ¥ we can achieve the effect of changing stator field ¥,
and increasing field angle ¢ (3.227) by switching on of one of the instantaneous
vectors Vo, Vy,... Vg representing one of the output states of the voltage inverter.
Thus, the motor torque 7, is effected quickly and directly. This is illustrated in
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Fig 3.88 for counterclockwise direction of rotation. Fig. 3.88 presents also six sec-
tors LIL,...VI into which the control plane u,v can be divided. The decision regard-
ing the selection of a particular vector V; for motor control is relative to the posi-
tion of vector ¥, in a specific control sector and to whether the value (module) of
stator field vector exceeds one of the threshold control values as well as whether
the value of motor torque 7, exceeds or is below the prescribed values determining
the admissible torque fluctuations by the band-band method. This is done with the
aid of controllers with a hysteresis based control characteristics, as presented in
Fig. 3.89.

sector 111

V5<0,0,1>
sector V

sector VI
V$<0,0,0>
Vo<1,1,1>

Fig. 3.88 Clarification of the Direct Torque Control method

In order to clarify selection method we will take into account the situation pre-
sented in Fig. 3.88, where the vector of stator flux ¥, is situated in sector IV and
the direction of field rotation is counterclockwise. If the control system required
an increase of the flux module ¥l and an increase of the torque 7, (which corre-
sponds to an increase of ¢7), the state of the inverter switches corresponding to
vector Vs would be in ON state. In order to reduce flux [¥, and increase torque it
is necessary to switch on the state of the inverter corresponding to vector Vg,
while in order to decrease flux ¥, and torque 7, it would be necessary to switch
on the state of the inverter corresponding to vector V,. The summary of the
inverter’s switching states for the particular sectors of the control plane and re-
quirements regarding ¥l and 7, are found in Tables 3.9 and 3.10 for the counter-
clockwise and clockwise direction of field rotation, accordingly.
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control control
A variable ‘ variable
FD (field down)
(torque down)
A A
T re;
Yinin Winax |V/S| d TN (neutral)
| < p— P
T e min T ey Te
\ Y A
—> p—FU (fieldupy —p—L_ p1 TU (torque up)
a) b)

Fig. 3.89 Control characteristics: a) for a stator field ['¥,| with a two positional hysteresis
loop b) for a torque 7, with a three-positional hysteresis loop

Table 3.9 DTC switching table for the counterclockwise field rotation

|‘I’s| T, Sector
| 11 111 I\ \ VI
FU TU Vv, Vv, Vv, V; A\ A\
FU TD Vs A\ A\ Vv, Vv, V;
FU TN Vg Vv, Vg Vo \A Vo
FD TU V; Vv, V; Vs A\ Vv,
FD TD V; Vg \'A Vv, V; Vv,
FD TN Vv, Vg Vo Vg Vo \A
Index list:

FU - Flux ¥ |Up; FD — Flux ¥ IDown
TU - Torque 7, Up TD — Torque 7, Down; TN — Torque 7, Neutral

In the DTC control method the fundamental task is associated with the deter-
mination of stator flux vector [¥ magnitude and its position on the u,v plane. This
is done by the application of state observers as the tools based on calculations and
measurements. This issue will be dealt with in section 3.5. For the purposes of
mathematical modeling and research of motor drives the flux ¥, can be restated in
terms of formulae (3.49) and subsequent transformations. Thus, we obtain:

Y, =Li,, +L,i

STsuv m>Truv
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or
s il N A I
= =.]=L -1 -1 " |+L,| . (3.228)
D Al
2 2
Table 3.10 DTC switching table for the clockwise field rotation
|ll’s| T, Sector
| 11 111 v \ VI
FU TU V, \Z v, \£ v, Vs
FU TD Vv, V; Vv, Vs Vg A/
FU N V8 VO VS VO VS VO
FD TU V; A\ \'A Vv, V; v,
FD TD V, Vv, Vs \ A/ Vv,
FD N VO V8 VO V8 VO VS

This leads to the following result:

Y \/stisl+Lt71iru
{ }: 3 (3.229)

V 2L5 (%isl + is3) + Lmirv

Thanks to this, it is possible to determine the module of stator flux

Y o=\¥2 +¥2

and the sector in which vector is actually located on the basis of the relations be-
tween its components ¥,,, ¥,,. Similarly, in order to determine electromagnetic
torque and field angle ¢ (3.227) it is necessary to determine the components of
rotor’s flux linkage:

by \/ZLmisl+Lriru
{ ’”}: 3 (3.230)

- \/ELm (%isl + is3 )+ Lrirv

AL S

The acquaintance with the components (3.229), (3.230) of stator and rotor field
makes it possible to calculate field angle g7 (Fig. 3.90)
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or = arctan \Psu\Prv — \Psv\Pru
r =

—su v T Tev Tru (3.231)
lPsu \Pru + \PSV\PVV

v
Wy Wi

¥

Wi

@

Uu
|

Wsu '

Fig. 3.90 Presentation of a field angle @7

3.4.2.2 Examples of Direct Torque Control (DTC) on the Basis of a
Mathematical Model

DTC control was modeled with the aid of the relations (3.227-3.331) and Tables
3.9, 3.10 for a two-level voltage inverter as the power output device, the one
whose operating principle is described in section 3.3.3.3. The modeling was con-
ducted on the basis of an assumption that the determination of flux ¥ in the sense
of the length of the vector and its position is error free, since in this model it is
based on the relation in (3.229). The similar course of reasoning is assumed for
electromagnetic torque 7,, whose calculation is based on the mathematical model
in (3.227) thus providing error free result. This means that the conducted calcula-
tions and their results constitute the illustration of the operating principle of DTC
method but do not reflect precisely the operation of the drive due to the assump-
tion of idealized operating conditions, in particular in terms of determination of
control quantities. The presented illustrations regard the start-up, braking, control
of flux, etc. for DTC controlled and operated drive. The first set of illustrations in
Figs. 3.91-3.93 presents the start-up of a high voltage medium-power motor
(S2H) for a load of T; = 0.257,, moment of inertia equal to J = 1.5J;. The band
limitations of DTC control involve the values of:

205<|¥,[<21.0 [Wh]
3450<T, <3550 T,

eref

(3.232)
=3500 [Nm]

Since the system does not apply speed control after the start-up the electromag-
netic torque falls to reach the value resulting from the load and the speed reaches a
steady value resulting from the operating conditions of the drive.
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ide[A]

Fig. 3.91 Start-up of 400 [kW], 6 [kV] motor: a) DC source current b) stator currents; DTC
parameters given by (3.232)

3500 iy
3000
2800
2000
1600
1000
800

LY L 4

Te[Nm]

0 0.1 0.2 ?.'3 0.4 0.5
2) i[=

Fig. 3.92 Start-up of 400 [kW], 6 [kV] motor: a) electromagnetic torque b) angular speed:
DTC parameters given by (3.232)
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Fig. 3.92 (continued)
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a) tfs]

Psvvx] ;.

10 2
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Fig. 3.93 Start-up of 400 [kW], 6 [kV] motor: a) stator magnetic flux ¥l time history b)
u,v axis trajectory; DTC parameters given by (3.332)

The following set in Figs. 3.94-3.96 presents the start-up of a small induction
motor with the given characteristics of the torque. Its waveform is shaped in a way
that ensures a fast start-up and maintenance of the given speed after start for
J = 4J, T; = 0.5T,. This system operates without any feedback, for the following
DTC control limitations:

L18<|¥,[<1.22 [Wb]  AT,=0.5 [Nm] (3.233)
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1DD_ 'llIIFIII||||||[|’||”r|’”|||’|"l
a0
504
Te[Nm]
409
201
a 0.05 01 15 02 0.25
t[s]
a)
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a0
omega[l/s] ]
404
204
0 0.05 01 015 02 0.25
tis]
b)

Fig. 3.94 DTC guided start of the 5.5 [kW] induction motor: a) electromagnetic torque b)
angular speed. DTC limits given by (3.233)

50
40

ideja] 0

o 0.05 0.1 Cpils 02 0%
a) tls]

Fig. 3.95 a) DC source current b) stator currents during the torque guided start up of the 5.5
[kW] induction motor. DTC limits given by (3.233)
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is[A]

b)

Fig. 3.95 (continued)

0.5

Psi[Vs]
05

0.4

024 —

a)

b)

Fig. 3.96 a) stator magnetic flux ['¥,l in time b) its u,v trajectory, during the torque guided
start up of the 5.5 [k€W] induction motor. DTC limits given by (3.233)
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Another example of DTC control involves decreasing magnetic flux of a 5.5
[kW] motor by 25% during its steady operation while maintaining the torque
within the designed boundaries, i.e. 38.8<Te<42.2 [Nm]; T, ,,,= 0.75 T, = 41.5
[Nm]. As a result of observing the transitory waveforms one can note a number of
specific reactions of the system: instantaneous reduction of the stator flux ¥, ac-
companying a gradual, asymptotic decrease of rotor field ¥, (Fig 3.97). It is very
specific to remark an increase of field angle ¢ between field vectors ¥ and ¥, in
a manner that ensures the maintenance of a constant torque 7, despite decreasing
values of the two vectors.

1.29

1.151

1.149

Peig[We] 1.051
1_

0.951

094

002 004 006 008 01 012 014 016
B 1]

b) )
Fig. 3.97 Stepwise reduction (25%) of a stator magnetic flux in steady state of induction
5.5 [kW] motor with DTC while torque maintained on the constant level (7,,, = 0.75 T,, =
41.5 [Nm]): a) stator flux [¥,l b) stator flux trajectory c) rotor flux I¥,l u,v trajectory
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Fig. 3.98 a) DC source current b) stator currents c¢) stator current u,v trajectory d) rotor cur-
rent u,v trajectory - after the 25% reduction of the stator flux 'Vl
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Te[Nm] 40.57
4064

40.44

40.24

40 T T T T T T T T
0.0z 0.04 0.06 0.0 0.1 012 014 016

a) t=]

Fig. 3.99 a) electromagnetic torque b) field angle ¢ - after the 25% reduction of the stator
flux ¥, . Conditions like Fig. 3.97
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phiT[deg] 7

. a1
b) =]
Fig. 3.99 (continued)
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0@ 004 006 "u.'u?'[']"u.'f 012 014 016
H

Fig. 3.100 DTC transition from motoring to breaking regime of 5.5 [kW] induction motor
(S1): a) electromagnetic torque b) angular speed c) stator and d) rotor magnetic flux trajec-
tories



3.4 Control of Induction Machine Drive 259

159
104
ide[A]
5_
0{ ooz 004 006 D'htdk] o1 012 014 016
a)
10
sfA]

c)

Fig. 3.101 DTC transition... (like in Fig 3.100): a) DC source current b) stator currents c)
stator current u,v trajectory d) rotor current u,v trajectory
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Fig. 3.102 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the

change of switching sequence from the counterclockwise to the clockwise one: a) electro-
magnetic torque b) angular speed c) field angle g7

\ - )
' 1 : i
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Psu[Vs]

0.5 1
Pru[¥s]

a) b)

Fig. 3.103 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the
change of switching sequence from the counterclockwise to the clockwise one: a) stator
flux ¥, flux trajectory b) rotor flux ¥l trajectory
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Fig. 3.104 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the
change of switching sequence from the counterclockwise to the clockwise one: a) stator
current time curves b) stator current trajectory c) rotor current trajectory d) DC source
current
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Fig. 3.105 DTC reversing of a of 5.5 [kW] motor drive: a) electromagnetic torque b) angu-
lar speed c) field angle
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Fig. 3.106 DTC reversing of a of 5.5 [kW] motor drive: a) stator flux ¥, time curve b)
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rotor flux ['¥,| time curve c) stator flux trajectory d) rotor field trajectory
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d) 204

Fig. 3.107 DTC reversing of a of 5.5 [kW] motor drive: a) stator current time curves b)
stator current trajectory c) rotor current trajectory d) DC source current

Figs. 3.100 — 3.101 illustrate the transfer of the drive from motor regime of op-
eration to braking as a result of a change of electromagnetic torque, as presented
in Fig. 3.100a. The corresponding change of angular speed is presented in Fig.
3.100b. The stabilization of the speed for # > 0.1 [s] comes as a consequence of
changing load torque 7; and its adaptation to the state of balance. However, this
cannot be concluded from the referring figures. The transfer to the braking regime
is not accompanied by an increase of stator and rotor current, which is ideally il-
lustrated in Fig. 3.101 c,d. One can note very good characteristics of DTC control
in the sense of the maintenance of the designed waveform of electromagnetic
torque and flux [¥,l as well as a considerable overlapping between the curves for
the torque and field angle g7, which can be made more comprehensible by close
examination of relations (3.227) for small values of angle ¢;. Subsequently, Figs.
3.102 — 3.104 present the transfer of the drive controlled by DTC method to the
generating regime of operation. This occurs as a result of changing the sequence
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of semiconductors switching from the ‘counterclockwise’ mode (Table 3.9) to
‘clockwise’ one (Table 3.10) for the positive direction of rotation. It is accompa-
nied by a transfer of field angle @7 from the positive values for motor operation to
the negative ones (Fig. 3.102c), negative electromagnetic torque (Fig. 3.102a) and
return of energy into the source (Fig. 3.104d). Following Figs 3.105 — 3.107 pre-
sent reversal of the 5.5 [kW] DTC controlled drive also by changing the sequence
of switching of a bridge transistors for a reverse rotation. The effects of changing
the rotation sense is quite noticeable in several trajectories presented. These ex-
amples prove the DTC control to be effective, stable within a broad range of oper-
ating conditions as well as demonstrate its practicality in the control of dynamic
waveforms. The prerequisite for this method concerns the maintenance of ¥, > 0
and the possibility of determining vector ¥, on the control plane u,v. As it was
proved by the examples of conducted start-ups, the maintenance of the designed
curve of electromagnetic torque by the DTC control system is achieved very pre-
cisely and without delays within the range of the capacity of the motor of provid-
ing adequate torque for the determined conditions of system supply. DTC is a kind
of sliding mode control realization (see 5.6.1) and belongs to the type of heuristic
control methods since the waveforms, the number of switchings as well as the
switching frequency of the flux and torque are relative to the desired control and
hysteresis loops for torque and flux limitations (Fig. 3.89). Concurrently, the sys-
tem itself determines the instants for switching on the basis of a currently executed
control task as well as on the basis of the precision of the mapping by the observ-
ers of the field ¥, its position and the current value of electromagnetic torque 7.

3.4.3 Observers in an Induction Machine

The linearization of a model of a drive, field oriented vector control (FOC), DTC
and other control procedures require on-line determination of the flux linkage for
the stator ¥ or for the rotor ¥,. The orientation of the flux vector is also required,
which involves the determination of its position on the u,v plane for instance
by means of orientation angle p. These quantities are virtually inaccessible on ba-
sis of measurements and need to be calculated in the control system. A mathe-
matical model with data linkage to the measurements of values that are derived
very easily and precisely can form the basis for calculations of this type. Such
quantities include the current of stator windings, supply voltage, angle of
rotor position or rotational speed.

State observers are mathematical objects resulting in calculation algorithms,
which perform calculations of inaccessible quantities that are needed to conduct
the control process continuously, on the basis of a mathematical model and meas-
urements of certain variables in the drive which are easy to obtain. Such calcula-
tions need to be conducted on-line during the control process. The term stability of
an observer used here means the decay of estimation error during the determina-
tion of the sought quantities caused by disturbance or incorrect initial value along
with time passing. Such stability is either examined with the aid of a method based
on Liapunov theorem [53], or estimation error decay is demonstrated on the basis
of an adequate selection of the observer’s parameters. The stability of the observer
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understood in this manner does not secure its complete accuracy during calcula-
tions but confirms the tendency of estimation error to decay in time. The inaccu-
racy in the estimation of waveforms of the examined variables results from
the reasons that are completely beyond the structure of the observer. Such reasons
include:

- inaccuracies resulting from simplifications made during the mathematical
modeling of the drive serving to establish an observer,

- variability of parameters considered as constant in the algorithm, for example
commonly applied quantities a,, L,, associated with the induction motor that
tend to be directly relative to magnetic saturation and temperature,

- inaccuracies of measurements of curves involved in the observer’s algorithm
from the operating drive,

- inaccuracies of the numerical integration of the observer’s equations.

Despite these drawbacks observers have proved their applicability in control even
in their more simple forms. The studies devoted to observers, their stability and
methods of error reduction are widely discussed in references [22,40,43,
66,77,78]. Several simple observers applied in induction motors are presented be-
low along with some issues pertaining to the maintenance of their stability.

3.4.3.1 Rotor Flux Observer in Coordinates «,

The most simple flux observer results directly from the model in (3.55). For
o, =0 itis a model with a stationary system of axes u,v in relation to the stator,

i.e. a, f model.

¥,y =-, ¥, - pQ,¥,5+a,L

mwt

. ) ) (2.234)
\Prﬂ S _ar\Prﬁ + pQr\Pra + aerl.Sﬂ

In the observer (3.234) the estimated values are: ¥ B and the values input

ra?

from measurements include: €,,i,,i 3. The mathematical model for the vari-

so

ables V¥ ‘Prﬁ has an identical structure as the one in (2.234), with a note that

ra

these variables occur in it in the place of estimated quantities ‘Pm,‘l’ +p - The er-

rors of the estimated variables are defined as:

A

eg =YV, e=Y,-¥, (3.235)

o re

The equations of dynamics of the estimation errors are derived by subtracting
equations for the observer (3.234) from the equations for the model:
ey =—0,e,— pQ,e
“ “ p (3.236)
eg=—ep+pQ.e,
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The study of the behavior of the estimation errors (3.236) during the disturbances
involves the analysis of the dynamics of the error for example with the aid of
Liapunov’s function. It is a positively determined function based on estimation er-
rors and in the examined case can take the following form:

V=e;+e%

By calculation of: V= 2(e e, + éﬂéﬂ) , and subsequent substitutions (3.236), we

obtain:
V==2a,(e; +ep) =20,V (3.237)

From the result (3.237) one can conclude about the stability of the decay of flux

estimation error V(1) =V (0)e 2% .

3.4.3.2 Rotor Field Observer in ¥,, p Coordinates

This analysis is based on the model of motor (3.199) in ¥, p coordinates:

i
y=a,L, =L~ pQys
P=Ortmig " P2 (3.238)

VY =—aV¥, +L,0,

m“rxp

By planning the observer in the form:

A

,15 =a,L Lo _ PQys
T (3.239)
\ilr = _ar‘ilr + Lmarl,.\xp
and defining the errors as:
ey =, —‘i’r e, =p—p
o p=PF (3.240)
€x Tlhyp Tl €y =lyp Ty
we obtain the equations for the dynamics of observer errors:
. i, —ieq te 'V,
¢,=p-p=a,l, 2PN, R YT
Y, . Y,.Y, (3.241)

ey =¥, -Y, =-a,ey +a,L,e,

In equations (3.241) the error e, is not directly included, but there are errors de-
noted as e,, e,, which result from e, and are transferred to currents i, i, as a result
of transformations. Fig. 3.108 presents geometrical relations resulting from ¥,, p
transformation.
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From Fig. 3.108 it stems that: p=p+e »» Which also represents the relation in
(3.240). Hence,

i =icos(19+ep)=icos7900se —isinsine , =

72 P p
=i cose,—I, sine

Y
e (3.242)
Iyp :zs1n(z9+ep) =isin ﬂcosep +zcosz931nep =
=i,,008¢,+i,,sine,

Fig. 3.108 The influence of the orientation error e,on the field oriented stator currents i, iy,

For the small values of e, in (3.242), it results that:

e, =—e,l (3.243)

€x =Cplyp y plp

As a consequence, on the basis of (3.241, 3.243) the equations for the dynamics of
the error can be established in the form:

oL, a.L,i

¢ Am xp r W,L\ o e
Lp} = ¥ S ep (3.244)
¥ o,L,i,, -a, ¥
| E

From the following we can derive the characteristic polynomial:

. 2
(@, Lyiy,)

1 oL i
W(s)=s{ }—E={S+#J(S+ar)+—A (3.245)
1 Y ¥ ¥

r r r

The polynomial in (3.245) can be transformed to take the form:
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. L)’
st +sa, 1+\? +a3—( ’"lf) (3.246)
¥ v

with the aid of the relation ¥, = L,, i,,.

The discriminant of the quadratic equation (3.246) is

2 )
A= 1t | _gLul)” | g (3.247)
¥ PP

r

always for liy,| > 0, i.e. the curve of the error has an oscillatory shape. In order to
assess the values of the roots the discriminant (3.247) can be transformed to take
the form:

A=ao?

r

¥ ¥y, vy,

r

2 . 2 . )

Hence,

1 \P . Lmiyp|
oo % s el

2 Y. e
and, approximating for ‘¥, = ‘i‘r :

(3.248)

The damping of estimation error curves is proportional to a,, while the pulsa-
tion is relative to the relation i, /i,,, i.e. the ratio of the electromagnetic torque to
the flux.

3.4.3.3 Rotor Field Observer in x, y Coordinates with Speed Measurement

This observer is based on the familiarity of the transformed currents iy, iy, which
results from the measurement of stator currents and transformation of 0,x,y that
involves the need of input of the angle of the rotation of the rotor 6,. Since speed
Q, is measured in the system, the determination of the angle of the rotation of the

rotor ér =Q, occurs with the precision range to the constant, i.e. the value of the
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initial angle ©,(0). The mathematical model (3.56) , for @, = pQ, in the range
that is interesting to us takes the form:

Y, =-a¥, +a.l,i

rF—m-sx

v, =-a¥,, +a.L,,

l:sx = ﬂ(ar\l}rx + pQr‘Pry) - yisx + pQrisy + stﬂ/kr
i'sy = ﬂ(ar\Pry - pQr‘Prx) - yisy - pQrisx + Usyﬂ/kr

(3.249)

The field observer based on the measured stator winding currents i, after the
transformation of i, i,, that applies the measured speed €, and angle of rotation

~

6., is constructed [53] in the following way:

\Prx =_0{r‘¥rx +a,L,i +Ha e, _:upQreiy

r—m-"sx

¥ = a,‘i’,y+a L, i, +ua.e;, +upS e;

ry = rtmtsy

l{.\sx = ﬂ(ar\ilrx + pQr\ilr}) - }/isx + pQrisy +ﬂ/krst +kleix + (3250)

+ kZeix (;S‘%C + ;vzv)
iy =B, - pQ,¥,.)~Viy, — pQ iy + BIKU , +ke,, +

+ kZeiy (lA&‘i + ;S‘i )
The equations of dynamics of the errors take the following form:

é‘Px = \Prx _\Prx =0 ey, —HO e +lupQreiy

é‘Py = \Pry _\Pry = _are‘i’y _:uareiy +lupQreix (3 251)
: B 2 2 ’

sx Tl = _kleix - kZEix (lsx + Lgy )+ ﬂ(are‘l’x + pQre‘Py)

. T 2 )
Ciy Tlgy gy = _kleiy _kZeiy (lsx + lsy)+ﬂ(are‘l‘y - pQre‘I‘x)

Verification of the decay of the error involves Liapunov’s method with positively
determined error function in the form:

1 U 2 U 2
Vy=—el +—ed, +——e +—¢ 3.252
0 ) Wx 2 Yy 2ﬂ ix 2ﬂ iy ( )
After differentiation of (3.252), we obtain:
V, = éy.ey, + ey, ey, +Pe e +2¢ e (3.253)

ﬂ XX ﬂ Ly "ix

After the introduction of derivatives (3.251) and ordering things, the result is:
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Vo =—a,(eq, +eg,) —%(e,?x +ep )ky +ky (i +1)) (3.254)

The result (3.254) indicates a progressive decay of the error function (2.252). The
error associated with the estimation of the flux decays with the time constant of
1/a.,, while the speed of the current estimation error decay e;,, e;, may be controlled
by an appropriate selection of the values of k;, k, > 0.

3.4.3.4 Observer of Induction Motor Speed Based on the Measurement of
Rotor’s Position Angle

Induction motors containing the sensors of rotor position, for instance encoders,
do not apply speed sensors. The angular speed Q, may be calculated on the basis
of differentiation of the position signal, which for a discreet determination of the
position angle results in considerable noise with high frequency associated with
the differentiation. It is, however, possible to avoid it and gain a smooth curve of
the estimated speed as a result of application of a simple observer [22]. For stan-
dard notations the mathematical model for variables 8, and €, i.e., rotor position
and angular speed are the following:

0,=Q,
. ) D T, (3.255)
Qr ::u\Prlyp _7 r _7
The proposed observer takes the form:
0. =Q, +k (6. -6.)
(3.256)

R . ~ T R
&, =u¥,i, —?Q, ~Ltky(6,-6),)

The error equations are derived as a result of deducing the sides of (3.255) and
(3.256), respectively:

A

_ar = eQ _kleg

o .. D (3.257)
€q =Qr _Qr =lu(qlrlyp _:uqlr yp)_7e§2 _kZeH

=0
Under the assumption that the error in the determination of electromagnetic torque
u,i,, - ,u‘i’,f yp) decays much faster than for the curves of mechanical vari-

ables, the equations of the dynamics of errors take the form:

éo | |=ky —DI/J|eq '

The characteristic equation of the error dynamic takes the form:
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s+k

W —
©= v, s+pis

=(s+k1)(s+—?)+k2
(3.259)
D D
W(s)=s>+s| kj +— |+k,—+k
()=s S(l Jj 15 2

The roots of this equation (3.259)

2
- :—%(kl +?ji\/(kl +?j _4(/(2 +hy ?j (3.260)

may be formed arbitrarily by selecting ki, k,. The damping of the errors
-Ya(ki+D/J) may be adequately large while the curve of the error decay may be os-
cillatory or exponential depending on the selection of k.

3.4.3.5 Flux, Torque and Load Torque Observer in x, y Coordinates

This observer bases on the measurements of i, 6, — iy, i,,, and the estimated quan-
tities include: W - ,‘i’n,,ﬁr,TAl. For simplification purposes we assume that 7 is

constant. The corresponding model of the system takes the form:

‘I",X =-a, V¥, +to.L,i

r—m-sx

VY, =-a,%,, +a,L,i

rmtsy

0.=Q, (3.261)
: . . D T,

Qr :lu(\Prxlsy _‘Prylsx) _7Qr _71

7,/J=0

The observer is designed in the following form [22]

¥Y,=-aV¥,., +alL,i

r—m-sx

Y, =-a¥, +a.L,i

r*~m'sy
6, =Q, +ke, (3.262)
Qr = lu(\i’rxisy _lAPrvisx) _Bér _£+k266
’ J J
T,1J =ksey
where:
ea = 0, _ér

The equations of the dynamics of the error estimation take the form:
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¥

= ey

‘Prx_
¥, -Y¥, =-a.e

ry rcy

éy
e
y
A (3.263)
66 :ar _9’, =€q _kleg

. - A . . D
€ = Qr _Qr = lu(lsyex _lsxey)_7e§2 —er _kZeH

where:
eq=0,-Q, e =T-T)1J

In accordance with the first two equations for the system (3.263), we assume fast
error damping

e, =e (0)e ™ e,=e, (0)e™ " (3.264)

which makes it possible to independently deal with the three remaining equations
(3.363), for a decay in the error of torque estimation u (iye, —ie,) —0.
As a result, the dynamics of the errors ey, e, er can be restated as:

éo | [k 1 0 e,
éo |=|~ky, —DIJ —1|eq (3.365)
ér| |=ks 0 0]er

The characteristic polynomial for this system takes the form:

s+k; -1 0
W(s)=| k, s+D/J 1=
ks 0 s (3.266)

3. 2 D D
=" +s7 | ki +—|+s| ki—+k, |-k
(l J lJ 2 3

The polynomial (3.266) can have three real roots |, r,, r; for which case in order
to ensure error damping we require that either r, r,, r; < 0 or a single real number
root and two complex ones that are mutually conjugated. In this case it is required
that all three real parts are negative. For the solution with three real number roots
r1, 1y, 3 the gain factors of ki, k,, k; are calculated on the basis of the general form
of the characteristic polynomial

W(s)=(s—n)s—n)s—r)=
=’ —52(7'l +1,+ 1) ts(nr R +nn)—nnn

Hence, by comparison with (3.266) we obtain:
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kj=—(n+nr+r)-D/J
ky =(nr, +nr +r2r3)—k1? (3.267)
k3 = (rryrs)

The relation (3.267) makes it possible to derive the gain factors of k;, k,, k3 for ar-
bitrarily selected values of damping ry, r,, r3. For the complex roots (s-(d+jw)) the
equation takes the form:

W(s)=(s—nr)(s* =2ds+d* + &*) (3.268)

where: - r - is a real root

d, @ - components of complex roots the first of which denotes the damping co-
efficient of the oscillatory curve while the other the pulsation of the curve.
Following an adequate extension:

W(s)=s>—s*(r, +2d) +sQdr +d* + @*)—r,(d* + @*)

As a result of the comparison of the result with polynomial in (3.266) it is possible
to determine the gain of &, &y, k3 for the desired values of r, d, w:

ky=—(r,+2d)-D/J
ky =2dr, +d* + &* —kI? (3.269)
ky =r(d” + )

The presented observer (3.262) has been solved in an effective manner involving
the input the numerical values from gauges in order to obtain the desired curve of
error decay function. This, unfortunately, does not involve the case for the decay
of the errors of flux estimation, which is relative to the time constant 1/a,, which
was the case in the preceding examples.

3.4.3.6 Stator Flux Observer ¥, with Given Rate of Error Damping

The knowledge of stator flux linkage ¥ is indispensable for the direct torque
control. It also enables one to calculate rotor’s flux ¥, , which is necessary for
vector control (3.52):

v, -ty Ly (3.270)

kB

Concurrently, the mathematical model serving for the calculation of stator flux is
the following (3.53):

¥ =U,-Ri, +0A,Y,

is =kﬁ(af +pQrA2)‘Ps _l(as +ar)+(wc —PQr)Azis +kﬁUx (3271)
o

r r
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On the basis of this model, while the measurement quantities include Uy, i, Q,, an
observer of stator flux has been designed [66]. The advantage of this observer in-
volves the fact that it is possible to set an arbitrary speed of estimation error damp-
ing, which distinguishes it from the preceding rotor flux ¥, observers (where error
damping was affected by the damping of a,). The designed observer takes the
form:

,=U, - 1<+a)cA2‘i’s+cl(iS—fs)Z

i =kﬁ (o, + pQ, ANV, —é(a +a, )+ (@, — pQ, A, + (3.272)

+kﬁUs +c2(is —fs)’i—z

r r

where: ¢y, ¢, - are complex multipliers.
The equations of the dynamics of the error in the complex variables take the
form:

_‘i’s =a)CA20\P _Cleiz
i s _ B 3
ETERE P k (ar +pQrA2)e‘{’ ce

r r

87 (3.273)

In the matrix form the equations of the errors are the following:

o - jo. - clz e

¥ = | €

.= , Z (3.274)
{ } L, -p0,) -, 2% L,}

k, k,

Hence, the characteristic polynomial follows:

s+ ja, aZ
W= L (g - jp0,) s+e, B2
k, k, (3.275)

=s2+s(62’i—z+ja) ]-I—CI'i—Za +]k—Z(cza) cpo,)

r r r

This is a polynomial with complex parameters. Similarly, cl,cz,Z can take com-

plex values. In the physical sense it denotes two-dimensional control of flux ¥,
and current i; in u,v coordinates. Having the possibility of setting the real constant
. and complex constants

¢ =cg ey Cy =Chp tCoy (3.276)

and impedance Z , there are considerable opportunities for the formation of the
curves of the estimation error. Assuming the general form of the characteristic
polynomial:
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W(s)=(s—n—jo)(s—n—jw,)=

2 . ) (3.277)
=5"+5(=(n +r)—jl@ +w,)+nr -0, + j(rw, + o)
it is possible to state the equations for the coefficients:
zZ . .
czﬁk—+ Jjo,=—(r+nr)- jlo,+w,)
57 i 57 (3.278)
5} k—“ + J_(Czw Cpor): nr, =, + j(no, +r,o)
As an example we will present the solution for:
’B—Z:I w, =0 ¢y =0 W, =—0 =—® (3.279)
In this case, on the basis of (3.278), we obtain:
e |___ 1 &, (1, + @) = pQ, (1 = 15)
ay | af +(pQ,)*| pQ, (nr, + @)+ oa, (r,—r,) (3.280)

Cp =—(r+1y)

From this solution (3.280) by appropriate selection of r, r, it is possible to
achieve arbitrarily the decay of the flux estimation error ¥,. However, this result
is considerably relative to the angular speed Q,. The result can serve for the de-
termination of flux ¥, for the purposes of DTC control or help one in the determi-
nation of rotor flux ¥, by using (3.270).
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Chapter 4
Brushless DC Motor Drives (BLDC)

Abstract. This chapter deals with properties and control of brushless DC motors
drives with a permanent magnet excitation (BLDC, PMDC). In the first part char-
acteristics of contemporary permanent magnets (PM) that are used in electric mo-
tors are presented along with the simplified ways of their modeling. As an example
a pendulum is given, which consists of swinging coil over a stationary PM, and the
influence of PM modeling simplifications upon the dynamic trajectories of move-
ment is discussed. Further on, a model of PMDC drive is derived on a transformed
d-g and also a contra model in which no transformation of variables is used, with
the commutation taking place according to the state of physical (natural) variables.
However, the problem of nonholonomic constraints is not undertaken while dealing
with PMDC modeling. In a classical DC motor with mechanical commutator, the
existence of such constraints is evident, because the connection of each armature’s
coil to the external circuit depends on the rotor position. In case of electronic com-
mutation, a switching of windings’ supply is controlled also by the rotor position
angle, but topographic structure of circuits remains fixed and the switching is car-
ried out by a abrupt changes of impedance values of power electronic switches. In
this chapter various characteristics and transient curves for BLDC drives are pre-
sented and a comparison is made between results obtained from both types of mod-
els: d-g transformed and untransformed ones. It gives the possibility of justifying
the choice regarding the kind of the model to be used in particular applications, de-
pending on the dimension of a whole system and required rigorousness of results.
The results presented cover the operation of DC drives with and without control
system intervention. The PID control is discussed in its application to a given pro-
file of speed and rotor position movement and also inverse dynamics method is in-
troduced. Numerous examples of DC drive problems are included, employing two
typical BLDC motors with given data.

4.1 Introduction

For 150 years DC direct current machines have played an important role in elec-
tric drives. The basic advantages associated with their application in drives in-
clude: easy adjustment of rotational speed, uncomplicated start-up and reversal,
stable operation for small speeds as well as good dynamic properties ensuring fast
reaction to changing parameters of power supply. DC machines with classical
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design consist of a stator with electromagnets which are powered by the excitation
current and whose role is to generate a magnetic field of excitation. The windings
of the rotating armature are connected to the mechanical commutator with the
graphite-metal brushes slipping over it. They constitute the electrical connection
between the movable armature windings and external circuits. The mechanical
commutator, which is a device mostly of historical significance, plays the role of a
mechanical rectifier, which converts AC current with the frequency corresponding
to the rotor’s rotational speed into the DC current outside the armature. At its time,
the mechanical commutator was an outstanding device, which was however trou-
blesome during exploitation and costly in terms of cost of investment. It was also
the weakest link in the system in the sense of reliability of operation as well as re-
quired frequent service and regular overhaul. A modern brushless DC machine
(BLDC) displays two fundamental differences in contrast to the mechanically
commutated DC machines [13,15,17,28,42]. First of all, it does not have a me-
chanical commutator over which the brushes forming the electrical node used to
slip. A static electronic commutator is used in its place, whose role is the commu-
tation of the current in armature windings in the function of the angle of rotor po-
sition 6,. Hence, the principle governing DC machines is preserved, i.e. the ma-
chine is self-commutating. In the characteristics of the machine the basic effect
involves the fact that along with the increase of the load the machine tends to slow
down unless it is supplied with external speed control for the stabilization of the
speed. As a result of this slowing of rotational speed the armature current tends to
increase and this leads to a new equilibrium point of the operation. The second
relevant difference between a classical mechanically commutated machine and
up-to-date motor involves the replacement of electromagnets exciting the main
magnetic field with adequately selected permanent magnet assembly [12,22]. This
solution is rendered possible as a result of magnetic parameters and other utility
parameters and ultimately the commercial value of permanent magnets. They con-
tain rare earth elements, such as neodymium (Nd), samarium (Sr) among others.
The application of permanent magnets improves the efficiency of a machine since
there are no power losses in the excitation windings and leads to the decrease of
machine mass. However, in terms of the construction and thermal requirements of
machine operation there is no advancement since the permanent magnets installed
in the machine and providing the excitation flux require adequate operating condi-
tions which do not permit the deterioration or a decay of the magnetic field from
the magnets. These requirements basically involve the limitation of the tempera-
ture inside the permanent magnet motor, limitation of the influence of armature
reaction in a way that ensures that irreversible demagnetization of magnets does
not occur and not extending air gaps in order to prevent overloading of permanent
magnets. One has to bear in mind that the permanent magnet DC machines
(PMDC) have to be designed in manner that ensures their operation over a number
of years without deterioration of the exploitation parameters. Another important
difference between the classical mechanically commutated DC machine and a
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brushless one concerns the number of windings of the armature and, subsequently,
the current waveform on the DC side. In a commutator machine the usual number
of windings varies around a couple dozen, as a consequence of which there is an
adequately large number of commutator segments. In connection with this, DC
current contains very small pulsations since the commutation occurs every couple
of degrees of rotor’s angle of rotation. Consequently, the electromagnetic torque
generated by this machine tends to demonstrate small pulsations. In BLDC ma-
chines of the most common engineering design there are three phase windings of
the armature, which is reflected by three branches of an electronic commutator
(rectifier controlled by the angle of rotor position). This results in considerable
current and torque pulsations generated by the machine since the commutation oc-
curs every 60° of the angle of rotor rotation, alternatively in the anode and cathode
group of the electronic commutator. It is obviously possible to increase the num-
ber of the armature windings and number of commutator branches thus leading to
the reduction of current pulsation; however, two negative effects follow. One of
them is associated with the need to use a more extensive and expensive electronic
commutator, while the other one involves an increase of commutation losses and
decrease of the efficiency of the drive. A final remark that can be made at the be-
ginning of this introduction is that brushless DC machines with permanent mag-
nets can vary considerably in terms of their engineering structure. First of all,
there can be minute machine serving as servodrives in technology, household ap-
pliances and vehicles. Besides, there are larger machines, which are applied in
electric drives of automatically controlled devices, including drives in manipulator
joints. Finally, there are high power machines with the parameters of the drives
used in industrial machinery, for example in steel mills or vessels. BLDC ma-
chines may have a various number of phases, have cylindrical construction and in
some applications they can have a form of a disk with immobile armature and ro-
tating magnets. The final solution can serve for use in low revolution gearless
drives. BLDC machines need not have low revolution ranges, as ones discussed
before, but also can operate under rotational speeds exceeding 10,000 [rev/min].
The number of the available versions is large and still growing.

4.2 Permanent Magnet — Basic Description in the Mathematical
Model

Permanent magnets have been in use for a long time. They have been applied as
components of technical devices for nearly 200 years. The acquaintance with the
physics of magnetic materials and principles governing magnetization on the mi-
cro level has occupied the attention of scientists for the last 50 years while the
technicalities of the process of production of up-to-date composite magnets has
dated since 1980s. At present we are familiar with permanent magnets with stable
magnetic properties on condition of not exceeding admissible temperatures with
high value of unitary internal energy, magnetic induction under the magnet in
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excess of 1[T] and a broad magnetization loop. The basic characteristics of the
permanent magnet is presented in Fig 4.1.

Ll

operating point
Bo, Ho

H [Afm]

H, H,

Fig. 4.1 General characteristic of a permanent magnet with an air gap load curve given by Ay,

For the description of the operation of permanent magnet we normally present
the characteristics of magnetization merely in the II quadrant of the coordinate
system since this is the operating range of a magnet. In a simple magnetic circuit
consisting of a permanent magnet, air gaps and a small ferromagnetic core (¢ = o)
that is used for closing the magnetic circuit, one can state that

j;Hdl=H0 I, +HsS =0 .1

Under the assumption that leakage flux is neglected in such a circuit the following
relation is fulfilled
Ss
M

and since: Hs = Bs/utl as a result, on the basis of (4.1) and (4.2) one can state
that:

hy = Bo I S5

H, 5S, My (4.3)

In the above formulae:

- Hy, By, Ly, Sy - are: magnetic field strength and induction in the magnet
and, consecutively, the length and internal cross section of the permanent
magnet

- Hj, Bs. 0, Ss - are: magnetic field strength and induction in the air gap
and consecutively, the length and cross section of the air gap
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- U, o - is magnetic permeability, relative one and that of the air

- Ay - denotes, in accordance with (4.3) the unit magnetic conductance of
the magnetic circuit also known as the inclination of the straight line of
magnet load.

The inclination of the straight with the directional coefficient 4,, corresponds to the
conductance of the air gap in a simple magnetic circuit and the cross section be-
tween the straight line and characteristics of the magnet determines the operating
point Hy,B,, of the permanent magnet in a given magnetic circuit. Concurrently, the
product of Hy,B, determines the unitary energy of the magnet (per unit of volume)
at a given operating point Hy,B,. For a certain inclination of the straight line 4, the
rectangle with the sides marked as Hy,B, has the largest area for a given character-
istic of operation and this specific operating point determines the maximum operat-
ing energy (H B),,,. for the magnetic material from which the magnet is formed. A
given material is optimal in terms of magnetic properties when it has concurrently a
large value of induction of the magnetic remnant B, and intensity of the coercion of
the magnetic field I-H/, as well as the large value of the maximum operating
energy (H B),...- An ideal would involve a magnet with a nearly rectangular mag-
netization loop for large values of B, and I-H,| since it ensures a large and nearly
constant induction under a magnet with a wide range of loads. As a result of the
wide application of rare earth elements in magnets, they are able to come closer to
this specific requirements to a much larger degree (Fig 4.2).

LB [T]
1.1
1.0

40°C
80°C
120°C
150°C

H [A/m]
-1400 -1000 -600 -350 .

Fig. 4.2 A family of magnetizing curves of a rare earth permanent magnet, for different
temperature values of operation

As one can conclude from z Fig. 4.2, the increase of temperature has a consider-
able effect on the magnetization characteristics of up-to-date permanent magnets
based on rare earth elements. There is a certain, small reduction of the value of the
remnant induction B, and very large decrease of the absolute value of I-H,| that is
the intensity of the magnetic coercion. Too high an ambience temperature of a
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magnet results in the deterioration of the range of adequate conditions for the mag-
net to operate. This comes as a consequence of the fact that following the change of
[-H | the inclination of 4, i.e. the characteristic of magnet loading is limited, which
means that the admissible air gap in the magnetic circuit is considerably smaller.
The fundamental parameters of major families of permanent magnets, i.e. ferrite
magnets, alloy based ones with aluminum, nickel and cobalt (AINiCo) and two ma-
jor groups of magnets with rare earth elements, i.e. ones with samarium (Sr) and
neodymium (Nd), are presented in Tables 4.1 and 4.2.

Table 4.1 Basic magnetic properties of the main PM materials

Family of a B -H, (HB),,,
PM materials [T] [kA/m] [kJ/m’]
Ferrites 0.4 250 30
Al Ni Co 1.1 150 80
Sm Co 1.1 750 200
Nd Fe B 1.2 850 300
Table 4.2 Basic temperature parameters of the main PM materials
Family of a Maximum op- Currie’s K, K,
PM materials | erating tempera- point [°C] [%/°K] [%/°K]
ture [°C]
Ferrites 300 440 -0.2 0.4
Al Ni Co 500 820 -0.03 0.0
Sm Co 300 750 -0.05 -0.25
Nd Fe B 150 300 -0.15 -0.6

The tables contain mean and approximated values of parameters taken from
various references in a manner that does not reflect any particular magnetic mate-
rial available in the market. One can note that the details of the materials summa-
rized in the tables are offered commercially in various alloy combination, as
composites or sinters, as it is the case for ferrites. The particular materials de-
scribed in manufacturers’ catalogues display various properties despite belonging
to a single family. From the data in Tables 4.1 and 4.2 one can conclude that neo-
dymium magnets are suitable for operation with lower operating temperatures
while the ones with samarium display much better properties in higher tempera-
ture ranges. There are couple of methods of modeling on the macroscopic scale of
PMs applied in electromechanical devices. We mean here simplified modeling,
such that makes it possible to present the operation of electromechanical transduc-
ers and enable their modeling and simulation of operation in drive systems. One of
the methods involves the replacement of the magnet with a compact turn with zero
resistance and an adequately adapted self-inductance and circulating current iy in
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this turn. The reverse effect of the armature on the magnet occurs as a result of the
armature current i, via the mutual inductance M. The product M iy corresponds to
the magnetic flux ¥y, by means of which the permanent magnet affects the arma-
ture circuit. Another quite simple way involves the presentation of permanent
magnet flux in the mathematical model in the form

V. = Mi

ey “4)

I =igpo—i,M/Lg

The effect of the armature is modeled using the term —i,M/L;, which reduces the
conventional magnetizing current ip originating from the permanent magnet. The
simplest way of modeling the current originating from PM coupled with a given
circuit is the adoption of its value ¥, as a constant. This involves disregarding
armature currents during the operation of a machine for a small air gap in the
magnetic circuit. It also corresponds to the operation of the magnet in the initial
section of magnetization characteristic of a magnet produced from alloys of rare
earth elements (Fig. 4.2). None of the presented here PM modeling methods ac-
counts for the magnetization characteristics under the effect of the temperature
rise. In order to present the discussed PM modeling methods, below is found an
example of a servomechanism with a movable coil swinging above the magnet.

Example 4.1 Pendulum coil over PM.
A simplified model of the electromechanical system in which a pendulum coil
moves in the field of a immobile PM is presented in Fig. 4.3.

Ig Ly
12 |

|

Fig. 4.3 Model of a pendulum coil over PM
The kinetic energy of the system is:

Lo, 1. . R N
T =5Lfl?- +5Lu13 +Mpiiy +Em(x§ + yg) 4.5)
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while the potential energy:
U =mgy,

This system has three degrees of freedom and after the introduction of generalized
coordinates:

q = (Qf 9Qa s 19)
] . ) . (4.6)
=0 =0,
With J = ml?, Lagrange’s function for this system takes the form
L=T-U=2r2+ 02 vm i, +L1r5* -
- - 2 For 2 a‘a af“a’ f 2 (47)
—mg(H —lcos?)
Assuming in a simplified form that
M, =M cos 4.8)

it is possible to determine the equations of motion for this system as Lagrange’s
equation:

d| oL oL
1° 9=0r —|=—|-5—="Ryiy (4.9)
/ dt(alfj g,
d|( oL oL
20 _ Sl = 2= R 4.10
q9=0, dt(aiaj 20, ' (4.10)
30 4= i(a_L,J_a_L?D?} @.11)
dr\0¥) 9V

After adequate transformations and ordering of elements for the two equations of
motion regarding the electrical variables, we obtain:

L, M cos i'.f _|¢r —Ryiy (4.12)
M cos & L J eq ~ Ri,

a a

e, = i,M sin ¥

, (4.13)

After the transformation to the normal form, the system (4.12) in the matrix nota-

tion is:
i _ 1 L, Mcost[e, —Ri, G
i) L;L,—M?cos’®|Mcost?  Lp | e, —R,
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The maximum value of the magnetic flux coupled with the coil is:

¥, =Mi, 4.15)

Concurrently, the equation for the mechanical motion of the pendulum for variable

9, takes the form
JO=—i, ¥, sin - mglsin - DV (4.16)

where the first right hand side term denotes electromechanical torque braking the
motion of the pendulum:

T, =i, ¥, sin® 4.17)

The mathematical model presented in (4.14), (4.16) is applicable with regard to
the first, least simplified way of modeling PMs. A more simplified magnet model
involves disregarding of the modeling of the magnet by means of a separate dif-
ferential equation and the presentation of the effect of the armature in the form re-
sulting from (4.4). In this case, Lagrange’s equation takes the form:

L= l(La —M?*cos* B/ L, )13 + M cosBi,i o +
2

| (4.18)
+§Jz92 —mg(H —lcos?)
This leads to two equations of motion for variables g = (Q,, 9) in the form:
(Lu ~2M?*cos® B/ L, )z = Mdsin i ;o —4i,M | L, cos®) — R, i,
4.19)

JO=-Mi, (i sim}‘+LMia sin 2¢) — mglsin ¥ — D2}

a

The final and most simplified model which disregards the effect of the armature is
gained for iy= iy, Myip = Pp,. In this case:

L,i, =¥, sin 9- R,i,
; . (4.20)
JO=-Mi, ¥, sin 0—mglsin - D
The operation of the models for the parameters of the system with the values of
L, =105[H] L,=001[H] M =0.08[H] R,=03[Q]
m=0.05[kg] i;o=50[A] ¥, =0.4wp] (4.21)
D=10"7[N/s]  1=0.15[m] J=0,022[Nms?]
is presented in a series of figures (Figs. 4.4 — 4.7), which illustrate the motion of

this system for the initial position of the pendulum %, = 36°.
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Fig. 4.4 Swinging motion of the pendulum coil, for $, = 36°, computed by the model
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d) sway angle 3 e) electromagnetic torque 7,
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tions: a) full model (4.14 — 4.16) b) armature reaction model (4.4) c) constant ‘¥, model
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Fig. 4.7 (continued)

On the basis of the results presented in Fig. 4.5 and Fig. 4.6 one can conclude
that the differences in terms of the curves for the variables characterizing the pen-
dulum motion gained for various versions of the PM model simplifications are in-
considerable and the magnet model for ¥, = const is acceptable for the modeling
of motion parameters of the drive.
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4.3 Mathematical Model of BLDC Machine with Permanent
Magnets

The presentation will focus on the mathematical models of a three-phase machine
with typical engineering, i.e. one with cylindrical structure with armature wind-
ings in the stator and permanent magnet in the rotor. Quite self-evidently, there is
a wide variety of BLDC (brushless direct current) machines, both in terms of the
number of phase windings as for instance ones based on disk structure, where the
major field has an axial direction [10,36]. However, a cylindrical, three-phase ma-
chine forms the basic engineering solution and occurs as a small, medium and
large power device. A simplified cross-section of such a machine for the number
of pole pairs p = 1 is presented in Fig. 4.8.

Fig. 4.8 Cross-section and schematic view of a BLDC motor, forp = 1

The basic simplifying assumptions applied during the development of a mathe-
matical model include:

- complete symmetry of the machine’s construction,

- disregarding of factors affecting demagnetization of permanent magnets
during the operation (effects of armature, temperature increase)

- disregarding high order MMF harmonics of armature windings.

The remaining, more detailed assumptions associated with the development of the
mathematical model will be presented during the course of its derivation. For such
an electromechanical transducer and lack of elements serving for the accumulation
of potential energy, the Lagrange’s function is equal to kinetic co-energy:
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1 . 1 . 1 .
L=T= ELII((p)llz + ELzz (9)i3 + EL33 ()i5 +
+ My (@)iiy + M5 (@)iyis + M 3 (@)inis + (4.22)

. . o1
+ ¥, (@), + Y5, (@i + W5, ()i + Ejarz
which can also take the form of a matrix notation:
1 T . T . 1 12
L=ElaLa(¢)la +‘I’af (i, +EJ0, 4.23)

where:

Li(p) M(9) Mz(9)
L, (@)=|M,(¢p) Ly(@) My(p) (4.24)
My (@) My(p) Li(@)

- matrix of armature inductance

Y, (@)
V(@) =¥y (@)
Y, (@)

- vector of the coupling between permanent magnet flux and armature windings,
. . . T
i, =l i, i (4.25)

- vector of armature current.

The particular components of the inductance matrix of the armature windings
account for the variable reluctance of the rotor and dissipation flux of the armature
windings and for the purposes of simplification can be presented as follows:

Ly (@)=L, =M cos2gp
Ly(9p)=L,—M cos(Qp+a) (4.26)
Ly (@)=L, —M cos(2p—a)

1
M, (p) :M21((P):_§L —-McosQp—a)

m

1

m

1
M3 (@) = M3, (@) =_EL — M cos2¢

m
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sin @
Y (@)=Y, sin(p—a) (4.28)
sin(¢ + a)

where: a =2x/3.
The angle ¢ accounts for the number of pole pairs in the machine

¢=pb, (4.29)

while the self-inductance of the armature windings is assumed in the form which
identifies the leakage inductance:

L,=L;+L, (4.30)

After accounting for these remarks, the inductance of the armature windings
(4.24) can be restated in the following form:

1 1 -
L,(@=L,| 1 |+L,|-
4.31)
cos2¢ cos(2p—a) cosQp+a)
-M | cosQp—a) cos2¢ cos2¢
cos(RQp+a) cos2¢ cos(2p—a)

The equation of the mechanical motion of the machine can be derived from La-
grange’s equation for a variable denoting rotation angle 6,

.555_55:—E—DQ (432
or:
JQ,=T,-T,-DQ, (4.33)
where:
T, = % - %ig(%La((p)}a il %\Pﬂf (@) (4.34)
@ =po,

The expression in (4.34) defines the electromagnetic torque of the machine and
involves two terms. The first of them denotes the reluctance torque of the ma-
chine, which comes as a consequence of the reactions of armature current with the
salient poles of the rotor with magnets:
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sin 2¢ sin2p—a) sin(2p+a)

T, = pM i’ |sin2p—a)  sin2g sin2¢ i (4.35)

a

sin(2p +a) sin 2¢ sin(2¢p —a)

Concurrently, the other term of the expression (4.34) denotes the principal torque
of the machine resulting from the interaction between armature currents with per-
manent magnets’ excitation flux.

cos@
T, =i, p¥;|cos(p—a) (3.36)
cos(p+a)

In addition, BLDC machines have another component of the torque, i.e. cogging
torque beside the reluctance related one (4.35). It is present as a result of the reac-
tion of the principal flux with the armature teeth. In the presented model (4.34) it
is, however, not encountered since the harmonics associated with the stator slots
are disregarded. This omission is admissible since the designers throughout their
engineering efforts [3,8,9,18,21,27,31,35], tend to effectively aim at the minimiza-
tion of this component of the torque.

4.3.1 Transformed Model Type d-q

The structure of the inductance matrix of the armature (4.31) suggests the applica-
tion of the orthogonal transformation, similar as in the case concerning a three-
phase induction machine. In this case we will apply transformation T, (3.34) for

w, = 0.
Thus,
1 1 1
V2 V2 V2
T, = g cosp cos(p+a) cos(p—a) 4.37)

—sing —sin(¢p+a) —sin(p—a)

. . dT, .
Tra = ¢_ra = perASTm
o9
The transformation of equations for the electric circuits of the armature will be
conducted in the general form derived from of Lagrange’s equations for electric

variables:

daL AL

= =U —Ri 4.38
dioi, 9Q, ¢ el (4.38)

a

which in the consideration of

=0 offers the following matrix equation:

a
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d d
—(L i J+—Y . =U, —R i 4.39
dt ( a (¢)lu ) dt af ((0) a ala ( )
and, subsequently,
La((p)—dl“ +¢—8L“(¢)ia +gb‘I’fC((p) =U,-R,i, (4.40)
dt @

By multiplication of the above by T,, and by application of the orthogonality con-
dition of the transformation matrix (4.37) we can note that:

TraLu (¢)TrTu Tra dla + ¢Tru aLa @) T}Zz Traia +
| Dy . i
L, (4.41)
+ (D‘I’f Trac(¢) = TraUa - Traia
—_——  ——
U; i;

di
The expression T,, la
dt

is transformed in the following manner:

ra dlu = i(Tmiu )_ iTm iu = iiz - A3iz (4.42)
dt dt dt dt
where Aj is a skew-symmetric matrix in the form:
0 0 O
A;=(0 0 1 (4.43)
0 -1 0

Following the transformation, the matrix equation (4.41) takes the form:

L i,
dt

+ L, — LA )i+ ¢%,C" = U, - R i (4.44)

The components of the equation (4.44) are transformed as follows:

0 0

i, =T,i, =i, U, =T,U, =|u, (4.45)

la Ug
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L

oS
L'=T,L, (T, = Ly +3L, -
Ly +3L,
> 2 (4.46)
0 Ly,
- 3M, = L,
_%Ms Ld
where:
B 3 B 3 w
Lq—LerE(Lm—MS) Ld—Lm,+E(Lm+MS) (4.47)
0 0 0
(L";, —L*A3)= 0 0 -L, (4.48)
0L 0

T
C*=TmC((p)=|:O \E o} (4.49)

As a result, the transformed equations for the armature circuits (4.44) take the

form:
{Lq ’ }{f"%p&{ ’ _Ld}[l:q}pér‘i’f > :[uq _Ral:q}
0 L], L, 0 iy 0 g = R,y

or, alternatively,

di .
Ly ==ty =Ry + PO, (Lyiy SWES 25
0 (4.50)
l . A .
dd_jzud -R,i; - pO,.Lji,

The determination of the particular expressions of the transformed voltages u,, u,
(4.45) is associated with the need to consider the problem of the commutation of
armature currents, which occurs in the function of the angle of the rotor position
6,. This issue will be discussed later. Concurrently, the quadratic form (4.34)
which, determines the electromagnetic torque can be transformed in the following
manner:

L oo 0
T,=pig 0 0 =3M, i+ p¥iiCt
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which offers the following result:

T, = piy(-3M iy +[3¥)) 4.51)

The expression (4.51) which determines the electromagnetic torque of the motor,
after the transformation, takes an uncomplicated form: the first term denoting the
reluctance torque is relative to the product of axial currents i, i, and is propor-
tional to inductance M, associated with the basic harmonic of the reluctance of the
air gap, while the other term denotes the principal torque proportional to the prod-
uct of the magnetic flux ¥, and current i, in the transverse axis of the machine.
There is a complete analogy here to the commutator DC machine.

4.3.2 Untransformed Model of BLDC Machine with Electronic
Commutation

The application of the model that does not involve the transformation of the coor-
dinate system has a number of advantages. For the case of a motor with electronic
commutation there is a possibility of a more realistic modeling of commutation
and, thus, gaining results more precisely, including the electric variables over
time. The commutation as well as the parameters of the switching transistors can
be taken into consideration more precisely in a manner that is required for a spe-
cific problem of drive control. Secondly, for the lack of transformation, the model-
ing of the machine and drive itself can account for a number of asymmetries and
differences in terms of parameters, which renders it possible to simulate the emer-
gency states of the drive. In an untransformed model we consider that the armature
windings are connected in a star (Fig. 4.9), which take the form of adequate con-
straint equations. Here we will apply the matrices of constraints W;. and W,
(3.78) and (3.79) for the respective currents and phase voltages of the motor

il 1 o],
. 4
12 = _1 _1 |:':|
1
ol o 1]
[ ———
W[r
e, i, =W,iy,; (4.52)
U
Uy | _ 1 -1 0 4
up | [0 -1 1]°°
- —Ju
Wur ’
ie. U;=W,U, (4.53)

As a result of the multiplication of the left-hand side of the equation in (4.40) by
the matrix of constraints W, and introducing the vector of armature currents
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i =i i] (4.54)
we obtain:
di oL .
ur a(¢)w a3 +¢Wur < ((D)Wirlalfa +
—— O odr o
Lis(9) —
L (o) (4.55)
+ w\Pf Wurc(¢) = WurUa - WurRaW[riaB
[ —— —_—
Ci5(p) Up Ry;
2L, —3M cosQp+r/3) L;+3M cose—rm/3)
Lis(p) = (4.56)
L, +3M cosLop—rm/3) 2L, +3M cos2g
L(f3 _ Y cos(Qp+7m/6) cos(Z? +7/6) @57)
"l cosQp+m/6) —sin2¢
cos(p+m/6)
Cis(p) = ﬁ[ v } (4.58)
—sin@
R,;=R 21 (4.59)
13 = Ha 1 2 .

After the transformation, the equations for the variables of the armature currents
i1, i3 (4.54) take the following form:

di : . .
L13((p)d—"tl3 +po, (L(f3la13 +¥,Cy5 ((0))= Uz —Rysigs (4.60)

At this point it is possible to pass on to the transformation of the quadratic form of
electromagnetic torque (4.34) by introduction of constraints (4.52) and (4.53) for
the connection of the armature windings into a star:

1 d d
Te=5513WT(aaL(¢>J Aars +igs Wi = 5g Ya@ (46D

Since W, =W, , the expression takes the form

oL oL
WL =4 (o)W, =W, —<(p)W, = pL? 4.62
ir 89 (¢) ir ur 89 (¢) 13(¢) ( )
and the other term is transformed into:
d .
i3 Wi — Y@= i73W,, ¥ ,C(p) =¥ ,i;;C3(9) (4.63)

r 80
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Hence,
T, = pi£13(%L(f3(¢)i013 + \Pfcn((/’)) (4.64)
After adequate algebraic operations we obtain:

T, =3pM,(i2 cos2p - 7/6) — i2 sin 20+ iiy cosp+ 7/6) )+ w6
+\/§p‘}’f(i1 cos(@+ 1 6) — iy sin ) .

The expression (4.65) presents electromagnetic torque of BLDC machine in the
natural coordinates ij, i3 without transformation, for the connection of three-phase
armature windings in a star.

4.3.3 Electronic Commutation of BLDC Motors

Commutation in a brushless DC machine involves the switching of the armature cur-
rent to particular phase windings depending on the position of the rotor angle 6,. In a
traditional brushless DC machine this occurred as a result of application of a me-
chanical commutator consisting of isolated copper segments with armature windings
connected to them. Over this commutator the graphite brushes would slip thus re-
ceiving the current while the position of the brushes was fixed in space. In such a
manner the commutation occurred naturally depending on the position of the rotor.
The electronic commutation is ensured by the converting bridge while the switching
of the current between the windings also occurs in the function of the rotor’s posi-
tion angle, and the signal responsible for the control of the switchings is obtained
from the position sensor measuring the angle of rotation 6,. As a principle, such sen-
sors are optical, including encoders and induction based ones, i.e., resolvers.

n Tﬁf A Tﬁf A
g Tir\ A Tﬁgz
° Tl T6

1
~—
=
~
[\9)
~
W

N

Control signals ——

Fig. 4.9 Basic scheme of a bipolar 3-phase BLDC motor supply
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In any case, however, the commutation angle needs to be set at an appropriate
value, which in a traditional DC machine was the role of the correct positioning of
the brushes in a commutator. Fig. 4.9 presents the standard transistor bridge ful-
filling the role of an electronic commutator for a motor with three phase windings
in the armature and bipolar supply of the windings connected in a star. The bipolar
supply means that in the armature windings the current flows in both directions,
i.e. the current flowing through windings is AC.

The angular scheme of the commutation of BLDC motor for a positive direc-
tion of rotor motion is presented in Fig. 4.10.
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Fig. 4.10 Typical scheme of current commutation in BLDC motor’s 3- phase armature in
relation to rotor position angle: a) conducting of individual phase windings b) conducting of
pairs of star-connected windings
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A typical commutation diagram for three-phase windings connected in a star
involves simultaneous conduction of two phase belts while the third one remains
in OFF state. The simultaneous conduction of all three belts occurs only in very
short commutation periods when we have to do with the transfer of the conduction
from the belt that is about to terminate the operation to another phase belt, which
in accordance with the commutation diagram takes the turn in starting commuta-
tion. A singular phase belt in a three-phase BLDC machine conducts over the pe-
riod corresponding to the angle of rotation, i.e. 2z/3 and subsequently takes a
break over the time corresponding to the angle of rotation, i.e. #/3. The subsequent
conduction period for the angle of rotation equal to 2z/3 occurs after this break;
however, for an opposite direction of the conduction followed by another break in
conduction. It is designed so that for a full turn of the rotor in a given phase wind-
ing the current that flows is AC with the breaks in the conduction corresponding to
the rotation of the rotor over /3 angle (Fig 4.10). In a complete BLDC machine
with three phase windings commutation occurs every n/3 angle of the rotation of
the machine’s rotor. The development of a commutation diagram makes it possi-
ble to determine supply voltages u,, u, (4.45) in the transformed model of the mo-
tor and perform detailed consideration of the commutation model (4.53) to be ap-
plied for supply of the motor in modeling without transformation. In both cases
the value of supply voltage is controlled as a principle by the pulse width modula-
tion (PWM). Due to the course of commutation of the current the particular phases
are switched on slightly in advance in relation to the theoretical commutation dia-
gram presented in Fig. 4.10. This advance angle denoted as J is usually in the
range from 25° - 35°. The presentation that follows is concerned with the determi-
nation of the supply voltages u,, u, for the transformed model of the motor.

4.3.3.1 Supply Voltages of BLDC Motor in Transformed Model u ,u,

The transformed voltages are calculated in accordance with the relation in (4.45)
and the commutation diagram presented in Fig. 4.10. The details of the relation are
as follows:

NG

u, = TUku (¢, cos(@— ) + ¢, cos(@p— 8 —a) + ¢, cos(p— 8 +a))
(4.66)

uy = —gUku (¢, sin(@— &) + ¢, sin(p— 6 —a) +c; sin(p— 5 +a))

where: U - supply voltage of the commutation bridge
1 for the positive conduction state
¢,¢5,¢3 =4 -1 for thereverse conductionstate .- conduction factors
0 for the OFF state
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t

k, =—L— - pulse width factor (PWM control)
Tpywm
@p=po, - electrical rotation angle (4.29)
t - conduction time within a pulse period Tpy,

P

t, =Tpyy —1, - recuperation time within a pulse period Tpyy

0 - advance angle
a=2xl3

Over the period of Tpyy, for the duration of the supply #, respective switches are
in the ON state and the voltage U; = U is fed to the windings. Concurrently,
when we have to do with control without energy recuperation, the closure of the
phase takes place and the current flows through the return diode and one of the
transistors of the bridge, and U, = 0. For the control with energy recuperation all
transistors are in the OFF state and the energy is returned to the source through
the two of the return diodes for the voltage of the motor U; = -U . This occurs in
the section of the control period #,. The above description of a single pulse with
the period of Tpy,, offers an explanation to the issue of calculation of output volt-
age of the commutation bridge (4.67) for both types of bridge control. The coef-
ficient k, makes it possible to calculate the mean values of the voltages uy, u,.
These means are determined on the basis of formulae in (4.66) while the func-
tions of the conduction factors ¢y, ¢;, ¢c; are determined according to commutation
scheme in Fig. 4.10:

32

= TUphku sin(5 +7/2)

32

Uy g = TUphku cos(d +7/2)

qav

4.67)

The examples of the waveforms for u,, u, are presented in Figs. 4.11 and 4.12. In
both cases we apply an angle depending PWM coefficient k, calculated from the
relation:

k, =k, (1 exp(~9/ T, 7)) (4.68)

where:

T, - is the angular constant of voltage increment.
The exponential character of voltage increase ug, u, offers the possibility of the
smooth motor start-up.

4.3.3.2 Modeling of Commutation in an Untransformed Model of BLDC

The modeling of commutation in an untransformed system for a three-phase wind-
ings of the armature can have a various degree of detail. In this chapter we will
present a method that is considerably simplified and, subsequently, apply it in
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Fig. 4.12 Voltages u, and u, as a function of rotation angle for J = 30°, 7, = 10°, u = 400
[V], kyy=1,Tu=1.8[s]

examples. It takes into consideration the fact that adequate supply voltage is con-
nected to the particular pairs of phase windings connected in a star, i.e. winding
no. 1-2, 2-3, 3-1 via a commutation bridge. During the commutation we will dis-
tinguish two states: first, when the commutation begins during the connection of
the source voltage to the windings, i.e. during the active part #, of the supply pulse
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T, and the other state, when the commutation begins during the passive part of the
pulse while the energy is returned from the windings to the source or during the
closure of the winding. In both these states it is possible to adequately model resis-
tances and voltages occurring in the particular electric circuits in the given state,
i.e. the resistances of the motor windings, electronic switches as well as the block-
ing resistance R, in the circuit of unsupplied phase winding. It will be illustrated
by appropriate examples.
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Fig. 4.13 Currents flow during commutation +i; — +i, for ¢ = #/ 3, and an active part £, of
the period 7,

We will consider the commutation occurring in the active part of the pulse 7,
which takes place for the angle of rotation ¢ = 7/ 3, Fig. 4.10, where we have to do
with the switching of the current from +i; to current +i, i.e. the termination of the
conduction in the positive direction in the winding in phase 1 and commencement
of the conduction in the positive direction by the winding in phase 2. During that
time in the remaining winding of phase 3 the current flows continuously in the
conventional negative direction. This situation is illustrated in Fig. 4.13. The target
circuit after the commutation supplied with voltage U is marked through transistors
T3, T6 (+i, -i3), while the decaying current in the winding of phase 1 is closed in
the circuit with the return diode D2 that is antiparallel to transistor T2, since the
transistor T1 has just been closed, and conducting transistor T6 connected to the
phase winding 3. In the state presented in the figure the potential of point a
amounts to 0, potential of point » is U and the potential of point ¢ is 0. Hence, the
voltages U, = -U, Uz, = -U. After the commutation, i.e. after the current +i; — 0
has decayed, the potential of the point a will change to %2 U and the respective volt-
ages will be Uy, = -Y2 U, Uz, = -U, while the resistance R = R,, which means that
it will assume the value of the blocking resistance. For a better illustration of the
considerations we will additionally examine the commutation for the angle of rota-
tion @ = z. In this case (see Fig. 4.14) the commutation involves a change +i,—+i3,
while —i; is continuing its flow. Decaying current +i, is closed across the return di-
ode D4 of the transistor T4 and transistor T2. The potentials of the particular points
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a,b,c associated with the beginning of the phase windings in this state amount to: 0,
0, U. As a consequence, line-to-line voltages supplying the windings are as follows:
Unp=0,Un="U.
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Fig. 4.14 Currents flow during commutation +i,—i3 for ¢ = 7z, and an active part ¢, of the
period T),

Concurrently, after the termination of the commutation the potential of the
point b changes to %2U, which results in the following values of line-to-line volt-
ages supplying the windings U,, = -%2U and Uj, = Y2U. The situation during the
commutation over the passive section of pulse 7, can be presented for two various
alternatives of control of the commutation bridge, i.e. for the case when during the
commutation the energy returns to the source and the opposite one when the en-
ergy is not returned to the voltage source U. At the beginning, we will consider the
first of the cases, when in the passive section of the pulse the energy is recuper-
ated. For this case we will consider commutation +i;—i,, (¢ = 7/3), i.e. the same
as in Fig. 4.13, but for the passive section of the PWM pulse. During this commu-
tation transistor T1 is just switched off terminating supply to the phase winding 1,
transistor 3 is not switched on because of the passive period and transistor T6 is
switched off to facilitate recuperation of energy. The decaying current flows
through diodes D2 and D5 against the voltage of the source. In this state the poten-
tials of points a,b,c are respectively equal to 0, %2U, U and consequently U, = -
WU, Uz, = Y2U. After the commutation is finished potentials of all three a,b,c
points are the same and equal to %2U and inter-phase voltages are Uy, = Uz, = 0.
This state is presented in Fig. 4.15.

Concurrently, for the other version of commutation without energy return to the
source during the passive part of the period 7, the transistor T3 is not switched
on, while transistor T6 is switched on - continuing conduction, and the decaying
current of windings 1 and 3 flows through T6 and D2 in a shorted circuit. At that
state the potentials of a,b,c points are respectively 0, ¥2U, 0 and inter-phase volt-
ages are Uy, = Uz, = -Y2U. After the commutation there is no current and like in
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Fig. 4.15 Currents flow during commutation +i;—+i, for ¢ = 7/ 3 in a passive part of the
period T),, with energy recovery
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Fig. 4.16 Currents flow during commutation +i;—+i, for ¢ = 7/ 3, in a passive part of the
period T, without energy recovery

the previous case all three clam potentials are equal to Y2U and in consequence U,
= Uz, = 0. An illustration of this is found in Fig. 4.16.

4.4 Characteristics of BLDC Machine Drives

The presentation in this chapter will be devoted to the computer simulations of
characteristics of brushless DC drives. Such issues include: start-up, braking and
drive reversal, control of rotational speed and tracking control of the drive as well
as its reaction to variable parameters of the supply and loading. Since these de-
tailed issues can be illustrated with the aid of adequately selected results of dy-
namic calculations, it is important to select motors for the demonstration of the
drive in operation beside the presentation of topics devoted to mathematical mod-
eling of the drive. For theses purposes the parameters of two BLDC motors are
presented: one with a smaller and the other with the higher power and different
supply voltages. A summary of the parameters is found in Table 4.3.
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Table 4.3 Rated data of two PMDC motors

Rated Parameters Symbol Unit Motor A | Motor B
Power P kW 0.95 6.6
Voltage U, v 120 400
Velocity of rotation n, rev/min 3100 2600
Armature current I, A 119 23.4
Torque T, Nm 3.0 25.0
Efficiency 7, % 90.4 92.6
Windings self-inductance L H 0.016 0.030
Mutual inductance M, H 0.0012 0.003
PM excitation flux ¥, Wb 0.22 1.0
Windings resistance R Q 0.25 0.50
Moment of inertia J, Nms® 0.018 0.15
Damping factor D Nms 0.0002 0.002
Pulse width Tons deg 2 2
Commut. advance angle 7] deg 35 30

4.4.1 Start-Up and Reversal of a Drive

4.4.1.1 Drive Start-Up

Start-up forms the basic issue associated with the motion of a drive and, hence, the
motor drive and the control system have to fulfill a number of prerequisites in order to
ensure the appropriate course of the process. These prerequisites include: possibility of
start-up from every initial position, start-up with a required load as well as limitation of
the start-up current to the values acceptable by the motor and the supply system. The
process of start-up of BLDC motor is further impeded as a result of occurrence of
parasitic torques, i.e. reluctance torque and cogging torque. The two effects are re-
duced during the process of motor design in a manner that they are not manifested too
strongly during the start-up. The limitation of the start-up current can be achieved in
two ways: by incremental increase of the voltage supplying the armature using PWM
method or as a result of controlling the start-up current by means of PWM method as
well, relative to the instantaneous value of the current. A smooth increase of the volt-
age during the start-up can be achieved in numerous manners. In simulation models
applied for the demonstration of the start-up curves it is achieved by exponential in-
crease of k, coefficient (4.68), i.e. the one denoting the active part of the pulse. The
figures that follow illustrate the start-up curves for a motor with higher power, i.e. mo-
tor marked B in Table 4.3 as well as for a smaller motor A under a rated load. The
comparison will involve the start-up curves for the d-q transformed model as well as
for the untransformed motor.
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Fig. 4.17 Starting of the B (6.6 [kW]) motor with a voltage regulation: a) armature phase
current b) 3-phase currents c¢) currents in the steady state. The results obtained from the un-
transformed model of BLDC
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Fig. 4.18 The same course as in Fig 4.17 for: a) electromagnetic torque b) reluctance torque
¢) rotational speed
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Fig. 4.19 Starting of the B (6.6 [kW]) motor. Results obtained by the transformed model of
BLDC: a) transformed i, i, currents, b) transformed back armature currents i,



4.4 Characteristics of BLDC Machine Drives 313

1204
1004

Te[Nm]

0 r
0.5 1 1.6

a) ﬂ!]

25001

20004

15007

v[rew/min]

10007

500

. 15
b) t[z]
Fig. 4.20 Starting of the B (6.6 [kW]) motor. Results obtained by the transformed model of

BLDC: a) electromagnetic torque b) rotor’s speed

The two figures that follow, i.e. Figs. 4.21 and 4.22 present the start-up of the
same motor, however, for the application of a current delimiter. The operating
principle of the device involve the division or multiplication of the pulse width
coefficient k, by a reduction coefficient red in the subsequent pulses (4.69) de-
pending on whether the value of the current in any of the phases exceeds or does
not reach the value of the imposed limitation /.
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Fig. 4.21 Starting of the B (6.6 [kW]) motor with a current delimiter set for 7, = 110 [A]: a)
single phase current b) 3-phase currents c) U-k, armature voltage
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Fig. 4.22 The same course as in Fig 4.21 but for: a) electromagnetic torque b) rotational
speed
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The illustrations that follow, i.e. Fig. 4.23 and Fig. 4.24 present the curves of
the start-up of the smaller motor (motor A, Table 4.3) gained as a result of apply-
ing untransformed and transformed models of the BLDC motor. As one can con-
clude, the two curves are very similar, in particular with regard to the mapping of
electromechanical variables. Considerable differences are noted in terms of the
current curves since in the transformed model the commutation is not as precisely
modeled. In conclusion, in terms of the quality of the modeling untransformed
model is a better one, while the basic advantage of the transformed model involves
the 10 to 20 times decreased cost of simulations. For these reasons the transformed
model of BLDC motor presents more advantages during simulations of large elec-
tromechanical systems in which a greater number of drives is present. Concur-
rently, the reduction of the duration of the calculations forms a considerable prem-
ise in favor of the execution of the simulations of the operation of the system.
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Fig. 4.23 Starting of the BLDC motor A (0.96 [kW]). The results of simulation by untrans-

formed model: a) armature currents b) shape of current curves c) electromagnetic torque d)
reluctance torque e) rotational speed
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Fig. 4.23 (continued)
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Fig. 4.24 Starting of the BLDC motor A (0.96 [kW]). The results of simulation by trans-
formed model: a) d-g currents b) armature currents c¢) shape of armature currents d) elec-
tromagnetic torque e) rotational speed
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Fig. 4.24 (continued)

4.4.1.2 Reversing DC Motor

Brushless DC machine, just as the commutator machine based one can serve very
well for operation in both directions of rotation. However, it is necessary that two
fundamental conditions are met: the system of the supply and control has to be
prepared for such circumstances and a particular construction of the cooling sys-
tem or an adequate air-flow across the machine has to be provided. A separate is-
sue is associated with the operation of the drive at small rotational speed and en-
suring that heat is carried away in such conditions, thus, that the temperature
inside the machine does not exceed the permitted limit. This may be associated
with an application of a machine with independently driven fans. In order to per-
form the start-up of a BLDC motor in the reverse direction, it is necessary to
change the sequence of the supply of the motor phases and reverse the value of the
delay angle d. A similar course of action is assumed for the case when one intends
to perform reversing of a motor during its operation. The switching on of the re-
verse direction of rotation in accordance with the preceding description first re-
sults in a period of deceleration, named counter-current braking. After that, when
the drive reaches zero speed of rotation the drive starts the operation in the reverse
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direction. Such a manner adopted for motor reversal generally requires the limita-
tion of the armature current due to the conditions of the supply system and the
admissible motor current. One can note at this point that exceeding by the start-up
current the maximum admissible value can cause an irreversible deterioration of
the machine’s field of excitation originating from permanent magnets. The results
of the simulation studies present the curves of the reversing of the BLDC drive
without the introduction of a limitation on the current (Fig. 4.25) as well as during
a considerable current limitation (Fig 4.26).

e
Te[Nm] g:
400
420

Fig. 4.25 Reversing of PMDC motor (A) without current limitation: a) single phase current
b) 3-phase armature currents c) electromagnetic torque d) reluctance component of the
torque e) rotational speed
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Fig. 4.25 (continued)
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Fig. 4.26 Reversing of PMDC motor (A) with current delimiter set on 30 [A]: a) single
phase current b) 3-phase armature currents c¢) electromagnetic torque d) reluctance compo-
nent of the torque e) angular speed
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Fig. 4.26 (continued)

From the comparison of the curves presented in Figs. 4.25 and 4.26 it stems
that the current delimiter during the reversing of the motor operates effectively;
but the reversing of the motor lasts two times longer than in the one without a de-
limiter if it is considered until the time of the transfer of the speed across zero.
However, complete control over the current is present, which ensures safety of
permanent magnets and the electronic commutation system supplying the drive.
Besides, one can observe that the effective operation of the delimiter, designed as
the a fraction multiplier red of the PWM coefficient, considerably depends on its
value. It follows the algorithm:

>I, = k,(n+1)=k,(n)*red
i,<I, = k,(n+l)=k,(n)/red

r

(4.69)

For the curves presented in Fig. 4.26, the value of his factor is set at red = 0.3.
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4.4.2 Characteristics of BLDC Machine Drive

The term drive characteristics denotes the graphical representation of a set of
points representing the operation of a drive relative to the selected parameters
characterizing its operation. The parameter considered as the independent variable
is found on the X-axis, while the Y-axis denotes the values of the examined vari-
able considered as the output variable. Often the same figure contains a family of
the characteristics for which the particular curve differ in terms of another parame-
ter that is very important for the presentation of the operation of the drive, i.e. one
for whose course its value is constant. If on the X-axis we find a parameter that is
not time, then such a characteristic can be termed as the steady-state characteristic
(curve). This characteristic forms a set of points for which the dynamic trajectory
finds final steady state, if such a stationary state exists at all. The entire static
characteristic informs at which point of the operation the drive is currently found
after the termination of the dynamic process, i.e. for instance start-up, braking,
change of the parameters of the supply or loading for a given parameter on the X-
axis. One should note, however, that a change in the state of the operation of the
drive (dynamic trajectory) does not overlap with the static characteristic, since if
this were the case, the duration of the execution of the designed trajectory would
be infinitely long. One can say that the trajectory begins and ends at the static
characteristic; however, its curve is different than the one for the characteristic
since it occurs in a determined, finite and very often short time. The shorter the
time, the further the trajectory is from the static characteristic curve. Another type
of characteristic is the one in which X-axis contains time #. In such a case the
curve takes the form of a time history for a given variable and generally has a dif-
ferent waveform for other parameters of the drive operation. It is also relative to
the initial conditions from which the curve originated. If for such a curve there is a
steady state, the steady value of this state forms a component of an corresponding
static characteristic. The static characteristics can be derived in a number of ways.
For a ready drive we can use a method of measurements for appropriate possibili-
ties of variation of the parameters of the supply and load of the examined drive. If
we have a mathematical model of a drive available, static characteristics can be
derived by definition by conducting dynamic calculations and performing simula-
tions until the steady state is obtained. Such calculations have to be conducted
separately for each point that determines the characteristic. Concurrently, there is
a possibility of assuming adequately favorable initial conditions, whose dynamic
trajectory leads sufficiently fast to a steady state. Despite that, it is a cost and time-
consuming enterprise. Another effective method involves the substitution of hypo-
thetical steady states to the mathematical model in the form of differential equa-
tions of motion and converting the model into a system of algebraic equations.
This procedure has been followed for instance during the introduction of the
equivalent diagram of the induction motor in chapter 3.2.3. If we are capable of
effectively gaining such a reduction of the differential model to an algebraic
model, as a result we will obtain static characteristics of the drive in the form of
functional relations between the parameters and variables. However, one has to
bear in mind that not all of the obtained characteristics have to be available as a
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result of the termination of the dynamic curve or need not be available for arbi-
trary initial conditions, i.e. from any starting point. From that it stems that, as a
principle, the mathematical models of electromechanical systems are non-linear.
The static characteristics of the BLDC can be gained from transformed model
(4.50) by algebraization after substituting constant functions for its variables:

9, =Q, =const
di
=1,=const — —2 =0 (4.70)

i
4 dt

di
i,=1,=const — —4L=0
d =1a d
The transformed voltages u,, ,,, 44, that are present in this model are described by
relations (4.67) and account for the relation with commutation advance angle .
As a result of the substitutions of the fixed variables (4.70) in the mathematical
model in the form in (4.50,4.51) we obtain a system of three algebraic equations in

the form:
3
Mquv =Ra1q_pQr Ldld_ E\Pf

Mdav=Ra1d +pQqu1q (4.71)

p[\/g‘l’flq —3Msld1qj—T, -pQ.D=0

The non-linear system of algebraic equations (4.71) accounts for three variables of
the steady state of the drive (I, I, £2,), parameters of the supply u, 4, Uy 4 T€lative
to U, 0, parameters of the load 7, D and engineering parameters of the drive, such
as p, L, Ly, M, R,, ¥s. Such a static model makes it possible to determine the
characteristics for selected variables in the subject of the examination. Important
examples include mechanical characteristics Q,, 1, I, I, = f(T}), i.e. characteristics
in the function of the load torque for the remaining parameters with constant val-
ues, including parameters of the supply. The non-linear system of algebraic equa-
tions of the steady state (4.71), that are cubic in relation to variables (/,, 1, 2,),
can be solved effectively using numerical methods, whose applications are widely
found in a number of popular mathematical packages. In this case mathematical
package MAPLE V was applied in order to gain the further presented characteris-
tics. The voltages uy 4, Uy o Of the transformed model calculated in accordance
with (4.67) contain phase voltages U ,,, whose value for a typical supply of the
BLDC motor are assumed in the form

Uy =U/N3, 4.72)

which forms a simplification by assuming sinusoidal waveforms of the ij, i, i3
currents in the particular phase windings of the motor. The algebraic model of the
motor under of the supply of phase windings in accordance with (4.72) has made
it possible to determine the static characteristics in the both researched BLDC
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motors. For the 6.6 [kKW] motor the characteristics in the function of the commuta-
tion advance angle J are presented in Figs. 4.27 and 4.28. These are the respective
families of characteristics 1, I, I, = f(d) and Q,, n = f(), for four values of the
load torque T; = 15, 25, 35, 45 [Nm]. More detailed descriptions are found in the
captions under the figures.
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Fig. 4.27 Characteristics of currents of the 6.6 [kW] BLDC motor as a function of advance
angle J: a) I, transformed current for 7; = 45, 35, 25, 15 [Nm], (top —down) b) I, trans-

formed current for 7; = 15, 25, 35, 45 [Nm] (top —down) ¢) I, armature current for 7; = 45,
35, 25, 15 [Nm], (top —down)
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Fig. 4.28 Characteristics of speed and efficiency of the 6.6 [kW] BLDC motor as a function
of advance angle o: a) Q, speed [rev/min] for T} = 15, 25, 35, 45 [Nm], (top —down) b) effi-
ciency 5 for T; = 15, 25, 35, 45 [Nm], (top-down at 6 = 10°)
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From the presented curves stem a number of conclusions. I, transformed cur-
rent does not depend much on advance angle J, but mainly on load torque 7}, as it
decides on electromagnetic torque value at the steady state. According to (4.71), it
is equal to:

T, =T, +DpQ, (4.73)

The current I, is considerably relative to the advance angle ¢ since this corre-
sponds to a change in the position of the axis of the brushes in a classical DC ma-
chine with a mechanical commutator.

The commutation advance angle should be set in a manner that ensures that the
value of I, is close to zero, i.e. in the range of § = 25°...35° in the characteristic
presented in Fig. 4.27b. For this case the operation of the drive occurs at a mini-
mum armature current /, and maximum efficiency 7. The selection of higher val-
ues in this range makes it possible to ensure the operation of the drive for a higher
rotational speed Q, (Fig. 4.28a) at the expense of the deterioration of efficiency.

Another group of characteristics presented in Figs. 4.29 and 4.30 shows the
same variables as formerly but the results are presented is in the function of the
load torque T;. The other parameter in the figures that offers a distinction between
the particular waveforms is the advance angle 6 = 10°, 20°, 30°, 40°.
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Fig. 4.29 Characteristics of currents for the 6.6 [kW] motor in a function of load torque 77
a) I, transformed current for ¢ = 40°, 30°, 20°, 10° (top — down) b) I, transformed current
for 0 = 40°, 30°, 20°, 10° (top — down), ¢) I, armature current for & = 40°, 30°, 20°, 10° (top
—down, at 7; = 10 [Nm])
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Fig. 4.30 Characteristics of rotor’s speed and efficiency factor for the 6.6 [kW] motor in a
function of load torque 77: a) rotational speed for ¢ = 40°, 30°, 20°, 10° (top — down) b) effi-
ciency factor for 6 = 10°, 20°, 30°, 40° (top — down, at 7; = 10 [Nm])
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Fig. 4.31 Characteristics for the 0.95 [KW] motor, in a function of advance angle ¢: a) I, armature
current for 7; = 6.0, 4.5, 3.0, 2.5 [Nm] (top — down) b) rotational speed for 7; = 1.5, 3.0, 4.5, 6.0
[Nm] (top — down) c¢) efficiency factor for 7; = 1.5, 3.0, 4.5, 6.0 [Nm] (top — down, at 6 = 10°)

In the commentary of the information found in the sets of characteristics in Figs.
4.29 and 4.30 one can conclude that the family of the characteristics I, = {T}) gen-
erally presents the involvement of the reluctance torque in the total torque 7, of the
motor. The largest share of the reluctance torque 7, occurs for 6 = 10° and
this characteristic lies the lowest in its family. This observation is confirmed by
waveform I, = {T)), where for 6 = 10°, I, has negative and decreasing values, thus
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leading to adequately positive reluctance torque 7,,. The mechanical characteristics
for Q, = f(T) in Fig. 4.30a have a hyperbolic waveform which is particularly ob-
served for small loads. This comes as a consequence of the demagnetizing effect of
the current /, in this range, which assumes positive values there (Fig. 4.29b). The
efficiency of the motor (Fig. 4.30b) for 6 = 10°...40° and the load that is close to its
rated value 7; = 20...30 [Nm] is high and exceeds > 90%, and reaches a maxi-
mum of over 92%. As one can conclude from the shape of the characteristics the
curves are quite flat and even overloading of the motor two times does not result in
a considerable loss of drive efficiency. The characteristics derived in an analogical
manner for the smaller of the examined motors with the rated output of 0.95 [kW]
(motor A, Table 4.3) are presented in an abbreviated form in Figs. 4.31 and 4.32.
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Fig. 4.32 Characteristics for the 0.95 [kW] motor in a function of load torque 7}: a) I, arma-
ture current for ¢ = 45°, 35°, 25°, 15° (top — down, at 7; = 1 [Nm]) b) rotational speed for o

=45°, 35°, 25°, 15° (top — down) ¢) efficiency factor for o = 15°, 25°, 35°, 45° (top — down,
at T; = 1 [Nm])

The static characteristics for an untransformed model of the BLDC motor
(4.60), (4.65) for two-phase control cannot be gained simply in the algebraic form
since they are relative to the rotor’s angle. Obviously, the equations with the peri-
odically variable coefficients and solutions for the steady state in accordance with
Floquet’s theorem are referred to in literature with regard to mathematical models
of electric machines. However, for the case of such an abbreviated mathematical
model and low cost of calculations, the static characteristics can be derived as a
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set of stationary points in the dynamic state. This approach has another advantage,
namely, that it presents whether a given static state of a drive is possible to
achieve from a given initial state. Numerous examples indicate that this is not al-
ways the case, in particular with regard to BLDC motors with a higher share of the
reluctance torque or cogging torque. The static characteristics of a 6.6 [kW] motor
gained as a result of this method are presented in Figs. 4.33 and 4.34.

From the comparison of characteristics derived on the basis of the transformed
and untransformed models of the motor one can conclude that both of them look
very similar. The only relevant difference regards the waveform marking the cur-
rent of the armature I, = f(T)). In the transformed model (Fig. 3.29¢c) the values of
the current for a small load are considerably higher than the ones gained on the
basis of the untransformed model (Fig. 4.33a). This comes as a consequence of the
course of the term /; in the transformed model. For higher loads the relevance of
the differences starts to fade.
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Fig. 4.33 Steady-state characteristics for 6.6 [k€W] BLDC motor in a function of load
torque, computed by untransformed model: a) I, armature current for 6 = 40°, 30°, 20° (top
— down) b) Q, rotor velocity for = 40°, 30°, 20° (top — down)
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Fig. 4.34 Steady-state characteristics for 6.6 [kW] BLDC motor in a function of load
torque, computed by untransformed model: a) efficiency factor for & = 20°, 30°, 40° (top —
down) b) total losses for & = 40°, 30°, 20°, (top — down)



328 4 Brushless DC Motor Drives (BLDC)

At this occasion one can note that the two models applied in this case, i.e. the
transformed and the untransformed ones are not completely equivalent. By defini-
tion in the transformed model an assumption is made that each of the three phases
of the armature is independently supplied. In addition, the influence of commuta-
tion is disregarded. The untransformed model accounts for the constraints imposed
by two-phase supply and involves commutation between the star connected wind-
ings while the switchings occur during the rotation of the rotor in the function of
its position in accordance with the diagram in Fig. 4.10. The advantage of the
transformed model is that it is very simple and does not pose any problems during
calculations. This plays an important role in a complex regulation system in which
a single BLDC motor forms one of many components of the system as a drive
in one of the joints, for instance as an industrial manipulator. The static character-
istics comprise the sets of the possible steady states of the drive. However, the
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Fig. 4.35 Transients following stepwise change of advance angle J: 30°—40°, for 6.6 [kW]
motor, computed by untransformed model of BLDC: a) I, currents b) electromagnetic
torque c) rotor’s speed



4.4 Characteristics of BLDC Machine Drives 329

transfer between two points on the characteristics occurs as a result of transients
and, hence, transfer is not always possible since we have to do with a non-linear
dynamic system. For the purposes of illustration the figures that follow present the
transients for the dynamic states that occur during the change of the parameters in
a system with BLDC motor. Figs. 4.35 and 4.36 present transients resulting from a
abrupt change of the advance angle J: 30°—40° for an untransformed and trans-
formed models of the motor, respectively.
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Fig. 4.36 Similar transients as in Fig 4.35, but computed by transformed model: a) I, I,
currents b) I, armature currents c) electromagnetic torque d) rotor’s speed
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For the case of the results gained from untransformed model the increase of the
speed €, is smaller since in a two-phase motor supply the response of the drive to
the change in the advance angle ¢ is limited in comparison to the case of inde-
pendent supply of three phases, which is additionally confirmed by the static char-
acteristics of the drive presented earlier in this section. The two figures that fol-
low, i.e. Figs. 4.37 and 4. 38 present transients for the respective transformed and
untransformed model after a stepwise change in the advance angle J: 30°—20°.
This is a change that is the opposite of the one that was previously presented as it
results in the reduction of the rotor speed and braking in the transient period.
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Fig. 4.37 Transients following stepwise change of advance angle J: 30°—20°, for 6.6 [kW]
motor, computed by untransformed model of BLDC: a) I, currents b) electromagnetic
torque c) rotor’s velocity
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Fig. 4.38 Similar transients as in Fig. 4.37, but computed by transformed model: a) I, I,
transformed currents b) /, armature currents ¢) electromagnetic torque d) rotor’s speed

The comparison between the results of calculations for the untransformed and
transformed models indicates a greater decrease of the rotor’s speed (Fig. 4.38d
versus Fig. 4.37c) accompanied by an adequately higher increase of the speed
(Fig. 4.36d versus Fig. 4.35¢) for the case of the results gained using the trans-
formed model in which the windings are not connected. The same results are
gained on the basis of static characteristics, for instance from the comparison of
the results in Fig. 4.30a with the ones in Fig. 4.33b.
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4.4.3 Control of Rotational Speed in BLDC Motors

The basic technique applied for the control of the DC motors, including BLDC
motors, involves regulation by altering voltage U, which is currently realized with
the aid of the pulse width factor k, of PWM control. For the systems without en-
ergy recuperation the change of the factor k,, which realizes the complete change
of the rotor’s speed, occurs approximately in the range:

k, =0.02...1.0 (4.74)

while in the systems with energy recuperation in the range
k,=0.51...1.0 (4.75)

The difference for the both types of the control results from the fact that during the
return of the energy the motor over this period is fed with a voltage with negative
value -U, so that for k, = 0.5 the mean value of the supply voltage is equal to 0.
The static characteristics for the control of the motor resulting from the change of
the pulse width factor without the recuperation of the energy into the source are
presented in Figs. 4.39 and 4.40 for the adequate different values of the load
torque 7; and various values of the advance angle J.
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Fig. 4.39 Characteristics for 0.95 [kW] motor in a function of k, factor , without energy re-
cuperation, for 6 = 35°% a) I, transformed current for 7; = 6.0, 4.5, 3.0, 2.5 [Nm] (top —
down) b) I, transformed current for 7; = 1.5, 3.0, 4.5, 6.0 [Nm] (top — down) c) I, armature
current for 7; = 6.0, 4.5, 3.0, 2.5 [Nm] (top — down) d) rotational speed for 7; = 1.5, 3.0,
4.5, 6.0 [Nm] (top — down)



4.4 Characteristics of BLDC Machine Drives

333

3;33:
143
1351 2800
HIYREE v{revimin] fggg:
12,63
123 1000
115' 5]0_
T2 04 a8 0 ' 02 04 06 08 1
02 04 6 08 I
kuﬁ kulul
a) b)

Fig. 4.40 Characteristics for 0.95 [kW] motor in a function of k, factor, without energy re-
cuperation, for 7; = 3 [Nm], a) I, armature current for § = 15°, 45°, 35°, 25° (top — down, at
k, =1) b) rotational speed for ¢ = 45°, 35°, 25°, 15° (top — down)

Similar characteristics are displayed for the control with energy recuperation;
however, the change of the pulse width factor is limited in accordance with (4.75).
Selected characteristics for this type of control are presented in Fig. 4.41.
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Fig. 4.41 Characteristics for 0.95 [kW] motor in a function of k, factor, with energy recu-
peration: a) I, armature current for d = 35° T; = 6.0, 4.5, 3.0, 2.5 [Nm] (top — down) b) ro-
tational speed for 6 = 35°, T; = 1.5, 3.0, 4.5, 6.0 [Nm] (top — down) c) I, armature current
for 7; = 3.0 [Nm], 0 = 15°, 45°, 35°, 25°, (top — down, at k, = 1) d) rotational velocity for
T, =3 [Nm], 0 = 45°, 35°,25°, 15° (top — down)
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The two figures that follow present transient state, which occurs after decreas-
ing pulse width factor from k, = 1 to k, = 0.75, change that is equivalent to the re-
duction of the supply to the half of the source voltage value.
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Fig. 4.42 Transients following stepwise change of k, factor: k,: 1 — 0.75, for 6.6 [kW] motor by
use of the untransformed model: a) i, armature current b) electromagnetic torque c) rotational speed
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Fig. 4.43 Similar transients as in Fig 4.42, but computed by use of the transformed model

of BLDC: a) i, current b) iy, i, currents, ¢) i, armature current, d) electromagnetic torque, €)
rotor speed
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The characteristics presented in the two figures (Figs. 4.42 and 4.43) are similar
with the only exception of the waveform for the armature currents. For the case of
the waveform resulting from the application of the transformed model in the tran-
sient state the armature current does not decrease during the braking of the drive
but shows an increase. This is opposite than in the case for transients gained on the
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basis of the untransformed model. This comes as a consequence of the sharp de-
crease of the current i, and increase of the current i, since in this manner the
transformed model realizes the stepwise changes of the motor load. Physically this
means a different type of motor braking for the independent supply of three phase
windings without constraints than it is the case in a three-phase system connected
in a star for the two-phase supply. As it was mentioned before, obtaining static
characteristics in an untransformed model is associated with the need of calculat-
ing a series of transients that finally gain a steady state. In this manner the charac-
teristics in Figs. 4.33 and 4.34 were drawn up in the function of the machine load.
The same method was followed in order to gain the characteristics presented be-
low in the function of commutation advancement ¢ for three different pulse width
factor values k, = 1, 0.9, 0.8. This was conducted in a system with energy recu-
peration so that the anticipated values of rotational speed are found in the range
that is in agreement with the formula below

Q, =Q,(2k, —1) (4.76)

that is Q,, 0.8 Q,, 0.6 Q,, respectively. The characteristics are presented in
Figs. 4.44 and 4.45.
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Fig. 4.44 Characteristics for 6.6 [kW] motor in a function of advance angle J, for k, = 1,
0.9, 0.8 and T, = T,;: a) I, armature current b) total energy losses AP c) efficiency factor n
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Fig. 4.45 Characteristics for 6.6 [kW] motor in a function of advance angle J, for k, = 1,
0.9, 0.8 and T; = T,;: a) rotational speed b) mechanical power P,,
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Fig. 4.46 Shapes of the steady-state i, current for: a) 6 = -15°b) d = 15°¢) 6 = 45% k, =1
andT;,=T,

The characteristics gained in this way are not smooth since they are formed on
the basis of a limited number of points for the variable J, i.e. about 30 points and,
in addition, the final steady state of the drive is difficult to determine in a compa-
rable way for each final point. The characteristics presented in Fig. 4.44, i.e. for
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armature current /,, total losses ZAP and, within a certain range, efficiency # indi-
cate that for a steady load these values are only slightly relative to factor k,. Con-
currently, the curves in Fig. 4.45, i.e. rotational speed Q, and mechanical power
P, are considerably dependent on the value of the voltage and, consequently, on
the value of factor k,, which directly affects the value of the voltage. As a result, it
is the value of the voltage supplying armature, here represented by pulse width
factor k,, that is the basic variable responsible for the control of BLDC drive,
while high energy efficiency is to be maintained and it is not considerably affected
during such control procedure. In addition, Fig. 4.46 presents waveforms of arma-
ture current i, for various values of the advance angle 4.

4.5 Control of BLDC Motor Drives

4.5.1 Control Using PID Regulator

As it is indicated by static characteristics and transients, BLDC motor drives are
controlled in a similar manner to other DC motors, i.e. by changing armature volt-
age. In a system with an electronic commutator this occurs as a result of the change
of the pulse width factor k,. This may happen at every particular pulse as a result of
modifying the signal controlling the series of the pulses. In most cases we have to
do with discreet control in which the value of the pulse width factor k, is relative to
the values of variables in the drive for the duration of the pulse that precedes. Con-
trol is relative to the angle of rotation 6,, just as presented earlier on during the
discussion of the operation of the electronic commutator. The other values that are
responsible for the control include rotational speed Q, and armature current i,.
Since for the purposes of the control it is necessary that the angle of rotation is fa-
miliar, one of the common solutions involves the application of an encoder for
determination of the position of the rotor and a differential system in order to indi-
rectly obtain speed Q,. It is sometimes the case that the armature current is applied

HSG BLDC
Ali 7N 7N Alf N Encoder

o
4
L
L

6,
’_' Control

Fig. 4.47 BLDC drive control system with encoder and PID regulator. HSG — high side
gates, LSG — low side gates
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for regulation as the value that is an auxiliary one and can be used for the purposes
of limiting control, just as presented in the example devoted to start-up of a motor.
Sometimes the control of BLDC drive does not apply position sensors and the nec-
essary rotor angle is obtained indirectly on the basis of measurements of voltages
and currents in armature windings by use of state observers. This method will be
presented in the further part of the current section. A typical control system for a
BLDC motor drive with a position sensor is presented in Fig. 4.47.

This section will be concerned with the presentation of examples of BLDC
drive control systems with speed stabilization for changing loads and stepwise
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Fig. 4.48 Stabilization of rotor speed by PID regulator (kP = 60; kI = 300; kD = 0.5) after
stepwise load torque change 7: 3 [Nm] — 9 [Nm] and consequently 9 [Nm] — 1 [Nm]: a)
armature currents b) rotor speed c) electromagnetic torque d) speed error [%]
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change of the input value for a constant motor load. Such a basic control task us-
ing PID regulator reveals the ability of BLDC motors to operate in the drive con-
trol based systems on changing the value of the supply voltage. Fig. 4.48 presents
results of simulations conducted using an untransformed model of the motor for
stabilizing rotational speed for a stepwise change of the load torque from the rated
value of T; = 3 [Nm] initially to 7; = 9 [Nm], i.e. three times overloading the mo-
tor followed by a stepwise change to reach the value of 7; = 1[Nm], which is one
third of the rated load.
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Fig. 4.49 Control voltage components and armature voltage during stabilization of speed
(see Fig 4.48): a) P component b) I component ¢) D component d) armature voltage e) k,
factor
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Fig. 4.50 Stabilization of rotor speed by PID regulator (see Fig 4.48) but for different con-
trol values: kP = 10; kI = 50; kD = 0.1: a) armature currents b) rotor speed c) speed error

Figs. 4.48 — 4.50 illustrate a correct stabilization of the rotor speed for very
dynamic changes of the load. For high gain values of PID regulator (Fig. 4.48)
the error of speed regulation is in the range legl = 0.4%, while for a lower
gains (Fig. 4.50) this error ranges around legl = 2 %, which denote values that
are approximately proportional to the gains applied for kI, kP, kD factors. Sta-
bility state is achieved after around 0.5 [s]. Beneficial conditions for regula-
tion are secured by a surplus of the regulation that involves input of the supply
voltage U = 300 [V] to a motor while the rated value of the voltage is U = 120
[V]. As one can see for such an intensive regulation the system of the supply,
commutator and motor itself have to be designed to withstand the maximum
value of the voltage (300 [V]). The following waveforms, i.e. the ones pre-
sented in Figs. 4.51 and 4.52 illustrate PID regulation for the stepwise change
of input speed Q, : 500 — 1500 [rev/min] for both untransformed and trans-
formed models of the motor.
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Fig. 4.51 PID regulation of rotor speed of the 6.6 [kW] motor, after stepwise change of re-
quired value of speed Q, : 500 — 1500 [rev/min]. Results for untransformed model and: k/
= 1000, kP = 500, kD = 10: a) stator currents b) electromagnetic torque c) rotor speed d)
armature voltage
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Fig. 4.52 PID regulation of rotor speed — transients like in Fig 4.51, but resulting from
transformed d,q model: a) d,g currents b) electromagnetic torque c) rotor speed d) armature
voltage

The waveforms in Figs. 4.51 and 4.52 indicate that the transients resulting from
the application of transformed and untransformed models are very similar. The
regulation is realized quickly and effectively despite large difference in terms of
the target speed. However, this happens under the assumption of accessibility
of the higher value of supply voltage U = 1.5U, and an additional condition that
the motor is capable of the generation of a surge torque of about 7, = 500 [Nm],
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Fig. 4.53 PID regulation of rotor speed of the 6.6 [kW] motor, with armature current limita-
tion to i, = 110 [A], after stepwise change of required value of speed Q,: 500 — 1500
[rev/min]. Results for untransformed model and k7= 1000, kP = 500, kD = 10: a) stator cur-
rents b) electromagnetic torque c) rotor speed d) armature voltage

i.e., 20 times the value of 7,. Such regulation properties can be gained as a result
of using a motor and supply system that is oversized in relation to the rated value
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during operation. For smaller requirements regarding the regulation speed it is
possible to apply a more economical supply system and introduce current delim-
iter in the motor design. The two figures that come below, i.e. Figs. 4.53 and 4.54
present the regulation of the motor for a stepwise change of the input speed and
simultaneous application of a current delimiter which wouldn’t allow armature
currents surges that exceed set multiple of the rated value, as in the previous ex-
amples. Fig. 4.53 presents the results for the stepwise increase of the input value
of the rotational speed while the curve in Fig. 4.54 presents the example involving
the reduction of the input value. For both cases the armature current is limited to
the value of i, = 110 [A], which is about five times the value of the rated current.
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Fig. 4.54 PID regulation of rotor speed of the 6.6 [kW] motor, with armature current limita-
tion to i, = 110 [A], after stepwise change of required value of speed Q,: 1500 — 500
[rev/min]. Results for untransformed model and k7= 1000, kP = 500, kD = 10: a) stator cur-
rents b) electromagnetic torque c) rotor speed d) armature voltage
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Fig. 4.54 (continued)

4.5.2 Control with a Given Speed Profile

BLDC motor drives are capable of performing complex control tasks including the
ones involving a given profile of drive speed and a given profile of angular posi-
tion of the rotor. This type of control is named tracking control since the role of
the control system is to follow the given trajectory of the motion while the role of
the drive regulator (for instance, PID type) is to correct the error of the performed
trajectory. This type of practical issues are well worth designing with the aid of
signal processors that have been developed specifically to collect signals from
measuring converters, perform numerical calculations associated with the control
and send command signals to be executed in order to influence the operation of an
electronic commutator.

Signal processors are equipped with internal components that serve for the pur-
poses of control for instance several generators of PWM signal thus executing the
tasks of the control of an converter. An example of a control system consisting of
a BLDC motor and a signal processor is presented in Fig. 4.55.

The results of a computer simulation of a sample control task for a BLDC
drive with a given speed profile with trapezoidal shape are presented in
Figs. 4.56 — 4.58. In this task the rotor speed increases from 0 to 2.500 [rev/min]
within 0.8 [s] and remains at this level for another 1.2 [s], after which within 1.0
[s] it decreases to 500 [rev/min]. The calculations for the case of this simulation
have been conducted with the aid of untransformed mathematical model of a
motor (Fig. 4.56) and with preserving d,q transformation (Fig. 5.57). Fig. 4.58
contains a comparison of the results of control for various values of gains of the
PID regulator.
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Fig. 4.55 Control system of a BLDC motor, without a rotor position gauge with a signal
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Fig. 4.56 Rotor speed control of the 6.6 [kW] PMDC motor, according to trapezoidal shape
of speed trajectory, under the nominal load of 7; = 25 [Nm]. PID regulator settings are: kI =
1000, kP = 500, kD = 10. Untransformed model employed: a) armature currents b) rotor
speed c) electromagnetic torque d) motor voltage e) speed error [rev/min]
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Fig. 4.57 The same control problem as in Fig 4.56, but transformed d,q model of BLDC is
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Fig. 4.58 Tracking error for trapezoidal speed control of the PMDC motor, like in Fig 4.56,
but for various PID regulator settings: a) kI = 100, kP = 50, kD = 1 b) kI = 400, kP = 200,
kD =2 c) kI = 1000, kP = 500, kD = 10
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On the basis of the results presented in Fig. 4.58 one can conclude that
the error of the drive control is roughly proportional to the values of regulator’s
gains.

4.5.3 Control for a Given Position Profile

The application of a signal processor as an electronic system that combines the
properties of a converter of measured quantities, a digital calculation processor
and a generator of control signals offers the possibility of performing complex is-
sues regarding a BLDC motor drive control with an alternative of eliminating a
position sensor [19,24,30,38,40]. Fig. 4.55 presents a system including a signal
processor that collects voltage signals from a EMF sampler and with the aid of
such a system that is capable of determining the periods during which the transis-
tors are in the ON state without direct measurement of the angle of rotation. The
question of the sensorless control forms a complex task since it requires the de-
termination of the position of the rotor even before start-up when the induced
EMF is too small in order to determine rotor position on its basis. Subsequently,
after the required threshold is exceeded, on the basis of the induced EMF in the
unsupplied phase of the armature winding at a desired instant the control signal for
the electronic commutator occurs. Fig. 4.59 presents EMF induced between
clamps 1,2 during the start-up of the motor.
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Fig. 4.59 EMF induced in armature winding of a BLDC motor shortly after start-up

For the operation of the motor with higher speed the determination of the in-
stant of the commutation on the basis of the measured currents and EMF in the
windings is easier since there is a considerable angular correlation between the
two values that are relative to the position of the rotor. Fig. 4.60 presents the cor-
relation between SEM and armature currents and Fig. 4.61 contains the correlation
of the voltages between the clamps and currents.



352 4 Brushless DC Motor Drives (BLDC)

400
EMF12V] 200

200

<400
a)

400
EMF23[V] 200

b)
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Fig. 4.61 Phase-to phase voltages and armature currents for BLDC operation with a normal
speed: a) uyy, iy b) us, iy

As it has already been mentioned, during the start-up the situation is more
complex and in order to determine the rotor position it is possible to apply the
pulse method [29,30]. The application of this method, however, requires that the
rotor has a variable reluctance during the rotation, i.e. a situation which involves
the salient pole rotor. Fig. 4.62 presents electromotive forces (EMFs) and currents
for the case of the start-up, for which the waveforms confirm the lack of simple
correlation between the curves.



4.5 Control of BLDC Motor Drives 353

160
EMF12[V] 1007
5].
i 20 200

1004
a) 1804

150
EMF23[v] 1003 Tde

A /@4@@{’] E@A@
' \
1004
1804

1804
EMFaiy] 1003 i

504 0 alfuh'[*! 00 mo [/
T
1004

b)

-150

<)
Fig. 4.62 EM Forces and currents during starting of BLDC motor: a) ey, i3 b) ey, i3 ¢) €31, i

An example of the control of the reversible BLDC drive including the regula-
tion of the position and the speed is presented in the following example.

Example 4.2 Fig. 4.63 presents a diagram of the drive of a large, massive pendu-
lum (swing) with a controlled amplitude and period of oscillations diverging from
a natural period, which anyhow is dependent on damping of the motion. The drive
applies a motor with a rated power of 0.95 [kW] (Table 4.3).
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Fig. 4.63 View of a massive pendulum driven by BLDC motor
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The data for the mechanical part of the drive are as follows:

m =8 [kg] - mass of the swing
[ =2.8[m] - length of the pendulum
J,=J,+J,=0018 [Nms?] - moment of inertia of the motor and

the fast side of the gear
J=0.1 [Nmsz] - moment of inertia of the slow side of

the gear and the pendulum relative to
the center of mass

D, =12 [Nms] - coefficient of pendulum damping
D, =0.00015 [Nms] - coefficient of motor damping
ko, =120[-] - transmission ratio

Application of Lagrange’s method requires the calculation the kinetic energy of
the mechanical part of the system:

. . . . 5 2
T=1J9"+17.67 +1ml*p* = %(pz(J +ml? )+%J,0,

The virtual work of the system is equal to:
8 = (=D,p)8p+ (T, - D,6,)56,

where: T, - denotes the electromagnetic torque of the motor.

In its mechanical part the system has a single degree of freedom. Since the cal-
culations are to be performed from the point of view of the motion of the pendu-
lum, in this case g; = ¢ should be adopted as generalized coordinate. The con-
straints resulting from the transmission take the form:

k,p=6, 4.77)

After the introduction of the constraints (4.77), Lagrange’s function for this sys-
tem takes the form:

L=T-U=1¢>(J +k2J, +mi®)-mgl(1-cos(¢) (4.78)
[N ——

Ty

where: - J |, = mlz(l +J /(mlz) + k:J, /(mlz)) - is the total moment of inertia re-
duced to the low speed side. Concurrently, the virtual work of the system is equal to:
A =(T,k, —(D,+D,k>)p)op= 0,00 (4.79)

After the application of the Lagrange’s equation (2.51) for the generalized coordi-
nate ¢ we obtain the equation of motion for the mechanical variable in the form:

L= v 4.80
diop g 20 (4:50)
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After substitutions in the Lagrange’s function (4.78), we have:
= (- melsing+T,k, ~(D, + DN, (481)

The assumed pulsation of the motion of the pendulum is equal to the pulsation of
the mathematical pendulum with moment of the inertia mP, which differs from J,

(4.78), hence:
Q=\/%El.9 [1/5s] (4.82)

The assumed motion of the pendulum (Example 4.2a) involves the maintenance of
the undamped fluctuations with the amplitude ¢, and pulsation Q (4.82).
Hence, the required trajectory is determined as follows:

@, =@y sin(Qt +7/2)
o =@ =@y Qcos(Qt+7/2) (4.83)
a =9 =0 = —(00522 sin(Qt +7/2)

The other type of the given motion (Example 4.2D) is the exponential start-up of
the pendulum from the initial angle ¢, to angle ¢, with the time constant of 7.

1

@, =| 0y + (@, —p)1—e ") |sin(Qt +7/2)

t
©, = ¢, =@e T in(Qr +7/2) +

a

. (4.84)

+Q @y + (@, —@)1—e ") |cos(Qt+7/2)

t 1

Pa= P, T _ 02 —g)(l—e ) [sin(Qr+7/2)+

T2

a

ay =@y =| —

t
29@.13 T cos(Qr+712)
The mathematical model of the system also in the mechanical part is nonlinear
and this is so to the larger degree the greater is amplitude of the motion of the
pendulum ¢, ¢,. This could be explained by the linearizing approximation of the
pendulum swing

sinp=¢ @<l (4.85)
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that is fulfilled with much increasing error for higher values of ¢. The regulation
of the drive follows as a result of the application of PIDD regulator, i.e. the one
that is responsible for the control of 4 types of error:

& = J.(¢’1(2) —@)drt
t

=P ~9 (4.86)

ga =a1(2) —da

The figures that follow, i.e. Figs. 4.64 to Fig 4.69 present the results of the regula-
tion for Example 4.2a, which denotes swinging of the pendulum with a given
amplitude. But the first of the figures (Fig. 4.64) shows the free motion of the
pendulum with damping and without drive regulation. This gives the basis for the
comparisons for examples analyzed further in which the regulation system and the
actuator, i.e. BLDC motor and the transmission are engaged to perform the motion
in accordance with the given trajectory.

-3 P A A
TV A

Fig. 4.64 Free swing of the pendulum without any intervention of a regulation system, for
@ = -50°, -70°, -80°

The figures that come below present the motion of the pendulum and regulation
curves resulting in the achievement of the designed trajectory (4.83).

Fig. 4.65 Curves for electromechanical variables for the PIDD controlled pendulum swing-
ing, ¢y = -70% a) i;(¢) current b) armature currents c) electromagnetic torque 7, = f(t) d)
electromagnetic torque 7, = f(p) e) k, factor f) U,/U motor voltage curve
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Fig. 4.65 (continued)
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phit[deg] 407 r
y 5 | 10 15 o
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=N A A A A A

Fig. 4.66 Mechanical variables’ curves for the PIDD controlled pendulum swinging, ¢y = -
70°: a) position angle ¢, b) angular velocity @, c) angular acceleration a, d) position error
&, €) speed error &,
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Fig. 4.67 Unstable character of pendulum regulation for ¢, = -80° a) position angle ¢; b)
angular velocity w; c¢) angular acceleration a; d ) position error ¢, €) speed error &, f) k,
factor
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0
[s]

Fig. 4.68 Comparison of position error ¢,, for: a) gy = -50°b) gy = -70° ¢) ¢y = -80°
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c)

Fig. 4.69 Comparison of speed error ¢, for: a) g = -50°b) ¢y = -70° c) ¢y = -80°

The set of figures that follows, i.e. Figs. 4.70 - 4.74 illustrates solutions to the
Example 4.2b, which presents start-up of a pendulum from an initial angle of ¢ =
10° to a swing with an amplitude of ¢,. The waveform illustrating the start-up in
accordance with (4.84) is exponentially regulated with the time constant of 7,.

M
I

l

|

a) -100-

Fig. 4.70 Electromechanical variables for exponential starting of the pendulum swing from
@o = -10° to ¢, = -70°, with PIDD regulator: a) armature currents b) electromagnetic torque
T, = flw) c) electromagnetic torque T, = f(t) d) k, factor e) U,/U motor voltage
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Fig. 4.70 (continued)



4.5 Control of BLDC Motor Drives 363

Ik

hi2[d 407 r
Sk PNwA
0 = ; 5 12 1
201

YRy |

-60

a)

204 a r
v2[rev/min] —‘ /}/ /
Ny

O IS /4L [/ B 5 | 18
S04 \ \ I[K
07 -
b)
10 r

sl VNI NI\ .\

9

[rew]

0.34
0.24

dv2[rad/s]
2 Pt

_r'-'félg:-_

e) -0.44

Fig. 4.71 Mechanical variables for the PIDD controlled pendulum swinging, like in Fig.

4.70: a) position angle ¢, b) angular velocity w,, ¢) angular acceleration a, d) position error
&, €) speed error g,
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Fig. 4.72 Unstable starting movement of the pendulum for ¢, = -80°: a) position angle ¢, b)
angular velocity , ) angular acceleration d) position error &, €) speed error &, f) k, factor
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Fig. 4.73 Starting swing of the pendulum. Comparison of position error &, for: a) ¢, = -50°

b) 9, = -70°¢) 9, = -80°



366 4 Brushless DC Motor Drives (BLDC)

0.2

dv2[rad/s]

-0.14

-0.24

0.3

dv2[radis] U2

e
b) W(

-0.31
-0.44

0.4+

dv2[rad/s 024

-0.44

c)

Fig. 4.74 Starting swing of the pendulum. Comparison of speed error ¢, for: a) ¢, = -50°
b) g, = -70°¢) o, = -80°

The presented results of computer simulation of the pendulum drive indicate
that such complex regulation issues regarding tracking control of drive reversal
can be realized with the aid of a PID regulator; however, considerable limitations
are imposed on it. The motion of the pendulum has to be limited to the degree
that only slightly exceeds the linear approximation of the model and an adequate
selection of the gains of the regulator must be accounted for. In addition, motion
needs to be sufficiently slow and in this case the period of the motion of the pen-
dulum is 7, > 3 [s]. For the angles lp, 1> 70° it is very difficult to obtain a stable
operation of the pendulum and the errors of the regulations are becoming greater.
However, we can completely confirm the applicability of BLDC motor for this
type of drive.

4.5.4 Formal Linearization of BLDC Motor Drive

The transformed model of the motor (4.50) for variables:
a=06,.9,.i,.i,|" (4.87)

can take the form:
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9'”:9'”
Qrz(Te_Tl_DQr)/J
= L SR+ pQ,(Lyiy — (4.88)
lq_L_ uq qlq p r( dld E rs) :
q
: 1
la :_(”d —Raiy _I’Qqu’q)
Ld

where:

. . 3 S
T, =pi,(=3M i, +\/;‘}’m)=lq(Ald +By)

- denotes electromagnetic torque of the motor. As a result of the introduction to
(4.88) of new variables : z; = 0,, z, = Q,, z3 = T,, z4 = iz, We receive:

Z.1=Zz
Z, =z, =T, — Dz, )/ J
'2 (3 ! 2) (4.89)
Z3:Vq
4=V,
where:
v, =1 (Ai; + By )+i, Ai
q q( d ‘P) qg“ttd (490)

vy =g = Ryiy = pQ,L,i, )I L,

On the basis of the relation (4.90) and by the use of (4.88) it is possible to deter-
mine the space for such linearized control by determination of the transformed
supply voltages u,, u,:

3 L,
u, =R,i, —pQ, (Lji; — =¥, ) +—————v, - Ai,v
¢ = Rolg = PR, (Laly \/; rs) Aid+B.*,(q aa) (4.91)
ud = Vde +Rdid + pQquiq
The application of this linearized model of BLDC drive (4.89) can be the follow-

ing: the control value v, constitutes the derivative of the given electromagnetic
torque T,

v, =T

e =T (4.92)

Concurrently, the control variable v, constitutes the derivative of the given tran-
sient of the motor’s current i,

v, =i, (4.93)

The design of a trajectory of the motion of the drive can easily apply these vari-
ables obviously in the admissible area of the control that is determined by voltages
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ug, U, Under the assumption that we aim to reduce reluctance torque of the motor
that interferes with transients and concurrently we need to perform a trajectory of
the motion, the course of action can be the following. Let us assume that approxi-
mately i; = 0 and simultaneously on the basis of (4.67) under standard control
conditions the relation u, = 0 is fulfilled, it is possible to establish the following
equality on the basis of (4.90):

Q Ly Q Ly T (4.94)
vy =— —i, =- .
d prqu prLdB‘yed
T,
since i, = «d_ when iy = 0 and the reluctance torque is missing.
v

In the subsequent step, on the basis of (4.91) it is possible to derive voltage u,:

L L,(r,Y
u, =quq+Q,B\P+B—q vq+ApQ,—q( edj

» L,\ By (4.95)

Md=0

Under the assumption of a planned trajectory in the form of initial curves for the
variables

P=[i; =0,v,=T,,.T,4.Q,] (4.96)

after the application of (4.95) we will obtain the function for desired control u,(?).
The control system developed in this manner has to ensure the execution of the
planned regulation of u,,(f) and additionally has an adjustment system with feed-
back, which has been designed to ensure the desired precision of the control de-
spite the occurrence of interference. Moreover, one can note that usually the value
of A is small in comparison to By, v, since it is related to the variable term M, of
inductance and that could be premises for disregarding the second term in the pa-
rentheses of the expression (4.95). Hence, in most simplified form, the examined
control can be reduced to:

4.97)

. Lq
u, = thq +Q, By +B—vq

v

A problem is associated with the fact that the calculated controls, for instance
(4.95) and (4.97) have to be performed in an untransformed system, which means
that there is a necessity to apply the inverse transformation to obtain a system of
phase voltages of the armature. The proposed transients for u, = 0 are relatively
easy in execution with the aid of pulse width factor &, (4.66). Another type of con-
trol designed to match the planned trajectory of motion without transformation of
the variables will be presented in the section that follows.
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4.5.5 Regulation of BLDC Motor with Inverse Dynamics

This type of regulation is effective with regard to a system in which case it is pos-
sible to plan the trajectory of motion, which involves the determination of the po-
sition, speed and acceleration of the mechanical variables. In the examined case of
a brushless DC motor this means that the desired transients 8,;,Q,,, Qrd =da,y
need to be familiar. Subscript d denotes the desired value, i.e. the one that marks
an ideal trajectory of motion. The actual trajectory 9,,52,,(2, =a, usually does
and will diverge from the desired one as a result of the effect of a number of fac-
tors which are disregarded when stating initial assumptions that tend to simplify
either the mathematical model of the drive, constant parameters of the supply or
other factors that get in the way of the process of regulation. The difference be-
tween the transients forms the error of the regulation. It is further applied for im-
proving the control signal in the additional component of the regulation system,
i.e. the corrector.

g = erd - er

Eq=Q,;, —Q, (4.98)

E,=0ay —a,

On the basis of the designed trajectory 8,4, Q,4, a,, and mathematical model it is
possible to derive the needed rotational torque for a drive

Ted = f(erd ’ Qrd ’ard) (499)
that is subsequently performed by the regulator of the torque which involves the
calculation and input of a signal, that has the value corresponding to the pulse

Electronic commutator
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ay | Computer Computer | &
—
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trajectory

Fig. 4.75 BLDC drive control by the inverse dynamics method
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width factor k,, into the system of the electronic commutator. The diagram of the
control system that applies the inverse dynamics method is presented in Fig. 4.75.

This method finds a common application in a number of drive systems whose
task involves tracking of a given trajectory. The regulation system determines the
basic control procedures on the basis of the computed required state while the PID
corrector offer an input of an additional signal thus minimizing the control error.
The benefits resulting from the application of this method include increase of the
regulation speed, considerable reduction of errors since the predominant part of
the control signal is given in advance and regardless of the error. Other advantages
of this type of regulation are associated with effective control in non-linear sys-
tems since in this case the limitations regarding PID regulation are no longer in
force. This method finds application in a number of industrial drives including the
control of manipulators and robots. Below is a demonstration of the operating
principle in practice with reference to an object from Example 4.2 — control of a
pendulum.

Example 4.3 This task involves the control of a large, massive pendulum to
match a given trajectory, which is considerably diverges from its natural motion.
The details are identical as in Example 4.2; besides, the illustration in Fig. 4.63
serves for the analysis. The control of the motion, which forms an example of
tracking control can be based on the method of inverse dynamics. The trajectories
are given by the functions (4.83), (4.84) for the variables of the pendulum in mo-
tion and not by the actual rotor movement. The determination of the desired torque
in accordance with (4.81) offers the following result:

Tk, =J @4 +mglsing, +(D, +D,k;)p,

(4.100)
¢d = ard /kg

On the basis of the comparison of the desired torque T,; and the torque actually
generated by the motor 7, it is possible to determine the regulation k,, which is
additionally adjusted by the signal from PID corrector in the function of the regu-
lation error. This is performed in accordance with the diagram presented in Fig.
4.75, however, the system is simulated. This practically means that the values 6,
Q,, a, as well as T, are determined on the basis of calculations on the mathematical
model and are not measured. Similarly as in the case of the Example 4.2 the ex-
amination will involve two versions of the desired trajectory: motion of the pendu-
lum with a constant amplitude — starting from the maximum deflection of the pen-
dulum and the other version in which the trajectory of the pendulum begins with
start-up from a small angle of deflection, equal to 10° and achieving maximum
displacement (80°, 100°) at a time constant of T =5 [s]. Fig. 4.76 presents the re-
sults of the task in the first version and the motion of the pendulum with an ampli-
tudes of 80° and the following Fig. 4.77 for an amplitude of 100°. Fig. 4.76a pre-
sents the given torque T, k, calculated in accordance with (4.100) for the planned
trajectory.
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Fig. 4.76 Electromechanical variables for inverse dynamics control of swinging massive
pendulum, for g, = -80°: a) pre-computed desired torque T4 k, b) position angle ¢, ¢) angu-
lar speed, d) angular acceleration e) position error f) speed error ¢, g) k, factor
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Fig. 4.77 Electromechanical variables for inverse dynamics control of swinging massive
pendulum, for g, = -100°: a) desired torque T, k, b) position angle ¢, c) angular speed d)
angular acceleration e) position error ¢, f) speed error &, g) motor voltage h) electromag-
netic torque 7, k,
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Fig. 4.77 (continued)

From the comparison of the transients in Fig. 4.65 with the ones in Fig. 4.76
(po = -70°) and the transients in Fig. 4.67 with the ones presented in Fig. 4.77
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(po = -80° and ¢, = -100°) leads to the conclusion that there is a fundamental dif-
ference between the two. One can clearly conclude that the latter group i.e. results
that are obtained by applying regulation with inverse dynamics, has considerable
advantages over the ones presented earlier. The differences involve the stabiliza-
tion of the transients to obtain large values of amplitudes of the swing of the pen-
dulum and also very relevant improvement of the accuracy of the regulation as a
result of applying inverse dynamics. The reduction of the positional error for sta-
bilized transients is over 5 times, not to mention the possibility of steady operation
for larger displacements. A set of figures that follows presents the results of the
regulation for the alternative version of the task, i.e. for the start-up of the pendu-
lum. Some samples of transients gained are presented in Fig. 4.79 for a rising am-
plitude of the motion to reach the values ¢, = 80° and ¢, = 100° in the stable state
of the pendulum.

BO0 S

ok NI
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phiz|deg Eg /
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ig 2 \j/ “;“m 12 \ 1 wi 1?

-60
b) -0
10 Fay A
wZ[rew/min] 101 /‘
{BNE ; T
101 t[s]

c)

Fig. 4.78 Staring course of the pendulum for ¢, = 80°, with ‘inverse dynamics’ control: a)
pre-computed desired torque 7,, b) position angle ¢,, c) angular speed d) angular accelera-
tion e) position error ¢, f) speed error ¢, g) k, factor
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Fig. 4.79 Comparison of starting results of the pendulum for ¢, = 80° versus ¢, = 100°,
with inverse dynamics control: a) desired torque 7,4 k, for ¢, = 80° b) desired torque T, k,
for ¢, = 100° ¢) position error ¢, for ¢, = 80° d) position error &, for g, = 100° e) speed er-
ror &, for ¢, = 80° f) speed error ¢, for ¢, = 100° g) electromagnetic torque for ¢, = 80° h)
electromagnetic torque for ¢, = 100°
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Fig. 4.79 (continued)

In the commentary of the results that were obtained one can compare the results
presented in Fig. 4.72 with the ones in Fig. 4.78 since both of them refer to the
same given trajectory, i.e. the start-up of a pendulum to reach ¢, = 80° for various
control procedures. For the case of PIDD regulation the start-up directly leads to
non-stability (Fig. 4.72) and the error of the angular position increases and even
exceeds already 10°. In contrast, in the case of the application of control using in-
verse dynamics (Fig. 4.78), the error ¢, during the start - up tends to stabilize and
reaches the range of +2° for a minimum value of the speed error. The results of the
subsequent Fig. 4.79 indicate that increasing the amplitude to ¢, = 100° offers the
possibility of effective regulation of the position in the tracking motion while the
position error stabilizes in the range of +5°. The examples presented here indicate
that the method is very effective despite the fact that it has been applied without
the precise selection of adequate regulation parameters.
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Chapter 5
Switched Reluctance Motor Drives

Abstract. The chapter is devoted to Switched Reluctance Motor (SRM) drives.
Firstly nonlinear magnetizing curves of SRM are presented and their importance
for motor’s operation is discussed. The model presented in the chapter takes into
account these nonlinear characteristics depending on phase current and rotor posi-
tion angle, but ignores mutual magnetization of phases. The magnetization curves
are regarded in a specific and original way as a product of nonlinear functions de-
pending on magnetic saturation and rotor position angle. This approach seems to
be useful as it enables one to analyze the influence of particular construction ele-
ments on characteristics of a motor. In consequence mutual inductances of phases
are disregarded, but their actual influence is presented for two typical SRMs, and
proved to be marginal. Several problems of SRM operation and control are pre-
sented based on mathematical models and results of computer simulations. Among
others they are: determining a pulse sequence for starting, direct start up with cur-
rent limitation, breaking and a comprehensive discussion of generator operation
conditions. The problem of regulation parameters fitting is also presented, consid-
ered from a point of view of gaining possibly high efficiency and low torque
ripple level. As far as control of SRM is concerned there is sliding mode control
discussed as well as current control and DTC with an aim to minimize torque pul-
sation at various states of operation. Besides, there is the problem of a control with
and without position/speed sensors presented and state observers application dis-
cussed that enable this kind of control.

5.1 Introduction

Switched reluctance motor (SRM) as an engineering solution to the design of the
electric motor in rotational motion realizes one of the earliest ideas of operation
principle for the electric motor, which originates from the first half of the 19™ cen-
tury. It employs the simple concept of an electromechanical system based on the
attraction of a ferromagnetic element by an electromagnet. In order to make this
idea viable for a rotational motor alternately energized coils are situated on Z; sta-
tor teeth, while Z, salient rotor teeth without windings are attracted by adequately
energized stator windings. The art in their design as well as the fundamental tech-
nological problem is associated with adequate energizing and de-energizing stator
windings in a proper phase sequence in order to ensure a smooth rotation of
the rotor whose teeth are attracted by generated magnetic field. Despite simple
operating principle the practical operation of SRM motor is associated with a need
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to apply fast and efficient electronic switches in order to realize the switching se-
quence. Besides, sensors of rotor position with sufficient precision are needed to
secure commutation of the currents in the windings. For these reasons the devel-
opment and wide application of the design started as late as 1980s when adequate
power electronic components were available to realize such switching functions
[24,32,33]. In order to ensure a starting torque and possibly smooth rotational mo-
tion it is necessary that rotor teeth are not aligned in respect to all corresponding
stator teeth concurrently. For a motor with a single pole pair p = 1, this simultane-
ous alignment occurs only for the opposite teeth, i.e. more generally at an angular
interval of z/p. For this reason the number of stator and rotor teeth is usually dif-
ferent. The most common solutions apply the following sequence of teeth num-
bers: Z/Z, = 6/4 and ZJ/Z, = 8/6. Self-evidently, other teeth number sequence is
encountered, e.g. Z/Z, = 4/2 for a two-phase motor, or Z/Z, = 10/8 for a motor
with five phase windings in the stator. The number of phases for motors with a
single pole pair is equal to m = Z/2. This results from the fact that the opposite
stator teeth are energized simultaneously with an equal current during the connec-
tion of the coils in series. But parallel connection of windings on opposite stator
teeth is also possible. As a result, two coils of opposite stator teeth form a single
phase winding of the motor. For higher pole pair numbers, the number of pairs of
stator and rotor teeth, whose axes overlap, is respectively higher and amounts to p
> 1 while the stator windings belonging to the same phase are energized in the
same sequence; hence, the number of phases is equal to m = Z/(2p). This affects
the respectively higher electromagnetic torque of the motor. Fig 5.1 presents a
cross-section of a Z/Z, = 6/4 SRM motor, i.e. a reluctance three-phase motor.

Fig. 5.1 Cross-section of a Z/Z, = 6/4 SRM motor, with the indication of rotor position an-
gle 0,, and switch angles a,, and o,
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The application of SRM motor has opened new boundaries in the practice of
the design of electric motor drives. In connection with this, it would be of value to
characterize its basic parameters and define the scope of its application. In terms
of the rated power SRM motors are manufactured in a range from very small units
with the output of several watts to enormous drives with the power of several hun-
dred kW and can even reach MW level. The comparison of the energy efficiency,
start-up torques and torque overloads between the typical SRM motors and the
corresponding induction motors leads to the conclusion that the SRMs offer more
advantages; however, the advantage of the SRM motor is not significant. A
comparative analysis of a SRM motor with a corresponding induction motor ac-
counting also for noise emission level is based on the example of [5]. One of the
characteristics of SRM motor includes the possibility of gaining high rotational
speeds, as high as 10,000 [rev/min] without special engineering changes in the
motor. At the same time, SMR motors whose special design makes them high-
speed can reach as high as 100,000 [rev/min]. One has to note that such machines
have a smooth cylindrical rotor while the effect of variable reluctance is obtained
as a result of the application of materials that vary in terms of magnetic permeabil-
ity along the circumference of the rotor. Another special feature of SRM motor in-
volves its mechanical characteristic 2, = f(T;) whose waveform is similar to the
series wound DC motors. This means that during an increased load this motor
considerably slows down it rotation and when the load is reduced it accelerates.
The negative characteristics of SRM motors include high torque ripple and higher
noise level in comparison to e.g. induction motors [5,8,16,17,38]. The counter-
measures include the proper magnetic circuit construction and application of ade-
quate control systems thus reducing torque pulses generated by the motor. As far
as the applications of SRM motors is concerned, they are similar to the uses of in-
duction motors and series wound DC motors. In particular, they find application in
traction drives and car drives [23,37] due to flexible mechanical characteristics,
large torque overload capability, simple construction and high level of reliability.
SRM motors can be successfully applied in servomotors and actuators. SRM ma-
chines can also play the role of generators; however, due to the passive role of the
rotor the magnetic excitation has to occur as a result of current passing through
stator windings, which is associated with specific requirements regarding control
and affects the efficiency of the machine as a generator. Bibliography devoted to
this problem is numerous [18,19,23] also in the context of the construction of
wind power stations [34,36] and this area is the subject in chapter 5.4.3. In terms
of the investment a SRM motor drive is cheaper in comparison to an induction
motor drive and so is converter as a result of the much more simplified construc-
tion of the stator winding, lack of rotor windings and less complicated system
needed to supply the machine. At present, the lower popularity of the motor and
smaller offer on the part of manufacturers result in the fact that SRM motors
have not yet been able to demonstrate all the advantages they have over induction
motors.
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5.2 Operating Principle and Supply Systems of SRM Motors

The most fundamental issue in the control of SRM motor drives is associated with
adequate sequential voltage feeding to and disconnecting from motor’s windings.
Fig. 5.2 presents the cross-section of a motor with Z/Z, = 8/6 teeth and angular
position a,, and a, of the rotor for which respective phase windings are supplied
and subsequently disconnected from an external source. An intuitive understand-
ing of the operating principle of such a motor suggests that the positive torque
(T, > 0) , i.e. one in accordance with direction of rotation of the rotor is encoun-
tered when the rotor transfers from the position of highest reluctance to the posi-
tion with smallest reluctance with respect to the teeth of the stator whose winding
is supplied. The characteristic positions of the rotor are denoted as unaligned posi-
tion and aligned position, the latter of which refers to the overlapping of the axis
of stator teeth and the one on rotor’s teeth. The winding of a given phase should
be supplied with a current of an adequate value in the range of this rotation angle,
i.e. 0oy < 0, < o This means that the supply should be switched on as defined by
angle a,, slightly before the unaligned position, while the supply is disconnected
(as described by angle a,4) slightly in advance in relation to the instant when a
tooth reaches an aligned position. The difference between the angle of the switch-
ing on of a power supply to the phase winding and the angle when it is discon-
nected is known as conduction angle, which is equal to:

a; :aon_aoﬁ’ 5.1

As one can conclude, the above mentioned advance of switching on and off of the
voltage for a specific phase of the motor results from the dynamic characteristics
of current increase in the phase winding following an instant the supply is
switched on and subsequent decay of the current after the supply is disconnected.
Moreover, it is relative to the rotor’s speed, inductance of the windings as well as
the control of converter switches. For small rotational speeds the current in the
winding increases relatively fast with regard to the entire conduction angle a,
while the value of the current is controlled as a result of using PWM method. In
contrast, for high rotational speeds the increase after switching on and decay of the
current after disconnecting the supply comes relatively slowly in the time period
which is determined by the conduction angle o, since this angular range of the ro-
tor motion is covered in a very short period of time. Additionally, relatively large
back EMF is induced in the windings and the increase of the current is enforced
only by the difference in voltage between the supply voltage u for a given phase
and the back EMF e,. As one can see, the control of the switch on angle a,, and
the conduction angle a, forms the basic method applied in the control and adapta-
tion of characteristics of SRM motor, beside the possibility of controlling supply
voltage usually achieved with the aid of PWM method. As a consequence of ana-
lyzing the operation of SRM motor one can determine the theoretical conduction
angle for a single phase ¢ - denoted as stroke angle, which results from the number
of phases and teeth of the rotor under the assumption of a separate conduction of
the windings. In a typical SRM the difference in numbers of a stator and rotor
teeth per pole pair is 2, i.e. Z;, — Z, = 2p. Hence the stroke angle ¢, as the smallest
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angular distance between closest stator and rotor teeth, in a state of alignment
occurring for some other pair of teeth, is

2r( 1 1 2r 2 2
P S P Y (5.2)
p Zr ZS p ZsZr er

For a motor with Z/Z, = 6/4 teeth this gives an angle ¢ = 360°/(3-4) = 30°, while
for one with Z/Z, = 8/6 teeth stroke angle is equal to ¢ = 360°/(4-6) = 15°. The ac-
tual value of the conduction angles a, is always greater than the stroke angle ¢ as a
result of the processes of current increase and decay in the phase windings and,
hence, during the operation of the SRM motor there are periods when 2 or even 3
phase windings are in conducting (‘ON’) state. Since usually the aim is to gain
high values of electromagnetic torque, the conduction period is extended within
the range of strong attraction of the rotor’s tooth by the electromagnet made up by
a pair of stator teeth so that the switch off angle a,; only slightly precedes the
aligned position. For this reason the process of current decay in a given phase is
accelerated as much as possible to avoid negative torque values. This occurs after
the rotor reaches the position determined by the angle a,; as a result of energizing
this winding with is reverse voltage u that supplies the phase and, thus, causing
the energy return to the source. Such a capability has to be secured through the
commutation system of the phases of SRM motor.

The basic system of the power supply and commutation of a single phase wind-
ing of SRM involves an asymmetric transistor /diode H bridge shown in Fig. 5.3.
Since SRM is a reluctance motor and the direction of the torque is not relative to

Fig. 5.2 Cross-section of a Z/Z, = 8/6 SRM motor, with the indication of rotor position
angle 6,, switching angles o, and a, , as well as conduction angle a,
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the direction of the current flow through the phase winding, the commutator
bridge does not need to facilitate current flow through the winding in both direc-
tions and it is sufficient to apply two power transistors and two diodes to ensure
energy supply and energy return to the source.
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Fig. 5.3 A typical commutation H-bridge circuit for switching current of a single phase of a
SRM

Over the period when the winding is in supply state from the source both tran-
sistors T1 and T2 are in the ON state. This occurs for the angle of the rotation in
the range from a,, to a,; and when simultaneously there is a increase of the cur-
rent in the cycle of the PWM regulation of the voltage. However, in the section of
PWM cycle when phase current decreases, only one transistor and one diode in H
bridge are in ON state. This could be transistor T2 and diode D2 of the bridge and
in this case we have to do with a decay of the current in the circuit in which these
elements short a phase winding. In contrast, after the rotor reaches position oy,
both transistors are switched off and the current in the winding is closed in the cir-
cuit formed by two diodes D1 and D2 and the power source. This direction of the
current flow determined by the diodes results in the return of the energy stored in
the electromagnetic field into the source accompanied with a rapid decay of the
current in the winding. We can also consider an option of mechanical energy con-
version over this period and it is only relative to the actual sense of electromag-
netic torque and its value. However, for the purposes of rough explanation of the
operating principle of the motor we can assume that in the vicinity of the aligned
position of the rotor the electromagnetic torque is small and, as a result, the return
of the energy consists only in the return of the energy stored in the electromag-
netic field. The following figures (Fig 5.4 — Fig 5.6) contain an illustration of the
operation of the commutation system for a single phase winding, for the respective
low rotational speed, i.e. for n = 600 [rev/min], for the mid speed ranges, i.e. 1600
[rev/min] (Fig. 5.5) and for higher speeds, e.g. for n = 3000 [rev/min] (Fig. 5.6).
The variable deciding on the switching sequence is the value of the current in this
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winding and it is responsible for voltage switching between the values of u# and
0 - i.e. performing so-called ‘soft-chopping’.

After the completion of the switching cycle in a given phase, i.e. after the rotor
angle exceeds position a,, both transistors are switched off and the current in the
winding decays quickly and recuperation of energy, due to the supply with -u
voltage, takes place.
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Fig. 5.4 Current commutation during a single conduction cycle of a phase winding with a
current limitation, for a low speed range of SRM

gl ____/f_

Fig. 5.5 Similar commutation as presented in Fig 5.4, but for a medium speed range of
SRM
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Clon Qoff
u

Fig. 5.6 Current commutation as in Fig 5.4 and Fig 5.5, but for a high speed range. Current
regulation is not possible in this case

The diagram of the commutation system presented in Fig. 5.3 enables one to
control the current in each of the phases separately. It is possible to apply a more
economical system, i.e. one enabling the application of a smaller number of power
electronic switches in the design of the commutation system. One of such exam-
ples is found in Fig. 5.7 for a motor with m = 4 phases or a greater even number of
phases. The control of the switching sequence of the phases is based on an as-
sumption that during the operation of the motor we don’t have to do with simulta-
neous conduction in more than two phase windings.

10

Fig. 5.7 Branch-saving commutation system for m = 4 phase SRM machine

In the presented example we exclude one branch of the converter per four
branches in two complete H bridges, which means that the number of components
decreases by 25%.
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Fig. 5.8 Switch saving commutation scheme with one general TO switch and single
switches for each of phase windings
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A system that goes even further in terms of the economical use of electronic
components is presented in Fig. 5.8. Each of the phases apply a single transistor
and there is one transistor TO that is common to them all. This system offers the
possibility of reducing commutation losses; however, practically it does not permit
recuperation of energy of the phase that is being in the switching off state, because
it requires the transistor TO to be switched off. In this case we have to do with the
decay of the current in the closed circuit of this phase winding across phase diode
and transistor TO. Considerable opportunities in terms of the improvement of the
operation in the range of high rotational speed is offered by the system [47], in
which phase windings containing coils situated in the opposite stator teeth have
available clamps to supply each coil separately. It means that the phase winding
can be effectively divided into two equal parts. In this case it is possible to apply
an alternative, in-series or parallel supply of the two parts of the phase winding
and, as a result, considerably accelerate the increase and decay of the current in
the winding and, additionally, increase the range of the speeds for which it is pos-
sible to control the current. Such system configuration involving division of a
winding and enabling series power supply for lower speeds and, concurrently,
parallel connection at higher speeds is presented in Fig. 5.9.
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Fig. 5.9 Commutation scheme of a divided SRM phase winding for changeable supply
configuration of both parts
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This system for a single phase of the motor consists of two H bridges that sup-
ply the halves of the winding and an additional transistor T5 and diode D5 that
connects these bridges. During the period when current increases after the rotor
gains a,, position and after it obtains the position a,; associated with the termina-
tion of the phase supply, transistor T5 is switched off and the two halves of the
phase winding 1b and 1b are connected to full supply voltage u. This fact com-
bined with two times lower inductance result in considerably faster current in-
crease after it is fed as well as faster decay after the phase is disconnected as a re-
sult of switching off all five transistors T1...T5. At the beginning of a cycle, after
the required value of the current is reached, transistor TS5 connecting the two
bridges is switched on and the winding halves are connected in a series to form a
single phase winding. Within a single cycle of the supply the switching of the part
phases to parallel and, subsequently, to series supply can be performed several
times thus increasing the range in which it is possible to control the current in the
motor, as in Fig. 5.5. For the case when after the switching from the parallel to se-
ries connection the currents in the two halves are not equal the currents in them
have to be balanced and the surplus of the current in one section of the winding re-
turns through one of the diodes — D2 or D4. As it was indicated by computer
simulations and the operation of such experimental set-up [47], the application of
series-parallel switching of the winding halves in a two-phase motor (m = 2) has
led to an increase of the rotational speed by 80% under rated loading and the rated
current has not been exceeded.

5.3 Magnetization Characteristics and Torque Producing in
SRM Motor

In terms of the construction the capability of a motor to transform energy and pro-
duce a torque is determined by the magnetization characteristics, whose wave-
forms result from the engineering details and properties of the ferromagnetic
materials applied. What is meant here is the family of magnetization characteris-
tics in the function of the position of rotor tooth in relation to stator tooth in the
range from the unaligned position to the completely aligned one. An example of
magnetization characteristic is presented in Fig. 5.10 together with a single cycle
of converting the energy of the magnetic field into mechanical energy in rotational
motion of the rotor.

From the schematic diagram in Fig. 5.10 one can conclude about the relation:
the more non-linear magnetization characteristic are for the aligned position the
greater the co-energy of the magnetic field 7~ that is converted into mechanical
work of the drive within a cycle of the power supply. At the same time, less
energy of the magnetic field 7} is returned to the source during the power diode
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Fig. 5.10 A single cycle of energy conversion in SRM. T~ is co-energy conversed from
magnetic to mechanical form, Ty is magnetic energy recuperated to a source in a diode
conduction period of the current decay

conduction duty period. On the basis of the cycle of energy conversion presented
in Fig. 5.10 it is possible to assess the motor’s torque:

T = mechar'lical power/cycle _ P, _ mZ,T’ [Nim] (5.3)
rotation angle/cycle 0. 2r

The relation presented here (5.3) and the interpretation of the cycle of energy con-
version in Fig. 5.10 are relevant for a simplified case when the particular machine
duty cycles are separate and there isn’t a period of a common conduction.

In the further part of this chapter the examples and illustrations will be based on
two typical layouts of SRM motors:

- motor A with rated values: Z/Z, =8/6; P, = 900 [W]; U, =32 [V]
- motor B, for which: 747, =6/4; P, =900 [W]; U, =310 [V].

Details of the two machines are summarized in Table 5.1 in Chapter 5.4. Below is
a summary of the characteristics of magnetization and several other characteristics
associated with torque generation for motor A.
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Fig. 5.11 A family of magnetizing characteristics for motor A (Table 5.1), for 50 consecu-
tive rotor position angles from unaligned position (30°) to aligned position (0°)

@ 40 20 0 20 0 &
theh[ﬂg]

Fig. 5.12 Saturated inductance curves of motor A for increasing stator phase current values i =
40,60,80,100,120 [A]

Fig. 5.13 Electromagnetic torque curves, for an individual supply of consecutive phase wind-
ings of motor A with i = 120 [A] as a function of a rotor position 8,
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Fig. 5.14 Electromagnetic torque curves during a single phase supply with increasing current
i =8,16,24,...160 [A] as a function of a rotor position 8,

5.4 Mathematical Model of SRM Motor

5.4.1 Foundations and Assumptions of the Mathematical Model

The mathematical model forms the basic tool for conducting simulations of dy-
namic courses and finding characteristics of the motor as well as a whole drive. It
is also indispensable in the research of drive control systems. The degree of
complication and the precision of a given mathematical model is relative to the
practical application of a model, i.e. the number, type and relevance range of the
characteristics that are determined by its use. The form of the mathematical model
is clearly relative to the simplifying assumptions adopted during the statement of
the model. It is also important to note the source of information serving for the
purposes of developing a model, i.e. whether the source originates in engineering
data or data gained on the basis of measuring and testing existing objects, or data
has been gained in some other way. The models based on measurements can either
be deterministic in nature or originate on the basis of artificial intelligence meth-
ods. The latter, however, have a limited scope of application since they serve in
order to examine objects the information of which is often approximated
[21,22,29,49].

This book is based on the development and application of deterministic models
in the form of ordinary differential equations derived as Lagrange’s equations, in
accordance with the procedure described in Chapter 2. The basic application of
such a model is in the research of dynamic and static characteristics, selection of
control methods and procedures as well as in the simulation of drive operation in
desired circumstances.

In the bibliography in this subject there is a considerable number of mathemati-
cal models of this kind, which, however, differ in details. For instance, mathe-
matical models of SRM, which apply engineering details and linkage between the
windings are presented in [13], and the ones without linkage are found in [45]. In
turn, another model designed for dynamic calculations and simulations of wave-
forms is presented in [19] under the assumption of familiarity of functions of
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windings inductance and their derivatives. Basically, the majority of models ac-
count for non-linearity of magnetization characteristics in SRM motor. This is so
because it plays significant role with respect to generation of the electromagnetic
torque. While some of the mathematical models found in bibliography account for
the magnetic linkage between the adjacent phase windings of the motor, a consid-
erable number of studies completely disregard them. This fact of ignoring the
linkage between phase windings in a SRM motor is justified by two details.
Firstly, the value of the linkage is small, since in the sense of an upper limit it does
not exceed 10% of the self-inductance of the winding and the standard is that their
value is from 5% to 6% of this inductance. Secondly, the period of the simultane-
ous conduction of adjacent phases of a motor is limited and during the time when
in one of the phases the current gains its maximum value, in the other one it is al-
ready decaying. The presented mathematical model is designed to conduct swift
and multiple dynamic calculations of the waveforms of SRM; hence, it is consid-
erably simplified. It accounts for non-linearity of the characteristics of magnetiza-
tion of the motor, which is indispensable, but disregards magnetic linkage between
the windings. It leads to the simplification of the model concurrently not causing
relevant errors as a result of the application of the model. This is confirmed by the
characteristics and waveforms gained on the basis of measurements and, in par-
ticular, this pertains to characteristics gained for the case of reversing the current
in the adjacent phase windings during comparative analysis and measurement of
inductance in standard SRM motors. The inconsiderable differences between the
characteristics gained on the basis of such measurements indicate that the linkage
between phases can be disregarded without the deterioration of the precision of the
results collected by the application of this model. The mathematical model of the
motor is derived on the basis of Lagrange’s equations for an electromechanical
system while preserving the notations used in Fig. 5.2. The number of the degrees
of freedom in the system is equal to:

s=m+1 5.4)

while m denotes the number of the electric degrees of freedom of the system and
the electric charges associated with phase windings form the respective variables

ql:Ql q2:Q2 ('Im:Qm
and their time derivatives have the meaning of phase currents of the motor:
O,=i, k=l.m (5.5)

Concurrently, the remaining degree of freedom is reserved for the mechanical
variable of the system

9m+1 = er

and denotes the angle of rotation of the rotor. Under the assumption of the lack of
magnetic linkage between phase windings, Lagrange’s function for this system
takes the form:
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L= .([\Pk(a,,;)di +%J¢9’3 (5.6)

m
k=

—_

The virtual work of the system corresponding to the exchange of energy between
the system and the surrounding environment is equal to:

é‘A:i(uk — R, )00, + (-1, + D6, )6, (5.7)

k=1
in which the particular terms refer to:

¥, ((9, S ) =My ((9, S )ik - magnetic flux associated with k-th phase winding,

R, - resistance associated with current flow through k-th phase winding, account-
ing for resistance of electronic elements and resistance of the supply source

uy - voltage applied to k-th phase winding,

J - moment of inertia associated with motor’s shaft,

D - viscous damping coefficient associated with damping of the motion,

T, - shaft load torque.

5.4.2 Equations of Motion for the Motor

The generalized form of equations of motion in accordance with Lagrange’s
model (2.51) is in the form

doL o

didq; dq;

j=1l.m+1

where generalized force (2.70)

p = 0@)
S IC7])

is the force acting along its j-th generalized coordinate calculated as the respective
partial derivative of virtual work JA (5.7). For the electric circuits of the motor in
accordance with the assumptions of disregarding mutual phase linkages, we obtain
the total of m equations in the form:

(5.8)

d Y .
E(Mkk(er,lk)lk)=uk_Rklk k=1...m (5.9)

After calculation of the time derivative, it is:

di . . OM (6,8 . oM . 0,,i .
d—;‘(Mkk(Br,zk)—Hk %J =u, —zk9r$—Rk1k (5.10)

| S —
e, (i,,0.,Q)
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where Q = 9, - is the speed of the rotational motion of the rotor. The term ¢, in
equation (5.10) denotes back EMF of rotation:

aMkk(ar’lk)

5.11
73 (5.11)

€, = le

which is proportional to the current in the winding and the angular speed of the ro-
tor. This term determines the similarity between SRM machine and series wound
DC motor since the phase current i, plays here the same role as the excitation cur-
rent in the DC machine. The equations (5.10), in the consideration of the lack of
linkages, can be arranged in the standard form:

% = (i — Ry — ¢ (ik’er’Qr))/(Mkk(ik’ar)-’_ Iy WJ (.12)

The equation of motion for the mechanical variable is the following:

oL | oL =-T,- D6, (5.13)
dr\ 26, | 96,

Assuming a constant value J for the inertia, as a result we obtain:
J6 =T,~T,- DO, (5.14)
The electromagnetic torque in this equation is equal to:

m i

T, = aL _ZjaMkk 6.%) i (5.15)

Using (5.11), the formula for the torque can be restated as:

m Ik

r S a0 510

rklo

5.4.3 Function of Winding Inductance

A more detailed insight into the mathematical model, given by equations
(5.12)...(5.16) is associated with the need of noting the functions of windings in-
ductances, which play a key role in this model. In the examined model the follow-
ing form of the inductance function has been provided [41,42]

M (6,.i, )= M (B)AD,iy) (5.17)

Such inductance function notation in the form of a product may seem complicated;
however, it has a number of advantages. The term M(8,) presents (Fig 5.15) the
unsaturated inductance of the winding in the form of the function &, which is the
rotor’s angular position reduced to the pitch of the teeth z, = 27/Z,:
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O, =7, fracl(6, — (k—1e)/ 7, ] (5.18)

where the term frac(x) denotes the fractional part of argument x. Concurrently, the
second term in (5.17), presented in the graphical form in Fig. 5.16, is responsible
for the magnetic saturation and introduces the adequate functional relation from
rotor’s angular position and current in the winding. Such a presentation of induc-
tance coefficient makes it possible to study the effect of saturation as well as engi-
neering changes on inductance as well as estimate the parameters of the motor
on the basis of measured characteristics. The respective partial derivatives of the
inductance (5.17) take the form:

oM, (6,.i,) =8M(19k)lwk,ik)Jerk)a/L(z}‘k,ik)
20, oY, 09, 5.19)
aMkk('H,.,ik) =M(19k)a/1(ék’ik) ’
alk alk
2 41
2_
1. -
L{mH]
1.21
III.EE
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Fig. 5.15 Unsaturated inductance coefficient of a phase winding for SRM motor A in a
function rotor position angle 6,
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Fig. 5.16 Saturation factor A(0,,i) of a phase winding inductance, for position angle values
0, =0°,1.5°,3°,...30°, as a function of winding’s current
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This way of representing the inductance of the winding and its derivatives (5.19)
affects the detailed form of the expression of electromagnetic torque (5.15), which
takes the following form

[ OM (3 ) o
T, = ;( : ;kk) cla(z}k,lk)+M(79k)cdlaﬁ(79k,lk)j (5.20)

L[mH]

0.4 0.5
th:h[md?

Fig. 5.17 Phase winding’s inductance coefficient, for i = 5,10,15,...150 [A], as a rotor posi-
tion function

There are used two integrals with respect to current i, in the winding

cla(®, i) = J'/i(ﬂk,i)da
(5.21)

cdlafi( i) = jml i

The first integral cla(8,.i;) is presented in the graphical form in Fig. 5.18 in the
function of the current for various values of the §; angle. Evaluation of this inte-
gral indicates that

cla(B;.i) <% (5.22)

The first term of the expression (5.20), which defines electromagnetic torque of
the motor, reminds one of the classical expression denoting torque of reluctance
origin diminished by the influence of saturation, which contrasts with unsaturated
inductance function, which is relative only to the angle of rotation. This term de-
notes the basic component of the torque. Concurrently, the other term of the
torque in the form of an integral clafi(8;,i;) is presented in Fig. 5.19 for positive
values of the machine’s angle of rotation. Since it is an odd function and the
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motor’s mode of operation takes place for negative values of angle §;, the second
term in the expression (5.20) determines decrease of the basic torque computed by
use of the first term of (5.20). However, one can note that the change of the torque
associated with non-linearity of magnetization characteristics plays a more impor-
tant role for large values of the current. For the case of motor A, whose character-
istics are presented here, it demonstrates for i > 60 [A], i.e. the value of the current
that is higher than the rated current.

12000

10000 4

2000 4

clalA*A] 5004
4000 4

2000

a 20 40 &8 8 100 120 140 16]
i[A]
Fig. 5.18 The integral cla(8,,i;) according to (5.21) — as a function of phase current, for a
position angle §, = 30°,28.5°,27°,...0°, (top — down)
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Fig. 5.19 The integral clafi(%,i;) according to (5.21) — as a function of phase current, for a
position angle = 30°,28.5°,27°,...0°, (top — down)

This is illustrated by Fig. 5.20, which presents both components of the torque
with respect to the angle of rotation, i.e. the basic term relative to the derivative of
the inductance — as component I and the other term that is relative to the change of
the saturation— as component II. This decomposition of the electromechanical
torque of a motor is presented for high value of the phase current in the motor i =
120 [A] in Fig. 5.20a and for the current i = 50 [A] in Fig. 5.20b, i.e. for small
magnetic saturation. As one can see from the illustrations, the less important
component II of the torque is the smaller with the smaller saturation of the
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20 Tel[Nm]

0.4
<0 \%\/EEE theta[deg]

Fig. 5.20 Particular components of SRM’s electromagnetic torque (5.20). Component I —
basic torque originated from inductance derivative on a position angle; component II — re-
flecting a change in saturation: a) for a high saturation i = 120 [A] b) for a low saturation
i=50[A]

b)

magnetic circuit. For the phase current i = 120 [A] it is equal to around 30% of the
value of the basic torque, while for i = 50 [A] it corresponds only to 5% of this
torque.

5.5 Dynamic Characteristics of SRM Drives

5.5.1 Exemplary Motors for Simulation and Tests

For the purposes of illustrating the characteristics and dynamic courses of SRM
motor drives a selection of two low power motors was made. The two motors are
found in the catalogues and were the subject of the research and measurements in
laboratory conditions [41]. A summary of the data is found in Table 5.1.
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Table 5.1 Selected data for two typical SRM

Parameters Motor A Motor B
Z, - stator’s teeth number 8 6
Z, -rotor’s teeth number 6 4
P, - rated power [kW] 0.9 0.9
n, - rotor speed [rev/min] 3200 3600
U, -rated voltage [V] 32 310
I, - rated source current [A] 35.0 3.0
T, - rated torque value [Nm] 2.6 2.4
R, - phase winding’s resistance [Q] 0.045 1.9
L. - aligned inductance [mH] 2.2 140
L., -unaligned inductance [mH] 0.46 17
M| 5, 354 - mutual inductance [% L, ] 35-70 2.5-8.5
M,_5,_, - mutual inductance [% L, | 0.9 -
n - motor’s efficiency [%] 84 86
X,y Oy - switching angles [deg] 38°;10° 51°;15°

5.5.2 Starting of SRM Drive

A considerable problem is encountered during the start-up of SRM motors since
the torque is relative to the initial position of the rotor, which is unfamiliar, as a
rule. Incremental encoders are used in order to control the motor and determine an
instantaneous position of the rotor. However, the latter do not provide information
regarding the position when it is stalled. Another problem with the start-up, espe-
cially with regard to a motor with a small number of teeth e.g. Z/Z, = 4/2 but also
ZJZ, = 6/4 to a certain extent, is associated with the fact that they do not develop
required start-up torque in every position of the rotor for both directions of rota-
tion. Therefore, for the motors, which for engineering purposes are incapable of
starting in every initial position of the rotor, the start-up process either occurs for a
small load or the rotor is positioned prior to the starting procedure. Concurrently,
the problem associated with determining the initial position of the rotor before
starting the motor can be solved by:

- application of absolute encoders, which provide a reading of the initial
position,

- application of resolvers, which as externally energized inductance devices that
secure a precise measurement of the position in every situation. The two solutions
are, however, rather expensive and they are not applied in commonly used drives.
Some other possibilities of preparing the drive to the perform the start-up include:

- positioning as a result of forcing adequately strong current flow through
selected windings, i.e. its alignment prior to the start-up,
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- determination of the rotor’s position and selection of a starting sequence using
test pulses applied to the windings prior to its starting, when the rotor is stalled.

The latter option will be examined in more detail below.

5.5.2.1 Start-Up Control for Switched Reluctance Motor by Pulse Sequence

The application of starting pulse sequence to determine the position of the rotor
will be presented with regard to both motors from Table 5.1 (motor A and B). Fig.
5.21 contains a summary of the test result for motor B (Z/Z, = 6/4) within the an-
gular range of the rotation of the rotor 0°-60°.

1.21
1_
R=x
i12.3a] i
0.4
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B 10 20 tha.;[thg] 80 0
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{.041

{1,087
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Fig. 5.21 General picture of: a) test current pulses and b) respective torque response for
the Z/Z, = 6/4 motor, in the rotor position range 0°-60°

On the basis of Fig. 5.21 one can conclude that the best conditions for the start-
up of this motor are encountered in the range from 6, = 0°...6°, while the least op-
timum ones are for the angles close to 8, = 15°. This is so because in this position
the teeth on the rotor are displaced in relation to the stator teeth by £15°,+45°, i.e.
the position of the rotor in which the derivative of the rotor winding’s inductance
assumes a small value. In contrast, for 4, = 0° the remaining teeth on the rotor are
in the position +30° from the axes of the phases except for the pair in the aligned
position. This, in turn, offers optimum conditions for the start-up. The next figure
(Fig. 5.22) presents a more detailed response of the motor to testing pulse for
selected rotor angles.
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Fig. 5.22 SRM (motor B, m = 3) response to test voltage pulses in various rotor positions:
a)0,=0°b)0,=9°¢c)0,=15°d) 6, = 30°
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Fig. 5.22 (continued)

On the basis of Fig. 5.22 it is possible to examine several typical start-up situa-
tions for selected rotor position angles. For the position angle 6, = 0° there is a
small current pulse in the phase ‘1’ and two large ones in phases 2’ and 3’,
which correspond to the reduced angles +30°, given by the relation:

B,3=0.tc  B.<7./2 (5.23)

Energizing phase ‘2’ during start-up will result in the motion in the positive direc-
tion, while energizing phase ‘3’ in motion in the reverse direction. Fig. 5.22c illus-
trates the situation occurring for 6, = 15°. We have to do with small current pulses
in the phase windings ‘1’ and ‘2’ and a strong pulse in phase ‘3’. This corresponds
to the respective reduced rotor angles of +£15° and +45°. The large current pulse
corresponds to angle 8, = 45°, which occurs between the axis of phase ‘3’ and the
axis of the closest tooth on the rotor, but the resulting torque is virtually nonexis-
tent. The supply of the phase ‘2’ leads to the rotation of the rotor in the positive
direction, while of the phase ‘1’ in the negative one. In these cases the torque is,
however, three times smaller than for the angle 8, = 0° and, hence, the start-up can
be impeded. The most problematic starting conditions are encountered for 6, = 9°,
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i.e. for §;,; =9°,-21°,39° - in Fig. 5.22b, while as phases ‘1” or ‘3’ are energized
the negative torque is very small as it reaches around 20% of the value for angle 6,
= 0°. This results from the fact that the position angle 9° is quite small in relation
to the half of the pitch of the tooth 7,/2 = 45°, it is too close to the aligned position.
Concurrently, for angle 39° the current is already considerably large since induc-
tance is small but it is too close to the limit of 45°, when we have to do with a
change of the torque sense. So in consequence there is not a good option for the
negative direction start-up. The final illustration in Fig 5.22d presents the effects
of a cyclic power supply — the situation is such like for 8, = 0°, only phase 2’ re-
places phase ‘1°, while phase ‘3’ replaces phase 2’ and, in turn phase ‘1’ is in the
place of phase ‘3°.

The more general conclusion from the test is that in order to conduct the start-
up one should energize the phase winding for which there is a current pulse with
the mean value or a winding for which the pulse response is as close to the mean
value as possible. During energizing of the winding, whose pulse precedes the
phase in which there was a pulse with the highest value, the start-up torque is posi-
tive and if we supply the phase that follows the one with the highest pulse re-
sponse, the start-up torque is negative. One has to bear in mind that all responses
in the form of current pulses are positive as we apply positive voltage pulses,
which in the presented examples are equal to 30% of the rated voltage and are 0.5
[ms] in duration. The negative value of a current in a phase winding does not
change the sense of the reluctance torque (see 5.20 -5.22). The following figures
illustrate the situations associated with pulse determination of the rotor’s position
and setting the start-up sequence of motor A (Z/Z, = 8/6) in the range of the rota-
tion angle 0°...15°.
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Fig. 5.23 Response for voltage test pulses in SRM motor A (m = 4) for rotor position
0, = 0°...20°: a) current peaks b) corresponding torque jerks
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From Fig. 5.23 it is possible to conclude that the best start-up conditions are
encountered for the rotor angle 6, = 6°...9°. However, for 4 phase windings in
every position it is possible to conduct the start-up even under considerable motor
load. The following Fig. 5.24 illustrates the results of the pulse start-up test for a
number of selected rotor positions.
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Fig. 5.24 SRM response (motor A, m = 4) for test voltage pulses applied to the consecutive
windings in several rotor positions: a) 6, = 0°b) 6, = 6°c) 6, = 12°d) 4, = 15°
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For the motor with the phase number m = 4, the subsequent positions of the ro-
tor’s teeth in relation to the axes of the stator teeth, i.e. the subsequent values of
the reduced angle result from the relation:

Br34=0,tex2e  8.<7,/2 (5.24)

Fig. 5.24a contains test results for §, = 0° and for this case the subsequent values
of the reduced angle are equal to §;,34 = 0°,-15°,-30°,15°, respectively, and the
large start-up torque is encountered for the supply of phases ‘2’ and ‘4’, i.e. for
§, = £15°. The highest current pulse in the winding corresponds to angle §, = +30°
since it corresponds to the position with the minimum inductance in the winding.
Fig. 5.24b presents the result of this test for angle 8, = 6°. The following values of
the reduced angle: §;,34 = 6°,-9°,-24°,21° correspond to this position of the rotor
teeth in relation to respective stator teeth. The highest current pulses correspond to
the angles °,-24°,21° for phases ‘3’ and ‘4’, together with the highest values of the
start-up torque. Another example is found in Fig. 5.24c, for the angle 6, = 12°.
The values of the reduced angle of rotation for the following phases are equal to:
B34 = 12°,-3°,-18°,27°, and the highest current pulse is encountered while ener-
gizing phase ‘4’, i.e. for §, = 27°. Concurrently, the positive start-up torque is en-
countered for phase ‘3’ (93 = -18°) while the negative one for phase ‘1°, i.e. for the
angle &, = 12°. The situation presented in Fig. 5.24d regards angle 0, = 15°, i.e.
the one that is equal to the stroke angle. This well illustrates cyclic characteristics
of the test pulse since, as one can see, the roles of the subsequent phases are
shifted. The rules regarding the start-up sequence for the case of the motor with m
= 4 phases are similar to the ones presented previously. In the examined case the
start-up torque with a considerable value is produced during energizing the phase
whose pulse response is the second of the four in terms of its value along with the
one whose pulse response is most close to the previously selected one. In the ex-
ample in Fig. 5.24c these are, respectively, phases ‘3’ and ‘1’, and for the case in
Fig. 5.24b — phases ‘3’ and ‘4’. The torque with the negative value is produced for
the supply of the winding with the successive number (modulo m) in relation to
the phase with the highest response of the current pulse and the positive torque is
generated during energizing of the phase with the preceding number of the one
with the largest pulse if it qualifies as the one that is closest to the previously se-
lected one in terms of the value.

This may sound complex; thus, it is presented in the form of an algorithm in
Fig. 5.25. This algorithm has been prepared for the motor with m = 4 phases,
however, for the motor with three phases the algorithm takes the same form except
for the limitation of the set of phases’ numbers to ze {1,2,3}. This algorithm in-

volves determination of the phase number ze {1,2,3,4} that is to be energized in

the first order during motor start-up depending on the selected direction of the ro-
tational speed: n > 0 (7, > 0) — z" or n < 0 (T, < 0) — z and on the basis of the
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Fig. 5.25 The outline of the algorithm for a starting sequence of SRM based on test im-
pulses before starting

pulse test for all 4 phases: T={1 ARy 4}. One should note that in the algorithm

the pulse ‘c’ determined as the one that is closest in terms of the amplitude to the
second highest called ‘b’ could be the one with the largest value , i.e. the one
described as ‘a’.
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5.5.2.2 Current Delimitation during Direct Motor Starting

The direct start-up of SRM motor for the case of conducting starting sequence from
an adequate phase occurs effectively. Concurrently, there is a need of limiting the
start-up current in the initial period of starting sequence. In case the drive has
sensors of the phase currents this limitation can be easily implemented as a result of
introduction of upper and lower boundaries of current fluctuations. ‘Soft-chopping’
is used within this range of regulation and involves de-energizing of one of the tran-
sistors of the H bridge after exceeding the upper current limit followed by a natural
decay of the current until it reaches the lower boundary. Subsequently, the previously
de-energized transistor switches on, the power is restored and the current in the phase
winding rises again. This way of regulation accomplishes its role for a small number
of the switching sequences in a pulse, which is mostly relative to the boundaries of
current changes imposed by these limitations. Fig. 5.26 presents the initial period of
the start-up for motor A, and Fig. 5.28 for motor B, for the case of imposed start-up
current limitations and rated loading.

Fig. 5.27 presents the complete starting range of motor A. On this example one
can see series excitation effects of the SRM machine. It demonstrates in a slow
long lasting speed increase in the final part of the starting course. This is associ-
ated with the gradual decrease of the current and de-excitation of the motor, thus
causing the increasing speed.
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Fig. 5.26 Initial part of starting current of SRM motor A, with current limitation within the
range of 100 [A]...90 [A]: a) phase currents b) electromagnetic torque
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Fig. 5.27 The whole starting course of SRM motor A with a current limitation and a nomi-
nal load: a) phase currents b) electromagnetic torque c) rotational speed

5.5.3 Braking and Generating by SRM

Generator regime of operation of SRM machine is not provided for either in the
engineering structure of the machine itself nor due to the structure of the semi-
controlled H bridge from which it is controlled (Fig. 5.3). The rotor of the reluc-
tance SRM motor is not energized and the excitation flux of the machine comes
from the current in the stator windings. Hence, there is a lack of separately regu-
lated excitation current that is typical for generators or permanent magnets that of-
fer an excitation flux of the machine practically regardless of the machine load.
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Fig. 5.29 Excitation period and generating period of SRG machine during one switching
cycle: a) current cycle b) current flow in a H bridge for one phase winging; i, - braking cur-

rent flow, i, - generating current flow
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Fig. 5.30 Steady-state characteristics for a generating mode of SRM operation (motor A) as
a function of rotor speed, for u = U, , a,, = 16°, a5 = -10°,-12°: a) phase and source cur-
rents b) torque and overall efficiency

The typical transistor-diode H bridge that energizes the machine’s windings from
the DC source makes it possible to control the machine’s current only for the case
of the motor regime of operation. The return of power from phase windings into
the source can only occur after switching off both transistors and takes place in an
uncontrolled manner until the magnetic field associated with the winding decays.
Moreover, the generation and braking of SRM machine is not steady, which re-
sults from the curves of the static characteristics presented in Fig. 5.30 and is con-
firmed by the waveforms presenting the unsteady operation in the vicinity of the
equilibrium point in the system without feedback, as shown in Fig. 5.31.

However, for adequate control using angles a,,, @, and in the system with
feedback for the regulation of the output power the SRM machine is capable of
performing the duties of the generator [19,28,34,36,40,43]. In the generation re-
gime of operation each pulse of the machine’s current consists of two parts. In the
first part, for two transistor in the ON state there is an excitation of the SR genera-
tor, sometimes denoted as SRG, since the machine draws current from the source
and it operates as a brake or a motor depending on the sense of the torque pro-
duced in this period. The transformation of the mechanical power in this period is
inconsiderable since the angle a,, for which the machine operates as a generator
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precedes the aligned position by a few degrees and the excitation occurs for the
small values of electromagnetic torque which actually changes the sense from the
positive to the negative one. After the excitation period the two transistors are
switched off for the angle of the rotor of a,5 which happens several degrees after
the aligned position of the rotor and stator teeth is reached. Following we have to
do with the generation regime of operation until the decay of the current in the
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Fig. 5.31 Unstable operation of SR machine as a generator: EMF, phase currents, torque

and rotor’s speed courses: a) under an equilibrium point of balance b) above an equilibrium
point of balance
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Fig. 5.31 (continued)

winding, which in this case closes through two diodes of the H bridge and thus en-
ergy returns into the source. In this range of operation the energy conversion is
performed at the expense of mechanical energy, since the electromagnetic torque
is negative and to some extent due to magnetic field energy associated with wind-
ing’s current. The illustration of the excitation and subsequently, generator regime
operation of SRM is presented in Fig. 5.29.

For adequately selected control angles a,, , a,; the mean value of the generated
current is considerably higher than the mean value of excitation current and the
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Fig. 5.32 Steady state characteristics of SRG (A) for different excitation level realized by &,
factor: a) rotational speed b) phase and source currents as a torque functions c¢) torque and
efficiency as k, functions d) shape of current pulses

machine operates as a generator with a decent energy efficiency (Fig. 5.30), which
is, however, lower than for its motor operation.

From the characteristics in Fig. 5.30 one can see that the electromagnetic torque
and phase currents decrease along with an increase of the rotor speed, which fore-
casts an unsteady characteristics of the machine’s operation within this range. This
is confirmed by its transients, which present the behavior of the generator after the
balance is disturbed (Fig. 5.31).
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Fig. 5.33 Linear transition from motor to generator regime of work of SRM (A), after linear
change of: a,, = 35°—13° and a,; = 10°—>-12° , n= 1850 [rev/min]: a) phase currents b)
electromagnetic torque 7, c) partial torques constituting total 7, torque

The unstable equilibrium in the conditions presented in Fig. 5.31 occur for the
speed n = 2100 [rev/min] and the load 7; = -3.0[Nm]. The generation regime can
be stabilized as a result of including adequate feedback relative to the speed and
acting upon the pulse width modulation coefficient k, defined for the PWM con-
trol, which in case of constant source voltage U regulates a level of an excitation.
This is so because the PWM voltage control by the k, factor is acting during tran-
sistor operation of the H bridge and this way it effects the excitation level. As a
consequence, k, factor regulation is a main tool to control indirectly electromag-
netic torque during the generator operation with a constant source voltage. The
characteristics that indicate this possibility for motor A are presented in Fig. 5.32.

A smooth transfer from the motor to generator regime of operation is illustrated
in Fig. 5.33. In this case we have to do with linear change of the control angles
O = 35°—13° and a,; = 10°—-12° as well as a change of the torque on the
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Fig. 5.34 Fast change from motor to generator operation for: a,, = 35°—16°, 0,5 = 10°—-
10°, T; = 3.0—-3.3 [Nm]: a) phase currents b) EMF in a winding c) electromagnetic torque
d) rotational speed

machine shaft from the load of 7; = 3.2 [Nm] to the torque driving the generator
= -3.8 [Nm]. The energy efficiency for this state of the generator regime is
equal to 77, = 68%, in contrast to 7, = 82.5% for the motor regime preceding the
change of the operating regime.
The transfer from the motor to generator regime can also occur fast and does
not pose any problems to the stability of the drive. An example of such fast change
is illustrated in Fig. 5.34. In the presented example we have to do with a prompt
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Fig. 5.35 Detail shape of a phase current and induced EMF in a phase winding for: a) motor
b) generator mode of SRM operation, control parameters like in Fig 5.34

switching of the control: a,, = 35°—16° and a,; = 10°—-10° and for the load
torque of 7; = 3.0 [Nm]—-3.3 [Nm].

Fig. 5.35 presents the detailed time waveform of the phase current and induced
EMF in the SRM machine for motor and generator regime in the conditions de-
fined in the illustration in Fig. 5.34. One can note the change in the shape of the
waveform for phase current and EMF, which reminds of a reverse rotation of the
machine for the motor regime.

The effectiveness of operation and energy efficiency of the SRM machine dur-
ing generator regime are considerably relative to the control angles a,,, 0,5 and k,
factor controlling the excitation level. Under the assumption that energy is sup-
plied in an optimum way during excitation most of it can be returned into the
source during generator regime and, thus, the efficiency is quite high. Under the
assumption of a constant rotational speed and constant source voltage U of the
drive this efficiency can be expressed by the relation:

:ﬁ: P(’XL' Pgen — U(IC'XC,LIV Igen,uv) (5'25)
Pl P m,av Tl Q

Mg

r,av
where the particular symbols denote:

P, - mechanical power output of the drive

P, - electric power used by the drive

P, - electric power drawn form the source during excitation part of the cycle
P,,, - electric power returned into the source during generation part of the cycle
T, - load torque

I, v - mean value of source current during excitation part of a cycle

ILgen oy - mean value of source current during generation part of a cycle

Q, ., - mean rotational speed averaging the effect of pulsation.
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The efficiency defined in this way, which is positive for generator regime, has a
negative numerator since the mean current in the generator cycle is considerably
higher than the mean excitation current as well as a negative denominator of the
expression (5.25) since the machine is actually driven from outside, which means
that the load torque is also negative. Examples of the characteristics of the effi-
ciency of the machine A are presented in Fig. 5.30 and Fig. 5.32¢ — they illustrate
clearly the effect of the control angle and k, factor respectively on their wave-
forms. The effects of the control angles on the operation and efficiency of SRG
generator are presented in a number of bibliography items [40,43] stressing the
complexity of the issue. This complexity is due to the fact that during the genera-
tor regime the same point on the mechanical characteristics of SR generators (i.e.
rotor speed and torque) can be obtained for various values of control variables a,,,
aqr and k, however, the current and efficiency differ considerably. Moreover,
some bibliography items in this subject discuss the excitation and self-excitation
of SR generators [34,36] as well as generation for a high and low rotational speeds
of the machine. The latter results from the potential application of SRGs in wind
power stations in the engineering models involving mechanical gear and ones
without it.

5.6 Characteristics of SRM Machines

5.6.1 Control Signals and Typical Steady-State Characteristics

Although SRM motor is a reluctance machine and has a completely passive
rotor, there are three control quantities deciding about the characteristics of the
operation of the drive. They are: supply voltage u, initial angle of energizing the
phase winding — switch on angle a,, and initial angle of de-energizing power sup-
ply from the winding — switch off angle a,; Alternative to the switch off angle,
the set of the control signals can apply the conduction angle a, (5.1). The above
control angles a,,, o,y (Fig. 5.1, Fig. 5.2) are meant to be the angles that precede
the aligned position of stator and rotor teeth. For a typical supply of the SRM
drive the following condition is fulfilled: the conduction angle a, > ¢, where ¢ is
the stroke angle (5.2). Usually in order to apply the possibilities of driving the mo-
tor the control is performed in the range:

e<a, <2 (5.26)
At the same time, switching on occurs for

Xy =0+ =1.5€...3.0¢ (5.27)

which is aimed at obtaining a large value of the current in the adequate range of the
reduced rotation angle 8, (5.18). The higher values of «,, concern SR motors with
higher number m of phase windings. Since the number of steady-state characteris-
tics that can be presented for these control variables is large, the presentation here



5.6 Characteristics of SRM Machines 421

will focus only on selected characteristics calculated for motor B (Z/Z, = 6/4). The
first group of characteristics (Fig. 5.36) is performed in the function of the load
torque 7; for three values of the supply voltage: U = 1.0, 0,75, 0.5 U,.
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Fig. 5.36 Steady-state characteristics of 6/4 SRM drive for U = 1.0, 0.75, 0.5 U, and a,,, =
51° a, = 36°, as a function of a load torque: a) speed curves b) phase and source currents c)
efficiency of the drive

The presented characteristics in the function of the angle a,,, indicate that there is
an optimum selection of the advance angle for energizing winding which occurs for
the examined machine somewhere in the range from a,, = 50°...52°, i.e. for a,, =
1.7¢ in this case. Concurrently, the smallest pulsations of the torque are encoun-
tered for a,, = 42°...46°, i.e. for a,, = 1.4¢. Hence, it results that the late beginning
of the conduction process, e.g. for a,, = 1.4¢, leads to an uninterrupted current flow
in the windings and reduces pulsations. However, the disadvantage thereof is asso-
ciated with negative torque components originated from current flow in particular
phase windings of the motor, which are manifested after the aligned position is ex-
ceeded. The presented characteristics do not illustrate the effect of the conduction
angle a, on the characteristics, which for the cases in Fig. 5.36, Fig. 5.37 is equal
to 36°, i.e. a, = 1.2¢, which corresponds to a standard value.
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Fig. 5.37 Steady-state characteristics of 6/4 SRM drive for, a, = 36°, U = U, and T, = 0.5,
1.0, 1.5 T,, as a function of a switch angle a,,: a) speed curves b) phase and source currents
c) efficiency of the drive d) ripple torque level T,;,/T,,

5.6.2 Efficiency and Torque Ripple Level of SRM

Having three control parameters o, 0.z u it is possible to determine the same
point of operation of the drive along the mechanical characteristic of the motor
n, T, for a series of various control parameters. Thus, at the same operating point it
is possible to transform energy for various efficiencies and for various levels of
torque ripple - T,;,. Such research has been presented in [41,42], and the general
conclusion is that the quasi-optimal selection of control parameters of SRM mo-
tors is technically possible. The control values during quasi-optimal operations
vary along with rotational speed. For small speeds the control occurs as a result of
changing u , for a constant values of a,,, a.. In the intermediate range of the rota-
tional speeds the value of the voltage u remains constant, while the switch on an-
gle a,, and the conduction angle a, increase. Within the range of the high speeds
only the angle a,, increases, while the remaining parameters of control remain
constant. The curves for control variables for a quasi-optimal control of SRM mo-
tor are presented in Fig. 5.38.
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Fig. 5.38 Change of control variables for a maximum efficiency of SRM drive in respect to
change of rotational speed

The preservation of the control in accordance with the principle presented in
Fig. 5.38 makes it possible to secure the operation of the drive with maximum ef-
ficiency. Concurrently, the ripple component of the torque is at a minimum for a
given load torque of a motor from the threshold speed n; as well. The threshold
values ny, n,, for which there should be a change in the control manner are relative
to the motor’s load torque 7; and they are derived on the basis of the minimum
current. For the case of the mathematical model of SRM motor (5.12) discussed
here, it is possible to present electromagnetic torque produced by the motor as the
sum of the component torques resulting from the flow of particular phase currents.
This is so because in accordance with the assumptions made during the develop-
ment of this model, the phase windings are not magnetically linked and the current
coming from each of the phases generates a magnetic flux for a single pair of sta-
tor teeth regardless of the currents in the remaining phase windings.

In particular, this offers a possibility of graphical presentation of how the con-
trol angles a,,, a,; affect the history of electromagnetic torque and what values of
the control angle are beneficial for the reduction of torque ripple. Fig. 5.39
presents the development of torque in motor B (Z/Z, = 6/4) for the rated values of
the supply and load. Subsequently, Fig. 5.40 presents the torque of the motor for
the control angles selected in a manner in which the pulsations of the torque are
the smallest. This occurs for a,, = 43° and a4 = 9° , i.e. for the conduction of the
phase across a, = 34°. In the first of the cases, the pulse component of the torque is
equal to 70% of the mean value of the torque, and in the latter case (presented in
Fig. 5.40) for T,;, = 0.72 [Nm], which corresponds to around 27% of the mean
torque. This is done at the expense of the reduction o the system’s efficiency by 4
per cent points. If the control angles were to be selected at the values a,,, = 44° and
aqr=10°, the pulsation level would be only equal to 33% , and the efficiency loss
would be two times lower, which means 2 per cent points (Fig. 5.41). As a result,
a compromise with regard to the selection of control parameters is possible with a
considerable benefit to the quality of the drive’s operation, which is generally
characterized by the quasi-optimal curves of the control parameters in Fig. 5.38.
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The illustrations of the curves in Figs. 5.39 - Fig 5.41 present why for a motor
with three phases there is a certain loss of energy efficiency during limiting pulsa-
tion. This is so because the flat waveform of torque according to time and reduc-
tion of the pulsation occurs for the control angles displaced in the direction of the
aligned position of stator and rotor teeth in comparison to the operation in the
rated state. In this case we have to do with two phenomena reducing the effi-
ciency: large negative torque component for exceeding the aligned position with
the current in the given winding and decrease of the rotational speed of the rotor,
which results in the smaller power output of the machine.
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Fig. 5.40 Electromagnetic torque 7, of 3-phase SRM as a sum of partial torques for a,, = 43°,
o = 9°: a) torque-ripple curves with torque ripple level T,,,/T,, = 27% b) phase currents
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Fig. 5.41 Electromagnetic torque 7, of 3-phase SRM as a sum of partial torques for a,, =
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Fig. 5.42 Electromagnetic torque and current for the Z/Z, = 8/6 SRM - motor A, for the
nominal state: a,, = 38°, a,z= 10°: a) torques b) phase current

The data given above and Figs. 5.39 - 5.41 concern motor B whereas for motor

A (ZJZ, = 8/6) the effect of the parameters on the level of pulsation is relatively
smaller. For this motor the level of pulsation is close to the minimum T,/ T,, =
32%...40% within a wide range of the control angles and it is difficult to obtain a
level of pulsation below 30%. It is possible to exceed this boundary; however,
this can only occur for the loads of the motor that are greater than the rated load
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Fig. 5.44 Electromagnetic torque and current for the Z/Z, = 8/6 SRM - motor A, for a high
load of the motor 7; = 7.8 [Nm] and a,, = 38°, a.; = 10°: a) torques, while torque ripple
level is T,;,/T,, = 26% ,n =1905 [rev/min] b) phase current

rip’
(Fig 5.44). Concurrently, for the control corresponding to the rated state the wave-
forms are presented in Fig. 5.42, for a,, = 38°, a.; = 10°. In this case, the respec-
tive values of the efficiency and torque ripple level are the following: # = 83.5%,
T,;)/T, = 39%. The lowest level of torque ripple, which is equal to T,;,/T,, = 32%
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takes place for the control: a,, = 35°, a4 = 10°, and the efficiency is even higher,
as it is equal to 7 = 84.8%. The two latest states differ in terms of the value of the
power output of the motor due to the definitely different values of rotational
speed, which are respectively equal to 3220 [rev/min] and 2780 [rev/min].

As one can see, in SRM motors there is a possibility of reducing the level of
pulsation as a result of adequate selection of the control angles a,,, ¢ This, how-
ever, is possible within a limited range and may lead to a slight decrease of the ef-
ficiency, in particular for low rotational speeds [30,41,42].

5.6.3 Shapes of Current Waves of SRS

The shapes of phase currents reflect the mode of the control of SRM motor and
assume specific waveforms depending on the control angles and rotational speed
of the rotor. It is also possible to distinguish the generator operation of the ma-
chine from the motor regime on the basis of its waveform (Fig. 5.29a). Fig. 5.45
presents the shapes of the phase current of motor A which differ in terms of the
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Fig. 5.45 Phase current of the (A) SRM for a,, = 35°, T; = 5.0 [Nm] and different o, val-
ues: a) G = 5°,b) e = 10° ¢) a5 = 15°
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Fig. 5.46 Phase current of the (A) SRM for a continuous conduction resulting from late
switch-off angle a,; = 5°, a,, = 40°, T; = 3.0 [Nm], n = 2900 [rev/min]: a) single phase
current b) all 4 phase currents

switch off angle a,, i.e. for a decreasing conduction angle a., equal to a, = 30°,
25°, 20°, respectively. One can clearly note the instant when the supply voltage is
disconnected and the transfer of the winding to the period in which it returns the
energy to the source through the diodes of the bridge. For the example presented
in Fig. 5.45a for a, = 30°, during the return of energy one can easily notice a bulge
on the waveform which is associated with the decreasing inductance of the
winding after the rotor tooth exceeds the aligned position.

Fig. 5.46 presents the continuous conduction of the phase currents of the SRM
motor, which occurs for the late de-energizing of phases, large load and high rota-
tional speed of the rotor. In these conditions the motor operates correctly and
demonstrate a low level of pulsation; however, the energy efficiency of the motor
decreases considerably due to the large power losses in the windings. This, in turn,
brings a hazard of motor failure due to overheating.

ifA]

Oa.oz 0.022 0.024 0.026 0.028 0.03
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Fig. 5.47 Phase current shape by PWM controlled voltage (motor A), for k, = 0.7, a,, =
33°, 05 = 8°, T; = 3.0 [Nm], n = 1200 [rev/min]
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Fig. 5.48 Phase current shape in case of high rotor speed n = 5400 [rev/min], for motor B,
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Fig. 5.49 An influence of a load on current shape (motor B), a,, = 51°, oo = 15°:2) T; =
0.5 [Nm], n = 5400 [rev/min] b) T; = 4.5 [Nm] n = 2700 [rev/min] c) T; = 7.5 [Nm], n =
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In Fig 5.49 one can see that the load does not have a significant effect on the
waveform of the current, which is similar for both small (7, = 0.5 [Nm]) as well as
large (T; = 7.5 [Nm]) load torque of the motor. However, the rotational speed of
the drive differs significantly in these two cases, which can be also concluded
from static characteristics — Fig 5.36.

5.7 Control of SRM Drives

5.7.1 Variable Structure — Sliding Mode Control of SRM

Sliding mode control is widely used in a up-to-date electric drives. This results
from the fact that switching of constant supply voltage to electric motor windings
formally constitutes of one of the possible control modes with variable structure.
This, in turn, was made possible as a result of the major development in the field
of power electronics.

Sliding mode control involves the control of the motion along a sliding surface
o(q,r) =0 [25,44]. This group of methods involves control applying PWM
technique (Pulse Width Modulation), as well as other more advanced control
methods, including DTC (Direct Torque Control), with regard to induction motor
drives for instance, as described in Chapter 3.4. The natural stability of the system
together with high frequency of the switching make it possible in majority of cases
for the trajectory of the drive’s motion to follow in a close vicinity of a sliding
edge even without application of special efforts and precise selection of the pa-
rameters. Sometimes engineers involved in its practical application do not see it
necessary to bother themselves with proving stability of a drive. In such cases the
experience resulting from laboratory tests and a narrow range of requirements re-
garding the control of the drive make it possible to design control on the basis of
one’s experience. However, in a wide range of other cases and, in particular, in ac-
tuators realizing complex and variable trajectories of motion the selection of con-
trol parameters tends to be more formal and most often it is based on the direct
Lyapunov method for the analysis of the stability of the system [25,4/1,16/1]. It
finds application in servomechanisms with stepper motors as well as BLDC drives
[53/3]. Similarly, in SRM drives it is possible to realize the given trajectory of the
motion by a proper switching the supply voltage in the range +u, or +u, 0 with an
adequately high frequency. The sliding control of SRM motor that is applied here
has certain limitations resulting from the nature of the motor as well as the
adopted assumptions. One of them is that the control occurs simultaneously only
for a single phase winding of the motor, as a result of which it involves just one
dimension. The second restriction concerns the fact that the control occurs only
for the conduction of transistors, i.e. for the flow of energy from the source. In
contrast, during the diode conduction and return of the energy into the source the
motor’s current and torque are uncontrolled for the duration of this stage of opera-
tion. Obviously, there is a possibility of application of transistor-diode control
mode, i.e. —u, 0 during the periodic switching of the winding and some kind of the
effect of current control is obtained in this way; however, it works only in the di-
rection of increasing the time needed for the decay of the current and it will not be
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applied here. The presentation further on will concentrate on the application of
sliding control with regard to SRM machine realizing given trajectory of motion
and limiting torque ripple, i.e. overcoming one of the drawbacks of this drive in
terms of vibration and noise production. The presentation will include DTC con-
trol and current control of the motor in accordance with the given sliding curve
realizing these targets. It is possible to plan other control techniques involving
sliding, all of which realize the given trajectories of the motion of the drive. The
presentation of practical examples of such systems will be the subject of the fol-
lowing sections.

5.7.2 Current Control of SRM Drive

The current control used here involves the sliding control of SRM drive in which
the sliding surface is defined by the given function of the currents of the phase
windings of a machine

a[zz’k,a]:o 0,(i,,6.)=0 (5.28)
k
and the control itself is defined in the standard way:

+uk[zz‘k,e,J for G[Zik,H,J >0

k k

uk(ik,ar)=
—uk[Zikﬁ,J for G{Zik,H,J<O

k k

(5.29)

The sliding control described by the formulae (5.28) and (5.29), which is further
called current control due to the fact that the sliding surface is designed on the ba-
sis of the values of the phase currents, is not a typical one. This comes as a conse-
quence of the fact that the analytical expression (5.28) of sliding surface does not
involve time 7 in an explicit way but the control is relative to other variable, i.e.
the angle of the rotation of the rotor 8,, thus, it is a phase surface. Secondly, as it
will be presented later, the sliding surface is determined in the function of the sum
of phase currents. In the practice of SRM motor control this means the dependence
of the sliding surface on a single phase current that is drawn from the source,
which is controllable— since it is supplied through the transistors, and possibly on
a single or more phase currents that are in the phase of decay. This, in turn, means
that the control is single-dimensional dependent on the sum of the currents in
windings, while only one of the currents is controllable, i.e. the one that is ener-
gized from the source. The selection of the sliding surface has two roles to play: it
minimizes the pulsations of the torque and executes the given curve of the
electromagnetic torque of the motor that is defined to adequately reflect the re-
quired trajectory of the motion of the drive. As one can see, the task set in this
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Fig. 5.52 Characteristic curves for Z/Z, = 6/4 SRM as a function of rotor position angle: a)
electromagnetic torque 7, for two neighboring phase windings supplied by i
1.0,2.0,3.0,...,20 [A] b) Xi; of currents in two neighboring phase windings required for 7,
1.0,2.0,...,6,0 [Nm] c) Zi; of currents required for 7, = 3.0 [Nm] in detail form

way requires that the problem that is inverse to the motor torque function has to be
solved, i.e.

i =f(T,) (5.30)

Since this problem is non-linear and concurrently the current is normally con-
ducted through more than a single phase winding, the above should be restated as
follows
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i =f(T,) (5.31)

k

In practice, this problem is associated with the determination of the sum of two
currents being conducted through adjacent windings, i.e. one that is supplied and
one that returns the energy, in a way that enables generation of a desired instanta-
neous value of electromagnetic torque. The solution of this task is the reverse to
the relation presented in Fig. 5.52a and Fig. 5.53a respectively for the SRM motor
with the teeth number Z/Z, = 6/4 and Z,/Z, = 8/6. These are the machines B and A
in Table 5.1.

Fso
A A
M—zn
L1
a0 25 15 : o
a) theta[deg]

il
W_m -

W—L}D
o — 13
b) =30 25 20 theﬁlig] -10 -5 ]
Fas
Fao ifA]
]
40 a0 20 A0 0
) theta[deg]

Fig. 5.53 Characteristic curves for for Z/Z, = 8/6 SRM as a function of rotor position an-
gle: a) electromagnetic torque 7, for two neighboring phase windings supplied by i = 10.0,
20.0, 30.0, ...,150 [A] b) Zi; current in two neighboring phase windings required for 7, =
3.0,6.0,9.0, ...,18.0 [Nm] c) Xij current required for 7, = 6.0 [Nm] in detailed form
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Fig. 5.54 Starting of motor B (Z/Z, = 6/4) with current controller set for segmented con-
stant torque values: a) required Xi; current b) phase currents c) electromagnetic torque d)
rotor speed e) partial and resultant torque for a final speed
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Fig. 5.56 Trajectory formed in the B SRM machine under a current controller: a) required
current b) phase currents c) electromagnetic torque d) rotational speed e) partial and resul-

tant torques for Q, = 180 [rad/min]
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From the results in Fig. 5.52 and Fig. 5.53 it stems that gaining high value of the
torque for motor B (Z/Z, = 6/4) poses a much more difficult task than for the motor
with 4 phase windings, i.e. motor A (Z/Z, = 8/6) as a result of the larger distances
between the teeth for the first of them. However, in both cases it is possible to per-
form the current control by the presented method, which will be demonstrated on
the basis of several examples. First, we will discuss the start-up of motors with the
application of current control. For motor B it is presented in Fig. 5.54.

Current control, as presented can be effectively used to form the trajectory of
the motion of a drive as a result of applying a given waveform of torque produced
by a motor. This torque for the application of the current control needs to be sub-
sequently transformed (5.31) this gaining the required current waveform necessary
to perform the task given by Xi;. This is presented on the illustrations of the opera-
tion of the drive for both motors A and B.

The presented examples of the application of current control (Fig. 5.54...
Fig. 5.57) prove that the presented method is effective with regard to the both
motors considered as exemplary ones, i.e. for the motors with 3 and 4 phase wind-
ings. This allows one to form the waveforms of rotational speed, torque and cur-
rent, the latter of which is in this method the quantity that is directly regulated, as
well as enables one to limit the pulsations of the torque. However, this method can
be effective only within the range in which there is an adequate surplus of the
regulation, which in this case means a sufficient surplus of the supply voltage, that
will enable one to perform the planned current control. This limited surplus of the
control is the reason that in the start-up of motors (Fig. 5.54, Fig. 5.55) is carried
out with a torque decreasing by stepwise sections along with increasing speed.
The forming of the trajectory of the motion occurs regarding the rotational speed
that is permitted by the supply voltage in order to ensure that the given current
shape resulting from assumed trajectory of the motion were possible to perform by
the control system.

5.7.3 Direct Torque Control (DTC) for SRM Drive

DTC control with regard to SRM motor also forms an application of sliding
method for drive regulation since it occurs as a result of rapid switching of the
voltage applied to the windings of a machine’s stator in a way that ensures that the
given waveform of electromagnetic torque is realized. This method in its practical
application is similar to current control, which has already been the focus of pres-
entation earlier in the chapter. The specific characteristics of DTC control involve
the fact that the sliding surface is constructed on the basis of the desired waveform
of the torque:

o(T,(q).6,)=0 (5.32)
This can be restated more directly as:

o: T.6.,Q,,)-T,(q)=0
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This type of control, as it has been mentioned earlier, translates into the control of
the voltage of machine phases as a result of rapid switching of the supply

+u, for o>0

u, (T.) ={ (3.33)

-y, for o0<0

It appears that this method should offer more advantages than current control since
it is more direct with regard to realizing a given trajectory of the drive motion.
However, one has to bear in mind that we do not have the measurement of the mo-
tor torque whereas currents are measured at each phase and this is done with a
high degree of precision. For the case of the DTC control instead of the measure-
ment of the torque it is necessary that we apply an estimation of the torque, i.e.
usually a torque observer that offers the actual value of the machine torque on the
basis of the accessible measurements and computations based on mathematical
model. In conclusion, DTC is also an indirect method for the control of the trajec-
tory of the motion. The issue thereof will be subsequently transferred into the
stage of determining the error of the executed trajectory. Thus, the effectiveness of
this control is relative to the precision of the observer and its ability to reduce the
error of observation. The DTC method has, however, an advantage that the trajec-
tory can be given on-line, which is more difficult to execute using current control
method. The figures that follow illustrate the results of DTC control with regard to
SRM motor.

By looking at the application of DTC method for the control of SRM motor
drive in Fig. 5.58 and Fig. 5.59 one has to recognize high efficiency of this type of
control. However, one can also note that the results presented here refer to the
ones gained on the basis of computer simulation employing the previously devel-
oped mathematical model instead of results of measurements on a real system. In
consequence the results are idealized in the sense of not being charged with the er-
ror of the method associated with the application of the torque observer in the con-
trol. In this case the electromagnetic torque calculated on the basis of the mathe-
matical model is equal to the measured torque and in this way one of the sources
of the significant error is absent.

5.7.4 Sensor- and Sensorless Control of SRM Drive

For the control of SRM motor it is indispensable that we are familiar with the po-
sition of the rotor in the sense of the precise knowledge of the of rotation angle 8,.
This is due to the switching of transistors, which is used to control the supply of
the phase winding for the angles of rotation equal to a,, and a,, respectively. For
this reason the most typical solution involves the application of the quadrature en-
coder in the control system, whose signals are transformed into information re-
garding the position of the rotor, its rotational speed and direction of the rotational
motion. A block diagram of the control using the signal from position sensor is
presented in Fig. 5.60.



5.7 Control of SRM Drives 443

Unc

Qop

Commutation Qo . H bridge % O,
logic PWM | converters onk d)er

Switching + Speed o __ Q, d
a controller controller ~ di

Q.
e "

Fig. 5.60 Block diagram of control of SRM drive applying encoder sensor signal

An alternative to the control system using encoder involves sensorless control
[12,14,15,31,48], which in brief means that the sensor is absent from the system.
Such a solution is made possible as a result of applying a position estimator or ob-
server of motor state, thus, leads to savings in terms of the investment, reduction
of mass and space occupied by the system and increase in efficiency. This im-
provement in terms of reliability is connected with the lack of an additional me-
chanical device on the shaft that is also common to the rotor and the connection
leading from it to the control system. It is not always possible to apply sensorless
control, and in particular, it may not be possible to use it in systems in which it is
necessary to have a very high degree of precision of regulation. The observer itself
will be the subject of discussion later and now we will focus on the earlier concept
regarding position estimator. It is formed by a complex measurement and calcula-
tion unit of the control system with the previously prepared characteristics of
magnetization or characteristics of windings’ inductance. Here we apply the rela-
tions that are reverse to the magnetization characteristics, that is:

S = f(¥.i) S = f(Le.i) (5.34)

where subscript k£ denotes the number of a phase winding, ¥ - magnetic flux cou-
pled with this winding, and &, - angle of rotation reduced to the pitch of the teeth
for the k-th winding. In order to use the relation (5.34) it is necessary to measure
phase currents and voltages supplying phase windings so that the instantaneous
value of the flux linkage associated with the k-th winding is familiar:

P, = j (1, —Ri,)dt (5.35)

1

While we have the value of the flux linkage and current available, it is possible to
precisely determine the value of the angle of rotation in terms of the rotor’s tooth
position in respect to the axes of the given winding on the basis of look-up tables
based on the reverse characteristics of magnetization (5.34). It is self-evident that
a useful device for such a control is a signal processor (DSP) and the particular
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manufacturers offer publications and exemplary solutions using their equipment
beside part catalogues. Another method for the estimation of rotor position 8, ap-
plies the technique of test pulses injected to the unsupplied phase of SRM ma-
chine, which is quite similar to the one used in the determination of the start-up
sequence — see chapter 5.4.2. An example of such sensorless control is presented
in Fig. 5.61.
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Fig. 5.61 General block diagram of a sensorless control of SRM with a position estimator
based on flux linkage

5.7.5 State Observer Application for Sensorless Control of SRM

Sensorless control denotes here, just as in the previous examples, the lack of a po-
sition/speed sensor, such as encoder or resolver in a system. Concurrently, the sys-
tem has to contain sensors of phase current, which are applied commonly and do
not pose any technical problem. Their use allows for the application of adequate
emergency devices and various diagnostic methods regarding the state the drive.
In this manner, they lead to an increase of reliability of the system at a low cost
and can be applied in the operation of the state observer. The role of the observer
consists in on-line determination of estimates ¢ of variables q and reduction of

the observation error
e=q—q (5.36)

to zero within a given time. Taking after [25] the non-linear model of the dynamic
state in the form

q=f(@Q+g(q,u) (5.37)
the vector of the observer in the form:
y = h(q,u) (5.38)

and the difference from the estimation of the state vector:
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r=y-y=y-hq.u (5.39)
we can define the following equation for the observer:
d=f@+2@w+xly—h@uw) (5.40)

In accordance with (5.40) this observer constitutes the dynamic model of the sys-
tem (5.37) accounting for the estimated vector of variables q plus a non-linear

function x, whose role is to reduce the error of the system (5.39) to zero in the
steady state. For the SRM motor, whose mathematical model is presented by equa-
tions (5.12) — (5.15), the possible state observer is presented by the equations:

OM . (iy.,6,)
26

r

%z (Mk —kak —ek(fkaér’ér))/(Mkk(fk’ér)+;k

&, =(1.G0.6)-T, - DO, )17 + K i) (5.41)
0, =Q, +1,0, i)

The equations of the observer (5.41) form a direct repetition of the dynamic equa-
tions to which undetermined correction functions «;, x, are supplemented and ap-
plied with regard to the equations whose variables are not observed. A problem
that is widely discussed in the literature involves a method of finding correction
functions for a non-linear system. Thus, the lack of a general method leads to a
number of specific solutions, which are applied on the basis of analogy to similar
systems. In these circumstances it is important to select an appropriate method of
testing whether the estimation error decays in time for the experimentally selected
correlation functions «. This is possible with the aid of the generalized Lyapunov
method [25,16/1,21/1,23/2] after the selection of positively determined candidate
function V in an given area. This function needs to be positively determined and
relative to the estimation errors. In order to secure the asymptotic error decay the
first derivative of the function has to be negative in that area, in accordance with
the Laypunov theorem. In the examined case of estimation of the position and ro-
tational speed of SRM motor, the candidate function can be assumed in the form:

veelrei=(6,-6] +la, -0, ] (5.42)

This function is self-evidently positively determined in the entire area of the
occurrence of the estimation error. Concurrently, the requirement of the asymp-
totic decay error comes down the inequality in the form

V =28,€,+2£0E0 <0 (5.43)
Hence, it is necessary to study two inequalities

€9€p <0 and Eqeg <0 (5.44)
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for the presented model of the observer (5.41) and selected correlation functions
K1, k. When it comes to the selection of these functions, the most extreme solution
[25] involves the use of a sliding mode observer, which switches a constant func-
tion depending on the sign of the observation error. Thus, it imposes the function
to remain in the vicinity of the observed value. In the examined case the applica-
tion of the sliding observer with regard to (5.41) means that:

K, (i, —1,) = K,sign(i, —i;) 5.45)
Ky (i, — i) = Kpsign(iy — i)

K, K denote here the gains which can assume positive or negative values depend-
ing on the sign of estimation error. By looking at the conditions of estimation error
decay (5.44) one can imagine how the sign changes of correlation functions (5.45)
lead to the negative value required in these conditions. After testing and selecting
adequate gain factors K, K, this practically enables one to apply such an observer
in the control of SRM motor without the application of the position sensor.
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system, 67
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by rotation, SRM windings, 396
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Induction motor, 110
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electromechanical constant, 144
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Induction motor modeling, 114
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Inverse dynamics, 370
Isolated system, 52
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Jacobian matrix, 21, 29
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Kinetic energy
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Kirchhoff's first law, 68
Konig’s theorem, 43

L
Lagrange’s equation, 24

Lagrange’s function, 25
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of a particle, 61
Least action principle, 60

for electromechanical system, 67
Liapunov’s function, 266
Linearized model

BLDC drive, 367
Linked inductors, 76
Lorentz force, 66

M

Magnetic energy
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Magnetic field momentum, 73
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Magnetization characteristics, 74

SRM machine, 390
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Parasitic phenomena
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BLDC speed control, 340
PIDD regulator
BLDC control, 356
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SRM control, 443
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Pull force
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Standardization
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stability, Liapunov theorem, 264
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BLDC drive, 322
Stationary action principle, 67
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simplifications, 171
Steady state, 164

BLDC motor, 322
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Stiff system, 101, 137
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SRM control, 389
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BLDC control, 341

SRM control, 439
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Variables
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mechanical, 78
Vector control
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dynamic feedback, 244
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system, 245
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Index
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W
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