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Notation Index 

3/2π=a  - phase shift between 3-phase symmetrical sine curves 

rva &&& ==  - acceleration vector 

em
AAA δδδ ,,  - virtual work, its mechanical and electrical component 

A  - vector potential of a magnetic field 

3
AA ,

2
 - skew symmetric matrices: 2- and 3- dimentional 

respectively 

B  - magnetic induction vector 

C  - electrical capacity 

D  - viscous damping factor 

ke  - electromotive force (EMF) induced in k-th winding 

E  - total energy of a system 

)(K
k

f  - analytical notation of holonomic constraints function 

i
F,F  - vector of external forces, i-th component of this  

vector 

rsL
fff ,,  - frequency of voltage (current): feeding line, stator,

rotor 
g  - acceleration vector of earth gravitation force 

g - number of branches of electric network 

h  - number of holonomic constraints 

Qi &=  - electric current as a derivative of electrical charge 

af
ii ,  - excitation current, armature current 

I  - symbolic value of sinusoidal current 

I  - matrix of inertia of a rigid body 
T

ssss
iii ][

321
=i  - vector of a 3-phase stator currents 

T

sss
ii ][

2112
=i  - vector of a 3-phase stator currents in a star connected 

system 
T

rrr
ii ][

3113
=i  - vector of a 3-phase rotor currents in a star connected 

system 
T

rmrrr
iii ][

21
K=i  - vector of a m-phase rotor currents 

uvruvs 00
, ii  - vectors of transformed stator, rotor currents in vu,,0

axes 

ruvsuv
ii ,  - vectors of transformed stator, rotor currents to vu,

axes 
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αβαβ rs
ii ,  - vector of transformed stator and rotor currents to 

βα ,  axes 

rdqsdq
ii ,  - vector of transformed stator and rotor currents to qd ,

axes 

rxysxy
ii ,  - vector of transformed stator and rotor currents to yx,

axes  

][ ρρρ yxsxy
ii=i  - vector of stator currents transformed to the field

oriented ρρ yx ,  axes 

J ,
s

J  - moment of inertia, moment of inertia of a motor’s

rotor 

j  - current density vector 

J  - Jacobi matrix of a transformation 

k  - stiffness coefficient of an elastic element 

rs
kk ,  - magnetic coupling coefficients for stator and rotor

windings 

u
k  - pulse width factor in PWM control method 

L ,
em

LL ,  - Lagrange’s function, its mechanical and electrical 

component 

rs
LL σσ ,  - leakage inductances of stator and rotor windings  

respectively 

rs
LL , ,

m
L  - self-inductance of stator and rotor windings,  

magnetizing inductance 

L  - angular momentum of a body 
m  - number of bars (phases) in a squirrel-cage rotor  

winding 

fa
mm ,  - modulation coefficients: of an amplitude and fre-

quency respectively 

Mm
i
,  - mass of i-th particle and total mass of a body 

M  - moment of forces 

rs
MM ,  - main field inductance coefficients of stator, rotor 

phase windings 

sph
M ,

rph
M  - inductance matrices for a stator and rotor phase 

windings systems 

srph
M ,

rsph
M  - matrices of mutual inductances between stator and ro-

tor phase windings 

uvs0
M ,

uvr 0
M ,

uvsr 0
M  - matrices of mutual inductances between stator and 

rotor phase windings transformed to vu,,0  axes 

rs
NN ,  - number of slots in a stator and rotor of electrical

machine 

nh  - number of nonholonomic constraints in a system 
p  - number of pole pairs in electrical machine 
p  - vector of momentum of mechanical system 

P  - electric power 

k
P  - generalized force acting along the k-th coordinate 
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k
Q  - electric charge of the k-th element characterized by 

electrical capacity 

kk
iQ =&  - electric current in k-th winding as a derivative of re-

spective charge 

QQ &,  - vector of electrical charges of a system, vector of 

electric currents 
q  - number of pulses of power electronic converter 

kkk
qqq &&& ,,  - k-th generalized coordinate, - velocity, - acceleration 

respectively 

qqq &&& ,,  - vectors of generalized coordinates, velocities, accel-

erations of a system 

qδ  - vector of virtual displacements for generalized coor-

dinates 

k
qδ  - virtual displacement for k-th generalized coordinate 

rs
RR ,  - phase winding resistance for stator and rotor respec-

tively 

rr ,
i

 - radius-vector pointing i-th particle, radius-vector for 

whole system in Cartesian coordinates 

rδ  - vector of virtual displacements of a system in Carte-

sian coordinates 

R  - vector of reaction forces of constraints in a system 
s  - slip of an induction motor rotor motion in respect to

magnetic field 
s  - total number of degrees of freedom 

em
ss ,  - number of mechanical, electrical degrees of freedom 

of a system 

S  - action function of a system 

meel
TTT ,,  - kinetic energy, its electrical and mechanical compo-

nent 

meel
TTT ′′′ ,,  - kinetic co-energy, its electrical and mechanical com-

ponent 

e
T ,

l
T  - electromagnetic torque of a motor, load torque 

stb
TT , ,

n
T  - break torque, starting torque, rated torque of an induc-

tion motor 

p
T  - period of a single pulsation sequence in PWM control 

method 

f
T  - friction force 

rs
TT ,  - orthogonal matrices of transformation for stator and

rotor variables 

k
uu,  - electric voltage, voltage supplied to k-th winding 

rs
uu ,  - stator and rotor voltages respectively 

snn
UU ,  - rated voltage, stator rated voltage 

312312
,, UUU  - phase to phase voltages in 3-phase electrical system 

312312
,,

sss
uuu  - stator’s phase to phase voltages in 3-phase system 
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sph
U  - phase voltage of stator’s winding 

L
U  - feeding line voltage 

Ld
UU

π

23
0

=  - average value of rectified voltage in a 6 pulse 3-phase 

system 

U  - symbolic value of sinusoidal voltage 

elme
UUU ,,  - potential energy of a system, its mechanical and elec-

trical component 
T

ssssphs
uuu ],,[,

321
=UU  - stator’s voltage vector, stator’s phase voltages vector 

T

rmrrrphr
uuu ],,,[,

21
K=UU - vector of rotor voltages, vector of phase voltages of

rotor windings 

uvs0
u  - vector of stator voltages transformed to vu,,0  system 

of axes 

suv
u  - vector of stator voltages transformed to vu,  system 

of axes 

sxy
u  - vector of stator voltages transformed to yx,  system 

of axes 

ρsxy
u  - vector of stator voltages transformed to ρρ yx ,  field 

oriented axes 

rv &=  - vector of velocities of a system 

w - number of nodes of an electric network 

X  - reactance of a winding  

mrs
XXX ,,  - reactance of a stator, rotor and magnetizing one 

respectively 

),(
n

χχ K
1

ȋ =  - vector of coordinates in a primary coordinate system 

rs
ZZ ,  - number of stator’s, rotor’s teeth of SRM machine 

lk
αα ,  - angles determining axis position of windings 

offon
αα ,  - switch on and switch off control angles of SRM

machine 
γ  - phase shift angle 

k
δξ  - virtual displacement of k-th Cartesian coordinate in 

unified coordinate system 

),(
1 n

ξξ K=Ξ  - vector of Cartesian coordinates in unified system of

coordinates ξ  

η  - energy efficiency factor of a system 

r
θ  - rotation angle  

rr
Ω=θ&  - rotational speed of a rotor 

ρ  - number of a magnetic field harmonic 
ρ  - field orientation angle of ρρ yx ,  axes (vector control) 

σ  - leakage coefficient of windings 

φ  - scalar potential of electromagnetic field 
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ϕ  - analytical notation of nonholonomic constraints 

T
ϕ  - field angle (DTC) 

k
ψ  - flux linkage of k-th winging 

f
ψ  - excitation flux 
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ssssph
],,[

321
ψψψ=Ȍ  - flux linkage vector of stator windings 

rph
Ȍ  - flux linkage vector of rotor windings 

suv
Ȍ ,

ruv
Ȍ  - vu,  transformed flux linkage vectors of stator and ro-

tor windings 

uvs0
Ȍ ,

uvs0
Ȍ  - vu,,0 transformed flux linkage vectors of stator and 

rotor windings 

sdq
Ȍ ,

rdq
Ȍ  - qd ,  transformed flux linkage vectors of stator and 

rotor windings 

sxy
Ȍ ,

rxy
Ȍ  - yx,  transformed flux linkage vectors of stator and ro-

tor windings 

αβs
Ȍ , αβr

Ȍ  - βα ,  transformed flux linkage vectors of stator and 

rotor windings 

LL
fπω 2=  - AC supply line pulsation 

rs
ωω ,  - pulsation of stator, rotor sinusoidal voltages, currents 

c
ω  - reference pulsation (angular speed) in transformed 

vu,,0  system 

re
pΩ=ω  - electrical angular speed of a rotor 

p
sf
/

0
ωω =Ω=  - synchronous speed of rotating magnetic field, idle run

speed 
ω  - vector of angular velocity of rigid body 

p
s
/

0
ω=Ω  - ideal idle run speed of an induction motor’s rotor 

r
Ω  - angular speed of a rotor 
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Chapter 1 

Introduction 

Introduction 

Abstract. First Chapter is an introductory one and it generally presents the scope 

of this book, methodology used and identifies potential readers. It also develops 

interrelations between modern electric drives, power electronics, mechatronics and 

application of control methods as the book to some degree covers all these fields. 

The content is concentrated around electromechanical energy conversion based on 

Lagrange’s method and its clear and subsequent application to control of electric 

drives with induction machines, brushless DC motors and SRM machines. It does 

not cover stepper motors and synchronous PM drives. All computer simulation re-

sults are outcome of original mathematical models and based on them computa-

tions carried out with use of MAPLE™ mathematical package. 

Electrical drives form a continuously developing branch of science and technol-

ogy, which dates back from mid-19th century and plays an increasingly important 

role in industry and common everyday applications. This is so because every day 

we have to do with dozens of household appliances, office and transportation 

equipment, all of which contain electrical drives also known as actuators. In the 

same manner, industry and transport to a large extent rely on the application of 

electrical drive for the purposes of effective and precise operation. The electrical 

drives have taken over and still take on a large share of the physical efforts that 

were previously undertaken by humans as well as perform the type of work that 

was very needed but could not be performed due to physical or other limitations. 

This important role taken on by the electrical drive is continuously expanding and 

the tasks performed by the drives are becoming more and more sophisticated and 

versatile [2,11,12,13,20]. Electrical drives tend to replace other devices and means 

of doing physical work as a result of their numerous advantages. These include a 

common accessibility of electrical supply, energy efficiency and improvements in 

terms of the control devices, which secures the essential quality of work and fit in 

the ecological requirements that apply to all new technology in a modern society 

[1]. The up-to-date electrical drive has become more and more intelligent, which 

means fulfillment of the increasingly complex requirements regarding the shaping 

of the trajectories of motion, reliable operation in case of interference and in the 

instance of deficiency or lack of measurement information associated with  

the executed control tasks [4,8,16,21]. This also means that a large number of 

components are involved in information gathering and processing, whose role is to 
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ensure the proper operation, diagnostics and protection of the drive. The reasons 

for such intensive development of electrical drives are numerous and the basic 

reason for that is associated with the need of intelligent, effective, reliable and un-

disturbed execution of mechanical work. Such drives are designed in a very wide 

range of electrical capacity as electromechanical devices with the power rating 

from [mW] to [MW]. Additionally, the processes are accompanied by multi-

parameter motion control and the primary role can be attributed to speed regula-

tion along with the required levels of force or torque produced by the drive. The 

present capabilities of fulfilling such complex requirements mostly result from the 

development of two technological branches, which made huge progress at the end 

of the 20
th

 century and the continuous following developments. One of such areas 

involves the branch of technological materials used for the production of electrical 

machines and servomotors. What is meant here is the progress in the technology 

of manufacturing and accessibility of inexpensive permanent magnets, in particu-

lar the ones containing rare earth elements such as samarium (Sr) and neodymium 

(Nd). In addition, progress in terms of insulation materials, their service lives and 

small losses for high frequencies of electric field strength, which result from con-

trol involving the switching of the supply voltage. Moreover, considerable pro-

gress has occurred in terms of the properties of ferromagnetic materials, which are 

constantly indispensable for electromechanical conversion of energy. The other 

branch of technology which has enabled such considerable and quick development 

of electrical drive is the progress made in microelectronics and power electronics. 

As a result of the development of new integrated circuits microelectronics has 

made it possible to gather huge amount of information in a comfortable and inex-

pensive way, accompanied by its fast processing, which in turn offers the applica-

tion of complex methods of drive control. Moreover, up-to-date power electronics 

markets new current flow switches that allow the control over large electric power 

with high frequency thus enabling the system to execute complex control tasks. 

This occurs with very small losses of energy associated with switching, hence 

playing a decisive role in the applicability of such devices for high switching fre-

quencies. The versatility and wide range of voltages and currents operating in the 

up-to-date semiconductor switches makes it possible to develop electric power 

converters able to adapt the output of the source to fulfill the parameters resulting 

from instantaneous requirements of the drive [5,7,23]. Among others this capabil-

ity has led to the extensive application of sliding mode control in electrical drive 

which very often involves rapid switching of the control signal in order to follow 

the given trajectory of the drive motion [22]. 

Such extensive and effective possibility of the development of electrical drives, 

which results from the advancements in electronics and a rapid increase in the ap-

plication range of the actuating devices, has given rise to the area of mechatronics. 

Mechatronics can either be thought of as a separate scientific discipline or a 

relevant and modern division of the electrical drive particularly relating to elec-

tronics, control and large requirements with regard to the dynamic parameters of 

the drive [19]. 

It is also possible to discuss this distinction in terms of the number of degrees 

of freedom of the device applied for the processing of information followed by 
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electric power conversion into mechanical work. In a traditional electrical drive 

we have to do with a number of degrees of freedom for the electric state variables 

and a single one for the mechanical motion. In standard electrical machines the 

variables include: angle of the rotation of the rotor or translational motion in a lin-

ear motor. In mechatronics it is assumed that the number of the degrees of me-

chanical freedom can be larger, i.e. from the mechanical viewpoint the device 

executes a more complex capabilities than simply a rotation or translational mo-

tion. In addition, in mechatronics it is not necessary that the medium serving for 

the conversion of energy is the magnetic field. Mechatronic devices may operate 

under electric field, which is the case in electrostatic converters [14,15]. In con-

clusion, it can be stated that mechatronics has extended the set of traditional de-

vices in the group of electrical drives to cover a wider choice of them as well as 

has supplemented extra methods and scope of research. However, it can be stated 

beyond doubt that mechatronics constitutes nowadays a separate scientific disci-

pline which realizes its aim in an interdisciplinary manner while applying equally 

the findings of computer engineering, electronics and electromechanics in order to 

create a multi-dimensional trajectory of the mechanical motion. Such understand-

ing of mechatronics brings us closer to another more general scientific discipline 

as robotics. What is important to note is that if a manipulator or a robot has elec-

trical joint drives, in its electromechanical nature it constitutes a mechatronic  

device.  

Concurrently, robotics has even more to it [18]. Not to enter the definitions and 

traditions in this discipline, what is generally meant is the autonomous nature of 

the robots in terms of its capability of recognition of its environment and scope of 

decision making, i.e. the application of artificial intelligence. By looking at a ma-

nipulator or a robot produced in accordance with up-to-date technology we start to 

realize its capabilities with regard to its orientation in space and organization of 

the imposed control tasks. However, one should also give merit to its speed, preci-

sion, repeatability and reliability of operation, all of which relate to mechatronics. 

The reference to robotics in a book devoted to electrical drive results from the 

fact that in its part devoted to theory and in the presented examples a reference is 

made to the methods and solutions originating from robotics, the focus in which 

has often been on the motion in a multi dimensional mechanical systems with con-

straints [3]. 

The following paragraphs will be devoted to the presentation of the overview of 

the current book, which contains 4 chapters (besides the introduction) devoted to 

the issues of the up-to-date electrical drives and their control. 

Chapter 2 covers the issues associated with the dynamics of mechanical and 

electromechanical systems. The subjects of the subsequent sections in this chapter 

focus on mechanical systems with a number of degrees of freedom as well as 

holonomic and non-holonomic constraints. The presented concept covers a physi-

cal system which is reduced to a set of material points and a system defined as a 

set of rigid bodies. A detailed method of the development of a mathematical mod-

els is introduced involving Lagrange’s functions and equations departing from the 

principle of least action for a charged material particle in the magnetic field. Sub-

sequently, this concept has been extended to cover macroscopic systems capable 
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of accumulation of energy of the magnetic and electric fields in the form of kinetic 

and potential energy, respectively. The dissipation of energy and transformation of 

the dissipation coefficients into terms of the state variables are taken down to the 

negative term of the virtual work of the system. This is a way that is formally cor-

rect from the point of methodology of research. Additionally, it proves effective in 

the practice of the formulation of the equations of motion. The section devoted to 

electromechanical systems has been illustrated by numerous examples whose  

difficulty level is intermediate. 

In general, the examples of the application of theory in the book are quite  

numerous and have been selected in a manner that should not pose excessive diffi-

culty while maintaining them at a level that can serve for the purposes of illustrat-

ing specific characteristics of the applied method but are never selected to be  

trivial. 

Chapter 3 focuses on induction machine drives. The presented mathematical 

models have been developed with the aid of Lagrange’s method for electrome-

chanical systems. The models transformed into orthogonal axes are presented in a 

classical manner along with the models of an induction machine for which the 

variables on one side, i.e. stator’s or rotor’s are untransformed and remain in the 

natural–phase coordinates. This plays an important role in the drive systems sup-

plied from power electronic converters. The adequate and more detailed modeling 

of the converter system requires natural variables of the state, i.e. untransformed 

ones in order to more precisely realize the control of the drive. These models, i.e. 

models without the transformation of the variables on one side of the induction 

motors are presented in their applications in the further sections in this book. The 

presentation focuses on various aspects of their supply, regulation and control with 

the application of converters. The classical subject matters include presentation of 

DC braking, Scherbius drive, as well as the operation of a soft-starter. Concur-

rently, the up-to-date issues associated with induction machine drives cover two -

level and three-level Voltage Source Inverters (VSI), Sinusoidal Pulse Width 

Modulation (SPWM), Space Vector Modulation (SVM), Discontinuous Space 

Vector Modulation (DSVM) and PWM Current Source Inverter (CSI ) control. 

Further on, beside VC methods the Direct Torque Control (DTC) is presented  

in theory and in examples. The final section of Chapter 3 is devoted to the presen-

tation of structural linearization of a model of induction motor drive along with 

several state observers applicable for the induction motor. 

Chapter 4 is devoted to permanent magnet brushless DC motor drives and con-

trol of such drives. Firstly, the characteristics and properties of the up-to-date 

permanent magnets (PM) are presented together with simplified methods applied 

for their modeling. The example of a pendulum coil swinging over a stationary 

PM serves for the purposes of presenting the effect of simplifications in the model 

of the magnet on the trajectories of the motion of such an electromagnetic system. 

Further on, the transformed d-q model of a BLDC machine is derived along with 

an untransformed model in which the commutation occurs in accordance with the 

courses of the natural variables of the machine. The presentation of the mathe-

matical model of BLDC does not cover the subject of nonholonomic constraints in 

this type of machines. In a classical DC machine with a mechanical commutator 
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the occurrence of such constraints involving the dependence of the configuration 

of electrical circuits on the angle of the rotation of the rotor is quite evident. Con-

currently, in an electronically commuted machine the supply of the particular 

windings of the armature is still relative to the angle of the rotation of the rotor; 

however, the introduction of nonholonomic constraints in the description is no 

longer necessary. Commutation occurs with the preservation of the fixed  

structure of electrical circuits of the electronic commutator coupled with the phase 

windings of the machine’s armature and the switching of the current results from 

the change of the parameters of the impedance of the semiconductor switch in the 

function of the angle of rotation. This chapter focuses on the characteristics and 

dynamic courses illustrating the operation of BLDC motors with a comparison be-

tween the results of modeling drives with the aid of two-axial d-q transformation 

as well as untransformed model. On this basis it is possible to select a model for 

the simulation of the issues associated with the drive depending on the dimension 

of the whole system and the level of the detail of the output from modeling. The  

presented static characteristics and dynamic courses of BLDC drives focus on 

adequate characterizing the capabilities and operating parameters of such drives 

without control. Subsequently, research focuses on the control of BLDC drives 

and the presentation of the control using PID regulator, control with the given 

speed profile and the given profile of the position as well as inverse dynamics con-

trol. The illustrations in the form of dynamic courses are extensive and conducted 

for two different standard BLDC motors. 

The final chapter, i.e. Chapter 5 is devoted to the presentation of switched re-

luctance motor (SRM) drives. Before the development of the mathematical model, 

magnetization characteristics of SRM motors are presented and the important role 

of non-linearity of characteristics in the conversion of energy by the reluctance 

motor is remarked. Subsequently, the presentation follows with the mathematical 

model accounting for the magnetic saturation reflected by magnetization charac-

teristics with regard to the mutual position of the stator and rotor teeth. This is  

performed in a way that is original since the inductance characteristics that are 

relative to two variables are presented here in the form of a product of the function 

of the magnetic saturation and the function of the rotor’s position angle. Such an 

approach has a number of advantages since it enables one to analyze the effect of 

particular parameters on the operation of the motor. The derived model of the 

SRM motor does not account for magnetic coupling between phase windings; 

however, from the examples of two standard SRM motors it was possible to indi-

cate a little effect of such couplings on the characteristics and operation of the mo-

tors. In this manner such simplifications included in the mathematical model are 

justified. The further sections of this chapter focus on a number of issues regard-

ing the dynamics and control of SRM drives. The presentation includes a solution 

to the problem of the pulse based determination of the starting sequence during 

starting SRM drive for the selected direction of the rotation of the motor, direct 

start-up with the limitation of the current as well as braking and discussion of the 

issue of very specific generator regime of operation. The presentation also covers 

the selection of the regulation parameters for SRM with the aim of gaining high 

energy efficiency and reducing torque ripple level. The section devoted to the  
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control involves the presentation of sliding control applied for this drive type, cur-

rent control as well as DTC control and the possibility of limiting the pulsations of 

the torque as a result of applying specific control modes. In addition, the presenta-

tion briefly covers sensor and sensorless control of SRM drive and the application 

of state observers while providing for the exclusion of the position sensor.  

Following this brief overview of the content it is valuable that the reader notes 

that the book contains a large number of examples in the area of dynamics and 

control of specific drives, which is reflected by waveforms illustrating the specific 

issues that are presented in the figures. All examples as well as illustrations come 

from computer simulations performed on the basis of mathematical models devel-

oped throughout the book. This has been performed for standard examples of  

motors the detailed data and parameters of which are included in the particular 

sections of the book. Computer simulations and graphical illustrations gained on 

this basis were performed in MAPLE™ mathematical programming system, 

which has proved its particular applicability and flexibility in this type of model-

ing. All calculations were performed on the basis of programs originally devel-

oped by the author. 

As one can see from this short overview, the scope of this book is limited and 

does not involve some types of drives used in practice, i.e. stepper motor drives 

and synchronic machine drive with permanent magnets. The missing types of 

drive have similar characteristics in terms of the principle of energy conversion 

and mathematical models to SRM motor drives and BLDC drives, respectively. 

However, the details of construction and operation are dissimilar and only a little 

effort can enable one to apply the corresponding models in this book in order to 

develop dedicated programs for computer simulations and research of the two 

missing drive types. 

A final remark concerns the target group of this book, which in the author’s 

opinion includes students of postgraduate courses and Ph.D. students along with 

engineers responsible for the design of electrical drives in more complex industrial 

systems. 
References 

References 

References 

[1] Almeida, A.T., Ferreira, F.J., Both, D.: Technical and Economical Considerations on 

the Applications of Variable-Speed Drives with Electric Motor System. IEEE Trans. 

Ind. Appl. 41, 188–198 (2005) 

[2] Boldea, I., Nasar, A.: Electric Drives. CRC Press, Boca Raton (1999) 

[3] Canudas de Wit, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer,  

Berlin (1997) 

[4] Dawson, D.M., Hu, J., Burg, T.C.: Nonlinear Control of Electric Machinery. Marcel 

Dekker, New York (1998) 

[5] El-Hawary, M.E.: Principles of Electric Machines with Power Electronic Applica-

tions, 2nd edn. John Wiley & Sons Inc., New York (2002) 

[6] Fitzgerald, A.E., Kingsley, C., Kusko, A.: Electric Machinery. McGraw-Hill, New 

York (1998) 



References 7

 

[7] Heier, S.: Wind Energy Conversion Systems, 2nd edn. John Wiley & Sons, Chiches-

ter (2006) 

[8] Isidiri, A.: Nonlinear Control Systems. Springer, New York, Part I-(1995), Part II-

(1999) 

[9] Kokotovic, P., Arcak, M.: Constructive nonlinear control: a historical perspective. 

Automatica 37, 637–662 (2001) 

[10] Krause, P.C.: Analysis of Electrical Machinery. Mc Graw Hill, New York (1986) 

[11] Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery and 

Drive Systems, 2nd edn. John Wiley & Sons Inc., New York (2002) 

[12] Krishnan, R.: Electric Motor Drives: Modeling, Analysis and Control. Prentice-Hall, 

Upper Saddle River (2002) 

[13] Leonhard, W.: Control of Electrical Drives, 3rd edn. Springer, Berlin (2001) 

[14] Li, G., Aluru, N.R.: Lagrangian approach for electrostatics analysis of deformable 

con-ductors. IEEE J. Microelectromech. Sys. 11, 245–251 (2002) 

[15] Li, Y., Horowitz, R.: Mechatronics of electrostatic actuator for computer disc drive 

dual-stage servo systems. IEEE Trans. Mechatr. 6, 111–121 (2001) 

[16] Mackenroth, U.: Robust Control Systems. Springer, Heidelberg (2004) 

[17] Mohan, N.: Advanced Electric Drives. NMPERE, Minneapolis (2001) 

[18] Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. Springer, 

London (2000) 

[19] de Silva, C.W.: Mechatronics: An Integrative Approach. CRC Press, Boca Raton 

(2004) 

[20] Slemon, G.R.: Electric Machines and Drives. Addison-Wesley, Reading (1992) 

[21] Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991) 

[22] Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992) 

[23] Zhu, Z., Howe, D.: Electrical Machines and Drives for Electric, Hybrid and Fuel Cell 

Vehicles. Proc IEEE 95, 746–765 (2007) 



Chapter 2 

Dynamics of Electromechanical Systems 

Abstract. Chapter is devoted to dynamics of mechanical and electromechanical 

systems. Sections dealing with mechanical systems concern holonomic and non-

holonomic objects with multiple degrees of freedom. The concept of an object 

represented by a system of connected material points and the concept of a rigid 

body and connected bodies are presented. The Lagrange’s method of dynamics 

formulation is thoroughly covered, starting from d’Alembert’s virtual work prin-

ciple. Carefully selected examples are used to illustrate the method as well as the 

application of the theory. Electromechanical system’s theory is also introduced on 

the basis of the Lagrange’s equation method, but starting from the principle of 

least action for a electrically charged particle in a stationary electromagnetic field. 

Subsequently, the method is generalized for macroscopic systems whose operation 

is based on electric energy and magnetic co-energy conversion. Nonlinear systems 

are discussed and the concept of kinetic co-energy is explained. Energy dissipation 

is introduced as a negative term of the virtual work of the system, and transforma-

tion of dissipation coefficients to the terms of generalized coordinates are pre-

sented in accordance with Lagrange method. Finally a number of examples is  

presented concerning electromechanical systems with magnetic and electric field 

and also selected robotic structures. 

2.1   Mechanical Systems 

2.1.1   Basic Concepts 

Discrete system - is a system whose position is defined by a countable number of 

variables. In opposition to discrete system a continuous system (or distributed pa-

rameters’ system) is defined as a system with continuously changing variables 

along coordinates in space. Both these concepts are a kind of idealization of real 

material systems. 

Particle – is an idealized object that is characterized only by one parameter – 

mass. To define its position in a three-dimensional space (3D) three variables are 

necessary. This idealization is acceptable for an object whose mass focuses closely 

around the center of the mass. In that case its kinetic energy relative the to linear 

(translational) motion is strongly dominant over the kinetic energy of the  

rotational motion. Besides, it is possible to consider large bodies as particles  
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(material points) in specific circumstances, for example when they do not rotate or 

their rotation does not play significant role in a given consideration. This is the case 

in the examination of numerous astronomical problems of movement of stars and 

planets. 

Rigid body – is a material object, for which one should take into account not 

only the total mass M , but also the distribution of that mass in space. It is impor-

tant for the rotating objects while the kinetic energy of such movement plays an  

important role in a given dynamical problem. In an idealized way a rigid body can 

be considered as a set of particles, of which each has an specific mass mi, such that 

Σmi = M. Formally, the body is rigid if the distances dij between particles i,j are 

constant. The physical parameters that characterize a rigid body from the me-

chanical point of view are the total mass M, and a symmetrical matrix of the  

dimension 3, called the matrix of inertia. This matrix accounts for moments of in-

ertia on its diagonal and deviation moments, which characterize the distribution of 

mi masses within the rigid body in a Cartesian coordinate system. 

Constraints – are physical limitations on the motion of a system, which restrict 

the freedom of the motion of that system. The term system used here denotes a 

particle, set of connected particles, a rigid body or connected bodies as well as 

other mechanical structures. These limitations defined as constraints are diverse: 

they can restrict the position of a system, the velocity of a system as well as the 

kind of motion. They can be constant, time dependent or specific only within a 

limited sub-space. Formally, the constraints should be defined in an analytical 

form to enable their use in mathematical models and computer simulations of mo-

tion. Hence, they are denoted in the algebraic form as equations or inequalities. 

Cartesian coordinate system - is the basic, commonly used coordinate system, 

which in a three dimensional space (3D) introduces three perpendicular straight 

axes. On these axes it is possible to measure the actual position of a given particle 

in an unambiguous way using three real numbers. 

Position of the particle Pi in that system is given by a three dimensional vector, 

so called radius-vector ri: 

),,( iiiii zyxrr =                                                 (2.1) 

Its coordinates are, respectively:  xi, yi, zi ; see Fig. 2.1. 

In complex mechanical systems, consisting of a number of particles: i=1,2,…,N 

the generalized position vector for the whole system is defined as follows: 

),,,,,,,,,(),,,( 3322211121 NNNN zyxzyxzyx …… == rrrr  

which is placed in an abstract 3N space. For a more convenient operation of this 

kind of notation of the system’s position, especially in application in various 

summation formulae, a uniform Greek letter ȟj is introduced: 

),,( 31323 iiii ξξξ −−=r  

As a result of above, the position vector for the whole system of particles takes the 

following form: 
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Fig. 2.1 Cartesian coordinates of a particle 

Velocity and acceleration of a system 

The formal definition of a velocity of a system is given below: 

t

ttt ii
tii

Δ

−Δ+
== →Δ

)()(
lim 0

rr
rv �                                   (2.3) 

Because time t is a parameter of any motion, differentiation and calculation of  

derivatives in respect to time is a frequent operation in dynamics. Hence tradition-

ally, the time derivative is briefly noted by a dot above a variable that is differenti-

ated in respect to time, in the following form: 

iii
dt

d
rrv �==                                                (2.4) 

Acceleration is the time derivative of the velocity, which means it is the second 

derivative of the position in respect to time: 

iiii
dt

d
rrva ��� ===

2

2

                                        (2.5) 

According to the Newton’s Second Law of Dynamics, which describes the relation 

between motion and its cause, i.e. the applied force (or torque), in the description 

of dynamics there is no need or place for higher order derivatives of the position 

of a body than ones of the second order – i.e. acceleration. This also means that in 

dynamics one has to do only with the position r, velocity r�  and the acceleration 

r�� , time t as a parameter of motion, and forces (torques) as causes of motion. 



12 2   Dynamics of Electromechanical Systems

 

2.1.2   Constraints, Classification of Constraints and Effects of 

Their Imposition 

Constraints are physical limitations of motion that reduce the freedom of motion 

of a given system. The system denotes here a mechanical unit such as a particle, a 

set of connected particles, a rigid body or a set of connected rigid bodies. The 

limitations imposed by the constraints are various in nature so they may restrict 

the freedom of position, type of motion, as well as velocity; they act in a limited 

space and even are variable in time. For formal purposes, in order to perform ana-

lytical description of motion the constraints are denoted as equations or inequali-

ties and a classification of the constraints is introduced. The general form of an 

analytical notation used to present constraints acting in a system is following: 

0),,( ℜtf rr �    or   0),,( ℜΞΞ tf �                                 (2.6) 

where: 

f - is the analytical form of constraints function, 

Ξ,r  - position vector of a system, 

Ξ��,r  - velocity vector of a system, 

ℜ  - the relation belonging to the set }{ ≥>≤<=∈ℜ ,,,  

Stiff or bilateral constraints vs. releasing or unilateral constraints. This is a classi-

fication in respect to a relation ℜ . Stiff constraints are expressed by the equality 

relation 

{ }0,,,),,(0),,( ≥≤><•••=••• ff                          (2.7) 

while releasing constraints are ones that contain the relation of inequality. 

Geometric vs. kinematical constraints. This classification accounts for the ab-

sence or presence of velocity in a relation of constraints. In case that the velocity 

is there the constraints are called kinematical 

0),(0),,( ℜ•ℜ•• rr ff �                                 (2.8) 

and without explicit presence of velocity they are named geometric constraints. 

Time depending (scleronomic) vs. time independent (reonomic) constraints. 

This is a division that takes into account the explicit presence of time in the rela-

tion of constraints:  

0),,(0),( ℜ••ℜ tff rr �                              (2.9) 

In that respect the first relation of (2.9) presents scleronomic constraints and the 

second one reonomic constraints. 

Holonomic vs nonholonomic constraints. It is the basic classification of con-

straint types from the theory of dynamical systems point of view. The division of 

mechanical systems into holonomic and nonholonomic systems follows. 

Holonomic constraints are all geometric constraints and those kinematical  

constraints that can be converted into geometric constraints by integration.  



2.1   Mechanical Systems 13

 

0),( ℜ•rf       - geometric constraints 

0),,( ℜ•rr �f    - those of kinematical constraints, for which exists:               (2.10) 

),( •rF                - such that:          fdF =  

Nonholonomic constraints are all kinematical constraints that could not be inte-

grated and hence cannot be converted into geometric ones. The formal division is 

clear, but it is more difficult to offer the physical explanation for this distinction. 

Simply speaking one can say that holonomic constraints restrict the position of a 

system and the velocity of that system in a uniform manner, while nonholonomic 

ones impose restrictions on the velocity without restricting the position. Conse-

quently, one can say that nonholonomic constraints restrict the manner of motion 

without limiting the position in which such motion can result. For further applica-

tions, nonholonomic constraints will be denoted in the following form: 

bjtnnj …�…�… ,10),,,,,,( 121 ==ξξξξξϕ                   (2.11) 

and in a specific case of the linear nonholonomic constraints: 

bjDh

n

i

jiijj …� ,1

1

=+=∑
=

ξϕ                                  (2.12) 

- where hij in the general case are functions of position coordinates and time. 

To verify whether it is possible to integrate linear kinematical constraints it is 

sufficient to check if they are in the form of the Pfaff’s differential equations with 

total differentials. 

2.1.3   Examples of Constraints 

Example 2.1.  In a planar system (Fig.2.2) two steel balls are connected by a stiff 

rod. One has to define the analytical form for constraint notation and to define 

them in accordance with the presented classification. 

 

Fig. 2.2 System of two massive balls constrained by a stiff rod 
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a) for balls connected with a stiff rod with the length l 

l=− 21 rr  hence: 

0)()( 22
21

2
21 =−−+− lyyxx                             (2.13) 

As a consequence, the examined case presents geometric, stiff, time independent 

constraints. 

b) for balls connected with a cord of length l whose thickness is negligible 

the equation (2.13) is replaced with an inequality in the form: 

0)()( 22
21

2
21 ≤−−+− lyyxx                                    (2.14) 

Hence the case represents releasing (unilateral) constraints. It is possible to differ-

entiate the equation for constraints (2.13) with respect to time, hence the following 

form is obtained: 

0)()()()( 221121221121 =−−−+−−− yyyyyyxxxxxx ����             (2.15) 

This represents kinematic constraints resulting from geometric constraints (2.13), 

which can take also more general form: 

044332211 =+++ ξξξξ ���� ffff  

For the above equation the following condition is fulfilled: 

4,3,2,1,0 ==
∂

∂
−

∂

∂
mk

ff

k

m

m

k

ξξ
                                 (2.16) 

which means that the conditions for the total differential are met. The equation 

(2.15) takes the form of the Pfaff’s differential equation, which is quite self-

evident due to its origin. As a result, constraints given by (2.15) are holonomic. 

Example 2.2. A classical example of nonholonomic constraints can be illustrated 

by the slipless motion of a flat plate on a plane. The relations between the coordi-

nates in this case are presented in Fig. 2.3. The description of the slipless motion 

of a plate on a surface Π applies 6 coordinates: x,y,z, which determine points of 

tangency of the plate and the plane and angles α,υ,φ which define: rotational angle 

of the plate, inclination of the plate surface and angle of intersection between the 

plate surface and the Cartesian coordinate system, respectively. This system is 

limited by the following constraints: 

dydRf

dxdRf

zf

=

=

=

ϕα

ϕα

cos:

sin:

0:

3

2

1

                                          (2.17) 

The equation f1 for the constraints obviously presents holonomic constraints, while 

the constraints f2, f3 can also take the following form: 

yRxR ���� == ϕαϕα cossin                                (2.18) 

which represents nonholonomic constraints, since angle φ constitutes a coordinate 

of the system in motion and does not form a value that is input or a function. 
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Fig. 2.3 Flat plate in slipless motion on a plane 

Therefore, the two equations (2.18) cannot be integrated separately without prior 

establishment of a solution to the system of the equations of motion. One can note 

that the constraint equation f1 enables one to eliminate variable z from the system 

of equations and; thus, it can be disregarded in the vector of system‘s position. At 

the same time, constraints equations f2 and f3 do not impose a limitation on the po-

sition of the system, while they constrain the motion, so that it is slipless. One can 

further observe that that the equations for nonholonomic constraints (2.18) can be 

transformed to take the form: 

22222 vyxR =+= ���α                                            (2.19) 

which eliminates angle φ from constraint equation and denotes velocity of the mo-

tion of the tangency point P over a plane in which a plate rolls. This equation en-

ables one to interpret nonholonomic constraints but does not offer grounds for 

their elimination. Equations for nonholonomic constraints are also encountered in 

electrical and electromechanical systems in such a form that the electrical node in 

which the branches of electrical circuits converge is movable and its position is 

relative to a mechanical variable. This type of nonholonomic constraints is en-

countered e.g. in electrical pantographs of rail vehicles and mechanical commuta-

tors in electrical machines involving sliding contact. 

2.1.4   External Forces and Reaction Forces; d’Alembert Principle 

2.1.4.1   External Forces and Reaction Forces 

External forces are forces (torques) acting upon the components of a system. In 

this form they constitute the cause of motion in accordance with the Newton’s 

second law. Reaction forces of constraints (Fig. 2.4) form the internal forces act-

ing along the applied constrains and operate so that the system preserves the state 

which results from the imposed constraints. Hence, reaction forces of constraints 

do not constitute the cause of the motion but result in the preservation of the sys-

tem in conformity with the constraints. In ideal circumstances the forces of  

constraint reactions do not exert any work associated with the motion of a system, 

which is applied in d’Alembert principle discussed later. 
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Fig. 2.4 Equilibrium between reaction forces of constraints R1,R2 resulting in constant dis-

tance l between balls in motion 

2.1.4.2   Virtual Displacements 

The introduction of the notion of virtual displacements, i.e. ones that are compati-

ble with constraints is indispensable in analytical dynamics due to their role in 

elimination of constraint reaction forces occurring in constrain based systems 

[12,13,16]. The vector of virtual displacements is denoted analogically to the con-

struction of the position vector (2.2) 

),,,,( 321 Nrrrrr δδδδδ …=                                   (2.20) 

where: 

),,(),,( 31323 iiiiiii zyx δξδξδξδδδδ −−==r  

The vector of virtual displacements is constructed by the increments of variables 

which fulfill the following conditions: 

 1° - possess infinitesimal value 

 2° - are compatible with constraints 

 3° - their displacements occur within fixed a moment of time  

These conditions also mean that virtual displacements are also referred to as in-

finitesimal displacements, i.e. small testing displacements which occur consis-

tently with applied constraints without accounting for their duration. As a result, it 

is possible to compare work exerted by a system for various vectors of virtual dis-

placements. Virtual displacements do not necessarily have to overlap with sections 

of actual paths of motion but need to be consistent with potential paths from the 

kinematics perspective. From the statement of consistency between virtual dis-

placements and constraints the following relation can be established: 

0)()( =−+ rrr ff δ  

which upon resolving into Taylor series relative to įr and omission of higher 

powers (įr)
2
, (įr)

3
,… leads to the statement of the relation between virtual dis-

placements for a given j-th equation of constraints 
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The relation (2.21) also means that any equation for holonomic constraints, fj, 

j=1,…,h enables one to find an expression for a particular virtual displacement by 

use of the remaining ones 
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1

,11,11,22,11,

,

nnjkkjkkjjj

kj

k aaaaa
a

δξδξδξδξδξδξ ++++++−= ++−− …… (2.22) 

where:                                                  
k

j

kj

f
a

ξ∂

∂
=,  

2.1.4.3   Perfect Constraints 

It is only possible to define perfect constraints in a system in which friction forces 

are either missing or in the case where the inherent friction forces can be consid-

ered as external forces. After this prerequisite is fulfilled, it is possible to define 

perfect constraints. Such constraints satisfy the condition that total work exerted 

on the virtual displacements is equal to zero: 

∑
=

=
N

i

ii

1

0rR δ                                                  (2.23) 

An example of perfect constraints include a rigid connection of material points 

which is not subjected to tension or bending. Historically, the concept of perfect 

constraints originates from d’Alembert principle and forms a postulate confirmed 

by numerous examples. 

2.1.4.4   d’Alembert Principle 

It constitutes the first analytical statement of the motion of a system in which par-

ticles are constrained. In order to eliminate forces of constraint reactions the prin-

ciple applies the notion of perfect constraints. For a material point (particle) with 

mass m the equation of motion directly results from Newton’s second law of  

motion: 

Fr =��m  

For a system with N material points limited by constraints, the above equation can 

be restated for every material point to account for the resulting force of constraint 

reactions R beside the external force F 

Nim iiii …�� 1=+= RFr                                 (2.24) 
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The unknown constraint reaction forces do not yield it possible to directly apply 

equations (2.24). After summation of the equations it is possible to eliminate con-

straint reaction forces on the basis of the notion of the perfect constraint (2.23) 
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which gives:                              0)(
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m rFr δ��                                   (2.25) 

Virtual displacements are not separate entities but are related to one another by 

equations resulting from the constraints. Hence, d’Alembert principle is expressed 

by the system of equations: 
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This is a set of differential - algebraic equations on the basis of which it is possible 

to obtain equations of motion e.g. using Lagrange indefinite multiplier method. 

This can be performed as follows: each of h algebraic equations in (2.26) is multi-

plied by indefinite factor Ȝj and summed up: 
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The expression in (2.27) is subsequently subtracted from the equation of motion, 

thus obtaining: 
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For the resulting sum of N parenthetical expressions multiplied by subsequent vir-

tual displacements įri, the following procedure is followed: for the first h expres-

sions in parentheses i=1,…,h the selection of multipliers Ȝj should be such that the 

value of the expression in parenthesis is equal to zero. In consequence, for the  

remaining parenthetical expressions the virtual displacements įri, i=h+1,…,N are 

already independent, hence, the parenthetical expressions must be equal to zero. 

The final equations of motion take the form: 
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The term thereof: ∑
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λ  constitutes the reaction force of nonholonomic  

constraints for equations (2.24). In a similar manner it is possible to extend 

d’Alembert principle to cover systems limited by nonholonomic constraints  

(2.11-2.12). As a result the following expression is obtained: 
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where: 
l

ϕ  - nonholonomic functions of constrain type (2.12) 

       
l

µ  - indefinite multipliers for nonholonomic constraints  

d’Alembert principle leads to the statement of a system of equations with  

constraints; however, this procedure is time-consuming and quite burdensome 

since the obtained forms of equations are extensive and complex due to the selec-

tion of coordinates of motion that is far from optimum. This can be demonstrated 

in a simple presentation. 

Example 2.3.  In a planar system presented in Fig. 2.5 a set of two balls of mass m1 

and m2 are connected by a stiff rod. They are put in motion under the effect of ex-

ternal forces F1 and F2, in which gravity pull and friction force are already ac-

counted for. The equation of motion are subsequently stated in accordance with 

d’Alembert principle. 

Solution: the single equation of constraints stated in accordance with (2.13) 

takes the form: 

0)()(: 22
21

2
211 =−−+− lyyxxf  

The vector of Cartesian coordinates for this system is as follows: 

),,,(),( 432121 ξξξξΞ== rrr  

 

 

Fig. 2.5  Set of two balls connected by a stiff rod 



20 2   Dynamics of Electromechanical Systems

 

The system of differential - algebraic equations written in accordance with (2.29) 

takes the form: 
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The equation of holonomic constraints eliminates one of the Cartesian coordinates 

since it is an dependent variable in the description of dynamics. At this points, let 

us assume that it is y2, hence: 
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By introducing these variables into (2.31) we obtain  

 

⎪⎪
⎪
⎭

⎪⎪⎪⎬
⎫

−−=

−=−

+=+

+=+

2
21

2
12

222222

212211

212211

)( xxlyy

FFymxm

FFymym

FFymxm

yx

yy

yx

∓

����
����
����

αα

αα

                                 (2.32) 

where:                     
21

21)(
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xx

−

−
== rαα  

The resulting system of equations of motion still requires the elimination of y2, 2
y�� , 

which is only an algebraic problem. This set of equations is very complex in its 

analytical notation despite the fact that it presents a very simple mechanical sys-

tem. This is associated with the necessity of application of Cartesian coordinates, 

which is not the most adequate choice for the case of equations containing  

constraints, in particular from the point of view of simple notation of dynamic 

equations. A favorable option in this respect is offered by the introduction of gen-

eralized coordinates and expression of the equations of motion in the form of 

Lagrange’s equations. 

2.1.5   Number of Degrees of Freedom and Generalized 

Coordinates 

The most general definition states that the number of degrees of freedom in a  

system is made up of the number of independent virtual displacements įȟ (2.20). 

For a holonomic system it also represents the number of coordinates (variables) 
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necessary and sufficient in order to define the position of a system. In accordance 

with this description every equation for holonomic constraints reduces the number 

of degrees of freedom by one (see 2.21, 2.22). This can be defined by the relation 

hns −=                                                    (2.33) 

where:  

s - the number of degrees of freedom of a holonomic system 

n - the number of coordinates necessary for description of the position of an 

unconstrained system 

h - the number of holonomic constraints 

Under such assumptions regarding the number of degrees of freedom, the equation 

of nonholonomic constraints (2.11, 2.12) also leads to the reduction of the degrees 

of freedom despite the fact that the position of the system is not limited. This also 

means that the number of degrees of freedom of nonholonomic systems is lower 

than the number of coordinates necessary for the description of the position of 

such a system. For the time being we shall, however, focus on holonomic systems. 

Generalized coordinates form the vector of q = (q1,q2,…,qs), and the compo-

nents of this vector include any variables that fulfill three pre-requisites: 

 1° the number s of generalized coordinates is equal to the number of de-

grees of freedom 

 2° generalized coordinates are selected in such a manner that they are com-

patible with constraints present in the system, i.e. they fulfill the condition of  

identity with the equations of constraints 

0)))(( =qrjf                                                  (2.34) 

3° generalized coordinates need to be linearly independent, which means that the 

selection of them has to enable one to uniformly express Cartesian coordinates  

r = r(q), alternatively Ξ = Ξ(q), or coordinates of the primary description  

Χ = Χ(q), which gives 

),,( 1 sjj qq …ξξ =      or     ),,( 1 sjj qq …χχ =                        (2.35) 

Formally it means that the functional Jacobian matrix 

⎥⎦
⎤⎢⎣

⎡
∂

∂

k

i

q

ξ
   or else   ⎥⎦

⎤⎢⎣
⎡
∂

∂

k

i

q

χ
                                         (2.36) 

- is of s order in the entire area of the variation of coordinates. 

The second of the equations (2.35) defines the so called primary description 

coordinates, which form an alternative to the Cartesian coordinate system, as they 

involve an arbitrary set of variables for the description of the position of a system, 

without an imposed limitation on the number of coordinates used in such a de-

scription. The practical selection of generalized coordinates can be performed in a 

number of ways and tends to be much easier than it is implied from the study  

of formal requirements (2.34-2.36). Among Cartesian, polar, spherical or other 
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variables used in the description of a physical model of a system (which means all 

coordinates of the primary description) it is necessary to select such s of inde-

pendent variables which are compatible with constraints and offer a comfortable 

source for the description of the position of a system. For the case of holonomic 

constraints the geometry of the constraints often suggests the selection of such 

variables. After an appropriate selection of the variables the resulting equations 

are succinct and short, while for other selection the resulting equations of motion 

might be complex and involve a lot of other components. However, the total num-

ber of equations of motion remains constant (or the total order of a system of 

equations), which amounts to s equations of the second order for a holonomic sys-

tem. The appropriate selection of the generalized coordinates in such a manner 

that simple and short forms of equations ensue can be found later in the text. 

Transformational formulae  – are functional relations which express the rela-

tions between Cartesian coordinates of motion (r, Ξ) or coordinates of primary de-

scription (Χ) and the vector of generalized coordinates. Similar transformational 

formulae account for the relations between velocities, which can be gained for 

holonomic constraints by differentiation of relations regarding position with re-

spect to time. The transformational formulae which are expressed by equations 

(2.35) for position could be completed by explicit relation to time for the purposes 

of the general consideration. Such instances are non-isolated systems, e.g. 

),,,( 21 tqqq s…Ξ=Ξ    or   ),,,( 21 tqqq s…Χ=Χ                    (2.37) 

From these relations transformational formula for velocity ensues in the form 
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Similarly, during the calculation of the variation of variables (2.35), the result 

takes the form of virtual displacement of Cartesian coordinates (of the primary de-

scription) expressed in terms of virtual displacements (variations) of generalized 

coordinates 
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One can note that the transformational formulae for virtual displacements (2.39) 

are the same as the ones resulting from the calculation of total differential of vari-

ables for transformational formulae (2.35) not accounting for time. One also 

should note at this point that independence of virtual displacements for general-

ized coordinates comes as a consequence of the fulfillment of constraint equations 

by the generalized coordinates 

),,,( 21 sqqq δδδδ …=q                                      (2.40) 

and hence they can assume arbitrary values with the role of indefinite multipliers. 
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2.1.6   Lagrange’s Equations 

Lagrange’s equations are based on generalized coordinates q and apply their inde-

pendence as well as independence of virtual displacements įq. Lagrange’s equa-

tions for a mechanical system can be derived from d’Alembert principle for 

holonomic systems by calculating variation from transformational formulae for 

Cartesian coordinates (2.35). After introduction of the transformation of virtual 

displacements into the first of equations (2.26) 
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we obtain: 
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Concurrently, the second equation in d’Alembert principle (2.26) disappears due 

to the independence of variation įqk, which formally means that generalized coor-

dinates fulfill these constraints. As a result of the transformation of (2.42) we  

obtain: 
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The second of the expressions in parenthesis denotes generalized force (not  

accounting for friction forces) acting along the generalized coordinate 
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This constitutes the total of projection of all external forces expressed in a Carte-

sian system towards the generalized coordinate. Since the transformational formu-

lae are in the general case non-linear, partial derivatives in (2.44) give the formulae 

of force projection. Concurrently, the first component in the bracket in (2.43) can 

be transformed as follows 
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The expressions in brackets denote kinetic energy of the system in the Cartesian 

coordinates  
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2
1 r�                                              (2.46) 

This energy associated with velocities of system masses has to be expressed in  

relation to generalized velocities and generalized coordinates, by employing trans-

formational formulae (2.37-2.38). After these transformations the following is ob-

tained 
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As a result from the initial equation (2.43) we get 
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which in the consideration of independence of virtual displacements leads to s 

separate equations in the form 
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Potential forces (2.50) acting in the system, which are derivatives of a potential 

U(q,t) with respect to position, can be easily integrated into equations of motion. 

In this case these forces are omitted in the consideration of external forces F. 
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The result takes the following form: 
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which is called Lagrange’s equation for an examined dynamic system. General-

ized force Pk does not include the component resulting from potential external 

forces, which was already incorporated in the form of (2.50). The component 

U(q,t) denoting the potential energy of the system has been incorporated also into 

the first expression of Lagrange’s equation (2.51) for symmetry, despite the  

fact that its differentiation with respect to 
k

q�  returns the result zero. Function L 

defined as 

),(),,(),,( tUtTtL qqqqq −= ��                                (2.52)  
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is called Lagrange’s function for a mechanical system. In the classical mechanics 

it determines the difference between the kinetic and potential energy of a system. 

Lagrange’s equations are widely applied in the studies of dynamic properties and 

control of mechanical systems, as well as electromechanical ones, including  

servomechanisms, manipulators and robots. Besides, they form one of the two 

fundamental methods used for the statement of dynamic models. Lagrange’s equa-

tions in the form (2.51) could be extended [12,16] to cover systems limited by 

nonholonomic constraints in the form (2.11, 2.12). 
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If (2.53) represents holonomic constraints, it is possible to integrate it and the 

function takes the form 0),,,,(
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since: 
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After the introduction of generalized coordinates these formulae are omitted as a 

result of the fulfillment of the equation of constraints. However, if kinematic con-

straints of the type (2.53) were not integrated, the introduction of generalized  

coordinates would not result in the omission of the equation type (2.53); in fact, it 

is then transformed into the equation of nonholonomic constraints in generalized 

coordinates: 
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and in the case of linear ones: ∑
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where:  nh  - is the number of nonholonomic constraints 

  c = n-h  - is the number of generalized coordinates 

  s = n-h-nh - is the number of degrees of freedom 

As a result of the expansion of the equations (2.55) into multiple variable Taylor 

series or by analogy to (2.54) one can demonstrate that these equations can be 

used to relate the virtual displacements of generalized coordinates įqk 
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The present virtual displacements are not independent as it was the case for 

holonomic constraints and, hence, the value of the particular parentheses (2.48) 

need not be equal to zero, which has given the equations of motion (2.49) in case 

of holonomic constraints. In these circumstances, as well as in the derivation of 

equations of motion on the basis of d’Alembert principle (2.28) we will apply the 

method of indefinite multipliers. All nh components in relation (2.56) will be mul-

tiplied by successive indefinite multipliers ȝj and subsequently added to equations 

(2.51). As a result, we obtain c expressions in parenthesis in (2.57). 
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For example, in the first nh components of the sum in (2.57) the selection of ȝj is 

made so that the value of expressions in parenthesis is equal to zero. The corre-

sponding dependent variations are įqj, j=1,…,nh. In that case the remaining varia-

tions of generalized variables are already independent and the corresponding  

parenthesis of the sum (2.57) have to be equal to zero. As a result, the equations of 

motion take the form 
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The resulting system of equations consists of s Lagrange’s equations in the form 

(2.58) and nh equations of nonholonomic constraints in generalized coordinates 

(2.55), in which the unknown include s in qk variables and nh in ȝj multipliers. In 

equation (2.58) the potential forces in the form (2.50) have already been separated 

from generalized forces 
k

P
~

 and integrated into Lagrange’s function L, while the 

non potential components of generalized forces Pk are preserved. For the case of 

nonholonomic linear constraints the equations of motion for a system with non-

holonomic constraints, accounting for (2.56), take the following form: 
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2.1.7    Potential Mechanical Energy 

Potential mechanical energy, i.e. accumulated energy regardless of velocity, can 

be stored in two ways: in gravitational field and in the form of elastic tension. In 

the gravitational field the potential energy is accumulated during the displacement 

of mass towards increasing potential. This energy equal to the work exerted during 

this displacement is: 
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b
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ϕϕϕ −=== ∫∫ llF                     (2.60) 

For the case of constant gravitational field, i.e. one with constant vector of gravita-

tional acceleration g, potential energy is expressed as 

( ) ( ) mghmabmabmU ==−=−= ghhhg )()()()( ϕϕ                 (2.61) 

where h is the vector called the height of a point above the reference level meas-

ured in the parallel direction to the vector of gravitational acceleration g. For a 

solid of mass M the height of the center of mass S is associated with the potential 

energy of the solid as a total. 

Potential energy in elastic element is associated with the work accumulated 

during its elastic strain. The symbol of this component is a spring (Fig. 2.6). 

∫= b

a

dxU xF )(                                               (2.62) 

For a spring with linear characteristics the force that a spring exerts is proportional 

to deformation (extension, compression, torsion) in relation to the stationary  

state of the spring denoted as x0. The elastic modulus of an spring k [N/m] is 

defined as the slope of its stress-strain curve in the elastic deformation region. As 

a consequence 

xF Δ= k     hence    ∫ −=−=

x

x

xxkdkU

0

2
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1
0 )(~)~( xxx                (2.63) 

 

Fig. 2.6  Accumulation of potential energy in an elastic element 

For the case of parallel connection between springs the total extension of all 

springs is identical and the force affecting the springs is the sum of the forces 

needed for the elastic strain, thus 

xxxxFFFF Δ+++=Δ++Δ+Δ=++= )( 212121 nnn kkkkkk ………  

and the resultant elastic strain is 
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For the case of serial connection of springs, we have: 
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2.1.8   Generalized Forces, Exchange of Energy with Environment 

Generalized forces resulting from the transformation of Cartesian forces acting on 

a system (2.44) are presented in detail earlier in the book i.e. during the derivation 

of Lagrange’s equations. In this section they will be extended to cover friction 

forces, which is required as a result of consideration of perfect constraints using 

d’Alembert principle. The exchange of energy with the environment occurs as a 

result of work exerted on the system by external forces and friction forces, the ef-

fect of the latter is always negative, i.e. results in dissipation of energy of a sys-

tem. Potential forces may be integrated into Lagrange’s function by consideration 

of potential energy (2.61-2.63), while the right hand side of Lagrange’s equations 

is reduced only to consideration of active forces. However, potential energy is also 

capable of playing the role of exchange of energy with the environment, if it is ex-

plicitly relative to time U(q,t) - this is the case in non-isolated systems. We shall, 

however, take into consideration friction forces, which occur in virtually any sys-

tem, have often nonlinear characteristics and tend to require notation in a complex 

way. The most basic system used for the notation of friction forces associated with 

motion is based on an assumption that they are proportional to the velocity. This 

case is denoted with the term viscous friction, which takes the form 

ξF �Dt −=                                                    (2.66) 

The exchange of energy with the environment due to external forces is calculated 

on the basis of virtual work įA exerted by these forces on the particular virtual 

displacements: 
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The transformation of virtual work into generalized coordinates applies transfor-

mational formulae of velocity (2.38) and virtual displacements (2.39) under the 

assumption that the reference system is inertial and, as a result, 0/ =∂∂ t
i

ξ . 
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The first component of virtual work (2.68) is already familiar to us and known as 

generalized force (2.44) acting in the direction of k-th generalized coordinate, 

while the second component denotes transformed friction forces. Furthermore, it is 

possible to identify the transformed friction coefficient  
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Generalized force accounting for friction for k-th generalized coordinate could be 

noted as: 
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The virtual work of a dynamic system (2.68) can also be written in the form of a 

matrix using Jacobian matrix of the transformation of a coordinate system 

( ) ( ) ( ) ( ) qPqJqDJFPqqDJFJq δδδδδ TTTTT
A =−==−= ��           (2.71) 

where: 

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂

∂

∂

=⎥⎦
⎤⎢⎣

⎡
∂

∂
=

s

nn

s

k

i

qq

qq

q ξξ

ξξ

ξ

"

%#

"

1

1

1

1

J  - is the Jacobian matrix of transformation 

skNi ,,13,,1 …… ==  

[ ]nDDDdiag "21=D  - diagonal matrix of coefficients of viscous friction 

[ ]T
nFFF "21=F  - vector of external forces in Cartesian coordinates. 

As a result of the statement of virtual work in the form (2.71) we obtain the 

vector of generalized forces accounting for viscous friction with components from 

(2.68). It is particularly complex to transform friction forces in which there are co-

efficients of mutual friction (2.69), or in the vector form of expression qDJJ �T  in 

relation (2.71). In numerous practical cases friction coefficient can be derived  

directly for generalized variables q without reference to transformation of losses 

resulting from friction expressed in Cartesian coordinates. 
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2.1.9   Examples of Application of Lagrange’s Equations Method 

for Complex Systems with Particles 

Example 2.4.  We shall one more time consider a system of two balls connected 

with a stiff rod of length l (Example 2.3, Fig. 2.5). The equations of motion for 

this system obtained from d’Alembert principle in the Cartesian coordinates (2.32) 

are very complex and of little use for computing the trajectory of this system. At 

present for the development of a mathematical model we shall use the method of 

Lagrange’s equations with a different selection of coordinates (Fig. 2.7). 

 

Fig. 2.7 Planar system containing two masses connected with a stiff rod 

For this system the vector of position takes the form 

 ),,,,(),,,(),( 4321221121 ξξξξ=Ξ=== yxyxrrr  

which means that the number of coordinates in the description of unconstrained 

system amounts to n = 4. In this system we have one equation of holonomic con-

straints: 

lf =− 211 : rr    or 0)()( 22
21

2
21 =−−+− lyyxx                 (2.72) 

Hence, the number of the degrees of freedom is: 314 =−=−= hns . 

Cartesian coordinates of particle of mass m1 and angle φ are assumed as the 

generalized coordinates: 

),,(),,( 11321 ϕyxqqq ==q                                       (2.73) 

Transformational formulae of the type (2.35) are following: 
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and for velocities, respectively: 
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Generalized coordinates are compatible with constraints, which can be verified by 

direct substitution of (2.74) into constraints equation (2.72); this also derives from 

the independence of virtual displacements of generalized coordinates considered 

as infinitesimal displacements. The kinetic energy of this system takes the follow-

ing form 
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which after introduction of generalized velocities from (2.74) leads to the expres-

sion 
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0=U    hence   TUTL =−=  

The vector of generalized forces in the right hand side of Lagrange’s equations 

will be determined from relation (2.71). The vector of external forces and matrix 

of damping coefficients are 

[ ]Tyxyx FFFF 2211=F  

[ ]Tyxyx DDDDdiag 2211=D  

whereas Jacobian matrix of transformation 
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Let us additionally assume that: Dx1 = Dy1 = D1  Dx2 = Dy2 = D2. 

In this case on the basis of (2.71) we shall obtain the vector of generalized 

forces: 
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Hence, using (2.51), we are able to state Lagrange’s equations: 
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The above equations of motion can be restated more simply by introduction of 

)/( 212 mmm +=µ : 
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The resulting system of equations of motion (2.78) can be verified for specific 

cases, for instance by immobilizing a particle of mass m1, then: x1 = y1  = const. In 

this case the first two equations of motion (2.78) enable one to calculate reaction 

forces at the fixation point: 
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2°  for  12 yq = :   ϕϕϕϕϕϕ sin)cossin( 22
2

21
���� lDFlmF yy +−+=  

The equation 3º after introduction of gravitational force Fy2 = -m2g and under the 

assumption that Fx2 = 0 constitutes the equation of damped motion for pendulum: 
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D
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g
−−=                                                           (2.79) 

The conducted interpretation of equations leads to the identification of the particu-

lar terms and indicates how useful the model could be despite the complex form of 

the equations. However, the equations are much more simple than the ones in Car-

tesian coordinates, as shown in the discussion of d’Alembert principle (2.32). 

Example 2.5. A planar mechanical system is given whose physical model is pre-

sented in Fig. 2.8. The system consists of a pendulum of mass m2 attached to mass 

m1 sliding along a horizontal bar. The motion being limited by spring of stiffness k 

and free length of d0, and coefficient of viscous friction D1. The coefficient of vis-

cous friction of the pendulum is equal to D2. The two forces operating in the sys-

tem include gravity force G and the force of lateral pressure Q. The task involves 

the development of a mathematical model of the system motion using Lagrange’s 

equations. 

 

Fig. 2.8 Planar system of pendulum with mobile pivot 

This system consists of two mobile masses, which in unconstrained state re-

quires n = 4 coordinates in order to describe the position: 

),,,(),,,(),( 4321221121 ξξξξ=== yxyxrrr  



34 2   Dynamics of Electromechanical Systems

 

In this case, there are two equations of holonomic constraints: 
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Hence, the number of degrees of freedom is 

224 =−=−= hns  

The following variables are adopted as generalized coordinates: 

),() 121 ϕy,q(q ==q                                             (2.81) 

which are independent and compatible with constraints. The transformational for-

mulae (2.35) take the following form  
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The kinetic energy of the system is 
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while the potential energy of the system is associated with the spring  
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After the introduction of generalized coordinates (2.81) Lagrange’s function takes 

the following form: 
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The virtual work exerted by the system accounts for external forces and forces of 

viscous friction 
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The equations of motion stated by aid of Lagrange’s method are as follows: 
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After calculating time derivatives and introduction of generalized forces P1, P2, we 

obtain 
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The above equations have been simulated in the mathematical package. The se-

lected motion curves for input data and initial conditions given below are pre-

sented in Fig. 2.9 … Fig. 2.12. 

]/[0.5][5.0][3.0]/[0.300

][0.10]/[81.9][0.3][5.4

210

2
21

mNsDDmdmlmNk

NQsmgkgmkgm

=====

−====

]/1[0.0)0(][7.1)0(][0.0)0(][5.0)0( 11 sradmymy ==== ϕϕ ��  

 

Fig. 2.9 Position y1 of the pendulum attachment point 

 

Fig. 2.10 Sway angle φ for the pendulum 
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Fig. 2.11 Angular velocity ϕ�  of the pendulum swing 

 

Fig. 2.12 Trajectory of the pendulum 

2.1.10   Motion of a Rigid Body 

2.1.10.1   Fundamental Notions 

Rigid body – in a concept of discrete systems it is a set of material points (parti-

cles) whose distances remain constant. This idealization tends to be correct within 

a certain range of external forces affecting such a system both for flexible bodies 

with high rigidity and brittle ones. In order to determine the position of a body it is 

sufficient to determine three points on such a body that are not situated along a 

single straight line. Each successive point situated in such a body requires the de-

termination of three coordinates for the identification of its position; however, it  

is kept at three constant distances from the previously determined points on  

this body. Hence, the number of degrees of freedom in accordance with (2.33) is 

equal to 

639 =−=−= hns                                            (2.86) 

just as it is the case for three particles whose relations are determined by constant 

distances (Fig. 2.13). As a consequence, the number of degrees of freedom of such 

a body amounts to 6 (2.86); however, the description of the position of the body 

does not usually apply Cartesian coordinates related to three selected points on the  

body. The typical procedures followed in order to obtain the required 6 coordi-

nates involves the determination of three Cartesian coordinates for a selected point 
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on the body Ob, with a local system of coordinates Obxbybzb associated with this 

body as well as three angles for the description of the orientation of the system on 

the body in relation to the basic Oxyz system. In brief, one can say that the first 

three coordinates determine the position of the body while the successive three  

define the orientation of the body in space. In order to establish the angles of the 

orientation of the body (or the local system Obxbybzb on the rigid body) a standard 

technique is to be applied, which involves the determination of Euler angles  

or navigation angles system RPY (roll, pitch, yaw) [1,6,20]. The angles determine 

the elementary revolute motion: in the first case with respect to current axes in  

the successive order of zyx ′′′ , while in the latter case with respect to constant  

axes zyx. 

 

Fig. 2.13 Rigid body with local coordinates system and three points determining the posi-

tion of the body 

2.1.10.2   Motion of a Mass Point on a Rigid Body 

The differential displacement of a point on a rigid dri could be made up of the dis-

placement of the initial position of a local system on rigid dRO and the differential 

vector of revolution dτi which accompanies the revolute motion of a rigid body. 

The differential vector of revolute motion (Fig. 2.14) is expressed as 

biibii dddrd rττ ×== ϕϕθsin                         (2.87) 

Hence:                iObi ddd τRr +=    or   biOi ddd rRr ×+= ϕ  

As a result of dividing the differential displacements by the differential of time dt 

we obtain the velocity of the motion of an i-th point on a rigid body 

biOi rωvv ×+=                                             (2.88) 

where: vO is a linear velocity of Ob point with respect to the basic Oxyz system and 

dt

dϕ
=ω                                                    (2.89) 
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is the angular speed of the rigid body. The axis determined by the direction of the 

differential angle dφ of the revolute motion of a rigid, or angular speed ω, is called 

the instantaneous axis of rigid body’s revolute motion. 

 

Fig. 2.14 Motion of a point on a rigid body resulting from its revolute motion 

The center of mass S on a rigid body is a specific point which, can either belong 

to the rigid or not; however, it has to fulfill the following condition 
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                             (2.90) 

The center of mass on a rigid body has some particular characteristics: 

1° The potential energy U of a rigid could be expressed as the potential energy 

of the total mass M of rigid focused at the center of mass at point S. This regards a 

rigid body situated in gravitational field with constant vector g of gravitational ac-

celeration (Fig. 2.15). 

SS

i

iS

i i

biiSi

i

ii MghMmmmmU =−=−=−−=−= ∑∑ ∑∑ ghghrghghg

�
�	�
0

 

Finally:                                        SMghU =                                                     (2.91) 

2° Center of mass S is also the center of the body’s weight under constant 

gravitational field in the state of balance between torques due to gravity forces. 

Hence it represents the equilibrium state of a stationary rigid in gravitational field. 
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3° After differentiation (2.90) with respect to time, we obtain 
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vv
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                                              (2.93) 
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Fig. 2.15 Rigid body in gravitational field – potential energy 

This means that the total momentum of a rigid body can be expressed as the prod-

uct of solid’s mass and velocity of the center of mass vS 

SMvp =                                                        (2.94) 

If the local system associated with a rigid body is situated in the center of mass, 

and vs = 0, which, consequently, gives p = 0. This means that the center of mass is 

the point around which the internal momentum of a rigid is equal to zero. 

2.1.10.3   Kinetic Energy of a Rigid Body 

It is possible to express kinetic energy of a rigid body in a more synthetic manner 

than through the sum of kinetic energies of conventional mass points mi with the 

total mass amounting to M, which are distributed in space but remain at constant  
 

 

Fig. 2.16 Dependent and independent elements in relation to coordinate system situated on 

a rigid body 
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distances. However, one can note that angular speed ω refers to the rigid as a 

whole, which means that it is not relative to the location of the coordinate system 

on a rigid (Fig. 2.16). 

For any point of mass mi from (2.88) it follows that 

biOi rωvv ×+=                                                    (i) 

Using another system on a rigid with origin in 
b

O′ , this velocity vi can be noted as 

biOi rωvv ′×′+′=                                                    (ii) 

By substitution in (i)  bibi rar ′+=   we obtain: 

biOi rωaωvv ′×+×+=                                        (iii) 

The comparison of the results in (ii) with (iii) gives: 

ωωaωvv ′=×+=′
OO                               (2.95) 

Hence, it results that angular speed ω of rigid’s revolute motion is the same along 

the entire area of the body and is not relative to the position of the local coordinate 

system associated with it. 

The kinetic energy of the rigid is equal to 
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Using (2.88) we obtain 
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           (2.96) 

The first term in (2.96) is equal to 2

2
1

OMT v=  and denotes the kinetic energy of a 

mass point equal to the mass M of the total rigid body moving at the velocity of 

the point Ob, in which the local coordinate system is located. The second term of 

the expression (2.96) is equal to zero for the case when point Ob overlaps with the 

center of mass S (rbi = rSi). As a result: 

0
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Concurrently, the third term 



2.1   Mechanical Systems 41

 

( )

ω

I

ω

���������� 
���������� 	� ⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

+−−

−+−

−−+

=

=−+−+−=

∑∑∑
∑∑∑
∑∑∑

∑

)(

)(

)(

)()()(

22

22

22

2
1

222

2
1

3

ii

i

iii

i

iii

i

i

ii

i

iii

i

iii

i

i

ii

i

iii

i

iii

i

i

T

iyixixiziziy

i

i

yxmzymzxm

zymzxmyxm

zxmyxmzym

xyzxyzmT ωωωωωω

 (2.98) 

denotes the kinetic energy of the revolute motion around center of mass S with an-

gular speed ω = [ ωx  ωy  ωz]
T
. The elements present along the main diagonal of 

the matrix of inertia I, i.e. Ix, Iy, Iz are called the moments of inertia of a rigid with 

respect to x,y,z axes, respectively. As a result 

)( 22
ii

i

i zymI +=∑x                                            (2.99) 

is the moment of inertia with respect to x axis and is calculated as the sum of the 

partial masses mi multiplied by the square of the distance of the particular masses 

from x axis. Apart from the main axes there are the so called moments of devia-

tion, e.g. 

ii

i

ixy yxmD ∑=                                                (2.100) 

The matrix of inertia I is symmetrical and positively determined 
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The kinetic energy of a rigid body in free motion, under the assumption of a local 

coordinate system in the center of mass S, takes the form: 

ωIωv S
T

SMT
2
12

2
1 +=                                        (2.102) 

where IS denotes the matrix of inertia of a rigid body with respect to axes of Carte-

sian coordinates system intersecting at the rigid body’s mass center S. For any ir-

regularly shaped rigid body it is possible to select such directions of the axes of 

the Cartesian coordinate system Obxbybzb for which all moments of deviation are 

equal to zero; as a result, they disappear. For such axes the term principal axes of 

inertia is used 
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In this case the kinetic energy of a rigid body associated with its revolute motion 

has only three terms: 

)(
222

2
1

3 zzyyxx IIIT ′′′′′′ ++= ωωω                                 (2.104) 

For an irregularly shaped body the identification of the directions corresponding to 

the principal axes of inertia involves finding a solution to the characteristic equa-

tion for a square matrix I (2.101), i.e. the establishment of eigenvectors and eigen-

values using the methods of linear algebra. The term asymmetric top has been 

coned for such irregularly shaped rigid bodies for which the three principal mo-

ments of inertia Ix′, Iy′, Iz′′ are different. The term symmetrical top is used with re-

gard to a rigid body whose two principal moments of inertia are identical and the 

third is denoted with another value, while the term spherical top is used for a rigid 

whose all moments of inertia are equal. The identification of the center of mass 

and principal axes of rigid body’s inertia is much simplified when the rigid dis-

plays the characteristics of symmetry (under the assumption of constant density 

and regular distribution of elementary masses). For the case of a body possessing 

an axis of symmetry the center of mass is situated along this axis and, hence, it 

represents one of the principal axes of inertia. For the case of a rigid body with a 

symmetry plane this plane contains two principal axes of inertia, while the third 

one is perpendicular to the intersection of the two axes. The final part of the pre-

sent considerations regarding the motion of a rigid body will focus on the relation 

between the matrix of inertia IS for the case when the initial point of the local sys-

tem overlaps with the center of mass and the matrix of inertia I′ calculated with 

respect to the coordinate system with parallel axes, while the initial point of the 

system is displaced from the center of mass by vector a, such that 

arr +=′ Sibi ,  which gives: 
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In this case the expression used for the description of the total energy of a rigid 

body, according to (2.97) includes 

( )ωvaωvar ×=×+=∑ OOSi

i

i MmT )(2                         (2.106) 

and the total kinetic energy accounts for three components: 

( ) ωIωωvav ′+×+= T
OO MMT

2
12

2
1                           (2.107) 
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2.1.10.4   Motion of a Rigid Body around an Axis 

Free motion of a rigid body or a system of rigid bodies is represented in a number 

of engineering issues in aviation, ballistics, space research, etc.; however, the most 

numerous group of engineering problems is concerned with the motion of a rigid 

body around a constant axis. This is the case in rotating machines, wheel bearings 

in a car, industrial manipulators and robots. In such cases the direction of the  

vector of angular speed ω is in conformity with the axis of revolute motion deter-

mined by the line of the bearings and reaction forces in bearings secure the main-

tenance of the constant direction of angular speed vector. The expression account-

ing for kinetic energy in motion around a constant axis is considerably simplified 

as it only involves one term of T3 (2.104) representing a single component of an-

gular speed 

OIT 2

2
1 ω=                                                 (2.108) 

where IO is the moment of inertia of a rigid body with respect to the current axis of 

revolute motion. For the case when the axis of revolute motion does not intersect 

with the center of mass S the moment of inertia IO can be determined from the re-

lation (2.105), while angular speed has just a single component 

2MaII SO +=                                               (2.109) 

where: IS - moment of inertia for an axis intersecting the center of mass S, parallel 

to the axis of the rigid body’s revolute motion  

a - distance between the two axes. 

The same result can be derived from relation (2.107) under the assumption of the 

coordinate system in the center of mass S, so that 

)( 22

2
12

2
122

2
1 MaIIaMT SS +=+= ωωω                        (2.110) 

This result is known in literature under the term König’s theorem. 

2.1.10.5   Rigid Body’s Imbalance in Motion around a Constant Axis 

In the considerations of the motion of a rigid body around a constant axis we have 

to do with problems associated with static and dynamic imbalance. The case of 

static imbalance (Fig. 2.17) is dealt with in the case when the axis of the rigid 

body’s revolution does not cross its center of mass S, but is parallel to one of the 

principal axes of inertia. 

In this case centrifugal force rotating along the center of mass is exerted on the 

bearings 

rM
r

rMMv 2
222

ω
ω

r

r

r

r

r
F ===                               (2.111) 

and it imposes two parallel forces on the bearings. 
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Fig. 2.17 State of static imbalance of a rigid body in motion around a constant axis 

In a more complex case of dynamic imbalance the axis of rigid body’s revolu-

tion overlaps its center of mass, but is not parallel to the principal axis of inertia. 

To simplify things, one can say that the bearings’ axes of revolution are askew in 

relation to the axis of the rigid body’ symmetry. However, it can be strictly estab-

lished that dynamic imbalance is the case when angular momentum L is askew in 

relation to the vector of angular speed ω . In order to calculate the effects of dy-

namic imbalance it is necessary to apply the notion of angular momentum. For a 

system of particles the angular momentum is defined as 

i

i

ii m vrL ∑ ×=                                               (2.112) 

using the expression which determines the velocity for a particle in a rigid body 

(2.88) and limiting the scope to revolute motion we obtain: 

ωIL =                                                        (2.113) 

where I is the matrix of rigid body’s inertia (2.101), and ω is the vector of angular 

speed expressed in the same axes as the matrix of inertia. It is notable that any 

change in the angular momentum for a system, not accounting for energy losses, is 

associated with the necessity of applying moment of force in the form 

dt

dLΜ =                                                    (2.114) 

In a system accounting for losses the applied moment of force overcomes the 

moment of frictional resistance and potentially the moment associated with the 

exerted work; however, it is only its surplus or deficit that affects a change in the 

momentum in the system. The case of dynamic imbalance for a rigid with circular 

section, which has been slightly exaggerated, is presented in Fig. 2.18. For this 

case the angular momentum L does not overlap with the vector of angular speed ω 

due to various values of the moment of inertia in this disk for the principal axes of 

inertia. 
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Fig. 2.18 Dynamic imbalance of a rotating disk 

The angular speed ω of a disk is distributed along the principal axes of inertia is 

ϑωωϑωω sincos 21 ==  

As a consequence, the components of the angular momentum L can be determined 

as 

21222111 IIILIL >== ωω  

In this case moment M is associated with maintenance of a steady direction of an-

gular speed ω and results in a pair of reaction forces in bearings. It is expressed as 

ωL
LΜ ×==

dt

d
                                          (2.115) 

The value of this moment is  

)sin(sin δϑωϕω −== LLΜ  

By application of relations 

L

L

L

L 21 sincos == δδ  

we finally obtain: 

ϑω 2sin)( 21
2

2
1 II −=Μ                                       (2.116) 

From formula in (2.116) it stems that the maximum value of this moment, which 

tends to orthogonalize orientation of a disk, occurs for the skewness angle  

ϑ = 45°, which is the greater the bigger the difference between the moments of in-

ertia for the principal axes. Certainly the moment resulting from centrifugal forces 

is relative to the square of angular speed. This moment acts on the bearings with 

forces whose directions are opposite (a pair of forces). The forces rotate as a re-

sults of the revolution of the disk (Fig. 2.18), according to vector product (2.115). 
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2.1.11   Examples of Applying Lagrange’s Equations for Motion of 

Rigid Bodies 

Example 2.6. For the third time the system of two balls connected by a stiff rod, 

referred to in Example 2.1 and Example 2.4 will be examined. This time the sys-

tem despite being planar, will be considered as a rigid body. Due to two-

dimensional nature of this examination and distribution of the masses along a 

straight line the number of degrees of freedom amounts to s = 3 in contrast to  

s = 6 in the three dimensional cases. The kinetic energy of the system is expressed 

in a way specific for a rigid body (2.102) 

2
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1 ))(( ϑ���

SSS IyxmmT +++=                            (2.117) 

Under the assumption of generalized coordinates q = (xs, ys, ϑ), including the posi-

tion of the center of mass and angle of rigid body’s revolution, the kinetic energy 

expressed in (2.117) is not associated with the necessity of transforming variables. 

In the circumstances of the lack of elements which accumulate potential energy 

(gravitational forces are accounted for in the external forces), Lagrange’s function 

for the system is equal to the kinetic energy (2.117): 

TUTL =−=  

 

Fig. 2.19 System of two balls connected by stiff rod considered as a rigid body 

Concurrently, transformational formulae are needed in order to determine general-

ized force on the basis of data from external forces expressed in Cartesian coordi-

nates 

T
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T
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For this purpose we have to determine the position of the center of mass S along 

the rod which connects the two balls 
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and the moment of inertia for the system 
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so that the transformation of coordinates (2.35) in this case takes the form 
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Subsequently, following from (2.44) 
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we obtain equations of motion in the following form 

For Sxq =1 : 
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for ϑ=3q : 
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This is the simplest form of the equations of motion among the three examined 

models (2.32, 2.78, 2.120) since generalized coordinates are selected in such a 

way that the form of notation of kinetic energy that is most succinct. 

Example 2.7.  It involves a model of dynamics for a spherical manipulator. The 

kinematic model of the manipulator, containing variables and parameters, is pre-

sented in Figs. 2.20 and 2.21. This manipulator is shown in its nominal position, 

which means that the values of coordinates in the joints are equal to zero. 
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Fig. 2.20 Kinematic model of a spherical manipulator 

 

Fig. 2.21 Moments of inertia in particular members of manipulator in Fig. 2.20 

The first two joints in this manipulator are revolute joints, while the third one is 

a translational joint. The successive joints of the local motion of the manipulator 

and the end effector in this model are represented by mass M at the end of the final 

member. Fig. 2.21 presents the particular joints and contains a representation of 

the moments of inertia in respect to the axes along which the manipulator’s  

motion occurs. The moments of inertia JSy2, JSz2, JSy3, JSz3 are determined for  

the axes crossing the centers of mass S2 and S3. Hence, the kinetic energy of the 

manipulator can be determined as the sum of four terms which correspond to the 

four members: T = T1+T2+ T3+TM, which can be expanded to 
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where:           ),,(;),,(;),,( 33332222 MMMMSS zyxzyxzyx === rrr  

are the respective Cartesian coordinates of the center of mass S2, S3 and the mass 

M. This system has 3 degrees of freedom and the generalized coordinates are 

)(),,( 321321 ,q,qqq ϕϕ==q                                     (2.122) 

which denote angular variables in the first two joints and a linear variable in a 

translational joint. Prior to the presentation of transformational formulae it would 

be useful to introduce the convention of abbreviations used for the notation of 

trigonometric functions which are commonly used in robotics, namely: 

,2sin;1cos 21 sc =⇒ ϕϕ    etc.                             (2.123) 

which tends to considerably shorten the notation associated with transformation of 

coordinates. The transformational formulae for the coordinates of center of mass 

S2, S3 and M, which apply the notation as in (2.123) are the following: 
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and for speed, respectively: 
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The potential energy in this system, associated with gravity forces acting on  

members 2 and 3 of the manipulator and on mass M, is 

)2()2)(()2( 333322 sqHMgsaqHgmslHgmU ++−+++=  

which can be transformed to take the form  

))((2 333322 MqaqmlmgsconstU +−++=                    (2.126) 

Lagrange’s function for the manipulator accounting for (2.121), (2.125) and 

(2.126) takes the form: 
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where:               ySyOzSzO JlmJJlmJ 2
2
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The exchange of energy with the environment surrounding the manipulator occurs 

as a result of virtual work relative to external force F=-Fx, the driving torques M1, 

M2 and force F3 originating from drives on the joints and friction forces. First, we 

will calculate the generalized forces for the particular generalized coordinates re-

sulting from the external force. They take the form 
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while the overall virtual work of the system is: 
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Familiar with the expressions (2.127), (2.129) we are able to state the equations of 

motion: 
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and following the operations we obtain: 
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As a result: 
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3° for linear variable 3q : 
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The resulting equations are quite complex despite the fact that the manipulator has 

only three degrees of freedom. The model’s complexity is becoming greater fol-

lowing an increase in the number of degrees of freedom and with the greater num-

ber of revolute joints in the kinematic chain of the manipulator. Hence, in order to 

avoid laborious transformations and calculations in the formalized course of 

model’s statement using Lagrange’s equations it is possible to program the model 

in a programming language handling symbolic operations [1,11] and input the data 

regarding the kinematics and parameters of the examined object. The resultant 

equations of manipulator motion can be verified for a number of particular in-

stances by determining the values of selected variables and interpreting the terms 

in equations whose sum is not equal to zero. Let us assume for instance that the 

angular speed of the revolution of the vertical axis of the manipulator is 

const=1ϕ� , while the third joint – the translational one is immobile: q3 = const 

and for simplification purposes zero value of force F. In this case the equation of 

motion for the second member takes the form 
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           (2.131) 

It can be concluded that the arm of the manipulator is lowered under the effect of 

gravity force, the moment of centrifugal force relative to 2
1ϕ�  tries to preserve the 

arm in the horizontal position (φ2 = 0) and that this moment is the highest for an-

gle φ2 = 45°, which is quite logical. An active role is played by the driving mo-

ment M2 and the passive role is attributed to the moment of friction. The members 

of the equation have physical interpretation and the correct sign denoting the sense 

of a moment. From the first of the equations (2.130) it is possible to calculate 

moment M1 needed in order to maintain constant angular speed const=1ϕ�  of 

manipulator’s motion 

1132211 )()2( ϕϕϕϕ ��� DqJsΜ z +−=                              (2.132) 
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This equation serves in order to determine the torque required to overcome the 

frictional resistance and changing the angular momentum associated with the mo-

tion of the second member with the velocity equal to 2ϕ� . The final equation for 

variable Q3 makes it possible to determine the value of required force F3, neces-

sary at the point where the translational joint is fixed, in order to make it immo-

bile, which is 

)(2))2()((M 3
2
2

22
1333 mMgscq +++−= ϕϕ�F                  (2.133) 

The case dealt with here involves reaction to the centrifugal force relative to both 

angular speeds in revolute joints and to the gravity force. The derived equations of 

manipulator’s motion (2.130) could well be applicable for the selection of drive in 

manipulator’s joints and in discussion of issues associated with its control. 

2.1.12   General Properties of Lagrange’s Equations 

2.1.12.1   Laws of Conservation 

An isolated system is a system which neither affects nor is affected by other exter-

nal systems. For such a system Lagrange’s function is not explicitly relative to 

time 

),( qq�LL =                                               (2.134) 

In an isolated system we don’t have to do with external forces, neither in an active 

form or as frictional forces, hence, Lagrange’s equation takes the following form: 
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Let us assume that for a coordinate qj Lagrange’s function is not relative to this 

variable, but only depends on speed jq� , then 
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� ),( qq

                        (2.136) 

and this kind of coordinate is denoted with the term cyclic coordinate. This con-

stant value, which is a derivative of Lagrange’s function according to generalized 

velocity is called generalized momentum 
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∂
=

),( qq
p                                          (2.137) 

From equations (2.136) it stems that the generalized momentum for a cyclic coor-

dinate is constant. The occurrence of cyclic coordinates in Lagrange’s function 

depends on the selection of generalized coordinates (coordinate system); conse-

quently, the constancy of certain components of generalized momentum is relative 
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to the adopted reference system. It has been demonstrated [8,12,13] that the total 

momentum for an isolated system is constant. This also means that for cyclic co-

ordinates the components of momentum are constant, while for the remaining 

components of momentum the exchange of momentum occurs in such a manner 

that the total momentum of a system remains constant. Let us refer again to La-

grange’s function for an isolated system (2.134) and calculate the total differential 

for this function with respect to time  

∑∑ ∂

∂
+

∂

∂
=

k

k

kk

k

k

q
q

L
q

q

L

dt

dL ��
�

�  

The substitution of 
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 according to Lagrange’s equation (2.135) gives 
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which results in the relation: 
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This can be restated using the definition of momentum (2.137): 

∑ =−
k

kk constLqp �                                     (2.138) 

Hence, in an isolated system the following value is constant 

∑ −=
k

kk LqpE �                                          (2.139) 

and is called the energy of a system. We can transform the expression used in 

(2.139)  
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This is so due to the fact that the function of kinetic energy ),( qq�T  is a homogenous 

function of the second order (and, consequently, quadratic form) of the velocity for 

the case when it is not explicitly relative to time. In accordance with the Euler’s for-

mula for homogenous functions of n order the following relation is satisfied 
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and for a function of the order 2=n  the relation in (2.140) is satisfied. By appli-

cation of (2.140) in the formula stating energy (2.139) we obtain 

UTLTE +=−= 2                                         (2.142) 

This result could have been anticipated as it means that the total energy of an iso-

lated system ( ))(,),( qrrqq == �LL  consists of the sum of kinetic and potential 

energy. In an isolated system the law of conservation of generalized momentum is 

fulfilled [8,13], whereas this property can easily be demonstrated in a Cartesian 

coordinate system both for particles and rigid bodies in revolute motion. However, 

if a certain generalized coordinate is a system is expressed in terms of revolute an-

gle: qj = φ , then equation (2.137) denotes generalized angular momentum. For a 

cyclic angular coordinate the appropriate component of angular momentum in an 

isolated system is constant. As a consequence, Lagrange’s equations (2.51), 

(2.135) denote either the equations of forces for the case when the generalized co-

ordinate qk has a linear measure (i.e. it is translational) or equations for moments 

of forces (torques) for generalized coordinates in the form of angular variables 

(characteristic for revolute motion). 

2.1.12.2   Characteristics of Lagrange’s Functions and Equations 

The equations for both mechanical and electromechanical systems stated in the 

form of Lagrange’s equations possess a number of specific properties useful for 

the purposes of stating and controlling them as well as in various issues associated 

with the dynamics applying Lagrange’s equations, and in particular for a control 

of dynamic objects. 

 1° Lagrange’s function does not have a unambiguous expression. For function 

L and for function 

),( tF
dt

d
LL q+=′                                       (2.143) 

the equations of motion expressed using Lagrange’s method are in the same form. 

It is possible to verify by direct substitution of L and L′ in (2.144). 

2° Lagrange’s equation preserves an invariable general form. For a holonomic 

system it is following 

k

kk

P
q

L

q

L

dt

d
=

∂

∂
−

∂

∂

�
     sk …1=                             (2.144) 

regardless of the selection of the vector of generalized coordinates  

q = (q1,q2,…,qs). If unambiguous transformation were to be used 

),,( 1 sjj qquu …=       sj …1=  

having a non-zero determinant of Jacobean matrix for this transformation in a spe-

cific area of variance, there is a reverse transformation such that qk=qk(u1,u2,…,us). 
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Then Lagrange’s function ),( uu�LL =  takes another specific form, however, the 

general form of Lagrange’s equations  

,j

jj

V
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L

dt

d
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−
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∂

�
     sj …1=   

remains the same. The specific form of the particular equations for the successive 

variables of the two vectors of generalized coordinates q = (q1,q2,…,qs) and  

u = (u1,u2,…,us) is evidently different. 

3°  The resulting form of Lagrange’s equation for a holonomic system with s 

degrees of freedom, while Lagrange’s function is not explicitly relative to time, 

i.e. ),( qq�LL = , can be stated in the form of a matrix equation, where the respec-

tive matrices have the dimension of ss× : 

τqGqqqCqqB =++ )(),()( ����                               (2.145) 

The matrices display the following properties [20]: 

a) the matrix of inertia )(qB is a symmetrical and positively determined one and is 

relative only to the vector of generalized coordinates q. From that it results that 

matrix of inertia is always reversible. Moreover, there are such scalar quantities 

η1(q) and η2(q) that the following limitation is satisfied 

IqqBIq )()()( 21 ηη <<                                     (2.146) 

b) the matrix                            ),(2)( qqCqBW �−=                                      (2.147)  

- is skew-symmetric. This plays a role in the control of various systems and can 

serve in order to control the correctness of the developed equations of motion. 

c) the equations of motion (2.145) resulting from Lagrange’s equations are linear 

due to their structural parameters. This also means that that there is a constant  

vector Θ of dimension p and a matrix function ),,( qqqY ���  of dimensions pn×  

such that 

τΘqqqYqGqqqCqqB ==++ ),,()(),()( �������                    (2.148) 

The function ),,( qqqY ���  is denoted with the term regressor, while the vector Θ 

consists of appropriate combinations of structural parameters such as dimensions, 

masses and moments of inertia. The dimension p of the vector Θ is not uniformly 

defined and, hence, the identification of the adequate parameter set for this system 

in a way that dimension p is minimized plays a practical role. 

d) The equations of motion (2.145) possess the property of passivity. This means 

that the following mapping satisfies the relation: 

β−≥∫ duuu

T

)()(

0

τq ,                                      (2.149) 
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for the case of constant β. The evidence of that [3,17] is given by differentiation with 

respect to time of the total energy of a system (2.142) )()(
2
1 qqqBq UE T += ��  and 

demonstration that due to the property (2.147) 

τqTE �� =                                                     (2.150) 

which after integration of (2.149) gives H(T) - H(0)≥ -H(0) = -β since the total en-

ergy H(T) is always greater than zero. The property of passivity (2.149) is relevant 

in the evidence of the stability of dynamic systems during their control [17]. 

Example 2.8. Let us undertake the matrix notation of the model consisting  

Example 2.5 of a pendulum of mass m2 attached to mass m1 sliding along a hori-

zontal bar. The dynamic equations for this object (2.85) in the matrix form are the 

following: 
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Since                             ,
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and hence the last matrix is skew-symmetric. The matrix of inertia B(q) is posi-

tively determined, which results from the value of its determinant 

( ) 0)cos()()(det 2
2

2
221 >−+= ϕlmlmmmqB  

As a result, it is always reversible regardless of the value of angle φ. The equa-

tions of motion from the perspective of the linear combination of the parameters 

(2.148) can be represented for the following vector of parameters 

[ ] ][ 2
222143211 lmklmmm

T +=ΘΘΘΘ=Θ          (2.152) 

 In this case the regressor takes the form: 
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If the parameter Θ4 = m2l
2
, which is similar to Θ2 = m2l, were to be omitted from 

(2.152), which should be associated with the requirement of good familiarity with 

dimension l, the vector of parameters would take a shorter form 
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[ ] [ ]klmmm
T

2213212 +=ΘΘΘ=Θ                  (2.154) 

Consequently, the matrix of the regressor is following 
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However, during the practical process of estimating parameters of the mathemati-

cal model a considerable problem may be associated with the determination of the 

damping of transients. Hence damping coefficients may be incorporated into ma-

trix ),( qqC � . As a result ⎥⎦
⎤⎢⎣

⎡ −
=′

2

21
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lmD ϕϕ�� qqC . In this case the property 

(2.147) does not hold. For the new vector of parameters 
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In conclusion, for the mathematical model (2.151) of a pendulum sliding along a 

horizontal bar (Fig. 2.8) three options for linearity of Lagrange’s equations (2.148) 

were demonstrated on the basis of various structural parameters. 

Example 2.9. In a similar manner we shall analyze the equations of manipulator 

motion from Example 2.7. The corresponding matrices (2.145) formed on the ba-

sis of equations (2.130) are presented below. The matrix of inertia 
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is diagonal, positively determined and, hence, it is possible to state that it satisfies 

the requirements (2.146) 
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The matrix 
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where:                   
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In accordance with (2.147) the matrix CBW 2−= �  is a skew-symmetric one: 
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Moreover, 
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The equations of motion expressed in terms of the linear regression, in respect to 

parameters (2.148), may be presented for various compositions of the vector of pa-

rameters Θ in the context of the intended program for parameter estimation or for 

the purposes of design of control. For a six-dimensional vector with parameters 

[ ]MmlmJJJJJ ySyOzSzOz
T

32232321 ++=Θ           (2.161) 

the function of the regressor takes the form: 
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Other options for selecting the content of the Θ vector are also available. The se-

lection of them is relative to whether some of the parameters in a model are 

known with high precision or which should be the subject of a formal estimation 

and contained in Θ. 

2.2   Electromechanical Systems     

2.2.1   Principle of Least Action: Nonlinear Systems 

The purpose of this chapter is to provide grounds for the statement about the rele-

vance of Lagrange’s equations with regard to electromechanical systems. Another 

objective is to indicate the variability of parameters in the Lagrange’s function for 

systems with non-linear parameters, i.e. the ones in which the parameters are rela-

tive to the vector of the system’s variables. The principle of least action, also 

known as principle of stationary action or Hamilton’s principle is found in the ma-

jority of handbooks in the field of theoretical mechanics [8,12,16] to be central to 

the synthesis of the laws of motion. In classical mechanics it is derived from gen-

eral properties of space [13]. Every mechanical system is characterized by func-

tion ),,( tL qq�  relative to the vector of velocity and generalized coordinates and 

perhaps time present in the explicit form, known as Lagrange’s function. This is 

the same function that was obtained from the derivation of Lagrange’s equations 

(2.45-2.52) but it can also be derived from Galileo’s theory of relativity on the ba-

sis of the general properties of homogenous and isotropic space. For any system in 

motion a functional is defined, which represents a set of functions mapped onto a 

set of real numbers (Fig. 2.22) called an action. 

 

Fig. 2.22 Graphical representation of a functional: mapping S and a set of trajectories 

{ }qq ~,~�  
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dttLS
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1

),,( qq�                                          (2.163) 

This functional is a mapping of a set of trajectories { }qq ~,~�  into a set of real num-

bers { }ℜ  which result from the integration of Lagrange’s function along the par-

ticular trajectories. All trajectories belonging to the set have the same class of 

continuity C
1
, which means that they are continuous and possess a continuous de-

rivative; in addition to which, at the instants determined as t1,t2 they converge at 

the same points in space q1,q2; see Fig. 2.22. The principle of least (stationary) ac-

tion states that for any actual path of motion q(t) an action (2.163) assumes the 

smallest value of all possible trajectories belonging to the set { }qq ~,~� . This also 

means formally, that in the statement of prerequisites of any motion realized in na-

ture is that the first variation of the functional of action disappears. 
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For the variation of integral (2.164) one can further state that: 
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Under the assumption that )( q
dt

d
q δδ =�  , the second term of this integral can be 

integrated by parts 
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Since at instants t1,t2 all paths of motion converge at the subsequent initial and fi-

nal point, then: įqi (t1) = 0 and įqi (t2) = 0,   i = 1,…,s. 

After consideration of this fact the first term (2.166) is equal to zero, and inte-

gral (2.165) takes the form 
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The independence of variation of variables (virtual displacements), įqk leads to the 

relation 
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which is a familiar form of Lagrange’s equation for a stationary system (without 

an exchange of energy with the environment). This result means that the actual re-

alization of motion occurs along a trajectory for which the expenditure of action 

(2.163) of the system is the least possible one. Thus, in the sense of differential 

description of motion for this case the differential equation of the second order in 

the form of Lagrange’s equation (2.167) has to be fulfilled. This is a familiar  

result; however, it is more limited in comparison to the equation in (2.51) which 

accounts for external forces operating in the system. Nevertheless, it was derived 

on the basis of a general principle, which is valid in classical as well as relativistic 

mechanics [12,13,16] and in electromagnetism as well. This gives a solid founda-

tion to extend the method of Lagrange’s equation onto calculation of electrome-

chanical systems, which is the fundamental object of the study of electrical drives. 

2.2.1.1   Electrically Uncharged Particle in Relativistic Mechanics 

Deriving from the general postulates associated with relativistic mechanics and  

in particular from the postulate that action S of a mechanical system may not be 

relative to the selection of any inertial reference system and, hence, it has to be an 

invariant of Lorentz transformation [13,16], Lagrange’s function for a particle can 

be stated in the following form 
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Concurrently, the action on the particle is 
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where: 

 m - is the rest mass of a particle 

 c - is the velocity of light in vacuum 

Since always the velocity of a particle v is considerably lower than the speed of 

light, it is possible to expand Lagrange’s function (2.168) so that it takes the form 

of Taylor’s power series of a small quantity (Ȟ/c
2
). As a result of such expansion 

we obtain: 
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For small velocities Ȟ << c only the first two terms of the power expansion of La-

grange’s function are relevant in comparison to the following ones; however, the 

first term in them, as a constant value, does not contribute anything due to the in-

definite form of Lagrange’s function (2.143). Hence the result takes the form of 

familiar classical result well known in mechanics L = ½ mȞ 2
, which denotes  



62 2   Dynamics of Electromechanical Systems

 

kinetic energy of a particle. The calculation of particle’s momentum according to 

the general definition (2.137) results in: 
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which when expanded into power series with respect to (Ȟ /c
2
), yields that 
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For small velocities Ȟ << c  this results in the classical shape  

vp m=                                                   (2.173) 

The calculation of the total energy of a particle in accordance with relation (2.139) 

gives the result, which is relevant to our considerations 
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By expansion into power series (1.174), this gives 
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This energy consists of rest mass energy E0 = mc
2
 and the energy associated with 

the velocity of particle’s motion. The relevance of this result is associated with the 

fact that the comparison between expressions in (2.170) and (2.175) offers a con-

clusion that Lagrange’s function for a particle in motion is equal to its kinetic  

energy only for the case of classical mechanics. In the relativistic mechanics the 

expressions in (2.168) and (2.174) are completely different. The formal reason for 

this is related to nonlinearity of parameters, or more precisely, nonlinearity of 

mass, which increases along with speed as illustrated by the formula for the parti-

cle’s momentum. An illustration of this is found in Fig. 2.23. 

From Fig. 2.23 one can conclude that surface areas that illustrate kinetic energy 

and the supplementary term denoted as co-energy overlap only for small velocities 

of a particle in motion. This is the case when the function of kinetic energy is a 

homogenous function of velocity (2.140). Accordingly, from formula (2.175) one 

can conclude that this is so only when the expansion into power series may omit 

the terms containing (Ȟ /c)
2k

. In practice this means that equality between kinetic 

energy and kinetic term in Lagrange’s function takes place only in case when the 

mass of the particle is constant, which is represented by a linear system in  

the sense of involvement of constant parameters. In systems with non-linear pa-

rameters relative to velocity q� , Lagrange’s function does not account for kinetic  

 



2.2   Electromechanical Systems 63

 

 

Fig. 2.23 Kinetic energy and co-energy of a particle in motion 

energy; however, in accordance with (2.171) the integral of system’s momentum 

takes the form 

∫∫ ===′ qpvp �ddLT                                        (2.176) 

This integral denotes the kinetic term of Lagrange’s function written as T' and  

is called kinetic complementary energy: co-energy. Its graphical representation 

(Fig. 2.23) takes the form of the surface area under the curve denoting the relation 

between the momentum of a system and velocity. From both the formal point of 

view and its graphical illustration it is clear that kinetic energy T is equal to kinetic 

co-energy T' only for a system with constant parameters. 

constmTT ==′                                       (2.177) 

Concurrently, the total energy of particle is equal to  

∫∫ == pqpv ddT �                                         (2.178) 

which can be integrated and the result takes the form (2.174), and the one in 

(2.175) after power expansion. Both functions of co-energy (2.176) and kinetic 

energy (2.178) add up to form a rectangle, which results from formula (2.174) and 

has also a graphical representation in Fig. 2.23. This also justifies the definition at-

tributed to co-energy, which states that it completes the function of energy to the 

bound of a rectangle. 

qp �=+′ TT                                            (2.179) 

The result of these considerations conducted for motion of a particle in relativistic 

mechanics shows that kinetic co-energy T' (2.176) is involved in the Lagrange’s 

function for a system whereas kinetic energy T is not. The distinction between ki-

netic co-energy and kinetic energy is only necessary in non-linear systems whose 

parameters are relative to generalized velocities. In the examined case of a particle 
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in motion mass m relative to the velocity forms the only variable parameter. In en-

gineering practice associated with issues of electric drives we have to do with such 

low velocities that the relativistic variation in mass is insignificant and, as a result, 

we assume that T' = T for mechanical variables. The studies conducted here have 

an even more comprehensive application besides theoretical considerations, as  

in electromagnetism we have to do with systems with non-linear parameters, in 

particular with inductance of the windings containing ferromagnetic core, which is 

relative to the current applied to the windings. 

2.2.1.2   Electrically Charged Particle in Electromagnetic Field 

In contrast to the previously considered example we shall assume here that a parti-

cle with rest mass m has an electric charge Q. The external electromagnetic field  

is so strong and its source is so remote that the charge Q, which is carried along 

with the particle, does not affect a change of the field. Scalar potential  

ϕ(r, t) describes the interaction between the field and immobile charge, while  

vector potential A(Ax, Ay, Az) describes the interaction with electric charge in mo-

tion (electric current). It is possible to define the four quantities describing elec-

tromagnetic field in the form of a four-vector that is transformed in accordance 

with to the rules of Lorentz transformations [13]. For an electromagnetic field is 

called a four-potential, where the scalar potential ϕ is considered as the zero term 

of this four-potential 

),(),( trAAAA == φµ                                    (2.180) 

Such formal notation referred to in theoretical physics proves very useful in trans-

formation of fields and studies devoted to general properties of electromagnetic 

interactions. For the purposes of our study it is relevant to note that Lagrange’s 

function for a charged particle in electromagnetic field is expressed with the aid of 

four-potential of field in the following form: 
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The first two terms of Lagrange’s function include kinetic co-energy of a particle 

with an electric charge of Q. This is the familiar mechanical kinetic co-energy 

(2.168) while the second term is the magnetic kinetic co-energy of the charge in 

motion. The term kinetic co-energy is used for the reason of its relation to the ve-

locity v. From the two kinetic terms we subtract the potential electric energy of the 

charged particle, as in the expression of Lagrange’s function. On the basis of La-

grange’s function we can calculate particle’s momentum in the following form 
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The momentum of a charged particle, hence, involves two terms, i.e. the familiar 

mechanical momentum (2.171) and the magnetic momentum of a particle. The 

term associated with electric field is absent from the formula, which comes at no 
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surprise, since the interaction with the scalar potential is static. Concurrently, the 

total energy (2.174) of a charged particle is 
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In conclusion, the total energy includes the potential energy associated with the 

scalar potential of the field ϕ beside the energy of the particle’s mass. We will 

proceed to see what will result from Lagrange’s equation for a charged particle in 

the field, whose Lagrange’s function is expressed in the form in (2.181). The ex-

amined system is stationary (does not account for exchange of energy with envi-

ronment) and the equation of motion can take the form 
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The right-hand side of the equation is equal to 
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The first term in this equation, in accordance with vector identity [18], may be ex-

pressed by the relation 
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The expression which is considered here is 
r∂

∂L
 and hence const=v . As a conse-
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At the same time, the left hand side of the equation (2.184) takes the form 
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After the combination and simplification of the two sides of the equation we  

obtain 
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to be the subsequent vectors of electrical and magnetic fields, we finally obtain 
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which gives an equation of motion for a charged particle in the electromagnetic 

field. The right hand side of the equation represents Lorentz force with which a 

field interacts with an electric charge. The content in this chapter indicates how 

notions of dynamics in the form of Lagrange’s equations can be applied to prob-

lems in electrodynamics. The issues dealt with here will be transferred to macro-

scopic scale for the application in electromagnetic lumped parameter systems. 

2.2.2   Lagrange’s Equations for Electromechanical Systems in the 

Notion of Variance 

Chapter 2.2.1 presents the principles of variance and their application in respect to 

a single particle with an aim of indicating that principle of least action involves 

both mechanics and electromechanical systems. This statement can be further ex-

tended from a singular particle to cover electromechanical systems, including 

macroscopic technical devices serving often for power generation and conversion. 

Beside machines such as electric power generators and motors used in electric 

drives, electromechanical devices include electromechanical measurement sys-

tems, servo-drives, industrial manipulators and robots as well. In addition, modern 

engineering tools include Micro/Nano-Electro-Mechanical Systems (MEMs, 

NEMs) [2], which attract a steadily growing interest. Such devices are different 

from the standard electromechanical drive in several ways despite the fact that the 

principle of operation is the same. First of all, the major task attributed to them is 

not associated with transformation of electric power. Instead, they tend to be used 

to perform precise action in a coordinated and controlled manner, including ma-

nipulation and measurement on a macro- or micro- scale. In addition, they have a 

greater number of degrees of mechanical freedom than the case is for standard 

electric drives, where the number of degrees of freedom is normally equal to one. 

In contrast, in standard manipulators the number of degrees of freedom amounts to 

5-6 [1,11,20]. 

Industrial manipulators, and in particular mobile robots, have a very complex 

control and information processing technology embedded in them, which is based 

on a number of internal and external sensors. In addition, they have systems, 

which apply artificial intelligence algorithms to promote autonomic decision re-

garding control parameters. Moreover, the driving systems are designed in a way 

that promotes energy saving in order to enable permanent operation using an in-

ternal source of energy in some cases. Such drives are sometimes referred to as ac-

tuators, which emphasizes the role of the drive based on articulated joints of the 

devices. More and more attention and research is dedicated to the application of 

actuators on a micro- and nano-scale in computer technology, medicine and even 

biotechnology. Such electromechanical systems apply a great number of electronic 

and power electronics devices as a result of the need to meet the requirements as-

sociated with fast changing motion and necessity of saving power. In fact, this 

branch of engineering which concurrently involves mechanics, electric drive, elec-

tronics and computer engineering for the purposes of control is nowadays referred 

to as mechatronics [9,14,23]. 
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The transfer from the principles of the motion of particles in electromagnetic 

field to electromechanical devices used in technology is associated with the need 

of stating assumptions regarding quasi-stationary character of electromechanical 

processes and deriving volume integrals from field quantities. Thus, a transfer can 

be made to the discreet model of the system. This problem is dealt with in the lit-

erature in this field [16,24]. The principle of stationary (least) action expenditure 

for non-stationary electromechanical systems states that 
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where: įL - is the variance of Lagrange’s function for an electromechanical  

system, įA- is not a variance of any function but represents work expenditure per-

formed on virtual displacements, which realize an exchange of energy with the 

environment, called virtual work of an electromechanical system. 

Under the assumption that processes are quasi-stationary in nature, Lagrange’s 

function for an electromechanical system includes only two structural compo-

nents: a mechanical one associated with the mass and elastic strain of the elements 

of the system and an electromechanical one related to the electric charge (electric 

field) and electric current (magnetic field). However, it does not involve a term 

that accounts for the electromagnetic field. In summary, it is simply a total of La-

grange’s functions for the mechanical and the electrical part of the system 

em LLL +=                                                (2.188) 

The mechanical term Lm in Lagrange’s function is represented by the difference 

between kinetic mechanical co-energy mT ′  and the potential energy Um. In a simi-

lar manner, electrical term of Lagrange’s function is expressed as the difference 

between kinetic co-energy eT ′  associated with magnetic field (electric currents) 

and potential electrical energy Ue associated with electric charges. Hence, the spe-

cific form of equation (2.188) takes the form  

)()( emem UUTTL +−′+′=                                 (2.189) 

where: mT ′ ,
e

T ′  - are kinetic co-energies for the mechanical and electric variables  

 Um, Ue - are potential energies: mechanical and electrical. 

Mechanical kinetic co-energy and potential energy have already been covered in 

detail. In the current section we will discuss magnetic kinetic co-energy and elec-

trical potential energy which commonly represent the electrical part of Lagrange’s 

function of the entire system. The number of degrees of freedom is the algebraic 

sum, which can be obtained by adding the number of degrees of freedom for the 

mechanical and electrical parts: 

em sss +=                                                (2.190) 
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This is so since there aren’t any specific variables of electromechanical nature; the 

variables are discreet and separate. The mutual interaction between the mechanical 

and electrical parts of the system as well as processes of energy conversion are re-

alized by the so called electromechanical couplings, which result from the fact that 

electromagnetic energy is relative to the mechanical variable and, as a conse-

quence, the equations are linked. This issue is covered in more detail later in this 

chapter. 

2.2.2.1   Electric Variables 

The selection of electric variables for characterizing an electromechanical system 

is implied by the form of Lagrange’s function for a single particle in the field 

(2.181). The description of potential energy involves charge Q, while the expres-

sion of kinetic energy involves a charge vQ in motion. Hence, the proposed vari-

ables in macroscopic description of electromagnetic phenomena are 
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                                            (2.191) 

which denote electric charge and electric current, respectively. The function of the 

charge in the electrical term of Lagrange’s function is similar to the role of the po-

sition in a mechanical system, and Q�  - electric current is an equivalent to me-

chanical velocity, which in fact is the velocity of the charge. Such a selection of 

variables is natural and harmonic both in terms of formal similarity and physical 

role in a system accounting for coordinates in the description of mechanical mo-

tion. The electrical variables, including electric charges Q and their time deriva-

tives, i.e. electric currents iQ =�  are present in electric circuits which are also 

known as electric networks. The role of the variables of the primary description in 

electric networks is played by charges on the branches Qb, which occur on the par-

ticular branches of the network 

),( ,2,1 bgbbb QQQ …=Q  

where: g - is a number of branches. 

At the same time, the generalized coordinates include the selected charges 

along the branches, which form the vector of generalized coordinates with the 

length se 

),( ,2,1 see QQQ …=q                                      (2.192) 

The role of constraints in an electrical network is played by equations formed in 

accordance with Kirchhoff's first law, which states that the algebraic sum of cur-

rents flowing through a node of an electric network is equal to zero (Fig. 2.24) 

0=∑
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Fig. 2.24 Representation of constraints in electrical network formed in accordance with 
Kirchhoff's first law 

The kinematic equations of constraints (2.193) originating from Kirchhoff's first 

law can be integrated. Since the nodes in the network do not accumulate electric 

charge the result is 
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The number of the degrees of freedom se in an electrical network is related to the 

number of branches g and the number of nodes w and is equal to 

1+−= wgse                                           (2.195) 

The selection of generalized coordinates is subjected to the standard conditions 

determined by the relations in (2.34-2.36). The transformational formulae type 

(2.37) are linear, which results from linearity of the equations of constraints (2.193 

– 2.194). As a result, they take the same form for electric charges Q, electric cur-

rents Q�  and virtual displacements įQ: 
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2.2.2.2   Virtual Work of an Electrical Network 

Virtual work represents the exchange of energy with the environment. The role of 

external forces is played by electric voltages u or electromotive forces e. A dissi-

pation of energy takes place under the effect of current flow through resistances R, 

which for the flowing current Q�  play the similar role as the friction coefficients in 

resisting mechanical motion. 



70 2   Dynamics of Electromechanical Systems

 

( )∑
=

−=
g

i

bibiiie QQRuA

1

δδ �                                  (2.197) 

The summation is performed along all branches of electrical network. After the ap-

plication of transformational formulae (2.196) and simplification of algebraic ex-

pressions, we obtain virtual work in the form of the sum of the terms in parenthesis, 

each of which represents generalized force for a given generalized coordinate 
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where:  uk - is the total voltage for a k-th mesh in a network 

 Rkl - is the mutual resistance of k,l meshes of the network. 

Example 2.10. Let us apply the presented method for the determination of the 

number of degrees of freedom, selection of generalized coordinates and virtual 

work for an electrical network, which corresponds to the topology of a 3-phase 

bridge rectifier presented in Fig. 2.25. 

For the examined network the number of nodes is w = 6 and the number of 

branches is equal to g = 10. Hence, the number of degrees of freedom amounts to 

se = g –w +1 = 5. The branches are marked with arrows to show the direction of 

current flow indicated with a plus sign. The vector of currents in the branches, 

which play the role of velocity in the primary coordinate system, is the following: 

),( 10,2,1 QQQb
�…��� =Q  

Five linearly independent charges are indicated as the generalized coordinates. For 

example such coordinates include 

( ) ),,(,,,, 1064,3,154321 QQQQQqqqqqe ==q  

and the corresponding vectors of currents and virtual displacements are: 

),,(),,( 1064,3,11064,3,1 QQQQQQQQQQ ee δδδδδδ == qq ������       (2.199) 

 

Fig. 2.25 Diagram of electric network representing a 3-phase bridge rectifier 
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The vector of generalized currents (2.199) plays the role of a set of mesh currents 

in the method of analysis of electrical networks familiar from electrical engineer-

ing. The mesh currents corresponding to vector eq�  of generalized currents are in-

dicated in Fig. 2.25. This system contains 6 nodes yielding the relations (2.193) 

resulting from Kirchhoff's first law: 
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One of the above equations is linearly dependent on the remaining ones and can 

serve to play the role of a control node. The resulting transformational formulae 

(2.196) for the currents take the form 
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In accordance with (2.196) the same functional relations are fulfilled for virtual 

displacements 
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Let us assume that every branch has a certain resistance Rl, where l denotes the 

number of this branch and supply voltages in branches 1,2,3 are presented along 

with their sense in Fig. 2.25. The virtual work in the coordinates of primary de-

scription, i.e. with the use of branch currents and voltages is equal to 
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Since transformational formulae (2.201-2.202) are linear, the virtual work of this 

system can be easily obtained by direct substitution. After substitution we have: 

101066443311 )()()()()( QrQrQrQrQrA δδδδδδ ++++=  

Since virtual displacements (2.199) are independent, each of the terms in paren-

theses corresponds to the right-hand side of Lagrange’s equation for a k-th gener-

alized coordinate. Assuming at the current stage of the study that the system does 

not account for passive elements but sources and resistances, we obtain 0=Aδ . 

From the independence of įQk, k = 1,…,se it results that all terms in rk have to be 

equal to zero. The result forms the statement of the equations of motion for the 

system of an electrical network given in the diagram in Fig. 2.25. The equations 

are found below: 
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These equations apply the traditional notation Qi �=  for the electric current. The 

verification of the equations in (2.203) is quite problematic. However, one can 

easily note the symmetry of the network and the corresponding selection of gener-

alized variables. This symmetry can be perceived in equations (2.203), which  

confirms the correctness of the equations gained. It is sufficient to substitute the 

subscripts 1 → 3, 4→ 6, 7 → 9 in equations r1, r3 and a change in their positions 

will be followed by an unchanged result. In a similar manner we can undertake the 

procedure in r4, r6. Equation r10 can also be transformed in a similar manner while 

remaining in the same form. 

2.2.3   Co-energy and Kinetic Energy in Magnetic Field 

Converters 

In electromagnetic converters we have to do with low frequencies of electric cur-

rent and, as a result, with slowly variable electromagnetic fields. This enables one 

to consider fields as stationary and separately consider each of the field’s compo-

nent, i.e. magnetic field and electric one. The source of the first one is the vector 

potential A relative to electric currents, while the source of the latter one is the 

scalar potential ϕ depending on electric charges. 

2.2.3.1   Case of Single Nonlinear Inductor 

Let us first consider an individual inductor with the current iQ =� , which forms 

the source of a magnetic linkage Ψ with its coils (Fig. 2.26). Departing from the 

instantaneous power supplied to the coil 

QeP �=   

where 
dt

d
e

Ψ
=  - is electromotive force induced by magnetic field on the coil, we 

obtain the delivered power as the integral of the instantaneous power 
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The above expression indicates that energy of field Te is not relative to time; how-

ever, it is relative to the current values of variables Ψ and Q� . Hence, it is a func-

tion of the state. In the examined integral it is possible to undertake a change of 

the variables, which gives 

Ψ= ∫Ψ ~

0

dQTe
�                                                 (2.204) 

where Ψ
~

 is an independent variable and )
~

(Ψ= QQ �� . 

Subsequently, we have to determine Lagrange’s function for the examined in-

ductor. This function is represented by the integral of magnetic field momentum 

with respect to time. The momentum of the field for a single charged particle in 

accordance with (2.182) is equal to QA. For the charges massively moving in a 

conductor it is possible to derive the notion of the density of electric current 
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] and the Lagrange’s function is expressed as 

dVdVdL

VV

j

e ∫∫ ∫ =⎟⎟⎠
⎞

⎜⎜⎝
⎛

= jjAjjα )(
~

)
~

(

0

                            (2.205) 

The formula in (2.205) is also relevant with regard to non-linear environments 

with electromagnetic field since the expression for vector potential A(j) does not 

assume the superposition from the currents in space V. This potential involves the 

magnetic properties of a material in space, so that rot(A(j)) = B, in contrast to 

vacuum (2.185), where vectors B, H are linearly dependent. It was indicated in 

more detail in [16] that this vector based approach can lead to the discreet model 

of Lagrange’s function as a result of the following course of reasoning 
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where S denotes the internal cross-section of the conductor which carries the elec-

tric current. As a result, we obtain 

∫Ψ=′=

Q

ee QdQTL

�

��
0

~
)

~
(                                        (2.206) 

This Lagrange’s function is equal to the co-energy of the magnetic field 
e

T ′ . From 

the relation (2.206) it results that in the discreet system the magnetic linkage Ψ 

plays the role of magnetic field momentum and, hence, forms an equivalent of  

the term for magnetic momentum of a charged particle (2.182). The energy and 
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co-energy of the magnetic field sum up to form a rectangle just as the case of the 

motion of a particle (2.179). An illustration of this is found in Fig. 2.26. 

QTT ee
�Ψ=+′                                              (2.207) 

The momentum of the magnetic field (magnetic linkage) is the function of the  

current Q�  and can be determined with the use of a parameter called inductance 

coefficient 

QQM �� )(=Ψ                                               (2.208) 

where: 
Q

QM �
�

∂

Ψ∂
=)(  - is an incremental inductance coefficient. 

The case is similar for that of the mechanical momentum of a particle, which 

can be determined using a parameter – particle’s mass. For the case of the linear 

magnetization characteristics the inductance coefficient is constant. As a result, 

QM �=Ψ  and the energy of the magnetic field is equal to: 

∫ == 2

2
1)( QMQMdQTe
���  

Thus, co-energy is:                      ∫ =Ψ=′ 2

2
1 QMQdTe
��                                  (2.209) 

and the relation ee TT =′  is fulfilled. 

 

Fig. 2.26 Illustration of the relation between the energy T
e
 and co-energy T

e
• of the mag-

netic field for an inductor with non-linear magnetization curve 

One can note at this point that there is a complete analogy to momentum, en-

ergy and kinetic co-energy in mechanics for the case of a particle in motion. The 

non-linear case in mechanics takes place for sufficiently high velocities (2.171), 

(2.176-2.179), where the mass m is considerably relative to the velocity v. 
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2.2.3.2   The Case of a System of Inductors with Magnetic Field Linkage 

A very large number of electromechanical devices such as electrical machines and 

transformers have a number of magnetically linked windings. This is associated 

with the much more effective transformation of energy for the case of application 

of multi-phase systems in electric network and machines. Such linkages do not 

play a small, or even a marginal role; however, it is their function to decide on the 

operating principle of such devices. Hence, it is essential to take them sufficiently 

into consideration in the mathematical models and during the design of such sys-

tems. In the generalized case magnetic linkage is associated with all windings, 

which can be presented in an abstract form in Fig. 2.27. The calculation of energy 

or co-energy for such a linked system usually poses a difficult task and is often 

conducted using programs for electromagnetic calculations in non-linear environ-

ments, which are based on finite elements method or edge variables method. Effi-

cient dedicated 2D and 3D programs have been developed to handle both methods 

beside accessible free and trial software. Such programs make it possible to de-

termine the field in the form of a spatial distribution of vectors of magnetic poten-

tial A, field intensity H, or the vector of magnetic induction B. It is also  

possible to obtain the integrated parameters such as co-energy and energy of  

a field, inductance of the windings and ponderomotoric forces encountered in a 

system. 

 

Fig. 2.27 System of n magnetically linked inductors 

In the examined case we have to do with the task concerning the statement of 

generalized forms which enable one to determine the functions of co-energy and 

energy of a magnetic field in the function of generalized coordinates and their 

time derivatives – electric currents. The basis for the derivation of such formulae 

lies in the fact that energy and co-energy of a field are the functions of the state 

(2.204) and as such are not relative to the means used to obtain a certain state 

(temporal functions) but depend on the instantaneous state as determined by  
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variables Q�,Ψ . Hence for simplification of the mathematical statement, in a sys-

tem of linked inductors the particular currents kQ�  should be successively raised 

from zero to the final value, while the remaining variables are being kept at a 

steady level. This is conducted in succession from inductor 1 to the last one, which 

is denoted as n, while the current variable is denoted with a sign placed above its 

name Q
~�  in order to distinguish it from the remaining variables. 
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This can be restated in a more abbreviated form: 
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                         (2.210) 

The calculation of the magnetic energy of the system of inductors may involve a 

similar procedure, i.e. integration of the term type Ψ∫ dQ�  or simply the use of 

formula in (2.207). Thus, we obtain 

ee TQT ′−Ψ= �                                           (2.211) 

For a system of linked inductors we define mutual inductance coefficients 
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while in the linear case :              
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where: Ψkl is a component of the linkage Ψk resulting from current il. 

The co-energy of the field in the linear case results directly from relation 

(2.210) and the definition of inductance coefficients (2.212) and is clearly equal to 

the magnetic energy of the field 
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By integration we obtain: 
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which can be restated more briefly as: 
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1 1

2
1 ��                                    (2.215) 

In the expression (2.215) for energy and co-energy of a system of linked inductors 

one can apply the relation Mkl = Mlk. As a result of expansion we obtain: for 
2

2
1

kkk QMlk �→= , while for lkkl QQMlk ��→≠  , which leads to the correct results 

such as in (2.214). 

2.2.4   Potential Energy in Electric Field Converters 

Electric potential energy is associated with quasi-static displacement of an electric 

charge Q in an electric field in the direction of the rising potential. In accordance 

with (2.183) this energy for a single particle is equal to Q ϕ, where ϕ(r, t) is the 

scalar potential of a field. This charge is considered as a small (testing) one as  

it itself does not affect the scalar potential. The discreet element related to the  

accumulation of electric energy (electric field) is the capacitor, whose ability to 

accumulate a charge is characterized by parameter C called the electric capacity. 

The capacity of a capacitor is expressed by the relation of the accumulated charge 

to the voltage between the electrodes in a capacitor 

U

Q
C

∂

∂
=                                                 (2.216) 

while for a linear capacitor  

U

Q
C =                                                   (2.217) 

the capacity is a constant value. The potential energy associated with the charged 

capacitor can be derived from electric power QuP �=  supplied during charging: 
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From relation in (2.218) it results that the potential energy related to an electric 

field in a capacitor is the function of the state and depends only to the voltage and 

charge in that capacitor. For this macroscopic case, in contrast to the elementary 

charge in an external field, charge Q affects the potential in the charged capacitor 

as a result of charging. Hence, in (2.218) the relation u = Q/C(Q) is fulfilled. 

Thereby, using (2.218) we obtain ∫= Q

e Qd
QC

Q
U

0

~

)
~

(

~

. 

For a linear capacitor this gives a form that is popular and often referred to 
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== ∫                                    (2.219) 

2.2.5   Magnetic and Electric Terms of Lagrange’s Function: 

Electromechanical Coupling 

It is now possible to determine the electromechanical term Le of Lagrange’s func-

tion in an electromechanical system. It consists of the kinetic co-energy eT ′  related 

to magnetic field (2.206) and a term for potential energy Ue of the electric field 

(2.219) deduced from this term  

eee UTL −′=                                             (2.220) 

The application of Lagrange’s function in its electromechanical part is associated 

with a need of making two remarks. For linear magnetic circuits (without mag-

netic saturation) the co-energy of the magnetic field eT ′  is equal to the energy of 

the field Te; hence, the distinction is not necessary. The second remark is that in 

connection with low frequencies of voltage and current alternation in electrome-

chanical systems we have to do with quasi-stationary fields, which means that the 

fields are virtually not coupled. As a result, we have to do with the magnetic term 

of the Lagrange’s function, the electric term, while the electromagnetic term asso-

ciated with the coupled fields is absent. 

Electromechanical coupling. The ability of electromechanical converters to 

convert energy occurs as a result of electromechanical couplings. This means that 

in equations for electrical circuits there are voltages resulting from mechanical 

motion, while in equations of motion for mechanical variables (displacement, rota-

tion) there are torques or forces resulting from currents or electric charges. The 

occurrence of couplings is associated with the fact that co-energies or energies of 

electromagnetic nature are relative to mechanical variables. Let us consider a de-

vice with n coupled windings, whose inductance coefficients are relative to a me-

chanical variable, for instance angle of rotation φ. This is the case in electrical 

multi-phase machines 

 ∑∑
= =

=
n

k

n

l

lkkle QQMT

1 1

2
1 )( ��ϕ                                  (2.221) 



2.2   Electromechanical Systems 79

 

In equations involving electrical variables this results in the addition of another 

term in the k-th equation 
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in which we have to do with two terms for voltage induced in the winding: the 

first term comes from variation of the current in time dtdil /  and is denoted as the 

voltage of transformation, while the other one associated with angular velocity ϕ�  

of converter’s motion is denoted with the term rotation induced voltage. In the 

equation for the mechanical variable φ we have to do with the term 
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It means the torque resulting from the interaction of electric currents or, according 

to a different interpretation, from the effect of the interaction of magnetic field and 

electric currents. The latter interpretation is quite self-evident when we take into 

consideration a converter with non-linear characteristics of magnetization. In this 

case it is necessary to apply Lagrange’s function accounting for co-energy 
e

T ′  of 

the magnetic field and in accordance with (2.210) we can calculate: 
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In a similar manner, if the capacity of a capacitor in a converter with electric field 

is relative to a mechanical variable, for example the distance between the elec-

trodes, we have also to do with electromechanical coupling. The electrical energy 

of a capacitor with a mobile electrode is expressed by formula 

)(

2

2
1

xC

Q
U e =                                                   (2.225) 

where x is a mechanical variable. 

In this case in the equation for the electric variable we have an electric term: 

)(xC

Q

Q

U e =
∂

∂
 

as a result of which the voltage is relative to the position x of an electrode. In the 

equation for a mechanical variable we obtain the following term: 
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which denotes the mechanical force of attraction of the mobile electrode of a ca-

pacitor expressed in [N]. This is confirmed by the dimensional analysis of formula 

(2.226): 
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The similar principle applies to the electrostatic voltmeter for example. Electro-

mechanical couplings are encountered in all examined converters since they con-

stitute the idea governing their operation. 

2.2.6   Examples of Application of Lagrange’s Equations with 

Regard to Electromechanical Systems 

Example 2.11.  For an electrical system forming a network presented in Fig. 2.28 

we will state differential equations of motion using Lagrange’s equation method. 

The lumped parameters R,L,C in this network are constant. 

The elements present in the branches of the network in Fig. 2.28 are numbered 

in accordance with the numbers of branches in this network. The number of 

branches amounts to g = 5, while the number of nodes w = 3. Hence, the number 

of the degrees of freedom is equal to 

31=+−= wgs  

 

Fig. 2.28 Electrical network with lumped parameters 

The vector of the coordinates of the primary description (2.35), i.e. charges Qi in 

the particular branches takes the form 

TQQQ ],,,[ 521 …=Χ                                       (2.227) 

and, by parallel, the vectors of electric currents iQ�  and virtual charges įQi are: 
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TT QQQQQQ ],,,[],,,[ 521521 δδδδ …�…��� =Χ=Χ                    (2.228) 

The selection of the generalized coordinates can be undertaken in various ways. 

The selection of currents in the branches with inductances L as generalized veloci-

ties leads to the decoupling of the equations of motion with respect to the deriva-

tives of the currents and, as a consequence, we obtain a diagonal matrix of induc-

tance. Given such selection, we have 
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The constraints in this system result from the equations for currents established for 

the Kirchhoff’s first law (2.193). Two of them serve for the calculation of trans-

formational formulae (2.196), which in the examined case leads to the relation 

435312 QQQQQQ ������ −=−=                                     (2.230) 

For the third node, which was not applied for the derivation of transformational 

formulae for currents (2.230), it is possible to undertake the verification of the 

formulae by checking whether the balance will be zero as a result of restatement 

of this formula in the form of currents being generalized velocities. The equations 

in (2.230) can be integrated and directly lead to the derivation of transformational 

formulae for electric charges and virtual displacements of the charges: 
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Lagrange’s function for the examined system takes the form: 
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This Lagrange’s function has already been expressed in generalized coordinates 

using (2.231). The virtual work in the coordinate system of the primary descrip-

tion takes the form: 
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After the application of transformational formulae (2.230-2.231), we obtain: 
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The correctness of thus calculated virtual work can be verified by using closed 

loop currents method. The equations of motion for this electrical network can be 

formulated in the following manner: 
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3º  and for:                  4
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These equations should be complemented by the following defining equations: 

4º - 6º                         443311 ;; iQiQiQ === ���                                 (2.235) 

Let us further assume that between the inductors L1 and L3 there is a magnetic 

linkage in the form drafted in Fig. 2.29. 

This is a negative linkage described by mutual inductance –M13. This means 

that the current in the first and third branch in the direction of current flow marked 

with an arrow leads to the decrease of the energy of the magnetic field. Accord-

ingly, the new form of Lagrange’s function L
~

 is the following 

3113

~
QQMLL ��−=  
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where L is the Lagrange’s function (2.232). As a consequence, the equations 1º 

and 2º in the system in (2.234) have changed: 
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The resulting equations are linked by their derivatives whereas the remaining 

equations in the system (2.234-2.235) remain unchanged. Figs. 2.30 and 2.31 pre-

sent examples of waveforms for this network supplied with constant voltage  

of V][801 =u , V][404 =e  and V][205 =e . The values of the parameters are as 

follows: 
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Fig. 2.29 Magnetic linkage of windings L
1
 and L

3
 in the network in Fig. 2.28 

 

Fig. 2.30 Curves of electric currents for the network in Fig. 2.28 under constant supply 

voltage, switched under zero initial conditions 
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Fig. 2.31 Curves of voltages on capacitors for network in Fig 2.28 under constant supply 

voltages 

Following Figs. 2.32 and 2.33 present the curves for switching under alternat-

ing voltage u1 with the amplitude of U1 = 80[V], f = 50 [Hz], φ0 = 0.36, while the 

remaining voltages are constant e4 = 40 [V], and e5 = 20 [V] and the circuits’ pa-

rameters remain unchanged. 

 

Fig. 2.32 Curves of electric currents for network in Fig 2.28 after switching alternating 
voltage u

1
, while the remaining voltages are constant and circuits’ parameters unchanged 

 

Fig. 2.33 Curves of voltages on capacitors for network in Fig. 2.28 after switching alternat-
ing voltage u

1
 while the remaining voltages are constant and circuits’ parameters unchanged 
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Example 2.12. The examined electromechanical system is a symmetrical cylinder 

of mass m with a coil wound around it. This cylinder is rolling down along an in-

clined plane with an angle of α. The coil consists of z turns and is fused in contact 

into the side surface of the cylinder in a way that does not interfere with potential 

motion of the cylinder. The cylinder is made of non-magnetic material whose 

magnetic permeability is equal to that of the air. The motion occurs in a constant 

magnetic field, whose induction vector B is perpendicular to the base of the plane. 

First, we will establish the equations of motion for the system, whose kinematic 

diagram is presented in Fig. 2.34. 

Let us assume that the motion is slipless and the axis of the cylinder for the du-

ration of the motion is parallel to y axis which goes along the horizontal edge of 

the plane. This system is characterized by the following parameters: 

m - mass of cylinder including coil 

J - cylinder’s moment of inertia in relation to the central axis  

r - cylinder’s radius 

l - length of cylinder along the axis 

R - resistance of the winding  

Lw- inductance coefficient of the winding  

z - number of the coil’s turns 

α - angle of plane’s inclination 

 

Fig. 2.34 Cylinder with coil wound around it on an inclined plane under constant magnetic 
field 

Under such assumptions the constraints imposed on the system are holonomic and 

the system has two independent virtual displacements: 

įφ - for the rev olute motion of a cylinder 

įQ - for the electric charge in an coil 

From the above we can derive generalized coordinates in the form 

),( Qϕ=q                                                 (2.237) 

The virtual work of the system is  

QQRDA δδϕϕδ )()( �� −+−=  
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and the kinetic mechanical energy is 

2

2
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2
1 ϕ�� JxmTm +=                                       (2.238) 

Kinetic co-energy of the magnetic field, which is an equivalent to the magnetic 

energy due to linearity of the environment, has two terms and just as the field is a 

superposition of two fields: one from the current Q�  in the coil and the external 

field with constant flux density B. 
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where: Ψz(φ) - denotes the flux associated with the coil originating from the exter-

nal field. The potential energy Um is associated with the mass of the cylinder in the 

gravitational field 

)sin()( 0 αϕϕ rhmgmghUm −==                               (2.240) 

The above relation contains the following terms: 

0ϕ  - initial value of the angle of revolution 

0
h  - initial elevation of the cylinder’s center of mass S above the mount  

Blrzzm 2=Ψ  - maximum value of the external field linked with the coil. 

After transformational formulae are taken into account rxrx ϕϕ �� == , , La-

grange’s function in generalized coordinates takes the form: 
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Hence, the resulting equations of motion are the following 
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The expression:                  )sin( 0ϕϕ −Ψ−=Μ zmwe i                                   (2.243) 

denotes electromagnetic torque which brakes the cylinder during its rolling motion 

down the plane. The mean value of this torque is different from zero since the cur-

rent iw in the coil is the alternating current. It is possible to select Ψzm in such a 

way that the mean velocity Ωav is constant and in that case the time function of the 

current iw is periodical, as resulting from (2.242). Given an approximated curve of 

the current iw in the steady state in the form 

∑ +Ω=
k

kavmkw ktii )sin( θ  

and for the rotation angle φ = Ωav t+φ0,  it is possible to determine electromagnetic 

torque acting upon the cylinder from the formula (2.243) 
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     (2.244) 

The basic components of this torque for 1=k  are the constant torque and the 

variable one corresponding to the double of the mean angular velocity: 

( ))2cos()cos( 010112
1

1
ϕθϕθ −+Ω−+Ψ−=Μ = ti avmzmke  

For the mathematical model of the system presented in (2.242) the parameters 

have been calculated for a hollow cylinder with the density of ρ = 1.2 [kg/dcm
3
]. 

The basic dimensions of the structure are presented in Fig. 2.35. The parameters of 

the system are following: 

SCu = 1.5 [cm
2
]  - cross-section of the winding 

m = 7.0 [kg]    - mass of the cylinder 

z = 150    - number of turns in the coil 

R = 4.5 [Ω]     - resistance of the winding 

Lw = 0.04 [H]     - inductance of the winding 

J = 0.032 [Nms
2
] - central moment of inertia of the cylinder 

Jz = J +mr
2
 [Nms

2
] - moment of inertia of the cylinder in respect to tangency 

line of rolling motion 

r = 0.075 [m]     - radius of the cylinder 

cz = 12.42 [Wb/T] - constant value which relates flux with flux density 

α = 0.3        - angle of plane’s inclination 

The illustrations of the results of computer simulations for this system are pre-

sented in Figs. 2.36-2.43. They involve two types of motion. For the first set (Figs. 

2.36-2.39) the motion takes place under a strong magnetic field, i.e. for B = 0.25 

[T] and is stationary in the sense of possessing periodic characteristics. 
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Fig. 2.35 Schematic diagram of cylinder containing coil 

However, it is clearly non-uniform in the function of the angle of revolution 
and the current in the winding differs much from the sinusoidal shape due to the 
considerable effect of the angular velocity, which is periodic but far from steady. 
Under a weaker field (B = 0.12 [T]) the motion is much faster but also stationary, 
velocity has a variable term with a lower value and the current presents a curve 
more reminding a sinusoid. 

 

Fig. 2.36 Angle of cylinder revolution for flux density B = 0.25[T] 

 

Fig. 2.37 Current curve in coil for flux density B = 0.25[T] 
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Fig. 2.38 Angular velocity of cylinder’s motion for flux density B = 0.25[T] 

 

Fig. 2.39 Electromagnetic torque decelerating cylinder’s motion for flux density B = 
0.25[T] 

 

Fig. 2.40 Angle of cylinder revolution for flux density B = 0.12[T] 

Example 2.13. Dynamics of a contactor with electromechanical drive. Fig. 2.44 

presents a model of a contactor with non-linear magnetization characteristics. It 

consists of an electromagnet, movable jumper of mass m, a system of constant 

springs with stiffness k1, coefficient of viscous damping D1, and springs and 

dampers acting within the range of small width of the gap x for decelerating and  
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Fig. 2.41 Current curve in coil for flux density B = 0.12[T] 

 

Fig. 2.42 Angular velocity of cylinder motion for flux density B = 0.12[T] 

 

Fig. 2.43 Electromagnetic torque decelerating the motion of cylinder for flux density  

B = 0.12[T] 

damping the elastic collision of the jumper against the core. Their stiffness coeffi-

cients are defined as k2 and k3 and damping ones as D2 and D3. An adequate selec-

tion of the springs and dampers plays a key role in the securing the correct opera-

tion of the electromechanical system of the contactor beside the characteristics of 

magnetization in the function of the width of the gap x as presented in Fig. 2.45. 

This system has two degrees of freedom: one associated with the mechanical 

motion and the other one for the electric charge in the coil of the winding. Hence, 

the generalized coordinates follow in the form 
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),( Qx=q  

where:                x - is the width of the air gap 

   Q- is the electric charge in the winding 

 

Fig. 2.44 Electromechanical system consisting of a contactor with a movable jumper 

 

Fig. 2.45 Characteristics of magnetization of contactor’s circuit for various values of air 
gap from the opening to closing of the gap 

Lagrange’s function for the system involves the kinetic co-energy of the mag-

netic field, kinetic energy of the moveable jumper and potential energy of the 

jumper in the gravitational field as well as potential energy of the system of 

springs given by the function Us(x). 

)()(
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The relations in (2.245-246) apply the following symbols: 

m - mass of the movable jumper 

d1, d2, d3 - constants which determine the free length of the springs 

c - a constant. 

The virtual work of the system involves the exchange of energy with the environ-

ment and contains two terms: an electrical and a mechanical one 

QPxPAAA Qxem δδδδδ +=+=                                 (2.247) 

The mechanical term of virtual work contains viscous damping coefficient D1 re-

sulting from the motion of the jumper and dampers with considerable damping co-

efficients D2 and D3, which account for damping of the impact between jumper 

and electromagnetic core for small gap width just as for the case of the springs 
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The electric term of virtual work is formulated for the circuit of the coil 

QQRuAe δδ )( �−=                                            (2.249) 

while the energizing is provided for in two ways: by AC and DC with the voltage 

converted from a doubling rectifier 
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The equation of motion for the mechanical variable takes the form: 
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and after the introduction of Lagrange’s function (2.245): 
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which can be transformed to take the final form: 
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where:                                 ∫ Ψ
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- is the pull force of the electromagnet. 

The equation for variable Q - electric charge results from the general form: 
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After differentiation, we obtain 
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In the equations of motion we have to do with derivatives of the characteristics of 

magnetization with respect to the current of the coil 
Q

Qx

�
�

∂

Ψ∂ ),(
 and with respect to 

the width of the air gap 
x

Qx

∂

Ψ∂ ),( �
, which after integration (2.252) corresponds to 

the pull force of the actuator. In the examined case of the characteristics of magneti-
zation (Fig. 2.45) approximation was carried out analytically using spline functions of 
the third degree, thanks to which the derivatives according to the coil current are con-
tinuous. However, the derivatives of the magnetization characteristics with respect to 

the width of the gap x are calculated as the differential values xΔΔΨ /  by linear ap-

proximation of the quotients between the particular characteristics. Fig. 2.46 presents 
the force of jumper pull calculated in accordance with relation (2.252) in the function 
of the relative width of the gap x, expressed as the per cent of the gap width in the 
state of complete opening of the contactor, for several values of the current 

A][30,,10,5 …� =Q . On the basis of the mathematical model with the equations of 

motion (2.250-2.253) and characteristics of magnetization from Fig. 2.45 a number of 
simulations was conducted for the examined system of the contactor with electrome-
chanical drive involving shutting of the movable jumper after the voltage is applied. 
The calculations were performed for the supply of both alternating current as well as 
the voltage converted from a doubling rectifier, which leads to the flow of direct cur-
rent in the winding with only a small alternating component. The appropriate opera-
tion of a contactor is associated with the necessity of an adequate selection of supply 
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voltages and parameters regarding both springs and dampers. For the supply of the 
contactor with alternating voltage the amplitude during switching it on is Um1 = 230 
[V], while after the jumper has shut, the value increases to Um1 = 400 [V] in order to 
maintain the closure state. 

 

Fig. 2.46 Characteristics of pull force of contactor in the function of relative width of air 

gap for constant values of coil current A][30,,10,5 …� =Q  

For the case of supply with rectified voltage the situation is reversed:  
for the switching on of contactor the amplitude of alternating voltage undergoing 
rectification is equal to Um2 = 32 [V] while after the shutting of the jumper is re-
duced by a half. The various values of the supply voltages are necessary to pre-
serve the appropriate operation of the contactor during the shutting of the jumper 
and subsequently to keep it in the closed state. They result from the required flux 
density in the air gap and an indispensable value of the current necessary to initi-
ate the fast motion of the jumper and subsequently to its stable maintenance in the 
closed state, overcoming strong springs’ push, with only small power losses. 

 

Fig. 2.47 Current waveform for powering on contactor with alternating voltage 230 [V] 
during shutting of the jumper and switching voltage to 400 [V] after shutting 
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Fig. 2.48 Velocity curve of the jumper for powering on contactor with alternating voltage  
400 [V] during shutting of jumper and subsequent switching of voltage to 400 [V] after shutting 

 

Fig. 2.49 Position of the jumper (width of air gap) for powering on contactor with alternat-
ing voltage for conditions presented in Figs. 2.47 and 2.48 

The presented illustrations adequately characterize the operation of a contactor 

under the supply of alternating voltage and indicate a need to increase the voltage 

after shutting of the jumper in order to ensure the sufficient force for the mainte-

nance of the closed position under small oscillations of the position. 

 

Fig. 2.50 Electromagnet’s pull-in force for powering on contactor with alternating voltage  

230 [V] during jumper shutting and switching voltage to 400 [V] after shutting 
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The instant of switching the voltage to a higher one is indicated by all presented 

curves; however, it is most clearly discernible for the case of the curves of current, 

velocity of the jumper and the force of electromagnetic pull. The case of the appli-

cation of rectified voltage to the contactor is illustrated in Figs. 2.51 – 2.54. 

 

Fig. 2.51 Current waveform for the contactor to which rectified voltage of amplitude 32 [V] 
was applied during shutting and switched to 16 [V] after closure of jumper 

 

Fig. 2.52 Position of the jumper for powering on contactor with rectified voltage of ampli-
tude 32 [V] during shutting and switched to 16 [V] afterwards 

 

Fig. 2.53 Jumper’s velocity for energizing contactor with rectified voltage of amplitude 32 
[V] during jumper shutting and switched to 16 [V] after shutting 
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Fig. 2.54 Pull-in force of the electromagnet for energizing contactor with rectified voltage 
for conditions described as in previous figures 

Example 2.14. Parallel plate motion electrostatic actuator. Fig. 2.55 presents the dia-

gram of an electromechanical actuator with a parallel plate motion in a capacitor. In 

the discussed system the moving electrode of mass m and surface S moves in the ver-

tical direction and is subjected to the force of gravity. The dielectric found between 

the plates of the capacitor has a dielectric constant İ, which in the calculations regard-

ing the motion of this actuator is equal to the dielectric constant of vacuum İ0. The 

circuit of the actuator supply includes: resistance R, additional capacitor with the ca-

pacity of C and a small inductance of the circuit Ls. The role of the capacity C con-

sists in the stabilization of the motion of the electrode and, more precisely, an in-

crease of the range of the stationary operation of the actuator. Inductance Ls  only 

assumes a small value since it is formed by the inductance of the energizing wires. In 

addition, studies have shown that the application of appropriate method of integration 

for stiff differential equations makes it possible to disregard this inductance. 

 

Fig.2.55  Diagram of electrostatic actuator with parallel plate motion in vertical direction 

Under the assumption of the full symmetry of the system and resulting parallel 

motion of the movable electrode, the system has only two degrees of freedom: one 

for the mechanical motion described by generalized coordinate x, which denotes 

the distance between the electrodes and the other one for electric charge defined 
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by the generalized coordinate Q. Hence, the vector of generalized coordinates 

takes the form 

),( Qx=q                                                  (2.254) 

Lagrange’s function for the system described in the generalized coordinates is de-

fined as: 
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where: 

xs - is the free length of the springs  

QQQ == 21  - electric charge of each of the capacitors; electrical generalized 

coordinate  

x

S
xC

ε
=)(  - capacity of a capacitor with moveable electrode (actuator) 

0
00 )(

x

S
xCC

ε
==  - nominal capacity of the actuator for 0xx = . 

The virtual work of the system, which realizes the exchange of energy with the 

environment for the examined system, is equal to 

xxDQQRuA δδδ )()( �� −+−=                                 (2.256) 

The differential equations of motion of the system are following: 
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where Fc is the electrostatic force of pull of the moveable electrode; 

for q2 = Q 
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which yields: 
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Following the statement that:  C0 /C = α and by assuming that 
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For the case when we assume that Ls = 0, the equation of motion for the electric 

circuit takes the following form: 
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 where:                           
0

RCTi
dt

dQ
c
==  

Stationary state, stability of the system. Under the assumption that the stationary 

state exists for x = const, Q = const, from equations (2.257, 2.259) we can estab-

lish the conditions for the stability of the system: 
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The examination of the possible solutions to equation (2.261) in the function of 

the distance between the electrodes and for actuator parameters, such as the supply 

voltage U and α = C0/C, leads to the graphical representation of forces Fc and Fs 

in Figs. 2.56 and 2.57. Their points of intersection represent the possible equilib-

rium points for the system (for Fg = 0, which denotes the actuator in the horizontal 

motion). These are the three possible cases of the actuator’s operation range 0 < z 

≤ 1 determined by variable z = x / x0. The first case is relevant for the situation 

when there are two points of intersection of curves representing forces Fc and Fs. 

The stationary point of operation is the one for which the relation 

z
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∂

∂
                                             (2.263) 

is fulfilled, since in such a case the resultant force restores the system to its initial 

position after it has been put out of balance. This condition is satisfied for the 
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points of the intersection between curves for Fc and Fs, whose location is closer to 

the value of z = 1. In the second case there is just a single point of the intersection 

of the curves within the area of actuator operation, which is stationary, as it fulfills  

the condition in (2.263). The third case is encountered when there are no points of 

intersection between the two curves and the reason for this is too high a voltage 

applied to the system followed by a complete short circuit between the plates  

in the actuator. Fig. 2.56 presents static characteristics for α = 1.2 and various val-

ues of the voltage U = 40, 50, 60, 64.5, 70 [V]. The loss of the stability of the  

operation for actuator takes place for U = 66 [V]. Fig. 2.57 presents the curves for 

a single value of the supply voltage U = 50 [V] and ratio of the capacities equal to 

α = 0.8, 0.9, 1.0, 1.2, 1.4, 1.6. For α = 1.4 there are two intersection points: a sta-

tionary one for z = 0.6 and a non-stationary state for z = 0.12. In order to examine 

more precisely the control of actuators by means of changing the supply voltage, 

that is, in order to determine the characteristics, the equation (2.261) has been 

transformed using (2.262) to take the form 

02/ 2
00

223 =++ xCUyky β                                (2.264) 

where: β = (mg - k (xs - αx0))/x0 - is a design constant. 

This equation (2.264) involves variable y, which is a linear function of the dis-

tance x between the electrodes of an actuator and depends also on the ratio α 

αα +=+= 0/ xxzy                                          (2.265) 

The calculation of characteristics and curves for dynamic states that follow have 

been conducted for actuator with the following parameters: 

k = 0.0001 [Nm] - for a horizontal motion actuator 

k = 0.1 [Nm] - for a vertical motion actuator 

m = 0.4 [g], x0 = 5 [mm], C0 = 1.8 [pF], S = 10 [cm
2
],  

İ = İ0 = 8.85 E-12 [C/Vm], g = 9.81 [m/s
2
] 

 

Fig. 2.56 Characteristics of electrostatic force F
c
 and spring force F

s
 in the function of the rela-

tive distance z between electrodes for α = 1.2 and for supply voltages U = 40,50,60,64.5,70 

[V]. The case of the horizontal motion actuator (without the effect of gravity) 
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Fig. 2.57 Characteristics of electrostatic force F
c
 and spring force F

s
 in the function of the 

relative distance between the electrodes for supply voltage U = 50 [V] and α = 0.8, 0.9, 1.0, 
1.2, 1.4, 1.6. The case of the horizontal motion actuator 

The free length of spring xs has been selected in such a way that in the initial state 

under zero voltage the width of the gap is 0xx =  , hence 

kmgxxs /0 +=                                             (2.266) 

The vertical motion of the actuator is a drawback since it is associated with the 

need to install a relatively stiff spring, whose free length xs (2.266) should not be 

ridiculously large in comparison to the travel of the actuator, i.e. in the range  

0 < x ≤ x0, which corresponds to 5 [mm] in the examined case. Hence, the large 

stiffness of the spring for a vertical motion system results in the need to supply  
 

high voltage to control the actuator. The horizontal motion system needs a rela-

tively less tense spring and this results in the considerably lower voltages for the 

control of the moving electrode. 

Fig. 2.58 presents the characteristics of control in the function of voltage U for 

a system in vertical motion (accounting for gravity, k = 0.1 [N/m]) for various 

values of parameter α = C0/C. The line that goes across the curves is the boundary 

line of stability of the control. If the boundary is exceeded by the moving elec-

trode a short-circuit with the permanent electrode follows. The next Fig. 2.59 pre-

sents similar characteristics for a horizontal motion actuator (with no gravity,  

k = 0.0001 [N/m]). The characteristics are similar, however, for a system in the 

horizontal motion of the electrode the control voltages tend to be considerably 

lower. 

The two characteristics indicate that the use of a capacitor C put in a series with an 

actuator results in a beneficial extension of the range of the balanced control and is 

improved in terms of the precision; however, it is associated with a need of applying 

higher voltage. The dynamic curves have been modeled on the basis of the equations  

of motion (2.257-2.259) and solved using Rosenbrock procedure for stiff differential 

equation systems. Such a need results from the large span of the time constant values 

encountered in the system, which is associated with the small value of capacity C0. 
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Fig. 2.58 Control characteristics z = f(U) for a capacity vertical motion actuator (subjected 
to gravity force), for various values of parameter α = 0.2,0.4,…,2.4. The line illustrating the 
boundary of the stability is presented 

 

Fig. 2.59 Control characteristics z = f(U) for a capacity actuator as in Fig. 2.58, but for a 
horizontal motion system which applies a less tense spring 

The application of this procedure makes it possible to disregard parameter Ls, 

which denotes residual inductance in the circuit and, consequently, calculate 

charge Q of the capacitors from equation (2.260). Thus, one gains very similar 

curves of the actuator’s motion in both cases. The set of curves in Figs. 2.60-2.68 

presents the actuator motion operating in a horizontal motion system for a slowly 

increasing supply voltage u = U0 + Δu t = 50 + 0.025t [V], for α = 1.2. The loss of 

stability is recorded for voltage around 70 [V], i.e. for a value similar to the one 

gained for static characteristics (Fig.2.59), which amounts to U = 66 [V]. 
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Fig. 2.60 Waveform for charge Q in the function of time for slowly increasing voltage for 
the horizontal motion actuator 

 

Fig. 2.61 Waveform for current Qi �=  in the function of time for slowly increasing voltage 

for the horizontal motion actuator 

In contrast, one can compare the results for the same actuator for a fast increas-

ing voltage, i.e. u = U0 + Δu t = 50 + 2.5t [V], for which case the loss of the sta-

bility occurs for the voltage of U = 160 [V] after around 50 [s], much above the 

threshold of static stability. 

 

Fig. 2.62 Distance x between electrodes in the actuator in the function of time for slowly 
increasing voltage for the horizontal motion actuator 
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Fig. 2.63 Velocity of motion x�  of moving electrode in the actuator in the function of time 

for slowly increasing voltage for the horizontal motion actuator 

 

Fig. 2.64 Trajectory of charge Q for voltage u = U
0
+ u t = 50+0.025 t [V] (slow increase) 

in the horizontal motion actuator 

 

Fig. 2.65 Waveform of charge Q in the function of time after switching on voltage U = 

2100 [V] in an vertical motion actuator 

For the actuator in the system in vertical motion the role of the gravity pull is 

considerable; hence, it is necessary to apply more tense springs to prevent the use  

of too long ones (2.266). The figures that follow present the curves of the motion  

of the moving electrode after an abrupt application of the voltage of U = 2100 [V], 

α = 1.2. This value exceeds a little the value of U = 2091 [V] determined on the  
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Fig. 2.66 Position x of the moving electrode in the function of time after switching on volt-
age U = 2100 [V] in the vertical motion actuator 

 

Fig. 2.67 Velocity x�  of the moving electrode in the function of time after switching on 

voltage U = 2100 [V] in the vertical motion actuator 

 

Fig. 2.68 Trajectory of electric charge after switching on voltage U = 2100 [V] in the verti-
cal motion actuator and loss of stability of the position of the moving electrode. The bound-
ary of the stability for this case is U = 2091 [V] 

basis of equation (2.264) as the value of the static stability. In this case we have to 

do with a fast loss of stability (within 4 [s]) and short-circuit between the elec-

trodes of the actuator. 



106 2   Dynamics of Electromechanical Systems

 

The presented characteristics and dynamic curves of the electromechanical ac-

tuator with variable width of the air gap indicate the extent of the difficulty associ-

ated with the control of such an actuator. It tends to operate better in the system 

with the horizontal motion of the electrode and for stable operation it requires the 

use of a capacitor in series which affects the range of the control in a very benefi-

cial manner. The cost to cover as a result of the use of such a capacitor with a ade-

quate capacity α = (1÷1.2÷1.4) is associated with the need to supply higher values 

of the voltage for the control of the actuator’s displacement. Capacity actuators 

play nowadays increasing role in various MicroElectroMechanical Systems 

(MEMS) like head positioning systems or micro switches etc.[2,4,7,10,14,15]. 

References 

[1] Baharin, I.B., Green, R.J.: Computationally-effective recursive Lagrangian formula-

tion of manipulation dynamics. Int. J. Contr. 54, 195–202 (1991) 

[2] Bhushan, B. (ed.): Springer Handbook of Nano-technology. Springer, Berlin (2004) 

[3] Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of non-

holonomic dynamic systems. IEEE Trans. Aut. Contr. 37, 1746–1750 (1992) 

[4] Castaner, L.M., Senturia, S.D.: Speed-energy optimization of electrostatic actuators 

based on pull-in. IEEE J. Microelectromech. Sys. 8, 290–298 (1999) 

[5] Demenko, A.: Movement simulation in finite element model of electric machine dy-

namics. IEEE Trans. Mag. 32, 1553–1556 (1996) 

[6] Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Heidelberg (2007) 

[7] Fujita, H., Suzuki, K., Ataka, M., et al.: A microactuator for head positioning system 

of hard disc drives. IEEE Trans. Mag. 35, 1006–1010 (1999) 

[8] Greenwood, D.: Principles of Dynamics. Prentice-Hall, Englewood Cliffs (1988) 

[9] Hung, E.S., Senturia, S.D.: Generating efficient dynamical models for microelectro-

mechanical systems from a finite-element simulation runs. IEEE J. Microelectromech 

Sys. 8, 280–289 (1999) 

[10] Kobayashi, M., Horowitz, R.: Track seek control for hard disc dual-stage servo sys-

tems. IEEE Trans. Mag. 37, 949–954 (2001) 

[11] Kozłowski, K.: Modeling and Identification in Robotics. Springer, Berlin (1998) 

[12] Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, NewYork 

(1986) 

[13] Landau, L.D., Lifschic, E.M.: Mechanika, Elektrodinamika. Nauka, Moskva (1969) 

[14] Li, Y., Horowitz, R.: Mechatronics of electrostatic actuator for computer disc drive 

dual-stage servo systems. IEEE Trans. Mechatr. 6, 111–121 (2001) 

[15] McCarthy, B., Adams, G.G., McGruer, N., et al.: A dynamic model, including contact 

bounce, of an electrostatically actuated microswitch. IEEE J. Microelectromech. 

Sys. 11, 276–283 (2002) 

[16] Neymark, Y.I., Fufayev, N.A.: Dinamika negolonomnych sistem. Nauka, Moskva 

(1967) 

[17] Ortega, R., Loria, A., Nicklasson, P.J., et al.: Passitivity-based Control of Euler-

Lagrange Systems. Springer, London (1998) 

[18] Paul, C.R., Nasar, S.A.: Introduction to electromagnetic fields. McGraw-Hill, New 

York (1982) 

[19] Pons-nin, J., Rodrigez, A., Castaner, L.M.: Voltage and pull-in time in current drive 

of electrostatic actuators. IEEE J. Microelectromech. Sys. 11, 196–205 (2002) 



References 107

 

[20] Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Heidelberg 

(2008) 

[21] Sobczyk, T.J.: An energy based approach to modeling the magnetic non-linearity in 

AC machines. Archives El. Eng. 48, 219–229 (1999) 

[22] Su, C., Stepanienko, J.: Robust motion force control of mechanical systems with clas-

sical nonholonomic constraints. IEEE Trans. Aut. Cont. 39, 609–612 (1994) 

[23] Uhl, T., Bojko, T., Mrozek, Z., et al.: Rapid prototyping of mechatronic systems. J. 

Theor. Appl. Mech. 38, 645–651 (2000) 

[24] White, D.C., Woodson, H.H.: Electromechanical Energy Conversion. John Wiley & 

Sons, New York (1959) 

[25] You, L., Chen, B.: Tracking control designs for both holonomic and nonholonomic 

constrained mechanical systems. Int. J. Contr. 58, 587–590 (1993) 

 



 

Chapter 3 

Induction Machine in Electric Drives 

Abstract. Chapter deals with electrical drives with induction machines. After 

short introduction concerning basic construction variants and general problems of 

modeling induction motor drives, mathematical models are developed on a basis of 

previously introduced Lagrange’s method. Models transformed in a classical way 

are presented by use of orthogonal transformation along with the options govern-

ing free parameters of these transformations. Subsequently, other models are de-

veloped, in which only one side electrical variables are transformed – stator’s or 

rotor’s, while the other side remains untransformed, with natural variables. These 

models are applied in simulation and presenting various problems of drive systems 

with electronic power converters and for other external asymmetry cases. Some of 

them are classical drive problems like DC breaking, operation of Scherbius drive 

or soft-start systems. Other concern modern systems with electronic power con-

verters, more precisely and successfully modeled and computed in this way. They 

are drives with two- and three-level voltage source inverters used in PWM control 

(SVM, DPWM) as well as current source inverters – CSI. These kinds of models 

are also applied to present vector control (VC) or field oriented control (FOC) and 

direct torque control (DTC) of induction motor drives. Abovementioned problems 

are widely illustrated by examples computed for various dynamic states, with and 

without automatic control, and for that purpose four induction motors of different 

rated power are presented. Finally a problem of structural linearization of induc-

tion motor drive is covered, beside a number of useful state observer systems that 

are discussed. 

3.1   Mathematical Models of Induction Machines 

3.1.1   Introduction  

The history of construction and application of induction motors in electric drive 

dates back as far as over 100 years and the induction machine constitutes the basic 

unit energized from alternating current in a symmetrical three-phase power distri-

bution system. Beside the three-phase layout some small size machines can be 

supplied from a single phase for household applications and two-phase machines 

can be used in the drives of servomechanisms. The practical meaning of three-

phase induction machines is emphasized by the fact that they consume nearly 70% 
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of the generated electric power. The name given to induction motor originates 

from the single sided power supply to such machines most frequently occurring 

from the direction of the stator. Inside the rotor there is a fixed winding which 

generates electric power as a result of induced voltages resulting from magnetic 

flux that changes (rotates) in relation to the rotor’s windings. The mutual interac-

tion of magnetic field in the air gap with the currents in rotor’s windings leads to 

the origin of electromagnetic torque Te, which sets the rotor in motion. In the in-

duction motor the air gap between the stator and rotor is as narrow as it is techni-

cally possible for the requirements of the mechanical structure, since the energy 

powering the rotor by the magnetic field has a considerably high value. This field 

should have a high value of flux density in the gap which requires an adequate 

magnetizing current, that is approximately proportional to the width of the air gap 

δ. Three-phase induction motors find an application in all branches of industry and 

in municipal utility management as well as in farming and service workshops. 

This group of machines involves devices produced within a wide range of power 

ratings from under 100 [W] and can reach as much as 20 [MW]. The traditional 

induction machines were applied in drives that do not require the control of rota-

tional speeds. This was due to the cost and problems associated with the use of 

such control devices while securing the maintenance of high efficiency of trans-

forming electric energy into mechanical one. The course of events has changed 

considerably over the past 20 years. The increase of accessibility and relative fall 

in the prices of power electronic switches such as SCRs, GTOs, MOSFETs and 

IGBTs was followed by continuous development of diverse electronic converters 

[2,9,10,14,51,69,83,84,86,95]. Their application makes it possible to transform 

electric power with the parameters of the supply network into variable parameters 

required at the input of induction motors to meet the needs of the effective control 

of rotational speed. Such control sometimes known as scalar regulation is dis-

cussed in detail in Section 3.3. The following stage in the development of the  

control systems of induction machines focused on the improvement of the power 

electronic devices involved in the execution of commands and, in particular, with 

the development of processors for transferring information, including signal proc-

essors adaptable for industrial applications. As a result, it was possible not only to 

design and implement dynamic control of drives containing induction motors but 

also develop control that tracks the trajectory of the position and rotor speed. This 

type of control is encountered mostly in two varieties [13,18,74,76,96,99,100] 

Field Oriented Control (FOC) and Direct Torque Control (DTC). The methods  

applied in this respect are discussed in Section 3.4. 

3.1.2   Construction and Types of Induction Motors 

A typical induction machine is a cylinder shaped machine whose ratio of the di-

ameter to length is in the range of 1.2-0.8. Induction motors are built to meet the 

requirements of various numbers of phases; however, most commonly they are 

three-phase machines. The air gap between the stator and the rotor is as small as it 

is achievable and windings are located in the slots (Fig 3.1) of the stator and rotor. 

The ferromagnetic circuit is made of a laminated elastic steel magnetic sheets in 
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order to limit energy losses associated with alternating magnetization of the iron 

during the operation of the machine. Very important role is played by the wind-

ings, which are engineered in several basic types. In the stators of high voltage 

machines they are often made in the form of bars from isolated rectangular shaped 

conductors formed into coils inserted into the slots of the stator. In this case the 

slots are open, rectangular and it is possible to insert the ready made rigid coils 

into them in contrast to the semi-closed slots applied in windings made of coil 

wire. The material which conducts the current is the high conductivity copper. 

Another important classification is associated with the single and two layer wind-

ings. For the case of single layer winding the side of the coil occupies the entire 

space available in the slot, while in two layer windings inside the slot there are 

two sides belonging to two different coils, one above the other, while the sides 

could belong to the same or different phases of the winding. In machines with 

higher capacity we usually have to do with windings in two layers. Still another 

classification of windings in induction motors is associated with integral and frac-

tional slot windings [101,102,103,104]. Integral slot winding is the one in which 

the number of slots per pole and phase is an integer number. Most induction ma-

chines apply integral slot windings since they offer better characteristics of mag-

netic field in the air gap. Fractional slot windings are used in the cases when the 

machine is designed in a way that has a large number of poles but it is not justified 

to apply too large a number of slots in a small cross section. Another reason for 

the application of fractional slot windings is associated with economic factors 

when the same ferromagnetic sheets are used for motors with various numbers of 

pole pairs. In this case for a given number of slots and certain number of pole 

pairs we have to do with fractional slot windings. 

However, the most important role of an engineer in charge of the design of an 

induction machine is to focus on the development of such a winding whose mag-

netic field in the air gap resulting from the flow of current through a winding fol-

lows as closely as possible a sine curve (Fig 3.2). The windings in the rotors of  

induction motors are encountered in two various models whose names are adopted 

by the types of induction motors: slip-ring motor and squirrel-cage motor. The 

winding in a slip-ring motor is made of coils just as for a stator in the form of a 

three phase winding with the same number of pole pairs as a winding in a stator 

and the terminals of phases are connected to slip rings. 

With these rings and by adequate butting contact using brushes slipping over 

the rings it is possible to connect an external element to the windings in a rotor. 

This possibility is used in order to facilitate the start-up of a motor and in many 

cases also to control its rotational speed. The squirrel cage forms the other variety 

of an induction motor rotor’s winding that is more common. It is most often made 

of cast bars made of aluminum or, more rarely of bars made from welded copper 

alloys placed in the slots. Such bars are clamped using rings on both sides of the 

rotor. In this way a cage is formed (Fig 3.3); hence, the name squirrel cage was 

coned. The cage formed in this way does not enable any external elements or sup-

ply sources to be connected. It does not have any definite number of phases, or 

more strictly speaking: each mesh in the network formed by two adjacent bars and 

connecting ring segments form a separate phase of the winding. Hence, a squirrel 
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Fig. 3.1 Cross section of an induction machine with semi-closed slots in the stator 

 

Fig. 3.2 Shape of a magnetic field produced in the air gap of a three-phase induction ma-

chine and its fundamental harmonic for a 24 slot stator with the number of pole-pairs p = 2 

and for a 36 slot stator and p =1 

cage winding with m bars in a detailed analysis could be considered as a winding 

with m phases. Moreover, a squirrel cage winding does not have a defined number 

of pole pairs. In the most basic analysis of an induction motor one can assume that 

a squirrel cage winding is a secondary winding that passively adapts in response to 

the magnetic field as a result of induced voltages and consequently currents. It is 

possible to further assume that the magnetic field in an air gap with p pole pairs 

induces in the bars of a cage a system of voltages and currents with p pole pairs as 

well. Since the number of phases in the rotor is basically arbitrary as the winding 

is not supplied from an external source this is also a three-phase winding similar to 

the winding in a stator. Hence, in its basic engineering drawing along the circum-

ference of the stator the magnetic field in the air gap of the induction motor is  
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described by sine curve with p times recurrence during the round of the gap’s  

circumference (Fig 3.2). The difference between the actual shape of the magnetic 

field in the air gap and the fundamental harmonic of the order ρ = p is approxi-

mated by a set of sine curves, forming the higher harmonics of the field, whose 

spectra and amplitudes can be calculated by accounting for all construction details 

of the stator and rotor of a machine. The basic reason for the occurrence of higher 

harmonics of the field in the air gap is associated with the discreetly located con-

ductors in the slots and their accumulation in a small space, the particular span of 

the coils carrying currents and non-homogenous magnetic permeance in the air 

gap [80]. This air gap despite having its constant engineering width δ is in the 

sense of the magnetic permeance relative to the dimensions of the slots in the sta-

tor and rotor. The higher harmonics of the magnetic field in the air gap account for 

a number of undesirable phenomena in induction machines called parasitic phe-

nomena. They involve asynchronous and synchronous parasitic torques that de-

form the basic characteristics of the electromagnetic torque [80], as well as addi-

tional losses resulting from higher harmonics and specific frequencies present in 

the acoustic signal emitted by the machine.  

 

Fig. 3.3 A frequent shape of a squirrel-cage winding of a rotor of induction motor 

In the currently manufactured induction motors parasitic phenomena are en-

countered on a relatively low level and do not disturb the operation of the drive. 

Hence, in the discussion of the driving characteristics the induction motor is repre-

sented by a mathematical model whose magnetic field displays monoharmonic 

properties. The only harmonic is the fundamental one with the number ρ = p, 

which is equal to the number of pole pairs. The limitation of parasitic phenomena 

and construction of a machine that is virtually monoharmonic comes as a result of 

a number of engineering procedures, of which the most basic one involves an ap-

propriate selection of a number of slots in the stator and rotor. The numbers in 

question are Ns and Nr, respectively and they are never equal to each other and  

 



114 3  Induction Machine in Electric Drives

 

their selection depends largely on the designed number of pole pairs p. Consider-

able progress has been made in the design and engineering of induction motors 

over their more than 100 year old history. The measure of this progress not only 

involves the limitation of parasitic phenomena but also an increase the effective-

ness of the structures in terms of the torque rating per kilogram of the machine’s  

mass, long service life, energy efficiency, ecological characteristics, progress in 

the use of insulation materials, which makes it possible to supply from converters 

with high frequency and amplitude of voltage harmonics. 

3.1.3   Fundamentals of Mathematical Modeling  

3.1.3.1   Types of Models of Induction Machines 

Mathematical modeling plays a very important role in the design, exploitation and 

control of electric drives. Modeling and computer simulation, whether with regard 

to electric drive or in other branches of engineering, that is adequate and effective 

reduces the time needed and the cost of gaining an optimum design of a drive and 

its control system. Thus, new opportunities are offered in terms of reducing lead 

times in the prototype testing phase of the design. The modeling of an induction 

motor is complex to the degree that we have to do with an electromechanical de-

vice with a large number of degrees of electrical freedom, represented by charges 

and electric currents in phase windings and, additionally, that can account for 

magnetic linkages. The latter are delivered by the magnetic field in the ferromag-

netic material in which the windings of the stator operate and the ferromagnetic 

core is often in the condition of magnetic saturation. The simultaneous and com-

prehensive accounting for electromagnetic and electromechanical processes in an 

induction motor that involves saturation of the active iron in the stator and rotor, 

energy losses during alternate magnetization, precise mapping of linkages between 

the windings, the non-steady working regime of the rotor and the potential effect 

of the heat generated on the properties of the system is in fact too complex and too 

costly and, hence, even in the most advanced models of induction machines these 

processes tend to be simplified. The basic and most common simplification con-

sists in the distinction made between the magnetic and electric field due to the 

small frequencies of the alternation of the field. For that reason, the field is con-

sidered to be magnetostatic. Moreover, there is a tendency to simplify the issues 

associated with energy losses during the alternate magnetization of the iron, and 

sometimes it is disregarded. Phase windings in a machine are most commonly 

considered as electric circuits with lumped parameters and their connection with 

the magnetic field is expressed by flux linkage ȥk, where subscript k denotes the 

number of the adequate winding. Overall, the problem is associated with the de-

termination of the flux linkage as the function of electric currents in the particular 

phase windings of a machine [90]. The issue of the mechanical motion of a rotor is 

not a complex phenomenon since a typical induction motor has only a single de-

gree of mechanical freedom – angle of rotation of the rotor θr. In mathematical 

modeling of a an induction machine drive we take into consideration two cases: 

non-homogenous motion of the rotor in the dynamic states – for example during 



3.1   Mathematical Models of Induction Machines 115

 

start-up or braking of the motor and motion under a constant angular speed, i.e. in 

a steady condition of the drive in operation. As a consequence of not accounting 

for the parasitic torques with synchronic characteristics we do not take into con-

sideration small oscillations of the speed around the balance state; this comes as a 

consequence of their marginal role in a designed drive. The basic and the common 

foundation during the development of a mathematical model of an induction ma-

chine is the assumption of its geometrical and material symmetry. This allows 

very largely to simplify the model and it is most often followed in the issues asso-

ciated with the electric drive. Abandoning of the assumptions of symmetry during 

the modeling of an induction machine is necessary only in special circumstances, 

such as modeling of emergency conditions for a drive and for example in the stud-

ies devoted to the tolerance of the engineering structure of the machine to its char-

acteristics and potential emergencies. Such an example encountered during the 

analysis of an induction machine is the study of the effect of the asymmetry of the 

air gap between the stator and rotor to the resulting forces of magnetic pull and 

bearing’s wear. The assumption of the symmetry also enables one to limit the area 

of calculation undertaken with an aim of developing field models and determina-

tion of boundary conditions for such calculations. Due to the presented impedi-

ments and complications the models of induction motors usually account for a 

number of simplifications which form an adaptation of the examined question and 

can lead to the statement of an answer. In this respect we can identify three gen-

eral categories of mathematical modeling of a drive. The categories include: mod-

els serving for the optimization of the construction characteristics of a motor, sec-

ondly, models used for the determination of electromechanical characteristics 

and, thirdly, models whose object is to apply an induction motor drive control. 

The presented three categories of models can be described as follows: a mathe-

matical model of an induction motor aimed at the optimization of its construction 

with regard to the structure of a magnetic circuit is, as a rule, a field based model 

whose solution is presented in 3D or 2D space, with a particular emphasis on the 

shape of a ferromagnetic core along with the design of the stator’s and rotor’s slots 

as well as spatial distribution of the windings. The ferromagnetic material is con-

sidered as non-linear taking into account its characteristics of magnetization. The 

considerations tend to more frequently involve a magnetic hysteresis loop and less 

often the occurrence of eddy currents [17,49]. Hence, calculations are performed 

for fixed positions of the stator in relation to the rotor or a constant speed of the 

motion, while the current density in the windings is as a rule constant over the en-

tire cross-section of the winding in the slot. For the case of winding bars with 

large dimensions we have to account for the non-homogenous distribution of the 

current density in the radial direction. The construction of a typical induction mo-

tor due to the plane-parallel field representation enables one to perform field cal-

culations in 2D space without affecting the precision of the results. The calcula-

tions apply professional software suites using Finite Elements Method (FEM) or 

Edge Elements Method (EEM). Such software contains procedures making it pos-

sible to gain various data and images regarding field characteristics in a particular 

subject, to obtain a number of integrated parameters such as the value of energy 

and co-energy of the magnetic field, electromagnetic torque, forces calculated by 
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means of various methods and inductance of the windings in the area of calcula-

tion [24,48]. As one can conclude from this description, field models are applica-

ble not only with an aim of improving the engineering and considering details of 

material parameters but can also provide valuable data in the form of lumped pa-

rameters for the calculation of the problems encountered in the drive. In particular, 

relevant insight is offered by the data regarding the inductance of the windings 

and its relation to the magnetic saturation. The mathematical models serving for 

the determination of electromechanical characteristics of a drive, both in static 

and dynamic states, as a rule are formed as models with lumped parameters. The 

reason is that in this case the engineering details are related to in an indirect way 

using a small number of parameters, which subsequently combine a number of 

physical properties of a machine. During the determination of characteristics, in 

particular the mechanical ones, the parasitic phenomena are frequently accounted 

for in the form of additional elements of electromagnetic torque derived from 

higher harmonics of the magnetic flux and harmonics associated with variable 

terms expressed by other elements in the permeneance of the air gap. The models 

which are applicable for stating the characteristics in many cases have to be  

precise in terms of energy balance since one of their application is in the determi-

nation of the losses of energy and efficiency of the drive. The analysis of lumped 

parameters is performed by a number of specialized calculation methods. This is 

based on field calculations in the electrical machines for the specific conditions of 

operation [37,48,91]. The mathematical models applied in the issues associated 

with drive control tend to be the most simplified models. As a principle, they dis-

regard the losses in the iron, the phenomena of magnetic saturation and nuances in 

the form of multi-harmonic spectrum of the magnetic field in the air gap. Such 

models take the form of a system of ordinary differential equations. The models 

are transformed using the properties of the machine’s symmetry into systems of 

equations, in which the form of the equations is relatively simple in the sense of 

the assumption of constant parameters of a system, the number and structure of 

expressions. Thus, the models correspond to the requirements of the control sys-

tem due to its interaction with the transformed measurement signals derived from 

feedback in the system. The rationale for using the possibly most uncomplicated 

(in terms of calculations) models in the questions of control is associated with the 

fact that they are later used for the calculation of the vector of state variables of 

the drive in real time. The mathematical models of the induction motor find an in-

creasingly wider application in the modern methods of control concerned with lin-

earization through non-linear feedback of the dynamic model of a drive, which, in 

reality, has a non-linear structure. A type of this kind of control is also named con-

trol with inverse dynamics. An arising question is concerned with the practical ap-

plication of models that do not account for a number of phenomena in induction 

machines including magnetic saturation. The solution proposed involves the con-

temporary control methods, also applied in electric drive, which are more resistant 

to the uncertainty of the parameters of the model and disturbances along the 

measurement paths. Such models include robust and adaptive control 

[22,45,53,57,65,75,105], in which case the mathematical model is combined with 

estimation of the parameters in real time. The currently solved tasks in drive  
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control apply the following procedure: simple and functional control models in 

terms of calculations are accompanied with the correction of discrepancies result-

ing from parameter estimation using signals that are easily accessible by way  

of measurement. From the point of view of the current book the principal interest 

focuses on the mathematical models designed for determination of the characteris-

tics of the drives and the ones applied for the purposes of control. 

3.1.3.2   Number of Degrees of Freedom in an Induction Motor 

The question of the number of the degrees of freedom (2.33) is encountered in 

systems with lumped parameters whose motion (dynamics) is described by a sys-

tem of ordinary differential equations. For the case of an induction machine 

(Fig.3.4) this means one degree of freedom of the mechanical motion sm = 1, for 

variable θr denoting the angle of rotor position and the adequate number of the de-

grees of freedom se for electric circuits formed by the phase windings. For the case 

when both the stator and rotor have three phases and the windings are independ-

ent, in accordance with the illustration in Fig. 3.4a, the number of electric degrees 

of freedom is sel = 6. The assumption that electric circuits take the form of phase 

windings with electric charges Qi as state variables does not exclude the applica-

bility of a field model for the calculation of magnetic fluxes ȥi linked with the par-

ticular windings of the motor. This possibility results from the decoupling of the 

magnetic and electric fields in the machine and the consideration of electric  

currents 
ii

Qi �=  in the machine as sources of magnetic vector potential (2.180), 

(functions that are responsible for field generation). 

a) b)  

Fig. 3.4 Diagram with cross-section of induction motor: a) 3-phase stator and rotor wind-

ings b) rotor squirrel-cage windings 

In this case we have to do with field-circuit models [48], in which the model 

with lumped parameters describing the dynamics of an electromechanical system 

(in this study the induction motor) is accompanied by an interactively produced 

model of the electromagnetic field in which the present flux linkages ȥi are  
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defined. Hence, the model of an induction motor whose diagram is presented in  

Fig 3.4a has 

7=+= em sss                                                  (3.1) 

degrees of freedom. In this place one can start to think about the state encountered 

in the windings of a squirrel cage motor (Fig. 3.4b), which does not contain a 

standard three-phase winding, but has a cage with m = Nr number of bars. The 

squirrel cage winding responds to the MMFs produced by stator winding current. 

The induced EMFs in squirrel cage windings display the same symmetry proper-

ties on condition that the squirrel cage of the rotor is symmetric in the range of an-

gular span corresponding to a single pole of the stator winding or its total multiple. 

Hence, the resulting number of degrees of freedom ssq for a symmetrical squirrel 

cage winding [101] is expressed by the quotient 

us
v

u

p

m
sq ==

2
                                          (3.2) 

where:              m - the number of bars in the symmetrical cage of a rotor 

  u,v - relative prime integers  

The number of the degrees of freedom of the electric circuits of a rotor’s squirrel-

cage winding ssq = u corresponds to the smallest natural number of the bars in a 

cage contained in a span of a single pole of the stator’s winding or its multiple. 

This is done under the silent assumption that the stator’s windings are symmetri-

cal. If the symmetry is not actually the case, the maximum number of the degrees 

of freedom of a cage is equal to 

1+= mssq                                                      (3.3) 

which corresponds to the number of independent electric circuits (meshes), in ac-

cordance with (2.195), in the cage of a rotor (Fig 3.4b). 

For the motor in Fig. 3.4b, we have p = 2, Nr = m = 22, hence the quotient: 

 
v

u

p

m
===

2

11

4

22

2
 and, as a result, the number of electric degrees of 

freedom for a squirrel cage winding amounts to ssq = u = 11. This means that in 

this case the two pole pitches of the stator contain 11 complete slot scales or slot 

pitches of the rotor, after which the situation recurs. The large number of the de-

grees of freedom of the cage makes it possible to account in the mathematical 

model for the parasitic phenomena [80], for example parasitic synchronic torques. 

However, if we disregard deformations of the magnetic field in the air gap and as-

sume that it is a plane-parallel and monoharmonic one with the single and basic 

harmonic equal to ρ = p, then in order to describe such a field we either need only 

two coordinates or two substitutive phase windings, in most simple cases orthogo-

nal ones. For such an assumption of monoharmonic field the number of the  

degrees of freedom decreases to ssq = 2 regardless of the number of bars in the ro-

tor’s cage. In the studies of induction motor drives and its control the principle is 

to assume the planar and monoharmonic field in the air gap. Nevertheless, at the 
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stage when we are starting to develop the mathematical models of induction ma-

chines, it is assumed for the slip ring and squirrel cage machines that the rotor’s 

winding is three-phased (as in Fig. 3.4a) for the purposes of preserving a uniform 

course of reasoning. Hence, as indicated earlier, under the assumptions of a planar 

and monoharmonic field in the air gap, slip-ring and squirrel-cage motors are 

equivalent and can be described with a single mathematical model with the only 

difference that the winding of a squirrel-cage motor is not accessible from outside, 

in other words, the voltages supplying the phases of the rotor are always equal to 

zero. According to (2.189) and (2.210), Lagrange’s function for a motor with three 

phase windings in the stator and rotor can take the form: 
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and the virtual work (2.198) expressing the exchange of energy is equal to: 
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where: 

q = (Q1, Q2,…,Q6, θr) - vector of generalized coordinates 

J - moment of inertia related to the motor’s shaft, 

Tl - load torque on the motor’s shaft, 

D - coefficient of viscous damping of the revolute motion, 

Rk - resistance of k-th phase winding, 

kkk uiQ ,=�  - electric current and supply voltage of k-th phase winding, 

ȥk - magnetic flux linked with k-th winding. 

The model in this form already contains two simplifications, i.e. it disregards iron 

losses associated with magnetization of the core and changes of the windings’  

resistances following a change in their temperature. 

From the above the equations of motion for electric variables follow in the 

form: 
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with the capacitors missing from the system 0=
∂

∂

kQ

L
. 

Whereas, according to (3.4) and using the designation for currents mm Qi �= , we 

obtain 
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If k-th winding were the final one, as for k = n = 6, then 

                               ),,,( 1 rnk

k

ii
Q

L
θψ …� =

∂

∂
 (3.8) 

The resulting equation takes the form 
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From the comparison of (3.8) –(3.9) it results that for the simplicity of notation we 

should treat the equation in (3.7), which is currently considered, as the final one. 

In this case the equation for the circuits of an induction motor takes the form 

( ) kkkrnk iRuii
dt

d
−=),,,( 1 θψ …                                   (3.10) 

After the differentiation of the left-hand side we obtain 
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The left-hand side expressions (3.11) denote electromotive forces induced in k-th 

phase winding as a result of the variations in time of flux linkage. The first terms 

are derived from the variations of the currents and are called electromotive forces 

of transformation, while the final term is related to the angular speed of the rotor 

rr Ω=θ� and is called the electromotive force of rotation. The equation for the 

torque expressed with variable θr takes the following form 
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and, consequently, 
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Which, in case of constant moment of inertia J, can be denoted alternatively as 

rler DTTJ θθ ��� −−=                                            (3.12) 

 

where: 

k

k

i

rkkk

r

e idiiiT

k

~
),0,,0,

~
,,(

6

1 0

11∑∫
=

−
∂

∂
= θψ

θ
……                         (3.13) 

is the electromagnetic torque produced by the induction motor. In spite of the fact 

that the resulting equations of motion are stated for a system with lumped parame-

ters and in this case for 7 variables corresponding to 7 degrees of freedom of the 

motor, they can find a very broad application. This results from the general form 

of the flux linkage associated with the particular phase windings ȥk = (i1,…,in, θr). 

It could be gained by various methods accounting for the saturation and various 

engineering parameters of the magnetic circuit. For a squirrel-cage motor, for the 

case if one needed to account for the existing parasitic torques, it would be neces-

sary to abandon the starting assumption of the monoharmonic image of the field in 

the air gap and, hence increase, the number of equations for the phases of the rotor 

from 3 to ssq, as it results from (3.2). 

3.1.4   Mathematical Models of an Induction Motor with Linear 

Characteristics of Core Magnetization  

3.1.4.1   Coefficients of Windings Inductance  

In a majority of issues associated with the motion of an induction machine, in par-

ticular in the issues associated with the control of drives with induction motors, we 

can assume a simplification involving an approximation of the characteristics of 

motor magnetization using linear relation. Hence, the definition of the coefficients 

of self-inductance and mutual inductance of the machine’s windings follows in the 

form 
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For k = l this coefficient is named the self-inductance coefficient and includes two 

terms: 

kkkkk MLM += σ
~

                                               (3.15) 
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where Lık is the leakage inductance, which results from the magnetic flux linked 

solely to k-th phase winding. In contrast, for k ≠ l this coefficient is denoted as 

mutual inductance coefficient 

klkl MM =
~

                                                 (3.16) 

The determination of the coefficient of the inductance of an induction machine 

could be derived from measurements on an existing machine or could be based  

on calculations, which is already possible at the stage of motor design. The  

experimental studies, which can serve in order to determine the coefficients of 

winding inductance, involve the measurements of the characteristics of the idle 

running of a motor, short circuits – for the purpose of stating the inductance of the 

leakage and other tests – for instance of the response to a voltage step function. On 

this basis it is possible to establish the approximate parameters of a machine, in-

cluding the inductance of the windings as well as to apply the methods for the es-

timation of the parameters from selected measurement characteristics [37]. The 

calculation methods involve the calculation of the field in the machine using field 

programs [92], which provides information regarding integrated parameters, in-

cluding inductance. For an induction motor it is sufficient to assume calculations 

of plano-parallel field (2D) with supplementary data and corrections regarding the 

boundary section of the field in the machine. In particular this concerns leakage 

inductance of the end winding section of the windings. Moreover, a number of 

analytical methods has been developed for the calculation of the field and induc-

tance coefficients in an induction motor, thus providing valuable information for 

induction motor models. However, these tend to be less precise than the ones that 

result from field calculations since they account only for the major term of the en-

ergy of the magnetic field, i.e. the energy of the field in the machine’s  air gap. In 

the fundamental notion (Fig. 3.2), under the assumption of monoharmonic distri-

bution of the field in the gap, the coefficients of mutual inductance take the form: 

)cos( lkkl MM αα −=                                        (3.17) 

where: M - value of inductance coefficient for phase coincidence 

 αk,αl - angles which determine the positions of the axes of windings k,l 

In accordance with Fig. 3.4 these angles are: 

pp

pp

rrr 3/2,3/2,,,

3/2,3/2,0,,

654

321

πθπθθααα

ππααα

−+=

−=
                       (3.18) 

- for the stator’s windings and rotor’s windings, respectively. 

The number of the pole pairs p reflects p-time recurrence of the system of 

windings and spatial image of the field along the circumference of the air gap. On 

the basis of relations in (3.15 – 3.18), the matrix of the inductance coefficients of 

stator’s windings takes the form  



3.1   Mathematical Models of Induction Machines 123

 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−−

−−

−−

+=

1

1

1

2
1

2
1

2
1

2
1

2
1

2
1

3 sssph ML 1M σ                                (3.19) 

and similarly, for the windings in the rotor 
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At the same time, mutual inductance matrices between stator and rotor windings 

are relative to the angle of rotation θr 
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In the above equations: 

Lıs, Lır - are leakage inductance coefficients of stator and rotor windings 

Ms, Mr - main field inductance coefficients of stator’s and rotor’s windings 

Msr - mutual inductance coefficient of stator’s and rotor’s windings for full 

linkage between the windings (aligned position of windings’ axes) 

13 - unitary matrix with dimension 3. 

3.1.4.2   Model with Linear Characteristics of Magnetization in Natural 

(phase) Coordinates  

At the beginning it is necessary summarize the simplifying assumptions for this 

model of the induction motor, starting with the most important ones: 

- complete geometrical and material symmetry of the electromagnetic struc-

ture of the motor 

- linear characteristics of magnetization of the electromagnetic circuit 

- planar and monoharmonic distribution of the field in the air gap, resulting in 

a single harmonic with the number ρ = p 

- disregarding of the losses in the iron 

- disregarding of the external influence (for example temperature) on the  

parameters of the motor. 

Since, in accordance with the second assumption, we consider a linear case of 

magnetization, on the basis of (3.14) the following relation is satisfied 
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Using the relation (3.22), the flux linkages of windings of the stator and the rotor 

can be recorded in the matrix form  
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- with vectors of phase currents of the stator and rotor, respectively. 

With the aid of (3.23) the equations of the electric circuits of the induction mo-

tor can take the following matrix form 
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where: 03,13 - zero matrix and unitary matrix with dimension 3. 
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On the basis of (3.13) and (2.215), the electromagnetic torque of the motor can 

take the following form:  
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Since both terms of the quadratic form (3.26) are equal, then 
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The equation concerning the revolute motion (3.12) remains unchanged, it is  

necessary only to apply a more detailed expression (3.27) to determine electro-

magnetic torque of the motor. 

3.1.4.3   Transformation of Co-ordinate Systems 

Most of the dynamic curves and solutions with regard to control are not conducted 

in phase coordinates, such as the case of the mathematical model in (3.25), (3.27), 

but they are stated in the transformed coordinates. There are several reasons for 

that: an adequately selected transformation is capable of transforming the system 

(3.24) that contains periodically variable coefficients (trigonometric functions) 

into a system with constant parameters. Thus, there is no need to apply large com-

puting power and the cost thereof is reduced, which is particularly relevant in the 

issues of drive control in real time. In addition, as one can conclude from the form 

of mutual inductance matrix of the windings (3.17, 3.21), that their order is not 3 

but only 2. They have one dimension too many, which can be concluded by add-

ing up all the rows in each of the matrices. The physical reason is self-evident: in 

order to describe a monoharmonic planar field it is sufficient to use two variables. 

Hence, the field can be produced by currents in two phase windings that are not 

situated along a single axis (perpendicular axes are most applicable). The early 

applications of the transformation of the coordinate systems originate from Park 

and served in order to analyze the operation of synchronous generators. The gen-

eral theory of transformation of coordinate systems in multi-phase electric ma-

chines is based on the Floquet’s theorem. From it results that for linear systems of 

ordinary differential equations with time periodic coefficients it is possible to 

identify such a transformation ),(
rr

T θθ � for which in the new defined coordinates 

the machine’s equations are independent of the angle of rotation of the rotor [53]. 

In the particular cases (monoharmonic field distribution) it is possible to gain this 

result by the application of transformation T(θr), i.e. only relative to the position of 

the rotor. The examples of solutions and applications in this area are multiple and 

can be found in the bibliography [76,80,82]. From the technical point of view it is 

only sensible to apply orthogonal transformations in electric drive. This means the 

ones whose matrices fulfill the condition that 

TΤΤ =−1                                                    (3.28) 

This is the case when the vectors which form the matrix of transformation T are 

orthogonal and have an elementary length, that is: 

3,2,1,for1andfor0 ==≠= = jiji jiiiji vvvv          (3.29) 

where vi is the column (row) of the matrix T. This property is indispensable since 

orthogonal transformations preserve the scalar product and square form for the 

transformed vectors. The scalar product for the case of an electric machine corre-

sponds to the instantaneous power delivered to the clamps of the machine  



126 3  Induction Machine in Electric Drives

 

[ ] 332211

3

2

1

321 iuiuiu

i

i

i

uuup ++=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=  

As a result of transformation of the above expression, using orthogonal transfor-

mation T, we obtain: 
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are transformations of the vectors of the voltage and current of a three-phase elec-

tric machine. Concurrently, electromagnetic torque in the multi-phase machine is 

in the algebraic sense expressed by the quadratic form 
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is the transformed matrix of the derivatives of mutual inductance between the 

windings. As one can conclude from (3.32), the variables have been transformed 

into the form *i , while due to the orthogonality of the matrix of transformation T 

the electromagnetic torque remains unchanged. Under the assumptions adopted at 

the beginning of this chapter the machine has a monoharmonic field in the air gap, 

which results in the fact that the matrix of mutual inductance between the stator 

and rotor is relative only to argument pθr of the periodic functions. This enables 

one to easily identify the orthogonal transformation of T such that orders the 

mathematical model in the sense of leading to the constant coefficients of the dif-

ferential equations. This study applies the following orthogonal matrices of the 

transformation: 

- for the quantities relative to 3-phase windings in the stator 
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- for quantities relative to 3-phase windings in the rotor  
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where: Ȧc - is an arbitrary pulsation that constitutes the degree of freedom of the 

planned transformation 

a = 2π/3 - argument of the symmetric phase shift. 

The transformation of the particular phase variables occurs in the following way: 
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Next, we will proceed to see how this works for a system of symmetric 3-phase 

sinusoidal voltages of frequency fs supplying stator’s windings: 
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 that is: 
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where: Ȧs = 2πfs. 

As a result of the transformation the voltage us0 = 0, and voltages usu and usv 

form an orthogonal system. In general, transformations of Ts,Tr (3.33), (3.34) lead 

to the restatement of the phase variables in the stator’s or rotor’s windings for two 

perpendicular axes ‘u,v’ which are in revolute motion with the arbitrary angular 

speed of Ȧc - as it was presented in Fig. 3.5. The third of the transformed axes – 

axis ‘0’ is perpendicular to axes ‘u,v’ and acts in the axial direction; hence, it does 

not contribute to the planar field of the machine. 
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Fig. 3.5 Illustration of the orthogonal transformation of 3-phase windings of AC machine 

into rotating ‘u,v’ axes 

3.1.5   Transformed Models of Induction Motor with Linear 

Characteristics of Core Magnetization  

3.1.5.1   Model in Current Coordinates 

Firstly, we transform equations (3.24) for electric variables – currents is, ir. For the 

equations of the stator windings 
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The above transformations apply the property of the orthogonal matrix: 
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 and similarly for the matrix of transformation Tr. From equation 

(3.38) we obtain: 
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ω  - is an operator acting on the right-hand side expression. 

Acting in a similar manner for the phase circuit of the rotor, after transforma-

tion, and employing  
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which finally results in a relation  

)( rvsurusvme iiiipLT −=                                (3.45) 

From equations (3.39-3.45) after their transformation it results that the zero se-

quence equations are not involved in the conversion of energy and these equations 

are autonomic 
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The axial current is0 occurs only for the case of asymmetry in the power supply 

(3.37), in addition to which, it is present only in the case when the windings of the 

stator are not connected in a star. Otherwise, the equations of constraints eliminate 

the possibility of the occurrence of is0 even in case of the existing voltage us0. For 

this reason in further part of mathematical modeling of induction motor we will 

account only for two terms representing electric quantities in the axes ‘u,v’: 
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and for the equation for the revolute motion 

rl

T

rvsurusvm
r DTiiiipL

dt

d
J

e

Ω−−−=
Ω

��� 
��� 	� )(                             (3.48) 

where: 
rr

θ�=Ω  - is the angular speed of rotor’s revolution 
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10
2A  - is a skew-symmetric matrix of dimension 2. 

The dimension of the state vector of the model (3.47–3.48) of the induction motor 

is s = 5, which comes as a consequence of the lack of equations for the zero cur-

rents is0, ir0. 

3.1.5.2   Models in Mixed Coordinates 

The transformation of flux linkages of phase winding (3.23) in a similar manner to 

the procedure with equations (3.38) leads to relations which determine axial fluxes 

in the function of axial currents 
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where: 
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m
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s
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k ==  are called coefficients of magnetic coupling for stator 

and rotor windings. 

Equations (3.47) using (3.49) can be restated and  take the form 
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In equations (3.50) we have to do both with axial currents isuv, iruv and axial fluxes 

Ψsuv, Ψruv - that is with a double set of variables. In order to eliminate one of them, 

we need a relation that is the reverse to the one in (3.49): 
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where: 
rs

kk−=1σ  is called the coefficient of windings’ leakage. 

a) Mixed coordinates 
suvsuv

i,Ψ  

For the elimination of variables 
ruvruv

i,Ψ  from equations (3.50) we apply the fol-

lowing relations: 
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Using (3.52) and transforming the result into the standard form, we obtain: 
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By stating (3.53) in the form of equations with a single dimension and supple-

menting with the equation of motion we obtain the model: 
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The above calculation of the torque applies following property of the skew-

symmetric matrix A2: 

02 =iAiT  

b) Mixed coordinates isuv, Ψruv 

This time we should eliminate variables iruv, Ψsuv from equations (3.50). This is 

done using the following relations: 
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After substitution and transformations we obtain: 
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which results in a single dimensional equations and the overall model containing 

the equation of motion: 
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Below is a summary of coefficients used in the above models: 
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The models presented using the system of equations (3.54), (3.56) serve not only 

for the purposes of the calculations of the dynamics of the drive but also are  

applied in modern methods of induction motor control. 

3.1.5.3   Model in Flux Coordinates 

In order to obtain a model in flux coordinates it is necessary to eliminate currents 

isuv, iruv, from equation (3.50) by using for this purpose relations in (3.51). As a re-

sult we obtain: 
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The complete model accompanied by the equation of the revolute motion is  

presented below: 
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3.1.5.4   Special Cases of Selecting Axial Systems ‘u,v’ 

Angular speed Ȧc encountered in transformations Ts, Tr (3.33), (3.34) as a free pa-

rameter makes it possible to comfortably conduct calculations and interpret the  

results for the statement of the speed of the revolution of orthogonal axes ‘u,v’ 

(Fig. 3.5). For this purpose we apply three basic substitutions encountered in the 

following stages 

a) 0=
c

ω . Equations in α,β axes 

One of the commonly applied solution regarding the selection of an axial  

system is associated with immobilization of the system ‘u,v’ with respect to the 
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motor’s stator. In this case we have to do with the system of axes denoted as α,β  
combined with the stator of the machine. Before substituting Ȧc = 0 the equations 

of motion for the phase circuits (3.47) are presented in a matrix form: 
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After the substitution Ȧc = 0 and rearrangement we obtain equations in α,β axes in 

the standard form: 
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Voltages Usαβ result from the system of sine voltages (3.37) after applying trans-

formation Ts with Ȧc = 0. The curves for currents isαβ, irαβ have a pulsation Ȧs in 

the steady state, which results from the voltage Usαβ. The complete mathematical 

model of the induction motor in the axial coordinates is found below: 
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          (3.62) 

In a similar manner on the basis of  equations (3.56, 3.59) following substitution 

Ȧc = 0, we may have the equations of motion for the motor in α,β axes for mixed 

and flux coordinates. 

b) 
rc

pΩ=ω . Equations in d,q axes 

Following the substitution Ȧc = pΩr in the equations of motion, the system of or-

thogonal equivalent axes ‘u,v’ is stiffly related to the rotor and, hence, it has been 

given the name ‘d,q’ system. This system is most commonly applied in the de-

scription of the dynamics of synchronous machines and axis ‘d’ is then situated 

consistently with the longitudinal axis of the machine’s rotor. The system of axes 
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‘d,q’ in this case can be effectively applied with regard to the induction motor as 

well. In this case for powering stator windings with symmetric sinusoidal system 

of 3-phase voltages (3.37) in stator the currents’ curves we have to do with pulsa-

tion Ȧr 
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which is called the slip pulsation of an induction motor. Slip s reflects a relative 

delay in rotation speed Ωr of the rotor in respect to the magnetic field rotation 

speed Ȧf = Ȧs/p. Slip s during the standard operation of an induction motor ranges 

from a fraction of a percent to a few per cent of one. Concurrently, Ȧr is the physi-

cal pulsation of rotor currents. 

For instance one can note the equations for a motor expressed in axes ‘d,q’ in 

mixed coordinates isuv, Ψruv. On the basis of equations (3.56) and following the 

substitution Ȧc = pΩr, we obtain: 
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c) 
sc

ωω = . Equations of motion in ‘x,y’ axes 

The axial system ‘x,y’ is a system which rotates with the speed Ȧs = pȦf, that is 

the p-multiple of the magnetic field speed in the air gap. In case of supplying 

phase windings with a symmetric sinusoidal system of 3-phase voltages, after the 

application of transformation (3.37), voltage Uxy is constant. As a result, the elec-

tric variables ixy, Ψxy in the steady state play the role of constant functions. In the 

transient state their variability is reflecting envelope curves of alternating quanti-

ties in the phase windings. The mathematical model based on the system of coor-

dinates ‘xy’ is beneficial to conduct numerical calculations of dynamic curves, 

since the practical computing concern the envelopes of the phase curves and it is 

possible to conduct them with a much larger integration step. As an example, it is 

possible to take into consideration the mathematical model of a motor in flux co-

ordinates (3.59) expressed in the ‘xy’ axial system: 
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  (3.65)

 

The models of the induction motor presented in ‘xy’ system are particularly appli-

cable in the control, which comes as a consequence of the simplicity of the equa-

tions for the motor in this system. This is especially discernible for Field Oriented 

Control (FOC) techniques. 

3.1.6   Mathematical Models of Induction Motor with 

Untransformed Variables of the Stator/Rotor Windings 

There is a number of practical reasons why it is beneficial to preserve untrans-

formed variables on one of the sides of an induction motor. This means that the 

variables which define the electric state in the stator’s or rotor’s windings remain 

in the form of natural variables, while the state of the connections between the 

windings is maintained by the introduction of adequate equations with constraints 

resulting from Kirchhoff’s laws (2.193). The preservation of the untransformed 

variables and the resulting equations of motion for a single side enables one to de-

rive the so-called internal asymmetry within windings, which are defined using 

natural variables. Hence, it is possible either to incorporate arbitrary lumped ele-

ments in the particular phase windings or apply asymmetrical supply voltages with 

arbitrary waveforms. In particular, as a result of this, it is possible to perform the 

calculations for the braking with direct current for any connections between phase 

windings, operation under single-phase supply, operating with an auxiliary phase 

for capacitor starting a single-phase motor, analysis of a series of emergency is-

sues and select safety measures. However, the most important application of the 

mathematical models of this type is in the modeling of electronic power converters 

in combination with the supplied machine, in which power transistors or silicon 

controlled rectifiers (SCRs) are designed for the control of voltages and currents in 

the particular windings. This type of modeling, which has been the object in nu-

merous research, can be most effectively conducted in the circumstances of pre-

serving a fixed structure of an electric system by the introduction of resistances 

with variable values corresponding to the state of the examined power electronic 

switches in the particular branches of electric circuits. In the blocking state they 

assume high values limiting the flow of current across a certain branch, while in 

the conducting state the values are small, i.e. ones which correspond to the pa-

rameters of conduction calculated on the basis of the data for such components 
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taken from manufacturers’ catalogues. This type of modeling is associated with a 

number of impediments in numerical calculations of the curves of examined vari-

ables due to time constants in the particular electric circuits, whose values differ 

by several orders of magnitude, as a result of application of high value blocking 

resistance. For this reason these models apply stiff methods of integration for Or-

dinary Differential Equations (ODFs). Another solution to be applied involves the 

use of simple single-step procedures for the solution of stiff systems with a small 

step size. In any case, however, power semiconductor switches encountered in the 

branches of electric motors are more easily modeled for the case when variables 

for a given circuit are the phase variables. The reason is associated with the fact 

that the state of a given power semiconductor switch is relative to the control sig-

nals and forward current in this element. In the issues of control of squirrel-cage 

induction motors semiconductor systems are members of the circuits of the stator 

in a machine, while the variables concerning squirrel-cage windings of the rotor 

are transformed to the orthogonal axes u,v . However, if control occurs in the rotor 

of a slip-ring motor and the control elements are situated there (including the con-

verter), it is beneficial to have untransformed variables (phase currents) in the  

rotor. But then the electric variables of the stator’s windings could as well be 

transformed into orthogonal axes u,v for the purposes of succinct notation. 

3.1.6.1   Model with Untransformed Variables in the Electric Circuit of the 

Stator 

We shall assume that we deal with a 3-phase motor with windings connected in a 

star. As a result, when the currents of the phase windings 1 and 2 are considered as 

state variables, the system of stator windings is characterized with constraints 

(Fig. 3.6) 

 

Fig. 3.6 Star-connected 3-phase stator windings 
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or more briefly:                                12sis iWi =                                              (3.66) 
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or more briefly:                          sphus UWU =12                                             (3.67) 

As a result of the introduction of the equations of constraints (3.66-3.67) and the 

transformation of the currents of stator windings, we obtain for the stator’s system 

of equations (3.24): 
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As a consequence: 

( )ruvuvsrsssss
dt

d
iMiMiRU 121212121212 ++=                    (3.68) 

In equations (3.68): 
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RRR
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R                                     (3.69) 

makes it possible to account for non-homogenous resistances in the stator’s phase 

windings, and for the case of symmetry Rs1 = Rs2 = Rs3 and, hence: 

⎥⎦
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⎡ −
=

21
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12 ss RR                                              (3.70) 
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12 ss LM    mss LLL += σ                                 (3.71) 
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12 muvsr LM                                    (3.72) 

Similar transformations are performed for the system of equations in the rotor’s 

circuits (3.24): 

( )rrphsrrsphrrr
dt

d
R iMiMi0T ++= )(* θ  

and, consequently: 
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In the following transformations we apply two relations: 

1° Connection of stator’s windings in a star makes it possible to eliminate the 

zero sequence equation. 

2°  ( ) ( ) rrcr p
dt

d
TAT 2θω �−=  

 which for the system 0, =→
c

ωβα  gives 

( ) rrr p
dt

d
TAT 2θ�−=                                             (3.73) 

As a result, the equations of the rotor’s circuits take the form: 
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where:                     
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It is important to note that: T

uvsrrsuv 1212
MM ≠ , since T

ui
WW ≠ . 

As a result, the system of equations for the electric circuits of the induction mo-

tor for this case can be noted as 
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The electromagnetic torque expressed in these variables takes the form: 

])2[( 12
3

212
2

rvsrussme iiiiipLT −+=                       (3.77) 

The equations for an induction motor in the form (3.76) make it possible to ac-

count for semiconductor elements of converters using variable values of resis-

tances Rs1, Rs2, Rs3 encountered in phase windings in a fixed structure system. 

3.1.6.2   Model with Untransformed Variables of Electric Circuit of the Rotor 

This model finds application in the issues regarding internal asymmetries and con-

trol of drives with a slip-ring induction machine. For example, it is applied in the 

calculations of the start-up of a slip-ring motor with asymmetric resistances during 

the start-up, atypical systems of connections between phase windings of the rotor, 

analysis of cascade systems with a slip-ring motor, for instance the Scherbius cas-

caded system. In the discussed example the electric variables of the stator’s cir-

cuits undergo axial transformation along u,v axes, while the variables of the ro-

tor’s circuits remain untransformed. Under the assumption of the star connection 

of rotor windings, we have to introduce equations of constraints. This time to en-

sure symmetry of the resulting equations the reference phase is the one denoted 

with the number 2 and, as a consequence, the current constraints offer the elimina-

tion of the current ir2, while voltage constraints refer inter-phase voltages to the 

terminals of phase winding 2: 
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                                     (3.78) 

or 

rphurr UWU =13                                              (3.79) 

In this case, in contrast to (3.66, 3.67) the following is fulfilled: 

T
urir WW =                                                   (3.80) 

which results in the symmetry of matrices in equations (3.88). The assumption of 

the similar course of action as in section 3.1.6.1 leads to the transformation of the 

system of equations in the following way: 
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After the equation for the zero sequence is disregarded, we obtain: 
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is a skew-symmetric matrix applied with regard to the relation: 
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For rotor’s equations we obtain: 
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For an asymmetric matrix of resistance of rotor’s windings Rr we obtain 

⎥⎦
⎤⎢⎣

⎡
+

+
==

322

221
13

RRR

RRR
irrurr WRWR                            (3.84) 

which for the case of the symmetry of the resistance can be reduced to the form: 

⎥⎦
⎤⎢⎣

⎡
=

21

12
13 rr RR                                            (3.85) 

In a similar way matrix Mr13 takes the form: 

⎥⎦
⎤⎢⎣

⎡
=

21

12
13 rr LM  

Concurrently, matrix Mrs130uv due to its symmetry (3.80) fulfills the relation: 
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T
uvsruvrs 130130 MM =                                      (3.86) 

After abandoning the zero sequence equation for the stator currents the equations 

for the electric circuits of the rotor take the form: 

suvuvrsrsuvuvrsrrrrr p
dt

d

dt

d
iAMiMiMiRU 213131313131313 θ�+++=       (3.87) 

The above equation applies the relation 22 AA −=T . 

As a result of the combination of (3.82) with (3.87), we obtain a system of 

equations for electric circuits of the slip-ring motor with untransformed variables 

of the electric circuits of the rotor: 
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The expression for the electromechanical torque takes the form: 
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The characteristic property of equations (3.88-3.89) for a slip-ring induction motor 

with untransformed circuits of the rotor is the dependence of these equations on 

the angle of the rotation of the rotor θr. 
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3.2   Dynamic and Static Characteristics of Induction Machine 

Drives 

The mathematical models of induction machines developed in the preceding sec-
tions will be applied here in the simulations and calculations of typical dynamic 
states and static characteristics of the drive. In the first stage the presentation will 
involve dynamic characteristics calculated for standardized electromechanical pa-
rameters of a drive. In the subsequent section the equations of motion will be  
reduced to the steady state and on this basis an equivalent circuit diagram of an 
induction motor will be derived together with static characteristics, typical pa-
rameters and graphical images for the characteristics. 

3.2.1  Standardized Equations of Motion for Induction Motor 

Drive 

Despite the common operating principle and a unique description in the form of a 
mathematical model, induction machines form a class that is considerably distinc-
tive. The range of the rated powers varies from a fraction of a [kW] to the ma-
chines exceeding 10 [MW]. Concurrently, speed ratings resulting from the number 
of pole pairs applied in the construction, typically range for a machine from p=1 
to p=6 pole pairs, and particular manufacturers offer machines with a higher num-
ber of pole pairs. Rated voltages applied to supply the primary windings also tend 
to very across the machines in accordance with the standardized series of voltages, 
while the majority of the motor run off a 230/400 [V] supply voltage or a high 
voltage of 6 [kV]. In addition, induction machines are differentiated by the struc-
ture of the windings of the secondary side (rotor) and in particular by the shape 
and profile of the cross-section of the bars in the squirrel-cage rotor. This part is 
responsible for the increase in the value of resistance Rr, which is the basic pa-
rameter which characterizes the mathematical model and for the fact that this pa-
rameter is considerably relative to the frequency of the currents in the cage’s bars. 
Squirrel-cage machines, which are distinguished by the tall and slender shape or 
particular profiles that tend to become thinner towards the air gap are character-
ized by resistance Rr, whose value increases for higher current frequencies in the 
cage occurring during motor’s start-up. For high frequencies of the current in the 
cage the leakage reactance definitely dominates in the impedance of the bar in the 
cage rotor and the current is displaced towards the air gap, which brings a reduc-
tion of the active cross-section of the bar and increases resistance. Section 3.1 has 
dealt with the development of the mathematical models of a motor with constant 
resistance of rotor’s windings Rr hence, they are relevant for slip-ring and single-
cage motors with a weak effect of current displacement. Their application with re-
gard to squirrel-cage motors, for instance deep slot motors introduces a consider-
able error in particular in terms of the characteristics at the phase of start-up and 
small angular velocities of the rotor. In industrial practice, double-cage induction 
motors are applied in order to improve the start-up properties [36]. In the upper 
cage such motors have bars with a smaller diameter, which for higher current fre-
quencies have higher resistance levels. As a result, more complex mathematical 
models are necessary for their modeling. 
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In order to rationally perform the standardization of the parameters [82] of 

various induction motors the equations of motion in flux coordinates (3.56) will be 

inconsiderably transformed and expressed in the system α,β, (Ȧc = 0). It is neces-

sary to rescale the variables regarding the axial fluxes by dividing them by the 

rated voltage Usn: 

snU/ψϕ =                                                 (3.90) 

As a result, the equations for the axial fluxes take the form: 
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In a similar manner, the equation of rotor’s motion is transformed and it is multi-

plied by p, hence standardized to the reference of one pole pair machine: 
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is the electromechanical constant for an induction motor, while 
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                             (3.94) 

represent, respectively: moment of inertia, coefficient of viscous damping and 

load torque derived for the number of pole pairs p = 1. 

Tb - is the break torque of the motor in a steady state (3.130) 

Ȧe = pΩr - is the angular velocity of the rotor expressed in terms of a motor 

with a single pole pair, called ‘electrical angular speed’. 

This version of the equations of motion (3.91) represents standardized equations 

for an induction motor for which the entire class of single-cage motors, not  

accounting for current displacement in the rotor’s cage, are expressed in terms of a 

single synchronous velocity (for p = 1) regardless of the values of the rated  
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voltage and the number of pole pairs. This is achieved as a result of dividing axial 

fluxes ȥ by the rated voltage Usn (3.90). In this model we have to do with the fol-

lowing independent parameters relative to the design of induction motors: 

ks, kr - coefficients of magnetic coupling of windings (3.57) 

αs, αr - coefficients of damping (3.57) (inverse of the time constants) 

cem electromechanical constant for a drive (3.93) 

The above parameters are standardized, synthetic parameters of the mathematical 

model of an induction motor in its most simple version that does not account for 

the magnetic saturation of the core and current displacement in the rotor’s cage. 

They cover each individual motor and make it possible to calculate its dynamic 

and static characteristics. Other parameters used in the modeling of an induction 

motor, for example coefficient of windings’ leakage ı (3.57) are relative to the 

ones presented in (3.94) or are involved in them already (for instance number of 

pole pairs p). The presented method of standardization of equations and parame-

ters is based on [82]. On the basis of the calculations of parameters (3.94) con-

ducted on of data gained from industrial catalogues from several meaningful 

manufacturers for a few dozen of squirrel-cage motors with various power ratings 

and rated voltages, the table found below has been developed (Table 3.1). 

Table 3.1 Standardized parameters of typical induction squirrel-cage motors 

Rated power/ 

standarized 

parameters 

1 

 

10 

 

100 

 

1000 

 

3000 

 

 [kW] [kW] [kW] [kW] [kW] 

rs kk =  [-] 0.96 0.975 0.978 0.981 0.983 

s
α  [1/s] 13.0 5.0 2.3 1.4 1.1 

r
α  [1/s] 15.0 6.0 3.0 1.7 1.3 

810−×
em

c ][ 4−s  40.0 18.0 4.5 1.8 0.9 

σ  [-] 0.080 0.050 0.042 0.035 0.030 

γ  [-] 210 190 80 55 42 

 
It contains standardized parameters for a wide range of squirrel-cage induction 

motors with basic design and a small influence of current displacement in the ro-

tor’s cage. Beside the basic parameters (3.94) it contains relative parameters 

(3.57), which are encountered in several versions of the mathematical model. The 

data in Table 3.1 give mean values of the parameters for the group of examined 

motors with the number of pole pairs p = 1…5. The research that follows serves 

for the purpose of setting an example and illustration and is based on four motors 

from the group of 60 motors that were used for the preparation of Table 3.1. The 

selected motors are representative of the groups of small, medium and large power 

ones, respectively. Their parameters are presented below; one can make an effort 

to compare them with the parameters in Table 3.1. 
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Small power motor (S1) 

 
][3.55][3.11][400][5.5 NmTAIVUkWP nnnn ====  

05.03min]/[950 === nn sprn  

][1627.0][167.0]/1[0.7]/1[4.5 HLHLss msrs ==== αα  

][17.1][90.0974.0052.0 Ω=Ω==== rsrs RRkkσ  

][04.0][1032 248 NmsJscem =×= −              (3.95) 

8.5/7.2/5.3/ === nstnstnb IITTTT  

 

 Medium power motor - high voltage (S2H) 

 

][2034][5.36][6000][315 NmTAIVUkWP nnnn ====  

014.02min]/[1480 === nn sprn  

][208.1][2393.1]/1[1.3]/1[6.1 HLHLss msrs ==== αα  

][85.3][93.1975.00492.0 Ω=Ω==== rsrs RRkkσ           (3.96) 

][5.5][1015.3 248 NmsJsc
em

=×= −  

8.4/0.1/1.2/ ===
nstnstnb

IITTTT  

 

 Medium power motor – low voltage (S2L) 

 

][3590][975][400][560 NmTAIVUkWP nnnn ====  

034.02min]/[1450 === nn sprn  

][275.3][342.3]/1[5.2]/1[7.1 mHLmHLss
msrs

==== αα  

][4.8][7.598.0040.0 Ω=Ω==== mRmRkk rsrsσ                  (3.97) 

][0.14][101.3 248 NmsJsc
em

=×= −  

7.5/2.1/8.2/ === nstnstnb IITTTT  

 

 High power motor (S3) 

 
][8000][490][3400][2500 NmTAIVUkWP nnnn ====  

028.01min]/[2920 === nn sprn  

][07085.0][0719.0]/1[6.1]/1[2.1 HLHLss msrs ==== αα  

][115.0][086.0985.0030.0 Ω=Ω==== rsrs RRkkσ                  (3.98) 

][0.45][101.1 248 NmsJscem =×= −  

7.5/0.1/9.2/ === nstnstnb IITTTT  
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3.2.2   Typical Dynamic States of an Induction Machine Drive – 

Examples of Trajectories of Motion 

Equations of motion for an induction machine drive presented in Section 3.1.5 for 

various coordinate systems have 5 degrees of freedom: four for electric variables 

in axes u,v of the transformed system of electric variables of a machine and one 

degree of freedom for the mechanical variable in the form of the angle of rotation 

of the rotor. It is possible to have to do with more than one coordinate of the me-

chanical motion, for instance under the assumption of a flexible drive shaft, where 

the angles of shaft rotation on the side of the motor and on the side of the drive are 

different and this difference corresponds to the torsion angle of the shaft. The par-

ticular dynamic states formally constitute distinct initial conditions for a system of 

ordinary differential equations that form the mathematical model of a drive. The 

number of these states can be infinite for various initial conditions; however, from 

the practical point of view a few of them are encountered most frequently and 

hence they deserve a more in-depth analysis here. The typical dynamic states for 

an induction machine drive include: start-up from standstill, motor start-up under 

non-zero rotational speed, change of a load, reversal – i.e. change in the direction 

of rotation and electrical braking. In the first order we will discuss dynamic states, 

which can be easily and effectively solved using models with transformed vari-

ables of the stator and rotor. The presentation will cover, respectively: start-up 

from a standstill, start-up under angular speed different from zero (repeated start-

up and reversal) and drive regime of operation under cyclic variable load. The fol-

lowing stage will include the presentation of dynamic states, which can be  

conveniently calculated on the basis of models in which single side of a motor is 

untransformed. Such cases include the issue of a soft-start and DC braking of an 

induction motor. 

3.2.2.1   Start-Up during Direct Connection to Network 

A computer simulation of this dynamic state is performed for zero initial condi-

tions. It is possible to conduct calculations by application of various versions of 

the mathematical model in a transformed coordinate system. It is beneficial to ap-

ply the model in current coordinates in α,β axes (3.61) or in flux coordinates 

(3.59). Both systems are in the standard form and the application of the α,β system 

enables one to achieve the natural frequency of voltages in the transformed sys-

tem. The calculations of the current curves require the application of a reverse 

transformation Ts
T
 (3.33) under the assumption that Ȧc = 0, is0 = 0. For the case of 

the model in (3.59) with flux coordinates, the transformation of Ts
T
, which leads to 

transformation of currents in the axial α,β system has to be preceded by the trans-

formation of (3.51) to convert flux variables into axial currents. As a result, we 

obtain: 
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The examples of trajectories of the motion presented in this section apply a model 

in the flux coordinates (3.91-3.92), while phase currents are obtained using (3.99). 

The calculations of the trajectories of start-up from a stall was conducted for three 

induction motors with respective, small, medium and large power, whose parame-

ters are given in (3.95), (3.97) and (3.98), respectively. Fig. 3.7 presents the curves 

of the phase current, electromagnetic torque and angular speed for an unloaded 

small power motor whose moment of inertia on the shaft is J = 3Js, where Js de-

notes the moment of inertia of the motor’s rotor. The waveforms of the same type 

are presented in Figs. 3.8 and 3.9 for medium and large power motors. In Fig. 3.8 

for the medium power motor the trajectory of electromagnetic torque, i.e. the rela-

tion of the torque and angular speed is additionally presented. 

a)  

b)  c)  

Fig. 3.7 a) phase current b) electromagnetic torque c) angular velocity during free accelera-

tion after direct connecting to the supply network, for the small power motor. Motor is 

unloaded and J = 3Js 



3.2   Dynamic and Static Characteristics of Induction Machine Drives 149

 

 
a)     b) 

 
c)     d) 

Fig. 3.8 a) phase current b) angular velocity c) electromagnetic torque time history d) 

torque trajectory, during free acceleration after direct connecting to the supply network, for 

the medium power motor, while Tl = 0 and J = 2Js 

a)  

 
b)      c) 

Fig. 3.9 a) phase current b) electromagnetic torque c) angular velocity, during free accelera-

tion after direct connecting to the supply network, for the high power motor, while Tl = 0 

and J = 2Js 
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One can note the considerable oscillatory changes of electromagnetic torque 

with a large initial value (4…6 Tn) and a frequency similar to the network voltage 

during the direct connection of the induction motor to the supply network. This re-

sults from the occurrence of an aperiodic component of the magnetic flux gener-

ated by the stator’s windings Ψs in association with slowly increasing flux of the 

rotor’s windings Ψr. The oscillatory state of the torque occurs until the instant 

when the two fluxes reach a steady state during the rotation over a circular  

trajectory. 

This is well illustrated in Fig. 3.10 by the presentation of fluxes Ψs, Ψr during 

the start-up of the small and large power motors. This figure refers to the start-up 

curves presented in Figs. 3.7 and 3.9. The presented torque waveforms during di-

rect connection to the network pose a hazard to the mechanical parts of the drive 

such as the shaft, clutch as well as the very device that is connected. For this  

reason the direct connection is more and more frequently replaced with the meth-

ods of soft-start, which are more widely discussed in the further part of this  

subsection. 

a)  b)  

c)   d)  

Fig. 3.10 Magnetic flux vector trajectory in the air gap of induction motor during free ac-

celeration after direct connection to the network: a) Ψs b) Ψr for the small power motor c) 

Ψs d) Ψr for the high power motor 



3.2   Dynamic and Static Characteristics of Induction Machine Drives 151

 

3.2.2.2   Reconnection of an Induction Motor 

Reconnection is the term which denotes the dynamic state encountered during en-

gaging a motor during coasting i.e. for a non-zero angular speed. One can note the 

difference between a reconnection: resulting from a breakdown in power supply 

for 0.3...1 [s], when the magnetic field in the motor from the weakening current of 

the cage does not decay completely and a reconnection after a breakdown of 

power supply of over 1 [s], when the magnetic field decays completely. For fast 
 

a)  

 
b)     c) 

d)  e)  

Fig. 3.11 Reconnection of the small power induction motor at the synchronous speed and 

zero current initial conditions: a) stator current b) electromagnetic torque c) angular speed 

d) stator flux Ψs e) rotor flux Ψr trajectory 
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reconnections one has to take into account non-zero initial conditions for electric 

variables on the rotor’s windings (Ψr, ir) since the formed electromagnetic torque 

is then considerably dependent on the phase of the voltage connected to the sta-

tor’s terminals. Just as in the case of synchronizing a synchronous machine with 

the network it is possible to undertake a reconnection in accordance with the  
 

 
a)     b) 

  
c)     d) 

e)   f)  

Fig. 3.12 Reconnection of the high power induction motor at the synchronous speed and 

zero current initial conditions: a) stator current b) angular speed c) electromagnetic torque 

d) torque-speed trajectory e) stator flux Ψs f) rotor flux trajectory Ψr 
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phase, whose characteristics include low values of the connection currents and 

electromagnetic torque. In contrast, in the most adverse case, such reconnection 

can occur in the circumstances of the opposition between the phases of network 

voltages and the one on the motor’s terminals. In the latter case we have to do 

with a large connection current, which is hazardous for the drive due to a torque 

surge. For this reason it is best to avoid fast and direct reconnections of an induc-

tion motor into the network. For large power motors the duration period of the 

hazardous reconnection lasts for about 0.8-1.0 [s], while for small and medium 

size ones the breakdown the time is 0.5 [s]. The reconnection of the motor after 

the period of the voltage breakdown over 1 [s] could be considered as the connec-

tion from the zero initial conditions of electric variables. The curve of the current 

and torque after such a reconnection is relative to the angular speed Ωr(0) after 

which the reconnection has occurred; however, it does not exceed the values that 

are present during the direct connection of a motor during standstill. 

The curves of the currents, electromagnetic torque and angular speed and mag-

netic fluxes in the stator and rotor after connection to the network for synchronous 

speed are presented in Figs. 3.11 and 3.12 for small and large power motors, re-

spectively. 

3.2.2.3   Drive Reversal 

The term reversal denotes turning on a drive under a speed that is reverse to the di-

rection of the rotation resulting from the sequence of phases of the supply network 

after turning on. A reversal may be associated with the needs of a technology or  
 

 

a)     b) 

 
c)     d) 

Fig. 3.13 Reversal of the medium power induction motor drive (J = 2Js): a) stator current 

b) rotor flux c) relative rotor speed d) torque-speed trajectory 
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may form a type of braking resulting from a counter current. In this case the rever-

sal should be discontinued when the rotational speed of the drive is close to zero 

and before the drive starts its rotation in the opposite direction. The dynamic 

curves of the current and electromagnetic torque in the initial phase of the reversal 

are similar to the values of the curves for these values during start-up under direct 

turning on. The calculations of the trajectories of the drive motion apply zero ini-

tial conditions for currents (fluxes), by assuming an adequately long interval in the 

supply (1 [s] or more) and an angular speed similar to the synchronous speed but 

with a negative sign. Examples of curves during the reversal of a middle power 

induction motor (3.97) are presented in Fig 3.13. 

3.2.2.4   Cyclic Load of an Induction Motor 

Load on a motor may contain a variable term. In this case steady operation state, 

understood as fixed point, is not achieved by a drive on its characteristics. In con-

trast, the drive operates in a closed trajectory when the operating regime becomes 

steady. For high inertia of the drive and a relatively small variable term of the load 

torque the trajectory of the motion is close to a fixed point. In the opposite case 

the trajectory of the drive’s motion forms a curve that considerably diverges from 

static characteristic. The trajectory is relative to the value of the variable term, fre-

quency of the load variation and moment of inertia relative to the motor’s shaft. 

The examples of the drive regime of operation for a large component of variable 

load are presented in Figs. 3.15, 3.16, 3.17. Fig. 3.14 that precedes them presents 

the stepwise variable load torque acting on the induction machine’s shaft. Fig. 

3.15 presents the dynamic curve for the mean load equal to the rated torque in the 

cycle of the load, in which for Ĳm = 0.2Ĳl the load torque is equal to Tlmax = 4.2Tn, 

and in the remaining part of the cycle Tlmin = 0.2Tn with the frequency of the 

torque variation fl =3 [Hz]. The trajectory of the electromagnetic torque in respect 

to angular speed forms a closed curve with the shape of an eight. Fig. 3.16 pre-

sents the cases of the identical load on a drive but for frequency fl =6 [Hz] and fl 

=15 [Hz]. As a consequence, there is a considerable reduction and limitation of 

the trajectory loop. Fig. 3.17 presents a variable load with the frequency of fl =3 

[Hz] and fl =2 [Hz] at the boundary of drive break. 

 

Fig. 3.14 The cyclic load torque of the drive 
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a)  

b)  

 
 c)     d) 

Fig. 3.15 Induction motor drive characteristics under periodic load changes: fl = 3[Hz], Tlav 

= Tn, Tlmax = 4.2 Tn: a) phase current b) rotational speed c) torque time history d) torque-

speed trajectory 

3.2.2.5   Soft-Start of an Induction Motor for Non-simultaneous Connection 

of Stator’s Windings to the Network 

As it was mentioned earlier (3.2.2.1), the direct connection of an induction motor 

to the supply network results in the high value of an oscillatory component of 

electromagnetic torque during start-up. Besides, there is considerable value of the 

start-up current. This is well illustrated in Figs. 3.7-3.9 for small, medium and 

high power motors. The oscillations of the electromagnetic torque can be consid-

erably limited and, hence, it is virtually possible eliminate their effect as a result of 

the application of synchronized connection of phase windings in the network. In 

the first stage, two clamps of the stator’s windings are connected with a suitable 

synchronization with the network and in the second stage the third clamp is con-

nected with an adequate phase delay. A computer simulation of the examples that 

illustrate this issue can be conveniently conducted by use of a model of an induc-

tion motor with untransformed electric variables of the stator’s windings. This 
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model is presented in equations (3.76-3.77), while the notation used for stator’s 

windings follow the ones in Fig. 3.6. Under the assumption that the voltage of the 

supply network Us12 is given in the form of the function 

a)   

b)  

Fig. 3.16 Induction motor electromagnetic torque under periodic load changes for various 

frequency values: a) fl = 6[Hz] b) fl = 15[Hz] 

a)   

b)   

Fig. 3.17 Induction motor performance under periodic load changes close to the break 

torque loading: a) fl = 3[Hz], Tlmax = 5.2 Tn, Tlav = 1.87 Tn, b) fl = 2[Hz], Tlmax = 3.5 Tn, Tlav 

= 1.85 Tn 
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)sin(12 γω += tUU Lms                              (3.100) 

the soft-start of the motor follows for the phase angle: 

50.046.011 …== χπχγ  ,                              (3.101) 

while the connection of the remaining, third, clamp follows with a phase delay: 

36.043.03/2 22 …=−= χχπδ                            (3.102) 

 

a)     b) 

c)  
 

  
d)     e) 

Fig. 3.18 Delay soft-start of the small power induction motor (J = 3Js): a) phase current b) 

angular speed c) electromagnetic torque d) stator flux trajectory e) and rotor flux trajectory 
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a)  
 

  
b)     c) 

Fig. 3.19 Delay soft-start of the medium power induction motor (J = 2Js): a) electromag-

netic torque b) stator flux trajectory c) rotor flux trajectory 

The values of coefficients χ1, χ2 are determined as a result of the calculations in-

volving simulations for selected squirrel-cage motors; their extreme values are 

relevant with regard to motors from a small to large power. The instances of such 

connections, result in a virtual lack of aperiodic component in the generated mag-

netic flux Ψs, Ψr. This issue has been illustrated using examples based on computer 

simulations for motors from small to large power, and the obtained results are pre-

sented in Figs. 3.18, 3.19 and 3.20. 

One can easily note the smooth curve of the current without the aperiodic com-

ponent and small oscillations of the electromagnetic torque at the initial stage of 

the start-up. This comes as a consequence of the curve of trajectories of magnetic 

fluxes presented in the figures. This type of start-up, that is associated with the 
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a)     b) 

c)  d)  

Fig. 3.20 Delay soft-start of the high power induction motor (J = Js): a) phase current b) 

electromagnetic torque c) stator flux trajectory d) and rotor flux trajectory 

need to apply power semiconductor switches, has considerably more advantages 

than direct connection, and this can be concluded from a comparison between the 

above illustrations and results presented in Figs. 3.7, 3.8, 3.9 for the same motors. 

3.2.2.6   DC Braking of an Induction Motor 

Braking using direct current involves DC supply to the suitably connected stator’s 

windings in such a way that enables the potentially high constant magnetic flux in 

which the rotor is put in motion. The current produced by rotor windings as a con-

sequence of induction combines with the magnetic field thus producing braking 

torque, which approaches idle run for a DC supply, i.e. the condition when the  

rotor is stalled. Fig.3.21 presents two typical layouts from among the list of the 

possible connections between the stator’s windings for braking. 

The modeling is based on equations (3.76-3.77) for an induction motor for  

untransformed currents of stator’s windings. For a three-phase system of connec-

tions (Fig. 3.21a), we directly apply equations (3.76-3.77) by assuming that: 

2132312 0 ssssDCs iiiuUu −−===                           (3.103) 

For two-phase power supply during braking (Fig. 3.21b) the following constraints 

are applicable: 

DCsss Uuii =−= 1212                                       (3.104) 



160 3  Induction Machine in Electric Drives

 

 

Fig. 3.21 Connection of induction motor stator windings for the DC three-phase breaking 

and the two-phase breaking 

a) b)  

 
c)     d) 

 

 
e)     f) 

Fig. 3.22 3-phase DC breaking of the small power induction motor with J = 5Js, iDC = 2In.:  

a) stator current is1 b) stator current is2 c) magnetizing current 
m

i  d) MMF trajectory imu / imv e) 

electromagnetic torque f) rotational speed 
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Consequently, the stator windings connected in a star have a single degree of 

freedom, for which we assume the variable is1. Using (3.104) and after elimination 

of the latter of equations (3.76), we obtain the model for this type of braking: 
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On the basis of the obtained versions of the mathematical model, simulations were 

conducted for braking of a small and large power motors (3.95, 3.98) for a braking 

current, which in the steady state is equal to iDC = 2In. The characteristic wave-

forms are presented in Figs. 3.22 to 3.25. 

a)  

b) c)  

Fig. 3.23 2-phase DC breaking of the small power induction motor with J = 5Js, iDC = 2In.:  

a) stator current is1 b) magnetizing current im c) MMF trajectory imu / imv d) electromagnetic 

torque e) rotational speed 
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d) e)  

Fig. 3.23 (continued) 

a) b)  

c) d)  

e) f)  

Fig. 3.24 3-phase DC breaking of the high power induction motor with J = 1.5Js, iDC = 2In:  

a) stator current is1 b) stator current is2 c) magnetizing current im d) MMF trajectory imu / imv  

e) electromagnetic torque f) rotational speed 
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a)  

b) c)  

d) e)  

Fig. 3.25 2-phase DC breaking of the high power induction motor with J = 1.5Js, iDC = 2In:  

a) stator current is1 b) magnetizing current im c) MMF trajectory imu / imv d) electromagnetic 

torque e) rotational speed 

The closer familiarity with the results of calculations for DC breaking leads to 

the following general conclusions: 

- 2-phase braking is considerably more effective than 3-phase braking with di-

rect current; however, its characteristics include oscillations of torque and speed in 

the final phase of braking. This results from the lack of damping of the clamped 

circuits in the windings in phase 2 and 3 

- magnetizing current during braking is quite small and is definitely smaller 

than the magnetizing current during symmetric motor regime. After the rotor is 

stalled the magnetizing current reaches the value of iDC. Hence, the saturation of 

the magnetic circuit over the entire range of speeds during braking is similar to 

characteristics of motor regime of operation and the applied models with constant 

parameters remain in the same precision range as during motor regime. This  
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concerns the supply of the motor with the direct voltage, for which current iDC 

does not exceed several times the rated current. 

- considerable differences are absent from the dynamic curves of braking for 

small and large power motors. Smaller motors tend to brake more dynamically, in 

accordance with the larger value of the electromechanical constant cm (3.93). 

3.2.3   Reduction of a Mathematical Model to an Equivalent 

Circuit Diagram 

A dynamic system, such as electric drive described with ordinary differential 

equations for given initial conditions and input functions, is characterized with a 

specific trajectory of the motion. This trajectory represents the history of all vari-

ables in a system. The steady state of such a system occurs when the trajectory is 

represented by a fixed point, that is 

{ } { }qq =)(tϕ  

or by a periodic function with the period of T, when 

TTt ϕϕ =+                                                 (3.106) 

For an electric drive this occurs when variables in a system forming the vector of 

generalized coordinates q are either constant functions or periodically variable 

ones. In a induction motor drive we can assume in an idealized way that the steady 

state occurs when the angular speed is constant, i.e. const
rr

==Ω θ�  and the elec-

tric currents which supply the windings are periodic functions with the period in 

conformity with the voltages enforcing the flow of the currents. 

One can note that the history of both the supply voltages and the resulting cur-

rents is relative to the transformation of the co-ordinates of the system, as  

presented in the models of the motor in α,β, d,q or x,y axes (3.61 – 3.65). In a x,y 

system rotating with the speed Ȧc = Ȧs = pȦf the symmetric system of sinusoidal 

voltages supplying phase windings as a result of transformation (3.37) is reduced 

to constant voltages. In such coordinate system the steady state literally means a 

fixed point on the trajectories of all variables. The situation will be different for a 

steady state in the case of asymmetry of the supply voltages or cyclically variable 

load torque. In such a case the steady state will be characterized by periodically 

variable waveforms of electric currents and angular speed, while in the speed 

waveform the constant component will form the predominant element. The ac-

quaintance with steady states is relevant for the design and exploitation of a drive 

since it provides information regarding its operating conditions and, hence, forms 

the basis for the development of strategies regarding methods of drive control. The 

familiarity with the steady states makes it possible to determine the characteristics 

of the drive, i.e. functional relations between variables that form the sets of con-

stant points on a trajectory and ones that are time invariable. For the reasons given 

here the steady state of the induction motor drive can be conveniently described in 

axial coordinates x,y. Therefore, we will take as the starting point the transformed 

equations (3.60) in current coordinates, which after the substitution Ȧc = Ȧs gives: 
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where:                     
msmrsrsss

LXLXLX ωωω ===  

while                                             
s

rs p
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ω

ω Ω−
=                                            (3.108) 

- is the slip of the rotor speed in relation to the rotating magnetic field (see 3.63). 

We assume that the steady state forms the fixed point of the trajectory qq =)(tϕ , 

hence, it denotes the constant angular speed Ωr = const and the constant slip s = 

const. This condition is possible due to the constant values of currents isxy, irxy, and, 

as a result, the constant electromagnetic torque Te. This requires the constant sup-

ply voltages after the transformation of x,y, which take the following form in ac-

cordance with (3.37): 
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The form of voltages (3.109) suggests the introduction of complex values: 

ph
j

phsysxs UeUjuuU 33 ==+= γ
                          (3.110) 

where: Uph - is the RMS value of the voltage supplying the phase of the motor. 

Subsequently, we can substitute: 

ryrxrrsysxss jiiIjiiI +==+== ii                            (3.111) 

In the following transformations of equations (3.107) the latter of the equations in 

each pair is multiplied by the imaginary unit j and is added to the first of the equa-

tions, thus giving the equations for a complex variable. For the stator we obtain: 

rmsssss IjXIjXIRU ++=                                (3.112) 

Here we have applied: 0=
s

I
dt

d
, 0=

r
I

dt

d
, which results from the steady state 

and 

⎥⎦
⎤⎢⎣

⎡
−

=⎥⎦
⎤⎢⎣

⎡⎥⎦
⎤⎢⎣

⎡
−

=
sx

sy

sy

sx

sxy
i

ji

ji

i

1

1
2iA  

which after addition of row vectors leads to: 

ssxy ij−⇒iA2 . 

As we perform similar operations for the other pair of equations, i.e. rotor’s equa-

tions, and dividing this equation by slip s, we obtain: 
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rrsmr
r IjXIjXI

s

R
++=0                                    (3.113) 

This makes it possible to develop an equivalent circuit for an induction motor in 

the steady state as a result of merging equations (3.112, 3.113) in the form of a 

two port, using a common magnetizing reactance term jXm. The equivalent circuit 

in the form in Fig. 3.26, beside the voltage and current relations presented in every 

two port, also realizes in an undisturbed manner the energetic relations occurring 

in the steady state. This comes as a result of the application of orthogonal trans-

formations that preserve scalar product and quadratic forms in the transformation 

of equations. 

 

Fig. 3.26 Equivalent circuit of an induction motor for the steady state 

In this circuit we have to do with a resistance term Rr /s, which realizes in the 

energetic sense both Joule’s losses in the rotor windings and the mechanical out-

put of the drive transferred via the machine’s shaft as the product of torque Te and 

the angular speed of the shaft Ωr. Hence the resistance term can be divided into 

two terms: Rr, Rr(1-s)/s, which realize the losses of the power in the stator’s wind-

ings and mechanical power Pm, as it is presented in Fig. 3.27. The following  

components of the electric power are encountered in the equivalent diagram: 

 

Fig. 3.27 Equivalent circuit of induction motor with physical interpretation of electric 

power components 
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 sss IUP ϕcos1 =   input power 

 ssels RIP
2=    Joule’s losses in stator windings 

 sRIP rrf /
2=    air gap field power        (3.114) 

 rrelr RIP
2=    Joule’s losses in rotor windings 

 
s

s
RIP rrm

−
=

12
                mechanical power 

 fels PPP +=1  

The energy balance for a 3-phase machine is preserved due to the fact that 

phs
UU 3= , hence, the transformed power is three times higher than the power 

of a single phase. In the analysis of the expression for the mechanical power out-

put of an induction motor drive we can distinguish the following areas of opera-

tion: 

1. for 10 << s  0,0 >> mf PP     - motor regime 

2. for 0<s   0,0 << mf PP     - generating regime 

3. for 1>s   0,0 <> mf PP     - braking regime 

4. for 1=s   0,0 => mf PP     - stall of the motor 

5. for 0=s   0,0 == mf PP      - idle run 

From the expression for the mechanical power we can calculate the motor’s torque 

in the steady state: 

s
RI

pP
T rr

sr

m
e

12

ω
=

Ω
=                                             (3.115) 

The equivalent circuit can additionally be useful in the calculation of the stator 

and motor currents: 
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It would be valuable to present the currents in the standardized parameters (3.57) 

since as a consequence of such presentation it is possible to depart from the par-

ticular design of an induction motor. The standardized parameters assume values 

in the ranges presented in Table 3.1. In this case the relations (3.116-3.117) take 

the form: 
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Currents 
sr

II ,  represent symbolic values of stator and rotor currents for steady 

state sine curves. The electromagnetic torque in the steady state can be derived 

from relation (3.45) 
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=−=                          (3.119) 

Using relations (3.116, 3.117) presenting stator and rotor currents we obtain: 
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where:                                               sz XX σ=                                              (3.121) 

- is a blocked-rotor reactance. 

The electromagnetic torque can also be presented using standardized parame-

ters (3.59), and takes this form: 
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The expressions (3.120), (3.122) representing electromagnetic torque relative to 

supply voltages and motor parameters are frequently subjected to certain simplifi-

cations in order to simplify the analysis of these expressions. The basic procedure 

applies disregarding of the resistance of the stator winding Rs and, subsequently, 

αs in some or all terms of this expression. A detailed analysis of this type of sim-

plification will be conducted later on during the determination of the characteris-

tics of the drive regime. 

3.2.4   Static Characteristics of an Induction Motor 

Static characteristics concern the steady state of a drive and give in an analytic or 

graphic form the functional relations between the parameters characterizing motor 

regimes. Typical static characteristics can for instance indicate the relations be-

tween electromagnetic torque, current and the capacity of a motor or between effi-

ciency and the slip, voltage supply and the power output of the drive and the like. 

One can note that static characteristics constitute a set of constant points along a 
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trajectory { }q∈
i

q  for selected variables of the state qi or their functions, that illus-

trate the values that are interesting from the point of view of the specific regimes 

of a machine, for example electromagnetic torque Te. Static characteristics collect 

the end points of trajectories for which the system reaches a steady state. They do 

not provide information regarding the transfer from a specific point on the charac-

teristics to another one, how much time it will take and whether it is attainable. 

Hence, in static characteristics we do not have to do with such parameters as mo-

ment of inertia J, and the electromagnetic torque Te and load torque Tl are equal 

since the drive is in the state of equilibrium, i.e. it does not accelerate or brake (see 

3.12). For example, very relevant characteristics are presented using functions 

(3.120, 3.122). They illustrate the electromagnetic torque for an induction machine 

depending on a number of parameters. A typical task involves the study of the re-

lation between the characteristics of the electromagnetic torque and the slip Te(s) 

for constant remaining parameters, since it informs of the driving capabilities of 

the motor in the steady state. The relation between machine’s torque and slip Te(s) 

gives the maximum of this function for two slip values called break torque slip or 

pull-out slip. 
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or in standardized parameters 
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The root term Ȥ in formulae (3.123, 3.124) is the factor for correction of the value 

of the break torque slip as a result of the of stator windings resistance Rs influence. 

Since leakage coefficient is 03.008.0 …=σ  (see Table 3.1) the following ine-

quality is fulfilled 
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In addition, these relations are inversely proportional to the square root of the fre-

quency of the supply source. Two degrees of simplification that are applicable in 

the development of static characteristics of an induction motor result from the pre-

sented estimates. The first of them is not very far-reaching and involves disregard-

ing of resistance Rs in the terms denoting torque (3.120, 3.122) and break torque 
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slip (3.123, 3.124), in which this effect is smaller in accordance with the estima-

tion in (3.125). In this case we obtain: 
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The most extensive simplification concerns the case when the resistance of the  

stator windings is completely disregarded, i.e. Rs = 0. In this case we obtain: 
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Fig. 3.28 presents static characteristics of the motor’s torque in the function of the 

slip for a small power induction motor for the three examined variants of simplifi-

cation regarding resistance Rs. One can note the small difference between the 

curve for the torque marked with solid line (i.e. the one presenting relations with-

out simplifications (3.120,3.122)), and dotted line (i.e. the one presenting the re-

sult of calculations on the basis of formulae (3.126) involving the first degree of 

simplification). However, when the resistance of stator windings is totally disre-

garded (Rs = 0) in accordance with formulae (3.127), the error in the characteris-

tics of torque Te is considerable, as the relative involvement of resistance Rs in the 

stall impedance of small power motor is meaningful. 

 

Fig. 3.28 Torque-slip characteristics for the small power induction motor illustrating sim-

plifications concerning stator resistance Rs: _____ Rs taken into consideration completely, 

according to (3.120, 3.122); ▫▫▫▫▫▫▫▫ into consideration taken only the most significant com-

ponent containing Rs, according to (3.126); -------- Rs totally disregarded (3.127) 
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It is noteworthy that for Rs = 0 the characteristic of motor torque becomes an 

odd function of the slip s, so it is symmetrical in relation to the point of the idle 

run s = 0. Accounting for resistance Rs torque waveform on the side of the motor 

regime (s>0) is considerably smaller in terms of absolute values than for the case 

of generating regime, i.e. for s<0. In addition, on the side of the generator regime 

the effect of the first degree of simplification accounting for resistance Rs is more 

clearly discernible than for the case of the motor regime, which can be simply in-

terpreted by analyzing relations (3.120, 3.122). The presented effect of the resis-

tance of stator windings on the characteristics of the torque increases along with 

the reduction of the pulsation of the supply voltage Ȧs and becomes very high for 

small frequencies. This subject will be covered in more detail later. This effect is 

graphically presented in Fig. 3.29 in the range of the supply frequencies 1 < fs ≤ 50 

[Hz]. 

 

Fig. 3.29 Characteristic of the break-torque slip sb versus pulsation of the supply voltage Ȧs 

for the small power motor 

The formulae for the break-torque slip and motor torque accounting for simpli-

fications concerning the resistance can be additionally presented in formulae con-

taining standardized parameters. The equivalent of the formulae (3.126) takes the 

form: 
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Concurrently, formulae (3.127) are replaced with the form which disregards  

resistance Rs, by introducing αs = 0: 
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In the latter case it is easy to calculate the value of the break-torque: 
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Formula (3.130) constitutes the basic rule applicable for adjusting the RMS value 

of sinusoidal supply voltage Us of the motor to the frequency of this voltage fs in 

such a manner, that guarantees a constant break-torque value of Tb. Hence, the re-

lation takes the form: 
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= , which, subsequently gives: 
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During the course of action that follows in the discussion of frequency based con-

trol of motor’s rotational speed it will become evident that this rule is completely 

insufficient within the range of small supply frequencies. This is so due to the ris-

ing share of the resistance Rs in the impedance of the motor stall along with the 

decrease in the frequency of supply. The relation denoting the break-torque with-

out simplifications, in which resistance Rs is not disregarded, is much more com-

plex than the one in (3.130). The greater complexity of the relation results from 

the substitution of the break-torque slip sb (3.123) in the expression denoting the 

electromagnetic torque of the motor. As a result we obtain: 
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where coefficient Ȥ results from (3.123) and is given by the relation: 
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Under the simplifying assumption that Rs = 0, we have αs = 0 and Ȥ = 1 and, as a 

consequence, break-torque expression (3.132) is reduced to this form (3.130). The 

relation in (3.133) is applied to indicate the effect of resistance Rs on the break-

torque Tb more clearly. The following illustrations in Fig. 3.30 show voltage-

frequency relations required to provide constant value of nominal break-torque Tbn 

in the function of stator voltage pulsation Ȧs. For the motor regime of operation 

the required voltage is clearly higher than for the generator regime. From Fig. 3.30 

we can also see that smaller motors, within low frequency range, require much 

higher supply voltages than large motors to sustain the nominal level of Tbn. A 

close inspection of Fig. 3.30b indicates that for higher pulsations Ȧs the differ-

ences between motors disappear, but still there is constant discrepancy between 

the symmetrical ‘ideal’ V-line for αs = 0 and the curves, for which stator resis-

tance Rs was accounted for. For the motor operation the required voltages are 

higher while for generator operation they are lower in comparison to the ‘ideal’ V-

line. One might say that the actual V-line for which resistance Rs is included is 

shifted in the direction of lower pulsations Ȧs in respect to the ‘ideal’ V-line for 

which Rs is completely ignored. 

a) b)  

Fig. 3.30 Voltage-pulsation curves indicating the a stator voltage level required to sustain a 

nominal break-torque Tbn while Ȧs pulsation changes. The curves are presented for different 

induction motors with αs = 18.8, 5.4, 1.7, 1.2, 0.0 : a) for full range of stator voltage pulsa-

tion Ȧs, b) range of Ȧs limited to low values 

Subsequently, Fig. 3.31 presents the characteristics of the motors in the func-

tion of the slip in two versions: completely accounting for parameter Rs - smaller 

characteristic in each pair, and the one totally disregarding resistance, i.e. for  

Rs = 0 - with the above presented characteristic. For nominal value of Ȧs = 2πfs, 

the distinctive difference between the two versions take place for the small power 

motor. 
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Fig. 3.31 Torque-slip curves (relative values) for the three induction motors: small, medium 

and high power. The effect of Rs = 0 simplification is illustrated for fs = 50 [Hz] 

Subsequently, Fig. 3.32 presents the characteristics of stator current for the 

three motors accounting for resistance Rs. The relation (3.134) is applied in this 

case, which comes as a consequence of (3.118): 
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When the resistance of stator windings is disregarded (αs = 0), the relation which 

defines the current in the stator windings takes a considerably more succinct form, 

which is additionally easy to verify for the two extreme motor states, i.e. for s = 0 

and s = ∞. 
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Self reactance of the stator windings Xs is encountered in a multitude of relations 

concerning induction motors. The value of this parameter can be easily determined 

from calculations or manufacturers’ data for idle run. From the equivalent diagram 

(Fig. 3.26) of the motor it results that 
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Fig. 3.32 Stator current-slip curves (relative values) for the three exemplary motors accord-

ing to (3.134) presented in relative values, for fs = 50 [Hz] 

where 
0000

,,, ϕZIU  denote voltage, current, impedance and phase angle for the 

idle run of the motor. If the phase angle during idle run is not familiar, it is possi-

ble to use assessment relevant for the rated frequency: Rs << Xs and calculate in an 

approximated way: 
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3.3   Methods and Devices for Forming Characteristics of an 

Induction Motor 

By its very nature resulting from solid rotor windings and lack of power supply to 
its windings, an induction motor is most suitable for operation under steady condi-
tions and with a small slip. In such a case the angular speed results from the fre-
quency of the supply to the stator windings, number of pole pairs and value of the 
slip. Traditionally, it was applied in drives in which neither frequent changes of 
speed nor variable control were required (examples of such devices include 
pumps, blowers, compressors, belt conveyors, cranes, industrial hoists). There was 
virtually no possibility of controlling induction motors within wide range of 
speeds while concurrently preserving high energetic efficiency until 1970s. Drives 
in which the control of speed was necessary most frequently applied slip ring in-
duction motors, in which it is possible to control rotational speed as a result of use 
of external elements. However, such systems are either complex, costly and prob-
lematic in control due to the use of cascaded systems. Alternatively, they have 
lower energetic efficiency due to additional resistance in the rotor’s circuit. In ad-
dition, the start-up properties of an induction motor under direct connection to the 
network are adverse due to the initial period of oscillations of electromagnetic 
torque with a high amplitude and high value of the start-up current. Despite these 
drawbacks the induction motor has become the most common machine in electric 
drive systems due to the fundamental advantages including long service life and 
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reliability as well as low price and accessible supply source. Following the devel-
opment of power electronics and control elements enabling arbitrary shaping of 
voltages and currents, induction motors became widely applied in complex drives 
due to a new angular speed control potential and general robustness at heavy duty. 
This section will be devoted to the presentation of the methods of forming charac-
teristics of induction motors and will cover the devices that make it possible to  
realize the required characteristics. The possibility of modeling characteristics re-
sults directly from the relation defining angular speed 
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where: 
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2
=  - synchronous angular speed of a rotating field. Each of the 

values in relation (3.138) offers the possibility of modeling mechanical character-

istics: number of pole pairs p, slip s as well as the frequency fs of the supply volt-

ages. The control of slip s is possible to a large extent as a result of the external in-

terference in the rotor circuit and also voltage changes but within a small range of 

rotational speeds. The presentation of methods used for modeling characteristics 

associated with rotor slip changes will follow in the subsequent sections. Concur-

rently, a separate section will be devoted to an extensive presentation of control as 

a result of modifying the frequencies of the supply voltages. The application of the 

various number of pole pairs p for changing motor speed appears to be most 

straightforward to explain. A series of synchronous speeds Ȧf for a given supply 

frequency consists of a discreet values. For the successive number of pole pairs p 

= 1,2,3,4,5,6,... and for example for the frequency of the supply fs = 50 [Hz] they 

are, approximately: 

…,4.52,8.62,5.78,7.104,1.157,16.314=fω  

This finds application in multi-pole motors, in which the windings can be 
switched to two or three synchronous speeds, which leads to a stepwise change of 
rotor speed. This type of drive is applied in cranes and industrial hoists mainly 
with two speeds – transit speed with a higher value and a slower approach speed. 

3.3.1   Control of Supply Voltage 

The control of the supply voltage can offer only limited possibility of adjusting ro-
tational speed of an induction motor. This results from the basic mechanical char-
acteristic of the motor (Fig. 3.28) which indicates that the slip under a given load 
can be increased up to the limit of s < sb, which means it has to keep below the 
break-torque slip beyond which a loss of the stability occurs and the motor stops. 
In addition, this type of control is achieved at the expense of efficiency loss since 
under a constant load the losses in the motor are ΔP > Pf s. This comes as a con-
sequence of the increase of the current and losses in the motor windings. At the 
same time, the control of the supply voltage is currently used in order to reduce 
the start-up current and perform a soft-start. This is realized with the use of  
an electronic device called a soft-starter. A diagram of such a device is found in 
Fig. 3.33. 
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Fig. 3.33 Basic diagram of a soft-starter for an induction motor 

The introduction of semiconductor elements (SCRs, IGBTs, GTOs, MOSFETs 
etc.) for the two directions of current flow for each line supplying the motor wind-
ings makes it possible to employ current flow with a selected delay angle α in rela-
tion to the zero crossing of the supply voltage curve. As a result, at some expense 
of altering the current and voltage from sinusoidal shape, it is possible to control 
the value of voltage and synchronize the motor with the network at the instant of 
connecting the particular motor phase windings during start-up. Soft-starters may, 
accordingly, realize the following functions related to the start-up and stopping of 
an induction motor: 

- synchronization of the connection of particular phase winding to the network 

and thus enabling the reduction of the variable component of the torque (see 

3.2.2.5) 

- limitation of the start-up current in a selected range, 

- braking with the use of direct current (see section 3.2.2.6) and conduct con-

trolled stop of a drive. 

Not all of the above functions have to be realized by a single type of soft starter. 
In the most economic versions designed for smaller drives, a soft starter some-
times contains switches in the two supply lines, which only leads to limitation of 
the start-up currents and does not provide symmetry of the supply voltages. The 
following Figs. 3.34-3.38 present the examples of application of a soft-starter for 
an medium power induction motor with a delay angle α = 40º and the basic value 
of the moment of inertia J = Js. The figures present a comparison between start-
up versions without synchronization during the connection of phases to the net-
work and the one with synchronization involving the connection of line L1, L2 for 
phase angle δ1,2 = 0.48π [rad] and a later connection of the third supply line L3 for 
angle: δ3 = a + δ1,2 -0.1 [rad]. As a result, we obtain a very soft starting curve dur-
ing the initial stage of the start-up of the motor (Fig. 3.34) accompanied by a very 
favorable torque waveform (Fig. 3.36). The synchronized connection for such  
a large delay angle α = 40º also results in the reduction of the duration of the 
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start-up (Fig. 3.35, Fig. 3.36) since the value of the constant component of the 
motor torque increases during the initial stage of the start-up. The current wave-
form in the phase winding of the motor for such a supply is presented in Fig. 
3.37. The delay angle in the range of around 40° is virtually the sharpest one for 
which it is possible to conduct start-up of the motor during idle run within a sen-
sible time, due to the considerable reduction of the value of electromagnetic 
torque of the motor. The approximate illustration of the effect of delay angle α on 
characteristics of the motor is presented in Fig. 3.38. Soft-starters find application 
in drives with an easy start-up due to the considerable reduction of the torque fol-
lowing the fall of the value of the supply voltage. 

a)  

b)  

Fig. 3.34 Line current of the medium power induction motor during free acceleration with a soft 

starter (α = 40°): a) without synchronization b) with synchronization: δ=0.48π; δ3 = a + δ1,2 - 0.1 

  
a)     b) 

Fig. 3.35 Relative velocity curve for the medium power motor during the soft-start free  

acceleration, under conditions like in Fig. 3.34 
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a)     b) 

Fig. 3.36 Electromagnetic torque curve for the medium power motor during the soft-start 

free acceleration, under conditions like in Fig. 3.34 

 

Fig. 3.37 Steady-state line current for the medium power motor during the soft-start free 

acceleration, under conditions like in Fig. 3.34 

 

Fig. 3.38 Induction motor starting characteristics (relative values) for the medium power 

motor during the soft-start free acceleration in relation to delay angle α: a) starting current 

b) break torque c) starting torque d) idle run free-acceleration time 
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3.3.2   Slip Control 

It is possible to control slip in an induction motor when electric power is delivered 

through the rotor windings to the external devices. This comes as a consequence 

of the fact that for a constant electromagnetic torque Te and constant supply fre-

quency fs the power Pȥ delivered by the rotating field from the stator to the rotor 

has to remain constant. This is so since in the steady state 
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=                                                   (3.139) 

After some power is extracted from the rotor windings, the electric power  

Pel = PΨ s increases and the mechanical power Pm = PΨ (1-s) decreases, which is 

possible as a result of an increase of slip s, i.e. the reduction of the rotational speed 

of the rotor. As we can see, the control of the slip is only possible in slip-ring mo-

tors, due to access to the rotor windings from outside. The other possibility associ-

ated with power supply to the rotor is hardly ever practically encountered. It is 

possible for instance in a motor with power supply from two sides and this case 

will not be discussed in this book [25,28,62,67]. The process of power extraction 

from windings is conducted in two ways. An inclusion of an additional resistance 

Rd in the rotor circuit is the oldest method of performing soft-start and possibly 

speed control; however, it is accompanied by huge losses associated with the pro-

duced heat. Another method involves power output to external devices whose role 

is to transform the power to useful forms, for instance its return to the supply net-

work. Such devices, which used to be electromechanical, now predominantly are 

power electronic ones are called cascades. One of them is the Scherbius drive, and 

is a subject in the latter part of this section. 

3.3.2.1   Additional Resistance in the Rotor Circuit 

This method of control results in changes of static characteristics of the torque 
presented in Fig. 3.39. According to (3.123, 3.124, 3.127) the break-torque slip sb 
increases proportionally to the increase of the resistance of rotor windings Rr, 
while the break-torque Tb does not change. This comes as a consequence of the 
maintenance of the constant relation αr /s, which means that slip s rises propor-
tionally to the increase of αr. This in a way results in the change of the scale of the 
slip which extends the characteristics of the torque in the direction of higher val-
ues of the slip. This leads to an improvement of motor start-up since the start-up 
current is reduced for s = 1 and the static start-up torque increases. Unfortunately, 
the operation of the motor in the steady state with an additional resistance in order 
to reduce the rotational speed is not applied since it results in the reduction of  
the energetic efficiency of the drive. This is so because for an induction motor the 
following relation is maintained: 

s−< 1η                                                    (3.140) 

which means  that for instance the reduction of rotor speed Ωr to reach the half of 

the synchronic speed Ȧf with the use of resistance based control leads to the reduc-

tion of the efficiency to 5.0<η , which is unacceptable. 
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Fig. 3.39 Torque-slip characteristics of a wound induction motor with additional external 

resistance in the rotor for αrd = αr·(1…20); αrd includes additional resistance Rd connected 

to the slip-rings 

3.3.2.2   Scherbius Drive 

As a result of the application of Scherbius drive it is possible to control the speed 

of a slip-ring induction motor as a consequence of electric power extraction from 

rotor windings and its return after the desired transformation into the network. In 

its historical model the Scherbius drive contains an electromechanical frequency 

converter connected on one side to the rotor of an induction motor and the other 

one to the supply network into which the power returns. In a modern solution of 

the Scherbius drive (Fig. 3.40), the currents of the rotor windings are rectified in a 

3-phase rectifying bridge and subsequently supply a converter which returns the 

energy into the network via an adapting transformer. Between the two bridges 

there is an inductor that smoothens the flow of the current and whose role is to se-

cure the continuity of current flow across the rotor even for small mechanical load 

of the motor shaft. The control parameter is delay angle α of the thyristor bridge, 

which for the desired inverter mode is contained in the range: 

µα −<<° 18090  

where ȝ is the emergency angle which prevents the inverter back-feed and has to 

be bigger then the maximum calculated commutation angle. Such control corre-

sponds to the feeding of voltage Ud (α) into the rotor, which offers a possibility of 

controlling the slip of an idle run s0. The slip during idle run s0 corresponds to the 

theoretical idle run of an induction motor in which there is an equilibrium between 

the mean values of electromotive forces Er and voltage at the output of the inverter 

Ud (α). 

Since     
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For the case of an adequately selected transformer rate supplying the inverter the 

following is fulfilled: U′L = Ur0′ and, as a consequence: 
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βα coscos0 =−=s  

where β = 180-α is the inverter advancing angle. An increase of the control angle 

α of the thyristor, leads to an increase of the slip s0 of the idle run thus shifting the 

mechanical characteristics of the motor in the direction of lower rotational speeds. 

 

Fig. 3.40 Diagram of a semiconductor Scherbius drive 

 

Fig. 3.41 Diagram of the simplified Scherbius drive for mathematical modeling 

The control of the semiconductor cascaded drive has been modeled in a simpli-

fied form (Fig 3.41), where an inverter is reduced to lumped elements Ld, Rd, 

Ud(α). An induction motor is modeled so that the electric variables of the stator are 

transformed into orthogonal axes u,v while we have to do with natural variables 

ir1, ir2, ir3 in the rotor windings. This model is discussed in subsection 3.6.2 and is 

described by the system of equations in (3.88-3.89). The combination of the model 

of a slip-ring motor with a bridge on the side of the rotor and a circuit of direct 
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current for an inverter is described by a system of equations with se = 7 electrical 

degrees of freedom and a single sm = 1 degree of freedom for the rotational motion 

of the rotor. The generalized coordinates for the electric component of the model 

are the transformed currents of the stator windings isu, isv, phase currents of the  

rotor windings ir1, ir3 currents of the rectifier bridge i1, i3 and the current id in the 

inverter circuit. 

This model for electric circuits can take the form of a matrix equation: 
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where: 

mmr LxLpv
2

2

2

2
== θ�  )cos()sin( rr pcps θτθτ ==  

The term which expresses the electromagnetic torque takes the form: 

( ) ( )[ ]svrsusvrsursusvr

me

iiiiisiiiiic

pLT

3131 2)3(2)3(*

*
2

2

+−+++

=

ττ

           (3.143) 

On the basis of this model calculations were conducted with an aim of finding 

electric and mechanical transients of the drive and static characteristics as well, for 

various states of control of the inverter bridge. The calculations were carried out 

for a medium power slip-ring motor with the following parameters: 
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The static characteristics of this motor are presented in Fig. 3.39. The parameters 

determined on the basis of the motor’s ratings are: 
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and the parameters of the bridge are: 

][2.0][01.0][3.0
0

Ω===
dd

RHLHL  

The dynamic calculations were conducted for the drive’s moment of inertia  

J = 3Js = 105 [Nms
2
]. Fig 3.42 presents the start-up of the drive under a load  

Tl = 0.15 Tn and control angle α corresponding to Uʺd  = 2400 [V]. Hence, the slip 

of the idle run, calculated according to (3.141), is equal to: 
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where Uʺd  is the voltage of the inverter bridge expressed in stator windings volt-

age terms. In consequence the angular speed of the idle run is 
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a)  

b)  

c)  

d)  

e) f)  

Fig. 3.42 Starting of the 450 [kW] Scherbius drive with s0 ≈ 0.3, Tl = 0.15Tn, J = 3Js:  

a) stator current b) rotor current c) bridge current d) DC link current e) angular speed f) 

electromagnetic torque 
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Subsequently, Fig. 3.43 presents the waveforms of electric and mechanical 

variables of the drive in steady state for Uʺd  = 1200 [V], which corresponds to  

s0 = 0.148 and Ω0 = 133.8 [rad/s], respectively for the load of Tl = 0.5 Tn. 

a) b)  

c) d)  

e) f)  

Fig. 3.43 Steady state time-curves of the 450 [kW] Scherbius drive with s0 ≈ 0.15, Tl = 

0.5Tn, J = 3Js: a) stator current b) rotor current c) bridge current d) DC link current e) rela-

tive speed f) electromagnetic torque 

One can note that start-up of this drive does not normally occur in a cascaded 

system, as in the example in Fig. 3.42 but in system with an additional resistance 

Rd in the rotor circuit, which ensures a faster start-up with a larger motor torque. 

After this initial stage of start-up rotor is reconnected to the Scherbius drive sys-

tem. As indicated by the comparison of static characteristics of the torque  

(Fig. 3.39) with the start-up characteristics in the Scherbius drive system, in the 

latter case the motor develops much smaller torque due to the deformations of the 

rotor currents from the sine curve accompanied by a considerable decrease of 

voltages associated with the components of semiconductor bridges in the rotor. 

To give an illustration of a transient operation of the Scherbius drive a stepwise 

change in control of inverter voltage was introduced. The output voltage of the in-

verter changed  abruptly from Uʺd  = 1200 [V] to Uʺd  = 2400 [V], without a 

change of the load being Tl = 0.5 Tn. The drive has to slow down due to the 

change of the idle slip value from 15.0
0

≈s  to 25.0
0

≈s . The resulting transients 

are presented in Fig. 3.44. 
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a)  

b)  

c)  

d)  

 
e)     f) 

Fig. 3.44 Transient characteristics of the Scherbius drive during inverter control change 

from s0 ≈ 0.15 to s0 ≈ 0.25: a) stator phase current b) rotor phase current c) bridge current d) 

DC link current e) relative rotor speed f) relative electromagnetic torque 

Static mechanical characteristics of the semiconductor Scherbius drive were  

determined on the basis of a series of calculations of the steady state for various 

inverter bridge control angles. An illustration is found in Fig. 3.45. 
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Fig. 3.45 Torque-speed characteristics the Scherbius drive for U"d = 0, 600, 1200, 1800, 

2400, 3000, 4200, 4800 [V] or equivalent idle run slip values: s0 = 0.0, 0.074, 0.148, 0.296, 

0.370, 0.444, 0.518, 0.594 

3.3.3   Supply Frequency fs Control  

One of the fundamental methods applied for control of angular speed of an induc-

tion motor in accordance with (3.138) is based on changing the frequency fs of the 

voltage supply to the stator’s windings. Although it was difficult to execute in the 

past, this method has become widespread as a result of the application of various 

power electronic converters. It finds application in induction motor drives in the 

range of power ratings from a fraction of a [kW] to powerful machines exceeding 

10 MW [10]. Depending on the power output and design it is possible to apply 

various solutions of inverters and various frequencies of energy conversion in the 

range from several hundred to 30 [kHz] for small and medium power devices. In 

this chapter an emphasis will be on the basic solutions applied in induction drives 

with power inverters, including: 

- direct frequency converters – cycloconverters, 

- two-level voltage source inverters, 

- three-level voltage source inverters, 

- PWM current source inverters. 

This list of converter drives does not form the complete record of the applied 

drives – in particular with regard to large power drives but contains the most 

common ones. Moreover, resonance based current inverters and load commuted 

inverters are applied in addition to the listed ones. For each one of the systems it is 

possible to apply several methods of control realizing the various voltages wave-

forms and output currents. The issues thereof are very extensive and are widely 

discussed in the references [10,14,22,51,52,97]. 

3.3.3.1   Direct Frequency Converter–Cycloconverter 

The role of a cycloconverter is the conversion of 3-phase alternating voltage and 

current of the supply network with the frequency fL into single-phase voltage and 
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current of a load with the frequency of fs without conversion into direct current. In 

order to obtain a 3-phase system of voltages and currents supplying the motor on 

the output of a converter it is necessary to apply three separate conversion unit or 

two units in the economical versions of a converter [52]. Each of such units con-

sists of 2 antiparallel groups of controlled rectifiers most common of which in-

clude 6-pulse rectifiers (q = 6). The necessity of using two antiparallel rectifying 

groups results from the need of symmetric conducting currents in two opposite di-

rections. Thyristors (SCRs) are applied in the rectifying groups of the converter 

and hence in a typical frequency converter we have to do with current commuta-

tion. This comes as a consequence of the fact that the typical application of a con-

verter is the controlled large power induction or synchronous motor drive with a 

capacity of up to a dozen MW. A SCR–Silicon Controlled Rectifier is a power 

electronic component with the highest operating voltages and high conduction cur-

rents; hence, it is used in large power converters. One of the standard applications 

of a frequency converter in a 3-phase load (ac motor) is presented in Fig. 3.46. 

 

Fig. 3.46 A 3-phase cycloconverter with a 6-pulse rectifier bridges and separated outputs. 

The system with inductors limiting the circulating current 

This is a converter with bridge rectifying units and separate phases of the load, 

which, however, is supplied from a transformer with a single secondary winding. 

Between the rectifiers supplying the windings of the motor there are inductors  
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limiting the impact of the equalizing current in the circuit of the antiparallel recti-

fier units since in this solution both of them are controlled by the delay angle over 

the entire range of the operating conditions of the converter. This is a solution that 

does not require detection of the instant of the load current crossing zero and a 

subsequent separate control of the two rectifier units. Another solution of the 

cycloconverter system is presented in Fig. 3.47. In this case the 3-phase load is 

connected in a star, which leads to the supply of particular systems of the antipar-

allel converters from separate secondary windings of the transformer in order to 

avoid shorts. 

 

Fig. 3.47 A 3-phase cycloconverter with a 6-pulse rectifier bridges and the Y - connected 

output, which requires 3 separate secondary windings of the supply transformer. The  

system without circulating currents and consequently without inductors 

Inductors are not applied between antiparallel systems, which means that such 

units do not involve simultaneous control of both rectifying bridges. Each of them 

feeds the current into one direction of conducted current that is singular for it. This 

is associated with a need to apply more advanced control of the converter, which 

involves the detection of the instant of a current flow direction change, and a short 

break during the conduction of both bridges in this period to restore blocking  

ability. The basic distinction in the applied control system involves selection the 
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control method of a cycloconverter with equalizing currents or without them and it 

is possible to use one or the other in every type of converter. However, the limita-

tion of the equalizing current is associated with the need to use massive and ex-

pensive inductors designed for conducting currents with large values. This  

requirement leads to a tendency to apply a system without equalizing currents. 

The principle for the control of cycloconverters results from the adequate control 

of a 3-phase rectifier in such a way that ensures an output voltage whose basic 

harmonic is a sine waveform with the frequency of fs. Since the output voltage and 

current originate from co-operation of the two rectifying units (bridges) forming 

the input of a single phase of a load, it is necessary to control both of them, simul-

taneously or in succession, in order to ensure that they supply uniform output volt-

age within the range of the basic harmonic: 

20

10

cos)sin(

cos)sin(

αω

αω

dssm

dssm

UtU

UtU

=−

=
 

for the unit 1 and unit 2 respectively. Hence control angles α1, α2 are: 

))sin(arccos(

))sin(arccos(

2

1

tmm

tmm

fLa

fLa

ωα

ωα

−=

=
                               (3.144) 

or                                                      12 απα −=                                             (3.145) 
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 smU   - maximum value of the basic harmonic of the output 

voltage of a converter 

20

23
UU d

π
=  - mean voltage of the rectifying unit (q = 6) for delay 

angle α = 0 

 U2   - RMS voltage of the secondary side of a transformer. 

The delay angle waveform of the rectifier group 1 is presented in Fig. 3.48 in the 

function of the phase angle of the output voltage. 
The figures that follow present how the output voltage is formed by the units 1 

and 2 of antiparallel rectifiers. Rectifier unit 1 performs the descending section of 

the modulated voltage, while unit 2 is responsible for the ascending section of the 

voltage by application of 3-phase voltages of the supply network. Both voltages 

for these units of the converter generate an identical harmonic of the output volt-

age with the frequency of fs, while in the range of the higher harmonics the wave-
forms are different. Hence, the equalizing current occurs in the antiparallel system 

of the rectifying units for the case of controlling both groups over the entire period 

of the output voltage. 
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Fig. 3.48 α1 control angle of a cycloconverter anode group as a function of the output volt-

age phase angle, for amplitude modulation factor ma = 0, 0.1,…0.9, 1.0 

a)  

b)  

c)  

Fig. 3.49 Cycloconverter’s output voltages for ma = 0.55, mf = 0.1667, fs = 10 [Hz] and for  

fL = 60 [Hz]: a) unit 1 voltages b) unit 2 voltages c) output voltage for separate control of 

rectifying units – control without circulating current 
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a)  

b)  

c)  

Fig. 3.50 Cycloconverter’s output voltages for ma = 0.75, mf = 0.3333, fs = 20 [Hz] and for  

fL = 60 [Hz]: a) unit 1 voltages b) unit 2 voltages c) output voltage for separate control of 

rectifying units – control without circulating current 

From the illustration of the transformed voltage curves, whose basic frequency 

is fs it results that the content of higher harmonics in the output voltage is high and 

increases along with the decrease of the amplitude modulation factor ma. The 

analysis of the output frequency indicates that the dominant part is occupied by 

harmonics with the frequencies of 

…,2,1,0, =±= kkfqff sLkh                             (3.146) 

which for a low output frequency fs means that the major higher harmonics have a 

frequency around qfL. This means around 300 [Hz] for a converter with 6-pulse 

rectifying units and the frequency of the supply network of fL = 50 [Hz]. 

Practical considerations lead to the limitation of the upper boundary of the out-

put frequency to around 0.4 fL and the adaptation of voltage U2 of the transformer 

supplying the converter to this frequency. This comes as a consequence of the 

principle in (3.131), which defines the adaptation of the value of the supply volt-

age to the frequency, while preserving an adequate surplus of voltage. The aim of 

this is to apply a potentially high amplitude modulation factor ma and, thus, the 

limitation of the amplitudes of higher harmonics of the output voltage. 
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a)  

b)  

c)  

Fig. 3.51 Cycloconverter’s output voltages for ma = 0.45, mf = 0.1, fs = 5 [Hz] and for  

fL = 50 [Hz]: a) unit 1 voltages b) unit 2 voltages c) output voltage for separate control of 

rectifying units – control without circulating current 

3.3.3.2   Two-Level Voltage Source Inverter 

Voltage Source Inverter – VSI is a power electronic device capable of transform-

ing the DC voltage and direct current into voltage and alternating current with the 

desired characteristics. It is possible to design single- and multiphase inverters. 3-

phase inverters are commonly applied for the supply of induction motors. The ba-

sic diagram of a 2-level voltage inverter is presented in Fig. 3.52. 

This inverter is commonly referred to as VSI inverter since it forms the source 
with voltage characteristics and the voltage curve on the output (load) is not rela-

tive to the value of the load current in a wide range of operating conditions. This is 

made possible due to the powerful voltage source with small internal impedance 

additionally boosted by a capacitor with adequately large capacity Cs on the input 

of the inverter. A 3-phase inverter has 3 branches with two semiconductor 

switches and free-wheeling diodes presented in Fig. 3.52. The control switches 
apply IGBTs (Isolated Gate Bipolar Transistors) or GCTs (Gate Commuted Thy-

ristors) or MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) de-

pending on required working conditions, firstly supply voltage, load current and 

switching frequency. An output voltage filter with capacitors with the capacity of 
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Fig. 3.52 Diagram of a 2-level 3-phase voltage source inverter (VSI) 

Cf is connected to the load. The name for a two-level converter comes as a conse-

quence of the fact that voltages U1G, U2G, U3G can only assume two values, i.e. Ud 

or 0. Regardless of the specific manner of control of the inverter’s gates at any in-

stant only one of the semiconductor switches can conduct current in a specific 

branch. The commutation involves the process in which in a single branch one of 

the switches terminates the conduction while the other switch starts the conduction 
process only after an adequate break to prevent shorts. At any instant with the only 

exception of the commutation break in the inverter we have to do with conduction 

of three semiconductor switches, i.e. one in each branch. The desired waveform of 

the output voltage is gained as a result of an adequate control of inverter semicon-

ductor switches. For the supply of an induction motor drive it is desirable to have 

3-phase voltage with a sine waveform having controllable frequency and ampli-
tude. The basic method applied for the modeling of the output voltage consists in 

Pulse Width Modulation–(PWM) [3,6,39,41,44,59,85]. Under standard conditions 
 

it involves adequate switching of the potential U and potential 0 at the output by 
semiconductor switches from the inverter branches in a short intervals correspond-

ing to a small fraction of the period of the output voltage. Concurrently, there is a 

large number of modulation methods, some of which will be discussed in this sec-

tion. Every modulation method should result in output voltages close to 3-phase 

symmetrical sinusoidal system with small content of higher harmonics. The other 

postulate regards the application of possibly small number of switchings between 
the control semiconductor elements corresponding to a single cycle of the output 

voltage. Every commutation in an inverter branch is associated with resistive 

losses in the power electronic switches, hence the effort to make transition period 

short. Also the commutation is associated with losses in the dielectric in the wind-

ings’ insulation leading to wear of the insulation layer. Hence, the postulate of the 
limitation of the number of connections follows. The discussion here will focus on 

sinusoidal PWM (SPWM) modulation in which the triangular carrier signal is  
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modulated with the sinusoidal waveform as well as several varieties of the space 

vector modulation (SVM) [50,55,70,71,72,73,87]. The first of the listed methods 

has its origin in the analogue technique of control and was thus undertaken in this 

area, while the other one corresponds to the digital technique of control. 

3.3.3.2.1   Sinusoidal Pulse Width Modulation (SPWM). Sinusoidal pulse width 
modulation (SPWM–Sinusoidal PWM) involves appropriate employment of the 

crossing points between saw carrier signal and sinusoidal modulation wave. When 

modulation voltages um1, um2, um3 are higher then the voltages of the carrier wave. 

sawmi uu >                                                 (3.147) 

the potential of the output semiconductor switch i = 1,2,3 assumes the value of the 

supply Ud. In the opposite case this potential has the value of 0 since the ground 

semiconductor switch of the adequate branch of the inverter is in the ON state. 
The formation of the carrier wave is presented in Fig. 3.53. The output voltage re-

sults from the difference of the potential between the appropriate pairs of output 

points between inverter’s branches i = 1,2,3 like: 

GG UUU 2112 −=                                              (3.148) 

 

 

 

Fig. 3.53 Formation of an output voltage by the Sinusoidal PWM 
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Fig. 3.53 (continued) 

In the description of the inverter’s mode of operation we apply amplitude and 

frequency modulation factors 

saw

s
f

saw

mi
a

f

f
m

U

U
m ==                                (3.149) 

When the carrier frequency fsaw is an integer multiple of the output frequency fs we 

have to do with synchronic modulation. The case when ma<1 is called proper 
modulation and in that case the frequency of switching is 

fssawswch mfff /==                                       (3.150) 

while for ma>1 we have to do with overmodulation, the switching frequency is 

smaller than it results from (3.150), and the voltage waveform is distorted. The 

highest attainable RMS value of the output voltage basic harmonic with the fre-

quency of fs is equal to [10,52] 

dL UU 612.0=      for     1=am                        (3.151) 

which indicates a relatively small application of the supply voltage. Concurrently, 

higher harmonic orders in this curve for the synchronic modulation [10] amount to  
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                (3.152) 

and do not contain low order harmonics being the multiple of fs. In order to in-

crease the inverter’s scope of application of the supply voltage a method with the 
injection of the third harmonic of the modulating voltage has been developed, 

[34,39,61,89], whose illustration is found in Fig. 3.54. As a result, the saw carrier 

wave is modulated with the voltage of 

)3sin()sin( 31 tutuu smsmm ωω +=                            (3.153) 

in a manner that ensures the wave um of the modulating voltage does not exceed 
the voltage of the carrier wave Usaw. This condition is fulfilled when 

sawmmm Uuuu ≤≤ 113 4.0                                 (3.154) 

The introduction of the third harmonic into the modulating voltage results in the 

distortion of the voltage waveforms in relation to the reference potential U1G, U2G, 

U3G. However, it does not result in the distortion of the output voltages in the load 
U12, U23, U31 since the compensation of the effect of the third harmonic according 

to (3.148). 

 

 

 

 

Fig. 3.54 Forming an output voltage by the  SPWM method with a 3rd harmonic injection 
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Fig. 3.54 (continued) 

In the result we have to do with an increase of the output voltage to 

dL UU 707.0=                                        (3.155) 

which means that it is over 15% more comparing with (3.151). 

3.3.3.2.2   Space Vector Modulation (SVM). Two-level voltage inverter has three 
branches, each of which is in one of conduction states. The conduction states of an 

inverter can be determined as: 

3,2,10,1 =∈ kSk                                      (3.156) 

For example the state S1 = 1 means that in the first branch the upper semiconduc-

tor switch is in the conduction state and the output potential is equal to U1G = Ud. 

Concurrently, S2 = 0 means that the ground semiconductor switch in the second 

branch is ‘ON’ and then U2G = 0. In this method the inverter’s output short time 

(Tp) averaged voltage vector Vs could be defined and effectively constructed by 

use of a concept of the space vector (complexor) Vk, which is determined by the 
basic harmonic U1ph of the required output voltage and the states of the particular 

branches S1, S2, S3: 

ph
jj

k UeSeSS 1
120

3
120

21 )( −++=V                        (3.157) 

Since there are 3 branches, each of which can be in either of two states, the  
instantaneous outputs Vk from the inverter can assume any of 8 states illustrated 

graphically in Fig. 3.55, in accordance with (3.157). 
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Fig. 3.55 Space vector plane with the switching states <S1,S2,S3> defined for each vector 

Along with the given vector Vk, Fig. 3.55 presents the states of the inverter’s 

branches for which either one occurs. There are also two zero states of the inverter 

outputs V0, V8 for which semiconductor switches in all branches connect the load 

either to the ground (G) or positive (P) supply bar. In result the output voltages are 

equal to zero. Directly from the states of the branches it is possible to determine 

output voltages  
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   (3.158)

 

In a similar manner, we can establish phase voltages: 
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    (3.159)

 

The relation (3.159) illustrates voltage waveform presented in Fig. 3.56. The first 

harmonic has the amplitude of 

dph UU
π

2
1 =                                         (3.160) 

which corresponds to the length of vector Vk of the voltage star presented in Fig. 

3.55. The amplitude of this value is achievable only for phase angles θ = kπ/3. The 

instantaneous position of vector Vs is determined by a phase angle θ. The method 

of modulation using space vectors SVM will be presented on the example of the 
synthesis of vector Vs situated in the first sector of the voltage star of the inverter. 

In the other sectors the situation is similar, as a value of phase angle θ could be  

reduced to the range of the first sector. This vector is synthesized by adequately 

selected switching times of the states that determine vectors V1 and V2 as well as 

zero vectors V0 and V8. This is illustrated in Fig 3.57. 
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Fig. 3.56 Phase voltage of the two-level inverter, illustrating (3.159) 

 

Fig. 3.57 A method of synthesis of the Vs vector in the first segment of the space vector 

plane 

The construction of short time averaged vector Vs involves the fact that within 

sufficiently short pulsation time Tp, which corresponds to a fraction of the total 

cycle, voltages V1, V2 and V0 or V8 are switched on for the selected duration tx, ty, 

tn. These intervals are obviously relative to the instant position of vector Vs deter-
mined by angle θ. As a matter of simplification it is assumed that within a single 

pulsation time the angle θ is invariable. The determination of time intervals tx, ty, tn 

is performed using the relation: 
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 tn - is a sum of the intervals of the occurrence of zero vectors V0, V8. 

After solving (3.161), we obtain: 
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The maximum value of voltage Us needs to be selected in a way that tn ≥ 0. In ad-

dition, the highest admissible value of amplitude modulation factor for a linear 

range of inverter control needs to result from this condition. The maximum value 

of time intervals tx = ty occurs for θ = π/6 (see 3.166) and then: 

1
3

≤=
+ π

d

s

p

yx

U

U

T

tt
                                      (3.163) 

Defining for this case the amplitude modulation factor as 

3

π

d

s
a

U

U
m =                                             (3.164) 

from (3.163) we obtain the following condition: 
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3

max ≤<== aasads mmUmUU
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                 (3.165) 

The time intervals (3.163) reflecting sinusoidal inverter control are equal to: 
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Output frequency results from control of the angle θ = Ȧs t = 2π fs t, while the am-

plitude of the sinusoidal waveform results from an adequate selection of factor ma. 

The maximum amplitude of the sinusoidal voltage for ma = 1 is Us max according to 

(3.165). Alternatively it could be calculated as: 

dddphs UUUUU 551.0
3

2

32

2

3
1max ≈===

ππ
               (3.167) 

- and it is the value of the amplitude of the phase voltage, while 

ddsL UUUU 955.0
3

3 max1 ≈==
π

 

- is amplitude value of line-to-line voltage, and finally 

d
L

L U
U

U 675.0
2

1 ≈=   

- is the RMS value of the output voltage, which is over 10% higher than (3.151) 

for the case of control using sinusoidal pulse width modulation (SPWM). 

From the above relations it results that for a motor with the rated voltage Usn, 

the voltage Ud delivered to the inverter should be, respectively: 
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(3.168)

 
- that is Ud ≈ 1.5 Un. 
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3.3.3.2.3   Switching Sequence in the Pulsation Cycle. The basic requirements to 

be met by an inverter’s control system are the following: 

- wide range of linear operation, 

- small number of switchings per cycle of output voltage aimed at reducing 

energy losses during commutation, 

- limitation of the amplitudes of the harmonics of voltage and current of the 

load associated with switching frequency, 

- limitation the incidence and amplitude of lower harmonics of the output 

voltage associated with load frequency fs. 

6-pulse switching sequence 

A standard solution involves 6-pulse switching sequence for a single pulsation  

cycle. The duration tn of the zero vectors V0 or V8 in this cycle is divided into 

three parts: ¼ at the beginning and the end of a cycle and ½ in the mid section of 

the cycle. The characteristic property in this case is that the change of inverter 

state occurring between the individual pulses requires only a single switching. An 

example of the waveform for a single pulsation cycle in 6-pulse sequence is pre-

sented in Fig. 3.58. As one can note, for this kind switching sequence the begin-

ning and termination of the cycle come with the V0 <000> state. In addition, it in-

volves only a single switching for each successive pulse and there is symmetry in 

relation to the mid period of pulsation. For the entire period of the output voltage 

of the inverter the 6-pulse switching sequence is presented in Table 3.2. 

 

Fig. 3.58 Exemplary 6-pulse sequence in a pulse cycle in the I-st sector of the inverter’s 

operation 
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Table 3.2 Six-pulse switching sequence with minimum number of commutations 

Switched vector with the duration of a pulse  

Sector 4/nt    2/nt    4/nt  

 

I 
0V  1V  

2/xt  

2V  

2/yt  

8V  2V  

2/yt  

1V  

2/xt  

0V  

 

II 
0V  3V  

2/yt  

2V  

2/xt  

8V  2V  

2/xt  

3V  

2/yt  

0V  

 

III 
0V  3V  

2/xt  

4V  

2/yt  

8V  4V  

2/yt  

3V  

2/xt  

0V  

 

IV 
0V  5V  

2/yt  

4V  

2/xt  

8V  4V  

2/xt  

5V  

2/yt  

0V  

 

V 
0V  5V  

2/xt  

6V  

2/yt  

8V  6V  

2/yt  

5V  

2/xt  

0V  

 

VI 
0V  1V  

2/yt  

6V  

2/xt  

8V  6V  

2/xt  

1V  

2/yt  

0V  

 
The transfer from vector V0 to any odd vector V2k-1 requires just a single 

switching, just as in the case of the transfer from vector V8 to an even vector V2k. 

Hence, the switching sequences for the method presented in Table 3.2 require only 

one switching between the pulses. The transfers between the sectors occur without 

the necessity of switching. For the examined control of the inverter the frequency 

of switching is 

ssw fNf ⋅⋅= 6                                        (3.169) 

where: N - is number of switching cycles corresponding to a period of output volt-

age. 

The presented method has only one disadvantage, as it does not fulfill one of 

the postulates presented earlier. Within a complete period Ts the output voltage 

does not form an antisymmetric function, i.e. one for which f(Ȧt+Ts/2) = -f(Ȧt) 

since in the opposite sectors e.g. I-IV, III-VI etc. the segments are not identical but 

have opposite signs. One can note this by referring to Table 3.2 where for active 

vectors the relation Vi → Vi+3, which secures antisymmetry, is not fulfilled for 

sectors I → I+3. This is graphically presented in Fig. 3.59 for sector IV. 
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Fig. 3.59 Six-pulse sequence in a pulse cycle of the IV sector 

From the comparison between the sequence of the pulses in sector I (Fig. 3.58) 

and sector IV (Fig. 3.59) and the shape of the output voltage it is clear that the 

signals corresponding to the voltages have equal values with opposite signs; how-

ever, their phase shifts are different. This results in originating even order harmon-

ics in the output voltage with frequencies being the multiple of fs. The amplitudes 

of these harmonics are not considerable and are acceptable in small and medium 

power drives; however, in high power drives they cannot be accepted due to ex-

ceeding the requirements of the standard values of current deformations. For this 

reason, there is a number of 6-pulse control cycles ensuring the absence of even 

numbered harmonics in the voltages generated by the inverter. One of such cycles 

will be presented in the section that follows. 

6-pulse switching sequence eliminating even harmonics 

In this kind of control an increased number of switchings in a sequence comes as a 

result of the elimination of the even harmonics in the output voltage. This elimina-

tion most easily occurs as a result of the adjustment of pulses in the opposite  

sectors in a way that ensures that they are realized by opposite vectors in the volt-

age star. This is illustrated in Table 3.3.  
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Table 3.3 Six-pulse switching sequence with elimination of even harmonics 

Switched vector with the duration of a pulse  

Sector 4/nt    2/nt    4/nt  

 

I 
0V  1V  

2/xt  

2V  

2/yt  

8V  2V  

2/yt  

1V  

2/xt  

0V  

 

II 
0V  3V  

2/yt  

2V  

2/xt  

8V  2V  

2/xt  

3V  

2/yt  

0V  

 

III 
0V  3V  

2/xt  

4V  

2/yt  

8V  4V  

2/yt  

3V  

2/xt  

0V  

 

IV 
8V  4V  

2/yt  

5V  

2/xt  

0V  5V  

2/xt  

4V  

2/yt  

8V  

 

V 
8V  6V  

2/xt  

5V  

2/yt  

0V  5V  

2/yt  

6V  

2/xt  

8V  

 

VI 
8V  6V  

2/yt  

1V  

2/xt  

0V  1V  

2/xt  

6V  

2/yt  

8V  

 
The operating principle in this method is presented in Fig. 3.60 on the basis of 

the example of the sequence of pulses in sectors II and V. The presented courses 

ensure that the resulting voltage waveform is an odd function; hence, it does not 

contain even harmonics. An increase of the number of swithings occurs during the 

transfer from sector III to IV and from sector VI to sector I since there is a change 

of the zero vector from V0 to V8 and the reverse. This leads to the increase of the 

switching frequency by 

ssw ff ⋅=∆ 6                                          (3.170) 

4-pulse switching sequence (DSVM) 

This method of inverter control can lead to a further limitation of the number of 

switchings. During a single cycle of switching one of the nodes of the inverter 

does not change the state and the switching occurs in the two remaining ones. For 

this reason this mode of control is called discontinuous SVM (DSVM). We can 

distinguish two types of switching cycles: type A – when a branch that is not in-

volved in switching remains at the level of potential G and type B when the 

branch that does not switch is connected to a high potential P. This is illustrated in  
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Fig. 3.60 Six pulse switching sequence with elimination of even order harmonics, demon-

strated for the II and V sector 

Fig. 3.61. Both types of switching sequences equally form the basic harmonic of 

the output voltage while its shape is different in the range of higher harmonics 

since in each type of sequence a different sector is divided into two time sections. 

One can also note that the negation of the switching sequence type A in sector I is 

transformed into the sequence of switchings (DSVM) type B in sector IV, etc.  

Table 3.4 contains a summary of the switching sequences for the full period of the 

output voltage. 
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Table 3.4 Four-pulse switching sequence–type A for a minimum switching frequency 

 

Switched vector with a duration of a pulse 

 

 

Sector 

 

2/nt  

    

2/nt  

 

I 
0V  1V  

2/xt  

2V  

yt  

1V  

2/xt  

0V  

 

II 
0V  3V  

2/yt  

2V  

xt  

3V  

2/yt  

0V  

 

III 
0V  3V  

2/xt  

4V  

yt  

3V  

2/xt  

0V  

 

IV 
0V  5V  

2/yt  

4V  

xt  

5V  

2/yt  

0V  

 

V 
0V  5V  

2/xt  

6V  

yt  

5V  

2/xt  

0V  

 

VI 
0V  1V  

2/yt  

6V  

xt  

1V  

2/yt  

0V  

 
The advantage of the switching sequence presented in Table 3.4 is the limita-

tion of the switching frequency, which is 

ssw fNf ⋅⋅= 4                                           (3.171) 

However, the disadvantage regards the shape of the voltage, which does not form 

an antisymmetric function and results in the origin of even harmonics type 2k fs. 

The lack of the antisymmetry of the voltage curve is clearly visible in Table 3.4 as 

s result of the comparison between the voltages in the opposite sectors, e.g. I-IV, 

II-V, or III-VI. This drawback can be eliminated by the application of the type B 

sequences e.g. in sectors IV to VI. This is summarized in Table 3.5. 
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Fig. 3.61 Four-pulse switching sequence of the A - and B - type, presented for the I-st  

sector 

The application of the switching sequence presented in Table 3.5 results in an 

increase of the number of inverter switchings per period of the output voltage. Fol-

lowing the transfers from sectors III → IV and VI → I we have to do with switch-

ing regarding zero vectors, i.e. V0 → V8 and V8 → V0, respectively. This results in 

an increase of frequency expressed by (3.170). Fig. 3.62 illustrates the application 

of 4-pulse switching sequence with elimination of even harmonics of the voltage, 

for voltages generated in sectors III and VI of the phase plane. 
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Table 3.5 Four-pulse switching sequence – type A and B combined, for eliminating even 

harmonics of 2k fs order in an output voltage 

 

Section

 

Switched vector with a duration of a pulse 

 

I 
0V  

2/nt  

1V   

2/xt  

2V  

yt  

1V  

2/xt  

0V  

2/nt  

 

II 
0V  

2/nt  

3V  

2/yt  

2V  

xt  

3V  

2/yt  

0V  

2/nt  

 

III 
0V  

2/nt  

3V  

2/xt  

4V  

yt  

3V  

2/xt  

0V  

2/nt  

 

IV 
8V  

2/nt  

4V  

2/xt  

5V  

yt  

4V  

2/xt  

8V  

2/nt  

 

V 
8V  

2/nt  

6V  

2/yt  

5V  

xt  

6V  

2/yt  

8V  

2/nt  

 

VI 
8V  

2/nt  

6V  

2/xt  

1V  

yt  

6V  

2/xt  

8V  

2/nt  

 

 

Fig. 3.62 Four pulse switching sequence with elimination of even numbered harmonics, 

demonstrated for the opposite sectors III and VI 
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Fig. 3.62 (continued) 

3.3.3.2.4   Exemplary Curves of Inverter Currents. The output waveforms of a  

3-phase load current supplied from an inverter depend the control method, i.e. the 

number N of pulse sequences per period of the curve, amplitude modulation factor 

ma and the load. The examples of the waveforms under a load type R, L and the 

output frequency of the inverter fs = 50 [Hz] are presented in the figures that fol-

low in this way illustrating the effect of the number N of the sequences of pulses 

and modulation factor ma. 

a)  

b)  

Fig. 3.63 Performance of a two-level VSI inverter with DSVM and even harmonics elimi-

nation control for N = 18, fs = 50 [Hz], ma = 0.85 : a) DC source current b) 3-phase load 

currents 
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a)  

b)  

Fig. 3.64 Like in Fig. 3.63, but for N = 48 

a)  

b)  

Fig. 3.65 Like in Fig. 3.63, but for N = 120 

a)  

Fig. 3.66 Performance of two-level VSI inverter for the over-modulation control area. 

Comparison of 3-phase load currents for: a) ma = 1.05 b) ma = 1.25 c) ma = 2.0 
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b)  

c)  

Fig. 3.66 (continued) 

3.3.3.3   Induction Motor Supplied from 2-Level Voltage Inverter 

The mathematical model for the simulations of the operation of a VSI inverter – 

induction motor drive is based on the diagram presented in Fig. 3.52 and on the 

system of equations with untransformed variables of the electric circuits of the sta-

tor (3.76-3.77). However, some changes have been implemented. In the place of 

the filter Cf connected to the load there are capacitors C placed parallel to every 

branch of the inverter. In addition, inductance LDC and resistance RDC are intro-

duced to play the role of residual parameters of the DC voltage source. Moreover, 

residual inductance Ld between the branches of the inverter bridge has been  

introduced. The controlled switches present in the inverter branches have been 

simulated with resistance with a controlled value: a fraction of an ohm in the con-

duction state and several kΩ in the blocking state, so that it approximately corre-

sponds to the actual operating conditions of an inverter. This mathematical model 

of a drive system is described using 16 state variables, 15 of which are electrical 

ones. Together, they form a vector of the state variables: 

[ ]TervruDC QQiiiiiiQQi 1611765432 ,,,,,,,,,,,, …ω=Y                (3.172) 

where: 

iDC - DC source current  

32 QQ −  - charge of the main capacitor Cg 

i4, i5, i6, i7 - mesh current in the inverter’s branches selected so, that the currents 

of the motor’s stator are equal to: 

763451 iiiiii ss −=−=                                (3.173) 

iru, irv - transformed axial currents of the rotor 
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re pΩ=ω  - electric angular speed of the rotor  

Q11,…Q16 - capacitor C charges on the six branches with inverter switches. 

The model for electric variables may be presented in the matrix form: 

( ) YZLYU )( e
dt

d
ω+=                                         (3.174) 

Since inductance L matrix is constant, calculations are conducted using the algo-

rithm 

( )YZULY )(1
eω−= −�                                           (3.175) 

where: 

U - vector of supply voltages 

Z(Ȧe) - impedance matrix of the system relative to the speed of rotor and resis-

tances, whose values depend on control of semiconductor switches 

L -constant parameters’ inductance matrix of the system. 

These equations are further supplemented with an equation for the mechanical 

motion 

JDTT elee /)( ωω −−=�                                   (3.176) 

where: 

⎟⎟⎠
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⎛

−−−= rvsrussme iiiiipLT 131
2

3
)2

2

2
(                          (3.177) 

- denotes electromagnetic torque of the motor 

Tl - is a load torque 

D - is a coefficient of viscous damping  

J - is a moment of inertia of the rotating parts of the drive. 

This mathematical model was applied for simulation calculations of the drive in 

operation. The testing involved several methods of inverter control presented ear-

lier in the book. The exemplary waveforms presented in figures regard control 

with 4-pulse switching sequence (DVSM) and elimination of harmonics with even 

numbers (Fig. 3.62). The term N in the description of the figures denotes the num-

ber of the sequences of pulses per period of the output voltage of an inverter. 

During the simulation calculations the residual inductances LDC, Ld assume the 

values in the range of 0.5% - 1% of the inductance of the block-rotor state  

Lz = ıLs, (3.121), while blocking resistance Rb from 4 [kΩ] to 20 [kΩ], depending 

on the rated voltage of the motor. The voltage UDC supplying the inverter corre-

sponds to the voltages determined from (3.168). Below is a presentation of some 

results of simulations for small and medium power motors. 
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a)  

b)  
 

c)  
 

 
d)     e) 

Fig. 3.67 Starting of a small power (S1) motor fed by VSI; fs= 50 [Hz], UDC = 600 [V], Tl 

= 0.5 Tn , J = 2Js, N = 120: a) DC source current b) stator currents c) electromagnetic 

torque d) angular speed e) torque-speed trajectory 
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a)  

 
b) 

c)  

 
d)     e) 

Fig. 3.68 Direct starting of a medium power (S2H) motor fed by VSI; fs= 50 [Hz], UDC = 

9000 [V], Tl = 0.2, J = 1.5 Js, N = 120: a) DC source current b) stator currents c) electro-

magnetic torque d) angular speed Ȧe e) torque-speed trajectory 
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a)  
 

b)  

c)  

 
d)      e) 

Fig. 3.69 Medium power (S2H) motor – transition to generating mode; fs= 50 [Hz], UDC = 

9000 [V], Tl =0.5Tn → - 0.75Tn, J = 1.5 Js, N = 120: a) DC source current b) stator currents 

c) angular speed d) electromagnetic torque e) torque-speed trajectory 



218 3  Induction Machine in Electric Drives

 

a)  

b)  

c)  

 
d)      e) 

Fig. 3.70 VSI controlled U/f starting of the medium power (S2H) motor. Tl = Tn, fs=2…50 

[Hz], ku = 0.1…0.95, J = 1.5 Js, N = 120: a) DC source current b) stator currents c) elec-

tromagnetic torque d) angular speed e) torque-speed trajectory f) steady-state DC current g) 

steady state stator currents 
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f)  

g)  

Fig. 3.70 (continued) 
 

a)  

b)  

Fig. 3.71 VSI controlled U/f starting of the medium power (S2H) motor. Tl = 0.5 Tn, fs= 

25…50 [Hz], ku = 0.15…0.95, J = 1.5 Js, N = 60: a) DC source current b) stator currents c) 

electromagnetic torque d) angular speed e) torque-speed trajectory f) steady-state DC cur-

rent g) steady state stator current 
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c)  

 
d)     e) 

f)  

g)  

Fig. 3.71 (continued) 

3.3.3.4   Three-Level Diode Neutral Point Clamped VSI Inverter 

Multi-level voltage inverters [81,86,93] are applied for the supply of high power 

drives ranging around several MW. Basically, there are two types of multi-level 

inverters. One of them is a H-bridge cascaded inverter and the other one - a diode 

clamped inverter [10,33,56,64]. The advantage of the application of the latter type 

is associated with the possibility of high output voltage without serial connection 

of the semiconductor switches, lower values of the voltage dV/dt derivative for 

switchings as well as lower total harmonic distortion (THD) level, which deter-

mines the degree of waveform distortion resulting from higher order harmonics. It 

is possible to apply inverters with diode clamped neutral point in the form of three 
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as well as multi-level ones [8,88], however, only the systems based on three-level 

design have found common applications in high-power drives. The name for  

the three-level inverter comes as a consequence of the fact that the output clamp 1, 

2 or 3 can be connected to the positive potential of the source P, to the neutral 

point G or to the negative potential of the supply N. The neutral potential G is 

gained as a result of capacitor-based division of the supply voltage UDC and  

appropriate control of switches in a way that balances the fluctuations of the  

potential at this point. 

3.3.3.4.1   Structure and Operating Principle of a Three-Level Inverter. The dia-

gram of a three-level inverter with diode clamped neutral points G is presented in 

Fig. 3.72. 

 

Fig. 3.72 Three-level diode clamped VSI 

The particular branches contain four IGBT or GTO (Gate Torn Off) switches 

per each branch connected in a series. The neutral point G is formed by the upper 

and lower pairs of switches in branches being connected via diodes to the mid part 

of a capacity voltage divider. The state of a particular branch of an inverter is de-

termined as a result of the algebraic description of operation using a respective 

variable S1, S2, S3 corresponding to the branch number. Under normal operating 

conditions of an inverter there are possible three states such that variables S1, S2, 

S3 may assume the values in the set <1,0,-1>. A branch assumes state ‘1’when the 

two upper switches in a branch are in the ON state – in that case the clamp of the 

load is connected to point P with the positive potential of the source. The ‘0’ state 

of the branch means that the two middle switches in a specific branch are in the 

ON state – in this case the output clamp is connected to the neutral G using a up-

per or lower clamping diode depending on the direction of the current flow. A 

branch variable assumes the value of ‘-1’ for the case when both lower switches in 

a branch are in ON state and, as a consequence, the load clamp is connected to the 

negative rail of the source with potential N. This is illustrated in Table 3.6. 
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Table 3.6 Possible states of the branch in three-level VSI inverter with a diode clamped 

neutral point 

 1=iS  0=iS  1−=iS  

xT  on off off 

xT ′  on on off 

yT ′  off on on 

yT  off off on 

 
where: 

x - denotes an upper side switch 

y - denotes a lower side switch 

i = 1,2,3 - is the number of a branch 

One can note that in a given branch the switches xT , yT ′  and xT ′ , yT  are in the ON 

state in a complementary manner. Since the switches in an inverter are selected for 

lower blocking voltage then the total voltage of UDC, the following rules are ob-

served: 

- the balance between the voltages in pairs xT , xT ′  and yT , yT ′  occurs as a result 

of parallel connection of resistor voltage divider or on the basis of a specific selec-

tion of switches in each branch of an inverter. This selection involves the require-

ment that leakage current of the switches xT  and yT  has to be lower then the 

leakage current of the switches xT ′  and yT ′  

- the direct switching between the states 1 and –1 is prohibited. Between these 

states the inverter must pass through zero state. 

Since the inverter has 3 branches and each of them can assume any of three 

states, the total number of inverter states is equal to 

2733 ==LS                                          (3.178) 

Each of these states can be described using a vector 321 ,, SSS . This involves the 

following states: 

a) zero states described with vectors: 

1,1,1

1,1,1

0,0,0

0

0

0

−−−=

=

=

N

P

V

V

V

                                         (3.179) 
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b) 6 states for the major star pattern voltages: 

1,1,11,1,1

1,1,11,1,1

1,1,11,1,1

65

43

21

−=−−=

−=−−=

−=−−=

LL

LL

LL

VV

VV

VV

                           (3.180) 

c) 6 states for the middle star pattern voltages: 

0,1,11,1,0

1,0,10,1,1

1,1,01,0,1

65

43

21

−=−=

−=−=

−=−=

MM

MM

MM

VV

VV

VV

                                 (3.181) 

d) 6 states for the minor star pattern voltages type P: 

1,0,11,0,0

1,1,00,1,0

0,1,10,0,1

65

43

21

==

==

==

SPSP

SPSP

SPSP

VV

VV

VV

                                   (3.182) 

e) 6 states for the minor star pattern voltages type N: 

0,1,00,1,1

0,0,11,0,1

1,0,01,1,0

65

43

21

−=−−=

−=−−=

−=−−=

SNSN

SNSN

SNSN

VV

VV

VV

                             (3.183) 

The graphical representation of the vector forming these star patterns is based on 

the relation (3.157), where U1ph is the phase voltage of the minor star pattern volt-

ages. This is illustrated in Fig. 3.73. 

The angular (and time) diagrams for the instantaneous output voltages are ob-

tained from the following relation: 
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(3.184) 

Similarly, for phase voltages of the 3-phase load: 
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Fig. 3.73 Space vector plane for a three level VSI inverter 

The application of the relations (3.184) and (3.185) with regard to vectors 

(3.180), which determine major pattern voltages leads to the voltage waveforms 

(Fig. 3.74) for such a cycle of operation. The switching sequence is performed 

every Ȧst = π/3. A similar course of action undertaken for middle pattern voltages 

(3.181) gives voltage curves presented in Fig. 3.75. For the two sets of vectors 

(3.182), (3.183) that determine states of minor pattern voltages the voltage curves 

are identical in terms of the shape and form to the waveforms in major pattern 

voltages (Fig. 3.74); however, the amplitudes of these voltages are reduced by a 

half. The summary of the characteristics presenting three configuration models for 

a 3-phase inverter is presented in Table 3.7. 

 

Fig. 3.74 Voltage curves for the major pattern switching of a three-level VSI: line-to-line 

voltages (3-step) and phase voltages (4-step) 
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Fig. 3.75 Voltage curves for the middle pattern switching of a three-level VSI: line–to–line 

voltages (4-step) and phase voltages (3-step) 

As it results from data in Table 3.7, the relations between the voltages for the 

particular switching models are: 

2

1
),1(max,/

2

3
),1(/

=

=

RMShUU

RMShUU

majorminor

majormiddle

                              (3.186) 

3.3.3.4.2    SVM Control of 3-Level VSI Voltage Inverter. As presented in Fig. 

3.73, for the control of a three-level inverter with space vector modulation (SVM) 

we have 24 active vectors and 3 zero ones when compared to the total of 6 active 

and 2 zero vectors in a two-level inverter. The general rules regarding the control 

are similar to the previously considered case: 

- there is a single pair of switching at a time (see Table 3.6), direct transition 

from state ‘1’ to ‘-1’ and reverse is forbidden 

- transfer of the vector from a switching sequence to another one, both within a 

single control region and during the transfer between the neighboring regions, 

should not require more than a single pair of switching, 

- switching within a control sequence is configured in a way that limits the fluc-

tuations of the potential of the neutral point G to a maximum degree. This issue is 

not encountered in two-level inverters and occurs in three-level ones due to the 

capacitor based setting of the neutral level of the potential of point G. 

 



226 3  Induction Machine in Electric Drives

 

Table 3.7 Output voltages for two- and three-level inverters 

Output voltage   dL UU /  

1h  ∗  RMS - step 

 

Inverter

type 
shape maximum

*Ud 1h  ( )
maxsV  RMS  ( )

maxsV  

10.1
32

≈
π

 816.0
3

2
≈  

 

3-level 

major 

star 

 

 

3 step 

 

 

1 

955.0
3

≈
π

 675.0
2

3
≈

π
 

955.0
3

≈
π

 707.0
2

1
≈  

 

3-level 

medium 

star 

 

 

4 step 

 

 

1 

955.0
3

≈
π

 675.0
2

3
≈

π
 

551.0
3

≈
π

 408.0
6

1
≈  

 

3-level 

minor 

star 

 

 

3 step 

 

 

1/2 

478.0
2

3
≈

π
 338.0

22

3
≈

π
 

2 level 

 

3 step 1 like for the major star 

Output voltage   dph UU /  

1h  ∗  RMS - step 

 

Inverter

type 
shape maximum

*Ud 1h  ( )
maxsV  RMS  ( )

maxsV  

637.0
2

≈
π

 471.0
3

2
≈  

 

3-level 

major 

star 

 

 

4 step 

 

 

2/3 

551.0
3

≈
π

 390.0
1

2

3
≈

π
 

551.0
3

≈
π

 408.0
6

1
≈  

 

3-level 

medium 

star 

 

 

3 step 

 

 

1/2 

551.0
3

≈
π

 390.0
1

2

3
≈

π
 

318.0
1

≈
π

 236.0
23

1
≈  

 

3-level 

minor 

star 

 

 

4 step 

 

 

1/3 

276.0
2

3
≈

π
 195.0

2

1

2

3
≈

π
 

2 level 

 

4 step 2/3 like for the major star 
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The situation of the synthesis of the short time averaged (Tp) output voltage Vs 

using vectors present in the voltage stars for the sector I of a complex plane is pre-

sented in Fig. 3.76.  

For the case of the 3-level inverter the control sector in the complex plane is di-

vided into 4 smaller triangles called regions and defined as a,b,c,d. In each of the 

regions there are 3 constitutive vectors and the total number of them in each sector 

is equal to 5. In the sector I they are: V1S, V1L, V1M, V2S, V2L and in addition the 

zero vectors. The indices S, L, M denote the small, large and medium voltage star, 

respectively. The vectors in the small star may occur either of two versions N or P; 

for instance: V2S(P) = <1,1,0> ; V2S(N) = <0,0,-1>. 

Calculation of time intervals for SVM inverter control  

Time intervals tx, ty, tz of the duration of particular vectors in the pulse sequence 

lasting Tp are relative to angle θ of the vector Vs position and its magnitude. In or-

der to maintain the postulate of the control by means of a single switching pair it is 

possible to apply only the vectors pointing the apexes of the triangle forming a re-

gion. The switchings between the 1,-1 states can occur only in two stages by 

switching through the zero state. The method used for the calculation of time in-

tervals tx, ty, tz will be presented for vector Vs situated in region d as in Fig. 3.76. 

The time interval tx regards the vector with the minimum value of angle θ, ty with 

the medium value, and tz for the highest value of angle θ. 

 

Fig. 3.76 Division of a sector I into 4 regions a, b, c, d as an illustration for constitution of 

an output voltage vector Vs 

The sum of the time intervals 

pzyx Tttt =++                                           (3.187) 
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is equal to the period of the pulsation sequence Tp. For instance for region d the 

following vector equation is valid: 

z
j
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Mx
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Sp
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s teteteTe 3/
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6/
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0
1

ππθ VVVV ++=  

Regarding Vs as a phase vector 
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121 ===                     (3.188) 

the vector equation assumes the form: 
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After the introduction of amplitude modulation coefficient (3.164): 
3

π

d

s
a

U

U
m =  

and separation of (3.189) into the real and imaginary part, we obtain: 
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The solution of the system (3.190), (3.187) makes it possible to determine time in-

tervals tx, ty, tz for region d. The summary of the time intervals for the entire Sector 

I is presented in Table 3.8. 

Table 3.8 Time intervals tx, ty, tz  for SVM inverter control in a,b,c,d regions of the I-st sec-

tor of the 3-level inverter 

Region 
xt  yt  zt  formulae 

a 

1

1

wTp

S

→

→V
 

( )3

0

1 wTp −→

→V
 

2

2

wTp

S

→

→V
 

b 

( )11

1

−→

→

wTp

LV
 

( )3

1

2 wTp

S

−→

→V
 

2

1

wTp

M

→

→V
 

c 

1

1

wTp

M

→

→V
 

( )3

2

2 wTp

S

−→

→V
 

( )12

2

−→

→

wTp

LV
 

d 

( )2

1

1 wTp

S

−→

→V
 

( )13

1

−→

→

wTp

MV
 

( )1

2

1 wTp

S

−→

→V
 

)
3

sin(2
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θ
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−

=
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If a vector Vs is situated in one of the latter regions, angle θ has to be reduced 

to a value within a range of 0 < θ ≤ π/3 and formulae from Table 3.8 should be ap-

plied for an appropriate region, changing the numbers of indexes in V vectors, ac-

cordingly. 

Switching sequence over a pulsation period 

The matters in this case is are more complex in comparison to the two-level in-

verter since due to the necessity of limiting the fluctuations of the potentials of the 

neutral point G it is necessary to balance the time intervals of the duration of vec-

tor in the minor star in version N as well as in P. This occurs differently in regions 

b and c, where there is a single constitutive vector of the minor star than in regions 

a and d, where there are two constitutive vectors of the minor star. An example of 

6-pulse control in the pulsation sequence for region b, i.e. one in which there is 

one constitutive vector of the minor star, is presented in Fig. 3.77. The balanced 

realization of vector V1S is ensured as a result of performing the switching  

sequence <1,1,0> and <0,0,-1> with the identical summarized duration. The situa-

tion is different for regions a and d, where there are two constitutive vectors form-

ing the minor voltage star. In this case the region divides into two symmetrical 

parts and for each of them the realization of P and N is balanced for the vector of 

the minor star that is dominant in each of the halves in a region. Concurrently, the 

other vector of the minor star is unbalanced in the half of the region in which it 

plays a less important role. This is presented in Fig. 3.78 for Sector I, subregion 

d2, i.e. for the half of the region d that lies closer to vector V2S. 

 

Fig. 3.77 Six-pulse sequence of pulse cycle in the region b of the first sector 
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Fig. 3.78 Six-pulse sequence of a pulse cycle in the subregion d2 of the first sector 

In this subregion the vector V2S is considered in the same manner as zero vectors 

and the time interval of its duration is divided into two realizations: <1,1,0> and 

<0,0,-1> with the equal duration. The presented realizations of the sequence of 

switching are not unique and can be designed in another manner, for instance by 

accounting for the elimination of even numbered harmonics of the output voltage. 

A more detailed presentation of the issues in this section is found in references, 

e.g. [10,38,39,70]. 

3.3.3.5   Current Source Inverter with Pulse Width Modulation (PWM) 

The inverters applied in the electric drive for the supply of induction motors can 

be generally grouped into voltage source inverters (VSI – section 3.3.2 and 3.3.3) 

and current source inverters (CSI). At the same time, CSIs are designed as load 

commuted inverter (LCI) and ones with imposed commutation with pulse width 

modulation (PWM) [106]. Further on, current source inverters with pulse width 

modulation generate AC current with the desired frequency and amplitude. The 

semiconductor switches of a PWM current inverter have to provide a possibility of 

current shut-off and have to have reverse voltage blocking capacity. The current 

models apply reverse blocking Gate Commuted Thyristors (GCT) while formerly 

they applied GTO thyristors. PWM current source inverters display a number of 
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advantages and are therefore commonly applied in industrial drives for several 

reasons: 

- in contrast to VSI inverters they do not use high frequency switched voltage 

to the motor’s windings but tend to supply AC with a smooth waveform to the 

windings; hence, the problem with the high value of du/dt derivative is absent, 

- they have a considerably simple engineering structure and the switches do not 

need the application of freewheeling diodes, 

- due to the necessity of applying an in-series inductor there is no hazard of 

short-circuiting on inverter or motor clamps. 

The drawbacks of this solution include: 

- necessity of applying in-series inductor designed for a load current value and 

a capacitor filter at the output, 

- relatively slow reaction time in response to control due to the presence of an 

inductor in the DC circuit. 

This type of inverter (CSI-PWM) is successfully applied in medium and large 

power drives where we have to do with considerable load over the entire cycle of 

operation and a relatively fast control of the motor’s angular speed is not required. 

3.3.3.5.1 Structure and operating principle of CSI – PWM inverter. The diagram 

of CSI current inverter with PWM control is presented in Fig. 3.79. A silicon con-

trolled rectifier (SCR) with an adequate current output, an inductor Ld with  
 

 

Fig. 3.79 Diagram of a PWM current source inverter (CSI): inverter motor connections and 

overall control system 



232 3  Induction Machine in Electric Drives

 

adequate inductance and a controller that regulates the current form the current 

source for the inverter. PWM-CSI inverter serves merely for the switching of the 

current to energize particular windings while the capacitor filter assembly Cf pro-

vides the current in the phase windings which are not supplied from the CSI in-

verter in a given time period. This procedure is followed in such a manner since at 

any instant except for the commutation period, only one switch of the positive 

group (anode group of the inverter) and one in the ground group (cathode one) is 

in the ON state. For the current source supply, the situation when two switches in 

a group are in the ON state, results in the loss of the ability to control in the sense 

of current diffusion into the two windings. In turn, if only one switch in the entire 

CSI inverter were in the ON state, the current flow forced by the source will result 

in a very strong overvoltage resulting in its failure. For this reason, the adequate 

control of the CSI inverter has to secure continuity of current flow through an in-

verter and motor in a way that only two switches are in the conduction state, each 

one in a different branch and another group of switches. 

3.3.3.5.2   Control of CSI – PWM Inverter. Most common are 3 methods of in-

verter control [4,10,39]: trapezoidal pulse-width-modulation (TPWM), control us-

ing selective harmonics elimination (SHE) and space vector modulation (SVM). 

Each of the methods has a number of advantages and drawbacks to them. The 

trapezoidal PWM modulation can be realized in real time or in the form of a look-

up table. In addition, it displays good dynamic characteristics; however, it does 

not give the possibility of current by-passing, which limits the dynamics of drive 

control. The method of selected harmonic elimination offers the best results in 

terms of suppressing higher order harmonics of the current; although it must oper-

ate on the basis of previously prepared look-up tables and, hence, the dynamic 

properties deteriorate. The method of space vector modulation operates in real 

time and has excellent dynamic properties; however, it does not lead to a small 

level of higher order harmonics in the current. Fig. 3.80 presents the principle 

governing the control using trapezoidal PWM. In the description of this control we 

apply amplitude and frequency modulation factors in the form: 

saw

s
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saw

s
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f

f
m

U

U
m ==                                    (3.191) 

where: Usaw, fsaw - denotes the amplitude and frequency of the saw carrier wave. 

As indicated in Fig. 3.80, the switch in a branch of the inverter is in the ON state 

for a flat section of the top base of the trapezoid as well as for its the rising slope 

when it is higher than the signal of the saw carrier wave. As a result, the number 

Np pulses corresponding to a half of the current period is equal to: 

1
3

+=
s

saw
p

f

f
N                                            (3.192) 

It is beneficial when the integer number of periods of saw carrier wave corre-

sponds to one of the slopes of the trapezoid, i.e. when: 1/mf = 6n, n = 1,2,3…. 

This case illustrates a symmetrical and synchronic switching and hence the major 

harmonics [10] of the output current have the frequencies of 
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Fig. 3.80 Illustration of a trapezoidal pulse-width modulation (PWM) 

3.3.3.5.3   Exemplary curves of induction motor drive supplied from CSI-PWM. The 

illustrations that follow present the start-up curves of a medium-power induction mo-

tor (S2L) with the application of CSI current inverter controlled by means of PWM 

modulation. The induction motor supplied from CSI inverter with small inertia and 

low load torque as well as from capacitors with low value of capacity tends to operate 

in an unstable way. An illustration of this is found in Fig. 3.81. 

 
a)     b) 

Fig. 3.81 Starting of the CSI PWM fed induction drive without any feedback, with J = Js,  

T/Tn = 0.2, Cf = 100 [μF] for medium power motor (3.96): a) DC current b) electromag-

netic torque c) stator currents d) angular speed e) torque-speed trajectory 
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c)  
 

 
d)      e) 

Fig. 3.81 (continued) 

The higher the inertia, capacity of a filter capacitor Cf and the negative feed-

back in relation to the speed, the more stabilized is the operation of the drive after 

start-up – see Fig. 3.82. 

 
a)     b) 

Fig. 3.82 Starting of the medium power (3.96) CSI PWM drive with J = 3Js, T/Tn = 0.2, 

 Cf = 150 [μF]: a) DC current b) electromagnetic torque c) stator currents  

d) angular speed e) torque-speed trajectory 
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c)  
 

  
d)     e) 

Fig. 3.82 (continued) 

The examples presented in Figs. 3.82 and 3.83 indicate that the appropriate se-

lection of the motor’s parameters and feedback lead to the stabilization of the 

drive even for relatively small load Tl /Tn = 0.25. The current IDCr = 98 [A] is the 

input value for stabilization of the inverter supply current after start-up. 

 
a)     b) 

Fig. 3.83 Starting of the medium power (3.96) CSI PWM drive with DC current stabiliza-

tion after start-up with J = 3Js, Tl/Tn = 0.2, Cf = 150 [μF], IDCr = 98 [A]: a) DC current b) 

electromagnetic torque c) stator currents d) ) angular speed e) torque-speed trajectory 
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c)  
 

 
d)     e) 

Fig. 3.83 (continued) 

3.4   Control of Induction Machine Drive 

3.4.1   Vector Control 

The theoretical fundamentals of vector control, also referred to as Field Oriented 

Control (FOC), were developed in 1970s and 80s and subsequently followed by 

attempts conducted on induction machine drives. However, huge progress and 

wide application of the system was preceded by the development and greater ac-

cessibility of fast power electronic semiconductor switches which form the basis 

of power converters in engineering. On the other hand, this type of control is 

strictly relative to the use of fast microprocessors to process numerical data of 

mathematical models and measured data from sensors recording selected signals 

(variables) in a drive. As a consequence, the application of these methods has 

largely expanded following an increase in the capacity of signal processors. There-

fore, it was possible to fulfill the prerequisites for the implementation of advanced 

induction machine drive control systems as late as 1990s [13,42,68,76,87,99]. The 

idea of vector control forms a response to the difficulties associated with the  

control of a 3-phase squirrel cage induction machine, which has a number of ad-

vantages despite not being susceptible to control by means of easily accessible 

methods such as control of supply voltage and frequency in a manner that offers 
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quick response, oscillation free and agreement with the designed pattern in terms 

of torque, acceleration and angular speed. The principle governing vector control 

is the following: from the physical values with sine spatial distribution along the 

air gap, which can be presented in the form of rotating vectors (complexors), the 

flux linkage with rotor windings Ψr is identified and along this direction the axis 

xρ of the rotating two-axial system is situated. The axis yρ for this system, which is 

established perpendicular to this direction and the angle of orientation ρ, deter-

mines the position of this specific system with reference to a selected two axial 

system (u,v,0). Strictly speaking, this forms a particular case of the (x,y,0) system 

rotating with the speed of the magnetic field, oriented in the space so that the ro-

tor’s flux linkage Ψr is presented in the xρ axis (Fig. 3.84), hence the name for 

Field Oriented Control originated. In this new coordinate system the complexor of 

the stator’s current is is made up of the terms ixρ, iyρ. The physical relevance of the 

entire undertaking is the following: the term ixρ of the stator current forms the 

magnetizing current and directly affects the value of the rotor’s flux | Ψr |. 

Concurrently, the term iyρ of the stator current that is perpendicular to it directly 

affects the value of the motor’s electromagnetic torque Te. As a result, the control 

of the value of the flux in an induction motor is decoupled from control of  torque 

in a way that follows the model of a separately excited DC machine. In this anal-

ogy the term ixρ of the stator current corresponds to the excitation current of if of 

the DC machine, while the term iyρ corresponds to the armature current ia. In a DC 

commutator machine the control procedure is conducted in an easy way since the 

orientation is a result of the specific design of a machine. The axes of the excita-

tion and armature windings remain perpendicular as a result of the positioning of 

pairs of brushes collecting the armature current perpendicular to the axis of the 

excitation winding, which is wound at the machine stator’s salient poles. 

 

Fig. 3.84 Rotor magnetic flux Ψr and stator current is orientation in the field oriented con-

trol method 

The cost to be incurred with the simplified control of DC current machine is as-

sociated with the overcoming problems with commutation, brushes, possibility of 
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sparking at the commutator and necessity of regular inspecting such devices. On 

the other hand, in an induction machine there are difficulties associated with 

measurements and control. The steps to follow include: identification, orientation 

of the rotating system in space in the sense of determination of the orientation an-

gle ρ followed by adequate decisions regarding the opening of the converter’s 

switches with three-phase output in a way that this corresponds to the decoupled 

control by means of ixρ, iyρ currents in a two-phase xρ, yρ system. This occurs in a 

quite complex control system that is currently applied in numerous versions differ-

ing in terms of specific values measured in the system and calculated on-line. The 

two basic varieties of applying field vector orientation method called direct vector 

control and indirect vector control will be discussed later in this chapter. 

3.4.1.1   Mathematical Model of Vector Control 

The specific property of vector control is associated with the orientation of a sys-

tem (Fig. 3.84) by establishing angle ρ, which determines the direction of the axis 

of the rotor flux Ψr. The focus of the considerations here is a system of equations 

for a motor expressed in mixed co-ordinates is, Ψr (3.56) rotating with the speed of 

the field, i.e. for Ȧc = Ȧs = pΩ0. It takes the following form: 
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where: - pfpLkJpk
sssrr
/2/)/(/

0
πωσβµ ==Ω== . 

For vector control we apply a coordinate system, which takes into account the 

angle of orientation ρ, rotor flux Ψr and, additionally, rotation angle θr of the rotor. 

A transformation is established: 

( ) ρρψρθψψ yxrrrrsysxryrxrs iiiiΨi ,,,,,,,,,:, Ω→Ω            (3.195) 

where: - ixρ, iyρ - are the components of stator current in a field oriented system xρ, 

yρ. In order to establish the transformation (3.195) we apply the following rela-

tions: 
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and 
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After the calculation of derivatives and substitutions, we obtain: 
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From the very form of the model (3.199) for the vector control it is possible to di-

rectly derive the following conclusions: 

- control is possible only when Ψr > 0 

- the term representing electromagnetic torque  

ρψµ yre iT =                                               (3.200) 

is very simple in the same way as the one for electromagnetic torque in a sepa-

rately excited DC machine 

- magnetic flux of the rotor Ψr is relative only to the current ixρ. There is a com-

plete analogy with reference to the excitation flux and excitation current in a sepa-

rately excited DC machine. In the steady state 

ρxmr iL=Ψ ,                                               (3.201) 

- and for 0=ρ� , machine’s slip is equal to 
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yrm
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L
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,                                              (3.202) 

- voltages Uxρ, Uyρ are transformed in accordance with (3.198). 

3.4.1.2   Realization of the Model of Vector Control 

Vector control of an induction motor is realized on the basis of a mathematical 

model (3.199) which applies control signals from sensors and quantities calculated 
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on-line in the signal processor. In the up-to-date solutions of vector control the 

measured signals include the currents and voltages supplying stator windings or, 

alternatively, rotor’s angular speed or its angle of rotation measured by an en-

coder, which calculates the pulses corresponding to the units of the angle of rota-

tion [53]. Among the calculated quantities there must be the angle of rotor orienta-

tion ρ, which secures the orientation of the system xρ, yρ in accordance with the 

rotor’s flux linkage Ψr. The assigned values in the control process include the ro-

tor’s flux Ψr ref and the reference torque Te ref, while the subscript ref denotes the 

reference value. 

3.4.1.2.1   Direct Vector Control System. The diagram of such a control system is 

presented in Fig. 3.85. The control procedure involves the measurement of the 

values of stator current is1,2,3 and voltage us1,2,3. On the basis of this and applying 

the relation  

sssr

sssss

L

pR

iΨΨ
ΨAiUΨ 2

σ−=

Ω+−= 0
�

                                     (3.203) 

we can calculate the terms Ψrx, Ψry of the rotor flux. Subsequently, we can calcu-

late orientation angle ρ, flux Ψr and three-phase currents are transformed to the 

constituent terms ixρ, iyρ in a two-axis w field oriented system. This method is 

called direct field control since it involves the calculation of the flux Ψr. 

 

Fig. 3.85 Block diagram of a direct vector control system 

3.4.1.2.2   Indirect Vector Control System. The diagram of this control manner is 

presented in Fig. 3.86. The control procedure involves the measurement of the 

values of stator current is1,2,3 and angular speed Ωr. This system maps the deriva-

tive of the orientation angle ρ� , which is subsequently integrated and added to  

the phase angle of stator voltage θs and applied for the transformation of stator 
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currents to two-axial field-oriented components ixρ, iyρ. The system does not in-

volve the determination of flux Ψr and for this reason this version of the field con-

trol method is denoted as indirect. 

 

Fig. 3.86 Block diagram of an indirect vector control system 

3.4.1.3   Formalized Models of Vector Control 

3.4.1.3.1   Asymptotic Decoupling of Flux and Speed Control. If we name the par-

ticular variables in the model (3.199) in the following way: 

),,,,,(),,,,,( 543210 xxxxxxii yxrrr =ΨΩ ρθ ρρ                  (3.204) 

we can obtain the equations of the model in the form: 
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where:                      
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The mathematical model of the drive (3.205) can be broken down into two subsys-

tems – one associated with the control of the flux with the output of x2 = Ψr 

x
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�

                                    (3.206) 

and the system of the control of rotor position or angular speed: 
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The decoupling of the two systems (3.206) and (3.207) occurs in the asymptotic 

sense, i.e. for a strictly controlled flux. As a result, we can assume that:  

x2 = x2fer. This situation fully resembles the control of excitation flux and speed in 

a separately excited DC motor. In the case of which, however, the decoupling oc-

curs as a result of the engineering design of the machines and requires a commuter 

and brushes for armature. In contrast, the decoupling in this case results from the 

application of the equation for the orientation angle x5 = ρ and transformation of 

the variables. One can note here that in the presented system variable x5 = ρ is not 

followed and is uncontrolled. The familiarity with it is necessary for the transfor-

mation of physical quantities to the state variables and, hence, it needs to be con-

ducted separately. 

3.4.1.3.2   Input-Output Decoupling. In the system (3.199) we now will introduce 

new variables: 
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Since the flux is determined in polar coordinates, it is necessary that Ψr > 0, which 

secure the existence of an inverse transformation: 
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After the introduction of transformation (3.208) we obtain: 
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where: 
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In the presented system (3.210) we have to do with input-output decoupling and 

independent control of the two outputs: z1 = θr and z4 = Ψr. In this version of con-

trol input to state decoupling does not occur since variable x6 = ρ remains unob-

served and uncontrolled. The control requires that z4 = Ψr > 0. The control signals 

Ȟx, Ȟy are strictly relative to the variables of the state and their derivatives: 

),,,,,(),,,,,(, 5432 eerrrryx TTfbazzzzfvv ��� ΩΩΨΨ==  

Such relations tend to be very complex and involve quantities that are difficult to 

measure in the drive. They make it possible to derive control variables on the basis 

of measurements using state observers. The cost of the simple and linear control of 

the I/O system, as presented above, is associated with complex control signals and 

necessity of their combining from various sources (observers/estimators/sensors). 

3.4.1.3.3   Input to State Linearization by Dynamic Feedback. The achievement of 

input to state linearization by dynamic feedback for an induction motor drive is 

associated with the need to apply other set of variables than those applied before, 

i.e. ones accounting for orientation angle ρ. Therefore, the currently applied pri-

mary variables (technically outputs) include: 

ρ=Ω= 11 zy r                                         (3.212) 

These primary variables need to be differentiated until the latest of the derivatives 

presents the control inputs, which ensures the controllability the system. For the 



244 3  Induction Machine in Electric Drives

 

adopted variables (3.212) it will require the differentiation of each variable three 

times and consideration of the control voltage Ȟyρ as an additional variable in the 

system: 

ρyvx =6                                                  (3.213) 

while its time derivative ρyvx ~
6 =�  will be the control value subjected to integra-

tion by dynamic feedback at the input of the system. This is symbolically illus-

trated in Fig. 3.87. 

 

Fig. 3.87 Linearized and decoupled FOC system of an induction motor with an integrator of 

the ρy
v~  signal 

For variables (3.212) and an additional ry θ=0 , the decoupled and linearized 

FOC system of an induction motor takes the following form: 
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where in accordance with the definition of variables (3.212) 
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In order to determine control quantities Ȟ1, Ȟ2 it is necessary to conduct subsequent 

differentiations in accordance with (3.215), by application of formulae (3.205) for 
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x1, x5. As a result, we obtain: 
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On the basis of (3.216) it is possible to calculate the control quantities: 
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The determination of the controls is quite complex and requires the familiarity of 

x2 = Ψr, x3 = ixρ, x4 = iyρ as well as the first and second derivative of the load 

torque, i.e. bab ��,= . The prerequisite for the control is condition Ψr > 0, just as in 

the previous cases. This type of control is difficult to realize, however, due to the 

observability of the system and selection of the variable z1 = ρ it ensures the orien-

tation of the system as a result of its control. It is to some degree easier to realize 

the linearized system with reduced dynamics of the system after realizing the sta-

bilization of the motor excitation current, i.e. ixρ current, which is responsible for 

flux Ψr, as presented in the following chapter. 

3.4.1.3.4   Linearization of a Reduced System with a Stabilized Excitation Current. 

We will examine a FOC control system in which a separate control is used for the 

stabilization of the excitation current 

xrefx ii =ρ                                                  (3.218) 

Then, the model of the drive (3.205) is reduced to: 
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where: - w1 = ix ref, w2 - are the control values. The system (3.220) involves new 

variables, such as (3.212): 

ρ=Ω= 11 zy r                                     (3.221) 

As a result of calculations of time derivatives of variables (3.221), we obtain: 
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After the introduction of input quantities in the form: 
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we obtain a decoupled and linearized drive control system of the reduced order: 
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The input equations can take the following form: 
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This equation (3.225) offers the possibility of calculating the controls: 
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Despite more simple control method in this equation, it requires that the values 

of rotor flux x2 = Ψr, transformed current x3 = iyρ, load torque a = (Tl+Tf)/J and its 

derivative ab �=  are familiar. The control of the variable y1 = Ωr should occur 

around the natural values of the angular speed resulting from the load and condi-

tions of power supply. 

3.4.2   Direct Torque Control (DTC) 

3.4.2.1   Description of the Method 

Direct Torque Control (DTC) forms a very effective and relatively simple method; 

hence, is more and more commonly applied in the control of induction motor 

drives [19,74,79,100]. The power device responsible for the control in this system 

is most often a two-level voltage inverter (Fig. 3.52). The output quantities in-

clude: stator flux vector Ψs and motor’s electromagnetic torque Te. Eight possible 

states of inverter form the pool of input vectors to execute control in accordance 

with relation (3.157) and Fig. 3.55. The basis of the analysis of DTC control 

method is the term for electromagnetic torque expressed in flux coordinates, 

which in accordance with model (3.59) takes the form: 

�
�	�
T

rsrsrs

rvsurusve

pp

pT

ϕ

ϕϕββ

ψψψψβ

)(sin

)(

−×=×=

=−=

ΨΨΨΨ                          (3.227) 

where:  φT = φs-φr - is a field angle. 

Direct Torque Control (DTC) involves the control of the stator flux module |Ψs| 

and its position on the u,v plane. In this method it is assumed that the changes of 

stator flux occur considerably faster than the changes of rotor flux Ψr. On the basis 

of the first of the equations (3.53) 

scssss R ΨAiUΨ 2ω+−=�  

and the second one of (3.55) 

rrcsrmrrr pL ΨAiΨΨ 2)( Ω−++−= ωαα�  

we can conclude that the change of stator flux ΔΨs occurs directly under the effect 

of applying an adequate stator voltage over a specific period ΔtUs and this is an 

instant effect. Concurrently, the change of rotor field vector ΔΨr occurs under the 

effect of the change of the stator current or rotor speed. The change of the rotor 

speed in the examined time scale of a single control pulse occurs totally unnotice-

ably while the change of the stator current occurs with a time constant of 1/αs = 

Ls/Rs, which means a considerable delay (see Table 3.1). Hence, depending on the 

angular position of vector Ψs we can achieve the effect of changing stator field Ψs 

and increasing field angle φT (3.227) by switching on of one of the instantaneous 

vectors V0, V1,…V8 representing one of the output states of the voltage inverter. 

Thus, the motor torque Te is effected quickly and directly. This is illustrated in  
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Fig 3.88 for counterclockwise direction of rotation. Fig. 3.88 presents also six sec-

tors I,II,...VI into which the control plane u,v can be divided. The decision regard-

ing the selection of a particular vector Vk for motor control is relative to the posi-

tion of vector Ψs in a specific control sector and to whether the value (module) of 

stator field vector exceeds one of the threshold control values as well as whether 

the value of motor torque Te exceeds or is below the prescribed values determining 

the admissible torque fluctuations by the band-band method. This is done with the  

aid of controllers with a hysteresis based control characteristics, as presented in 

Fig. 3.89. 

 

Fig. 3.88 Clarification of the Direct Torque Control method 

In order to clarify selection method we will take into account the situation pre-

sented in Fig. 3.88, where the vector of stator flux Ψs is situated in sector IV and 

the direction of field rotation is counterclockwise. If the control system required 

an increase of the flux module |Ψs| and an increase of the torque Te (which corre-

sponds to an increase of φT), the state of the inverter switches corresponding to 

vector V5 would be in ON state. In order to reduce flux |Ψs| and increase torque it 

is necessary to switch on the state of the inverter corresponding to vector V6, 

while in order to decrease flux |Ψs| and torque Te it would be necessary to switch 

on the state of the inverter corresponding to vector V2. The summary of the  

inverter’s switching states for the particular sectors of the control plane and re-

quirements regarding |Ψs| and Te are found in Tables 3.9 and 3.10 for the counter-

clockwise and clockwise direction of field rotation, accordingly. 
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 a)     b) 

Fig. 3.89 Control characteristics: a) for a stator field |Ψs| with a two positional hysteresis 

loop b) for a torque Te with a three-positional hysteresis loop 

Table 3.9 DTC switching table for the counterclockwise field rotation 

Sector 
sΨ  eT  

I II III IV V VI 

FU TU 
2V  3V  4V  5V  6V  1V  

FU TD 
6V  1V  2V  3V  4V  5V  

FU TN 
8V  0V  8V  0V  8V  0V  

FD TU 
3V  4V  5V  6V  1V  2V  

FD TD 
5V  6V  1V  2V  3V  4V  

FD TN 
0V  8V  0V  8V  0V  8V  

 
Index list:  

FU – Flux |Ψ
s
|Up;  FD – Flux |Ψ

s
|Down 

TU – Torque T
e
 Up  TD – Torque T

e
 Down;  TN – Torque T

e
 Neutral  

 

In the DTC control method the fundamental task is associated with the deter-

mination of stator flux vector |Ψs| magnitude and its position on the u,v plane. This 

is done by the application of state observers as the tools based on calculations and 

measurements. This issue will be dealt with in section 3.5. For the purposes of 

mathematical modeling and research of motor drives the flux Ψs can be restated in 

terms of formulae (3.49) and subsequent transformations. Thus, we obtain: 

ruvmsuvss LL iiΨ +=  
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Table 3.10 DTC switching table for the clockwise field rotation 

Sector 
sΨ  eT  

I II III IV V VI 

FU TU 
6V  1V  2V  3V  4V  5V  

FU TD 
2V  3V  4V  5V  6V  1V  

FU TN 
8V  0V  8V  0V  8V  0V  

FD TU 
5V  6V  1V  2V  3V  4V  

FD TD 
3V  4V  5V  6V  1V  2V  

FD TN 
0V  8V  0V  8V  0V  8V  

 
This leads to the following result: 
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Thanks to this, it is possible to determine the module of stator flux 

22
svsus Ψ+Ψ=Ψ  

and the sector in which vector is actually located on the basis of the relations be-

tween its components Ψsu, Ψsv. Similarly, in order to determine electromagnetic 

torque and field angle φT (3.227) it is necessary to determine the components of 

rotor’s flux linkage: 
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22
rvrur Ψ+Ψ=Ψ  

The acquaintance with the components (3.229), (3.230) of stator and rotor field 

makes it possible to calculate field angle φT (Fig. 3.90) 



3.4   Control of Induction Machine Drive 251

 

rvsvrusu

rusvrvsu
T

ΨΨ+ΨΨ

ΨΨ−ΨΨ
= arctanϕ                                (3.231) 

 

Fig. 3.90 Presentation of a field angle φT 

3.4.2.2   Examples of Direct Torque Control (DTC) on the Basis of a 

Mathematical Model 

DTC control was modeled with the aid of the relations (3.227-3.331) and Tables 

3.9, 3.10 for a two-level voltage inverter as the power output device, the one 

whose operating principle is described in section 3.3.3.3. The modeling was con-

ducted on the basis of an assumption that the determination of flux Ψs in the sense 

of the length of the vector and its position is error free, since in this model it is 

based on the relation in (3.229). The similar course of reasoning is assumed for 

electromagnetic torque Te, whose calculation is based on the mathematical model 

in (3.227) thus providing error free result. This means that the conducted calcula-

tions and their results constitute the illustration of the operating principle of DTC 

method but do not reflect precisely the operation of the drive due to the assump-

tion of idealized operating conditions, in particular in terms of determination of 

control quantities. The presented illustrations regard the start-up, braking, control 

of flux, etc. for DTC controlled and operated drive. The first set of illustrations in 

Figs. 3.91–3.93 presents the start-up of a high voltage medium-power motor 

(S2H) for a load of Tl = 0.25Tn, moment of inertia equal to J = 1.5Js. The band 

limitations of DTC control involve the values of: 

][350035503450

][0.215.20

NmTT

Wb

erefe

s

=≤≤

≤≤ Ψ
                 (3.232) 

Since the system does not apply speed control after the start-up the electromag-

netic torque falls to reach the value resulting from the load and the speed reaches a 

steady value resulting from the operating conditions of the drive. 
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a) 

b)  

Fig. 3.91 Start-up of 400 [kW], 6 [kV] motor: a) DC source current b) stator currents; DTC 

parameters given by (3.232) 

a)  

Fig. 3.92 Start-up of 400 [kW], 6 [kV] motor: a) electromagnetic torque b) angular speed: 

DTC parameters given by (3.232) 
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b)  

Fig. 3.92 (continued) 

a)  

b)  

Fig. 3.93 Start-up of 400 [kW], 6 [kV] motor: a) stator magnetic flux |Ψs| time history b) 

u,v axis trajectory; DTC parameters given by (3.332) 

The following set in Figs. 3.94–3.96 presents the start-up of a small induction 
motor with the given characteristics of the torque. Its waveform is shaped in a way 
that ensures a fast start-up and maintenance of the given speed after start for  
J = 4Js, Tl = 0.5Tn. This system operates without any feedback, for the following 
DTC control limitations: 

][5.0][22.118.1 NmTWb es =∆≤≤ Ψ                 (3.233) 
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a)  

b)  

Fig. 3.94 DTC guided start of the 5.5 [kW] induction motor: a) electromagnetic torque b) 

angular speed. DTC limits given by (3.233) 

a)  

Fig. 3.95 a) DC source current b) stator currents during the torque guided start up of the 5.5 

[kW] induction motor. DTC limits given by (3.233) 
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b)  

Fig. 3.95 (continued) 

 
a) 

b)  

Fig. 3.96 a) stator magnetic flux |Ψs| in time b) its u,v trajectory, during the torque guided 

start up of the 5.5 [kW] induction motor. DTC limits given by (3.233) 
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Another example of DTC control involves decreasing magnetic flux of a 5.5 

[kW] motor by 25% during its steady operation while maintaining the torque 

within the designed boundaries, i.e. 38.8≤Te<42.2 [Nm]; Te ref = 0.75 Tn = 41.5 

[Nm]. As a result of observing the transitory waveforms one can note a number of 

specific reactions of the system: instantaneous reduction of the stator flux Ψs ac-

companying a gradual, asymptotic decrease of rotor field Ψr (Fig 3.97). It is very 

specific to remark an increase of field angle φT between field vectors Ψs and Ψr in 

a manner that ensures the maintenance of a constant torque Te despite decreasing 

values of the two vectors. 

a)  

b) c)  

Fig. 3.97 Stepwise reduction (25%) of a stator magnetic flux in steady state of induction  

5.5 [kW] motor with DTC while torque maintained on the constant level (Teter = 0.75 Tn = 

41.5 [Nm]): a) stator flux |Ψs| b) stator flux trajectory c) rotor flux |Ψr| u,v trajectory 



3.4   Control of Induction Machine Drive 257

 

a)  

b)  

c) d)  

Fig. 3.98 a) DC source current b) stator currents c) stator current u,v trajectory d) rotor cur-

rent u,v trajectory - after the 25% reduction of the stator flux |Ψs| 

a)  

Fig. 3.99 a) electromagnetic torque b) field angle φT - after the 25% reduction of the stator 

flux Ψs . Conditions like Fig. 3.97 
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b)  

Fig. 3.99 (continued) 

a)  

b)  

  
c)     d) 

Fig. 3.100 DTC transition from motoring to breaking regime of 5.5 [kW] induction motor 

(S1): a) electromagnetic torque b) angular speed c) stator and d) rotor magnetic flux trajec-

tories 
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a)  
 

 

 

b)  

  
c)     d) 

Fig. 3.101 DTC transition… (like in Fig 3.100): a) DC source current b) stator currents c) 

stator current u,v trajectory d) rotor current u,v trajectory 
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a)  

 b)  

 c)  

Fig. 3.102 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the 

change of switching sequence from the counterclockwise to the clockwise one: a) electro-

magnetic torque b) angular speed c) field angle φT 

a)  b)  

Fig. 3.103 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the 

change of switching sequence from the counterclockwise to the clockwise one: a) stator 

flux |Ψs| flux trajectory b) rotor flux |Ψr| trajectory 
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a)  

b)  c)  

d)  

Fig. 3.104 DTC transition to generating regime of 5.5 [kW] induction motor (S1) by the 

change of switching sequence from the counterclockwise to the clockwise one: a) stator 

current time curves b) stator current trajectory c) rotor current trajectory d) DC source  

current 

a)  

Fig. 3.105 DTC reversing of a of 5.5 [kW] motor drive: a) electromagnetic torque b) angu-

lar speed c) field angle 
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b)  

c)  

Fig. 3.105 (continued) 

a)  

b)  

c)  d)  

Fig. 3.106 DTC reversing of a of 5.5 [kW] motor drive: a) stator flux |Ψs| time curve b)  

rotor flux |Ψr| time curve c) stator flux trajectory d) rotor field trajectory 
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a)  

b)  c)  

d)  

Fig. 3.107 DTC reversing of a of 5.5 [kW] motor drive: a) stator current time curves b)  

stator current trajectory c) rotor current trajectory d) DC source current 

Figs. 3.100 – 3.101 illustrate the transfer of the drive from motor regime of op-

eration to braking as a result of a change of electromagnetic torque, as presented 

in Fig. 3.100a. The corresponding change of angular speed is presented in Fig. 

3.100b. The stabilization of the speed for t > 0.1 [s] comes as a consequence of 

changing load torque Tl and its adaptation to the state of balance. However, this 

cannot be concluded from the referring figures. The transfer to the braking regime 

is not accompanied by an increase of stator and rotor current, which is ideally il-

lustrated in Fig. 3.101 c,d. One can note very good characteristics of DTC control 

in the sense of the maintenance of the designed waveform of electromagnetic 

torque and flux |Ψs| as well as a considerable overlapping between the curves for 

the torque and field angle φT, which can be made more comprehensible by close 

examination of relations (3.227) for small values of angle φT. Subsequently, Figs. 

3.102 – 3.104 present the transfer of the drive controlled by DTC method to the 

generating regime of operation. This occurs as a result of changing the sequence 
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of semiconductors switching from the ‘counterclockwise’ mode (Table 3.9) to 

‘clockwise’ one (Table 3.10) for the positive direction of rotation. It is accompa-

nied by a transfer of field angle φT from the positive values for motor operation to 

the negative ones (Fig. 3.102c), negative electromagnetic torque (Fig. 3.102a) and 

return of energy into the source (Fig. 3.104d). Following Figs 3.105 – 3.107 pre-

sent reversal of the 5.5 [kW] DTC controlled drive also by changing the sequence 

of switching of a bridge transistors for a reverse rotation. The effects of changing 

the rotation sense is quite noticeable in several trajectories presented. These ex-

amples prove the DTC control to be effective, stable within a broad range of oper-

ating conditions as well as demonstrate its practicality in the control of dynamic 

waveforms. The prerequisite for this method concerns the maintenance of |Ψs| > 0 

and the possibility of determining vector Ψs on the control plane u,v. As it was 

proved by the examples of conducted start-ups, the maintenance of the designed 

curve of electromagnetic torque by the DTC control system is achieved very pre-

cisely and without delays within the range of the capacity of the motor of provid-

ing adequate torque for the determined conditions of system supply. DTC is a kind 

of sliding mode control realization (see 5.6.1) and belongs to the type of heuristic 

control methods since the waveforms, the number of switchings as well as the 

switching frequency of the flux and torque are relative to the desired control and 

hysteresis loops for torque and flux limitations (Fig. 3.89). Concurrently, the sys-

tem itself determines the instants for switching on the basis of a currently executed 

control task as well as on the basis of the precision of the mapping by the observ-

ers of the field |Ψs|, its position and the current value of electromagnetic torque Te. 

3.4.3   Observers in an Induction Machine 

The linearization of a model of a drive, field oriented vector control (FOC), DTC 

and other control procedures require on-line determination of the flux linkage for 

the stator Ψs or for the rotor Ψr. The orientation of the flux vector is also required, 

which involves the determination of its position on the u,v  plane for instance  

by means of orientation angle ρ. These quantities are virtually inaccessible on ba-

sis of measurements and need to be calculated in the control system. A mathe-

matical model with data linkage to the measurements of values that are derived 

very easily and precisely can form the basis for calculations of this type. Such 

quantities include the current of stator windings, supply voltage, angle of  

rotor position or rotational speed. 

State observers are mathematical objects resulting in calculation algorithms, 

which perform calculations of inaccessible quantities that are needed to conduct 

the control process continuously, on the basis of a mathematical model and meas-

urements of certain variables in the drive which are easy to obtain. Such calcula-

tions need to be conducted on-line during the control process. The term stability of 

an observer used here means the decay of estimation error during the determina-

tion of the sought quantities caused by disturbance or incorrect initial value along 

with time passing. Such stability is either examined with the aid of a method based 

on Liapunov theorem [53], or estimation error decay is demonstrated on the basis 

of an adequate selection of the observer’s parameters. The stability of the observer 
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understood in this manner does not secure its complete accuracy during calcula-

tions but confirms the tendency of estimation error to decay in time. The inaccu-

racy in the estimation of waveforms of the examined variables results from  

the reasons that are completely beyond the structure of the observer. Such reasons 

include: 

- inaccuracies resulting from simplifications made during the mathematical 

modeling of the drive serving to establish an observer, 

- variability of parameters considered as constant in the algorithm, for example 

commonly applied quantities αr, Lm associated with the induction motor that 

tend to be directly relative to magnetic saturation and temperature, 

- inaccuracies of measurements of curves involved in the observer’s algorithm 

from the operating drive, 

- inaccuracies of the numerical integration of the observer’s equations. 

Despite these drawbacks observers have proved their applicability in control even 

in their more simple forms. The studies devoted to observers, their stability and 

methods of error reduction are widely discussed in references [22,40,43, 

66,77,78]. Several simple observers applied in induction motors are presented be-

low along with some issues pertaining to the maintenance of their stability. 

3.4.3.1   Rotor Flux Observer in Coordinates α, β 

The most simple flux observer results directly from the model in (3.55). For 

0=cω  it is a model with a stationary system of axes u,v in relation to the stator, 

i.e. α, β model. 
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In the observer (3.234) the estimated values are: βα rr ΨΨ ˆ,ˆ  and the values input 

from measurements include: βα ssr ii ,,Ω . The mathematical model for the vari-

ables βα rr ΨΨ ,  has an identical structure as the one in (2.234), with a note that 

these variables occur in it in the place of estimated quantities βα rr ΨΨ ˆ,ˆ . The er-

rors of the estimated variables are defined as: 

βββααα rrrr ee Ψ−Ψ=Ψ−Ψ= ˆˆ                         (3.235) 

The equations of dynamics of the estimation errors are derived by subtracting 

equations for the observer (3.234) from the equations for the model: 
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                                      (3.236) 
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The study of the behavior of the estimation errors (3.236) during the disturbances 

involves the analysis of the dynamics of the error for example with the aid of 

Liapunov’s function. It is a positively determined function based on estimation er-

rors and in the examined case can take the following form: 

22
βα eeV +=  

By calculation of: )(2 ββαα eeeeV ���� += , and subsequent substitutions (3.236), we 

obtain:  

VeeV rr αα βα 2)(2 22 −=+−=�                             (3.237) 

From the result (3.237) one can conclude about the stability of the decay of flux 

estimation error treVtV
α2

)0()(
−= . 

3.4.3.2   Rotor Field Observer in Ψr, ρ Coordinates 

This analysis is based on the model of motor (3.199) in Ψr, ρ coordinates: 
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By planning the observer in the form: 
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and defining the errors as: 
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we obtain the equations for the dynamics of observer errors: 
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             (3.241) 

In equations (3.241) the error eρ is not directly included, but there are errors de-

noted as ex, ey, which result from eρ and are transferred to currents ixρ, iyρ as a result 

of transformations. Fig. 3.108 presents geometrical relations resulting from Ψr, ρ 
transformation. 
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From Fig. 3.108 it stems that: ρρρ e+= ˆ , which also represents the relation in 

(3.240). Hence, 
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Fig. 3.108 The influence of the orientation error eρ on the field oriented stator currents ixρ, iyρ 

For the small values of eρ in (3.242), it results that: 

ρρρρ xyyx ieeiee −==                                (3.243) 

As a consequence, on the basis of (3.241, 3.243) the equations for the dynamics of 

the error can be established in the form: 
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From the following we can derive the characteristic polynomial: 

rr

ymr

r

r

xmr iL
s

iL
sssW

ΨΨ
++⎟⎟⎠

⎞
⎜⎜⎝
⎛

Ψ
+=−⎥⎦

⎤⎢⎣
⎡

=
ˆ

)(
)(

ˆ1

1
)(

2
ρρ α

α
α

E            (3.245) 

The polynomial in (3.245) can be transformed to take the form: 
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with the aid of the relation Ψr = Lm ixρ. 

The discriminant of the quadratic equation (3.246) is 
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always for |iyρ| > 0, i.e. the curve of the error has an oscillatory shape. In order to 

assess the values of the roots the discriminant (3.247) can be transformed to take 

the form: 
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and, approximating for rr Ψ=Ψ ˆ :  

(3.248) 
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The damping of estimation error curves is proportional to αr, while the pulsa-

tion is relative to the relation iyρ /ixρ, i.e. the ratio of the electromagnetic torque to 

the flux. 

3.4.3.3   Rotor Field Observer in x, y Coordinates with Speed Measurement 

This observer is based on the familiarity of the transformed currents isx, isy, which 

results from the measurement of stator currents and transformation of 0,x,y that 

involves the need of input of the angle of the rotation of the rotor θr. Since speed 

Ωr is measured in the system, the determination of the angle of the rotation of the 

rotor rr Ω=θ
�̂

 occurs with the precision range to the constant, i.e. the value of the 
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initial angle Ωr(0). The mathematical model (3.56) , for rc pΩ=ω  in the range 

that is interesting to us takes the form: 
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The field observer based on the measured stator winding currents is, after the 

transformation of isx, isy that applies the measured speed Ωr and angle of rotation 

r
θ̂ , is constructed [53] in the following way: 
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The equations of dynamics of the errors take the following form: 
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Verification of the decay of the error involves Liapunov’s method with positively 

determined error function in the form: 
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After differentiation of (3.252), we obtain: 
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After the introduction of derivatives (3.251) and ordering things, the result is: 
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The result (3.254) indicates a progressive decay of the error function (2.252). The 

error associated with the estimation of the flux decays with the time constant of 

1/αr, while the speed of the current estimation error decay eix, eiy may be controlled 

by an appropriate selection of the values of k1, k2 > 0. 

3.4.3.4   Observer of Induction Motor Speed Based on the Measurement of 

Rotor’s Position Angle 
Induction motors containing the sensors of rotor position, for instance encoders, 

do not apply speed sensors. The angular speed Ωr may be calculated on the basis 

of differentiation of the position signal, which for a discreet determination of the 

position angle results in considerable noise with high frequency associated with 

the differentiation. It is, however, possible to avoid it and gain a smooth curve of 

the estimated speed as a result of application of a simple observer [22]. For stan-

dard notations the mathematical model for variables θr and Ωr, i.e., rotor position 

and angular speed are the following: 
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The proposed observer takes the form: 
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The error equations are derived as a result of deducing the sides of (3.255) and 

(3.256), respectively: 
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Under the assumption that the error in the determination of electromagnetic torque 

)ˆˆ( ρρ µµ yryr ii Ψ−Ψ decays much faster than for the curves of mechanical vari-

ables, the equations of the dynamics of errors take the form: 
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The characteristic equation of the error dynamic takes the form: 
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The roots of this equation (3.259) 
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may be formed arbitrarily by selecting k1, k2. The damping of the errors  

-½(k1+D/J) may be adequately large while the curve of the error decay may be os-

cillatory or exponential depending on the selection of k2. 

3.4.3.5   Flux, Torque and Load Torque Observer in x, y Coordinates 

This observer bases on the measurements of is, θr → isx isy, and the estimated quan-

tities include: lrry T
rx

ˆ,ˆ,ˆ,ˆ ΩΨΨ . For simplification purposes we assume that Tl is 

constant. The corresponding model of the system takes the form: 
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The observer is designed in the following form [22] 
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where: 

rre θθθ
ˆ−=  

The equations of the dynamics of the error estimation take the form: 
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where: 
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In accordance with the first two equations for the system (3.263), we assume fast 

error damping 

t
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which makes it possible to independently deal with the three remaining equations 

(3.363), for a decay in the error of torque estimation  0)( →− ysxxsy eieiµ . 

As a result, the dynamics of the errors eθ, eΩ, eT can be restated as: 
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The characteristic polynomial for this system takes the form: 
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The polynomial (3.266) can have three real roots r1, r2, r3 for which case in order 

to ensure error damping we require that either r1, r2, r3 < 0 or a single real number 

root and two complex ones that are mutually conjugated. In this case it is required 

that all three real parts are negative. For the solution with three real number roots 

r1, r2, r3 the gain factors of k1, k2, k3 are calculated on the basis of the general form 

of the characteristic polynomial  
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Hence, by comparison with (3.266) we obtain: 



3.4   Control of Induction Machine Drive 273

 

)(

)(

/)(

3213

13231212

3211

rrrk

J

D
krrrrrrk

JDrrrk

=

−++=

−++−=

                                (3.267) 

The relation (3.267) makes it possible to derive the gain factors of k1, k2, k3 for ar-

bitrarily selected values of damping r1, r2, r3. For the complex roots (s-(d±jȦ)) the 

equation takes the form: 

)2)(()( 222
1 ω++−−= ddssrssW                            (3.268) 

where: - r1 - is a real root 

d, Ȧ - components of complex roots the first of which denotes the damping co-

efficient of the oscillatory curve while the other the pulsation of the curve. 

Following an adequate extension: 
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As a result of the comparison of the result with polynomial in (3.266) it is possible 

to determine the gain of k1, k2, k3 for the desired values of r1, d, Ȧ: 
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The presented observer (3.262) has been solved in an effective manner involving 

the input the numerical values from gauges in order to obtain the desired curve of 

error decay function. This, unfortunately, does not involve the case for the decay 

of the errors of flux estimation, which is relative to the time constant 1/αr, which 

was the case in the preceding examples. 

3.4.3.6   Stator Flux Observer Ψr with Given Rate of Error Damping 

The knowledge of stator flux linkage Ψs  is indispensable for the direct torque 

control. It also enables one to calculate rotor’s flux Ψr , which is necessary for 

vector control (3.52): 
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Concurrently, the mathematical model serving for the calculation of stator flux is 

the following (3.53): 
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On the basis of this model, while the measurement quantities include Us, is, Ωr, an 

observer of stator flux has been designed [66]. The advantage of this observer in-

volves the fact that it is possible to set an arbitrary speed of estimation error damp-

ing, which distinguishes it from the preceding rotor flux Ψr observers (where error 

damping was affected by the damping of αr). The designed observer takes the 

form: 
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where: c1, c2 - are complex multipliers. 

The equations of the dynamics of the error in the complex variables take the 

form:  
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In the matrix form the equations of the errors are the following: 

( ) ⎥⎦
⎤⎢⎣

⎡
⎥⎥
⎥
⎦
⎤

⎢⎢
⎢
⎣
⎡

−Ω−

−−

=⎥⎦
⎤⎢⎣

⎡ ΨΨ

i
r

rr
r

c

i k

Z
cjp

k

Zcj

e

e

e

e
β

α
β

ω

2

1

�
�

                     (3.274) 

Hence, the characteristic polynomial follows: 
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This is a polynomial with complex parameters. Similarly, Zcc ,, 21  can take com-

plex values. In the physical sense it denotes two-dimensional control of flux Ψs 

and current is in u,v coordinates. Having the possibility of setting the real constant 

Ȧc and complex constants 

YRYR cccccc 222111 +=+=                                (3.276) 

and impedance Z , there are considerable opportunities for the formation of the 

curves of the estimation error. Assuming the general form of the characteristic 

polynomial: 
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it is possible to state the equations for the coefficients: 

( ) )(

)()(

12212121121

21212

ωωωωω
β

α
β

ωωω
β

rrjrrpcc
k

Z
j

k

Z
c

jrrj
k

Z
c

rc
r

r
r

c
r

++−=Ω−+

+−+−=+

     (3.278) 

As an example we will present the solution for: 
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In this case, on the basis of (3.278), we obtain: 
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From this solution (3.280) by appropriate selection of r1, r2 it is possible to 

achieve arbitrarily the decay of the flux estimation error Ψs. However, this result 

is considerably relative to the angular speed Ωr. The result can serve for the de-

termination of flux Ψs for the purposes of DTC control or help one in the determi-

nation of rotor flux Ψr by using (3.270). 
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Chapter 4 

Brushless DC Motor Drives (BLDC) 

Abstract. This chapter deals with properties and control of brushless DC motors 

drives with a permanent magnet excitation (BLDC, PMDC). In the first part char-

acteristics of contemporary permanent magnets (PM) that are used in electric mo-

tors are presented along with the simplified ways of their modeling. As an example 

a pendulum is given, which consists of swinging coil over a stationary PM, and the 

influence of PM modeling simplifications upon the dynamic trajectories of move-

ment is discussed. Further on, a model of PMDC drive is derived on a transformed 

d-q and also a contra model in which no transformation of variables is used, with 

the commutation taking place according to the state of physical (natural) variables. 

However, the problem of nonholonomic constraints is not undertaken while dealing 

with PMDC modeling. In a classical DC motor with mechanical commutator, the 

existence of such constraints is evident, because the connection of each armature’s 

coil to the external circuit depends on the rotor position. In case of electronic com-

mutation, a switching of windings’ supply is controlled also by the rotor position 

angle, but topographic structure of circuits remains fixed and the switching is car-

ried out by a abrupt changes of impedance values of power electronic switches. In 

this chapter various characteristics and transient curves for BLDC drives are pre-

sented and a comparison is made between results obtained from both types of mod-

els: d-q transformed and untransformed ones. It gives the possibility of justifying 

the choice regarding the kind of the model to be used in particular applications, de-

pending on the dimension of a whole system and required rigorousness of results. 

The results presented cover the operation of DC drives with and without control 

system intervention. The PID control is discussed in its application to a given pro-

file of speed and rotor position movement and also inverse dynamics method is in-

troduced. Numerous examples of DC drive problems are included, employing two 

typical BLDC motors with given data. 

4.1   Introduction 

For 150 years DC direct current machines have played an important role in elec-

tric drives. The basic advantages associated with their application in drives in-

clude: easy adjustment of rotational speed, uncomplicated start-up and reversal, 

stable operation for small speeds as well as good dynamic properties ensuring fast 

reaction to changing parameters of power supply. DC machines with classical  
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design consist of a stator with electromagnets which are powered by the excitation 

current and whose role is to generate a magnetic field of excitation. The windings 

of the rotating armature are connected to the mechanical commutator with the 

graphite-metal brushes slipping over it. They constitute the electrical connection 

between the movable armature windings and external circuits. The mechanical 

commutator, which is a device mostly of historical significance, plays the role of a 

mechanical rectifier, which converts AC current with the frequency corresponding 

to the rotor’s rotational speed into the DC current outside the armature. At its time, 

the mechanical commutator was an outstanding device, which was however trou-

blesome during exploitation and costly in terms of cost of investment. It was also 

the weakest link in the system in the sense of reliability of operation as well as re-

quired frequent service and regular overhaul. A modern brushless DC machine 

(BLDC) displays two fundamental differences in contrast to the mechanically 

commutated DC machines [13,15,17,28,42]. First of all, it does not have a me-

chanical commutator over which the brushes forming the electrical node used to 

slip. A static electronic commutator is used in its place, whose role is the commu-

tation of the current in armature windings in the function of the angle of rotor po-

sition șr. Hence, the principle governing DC machines is preserved, i.e. the ma-

chine is self-commutating. In the characteristics of the machine the basic effect 

involves the fact that along with the increase of the load the machine tends to slow 

down unless it is supplied with external speed control for the stabilization of the 

speed. As a result of this slowing of rotational speed the armature current tends to 

increase and this leads to a new equilibrium point of the operation. The second 

relevant difference between a classical mechanically commutated machine and  

up-to-date motor involves the replacement of electromagnets exciting the main 

magnetic field with adequately selected permanent magnet assembly [12,22]. This 

solution is rendered possible as a result of magnetic parameters and other utility 

parameters and ultimately the commercial value of permanent magnets. They con-

tain rare earth elements, such as neodymium (Nd), samarium (Sr) among others. 

The application of permanent magnets improves the efficiency of a machine since 

there are no power losses in the excitation windings and leads to the decrease of 

machine mass. However, in terms of the construction and thermal requirements of 

machine operation there is no advancement since the permanent magnets installed 

in the machine and providing the excitation flux require adequate operating condi-

tions which do not permit the deterioration or a decay of the magnetic field from 

the magnets. These requirements basically involve the limitation of the tempera-

ture inside the permanent magnet motor, limitation of the influence of armature 

reaction in a way that ensures that irreversible demagnetization of magnets does 

not occur and not extending air gaps in order to prevent overloading of permanent 

magnets. One has to bear in mind that the permanent magnet DC machines 

(PMDC) have to be designed in manner that ensures their operation over a number 

of years without deterioration of the exploitation parameters. Another important 

difference between the classical mechanically commutated DC machine and a  
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brushless one concerns the number of windings of the armature and, subsequently, 

the current waveform on the DC side. In a commutator machine the usual number 

of windings varies around a couple dozen, as a consequence of which there is an 

adequately large number of commutator segments. In connection with this, DC 

current contains very small pulsations since the commutation occurs every couple 

of degrees of rotor’s angle of rotation. Consequently, the electromagnetic torque 

generated by this machine tends to demonstrate small pulsations. In BLDC ma-

chines of the most common engineering design there are three phase windings of 

the armature, which is reflected by three branches of an electronic commutator 

(rectifier controlled by the angle of rotor position). This results in considerable 

current and torque pulsations generated by the machine since the commutation oc-

curs every 60º of the angle of rotor rotation, alternatively in the anode and cathode 

group of the electronic commutator. It is obviously possible to increase the num-

ber of the armature windings and number of commutator branches thus leading to 

the reduction of current pulsation; however, two negative effects follow. One of 

them is associated with the need to use a more extensive and expensive electronic 

commutator, while the other one involves an increase of commutation losses and 

decrease of the efficiency of the drive. A final remark that can be made at the be-

ginning of this introduction is that brushless DC machines with permanent mag-

nets can vary considerably in terms of their engineering structure. First of all, 

there can be minute machine serving as servodrives in technology, household ap-

pliances and vehicles. Besides, there are larger machines, which are applied in 

electric drives of automatically controlled devices, including drives in manipulator 

joints. Finally, there are high power machines with the parameters of the drives 

used in industrial machinery, for example in steel mills or vessels. BLDC ma-

chines may have a various number of phases, have cylindrical construction and in 

some applications they can have a form of a disk with immobile armature and ro-

tating magnets. The final solution can serve for use in low revolution gearless 

drives. BLDC machines need not have low revolution ranges, as ones discussed 

before, but also can operate under rotational speeds exceeding 10,000 [rev/min]. 

The number of the available versions is large and still growing. 

4.2   Permanent Magnet – Basic Description in the Mathematical 

Model 

Permanent magnets have been in use for a long time. They have been applied as 

components of technical devices for nearly 200 years. The acquaintance with the 

physics of magnetic materials and principles governing magnetization on the mi-

cro level has occupied the attention of scientists for the last 50 years while the 

technicalities of the process of production of up-to-date composite magnets has 

dated since 1980s. At present we are familiar with permanent magnets with stable 

magnetic properties on condition of not exceeding admissible temperatures with 

high value of unitary internal energy, magnetic induction under the magnet in  
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excess of 1[T] and a broad magnetization loop. The basic characteristics of the 

permanent magnet is presented in Fig 4.1. 

 

 
Fig. 4.1 General characteristic of a permanent magnet with an air gap load curve given by λM 

For the description of the operation of permanent magnet we normally present 

the characteristics of magnetization merely in the II quadrant of the coordinate 

system since this is the operating range of a magnet. In a simple magnetic circuit 

consisting of a permanent magnet, air gaps and a small ferromagnetic core (ȝ = ∞) 

that is used for closing the magnetic circuit, one can state that 
 Ð =+= 0δδHlHd MlH 0

                              
  

  (4.1)
 

Under the assumption that leakage flux is neglected in such a circuit the following 

relation is fulfilled 
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and since: Hδ = Bδ /µµ0 as a result, on the basis of (4.1) and (4.2) one can state 

that: 
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In the above formulae: 

- H0, B0, lM, SM - are: magnetic field strength and induction in the magnet 

and, consecutively, the length and internal cross section of the permanent 

magnet 

- Hį, Bį. į, Sį - are: magnetic field strength and induction in the air gap 

and consecutively, the length and cross section of the air gap 
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 - ȝ, ȝ0 - is magnetic permeability, relative one and that of the air 

- ȜM - denotes, in accordance with (4.3) the unit magnetic conductance of 

the magnetic circuit also known as the inclination of the straight line of 

magnet load. 

The inclination of the straight with the directional coefficient ȜM corresponds to the 

conductance of the air gap in a simple magnetic circuit and the cross section be-

tween the straight line and characteristics of the magnet determines the operating 

point H0,B0 of the permanent magnet in a given magnetic circuit. Concurrently, the 

product of H0,B0 determines the unitary energy of the magnet (per unit of volume) 

at a given operating point H0,B0. For a certain inclination of the straight line ȜM  the 

rectangle with the sides marked as H0,B0 has the largest area for a given character-

istic of operation and this specific operating point determines the maximum operat-

ing energy (H B)max for the magnetic material from which the magnet is formed. A 

given material is optimal in terms of magnetic properties when it has concurrently a 

large value of induction of the magnetic remnant Br and intensity of the coercion of 

the magnetic field |-Hc|, as well as the large value of the maximum operating  

energy (H B)max. An ideal would involve a magnet with a nearly rectangular mag-

netization loop for large values of Br and |-Hc| since it ensures a large and nearly 

constant induction under a magnet with a wide range of loads. As a result of the 

wide application of rare earth elements in magnets, they are able to come closer to 

this specific requirements to a much larger degree (Fig 4.2). 

 

Fig. 4.2 A family of magnetizing curves of a rare earth permanent magnet, for different 

temperature values of operation 

As one can conclude from z Fig. 4.2, the increase of temperature has a consider-

able effect on the magnetization characteristics of up-to-date permanent magnets 

based on rare earth elements. There is a certain, small reduction of the value of the 

remnant induction Br and very large decrease of the absolute value of |-Hc| that is 

the intensity of the magnetic coercion. Too high an ambience temperature of a  
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magnet results in the deterioration of the range of adequate conditions for the mag-

net to operate. This comes as a consequence of the fact that following the change of 

|-Hc| the inclination of ȜM, i.e. the characteristic of magnet loading is limited, which 

means that the admissible air gap in the magnetic circuit is considerably smaller. 

The fundamental parameters of major families of permanent magnets, i.e. ferrite 

magnets, alloy based ones with aluminum, nickel and cobalt (AlNiCo) and two ma-

jor groups of magnets with rare earth elements, i.e. ones with samarium (Sr) and 

neodymium (Nd), are presented in Tables 4.1 and 4.2. 

Table 4.1 Basic magnetic properties of the main PM materials 

Family of a 

PM materials 
r

B   

[T] 
c

H−   

[kA/m] 

max
)( BH  

[kJ/m
3
] 

Ferrites 0.4 250 30 

Al Ni Co 1.1 150 80 

Sm Co 1.1 750 200 

Nd Fe B 1.2 850 300 

Table 4.2 Basic temperature parameters of the main PM materials 

Family of a 

PM materials 

Maximum op-

erating tempera-

ture [
o
C] 

Currie’s 

point [
o
C] 

Br
κ  

[%/
o
K] 

Hc
κ  

[%/
o
K] 

Ferrites 300 440 -0.2 0.4 

Al Ni Co 500 820 -0.03 0.0 

Sm Co 300 750 -0.05 -0.25 

Nd Fe B 150 300 -0.15 -0.6 

 
The tables contain mean and approximated values of parameters taken from 

various references in a manner that does not reflect any particular magnetic mate-

rial available in the market. One can note that the details of the materials summa-

rized in the tables are offered commercially in various alloy combination, as  

composites or sinters, as it is the case for ferrites. The particular materials de-

scribed in manufacturers’ catalogues display various properties despite belonging 

to a single family. From the data in Tables 4.1 and 4.2 one can conclude that neo-

dymium magnets are suitable for operation with lower operating temperatures 

while the ones with samarium display much better properties in higher tempera-

ture ranges. There are couple of methods of modeling on the macroscopic scale of 

PMs applied in electromechanical devices. We mean here simplified modeling, 

such that makes it possible to present the operation of electromechanical transduc-

ers and enable their modeling and simulation of operation in drive systems. One of 

the methods involves the replacement of the magnet with a compact turn with zero  

resistance and an adequately adapted self-inductance and circulating current if0 in 
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this turn. The reverse effect of the armature on the magnet occurs as a result of the 

armature current ia via the mutual inductance M. The product M if0 corresponds to 

the magnetic flux Ψf0 by means of which the permanent magnet affects the arma-

ture circuit. Another quite simple way involves the presentation of permanent 

magnet flux in the mathematical model in the form  

faff

ff

LMiii

iM

/0 −=

=Ψ
                                            (4.4) 

The effect of the armature is modeled using the term –iaM/Lf, which reduces the 

conventional magnetizing current if0 originating from the permanent magnet. The 

simplest way of modeling the current originating from PM coupled with a given 

circuit is the adoption of its value Ψf as a constant. This involves disregarding  

armature currents during the operation of a machine for a small air gap in the 

magnetic circuit. It also corresponds to the operation of the magnet in the initial 

section of magnetization characteristic of a magnet produced from alloys of rare 

earth elements (Fig. 4.2). None of the presented here PM modeling methods ac-

counts for the magnetization characteristics under the effect of the temperature 

rise. In order to present the discussed PM modeling methods, below is found an 

example of a servomechanism with a movable coil swinging above the magnet. 
 

Example 4.1 Pendulum coil over PM. 

A simplified model of the electromechanical system in which a pendulum coil 

moves in the field of a immobile PM is presented in Fig. 4.3. 

 

 

Fig. 4.3 Model of a pendulum coil over PM 

The kinetic energy of the system is: 
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while the potential energy: 

0mgyU =  

This system has three degrees of freedom and after the introduction of generalized 

coordinates: 
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With J = ml
 2
, Lagrange’s function for this system takes the form 
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Assuming in a simplified form that 

ϑcosMM af =                                             (4.8) 

it is possible to determine the equations of motion for this system as Lagrange’s 

equation: 
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After adequate transformations and ordering of elements for the two equations of 

motion regarding the electrical variables, we obtain: 
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After the transformation to the normal form, the system (4.12) in the matrix nota-

tion is: 
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The maximum value of the magnetic flux coupled with the coil is: 

ff iM=Ψ                                               (4.15) 

Concurrently, the equation for the mechanical motion of the pendulum for variable 

ϑ, takes the form 

ϑϑϑϑ ��� DmgliJ fa −−Ψ−= sinsin                             (4.16) 

where the first right hand side term denotes electromechanical torque braking the 

motion of the pendulum: 

ϑsinfae iT Ψ−=                                           (4.17) 

The mathematical model presented in (4.14), (4.16) is applicable with regard to 

the first, least simplified way of modeling PMs. A more simplified magnet model 

involves disregarding of the modeling of the magnet by means of a separate dif-

ferential equation and the presentation of the effect of the armature in the form re-

sulting from (4.4). In this case, Lagrange’s equation takes the form: 
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This leads to two equations of motion for variables q = (Qa, ϑ) in the form: 
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The final and most simplified model which disregards the effect of the armature is 

gained for if = if0, Mf if0 = Ψf0,. In this case: 
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The operation of the models for the parameters of the system with the values of 
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is presented in a series of figures (Figs. 4.4 – 4.7), which illustrate the motion of 

this system for the initial position of the pendulum ϑ0 = 36º. 
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a)  

b)  

c)  

d)  

Fig. 4.4 Swinging motion of the pendulum coil, for ϑ0 = 36º, computed by the model  

(4.14 – 4.16): a) if  current of PM b) ia coil current c) ϑ�  angular velocity of the pendulum 

d) sway angle ϑ  e) electromagnetic torque Te 
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e)  

Fig. 4.4 (continued) 

a)  

b)  

c)  

Fig. 4.5 Comparison of electromagnetic torque computed with different PM model simplifica-

tions: a) full model (4.14 – 4.16) b) armature reaction model (4.4) c) constant Ψf  model 
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a)  

b)  

c)  

Fig. 4.6 Comparison of swinging motion - ϑ angle, for different PM models: a) full model 

(4.14 – 4.16) b) armature reaction model (4.4) c) constant Ψf  model 

a)  
 

Fig. 4.7 Characteristics of movement for a very strong field linkage Ψf  = 1.0 [Wb]: a) if  

current of PM b) ia coil current c) ϑ�  angular speed of the pendulum d) sway angle ϑ e) 

electromagnetic torque Te 
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b)  

c)  

d)  

e)  

Fig. 4.7 (continued) 

On the basis of the results presented in Fig. 4.5 and Fig. 4.6 one can conclude 

that the differences in terms of the curves for the variables characterizing the pen-

dulum motion gained for various versions of the PM model simplifications are in-

considerable and the magnet model for Ψf = const is acceptable for the modeling 

of motion parameters of the drive. 
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4.3   Mathematical Model of BLDC Machine with Permanent 

Magnets 

The presentation will focus on the mathematical models of a three-phase machine 

with typical engineering, i.e. one with cylindrical structure with armature wind-

ings in the stator and permanent magnet in the rotor. Quite self-evidently, there is 

a wide variety of BLDC (brushless direct current) machines, both in terms of the 

number of phase windings as for instance ones based on disk structure, where the 

major field has an axial direction [10,36]. However, a cylindrical, three-phase ma-

chine forms the basic engineering solution and occurs as a small, medium and 

large power device. A simplified cross-section of such a machine for the number 

of pole pairs p = 1 is presented in Fig. 4.8. 

 

Fig. 4.8 Cross-section and schematic view of a BLDC motor, for p = 1 

The basic simplifying assumptions applied during the development of a mathe-

matical model include: 

- complete symmetry of the machine’s construction, 

- disregarding of factors affecting demagnetization of permanent magnets  

   during the operation (effects of armature, temperature increase) 

- disregarding high order MMF harmonics of armature windings. 

The remaining, more detailed assumptions associated with the development of the 

mathematical model will be presented during the course of its derivation. For such 

an electromechanical transducer and lack of elements serving for the accumulation 

of potential energy, the Lagrange’s function is equal to kinetic co-energy: 
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which can also take the form of a matrix notation: 
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- matrix of armature inductance 
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- vector of the coupling between permanent magnet flux and armature windings, 
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- vector of armature current. 

The particular components of the inductance matrix of the armature windings 

account for the variable reluctance of the rotor and dissipation flux of the armature 

windings and for the purposes of simplification can be presented as follows: 
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where: .3/2π=a  

The angle φ accounts for the number of pole pairs in the machine 

rpθϕ =                                                   (4.29) 

while the self-inductance of the armature windings is assumed in the form which 

identifies the leakage inductance: 

msa LLL += σ                                               (4.30) 

After accounting for these remarks, the inductance of the armature windings 

(4.24) can be restated in the following form: 
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The equation of the mechanical motion of the machine can be derived from La-

grange’s equation for a variable denoting rotation angle șr: 
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rpθϕ =  

The expression in (4.34) defines the electromagnetic torque of the machine and 

involves two terms. The first of them denotes the reluctance torque of the ma-

chine, which comes as a consequence of the reactions of armature current with the 

salient poles of the rotor with magnets: 
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Concurrently, the other term of the expression (4.34) denotes the principal torque 

of the machine resulting from the interaction between armature currents with per-

manent magnets’ excitation flux. 
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In addition, BLDC machines have another component of the torque, i.e. cogging 

torque beside the reluctance related one (4.35). It is present as a result of the reac-

tion of the principal flux with the armature teeth. In the presented model (4.34) it 

is, however, not encountered since the harmonics associated with the stator slots 

are disregarded. This omission is admissible since the designers throughout their 

engineering efforts [3,8,9,18,21,27,31,35], tend to effectively aim at the minimiza-

tion of this component of the torque. 

4.3.1   Transformed Model Type d-q 

The structure of the inductance matrix of the armature (4.31) suggests the applica-

tion of the orthogonal transformation, similar as in the case concerning a three-

phase induction machine. In this case we will apply transformation Tr (3.34) for 

ωc = 0. 

Thus, 
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The transformation of equations for the electric circuits of the armature will be 

conducted in the general form derived from of Lagrange’s equations for electric 

variables: 
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 offers the following matrix equation: 
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By multiplication of the above by Tra and by application of the orthogonality con-

dition of the transformation matrix (4.37) we can note that: 
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The expression 
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where A3 is a skew-symmetric matrix in the form: 
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Following the transformation, the matrix equation (4.41) takes the form: 
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The components of the equation (4.44) are transformed as follows:  
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where: 
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As a result, the transformed equations for the armature circuits (4.44) take the 

form: 
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The determination of the particular expressions of the transformed voltages uq, ud 

(4.45) is associated with the need to consider the problem of the commutation of 

armature currents, which occurs in the function of the angle of the rotor position 

șr. This issue will be discussed later. Concurrently, the quadratic form (4.34) 

which, determines the electromagnetic torque can be transformed in the following 

manner: 
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which offers the following result: 
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The expression (4.51) which determines the electromagnetic torque of the motor, 

after the transformation, takes an uncomplicated form: the first term denoting the 

reluctance torque is relative to the product of axial currents id, iq and is propor-

tional to inductance Ms associated with the basic harmonic of the reluctance of the 

air gap, while the other term denotes the principal torque proportional to the prod-

uct of the magnetic flux Ψf and current iq in the transverse axis of the machine. 

There is a complete analogy here to the commutator DC machine. 

4.3.2   Untransformed Model of BLDC Machine with Electronic 

Commutation 

The application of the model that does not involve the transformation of the coor-

dinate system has a number of advantages. For the case of a motor with electronic 

commutation there is a possibility of a more realistic modeling of commutation 

and, thus, gaining results more precisely, including the electric variables over 

time. The commutation as well as the parameters of the switching transistors can 

be taken into consideration more precisely in a manner that is required for a spe-

cific problem of drive control. Secondly, for the lack of transformation, the model-

ing of the machine and drive itself can account for a number of asymmetries and 

differences in terms of parameters, which renders it possible to simulate the emer-

gency states of the drive. In an untransformed model we consider that the armature 

windings are connected in a star (Fig. 4.9), which take the form of adequate con-

straint equations. Here we will apply the matrices of constraints Wir and Wur 

(3.78) and (3.79) for the respective currents and phase voltages of the motor 
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i.e.     13aira iWi =                                         (4.52) 
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i.e.                                                     aurUWU =13                                          (4.53) 

As a result of the multiplication of the left-hand side of the equation in (4.40) by 

the matrix of constraints Wur and introducing the vector of armature currents  
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we obtain: 
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After the transformation, the equations for the variables of the armature currents 

i1, i3 (4.54) take the following form: 
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At this point it is possible to pass on to the transformation of the quadratic form of 

electromagnetic torque (4.34) by introduction of constraints (4.52) and (4.53) for 

the connection of the armature windings into a star: 
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and the other term is transformed into: 
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Hence, 
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After adequate algebraic operations we obtain: 
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The expression (4.65) presents electromagnetic torque of BLDC machine in the 

natural coordinates i1, i3 without transformation, for the connection of three-phase 

armature windings in a star. 

4.3.3   Electronic Commutation of BLDC Motors  

Commutation in a brushless DC machine involves the switching of the armature cur-

rent to particular phase windings depending on the position of the rotor angle șr. In a 

traditional brushless DC machine this occurred as a result of application of a me-

chanical commutator consisting of isolated copper segments with armature windings 

connected to them. Over this commutator the graphite brushes would slip thus re-

ceiving the current while the position of the brushes was fixed in space. In such a 

manner the commutation occurred naturally depending on the position of the rotor. 

The electronic commutation is ensured by the converting bridge while the switching 

of the current between the windings also occurs in the function of the rotor’s posi-

tion angle, and the signal responsible for the control of the switchings is obtained 

from the position sensor measuring the angle of rotation șr. As a principle, such sen-

sors are optical, including encoders and induction based ones, i.e., resolvers.  

 

 

Fig. 4.9 Basic scheme of a bipolar 3-phase BLDC motor supply 
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In any case, however, the commutation angle needs to be set at an appropriate 

value, which in a traditional DC machine was the role of the correct positioning of 

the brushes in a commutator. Fig. 4.9 presents the standard transistor bridge ful-

filling the role of an electronic commutator for a motor with three phase windings 

in the armature and bipolar supply of the windings connected in a star. The bipolar 

supply means that in the armature windings the current flows in both directions, 

i.e. the current flowing through windings is AC. 

The angular scheme of the commutation of BLDC motor for a positive direc-

tion of rotor motion is presented in Fig. 4.10. 

a)  

b)  

Fig. 4.10 Typical scheme of current commutation in BLDC motor’s 3- phase armature in 

relation to rotor position angle: a) conducting of individual phase windings b) conducting of 

pairs of star-connected windings 
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A typical commutation diagram for three-phase windings connected in a star 

involves simultaneous conduction of two phase belts while the third one remains 

in OFF state. The simultaneous conduction of all three belts occurs only in very 

short commutation periods when we have to do with the transfer of the conduction 

from the belt that is about to terminate the operation to another phase belt, which 

in accordance with the commutation diagram takes the turn in starting commuta-

tion. A singular phase belt in a three-phase BLDC machine conducts over the pe-

riod corresponding to the angle of rotation, i.e. 2π/3 and subsequently takes a 

break over the time corresponding to the angle of rotation, i.e. π/3. The subsequent 

conduction period for the angle of rotation equal to 2π/3 occurs after this break; 

however, for an opposite direction of the conduction followed by another break in 

conduction. It is designed so that for a full turn of the rotor in a given phase wind-

ing the current that flows is AC with the breaks in the conduction corresponding to 

the rotation of the rotor over π/3 angle (Fig 4.10). In a complete BLDC machine 

with three phase windings commutation occurs every π/3 angle of the rotation of 

the machine’s rotor. The development of a commutation diagram makes it possi-

ble to determine supply voltages ud, uq (4.45) in the transformed model of the mo-

tor and perform detailed consideration of the commutation model (4.53) to be ap-

plied for supply of the motor in modeling without transformation. In both cases 

the value of supply voltage is controlled as a principle by the pulse width modula-

tion (PWM). Due to the course of commutation of the current the particular phases 

are switched on slightly in advance in relation to the theoretical commutation dia-

gram presented in Fig. 4.10. This advance angle denoted as į is usually in the 

range from 25º - 35º. The presentation that follows is concerned with the determi-

nation of the supply voltages ud, uq for the transformed model of the motor. 

4.3.3.1   Supply Voltages of BLDC Motor in Transformed Model 
dq

uu ,  

The transformed voltages are calculated in accordance with the relation in (4.45) 

and the commutation diagram presented in Fig. 4.10. The details of the relation are 

as follows: 
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where: U  - supply voltage of the commutation bridge 
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PWM

p

u
T

t
k =  - pulse width factor (PWM control) 

rpθϕ =  - electrical rotation angle (4.29) 

p
t   - conduction time within a pulse period TPWM 

pPWMz tTt −= - recuperation time within a pulse period TPWM 

δ   - advance angle 

3/2π=a  

Over the period of TPWM for the duration of the supply tp respective switches are 

in the ON state and the voltage Us = U is fed to the windings. Concurrently, 

when we have to do with control without energy recuperation, the closure of the 

phase takes place and the current flows through the return diode and one of the 

transistors of the bridge, and Us = 0. For the control with energy recuperation all 

transistors are in the OFF state and the energy is returned to the source through 

the two of the return diodes for the voltage of the motor Us = -U . This occurs in 

the section of the control period tz. The above description of a single pulse with 

the period of TPWM offers an explanation to the issue of calculation of output volt-

age of the commutation bridge (4.67) for both types of bridge control. The coef-

ficient ku makes it possible to calculate the mean values of the voltages ud, uq. 

These means are determined on the basis of formulae in (4.66) while the func-

tions of the conduction factors c1, c2, c3 are determined according to commutation 

scheme in Fig. 4.10: 
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                             (4.67) 

The examples of the waveforms for ud, uq are presented in Figs. 4.11 and 4.12. In 

both cases we apply an angle depending PWM coefficient ku calculated from the 

relation: 

))/exp(1(1 πϕ uuu Tkk −−=                                   (4.68) 

where:  

 Tu - is the angular constant of voltage increment. 

The exponential character of voltage increase ud, uq offers the possibility of the 

smooth motor start-up. 

4.3.3.2   Modeling of Commutation in an Untransformed Model of BLDC 

The modeling of commutation in an untransformed system for a three-phase wind-

ings of the armature can have a various degree of detail. In this chapter we will 

present a method that is considerably simplified and, subsequently, apply it in  
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Fig. 4.11 Voltages uq and ud as a function of rotation angle for: į = 0, Tp = 7.2º, U = 400 

[V],  ku1 = 1, Tu = 0.9 [s] 

 

 

Fig. 4.12 Voltages uq and ud as a function of rotation angle for į = 30º, Tp = 10º, u = 400 

[V],  ku1 = 1, Tu = 1.8 [s] 

examples. It takes into consideration the fact that adequate supply voltage is con-

nected to the particular pairs of phase windings connected in a star, i.e. winding 

no. 1-2, 2-3, 3-1 via a commutation bridge. During the commutation we will dis-

tinguish two states: first, when the commutation begins during the connection of 

the source voltage to the windings, i.e. during the active part tp of the supply pulse 
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Tp and the other state, when the commutation begins during the passive part of the 

pulse while the energy is returned from the windings to the source or during the 

closure of the winding. In both these states it is possible to adequately model resis-

tances and voltages occurring in the particular electric circuits in the given state, 

i.e. the resistances of the motor windings, electronic switches as well as the block-

ing resistance Rb in the circuit of unsupplied phase winding. It will be illustrated 

by appropriate examples. 

 

Fig. 4.13 Currents flow during commutation +i1 → +i2 for φ = π / 3, and an active part tp of 

the period Tp 

We will consider the commutation occurring in the active part of the pulse tp, 

which takes place for the angle of rotation φ = π / 3, Fig. 4.10, where we have to do 

with the switching of the current from +i1 to current +i2, i.e. the termination of the 

conduction in the positive direction in the winding in phase 1 and commencement 

of the conduction in the positive direction by the winding in phase 2. During that 

time in the remaining winding of phase 3 the current flows continuously in the 

conventional negative direction. This situation is illustrated in Fig. 4.13. The target 

circuit after the commutation supplied with voltage U is marked through transistors 

T3, T6 (+i2, -i3), while the decaying current in the winding of phase 1 is closed in 

the circuit with the return diode D2 that is antiparallel to transistor T2, since the 

transistor T1 has just been closed, and conducting transistor T6 connected to the 

phase winding 3. In the state presented in the figure the potential of point a 

amounts to 0, potential of point b is U and the potential of point c is 0. Hence, the 

voltages U12 = -U, U32 = -U. After the commutation, i.e. after the current +i1 → 0 

has decayed, the potential of the point a will change to ½ U and the respective volt-

ages will be U12 = -½ U, U32 = -U, while the resistance R1 = Rb, which means that 

it will assume the value of the blocking resistance. For a better illustration of the 

considerations we will additionally examine the commutation for the angle of rota-

tion φ = π. In this case (see Fig. 4.14) the commutation involves a change +i2→+i3, 

while –i1 is continuing its flow. Decaying current +i2 is closed across the return di-

ode D4 of the transistor T4 and transistor T2. The potentials of the particular points  
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a,b,c associated with the beginning of the phase windings in this state amount to: 0, 

0, U. As a consequence, line-to-line voltages supplying the windings are as follows: 

U12 = 0, U32 = U. 

 

Fig. 4.14 Currents flow during commutation +i2→i3 for φ = π, and an active part tp of the 

period Tp 

Concurrently, after the termination of the commutation the potential of the 

point b changes to ½U, which results in the following values of line-to-line volt-

ages supplying the windings U12 = -½U and U32 = ½U. The situation during the 

commutation over the passive section of pulse Tp can be presented for two various 

alternatives of control of the commutation bridge, i.e. for the case when during the 

commutation the energy returns to the source and the opposite one when the en-

ergy is not returned to the voltage source U. At the beginning, we will consider the 

first of the cases, when in the passive section of the pulse the energy is recuper-

ated. For this case we will consider commutation +i1→i2, (φ = π/3), i.e. the same 

as in Fig. 4.13, but for the passive section of the PWM pulse. During this commu-

tation transistor T1 is just switched off terminating supply to the phase winding 1, 

transistor 3 is not switched on because of the passive period and transistor T6 is 

switched off to facilitate recuperation of energy. The decaying current flows 

through diodes D2 and D5 against the voltage of the source. In this state the poten-

tials of points a,b,c are respectively equal to 0, ½U, U and consequently U12 = -

½U, U32 = ½U. After the commutation is finished potentials of all three a,b,c 

points are the same and equal to ½U and inter-phase voltages are U12 = U32 = 0. 

This state is presented in Fig. 4.15. 

Concurrently, for the other version of commutation without energy return to the 

source during the passive part of the period Tp, the transistor T3 is not switched  

on, while transistor T6 is switched on - continuing conduction, and the decaying 

current of windings 1 and 3 flows through T6 and D2 in a shorted circuit. At that 

state the potentials of a,b,c points are respectively 0, ½U, 0 and inter-phase volt-

ages are U12 = U32 = -½U. After the commutation there is no current and like in  
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Fig. 4.15 Currents flow during commutation +i1→+i2 for φ = π / 3 in a passive part of the 

period Tp, with energy recovery 

 

Fig. 4.16 Currents flow during commutation +i1→+i2 for φ = π / 3, in a passive part of the 

period Tp, without energy recovery 

the previous case all three clam potentials are equal to ½U and in consequence U12 

= U32 = 0. An illustration of this is found in Fig. 4.16. 

4.4   Characteristics of BLDC Machine Drives  

The presentation in this chapter will be devoted to the computer simulations of 

characteristics of brushless DC drives. Such issues include: start-up, braking and 

drive reversal, control of rotational speed and tracking control of the drive as well 

as its reaction to variable parameters of the supply and loading. Since these de-

tailed issues can be illustrated with the aid of adequately selected results of dy-

namic calculations, it is important to select motors for the demonstration of the 

drive in operation beside the presentation of topics devoted to mathematical mod-

eling of the drive. For theses purposes the parameters of two BLDC motors are 

presented: one with a smaller and the other with the higher power and different 

supply voltages. A summary of the parameters is found in Table 4.3. 
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Table  4.3  Rated data of two PMDC motors 

 

Rated Parameters 

 

 

Symbol 

 

 

Unit 

 

 

Motor A 

 

 

Motor B 

 

Power 
n

P  kW 0.95 6.6 

Voltage 
n

U  V 120 400 

Velocity of rotation 
n

n  rev/min 3100 2600 

Armature current 
nt

I  A 11.9 23.4 

Torque 
n

T  Nm 3.0 25.0 

Efficiency 
n

η  % 90.4 92.6 

Windings self-inductance 
s

L  H 0.016 0.030 

Mutual inductance 
s

M  H 0.0012 0.003 

PM excitation flux 
nf

Ψ  Wb 0.22 1.0 

Windings resistance 
s

R  Ω  0.25 0.50 

Moment of inertia 
s

J  Nms
2
 0.018 0.15 

Damping factor D  Nms 0.0002 0.002 

Pulse width 
PWM

T  deg 2 2 

Commut. advance angle δ  deg 35 30 

4.4.1   Start-Up and Reversal of a Drive 

4.4.1.1   Drive Start-Up 

Start-up forms the basic issue associated with the motion of a drive and, hence, the 
motor drive and the control system have to fulfill a number of prerequisites in order to 
ensure the appropriate course of the process. These prerequisites include: possibility of 
start-up from every initial position, start-up with a required load as well as limitation of 
the start-up current to the values acceptable by the motor and the supply system. The 
process of start-up of BLDC motor is further impeded as a result of occurrence of 
parasitic torques, i.e. reluctance torque and cogging torque. The two effects are re-
duced during the process of motor design in a manner that they are not manifested too 
strongly during the start-up. The limitation of the start-up current can be achieved in 
two ways: by incremental increase of the voltage supplying the armature using PWM 
method or as a result of controlling the start-up current by means of PWM method as 
well, relative to the instantaneous value of the current. A smooth increase of the volt-
age during the start-up can be achieved in numerous manners. In simulation models 
applied for the demonstration of the start-up curves it is achieved by exponential in-
crease of ku coefficient (4.68), i.e. the one denoting the active part of the pulse. The 
figures that follow illustrate the start-up curves for a motor with higher power, i.e. mo-
tor marked B in Table 4.3 as well as for a smaller motor A under a rated load. The 
comparison will involve the start-up curves for the d-q transformed model as well as 
for the untransformed motor. 
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a)  

b)  

c)  

Fig. 4.17 Starting of the B (6.6 [kW]) motor with a voltage regulation: a) armature phase 

current b) 3-phase currents c) currents in the steady state. The results obtained from the un-

transformed model of BLDC 

a)  

Fig. 4.18 The same course as in Fig 4.17 for: a) electromagnetic torque b) reluctance torque 

c) rotational speed 
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b)  

c)  

Fig. 4.18 (continued) 

a)  

b)  

Fig. 4.19 Starting of the B (6.6 [kW]) motor. Results obtained by the transformed model of 

BLDC: a) transformed id, iq currents, b) transformed back armature currents ia 
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a)  
 

b)  

Fig. 4.20 Starting of the B (6.6 [kW]) motor. Results obtained by the transformed model of 

BLDC: a) electromagnetic torque b) rotor’s speed 

The two figures that follow, i.e. Figs. 4.21 and 4.22 present the start-up of the 

same motor, however, for the application of a current delimiter. The operating 

principle of the device involve the division or multiplication of the pulse width 

coefficient ku by a reduction coefficient red in the subsequent pulses (4.69) de-

pending on whether the value of the current in any of the phases exceeds or does 

not reach the value of the imposed limitation Ir. 

a)  

Fig. 4.21 Starting of the B (6.6 [kW]) motor with a current delimiter set for Ir = 110 [A]: a) 

single phase current b) 3-phase currents c) U·ku armature voltage 
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b)  
 

c)  

Fig. 4.21 (continued) 

a)  

b)  

Fig. 4.22 The same course as in Fig 4.21 but for: a) electromagnetic torque b) rotational 

speed 
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The illustrations that follow, i.e. Fig. 4.23 and Fig. 4.24 present the curves of 

the start-up of the smaller motor (motor A, Table 4.3) gained as a result of apply-

ing untransformed and transformed models of the BLDC motor. As one can con-

clude, the two curves are very similar, in particular with regard to the mapping of 

electromechanical variables. Considerable differences are noted in terms of the 

current curves since in the transformed model the commutation is not as precisely 

modeled. In conclusion, in terms of the quality of the modeling untransformed 

model is a better one, while the basic advantage of the transformed model involves 

the 10 to 20 times decreased cost of simulations. For these reasons the transformed 

model of BLDC motor presents more advantages during simulations of large elec-

tromechanical systems in which a greater number of drives is present. Concur-

rently, the reduction of the duration of the calculations forms a considerable prem-

ise in favor of the execution of the simulations of the operation of the system. 

 

a)  

b)  

c)  

Fig. 4.23 Starting of the BLDC motor A (0.96 [kW]). The results of simulation by untrans-

formed model: a) armature currents b) shape of current curves c) electromagnetic torque d) 

reluctance torque e) rotational speed 
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d)  

e)  

Fig. 4.23 (continued) 

a)  

b)  
 

Fig. 4.24 Starting of the BLDC motor A (0.96 [kW]). The results of simulation by trans-

formed model: a) d-q currents b) armature currents c) shape of armature currents d) elec-

tromagnetic torque e) rotational speed 
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c)  

d)  

e)  

Fig. 4.24 (continued) 

4.4.1.2   Reversing DC Motor 

Brushless DC machine, just as the commutator machine based one can serve very 

well for operation in both directions of rotation. However, it is necessary that two 

fundamental conditions are met: the system of the supply and control has to be 

prepared for such circumstances and a particular construction of the cooling sys-

tem or an adequate air-flow across the machine has to be provided. A separate is-

sue is associated with the operation of the drive at small rotational speed and en-

suring that heat is carried away in such conditions, thus, that the temperature 

inside the machine does not exceed the permitted limit. This may be associated 

with an application of a machine with independently driven fans. In order to per-

form the start-up of a BLDC motor in the reverse direction, it is necessary to 

change the sequence of the supply of the motor phases and reverse the value of the 

delay angle į. A similar course of action is assumed for the case when one intends 

to perform reversing of a motor during its operation. The switching on of the re-

verse direction of rotation in accordance with the preceding description first re-

sults in a period of deceleration, named counter-current braking. After that, when 

the drive reaches zero speed of rotation the drive starts the operation in the reverse 
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direction. Such a manner adopted for motor reversal generally requires the limita-

tion of the armature current due to the conditions of the supply system and the 

admissible motor current. One can note at this point that exceeding by the start-up 

current the maximum admissible value can cause an irreversible deterioration of 

the machine’s field of excitation originating from permanent magnets. The results 

of the simulation studies present the curves of the reversing of the BLDC drive 

without the introduction of a limitation on the current (Fig. 4.25) as well as during 

a considerable current limitation (Fig 4.26). 

 

a)  

b)  

c)  

Fig. 4.25 Reversing of PMDC motor (A) without current limitation: a) single phase current 

b) 3-phase armature currents c) electromagnetic torque d) reluctance component of the 

torque e) rotational speed 
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d)  

e)  

Fig. 4.25 (continued) 

a)  

b)  

Fig. 4.26 Reversing of PMDC motor (A) with current delimiter set on 30 [A]: a) single 

phase current b) 3-phase armature currents c) electromagnetic torque d) reluctance compo-

nent of the torque e) angular speed 
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c)  

d)  

e)  

Fig. 4.26 (continued) 

From the comparison of the curves presented in Figs. 4.25 and 4.26 it stems 

that the current delimiter during the reversing of the motor operates effectively; 

but the reversing of the motor lasts two times longer than in the one without a de-

limiter if it is considered until the time of the transfer of the speed across zero. 

However, complete control over the current is present, which ensures safety of 

permanent magnets and the electronic commutation system supplying the drive. 

Besides, one can observe that the effective operation of the delimiter, designed as 

the a fraction multiplier red of the PWM coefficient, considerably depends on its 

value. It follows the algorithm: 

rednknkIi

rednknkIi

uura

uura
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                         (4.69) 

For the curves presented in Fig. 4.26, the value of his factor is set at red = 0.3. 
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4.4.2   Characteristics of BLDC Machine Drive 

The term drive characteristics denotes the graphical representation of a set of 

points representing the operation of a drive relative to the selected parameters 

characterizing its operation. The parameter considered as the independent variable 

is found on the X-axis, while the Y-axis denotes the values of the examined vari-

able considered as the output variable. Often the same figure contains a family of 

the characteristics for which the particular curve differ in terms of another parame-

ter that is very important for the presentation of the operation of the drive, i.e. one 

for whose course its value is constant. If on the X-axis we find a parameter that is 

not time, then such a characteristic can be termed as the steady-state characteristic 

(curve). This characteristic forms a set of points for which the dynamic trajectory 

finds final steady state, if such a stationary state exists at all. The entire static 

characteristic informs at which point of the operation the drive is currently found 

after the termination of the dynamic process, i.e. for instance start-up, braking, 

change of the parameters of the supply or loading for a given parameter on the X-

axis. One should note, however, that a change in the state of the operation of the 

drive (dynamic trajectory) does not overlap with the static characteristic, since if 

this were the case, the duration of the execution of the designed trajectory would 

be infinitely long. One can say that the trajectory begins and ends at the static 

characteristic; however, its curve is different than the one for the characteristic 

since it occurs in a determined, finite and very often short time. The shorter the 

time, the further the trajectory is from the static characteristic curve. Another type 

of characteristic is the one in which X-axis contains time t. In such a case the 

curve takes the form of a time history for a given variable and generally has a dif-

ferent waveform for other parameters of the drive operation. It is also relative to 

the initial conditions from which the curve originated. If for such a curve there is a 

steady state, the steady value of this state forms a component of an corresponding 

static characteristic. The static characteristics can be derived in a number of ways. 

For a ready drive we can use a method of measurements for appropriate possibili-

ties of variation of the parameters of the supply and load of the examined drive. If 

we have a mathematical model of a drive available, static characteristics can be 

derived by definition by conducting dynamic calculations and performing simula-

tions until the steady state is obtained. Such calculations have to be conducted 

separately for each point that determines the characteristic. Concurrently, there is 

a possibility of assuming adequately favorable initial conditions, whose dynamic 

trajectory leads sufficiently fast to a steady state. Despite that, it is a cost and time-

consuming enterprise. Another effective method involves the substitution of hypo-

thetical steady states to the mathematical model in the form of differential equa-

tions of motion and converting the model into a system of algebraic equations. 

This procedure has been followed for instance during the introduction of the 

equivalent diagram of the induction motor in chapter 3.2.3. If we are capable of 

effectively gaining such a reduction of the differential model to an algebraic 

model, as a result we will obtain static characteristics of the drive in the form of 

functional relations between the parameters and variables. However, one has to 

bear in mind that not all of the obtained characteristics have to be available as a 
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result of the termination of the dynamic curve or need not be available for arbi-

trary initial conditions, i.e. from any starting point. From that it stems that, as a 

principle, the mathematical models of electromechanical systems are non-linear. 

The static characteristics of the BLDC can be gained from transformed model 

(4.50) by algebraization after substituting constant functions for its variables: 
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The transformed voltages uq av, ud av that are present in this model are described by 

relations (4.67) and account for the relation with commutation advance angle į. 
As a result of the substitutions of the fixed variables (4.70) in the mathematical 

model in the form in (4.50,4.51) we obtain a system of three algebraic equations in 

the form: 
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The non-linear system of algebraic equations (4.71) accounts for three variables of 

the steady state of the drive (Iq, Id, Ωr), parameters of the supply uq av, ud av relative 

to U, į, parameters of the load Tl, D and engineering parameters of the drive, such 

as p, Lq, Ld, Ms, Ra, Ψf. Such a static model makes it possible to determine the 

characteristics for selected variables in the subject of the examination. Important 

examples include mechanical characteristics Ωr, Iq, Id, Ia = f(Tl), i.e. characteristics 

in the function of the load torque for the remaining parameters with constant val-

ues, including  parameters of the supply. The non-linear system of algebraic equa-

tions of the steady state (4.71), that are cubic in relation to variables (Iq, Id, Ωr), 

can be solved effectively using numerical methods, whose applications are widely 

found in a number of popular mathematical packages. In this case mathematical 

package MAPLE V was applied in order to gain the further presented characteris-

tics. The voltages uq av, ud av of the transformed model calculated in accordance 

with (4.67) contain phase voltages U ph, whose value for a typical supply of the 

BLDC motor are assumed in the form  

 3/UU ph = ,                                          (4.72) 

which forms a simplification by assuming sinusoidal waveforms of the i1, i2, i3 

currents in the particular phase windings of the motor. The algebraic model of the 

motor under of the supply of phase windings in accordance with (4.72) has made 

it possible to determine the static characteristics in the both researched BLDC  
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motors. For the 6.6 [kW] motor the characteristics in the function of the commuta-

tion advance angle į are presented in Figs. 4.27 and 4.28. These are the respective 

families of characteristics Iq, Id, Ia = f(į) and Ωr, Ș = f(į), for four values of the 

load torque Tl = 15, 25, 35, 45 [Nm]. More detailed descriptions are found in the 

captions under the figures. 

 
a)     b) 

c)  

Fig. 4.27 Characteristics of currents of the 6.6 [kW] BLDC motor as a function of advance 

angle į: a) Iq transformed current for Tl = 45, 35, 25, 15 [Nm], (top –down) b) Id trans-

formed current for Tl = 15, 25, 35, 45 [Nm] (top –down) c) Ia armature current for Tl = 45, 

35, 25, 15 [Nm], (top –down) 

 
 a)    b) 

Fig. 4.28 Characteristics of speed and efficiency of the 6.6 [kW] BLDC motor as a function 

of advance angle į: a) Ωr speed [rev/min] for Tl = 15, 25, 35, 45 [Nm], (top –down) b) effi-

ciency Ș for Tl = 15, 25, 35, 45 [Nm], (top-down at į = 10º) 
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From the presented curves stem a number of conclusions. Iq transformed cur-

rent does not depend much on advance angle į, but mainly on load torque Tl, as it 

decides on electromagnetic torque value at the steady state. According to (4.71), it 

is equal to: 

rle DpTT Ω+=                                           (4.73) 

The current Id is considerably relative to the advance angle į since this corre-

sponds to a change in the position of the axis of the brushes in a classical DC ma-

chine with a mechanical commutator. 

The commutation advance angle should be set in a manner that ensures that the 

value of Id is close to zero, i.e. in the range of į = 25º…35º in the characteristic 

presented in Fig. 4.27b. For this case the operation of the drive occurs at a mini-

mum armature current Ia and maximum efficiency Ș. The selection of higher val-

ues in this range makes it possible to ensure the operation of the drive for a higher 

rotational speed Ωr (Fig. 4.28a) at the expense of the deterioration of efficiency. 

Another group of characteristics presented in Figs. 4.29 and 4.30 shows the 

same variables as formerly but the results are presented is in the function of the 

load torque Tl. The other parameter in the figures that offers a distinction between 

the particular waveforms is the advance angle į = 10º, 20º, 30º, 40º. 

 

 
a) b) 

c)  

Fig. 4.29 Characteristics of currents for the 6.6 [kW] motor in a function of load torque Tl: 

a) Iq transformed current for į = 40º, 30º, 20º, 10º (top – down) b) Id transformed current 

for į = 40º, 30º, 20º, 10º (top – down), c) Ia armature current for į = 40º, 30º, 20º, 10º (top 

– down, at Tl = 10 [Nm]) 
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 a)     b) 

Fig. 4.30 Characteristics of rotor’s speed and efficiency factor for the 6.6 [kW] motor in a 

function of load torque Tl: a) rotational speed for į = 40º, 30º, 20º, 10º (top – down) b) effi-

ciency factor for į = 10º, 20º, 30º, 40º (top – down, at Tl = 10 [Nm]) 

 
d) b) 

 

c)  

Fig. 4.31 Characteristics for the 0.95 [kW] motor, in a function of advance angle į: a) Ia armature 

current for Tl = 6.0, 4.5, 3.0, 2.5 [Nm] (top – down) b) rotational speed for Tl = 1.5, 3.0, 4.5, 6.0 

[Nm] (top – down) c) efficiency factor for Tl = 1.5, 3.0, 4.5, 6.0 [Nm] (top – down, at į = 10º) 

In the commentary of the information found in the sets of characteristics in Figs. 

4.29 and 4.30 one can conclude that the family of the characteristics Iq = f(Tl) gen-

erally presents the involvement of the reluctance torque in the total torque Te of the 

motor. The largest share of the reluctance torque Ter occurs for į = 10º and  

this characteristic lies the lowest in its family. This observation is confirmed by 

waveform Id = f(Tl), where for į = 10º, Id has negative and decreasing values, thus 
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leading to adequately positive reluctance torque Ter. The mechanical characteristics 

for Ωr = f(Tl) in Fig. 4.30a have a hyperbolic waveform which is particularly ob-

served for small loads. This comes as a consequence of the demagnetizing effect of 

the current Id in this range, which assumes positive values there (Fig. 4.29b). The 

efficiency of the motor (Fig. 4.30b) for į = 10º…40º and the load that is close to its 

rated value Tl = 20…30 [Nm] is high and exceeds Ș > 90%, and reaches a maxi-

mum of over 92%. As one can conclude from the shape of the characteristics the 

curves are quite flat and even overloading of the motor two times does not result in 

a considerable loss of drive efficiency. The characteristics derived in an analogical 

manner for the smaller of the examined motors with the rated output of 0.95 [kW] 

(motor A, Table 4.3) are presented in an abbreviated form in Figs. 4.31 and 4.32. 

 
b) b) 

 

 

c)  

Fig. 4.32 Characteristics for the 0.95 [kW] motor in a function of load torque Tl: a) Ia arma-

ture current for į = 45º, 35º, 25º, 15º (top – down, at Tl = 1 [Nm]) b) rotational speed for į 
= 45º, 35º, 25º, 15º (top – down) c) efficiency factor for į = 15º, 25º, 35º, 45º (top – down, 

at Tl = 1 [Nm]) 

The static characteristics for an untransformed model of the BLDC motor 

(4.60), (4.65) for two-phase control cannot be gained simply in the algebraic form 

since they are relative to the rotor’s angle. Obviously, the equations with the peri-

odically variable coefficients and solutions for the steady state in accordance with 

Floquet’s theorem are referred to in literature with regard to mathematical models 

of electric machines. However, for the case of such an abbreviated mathematical 

model and low cost of calculations, the static characteristics can be derived as a 
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set of stationary points in the dynamic state. This approach has another advantage, 

namely, that it presents whether a given static state of a drive is possible to 

achieve from a given initial state. Numerous examples indicate that this is not al-

ways the case, in particular with regard to BLDC motors with a higher share of the 

reluctance torque or cogging torque. The static characteristics of a 6.6 [kW] motor 

gained as a result of this method are presented in Figs. 4.33 and 4.34. 

From the comparison of characteristics derived on the basis of the transformed 

and untransformed models of the motor one can conclude that both of them look 

very similar. The only relevant difference regards the waveform marking the cur-

rent of the armature Ia = f(Tl). In the transformed model (Fig. 3.29c) the values of 

the current for a small load are considerably higher than the ones gained on the 

basis of the untransformed model (Fig. 4.33a). This comes as a consequence of the 

course of the term Id in the transformed model. For higher loads the relevance of 

the differences starts to fade. 

 
 a)     b) 

Fig. 4.33 Steady-state characteristics for 6.6 [kW] BLDC motor in a function of load 

torque, computed by untransformed model: a) Ia armature current for į = 40º, 30º, 20º (top 

– down) b) Ωr rotor velocity for = 40º, 30º, 20º (top – down) 

 
 a)     b) 

Fig. 4.34 Steady-state characteristics for 6.6 [kW] BLDC motor in a function of load 

torque, computed by untransformed model: a) efficiency factor for į = 20º, 30º, 40º (top – 

down) b) total losses for į = 40º, 30º, 20º, (top – down) 
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At this occasion one can note that the two models applied in this case, i.e. the 

transformed and the untransformed ones are not completely equivalent. By defini-

tion in the transformed model an assumption is made that each of the three phases 

of the armature is independently supplied. In addition, the influence of commuta-

tion is disregarded. The untransformed model accounts for the constraints imposed 

by two-phase supply and involves commutation between the star connected wind-

ings while the switchings occur during the rotation of the rotor in the function of 

its position in accordance with the diagram in Fig. 4.10. The advantage of the 

transformed model is that it is very simple and does not pose any problems during 

calculations. This plays an important role in a complex regulation system in which 

a single BLDC motor forms one of many components of the system as a drive  

in one of the joints, for instance as an industrial manipulator. The static character-

istics comprise the sets of the possible steady states of the drive. However, the  

 

a)  

b)  

c)  

Fig. 4.35 Transients following stepwise change of advance angle į: 30º→40º, for 6.6 [kW] 

motor, computed by untransformed model of BLDC: a) Ia currents b) electromagnetic 

torque c) rotor’s speed 
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transfer between two points on the characteristics occurs as a result of transients 

and, hence, transfer is not always possible since we have to do with a non-linear 

dynamic system. For the purposes of illustration the figures that follow present the 

transients for the dynamic states that occur during the change of the parameters in 

a system with BLDC motor. Figs. 4.35 and 4.36 present transients resulting from a 

abrupt change of the advance angle į: 30º→40º for an untransformed and trans-

formed models of the motor, respectively. 

 

a)  

b)  

c)  

d)  

Fig. 4.36 Similar transients as in Fig 4.35, but computed by transformed model: a) Iq, Id 

currents b) Ia armature currents c) electromagnetic torque d) rotor’s speed 
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For the case of the results gained from untransformed model the increase of the 

speed Ωr is smaller since in a two-phase motor supply the  response of the drive to 

the change in the advance angle į is limited in comparison to the case of inde-

pendent supply of three phases, which is additionally confirmed by the static char-

acteristics of the drive presented earlier in this section. The two figures that fol-

low, i.e. Figs. 4.37 and 4. 38 present transients for the respective transformed and 

untransformed model after a stepwise change in the advance angle į: 30º→20º. 

This is a change that is the opposite of the one that was previously presented as it 

results in the reduction of the rotor speed and braking in the transient period. 

 

a)  

b)  

c)  

Fig. 4.37 Transients following stepwise change of advance angle į: 30º→20º, for 6.6 [kW] 

motor, computed by untransformed model of BLDC: a) Ia currents b) electromagnetic 

torque c) rotor’s velocity 
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a)  

b)  

c)  

d)  

Fig. 4.38 Similar transients as in Fig. 4.37, but computed by transformed model: a) Iq, Id 

transformed currents b) Ia armature currents c) electromagnetic torque d) rotor’s speed 

The comparison between the results of calculations for the untransformed and 

transformed models indicates a greater decrease of the rotor’s speed (Fig. 4.38d 

versus Fig. 4.37c) accompanied by an adequately higher increase of the speed 

(Fig. 4.36d versus Fig. 4.35c) for the case of the results gained using the trans-

formed model in which the windings are not connected. The same results are 

gained on the basis of static characteristics, for instance from the comparison of 

the results in Fig. 4.30a with the ones in Fig. 4.33b. 
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4.4.3   Control of Rotational Speed in BLDC Motors 

The basic technique applied for the control of the DC motors, including BLDC 

motors, involves regulation by altering voltage U, which is currently realized with 

the aid of the pulse width factor ku of PWM control. For the systems without en-

ergy recuperation the change of the factor ku, which realizes the complete change 

of the rotor’s speed, occurs approximately in the range: 

0.102.0 …=uk                                            (4.74) 

while in the systems with energy recuperation in the range 

0.151.0 …=uk                                           (4.75) 

The difference for the both types of the control results from the fact that during the 

return of the energy the motor over this period is fed with a voltage with negative 

value -U, so that for ku = 0.5 the mean value of the supply voltage is equal to 0. 

The static characteristics for the control of the motor resulting from the change of 

the pulse width factor without the recuperation of the energy into the source are 

presented in Figs. 4.39 and 4.40 for the adequate different values of the load 

torque Tl and various values of the advance angle į. 

 

 
a) b) 

 
 c)     d) 

Fig. 4.39 Characteristics for 0.95 [kW] motor in a function of ku factor , without energy re-

cuperation, for į = 35º: a) Iq transformed current for Tl = 6.0, 4.5, 3.0, 2.5 [Nm] (top – 

down) b) Id transformed current for Tl = 1.5, 3.0, 4.5, 6.0 [Nm] (top – down) c) Ia armature 

current for Tl = 6.0, 4.5, 3.0, 2.5 [Nm] (top – down) d) rotational speed for Tl = 1.5, 3.0, 

4.5, 6.0 [Nm] (top – down) 
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 a)     b) 

Fig. 4.40 Characteristics for 0.95 [kW] motor in a function of ku factor, without energy re-

cuperation, for Tl = 3 [Nm], a) Ia armature current for į = 15º, 45º, 35º, 25º  (top – down, at 

ku =1) b) rotational speed for į = 45º, 35º, 25º, 15º (top – down) 

Similar characteristics are displayed for the control with energy recuperation; 

however, the change of the pulse width factor is limited in accordance with (4.75). 

Selected characteristics for this type of control are presented in Fig. 4.41. 

 
a) b) 

 
 c)     d) 

Fig. 4.41 Characteristics for 0.95 [kW] motor in a function of ku factor, with energy recu-

peration: a) Ia armature current for į = 35º, Tl = 6.0, 4.5, 3.0, 2.5 [Nm] (top – down) b) ro-

tational speed for į = 35º, Tl = 1.5, 3.0, 4.5, 6.0 [Nm] (top – down) c) Ia armature current 

for Tl = 3.0 [Nm], į = 15º, 45º, 35º, 25º, (top – down, at ku = 1) d) rotational velocity for  

Tl = 3 [Nm], į = 45º, 35º, 25º, 15º  (top – down) 
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The two figures that follow present transient state, which occurs after decreas-
ing pulse width factor from ku = 1 to ku = 0.75, change that is equivalent to the re-
duction of the supply to the half of the source voltage value. 

 

a)  

b)  

c)  

Fig. 4.42 Transients following stepwise change of ku factor: ku: 1 → 0.75, for 6.6 [kW] motor by 

use of the untransformed model: a) ia armature current b) electromagnetic torque c) rotational speed 

a)  

Fig. 4.43 Similar transients as in Fig 4.42, but computed by use of the transformed model 

of BLDC: a) iq current b) iq, id currents, c) ia armature current, d) electromagnetic torque, e) 

rotor speed 
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b)  

c)  

d)  

e)  

 
Fig. 4.43 (continued) 

 
The characteristics presented in the two figures (Figs. 4.42 and 4.43) are similar 

with the only exception of the waveform for the armature currents. For the case of 

the waveform resulting from the application of the transformed model in the tran-

sient state the armature current does not decrease during the braking of the drive 

but shows an increase. This is opposite than in the case for transients gained on the  
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basis of the untransformed model. This comes as a consequence of the sharp de-

crease of the current iq and increase of the current id, since in this manner the 

transformed model realizes the stepwise changes of the motor load. Physically this 

means a different type of motor braking for the independent supply of three phase 

windings without constraints than it is the case in a three-phase system connected 

in a star for the two-phase supply. As it was mentioned before, obtaining static 

characteristics in an untransformed model is associated with the need of calculat-

ing a series of transients that finally gain a steady state. In this manner the charac-

teristics in Figs. 4.33 and 4.34 were drawn up in the function of the machine load. 

The same method was followed in order to gain the characteristics presented be-

low in the function of commutation advancement į for three different pulse width 

factor values ku = 1, 0.9, 0.8. This was conducted in a system with energy recu-

peration so that the anticipated values of rotational speed are found in the range 

that is in agreement with the formula below 

)12( −Ω=Ω unr k                                         (4.76) 

that is Ωn, 0.8 Ωn, 0.6 Ωn, respectively. The characteristics are presented in  

Figs. 4.44 and 4.45. 

 

 
a) b) 

 

c)  

Fig. 4.44 Characteristics for 6.6 [kW] motor in a function of advance angle į, for ku = 1, 

0.9, 0.8 and Tl = Tn: a) Ia armature current b) total energy losses ΣΔP c) efficiency factor Ș 
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 a)     b) 

Fig. 4.45 Characteristics for 6.6 [kW] motor in a function of advance angle į, for ku = 1, 

0.9, 0.8 and Tl = Tn: a) rotational speed b) mechanical power Pm 

a)  

b)  

c)  

Fig. 4.46 Shapes of the steady-state ia current for: a) į = -15º b) į = 15º c) į = 45º; ku = 1  

and Tl = Tn 

The characteristics gained in this way are not smooth since they are formed on 

the basis of a limited number of points for the variable į, i.e. about 30 points and, 

in addition, the final steady state of the drive is difficult to determine in a compa-

rable way for each final point. The characteristics presented in Fig. 4.44, i.e. for  
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armature current Ia, total losses ΣΔP and, within a certain range, efficiency Ș indi-

cate that for a steady load these values are only slightly relative to factor ku. Con-

currently, the curves in Fig. 4.45, i.e. rotational speed Ωr and mechanical power 

Pm are considerably dependent on the value of the voltage and, consequently, on 

the value of factor ku, which directly affects the value of the voltage. As a result, it 

is the value of the voltage supplying armature, here represented by pulse width 

factor ku, that is the basic variable responsible for the control of BLDC drive, 

while high energy efficiency is to be maintained and it is not considerably affected 

during such control procedure. In addition, Fig. 4.46 presents waveforms of arma-

ture current ia for various values of the advance angle į. 

4.5   Control of BLDC Motor Drives 

4.5.1   Control Using PID Regulator  

As it is indicated by static characteristics and transients, BLDC motor drives are 

controlled in a similar manner to other DC motors, i.e. by changing armature volt-

age. In a system with an electronic commutator this occurs as a result of the change 

of the pulse width factor ku. This may happen at every particular pulse as a result of 

modifying the signal controlling the series of the pulses. In most cases we have to 

do with discreet control in which the value of the pulse width factor ku is relative to 

the values of variables in the drive for the duration of the pulse that precedes. Con-

trol is relative to the angle of rotation șr, just as presented earlier on during the  

discussion of the operation of the electronic commutator. The other values that are 

responsible for the control include rotational speed Ωr and armature current ia. 

Since for the purposes of the control it is necessary that the angle of rotation is fa-

miliar, one of the common solutions involves the application of an encoder for  

determination of the position of the rotor and a differential system in order to indi-

rectly obtain speed Ωr. It is sometimes the case that the armature current is applied  

 

 

Fig. 4.47 BLDC drive control system with encoder and PID regulator. HSG – high side 

gates, LSG – low side gates 
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for regulation as the value that is an auxiliary one and can be used for the purposes 

of limiting control, just as presented in the example devoted to start-up of a motor. 

Sometimes the control of BLDC drive does not apply position sensors and the nec-

essary rotor angle is obtained indirectly on the basis of measurements of voltages 

and currents in armature windings by use of state observers. This method will be 

presented in the further part of the current section. A typical control system for a 

BLDC motor drive with a position sensor is presented in Fig. 4.47. 

This section will be concerned with the presentation of examples of BLDC 

drive control systems with speed stabilization for changing loads and stepwise  
 

a)  

b)  

c)  

d)  

Fig. 4.48 Stabilization of rotor speed by PID regulator (kP = 60; kI = 300; kD = 0.5) after 

stepwise load torque change Tl: 3 [Nm] → 9 [Nm] and consequently 9 [Nm] → 1 [Nm]: a) 

armature currents b) rotor speed c) electromagnetic torque d) speed error [%] 
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change of the input value for a constant motor load. Such a basic control task us-

ing PID regulator reveals the ability of BLDC motors to operate in the drive con-

trol based systems on changing the value of the supply voltage. Fig. 4.48 presents 

results of simulations conducted using an untransformed model of the motor for 

stabilizing rotational speed for a stepwise change of the load torque from the rated 

value of Tl = 3 [Nm] initially to Tl = 9 [Nm], i.e. three times overloading the mo-

tor followed by a stepwise change to reach the value of Tl = 1[Nm], which is one 

third of the rated load. 

 

a)  

b)  

c)  

d)  

e)  

Fig. 4.49 Control voltage components and armature voltage during stabilization of speed 

(see Fig 4.48): a) P component b) I component c) D component d) armature voltage e) ku 

factor 
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a)  

b)  

c)  

Fig. 4.50 Stabilization of rotor speed by PID regulator (see Fig 4.48) but for different con-

trol values: kP = 10; kI = 50; kD = 0.1: a) armature currents b) rotor speed c) speed error  

Figs. 4.48 – 4.50 illustrate a correct stabilization of the rotor speed for very  

dynamic changes of the load. For high gain values of PID regulator (Fig. 4.48) 

the error of speed regulation is in the range |İΩ| = 0.4%, while for a lower 

gains (Fig. 4.50) this error ranges around |İΩ| = 2 %, which denote values that 

are approximately proportional to the gains applied for kI, kP, kD factors. Sta-

bility state is achieved after around 0.5 [s]. Beneficial conditions for regula-

tion are secured by a surplus of the regulation that involves input of the supply 

voltage U = 300 [V] to a motor while the rated value of the voltage is U = 120 

[V]. As one can see for such an intensive regulation the system of the supply, 

commutator and motor itself have to be designed to withstand the maximum 

value of the voltage (300 [V]). The following waveforms, i.e. the ones pre-

sented in Figs. 4.51 and 4.52 illustrate PID regulation for the stepwise change 

of input speed Ωd : 500 → 1500 [rev/min] for both untransformed and trans-

formed models of the motor. 
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a)  

b)  

c)  

d)  

Fig. 4.51 PID regulation of rotor speed of the 6.6 [kW] motor, after stepwise change of re-

quired value of speed Ωd : 500 → 1500 [rev/min]. Results for untransformed model and: kI 

= 1000, kP = 500, kD = 10: a) stator currents b) electromagnetic torque c) rotor speed d) 

armature voltage 
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a)  

b)  

c)  

d)  

Fig. 4.52 PID regulation of rotor speed – transients like in Fig 4.51, but resulting from 

transformed d,q model: a) d,q currents b) electromagnetic torque c) rotor speed d) armature 

voltage 

The waveforms in Figs. 4.51 and 4.52 indicate that the transients resulting from 

the application of transformed and untransformed models are very similar. The 

regulation is realized quickly and effectively despite large difference in terms of 

the target speed. However, this happens under the assumption of accessibility  

of the higher value of supply voltage U = 1.5Un and an additional condition that 

the motor is capable of the generation of a surge torque of about Te = 500 [Nm],  
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a)  

b)  
 

c)  

d)  

Fig. 4.53 PID regulation of rotor speed of the 6.6 [kW] motor, with armature current limita-

tion to ir = 110 [A], after stepwise change of required value of speed Ωd: 500 → 1500 

[rev/min]. Results for untransformed model and kI= 1000, kP = 500, kD = 10: a) stator cur-

rents b) electromagnetic torque c) rotor speed d) armature voltage 

i.e., 20 times the value of Tn. Such regulation properties can be gained as a result 

of using a motor and supply system that is oversized in relation to the rated value 
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during operation. For smaller requirements regarding the regulation speed it is 

possible to apply a more economical supply system and introduce current delim-

iter in the motor design. The two figures that come below, i.e. Figs. 4.53 and 4.54 

present the regulation of the motor for a stepwise change of the input speed and 

simultaneous application of a current delimiter which wouldn’t allow armature 

currents surges that exceed set multiple of the rated value, as in the previous ex-

amples. Fig. 4.53 presents the results for the stepwise increase of the input value 

of the rotational speed while the curve in Fig. 4.54 presents the example involving 

the reduction of the input value. For both cases the armature current is limited to 

the value of ir = 110 [A], which is about five times the value of the rated current. 

 

a)  

b)  

c)  
 

Fig. 4.54 PID regulation of rotor speed of the 6.6 [kW] motor, with armature current limita-

tion to ir = 110 [A], after stepwise change of required value of speed Ωd: 1500 → 500 

[rev/min]. Results for untransformed model and kI= 1000, kP = 500, kD = 10: a) stator cur-

rents b) electromagnetic torque c) rotor speed d) armature voltage 
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d)  

Fig. 4.54 (continued) 

4.5.2   Control with a Given Speed Profile  

BLDC motor drives are capable of performing complex control tasks including the 

ones involving a given profile of drive speed and a given profile of angular posi-

tion of the rotor. This type of control is named tracking control since the role of 

the control system is to follow the given trajectory of the motion while the role of 

the drive regulator (for instance, PID type) is to correct the error of the performed 

trajectory. This type of practical issues are well worth designing with the aid of 

signal processors that have been developed specifically to collect signals from 

measuring converters, perform numerical calculations associated with the control 

and send command signals to be executed in order to influence the operation of an 

electronic commutator. 

Signal processors are equipped with internal components that serve for the pur-

poses of control for instance several generators of PWM signal thus executing the 

tasks of the control of an converter. An example of a control system consisting of 

a BLDC motor and a signal processor is presented in Fig. 4.55. 

The results of a computer simulation of a sample control task for a BLDC  

drive with a given speed profile with trapezoidal shape are presented in  

Figs. 4.56 – 4.58. In this task the rotor speed increases from 0 to 2.500 [rev/min] 

within 0.8 [s] and remains at this level for another 1.2 [s], after which within 1.0 

[s] it decreases to 500 [rev/min]. The calculations for the case of this simulation 

have been conducted with the aid of untransformed mathematical model of a  

motor (Fig. 4.56) and with preserving d,q transformation (Fig. 5.57). Fig. 4.58 

contains a comparison of the results of control for various values of gains of the 

PID regulator. 
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Fig. 4.55 Control system of a BLDC motor, without a rotor position gauge with a signal 

processor 

 
a) 

Fig. 4.56 Rotor speed control of the 6.6 [kW] PMDC motor, according to trapezoidal shape 

of speed trajectory, under the nominal load of Tl = 25 [Nm]. PID regulator settings are: kI = 

1000, kP = 500, kD = 10. Untransformed model employed: a) armature currents b) rotor 

speed c) electromagnetic torque d) motor voltage e) speed error [rev/min] 
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b)  

c)  

d)  

e)  
 

Fig. 4.56 (continued) 
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a)  
 

b)  
 

c)  
 

d)   

Fig. 4.57 The same control problem as in Fig 4.56, but transformed d,q model of BLDC is 

employed: a) d,q transformed armature currents b) armature currents c) motor voltage d) ro-

tor speed e) electromagnetic torque f) speed error 
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e)  

f)  

Fig. 4.57 (continued) 

a)  

b)  

c)  

Fig. 4.58 Tracking error for trapezoidal speed control of the PMDC motor, like in Fig 4.56, 

but for various PID regulator settings: a) kI = 100, kP = 50, kD = 1 b) kI = 400, kP = 200, 

kD = 2 c) kI = 1000, kP = 500, kD = 10 
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On the basis of the results presented in Fig. 4.58 one can conclude that  

the error of the drive control is roughly proportional to the values of regulator’s 

gains. 

4.5.3   Control for a Given Position Profile  

The application of a signal processor as an electronic system that combines the 

properties of a converter of measured quantities, a digital calculation processor 

and a generator of control signals offers the possibility of performing complex is-

sues regarding a BLDC motor drive control with an alternative of eliminating a 

position sensor [19,24,30,38,40]. Fig. 4.55 presents a system including a signal 

processor that collects voltage signals from a EMF sampler and with the aid of 

such a system that is capable of determining the periods during which the transis-

tors are in the ON state without direct measurement of the angle of rotation. The 

question of the sensorless control forms a complex task since it requires the de-

termination of the position of the rotor even before start-up when the induced 

EMF is too small in order to determine rotor position on its basis. Subsequently, 

after the required threshold is exceeded, on the basis of the induced EMF in the 

unsupplied phase of the armature winding at a desired instant the control signal for 

the electronic commutator occurs. Fig. 4.59 presents EMF induced between 

clamps 1,2 during the start-up of the motor. 

 

 

Fig. 4.59 EMF induced in armature winding of a BLDC motor shortly after start-up 

For the operation of the motor with higher speed the determination of the in-

stant of the commutation on the basis of the measured currents and EMF in the 

windings is easier since there is a considerable angular correlation between the 

two values that are relative to the position of the rotor. Fig. 4.60 presents the cor-

relation between SEM and armature currents and Fig. 4.61 contains the correlation 

of the voltages between the clamps and currents. 
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a)  

b)  

Fig. 4.60 EMF and armature currents for BLDC operation with a normal speed: a) e12, i1 b) 

e23, i2 

a)  

b)  

Fig. 4.61 Phase-to phase voltages and armature currents for BLDC operation with a normal 

speed: a) u12, i1 b) u32, i2 

As it has already been mentioned, during the start-up the situation is more 

complex and in order to determine the rotor position it is possible to apply the 

pulse method [29,30]. The application of this method, however, requires that the 

rotor has a variable reluctance during the rotation, i.e. a situation which involves 

the salient pole rotor. Fig. 4.62 presents electromotive forces (EMFs) and currents 

for the case of the start-up, for which the waveforms confirm the lack of simple 

correlation between the curves. 
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a)  

b)  

c)  

Fig. 4.62 EM Forces and currents during starting of BLDC motor: a) e12, i3 b) e23, i1 c) e31, i2 

An example of the control of the reversible BLDC drive including the regula-
tion of the position and the speed is presented in the following example. 

Example 4.2 Fig. 4.63 presents a diagram of the drive of a large, massive pendu-
lum (swing) with a controlled amplitude and period of oscillations diverging from 
a natural period, which anyhow is dependent on damping of the motion. The drive 
applies a motor with a rated power of 0.95 [kW] (Table 4.3). 

 

Fig. 4.63 View of a massive pendulum driven by BLDC motor 
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The data for the mechanical part of the drive are as follows: 

 ][8 kgm =    - mass of the swing 

][8.2 ml =    - length of the pendulum 

][018.0
2

NmsJJJ gsr =+=  - moment of inertia of the motor and 

the fast side of the gear 

][1.0 2NmsJ =  - moment of inertia of the slow side of 

the gear and the pendulum relative to 

the center of mass 

][2.1 NmsD =ϕ    - coefficient of pendulum damping 

][00015.0 NmsDr =   - coefficient of motor damping 

 ][120 −=gk    - transmission ratio 

Application of Lagrange’s method requires the calculation the kinetic energy of 

the mechanical part of the system: 

( ) 2

2
122

2
122

2
12

2
12

2
1

rrrr JmlJmlJJT θϕϕθϕ ����� ++=++=  

The virtual work of the system is equal to: 

rrre DTDA δθθδϕϕδ ϕ )()( �� −+−=  

where: Te - denotes the electromagnetic torque of the motor. 

In its mechanical part the system has a single degree of freedom. Since the cal-

culations are to be performed from the point of view of the motion of the pendu-

lum, in this case q1 = φ should be adopted as generalized coordinate. The con-

straints resulting from the transmission take the form: 

rgk θϕ =                                                  (4.77) 

After the introduction of the constraints (4.77), Lagrange’s function for this sys-

tem takes the form: 
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where: - ( ))/()/(1
2222

mlJkmlJmlJ rgp ++=  - is the total moment of inertia re-

duced to the low speed side. Concurrently, the virtual work of the system is equal to: 

( ) δϕδϕϕδ ϕϕ QkDDkTA grge =+−= �)(
2

                        (4.79) 

After the application of the Lagrange’s equation (2.51) for the generalized coordi-

nate φ we obtain the equation of motion for the mechanical variable in the form: 

ϕϕϕ
Q
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∂
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�
                                           (4.80) 
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After substitutions in the Lagrange’s function (4.78), we have: 

( ) pgrge JkDDkTmgl /)(sin
2 ϕϕϕ ϕ ��� +−+−=                        (4.81) 

The assumed pulsation of the motion of the pendulum is equal to the pulsation of 

the mathematical pendulum with moment of the inertia ml
2
, which differs from Jp 

(4.78), hence: 

]/1[9.1 s
l

g
≅=Ω                                                (4.82) 

The assumed motion of the pendulum (Example 4.2a) involves the maintenance of 

the undamped fluctuations with the amplitude φ0 and pulsation Ω (4.82). 

Hence, the required trajectory is determined as follows: 
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The other type of the given motion (Example 4.2b) is the exponential start-up of 

the pendulum from the initial angle φ0 to angle φa with the time constant of Ta. 
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The mathematical model of the system also in the mechanical part is nonlinear  

and this is so to the larger degree the greater is amplitude of the motion of the 

pendulum φ0, φa. This could be explained by the linearizing approximation of the 

pendulum swing  

1sin <≅ ϕϕϕ                                           (4.85) 



356 4   Brushless DC Motor Drives (BLDC)

 

that is fulfilled with much increasing error for higher values of φ. The regulation 

of the drive follows as a result of the application of PIDD regulator, i.e. the one 

that is responsible for the control of 4 types of error: 
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The figures that follow, i.e. Figs. 4.64 to Fig 4.69 present the results of the regula-
tion for Example 4.2a, which denotes swinging of the pendulum with a given  
amplitude. But the first of the figures (Fig. 4.64) shows the free motion of the 
pendulum with damping and without drive regulation. This gives the basis for the 
comparisons for examples analyzed further in which the regulation system and the 
actuator, i.e. BLDC motor and the transmission are engaged to perform the motion 
in accordance with the given trajectory. 

 

Fig. 4.64 Free swing of the pendulum without any intervention of a regulation system, for  

φ0 = -50º, -70º, -80º 

The figures that come below present the motion of the pendulum and regulation 

curves resulting in the achievement of the designed trajectory (4.83). 

a)  

Fig. 4.65 Curves for electromechanical variables for the PIDD controlled pendulum swing-

ing, φ0 = -70º: a) i1(φ) current b) armature currents c) electromagnetic torque Te = f(t) d) 

electromagnetic torque Te = f(φ) e) ku factor f) Ua/U motor voltage curve 
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b)  

c)  

d)  

e)  

f)  

Fig. 4.65 (continued) 
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a)  

b)  

c)  

d)  

e)  

Fig. 4.66 Mechanical variables’ curves for the PIDD controlled pendulum swinging, φ0 = -

70º: a) position angle φ1 b) angular velocity ω1 c) angular acceleration a1 d) position error 

İφ e) speed error İω 
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a)  
 

b)  
 

c)  
 

d)  

Fig. 4.67 Unstable character of pendulum regulation for φ0 = -80º: a) position angle φ1 b) 

angular velocity ω1  c) angular acceleration a1  d ) position error İφ  e) speed error İω  f) ku 

factor 
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e)  
 

f)  

Fig. 4.67 (continued) 

a)  

b)  

c)  

Fig. 4.68 Comparison of position error İφ, for: a) φ0 = -50º b) φ0 = -70º c) φ0 = -80º 
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a)  

b)  

c)  

Fig. 4.69 Comparison of speed error İω, for: a) φ0 = -50º b) φ0 = -70º, c) φ0 = -80º 

The set of figures that follows, i.e. Figs. 4.70 - 4.74 illustrates solutions to the 

Example 4.2b, which presents start-up of a pendulum from an initial angle of φ0 = 

10º to a swing with an amplitude of φa. The waveform illustrating the start-up in 

accordance with (4.84) is exponentially regulated with the time constant of Ta. 

a)  

Fig. 4.70 Electromechanical variables for exponential starting of the pendulum swing from  

φ0 = -10º to φa = -70º, with PIDD regulator: a) armature currents b) electromagnetic torque  

Te = f(ω) c) electromagnetic torque Te = f(t) d) ku factor e) Ua /U motor voltage 
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b)  
 

c)  
 

d)  
 

e)  

Fig. 4.70 (continued) 
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a)  

b)  

c)  

d)  

e)  

Fig. 4.71 Mechanical variables for the PIDD controlled pendulum swinging, like in Fig. 

4.70: a) position angle φ2 b) angular velocity ω2, c) angular acceleration a2 d) position error 

İφ e) speed error İω 
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a)  

b)  

c)  

d)  

e)  

f)  

Fig. 4.72 Unstable starting movement of the pendulum for φa = -80º: a) position angle φ2 b) 

angular velocity ω2 c) angular acceleration d) position error İφ e) speed error İω f) ku factor  
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a)  

 

b)  

c)  

Fig. 4.73 Starting swing of the pendulum. Comparison of position error İφ, for: a) φa = -50º 

b) φa = -70º c) φa = -80º 
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a)  

b)  

c)  

Fig. 4.74 Starting swing of the pendulum. Comparison of speed error İω for: a) φa = -50º  

b) φa = -70º c) φa = -80º 

The presented results of computer simulation of the pendulum drive indicate 

that such complex regulation issues regarding tracking control of drive reversal 

can be realized with the aid of a PID regulator; however, considerable limitations 

are imposed on it. The motion of the pendulum has to be limited to the degree 

that only slightly exceeds the linear approximation of the model and an adequate 

selection of the gains of the regulator must be accounted for. In addition, motion 

needs to be sufficiently slow and in this case the period of the motion of the pen-

dulum is Tp > 3 [s]. For the angles |φa |> 70º it is very difficult to obtain a stable 

operation of the pendulum and the errors of the regulations are becoming greater. 

However, we can completely confirm the applicability of BLDC motor for this 

type of drive. 

4.5.4   Formal Linearization of BLDC Motor Drive 

The transformed model of the motor (4.50) for variables: 

[ ]T
dqrr ii ,,,Ω= θq                                       (4.87) 

can take the form: 
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where:  
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3( Ψ+=Ψ+−= BAiiiMpiT dqrsdsqe  

- denotes electromagnetic torque of the motor. As a result of the introduction to 

(4.88) of new variables : z1 = șr, z2 = Ωr,  z3 = Te, z4 = id, we receive: 
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where: 
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On the basis of the relation (4.90) and by the use of (4.88) it is possible to deter-

mine the space for such linearized control by determination of the transformed 

supply voltages uq, ud: 
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        (4.91) 

The application of this linearized model of BLDC drive (4.89) can be the follow-

ing: the control value Ȟq constitutes the derivative of the given electromagnetic 

torque Ted: 

edq Tv �=                                                 (4.92) 

Concurrently, the control variable Ȟd constitutes the derivative of the given tran-

sient of the motor’s current id 

dd iv �=                                                   (4.93) 

The design of a trajectory of the motion of the drive can easily apply these vari-

ables obviously in the admissible area of the control that is determined by voltages 
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ud, uq. Under the assumption that we aim to reduce reluctance torque of the motor 

that interferes with transients and concurrently we need to perform a trajectory of 

the motion, the course of action can be the following. Let us assume that approxi-

mately id ≈ 0 and simultaneously on the basis of (4.67) under standard control 

conditions the relation ud ≈ 0 is fulfilled, it is possible to establish the following 

equality on the basis of (4.90): 
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since 
Ψ

=
B

T
i ed
q , when id = 0 and the reluctance torque is missing. 

In the subsequent step, on the basis of (4.91) it is possible to derive voltage uq: 
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             (4.95) 

Under the assumption of a planned trajectory in the form of initial curves for the 

variables 

],,,0[ rdededqd TTvi Ω=== �P                                (4.96) 

after the application of (4.95) we will obtain the function for desired control uqd(t). 

The control system developed in this manner has to ensure the execution of the 

planned regulation of uqd(t) and additionally has an adjustment system with feed-

back, which has been designed to ensure the desired precision of the control de-

spite the occurrence of interference. Moreover, one can note that usually the value 

of A  is small in comparison to BΨ, Ȟq since it is related to the variable term Ms of 

inductance and that could be premises for disregarding the second term in the pa-

rentheses of the expression (4.95). Hence, in most simplified form, the examined 

control can be reduced to: 
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Ψ
Ψ +Ω+=                                   (4.97) 

A problem is associated with the fact that the calculated controls, for instance 

(4.95) and (4.97) have to be performed in an untransformed system, which means 

that there is a necessity to apply the inverse transformation to obtain a system of 

phase voltages of the armature. The proposed transients for ud = 0 are relatively 

easy in execution with the aid of pulse width factor ku (4.66). Another type of con-

trol designed to match the planned trajectory of motion without transformation of 

the variables will be presented in the section that follows. 
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4.5.5   Regulation of BLDC Motor with Inverse Dynamics  

This type of regulation is effective with regard to a system in which case it is pos-

sible to plan the trajectory of motion, which involves the determination of the po-

sition, speed and acceleration of the mechanical variables. In the examined case of 

a brushless DC motor this means that the desired transients rdrdrdrd a=ΩΩ �,,θ  

need to be familiar. Subscript d denotes the desired value, i.e. the one that marks 

an ideal trajectory of motion. The actual trajectory rrrr a=ΩΩ �,,θ  usually does 

and will diverge from the desired one as a result of the effect of a number of fac-

tors which are disregarded when stating initial assumptions that tend to simplify 

either the mathematical model of the drive, constant parameters of the supply or 

other factors that get in the way of the process of regulation. The difference be-

tween the transients forms the error of the regulation. It is further applied for im-

proving the control signal in the additional component of the regulation system, 

i.e. the corrector. 

rrda

rrd

rrd

aa −=

Ω−Ω=

−=

Ω

ε

ε

θθεθ

                                          (4.98) 

On the basis of the designed trajectory șrd, Ωrd, ard and mathematical model it is 

possible to derive the needed rotational torque for a drive 

),,( rdrdrded afT Ω= θ                                      (4.99) 

that is subsequently performed by the regulator of the torque which involves the 

calculation and input of a signal, that has the value corresponding to the pulse  

 

 

Fig. 4.75 BLDC drive control by the inverse dynamics method 
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width factor ku, into the system of the electronic commutator. The diagram of the 

control system that applies the inverse dynamics method is presented in Fig. 4.75. 

This method finds a common application in a number of drive systems whose 

task involves tracking of a given trajectory. The regulation system determines the 

basic control procedures on the basis of the computed required state while the PID 

corrector offer an input of an additional signal thus minimizing the control error. 

The benefits resulting from the application of this method include increase of the 

regulation speed, considerable reduction of errors since the predominant part of 

the control signal is given in advance and regardless of the error. Other advantages 

of this type of regulation are associated with effective control in non-linear sys-

tems since in this case the limitations regarding PID regulation are no longer in 

force. This method finds application in a number of industrial drives including the 

control of manipulators and robots. Below is a demonstration of the operating 

principle in practice with reference to an object from Example 4.2 – control of a 

pendulum. 

Example 4.3 This task involves the control of a large, massive pendulum to 

match a given trajectory, which is considerably diverges from its natural motion. 

The details are identical as in Example 4.2; besides, the illustration in Fig. 4.63 

serves for the analysis. The control of the motion, which forms an example of 

tracking control can be based on the method of inverse dynamics. The trajectories 

are given by the functions (4.83), (4.84) for the variables of the pendulum in mo-

tion and not by the actual rotor movement. The determination of the desired torque 

in accordance with (4.81) offers the following result: 

grdd
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kDDmglJkT

/

)(sin
2

θϕ

ϕϕϕ ϕ

=

+++= ���
              (4.100) 

On the basis of the comparison of the desired torque Ted and the torque actually 

generated by the motor Te it is possible to determine the regulation ku, which is 

additionally adjusted by the signal from PID corrector in the function of the regu-

lation error. This is performed in accordance with the diagram presented in Fig. 

4.75, however, the system is simulated. This practically means that the values șr, 

Ωr, ar as well as Te are determined on the basis of calculations on the mathematical 

model and are not measured. Similarly as in the case of the Example 4.2 the ex-

amination will involve two versions of the desired trajectory: motion of the pendu-

lum with a constant amplitude – starting from the maximum deflection of the pen-

dulum and the other version in which the trajectory of the pendulum begins with 

start-up from a small angle of deflection, equal to 10º, and achieving maximum 

displacement (80º, 100º) at a time constant of  T = 5 [s]. Fig. 4.76 presents the re-

sults of the task in the first version and the motion of the pendulum with an ampli-

tudes of 80º and the following Fig. 4.77 for an amplitude of 100º. Fig. 4.76a pre-

sents the given torque Ted kg calculated in accordance with (4.100) for the planned 

trajectory. 



4.5   Control of BLDC Motor Drives 371

 

a)  

b)  

c)  

d)  

e)  

Fig. 4.76 Electromechanical variables for inverse dynamics control of swinging massive 

pendulum, for φ0 = -80º: a) pre-computed desired torque Ted kg b) position angle φ1 c) angu-

lar speed, d) angular acceleration e) position error f) speed error İω g) ku factor 
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f)  

g)  

Fig. 4.76 (continued) 

a)  

b)  

c)  

Fig. 4.77 Electromechanical variables for inverse dynamics control of swinging massive 

pendulum, for φ0 = -100º: a) desired torque Ted kg b) position angle φ1 c) angular speed d) 

angular acceleration e) position error İφ f) speed error İω g) motor voltage h) electromag-

netic torque Te kg 
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d)  

e)  

f)  

g)  

h)  
 

Fig. 4.77 (continued) 

From the comparison of the transients in Fig. 4.65 with the ones in Fig. 4.76  

(φ0 = -70º) and the transients in Fig. 4.67 with the ones presented in Fig. 4.77    
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(φ0 = -80º and φ0 = -100º) leads to the conclusion that there is a fundamental dif-

ference between the two. One can clearly conclude that the latter group i.e. results 

that are obtained by applying regulation with inverse dynamics, has considerable 

advantages over the ones presented earlier. The differences involve the stabiliza-

tion of the transients to obtain large values of amplitudes of the swing of the pen-

dulum and also very relevant improvement of the accuracy of the regulation as a 

result of applying inverse dynamics. The reduction of the positional error for sta-

bilized transients is over 5 times, not to mention the possibility of steady operation 

for larger displacements. A set of figures that follows presents the results of the 

regulation for the alternative version of the task, i.e. for the start-up of the pendu-

lum. Some samples of transients gained are presented in Fig. 4.79 for a rising am-

plitude of the motion to reach the values φa = 80º and φa = 100º in the stable state 

of the pendulum. 

 

a)  

b)  

c)  

Fig. 4.78 Staring course of the pendulum for φa = 80º, with ‘inverse dynamics’ control: a) 

pre-computed desired torque Ted b) position angle φ2, c) angular speed d) angular accelera-

tion e) position error İφ f) speed error İω g) ku factor 
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d)  

e)  

f)  

g)  

Fig. 4.78 (continued) 
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a)  

b)  

c)  

d)  
 

e)  

Fig. 4.79 Comparison of starting results of the pendulum for φa = 80º versus φa = 100º, 

with inverse dynamics control: a) desired torque Ted kg for φa = 80º b) desired torque Ted kg 

for φa = 100º c) position error İφ for φa = 80º d) position error İφ for φa = 100º e) speed er-

ror İω for φa = 80º f) speed error İω for φa = 100º g) electromagnetic torque for φa = 80º h) 

electromagnetic torque for φa = 100º 
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f)  
 

g)  

h)  
 

Fig. 4.79 (continued) 

In the commentary of the results that were obtained one can compare the results 

presented in Fig. 4.72 with the ones in Fig. 4.78 since both of them refer to the 

same given trajectory, i.e. the start-up of a pendulum to reach φa = 80º for various 

control procedures. For the case of PIDD regulation the start-up directly leads to 

non-stability (Fig. 4.72) and the error of the angular position increases and even 

exceeds already 10°. In contrast, in the case of the application of control using in-

verse dynamics (Fig. 4.78), the error İφ during the start - up tends to stabilize and 

reaches the range of ±2º for a minimum value of the speed error. The results of the 

subsequent Fig. 4.79 indicate that increasing the amplitude to φa = 100º offers the 

possibility of effective regulation of the position in the tracking motion while the 

position error stabilizes in the range of ±5º. The examples presented here indicate 

that the method is very effective despite the fact that it has been applied without 

the precise selection of adequate regulation parameters. 
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Chapter 5  

Switched Reluctance Motor Drives  

Abstract.  The chapter is devoted to Switched Reluctance Motor (SRM) drives. 

Firstly nonlinear magnetizing curves of SRM are presented and their importance 

for motor’s operation is discussed. The model presented in the chapter takes into 

account these nonlinear characteristics depending on phase current and rotor posi-

tion angle, but ignores mutual magnetization of phases. The magnetization curves 

are regarded in a specific and original way as a product of nonlinear functions de-

pending on magnetic saturation and rotor position angle. This approach seems to 

be useful as it enables one to analyze the influence of particular construction ele-

ments on characteristics of a motor. In consequence mutual inductances of phases 

are disregarded, but their actual influence is presented for two typical SRMs, and 

proved to be marginal. Several problems of SRM operation and control are pre-

sented based on mathematical models and results of computer simulations. Among 

others they are: determining a pulse sequence for starting, direct start up with cur-

rent limitation, breaking and a comprehensive discussion of generator operation 

conditions. The problem of regulation parameters fitting is also presented, consid-

ered from a point of view of gaining possibly high efficiency and low torque  

ripple level. As far as control of SRM is concerned there is sliding mode control 

discussed as well as current control and DTC with an aim to minimize torque pul-

sation at various states of operation. Besides, there is the problem of a control with 

and without position/speed sensors presented and state observers application dis-

cussed that enable this kind of control. 

5.1   Introduction 

Switched reluctance motor (SRM) as an engineering solution to the design of the 
electric motor in rotational motion realizes one of the earliest ideas of operation 
principle for the electric motor, which originates from the first half of the 19

th
 cen-

tury. It employs the simple concept of an electromechanical system based on the 
attraction of a ferromagnetic element by an electromagnet. In order to make this 
idea viable for a rotational motor alternately energized coils are situated on Zs sta-
tor teeth, while Zr salient rotor teeth without windings are attracted by adequately 
energized stator windings. The art in their design as well as the fundamental tech-
nological problem is associated with adequate energizing and de-energizing stator 
windings in a proper phase sequence in order to ensure a smooth rotation of  
the rotor whose teeth are attracted by generated magnetic field. Despite simple  
operating principle the practical operation of SRM motor is associated with a need 
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to apply fast and efficient electronic switches in order to realize the switching se-
quence. Besides, sensors of rotor position with sufficient precision are needed to 
secure commutation of the currents in the windings. For these reasons the devel-
opment and wide application of the design started as late as 1980s when adequate 
power electronic components were available to realize such switching functions 
[24,32,33]. In order to ensure a starting torque and possibly smooth rotational mo-
tion it is necessary that rotor teeth are not aligned in respect to all corresponding 
stator teeth concurrently. For a motor with a single pole pair p = 1, this simultane-
ous alignment occurs only for the opposite teeth, i.e. more generally at an angular 
interval of π/p. For this reason the number of stator and rotor teeth is usually dif-

ferent. The most common solutions apply the following sequence of teeth num-
bers: Zs/Zr = 6/4 and Zs/Zr = 8/6. Self-evidently, other teeth number sequence is 
encountered, e.g. Zs/Zr = 4/2 for a two-phase motor, or Zs/Zr = 10/8 for a motor 
with five phase windings in the stator. The number of phases for motors with a 
single pole pair is equal to m = Zs/2. This results from the fact that the opposite 
stator teeth are energized simultaneously with an equal current during the connec-
tion of the coils in series. But parallel connection of windings on opposite stator 
teeth is also possible. As a result, two coils of opposite stator teeth form a single 
phase winding of the motor. For higher pole pair numbers, the number of pairs of 
stator and rotor teeth, whose axes overlap, is respectively higher and amounts to p 

> 1 while the stator windings belonging to the same phase are energized in the 
same sequence; hence, the number of phases is equal to m = Zs/(2p). This affects 
the respectively higher electromagnetic torque of the motor. Fig 5.1 presents a 
cross-section of a Zs/Zr = 6/4 SRM motor, i.e. a reluctance three-phase motor. 

 

Fig. 5.1 Cross-section of a Zs/Zr = 6/4 SRM motor, with the indication of rotor position an-

gle șr, and switch angles αon and αoff 
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The application of SRM motor has opened new boundaries in the practice of 

the design of electric motor drives. In connection with this, it would be of value to 

characterize its basic parameters and define the scope of its application. In terms 

of the rated power SRM motors are manufactured in a range from very small units 

with the output of several watts to enormous drives with the power of several hun-

dred kW and can even reach MW level. The comparison of the energy efficiency, 

start-up torques and torque overloads between the typical SRM motors and the 

corresponding induction motors leads to the conclusion that the SRMs offer more 

advantages; however, the advantage of the SRM motor is not significant. A  

comparative analysis of a SRM motor with a corresponding induction motor ac-

counting also for noise emission level is based on the example of [5]. One of the 

characteristics of SRM motor includes the possibility of gaining high rotational 

speeds, as high as 10,000 [rev/min] without special engineering changes in the 

motor. At the same time, SMR motors whose special design makes them high-

speed can reach as high as 100,000 [rev/min]. One has to note that such machines 

have a smooth cylindrical rotor while the effect of variable reluctance is obtained 

as a result of the application of materials that vary in terms of magnetic permeabil-

ity along the circumference of the rotor. Another special feature of SRM motor in-

volves its mechanical characteristic Ωr = f(Tl) whose waveform is similar to the 

series wound DC motors. This means that during an increased load this motor 

considerably slows down it rotation and when the load is reduced it accelerates. 

The negative characteristics of SRM motors include high torque ripple and higher 

noise level in comparison to e.g. induction motors [5,8,16,17,38]. The counter-

measures include the proper magnetic circuit construction and application of ade-

quate control systems thus reducing torque pulses generated by the motor. As far 

as the applications of SRM motors is concerned, they are similar to the uses of in-

duction motors and series wound DC motors. In particular, they find application in 

traction drives and car drives [23,37] due to flexible mechanical characteristics, 

large torque overload capability, simple construction and high level of reliability. 

SRM motors can be successfully applied in servomotors and actuators. SRM ma-

chines can also play the role of generators; however, due to the passive role of the 

rotor the magnetic excitation has to occur as a result of current passing through 

stator windings, which is associated with specific requirements regarding control 

and affects the efficiency of the machine as a generator. Bibliography devoted to 

this problem is numerous [18,19,23] also in the context of the construction of 

wind power stations [34,36] and this area is the subject in chapter 5.4.3. In terms 

of the investment a SRM motor drive is cheaper in comparison to an induction 

motor drive and so is converter as a result of the much more simplified construc-

tion of the stator winding, lack of rotor windings and less complicated system 

needed to supply the machine. At present, the lower popularity of the motor and 

smaller offer on the part of manufacturers result in the fact that SRM motors  

have not yet been able to demonstrate all the advantages they have over induction 

motors. 
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5.2   Operating Principle and Supply Systems of SRM Motors 

The most fundamental issue in the control of SRM motor drives is associated with 

adequate sequential voltage feeding to and disconnecting from motor’s windings. 

Fig. 5.2 presents the cross-section of a motor with Zs/Zr = 8/6 teeth and angular 

position αon and αoff of the rotor for which respective phase windings are supplied 

and subsequently disconnected from an external source. An intuitive understand-

ing of the operating principle of such a motor suggests that the positive torque  

(Te > 0) , i.e. one in accordance with direction of rotation of the rotor is encoun-

tered when the rotor transfers from the position of highest reluctance to the posi-

tion with smallest reluctance with respect to the teeth of the stator whose winding 

is supplied. The characteristic positions of the rotor are denoted as unaligned posi-

tion and aligned position, the latter of which refers to the overlapping of the axis 

of stator teeth and the one on rotor’s teeth. The winding of a given phase should 

be supplied with a current of an adequate value in the range of this rotation angle, 

i.e. αon < șr ≤ αoff. This means that the supply should be switched on as defined by 

angle αon slightly before the unaligned position, while the supply is disconnected 

(as described by angle αoff) slightly in advance in relation to the instant when a 

tooth reaches an aligned position. The difference between the angle of the switch-

ing on of a power supply to the phase winding and the angle when it is discon-

nected is known as conduction angle, which is equal to: 

offonz ααα −=                                                      (5.1) 

As one can conclude, the above mentioned advance of switching on and off of the 

voltage for a specific phase of the motor results from the dynamic characteristics 

of current increase in the phase winding following an instant the supply is 

switched on and subsequent decay of the current after the supply is disconnected. 

Moreover, it is relative to the rotor’s speed, inductance of the windings as well as 

the control of converter switches. For small rotational speeds the current in the 

winding increases relatively fast with regard to the entire conduction angle αz 

while the value of the current is controlled as a result of using PWM method. In 

contrast, for high rotational speeds the increase after switching on and decay of the 

current after disconnecting the supply comes relatively slowly in the time period 

which is determined by the conduction angle αz since this angular range of the ro-

tor motion is covered in a very short period of time. Additionally, relatively large 

back EMF is induced in the windings and the increase of the current is enforced 

only by the difference in voltage between the supply voltage u for a given phase 

and the back EMF eb. As one can see, the control of the switch on angle αon and 

the conduction angle αz forms the basic method applied in the control and adapta-

tion of characteristics of SRM motor, beside the possibility of controlling supply 

voltage usually achieved with the aid of PWM method. As a consequence of ana-

lyzing the operation of SRM motor one can determine the theoretical conduction 

angle for a single phase İ - denoted as stroke angle, which results from the number 

of phases and teeth of the rotor under the assumption of a separate conduction of 

the windings. In a typical SRM the difference in numbers of a stator and rotor 

teeth per pole pair is 2, i.e. Zs – Zr = 2p. Hence the stroke angle İ, as the smallest 
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angular distance between closest stator and rotor teeth, in a state of alignment  

occurring for some other pair of teeth, is 

rrssr mZZZ

p

pZZp

πππ
ε

222112
==⎟⎟⎠

⎞⎜⎜⎝
⎛

−=                                    (5.2) 

For a motor with Zs/Zr = 6/4 teeth this gives an angle İ = 360°/(3·4) = 30°, while 

for one with Zs/Zr = 8/6 teeth stroke angle is equal to İ = 360°/(4·6) = 15°. The ac-

tual value of the conduction angles αz is always greater than the stroke angle İ as a 

result of the processes of current increase and decay in the phase windings and, 

hence, during the operation of the SRM motor there are periods when 2 or even 3 

phase windings are in conducting (‘ON’) state. Since usually the aim is to gain 

high values of electromagnetic torque, the conduction period is extended within 

the range of strong attraction of the rotor’s tooth by the electromagnet made up by 

a pair of stator teeth so that the switch off angle αoff only slightly precedes the 

aligned position. For this reason the process of current decay in a given phase is 

accelerated as much as possible to avoid negative torque values. This occurs after 

the rotor reaches the position determined by the angle αoff  as a result of energizing 

this winding with is reverse voltage u that supplies the phase and, thus, causing  

the energy return to the source. Such a capability has to be secured through the 

commutation system of the phases of SRM motor. 

The basic system of the power supply and commutation of a single phase wind-

ing of SRM involves an asymmetric transistor /diode H bridge shown in Fig. 5.3. 

Since SRM is a reluctance motor and the direction of the torque is not relative to 
 

 

Fig. 5.2 Cross-section of a Zs/Zr = 8/6 SRM motor, with the indication of rotor position  

angle șr, switching angles αon and αoff , as well as conduction angle αz 
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the direction of the current flow through the phase winding, the commutator 

bridge does not need to facilitate current flow through the winding in both direc-

tions and it is sufficient to apply two power transistors and two diodes to ensure 

energy supply and energy return to the source. 

 

Fig. 5.3 A typical commutation H-bridge circuit for switching current of a single phase of a 

SRM 

Over the period when the winding is in supply state from the source both tran-

sistors T1 and T2 are in the ON state. This occurs for the angle of the rotation in 

the range from αon to αoff  and when simultaneously there is a increase of the cur-

rent in the cycle of the PWM regulation of the voltage. However, in the section of 

PWM cycle when phase current decreases, only one transistor and one diode in H 

bridge are in ON state. This could be transistor T2 and diode D2 of the bridge and 

in this case we have to do with a decay of the current in the circuit in which these 

elements short a phase winding. In contrast, after the rotor reaches position αoff, 

both transistors are switched off and the current in the winding is closed in the cir-

cuit formed by two diodes D1 and D2 and the power source. This direction of the 

current flow determined by the diodes results in the return of the energy stored in 

the electromagnetic field into the source accompanied with a rapid decay of the 

current in the winding. We can also consider an option of mechanical energy con-

version over this period and it is only relative to the actual sense of electromag-

netic torque and its value. However, for the purposes of rough explanation of the 

operating principle of the motor we can assume that in the vicinity of the aligned 

position of the rotor the electromagnetic torque is small and, as a result, the return 

of the energy consists only in the return of the energy stored in the electromag-

netic field. The following figures (Fig 5.4 – Fig 5.6) contain an illustration of the 

operation of the commutation system for a single phase winding, for the respective 

low rotational speed, i.e. for n = 600 [rev/min], for the mid speed ranges, i.e. 1600 

[rev/min] (Fig. 5.5) and for higher speeds, e.g. for n = 3000 [rev/min] (Fig. 5.6). 

The variable deciding on the switching sequence is the value of the current in this  
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winding and it is responsible for voltage switching between the values of u and  

0 - i.e. performing so-called ‘soft-chopping’. 

After the completion of the switching cycle in a given phase, i.e. after the rotor 

angle exceeds position αoff, both transistors are switched off and the current in the 

winding decays quickly and recuperation of energy, due to the supply with -u 

voltage, takes place. 

 

Fig. 5.4 Current commutation during a single conduction cycle of a phase winding with a 

current limitation, for a low speed range of SRM 

 

Fig. 5.5 Similar commutation as presented in Fig 5.4, but for a medium speed range of 

SRM 
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Fig. 5.6 Current commutation as in Fig 5.4 and Fig 5.5, but for a high speed range. Current 

regulation is not possible in this case 

The diagram of the commutation system presented in Fig. 5.3 enables one to 

control the current in each of the phases separately. It is possible to apply a more 

economical system, i.e. one enabling the application of a smaller number of power 

electronic switches in the design of the commutation system. One of such exam-

ples is found in Fig. 5.7 for a motor with m = 4 phases or a greater even number of 

phases. The control of the switching sequence of the phases is based on an as-

sumption that during the operation of the motor we don’t have to do with simulta-

neous conduction in more than two phase windings. 

 

Fig. 5.7 Branch-saving commutation system for m = 4 phase SRM machine 

In the presented example we exclude one branch of the converter per four 

branches in two complete H bridges, which means that the number of components 

decreases by 25%. 
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Fig. 5.8 Switch saving commutation scheme with one general T0 switch and single 

switches for each of phase windings 

A system that goes even further in terms of the economical use of electronic 

components is presented in Fig. 5.8. Each of the phases apply a single transistor 

and there is one transistor T0 that is common to them all. This system offers the 

possibility of reducing commutation losses; however, practically it does not permit 

recuperation of energy of the phase that is being in the switching off state, because 

it requires the transistor T0 to be switched off. In this case we have to do with the 

decay of the current in the closed circuit of this phase winding across phase diode 

and transistor T0. Considerable opportunities in terms of the improvement of the 

operation in the range of high rotational speed is offered by the system [47], in 

which phase windings containing coils situated in the opposite stator teeth have 

available clamps to supply each coil separately. It means that the phase winding 

can be effectively divided into two equal parts. In this case it is possible to apply 

an alternative, in-series or parallel supply of the two parts of the phase winding 

and, as a result, considerably accelerate the increase and decay of the current in 

the winding and, additionally, increase the range of the speeds for which it is pos-

sible to control the current. Such system configuration involving division of a 

winding and enabling series power supply for lower speeds and, concurrently, 

parallel connection at higher speeds is presented in Fig. 5.9. 

 

Fig. 5.9 Commutation scheme of a divided SRM phase winding for changeable supply  

configuration of both parts 
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This system for a single phase of the motor consists of two H bridges that sup-

ply the halves of the winding and an additional transistor T5 and diode D5 that 

connects these bridges. During the period when current increases after the rotor 

gains αon position and after it obtains the position αoff  associated with the termina-

tion of the phase supply, transistor T5 is switched off and the two halves of the 

phase winding 1b and 1b are connected to full supply voltage u. This fact com-

bined with two times lower inductance result in considerably faster current in-

crease after it is fed as well as faster decay after the phase is disconnected as a re-

sult of switching off all five transistors T1...T5. At the beginning of a cycle, after 

the required value of the current is reached, transistor T5 connecting the two 

bridges is switched on and the winding halves are connected in a series to form a 

single phase winding. Within a single cycle of the supply the switching of the part 

phases to parallel and, subsequently, to series supply can be performed several 

times thus increasing the range in which it is possible to control the current in the 

motor, as in Fig. 5.5. For the case when after the switching from the parallel to se-

ries connection the currents in the two halves are not equal the currents in them 

have to be balanced and the surplus of the current in one section of the winding re-

turns through one of the diodes – D2 or D4. As it was indicated by computer 

simulations and the operation of such experimental set-up [47], the application of 

series-parallel switching of the winding halves in a two-phase motor (m = 2) has 

led to an increase of the rotational speed by 80% under rated loading and the rated 

current has not been exceeded. 

5.3   Magnetization Characteristics and Torque Producing in 

SRM Motor 

In terms of the construction the capability of a motor to transform energy and pro-

duce a torque is determined by the magnetization characteristics, whose wave-

forms result from the engineering details and properties of the ferromagnetic  

materials applied. What is meant here is the family of magnetization characteris-

tics in the function of the position of rotor tooth in relation to stator tooth in the 

range from the unaligned position to the completely aligned one. An example of 

magnetization characteristic is presented in Fig. 5.10 together with a single cycle 

of converting the energy of the magnetic field into mechanical energy in rotational 

motion of the rotor. 

From the schematic diagram in Fig. 5.10 one can conclude about the relation: 

the more non-linear magnetization characteristic are for the aligned position the 

greater the co-energy of the magnetic field T´ that is converted into mechanical 

work of the drive within a cycle of the power supply. At the same time, less  

energy of the magnetic field Tf is returned to the source during the power diode  
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Fig. 5.10 A single cycle of energy conversion in SRM. Tˊ is co-energy conversed from 

magnetic to mechanical form, Tf is magnetic energy recuperated to a source in a diode  

conduction period of the current decay 

conduction duty period. On the basis of the cycle of energy conversion presented 

in Fig. 5.10 it is possible to assess the motor’s torque: 
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===                         (5.3) 

The relation presented here (5.3) and the interpretation of the cycle of energy con-

version in Fig. 5.10 are relevant for a simplified case when the particular machine 

duty cycles are separate and there isn’t a period of a common conduction. 

In the further part of this chapter the examples and illustrations will be based on 

two typical layouts of SRM motors:  

- motor A with rated values: Zs/Zr =8/6; Pn = 900 [W]; Un = 32 [V] 

- motor B, for which:      Zs/Zr =6/4; Pn = 900 [W]; Un = 310 [V]. 

Details of the two machines are summarized in Table 5.1 in Chapter 5.4. Below is 

a summary of the characteristics of magnetization and several other characteristics 

associated with torque generation for motor A. 
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Fig. 5.11 A family of magnetizing characteristics for motor A (Table 5.1), for 50 consecu-

tive rotor position angles from unaligned position (30º) to aligned position (0º) 

 

Fig. 5.12  Saturated inductance curves of motor A for increasing stator phase current values i = 

40,60,80,100,120 [A] 

 

Fig. 5.13 Electromagnetic torque curves, for an individual supply of consecutive phase wind-

ings of motor A with i = 120 [A] as a function of a rotor position șr 
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Fig. 5.14 Electromagnetic torque curves during a single phase supply with increasing current  

i = 8,16,24,…160 [A] as a function of a rotor position șr 

5.4   Mathematical Model of SRM Motor 

5.4.1   Foundations and Assumptions of the Mathematical Model 

The mathematical model forms the basic tool for conducting simulations of dy-

namic courses and finding characteristics of the motor as well as a whole drive. It 

is also indispensable in the research of drive control systems. The degree of  

complication and the precision of a given mathematical model is relative to the 

practical application of a model, i.e. the number, type and relevance range of the 

characteristics that are determined by its use. The form of the mathematical model 

is clearly relative to the simplifying assumptions adopted during the statement of 

the model. It is also important to note the source of information serving for the 

purposes of developing a model, i.e. whether the source originates in engineering 

data or data gained on the basis of measuring and testing existing objects, or data 

has been gained in some other way. The models based on measurements can either 

be deterministic in nature or originate on the basis of artificial intelligence meth-

ods. The latter, however, have a limited scope of application since they serve in 

order to examine objects the information of which is often approximated 

[21,22,29,49]. 

This book is based on the development and application of deterministic models 

in the form of ordinary differential equations derived as Lagrange’s equations, in 

accordance with the procedure described in Chapter 2. The basic application of 

such a model is in the research of dynamic and static characteristics, selection of 

control methods and  procedures as well as in the simulation of drive operation in 

desired circumstances. 

In the bibliography in this subject there is a considerable number of mathemati-

cal models of this kind, which, however, differ in details. For instance, mathe-

matical models of SRM, which apply engineering details and linkage between the 

windings are presented in [13], and the ones without linkage are found in [45]. In 

turn, another model designed for dynamic calculations and simulations of wave-

forms is presented in [19] under the assumption of familiarity of functions of 
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windings inductance and their derivatives. Basically, the majority of models ac-

count for non-linearity of magnetization characteristics in SRM motor. This is so 

because it plays significant role with respect to generation of the electromagnetic 

torque. While some of the mathematical models found in bibliography account for 

the magnetic linkage between the adjacent phase windings of the motor, a consid-

erable number of studies completely disregard them. This fact of ignoring the 

linkage between phase windings in a SRM motor is justified by two details. 

Firstly, the value of the linkage is small, since in the sense of an upper limit it does 

not exceed 10% of the self-inductance of the winding and the standard is that their 

value is from 5% to 6% of this inductance. Secondly, the period of the simultane-

ous conduction of adjacent phases of a motor is limited and during the time when 

in one of the phases the current gains its maximum value, in the other one it is al-

ready decaying. The presented mathematical model is designed to conduct swift 

and multiple dynamic calculations of the waveforms of SRM; hence, it is consid-

erably simplified. It accounts for non-linearity of the characteristics of magnetiza-

tion of the motor, which is indispensable, but disregards magnetic linkage between 

the windings. It leads to the simplification of the model concurrently not causing 

relevant errors as a result of the application of the model. This is confirmed by the 

characteristics and waveforms gained on the basis of measurements and, in par-

ticular, this pertains to characteristics gained for the case of reversing the current 

in the adjacent phase windings during comparative analysis and measurement of 

inductance in standard SRM motors. The inconsiderable differences between the 

characteristics gained on the basis of such measurements indicate that the linkage 

between phases can be disregarded without the deterioration of the precision of the 

results collected by the application of this model. The mathematical model of the 

motor is derived on the basis of Lagrange’s equations for an electromechanical 

system while preserving the notations used in Fig. 5.2. The number of the degrees 

of freedom in the system is equal to: 

1+= ms                                                           (5.4) 

while m denotes the number of the electric degrees of freedom of the system and 

the electric charges associated with phase windings form the respective variables 

mm QqQqQq === …2211  

and their time derivatives have the meaning of phase currents of the motor: 

mkiQ kk …� 1==                                              (5.5) 

Concurrently, the remaining  degree of freedom is reserved for the mechanical 

variable of the system 

rmq θ=+1  

and denotes the angle of rotation of the rotor. Under the assumption of the lack of 

magnetic linkage between phase windings, Lagrange’s function for this system 

takes the form: 
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The virtual work of the system corresponding to the exchange of energy between 

the system and the surrounding environment is equal to: 
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in which the particular terms refer to: 

( ) ( ) kkrkkkrk iiMi ,, θθ =Ψ  - magnetic flux associated with k-th phase winding, 

Rk - resistance associated with current flow through k-th phase winding, account-

ing for resistance of electronic elements and resistance of the supply source 

uk - voltage applied to k-th phase winding, 

J - moment of inertia associated with motor’s shaft, 

D - viscous damping coefficient associated with damping of the motion, 

Tl - shaft load torque. 

5.4.2   Equations of Motion for the Motor 

The generalized form of equations of motion in accordance with Lagrange’s 

model (2.51) is in the form 
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where generalized force (2.70) 
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is the force acting along its j-th generalized coordinate calculated as the respective 

partial derivative of virtual work įA (5.7). For the electric circuits of the motor in 

accordance with the assumptions of disregarding mutual phase linkages, we obtain 

the total of m equations in the form: 
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After calculation of the time derivative, it is: 

( ) ( ) ( )
kk

rrkk

r

krkk
rkk

k

krkk
kkrkk

k iR

ie

iM
iu

i

iM
iiM

dt

di
−

Ω

∂

∂
Ω−=⎟⎟⎠

⎞⎜⎜⎝
⎛

∂

∂
+

��� 
��� 	�
),,(

,,
,

θ

θ

θθ
θ         (5.10) 



396 5   Switched Reluctance Motor Drives

 

where 
rr

θ�=Ω  - is the speed of the rotational motion of the rotor. The term ek in 

equation (5.10) denotes back EMF of rotation: 
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which is proportional to the current in the winding and the angular speed of the ro-

tor. This term determines the similarity between SRM machine and series wound 

DC motor since the phase current ik plays here the same role as the excitation cur-

rent in the DC machine. The equations (5.10), in the consideration of the lack of 

linkages, can be arranged in the standard form: 
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The equation of motion for the mechanical variable is the following: 
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Assuming a constant value J for the inertia, as a result we obtain: 

rler DTTJ θθ ��� −−=                                                (5.14) 

The electromagnetic torque in this equation is equal to: 
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Using (5.11), the formula for the torque can be restated as: 
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5.4.3   Function of Winding Inductance 

A more detailed insight into the mathematical model, given by equations 

(5.12)…(5.16) is associated with the need of noting the functions of windings in-

ductances, which play a key role in this model. In the examined model the follow-

ing form of the inductance function has been provided [41,42] 

( ) ),()(, kkkkrkk iMiM ϑλϑθ =                                    (5.17) 

Such inductance function notation in the form of a product may seem complicated; 

however, it has a number of advantages. The term M(ϑk) presents (Fig 5.15) the 

unsaturated inductance of the winding in the form of the function ϑk, which is the 

rotor’s angular position reduced to the pitch of the teeth τr = 2π/Zr: 
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( )[ ]rrrk kfrac τεθτϑ /)1( −−=                                    (5.18) 

where the term frac(x) denotes the fractional part of argument x. Concurrently, the 

second term in (5.17), presented in the graphical form in Fig. 5.16, is responsible 

for the magnetic saturation and introduces the adequate functional relation from 

rotor’s angular position and current in the winding. Such a presentation of induc-

tance coefficient makes it possible to study the effect of saturation as well as engi-

neering changes on inductance as well as estimate the parameters of the motor  

on the basis of measured characteristics. The respective partial derivatives of the 

inductance (5.17) take the form: 
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Fig. 5.15 Unsaturated inductance coefficient of a phase winding for SRM motor A in a 

function rotor position angle șr 

 

Fig. 5.16 Saturation factor Ȝ(șr,i) of a phase winding inductance, for position angle values  

șr = 0°,1.5°,3°,…30°, as a function of winding’s current 
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This way of representing the inductance of the winding and its derivatives (5.19) 

affects the detailed form of the expression of electromagnetic torque (5.15), which 

takes the following form 
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Fig. 5.17 Phase winding’s inductance coefficient, for i = 5,10,15,…150 [A], as a rotor posi-

tion function 

There are used two integrals with respect to current ik in the winding 
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The first integral cla(ϑk,ik) is presented in the graphical form in Fig. 5.18 in the 

function of the current for various values of the ϑk angle. Evaluation of this inte-

gral indicates that 

2

2

1),( kkk iicla <ϑ                                              (5.22) 

The first term of the expression (5.20), which defines electromagnetic torque of 

the motor, reminds one of the classical expression denoting torque of reluctance 

origin diminished by the influence of saturation, which contrasts with unsaturated 

inductance function, which is relative only to the angle of rotation. This term de-

notes the basic component of the torque. Concurrently, the other term of the 

torque in the form of an integral clafi(ϑk,ik) is presented in Fig. 5.19 for positive 

values of the machine’s angle of rotation. Since it is an odd function and the  
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motor’s mode of operation takes place for negative values of angle ϑk, the second 

term in the expression (5.20) determines decrease of the basic torque computed by 

use of the first term of (5.20). However, one can note that the change of the torque 

associated with non-linearity of magnetization characteristics plays a more impor-

tant role for large values of the current. For the case of motor A, whose character-

istics are presented here, it demonstrates for i > 60 [A], i.e. the value of the current 

that is higher than the rated current. 

 

Fig. 5.18 The integral cla(ϑk,ik) according to (5.21) – as a function of phase current, for a 

position angle ϑk = 30°,28.5°,27°,…0°, (top – down) 

 

Fig. 5.19 The integral clafi(ϑk,ik) according to (5.21) – as a function of phase current, for a 

position angle = 30°,28.5°,27°,…0°, (top – down) 

This is illustrated by Fig. 5.20, which presents both components of the torque 

with respect to the angle of rotation, i.e. the basic term relative to the derivative of 

the inductance – as component I and the other term that is relative to the change of 

the saturation– as component II. This decomposition of the electromechanical 

torque of a motor is presented for high value of the phase current in the motor i = 

120 [A] in Fig. 5.20a and for the current i = 50 [A] in Fig. 5.20b, i.e. for small 

magnetic saturation. As one can see from the illustrations, the less important  

component II of the torque is the smaller with the smaller saturation of the 
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a)  

 

b)  

Fig. 5.20 Particular components of SRM’s electromagnetic torque (5.20). Component I – 

basic torque originated from inductance derivative on a position angle; component II – re-

flecting a change in saturation: a) for a high saturation i = 120 [A] b) for a low saturation  

i = 50 [A] 

magnetic circuit. For the phase current i = 120 [A] it is equal to around 30% of the 

value of the basic torque, while for i = 50 [A] it corresponds only to 5% of this 

torque. 

5.5   Dynamic Characteristics of SRM Drives 

5.5.1   Exemplary Motors for Simulation and Tests 

For the purposes of illustrating the characteristics and dynamic courses of SRM 

motor drives a selection of two low power motors was made. The two motors are 

found in the catalogues and were the subject of the research and measurements in 

laboratory conditions [41]. A summary of the data is found in Table 5.1. 
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Table 5.1 Selected data for two typical SRM 

Parameters Motor A Motor B 

sZ  - stator’s teeth number 8 6 

rZ  - rotor’s teeth number 6 4 

nP  - rated power [kW] 0.9 0.9 

nn  - rotor speed [rev/min] 3200 3600 

nU  - rated voltage [V] 32 310 

nI  - rated source current [A] 35.0 3.0 

nT  - rated torque value [Nm] 2.6 2.4 

phR  - phase winding’s resistance [Ω] 0.045 1.9 

maxL  - aligned inductance [mH] 2.2 140 

minL  - unaligned inductance [mH] 0.46 17 

43,32;21 −−−M  - mutual inductance [% maxL ] 3.5 – 7.0 2.5 – 8.5 

42;31 −−M  - mutual inductance [% maxL ] 0.9 - 

η  - motor’s efficiency [%] 84 86 

offon αα ;  - switching angles [deg] 38° ; 10° 51° ; 15° 

5.5.2   Starting of SRM Drive 

A considerable problem is encountered during the start-up of SRM motors since 

the torque is relative to the initial position of the rotor, which is unfamiliar, as a 

rule. Incremental encoders are used in order to control the motor and determine an 

instantaneous position of the rotor. However, the latter do not provide information 

regarding the position when it is stalled. Another problem with the start-up, espe-

cially with regard to a motor with a small number of teeth e.g. Zs/Zr = 4/2 but also 

Zs/Zr = 6/4  to a certain extent, is associated with the fact that they do not develop 

required start-up torque in every position of the rotor for both directions of rota-

tion. Therefore, for the motors, which for engineering purposes are incapable of 

starting in every initial position of the rotor, the start-up process either occurs for a 

small load or the rotor is positioned prior to the starting procedure. Concurrently, 

the problem associated with determining the initial position of the rotor before 

starting the motor can be solved by: 

- application of absolute encoders, which provide a reading of the initial  

position, 

- application of resolvers, which as externally energized inductance devices that 

secure a precise measurement of the position in every situation. The two solutions 

are, however, rather expensive and they are not applied in commonly used drives. 

Some other possibilities of preparing the drive to the perform the start-up include: 

- positioning as a result of forcing adequately strong current flow through  

selected windings, i.e. its alignment prior to the start-up, 
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- determination of the rotor’s position and selection of a starting sequence using 

test pulses applied to the windings prior to its starting, when the rotor is stalled. 

The latter option will be examined in more detail below. 

5.5.2.1   Start-Up Control for Switched Reluctance Motor by Pulse Sequence 

The application of starting pulse sequence to determine the position of the rotor 

will be presented with regard to both motors from Table 5.1 (motor A and B). Fig. 

5.21 contains a summary of the test result for motor B (Zs/Zr = 6/4) within the an-

gular range of the rotation of the rotor 0°-60°. 

a)  

b)  

Fig. 5.21 General picture of: a) test current pulses and b) respective torque response for  

the Zs/Zr = 6/4 motor, in the rotor position range 0°-60° 

On the basis of Fig. 5.21 one can conclude that the best conditions for the start-

up of this motor are encountered in the range from șr = 0°…6°, while the least op-

timum ones are for the angles close to șr = 15°. This is so because in this position 

the teeth on the rotor are displaced in relation to the stator teeth by ±15°,±45°, i.e. 

the position of the rotor in which the derivative of the rotor winding’s inductance 

assumes a small value. In contrast, for șr = 0° the remaining teeth on the rotor are 

in the position ±30° from the axes of the phases except for the pair in the aligned 

position. This, in turn, offers optimum conditions for the start-up. The next figure 

(Fig. 5.22) presents a more detailed response of the motor to testing pulse for  

selected rotor angles. 
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a)  

 

b)  

 

Fig. 5.22 SRM (motor B, m = 3) response to test voltage pulses in various rotor positions: 

 a) șr = 0° b) șr = 9° c) șr = 15° d) șr = 30° 
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c)  

 

d)  

Fig. 5.22 (continued) 

On the basis of Fig. 5.22 it is possible to examine several typical start-up situa-

tions for selected rotor position angles. For the position angle șr = 0° there is a 

small current pulse in the  phase ‘1’ and two large ones in phases ‘2’ and ‘3’, 

which correspond to the reduced angles ±30°, given by the relation: 

2/3.2.1 rrr τϑεθϑ ≤±=                                      (5.23) 

Energizing phase ‘2’ during start-up will result in the motion in the positive direc-

tion, while energizing phase ‘3’ in motion in the reverse direction. Fig. 5.22c illus-

trates the situation occurring for șr = 15°. We have to do with small current pulses 

in the phase windings ‘1’ and ‘2’ and a strong pulse in phase ‘3’. This corresponds 

to the respective reduced rotor angles of ±15° and ±45°. The large current pulse 

corresponds to angle șr = 45°, which occurs between the axis of phase ‘3’ and the 

axis of the closest tooth on the rotor, but the resulting torque is virtually nonexis-

tent. The supply of the phase ‘2’ leads to the rotation of the rotor in the positive  

direction, while of the phase ‘1’ in the negative one. In these cases the torque is, 

however, three times smaller than for the angle șr = 0° and, hence, the start-up can 

be impeded. The most problematic starting conditions are encountered for șr = 9°, 
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i.e. for ϑ1,2,3 = 9°,-21°,39° - in Fig. 5.22b, while as phases ‘1’ or ‘3’ are energized 

the negative torque is very small as it reaches around 20% of the value for angle șr 

= 0°. This results from the fact that the position angle 9° is quite small in relation 

to the half of the pitch of the tooth τr/2 = 45°, it is too close to the aligned position. 

Concurrently, for angle 39° the current is already considerably large since induc-

tance is small but it is too close to the limit of 45°, when we have to do with a 

change of the torque sense. So in consequence there is not a good option for the 

negative direction start-up. The final illustration in Fig 5.22d presents the effects 

of a cyclic power supply – the situation is such like for șr = 0°, only phase ‘2’ re-

places phase ‘1’, while phase ‘3’ replaces phase ‘2’ and, in turn phase ‘1’ is in the 

place of phase ‘3’. 

The more general conclusion from the test is that in order to conduct the start-

up one should energize the phase winding for which there is a current pulse with 

the mean value or a winding for which the pulse response is as close to the mean 

value as possible. During energizing of the winding, whose pulse precedes the 

phase in which there was a pulse with the highest value, the start-up torque is posi-

tive and if we supply the phase that follows the one with the highest pulse re-

sponse, the start-up torque is negative. One has to bear in mind that all responses 

in the form of current pulses are positive as we apply positive voltage pulses, 

which in the presented examples are equal to 30% of the rated voltage and are 0.5 

[ms] in duration. The negative value of a current in a phase winding does not 

change the sense of the reluctance torque (see 5.20 -5.22). The following figures 

illustrate the situations associated with pulse determination of the rotor’s position 

and setting the start-up sequence of motor A (Zs/Zr = 8/6) in the range of the rota-

tion angle 0°…15°. 

a)  

b)  

Fig. 5.23 Response for voltage test pulses in SRM motor A (m = 4) for rotor position  

șr = 0°…20°: a) current peaks b) corresponding torque jerks 
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From Fig. 5.23 it is possible to conclude that the best start-up conditions are 

encountered for the rotor angle șr = 6°…9°. However, for 4 phase windings in 

every position it is possible to conduct the start-up even under considerable motor 

load. The following Fig. 5.24 illustrates the results of the pulse start-up test for a 

number of selected rotor positions. 

 

a)  

 

b)  

Fig. 5.24 SRM response (motor A, m = 4) for test voltage pulses applied to the consecutive 

windings in several rotor positions: a) șr = 0° b) șr = 6° c) șr = 12° d) șr = 15° 
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c)  
 

 

d)  

Fig. 5.24  (continued) 
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For the motor with the phase number m = 4, the subsequent positions of the ro-

tor’s teeth in relation to the axes of the stator teeth, i.e. the subsequent values of 

the reduced angle result from the relation: 

2/24,3,2,1 rrr τϑεεθϑ ≤±±=                              (5.24) 

Fig. 5.24a contains test results for șr = 0° and for this case the subsequent values 

of the reduced angle are equal to ϑ1,2,3,4 = 0°,-15°,-30°,15°, respectively, and the 

large start-up torque is encountered for the supply of phases ‘2’ and ‘4’, i.e. for  

ϑr = ±15°. The highest current pulse in the winding corresponds to angle ϑr = ±30° 

since it corresponds to the position with the minimum inductance in the winding. 

Fig. 5.24b presents the result of this test for angle șr = 6°. The following values of 

the reduced angle: ϑ1,2,3,4 = 6°,-9°,-24°,21° correspond to this position of the rotor 

teeth in relation to respective stator teeth. The highest current pulses correspond to 

the angles °,-24°,21° for phases ‘3’ and ‘4’, together with the highest values of the 

start-up torque. Another example is found in Fig. 5.24c, for the angle șr = 12°. 

The values of the reduced angle of rotation for the following phases are equal to: 

ϑ1,2,3,4 = 12°,-3°,-18°,27°, and the highest current pulse is encountered while ener-

gizing phase ‘4’, i.e. for ϑ4 = 27°. Concurrently, the positive start-up torque is en-

countered for phase ‘3’ (ϑ3 = -18°) while the negative one for phase ‘1’, i.e. for the 

angle ϑ1 = 12°. The situation presented in Fig. 5.24d regards angle șr = 15°, i.e. 

the one that is equal to the stroke angle. This well illustrates cyclic characteristics 

of the test pulse since, as one can see, the roles of the subsequent phases are 

shifted. The rules regarding the start-up sequence for the case of the motor with m 

= 4 phases are similar to the ones presented previously. In the examined case the 

start-up torque with a considerable value is produced during energizing the phase 

whose pulse response is the second of the four in terms of its value along with the 

one whose pulse response is most close to the previously selected one. In the ex-

ample in Fig. 5.24c these are, respectively, phases ‘3’ and ‘1’, and for the case in 

Fig. 5.24b – phases ‘3’ and ‘4’. The torque with the negative value is produced for 

the supply of the winding with the successive number (modulo m) in relation to 

the phase with the highest response of the current pulse and the positive torque is 

generated during energizing of the phase with the preceding number of the one 

with the largest pulse if it qualifies as the one that is closest to the previously se-

lected one in terms of the value. 

This may sound complex; thus, it is presented in the form of an algorithm in 

Fig. 5.25. This algorithm has been prepared for the motor with m = 4 phases, 

however, for the motor with three phases the algorithm takes the same form except 

for the limitation of the set of phases’ numbers to { }3,2,1∈z . This algorithm in-

volves determination of the phase number { }4,3,2,1∈z  that is to be energized in 

the first order during motor start-up depending on the selected direction of the ro-

tational speed: n > 0 (Te > 0) → z
+
 or n < 0 (Te < 0) → z

-
 and on the basis of the 
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Fig. 5.25 The outline of the algorithm for a starting sequence of SRM based on test im-

pulses before starting 

pulse test for all 4 phases: { }
4321

,,, IIII=I . One should note that in the algorithm 

the pulse ‘c’ determined as the one that is closest in terms of the amplitude to the 

second highest called ‘b’ could be the one with the largest value , i.e. the one  

described as ‘a’. 
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5.5.2.2   Current Delimitation during Direct Motor Starting  

The direct start-up of SRM motor for the case of conducting starting sequence from 

an adequate phase occurs effectively. Concurrently, there is a need of limiting the 

start-up current in the initial period of starting sequence. In case the drive has  

sensors of the phase currents this limitation can be easily implemented as a result of 

introduction of  upper and lower boundaries of current fluctuations. ‘Soft-chopping’ 

is used within this range of regulation and involves de-energizing of one of the tran-

sistors of the H bridge after exceeding the upper current limit followed by a natural 

decay of the current until it reaches the lower boundary. Subsequently, the previously 

de-energized transistor switches on, the power is restored and the current in the phase 

winding rises again. This way of regulation accomplishes its role for a small number 

of the switching sequences in a pulse, which is mostly relative to the boundaries of 

current changes imposed by these limitations. Fig. 5.26 presents the initial period of 

the start-up for motor A, and Fig. 5.28 for motor B, for the case of imposed start-up 

current limitations and rated loading. 

Fig. 5.27 presents the complete starting range of motor A. On this example one 

can see series excitation effects of the SRM machine. It demonstrates in a slow 

long lasting speed increase in the final part of the starting course. This is associ-

ated with the gradual decrease of the current and de-excitation of the motor, thus 

causing the increasing speed. 

a)  

b)  

Fig. 5.26 Initial part of starting current of SRM motor A, with current limitation within the 

range of 100 [A]…90 [A]: a) phase currents b) electromagnetic torque 
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a)  

b)  

c)  

Fig. 5.27 The whole starting course of SRM motor A with a current limitation and a nomi-

nal load: a) phase currents b) electromagnetic torque c) rotational speed 

5.5.3   Braking and Generating by SRM 

Generator regime of operation of SRM machine is not provided for either in the 

engineering structure of the machine itself nor due to the structure of the semi-

controlled H bridge from which it is controlled (Fig. 5.3). The rotor of the reluc-

tance SRM motor is not energized and the excitation flux of the machine comes 

from the current in the stator windings. Hence, there is a lack of separately regu-

lated excitation current that is typical for generators or permanent magnets that of-

fer an excitation flux of the machine practically regardless of the machine load.  
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a)  

b)  

Fig. 5.28 Starting of SRM motor B with current limitation in the range of 15 [A]…12 [A]: 

 a) phase currents b) electromagnetic torque 

a)  

b)  

Fig. 5.29 Excitation period and generating period of SRG machine during one switching 

cycle: a) current cycle b) current flow in a H bridge for one phase winging; ie - braking cur-

rent flow, ig - generating current flow 
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a)  

b)  

Fig. 5.30 Steady-state characteristics for a generating mode of SRM operation (motor A) as 

a function of rotor speed, for u = Un , αon = 16°, αoff = -10°,-12°: a) phase and source cur-

rents b) torque and overall efficiency 

The typical transistor-diode H bridge that energizes the machine’s windings from 

the DC source makes it possible to control the machine’s current only for the case 

of the motor regime of operation. The return of power from phase windings into 

the source can only occur after switching off both transistors and takes place in an 

uncontrolled manner until the magnetic field associated with the winding decays. 

Moreover, the generation and braking of SRM machine is not steady, which re-

sults from the curves of the static characteristics presented in Fig. 5.30 and is con-

firmed by the waveforms presenting the unsteady operation in the vicinity of the 

equilibrium point in the system without feedback, as shown in Fig. 5.31. 

However, for adequate control using angles αon, αoff  and in the system with 

feedback for the regulation of the output power the SRM machine is capable of 

performing the duties of the generator [19,28,34,36,40,43]. In the generation re-

gime of operation each pulse of the machine’s current consists of two parts. In the 

first part, for two transistor in the ON state there is an excitation of the SR genera-

tor, sometimes denoted as SRG, since the machine draws current from the source 

and it operates as a brake or a motor depending on the sense of the torque pro-

duced in this period. The transformation of the mechanical power in this period is 

inconsiderable since the angle αon for which the machine operates as a generator 
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precedes the aligned position by a few degrees and the excitation occurs for the 

small values of electromagnetic torque which actually changes the sense from the 

positive to the negative one. After the excitation period the two transistors are 

switched off for the angle of the rotor of αoff, which happens several degrees after 

the aligned position of the rotor and stator teeth is reached. Following we have to 

do with the generation regime of operation until the decay of the current in the 

 

 

 

a)  

Fig. 5.31 Unstable operation of SR machine as a generator: EMF, phase currents, torque 

and rotor’s speed courses: a) under an equilibrium point of balance b) above an equilibrium 

point of balance 
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b)  

Fig. 5.31 (continued) 

winding, which in this case closes through two diodes of the H bridge and thus en-

ergy returns into the source. In this range of operation the energy conversion is 

performed at the expense of mechanical energy, since the electromagnetic torque 

is negative and to some extent due to magnetic field energy associated with wind-

ing’s current. The illustration of the excitation and subsequently, generator regime 

operation of SRM is presented in Fig. 5.29. 

For adequately selected control angles αon , αoff  the mean value of the generated 

current is considerably higher than the mean value of excitation current and the  
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a) b) 

c)  

d)  

Fig. 5.32 Steady state characteristics of SRG (A) for different excitation level realized by ku 

factor: a) rotational speed b) phase and source currents as a torque functions c) torque and 

efficiency as ku functions d) shape of current pulses 

machine operates as a generator with a decent energy efficiency (Fig. 5.30), which 

is, however, lower than for its motor operation. 

From the characteristics in Fig. 5.30 one can see that the electromagnetic torque 

and phase currents decrease along with an increase of the rotor speed, which fore-

casts an unsteady characteristics of the machine’s operation within this range. This 

is confirmed by its transients, which present the behavior of the generator after the 

balance is disturbed (Fig. 5.31). 
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a)  

b)  

c)  

Fig. 5.33 Linear transition from motor to generator regime of work of SRM (A), after linear 

change of: αon = 35°→13° and αoff = 10°→-12° , n= 1850 [rev/min]: a) phase currents b) 

electromagnetic torque Te c) partial torques constituting total Te torque 

The unstable equilibrium in the conditions presented in Fig. 5.31 occur for the 

speed n = 2100 [rev/min] and the load Tl = -3.0[Nm]. The generation regime can 

be stabilized as a result of including adequate feedback relative to the speed and 

acting upon the pulse width modulation coefficient ku defined for the PWM con-

trol, which in case of constant source voltage U regulates a level of an excitation. 

This is so because the PWM voltage control by the ku factor is acting during tran-

sistor operation of the H bridge and this way it effects the excitation level. As a 

consequence, ku factor regulation is a main tool to control indirectly electromag-

netic torque during the generator operation with a constant source voltage. The 

characteristics that indicate this possibility for motor A are presented in Fig. 5.32. 

A smooth transfer from the motor to generator regime of operation is illustrated 

in Fig. 5.33. In this case we have to do with linear change of the control angles  

αon = 35°→13° and αoff = 10°→-12° as well as a change of the torque on the  
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a)  

b)  
 

c)  

d)  

Fig. 5.34 Fast change from motor to generator operation for: αon = 35°→16°, αoff = 10°→-

10°, Tl = 3.0→-3.3 [Nm]: a) phase currents b) EMF in a winding c) electromagnetic torque 

d)  rotational speed 

machine shaft from the load of Tl = 3.2 [Nm] to the torque driving the generator  

Tl = -3.8 [Nm]. The energy efficiency for this state of the generator regime is 

equal to Șg = 68%, in contrast to Șs = 82.5% for the motor regime preceding the 

change of the operating regime. 

The transfer from the motor to generator regime can also occur fast and does 

not pose any problems to the stability of the drive. An example of such fast change 

is illustrated in Fig. 5.34. In the presented example we have to do with a prompt  
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a)  

b)  

Fig. 5.35 Detail shape of a phase current and induced EMF in a phase winding for: a) motor 

b) generator mode of SRM operation, control parameters like in Fig 5.34 

switching of the control: αon = 35°→16° and αoff = 10°→-10° and for the load 

torque of Tl = 3.0 [Nm]→-3.3 [Nm]. 

Fig. 5.35 presents the detailed time waveform of the phase current and induced 

EMF in the SRM machine for motor and generator regime in the conditions de-

fined in the illustration in Fig. 5.34. One can note the change in the shape of the 

waveform for phase current and EMF, which reminds of a reverse rotation of the 

machine for the motor regime. 

The effectiveness of operation and energy efficiency of the SRM machine dur-

ing generator regime are considerably relative to the control angles αon, αoff  and ku 

factor controlling the excitation level. Under the assumption that energy is sup-

plied in an optimum way during excitation most of it can be returned into the 

source during generator regime and, thus, the efficiency is quite high. Under the 

assumption of a constant rotational speed and constant source voltage U of the 

drive this efficiency can be expressed by the relation: 
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where the particular symbols denote: 

P1 - mechanical power output of the drive 

P2 - electric power used by the drive 

Pexc - electric power drawn form the source during excitation part of the cycle 

Pgen - electric power returned into the source during generation part of the cycle 

Tl - load torque 

Iexc,av - mean value of source current during excitation part of a cycle 

Igen,av - mean value of source current during generation part of a cycle 

Ωr,av - mean rotational speed averaging the effect of pulsation. 
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The efficiency defined in this way, which is positive for generator regime, has a 

negative numerator since the mean current in the generator cycle is considerably 

higher than the mean excitation current as well as a negative denominator of the 

expression (5.25) since the machine is actually driven from outside, which means 

that the load torque is also negative. Examples of the characteristics of the effi-

ciency of the machine A are presented in Fig. 5.30 and Fig. 5.32c – they illustrate 

clearly the effect of the control angle and ku factor respectively on their wave-

forms. The effects of the control angles on the operation and efficiency of SRG 

generator are presented in a number of bibliography items [40,43] stressing the 

complexity of the issue. This complexity is due to the fact that during the genera-

tor regime the same point on the mechanical characteristics of SR generators (i.e. 

rotor speed and torque) can be obtained for various values of control variables αon, 

αoff  and ku however, the current and efficiency differ considerably. Moreover, 

some bibliography items in this subject discuss the excitation and self-excitation 

of SR generators [34,36] as well as generation for a high and low rotational speeds 

of the machine. The latter results from the potential application of SRGs in wind 

power stations in the engineering models involving mechanical gear and ones 

without it. 

5.6   Characteristics of SRM Machines 

5.6.1   Control Signals and Typical Steady-State Characteristics 

Although SRM motor is a reluctance machine and has a completely passive  

rotor, there are three control quantities deciding about the characteristics of the 

operation of the drive. They are: supply voltage u, initial angle of energizing the 

phase winding – switch on angle αon and initial angle of de-energizing power sup-

ply from the winding – switch off angle αoff. Alternative to the switch off angle, 

the set of the control signals can apply the conduction angle αz (5.1). The above 

control angles αon, αoff (Fig. 5.1, Fig. 5.2) are meant to be the angles that precede 

the aligned position of stator and rotor teeth. For a typical supply of the SRM 

drive the following condition is fulfilled: the conduction angle αz > İ, where İ is 

the stroke angle (5.2). Usually in order to apply the possibilities of driving the mo-

tor the control is performed in the range: 

εαε 2<≤ z                                               (5.26) 

At the same time, switching on occurs for  

εεααα 0.35.1 …≈+= offzon                                   (5.27) 

which is aimed at obtaining a large value of the current in the adequate range of the 

reduced rotation angle ϑr (5.18). The higher values of αon concern SR motors with 

higher number m  of phase windings. Since the number of steady-state characteris-

tics that can be presented for these control variables is large, the presentation here  
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will focus only on selected characteristics calculated for motor B (Zs/Zr = 6/4). The 

first group of characteristics (Fig. 5.36) is performed in the function of the load 

torque Tl for three values of the supply voltage: U = 1.0, 0,75, 0.5 Un. 

a) b)  

c)  

Fig. 5.36 Steady-state characteristics of 6/4 SRM drive for U = 1.0, 0.75, 0.5 Un and αon = 

51°, αz = 36°, as a function of a load torque: a) speed curves b) phase and source currents c) 

efficiency of the drive 

The presented characteristics in the function of the angle αon indicate that there is 

an optimum selection of the advance angle for energizing winding which occurs for 

the examined machine somewhere in the range from αon = 50°…52°, i.e. for αon ≈ 

1.7İ in this case. Concurrently, the smallest pulsations of the torque are encoun-

tered for αon = 42°…46°, i.e. for αon ≈ 1.4İ. Hence, it results that the late beginning 

of the conduction process, e.g. for αon ≈ 1.4İ, leads to an uninterrupted current flow 

in the windings and reduces pulsations. However, the disadvantage thereof is asso-

ciated with negative torque components originated from current flow in particular 

phase windings of the motor, which are manifested after the aligned position is ex-

ceeded. The presented characteristics do not illustrate the effect of the conduction 

angle αz on the characteristics, which for the cases in Fig. 5.36, Fig. 5.37 is equal  

to 36°, i.e. αz ≈ 1.2İ, which corresponds to a standard value. 
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a)       b) 

 
c)     d) 

Fig. 5.37 Steady-state characteristics of 6/4 SRM drive for, αz = 36°, U = Un and Tl = 0.5, 

1.0, 1.5 Tn as a function of a switch angle αon: a) speed curves b) phase and source currents 

c) efficiency of the drive d) ripple torque level Trip/Tav 

5.6.2   Efficiency and Torque Ripple Level of SRM 

Having three control parameters αon,, αoff, u it is possible to determine the same 

point of operation of the drive along the mechanical characteristic of the motor 

n,Tl for a series of various control parameters. Thus, at the same operating point it 

is possible to transform energy for various efficiencies and for various levels of 

torque ripple - Trip. Such research has been presented in [41,42], and the general 

conclusion is that the quasi-optimal selection of control parameters of SRM mo-

tors is technically possible. The control values during quasi-optimal operations 

vary along with rotational speed. For small speeds the control occurs as a result of 

changing u , for a constant values of αon,, αz. In the intermediate range of the rota-

tional speeds the value of the voltage u remains constant, while the switch on an-

gle αon and the conduction angle αz increase. Within the range of the high speeds 

only the angle αon increases, while the remaining parameters of control remain 

constant. The curves for control variables for a quasi-optimal control of SRM mo-

tor are presented in Fig. 5.38. 
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Fig. 5.38 Change of control variables for a maximum efficiency of SRM drive in respect to 

change of rotational speed 

The preservation of the control in accordance with the principle presented in 

Fig. 5.38 makes it possible to secure the operation of the drive with maximum ef-

ficiency. Concurrently, the ripple component of the torque is at a minimum for a 

given load torque of a motor from the threshold speed n1 as well. The threshold 

values n1, n2, for which there should be a change in the control manner are relative 

to the motor’s load torque Tl and they are derived on the basis of the minimum 

current. For the case of the mathematical model of SRM motor (5.12) discussed 

here, it is possible to present electromagnetic torque produced by the motor as the 

sum of the component torques resulting from the flow of particular phase currents. 

This is so because in accordance with the assumptions made during the develop-

ment of this model, the phase windings are not magnetically linked and the current 

coming from each of the phases generates a magnetic flux for a single pair of sta-

tor teeth regardless of the currents in the remaining phase windings. 

In particular, this offers a possibility of graphical presentation of how the con-

trol angles αon, αoff  affect the history of electromagnetic torque and what values of  

the control angle are beneficial for the reduction of torque ripple. Fig. 5.39  

presents the development of torque in motor B (Zs/Zr = 6/4) for the rated values of 

the supply and load. Subsequently, Fig. 5.40 presents the torque of the motor for 

the control angles selected in a manner in which the pulsations of the torque are 

the smallest. This occurs for αon = 43° and αoff = 9° , i.e. for the conduction of the 

phase across αz = 34°. In the first of the cases, the pulse component of the torque is 

equal to 70% of the mean value of the torque, and in the latter case (presented in 

Fig. 5.40) for Trip = 0.72 [Nm], which corresponds to around 27% of the mean 

torque. This is done at the expense of the reduction o the system’s efficiency by 4 

per cent points. If the control angles were to be selected at the values αon = 44° and 

αoff = 10° , the pulsation level would be only equal to 33% , and the efficiency loss 

would be two times lower, which means 2 per cent points (Fig. 5.41). As a result, 

a compromise with regard to the selection of control parameters is possible with a 

considerable benefit to the quality of the drive’s operation, which is generally 

characterized by the quasi-optimal curves of the control parameters in Fig. 5.38. 
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The illustrations of the curves in Figs. 5.39 - Fig 5.41 present why for a motor 

with three phases there is a certain loss of energy efficiency during limiting pulsa-

tion. This is so because the flat waveform of torque according to time and reduc-

tion of the pulsation occurs for the control angles displaced in the direction of the 

aligned position of stator and rotor teeth in comparison to the operation in the 

rated state. In this case we have to do with two phenomena reducing the effi-

ciency: large negative torque component for exceeding the aligned position with 

the current in the given winding and decrease of the rotational speed of the rotor, 

which results in the smaller power output of the machine. 

a)  

b)  

Fig. 5.39 Electromagnetic torque Te of 3-phase SRM as a sum of partial torques originated 

from single phase currents for αon = 51°, αoff = 15°: a) torque-ripple curves with torque  

ripple level Trip/Tav = 70% b) phase currents 

a)  

b)  

Fig. 5.40 Electromagnetic torque Te of 3-phase SRM as a sum of partial torques for αon = 43°, 

αoff = 9°: a) torque-ripple curves with torque ripple level Trip/Tav = 27% b) phase currents 
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a)  

b)  

Fig. 5.41 Electromagnetic torque Te of 3-phase SRM as a sum of partial torques for αon = 

44°, αoff = 10°, as a compromise between efficiency and torque –ripple level: a) torque-

ripple curves with Trip/Tav = 33% b) phase currents 

a)  

b)  

Fig. 5.42 Electromagnetic torque and current for the Zs/Zr = 8/6 SRM - motor A, for the 

nominal state: αon = 38°, αoff = 10°: a) torques b) phase current 

The data given above and Figs. 5.39 - 5.41 concern motor B whereas for motor 

A (Zs/Zr = 8/6) the effect of the parameters on the level of pulsation is relatively 

smaller. For this motor the level of pulsation is close to the minimum Trip/ Tav = 

32%...40% within a wide range of the control angles and it is difficult to obtain a 

level of pulsation below 30%. It is possible to exceed this boundary; however,  

this can only occur for the loads of the motor that are greater than the rated load  
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a)  

b)  

Fig. 5.43 Electromagnetic torque and current for the Zs/Zr = 8/6 SRM - motor A, for mini-

mal torque-ripple level (Trip/Tav = 32%), while αon = 35°, αoff = 10°: a) torques b) phase 

current 

a)  

b)  

Fig. 5.44 Electromagnetic torque and current for the Zs/Zr = 8/6 SRM - motor A, for a high 

load of the motor Tl = 7.8 [Nm] and αon = 38°, αoff = 10°: a) torques, while torque ripple 

level is Trip/Tav = 26% , n =1905 [rev/min] b) phase current 

(Fig 5.44). Concurrently, for the control corresponding to the rated state the wave-

forms are presented in Fig. 5.42, for αon = 38°, αoff = 10°. In this case, the respec-

tive values of the efficiency and torque ripple level are the following: Ș = 83.5%, 

Trip/Tav = 39%. The lowest level of torque ripple, which is equal to Trip/Tav = 32% 
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takes place for the control: αon = 35°, αoff = 10°, and the efficiency is even higher, 

as it is equal to Ș = 84.8%. The two latest states differ in terms of the value of the 

power output of the motor due to the definitely different values of rotational 

speed, which are respectively equal to 3220 [rev/min] and 2780 [rev/min]. 

As one can see, in SRM motors there is a possibility of reducing the level of 

pulsation as a result of adequate selection of the control angles αon, αoff. This, how-

ever, is possible within a limited range and may lead to a slight decrease of the ef-

ficiency, in particular for low rotational speeds [30,41,42]. 

5.6.3   Shapes of Current Waves of SRS 

The shapes of phase currents reflect the mode of the control of SRM motor and 

assume specific waveforms depending on the control angles and rotational speed 

of the rotor. It is also possible to distinguish the generator operation of the ma-

chine from the motor regime on the basis of its waveform (Fig. 5.29a). Fig. 5.45 

presents the shapes of the phase current of motor A which differ in terms of the  

 

a)  
 

b)  
 

c)  

Fig. 5.45 Phase current of the (A) SRM for αon = 35°, Tl = 5.0 [Nm] and different αoff  val-

ues: a) αoff = 5°, b) αoff = 10° c) αoff = 15° 
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a)  

b)  

Fig. 5.46 Phase current of the (A) SRM for a continuous conduction resulting from late 

switch-off angle αoff = 5°, αon = 40°, Tl = 3.0 [Nm], n = 2900 [rev/min]: a) single phase 

current b) all 4 phase currents 

switch off angle αoff, i.e. for a decreasing conduction angle αz, equal to αz = 30°, 

25°, 20°, respectively. One can clearly note the instant when the supply voltage is 

disconnected and the transfer of the winding to the period in which it returns the 

energy to the source through the diodes of the bridge. For the example presented 

in Fig. 5.45a for αz = 30°, during the return of energy one can easily notice a bulge 

on the waveform which is associated with the decreasing inductance of the  

winding after the rotor tooth exceeds the aligned position. 

Fig. 5.46 presents the continuous conduction of the phase currents of the SRM 

motor, which occurs for the late de-energizing of phases, large load and high rota-

tional speed of the rotor. In these conditions the motor operates correctly and 

demonstrate a low level of pulsation; however, the energy efficiency of the motor 

decreases considerably due to the large power losses in the windings. This, in turn, 

brings a hazard of motor failure due to overheating. 

 

Fig. 5.47 Phase current shape by PWM controlled voltage (motor A), for ku = 0.7, αon = 

33°, αoff = 8°, Tl = 3.0 [Nm], n = 1200 [rev/min] 
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a)  

b)  

Fig. 5.48 Phase current shape in case of high rotor speed n = 5400 [rev/min], for motor B, 

while: αon = 51°, αoff = 15°, Tl = 0.5 [Nm]: a) single phase current b) all 3-phase currents 

a)  

b)  

c)  

Fig. 5.49 An influence of a load on current shape (motor B), αon = 51°, αoff = 15°: a) Tl = 

0.5 [Nm], n = 5400 [rev/min] b) Tl = 4.5 [Nm] n = 2700 [rev/min] c) Tl = 7.5 [Nm], n = 

2030 [rev/min] 
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a)  
 

b)  

Fig. 5.50 Late switch on and off of SRM (motor B), αon = 40°, αoff = 4°, Tl = 3.0[Nm]: a) 

single phase current b) all 3 phase currents 

a)  
 

b)  

Fig. 5.51 Current shape for a generator operation of SR (motor A): αon = 10°, αoff = -18°: a) 

single phase current b) all 4 phase currents 
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In Fig 5.49 one can see that the load does not have a significant effect on the 

waveform of the current, which is similar for both small (Tl = 0.5 [Nm]) as well as 

large (Tl = 7.5 [Nm]) load torque of the motor. However, the rotational speed of 

the drive differs significantly in these two cases, which can be also concluded 

from static characteristics – Fig 5.36. 

5.7   Control of SRM Drives 

5.7.1   Variable Structure – Sliding Mode Control of SRM 

Sliding mode control is widely used in a up-to-date electric drives. This results 

from the fact that switching of constant supply voltage to electric motor windings 

formally constitutes of one of the possible control modes with variable structure. 

This, in turn, was made possible as a result of the major development in the field 

of power electronics.  

Sliding mode control involves the control of the motion along a sliding surface 

σ(q,t) =0 [25,44]. This group of methods involves control applying PWM  

technique (Pulse Width Modulation), as well as other more advanced control 

methods, including DTC (Direct Torque Control), with regard to induction motor 

drives for instance, as described in Chapter 3.4. The natural stability of the system 

together with high frequency of the switching make it possible in majority of cases 

for the trajectory of the drive’s motion to follow in a close vicinity of a sliding 

edge even without application of special efforts and precise selection of the pa-

rameters. Sometimes engineers involved in its practical application do not see it 

necessary to bother themselves with proving stability of a drive. In such cases the 

experience resulting from laboratory tests and a narrow range of requirements re-

garding the control of the drive make it possible to design control on the basis of 

one’s experience. However, in a wide range of other cases and, in particular, in ac-

tuators realizing complex and variable trajectories of motion the selection of con-

trol parameters tends to be more formal and most often it is based on the direct 

Lyapunov method for the analysis of the stability of the system [25,4/1,16/1]. It 

finds application in servomechanisms with stepper motors as well as BLDC drives 

[53/3]. Similarly, in SRM drives it is possible to realize the given trajectory of the 

motion by a proper switching the supply voltage in the range ±u, or ±u, 0 with an 

adequately high frequency. The sliding control of SRM motor that is applied here 

has certain limitations resulting from the nature of the motor as well as the 

adopted assumptions. One of them is that the control occurs simultaneously only 

for a single phase winding of the motor, as a result of which it involves just one 

dimension. The second restriction concerns the fact that the control occurs only 

for the conduction of transistors, i.e. for the flow of energy from the source. In 

contrast, during the diode conduction and return of the energy into the source the 

motor’s current and torque are uncontrolled for the duration of this stage of opera-

tion. Obviously, there is a possibility of application of transistor-diode control 

mode, i.e. –u, 0 during the periodic switching of the winding and some kind of the 

effect of current control is obtained in this way; however, it works only in the di-

rection of increasing the time needed for the decay of the current and it will not be 
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applied here. The presentation further on will concentrate on the application of 

sliding control with regard to SRM machine realizing given trajectory of motion 

and limiting torque ripple, i.e. overcoming one of the drawbacks of this drive in 

terms of vibration and noise production. The presentation will include DTC con-

trol and current control of the motor in accordance with the given sliding curve  

realizing these targets. It is possible to plan other control techniques involving 

sliding, all of which realize the given trajectories of the motion of the drive. The 

presentation of practical examples of such systems will be the subject of the fol-

lowing sections. 

5.7.2   Current Control of SRM Drive 

The current control used here involves the sliding control of SRM drive in which 

the sliding surface is defined by the given function of the currents of the phase 

windings of a machine 

0),(0, ==⎟⎟⎠
⎞

⎜⎜⎝
⎛∑ rkk

k

rk ii θσθσ                                 (5.28) 

and the control itself is defined in the standard way: 

⎪⎪⎩

⎪⎪⎨
⎧

<⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟⎟⎠
⎞

⎜⎜⎝
⎛

−

>⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟⎟⎠
⎞

⎜⎜⎝
⎛

+

= ∑∑
∑∑

0,for,

0,for,

),(

k

rkr

k

kk

k

rkr

k

kk

rkk

iiu

iiu

iu

θσθ

θσθ

θ                   (5.29) 

The sliding control described by the formulae (5.28) and (5.29), which is further 

called current control due to the fact that the sliding surface is designed on the ba-

sis of the values of the phase currents, is not a typical one. This comes as a conse-

quence of the fact that the analytical expression (5.28) of sliding surface does not 

involve time t in an explicit way but the control is relative to other variable, i.e. 

the angle of the rotation of the rotor șr, thus, it is a phase surface. Secondly, as it 

will be presented later, the sliding surface is determined in the function of the sum 

of phase currents. In the practice of SRM motor control this means the dependence 

of the sliding surface on a single phase current that is drawn from the source, 

which is controllable– since it is supplied through the transistors, and possibly on 

a single or more phase currents that are in the phase of decay. This, in turn, means 

that the control is single-dimensional dependent on the sum of the currents in 

windings, while only one of the currents is controllable, i.e. the one that is ener-

gized from the source. The selection of the sliding surface has two roles to play: it 

minimizes the pulsations of the torque and executes the given curve of the  

electromagnetic torque of the motor that is defined to adequately reflect the re-

quired trajectory of the motion of the drive. As one can see, the task set in this  
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a)  
 

 

b)  

c)  
 

Fig. 5.52 Characteristic curves for Zs/Zr = 6/4 SRM as a function of rotor position angle: a) 

electromagnetic torque Te for two neighboring phase windings supplied by i = 

1.0,2.0,3.0,…,20 [A] b) Σik of currents in two neighboring phase windings required for Te = 

1.0,2.0,…,6,0 [Nm] c) Σik of currents required for Te = 3.0 [Nm] in detail form 

way requires that the problem that is inverse to the motor torque function has to be 

solved, i.e. 

)( ek Tfi =                                                     (5.30) 

Since this problem is non-linear and concurrently the current is normally con-

ducted through more than a single phase winding, the above should be restated as 

follows 
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)( e

k

k Tfi =∑                                             (5.31) 

In practice, this problem is associated with the determination of the sum of two 

currents being conducted through adjacent windings, i.e. one that is supplied and 

one that returns the energy, in a way that enables generation of a desired instanta-

neous value of electromagnetic torque. The solution of this task is the reverse to 

the relation presented in Fig. 5.52a and Fig. 5.53a respectively for the SRM motor 

with the teeth number Zs/Zr = 6/4 and Zs/Zr = 8/6. These are the machines B and A 

in Table 5.1. 

 

a)  
 

b)  
 

c)  

Fig. 5.53 Characteristic curves for for Zs/Zr = 8/6 SRM as a function of rotor position an-

gle: a) electromagnetic torque Te for two neighboring phase windings supplied by i = 10.0, 

20.0, 30.0, …,150 [A] b) Σik current in two neighboring phase windings required for Te = 

3.0, 6.0, 9.0, …,18.0 [Nm] c) Σik current required for Te = 6.0 [Nm] in detailed form 
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a)  
 

b)  
 

c)  
 

d)  

e)  

Fig. 5.54 Starting of  motor B (Zs/Zr = 6/4) with current controller set for segmented con-

stant torque values: a) required Σik current b) phase currents c) electromagnetic torque d) 

rotor speed e) partial and resultant torque for a final speed 
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a)  

b)  

c)  

d)  

e)  

Fig. 5.55 Starting of motor A (Zs/Zr = 8/6) with current controller set for segmented con-

stant torque values: a) required Σik current b) phase currents c) electromagnetic torque d) 

rotor speed e) partial and resultant torque for a final speed 



5.7   Control of SRM Drives 437

 

a)  

b)  

c)  

d)  
 

e)  

Fig. 5.56 Trajectory formed in the B SRM machine under a current controller: a) required 

current b) phase currents c) electromagnetic torque d) rotational speed e) partial and resul-

tant torques for Ωr = 180 [rad/min] 
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a)  

b)  

c)  

d)  

e)  

Fig. 5.57 Trajectory formed in A SRM machine under a current control rule: a) required 

current b) phase currents c) electromagnetic torque d) rotational speed e) partial and resul-

tant torques for Ωr = 200 [rad/min] 
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From the results in Fig. 5.52 and Fig. 5.53 it stems that gaining high value of the 

torque for motor B (Zs/Zr = 6/4) poses a much more difficult task than for the motor 

with 4 phase windings, i.e. motor A (Zs/Zr = 8/6) as a result of the larger distances 

between the teeth for the first of them. However, in both cases it is possible to per-

form the current control by the presented method, which will be demonstrated on 

the basis of several examples. First, we will discuss the start-up of motors with the 

application of current control. For motor B it is presented in Fig. 5.54. 

Current control, as presented can be effectively used to form the trajectory of 

the motion of a drive as a result of applying a given waveform of torque produced 

by a motor. This torque for the application of the current control needs to be sub-

sequently transformed (5.31) this gaining the required current waveform necessary 

to perform the task given by Σik. This is presented on the illustrations of the opera-

tion of the drive for both motors A and B. 

The presented examples of the application of current control (Fig. 5.54… 

Fig. 5.57) prove that the presented method is effective with regard to the both  

motors considered as exemplary ones, i.e. for the motors with 3 and 4 phase wind-

ings. This allows one to form the waveforms of rotational speed, torque and cur-

rent, the latter of which is in this method the quantity that is directly regulated, as 

well as enables one to limit the pulsations of the torque. However, this method can 

be effective only within the range in which there is an adequate surplus of the 

regulation, which in this case means a sufficient surplus of the supply voltage, that 

will enable one to perform the planned current control. This limited surplus of the 

control is the reason that in the start-up of motors (Fig. 5.54, Fig. 5.55) is carried 

out with a torque decreasing by stepwise sections along with increasing speed. 

The forming of the trajectory of the motion occurs regarding the rotational speed 

that is permitted by the supply voltage in order to ensure that the given current 

shape resulting from assumed trajectory of the motion were possible to perform by 

the control system. 

5.7.3   Direct Torque Control (DTC) for SRM Drive 

DTC control with regard to SRM motor also forms an application of sliding 

method for drive regulation since it occurs as a result of rapid switching of the 

voltage applied to the windings of a machine’s stator in a way that ensures that the 

given waveform of electromagnetic torque is realized. This method in its practical 

application is similar to current control, which has already been the focus of pres-

entation earlier in the chapter. The specific characteristics of DTC control involve 

the fact that the sliding surface is constructed on the basis of the desired waveform 

of the torque: 

( ) 0),( =reT θσ q                                             (5.32) 

This can be restated more directly as: 

0)(),,(: =−Ω qerrr TtT θσ  
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a)  

b)  

c)  
 

d)  

Fig. 5.58 Starting of B SRM machine by use of DTC control method with required torque, 

respectively Te = 12.0, 2.5, 7.0, 2.7 [Nm]: a) phase currents b) electromagnetic torque c) ro-

tational speed d) partial and resultant torques for Te = 2.7 [Nm] 
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a)  
 

b)  
 

c)  

d)  

Fig. 5.59 Starting of A SRM machine by use of DTC control method with required torque 

respectively Te = 3.1, 6.2, 1.0, 3.2 [Nm]: a) phase currents b) electromagnetic torque c) ro-

tational speed d) partial and resultant torques for Te = 3.2 [Nm] 
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This type of control, as it has been mentioned earlier, translates into the control of 

the voltage of machine phases as a result of rapid switching of the supply 
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It appears that this method should offer more advantages than current control since 

it is more direct with regard to realizing a given trajectory of the drive motion. 

However, one has to bear in mind that we do not have the measurement of the mo-

tor torque whereas currents are measured at each phase and this is done with a 

high degree of precision. For the case of the DTC control instead of the measure-

ment of the torque it is necessary that we apply an estimation of the torque, i.e. 

usually a torque observer that offers the actual value of the machine torque on the 

basis of the accessible measurements and computations based on mathematical 

model. In conclusion, DTC is also an indirect method for the control of the trajec-

tory of the motion. The issue thereof will be subsequently transferred into the 

stage of determining the error of the executed trajectory. Thus, the effectiveness of 

this control is relative to the precision of the observer and its ability to reduce the 

error of observation. The DTC method has, however, an advantage that the trajec-

tory can be given on-line, which is more difficult to execute using current control 

method. The figures that follow illustrate the results of DTC control with regard to 

SRM motor. 

By looking at the application of DTC method for the control of SRM motor 

drive in Fig. 5.58 and Fig. 5.59 one has to recognize high efficiency of this type of 

control. However, one can also note that the results presented here refer to the 

ones gained on the basis of computer simulation employing the previously devel-

oped mathematical model instead of results of measurements on a real system. In 

consequence the results are idealized in the sense of not being charged with the er-

ror of the method associated with the application of the torque observer in the con-

trol. In this case the electromagnetic torque calculated on the basis of the mathe-

matical model is equal to the measured torque and in this way one of the sources 

of the significant error is absent. 

5.7.4   Sensor- and Sensorless Control of SRM Drive 

For the control of SRM motor it is indispensable that we are familiar with the po-

sition of the rotor in the sense of the precise knowledge of the of rotation angle șr. 

This is due to the switching of transistors, which is used to control the supply of 

the phase winding for the angles of rotation equal to αon and αoff, respectively. For 

this reason the most typical solution involves the application of the quadrature en-

coder in the control system, whose signals are transformed into information re-

garding the position of the rotor, its rotational speed and direction of the rotational 

motion. A block diagram of the control using the signal from position sensor is 

presented in Fig. 5.60. 
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Fig. 5.60 Block diagram of control of SRM drive applying encoder sensor signal 

An alternative to the control system using encoder involves sensorless control 

[12,14,15,31,48], which in brief means that the sensor is absent from the system. 

Such a solution is made possible as a result of applying a position estimator or ob-

server of motor state, thus, leads to savings in terms of the investment, reduction 

of mass and space occupied by the system and increase in efficiency. This im-

provement in terms of reliability is connected with the lack of an additional me-

chanical device on the shaft that is also common to the rotor and the connection 

leading from it to the control system. It is not always possible to apply sensorless 

control, and in particular, it may not be possible to use it in systems in which it is 

necessary to have a very high degree of precision of regulation. The observer itself 

will be the subject of discussion later and now we will focus on the earlier concept 

regarding position estimator. It is formed by a complex measurement and calcula-

tion unit of the control system with the previously prepared characteristics of 

magnetization or characteristics of windings’ inductance. Here we apply the rela-

tions that are reverse to the magnetization characteristics, that is: 

( ) ( )kkkkkk iLfif ,, =Ψ= ϑϑ                                (5.34) 

where subscript k denotes the number of a phase winding, Ψk - magnetic flux cou-

pled with this winding, and ϑk - angle of rotation reduced to the pitch of the teeth 

for the k-th winding. In order to use the relation (5.34) it is necessary to measure 

phase currents and voltages supplying phase windings so that the instantaneous 

value of the flux linkage associated with the k-th winding is familiar: 

( )∫ −=Ψ

t

kkk dRiu τ                                       (5.35) 

While we have the value of the flux linkage and current available, it is possible to 

precisely determine the value of the angle of rotation in terms of the rotor’s tooth 

position in respect to the axes of the given winding on the basis of look-up tables 

based on the reverse characteristics of magnetization (5.34). It is self-evident that 

a useful device for such a control is a signal processor (DSP) and the particular 
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manufacturers offer publications and exemplary solutions using their equipment 

beside part catalogues. Another method for the estimation of rotor position șr ap-

plies the technique of test pulses injected to the unsupplied phase of SRM ma-

chine, which is quite similar to the one used in the determination of the start-up 

sequence – see chapter 5.4.2. An example of such sensorless control is presented 

in Fig. 5.61. 

 

Fig. 5.61 General block diagram of a sensorless  control of SRM with a position estimator 

based on flux linkage 

5.7.5   State Observer Application for Sensorless Control of SRM 

Sensorless control denotes here, just as in the previous examples, the lack of a po-

sition/speed sensor, such as encoder or resolver in a system. Concurrently, the sys-

tem has to contain sensors of phase current, which are applied commonly and do 

not pose any technical problem. Their use allows for the application of adequate 

emergency devices and various diagnostic methods regarding the state the drive. 

In this manner, they lead to an increase of reliability of the system at a low cost 

and can be applied in the operation of the state observer. The role of the observer 

consists in on-line determination of estimates q̂  of variables q  and reduction of 

the observation error 

qqe ˆ−=                                               (5.36) 

to zero within a given time. Taking after [25] the non-linear model of the dynamic 

state in the form 

),()( uqqq gf +=�                                      (5.37) 

the vector of the observer in the form: 

),( uqy h=                                          (5.38) 

and the difference from the estimation of the state vector: 
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),ˆ(ˆ uqyyyr h−=−=                                           (5.39) 

we can define the following equation for the observer: 

( )),ˆ(),ˆ()ˆ(ˆ uqyuqqq hgf −++= κ�                                (5.40) 

In accordance with (5.40) this observer constitutes the dynamic model of the sys-

tem (5.37) accounting for the estimated vector of variables q̂  plus a non-linear 

function κ , whose role is to reduce the error of the system (5.39) to zero in the 

steady state. For the SRM motor, whose mathematical model is presented by equa-

tions (5.12) – (5.15), the possible state observer is presented by the equations: 
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The equations of the observer (5.41) form a direct repetition of the dynamic equa-

tions to which undetermined correction functions ț1, ț2 are supplemented and ap-

plied with regard to the equations whose variables are not observed. A problem 

that is widely discussed in the literature involves a method of finding correction 

functions for a non-linear system. Thus, the lack of a general method leads to a 

number of specific solutions, which are applied on the basis of analogy to similar 

systems. In these circumstances it is important to select an appropriate method of 

testing whether the estimation error decays in time for the experimentally selected 

correlation functions ț. This is possible with the aid of the generalized Lyapunov 

method [25,16/1,21/1,23/2] after the selection of positively determined candidate 

function V in an given area. This function needs to be positively determined and 

relative to the estimation errors. In order to secure the asymptotic error decay the 

first derivative of the function has to be negative in that area, in accordance with 

the Laypunov theorem. In the examined case of estimation of the position and ro-

tational speed of SRM motor, the candidate function can be assumed in the form: 

( ) ( )2222 ˆˆ
rrrrV Ω−Ω+−=+= Ω θθεεθ                              (5.42) 

This function is self-evidently positively determined in the entire area of the  

occurrence of the estimation error. Concurrently, the requirement of the asymp-

totic decay error comes down the inequality in the form 

022 <+= ΩΩεεεε θθ ���V                                       (5.43) 

Hence, it is necessary to study two inequalities 

0and0 << ΩΩεεεε θθ ��                                    (5.44) 
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for the presented model of the observer (5.41) and selected correlation functions 

ț1, ț2. When it comes to the selection of these functions, the most extreme solution 

[25] involves the use of a sliding mode observer, which switches a constant func-

tion depending on the sign of the observation error. Thus, it imposes the function 

to remain in the vicinity of the observed value. In the examined case the applica-

tion of the sliding observer with regard to (5.41) means that: 
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κ
                                     (5.45) 

K1, K2 denote here the gains which can assume positive or negative values depend-

ing on the sign of estimation error. By looking at the conditions of estimation error 

decay (5.44) one can imagine how the sign changes of correlation functions (5.45) 

lead to the negative value required in these conditions. After testing and selecting 

adequate gain factors K1, K2 this practically enables one to apply such an observer 

in the control of SRM motor without the application of the position sensor. 
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system, 67 
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Magnetic linkage 
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Magnetic remnant, 285 
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Modeling quality 
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BLDC motor, 322 

of induction motor, 164 

Stiff system, 101, 137 

Supply brigges 

SRM control, 389 

Surplus of regulation 

BLDC control, 341 

SRM control, 439 
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