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Preface

Manufacturing includes various types of processes and today’s manufacturing
processes are caught between the growing needs for quality, high process safety,
minimal manufacturing costs, and short manufacturing times. In order to meet the
demands, manufacturing process setting parameters have to be chosen in the best
possible way. The selection of optimum process parameters plays a significant role
to ensure quality of product, to reduce the manufacturing cost and to increase
productivity in computer controlled manufacturing process. For such optimization
it is necessary to represent the manufacturing process in a model. However, the
primary challenge for manufacturing process optimization often stems from
the fact that the procedure is typically highly constrained and highly non-linear.
Additionally, manufacturing process models are likely discontinuous, non-explicit,
or not analytically differentiable with the design variables. Due to the enormous
complexity of many manufacturing processes and the high number of influencing
parameters, conventional approaches to modeling and optimization are no longer
sufficient. Advanced modeling and optimization techniques are needed to be
developed and used as modeling and optimization of manufacturing process is be-
coming increasingly important in industry in the drive towards ‘agile
manufacturing’.

The purpose of this book is to present a comprehensive review on latest
research and development trends at international level for modeling and optimi-
zation of various manufacturing processes, particularly the machining processes
which are the most frequently analyzed manufacturing processes. Using examples
of various processes, the possibilities for process modeling and optimization with
advanced modeling and optimization techniques are demonstrated. The book
presents thorough literature of various manufacturing processes, mathematical
models, traditional and non-traditional optimization techniques, real case studies,
results of applications of the proposed methods, and highlights the best modeling
and optimization strategies to achieve best process performance. The algorithms
and computer codes for meta-heuristic optimization techniques included in the
book will be very much useful to the readers.
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The book is expected to be very useful to the designers and manufacturing
engineers in the manufacturing sector who are responsible for the technical aspects
of realizing a product as it presents new models and optimization techniques to
make their tasks easier, logical, efficient and effective. The book is intended for
designers, manufacturing engineers, practitioners, managers, institutes involved in
design and manufacturing related projects, applied research workers, academics,
and graduate students in mechanical, industrial, and manufacturing engineering.

I am grateful to Anthony Doyle and Claire Protherough of Springer-Verlag,
London, for their support and help in producing this book. I wish to thank various
researchers and the publishers of international journals for giving me the per-
mission to reproduce certain portions of their published research works. I grate-
fully acknowledge the support of my research scholars Mr. P. J. Pawar, Mr. B. K.
Patel, and Mr. V. K. Patel. My special thanks are due to the Director, Registrar
(Mr H. A. Parmar) and my colleagues at S.V. National Institute of Technology.

While every attempt has been made to ensure that no errors (printing or
otherwise) enter the book, the possibility of these creeping into the book is always
there. I will be grateful to the readers if these errors are pointed out. Suggestions
for further improvement of the book will be thankfully acknowledged.

Surat, June 2010 R. Venkata Rao
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Chapter 1

Overview

1.1 Manufacturing Processes

Manufacturing is the backbone of any industrialized nation. Its importance is
emphasized by the fact that, as an economic activity, it comprises approximately
20–30% of the value of all goods and services produced. A country’s level of
manufacturing activity is directly related to its economic health. In general, the
higher the level of manufacturing activity in a country, the higher the standard of
living of its people.

Manufacturing can be defined as the application of mechanical, physical, and
chemical processes to convert the geometry, properties, and/or appearance of a
given starting material to make finished parts or products. This effort includes all
intermediate processes required for the production and integration of a product’s
components. The ability to produce this conversion efficiently determines the
success of the company. The type of manufacturing performed by a company
depends on the kinds of products it makes. Manufacturing is an important com-
mercial activity carried out by the companies that sell products to customers. In the
modern sense, manufacturing involves interrelated activities that include product
design and documentation, material selection, process planning, production,
quality assurance, management and marketing of products. These activities should
be integrated for producing viable and competitive products.

The manufacturing processes of today have become extremely complex owing
to the technological advances in last three decades. The status of the modern
manufacturing processes is one of the extreme complexity and technological
sophistication. The materials and processes first used to shape the products by
casting and hammering have been gradually developed over the centuries, using
new materials and more complex operations at the increasing rates of production
and higher levels of quality.

The manufacturing processes can be classified into five main categories as
follows:

R. V. Rao, Advanced Modeling and Optimization of Manufacturing Processes,
Springer Series in Advanced Manufacturing, DOI: 10.1007/978-0-85729-015-1_1,
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1. Processes used to change the shape of the material: these processes apply
mechanical force or heat or other forms and combinations of energy to effect a
change in the geometry of the work material. These processes include casting,
hot and cold forming (such as forging, extrusion, rolling, drawing, squeezing,
roll forming, magnetic forming, electroforming, etc.), sheet metal working
(such as piercing, bending, shearing, drawing, etc.), powder metal forming,
plastic molding, etc.

2. Processes used for machining parts to fixed dimensions: these processes include
traditional machining (such as turning, shaping, drilling, boring, reaming,
broaching, milling, grinding, hobbing, lapping, honing, polishing, etc.) and
non-traditional machining processes. According to nature of energy employed
in machining, non-traditional machining processes are further classified into the
following groups:

– Mechanical processes like ultrasonic machining, abrasive jet machining,
water jet machining, abrasive water jet machining, etc.

– Chemical and electro chemical processes like electro chemical machining,
electro chemical grinding, electro chemical honing, etc.

– Thermal and electro thermal processes like electric discharge machining,
laser beam machining, plasma arc machining, ion beam machining, etc.

– Finishing processes like abrasive flow machining, magnetic abrasive fin-
ishing, etc.

3. Processes used for surface treatment: these processes include cleaning opera-
tions to remove dirt, oil, and other surface contaminants, surfacing operations
such as shot peening, sand blasting, diffusion, ion transplantation, etc., coating
operations such as electroplating, anodizing, etc., and thin film deposition
processes such as physical vapor deposition, chemical vapor deposition, etc.

4. Processes used for joining the parts: products requiring the assembly of two or
more parts are usually joined by the processes like welding, soldering, brazing,
sintering, pressing, riveting, screw fastening, adhesive joining, etc.

5. Processes used to enhance the properties of work materials: There are various
processes in which the physical and mechanical properties of the materials are
changed by the application of an elevated temperature or by rapid or repeated
stressing of the material. Processes by which the properties are changed include
heat treatment operations such as annealing, normalizing, hardening, temper-
ing, sintering, etc.

1.2 Need for Modeling and Optimization of Manufacturing

Processes

Manufacturing includes various types of processes and today’s manufacturing
processes are caught between the growing needs for quality, high process safety,
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minimal manufacturing costs, and short manufacturing times. In order to meet the
demands, manufacturing process setting parameters have to be chosen in the best
possible way. In today’s manufacturing environment many large industries use
highly automated and computer-controlled machines as their strategy to adapt to
the ever-changing competitive market requirement. Due to high capital and
manufacturing costs, there is an economic need to operate these machines as
efficiently as possible in order to obtain the required pay back. The success of the
manufacturing process depends upon the selection of appropriate process param-
eters. The selection of optimum process parameters plays a significant role to
ensure quality of product, to reduce the manufacturing cost and to increase pro-
ductivity in computer controlled manufacturing process. For example, in the case
of milling operation the significant parameters that need to be optimized are
cutting speed, radial and axial depths of cut, feed, and number of passes. In the
case of ultrasonic machining operation, optimum selection of amplitude of
vibration, frequency of vibration, mean diameter of abrasive grain, volumetric
concentration of abrasive particles in slurry and static feed force significantly
affect the material removal rate and surface quality. In the case of cold forging
operation, optimum selection of parameters such as perform diameter, maximum
number of forming operations, area reduction in each pass, the included angle in
the extrusion and upset die significantly minimize the possibility of fracture. In the
steady state problem of wire drawing and rolling, the optimal scheduling of passes
is an important task. In deep drawing processes, the decision about the proper
blank-holder force in order to avoid tearing and wrinkling forms an optimization
problem.

Modeling and optimization of process parameters of any manufacturing
process is usually a difficult task where the following aspects are required:
knowledge of manufacturing process, empirical equations to develop realistic
constrains, specification of machine capabilities, development of an effective
optimization criterion, and knowledge of mathematical and numerical optimi-
zation techniques. A human process planner selects proper parameters using his
own experience or from the handbooks. Performance of these processes,
however, is affected by many factors and a single parameter change will
influence the process in a complex way. Because of the many variables and the
complex and stochastic nature of the process, achieving the optimal perfor-
mance, even for a highly skilled operator is rarely possible. An effective way
to solve this problem is to discover the relationship between the performance of
the process and its controllable input parameters by modeling the process
through suitable mathematical techniques and optimization using suitable
optimization algorithm.

The first necessary step for process parameter optimization is to understand the
principles governing the manufacturing process by developing an explicit math-
ematical model which may be mechanistic and empirical [1]. The model in which
the functional relationship between input–output and in-process parameters is
determined analytically is called mechanistic model. However, as there is lack of
adequate and acceptable mechanistic models for manufacturing processes, the
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empirical models are generally used in manufacturing processes. The modeling
techniques of input–output and in-process parameter relationships are mainly
based on statistical regression, fuzzy set theory, and artificial neural networks.

The optimization algorithms can be classified in two distinct types:

1. Traditional optimization algorithms: these are deterministic algorithms with
specific rules for moving from one solution to the other. These algorithms have
been in use for quite some time and have been successfully applied to many
engineering design problems. The examples of these algorithms include
non-linear programming, geometric programming, quadratic programming,
dynamic programming, etc. However, the optimization problems related to
manufacturing are usually complex in nature and characterized by mixed
continuous–discrete variables and discontinuous and non-convex design spaces.
Hence, the traditional optimization methods fail to give global optimum solu-
tion, as they are usually trapped at the local optimum. Also these techniques are
usually slow in convergence. To overcome these problems, researchers have
proposed non-traditional methods for optimization of process parameters of
various manufacturing processes.

2. Non-traditional optimization algorithms: these algorithms are stochastic in
nature, with probabilistic transition rules. These algorithms are comparatively
new and gaining popularity due to certain properties, which the deterministic
algorithms do not have. These methods are mainly based on biological,
molecular, or neurological phenomenon that mimics the metaphor of natural
biological evolution and/or the social behavior of species. To mimic the effi-
cient behavior of these species, various researchers have developed computa-
tional systems that seek fast and robust solutions to complex optimization
problems. Examples of these algorithms include simulated annealing (SA),
genetic algorithm (GA), particle swarm optimization (PSO), artificial bee
colony (ABC), shuffled frog leaping (SFL), harmony search (HS), etc.

1.3 Some Important Modeling and Optimization Techniques

1.3.1 Statistical Regression Technique

The data collected through experiments usually exhibits a significant degree of
error or a ‘‘noise.’’ In such a case, there is no need to intersect every point as the
individual data points may be incorrect. Rather, the curve is designed to follow the
pattern of points taken in group. This approach is known as statistical regression
[2]. Regression is conceptually simple technique for investigating functional
relationship between output and input decision variables of a process and may be
useful for manufacturing process data description, parameter estimation and
control.
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The criteria for fitting the best line through the data in simple linear regression
is to minimize the sum of squares of residuals (Sr) between the measured values of
response and the values of response calculated with the regression model. The
linear fit is expressed as:

Y ¼ a0 þ a1X ð1:1Þ

where Y is the value of response and X is the value of variable. The coefficients a0
and a1 are obtained by differentiating ‘‘Sr’’ with respect to a0 and a1, respectively,
and setting these derivatives equal to zero as the aim is to minimize the error.
To test whether the data are well fitted in model or not, the values of standard error
of estimates (S) of the regression analysis and the values of standard deviation are
calculated (Sy) are determined as given by Eqs. 1.2 and 1.3, respectively.

Standard error of estimate Sð Þ ¼ Sr=n� 2ð Þ1=2 ð1:2Þ

where n = number of data points.

Standard deviation; Sy
� �

¼ St=n� 1ð Þ1=2 ð1:3Þ

where St = total sum of squares of the residuals between data points and the mean.
S\ Sy indicates that the regression model has merit. The actual extent of

improvement, by using regression analysis rather than describing data as an
average value, is quantified by coefficient of determination (R2) which varies from
0 to 1. Value of R2

= 1 indicates perfect fit and R2
= 0 indicates no improvement.

Although linear regression provides a powerful technique for fitting the best
line to data, it is predicted on the fact that the relation between the independent and
dependant variables is linear. However, this is not true in many practical situations.
If the data is ill suited for the linear regression, non-linear regression can be used.
Various standard forms of non-linear relationships like exponential, power, satu-
ration growth rate model, etc. can be linearized easily. In other cases either
polynomial regression or Guass–Newton method can be used. Multiple linear
regression is the useful extension of the linear regression when the response is a
linear function of two or more independent variables which is the case in many
practical applications.

Although statistical regression may work well for modeling, this technique may
not describe precisely the underlying non-linear complex relationship between the
decision variables and responses. A prior assumption regarding functional rela-
tionships (such as linear, quadratic, higher order polynomial, and exponential)
between output and input decision variables is a prerequisite for regression
equation based modeling. Prediction of outputs for an unknown set of inputs based
on regression technique is valid only over the region of the regression variable
contained in the observed data. It is only an aid to confirm the cause–effect
relationship and does not imply a cause and effect relationship. Moreover, error
components of regression equation need to be mutually independent, normally
distributed having constant variance [2, 3].
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1.3.2 Fuzzy Set Theory

The fuzzy set theory plays an important role in input–output and in-process
parameter relationship modeling [4]. The theory on fuzzy set admits the existence
of a type of uncertainty in process decision variables due to vagueness rather than
due to randomness alone and many decisions in process control are in fuzzy
environment [5]. Fuzzy set theory-based modeling is generally preferred when
subjective knowledge or opinion of process experts plays a key role in defining
objective functions and decision variables [6]. In order to fully capture the
knowledge of the expert, a distribution (membership function) over the feasible
interval of parameter needs to be specified. The closer the value of this mem-
bership function of a variable to 1, the more that variable belongs to the fuzzy set.

The conventional optimization methods deal with the selection of design
variables that optimize an objective function subject to the satisfaction of the
stated constraints. For a fuzzy system, this notion of optimization has to be revised.
Since the objective and constraint functions are characterized by the membership
functions in a fuzzy system, the decision can be viewed as an intersection of the
fuzzy objective and constraint function [7].

The optimization problem of a fuzzy set is thus stated as follows:

Minimize f xð Þ

subject to: gj xð Þ 2 Gj j ¼ 1; 2; . . . . . .;m:
ð1:4Þ

where m is the number of constraints, Gj denotes the fuzzy interval to which gj(x)
belongs. The feasible region ‘‘S’’ which denotes the intersection of all Gj is defined
by the membership function:

ls xð Þ ¼ min lGj gj xð Þ
� �� �

ð1:5Þ

Since the design vector is considered feasible when ls(x)[ 0, the optimum
design is characterized by the maximum value of the intersection of the objective
function and the feasible domain lD(x*) as given by:

lD x�ð Þ ¼ max min lf xð Þ; ls xð Þð Þf g ð1:6Þ

where x* denotes the optimum level of parameter.
The fuzzy set-based techniques can be quite effective in converting subjective

knowledge/opinion of the skilled operator into a mathematical framework [6].
In the literature, predominantly the fuzzy set theory has been used in three ways.
In the first type of applications, fuzzy set theoretic operations help to arrive at
certain decision. For example, if the membership grades of certain solutions in two
conflicting objectives are known, then the optimum solution can be chosen as the
one providing the highest membership grade in the intersection set of two objec-
tives. The second type of application makes use of fuzzy arithmetic, which deals
with fuzzy numbers. A fuzzy number is a generalization of an interval number,
in which various intervals may have different membership grades. For example,
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the most likely estimate of friction may be assigned a membership grade 1 and the
lower and upper estimate may be assigned a membership grade 0.5. With these
three points, a triangle can be constructed to represent friction as a fuzzy number.
Fuzzy arithmetic computations are useful when the input parameter values, for
example friction and material properties, are not known precisely. In the third type
of application, fuzzy logic is used for making inferences based on the input values.
The fuzzy set-based prediction system takes input data and carries out ‘‘fuzzifica-
tion.’’ In the fuzzification process, the input data undergo some translation in the
form of linguistic terms such as ‘‘low feed,’’ ‘‘average cutting speed,’’ ‘‘high depth
of cut,’’ ‘‘very high cutting force,’’ etc. The translated data are sent to an inference
engine, which applies a set of predefined IF–THEN rules. The output of inference
system in linguistic form will go through defuzzification process, which converts it
to numerical data [8].

Fuzzy set theory-based modeling is thus a suitable technique for manufacturing
problems when multiple quality characteristics exist and hierarchy of importance
of each objective is not clearly defined. However, fuzzy set theory suffers from
few shortcomings such as that the rules developed are based only on experts’
knowledge and their prior experiences and opinions are not easily amenable to
dynamic changes of underlying manufacturing process. It also does not provide
any means of utilizing analytical models of manufacturing processes [9].

1.3.3 Artificial Neural Networks

Traditionally, the term neural network had been used to refer to a network or
circuit of biological neurons. The modern usage of the term often refers to artificial
neural networks, which are composed of artificial neurons or nodes. Artificial
neural network is a powerful data modeling tool that is able to capture and rep-
resent complex input–output relationships. A primary motivation for study of
neural networks was man learning from nature especially about how animal brains
learn based on experience. Such learning is known to have features such as:
robustness, gradual degrading failure rather than catastrophic failure, distributed
intelligence, achievement of significant stability as well as plasticity in learning
new things (without forgetting all the past things and yet perceiving newness and
updating internal capture of knowledge).

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous system. As in nature, the network
function is determined largely by the connection between elements. Neural net-
work can be trained to perform a particular function by adjusting the values of
connections (weights) between elements. Commonly, neural networks are adjusted
or trained so that a particular input leads to a specific target output. The network is
adjusted based on a comparison of an output and the target until the network
matches the target. Typically, many such input–target pairs are used in this
supervised learning to train a network.
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Neural networks are systems that can acquire, store, and utilize knowledge
gained from experience. An artificial neural network (ANN) is capable of
learning from an experimental data set to describe the nonlinear and interaction
effects with great success. It consists of an input layer used to present data to
the network, output layer to produce ANN’s response, and one or more hidden
layers in between. The input and output layers are exposed to the environment
and hidden layers do not have any contact with the environment. ANNs are
characterized by their topology, weight vectors, and activation function that are
used in hidden and output layers of the network. A neural network is trained
with a number of data and tested with other set of data to arrive at an optimum
topology and weights. Once trained, the neural networks can be used for pre-
diction [10].

The most commonly used neural network model is the multilayer perceptron
(MLP). This type of neural network is known as a supervised network because it
requires a desired output in order to learn. The goal of this type of network is to
create a model that correctly maps the input to the output using historical data so
that the model can then be used to produce the output when the desired output is
unknown.

The back-propagation is a popular learning method of the multi-layered neural
network. The forward path computing of the multi-layered neural network is
performed with each layer fully connected to the next layer as shown in Fig. 1.1
for a maximum ‘‘p’’ layered network. The state vector X(t) = [x1(t), ……, xN(t)(t)]

t

for a particular layer ‘‘t’’ is formed from the input vector Y(t - 1) = [y1(t -
1), ……, yN(t-1)(t - 1)]t, that is output of the previous layer (layer t - 1) of the
network, by the following equation:

X tð Þ ¼ W tð ÞY t � 1ð Þ with 1� t�P ð1:7Þ

where W(t) = [wij(t)]N(t)N(t-1); wij(t) is the weight between the ith neuron of layer t
and the jth neuron of layer t - 1; N(t) and N(t - 1) are the number of neurons in
layer t and t - 1, respectively.

Fig. 1.1 Multi-layered feed-forward neural network (from [83]; reprinted with permission from
Elsevier)
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The output vector Y(t - 1) of layer t - 1, i.e., the input vector of layer t is
calculated by the following equation:

yj t � 1ð Þ ¼ f xj t � 1ð Þ
� �

with 1� j�N t � 1ð Þ ð1:8Þ

where a typical form f(�) is the sigmoid activation function.

f xj t � 1ð Þ
� �

¼ 1
.

1þ e�xjðt�1Þ
� 	

ð1:9Þ

To finish computation of the output of the feed-forward path, the back-propaga-
tion learning can be carried out using the so-called d learning rule as follows:

dj t � 1ð Þ ¼ 1� yj t � 1ð Þ
� �

yj t � 1ð Þbj t � 1ð Þwith 1� j�N t � 1ð Þ hidden layerð Þ

ð1:10Þ

with

b t � 1ð Þ ¼ W t tð Þd tð Þ ð1:11Þ

where the superscript t denotes transposedmatrix or vector with b(t-1) = [b1(t-1),
… bN(t-1)(t - 1)]t, d(t) = [d1(t), … dN(t)(t)]

t and

dj tð Þ ¼ di tð Þ � yi tð Þð Þ 1� yi tð Þð Þyi tð Þwith 1� i�N tð Þ output layerð Þ ð1:12Þ

where di(t) is the teaching signal.
The weight wij(t) is updated according the following equation:

Dwij tð Þ ¼ gdi tð Þyj t � 1ð Þ with 1� i�N tð Þ; 1� j�N t � 1ð Þ ð1:13Þ

where g is the learning rate.
The MLP and many other neural networks learn using back propagation

algorithm. With back propagation, the input data is repeatedly presented to the
neural network. With each presentation, the output of the neural network is
compared to the desired output and an error is computed. This error is then fed
back (back propagated) to the neural network and used to adjust the weights such
that the error decreases with each iteration and the neural model gets closer and
closer to producing the desired output. This process is known as ‘‘training.’’

The true power and advantage of using neural networks lies in their ability to
represent both linear and non-linear relationships and in their ability to learn these
relationships directly from the data being modeled. Traditional linear models are
simply inadequate when it comes to modeling data that contains non-linear
characteristics. The learning ability of non-linear relationship in manufacturing
operations without going deep into the mathematical complexity, or prior
assumptions on the functional forms of the relationship between inputs, in-process
parameters and outputs, makes ANN an attractive alternative choice for many
researchers to model various manufacturing processes. However, ANNs have the
following limitations [3, 11]:
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• Model parameters may be un-interpretable for non-linear relationship.
• It is dependent on voluminous data set, as sparse data relative to number of input
and output variables may result in over fitting or terminate training before
network error reaches optimal or near-optimal point.

• Identification of influential observations, outliers, and significance of various
predictors may not be possible.

• There is always an uncertainty in finite convergence of algorithms used in ANN-
based modeling technique, and generally convergence criteria are set based on
prior experiences gained from earlier applications.

• No universal rules exist regarding choice of a particular ANN technique for any
typical metal cutting process problem.

1.3.4 Gray Relational Analysis (GRA)

In real world problems the situation can never be perfectly black (with no
information) or perfectly white (with complete information). Situations between
these extremes are described as being gray, hazy, or fuzzy. Therefore, a gray
system means that a system in which a part of information is known and a part
of information is unknown [12, 13]. With this definition, information quantity
and quality form a continuum from a total lack of information to complete
information—from black through gray to white. Since uncertainty always exists,
one is always somewhere in the middle, somewhere between the extremes,
somewhere in the gray area. In the middle, gray systems will give a variety of
available solutions. Gray relational analysis, based on this theory, can be further
effectively adapted for solving the complicated interrelationships among the
designated performance characteristics. Through this analysis, the gray rela-
tional grade is favorably defined as an indicator of multiple performance
characteristics for evaluation. In recent years, the gray relational analysis has
become the powerful tool to analyze the processes with multiple performance
characteristics. It also provides an efficient solution to multi-input and discrete
data problems. In gray relational analysis, the complex multiple response
optimization problem can be simplified into a optimization of single response
gray relational grade. The procedure for determining the gray relational grade is
discussed below:

Step 1: Data pre-processing: if the number of experiments is ‘‘m’’ and the number
of responses (i.e. performance characteristics) is ‘‘n,’’ then the ith exper-
iment can be expressed as Yi = (yi1, yi2, …, yij, …, yin) in decision matrix
form, where yij is the performance value (or measure of performance) of
response j (j = 1, 2, 3, …, n) for experiment i (i = 1, 2, 3, …, m). The
general form of decision matrix D is given as,

10 1 Overview



D ¼

y1l . . . y1j . . . y1n
. . . . . . . . . . . . . . .

yil . . . yij . . . yin
. . . . . . . . . . . . . . .

yml . . . ymj . . . ymn

2

6

6

6

6

4

3

7

7

7

7

5

ð1:14Þ

The term Yi can be translated into the comparability sequence Xi = (xi1,
xi2, …, xij,…, xin), where xij is the normalized value of yij for response j

(j = 1, 2, 3, …, n) of experiment i (i = 1, 2, 3, …, m). After normalization,
decision matrix D becomes normalization matrix D0, is given as follows:

D ¼

x1l . . . x1j . . . x1n
. . . . . . . . . . . . . . .

xil . . . xij . . . xin
. . . . . . . . . . . . . . .

xml . . . xmj . . . xmn

2

6

6

6

6

4

3

7

7

7

7

5

ð1:15Þ

The normalized values xij are determined by use of the Eqs. 1.16–1.18,
which are for beneficial type, non-beneficial type and target value type
responses, respectively. They are described as follows for i = 1, 2, …, m
and j = 1, 2, …, n:

1. If the expectancy of the response is larger-the-better (i.e. beneficial
response), then it can be expressed by

xij ¼ yij �min yij
� �� �


max yij
� �

�min yij
� �� �

ð1:16Þ

2. If the expectancy of the response is smaller-the-better (i.e. non-bene-
ficial response), then it can be expressed by

xij ¼ max yij
� �

� yij
� �


max yij
� �

�min yij
� �� �

ð1:17Þ

3. If the expectancy of the response is nominal-the-best (i.e. closer to the
desired value or target value), then it can be expressed by

xij ¼ 1� yij � y�j

�

�

�

�

�

�

� 	.

max max yij
� �

� y�j ; y
�
j �min yij

� �

� 	� 	

ð1:18Þ

where yj
* is closer to the desired value of jth response.

Step 2: Reference sequence: in comparability sequence all performance values are
scaled to [0, 1]. For a response j of experiment i, if the value xij which has
been processed by data pre-processing procedure is equal to 1 or nearer to 1
than the value for any other experiment, then the performance of experiment
i is considered as best for the response j. The reference sequence X0 is
defined as (x01, x02, …, x0j,…, x0n) = (1, 1, …, 1, …, 1), where x0j is the
reference value for jth response and it aims to find the experiment whose
comparability sequence is the closest to the reference sequence.
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Step 3: Gray relational coefficient: gray relational coefficient is used for deter-
mining how close xij is to x0j. The larger the grey relational coefficient, the
closer xij and x0j are. The gray relational coefficient can be calculated by
Eq. 1.19.

c x0j; xij
� �

¼ Dmin þ nDmaxð Þ



Dij þ nDmax

� �

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .n

ð1:19Þ

In Eq. 1.19, c(x0j, xij) is the gray relational coefficient between xij and x0j and

Dij ¼ x0j � xij
�

�

�

�;

Dmin ¼ min Dij; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n
� �

Dmax ¼ max Dij; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n
� �

n ¼ distinguishing coefficient; n 2 0; 1ð �

Distinguishing coefficient (n) is also known as the index for
distinguishability. The smaller n is, the higher is its distinguishability. It
represents the equation’s ‘‘contrast control.’’ The purpose of n is to expand
or compress the range of the grey relational coefficient. Different
distinguishing coefficients may lead to different solution results. Decision
makers should try several different distinguishing coefficients and analyze
the impact on the GRA results [14].

Step 4: Gray relational grade: the measurement formula for quantification in gray
relational space is called the gray relational grade. A gray relational grade
(gray relational degree) is a weighted sum of the grey relational coeffi-
cients and it can be calculated using Eq. 1.20.

C X0;Xið Þ ¼
X

n

j¼1

wj � c x0j; xij
� �

for i ¼ 1; 2; . . .;m ð1:20Þ

where
Pn

j¼1 wjj ¼ 1

In Eq. 1.20, C(X0, Xi) is the gray relational grade between comparability
sequence Xi and reference sequence X0. It represents the level of correlation
between the reference sequence and the comparability sequence. wj is the weight
of response j and usually depends on decision makers’ judgment. The gray rela-
tional grade indicates the degree of similarity between the comparability sequence
and the reference sequence. If an experiment gets the highest gray relational grade
with the reference sequence, it means that comparability sequence is most similar
to the reference sequence and that experiment would be the best choice [15].

Several values of distinguishing coefficient can be considered to find the
rankings of given experiments. Each distinguishing coefficient gives its own
ranking. To get the final GRA ranking ‘‘Mode principle’’ can be applied, which
considers the effect of all distinguishing coefficient values. The ‘‘Mode’’ is the
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value that occurs most often. In ‘‘Mode principle,’’ the experiment having mode
number at rank 1 position is selected and given final GRA rank as 1. Similarly, the
experiment having mode number at rank 2 position is selected and given final
GRA rank as 2 and so on.

However, for solving the problems with multiple performance characteristics
with gray relational analysis, the weighting values of the performance character-
istics or responses while calculating the gray relational grade are determined based
on subjective estimation. This approach may not reveal the relative importance for
various performance characteristics. An analytic hierarchy process (AHP) method
may be used for systematically deciding the weights of relative importance of the
responses [16, 17]. Fuzzy logic can also be used to calculate the weighting values.

1.3.5 Taguchi Robust Design Method

Taguchi methods have been used widely in engineering analysis to optimize per-
formance characteristics by means of settings of design parameters [18]. Taguchi
method is a combination of mathematical and statistical techniques used in an
empirical study. It is economical for characterizing a complicated process. It uses
fewer experiments required in order to study all levels of all input parameters, and
filters out some effects due to statistical variation. Taguchi method can also deter-
mine the experimental condition having the least variability as the optimum con-
dition. The variability of a property is due to ‘‘noise factor,’’ which is a factor difficult
to control. On the contrary, the factor easy to control is called ‘‘control factor.’’

Taguchi robust design method is a strong tool for the design of high quality
systems. To optimize designs for quality, performance, and cost, Taguchi robust
design method presents a systematic approach that is simple and effective [19].
Taguchi method involves the stages of system design, parameters design, and
tolerance design. System design involves the application of scientific and engi-
neering knowledge required in manufacturing a product, parameter design is
employed to find optimal process values for improving the quality characteristics,
and tolerance design consists of determining and analyzing tolerances in the
optimal settings recommended by parameter design [20].

Taguchi method of robust parameter design is an off-line statistical quality
control technique in which the level of controllable factors or input process
parameters are so chosen to nullify the variation in responses due to uncontrollable
or noise factors such as humidity, vibration, and environmental temperature. The
objective of Taguchi approach is to determine the optimum setting of process
parameters or control factors, thereby making the process insensitive to the sources
of variations due to uncontrollable or noise factors [21, 22]. In this method, main
process parameters or control factors which influence process results are taken as
input parameters and the experiment is performed as per specifically designed
orthogonal array. The selection of appropriate orthogonal array is based on total
degree of freedom (DOF) which is computed as,
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DOF ¼ number of levels� 1ð Þfor each factor þ number of levels � 1ð Þ

� number of levels � 1ð Þfor each interactionþ 1 ð1:21Þ

The variability of the quality characteristic can be expressed by signal to noise
(S/N) ratio. The terms ‘‘signal’’ and ‘‘noise’’ represent the desirable and unde-
sirable values for the characteristic, respectively. Taguchi method uses the S/N
ratio to measure the characteristic deviating from the desired value. The exper-
imental condition having the maximum S/N ratio is considered as the optimal
condition, as the variability of characteristic is in inverse proportion to the S/N
ratio. The (S/N) ratio (g) represents the quality characteristic for the observed
data in the Taguchi’s design of experiments (DOE) and mathematically it can be
computed as,

g ¼ �10 log MSDð Þ ð1:22Þ

where MSD is the mean square deviation and commonly known as quality loss
function. Depending on the experimental objective, the quality loss function can
be of three types: lower-the-better (LB), higher-the-better (HB), and nominal-
the-best (NB) type. These quality loss functions are computed as follows:

MSD ¼ 1=nð Þ
X

n

i¼1

y2i ð1:23Þ

where yi is the observed data of quality characteristic at the ith trial and n is the
number of repetitions at the same trial. The S/N ratio represents the desired part/
undesired part and aim is always to maximize the S/N ratio whatever be the nature
of quality characteristics. From the S/N ratio, the effective parameters having
influence on process results can be seen and the optimal sets of process parameters
can be determined. In addition to the S/N ratio, a statistical analysis of variance
(ANOVA) can be employed to indicate the impact of process parameters on
surface roughness. In this way, the optimal levels of process parameters can be
estimated.

Taguchi method is a widely accepted method of DOE. It has proved to be an
effective methodology for producing high-quality products at relatively low cost.
This approach has been applied successfully in many US, Japan, and European
manufacturing firms, especially in automobile, electronics, food processing, and
medical equipment industries. Taguchi method is also suitable for both contin-
uous and discrete responses and is independent of intrinsic modeling approach.
However, the orthogonal array design suggested by Taguchi is limited in number
and may fail to adequately deal with many important interaction effects within
the domain of the design proposed. Also Taguchi proposes a short term, one-
time improvement technique to reduce the number and cost of experimentations,
which may eventually lead to sub-optimal solutions. Taguchi method for multi-
objective problems is purely based on judgmental and subjective process
knowledge.
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1.3.6 Taguchi Fuzzy-Based Approach

Taguchi fuzzy-based approach is the fuzzy logic analysis coupled with Taguchi
methods for optimization in case of multiple performance characteristics. In
Taguchi method, for single process response, the optimum level of the process
parameters is the level having highest S/N ratio. However, optimization of
multiple responses is not as straightforward as that of the optimization of a
single process response. A higher S/N ratio for one process response may cor-
respond to a lower S/N ratio for another process response. As a result, an overall
evaluation of S/N ratios is required for the optimization of multi-process
response. To solve this problem, fuzzy logic analysis is introduced into Taguchi
method for optimization of multi process response. Fuzzy logic is used to
develop the fuzzy reasoning of multiple performance characteristics. The loss
function corresponding to each process response is fuzzified and then a single
fuzzy reasoning grade is obtained by fuzzy inference and defuzzification.
A fuzzy logic unit comprises of a fuzzifier, a membership function, a fuzzy rule
base, an inference engine and a defuzzifier. First, the fuzzifier uses membership
functions to fuzzify the signal to noise (S/N) ratios obtained by Taguchi method.
Next, the inference engine performs the fuzzy reasoning on fuzzy rules to
generate a fuzzy value. Finally, the defuzzifier converts the fuzzy value into a
multi-response performance index. A fuzzy logic system is thus used to inves-
tigate relationships between responses for determining the efficiency of each
parameter design of the Taguchi dynamic experiments. From the fuzzy inference
process, the optimal process conditions can be easily determined.

1.3.7 Factorial Design Method

It is a method that researchers can use to design the experiments. An experiment
using factorial design allows one to examine simultaneously the effects of
multiple independent variables and their degree of interaction. In statistics, a full
factorial design is a design of experiment consisting of two or more factors, each
with discrete possible values or levels, and whose experimental units take on all
possible combinations of all these levels across all such factors. Such an
experiment allows studying the effect of each factor on the response variables, as
well as the effect on interaction between factors on the response variable [23].
For majority of the experiments, each factor has only two levels. Such a design
is called as 2k design with k number of factors. A 22 design with two factors P

and Q and having two levels -1 and +1 has four test conditions as shown in
Table 1.1.

In Table 1.1, each test condition is given a coded value such that -1 is used
when a factor is at its low value and +1 is used when a factor is at its high value.
Such coded levels can be derived from the formula:
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Coded test condition ¼ ðATC�MTCÞ= ðrange of test conditionsÞ=2ð Þ ð1:24Þ

where ATC = actual test condition and MTC = mean test condition.
A full factorial experiment allows all factorial effects to be estimated inde-

pendently and is commonly used in practice. However, it is often too costly to
perform a full factorial experiment. For example, if we have 8 factors to inves-
tigate and each factor has two levels, we need to have 28 = 256 runs. Instead, a
fractional factorial design, which is a subset or fraction of a full factorial design, is
often preferred because much fewer runs are required. The half fractional factorial
design requires 2k-1 tests to be carried out. When this fraction is properly selected,
the resulting design can estimate the maximum number of factorial effects of
interest with maximum precision.

Factorial design can be used when there are more than two levels of each
factor. However, the number of experiments required for such designs will be
considerably greater than their two level counterparts. Factorial designs are
therefore less attractive if a researcher wishes to consider more than two levels.
A factorial experiment can be analyzed using ANOVA or regression analysis.
Other useful exploratory analysis tools for factorial experiment includes main
effects plots, interaction plots, and normal probability plots for the estimated
effects. When the factors are continuous, two-level factorial design assumes that
the effects are linear. If a quadratic effect is accepted for a factor, a more
complicated experiment should be used such as central composite design.
Optimization of factors that could have quadratic effects is the primary goal of
response surface methodology.

1.3.8 Response Surface Methodology

Response surface methodology (RSM) is a collection of statistical and mathe-
matical methods that are useful for the modeling and optimization of the engi-
neering science problems. In this technique, the main objective is to optimize the
responses that are influenced by various input process parameters. RSM also
quantifies the relationship between the controllable input parameters and the
obtained responses. In modeling and optimization of manufacturing processes
using RSM, the sufficient data is collected through designed experimentation.

Table 1.1 A 22 full factorial
design

Test Coded test condition

P Q

i -1 -1
ii 1 -1
iii -1 1
iv 1 1
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In general, a second-order regression model is developed because first-order
models often give lack-of-fit [23]. According to RSM, all the input process
parameters are assumed to be measurable and the corresponding responses can be
expressed as follows:

y ¼ f x1; x2; . . .; xkð Þ þ e ð1:25Þ

where y is the response which is required to be optimized, f is the unknown
function of response, x1, x2, …, xk denote the independent parameters or variables,
also called natural variables, k is the number of the independent variables and
finally e is the statistical error that represents other sources of variability not
accounted for by f. These sources include the effects such as the measurement
error. It is generally assumed that e has a normal distribution with mean zero and
variance [24].

It is possible to separate an optimization study using RSM into three stages.
The first stage is the preliminary work in which the determination of the inde-
pendent parameters and their levels are carried out. The second stage is the
selection of the experimental design and the prediction and verification of the
model equation. The last one is obtaining the response surface plot and contour
plot of the response as a function of the independent parameters and determi-
nation of optimum points.

It is assumed that the independent variables (input process parameters) are
continuous and controllable by experiments with negligible errors. It is also
required to find a suitable approximation for the true functional relationship
between independent variables and responses. Usually, a second-order regression
model as given below is utilized in RSM.

y ¼ b0 þ
X

k

i¼1

bixi þ
X

k

i¼1

biix
2
i þ

X

k

j[ 1

biixixj ð1:26Þ

where ‘‘y’’ is the response and the xi (1, 2, …, k) are the coded levels of k

quantitative variables. The coefficient b0 is the free term, the coefficients bi are the
linear terms, the coefficients bii are the quadratic terms, and the coefficients bij are
the interaction terms. The equations relating the response with the variables are
then derived by determining the values of the coefficients using the method of least
squares (MLS). MLS is a multiple regression technique [25].

Response surface methodology (RSM) has several advantages compared to the
classical experimental or optimization methods in which one variable at a time
technique is used. First, RSM offers a large amount of information from a small
number of experiments. Indeed, classical methods are time consuming and a large
number of experiments are needed to explain the behavior of a system. Second, in
RSM it is possible to observe the interaction effect of the independent parameters
on the response. The model equation easily clarifies these effects for binary
combination of the independent parameters. In addition, the empirical model that
related the response to the independent variables is used to obtain information
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about the process. With respect to these, it may be said that RSM is a useful tool
for the optimization of manufacturing processes.

On the other hand, the major drawback of RSM is to fit the data to a second
order polynomial. It cannot be said that all systems containing curvature are well
accommodated by the second order polynomial. To overcome this, the data can be
converted into another form that can be explained by the second order model. For
example, logarithmic transformations and other linearization methods can be used
for this purpose. Although these transformations may be useful, it is not possible to
say that these transformations give desirable results for all systems. In addition, the
transformation of response or inputs is time consuming and sometimes it is dif-
ficult to know which form of the transformation is the best. Alternatively, if the
system is hardly explained by a second order model, one should choose a smaller
range of independent parameters. It is possible to increase the accuracy of the
model equation by working in a narrow range of independent parameter but it
should be remembered that working in a narrow range reduce the possibility of
determination of the stationary point. Preliminary work becomes more critical for
the determination of the independent parameter range.

Response surface methodology (RSM) is unsuitable for solving highly non-
linear, multi-modal functions and also in case of multiple objectives [26]. More-
over, objective function needs to be continuously differentiable, which may not be
the case in many complex physical processes.

1.3.9 Knowledge-Based Expert Systems

Knowledge-based expert systems (KBES) are computer programs embodying
knowledge about a narrow domain for solving problems related to that domain.
An expert system usually comprises two main elements, a knowledge base and
an inference mechanism. The knowledge base contains domain knowledge which
may be expressed as any combination of ‘‘IF–THEN’’ rules, factual statements,
frames, objects, procedures, and cases. The inference mechanism is that part of
an expert system that manipulates the stored knowledge to produce solutions to
problems. A human expert uses knowledge and reasoning to arrive at conclu-
sions, so does an expert system. The reasoning carried out in an expert system
attempts to mimic human experts in combining pieces of knowledge. Thus, the
structure or architecture of an expert system partially resembles how a human
expert performs. Thus, there is an analogy between an expert and an expert
system [27, 28].

Once the domain knowledge to be incorporated in an expert system has been
extracted, the process of building the system is relatively simple. The ease with
which expert systems can be developed has led to a large number of applications.
The effect is to arrive at a solution to a given problem, as far as possible, the
same reasoning process as that of human expert. The knowledge contained
within the database of an expert system is normally elicited from various sources
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but is specific to the type of problem under investigation. In response to the
interrogation by the user, the expert system must take the relevant information
from its knowledge base and then by means of reasoning process (inference
engine) produce an appropriate solution. A common form of architecture used in
expert system is rule-base approach. A typical rule based system is shown in
Fig. 1.2.

Using this approach, the decision to be made in arriving at the solution of a
given problem is based on the set of IF–THEN rules which embody knowledge
specific to the problem. Each rule represents a small element of a knowledge
related to a given area of expertise. Collectively the number of related rules may
correspond to the chain of inferences which lead from some initial known facts to
some useful conclusions. These conclusions are reached by moving recursively
through the rules either in a forward or backward direction. Typically, the infer-
ence process is carried out in an interactive mode.

The knowledge contained in the system has been compiled from two main
sources: from human experts working in the field of manufacturing and from the
technical documents, catalogues, or handbooks of various companies. The suc-
cess of an expert system is hidden in its expandable structure like a human expert
who adds every new solution he comes across to his knowledge and uses this
knowledge in his future analyses. Since the system has a separate and modular
knowledge base, it is very easy indeed to update the system by simply getting
into the database and editing the knowledge files. The more information the
system contains, the more problems it can handle. Knowledge base is the heart of
the system, therefore it is the task of a few people who are responsible from the
manufacturing to add, delete, or modify it. Editor allows the new problems,
picture and information files related to the problems, causes and the remedies of
the problems to be added to the knowledge base. Besides, it is possible to add
new causes to the problems, or new remedies to the causes that already exist in
the knowledge base.

Fig. 1.2 Schematic of a typical rule based system
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In the development of an expert system a number of approaches can be used.
One can adopt a high level artificial intelligence oriented language such as
PROLOG, or LISP [29].

1.3.10 Principal Component Analysis (PCA)

Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components. The first principal compo-
nent accounts for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as
possible. Depending on the field of application, it is also named the discrete
Karhunen–Loève transform (KLT), the Hotelling transform or proper orthogonal
decomposition (POD).

Principal component analysis (PCA) was introduced in 1901 by Pearson [30]
and further developed by Hotelling [31]. Now it is mostly used as a tool in
exploratory data analysis and for making predictive models. PCA involves the
calculation of the eigenvalue decomposition of a data covariance matrix or sin-
gular value decomposition of a data matrix, usually after mean centering the data
for each attribute. The results of a PCA are usually discussed in terms of com-
ponent scores and loadings.

Principal component analysis (PCA) is a multivariate statistical method, which
allows the representation of the original dataset in a new reference system char-
acterized by new variables called principal components. Each principal component
has the property of explaining the maximum possible amount of variance obtained
in the original dataset. PCA can thus gather highly correlated independent vari-
ables into a principal component and all principal components are independent of
each other. All it does is to transform a set of correlated variables to a set of
uncorrelated principal components. A weighting factor for a principal component
is determined based on its contribution percentage to total variance. Then, for
multiple objectives the index can be formulated by integrating all principal
components through the weighting methods. The procedure of PCA can be
described as follows [32]:

1. The S/N ratios of each quality characteristic obtained from Taguchi Method are
normalized as:

x�i jð Þ ¼ xi jð Þ � x�i jð Þ
� �


xþi jð Þ � x�i jð Þ
� �

ð1:27Þ

where xi
*(j) is the normalized S/N ratio for jth quality characteristic in ith

experimental run, xi(j) is the S/N ratio for jth quality characteristic in ith
experimental run, xi

-(j) is the minimum and xi
+(j) is the maximum S/N ratio for

jth quality characteristic in all experimental runs.
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2. The normalized multi-response array for m experimental runs and n quality
characteristics can be represented by matrix X* as,

X� ¼

x�1ð1Þ x�1ð2Þ . . . x�1ðnÞ
x�2ð1Þ x�2ð2Þ . . . x�2ðnÞ
. . .. . . . . .. . . . . . . . .. . .

. . .. . . . . .. . . . . . . . .. . .

x�mð1Þ x�mð2Þ . . . x�mðnÞ

2

6

6

6

6

4

3

7

7

7

7

5

ð1:28Þ

3. The correlation coefficient array (Rjl) of matrix D* is evaluated as follows:

Rjl ¼ cov x�i jð Þ; x�i lð Þ
� �


rxi� jð Þ:rxi� lð Þ

� �

for j ¼ 1; 2. . .n; l ¼ 1; 2. . .; n ð1:29Þ

where cov (xi*(j), xi*(l)) is the covariance of sequences xi*(j) and xi*(l), and
rxi*(l) is the standard deviation of the sequence xi*(l).

4. The Eigen values and eigenvectors of matrix Rjl are calculated from the
correlation coefficient array.

R� kkImð ÞVik ¼ 0 ð1:30Þ

where kk are the Eigen values, and

X

n

k¼1

kk ¼ n ð1:31Þ

Vik = [ak1, ak2, …, akn]
T are the eigenvectors corresponding to the Eigen value kk.

5. The uncorrelated principal components are then computed as follows:

Ymk ¼
X

n

i¼1

x�m ið Þ � Vik ð1:32Þ

The principal components are created in order of decreasing variance, and
therefore the first principal component, Ym1, accounts for most variance in the
data. The components with an Eigen value greater than one are chosen to
replace the original responses for further analysis.

6. The coefficient of determination is calculated by the following equation:

Ck ¼ kk=n; for k ¼ 1; 2; . . .; n ð1:33Þ

The coefficient of determination, Ck, represents the weight of the principal
component, Pmk.

Ding et al. [33] presented an adaptive kernel principal component analysis
(AKPCA) method, which has the flexibility to accurately track the kernel principal
components (KPC). First, KPC are recursively formulated to overcome the batch
nature of standard kernel principal component analysis (KPCA). This formulation
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is derived from the recursive Eigen decomposition of kernel covariance matrix and
indicates the KPC variation caused by the new data. Second, kernel covariance
matrix is correctly updated to adapt to the changing characteristics of data. In this
adaptive method, the KPC is adaptively adjusted without re-Eigen decomposing
the kernel Gram matrix. This method not only maintains constant update speed and
memory usage as the data-size increases but also alleviates sub-optimality of the
KPCA method for non-stationary data. The results demonstrated that this approach
yields improvements in terms of both computational speed and approximation
accuracy.

Sârbu and Pop [34] applied a fuzzy principal component analysis (FPCA)
method for robust estimation of principal components. The efficiency of the new
algorithm was illustrated on a data set concerning the quality of the Danube River.
The FPCA method achieved better results mainly because it is more compressible
than classical PCA, i.e., the first fuzzy principal component accounts for signifi-
cantly more of the variance than their classical counterparts. These facts (greater
accounting for total variance and shaper delineation of principal components)
should encourage the application of fuzzy principal components analysis meth-
odology to other areas. Using fuzzy principal component analysis, it is possible to
explain some of the discrepancies, found in the literature, relating to multivariate
analysis of data in terms of efficiency, goodness-of-fit, predictive power and
robustness.

1.3.11 Mathematical Iterative Search Methods

Iterative search techniques may be described in terms of their structures, com-
putational procedures, and important decision problems formulated as minimiza-
tion or maximization of a mathematical function of several variables having a
number of constraints. In these approaches, there is no need to construct an actual
physical model of the manufacturing process under consideration, which is mostly
replaced by an empirical mathematical model describing the actual process.

In any general linear programming (LP) optimization technique, both objective
function and constraint equations are linear functions, and the most popular search
algorithm in LP is simplex. As manufacturing process problems are mostly
complex and non-linear in nature, LP techniques does not provide an adequate
answer, or may not be appropriate for many such problems [3]. Multi-modal
functions and consideration of multiple non-linear response functions justify the
use of non-linear programming (NLP) solution techniques in this case. In any NLP
manufacturing process optimization problem formulation, either the objective
function(s) or at least one of the constraints is non-linear in nature, and a particular
combination of process conditions is optimal, if and only if, all of Kuhn-Tucker
conditions [35] with other convexity assumptions on response functions are sat-
isfied. Some of the mathematical iterative search techniques are described below.
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1.3.11.1 Dynamic Programming

In mathematics and computer science, dynamic programming is a method of
solving complex problems by breaking them down into simpler steps. It is
applicable to problems that exhibit the properties of overlapping sub-problems and
optimal sub-structure. Top–down dynamic programming simply means storing the
results of certain calculations, which are then re-used later because the same
calculation is a sub-problem in a larger calculation. Bottom–up dynamic pro-
gramming involves formulating a complex calculation as a recursive series of
simpler calculations.

Dynamic programming developed by Bellman [36] is a well suited mathe-
matical tool for optimization of multistage decision problems. The multistage
decision problem is the one in which number of single stage processes are con-
nected in series so that the output of one stage is the input of the succeeding stage.
The multistage decision problems can be classified into three categories:

1. Initial value problem in which the initial state variable is prescribed.
2. Final value problem in which the final state variable is prescribed. However, the

final value problem can be transformed into initial value problem by reversing
the direction of state variables.

3. Boundary value problem in which the values of both input and output variables
are specified.

The dynamic programming decomposes the multistage decision problem as a
sequence of single stage problems. Thus, an N-variable problem is represented as a
sequence of N single variable problems that are solved successively. These N sub-
problems are obviously simpler to solve than original problem. The decomposition
to N sub-problems is done in such a manner that the optimal solution of the
original N-variable problem can be obtained from the optimal solution of N one-
dimensional problems.

The procedural steps for solving a problem by dynamic programming can be
summarized in the following manner:

Step 1: Identify the decision variables and specify objective function to be opti-
mized under certain limitations, if any

Step 2: Divide the given problem into a number of smaller sub-problems or
stages. Identify the state variables at each stage and write down the
transformation function as a function of the state variables and decision
variables at the next stage.

Step 3: Write down the general recursive relationship for computing the optimal
policy. Decide whether top-down or bottom-up method is to follow to
solve the problem.

Step 4: Construct appropriate stages to show the required values of the return
function at each stage.

Step 5: Determine the overall optimal policy or decision and its value at each
stage. There may be more than one such optimal policies.
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For multistage decision problems, the dynamic programming is preferred over
classical optimization techniques as classical optimization techniques can solve
multistage decision problems only when:

1. The number of variables is very small.
2. The functions involved are continuous and continuously differentiable.
3. Optimum points are not lying on the boundary points.
4. The problem is relatively simple so that the set of resultant equations can be

solved either analytically or numerically.

Dynamic programming on the other hand can deal with the discrete variables,
non-convex, non-continuous, and non-differentiable functions. It can also take into
account stochastic variability by a simple modification of the deterministic pro-
cedure. Dynamic programming thus can solve both continuous and discrete vari-
ables and yield a global optimal solution. The applications of dynamic
programming for the solution of a linear programming problem has a serious
limitation due to the dimensionality restrictions. The number of calculations
needed will increase very rapidly as the number of decision variables and state
parameters increases. However, despite these disadvantages, this technique is very
suitable for the solution of a wide range of complex problems in several areas of
decision making.

1.3.11.2 Goal Programming

Goal programming [37, 38] is one of the methods developed for solving multi-
objective optimization problems. In this method, the designer sets the goal for each
objective that must be achieved. The optimum solution is then defined as the one
that minimizes the deviations from the set goals. Thus, the goal programming
formulation of a multi-objective optimization problem leads to:

Minimize:
X

k

J¼1

dþj þ d�j

� 	p

 !1=p

; p� 1 ð1:34Þ

where k is the number of objectives, dj
+ and dj

- are the underachievement and
overachievement of the jth objective. Value of p is based on utility function chosen
by the designer.

Subject to: gj xð Þ� 0 j ¼ 1; 2. . .;m ð1:35Þ

where gj(x) is the jth constraint expressed in terms of variables x, m is the number
of constraints.

dþj � 0; j ¼ 1; 2; . . .; k ð1:36Þ

d�j � 0; j ¼ 1; 2; . . .; k ð1:37Þ
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dþj d
�
j ¼ 0; j ¼ 1; 2; . . .; k ð1:38Þ

fj xð Þ þ dþj � d�j ¼ bj; j ¼ 1; 2; . . .; k ð1:39Þ

where fj(x) is the fitness value of the objective j, bj is the goal set by the designer
for the jth objective. The value of bj for jth objective is obtained by obtaining the
minimum function value of the particular objective while satisfying all constraints.

A goal programming model performs three types of analysis. First, it deter-
mines the input requirements to achieve a set of goals. Second, it determines the
degree of attainment of the defined goals with given resources, and third, it pro-
vides the optimum solution under the varying inputs and goal structures. In sum
total, the salient feature of goal programming is its capability to handle managerial
problems that involve multiple incompatible goals according to their importance
as fixed up by the management. The important advantage of goal programming is
its flexibility, which allows model simulation with numerous variations of con-
straints and goal priorities. But it may be mentioned here that the limitations of
linear programming technique in terms of assumptions, namely proportionality,
additivity, and divisibility are attributable to goal programming also. However,
there are non-linear goal programming problems reported in the literature.

1.3.11.3 GRG Method

Generalized reduced gradient (GRG) procedure is one of a class of techniques
called reduced-gradient or gradient projection methods which are based on
extending methods for linear constraints to apply to non-linear constraints. They
adjust the variables so the active constraints continue to be satisfied as the pro-
cedure moves from one point to another. The ideas for these algorithms were
devised by Wilde and Beightler [39] using the name of constrained derivatives, by
Wolfe [40] using the name of the reduced-gradient method and extended by
Abadie and Carpenter [41] using the name generalized reduced gradient.
According to Avriel [42], if the economic model and constraints are linear this
procedure is the Simplex Method of linear programming, and if no constraints are
present it is gradient search. There are many possible GRG algorithms [43].

The GRG method has been proven to be a precise and accurate method for
solving non-linear programming problems. The idea of GRG is to convert the
constrained problem into an unconstrained one by using direct substitution. The
various steps in this algorithm are discussed below:

Step 1: Choose the initial solution x(0). Set termination factor [. Set t = 0.
Transform all inequality constraints by adding slack variables.

Step 2: Calculate the factor yi
(t) for all variables i = 1, 2 …, n as follows:

y
ðtÞ
i ¼ min x

ðtÞ
i � x

ðLÞ
i

� 	

; x
ðUÞ
i � x

ðtÞ
i

� 	n o.

x
ðUÞ
i � x

ðLÞ
i

� 	

ð1:40Þ
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where xi
(U) and xi

(L) are the upper and lower bounds for the ith variable,
respectively.

Step 3: Arrange yi
(t) in the descending order of magnitude. Choose first k variables

as basic variables. Remaining (n - k) are non-basic variables.
Step 4: Calculate the matrix A, which is k 9 k matrix of vector ra. The vector

ra is calculated by differentiating the kth constraint with respect to the
basic variables.

Step 5: Calculate the matrix B, which is k 9 (n - k) matrix of vector rb. The
vectorrb is calculated by differentiating the kth constraint with respect to
the non-basic variables.

Step 6: Calculate the GRG rf as follows:

rf ¼ rf1 �rf2A
�1B ð1:41Þ

where rf1 is the part of gradient vector of the objective function that
corresponds to non-basic variables evaluated at the point x(t). Similarly,
rf2 is the rest of the gradient vector of the objective function.

Step 7: Compute a feasible descent direction ‘‘d1’’ by projectingrf on the feasible
domain such that,

if rf � 2; Terminate

if otherwise; d1 ¼ �rf1
ð1:42Þ

d2 = -A-1Bd1; d2 is the column vector.

and d ¼ d1 d2½ �T ð1:43Þ

Step 8: Find a(t) such that f(x(t) ? a(t)d) is minimum.Now update x(t) as,

xðtþ1Þ ¼ xðtÞ þ a tð Þd ð1:44Þ

Step 9: Go to Step 2.

The procedure is repeated until the termination criterion is met.
The main computational burden associated with the GRG algorithm arises from

the Newton–Raphson iterations during line search. Strictly speaking, the gradients
of constraints need to be recalculated and the Jacobian matrix B needs to be
inverted at every NR iteration during the line search. This is prohibitively
expensive. Another difficulty is to select a feasible starting point. Special algo-
rithms must be used to handle arbitrary starting points.

1.3.11.4 Geometric Programming

Geometric programming developed by Duffin et al. [44] is an optimization tech-
nique applicable to solve non-linear models with a posynomial or signomial
objective functions subject to constraints of same type. Posynomial functions are
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the functions having positive coefficients and variables and real exponents. In the
geometric programming method, the original optimization problem (supposedly in
posynomial form) is known as primal problem. If the problem is not in posynomial
form, variable substitution may be used to convert the original problem into a
primal form. Thereafter, the primal problem is converted into an equivalent dual
problem expressed in terms of set of dual variables. This transformation is
achieved using arithmetic–geometric-mean equality principle. Once the optimal
dual variables are found by solving the dual non-linear programming problem, the
primal solution can be obtained by solving the set of simultaneous equations
formed. The optimization method for this depends on the degree of difficulty.

The degree of difficulty (dd) is expressed as,

dd ¼ T � N � 1 ð1:45Þ

where T is the number of equations and N is number of unknown variables. If
dd\ 0, a feasible solution may not exist as the number of equality constraints is
more than the number of variables. If the solution exists, any T equality constraints
can be used to find optimal solution. On the other hand if dd[ 0, number of
constraints is less than the number of variables. Thus, some of the dual variables
can be eliminated using the equality constraint. In such a case an optimization
method known as GRG may be used to find the optimal dual variables. When
dd = 0, the simultaneous equations can be easily solved by Gauss-elimination
method, as the number of equations is exactly equal to the number of unknowns.

Geometric programming method differs from other optimization technique in
the emphasis it places on relative magnitude of the terms of the objective functions
rather than variables. Instead of finding optimal values of design variables first,
geometric programming first finds the optimal of objective function. This feature is
especially advantageous in situations where the optimal value is of only interest.
This eliminates the need of calculation of optimum design vectors. Another
advantage of geometric programming is that it often reduces the complicated
optimization problem to one involving the set of simultaneous liner algebraic
equations. GP inherits some drawbacks. However, the main disadvantages of GP
lie in the fact that it requires the objective functions and constraints in the form of
posynomials/signomials.

1.3.11.5 Quadratic Programming

The quadratic programming problem has a quadratic objective function and linear
constraints and is convex. Hence the quadratic programming problem can be
solved by suitably modifying the linear programming technique. Sequential qua-
dratic programming method developed by Schittkowski [45] is widely used
method in manufacturing optimization as this optimization method has been
considered to be an excellent approach for handling constrained optimization
problems.
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The basic concept of sequential quadratic programming is quite simple. The
approximation function, instead of the original non-linear function, is used for
optimization. First, a second order Taylor series approximation of the objective
function and constraints functions with respect to the design variables (xi, I = 1,
2 …, n) is constructed. The search direction vector ‘‘S’’ for optimization can be
determined by the matrix of the second derivatives of the approximation function.
Once the search direction vector ‘‘S’’ is chosen, an optimal scalar step length
parameter a is calculated through the quadratic interpolation. Therefore, the design
vector xk+1 during iteration can be expressed as:

xkþ1 ¼ xk þ akS ð1:46Þ

where k is the iteration number.
In other words, the sequential quadratic programming method consists of three

main stages, i.e.:

1. Find the search direction vector ‘‘S,’’
2. Find the scalar step length parameter ‘‘a,’’ and
3. Test for convergence to the optimum and terminate if convergence is achieved.

The main limitation of quadratic programming is that the convergence to an
optimal solution depends on the chosen initial solution. Also the algorithm tends to
get stuck to the local optimal solution.

1.3.11.6 Integer Linear Programming

Integer programming is used in problems where optimal solution is sought in terms
of integral values of variables as non-integral answers not being meaningful in the
context of situationwhich gives rise to the problem (e.g., finding optimum number of
teeth on gears). Conventionally, integer linear problems can be solved by cutting
plane method and branch and bound method. However, as the cutting plane method
has a serious drawback of round-off error which arise during numerical computa-
tions, branch and bound method has been widely used in practical applications.

The branch and bound method is very effective in solving the mixed-integer
linear and non-linear programming problems. The method was originally devel-
oped by Land and Doig [46] to solve integer linear programming problems and
was later modified by Dakin [47]. In branch and bound method, the integer
problem is not directly solved. Rather, the method first solves the continuous
problem obtained by relaxing the integer restrictions on the variables. If the
solution to the continuous problem happens to be an integer solution, it represents
the optimum solution of integer problem. Otherwise at least one of the integer
variable, xi, must assume a non-integral value. If ‘‘xi’’ is not an integer, we can
always find an integer [xi] such that [xi]\ xi\ [xi] ? 1. The two sub-problems are
formulated, one with additional upper bound constraint and another with the lower
bound constraint. The process of finding these sub-problems is called ‘‘branching.’’
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The branching process eliminates some portion of the continuous space that is
feasible for integer problem while ensuring that none of the integer feasible
solutions are eliminated. Each of these two sub-problems is solved again as a
continuous problem.

The process of branching and solving the sequence of continuous problems is
continued until an integer feasible solution is found for one of the two continuous
problems. When such integer feasible solution is found, the corresponding value of
objective function becomes an upper bound on the minimum value of the objective
function. At this stage we can eliminate from further considerations all continuous
solutions whose objective function values are larger than the upper bound. The
solutions which are eliminated are said to have been fathomed because it is not
possible to find a better integer solution from these solution spaces than what we
have now. The value of upper bound on the objective function is updated when-
ever the better bound is obtained. The algorithm continues to select solution for
further branching until all the solutions are fathomed. At that stage, the particular
fathomed solution that has the integer feasible solution with the lowest value of
objective function gives the optimum solution of the original linear integer pro-
gramming problem.

Branch and bound algorithms can be (and often are) slow, however. In the worst
case they require effort that grows exponentially with problem size, but in some
cases the methods converge with much less effort.

1.3.12 Meta-Heuristics

1.3.12.1 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on mechanics of the natural
selection and the natural genetics [48]. GA exploits the idea of the survival of the
fittest and the interbreeding population to create a novel and innovative search
strategy. A population of the strings representing solution to the specified problem
are maintained by GA, which then iteratively creates the new population from the
old by ranking the strings and interbreeding the fittest to create the new strings,
which are closer to the optimum solution to a specified problem.

Genetic algorithms (GAs) is very appealing for single and multi-objective
optimization problems [49], and some of its advantages are given below:

• As it is not based on gradient-based information, it does not require the conti-
nuity or convexity of the design space.

• It can explore large search space and its search direction or transition rule is
probabilistic, not deterministic, in nature, and hence, the chance of avoiding
local optimality is more.

• It works with a population of solution points rather than a single solution point
as in conventional techniques, and provides multiple near-optimal solutions.
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• It has the ability to solve convex, and multi-modal function, multiple objectives
and non-linear response function problems, and it may be applied to both dis-
crete and continuous objective functions.

The three basic operators in the GA, i.e., reproduction, crossover, and mutation
are discussed below.

Reproduction

The reproduction operator allows individual strings to be copied for possible
inclusion in the next generation. The chance that a string will be copied is based on
the strings fitness value. The different types of reproduction operators include
proportional selection, tournament selection, truncation selection, linear ranking
selection, and exponential ranking selection. The selection of the particular
scheme depends on the problem domain being explored.

Crossover

Crossover refers to the blending of chromosomes from the parents to produce new
chromosomes for the offspring. The GA selects two strings at a random from the
mating pool. It is then decided whether to crossover using a parameter called
crossover probability. If the crossover takes place then a random slicing point is
chosen in the string. The sliced regions are then mixed to create two new strings.

Mutation

Although crossover can generate a staggering amount of different strings, there
may not be enough variety of stings to ensure that the entire problem is cov-
ered. This may lead to converging on strings that are not quite close to the
optimum it seeks. To overcome this problem a mutation operator is introduced
into a GA. For each string element in each string in the mating pool the
algorithm checks to see if it should perform mutation or not. If it should then
the string element is flipped (in case of binary strings). The mutation thus helps
to prevent the population from stagnation and maintains the diversity throughout
the iterations. However, the mutation probability should be kept very low as a
high mutation rate will destroy fit strings and degenerate the algorithm into a
random walk.

The operation of a basic GA is shown in Fig. 1.3.
The performance of the GA thus mainly depends on population size, number of

generations, crossover rate, and mutation rate. GAs are preferred when near
optimal improved conditions are acceptable for implementation by the manufac-
turer instead of costly exact optimum solution. It is a derivative free approach for
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near optimal points search direction and may be applied to continuous or discrete
response function.

Although GA has advantages over the traditional techniques, it has following
limitations:

• All offsprings are accepted and their parent strings are abandoned at the end of
every generation regardless of their fitness values. This gives rise to a risk that a
good parent string may be replaced with its deteriorated child string. Thus, the
improvement on the average performance of child population over parent
population cannot be always guaranteed.

• Only good parent strings are given chance to produce offspring without any
consideration of the possibilities of generating better offspring by others.

• Not efficient when convergence speed is taken into consideration.
• No guarantee of optimal solution.

Fig. 1.3 Operation of basic
genetic algorithm (from [84];
reprinted with permission
from Elsevier)
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To overcome the above limitations, the basic GA is modified to give rise to few
more algorithms like non-dominated sorting GA [49], differential evolution
approach (DE), memetic algorithm (MA), etc.

1.3.12.2 Simulated Annealing

The SA algorithm developed by Kirkpatrick et al. [50] resembles the cooling
process of molten metals through annealing. At high temperatures, the atoms in
the molten metal can move freely with respect to each another, but as the
temperature is reduced, the movement of the atoms gets restricted. The atoms
start to get ordered and finally form crystals having the minimum possible
energy. However, the formation of crystal mostly depends on the cooling rates. If
the temperature is reduced at very fast rates, the crystalline state may not be
achieved at all; instead, the system may end up in polycrystalline states, which
may have a higher energy state than the crystalline state. Therefore, in order to
achieve the absolute minimum energy state, the temperature needs to be reduced
at a slower rate.

The SA algorithm simulates this process of slow cooling of molten metal to
achieve the minimum function value in the minimization problem. The cooling
phenomenon is simulated by controlling a temperature like parameter introduced
with the concept of Boltzman probability distribution. According to Boltzman
probability distribution, a system in a thermal equilibrium at a temperature ‘‘T’’
has its energy distributed probabilistically according to the following expression:

P Eð Þ ¼ exp �E=KTð Þ ð1:47Þ

where ‘‘K’’ is Boltzman constant. This expression suggests that a system at high a
temperature has almost uniform probability of being at any energy state. There-
fore, by controlling the temperature, ‘‘T,’’ and assuming that the search process
follows Boltzman probability distribution, the convergence of an algorithm can be
controlled. At any current point, X(t), the new value of the variables for the
successive iterations is calculated using the formula,

X t þ 1ð Þ ¼ X tð Þ þ r
X

N

i¼1

Ri � 0:5N

 !

ð1:48Þ

where r = (Xmax - Xmin)/6, R is random number and N is number of random
numbers used.

Using the Metropolis algorithm [51], the probability of the next point being
accepted at X(t ? 1) depends on the difference in the function value at these two
points or on DE = E(t ? 1) - E(t) and is calculated using the Boltzman proba-
bility distribution:

P E t þ 1ð Þð Þ ¼ min 1; exp �DE=KTð Þð Þ ð1:49Þ
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If DE B 0, this probability is one and the new configuration is always accepted.
In the function minimization context, this makes sense because if the functional
value at new configuration is better than the old one, the point new configuration
must be accepted. The interesting situation happens when DE is bigger than zero,
which implies that the function value at new configuration is worst than at previous
configuration. According to many traditional algorithms, the point should not be
chosen. According to the Metropolis algorithm, there is some finite probability of
selecting the new configuration even though it is worst than the previous one.
However, the probability is not same in all situations. This probability depends on
the magnitude of DT and T values.

If the parameter T is large, this probability is more or less high for points with
largely disparate functional values. Thus, any point is almost acceptable for a large
value of T. On the other hand, if the parameter T is small, then the probability of
accepting an arbitrary point is small. Thus, for small values of T, the points with
only small deviation in the function values are accepted [52].

Simulated annealing (SA) is a point-by-point method. The algorithm begins
with an initial point and a high temperature T. A second point is created at random
in the vicinity of the initial point and the difference in the function values, DE, at
these two points is calculated. If the second point has a smaller function value, the
point is accepted, otherwise the point is accepted with the probability of exp
(-DE/KT). This completes an iteration of this SA procedure. In the next gener-
ation, another point is created at random in the neighborhood of the current point
and the Metropolis algorithm is used to accept or reject the point. In order to
simulate the thermal equilibrium, at every temperature the number of points (n) are
usually tested at a particular temperature, before reducing the temperature. The
algorithm is terminated when a sufficiently small temperature is obtained or a
small enough change in function value is found. An estimate of the initial tem-
perature can be obtained by calculating the average of the function values at a
number of random points in the search space. A suitable value of ‘‘n’’ can be
chosen (usually between 2 and 100) depending on the available computational
resource and the solution time. Decrement factor is left to the choice of the user.
The flowchart for SA algorithm is shown in Fig. 1.4. In this figure, Ts corresponds
to starting temperature, CT corresponds to the decrement factor, X corresponds to
X(t), Xn corresponds to X(t ? 1), Dobj corresponds to DE, and Te corresponds to
the termination criterion.

Some of the features of the SA algorithm are given below:

• Because of the discrete nature of the function and construction evaluations, the
convergence or transition characteristics are not affected by the continuity of
differentiability of the function.

• The convergence is also not influenced by the convexity status of the feasible
space.

• The design variables need not to be positive.
• The method can be used to solve mixed-integer, discrete, or continuous
problems.
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• Not all combinational optimization problems can be annealed to given satis-
factory solutions (e.g., the time taken to get a decent answer may prove to be
unreasonable).

1.3.12.3 Tabu Search

Tabu search [53] is a generalized, problem independent, easy to implement
technique that may be applied virtually to any kind of process optimization model.

Fig. 1.4 Flow chart of sim-
ulated annealing algorithm

34 1 Overview



It is a derivative free approach and may be applied to multi-minima (or maxima),
linear (or non-linear), and discrete (or continuous) response function.

Tabu search is an extension of classical local search method. A local search
method is an iterative search procedure that, starting from an initial feasible
solution progressively improves it by applying series of local moves. However,
the local search technique encounters a local optimum and is time consuming.
To overcome this limitation, tabu search not only keeps the track of local
information (like the current value of the objective function) but also infor-
mation related to the exploration process which guides to select the subset of
best solutions in the neighborhood. To escape from a local minimum, iterative
exploration process in some instances accepts the non-improving moves also. As
soon as non-improving are possible, the risk of visiting again a solution
(referred as cycling) is present. To prevent cycling, tabus are used. Tabus are
stored in the short term memory of search called tabu list. When a best vector is
determined from the sample of decision vectors in the neighborhood of the
current decision vector, a move is made from current decision vector to the best
decision vector not in the tabu list. The tabu list contains a certain number of
last decision vectors visited. The best decision vector replaces the oldest vector
in the tabu list and the survival vectors in the list are given tabu active status.
Tabu active vectors are forbidden to create the sample of decision vectors in the
neighborhood. The tabu active status of a decision vector can be overridden
only based on certain aspiration level criteria. Length of the tabu list is an
important decision. If the length of the list is too small then its role to prevent
cycling might not be achieved. Conversely, too long size creates too many
restrictions to the search process and may lead to significantly longer compu-
tational time.

In a search process, it is sometimes fruitful to intensify the search in some
region as it may contain some acceptable solution. Such intensification can be
carried out by giving high priority to the solutions which have common features
with the current solution. This can be done with the introduction of an additional
term in the objective function which will penalize the solutions far from the
present one. As against intensification, sometimes diversification is essential to
avoid a large region of state space graph remains completely unexplored. This can
be achieved by penalizing the performed moves or solutions often visited. The
penalty is set large enough to ensure the escape from the current region. It is also
possible to use penalty on frequently performed moves during the whole search
procedure. The algorithm is terminated after some number of iterations without
any improvement in the objective function value or when objective reaches a pre-
specified threshold value.

The convergence of algorithm for multi-modal objective function in a finite
number of steps, however, is not guaranteed like other meta-heuristics. The
choice of tabu list size always influences the end solution of the problem. Also
with tabu search, complexity is not only present in the problems but in the
technique itself.
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1.3.12.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Kennedy and Eberhart [54]. It exhibits common evolutionary
computation attributes as given below:

• It is initialized with a population of random solutions,
• It searches for optima by updating generations, and
• Potential solutions, called particles, are then ‘‘flown’’ through the problem space
by following the current optimum particles.

The particle swarm concept was originated as a simulation of a simplified social
system. The original intent was to graphically simulate the graceful but unpre-
dictable choreography of a bird flock. Each particle keeps track of its coordinates
in the problem space, which are associated with the best solution (fitness) it has
achieved so far. This value is called ‘‘pBest.’’ Another ‘‘best’’ value that is tracked
by the global version of the PSO is the overall best value, and its location obtained
so far by any particle in the population. This location is called ‘‘gBest.’’ The PSO
concept consists of, at each step, changing the velocity (accelerating) each particle
toward its ‘‘pBest’’ and ‘‘gBest’’ locations (global version of PSO). Acceleration is
weighted by a random term, with separate random numbers being generated for
acceleration toward ‘‘pBest’’ and ‘‘gBest’’ locations. The updates of the particles
are accomplished according to the Eqs. 1.50 and 1.51. Equation 1.50 calculates a
new velocity for each particle (potential solution) based on its previous velocity
the best location it has achieved (‘‘pBest’’) so far, and the global best location
(‘‘gBest’’) the population has achieved. Equation 1.51 updates individual particle’s
position (Xi) in solution hyperspace. The two random numbers ‘‘r1’’ and ‘‘r2’’ in
Eq. 1.50 are independently generated in the range [0,1].

Viþ1 ¼ w�Vi þ c�1r
�
1 pBesti � Xið Þ þ c�2r

�
2 gBesti � Xið Þ ð1:50Þ

Xiþ1 ¼ Xi þ V iþ1 ð1:51Þ

The acceleration constants ‘‘cl’’ and ‘‘c2’’ in Eq. 1.50 represent the weighting of
the stochastic acceleration terms that pull each particle towards ‘‘pBest’’ and
‘‘gBest’’ positions. ‘‘c1’’ represents the confidence the particle has in itself (cognitive
parameter) and ‘‘c2’’ represents the confidence the particle has in swarm (social
parameter). Thus, adjustment of these constants changes the amount of tension in the
system. Low values of them allow particles to roam far from target regions before
being tugged back, while high value results in abrupt movement toward, or past
through target regions [55]. The inertia weight ‘‘w’’ plays an important role in the
PSO convergence behavior since it is employed to control the exploration abilities of
the swarm. While the large inertia weights allow wide velocity updates allowing to
globally explore the design space, the small inertia weights concentrate the velocity
updates to nearby regions of the design space. The optimum use of the inertia weight
‘‘w’’ provides improved performance in a number of applications [56].
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Particle’s velocities on each dimension are confined to a maximum velocity,
Vmax, which is a parameter, specified by the user. If the sum of accelerations would
cause the velocity on that dimension to exceed Vmax, then the velocity on that
dimension is limited to Vmax. Although the heuristics are developed to determine
the inertia weights and acceleration constants for guaranteed convergent trajec-
tories, it is mainly applicable to single objective optimization. It is very difficult to
obtain the values of inertia weights and acceleration constants for multi-objective
optimization problems, due to inherent conflicting nature of objectives to be
optimized. To overcome this problem, a time variant PSO was described by
Tripathi et al. [57]. The algorithm is made adaptive in nature by allowing its vital
parameters, i.e., inertia weights and acceleration constants to change with itera-
tions. This adaptiveness helps the algorithm to explore the search space more
efficiently. A mutation operator is also included to overcome the premature con-
vergence. The performance of the algorithm is then measured with respect to four
main performance measures, i.e., convergence rate, diversity, purity, and minimal
spacing. The flow chart of PSO algorithm is shown in Fig. 1.5.

As both the GA and PSO are evolutionary algorithms, they share some common
features as given below:

• Both algorithms start with randomly generated population.
• Both algorithms evaluate the population with fitness value.

Fig. 1.5 General flow chart
of PSO algorithm (from [85];
reprinted with permission
from Elsevier)
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• Both algorithms update the position and search with random techniques.
• Both algorithms do not guarantee optimal solution.

However, the PSO algorithm differs from GA with respect to the following
points:

• Unlike GA, PSO does not need complex encoding and decoding process and
special genetic operator. It takes real number as a particle in the aspect of
representation solution.

• PSO does not need genetic operators like cross over and mutation. The particles
update themselves with internal velocity. However, modified versions of PSO
uses mutation operator to avoid the premature convergence.

• The information sharing mechanism is totally different. In GA the chromosomes
share information with each other and hence the whole population moves like a
one group towards an optimal area. In PSO, only ‘‘gBest’’ gives out information
to the other. Hence it is a one-way information sharing mechanism. The evo-
lution looks only for the best solution.

• All particles tend to converge to the best solution.
• In PSO, it is difficult to keep the diversity of the population. The search rates are
relatively low and hence it may require more computation time while solving
the complex optimization problem.

1.3.12.5 Ant Colony Optimization

Similar to PSO, ant-colony optimization (ACO) algorithms evolve not in their
genetics but in their social behavior. ACO was developed by Dorigo et al. [58]
based on the fact that ants are able to find the shortest route between their nest and
a source of food. This is done using pheromone trails which ants deposit whenever
they travel as a form of indirect communication.

When ants leave their nest to search for a food source, they randomly rotate
around an obstacle, and initially the pheromone deposits will be the same for the
right and left directions. When the ants in the shorter direction find a food source,
they carry the food and start returning back, following their pheromone trails, and
still depositing more pheromone. An ant will most likely choose the shortest path
when returning to the nest with food as this path will have the most deposited
pheromone. For the same reason, new ants that later starts out from the nest to find
food will also choose the shortest path. Over time, this positive feedback (auto
catalytic) process prompts all ants to choose the shorter path. Implementing the
ACO for a certain problem requires a representation of ‘‘S’’ variables for each ant,
with each variable ‘‘i’’ has a set of ‘‘ni’’ options with their values ‘‘lij,’’ and their
associated pheromone concentrations {tij}; where i = 1, 2, …, S, and j = 1,
2, …, ni. As such, an ant is consisted of ‘‘S’’ values that describe the path chosen
by the ant. Gajpal and Rajendran [59] proposed modified ant colony algorithm
incorporating a local search to improve the solution. In the ACO, the process starts
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by generating m random ants (solutions). An ant k represents a solution string, with
a selected value for each variable. Each ant is then evaluated according to an
objective function. Accordingly, pheromone concentration associated with each
possible route (variable value) is changed in a way to reinforce good solutions, as
follows:

Cij tð Þ ¼ qCij t � 1ð Þ þ DCij; t ¼ 1; 2; . . .. . .; T ð1:52Þ

where T is the number of iterations (generation cycles); Cij(t) is the revised con-
centration of pheromone associated with option lij at iteration t, Cij (t - 1) is the
concentration of pheromone at the previous iteration (t - 1); DCij = change in
pheromone concentration; and q = pheromone evaporation rate (0–1). The reason
for allowing pheromone evaporation is to avoid too strong influence of the old
pheromone to avoid premature solution stagnation. In Eq. 1.53, the change in
pheromone concentration DCij is calculated as:

DCij ¼ RkR=Fitnessk; if option is chosen

¼ 0; if option is not chosen
ð1:53Þ

where R is a constant called the pheromone reward factor; and fitnessk is the value
of the objective function (solution performance) calculated for ant k. It is observed
that the amount of pheromone gets higher as the solution improves. Therefore, for
minimization problems, Eq. 1.53 shows the pheromone change as proportional to
the inverse of the fitness. In maximization problems, on the other hand, the fitness
value itself can be directly used. Once the pheromone is updated after iteration, the
next iteration starts by changing the ants’ paths (i.e. associated variable values) in
a manner that respects pheromone concentration and also some heuristic prefer-
ence. Ant colony optimization algorithm is, however, best suited for discrete
optimization problems only.

1.3.12.6 Artificial Bee Colony Algorithm

Artificial bee colony (ABC) algorithm is developed to model the intelligent
behavior of honeybee swarms [60]. The honeybee swarms consists of three
essential components: food sources, employed foragers, and unemployed foragers,
and defines two leading modes of the behavior: recruitment to a nectar source and
abandonment of a source.

• Food sources: the value of a food source depends on many factors, such as its
proximity to the nest, richness, or concentration of energy and the ease of
extracting this energy. For the simplicity, the ‘‘profitability’’ of a food source
can be represented with a single quantity. For example, there are two discovered
food sources, A and B, in Fig. 1.6.

• Employed foragers (EF): they are associated with a particular food source,
which they are currently exploiting or are ‘‘employed’’ at. They carry with them
information about this particular source, its distance, and direction from the nest
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and the profitability of the source and share this information with a certain
probability.

• Unemployed foragers (UF): they are looking for a food source to exploit. There
are two types of unemployed foragers: ‘‘scouts (S)’’ searching the environment
surrounding the nest for new food sources and ‘‘onlookers’’ waiting in the nest
and finding a food source through the information shared by employed foragers,
i.e., ‘‘recruit (R)’’.

The exchange of information among bees is the most important occurrence in
the formation of collective knowledge. While examining the entire hive, it is
possible to distinguish some parts that commonly exist in all hives. The most
important part of the hive with respect to exchanging information is the dancing
area. Communication among bees related to the quality of food sources occurs in
the dancing area. The related dance is called waggle dance. Since information
about all the current rich sources is available to an onlooker on the dance floor, she
probably could watch numerous dances and choose to employ herself at the most
profitable source. There is a greater probability of onlookers choosing more
profitable sources since more information is circulating about the more profit able
sources. Employed foragers share their information with a probability, which is
proportional to the profitability of the food source, and the sharing of this

Fig. 1.6 Behaviour of hon-
eybee foraging for nectar
(from [60]; reprinted with
permission from Elsevier)
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information through waggle dancing is longer in duration. Hence, the recruitment
is proportional to profitability of a food source.

At the very beginning, a potential forager will start as unemployed forager. That
bee will have no knowledge about the food sources around the nest. There are two
possible options for such a bee: (i) it can be a scout and starts searching around the
nest spontaneously for a food due to some internal motivation or possible external
clue; or (ii) it can be a recruit after watching the waggle dances and starts
searching for a food source.

After finding the food source, the bee utilizes its own capability to memorize
the location and then immediately starts exploiting it. Hence, the bee will
become an ‘‘employed forager.’’ The foraging bee takes a load of nectar from the
source and returns to the hive, unloading the nectar to a food store. After
unloading the food, the bee has the options of (i) becoming an uncommitted
follower after abandoning the food source (UF), (ii) dancing and then recruiting
nest mates before returning to same food source (EF1), and (iii) continues for-
aging at the food source without recruiting after bees (EF2). However, all bees
do not start foraging simultaneously. The new bees begin foraging at a rate
proportional to the difference between the eventual total number of bees and the
number presently foraging.

At the first step, the ABC generates a randomly distributed initial population
Pinitial of N solutions, where N denotes the size of population. Each solution xi
(i = 1, 2, …, N) is an H-dimensional vector where H is the number of optimi-
zation parameters (decision variables). After initialization, the population of the
solutions is subjected to repeated cycles, C = 1, 2, …, G, of the search processes
of the employed bees, the onlooker bees and scout bees. An employed bee pro-
duces a modification on the solution in her memory depending on the local
information. If the objective function value (fitness) of the new solution is higher
than that of the previous one, the bee memorizes the new position and forgets the
old one. Otherwise, she keeps the position of the previous one in her memory.
After all employed bees complete the search process; they share the nectar
information of the food sources and their position information with the onlooker
bees on the dance area. An onlooker bee evaluates the fitness information taken
from all employed bees and chooses a food source with a probability related to its
fitness value. An onlooker bee also produces a new solution and it memorizes the
new position if its fitness value is better than the previous position. An artificial
onlooker bee chooses a food source depending on the probability value associated
with that food source, pi, calculated by Eq. 1.54.

pi ¼ Fi

,

X

Nb

n¼1

Fn ð1:54Þ

where Fi is the fitness value of the solution i which is proportional to the nectar
amount of the food source in the position i and Nb is the number of food sources
which is equal to the number of employed bees. In order to produce a candidate
food position from the old one in memory, the ABC uses Eq. 1.55,

1.3 Some Important Modeling and Optimization Techniques 41



vij¼xij þ Rij xij � xkj
� �

ð1:55Þ

where k 2 f1; 2; . . .;Ng and j 2 f1; 2; . . .;Dg are randomly chosen indexes.
Although k is determined randomly, it has to be different from i. Rij is a random
number between (-1, 1) and it controls the production of neighbor food sources
around xij and represents the comparison of two food positions visually by a bee.
As can be seen from Eq. 1.55, as the difference between the parameters of the xij
and xkj decreases, the perturbation on the position xij gets decrease, too. Thus, as
the search approaches to the optimum solution in the search space, the step length
is adaptively reduced.

If the position of the food source cannot be improved for some predetermined
number of cycles, then that food source is abandoned. The abandoned food source
is replaced with a new food source by the scouts. In ABC, this is simulated by
producing a position randomly and replacing it with the abandoned one. The value
of predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called ‘‘limit’’ for abandonment. The value of limit is generally
taken as the number of employed bees. If the abandoned source is xi and
j 2 f1; 2; . . .;Dg, then the scout discovers a new food source to be replaced with xi.
This operation can be defined as in Eq. 1.56.

x
j
i¼x

j
min þ rand 0; 1½ � x j

max � x
j
min

� �

ð1:56Þ

It is clear from the above explanation that there are three control parameters
used in the ABC: The number of food sources which is equal to the number of
employed or onlooker bees (N), the value of limit, and the maximum cycle number
(G).

The flow chart of ABC algorithm is shown in Fig. 1.7.
The performance of ABC algorithm in terms of convergence rate and accuracy

of the solution is found superior over other non-traditional algorithms such as GA,
PSO algorithm, etc. in few recent applications [61, 62]. ABC algorithm combines
both, the stochastic selection scheme carried out by onlooker bees, and greedy
selection scheme used by onlookers and employed bees to update the source
position. Also the neighbor source production mechanism in ABC is similar to the
mutation process, which is self-adapting. The random selection process carried out
by the scout bees maintains diversity in the solution. The ABC algorithm is thus
flexible, simple, and robust optimization algorithm which can be used effectively
in the optimization of multimodal and multi-variable problems.

1.3.12.7 Artificial Immune Algorithm

The immune system is the basic and remarkable defence system against bacteria,
viruses, and other disease-causing organisms. It can produce millions of antibodies
from hundreds of antibody genes and can protect animals which are infected
by foreign molecules. The artificial immune system (AIS) or artificial immune
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algorithm (AIA) was inspired by the immune system. In AIA, the objective
function and constraints operate as the antigens, and the solutions to the objective
function operate as the antibodies. Similar to GA, AIA starts by creating antibodies
randomly in a feasible space, and finally reaches the optimum via natural selection,
crossover, and mutation. The field of artificial immune system is concerned with
abstracting structure and function of immune system to computational system, and

Fig. 1.7 Flow chart of the ABC algorithm (from [86]; reprinted with permission from Elsevier)
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investigating the application of these systems towards solving computational
problems from engineering [63–66].

The immune system defends the body against harmful diseases and infections.
B-cells recognize the antigens which enter into the body that circulate through the
blood. Each antigen has a particular shape that is recognized by the receptors
present on the B-cell surface. B-cells synthesize and carry antibodies on their
surfaces molecules that act like detectors to identify antigens. A B-cell with better
fitting receptors and binding more tightly the antigen, replicate more and survive
longer. This process of amplifying, using proliferation, only those cells that pro-
duce a useful B-cell type is called clonal selection. Clones are not perfect, but they
are subjected to somatic permutations that result in children having slightly dif-
ferent antibodies from the parent. Clonal selection guarantees that only good B-
cells (i.e., with higher affinity with the antigen) can be cloned to represent the next
generation. However, clones with low affinity with antigen do not divide and will
be discarded or deleted. Hence, the clonal selection enables the body to have
sufficient numbers of antigen-specific B-cells to build up an effective immune
response. The immune response represents solutions and antigens represent the
problem to solve. More precisely, B-cells are considered as artificial agents that
roam around and explore an environment.

The AIA starts with a random population which mimics antibodies (Ab) and
affinity of the antibody is calculated from its objective function value. n highest
antibodies are selected and cloned depending on their affinities. Generally n is kept
same as N (number of antibodies). These antibodies are cloned depending on its
affinities. If the affinity is more for the particular antibody it will have more
number of clones. It is calculated as,

Nc ¼
X

n

i¼1

roundðbN=iÞ ð1:57Þ

where Nc is the number of clones generated, b is the multiplying factor controlling
the number of clones, and N is the total number of antibodies.

These generates repertoire Cj. Repertoire Cj undergoes affinity maturation
process Eq. 1.58 which is inversely proportional to its antigenic affinity. If the
affinity is high the mutation rate is low.

xi;m ¼ xi þ A rand �1; 1½ �ð Þ xmax � xminð Þ ð1:58Þ

where A is a factor depending on the affinity and decreases as affinity increases.
Replace low affinity antibodies with new randomly generated antibodies given by,

xi¼xmin þ rand 0:1ð Þ xmax � xminð Þ ð1:59Þ

Compared with GAs, AIA has an affinity calculation function, which can
describe the relationship not only between the antigen and the antibody but also
between antibodies. That gives AIA the unique characteristic of guaranteeing the
survival of variant offspring that can match the antigen better. The higher the
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affinity, the stronger the binding, and thus the better the immune recognition and
response. The algorithms based on AIA have much better performance than
conventional probabilistic optimization algorithms. However, it usually takes long
time for the binary coding AIA to obtain convergence. Furthermore, it is very
difficult for AIA to break away from the local optimal value, which can restrict the
search process to the zone around this value and can easily lead to premature
termination of the process. Qiao et al. [67] proposed an improved affinity calcu-
lation approach by combining the Euclidean distance with the difference between
fitness values, and make the threshold value a dynamic parameter in order to
overcome the drawback of the tendency of GA and AIA towards local optimum
value and premature completion. Simulation results showed that the proposed
approach is more efficient than the GA and the real-value coding artificial immune
algorithm.

1.3.12.8 Shuffled Frog Leaping Algorithm

Shuffled frog leaping (SFL) algorithm is a meta-heuristic for solving discrete
optimization problems. SFL algorithm is a population based, cooperative search
metaphor inspired by natural memetics. The algorithm uses memetic evolution in
the form of infection of ideas from one individual to another in a local search. The
local search is similar in concept to PSO. A shuffling strategy allows for the
exchange of information between local searches to move toward a global opti-
mum. Thus, the SFL algorithm combines the benefits of the genetic-based
Memetic Algorithm (MA) and the social behavior-based PSO algorithms [68, 69].
The SFLA consists of a set of interacting virtual population of frogs partitioned
into different memeplexes. The virtual frogs act as hosts or carriers of memes
where a meme is a unit of cultural evolution. The algorithm performs simulta-
neously an independent local search in each memeplex. The local search is
completed using a PSO-like method adapted for discrete problems but empha-
sizing a local search. To ensure global exploration, the virtual frogs are periodi-
cally shuffled and reorganized into new memplexes in a technique similar to that
used in the shuffled complex evolution algorithm. In addition, to provide the
opportunity for random generation of improved information, random virtual frogs
are generated and substituted in the population. The algorithm parameters to set
are: population size (P), number of memeplexes (m), and number of frogs in each
memeplex (n).

The steps of SFL algorithm are given below:

1. Generate randomly an initial population (P) of frogs (solutions). For
H-dimensional problems (H variables), a frog ‘‘i’’ is represented as Xi = (xi1,
xi2, …, xiS).

2. Calculate the fitness value of each frog (solution).
3. Sort the frogs in a descending order of their fitness values.
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4. Divide the entire population into ‘‘m’’ memeplexes, each containing ‘‘n’’
frogs. Thus, P = m 9 n.

5. Allocate the frogs to the memeflexes such that first frog goes to the first
memeplex, the second frog goes to the second memeplex, ….., frog ‘‘m’’ goes
to the mth memeplex, and frog ‘‘m ? 1’’ goes back to the first memeplex, etc.

6. Within each memeplex, the frogs with the best fitness (Xb) and the worst
fitness (Xw) are identified.

7. Apply the local search within memeplex using the following equation:

Xiþ1 ¼ Xi þ r � Xb � Xwð Þ ð1:60Þ

r = random number between 0 and 1
If ‘‘Xi+1’’ is better than ‘‘Xi’’, replace current frog position ‘‘Xi’’ with new
position ‘‘Xi+1’’. Else go to Step 8.

8. Identify the frog with the global best fitness (Xg) and apply global search using
following equation:

Xiþ1 ¼ Xi þ r � Xg � Xw

� �

ð1:61Þ

If ‘‘Xi+1’’ is better than ‘‘Xi,’’ replace current frog position ‘‘Xi’’ with new
position ‘‘Xi+1’’. Else go to Step 9.

9. Generate new frog position ‘‘Xi’’ randomly to replace the worst frog.

Xiþ1 ¼ Xmin þ r � Xmax � Xminð Þ ð1:62Þ

Xmin = (xmin1, xmin2,., xminS) and Xmax = (xmax1, xmax2,., xmaxS)
10. Does the termination criteria met? If yes then stop. Else go to Step 2.

Compared with a GA, the likelihood of convergence to a global optimal solution
and the solution speed are better in the case of SFL algorithm and hence it can be
used as an effective tool for solving combinatorial optimization problems.

1.3.12.9 Harmony Search Algorithm

The harmony search (HS) algorithm which is a meta-heuristic optimization
algorithm was developed by Geem et al. [70]. This algorithm is conceptualized
from the musical process of searching for a perfect state of harmony, such as jazz
improvement. The jazz improvisations seeks the best state (fantastic harmony)
determined by an estimation performed by set of pitches played by each
instrument.

The steps in the procedure of HS are discussed below:

1. Determine algorithm parameters: In this step, the optimization problem is
specified in terms of objective functions, constraints, and decision variables
along with their upper and lower bound values. The HS algorithm parameters
are also specified in this step. These are the harmony memory size (HMS), or

46 1 Overview



the number of solution vectors in the harmony memory; harmony memory
considering rate (HMCR); pitch adjusting rate (PAR); number of decision
variables (N) and the number of improvisations (NI), or stopping criterion. The
harmony memory (HM) is a memory location where all the solution vectors
(sets of decision variables) are stored. This HM is similar to the genetic pool in
the GA. The HMCR and PAR are parameters that are used to improve the
solution vector

2. Initialize the harmony memory: The HM matrix is filled with as many ran-
domly generated solution vectors as the HMS:

HM ¼

x11 x12 x13 � � � x1N
x21 x22 x23 � � � x2N
x31 x32 x33 � � � x3N
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
xHMS
1 xHMS

2 xHMS
3 � � � xHMS

N

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð1:63Þ

3. Improvise a new harmony: A new harmony vector is generated based on three
rules: (1) memory consideration, (2) pitch adjustment, and (3) random selec-
tion. Generating a new harmony is called ‘‘improvisation.’’ In memory con-
sideration stage, the value of the first decision variable (x1) for the new vector is
chosen from any of the values in the specified HM range (x1 - xHMS). Values
of the other decision variables are chosen in the same manner. The HMCR,
which varies between 0 and 1, is the rate of choosing one value from the
historical values stored in the HM, while (1-HMCR) is the rate of randomly
selecting one value from the possible range of values, as shown by the fol-
lowing equation:

If HMCR[ rand ðÞ; x
0

i 2 x1i ; x
2
i ; . . .; x

HMS
i

� �

; else x
0

i 2 Xi ð1:64Þ

where rand () is a random number between 0 and 1. Every component obtained
by the memory consideration is examined to determine whether it should be
pitch-adjusted. This operation uses the PAR parameter, which is the rate of
pitch adjustment as follows:

If PAR[ rand ðÞ; x
0

i ¼ x
0

i 	 randðÞ:bw; else x
0

i ¼ x
0

i ð1:65Þ

where bw is an arbitrary distance bandwidth. In this step, harmony memory
consideration and pitch adjustment is applied to each variable of the new
harmony vector one by one.

4. Update harmony memory: If the new harmony vector has better fitness function
than the worst harmony in the HM, the new harmony is included in the HM and
the existing worst harmony is excluded from the HM.

5. Check terminating criterion: The HS algorithm is terminated when the termi-
nating criterion (e.g. maximum number of improvisations) has been met.
Otherwise, Steps 3 and 4 are repeated.
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The flow chart of HS algorithm is shown in Fig. 1.8.
There are few drawbacks of the HS algorithm as given below:

• HS algorithm requires large number of iterations to improvise upon the previous
best solution.

• The selection of the appropriate bandwidth is a difficult task, due to which there
is a chance that the decision variable may lie outside their boundary values.

To overcome the above drawbacks of the existing HS algorithm a modified HS
algorithm is developed. In the modified HS algorithm (HS_M), new harmony

Fig. 1.8 Flow chart of harmony search algorithm (from [87]; reprinted with permission from
Elsevier)

48 1 Overview



vector is based on four rules: (1) memory consideration, (2) previous best vector,
(3) pitch adjustment, and (4) random selection. In the modified HS algorithm,
Eqs. 1.64 and 1.65 take the forms of Eqs. 1.66 and 1.67, respectively.

If HMCR[ randðÞ; x
0

i 2 x1i ; x
2
i ; . . .; x

HMS
i

� �

; else x
0

i 2 xbesti ð1:66Þ

If PAR[ randðÞ; x
0

i ¼ x
0

i 	 rðrandðÞ � 0:5Þ; else x
0

i ¼ x
0

i ð1:67Þ

where r is the standard deviation. The remaining steps of the modified HS algo-
rithm are same as that of HS algorithm.

1.3.12.10 Hybrid Algorithms

Modern search methods for optimization consider hybrid evolutionary algorithms
those employing evolutionary algorithm and local optimizers working together.
The hybridism comes from the balancing of global and local search procedures.
The inspiration in nature has been pursued to design flexible, coherent, and effi-
cient computational models. The main focuses of such models are real world
problems, considering the known little effectiveness of canonical GAs in dealing
with them. Investments have been made in new methods, which the evolutionary
process is only part of the whole search process. Due to their intrinsic features as
global solver, GAs are employed as a generator of search areas, which are more
intensively inspected by a heuristic component.

The motivation to develop hybrid algorithms is derived from the observation
that certain intelligent techniques would produce good results for one problem but
not for others. This is because each intelligent technique has computational
properties that make it attractive for particular problems. Even techniques with
lower performance have useful features. For example, SA has a powerful method
of allowing a restricted number of uphill moves to escape from non-local minima
and for gradually decreasing that number as the optimization progresses towards
the global optimum. Also, tabu search has an efficient tabu checking mechanism
and a special memory structure to guide and constrain the search process. These
advantageous features can be made use of in a hybrid technique combining ideas
from existing algorithms.

Two or more basic non-traditional algorithms are combined to form hybrid
algorithms to improve the performance of individual algorithms. For example,
genetic simulated annealing algorithm (GSA) combines benefits of GA and SA
algorithms [71]. GA and SA are both independently valid approaches toward
problem solving with certain strengths and weaknesses. GA can begin with a
population of solutions in parallel, but it suffers from poor convergence properties.
By contrast, SA has better convergence properties if the starting temperature is
sufficiently high and the temperature cooling rate is low. However, the higher
temperature and the lower cooling rate reduce the performance of SA. In addition,
parallelism cannot be easily exploited in SA. In GSA, individuals with higher
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fitness values have a greater probability of surviving into the next generation.
However, those with less fitness values are not discarded. Instead, a local selection
strategy of SA is applied to select them with a probability related to the current
temperature (as in SA).

Hybrid immune algorithm combines the benefits of artificial immune algorithm
and hill climbing local search algorithm [72]. Memetic algorithm [73] is also a
hybrid algorithm in which the GA is combined with the heavy local search. In this
algorithm, an initial population is created at random similar to the GA. Afterwards,
a local search is performed on each population member to improve its experience
and thus obtain a population of local optimum solutions. Then, crossover and
mutation operators are applied to produce offsprings. These offsprings are then
subjected to the local search so that local optimality is always maintained.

Recently many variants of GAs have been investigated for improving the
learning and speed of convergence. For some problems, the user often has to be
satisfied with local optimal or suboptimal solutions. Sadegheih [74] proposed a
novel hybrid approach consisting of a GA, SA, and tabu search and the better
performance of the hybrid approach was illustrated using various test iterations.
Oysu and Bingul [75] applied heuristic algorithms such as SA, GA and hybrid
algorithm (hybrid-GASA) to tool-path optimization problem for minimizing air-
time during machining. Many forms of SA rely on random starting points that
often give poor solutions. The problem of how to efficiently provide good initial
estimates of solution sets automatically is still an ongoing research topic. The
authors had proposed a hybrid approach in which GA provides a good initial
solution for SA runs. The three algorithms were tested on three-axis-cartesian
robot during milling of wood materials and their performances were compared
based on minimum path and consequently minimum airtime. In order to make a
comparison between these algorithms, two cases among the several milling
operations were considered. Hybrid algorithm was reported better than other
heuristic algorithms alone.

Zhang and Tang [76] presented a novel hybrid ant colony optimization
approach to solve the vehicle routing problem. The main feature of the hybrid
algorithm is to hybridize the solution construction mechanism of the ant colony
optimization (ACO) with scatter search (SS). The experimental results showed
that the proposed hybrid method is competitive to solve the vehicle routing
problem in terms of solution quality. Ho et al. [77] used an adaptive network-
based fuzzy inference system (ANFIS) with the genetic learning algorithm to
predict the workpiece surface roughness for the end milling process. The hybrid
Taguchi-genetic learning algorithm (HTGLA) was applied in the ANFIS to
determine the most suitable membership functions and to simultaneously find the
optimal premise and consequent parameters by directly minimizing the root-
mean-squared-error performance criterion. Experimental results showed that the
HTGLA-based ANFIS approach outperforms the ANFIS methods given in the
Matlab toolbox in terms of prediction accuracy.

Liao [78] presented two hybrid differential evolution algorithms for optimizing
engineering design problems. One hybrid algorithm enhances a basic differential
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evolution algorithm with a local search operator, i.e., random walk with direction
exploitation, to strengthen the exploitation ability, while the other adding a second
metaheuristic, i.e., HS, to cooperate with the differential evolution algorithm so as
to produce the desirable synergetic effect. All algorithms incorporated a gen-
eralized method to handle discrete variables and parameter-less penalty method for
handling constraints. Fourteen engineering design problems selected from differ-
ent engineering fields were used for testing. The test results showed that: (i) both
hybrid algorithms outperform the differential evolution algorithms; (ii) among the
two hybrid algorithms, the cooperative hybrid outperforms the other hybrid with
local search; and (iii) the performance of hybrid algorithms can be further
improved with some effort of tuning the relevant parameters.

Luis et al. [79] proposed a hybrid optimization approach. In the first stage, a
multi-objective version of differential evolution was used to generate an initial
approximation of the Pareto front. In the second stage, rough set theory was used
to improve the spread and quality of this initial approximation. Hui [80] proposed
a multi-objective optimization method based on adaptive simulated annealing
genetic algorithm. Wang et al. [81] developed three hybrid HS algorithms, namely,
hybrid harmony search (hHS) algorithm, hybrid globalbest harmony search
(hgHS) algorithm and hybrid modified globalbest harmony search (hmgHS)
algorithm for solving the flow shop scheduling with blocking to minimize the total
flow time. Computational results showed the effectiveness of the hybrid harmony
search algorithms, especially the (hmgHS) algorithm.

Lozano and Martínez [82] reported on hybrid meta-heuristics with evolutionary
algorithms specializing in intensification and diversification. The use of evolu-
tionary algorithms specializing in intensification and diversification for building
hybrid meta-heuristics becomes a prospective line of research for obtaining
effective search algorithms.
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Chapter 2

Modeling and Optimization of Machining

Processes

2.1 Introduction

Machining operations have been the core of the manufacturing industry since the
industrial revolution. Machining is a process of material removal using cutting
tools and machine tools to accurately obtain the required product dimensions with
good surface finish. The manufacturing industries strive to achieve either a min-
imum cost of production or a maximum production rate, or an optimum combi-
nation of both, along with better product quality in machining.

The machining process is influenced by a number of input and output variables.
Machining process input variables are the process-independent variables and
include the following:

• Machine tool (rigidity, capacity, accuracy, etc.);
• Cutting tool (material, coating, geometry, nature of engagement with the work
material, tool rigidity, etc.);

• Cutting conditions (speed, feed, and depth of cut);
• Work material properties (hardness, tensile strength, chemical composition,
microstructure, method of production, thermal conductivity, ductility, shape and
dimensions of the job, work piece rigidity, etc.);

• Cutting fluid properties and characteristics.

Machining process output variables are the process-dependent variables and
include the following:

• Cutting tool life/tool wear/tool wear rate,
• Cutting forces/specific cutting forces,
• Power consumption/specific power consumption;
• Processed surface finish;
• Processed dimensional accuracy;
• Material removal rate (MRR);
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• Noise;
• Vibrations;
• Cutting temperature;
• Chip characteristics.

The technology of metal cutting has grown substantially over time owing to the
contribution from many branches of engineering with a common goal of achieving
higher machining process efficiency. Selection of optimal machining conditions is
a key factor in achieving this goal. In any multi-stage metal cutting operation, the
manufacturer seeks to set the process-related controllable input variables at their
optimal operating conditions with minimum effect of uncontrollable or noise
variables on the levels and variability in the outputs. To design and implement an
effective process control for machining operation by parameter optimization, a
manufacturer seeks to balance between quality and cost at each stage of operation
resulting in improved delivery and reduced warranty or field failure of a product
under consideration [196, 285].

Machining processes include traditional processes (such as turning, milling,
grinding, drilling, finishing, etc.) and advanced processes (such as electrical dis-
charge machining, electrochemical machining, ultrasonic machining, abrasive jet
machining, laser beam machining, etc.). Due to complexity and uncertainty of the
machining processes, soft computing techniques (such as neural networks, fuzzy
sets, genetic algorithms, simulated annealing, particle swarm optimization (PSO),
artificial bee colony (ABC) algorithm, etc.) are being preferred to physics-based
models for predicting the performance of the machining processes and optimizing
them. The modeling and optimization aspects of some of the important machining
processes are described in the next sections.

Fig. 2.1 Milling operation
(from [237]; reprinted with
permission from Elsevier)

56 2 Modeling and Optimization of Machining Processes



2.2 Milling Process

Milling is the machining process in which the metal is removed by a rotating
multiple tooth cutter. As the cutter rotates, each tooth removes a small amount of
material from the advancing work for each spindle revolution. The relative motion
between cutter and the work piece can be in any direction and hence surfaces
having any orientation can be machined in milling. Figure 2.1 shows a milling
operation. Milling operation can be performed in a single pass or in multiple
passes. Multi-pass operations are often preferred to single pass operations for
economic reasons and are generally used to machine stocks that cannot be
removed in a single pass. Milling processes are employed for machining flat
surfaces, contoured surfaces, surfaces of revolution, and helical surfaces of various
cross-sections.

Various investigators had presented techniques, both traditional and non-tra-
ditional, for modeling and optimization of milling processes. Wang [305] pre-
sented a neural network-based approach to multiple objective optimization of
milling process parameters. First, the problem of determining the optimum
machining parameters was formulated as a multiple-objective optimization prob-
lem. Then, neural networks were proposed to represent manufacturers’ preference
structures. However, optimization by using neural networks may often ends in
local minima or fails to converge on a result.

Armarego et al. [16] discussed development of computer-aided constrained
optimization analyses and strategies for multi-pass peripheral- and end-milling
operations. The constrained optimization was based on criteria typified by the
maximum production rate and included a range of practical constraints of rele-
vance to rough milling such as the machine tool-limiting power, torque, feed force
and feed-speed boundaries. The authors opined that a combination of mathemat-
ical optimization analyses and limited use of numerical search techniques provides
clearly defined computer-aided strategies which guarantee the final global opti-
mum solutions. Simulation studies had verified the software and demonstrated the
superiority of multi-pass over single pass.

Tolouei-Rad and Bidhendi [288] described development and utilization of an
optimization system which determines optimum machining parameters for milling
operations. The method of feasible direction was used for optimization. The
optimized parameters were intended for use by the NC machines. The authors had
considered maximization of profit rate as an objective function in milling opera-
tion. The feasible solution denotes the local minimum of the problem. However,
this local minimum need not be the global one unless the problem is convex
programming problem. Optimization model developed in their work was non-
convex. Wang [306] outlined and discussed optimization analysis, strategy and
CAM software for single pass end-milling on computer numerical control (CNC)
machine tools based on criteria typified by the maximum production rate and
allowing for a range of machine tool and component surface roughness constraints.
It was shown that the deterministic optimization approach involving mathematical
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analyses of constrained economic trends and their graphical representation on the
feed-speed domain provides a deeper understanding of the influences of con-
straints and a clearly defined strategy which guarantees the global optimum
solutions. Numerical simulation studies had demonstrated the economic benefits of
using this strategy over handbook recommendations as well as in assessing,
selecting and improving machine-tool design specifications.

Zheng et al. [328] presented a new approach to theoretical modeling and
simulation of cutting forces in face milling. Based on a predictive machining
theory, the action of a milling cutter was modeled as the simultaneous actions of a
number of single-point cutting tools. The milling forces were predicted from the
workpiece material properties, cutter parameters, tooth geometry, cutting condi-
tions and types of milling. The properties of the workpiece material were con-
sidered as functions of strain, strain-rate and temperature in the cutting region.
It took into account the effect of the intermittent contact between each milling
tooth and the workpiece on the temperature in the cutting region. It also took into
account the effect of cutter runout on the undeformed chip thickness.

Sonmez et al. [278] studied multi-pass milling operation based on the maximum
production rate criterion and used an algorithm adopted from the study of Agapiou
[4] which was presented for the multi-pass turning operations. Although the results
showed significant improvement over handbook recommendations, the optimiza-
tion techniques used in their work (dynamic programming and using geometric
programming) either tend to result in local minima or take a long time to converge
on a reasonable result. Choi and Yang [60] suggested an algorithm for estimating
the cutting depth based on the pattern of cutting force. The cutting force pattern,
rather than its magnitude, better reflects the change of the cutting depth, because
while the magnitude is influenced by several cutting parameters, the pattern is
affected mainly by the cutting depth. The proposed algorithm can be applied to
extensive cutting circumstances, such as presence of tool wear, change of work
material hardness, etc.

Shunmugam et al. [272] considered a face-milling operation. The machining
parameters such as number of passes, depth of cut in each pass, speed and feed
were obtained using a genetic algorithm (GA), to yield minimum total production
cost while considering technological constraints such as allowable speed and feed,
dimensional accuracy, surface finish, tool wear and machine-tool capabilities.
Although GA has advantages over the traditional techniques, the successful
application of GA depends on the population size or the diversity of individual
solutions in the search space. If GA cannot hold its diversity well before the global
optimum is reached, it may prematurely converge to a local optimum. Although
maintaining diversity is the predominant concern of GA, it also reduces the per-
formance of GA. Baek et al. [23] analyzed the effects of the insert run-out errors
and the variation of the feed rate on the surface roughness and the dimensional
accuracy in a face-milling operation using a surface roughness model. The validity
of the developed model was proved through cutting experiments, and the model
was used to predict the machined surface roughness from the information of the
insert run-outs and the cutting parameters. From the estimated surface roughness

58 2 Modeling and Optimization of Machining Processes



value, the optimal feed rate that gave a maximum MRR under the given surface
roughness constraint could be selected by a bisection method.

Chen and Savage [54] used fuzzy net-based model to predict surface roughness
under different tool and work piece combination for end-milling process. Speed,
feed and depth of cut, vibration, tool diameter, tool material, and work piece
material were used as input variables for fuzzy system. The authors found that the
predicted surface roughness was within an error of 10%. Li et al. [173] modeled
the cutting forces in helical end-milling based on a predictive machining theory, in
which the machining characteristic factors were predicted from input data of
fundamental workpiece material properties, tool geometry and cutting conditions.
In the model, each tooth of a helical end-milling cutter was discretized into a
number of slices along the cutter axis to account for the helix angle effect on the
cutting forces. The cutting action of each of the slices was modeled as an oblique
cutting process. For the first slice of each tooth, it was modeled as oblique cutting
with end cutting edge effect and tool nose radius effect, whereas the cutting actions
of other slices were modeled as oblique cutting without end cutting edge effect and
tool nose radius effect. The cutting forces in the oblique cutting processes were
predicted using a predictive machining theory. The total cutting forces acting on
the cutter was obtained as the sum of the forces at all the cutting slices of all the
teeth. A Windows-based simulation system for the cutting forces in helical end
milling was developed using the model.

Benardos and Vosniakos [35] presented a neural network modeling approach
for the prediction of surface roughness (Ra) in CNC face milling. The data used for
the training and checking of the networks’ performance was derived from the
experiments conducted on a CNC milling machine according to the principles of
Taguchi’s design of experiments (DoE) method. The factors considered in the
experiment were the depth of cut, the feed rate per tooth, the cutting speed, the
engagement and wear of the cutting tool, the use of cutting fluid and the three
components of the cutting force. Using feed-forward artificial neural networks
(ANNs) trained with the Levenberg–Marquardt algorithm, the most influential of
the factors were determined, again using DoE principles, and a 5 9 3 9 1 ANN
based on them was able to predict the surface roughness with a mean squared error
equal to 1.86%.

Tandon et al. [286] proposed and implemented PSO technique to optimize
multiple machining parameters simultaneously for the case of milling. An ANN
predictive model for critical process parameters was used to predict the cutting
forces which in turn were used by the PSO algorithm to optimize the cutting
conditions subject to a comprehensive set of constraints. Next, the algorithm was
used to optimize both feed and speed for a typical case found in industry, namely,
pocket-milling. Machining time reductions of up to 35% were observed. Lo [182]
used an adaptive network-based fuzzy inference system (ANFIS) to predict the
work piece surface roughness after the end-milling process. Three milling
parameters that have a major impact on the surface roughness, including spindle
speed, feed rate and depth of cut, were analyzed. Two different membership
functions, triangular and trapezoidal, were adopted during the training process of
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ANFIS in order to compare the prediction accuracy of surface roughness by the
two membership functions. The predicted surface roughness values derived from
ANFIS were compared with experimental data. The comparison indicated that the
adoption of both triangular and trapezoidal membership functions in ANFIS
achieved very satisfactory accuracy. When a triangular membership function was
adopted, the prediction accuracy of ANFIS reached was as high as 96%.

Ghani et al. [103] applied Taguchi optimization method to optimize cutting
parameters in end milling when machining hardened steel AISI H13 with TiN-
coated P10 carbide insert tool under semi-finishing and finishing conditions of
high-speed cutting. The milling parameters evaluated were cutting speed, feed rate
and depth of cut. An orthogonal array, signal-to-noise (S/N) ratio and Pareto
analysis of variance (ANOVA) were employed to analyze the effect of these
milling parameters. The analysis of the result showed that the optimal combination
for low resultant cutting force and good surface finish were high cutting speed, low
feed rate and low depth of cut. Using Taguchi method for DOE, other significant
effects such as the interaction among milling parameters were also investigated.
The study showed that the Taguchi method is suitable to solve the stated problem
with minimum number of trials as compared with a full factorial design.

Li and Li [172] developed theoretical cutting force model for helical end
milling with cutter runout using a predictive machining theory, which predicts
cutting forces from the input data of workpiece material properties, tool geometry
and cutting conditions. In the model, a helical end-milling cutter was discretized
into a number of slices along the cutter axis to account for the helix angle effect.
The cutting action for a tooth segment in the first slice was modeled as oblique
cutting with end cutting edge effect and tool nose radius effect, whereas the cutting
actions of other slices were modeled as oblique cutting without end cutting edge
effect and tool nose radius effect. The influence of cutter runout on chip load was
considered based on the true tooth trajectories. The total cutting force was the sum
of the forces at all the cutting slices of the cutter. The model was verified with
experimental milling tests.

Kovacic et al. [159] proposed modeling of cutting forces with genetic pro-
gramming, which imitates principles of living beings. Measurements were made
for two materials (aluminum alloy AlMgSi1 and steel 1.2343) and two different
types of milling (conventional milling and STEP milling). For each material and
type of milling parameters, tensile strength and hardness of work piece, tool
diameter, cutting depth, spindle speed, feeding and type of milling were moni-
tored, and cutting forces were measured for each combination of milling param-
eters. On the basis of the experimental data, different models for cutting forces
prediction were obtained by genetic programming. Wang et al. [311] presented an
approach to select the optimal machining parameters for multi-pass milling. It was
based on two recent approaches, genetic algorithm (GA) and simulated annealing
(SA), which have been applied to many difficult combinatorial optimization
problems with certain strengths and weaknesses. A hybrid of GA and SA (GSA)
was presented to use the strengths of GA and SA and overcome their weaknesses.
In order to improve, the performance of GSA further, the parallel genetic
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simulated annealing (PGSA) was developed and used to optimize the cutting
parameters for multi-pass milling process. For comparison, conventional parallel
GA (PGA) was also chosen as another optimization method. An application
example that was solved previously using the geometric programming (GP) and
dynamic programming (DP) method was presented. From the given results, PGSA
was shown to be more suitable and efficient for optimizing the cutting parameters
for milling operation than GP ? DP and PGA.

El-Mounayri et al. [82] presented an integrated product development system for
optimized CNC ball-end milling. First, the developed model was extended from
flat end milling to ball-end milling. Second, the optimization was extended from
2D (speed and feed) to 3 (1/2) D (speed, feed, radial and axial depths of cut).
Third, the modeling and simulation of the flat end milling was extended to include
more input variables. Finally, a feed-forward three layer fully interconnected radial
basis function neural network was introduced to and was successfully imple-
mented for the case of ball-end milling. The work was verified and validated using
typical machining scenarios.

Baro et al. [29] proposed a model to deal with the modeling of cutting forces in
a face-milling operation performed using self-propelling inserts. The proposed
model incorporates differences in the machining mechanics of self-propelling
inserts due to the difference in their geometry and rotation in a static force pre-
diction model in a face-milling operation with stationary inserts. The predicted
values of cutting forces evaluated by the proposed model were in excellent
agreement with the experimental value than those predicted using the static force
model. Radhakrishnan and Nandan [234] predicted cutting force model using
regression and neural networks. A regression model was used to filter out
abnormal data points and the filtered data were used in neural network for better
prediction.

Liu and Cheng [178] presented a new approach modeling and predicting the
machining dynamics for peripheral milling. First, a machining dynamics model
was developed based on the regenerative vibrations of the cutter and workpiece
excited by the dynamic cutting forces, which were mathematically modeled and
experimentally verified by the authors. Then, the mechanism of surface generation
was analyzed and formulated based on the geometry and kinematics of the cutter.
Thereafter a simulation model of the machining dynamics is implemented using
Simulink. In order to verify the effectiveness of the approach, the transfer func-
tions of a typical cutting system in a vertical CNC machine center were measured
in both normal and feed directions by an instrumented hammer and accelerome-
ters. Then a set of well-designed cutting trials was carried out to record and
analyze the dynamic cutting forces, the vibrations of the spindle head and work-
piece, and the surface roughness and waviness. Corresponding simulations of the
machining processes of these cutting trials based on the machining dynamics
model were investigated and the simulation results are analyzed and compared to
the measurements. It was shown that the proposed machining dynamics model
could well predict the dynamic cutting forces, the vibrations of the cutter and
workpiece.
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Ozcelik et al. [220] determined optimum cutting parameters of Inconel 718 to
enable minimum surface roughness under the constraints of roughness and MRR.
In doing this, advantages of statistical experimental design technique, experi-
mental measurements, ANN and genetic optimization method were exploited in an
integrated manner. Cutting experiments were designed based on statistical three-
level full factorial experimental design technique. A predictive model for surface
roughness was created using a feed-forward ANN exploiting experimental data.
Neural network model and analytical definition of MRR were employed in the
construction of optimization problem. The optimization problem was solved by an
effective genetic algorithm for variety of constraint limits. Additional experiments
were conducted to compare optimum values and their corresponding roughness
and MRR values predicted from the genetic algorithm. The authors opined that the
neural network model coupled with genetic algorithm can be effectively utilized to
find the best or optimum cutting-parameter values for a specific cutting condition
in end milling of Inconel 718. Budak and Tekeli [44] had shown that, for the
maximization of chatter free MRR, radial depth of cut is of equal importance. The
authors had proposed a method to determine the optimal combination of depths of
cut, so that chatter free MRR is maximized. The application of the method was
demonstrated on a pocketing example where significant reduction in the machining
time was obtained using the optimal depths. The procedure can easily be integrated
to a CAD/CAM system or a virtual machining environment in order to identify the
optimal milling conditions.

Reddy and Rao [242] conducted experimental studies to see the effect of tool
geometry (radial rake angle and nose radius) and cutting conditions (cutting speed
and feed rate) on the machining performance during end milling of medium carbon
steel. The first and second order mathematical models, in terms of machining
parameters, were developed for surface roughness prediction using response sur-
face methodology (RSM) on the basis of experimental results. The model selected
for optimization was validated with the Chi-square test. The significance of these
parameters on surface roughness was established with ANOVA. An attempt was
also been made to optimize the surface roughness prediction model using genetic
algorithms (GA). The GA program gave minimum values of surface roughness and
their respective optimal conditions. In another work, Reddy and Rao [243] pre-
sented an experimental investigation of the influence of tool geometry (radial rake
angle and nose radius) and cutting conditions (cutting speed and feed rate) on
machining performance in dry milling with four fluted solid TiAlN-coated carbide
end mill cutters based on Taguchi’s experimental design method. The mathe-
matical model, in terms of machining parameters, was developed for surface
roughness prediction using RSM. The optimization was then carried out with
genetic algorithms using the surface roughness model developed. This method-
ology helps to determine the best possible tool geometry and cutting conditions for
dry milling.

Dutta et al. [78] predicted the wear of the tungsten carbide inserts using neural
network during face milling of steel. They proposed a new approach called
modified back-propagation neural network with delta bar delta (MBPNND)
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learning to enhance the convergence speed and prediction accuracy of the network.
The authors found that MBPNND was efficient compared to three other approa-
ches, viz., back-propagation neural network, fuzzy back-propagation neural net-
work, and modified back-propagation neural network.

Öktem et al. [210] developed a Taguchi optimization method for low surface
roughness in terms of process parameters when milling the mold surfaces of 7075-
T6 aluminum material. Considering the process parameters of feed, cutting speed,
axial-radial depth of cut, and machining tolerance, a series of milling experiments
were performed to measure the roughness data. A regression analysis was applied
to determine the fitness of data used in the Taguchi optimization method using
milling experiments based on a full factorial design. Taguchi orthogonal arrays, S/
N ratio, and ANOVA were used to find the optimal levels and the effect of the
process parameters on surface roughness. Sreeram et al. [280] investigated the
process parameter optimization aspects of the micro-end milling. The influence of
depth of cut on tool life was illustrated and depth of cut was also considered as one
of the decision variables in the optimization problem. Genetic algorithms (GA)
was used to optimize the cutting parameters.

Baskar et al. [33] outlined the development of an optimization strategy to
determine the optimum cutting parameters for multi-tool milling operations like
face milling, corner milling, pocket milling and slot milling. The developed
strategy was based on the maximum profit rate criterion and incorporated five
technological constraints. Optimization procedures based on the genetic algorithm,
hill climbing algorithm and memetic algorithm were demonstrated for the opti-
mization of machining parameters for milling operation. An objective function
based on maximum profit in milling operation was developed and the results
obtained were used in NC machine. The results were compared and analyzed with
method of feasible directions and handbook recommendations. Onwubolu [211,
212] proposed a new optimization technique based on Tribes for determination of
the cutting parameters in multi-pass milling operations such as plain milling and
face milling by simultaneously considering multi-pass rough machining and finish
machining. The optimum milling parameters were determined by minimizing the
maximum production rate criterion subject to several practical technological
constraints. The cutting model formulated was a nonlinear, constrained pro-
gramming problem. Although the results obtained in his work using tribes showed
significant improvement over other traditional and non-traditional algorithms, but
the results are not valid as some of the constraints in the solution obtained are
violated.

Cus et al. [65] presented an intelligent system for on-line monitoring and
optimization of the cutting process on the model of the ball-end milling. An
intelligent system for monitoring and optimization in ball-end milling was
developed both in hardware and software. It was based on a PC, which was
connected to the CNC main processor module through a serial-port so that
control and communication could be realized. The monitoring system was based
on LabVIEW software, the data acquisition system and the measuring devices
(sensors) for the cutting force measuring. The measured values were delivered to
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the computer program through the data acquisition system for data processing
and analysis. The optimization technique was based on genetic algorithms for the
determination of the cutting conditions in machining operations. Experimental
results showed that the proposed genetic algorithm-based procedure for solving
the optimization problem can be integrated into a real-time intelligent manu-
facturing system for solving complex machining optimization problems. Tang
[287] studied an optimization strategy for high-speed machining of hardened die/
mold steel based on machining feature analysis. An objective function con-
cerning machining cost and associated optimization algorithm based on
machining time and cutting length calculation was proposed. Constraints to sat-
isfy specific machining strategies when high-speed machining the hardened
die/mold steel, trochoid tool path pattern in slot end milling to avoid over-heat
and feed rate adaptation to avoid over-load, were also discussed. As a case study,
the tool selection problem when machining a die part with multiple machining
features was investigated.

Aykut et al. [22] used ANNs for modeling the effects of machinability on chip
removal cutting parameters for face-milling of satellite 6 in asymmetric milling
processes. Cutting forces with three axes were predicted by changing cutting
speed, feed rate and depth of cut under dry conditions. Experimental studies were
carried out to obtain training and test data and scaled conjugate gradient (SCG)
feed-forward back-propagation algorithm was used in the networks. Main
parameters for the experiments were the cutting speed, feed rate, depth of cut and
cutting forces. These results showed that the ANNs can be used for predicting the
effects of machinability on chip removal cutting parameters for face-milling of
satellite 6 in asymmetric milling processes. Fontaine et al. [92, 93] studied the
influence of tool-work piece inclination on cutting forces in ball-end milling.
Cutting forces calculated from a thermomechanical modeling were discussed in
detail and compared to experimental results. The proposed modeling of ball-end
milling was applied to machining operations with straight tool paths and various
tool-surface inclinations. Both ramping and contouring configurations were
studied. The experimental results were obtained from ball-end milling tests
performed on a three-axis CNC equipped with a Kistler dynamometer. The
evolution of the maximum values of cutting forces acting on the tool was
investigated in order to identify the optimum inclination angle. Influences of
cutting conditions, radial run-out and plowing on cutting forces and cutting
stability were discussed.

Ghosh et al. [104] developed a neural network-based sensor fusion model to
estimate tool wear during CNC milling process. Signals in the form of cutting
forces, spindle motor current, and sound pressure level were used as inputs for
neural network. The authors had proposed newer methods such as feature space
filtering, prediction space filtering, etc., to improve prediction accuracy and found
that the prediction is satisfactory in a real-time error prone environment. Palan-
isamy et al. [224] developed a mathematical model based on both the material
behavior and the machine dynamics to determine cutting force for milling
operations. The system used for optimization was based genetic algorithms.
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The machining time was considered as the objective function and constraints were
tool life, limits of feed rate, depth of cut, cutting speed, surface roughness, cutting
force and amplitude of vibrations while maintaining a constant MRR. Experi-
mental end-milling tests were performed on mild steel to measure surface
roughness, cutting force using milling tool dynamometer and vibration using a fast
Fourier transform (FFT) analyzer for the optimized cutting parameters in a uni-
versal milling machine using an HSS cutter.

Ching-Kao and Lu [59] presented an optimal cutting-parameter design of heavy
cutting in side milling for SUS304 stainless steel. The orthogonal array with
grey-fuzzy logic was applied to optimize the side milling process with multiple
performance characteristics. A grey-fuzzy reasoning grade obtained from the grey-
fuzzy logics analysis was used as a performance index to determine the optimal
cutting parameters. The selected cutting parameters were spindle speed, feed per
tooth, axial depth of cut and radial depth of cut, while the considered performance
characteristics were tool life and metal removal rate (MRR). The results of con-
firmation experiments revealed that grey-fuzzy logic could effectively acquire an
optimal combination of the cutting parameters.

Kadirgama et al. [139] developed the surface roughness prediction models, with
the aid of statistical methods, for hastelloy C-22HS when machined by physical
vapor deposition (PVD)- and chemical vapor deposition (CVD)-coated carbide
cutting tools under various cutting conditions. These prediction models were then
compared with the results obtained experimentally. By using RSM, first order
models were developed with 95% confidence level. The surface roughness models
were developed in terms of cutting speed, feed rate and axial depth using RSM as a
tool of DoE. In general, the results obtained from the mathematical models were in
good agreement with those obtained from the machining experiments. It was found
that the feed rate, cutting speed and axial depth played a major role in determining
the surface roughness. PVD-coated cutting tool performed better than CVD when
machining hastelloy C-22HS. It was observed that most of the chips from the
PVD-cutting tool were in the form of discontinuous chip while CVD-cutting tool
produced continuous chips.

SSavas and Ozay [262] presented an approach for optimization of cutting
parameters leading to minimum surface roughness by using genetic algorithm
in the tangential turn-milling process. During testing, the effects of the cutting
parameters on the surface roughness were investigated. Additionally, by using
genetic algorithms for each of the cutting parameters (depth of cut, work
piece speed, tool speed and feed rate) minimum surface roughness for the
process of tangential turn-milling was determined according to the cutting
parameters.

Onwubolu et al. [218] presented an enhanced approach to predictive modeling
for determining tool-wear in end-milling operations based on enhanced-group
method of data handling (e-GMDH). Using milling input parameters (speed, feed,
and depth of cut) and response (tool wear), the data for the model was partitioned
into training and testing datasets, and the training dataset was used to realize a
predictive model that was a function of the input parameters and the coefficients
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determined. The results realized using e-GMDH method were promising, and the
comparative study presented showed that the e-GMDH outperforms polynomial
neural network (PNN). The extended PSO technique was applied to obtain the
optimal parameters.

Chakraborty et al. [48] focused on end-milling of AISI 4340 steel with multi-
layer PVD-coated carbide inserts under semi-dry and dry cutting conditions and
proposes a mixed effects model for the analysis of the longitudinal data obtained
from a designed experiment. This modeling approach considered unobserved
heterogeneity during machining and proposed a tool wear progression model that
has a higher power of detecting effects of significant factors than traditional
regression models. One such source of variation is work piece hardness that
was observed within and across test blocks. From the wear progression model
developed, the lowest initial flank wear values were obtained at a cutting speed
of 183 m/min, a feed rate of 0.10 mm/rev under semi-dry cutting conditions.
A higher rate of wear progression and lower tool life was observed at the higher
cutting speed level of 229 m/min. Cutting speed had the most significant effect on
flank wear progression in this study. Depth of cut on the other hand did not show
any significant effect on tool wear when compared to cutting speed, feed and
cutting conditions. From this analysis, diffusion wear was confirmed under both
semi-dry and dry machining conditions. It was expected that the proposed model
could reduce the number of repetitions in tool wear modeling experiment for tool
manufacturers leading to substantial cost savings.

Rai and Xirouchakis [235] presented an overview of a comprehensive finite
element method (FEM)-based milling process plan verification model and asso-
ciated tools, which by considering the effects of fixturing, operation sequence, tool
path and cutting parameters simulates the milling process in a transient 3D virtual
environment and predicts the part thin wall deflections and elastic–plastic defor-
mations during machining. The prediction accuracy of the model was validated
experimentally and the obtained numerical and experimental results were found in
good agreement.

Wan et al. [304] developed a systematic procedure to simulate the peripheral
milling process of thin-walled workpiece. The procedure integrates the cutting
force module consisting of calculating the instantaneous uncut chip thickness,
calibrating the instantaneous cutting force coefficients and the cutting process
module consisting of calculating the cutting configuration and static form errors. It
can be used to check the process reasonability and to optimize the process
parameters for high precision milling. The regeneration mechanism in flexible
static end milling was investigated both theoretically and numerically. Compari-
sons of the cutting forces and form errors obtained numerically and experimentally
confirmed the validity of the simulation procedure.

Merdol and Altintas [191] presented generalized process simulation and opti-
mization strategies to predict and improve the performance of three-axis milling
operations. Cutter-part engagement conditions were extracted from a solid mod-
eling system. The cutting force distribution along the engaged cutting edge-part
surface was evaluated based on the laws of mechanics of milling. By integrating
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the distributed force along the cutting edge, total forces, torque and power were
either predicted analytically using closed-form solutions, or numerically if the
cutting tool shape was discontinuous. Simulation results were then used in a
constraint-based optimization scheme to maximize the MRR by calculating
acceptable feed rate levels. The proposed virtual milling system was demonstrated
experimentally in milling a stamping die with free form surfaces.

Iqbal et al. [132] developed a fuzzy expert system for parameter optimization
that includes prediction of tool life and surface finish in hard-milling (high-speed
milling of steel having 45 HRC hardness) process. Lu et al. [185] investigated
optimum design of the cutting parameters for rough cutting processes in high-
speed end milling on SKD61 tool steel. The major performance characteristics
selected to evaluate the processes were tool life and MRR, and the corresponding
cutting parameters were milling type, spindle speed, feed per tooth, radial depth of
cut, and axial depth of cut. Grey relational analysis that uses grey relational grade
as performance index was specially adopted to determine the optimal combination
of cutting parameters. Moreover, the principal component analysis was applied to
evaluate the weighting values corresponding to various performance characteris-
tics so that their relative importance could be properly and objectively described.
The results of confirmation experiments revealed that grey relational analysis
coupled with principal component analysis can effectively acquire the optimal
combination of cutting parameters.

Budak et al. [45] presented models for 5-axis milling process geometry, cutting
force and stability. The application of the models in selection of important
parameters was also demonstrated. A practical method, developed for the
extraction of cutting geometry, was used in simulation of a complete 5-axis cycle.
Totis [290] presented a new probabilistic algorithm for a robust analysis of sta-
bility in milling, which performs the stability analysis on an uncertain dynamic
milling model. In this approach, model parameters were considered as random
variables, and robust analysis of stability was carried out in order to estimate
system’s probability of instability for a given combination of cutting parameters.
By doing so, probabilistic instead of deterministic stability lobes were obtained,
and a new criterion for system stability based on level curves and gradient of the
probabilistic lobes could be applied to identify optimal robust stable cutting con-
ditions. Experimental validation consisted of different phases: firstly, machining
system dynamics were estimated by means of pulse tests. Secondly, cutting force
coefficients were determined by performing cutting tests. Eventually, chatter tests
were performed and the experimental stability lobes were compared with the
predicted robust stable regions.

Ho et al. [125] used ANFIS with the genetic learning algorithm to predict the
work piece surface roughness for the end-milling process. The hybrid Taguchi-
genetic learning algorithm (HTGLA) was applied in the ANFIS to determine the
most suitable membership functions and to simultaneously find the optimal premise
and consequent parameters by directly minimizing the root-mean-squared-error
performance criterion. Experimental results showed that the HTGLA-based ANFIS
approach outperforms the ANFIS methods given in the Matlab toolbox.
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Yang et al. [319] applied the DoE approach to optimize parameters of a CNC
end-milling process for high-purity graphite under dry machining. The groove
difference (i.e., dimensional accuracy of groove width) and the roughness average
at the bottom plane of the inside groove (i.e., the plane of end milling) were
studied. Planning of experiment was based on a Taguchi orthogonal array table.
The ANOVA was adapted to identify the most influential factors on the CNC end-
milling process. Simultaneously, a mathematical predictive model for predictions
of the groove difference and the roughness average was developed by applying
regression analysis in terms of cutting speed, feed rate, and depth of cut. The feed
rate was found to be the most significant factor affecting the groove difference and
the roughness average in end-milling process for high-purity graphite.

Kersting and Zabel [144] developed an optimization approach based on the
multi-objective evolutionary algorithm S-metric selection evolutionary multi-
objective optimization algorithm (SMS-EMOA) combined with a multi-population
approach for NC tool path optimization in a five-axis milling process. It was
shown that the idea of taking one evolutionary run in every restriction-free area
increases the diversity of the NC-path designs and could also improve the corre-
sponding Pareto fronts. Experiments on different NC-paths structures—such as
circular, linear, and angled segments—showed promising results for characteristic
elements.

Onwubolu [213] introduced a combined hybrid group method for data handling
and optimization approach to predict burr types formed during face milling. The
hybrid group method for data handling (hybrid GMDH) network was constructed
for realizing predictive models for the machining of aluminum alloy, and differ-
ential evolution was selected for the optimization of burr formation problem
resulting in finding optimal parameter for minimizing burr formation. Burr type
was included as a parameter resulting in a classification scheme in which the burr
type becomes the group label and it is therefore possible in the future to classify a
machining process into any of these burr types. The resulting hybrid GMDH
output was in agreement with experimental results.

Patel et al. [227] presented an experimental study to optimize the surface
quality of an end-milled surface on a Vertical Machining Center using Taguchi’s
nested experimental design. The effect of various machining parameters on
surface roughness was investigated on two different work piece materials, Alu-
minum alloy and Plain Carbon Steel. Other control factors, namely, feed rate and
spindle speed, depth of cut and radial engagement of tool were varied in the
experiment to measure surface roughness at four different positions on the work
piece. Position was taken as an uncontrollable noise factor. Depth of cut was
observed to be the most significant factor that affecting the surface roughness.
Also, better surface finish was obtained while machining aluminum alloy as
compared to plain carbon steel. Spindle speed and feed rate were the other two
significant factors while machining aluminum alloy parts, although these factors
did not significantly affect the finish for steel. Radial engagement of tool had no
impact on the surface finish for aluminum alloy, while it had a significant impact
for plain carbon steel.
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Routara et al. [245] conducted experiments for three different work piece
materials to see the effect of work piece material variation in this respect. Five
roughness parameters, viz., center line average roughness, root mean square
roughness, skewness, kurtosis and mean line peak spacing were considered. The
second-order mathematical models, in terms of the machining parameters, were
developed for each of these five roughness parameters prediction using RSM on
the basis of experimental results. The roughness models as well as the significance
of the machining parameters were validated with ANOVA. It was found that the
response surface models for different roughness parameters were specific to work
piece materials. An attempt was also made to obtain optimum cutting conditions
with respect to each of the five roughness parameters using a response optimi-
zation technique.

Prakasvudhisarn et al. [231] proposed an approach to determine optimal
cutting condition for desired surface roughness in end milling. The approach
consists of two parts: machine learning technique called support vector machine
to predict surface roughness and PSO technique for parameters optimization. The
authors found that PSO showed consistent near-optimal solution with little effort.
Uros et al. [298] developed a reliable method to predict flank wear during end-
milling process. A neural-fuzzy scheme was applied to perform the prediction of
flank wear from cutting force signals. The construction of an ANFIS system that
seeks to provide a linguistic model for the estimation of tool wear from the
knowledge embedded in the neural network was presented. Machining experi-
ments conducted indicated that using an appropriate maximum force signals, the
flank wear could be predicted within 4% of the actual wear for various end-
milling conditions.

Yildiz [321] presented a new hybrid optimization approach based on immune
algorithm and hill climbing local search algorithm. The purpose was to develop a
new optimization approach for solving design and manufacturing optimization
problems. In order to evaluate the proposed optimization approach, single objec-
tive test problem, multi-objective I-beam and machine-tool optimization problems
taken from the literature were solved. Finally, the hybrid approach was applied to a
case study for milling operations to show its effectiveness in machining opera-
tions. The results of the hybrid approach for the case study were compared with
those of genetic algorithm, the feasible direction method and handbook
recommendations.

Zarei et al. [324] presented a harmony search (HS) algorithm to determine the
optimum cutting parameters for multi-pass face milling. The optimum value of
machining parameters including number of passes, depth of cut in each pass,
speed and feed was obtained to minimize total production cost while considering
technological constraints such as allowable speed, feed, surface finish, tool life
and machine-tool capabilities. An illustrative example was used to demonstrate
the ability of the HS algorithm and for validation purpose, the genetic algorithm
(GA) was used to solve the same problem. Comparison of the results revealed
that the HS algorithm converges to optimum solution with higher accuracy in
comparison with GA. Wei et al. [313] presented an approach for modeling of the
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process geometry in peripheral milling of curved surfaces. The modeled process
geometry involves feed direction, equivalent feedrate and cutter entry/exit angle.
The equivalent feedrate, which was defined at the centroid of cutting cross-
section, was proposed to measure the actual machining feedrate. The milling
process of curved surface was discretized at intervals of feed per tooth for
describing the variation of process geometry. The mathematical models for
calculating the process geometry of each segmented cutting process were pre-
sented. Two same curved surfaces were machined. The tool paths were carried
out with NURBS interpolation and traditional consecutive small line segments
interpolation, respectively.

Rao and Pawar [237] presented optimization aspects of a multi-pass milling
operation. The objective considered was minimization of production time (i.e.
maximization of production rate) subjected to various constraints of arbor strength,
arbor deflection, and cutting power. Various cutting strategies were considered to
determine the optimal process parameters like the number of passes, depth of cut
for each pass, cutting speed, and feed. The upper and lower bounds of the process
parameters were also considered. The optimization was carried out using three
non-traditional optimization algorithms namely, ABC, PSO, and simulated
annealing (SA). An application example was presented and solved to illustrate the
effectiveness of the presented algorithms. The results of the presented algorithms
were compared with the previously published results obtained by using other
optimization techniques. The authors had reported that the convergence rate of
ABC and PSO algorithms was very high and these algorithms required only little
iteration for convergence to the optimal solution, whereas SA algorithm required
comparatively more iterations for convergence. The accuracy of solution obtained
by using ABC and PSO algorithms was better as compared to the results obtained
by using SA algorithm.

Now an example is presented to demonstrate the process parameter optimiza-
tion of multi-pass milling operations.

2.2.1 Example 1: Process Parameter Optimization of Multi-pass

Milling for Maximization of Production rate

This example is focused on optimization of process parameters of multi-pass
milling operations considering minimization of total production time as the
objective function (i.e. maximization of production rate) with constraints of arbor
strength, arbor deflection and cutting power. Feed per tooth, speed and depth of cut
are considered as process parameters.

The optimization model of milling process is formulated based on the analysis
given by Sonmez et al. [278]. The decision variables (i.e. process parameters)
considered for this model are feed per tooth (fz), cutting speed (V) and depth of
cut (a). The objective function and the constraints are formulated as discussed
below.
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For a milling operation, the total production time (Tpr) is composed of the
following items:

1. Machine preparation time (Tp), which is as given by Eq. 2.1

Tp ¼ Ts=Nb ð2:1Þ

where Ts = setup time, and Nb = total number of components in batch.
2. Loading unloading time (TL)
3. Process adjusting and quick return time (Ta)
4. Machining time (Tm)
5. Tool changing time per component (Tc), which is as given by Eq. 2.2

Tc ¼ TdTm=T ð2:2Þ

where Td = time for changing a dull cutting edge or tool and T = tool life

For a single pass milling operation, the total production time (Tpr) is the sum of
the above time elements and can be written as:

Tpr ¼ Tp þ TL þ Ta þ Tm þ Tc ð2:3Þ

or

Tpr ¼ Ts=Nbð Þ þ TL þ Ta þ Tm þ Td Tm=Tð Þ ð2:4Þ

For a multi-pass operation, Eq. 2.4 becomes

Tpr ¼ Ts=Nbð Þ þ TL þ
X

Np

i¼1

Tai þ Tmi þ Td Tmi=Tð Þ ð2:5Þ

where Np = total number of passes and subscript ‘i’ denotes ith pass.
For a particular milling operation, the machining time is given as:

Tm ¼ L=f ð2:6Þ

where L = length of cut, f = feed rate = fz 9 z 9 N; where fz = feed per tooth,
z = number of teeth on milling cutter, and N = spindle speed (rpm).

N is given by equation:

N ¼ 1; 000V=pD ð2:7Þ

where D = cutter diameter, V = cutting speed.
Tool life can be determined by using the formula given by Eq. 2.8.

T ¼ C1=m
v Dðbv=mÞ

� �

BmBhBpBt

� �1=m
� �.

V1=maev=mf
uv=m
zi arv=mr znv=mkqv=ms

� �

ð2:8Þ

where a = depth of cut, ar = width of the cut, Bm, Bk, Bp, Bt are the correction
coefficients, m, ev, uv, rv, nv, qv, and bv are the exponents, Cv = process constant,
and ks = cutting inclination angle.
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On substituting Eqs. 2.6, 2.7, and 2.8 in Eq. 2.5, the objective function for
multi-pass milling operation is expressed as given by Eq. 2.9.

Tpr ¼ Ts=Nbð Þ þ TL þ NpTa þ
X

Np

i¼1

pDL=fziz1;000Vi þW ð2:9Þ

where W = [(TdpLVi
(1/m - 1)ai

ev/mfzi
(uv/m - 1)ar

rv/mz(nv/m - 1)ks
qv/m)/(1,000Cv

1/m

D(bv/m - 1))] 9 (BmBhBpBt)
1/m).

Following three constraints are considered in this optimization model:

1. Arbor strength: The arbor is subjected to torsion from the action of resistance to
cutting. Therefore, the selected values of process parameters should ensure that
the arbor is safe from strength point of view.

Fs � Fc � 0 ð2:10Þ

where

mean peripheral cutting force ¼ Fc ¼ CzparzD
bzaezf uzz ð2:11Þ

Czp = process constant; bz, ez, and uz are exponents.
Permissible force for arbor strength (kg) = Fs

Fs ¼ 0:1kbd
3
a

�

0:08La þ 0:65 0:25Lað Þ2þ 0:5aDð Þ2
� �1=2

� �� �

ð2:12Þ

where kb = permissible bending strength of arbor; da = arbor diameter; La =
arbor length between supports; a = kb/(1.3 kt); kt = permissible torsional
strength of arbor.

2. Arbor deflection: The selected values of process parameters should be checked
for arbor deflection as given by Eq. 2.13.

Fd � Fc � 0 ð2:13Þ

where Fd is the permissible force for arbor deflection (kg)

Fd ¼ 4Eed4a
	

L3a ð2:14Þ

where E = modulus of elasticity of arbor material; e = permissible value of
arbor deflection.
For roughing operation e = 0.2 mm and for finishing operation e = 0.05 mm.

3. Power: Power required for the cutting operation should not exceed the effective
power transmitted to cutting point by the machine tool. This is ensured by
Equation 2.15.

Pc � FcV=6; 120ð Þ� 0 ð2:15Þ
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where Pc = cutting power (kW) = Pm*g, Pm = nominal motor power,
g = overall efficiency.
The three process parameters and their bounds considered are as given below.

i. Feed per tooth: The optimum feed must be in the range determined by
maximum and minimum values of the feed rates of the machine.

fzmin � fz � fzmax ð2:16Þ

where

fzmin ¼ fmin=zNmax ð2:17Þ

fzmax ¼ fmax=zNmin ð2:18Þ

fmax = maximum spindle feed rate (mm/min) and fmin = minimum
spindle feed rate (mm/min), Nmax = maximum spindle speed, Nmin =

minimum spindle speed.

ii. Cutting speed: The optimum cutting speed must be in the range deter-
mined by maximum spindle speed (Nmax) and minimum spindle speed
(Nmin) of the machine.

Vmin �V �Vmax ð2:19Þ

where

Vmax ¼ pDNmax=1; 000 ð2:20Þ

Vmin ¼ pDNmin=1; 000 ð2:21Þ

iii. Depth of cut: For a milling operation, the upper and lower bounds for
depth of cut are as specified by Eq. 2.22.

amin � a� amax mmð Þ ð2:22Þ

where amin is the minimum depth of cut and amax is the maximum depth of
cut.

Specifications of the required parameters and values of the constants considered
by Sonmez et al. [278] and used in the present work are given below:

• Type of machining: plain milling
• Motor power (Pm) = 5.5 kW, efficiency, g = 0.7
• Arbor diameter da = 27 mm, arbor length between supports La = 210 mm
• Permissible bending stress of arbor kb: 140 MPa
• Permissible torsional stress of arbor kt: 120 MPa
• Modulus of elasticity of arbor material E = 200 GPa
• Spindle speed range: 31.5–2,000 rpm, feed rate range 14–900 mm/min
• Tool material HSS, tool diameter D = 63 mm, number of teeth z = 8
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• Material: structural carbon steel (C # 0.6%)
• Tensile strength 750 MPa, Brinell hardness number = 150
• Length of cut La = 160 mm, width of cut ar = 50 mm, depth of cut a = 5 mm
• Loading and unloading time of one work piece TL = 1.5 min
• Set-up time of fixtures and machine tool Ts = 10 min
• Tool change time Tc = 5 min
• Process adjusting and quick return time Ta = 0.1 (min/part)
• Lot size (number of parts in the batch) Nb = 100
• Cutting inclination = 30�
• Constants: Bm = 1, Bk = 1, Bp = 0.8, Bt = 0.8, m = 0.33, ev = 0.3, uv = 0.4,
rv = 0.1, nv = 0.1, qv = 0, Cv = 35.4, bv = 0.45, Czp = 68.2, bz = -0.86,
ez = 0.86, and uz = 0.72.

Bounds for variables:

0:000875� fz � 3:571 ð2:23Þ

6:234�V � 395:84 m=minð Þ ð2:24Þ

0:5� a� 4 mmð Þ ð2:25Þ

In the present work, various feasible cutting strategies are adopted to determine
the optimum number of passes required and depth of cut for each pass. The results
of optimization for these strategies using ABC algorithm are shown in Table 2.1.
It is observed from Table 2.1 that among various cutting strategies for multi-pass
milling with total depth of cut of 5 mm, the strategy 2 with three rough cuts each

Table 2.1 Results of optimization using ABC for various cutting strategies in milling operation
(from [237]; reprinted with permission from Elsevier)

Sr
No.

Cutting
strategy

fz (mm/
tooth)

V (m/
min)

T2 (per pass)
(min)

T2
(min)

T1
(min)

Tpr = (T1 + T2)
min

1 arough = 2 0.231 48.117 0.475 1.378 1.9 3.278
arough = 2 0.231 48.117 0.475
afinish = 1 0.189 74.090 0.428

2 arough = 1.5 0.337 46.982 0.343 1.240 2.0 3.240
arough = 1.5 0.337 46.982 0.343
arough = 1.5 0.337 46.982 0.343
afinish = 0.5 0.432 64.41 0.211

3 arough = 2 0.231 48.117 0.475 1.355 2.0 3.355
arough = 1 0.552 47.519 0.226
arough = 1 0.552 47.519 0.226
afinish = 1 0.189 74.090 0.428

4 arough = 1 0.552 47.519 0.226 1.332 2.1 3.432
arough = 1 0.552 47.519 0.226
arough = 1 0.552 47.519 0.226
arough = 0.552 47.519 0.226
afinish = 1 0.189 74.090 0.428
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of 1.5 mm and a finish cut of 0.5 mm is optimum as indicated by minimum
production time of 3.24 min. The value of feed per tooth for finishing cut provided
by strategy 2 is also much less than that provided by other strategies. In milling
operation as the feed per tooth decreases, surface finish increases. Hence strategy 2
also ensures better surface finish as compare to other strategies.

The optimum process parameter values obtained by ABC algorithm for a given
multi pass milling operation are given below:

• Number of passes required = 4.
• Number of rough cutting passes = 3 with depth of cut in each roughing
pass = 1.5 mm

• Number of finish passes = 1 with depth of cut in finishing pass = 0.5 mm.
• For roughing pass: feed per tooth = 0.337 mm/tooth and cutting
speed = 46.982 m/min

• For finishing pass: feed per tooth = 0.432 mm/tooth and cutting
speed = 64.41 m/min

• Total production time (Tpr) = 3.240 min.

Optimality of the above-mentioned solution could be confirmed from the
Figs. 2.2, 2.3, 2.4, 2.5, and 2.6. Figure 2.2 shows variation of production time and
various constraints with feed per tooth for rough milling operation. As feed per
tooth increases, production time reduces; hence higher value of feed rate is
desired. However, the strength constraint is violated after feed per tooth attains a
value of 0.337 mm. This confirms the optimum value of feed per tooth selected
using ABC algorithm for rough milling operation.

Figure 2.3 shows variation of production time and constraints with cutting
speed for rough milling operation. Since the deflection constraint is having a
constant positive value in this figure, Fig. 2.4 is plotted neglecting the deflection

Fig. 2.2 Variation of
production time and
constraints with feed per
tooth for rough milling (from
[237]; reprinted with
permission from Elsevier)
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constraint to indicate more clearly the variation of production time and other
two constraints with cutting speed. As shown in Fig. 2.4, production time initially
decreases with increase in cutting speed, till cutting speed attains a value of
47 m/min, after which the production time increases with increase in cutting speed.
Thus, a cutting speed of 47 m/min is considered as optimum and the production time
is minimum at this cutting speed value without violating any constraint.

Figure 2.5 shows variation of production time and constraints with feed per
tooth for finish milling operation. Although higher value of feed per tooth is
desired to achieve minimum value of production time, the deflection constraint is
violated for any value of feed per tooth higher than 0.432 mm. This confirms the
optimum value of feed per tooth selected using ABC algorithm.

Fig. 2.3 Variation of
production time and
constraints with cutting speed
for rough milling (from
[237]; reprinted with
permission from Elsevier)

Fig. 2.4 Variation of
production time and
constraints with cutting speed
for rough milling neglecting
the deflection constraint
(from [237]; reprinted with
permission from Elsevier)
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Figure 2.6 shows variation of production time and constraints with cutting
speed for finish milling operation. Since the strength constraint is having a con-
stant positive value in this figure, Fig. 2.7 is plotted neglecting the strength con-
straint to indicate more clearly the variation of production time and other two
constraints with cutting speed. As shown in Fig. 2.7, production time initially
decreases with increase in cutting speed, till cutting speed attains a value of
64.41 m/min, after which the production time increases with increase in cutting
speed. Thus for finish milling operation, a cutting speed of 64.41 m/min is con-
sidered as optimum and the time is minimum at this cutting speed value without
violating any constraint. The results of optimization using ABC, PSO, and SA

Fig. 2.5 Variation of
production time and
constraints with feed per
tooth for finish milling (from
[237]; reprinted with
permission from Elsevier)

Fig. 2.6 Variation of
production time and
constraints with cutting speed
for finish milling (from [237];
reprinted with permission
from Elsevier)
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algorithms along with those obtained by previous researchers are presented in
Table 2.2.

The convergence of ABC, PSO and SA algorithms for rough milling and finish
milling for maximum production rate is shown in Figs. 2.8 and 2.9 respectively.

Table 2.2 shows the comparative performance of various proposed techniques,
i.e. ABC, PSO and SA along with those reported in literature by using various
other optimization techniques. It is observed that for the optimum solution
obtained by using optimization methods like GP, GA, PGSA, and Tribes violate
most of the constraints (indicated by negative values in Table 2.2). This is due to
the fact that previous researchers [211, 212, 278, 311] considered the unit of
cutting force specified by Equation 2.11 in ‘Newtons’ whereas it must be in ‘kg’.
The unit of cutting force in ‘kg’ as considered in the present work is supported by
the following two facts:

1. By considering the unit of cutting force in ‘Newtons’, the optimum solutions
obtained by using GP, GA, PGSA and Tribes [211, 212, 278, 311] are not at all
influenced by the any of the constraints. This is indicated by a very large
difference between permissible value of the constraining parameter and its
corresponding value provided by the optimum solution. This clearly indicates
that the consideration of unit of cutting force in ‘Newtons’ by the previous
researchers is wrong.

2. The values of feed per tooth obtained by using GP, GA, PGSA are much higher
([0.55 mm) than practically achievable value of feed per tooth (\0.45 mm) in
case of plain milling operation.

Due to the above-mentioned reasons, the optimum solutions obtained by pre-
vious researchers [211, 212, 278, 311] are not valid. For the optimum solution

Fig. 2.7 Variation of
production time and
constraints with cutting speed
for finish milling neglecting
the strength constraint (from
[237]; reprinted with
permission from Elsevier)
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obtained by using ABC, PSO, and SA algorithms, the difference between per-
missible value of the constraining parameter and its corresponding value provided
by optimum solution is very less, which proves the validity and accuracy of the
solution. It also reveals the fact that the unit of cutting force considered (in ‘kg’) in

Fig. 2.8 Convergence of
ABC, PSO and SA
algorithms for rough milling
for maximization of
production rate (from [237];
reprinted with permission
from Elsevier)

Table 2.2 Results of optimization for maximization of production rate in milling operation by
using various optimization algorithms (from [237]; reprinted with permission from Elsevier)

Method Cutting strategy fz V SC DC PC T2 Tpr

GP Sonmez
et al. [278]

arough = 3 0.338 26.40 -405 24.92 -0.08 0.813 2.614
afinish = 2 0.570 25.16 -430 -702 0

GA Wang
et al. [311]

arough = 3 0.366 24.69 -459 -28.81 -0.04 0.810 2.610
afinish = 2 0.5667 25.16 -427 698 0

PGSA Wang
et al. [311]

arough = 3 0.3693 24.25 -465 -35 0.2 0.800 2.600
afinish = 2 0.5886 24.58 -452 -74 0

Tribes Onwubolu
[211]

arough = 3 0.587 36.27 -8.5 -420 -4.18 0.512 2.212
arough = 2 0.902 30.16 -797 -1,069 -2.57

ABC arough = 1.5 0.337 46.982 4.708 435.02 0.004 1.240 3.240
arough = 1.5 0.337 46.982 4.708 435.02 0.004
arough = 1.5 0.337 46.982 4.708 435.02 0.004
afinish = 0.5 0.432 64.41 271.97 1.131 1.400

PSO arough = 1.5 0.34 46.61 1.5 431.9 0.01 1.240 3.240
arough = 1.5 0.34 46.61 1.5 431.9 0.01
arough = 1.5 0.34 46.61 1.5 431.9 0.01
afinish = 0.5 0.434 63.58 271.9 0.35 1.422

SA arough = 1.5 0.336 44.633 5.779 436.1 0.204 1.263 3.263
arough = 1.5 0.336 44.633 5.779 436.1 0.204
arough = 1.5 0.336 44.633 5.779 436.1 0.204
afinish = 0.5 0.429 57.23 273.91 2.296 1.683

SC arbor strength constraint, DC arbor deflection constraint, PC power constraint
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this work is appropriate. Also, the value of feed per tooth provided by the optimum
solution using ABC, PSO and SA is more appropriate from practical point of view.
Thus, although the optimum solutions obtained by using methodologies like GP,
GA, PGSA and Tribes seem to be better than that obtained by using, ABC, PSO,
and SA algorithms, the optimum solution obtained by using the proposed algo-
rithms in this work is only valid and appropriate.

2.2.2 Example 2: Process Parameter Optimization of Multi-pass

Milling for Minimization of Cost

The optimization model for milling process formulated in the present work is
based on the analysis given by Shunmugam et al. [272]. The decision variables
considered are feed per tooth (s), cutting speed (V) and depth of cut (a).

The objective function in this model is to minimize the total cost (Ut) as given
by the Eq. 2.26.

Ut ¼ Uf þ
X

n

i¼1

Uri þ k0 tp ð2:26Þ

where Uf and Ur is the cost per pass (U) for finish and roughing operation,
respectively, as given by Eq. 2.27.

U ¼ k0tm þ ktzð Þ tm=TRð Þ þ k0tm zte=TRð Þ þ k0 Lh1 þ h2ð Þ ð2:27Þ

where tm is the machining time = Lt/zsN; Lt = L ? ap (for roughing operation);
L = length of workpiece; ap is approach distance; Lt = L ? D (for finishing
operation); D is cutter diameter; z is number of teeth; kt is cost of cutting edge;
TR is the tool replacement life; te is the tool-exchange time = 1.5 min/cut edge;

Fig. 2.9 Convergence of
ABC, PSO, and SA
algorithms for finish milling
for maximization of
production rate (from [237];
reprinted with permission
from Elsevier)
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h1 is the tool return time; h2 is the rapid tool advance/return time; ko is the
overhead cost; tp is the tool preparation time; and N is the spindle speed =

V/0.16p.
The four practical constraints are considered in this optimization model are

given below.

1. Cutting force constraint (FC):

SyFAxF �FmaxD
qFgwF

	

CFB
tFzpFkF ð2:28Þ

2. Cutting power constraint (PC):

VCpa
xpSyp BtpzPp

	

Dqp
� �

kp �Pmax ð2:29Þ

3. Surface roughness constraint (RC):

0:0321s2
	

re � 25� 10�3 for roughingð Þ ð2:30Þ

0:0321s2
	

re � 2:5� 10�3 for finishingð Þ ð2:31Þ

4. Tool life constraint:

CvKv

	

Tm
R Vmax

� �

Dqv=Btvzpvð Þ� syvaxv � CvKv

	

Tm
R Vmin

� �

ð2:32Þ

In the above equations, Fmax is maximum cutting force; g is the effect of
rotational frequency of the spindle; B is the width of the workpiece = 100 mm. CF

and KF are constants with regard to the tool and work piece material. xF, yF, tF,
wF, qF, pF, Cv, m, xv, yv, pv, qv, tv, kv, CP, xp, yp, tp, PP, qP, kP and kF are
exponents. Pmax is the maximum cutting power; and re is the nose radius.Variable
bounds are:

1� a� 4; 0:1� s� 0:6; 50�V � 300:

As the milling operation is having multiple passes, various feasible cutting
strategies are adopted to determine the optimum number of passes required and
depth of cut for each pass. The results of optimization for these strategies using
ABC algorithm are shown in Table 2.3. It is observed from Table 2.3 that among
various cutting strategies for multi-pass milling with a total depth of cut of 8 mm,
the strategy 2 with following optimum parameters is the best strategy.

• Number of passes required = 3.
• Number of rough cutting passes = 2 with depth of cut in first and second pass 4
and 3 mm, respectively.

• Number of finish passes = 1 with depth of cut in finishing pass = 1 mm.
• Feed per tooth for roughing pass 1 = 0.319 mm/tooth
• Feed per tooth for roughing pass 2 = 0.434 mm/tooth
• Feed per tooth for finishing pass = 0.275 mm/tooth
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• Cutting speed for roughing pass 1 = 58.75 m/min
• Cutting speed for roughing pass 2 = 60.41 m/min
• Cutting speed for finishing pass = 232.08 m/min
• Total production cost = 1.361 US$.

The performance of various algorithms namely SA, PSO, ABC, harmony search
(HS) used by Zarei et al. [324], modified HS (HS_M), shuffled frog leaping (SFL),
GA used by Shunmugam et al. [272] is studied in terms of accuracy of the solution
and convergence rate. Table 2.4 shows the results of optimization obtained by
using SA, PSO, ABC, HS_M, SFL, HS, and GA algorithms.

Figure 2.10 shows the convergence rate of SA, PSO, ABC, modified HS, and
SFL algorithms. It is observed that for the present example, the PSO, ABC and
SFL algorithms perform better than the other algorithms, i.e. HS [324], and GA
[272]. As shown in Table 2.4, results of optimization using ABC algorithm show
significant improvement of 13.45% in objective function over that of GA [272].

Table 2.3 Results of optimization using ABC algorithm for various strategies

Strategy
number

Cutting
strategy

s (mm/
tooth)

V (m/
min)

Ra

(lm)
P (KW) F (N) Cost

(US$)

1 arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
afinish = 2 0.274 125 2.41 7.96 3,827 0.495
Total cost 1.626

2 arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
afinish = 1 0.275 232.08 2.44 7.96 2,061 0.374
Total cost 1.575

3 arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
arough = 1 0.586 133.333 11.05 8 3,602.78 0.308
afinish = 1 0.275 232.08 2.44 7.96 2,061 0.374
Total cost 1.576

4 arough = 4 0.319 58.75 3.269 7.83 7,992.6 0.54
arough = 2 0.523 77.083 8.79 7.924 6,175.14 0.377
afinish = 2 0.274 125 2.41 7.96 3,827 0.495
Total cost 1.412

5 arough = 4 0.319 58.75 3.269 7.83 7,992.6 0.54
arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
afinish = 1 0.275 232.08 2.44 7.96 2,061 0.374
Total cost 1.361

6 arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
arough = 3 0.434 60.41 6.164 7.95 7,800 0.447
afinish = 2 0.274 125 2.41 7.96 3,827 0.495
Total cost 1.389

Ra surface roughness, P cutting power, F cutting force
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Fig. 2.10 Convergence of
various algorithms for multi-
pass milling optimization for
cost

Table 2.4 Results of optimization by using various optimization algorithms

Method Cutting
strategy

s (mm/
tooth)

V (m/
min)

Ra

(lm)
P (KW) F (N) Cost

(US$)

SA arough = 4 0.305 60.833 2.98 7.83 7,731.52 0.546
arough = 3 0.45 59.583 6.50 7.89 7,958.20 0.450
afinish = 1 0.2725 234.166 2.38 7.96 2,042.68 0.375
Total cost 1.371

PSO arough = 4 0.318 60.034 3.24 7.97 7,974.05 0.536
arough = 3 0.449 60.467 6.47 7.99 7,945.11 0.447
afinish = 1 0.2788 230.81 2.49 7.98 2,077.52 0.373
Total cost 1.356

ABC arough = 4 0.319 58.75 3.26 7.81 7,792.60 0.540
arough = 3 0.444 60.41 6.33 7.98 7,879.55 0.447
afinish = 1 0.275 232.91 2.43 7.97 2,056.53 0.374
Total cost 1.361

HS_M arough = 4 0.261 69.58 2.18 7.98 6,889.64 0.550
arough = 3 0.361 68.333 4.18 7.69 6,760.72 0.462
afinish = 1 0.2667 238.75 2.28 7.99 2,010.41 0.374
Total cost 1.386

SFL arough = 4 0.304 61.666 2.97 7.91 7,712.75 0.540
arough = 3 0.429 61.799 5.91 7.90 7,681.68 0.450
afinish = 1 0.2783 229.58 2.49 7.93 2,024.76 0.374
Total cost 1.364

HS Zarei et al. [324] arough = 3 0.453 60.75 6.59 8 8,000 0.4446
arough = 3 0.453 60.75 6.59 8 8,000 0.4446
afinish = 2 0.279 119.2 2.50 8 3,879 0.5047
Total cost 1.3939

GA Shunmugam et al.
[272, 273]

arough = 4 0.100 141.7 0.321 7.99 3,387.5 0.6589
arough = 2 0.307 115.3 3.021 7.99 4,163.3 0.4089
afinish = 2 0.279 119.2 2.5 7.69 3,878.8 0.5047
Total cost 1.5725
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Although the results obtained by using the modified harmony search algorithm are
almost same as that of ABC algorithm, the ABC algorithm provides better accu-
racy of solution than HS algorithm.

2.3 Grinding Process

Grinding is one of the important and widely used manufacturing processes in
engineering industries. Grinding practice is a large and diverse area of manu-
facturing and tool making. It can produce very fine finishes and very accurate
dimensions; yet in mass production contexts it can also rough out large vol-
umes of metal quite rapidly. It is usually better suited to the machining of very
hard materials. Compared to regular machining, it is usually better suited to
taking very shallow cuts. The kind of surface to be generated, the kinematics of
the machining operation as well as the shape or the profile of the grinding
wheel are characteristic properties of the grinding process. As a result, there are
different grinding processes: surface grinding, cylindrical grinding and shape
grinding. Another factor for subdividing different grinding processes is the
position of the contact area on the workpiece itself. This criterion is used to
distinguish between external and internal grinding. Furthermore, it is possible
to differentiate according to the active grinding wheel surface, the feed
direction and the control method used. The chucking of the workpiece also has
to be taken into account.

The success of any grinding process in terms of cost and quality depends on
proper selection of various operating conditions in grinding process such as wheel
speed, workpiece speed, depth of dressing and lead of dressing, area of contact,
grinding fluid, etc. A significant improvement in the process efficiency may be
obtained by appropriate modeling and optimization of these process parameters
that identifies and determines the regions of critical process control factors leading
to desired outputs with acceptable variations ensuring lowest cost of manufac-
turing. Amitay [14] reported the technique of optimizing both grinding and
dressing conditions for the maximum workpiece removal rate subjected to con-
straints on workpiece burn and surface finish in an adaptive control system.
Venk et al. [301] presented an approach to develop and use an expert system to
accomplish problem formulation and aid optimization of the centerless grinding
process. A detailed case study was presented to illustrate the actual working of the
approach. In one case, a productivity improvement of 173% was observed over 40
optimization cycles and in another case an improvement of 540% in the parts
variable cost over 42 optimization cycles was realized.

Inasaki [131] proposed in-process monitoring methods using power and acous-
tics emission sensors to detect malfunctions in the internal grinding process. In
addition, a new internal grinding cycle featuring rapid indeed was proposed to
minimize the grinding cycle time. Tönshoff et al. [289] described the state-of-the-art
in the modeling and simulation of grinding processes. The kinematics of the
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grinding process were characterized by a series of statistically irregular and separate
engagements. Topography models were used to describe the structure of the
grinding wheel, taking the quantities of motion and the geometric parameters into
account. Chip formation was represented in chip thickness models. During the
process of chip formation, energy was transformed. Additionally, forces were
generated. The kinematic and energetic processes were taken into consideration for
temperature and surface integrity models as well as for models for describing the
surface roughness of the workpiece. Different approaches to modeling were com-
pared. Furthermore, the benefits as well as the limits of model application and
simulation were discussed. Trmal et al. [291] described the development of an
expert system based on a grinding database and a knowledge base, which included
the results and conclusions of academic research as well as industrial expertise. For
a given grinding situation, the system uses a model which takes into account a
number of factors dependent on the input conditions. The value of these factors was
determined by the inference engine. Thus, it relates the grinding conditions (e.g.,
wheel type, grinding machine, workpiece material, operating parameters) to the
output parameters, such as grinding force and specific energy; it also provides data
on more practical industrial parameters, such as surface roughness and probability
of surface burns. Sathyanarayanan et al. [260] utilized neural network approach to
model the creep-feed grinding (CFG) of superalloys, Ti-6Al-4V and Inconel 718. A
back-propagation learning algorithm was adopted to capture the system behavior.
The neural network learns to associate the inputs (feed rate, depth of cut and wheel
bond type) with the outputs (surface finish, force and power) and predicts the
systems outputs within the working conditions. Mathematical formulation of a
multi-objective optimization problem was then carried out by utilizing the network
models. The optimization study results were presented in the form of decision tables
and value path diagrams to assist the decision-making process.

Wen et al. [315] applied successive quadratic programming (QP) approach
using a multi-objective function model with a weighted approach for optimization
of surface grinding process parameters. However, by this approach the conver-
gence to an optimal solution depends on the chosen initial solution. Also the
algorithm tends to get stuck to the local optimal solution. Zhu et al. [330] intro-
duced a dynamic modeling approach which was proposed as a computerized
methodology to generalize grinding research findings and production expertise as
far as possible and to make them available for the production grinding environ-
ment. A number of objective functions were developed to dynamically describe
relationships between input and output parameters for the cylindrical plunge
grinding process, such as grinding forces, specific energy, grinding temperature,
surface roughness, grinding ratio, etc. The authors described a comprehensive
computer-aided system developed for optimum selection of grinding parameters
with consideration of multiple criteria and constraints. The system consisted of
multiple dynamic models, modifier databases, knowledge bases and a user inter-
face. The process of optimum specification of grinding parameters was divided
strategically into two layers. Layer I was for determination of grinding conditions
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and Layer II for optimum selection of equivalent chip thickness and operating
parameters.

Rowe et al. [246] provided an extensive review on various approaches based on
artificial intelligence to the grinding process. Liao and Chen [176] showed how
back-propagation (BP) neural networks can be used to model and optimize
grinding processes, using CFG of alumina with diamond wheels as an example.
First, a generalized back-propagation neural network with two-hidden layers was
used to establish the process model. Then the back-propagation algorithm with
Boltzmann factor was used to find the global optimal settings for the grinding
process. From the simulation results obtained, it was found that the implemented
neural network approach yielded a more accurate process model than the regres-
sion method. It was also shown that, unlike the conventional back-propagation
network, proper use of the Boltzmann factor with BP can effectively avoid local
minima and generate the global optimal solution.

Rowe et al. [247] reviewed research into the use of intelligent control and
optimization techniques in grinding and proposed the incorporation of intelligent
techniques into CNCs. Two main trends were evidenced in the development of AI
technologies in grinding: desktop systems to assist tool and parameter selection
and self-optimizing systems integrated within the machine controller. It was
predicted that future developments would favor increasing incorporation of
intelligence into CNC. Xiao and Malkin [316] developed an on-line optimization
system for cylindrical plunge grinding to minimize production time while ensuring
part quality requirements. The system was capable of optimizing the grinding and
dressing parameters in response to in-process and post-process measurements
which characterize the process and update the process model. The system
encompasses a complete set of realistic constraints, considers time dependent
behavior, and also optimizes the dressing interval. The system was implemented
on an instrumented internal grinder in the laboratory and in actual production.

Vinolas et al. [303] presented, step-by-step, the capabilities that a general-
purpose simulation environment, such as Simulink/Matlab, provides for an intui-
tive and efficient modeling of grinding processes. Starting from a revision of the
different approaches which can be found in the technical literature, the author
begins with the well-known block-diagram first presented by Snoeys. Next, the
author had shown how this block-diagram was incorporated into the Simulink
environment and how the different parameters for the simulation were introduced
in the model (machine, grinding wheel and process parameters). Hundt et al. [128]
developed a kinematic model of single edge cutting action in grinding. The
model described the force pulse created by chip formation at the cutting edge.
This pulse was assumed to excite acoustic emission (AE) signals. The typical
values of its features (risetime, width, amplitude) determine the requirements for
the measurement equipment. AE was measured on the workpiece during grinding
and was analyzed in the frequency range between 70 kHz and 3.5 MHz. A suitable
signal analysis strategy was developed to extract meaningful information from
the AE signal using frequency domain feature extraction. The comparison
of model and measurement output allows the identification of model parameters.
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The parameter values give a description of the grinding wheel state and the
process state.

Rowe et al. [248] presented the advantages of a multi-agent approach for the
selection of grinding conditions. The agents consist of case-based reasoning,
neural network reasoning and rule-based reasoning. Case-based reasoning was
employed as the main problem-solving agent to select combinations of the
grinding wheel and values of control parameters. Rule-based reasoning was
employed where relevant data were not available in the case base. A neural net-
work was employed to select a grinding wheel if required. The operator makes the
final decision about the wheel or the values of control parameters. The multi-agent
approach combines the strengths of the different agents employed, to generate
hybrid solutions and overcomes the limitations of any single approach. A black-
board method was used as the means of integrating the multi-agent system. The
system demonstrates the potential of using artificial intelligence for selection of
grinding conditions, as well as the capability to develop a powerful database by
learning from experience.

Brinksmeier et al. [41] proposed NN and fuzzy set-based model to optimize the
grinding processes. They evaluated the grinding process in terms of geometric
quantities (such as dimension, shape, waviness, and surface integrity and product
quality, i.e., surface roughness. Hekman and Liang [124] presented a method for
optimizing the horizontal feed rate when using depth of cut manipulation to
improve part parallelism in grinding. In vertical spindle surface grinding,
achievable single pass tolerances are often limited by the grinding wheel and
machine compliance. Previous work consisted of precisely adjusting the depth of
cut during grinding to enhance the dimensional tolerance without the need of
additional spark-out passes. The authors had optimized the horizontal feed rate for
cost functions based on a weighting of processing time and a term related to the
dimensional error in the part. In the optimization, a force model predicts the
grinding force. Experimental results for six optimization weightings were given
which demonstrated the effectiveness of the feed rate optimization as compared to
a constant feed rate with the same processing time in the context of the parallelism
of the ground part.

Lee and Shin [168] proposed fuzzy basis function neural networks for modeling
of grinding processes to find optimal process conditions. The model was applied
for two grinding optimization problems, viz., CFG and surface grinding process,
and it was found that the NN-based algorithm outperforms traditional optimization
techniques in surface grinding process. Saravanan and Sachithanandam [254]
proposed GA-based optimization procedure to optimize cutting conditions, viz.,
wheel speed, work speed, lead of dressing, and depth of dressing in multi-objective
surface grinding problem. They found that GA performs better than traditional
quadratic programming.

Gupta et al. [115] developed a technique that generates a number of solution
sets for each of the input parameters. The user can then select a set with values
comparable to the desired output and satisfying the process constraints and the
objective. Input variables which can be considered for obtaining optimal
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conditions include wheel and machine parameters with in-feed being the most
promising one. For critical components, conditions for ‘‘burn-free’’ workpiece can
also be determined. Li et al. [174] presented an optimum strategy permitting burn
to appear in the rough grinding stage. On the basis of the basic grinding models,
the objective function and constraint functions for the multi-parameter optimum
grinding process were developed. The non-linear optimum grinding control
parameters were obtained through computer simulation, and the actual grinding
process was controlled by these parameters. The results of the experiments con-
firmed the exactitude of the optimum models and the feasibility of the optimum
strategy. This work had created the pre-condition for grinding automation, virtual
grinding and intelligent grinding systems.

Saravanan et al. [256] developed a genetic algorithm (GA)-based optimization
procedure to optimize grinding conditions, viz. wheel speed, workpiece speed,
depth of dressing and lead of dressing, using multi-objective function model with a
weighted approach for surface grinding process. The procedure evaluates the
production cost and production rate for the optimum grinding condition, subjected
to constraints such as thermal damage, wheel wear parameters, machine tool
stiffness and surface finish. The GA procedure was illustrated with an example and
optimum results such as production cost, surface finish, MRR were compared with
the results of application of quadratic programming technique. However, the
genetic algorithm has its own limitations such as risk of replacement of a good
parent string with the deteriorated child, less convergence speed and difficulty in
selecting the controlling parameters such as population size, crossover rate and
mutation rate. Also the results of genetic algorithm presented by the authors are
erroneous.

Dhavalikar et al. [72] applied combined Taguchi and dual response method-
ology to determine the robust condition for minimization of out of roundness error
of workpiece for centerless grinding operation. Optimization was then carried out
by using Monte Carlo simulation procedure. Guo et al. [112] carried out opti-
mization of continuous-dress creep-feed (CDCF) grinding processes to reduce
cycle time and wheel consumption by adaptively adjusting work speed and dress
in-feed based on grinding models and in-process power monitoring. Heat flux was
kept below the fluid burnout limits to avoid thermal damage to the ground surface.
Grinding forces were controlled below the allowable values to avoid coating
cracks caused by excessive strain on the blade. By implementing this approach,
40% cycle time reduction was demonstrated while maintaining the heat flux and
grinding forces below their allowable critical values.

Shaji and Radhakrishnan [264] investigated the possibility of using graphite as
a lubricating medium to reduce the heat generated at the grinding zone in surface
grinding. Their work deals with the analysis of the process parameters such as
speed, feed, in-feed and mode of dressing as influential factors, on the force
components and surface finish developed based on Taguchi’s experimental design
methods. Taguchi’s tools such as orthogonal array, S/N ratio, factor effect anal-
ysis, ANOVA, etc., were used for this purpose and an optimal condition was found
out. The results were compared with the results obtained in the conventional
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coolant grinding. Gopal and Rao [106] conducted experiments to study the effect
of wheel parameters; grain size and grain density and grinding parameters; depth
of cut and feed on the surface roughness and surface damage. The significance of
the grinding parameters on the selected responses was evaluated using ANOVA.
Mathematical models were developed using the experimental data considering
only the significant parameters. A genetic algorithm (GA) code was developed to
optimize the grinding conditions for maximum material removal, using a multi-
objective function model, by imposing surface roughness and surface damage
constraints. The choice of including manufacturer’s constraints on the basis of
functional requirements of the component for maximizing the production rate was
also embedded in the GA code.

Hashimoto and Lahoti [119] described the effect of set-up conditions on three
stability criteria of the centerless grinding system. It also presented guidelines for
determining proper set-up conditions to avoid spinners, chatter vibration and
roundness problems. Finally, an algorithm for providing the optimum set-up
condition based on process aims was proposed and the simulation results were
discussed. Guo et al. [113] investigated the process monitoring and control of
CDCF form grinding using model-based simulation and in-process power mea-
surement and its application to grinding of turbine blade root serrations. For blade
root serration grinding, it is essential that the grinding force be maintained below a
critical limit to avoid cracking of the thermal environmental barrier coating
(TEBC) at the blade airfoils, and that the heat flux at the grinding zone be kept
below the fluid burnout limit to avoid thermal damage to the part. A blade root
form grinding process was first simulated and optimized by utilizing the variable-
feed approach developed previously, whereby both the dress in-feed and part feed
rate were adaptively varied to minimize cycle time while maintaining the force and
heat flux below specified limits. Both the grinding forces and heat flux were
obtained from the measured power. Maintaining the monitored power signature
from production processes within the acceptable power limits established in this
way ensures a normal grinding process. Deviations from the normal process sig-
nature profile indicate possible process issues.

Nandi and Pratihar [203] developed a method for automatic design of fuzzy
logic controller (FLC) using a genetic algorithm (GA). The performance of an
FLC depends on its knowledge base (KB), which consists of membership function
distributions (also known as data base) and rule base. To design a proper KB of the
FLC, the designer should have a thorough knowledge of the process to be con-
trolled. Sometimes, it becomes difficult to gather knowledge of the process
beforehand Thus, designing the proper KB of an FLC is not an easy task. The
authors had proposed a new approach for designing the KB of an FLC (using a
GA) and its effectiveness was compared to a previous approach based on GA-
fuzzy combination for making predictions of power requirement and surface finish
in grinding.

Ali and Zhang [12] presented a practical and consistent fuzzy rule-based model
for estimating the grinding conditions at which burn limits occur. The model
consists of 37 absolute and eight relative rules. It has a wide range of applications
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over many types of steels, Alundum wheels, and grinding conditions. It is also
simple to implement, from a rule-chart mode to an intelligent on-line adaptive
control mode. Kim [149] developed a neurofuzzy model to optimize cycle time in
plunge grinding process. The grinding power, peak value of power spectrum, and
time constant were used as inputs for neural network to estimate workpiece surface
roughness. From the results obtained, it was found that the model was more
reliable than regression model. Samhouri and Surgenor [251] proposed an ANFIS
to predict surface roughness in grinding process. The power spectral density
parameters of piezoelectric accelerometer were used as inputs to ANFIS and the
authors found prediction accuracy as 91%.

Nandi and Banerjee [201] used fuzzy basis function neural network to predict
surface roughness and corresponding power requirement in cylindrical plunge
grinding process. Wheel speed, work speed, and feed rate were considered as input
variables and, power requirement and surface roughness as output variables of the
network architecture. The fuzzy rule base was designed automatically using a
genetic algorithm and from the results, it was concluded that the model predicts
better than mathematical models. Jayakumar et al. [135] reviewed and discussed
the application of acoustic emission technique (AET) for on-line monitoring of
various forming processes such as punch stretching, drawing, blanking, forging,
machining and grinding. Kwak [163] presented an application of Taguchi and
RSM for the geometric error. The effect of grinding parameters on the geometric
error was evaluated and optimum grinding conditions for minimizing the geo-
metric error were determined. A second-order response model for the geometric
error was developed and the utilization of the response surface model was eval-
uated with constraints of the surface roughness and the MRR. Confirmation
experiments were conducted at an optimal condition and selected two conditions
for observing accuracy of the developed response surface model. Lizarralde et al.
[181] described a software tool which was developed for setting up and optimi-
zation of centerless plunge grinding processes to avoid geometric instabilities. The
software generates stability maps showing the stable and non-stable geometric
configurations and the number of lobes generated in non-stable conditions.
Complementary time domain models quantitatively predict the evolution of the
profile error for each geometric configuration.

Govindhasamy et al. [108] described the development of neural model-based
control strategies for the optimization of an industrial aluminum substrate disk
grinding process. Using historical grindstone performance data, a NARX-based
neural network model was developed. This model was then used to implement a
direct inverse controller and an internal model controller based on the process
settings and previous removal rates. Preliminary plant investigations showed that
thickness defects could be reduced by 50% or more, compared to other schemes
employed. Asokan et al. [20] applied PSO technique to optimize the grinding
process parameters such as wheel speed, workpiece speed, depth of dressing, and
lead of dressing, simultaneously subjected to a comprehensive set of process
constraints, with an objective of minimizing the production cost and maximizing
the production rate per workpiece, besides obtaining the finest possible surface
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finish. Optimal values of the machining conditions obtained by PSO were com-
pared with the results of genetic algorithm and quadratic programming techniques.

Bhattacharyya and Mukherjee [36] attempted a dynamic analysis of the process
of modification of surface topography of a ball bearing during the grinding process
using bond graph techniques. Such modification results from material removal by
abrasion. The position of any point of the surface profile, with respect to a nominal
subcutaneous surface, was expressed as a bivariate, orthogonal series of spherical
harmonics. The angular coordinates of the aforesaid point in a spherical coordinate
system were taken as the two variables. The net MRR was expressed as a sum of
the rate of change of the individual harmonic coefficients. While the net rate of
deformation was obtained from an elastoplastic analysis of the contact forces, the
wear rate was obtained as an empirical function of the contact forces, velocities
and material properties of the surfaces in contact. The effect of various process
parameters, such as grinding speed, preload, and entry point orientation were
studied.

Brinksmeier et al. [42] presented an overview of the current state of the art in
modeling and simulation of grinding processes: Physical process models (ana-
lytical and numerical models) and empirical process models (regression analysis,
artificial neural net models) as well as heuristic process models (rule-based
models) were taken into account, and outlined with respect to their achievements.
The models were characterized by the process parameters such as grinding force,
grinding temperature, etc., as well as work results including surface topography
and surface integrity. Furthermore, the capabilities and the limitations of the
presented model types and simulation approaches were exemplified. The authors
had made the following important observations (from [42]; reprinted with per-
mission from Elsevier).

1. Basically fundamental analytical approaches (FA) provide a good way to
illustrate insights of the grinding processes. It has to be considered that the
models developed so far are limited to the ranges of the different parameters.
Furthermore, the quality of a fundamental analytical model depends on the
accuracy of the experimentally determined input parameters. For example,
measuring the process temperatures and heat transfer coefficients is limited by
the current measuring techniques and these data are sensitive to errors and
change with the variation of the process parameters.

2. Different approaches have been developed concerning kinematic models.
Due to the high level of detail, the modeling results are of high convergence
to real grinding processes. The modeling of a realistic grinding wheel
topography needs a comparatively high effort. Today, evaluating the
grinding process using a complex kinematic model for a few milliseconds of
grinding process time requires several hours of calculation time. The strong
dependence of the abrasive process on the cutting edge geometry of the
single grits can only be considered in approximation. Therefore, absolute
values of grinding forces or surface roughnesses can not be calculated, but
their trends can be identified.
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3. The aim of finite element analysis (FEA) is the physical simulation of a total
process. Due to the complexity of the grinding process the computational effort
is quite high. The grinding experiments and material tests needed for the ver-
ification of simulations are limited by current measuring techniques as current
material tests do not allow for deriving the material laws for all ranges of
parameters, in particular for the determination of flow curves at high machining
speeds. Furthermore, the computational power is not sufficient for the modeling
of a complete grinding wheel with microscopic finite elements at the surface.
Experiments are necessary for the verification of simulated surface topogra-
phies and grinding forces today and for the verification of the subsurface
properties in future.

4. The aim of molecular dynamics (MD) modeling is the detailed description of
the material microstructure regarding the dynamics and interactions of atomic
arrangements. Using MD, it is possible to accomplish a three dimensional
simulation of the dynamics and local interactions of a single or a few grits with
a small workpiece model. For this simulation an enormous CPU-power is
needed. Even for rather small models in absolute size, the calculation time
easily exceeds 100 CPU hours. This results from the detailed 3D modeling of
the material structure with its anisotropic crystal properties and the time con-
suming determination of the atom–atom interactions. Another shortcoming in
MD simulation is related to the number and quality of available material
specific potential functions. All possible interactions between atoms and mol-
ecules need to be described by a suitable function and individual material
parameters. Still often suitable potential functions and parameters are only
known for pure materials or a few binary systems.

5. Basically regression analysis models (RA) are able to sufficiently map rela-
tionships between input and output variables and are therefore state of the art.
The low computational power needed for the calculation makes the use of this
type of model quite comfortable. The achievable quality of simulation is
dependent on the effort and number of experiments. In consequence, the scope
of applications for the developed model is very limited in most cases. Operating
the developed model for a different application usually results in a significantly
worse quality of simulation results. First attempts to broaden the scope of
applications by combining basic models with additional model types are
promising. However, the experimental effort and the extensive coefficient
calculations still remain important factors for the choice of this model type.

6. The performance of ANNs relies heavily on the quality and amount of data sets
(input and output data) for training and testing. The advantage of ANN is its
ability to handle so-called soft input parameters, parameters without a
numerical value, such as coolant type, nozzle type, etc., and to inter- and
extrapolate in a certain range. The model can easily be adapted to different
manufacturing problems and is able to handle slightly incomplete data bases.
The development of the design of an adequate network structure is rather
complex. The lack of transparency of the knowledge stored inside the ANN and
the effort for developing an adequate network design leads to a poor acceptance
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in industry. Promising research projects concentrate on hybrid models. The
combination of several models can significantly improve the modeling quality.

7. Rule-based models (RB) can help modeling the human reasoning process,
especially when it comes to ill-defined or difficult problems. Fuzzy set theory
has the capability to take the knowledge into account which is based on human
experience, even if the available information is incomplete or fuzzy. Further-
more rule-based models are able to process several input parameters. For a
realistic modeling, a sophisticated knowledge base is important to achieve good
predictions for the quality of the output parameters. Regarding the simulation
results the quality depends on the number of linguistic variables. The simula-
tion quality is high for specific applications, but difficult to transfer to other
grinding processes. Furthermore, rule-based models are well suited for com-
binations with other model approaches for improving the effectiveness. The
effort for the start up of modeling is comparatively low for empirical models in
comparison to other approaches like FEM, RB and MD, where a deeper process
and model understanding and programming skills are necessary.

Alagumurthi et al. [9] compared and contrasted factorial design with Taguchi’s
DOE used in the determination of optimum grinding conditions. Optimum
grinding conditions and grinding cycle time were estimated for each DOE and
results were compared and analyzed. ANOVA analysis was carried out for the
interpretation and for obtaining insight into the process as a whole. The factorial
method was reported as more efficient, when interactions between process vari-
ables were present. It also helps in developing either a mathematical or regression
model of the process for future use.

Weinert et al. [314] developed a simulation tool to improve the flexible pro-
duction process and in order to ensure a suitable process strategy. The simulation
comprises a geometric-kinematic process simulation and a finite elements simu-
lation. The authors had presented basic parts of the investigation, modeling and
simulation of the NC-shape grinding process with toroid grinding wheels. Krishna
[160] applied differential evolution (DE) algorithm for optimization of process
parameters of grinding operation. However, the solution obtained using differen-
tial algorithm are erroneous for rough grinding operation whereas, for finish
grinding operation the optimum values suggested by the author lies outside their
respective bounds and hence the solution is not valid.

Mukherjee and Ray [197] attempted to provide a systematic methodology to
develop a multivariate linear regression model, hypothesis testing for the influ-
ence of nonlinear terms to linear model, and accordingly selection of a suitable
ANN-based inferential model with improved prediction accuracy and control of
grinding behavior. The methodology suggests the use of various statistical
techniques, such as Q–Q (quantile–quantile) plotting, data transformation, data
standardization, outlier detection test, model adequacy test, model cross-valida-
tion and generalization. The suitability of the recommended methodology was
illustrated with the help of an engine cylinder liner grinding (honing) case
example, in a leading automotive manufacturing unit in India. In another work,
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Mukherjee and Ray [198] applied an empirical modeling technique based on
direct observations, for prediction of a two-stage grinding process behavior
having multiple response characteristics of continuous variables, and to deter-
mine overall optimal process design to meet the specific customer requirements.
In order to achieve the above goal, the authors had proposed an integrated
approach using multivariate regression, desirability function, and metaheuristic
search technique. Three different metaheuristic search techniques, viz. real-coded
genetic algorithm, simulated annealing, and a modified Tabu search based on
novel Mahalanobis multivariate distance approach to identify Tabu moves, were
employed to determine near optimal path conditions for an industrial case study
of two-stage CNC grinding (honing) optimization problem, having various
process and variable constraints. Computational study results based on different
metaheuristics, and applied on the same two-stage optimization problem, showed
that the modified Tabu search performs better and also offer opportunities to be
extended for other multi-stage metal-cutting process optimization problems.

Park and Liang [226] developed a predictive model for the micro-grinding
process by combined consideration of mechanical and thermal effects within a
single grit interaction model at the micro-scale level of material removal while the
size effect of micro-machining was incorporated. To assess the thermal effects, a
heat transfer model based on the moving heat source analysis was integrated into
the developed model. This model quantitatively predicts micro-grinding forces
based on micro-grinding wheel topography and material properties including
crystallographic effects. Experimental testing in a micro-grinding configuration
was pursued to validate the predictive model by comparing measurements to
analytical calculations in the context of orthogonal micro-grinding forces. The
analytical model is seen to capture the main trend of the experimental results,
while smaller deviations were found over larger depths of cut range. Liu et al.
[180] built a model of the grinding force for aerospace alloys using an empirical
approach. A robust DoE that included orthogonal arrays and the S/N ratio were
tightly integrated to acquire reliable force data. In order to obtain clear and correct
force signals, an optimized matching method to select parameters and filters was
put forward based on a correlation function. The results verified that a wavelet
filter gives much better accuracy. A set of empirical models of the grinding force
for superalloy CMSX4 were build up using multivariate analysis and these models
were characterized by the process parameters such as depth of cut, feed rate, wheel
speed as well as wheel diameter.

Bigerelle et al. [37] introduced an engineering attempt to rigorously model a
synchronizing functional surface (cone surface of idler gear) according to its finish
specifications. The virtual input surface was generated by an original fractal
function, which reproduces the surface signature due to the wheel grinding pro-
cess. To model the subsequent super-finishing operation by belt finishing process,
which uses a soft-coated belt as a tool, an algorithm simulating the abrasive
polishing conditions was especially developed and applied to rework the initial
fractal surface. The basic idea of this model was that the higher the height of a
peak of the profile, the lower its probability of resistance during an abrasion cycle.

94 2 Modeling and Optimization of Machining Processes



The belt finishing process was modeled by five parameters: two parameters that
characterize the initial surface (fractal dimension and range amplitude) and three
parameters describing the abrasion polishing process (probability of resistance,
wear volume and the number of abrasion cycles). A functional model with an
optimization scheme was created. This simulation provides the morphology of the
initial surface and how to cope with the super-finishing process to obtain the
functionality of the surface. Finally, it was shown that automotive designers
impose morphological specifications obtained by the belt grinding process to
prevent scuffing of the motor parts.

Ahearne and Byrne [8] developed an upper-bound simulation of the meso-scale
engagement kinematics with analysis algorithms that provide estimates of local
kinematical parameters. These were correlated with local measurements for typical
brittle-mode micro-grinding parameters including measurements of the local
normal force. The results generally correlated for surface roughness but not for
local normal force where equilibration was attributed to system local and bending
stiffness components.

Choi et al. [61] presented generalized grinding process models developed for
cylindrical grinding processes based on the systematic analysis and experiments.
The generalized model forms were established to maintain the same model
structures with a minimal number of parameters so that the model coefficients
could be determined through a small number of experiments when applied to
different grinding workpiece materials and wheels. The relationships for power,
surface roughness, G-ratio and surface burning were established for various steel
alloys and alumina grinding wheels. It was shown that the established models
provide good predictive capabilities while maintaining simple structures. Stępień
[282] presented an advanced probabilistic model of the grinding process consid-
ering the random arrangement of the grain vertices at the wheel active surface. The
general model was developed based on well-founded assumptions. The process of
shaping the ground surface roughness, the probability of contact between the
grains and the work-material as well as the undeformed chip thickness were
described along the grinding zone. Eight special models obtained by substituting
general relationships with special functions were also presented. The calculations
performed for the special models lead to interesting conclusions relating to the real
length of the grinding zone, which is considerably longer than the nominal
(geometric) contact length, taken by default in most known approaches.

Fernandes et al. [91] presented a process to simulate an active vibration control
system in a centerless grinding machine. Based on the updated finite element (FE)
model of the machine, the structural modifications performed to incorporate active
elements were detailed, as well as the subsequent reduction procedure to obtain a
low-order state space model. This reduced structural model was integrated in the
cutting process model giving a tool adapted for the purpose of simulating different
control laws. Using the developed model, a control algorithm was checked. The
simulation results were in agreement with the experimentally obtained ones. This
model constitutes a powerful tool to evaluate the effectiveness of different
approaches, making it possible to tackle an optimization process of the control
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system by means of simulations and, thus, avoiding the costs that would involve
the practical implementation of each one.

Doman et al. [73] presented a review of two-dimensional (2D) and three-
dimensional (3D) finite element grinding models and categorized them by the
scale of the modeling approach—either macro- or micro-scale. Macro-scale
models consider the overall wheel–workpiece interaction while micro-scale
models focus on the individual grain–workpiece interactions. Each model was
discussed and the relevant boundary conditions, material constitutive treatments,
and load inputs were compared. Future directions for finite element grinding
modeling were then recommended and, based on the results of this review, syn-
thesized current state-of-the-art macro- and micro-scale modeling approaches were
presented.

Sedighi and Afshari [263] aimed to optimize CFG process by an approach
using integrated Genetic Algorithm-Neural Network (GA-NN) system. The aim
was to obtain the maximal MRR and the minimum of the surface roughness.
For optimization, MRR was calculated with a mathematic formula and a Back-
Propagation (BP) artificial neural-network were used to prediction of surface
roughness. The parameters used in the optimization process were reduced to
three grinding conditions which consisted of wheel speed, workpiece speed and
depth of cut. All of other parameters such as workpiece length, workpiece
material, wheel diameter, wheel material and width of grinding were taken as
constant. The BP neural network was trained using the scaled conjugate gra-
dient algorithm (SCGA). The results of the neural network were compared with
experimental values. It was observed that the BP model could predict the
surface roughness satisfactorily. For optimization of CFG process, an M-file
program was written in Matlab software to integrate GA and NN. After gen-
eration of each population by GA, firstly, the BP network predicted surface
roughness and the MRR was calculated with mathematic formula. By using this
integrated GA-NN system, optimal parameters of CFG process were obtained.
The obtained results showed that the integrated GA-NN system was successful
in determining the optimal process parameters.

Mani and Patvardhan [187] formulated the ceramic grinding optimization
problem as a non-linear constrained optimization problem. The authors had pro-
posed a real coded Adaptive Quantum inspired Evolutionary Algorithm to solve
the optimization problem. The algorithm is free from user selectable parameters in
evolutionary operators as the same is determined adaptively. The algorithm does
not require mutation for maintaining diversity. The results also showed that the
proposed algorithm is fast and robust. Xu et al. [317] proposed a compact cen-
terless grinding unit composed mainly of an ultrasonic elliptic-vibration shoe and
installed onto the worktable of a multipurpose surface grinder to perform tan-
gential-feed centerless grinding operations. However, for the complete establish-
ment of the new method, it is crucial to clarify the workpiece rounding process and
the effects of process parameters such as the worktable feed rate, the stock removal
and the workpiece rotational speed on the machining accuracy, i.e., workpiece
roundness, so that the optimum grinding conditions can be determined. The
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authors had investigated the effects of the process parameters on workpiece
roundness by simulation and experiments. For the simulation analysis, a grinding
model taking into account the elastic deformation of the machine was created.
Then, a practical way to determine the machining-elasticity parameter was
developed. Further, simulation analysis was carried out to predict the variation of
workpiece roundness during grinding and to discover how the process parameters
affect the roundness. Finally, actual grinding operations were performed to con-
firm the simulation results. The obtained results indicated that: (1) a slower
worktable feed rate and higher workpiece rotational speed give better roundness;
(2) better roundness can be also obtained when the stock removal is set at a larger
value; (3) the workpiece roundness was improved from an initial value of 23.9 lm
to a final value of 0.84 lm after grinding.

Drazumeric et al. [74] discussed the simulation of a through-feed centerless
grinding process in a virtual environment (VE). The developed simulations
were based on an analytical grinding gap model describing the grinding gap
macro geometry and workpiece kinematics. First of all, the model was
embedded in a desktop application (Cegris), which facilitated regulating wheel
truing and the determination of set-up variables, both of which yielded an
optimal grinding gap macro geometry in a reduced set-up time. Finally, the
Cegris was ported to a CAVE (CAVE Automatic Virtual Environment) for an
interactive visualization of the process, an application used to train machine
tool operators. Siddiquee et al. [275] investigated optimum design of an in-feed
centerless cylindrical grinding process performed on EN52 austenitic valve
steel (DIN: X45CrSi93). The major performance characteristics selected to
evaluate the process were surface roughness, out of cylindricity of the valve
stem and diametral tolerance, and the corresponding centerless cylindrical
grinding process parameters were dressing feed, grinding feed, dwell time and
cycle time. Grey relational analysis that uses grey relational grade as perfor-
mance index was specially adopted to determine the optimal combination of
centerless cylindrical grinding process parameters. Moreover, the principal
component analysis was applied to evaluate the weighting values corresponding
to various performance characteristics so that their relative importance could be
properly and objectively described. The results of confirmation experiments
revealed that grey relational analysis coupled with principal component anal-
ysis can effectively be used to obtain the optimal combination of centerless
cylindrical grinding process parameters.

Rao and Pawar [238] presented the multi-objective optimization of process
parameters of grinding process using various non-traditional optimization tech-
niques such as ABC, harmony search, and simulated annealing algorithms. The
objectives considered were production cost, production rate, and surface finish
subjected to the constraints of thermal damage, wheel wear, and machine tool
stiffness. The process variables considered for optimization were wheel speed,
work piece speed, depth of dressing, and lead of dressing. The results of the
algorithms were compared with the previously published results obtained by using
other optimization techniques.
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2.3.1 Example 1: Modeling and Optimization of Rough

Grinding Process

As numerous process parameters are involved in grinding process, it is difficult
and complex to optimize each and every parameter. Various process parameters
such as wheel speed, workpiece speed, cutting depth, in-feed, traverse feed, area of
contact, dressing, etc. affect significantly the performance measures such as pro-
duction cost, production rate and surface finish. However, to compare the per-
formance of the proposed algorithms in this work with that of quadratic
programming, genetic algorithm, and differential evolution, the same process
parameters, i.e. wheel speed ‘Vs’ (m/min), workpiece speed ‘Vw’ (m/min), depth of
dressing ‘doc’ (mm) and lead of dressing ‘L’ (mm/rev) as considered by Wen et al.
[315], Saravanan et al. [256] and Krishna [160] are considered.

The three objectives considered in this work are:

• Minimization of production cost ‘CT’ ($/pc).
• Maximize the production rate in terms of workpiece removal parameter ‘WRP’
(mm3/min N).

• Minimization of surface roughness ‘Ra’ (lm).

However, keeping in view of the specific requirement of finish grinding and
rough grinding operation, these three objective functions are divided into two
groups as follows:

For rough grinding operation following two objective functions are considered
with the condition that the surface roughness value should not exceed 1.8 lm.

1. Minimization of production cost (CT) in $/piece
2. Maximize the production rate in terms of workpiece removal parameter ‘WRP’

(mm3/min N).Whereas, for finish grinding operation following two objective
functions are considered with the condition that the workpiece removal
parameter should not be less than 20 mm3/min N.

3. Minimization of production cost ‘CT’ ($/pc).
4. Minimization of surface roughness ‘Ra’ (lm).

These three objective functions ‘CT’, ‘WRP’, ‘Ra’ can be expressed in terms of
the process variables [315].

CT ¼ Mc=60pð Þ Lw þ Leð Þ=1; 000Vwð Þ bw þ beð Þ=fbð Þ
�

aw
	

ap
� �
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þ awbwLw
	

pDebsapG
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Þ þ Mc=60pð Þ Sd=Vrð Þ þ t1ð Þ þ Mctch=60Ntð Þ

þ McpbsDe=60pNdLVs1; 000ð Þ þ Cs awbwLw=pGð Þ þ p docð ÞbsDe=pNdð Þð Þ
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ð2:33Þ

where Mc is cost per hour of labor and administration, Lw is length of workpiece,
Le is empty length of grinding, bw is width of workpiece, be is empty width of
grinding, fb is cross feed rate, aw is total thickness of cut, ap is down feed of
grinding, Sp is number of spark out grinding, De is diameter of wheel, bs is width of
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wheel, G is grinding ratio, Sd is distance of wheel idling, p is number of work-
pieces loaded on the table, Vr is speed of wheel idling, t1 is time of loading and
unlading workpieces, tch is time of adjusting machine tool, Nt is batch size of the
workpieces, Nd is total number of workpieces to be ground between two dressing,
Ntd is total number of workpieces to be ground during the life of dresser, Cs is cost
of wheel per mm3 and Cd is cost of dressing.

WRP¼94:4 ð1þ 2 docð Þ=3Lð Þ
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e VOL0:47d5=38g R27=19

c


�

ð2:34Þ

where VOL = wheel bond percentage, dg = grind size, Rc = workpiece hardness.

Ra ¼ 0:4587 T0:3
ave for 0\Tave\0:254; else;

Ra ¼ 0:78667 T0:72
ave for 0:254\Tave\2:54

ð2:35Þ

where

Tave ¼ 12:5� 103 d16=27g a19=27p

.

D8=27
e
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1þ doc=Lð ÞL16=27 Vw=Vsð Þ16=27 ð2:36Þ

Various constraints considered in the optimization model are discussed below.

1. Thermal damage constraint: The grinding process requires very high energy per
unit volume of material removed. Whatever the energy that is concentrated
within the grinding zone, it is converted into heat. The high thermal energy
causes damage to the workpiece, and it leads to the reduced production rate.
The specific energy U is calculated by Eq. 2.37.
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where Ku = wear constant.
The critical specific energy U* at which burning starts is expressed in terms of

the operating parameters as

U� ¼ 6:2þ 1:76 D0:25
e

.

a0:75p V0:5
w

� �

ð2:38Þ

The thermal damage constraint is then specified as,

U� � U� 0 ð2:39Þ

2. Wheel wear parameter constraint: Wheel wear parameter WWP (mm3/min N)
is related directly to the grinding conditions. For single-point diamond dressing,
it is given by Eq. 2.40.
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The wheel wear constraint is obtained as,

WRP=WWPð Þ � G� 0 ð2:41Þ

3. Machine tool stiffness constraint: Chatter results in poorer surface quality and
lowers machining production rate. Chatter avoidance is therefore a significant
constraint in selection of machining parameters. The relationship between
grinding stiffness Kc (N/mm), wheel wear stiffness Ks (N/mm), and operating
parameters during grinding is given below.

Kc ¼ 1; 000Vwfb=WRP ð2:42Þ

Ks ¼ 1; 000Vsfb=WWP ð2:43Þ

To avoid chatter, the constraint given by Eq. 2.44 has to be fulfilled.

MSC� Remj j=Km � 0 ð2:44Þ

where

MSC ¼ 1=2Kcð Þ 1þ Vw=VsGð Þ þ 1=Ksð Þ ð2:45Þ

Rem = dynamic machine characteristics, Km = Static machine stiffness.
The combined objective function (to be minimized) formulated for rough

grinding operation (ZR) is given in Eq. 2.45.
Minimize

ZR ¼ W1 Ct=C
�
t

� �

�W2 WRP=WRP�ð Þ ð2:46Þ

where W1 and W2 are the weighing factors with value 0.5 each.
CT* = 10 ($/pc); WRP* = 20 mm3/min N.
Subjected to the constraints specified by Eqs. 2.39, 2.41, and 2.44.
Parameters bounds for the four process variables are as follows:

1; 000�Vs � 2; 023m=min ð2:47Þ

10�Vw � 22:70m=min ð2:48Þ

0:01� doc� 0:1370mm ð2:49Þ

0:01� L� 0:1370mm=rev ð2:50Þ
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The parameter setting for the various algorithms to solve the optimization
problem of rough grinding process is below:

Controlling parameters for ABC:

• Number of employed bees = 5
• Number of onlookers bees = 11
• Number of scout bees = 1
• Maximum number of iterations = 150

Controlling parameters for PSO:

• Number of particles in swarm = 5
• Inertia weight = 0.65
• Acceleration coefficient (c1) = 1.65
• Acceleration coefficient (c2) = 1.55
• Number of iterations = 50

Controlling parameters for SA:

• Initial temperature = 200
• Decrement factor = 0.1
• Number of iterations = 100

Controlling parameters for HS_M:

• Harmony memory size = 5
• Harmony memory consideration rate = 0.8
• Pitch adjusting rate = 0.4
• Number of improvisations = 150

Controlling Parameters for SFL:

• Total number of frogs = 20
• Number of memeflexes = 5
• Number of frogs in each memeflex = 4

Table 2.5 provides the values of constants and parameters used in optimization
of grinding process. The results of optimization are shown in Table 2.6.

From Table 2.6, it can be understood that various algorithms are competing
with each other. Particularly, ABC, PSO, SFL, HS_M, and SA are good
competitors. Optimality of the solutions obtained by using these algorithms can
be confirmed. For example, optimality of the solution obtained by using ABC
algorithm could be confirmed from the Figs. 2.11 and 2.12. Figure 2.11 shows
Variation of wheel wear parameter constraint, surface roughness constraint, and
combined objective function with wheel speed. Since the thermal damage
constraint and machine tool stiffness constraint are having almost constant
positive values for all values of wheel speed, Fig. 2.11 is plotted neglecting
thermal damage constraint and machine tool stiffness constraint to indicate
more clearly the variation of other two constraints with wheel speed. As shown
in Fig. 2.11, the combined objective function value reduces with increase in
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wheel speed. This is due to the fact that with increase in wheel speed, the
workpiece removal parameter increases without affecting cost. The constraints
are also well satisfied at higher values of wheel speed. Hence the optimum
value of wheel speed selected at its upper bound value of 2,023 m/min is
appropriate. If the wheel speed is increased the size of the chips removed by a
single abrasive grain is reduced which in turn reduces the wear of the wheel.

Figure 2.12 shows the variation of thermal damage constraint, wheel wear
parameter constraint, surface roughness constraint, and combined objective
function with workpiece speed. Figure 2.12 is plotted neglecting the machine tool

Table 2.5 Values of the constants and parameters used in parameter optimization of grinding
process (from [238]; reprinted with permission from the Council of the Institution of Mechanical
Engineers, UK)

Notation Description Unit Value

Mc Cost per hour labor and administration $/h 30
Lw Length of workpiece mm 300
Le Empty length of grinding mm 150
bw Width of workpiece mm 60
be Empty width of grinding mm 25
fb Cross-feed rate mm/pass 2
aw Total thickness of cut mm 0.1
ap Down feed of grinding mm/pass 0.0505
Sp Number of spark out grinding 2
De Diameter of wheel mm 355
bs Width of wheel mm 25
G Grinding ratio 60
Sd Distance of wheel idling mm 100
p Number of workpieces loaded on the table 1
Vr Speed of wheel idling mm/min 254
t1 Time of loading and unlading workpieces min 5
tch Time of adjusting machine tool min 30
Nt Batch size of the workpieces 12
Nd Total number of workpieces to be ground between

two dressings
20

Ntd Total number of workpieces to be ground during the
life of dresser

2,000

Cs Cost of wheel per mm3 $ 0.003
Cd Cost of dressing $ 25
VOL Wheel bond percentage 6.99
dg Grind size mm 0.3
Rc Workpiece hardness HRC 58
Ku Wear constant mm-1 3.937910-7

Rem Dynamic machine characteristics 1
Km Static machine stiffness N/mm 100,000
Ka Constant dependent on coolant and grain type 0.0869
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stiffness constraint as it has almost constant positive values for all values of
workpiece speed. As shown in Fig. 2.12, the combined objective function value
reduces (as workpiece removal parameter increases and cost reduces) with
increase in workpiece speed. Thus, higher value of workpiece speed is desirable.
However, at any value of workpiece speed higher than 10 m/min (i.e. lower bound
value), the surface roughness constraint is violated. This is due to increase of
wheel wear with the increase in workpiece speed.

Fig. 2.11 Variation of wheel
wear parameter constraint
(C2), surface roughness
constraint (C4), and
combined objective function
(ZR) with wheel speed (Vs)
(from [238]; reprinted with
permission from the Council
of the Institution of
Mechanical Engineers, UK)

Table 2.6 Results of multi-objective optimization of rough grinding using various algorithms

Method Vs Vw doc L CT WRP Ra COF

QPA 2,000 19.96 0.055 0.044 6.2 17.47 1.74 -0.127
GAB 1,998 11.30 0.101 0.065 7.1 21.68 1.79 -0.187
DEC 2,023 10.00 0.130 0.109 7.9 26.57 1.80a -0.249
DEC 2,023 10.00 0.130 0.109 7.9 26.57 1.87b -0.249
ABC 2,023 10.973 0.097 0.137 7.942 25.00 1.80 -0.226
PSO 2,023 10.00 0.110 0.137 8.33 25.63 1.798 -0.224
SFL 2,023 12.878 0.0762 0.1359 7.34 23.76 1.799 -0.226
HS 2,023 10.783 0.100 0.134 8.0167 24.983 1.798 -0.224
SA 2,023 11.48 0.089 0.137 7.755 24.45 1.789 -0.223

a Values wrongly calculated by Krishna [160]
b Corrected values; A Wen et al. [315]; B Saravanan et al. [256]; C Krishna [160]
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Figure 2.13 shows the Variation of wheel wear parameter constraint, surface
roughness constraint, and combined objective function with depth of dressing.
Since the thermal damage constraint and machine tool stiffness constraint are
having almost constant positive values for all values of wheel speed, Fig. 2.13 is
plotted neglecting thermal damage constraint and machine tool stiffness constraint.
As shown in Fig. 2.13, the combined objective function value decreases with the
increase in depth of dressing. Thus, the higher value of depth of dressing is
desirable. However, for any value of depth of dressing higher than 0.11 mm, the
surface roughness constraint is violated. This confirms the optimum value depth of
dressing selected using PSO algorithm for rough grinding operation.

Figure 2.14 shows variation of wheel wear parameter constraint, surface
roughness constraint, and combined objective function with lead of dressing. Since
the thermal damage constraint and machine tool stiffness constraint are having
almost constant positive values for all values of wheel speed, Fig. 2.14 is plotted
neglecting thermal damage constraint and machine tool stiffness constraint. As
shown in Fig. 2.14, the combined objective function value initially increases up to
a certain value and thereafter decreases with increase in lead of dressing. Thus, the
minimum value of combined objective function occurred at both, lower bound and
upper bound values of lead of dressing. However, the upper bound value of lead of
dressing should be selected, as at lower bound value of lead of dressing, surface
roughness constraint is violated.

Fig. 2.12 Variation of
thermal damage constraint
(C1), wheel wear parameter
constraint (C2), surface
roughness constraint (C4),
and combined objective
function (ZR) with workpiece
speed (Vw) (from [238];
reprinted with permission
from the Council of the
Institution of Mechanical
Engineers, UK)
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Table 2.6 shows the optimum process parameter data for the considered
example along with the previously published results using other methods.
Although the result of optimization using differential evolution algorithm seems to
be better than that using ABC, it is erroneous and the corrected result is not valid
as the surface roughness value (1.87 lm) exceeds than the specified value
(1.8 lm). The improvement in combined objective function for rough grinding
over that of quadratic programming is 78% each in case of application of ABC and
SFL algorithms, 77% in the case of HS, 75.6% in the case of SA, and 47% in the
case of GA. It is found that that the convergence rate of ABC and SFL algorithms
is better than the other algorithms.

2.3.2 Example 2: Modeling and Optimization of Finish

Grinding Process

This example presents the multi-objective optimization of finish grinding process.
The combined objective function formulated for finish grinding operation (ZF) is
given in Eq. 2.51.

Fig. 2.13 Variation of wheel
wear parameter constraint
(C2), surface roughness
constraint (C4), and
combined objective function
(ZR) with depth of dressing
(from [238]; reprinted with
permission from the Council
of the Institution of
Mechanical Engineers, UK)
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Minimize

ZF ¼ W1 � CT=CT�ð Þ þW3 � Ra=Ra�ð Þ ð2:51Þ

where W1 and W3 are the weighting factors. For demonstration, these values are
assumed as 0.3 and 0.7, respectively. The constraints are same as specified by
Eqs. 2.39, 2.41, and 2.44. Parameters bounds for the four process variables are
same as given in example 1. Table 2.7 shows the optimum process parameter data
for above example, along with the previously published results using other
methods. As shown in Table 2.7, although the result of optimization using dif-
ferential evolution algorithm [160] seems to be better than that using SA, HS_M,

Fig. 2.14 Variation of wheel
wear parameter constraint,
surface roughness constraint,
and combined objective
function (ZR) with lead of
dressing (L) (from [238];
reprinted with permission
from the Council of the
Institution of Mechanical
Engineers, UK)
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and ABC algorithms, is not valid as the values of some process parameters like
wheel speed (Vs) and depth of dressing (doc) lies outside their respective bounds
(Vs = 2,170[ 2,023 and doc = 0.008\ 0.01). The result obtained by using
genetic algorithm [256] is erroneous.

2.4 Turning Process

Turning is one of the most basic machining processes. The part is rotated while a
single point cutting tool is moved parallel to the axis of rotation. Turning can be
done on the external surface of the part as well as internally (boring). The starting
material is generally a work piece generated by other processes such as casting,
forging, extrusion, or drawing. Turning can be done manually, in a traditional form
of lathe, which frequently requires continuous supervision by the operator, or by
using a computer-controlled and automated lathe which does not. This type of
machine tool is referred to as having computer numerical control, better known as
CNC and is commonly used with many other types of machine tools besides the
lathe.

The turning process can be of different types such as straight turning, taper
turning, profiling or external grooving. Turning process can produce various
shapes of materials such as straight, conical, curved, or grooved work pieces. In
general, turning uses simple single-point cutting tools. Each group of work piece
materials has an optimum set of tools angles which have been developed through
the years.

In turning process, parameters such as cutting tool geometry and materials,
number of passes, depth of cut for each pass, the depth of cut, feed rates, cutting
speeds as well as the use of cutting fluids will impact the production costs, MRRs,
tool lives, cutting forces, and the machining qualities like the surface roughness,
the roundness of circular and dimensional deviations of the product. Basically, tool
life, cutting force, and surface roughness are strongly correlated with cutting
parameters such as cutting speed, feed rate, and depth of cut. Proper selection of

Table 2.7 Results of multi-objective optimization for finish grinding operation

Method Vs Vw doc L CT WRP Ra ZF

QPA 2,000 19.99 0.052 0.091 7.7 20.00 0.83 0.554
GAB 1,986 21.40 0.024 0.136 6.6a 20.08 0.83 0.521a

GA 1,986 21.40 0.024 0.136 7.36b 20.08 0.83 0.542b

DEC 2,170 17.49 0.008 0.137 7.48 20.33 0.65 0.497
SA 2,023 22.7 0.01 0.137 7.11 20.01 0.79 0.520
HS_M 2,023 22.7 0.01 0.137 7.11 20.01 0.79 0.520
ABC 2,023 22.7 0.01 0.137 7.11 20.01 0.79 0.520

a Values wrongly calculated by Saravanan et al. [256]
b Corrected values; A Wen et al. [315]; B Saravanan et al. [256]; C Krishna [160]
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the cutting parameters can obtain a minimum cost, maximum MRRs, longer tool
life, a lower cutting force, and better surface roughness.

In machining processes, the most commonly used optimization criterion is specific
cost, which has been used by many authors [13, 64, 175, 258, 302, 310]. Sometimes,
other criteria like machining time [63], MRR [58] or tool life [195] were used too.
However, these single-objective approaches have a limited value to fix the optimal
cutting conditions, due to the complex nature of the machining processes, where
several different and contradictory objectives must be simultaneously optimized.

Some multi-objective approaches were reported in cutting-parameters optimi-
zation [64, 169, 332], but mainly they use a priori techniques, where the decision
maker combines the different objectives into a scalar cost function. This actually
makes the multi-objective problem, single-objective prior to optimization. On the
other hand, in the a posteriori techniques, the decision maker is presented with a
set of non-dominated optimal candidate solutions and chooses from that set. These
solutions are optimal in the wide sense that no other solution in the search space
are superior to them when all optimization objectives are simultaneously consid-
ered. They are also known as Pareto-optimal solutions.

In dealing with multi-objective optimization problems, classical optimization
methods (weighted sum methods, goal programming, min–max methods, etc.) are
not efficient, because they cannot find multiple solutions in a single run, thereby
requiring them to be applied as many times as the number of desired Pareto-
optimal solutions. On the contrary, studies on evolutionary algorithms have shown
that these methods can be efficiently used to eliminate most of the above-men-
tioned difficulties of classical methods [279].

Optimization of multi-pass turning operations plays an important role in process
planning for machining, since multi-pass machining operations are more widely
used than single-pass machining operations in manufacturing industry. In order to
achieve overall optimal results in multi-pass turning operations, trade-offs are
usually established not only among the various conflicting machining performance
measures, but also among all passes in a given turning operation. The optimization
objective of multi-pass turning operations differs from that of single-pass opera-
tions. In rough turning operations, the highest possible MRR is aimed at, within
the constraints of other appropriate machining performance measures. However,
the surface roughness is the most important measure in comparison with all other
measures in finish turning operations. To implement the importance of one or more
of the machining performance measures in optimization, various weighting factors
are applied to these measures in the objective function. Major machining perfor-
mance measures, which directly depend on the cutting parameters, including
surface roughness, cutting force, chip form/chip breakability, tool-life and MRR,
are predicted using a hybrid model in terms of cutting conditions: cutting speed,
feed and depth of cut. The early work for single-pass turning, which includes the
effect of progressive tool-wear, and the subsequent work involving the estab-
lishment of a performance-based criterion for the selection of optimum cutting
conditions and cutting tool selection, have more recently been extended to cover
multi-pass turning using genetic algorithms.
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Many iterative mathematical search algorithms with their applications were
reported in the literature. Chua et al. [63] presented the numerical optimization of
minimizing total production time per component for multi-pass turning operations
subjected to practical constraints such as force, power, machining speed and feed
using sequential quadratic programming technique. Gopalakrishnan and Al-
Khayyal [107] used a geometric programming technique for parameter selection in
turning process considering a few constraints.

The problem of determining the optimum machining conditions for single-pass
and multi-pass operations was investigated by Agapiou [5]. An objective function
incorporating a combination of the minimum production cost and minimum pro-
duction time requirements was considered for optimization. The two criteria of
production cost and production time were prioritized through their weight coef-
ficients. A constant multiplier was used to normalize the objective function.
The optimum machining conditions were then determined by the Nelder–Mead
simplex method. Physical constraints regarding the cutting parameters were also
considered. The superiority of the combined objective function over the earlier
proposed single criterion objective functions, using the production cost, or pro-
duction time, or maximum rate of profit, was illustrated. In another work, Agapiou
[6] investigated the problem of determining the optimum machining conditions for
multi-pass operations. The optimum number of machining passes was obtained
through the dynamic programming technique and the optimum machining
conditions for each pass were then determined based on the objective function
discussed in Agapiou [5].

Kiliç et al. [146] described a computer-aided graphical technique that is capable
of mapping all of the relevant constraints and a number of objective function
contours in the cutting speed versus feed rate plane. The software developed first
generates all data points necessary to draw the constraints and the contours and
then loads the data to a graphics package, which draws and displays the contours
together with the constraints on the same graph. All of the graphical points were
obtained analytically. The optimum point can readily be identified by inspecting
the graph displayed on the screen. Tan and Creese [285] used a sequential method
based on linear programming to attain optimal machine parameter settings in
multi-pass turning operation. Gupta et al. [114] proposed a methodology for
selection of depth of cut for rough and finished passes in multi-pass turning
operation to minimize total manufacturing cost by integer linear programming.

Wang et al. [308] used genetic algorithms for optimal selection of cutting
conditions and cutting tools in multi-pass turning operations. Chen and Tsai [55]
developed an optimization algorithm based on the simulated annealing (SA)
algorithm and the Hooke–Jeeves pattern search (PS) for optimization of multi-pass
turning operations. The cutting process was divided into multi-pass rough
machining and finish machining. Machining parameters were determined to
optimize the cutting conditions in the sense of the minimum unit production cost
under a set of practical machining constraints.

Kee [143] discussed constrained optimization analyses and strategies for
selecting the optimum cutting conditions for multi-pass rough turning operations
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on CNC and conventional lathes. The analysis was based on the criterion typified
by the maximum production rate and incorporated various relevant technological
constraints. The approach adopted in arriving at the final solution involved a
combination of theoretical economic trends and numerical search methods. Pop-
ular multi-pass solution strategies such as using all equal passes or all equal passes
except one past were shown to be useful approximations but the final computer-
aided optimal solutions yielded unequal cutting conditions per pass. Numerical
case studies supported the importance of using developed optimization strategies
rather than handbook recommendations, and demonstrated the effects of major
variables as well as the superiority of multi-pass over single pass production rates.

Prasad et al. [232] combined linear programming and geometric programming
to optimize the values of process parameters for a multi-pass turning operation.
Chen et al. [56] proposed an integer programming and dynamic programming-
based two-tier approach for reduction of machining time in NC machining by
cutter selection and machining plane. Yang and Tarng [318] employed Taguchi
method to investigate the cutting characteristics of S45C steel bars using tungsten
carbide cutting tools. The optimal cutting parameters of the cutting speed, the feed
rate and the depth of cut for turning operations with regard to performance indexes
such as tool life and surface roughness were considered.

Cakir and Gurarda [46] described a procedure to calculate the machining
conditions, such as the cutting speed, feed rate and depth of cut for turning
operations with minimum production cost or the maximum production rate as the
objective function. The optimum number of machining passes and the depth of cut
for each pass was obtained through the dynamic programming technique and
optimum values of machining conditions for each pass were determined based on
the objective function criteria by search method application to the feasible region.
Production cost and production time values were determined for different work
piece and tool materials for the same input data. In the optimization procedure, the
objective functions were subjected to the constraints of maximum and minimum
feed rates and speeds available, cutting power, tool life, deflection of work piece,
axial pre-load and surface roughness. By graphical representation of the objective
function and the constraints in the developed software, the effects of constraints on
the objective function were evaluated.

Reddy et al. [244] presented a genetic algorithm for the optimal sub-division of the
depth of cut. The total production cost minimization was achieved by adding the
minimum costs of the individual rough passes and the finish pass. The resulting sub-
division of the depth of cut offered lower cost as compared to that given by the enu-
merative search techniques based on integer programming and dynamic programming.

Nian et al. [207] proposed the optimization of turning operations based on the
Taguchi method with multiple performance characteristics. The orthogonal array,
multi-response S/N ratio, and ANOVA were employed to study the performance
characteristics in turning operations. Three cutting parameters namely, cutting
speed, feed rate, and depth of cut, were optimized with considerations of multiple
performance characteristics including tool life, cutting force, and surface finish.
Experimental results were provided to illustrate the effectiveness of the approach.
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Cakir and Gurarda [47] described a procedure to calculate the machining
conditions for milling operations with minimum production cost as the objective
function. Optimum values of machining conditions for each pass were determined
by circular direction search method which was specifically developed for this
purpose. The effects of constraints on the objective function were evaluated by
graphical representation of the objective function and the constraints in the
developed software.

Liang et al. [175] extended the study of Wang et al. [308] on determination of
optimal process parameter settings for multi-pass turning operation. Hui et al.
[127] showed how the choice of machining conditions for turning significantly
impact on quality cost, by solving a nonlinear continuous constrained optimization
problem using a nonlinear optimization search algorithm, based on quasi-Newton
method and a finite difference gradient

Saravanan et al. [255] described various optimization procedures for solving the
CNC turning problem to find the optimum operating parameters such as cutting
speed and feed rate. The mathematical model proposed by Agapiou [5] was used
for finding the optimum parameters. Total production time was considered as the
objective function, subject to constraints such as cutting force, power, tool–chip
interface temperature and surface roughness of the product. Conventional opti-
mization techniques such as the Nelder–Mead simplex method and the boundary
search procedure, and non-conventional techniques such as genetic algorithms and
simulated annealing were employed and an example was given to illustrate the
working procedures for determining the optimum operating parameters.

Onwubolu and Kumalo [215] proposed an optimization technique based on
genetic algorithms for determination of the cutting parameters in multi-pass
machining operations by simultaneously considering multi-pass rough machining
and finish machining. The optimum machining parameters were determined by
minimizing the unit production cost subject to twenty practical machining con-
straints. The cutting model formulated was a non-linear, constrained programming
problem. Vijayakumar et al. [302] used the mathematical model which originally
was developed by Shin and Joo [267] and extended by Chen and Tsai [55]. The
minimum unit production cost criterion was adopted as the objective of the pro-
posed model. The production cost for machining one unit piece was represented by
the sum of the following four terms (from [302]; reprinted with permission from
Elsevier):

Minimize

UC ¼ CM þ CI þ CR þ CT ð2:52Þ

CM ¼ K0 pDL=1; 000Vrfrð Þ dt � dsð Þ=drð Þ þ pDL=1; 000Vsfsð Þ½ � ð2:53Þ

CI ¼ K0 tc þ h1Lþ h2ð Þ dt � dsð Þ=dr þ 1ð Þ½ � ð2:54Þ

CR ¼ K0te=Tp½ðpDL=1; 000VrfrÞ dt � dsð Þ=drð Þ þ ðpDL=1; 000VsfsÞ� ð2:55Þ

CT ¼ Kt=Tp ½ðpDL=1; 000VrfrÞ dt � dsð Þ=drð Þ þ ðpDL=1; 000VsfsÞ� ð2:56Þ
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Eight constraints were considered for the rough cutting operation including the
stable cutting region constraint and chip-tool interface temperature constraint.

VrL �Vr �VrU ð2:57Þ

frL � fr � frU ð2:58Þ

drL � dr � drU ð2:59Þ

TL � Tr � TU ð2:60Þ

Fr ¼ k1 frð Þl drð Þm �Fu ð2:61Þ

Pr ¼ FrVr=6; 120gð Þ�PU ð2:62Þ

Qr ¼ k2 Vrð Þs frð Þu drð Þd �QU ð2:63Þ

Vk
r fr drð Þm � SC ð2:64Þ

In addition, the following constraints were considered for the finish cutting
operation and these included the constraints on stable cutting region, chip-tool
interface temperature, and the surface roughness.

VsL �Vs �VsU ð2:65Þ

fsL � fs � fsU ð2:66Þ

dsL � ds � dsU ð2:67Þ

TL � Ts � TU ð2:68Þ

Fs ¼ k1 fsð Þl dsð Þm �Fu ð2:69Þ

Ps ¼ FsVs=6; 120gð Þ�PU ð2:70Þ

Qs ¼ k2 Vsð Þs fsð Þu dsð Þd �QU ð2:71Þ

Vk
s fs dsð Þm � SC ð2:72Þ

f 2s =8R� SRU ð2:73Þ

The constraints for roughing and finishing parameter relations were given by
the following equations.

Vs � k3Vr ð2:74Þ

fr � k4fs ð2:75Þ

dr � k5ds ð2:76Þ
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where UC is the unit production cost except material cost; CI is the machine idle
cost due to loading and unloading operations and tool idle motion time ($/piece);
CM is the cutting cost by actual time in cut ($/piece); CR is the tool replacement
cost ($/piece); CT is the tool cost ($/piece); dr and ds are the depths of cut for each
pass of rough and finish machining; drL and drU are the lower and upper bound S of
depth of cut in rough machining (mm); dsL and dsU are the lower and upper bounds
of depth of cut in finish machining (mm); dt is the depth of material to be removed
(mm); D and L are the diameter and length of work piece (mm); fr and fs are the
feed rates in rough and finish machining (mm/rev); frL and frU are the lower and
upper bounds of feed rate in rough machining (mm/rev); fsL and fsU are the lower
and upper bounds of feed rate in finish machining (mm/rev); Fr and Fs are the
cutting forces during rough and finish machining (kgf); Fu is the maximum
allowable cutting force (kgf); h1 and h2 are constants relating to cutting tool travel
and approach/departure time (min); ko is the direct labor cost ? overhead ($/min);
kt is the cutting edge cost ($/edge); k1 is the coefficient pertaining to specific tool–
work piece combination; k2 is the coefficient pertaining to equation of chip–tool
interface temperature; k3, k4 and k5 are the constants for roughing and finishing
parameter relations; n is the number of rough passes; Pr and Ps are cutting powers
during roughing and finishing (kW); PU is the maximum allowable cutting power
(kW); Qr and Qs are the temperatures during roughing and finishing (�C); QU is the
maximum allowable temperature (�C); SC is the limit of stable cutting region; SRU

is the maximum allowable surface roughness (mm); R is the nose radius of cutting
tool (mm); T is the tool life (min); tc is the constant term of machine idling time
(min); te is the tool exchange time (min); TL and TU are the lower and upper
bounds of tool life; Tr and Ts are the tool life, expected tool life for rough
machining and expected tool life for finish machining; Tp is the tool life of
weighted combination of Tr and Ts (min); Vr and Vs are the cutting speeds in rough
and finish machining (m/min); VrL and VrU are the lower and upper bounds of
cutting speed in rough machining (m/min); VsL and VsU are the lower and upper
bounds of cutting speed in finish machining (m/min); g is the power efficiency
(= 0.85), k and m are the constants pertaining to expression of stable cutting region;
l and m are constants of cutting force equation; and s, u and d are the constants
pertaining to expression of chip–tool interface temperature.

Shin and Joo [267] provided an example with certain data for the above
optimization model and decomposed the optimization problem into two separate
sub-problems. They dealt with these two sub-problems separately using an
approach combining the Fobonacci search and dynamic programming. The
minimum production cost found was $ 2.385/unit. Chen and Tsai [55] proposed
an approach that combined the simulated annealing algorithm and Hooke–Jeeves
pattern search technique and found the minimum production cost as $2.2974/
unit. Chen and Tsai [55] extended the multi-pass turning operation model of
Shin and Joo [267] by adding seven more constraints including stable cutting
region constraints, chip–tool interface temperature constraints, and roughing and
finishing parameter relations. Based on the same machining data of the problem
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used by Shin and Joo [267], the minimum production cost obtained by Chen and
Tsai [55] was $2.2959/unit.

Onwubolu and Kumalo [215, 216] proposed a technique based on a genetic
algorithm to determine the optimal machining parameters for the extended model
of Chen and Tsai [55] and calculated the production cost as $1.761/unit, which was
substantially lower than that of Chen and Tsai [55]. However, the optimal value
obtained by Onwubolu and Kumalo [215, 216] was proved to be impractical by
Chen and Chen [53]. They pointed out that Onwubolu and Kumalo incorrectly
handled the machining model since the number of rough cuts in their method was
not limited to an integer value. Baykasoglu and Dereli [34] used simulated
annealing approach to optimize cutting conditions in their heuristic model.
However, they did not take surface finish into consideration. Vijayakumar et al.
[302] proposed an ant colony optimization method to solve the same problem and
claimed that the ant colony-based approach found an even better solution at
$1.6262/unit. However, Wang [307] proved that for the given cutting speeds and
feeds for the rough cut and the finishing cut as determined by Vijayakumar et al.
[302], without considering violating any constraint, the lowest value of production
cost was actually $1.968/unit.

Lee and Tarng [169] investigated optimal cutting parameters for maximizing
production rate or minimizing production cost in multistage turning operations. A
machining model was constructed based on a polynomial network. The polynomial
network can learn the relationships between cutting parameters (cutting speed,
feed rate, and depth of cut) and cutting performance (surface roughness, cutting
force, and tool life) through a self-organizing adaptive modeling technique. Once
the geometric model for machined parts and various time and cost components of
the turning operation are given, an optimization algorithm using a sequential
quadratic programming method can then be applied to the polynomial network for
determining optimal cutting parameters.

Davim [66] presented a study of the influence of cutting conditions on the
surface finish obtained by turning. A plan of experiments, based on the techniques
of Taguchi, was designed and executed on controlled machining. Davim [67]
investigated the influence of cutting conditions (cutting velocity and feed) and
cutting time on turning metal matrix composites. An orthogonal array and the
ANOVA were employed to investigate the cutting characteristics of flank wear,
power required, and surface roughness.

Wang et al. [310] presented an optimization analysis for the selection of eco-
nomic cutting conditions in single pass turning operations using a deterministic
approach. The optimization was based on criteria typified by the maximum pro-
duction rate and included a number of practical constraints. It was shown that the
deterministic optimization approach involving mathematical analyses of con-
strained economic trends and graphical representation on the feed-speed domain
provides a clearly defined strategy that not only provides a unique global optimum
solution, but also the software that is suitable for on-line CAM applications.

Kwon et al. [164] used a fuzzy adaptive modeling technique, which adapts the
membership functions in accordance with the magnitude of the process variations,
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to predict surface roughness. Test results showed good agreement between the
actual process output and the predicted surface roughness. António and Davim
[15] presented the results of an experimental study concerned with the evolution of
cutting forces, tool wear and surface roughness, as functions of time when turning
the particulate metal matrix composite A356/20/SiCp-T6. Inserts with polycrys-
talline diamond (PCD) were tested. Cutting forces were measured using a piezo-
electric dynamometer. The wear type was identified and its evolution with cutting
time was measured. To model the phenomena, a hybrid technique based on an
evolutionary search over the design space defined by the experimental results was
considered. Optimal cutting conditions were searched using a genetic algorithm
based on an elitist strategy.

Suresh et al. [284] developed a surface roughness prediction model for
machining mild steel, using RSM. The experimentation was carried out with
TiN-coated tungsten carbide (CNMG) cutting tools, for machining mild steel
work-pieces covering a wide range of machining conditions. A second order
mathematical model, in terms of machining parameters, was developed for surface
roughness prediction using RSM. This model gives the factor effects of the
individual process parameters. An attempt was also made to optimize the surface
roughness prediction model using genetic algorithms (GA) to optimize the
objective function. A number of tool wear monitoring schemes have been
proposed that employ vibrations, ultrasonic, torque, power, velocity, and tem-
perature sensors and sensor fusion. Sick [274] reviewed a number of research
papers dealing with online and indirect tool wear monitoring in turning using
ANNs. Mainly, vibrations, acoustic emission (AE), torque, power, velocity, and
temperature sensors were employed for obtaining the feedback for indirect
estimation of tool wear.

Feng and Wang [87] found multiple regression analysis and neural networks
equally effective in predicting surface roughness for a finish turning process.
Zuperl and Cus [332]proposed a neural network-based approach to complex
optimization of cutting parameters. The authors had described the multi-objective
technique of optimization of cutting conditions by means of the neural networks
taking into consideration the technological, economic and organizational limita-
tions. To reach higher precision of the predicted results, a neural optimization
algorithm was developed and presented to ensure simple, fast and efficient opti-
mization of all important turning parameters. The approach is suitable for fast
determination of optimum cutting parameters during machining, where there is not
enough time for deep analysis.

Cus and Balic [64] proposed a new optimization technique based on genetic
algorithms (GA) for the determination of the cutting parameters in machining
operations. Bouzid [40] described a method for calculating the optimum cutting
conditions, in turning for objective criterion such as maximum production rate.
The method used empirical models for tool life, roughness and cutting forces.
Coefficients of these models were determined based on turning experiments in
high-speed machining. Four types of commercially available inserts were used to
turn an AISI 4340 steel. Three CVD-coated inserts and one ceramic tool were
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studied. The machine power and the maximum spindle speed were considered as
the process constraints.

Manna and Bhattacharyya [188] took the significant cutting parameters into
consideration and used multiple linear regression mathematical models relating the
surface roughness height to the cutting parameters for turning process of Al/SiC-
MMC. Nandi and Pratihar [204] developed an expert system based on the fuzzy
basis function network (FBFN) to predict surface finish in ultra-precision turning.
An approach for automatic design of rule base and the weight factors (WFs) for
different rules was developed using a genetic algorithm, based on error reduction
measures.

Jiao et al. [137] used a fuzzy adaptive network (FAN) to model surface
roughness in turning operations. FANs are five-layered network representation of
the corresponding fuzzy inference rules. Each node performs a particular function
on the incoming signals, which is characterized by a set of parameters. In order to
represent different adaptive capabilities, the nodes can be classified into adaptive
nodes with parameters that can be tuned by the learning procedure, and fixed
nodes. The nodes in the first layer, divided into subgroups, store the membership
functions associated with the input variables in the premise section of the fuzzy
IF–THEN rules. Each subgroup in this layer can be interpreted as the linguistic
terms of a particular input linguistic variable. Nodes in subsequent second layer
perform the fuzzy aggregation of the premise section of the fuzzy IF–THEN rules.
Nodes in successive layers represent the operations in the consequence section of
the fuzzy IF–THEN rules. The FAN network has both the learning ability of neural
network and linguistic representation of complex, not well-understood, vague
phenomenon. Furthermore, it can continuously improve the initially obtained
rough model based on the daily operating data. To illustrate this approach, a model
representing the influences of machining parameters on surface roughness was
established and then the model was verified by the use of the results of pilot
experiments. Finally, a comparison with the results based on statistical regression
was provided.

Pal and Chakraborty [223] predicted surface roughness by taking main cutting
force, feed force, cutting speed, feed, and depth of cut as input parameters of the
network. Sonar et al. [277] studied the performance of RBF network for predicting
lower, most likely, and upper estimates of surface roughness in turning process.
They observed that the performance of RBF neural network was slightly inferior to
MLP neural networks.

Tzeng [295] proposed a set of optimal turning parameters for producing high
dimensional precision and accuracy in the CNC turning process. Taguchi dynamic
approach coupled with a proposed ideal function model was applied to optimize
eight control factors for common tool steels SKD-11 and SKD-61. The control
factors were coolant, cutting speed, feed, depth of cut, coating type, chip-breaker
geometry, nose radius and shape of the insert, which were designed in a L18
orthogonal array and carried out in the experiments. The results showed that the
factors associated with the cutting tool and feed had the most significant effects on
the dimensional variation of the test piece. The combined optimized process
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factors not only produced optimized dimensional precision and accuracy but also
resulted in improved surface roughness.

Roy [249] made an attempt to design an expert system using two soft com-
puting tools, namely fuzzy logic and genetic algorithm, so that the surface finish in
ultra-precision diamond turning of metal matrix composite could be modeled for a
set of given cutting parameters, namely spindle speed, feed rate and depth of cut.
An optimized knowledge base of the fuzzy expert system was obtained using a
binary-coded genetic algorithm. The GA-based training was done off-line. The
GA-trained fuzzy expert system (GAFES) was able to predict surface finish in
ultra-precision diamond turning of Al6061/SiCp metal matrix composite before
conducting actual experiments.

By analyzing and modeling the forming process of work piece and the error
sources contributing to machining precision of work piece in turning operation,
Yao et al. [320] presented the cutter trajectory and attitude representation to
characterize the geometric errors of machined work piece in virtual manufacturing
(VM). A surface topography simulation model was established to simulate the
surface finish profile generated after a turning operation. This representation was
implemented in the Virtual Machining and Measuring Cell (VMMC) developed by
the authors to represent and predict the geometric errors of work piece.

Aslan et al. [19] used an orthogonal array and the ANOVA to optimization of
cutting parameters in turning hardened AISI 4140 steel (63 HRC) with
Al2O3 ? TiCN mixed ceramic tool. The flank wear (VB) and surface roughness
(Ra) were investigated to determine optimal values of cutting parameters, such as
cutting speed, feed rate and depth of cut. Nalbant et al. [200] used Taguchi method
to find the optimal cutting parameters for surface roughness in turning operations
of AISI 1030 steel bars using TiN-coated tools. Three cutting parameters, namely,
insert radius, feed rate, and depth of cut, were optimized with considerations of
surface roughness, and so on. The effect of water-soluble cutting fluids under
different ratios was also considered in this study.

Sardiñas et al. [258] proposed a multi-objective optimization method, based on
a posteriori technique and using genetic algorithms to obtain the optimal param-
eters of cutting depth, feed and speed in turning process. Application example of
turning a steel bar by means of a P20 carbide tool on a CNC lathe was presented
and empirical models were experimentally obtained for tool life and cutting force.
Two different, mutually conflicting objectives were optimized in this model. The
first objective was the production rate, s, measured as the entire time required to
carry out the process (from [258]; reprinted with permission from Elsevier):

s ¼ sS þ ðV=MÞð1þ sTC=TÞ þ s0 ð2:77Þ

Where sS, sTC and s0 are the set-up time, the tool change time, and the time
during which the tool does not cut respectively; V is the volume of the removed
metal; T the tool life, and M the MRR. The tool life (T) is related with the cutting
parameters (i.e. cutting speed (v), feed (f), and depth of cut (a)) by the Taylor’s
extended law,
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T ¼ CTv
af bac ð2:78Þ

a, b and c are the coefficients experimentally obtained.
MRR was computed by the expression,

M ¼ 1000vfa ð2:79Þ

The second objective was the used tool life, n, considered as the part of the
whole tool life which is consumed in the process.

n ¼ V=MTð Þ�100% ð2:80Þ

Usually, for a particular cutting process, sS, sTC, s0 and V can be considered
constant values, so that the objectives are functions of T and M, and, consequently,
they depend upon the decision variables, v, f, and a.

The constraints which affect the selection of the optimal cutting conditions are
the allowed values for the cutting parameters given by the following equations.

amin � a� amax ð2:81Þ

fmin � f � fmax ð2:82Þ

vmin � v� vmax ð2:83Þ

Also there are some constraints related to the machine features. The cutting
force, FC, must not be greater than a certain maximum value, FC-max, given by the
strength and stability of the machine and the cutting tool. The cutting force is
computed from empirical expressions in the form:

Fc ¼ CFv
a0 f b

0

ac
0

ð2:84Þ

Where CF, a0, b0 and c0 are coefficients experimentally obtained.
Another machine-related constraint is the maximum allowable value for cutting

power, P, which must not surpass the machine motor power, PMOT (considering
the friction losses in the transmission):

P ¼ vFc=6� 104
� �

� PMOTg=100ð Þ ð2:85Þ

g is the motor efficiency.
In the finishing operations, the obtained surface roughness, R, must be smaller

than the specified value, Rmax, given by technological criteria, so that the following
equation is satisfied.

R ¼ 124f 2=re �Rmax ð2:86Þ

Where re is the tool nose radius.
The results were analyzed for several different production conditions. The

advantages of multi-objective optimization approach over the single-objective one
were explained.
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Abburi and Dixit [1] developed a knowledge-based system for the prediction of
surface roughness in turning process. Neural networks and fuzzy set theory were
used for this purpose. Knowledge acquired from the shop floor was used to train
the neural network. The trained network provided a number of data sets, which
were fed to a fuzzy set-based rule generation module. A large number of IF–THEN
rules were generated, which were reduced to a smaller set of rules by using
Boolean operations. The performance of the developed knowledge-based system
was studied with the experimental data of dry and wet turning of mild steel with
HSS and carbide tools. The developed rule base can be used for predicting surface
roughness for given process variables as well as for the prediction of process
variables for a given surface roughness. The concise set of rules helps the user in
understanding the behavior of the cutting process and to assess the effectiveness of
the model.

Ee et al. [80] presented an overview of research at the University of Kentucky
on extensions to the conventional tool wear and tool life methodologies when
machining with grooved tool inserts resulting from the more complex wear fea-
tures observed and the more subtle failure criteria applied. The influence of cutting
conditions including the cutting speed, feed and depth of cut on the tool life was
studied experimentally using tools with chip-groove geometries and different tool
coatings. It was shown that the slope and intercept of the log–log plot of tool life
versus feed, for example, change considerably for different chip-groove geome-
tries or different tool coatings. An empirical tool-life equation to consider the
effects of these parameters was proposed.

Balaji et al. [26] presented developments in chip control research and provided
major applications in turning operations involving the use of complex grooved tool
inserts. The authors concluded with details of an attempt to develop a computer-
aided process planning system incorporating a predictive capability for chip
breakability in turning operations.

Al-Aomar and Al-Okaily [11] presented a Parameter Design (PD) approach that
provides near-optimal settings to the process parameters of a single lathe machine
with high-volume production. Optimized process parameters included both
machining parameters (cutting speed, feed rate, and depth of cut) and production
parameters (material order size and inventory safety stock and reorder point). The
authors had extended the conventional per-part machining cost model into a per-
order production cost model by consolidating the production economics of both
machining parameters and production controls. Discrete Event Simulation (DES)
was utilized to capture the stochastic and dynamic production attributes and to
transfer the static machine PD model into a dynamic PD-DES production model.
The model was also utilized to accumulate the per-order running cost over pro-
duction time while incorporating the impacts of process variability in tool life,
labor efficiency, machining conditions, order lead time, and demand rate. Using
the PD-DES model as a dynamic fitness function, a Simple Genetic Algorithm
(SGA) was developed and applied to a CNC lathe machine to determine near-
optimal settings to both machining and production process parameters so that the
overall per-order production cost was minimized. Results showed effective SGA
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convergence profile with relatively low number of search generations. The benefits
of the per-order cost model were illustrated by repeating the SGA solution using
machine productivity as a fitness criterion. The new SGA solution resulted in a
better productivity but at a higher per-order cost. The effectiveness of SGA search
was illustrated by outperforming the solutions obtained from two-level and three-
level full factorial designs.

Yildiz and Ozturk [323] developed a hybrid robust genetic algorithm (HRGA)
based on Taguchi’s method and genetic algorithm. After the approach was vali-
dated by single and multi-objective benchmark problems, it was applied to the
optimization of machining economic problems in multi-pass turning operation.
They showed that convergence speed and accuracy of HRGA to global optimal
results was better than better than those of Chen and Tsai [55], Chen and Chen [53]
and Chen [52]. Mukherjee and Ray [196] critically appraised the application
potential of several modeling and optimization techniques in metal cutting pro-
cesses, classified under several criteria, and a generic framework for parameter
optimization in metal cutting processes was suggested for the benefits of selection
of an appropriate approach.

Saravanan et al. [257] optimized the machining parameters for turning cylin-
drical stocks into continuous finished profiles. The machining parameters consid-
ered in multi-pass turning were depth of cut, cutting speed and feed. The machining
performance was measured by the production cost. The constraints considered in
this problem were cutting force, power, tool tip temperature, etc. Due to high
complexity of this machining optimization problem, six non-traditional algorithms,
the genetic algorithm (GA), simulated annealing algorithm (SA), Tabu search
algorithm (TS), memetic algorithm (MA), ant colony algorithm (ACO) and the PSO
were employed to resolve this problem. The results obtained from GA, SA,TS,
ACO, MA and PSO were compared for various profiles. Also, a comprehensive
user-friendly software package was developed to input the profile interactively and
to obtain the optimal parameters using all six algorithms.

Satishkumar et al. [261] discussed the use of non-traditional optimization
techniques such as genetic algorithms, simulated Annealing and ant colony opti-
mization for optimizing the depth of cut in multi-pass turning. Karpat and Özel
[141] proposed a dynamic-neighborhood particle swarm optimization DN-PSO)
methodology to handle multi-objective optimization problems existing in turning
process planning. The objective was to obtain a group of optimal process
parameters for each of three different case studies presented in their work. The
case studies considered in the work were: minimizing surface roughness values
and maximizing the productivity, maximizing tool life and MRR, and minimizing
machining-induced stresses on the surface and minimizing surface roughness. The
optimum cutting conditions for each case study can be selected from calculated
Pareto-optimal fronts by the user according to production planning requirements.
The results indicated that the proposed methodology for solving the multi-objec-
tive optimization problems with conflicting objectives was effective.

Paiva et al. [222] presented a hybrid approach, combining RSM and principal
component analysis (PCA) to optimize multiple correlated responses in a turning
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process. Since a great number of manufacturing processes present sets of corre-
lated responses, this approach could be extended to many applications. As a case
study, the turning process of the AISI 52100 hardened steel was examined con-
sidering three input factors: cutting speed, feed rate, and depth of cut. The outputs
considered were: the mixed ceramic tool life, processing cost per piece, cutting
time, the total turning cycle time, surface roughness and the material removing
rate. The aggregation of these targets into a single objective function was con-
ducted using the score of the first principal component of the responses’ corre-
lation matrix and the experimental region was used as the main constraint of the
problem. Considering that the first principal component was not enough to rep-
resent the original data set, a complementary constraint defined in terms of the
second principal component score was added. The original responses have the
same weights and the multivariate optimization led to the maximization of MRR
while minimizing the other outputs. The kind of optimization assumed by the
multivariate objective function was established by examining the eigenvectors of
the correlation matrix formed with the original outputs. The results indicated that
the multi-response optimization was achieved at a cutting speed of 238 m/min,
with a feed rate of 0.08 mm/rev and at a depth of cut of 0.32 mm.

Al-Ahmari [10] developed empirical models for tool life, surface roughness and
cutting force for turning operations. Process parameters (cutting speed, feed rate,
depth of cut and tool nose radius) were used as inputs to the developed machin-
ability models. Two important data mining techniques were used: RSM and neural
networks. Data of 28 experiments when turning austenitic AISI 302 were used to
generate, compare and evaluate the proposed models of tool life, cutting force and
surface roughness for the considered material. Gurel and Akturk [116] gave an
effective model for the problem of minimizing total manufacturing cost subject to
a given total weighted completion time level. The authors deduced some opti-
mality properties for this problem. Based on these properties, a heuristic algorithm
was proposed to generate an approximate set of efficient solutions. The compu-
tational results indicated that the proposed algorithm performed better than the
GAMS/MINOS commercial solver both in terms of solution quality and compu-
tational requirements such that the average CPU time was only 8% of the time
required by the GAMS/MINOS.

Jawahir and Wang [134] presented a summary of developments in modeling
and optimization of machining processes, focusing on turning and milling oper-
ations. With a brief analysis of past research on predictive modeling, the authors
presented the analytical, numerical and empirical modeling efforts for 2D and 3D
chip formation covering the development of a universal slip-line model, a com-
prehensive finite element model, and integrated hybrid models. This included a
newly developed equivalent tool face (ET) model and new tool-life relationships
developed for machining with complex grooved tools. A performance-based
machining optimization method developed for predicting optimum cutting con-
ditions and cutting tool selection was also presented.

Basak et al. [31] used RBF models to predict surface roughness in finish hard
turning process of AISI D2 cold rolled steel with mixed ceramic tools. For better
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modeling of an RBF network, assistance of multiple-linear regression was taken.
The authors had observed that in RBF neural network training, the spread
parameter, which is essentially the zone of influence of a neuron, plays a signif-
icant role.

Nalbant et al. [200] used Taguchi method to find the optimal cutting parameters
for surface roughness in turning. The orthogonal array, the S/N ratio, and ANOVA
were employed to study the performance characteristics in turning operations of
AISI 1030 steel bars using TiN-coated tools. Three cutting parameters namely,
insert radius, feed rate, and depth of cut, were optimized with considerations of
surface roughness.

Wang et al. [312] presented a summary of recent developments in developing
performance-based machining optimization methodologies for turning operations.
Four major machining performance measures (cutting force, tool wear/tool life,
chip form/chip breakability, and surface roughness) were considered for the
development and integration of hybrid models for single and multi-pass turning
operations with and without the effects of progressive tool wear. Non-linear
programming techniques were used for single-pass operations, and a genetic
algorithm approach was adopted for multi-pass operations. The methodology
offers the selection of optimum cutting conditions and cutting tools for turning
with complex grooved tools.

Quiza et al. [233] carried out an experimental investigation on tool wear pre-
diction on ceramic cutting tools used for turning hardened cold rolled tool steel.
They predicted tool wear with the help of neural network and regression models.
The neural network model was found superior to the regression model.

Soft computing optimization techniques, viz., genetic algorithm, PSO, and
simulated annealing, were used for optimizing neural network model parameters.
Natarajan et al. [205] employed a neural network model For tool life estimation
that was optimized by PSO. The use of PSO resulted in reduction of training time
by 50%.

Kim et al. [155] explored the applicability of real coded genetic algorithm
(RGA) in machining optimization. In their work, RGA was compared to SA,
continuous SA, GA, and generalized reduced gradient method. Ojha et al. [209]
used neural network, fuzzy set, and genetic algorithm-based soft computing
methodology to optimize process parameters in multi-pass turning operation.
Neural network was used for prediction of surface finish and tool life. In view of
uncertainty, surface roughness was quantified by using fuzzy number. An equal
depth of cut for roughing passes along with a single finish pass strategy, was
considered in the optimization model. The optimization model was applied for
determining the optimum cutting parameters for two cases, viz., minimization of
production cost and maximization of production rate.

Sharma et al. [265] measured machining variables such as cutting forces and
surface roughness during turning at different cutting parameters such as
approaching angle, speed, feed and depth of cut. The data obtained by experi-
mentation was analyzed and used to construct model using neural networks. The
model obtained was then tested with the experimental data.
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Manna and Salodkar [189] described a procedure to obtain the machining
conditions for turning operation considering unit cost of production as an objective
function. The optimality conditions for single point cutting operations were
determined based on the objective function using dynamic programming tech-
nique. The optimal policy of machining conditions were determined for evolution
of minimum cost considering the important cost related machining criteria such as
actual machining time, tool reuse time, set up time, tool life, and tool changing
time. The mathematical models were also developed. The effects of different
constraints on the objective functions were analyzed through various graphical
representations. Taguchi method was also used to optimize the cutting parameters
to achieve better surface finish and to identify the most effective parameter for cost
evolution during turning. Taking significant cutting parameters into consideration
and using multiple linear regressions, mathematical model relating to the surface
roughness height Ra was established to investigate the influence of cutting
parameters during turning.

Davim et al. [70] developed surface roughness prediction models using ANN
to investigate the effects of cutting conditions free-machining steel,
9SMnPb28 k(DIN). The ANN model of surface roughness parameters was
developed with the cutting conditions such as feed rate, cutting speed and depth
of cut as the affecting process parameters. The experiments were planned as per
L27 orthogonal array with three levels defined for each of the factors in order to
develop the knowledge base for ANN training using error back-propagation
training algorithm (EBPTA). 3D surface plots were generated using ANN model
to study the interaction effects of cutting conditions on surface roughness
parameters. The analysis revealed that cutting speed and feed rate have signifi-
cant effects in reducing the surface roughness, while the depth of cut has the
least effect.

Aggarwal et al. [7] optimized multiple characteristics (tool life, cutting force,
surface roughness and power consumption) in CNC turning of AISI P-20 tool steel
using liquid nitrogen as a coolant. Four controllable factors of the turning process,
viz. cutting speed, feed, depth of cut and nose radius were studied. Face centered
central composite design was used for experimentation. RSM was used for
modeling the responses. Desirability function was used for single and multiple
response optimization.

Horng and Chiang [126] developed an algorithm to determine the optimum
manufacturing conditions for turning Hadfield steel with Al2O3/TiC mixed cera-
mic tool by coupling the grey relational analysis with the fuzzy logic. The flank
wear and surface roughness were adopted to evaluate the machiniablity perfor-
mances. Various cutting parameters, such as cutting speed, feed rate, depth of cut
and nose radius of tool were explored by experiment. An orthogonal array was
employed for the experimental design. This proposed algorithm obtains a grey–
fuzzy reasoning grade to evaluate the multiple performance characteristics through
the grey relational coefficient of each performance characteristic. The response
table, response graph and ANOVA were used to find the optimal levels and
the effect of cutting parameters on the flank wear and surface roughness.
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A confirmation test within the optimal machining parameters was conducted to
indicate the effectiveness of this proposed algorithm.

Umbrello et al. [297] presented a predictive hybrid model based on the ANNs
and FEM that can be used for both forward and inverse prediction. The former was
able to determine a residual stresses profile corresponding to a given tool, material
and process conditions, the latter was able to determine these conditions when a
constraint on the residual stresses distribution was given. Three layer neural net-
works were trained basing on selected data from numerical investigations on hard
machining of 52100 bearing steel, and then validated with data obtained by the
experiments.

Tzeng et al. [296] investigated the optimization of CNC turning operation
parameters for SKD11 (JIS) using the Grey relational analysis method. Nine
experimental runs based on an orthogonal array of Taguchi method were per-
formed. The surface properties of roughness average and roughness maximum as
well as the roundness were selected as the quality targets. An optimal parameter
combination of the turning operation was obtained via Grey relational analysis. By
analyzing the Grey relational grade matrix, the degree of influence of each con-
trollable process factor on individual quality targets was found. Through ANOVA,
the depth of cut was reported as the most significant controlled factor for the
turning operation when the minimization of the roughness average, the roughness
maximum and the roundness are simultaneously considered.

Yildiz [322] proposed a hybrid method combining immune algorithm with a
hill climbing local search algorithm for solving complex real-world optimization
problems. The objective was to contribute to the development of more efficient
optimization approaches with the help of immune algorithm and hill climbing
algorithm. The hybrid algorithm combined the exploration speed of immune
algorithm with the powerful ability to avoid being trapped in local minimum of hill
climbing. The hybrid algorithm was applied to the optimization of machining
parameters in a multi-pass turning operation problem which was previously con-
sidered by Shin and Joo [267], Chen and Tsai [55], Chen and Chen [53], Chen
[52], and Yildiz and Ozturk [323].

Muthukrishnan and Davim [199] studied the surface roughness of Al–SiC
(20 p) by turning the composite bars using coarse grade PCD insert under different
cutting conditions. Experimental data collected were tested with ANOVA and
ANN techniques. Multilayer perceptron model was constructed with back-propa-
gation algorithm using the input parameters of depth of cut, cutting speed and feed.
Output parameter was surface finish of the machined component. On completion
of the experimental test, ANOVA and an ANN were used to validate the results
obtained and also to predict the behavior of the system under any condition within
the operating range.

Gaitonde et al. [100] presented the application of Taguchi method and the
utility concept for optimizing the machining parameters in turning of free-
machining steel using a cemented carbide tool. A set of optimal process param-
eters, such as feed rate, cutting speed, and depth of cut on two multiple perfor-
mance characteristics, namely, surface roughness and MRR was developed. The
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experiments were planned as per L9 orthogonal array. The optimal level of the
process parameters was determined through the analysis of means (ANOM). The
relative importance among the process parameters was identified through the
ANOVA. The ANOVA results indicated that the most significant process
parameter was cutting speed followed by depth of cut. The optimization results
revealed that a combination of higher levels of cutting speed and depth of cut
along with feed rate is essential in order to simultaneously minimize the surface
roughness and to maximize the MRR.

Srinivas et al. [281] proposed a methodology for selecting optimum machining
parameters in multi-pass turning using particle swarm intelligence to minimize
unit production cost subjected to practical constraints. Chandrasekaran et al. [49]
reviewed the application of soft computing tools such as neural networks, fuzzy
sets, genetic algorithms, simulated annealing, ant colony optimization, and PSO to
four machining processes—turning, milling, drilling, and grinding. The authors
highlighted the progress made in this area and discussed the issues that need to be
addressed.

Rajemi et al. [236] developed a new model and methodology for optimizing the
energy footprint for a machined product. The total energy of machining a com-
ponent by the turning process was modeled and optimized to derive an economic
tool-life that satisfies the minimum energy footprint requirement. The work clearly
identified the critical parameters in minimizing energy use and hence reducing the
energy cost and environmental footprint. Additionally, the paper explored and
discussed the conflict and synergy between economical and environmental con-
siderations as well as the effect of system boundaries in determining optimum
machining conditions.

Bouacha et al. [39] conducted an experimental study of hard turning with CBN
tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives were
focused on delimiting the hard turning domain and to develop the relationship
between cutting parameters (cutting speed, feed rate, and depth of cut) and
machining output variables (surface roughness and cutting forces) through the
RSM. The combined effects of the cutting parameters on machining output vari-
ables were investigated while employing the ANOVA. The quadratic model of
RSM associated with response optimization technique and composite desirability
was used to find optimum values of machining parameters with respect to the
objectives (surface roughness and cutting force values). Results showed the degree
of influence of feed rate and cutting speed on surface roughness. The depth of cut
exhibited maximum influence on cutting forces as compared to the feed rate and
cutting speed.

2.5 Drilling Process

Drilling is the operation of producing circular holes in the workpiece by using a
rotating cutter called ‘drill’. The machine used for drilling is called drilling
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machine. The drilling operation can also be accomplished in lathe, in which the
drill is held in tailstock and the work is held by the chuck. The most common drill
used is the twist drill. The peripheral speed of the drill called cutting speed,
movement of the drill along the axis of the hole for one revolution called feed, and
radius of the drill called as depth of cut are the process parameters. The special
feature of drilling is that the cutting speed varies along the cutting edge, from
almost zero near the center of the drill to the circumferential speed of the drill at its
outer radius. These parameters may be optimized for obtaining the minimum cost
of machining and minimum production time.

Various investigators had presented techniques, both traditional and non-tra-
ditional, for modeling and optimization of drilling processes. Mauch and Lau-
derbaugh [190] introduced an analytical model that predicts thrust and torque
levels for drilling. These predictions were based on drill geometry, yield shear
stress, and chip thickness. This model was presented in contrast to previous
empirical models which required large amounts of experimental data and are of
questionable use outside of the experimental range. The model was developed by
dividing the drill tip into three regions with each region having a separate metal
cutting model. The chisel edge comprised two of the three regions. The inner
chisel edge region was modeled as an indentation process: while the outer chisel
edge region was modeled using orthogonal cutting theory. A new analytical
expression was developed to define the transition point between these two regions.
This expression was found to be in excellent agreement with empirical results of
other researchers. Finally, the lip region of the drill was modeled by dividing the
region into N cutting elements and modeling each element with oblique cutting
theory. The total force and torque were then computed by summing the contri-
butions from each of the three regions. The model can be used for both conven-
tional and split-point high-speed steel drill tip geometries. However, the model can
be easily extended to include other geometries. Thrust and torque predictions from
the analytical model were compared with experimental results that were generated
by using conventional and split-point drills to drill 2024-T351 aluminum.

Khajavi and Komanduri [145] used back-propagation neural network (BPNN)
model to predict drill wear employing multiple sensors. The signals from four
sensors, viz., thrust, torque, and strain in two directions, were used. It was found
that the change in area under power spectral density plots shows good correlation
with corner drill wear. The authors concluded that one sensor signal would be
adequate for drill wear estimation. Biglari and Fang [38] used real-time fuzzy
logic control for maximizing drill life in a small-hole drilling (3 mm diameter)
process. Experiments were conducted under five different drill wear conditions—
initial, normal wear, acceptable wear, severe wear, and drill failure to record
thrust force, torque, and radial force, which developed 53 fuzzy rules. The
methodology based on online monitoring of drill wear was used for controlling
drill feed rate for maximum tool life. Stone and Krishnamurthy [283] used neural
network to model the relationship between feed rate and the thrust force during
drilling of fiber-reinforced composite materials using diamond-tipped drill. They
developed a neural network-based controller that minimizes the problem of
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delamination or crack growth during the drilling process. The authors compared
the proposed method with experimental results and found that thrust force
controlled drilling process is advantageous over conventional constant feed
drilling process.

Kolahan and Liang [156] reported a tabu-search approach to minimize the cost
in hole-making processes. Four issues, namely, tool travel scheduling, tool switch
scheduling, tool selection, and machining speed specification were simultaneously
addressed. The problem has a structure similar to the traveling salesman problem
(TSP) and hence is NP-complete. The performance of the proposed approach was
tested using an example problem.

Lee et al. [171] described the use of an abductive network for modeling drilling
processes. A number of drilling experiments were carried out on a CNC machining
center (first MCV-641) using HSS twist drills for the machining of S45C steel
plates. The drilling process parameters were selected by varying the drill diameter
in the range of 8–12 mm, the cutting speed in the range of 10–30 m/min and the
feedrate in the range of 0.06–0.24 mm/rev. Each of these process parameters was
set at three levels. Therefore, 27 (3 9 3 9 3) drilling experiments were designed
based on the process parameter combinations. However, only 25 drilling experi-
ments were performed due to the limited power of the machine. The drill-life was
defined as the period of drilling time until the average flank wear land was equal to
0.3 mm or the maximum flank wear land equal to 0.6 mm. In the experiments, the
flank wear land was measured on both cutting edges of the drill using a tool
microscope. The mean flank wear land was calculated by averaging six places of
the flank wear land on the cutting edges. The MRR is calculated by using the
following equation:

MRR ¼ 0:25pD2fN ð2:87Þ

where D is the drill diameter (mm), f is the feedrate (mm/rev) and N is the
rotational speed of the drill (rpm), which can be calculated from Equation 2.88.

N ¼ 1000V=pD ð2:88Þ

where V is the cutting speed in m/min.
The thrust force and torque signals were measured and used as the inputs to the

network. The drilling performance (tool life, MRR, thrust force and torque) with
the corresponding process parameters (drill diameter, cutting speed and feedrate)
was developed as training data base, a three-layer abductive network for predicting
tool life was synthesized automatically. The abductive network was composed of a
number of functional nodes and these nodes were self-organized to form an
optimal network architecture by using a predicted squared error (PSE) criterion.
Once the process parameters (drill diameter, cutting speed and feedrate) are given,
the drilling performance (tool life, MRR, thrust force and torque) can be predicted
by this developed network. Since the tool life and the MRR are the two different
objectives, a normalization of tool life and MRR between zero and unity was
required. A weighting method was then adopted to transform the normalized tool
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life TL and normalized MRR MR into a single objective format. The objective
function was formulated as follows:

Objective function ¼ �w1TL � w2MR ð2:89Þ

Where, w1 and w2 were the weights of the normalized tool life TL and nor-
malized MRRMR in optimization. The inequality constraints on the thrust force FT

and torque TQ were given as follows:

0\FT\UFT ð2:90Þ

0\TQ\UTQ ð2:91Þ

Where, UFT and UTQ are the upper bounds of the thrust force FT and of the
torque TQ, respectively.

Several cases were presented by Lee et al. [171] to illustrate the optimization of
the process parameters in drilling operations. Through the simulated annealing
searching, the optimal process parameters with several weighting combinations
were obtained. Experimental results were provided to confirm the effectiveness of
this approach.

Lin and Ting [177] predicted drill wear using neural network and regression
models. Average thrust force and torque, spindle speed, feed rate, and drill
diameter were used as input parameters and average flank wear was the only
output parameter of the neural network. The authors found that the neural
networks with two hidden layers learn faster and can more accurately estimate
tool wear than the networks with one hidden layer. Elhachimi et al. [81] pre-
sented a new theoretical model to predict thrust and torque in high-speed
drilling. The method involved determining the continuous distributions of thrust
and torque along the lip and the chisel edge of a twist drill. The calculation
used the oblique cutting model for the lip and the orthogonal cutting model for
the chisel edge. Thrust and torque were obtained in terms of the geometric
features of the drill, the cutting conditions and the properties of the machined
material.

Liu et al. [179] used polynomial network for in-process prediction of corner
wear on the drill. The polynomial network was composed of a number of func-
tional nodes having self-organizing feature with an ability to construct the rela-
tionship between input and output variables. Thrust force or torque, cutting speed,
feed rate, and drill diameter were used as input parameters. The authors found that
the use of thrust force in the model provides predictions within an error of 10%.
Shunmugam et al. [273] presented a model based on production cost and the
optimal conditions were obtained considering technological and machine tool
constraints. This approach is quite useful in arriving at the cutting parameters
automatically in a computer-assisted process planning system.

Hashmi et al. [120] developed fuzzy logic model for selection of cutting speed
to drill three different work materials, viz., medium carbon steel, low carbon alloy
steel, and medium carbon-free-machining steel. The predicted drilling speeds for

128 2 Modeling and Optimization of Machining Processes



different work material hardness showed good corelation with Machining Data
Handbook.

Mahdy [186] attempted to find out the best combination of drilling and
enlarging as well as chamfering prior to enlarging, which minimizes the obtained
burr size. A flowchart was developed for the determination of the optimum con-
ditions of drilling with minimum manufacturing cost from the point of view of burr
formation. It enabled also the evaluation of the electrochemical deburring (ECD)
time to obtain the required deburring radius with minimum cost for drilling fol-
lowed by ECD, especially in case of drilling intersecting holes. Zhang et al. [326]
presented a theoretical analysis for predicting mean values of thrust and torque in
vibration drilling fiber-reinforced composite materials. The model was based on
mechanics of vibration cutting analysis and the continuous distributions of thrust
and torque along the lip and the chisel edge of a twist drill. The result of a
simulation study had shown a very good agreement between the theoretical pre-
dictions and the experimental evidence. On the same cutting conditions, the thrust
and the torque by the vibration drilling method were reduced by 20–30 percent,
compared with conventional drilling.

Ertunc et al. [86] proposed two techniques for the on-line identification of tool
wear based on the measurement of cutting forces and power signals. These
techniques use hidden Markov models (HMMs), commonly used in speech rec-
ognition. In the first method, bargraph monitoring of the HMM probabilities was
used to track the progress of tool wear during the drilling operation. In the second
method, sensor signals that correspond to various types of wear status, e.g., sharp,
workable and dull, were classified using a multiple modeling method. Experi-
mental results demonstrated the effectiveness of the proposed methods. Although
this work focused on on-line tool wear condition monitoring for drilling opera-
tions, the HMM monitoring techniques can be applied to other cutting processes.

Kim et al. [154] developed control charts for drilling burr formation for
stainless, AISI 304L, and low alloy steel, AISI 4118. Split point twist drills were
used for the experiments of this work. A drilling burr control chart, based on
experimental data, is a tool for prediction and control of drilling burrs. Burr
classification was carried out based on the geometric characteristics, burr forma-
tion mechanisms and sizes of the burrs. New parameters consisting of cutting
condition variables and drill diameter were developed, and used to show unique
distributions of the burr types. Burr types and the resultant burr size showed great
dependence on the new parameters regardless of the drill diameters. Through the
chart, burr type can be predicted with given cutting conditions. Also cutting
conditions that are believed to create preferred burr types can be selected.

Davim and António [68] presented experimental and numerical study of the
cutting forces, tool wear and surface finish, measured when drilling the particulate
metal matrix composite A356/20/SiCp-T6. The experimental work was developed
through the continuous measurement of the cutting forces with an appropriate
piezoelectric dynamometer. The wear type was identified and its evolution with
cutting time was measured. Drills with PCD were tested. The surface finish of
the holes was evaluated with a profilometer. Using the experimental results,
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a numerical search of optimal drilling conditions was performed. Since there were
contradictory objectives, such as maximization of tool life and minimization of
tool wear, the concept of the Pareto optimum solution was considered in the
optimization procedure. An evolution strategy was adopted to obtain the optimal
solution for cutting speed, feed rate and tool life prediction with industrial interest.
In another work, Davim and António [69] proposed a methodology aiming at the
selection of the optimized values for cutting conditions in turning and drilling
operations of aluminum matrix composites. A hybrid technique based on an
evolutionary search over a design space obtained by experimental way was con-
sidered. The machining forces, the surface finish and the tool wear were experi-
mentally measured considering the feed and the cutting velocity as predefined
parameters.

Karthikeyan et al. [142] attempted to optimize the drilling characteristics for
Al/SiCp composites using fuzzy logic and genetic algorithms (GA). The drilling
characteristics studied were drill wear, specific energy and surface roughness. The
parameters considered for the study included volume fraction of SiC in the alu-
minum matrix, cutting speed and feed rate. The experimental data was trained and
simulated using fuzzy logic and optimization of cutting conditions were performed
using genetic algorithms. The optimized cutting conditions were validated using
confirmation experiments. Kim and Ahn [150] proposed a monitoring method,
based on neural network and spindle motor power sensing, to detect the state of
chip disposal in drilling. If chip flow is bad during drilling, both the static com-
ponent and the fluctuation of the dynamic component of drilling torque increase
highly. Therefore, both of these components could be helpful in monitoring the
chip disposal state during drilling. Drilling torque was indirectly measured by
sensing the spindle motor power through an AC spindle motor drive system. From
the spindle motor power measurements, variance/mean, mean absolute deviation,
gradient, and event count were calculated as feature vectors and then presented to
the neural network to make a decision on the state of chip disposal. The selected
features were sensitive to changes in the state of chip disposal but comparatively
insensitive to changes in drilling conditions. A three-layered neural network with
an error-back-propagation algorithm was used. Experimental results showed that
the monitoring system could successfully recognize the state of chip disposal over
a wide range of drilling conditions.

Abu-Mahfouz [3] compared several architectures of feed-forward BPNN for
tool condition monitoring of twist drill wear. The network was trained using
vibration data and five drill wear conditions, viz., chisel wear, crater wear, flank
wear, edge fracture, and corner wear, which were artificially introduced in the
network for prediction of drill wear. Fully connected networks were found to be
better than grouped network and the vibration signals are promising data for tool
condition monitoring.

Balykov [27] presented the results of experimental studies in selecting opti-
mum characteristics for diamond drills and optimum treatment procedures for
drilling holes of 1–70 mm in diameter in hard brittle nonmetallic materials such
as quartz, ceramics, glass, and glass ceramics. To obtain experimental-
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mathematical models, a randomized experimental design was used at the
screening stage, i.e., a half-replica of the full factorial experiment 23, and an
orthogonal compositional design of the second order of type 35 was used at the
main stage. The diamond drilling process was optimized using simplex methods.
The correlation of the estimated values with experimental data showed the
adequacy of the results obtained.

Kim and Ramulu [153] optimized the drilling process of graphite/bismalei-
mide-titanium alloy (Gr/Bi–Ti) stacks in terms of machined hole quality and
machining cost. The drilling experiments were conducted by using two different
cutter materials, HSS-Co and carbide. Drilled hole quality parameters included
surface texture, titanium burrs, hole diameter, cylindricity, and roundness devia-
tion. Machining cost was estimated through drill wear experimentations. A mul-
tiple objective linear program was used to optimize drilling feed and speed not
only to maximize each hole quality parameter to the greatest extent possible but
also to minimize machining cost. Optimum process conditions for achieving
desired hole quality and process cost were found to be a combination of low feed
and low speed when using carbide drills, and high feed and low speed in drilling
with HSS-Co drills.

Tsao and Hocheng [293] presented a prediction and evaluation of delamination
factor while using a twist drill, a candle stick drill and a saw drill. The approach
was based on Taguchi’s method and the ANOVA. An ultrasonic C-Scan to
examine the delamination of carbon fiber-reinforced plastic (CFRP) laminate was
used. The experiments were conducted to study the delamination factor under
various cutting conditions. The experimental results indicated that the feed rate
and the drill diameter were recognized to make the most significant contribution to
the overall performance. The objective was to establish a correlation between feed
rate, spindle speed and drill diameter with the induced delamination in a CFRP
laminate. The correlation was obtained by multi-variable linear regression and was
compared with the experimental results.

A new approach based on PSO was developed by Onwubolu and Clerc [214]
for solving the drilling path optimization problem. The problem was modeled as a
TSP with appropriate weights and cost functions. Pedersen [229] studied the
optimization of a hole of given area which was placed in the interior of a plate with
an arbitrary external boundary. To avoid stress concentrations the shape of the hole
must be smooth (continuous curvature). The optimization was performed in
relation to maximizing the first eigen frequency or maximizing the gap between
the first and second eigen frequency. An inverse solution was also shown, i.e.
finding the shape and position of a hole in the plate that result in a specified eigen
frequency. A rather general parameterization with only seven design parameters
was applied, including the possibility of going from an ellipse to a rectangle or
even to a triangle. Optimal designs were obtained iteratively using mathematical
programming, where each of the redesigns were based on finite element (FE)
analysis and sensitivity analysis. Mindlin plate theory was the basis for the FE
analysis and the semi-analytical sensitivity analysis included only the elements on
the boundary of the hole.
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Sanjay et al. [253] proposed BPNN to detect drill wear on 8 mm HSS drill
while machining mild steel. The network was trained using spindle speed, feed,
drill size, machining time, torque, and thrust force as input parameters. The
authors found that the three layered network with the hidden layer having two and
ten neurons was the best layered network and predicted values were accurate
compared to regression analysis for all the combinations of cutting speed and feed.

Nouari et al. [208] discussed the change in wear mechanisms as a function of
cutting speed and coating material. The cutting tests were performed on a rigid
instrumented drilling bench without the use of cutting fluids. AA2024 aluminum
alloy was used to investigate the wear mechanisms of cemented tungsten carbide
and HSS tools. Three cutting speeds (25, 65 and 165 m/min) and a constant feed
rate of 0.04 mm/rev were selected for the experiments. The best results in terms of
maximum and minimum hole diameter deviations and surface roughness were
obtained for the uncoated and coated tungsten carbide drills. The results also
showed that HSS tool is not suitable for dry machining of AA2024 aluminum
alloy.

Bandyopadhyay et al. [28] reported the use of Taguchi DoE technique to study
the effects of the pulse energy, pulse repetition rate, pulse duration, focal position,
nozzle standoff, type of gas and gas pressure of the assist gas on the quality of the
laser-drilled holes and ascertain optimum processing conditions. Minimum taper in
the drilled hole was considered as the desired target response. The entire study was
conducted in three phases:(a) screening experiments to identify process variables
that critically influence taper in laser-drilled holes, (b) optimization experiments to
ascertain the set of parameters that would yield minimum taper and (c) validation
trials to assess the validity of the experimental procedures and results. Results
indicated that laser drilling with focal position on the surface of the material being
drilled and employing low level values of pulse duration and pulse energy rep-
resents the ideal conditions to achieve minimum taper in laser-drilled holes.

Langella et al. [165] presented a mechanistic model for use in predicting thrust
and torque during composite materials drilling. They specified the number of
coefficients to be experimentally determined and provided a detailed analysis of
the problems associated with the action of the chisel edge. Their theoretical
approach was suggested by the observation that during a drilling process the
prerequisites for orthogonal fiber cutting are met for an infinitesimal instant. Hence
their decision to simulate a conventional drilling process by developing a model
with only two semi-empirical coefficients. The method proposed is comparatively
user-friendly since the semi-empirical coefficients concerned can be determined
without difficulty by means of simple linear relations. The results obtained were
satisfactorily validated by comparing the test findings with the corresponding
theoretical data and it is possible to conclude that the model affords a focused
approach to the definition of the most appropriate drill geometry and cutting
parameters in composite materials drilling.

Paul et al. [228] investigated the optimization of twist drill point geometries in
order to minimize thrust and torque in drilling. A point geometry parameterization
based on the drill grinding parameters was used to ensure manufacturability of the
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optimized geometry. Three commonly used drill point geometries, namely, coni-
cal, RaCon� and helical, were optimized for drilling forces while maintaining the
inherent characteristics of each of the profiles. A significant reduction was shown
in the drilling forces for the optimized drills. Drills with the optimized conical
point profile were produced and tests were conducted to validate the reduction in
thrust and torque.

Heisel et al. [123] presented a method for the determination of the burr
dimensions to be expected in short-hole drilling, simultaneously taking the
parameters into consideration which influence the burr formation. These param-
eters were yield stress, forces and the geometry of the inserts. The method was
based on empirical cutting examinations and took account of the correlation
between different burr parameters and the machining conditions such as cutting
speed, feed and tool geometry. Using Schaefer’s burr value, it was possible to
make a quantitative evaluation of the burr dimensions. The method was verified
for the materials 16 MnCr 5 and Ck 45 in case of dry machining.

Bağci and Ozcelik [24] investigated the effects of drilling parameters (drilling
depth, feed rate, and spindle speed) on the twist drill bit temperature and thrust
force in the dry drilling of Al 7075-T651 material. During dry drilling experi-
ments, drill bit temperature and thrust forces were measured. Drill temperatures
were measured by inserting standard thermocouples through the coolant (oil) hole
of TiN/TiAlN- coated carbide drills. The settings of drilling parameters were
determined by using the Taguchi experimental design method. An orthogonal
array, the S/N ratio, and the ANOVA were employed to analyze the effect of
drilling parameters. The objective was to establish a model using multiple
regression analysis between spindle speed, drilling depth, feed rate, and drilling
method with the drill bit temperature and thrust force in a Al 7075-T651 alloy
material. The study showed that the Taguchi method is suitable to solve the
problems with a minimum number of trials as compared with a full factorial
design.

Sanjay and Jyothi [252] aimed to identify suitable parameters for the prediction
of surface roughness. Back-propagation neural networks were used for the
detection of surface roughness. Drill diameter, cutting speed, feed and machining
time were given as inputs to the neural network structure and surface roughness
was estimated. Drilling experiments with 12 mm drills are performed at three
cutting speeds and feeds. The number of neurons are selected from 1,2,3,…, 20.
The learning rate was selected as 0.01, and no smoothing factor was used. The best
structure of neural network was selected based on a criteria including the mini-
mum of sum of squares with the actual value of surface roughness. For mathe-
matical analysis, an inverse coefficient matrix method was used for calculating the
estimated values of surface roughness. Comparative analysis was performed
between actual values and estimated values obtained by mathematical analysis and
neural network structures.

Bağci and Ozcelik [25] investigated the effects of drilling depth, spindle speed
and feed rate on the drill bit temperature in step-by-step and continuous dry
drilling. Drill temperatures were measured by inserting standard thermocouples
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through the coolant (oil) hole of TiN/TiAlN-coated carbide drills. Experimental
studies were conducted by using two different workpiece materials, AISI 1040
steel and Al 7075-T651. Fernandes and Cook [90] described the development of an
empirical model of the maximum thrust force and torque produced during drilling
of carbon fiber with a ‘one shot’ drill bit. Shaw’s simplified equations were
adapted in order to accommodate for tool wear and used to predict maximum
thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill
bit. The mathematical model was dependent on the number of holes drilled pre-
viously, the geometry of the drill bit, the feed used and the thickness of the
workpiece. Ozcelik and Bağci [219] investigated the influences of the spindle
speed and feed rate on the drill temperature responses. A new experimental
approach was developed to measure drill temperature in drilling process. Drill
temperatures were measured by inserting standard thermocouples through the
coolant (oil) hole of TiAlN-coated carbide drills. Experimental parameters used in
the study were based on Taguchi’s method. Experimental study was conducted by
using two different workpiece materials, AISI 1040 steel and Al 7075-T651. The
drill bit temperature was predicted using a numerical calculation with Third Wave
AdvantEdgeTM Lagrangian based on explicit FEA software. The results obtained
from experimental study and finite element analyses (FEA) were compared. Good
agreement between the measured and analyzed temperature results was found in
dry drilling process.

Sardiñas et al. [259] proposed a multi-objective optimization of the drilling
process of a laminate composite material. The composite material tested was a
CFRP material, epoxy matrix reinforced with 55% of carbon fibers. The experi-
ments were carried out in a laminated plate (CFRP) with 4 mm of thickness, using
a 5-mm diameter drill (helical flute K10 drill). The depth of the holes was 4 mm.
The tests were repeated once. A piezoelectric dynamometer with a load amplifier
was used to acquire the torque and feed force. The damage around the holes (entry
and exit) was measured with a shop microscope. The damage of hole was quan-
tified by the delamination factor (DF), accordingly the following equation (from
[259]; reprinted with permission from Elsevier)

DF ¼ Dmax=Dhole ð2:92Þ

Dmax is the maximum diameter of the damage hole and Dhole the diameter of the
hole in lm.

An experimental design of two factors (cutting speed and feed rate) and three
levels was used. Cutting speed ‘V’ was varied from 30 to 50 m/min and feed rate
‘f’ was varied from 0.05 to 0.20 mm/rev. In order to obtain the models from
experimental data, some regression analyses were carried out. Six models were
developed for each dependent variable.

MT ¼ 0:1272 f 0:3061 ð2:93Þ

MT�MAX ¼ 0:4611f 0:5551 ð2:94Þ
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FF ¼ 133:6 f 0:6561 ð2:95Þ

FF�MAX ¼ 252:8 f 0:6620 ð2:96Þ

DF0 ¼ 1:193 f 0:1429V0:1022 ð2:97Þ

DF1 ¼ 0:9104 f 0:01402V0:04123 ð2:98Þ

MT and MT-MAX are the average cutting torque and maximum cutting torque,
respectively. FF and FF-MAX are the average cutting force and maximum cutting
force, respectively. DF0 and DF1 are the delamination factors at the entrance and
exit, respectively.

The cutting parameters (cutting speed V, and the feed rate f) were used as
decision variables in the optimization problem. Two different and mutually con-
flicting objectives were selected to be optimized. The first objective was the MRR,
which can be computed by the following expression:

MRR ¼ 250VfD ð2:99Þ

MRR represents the productivity of the drilling process and is inversely pro-
portional to the machining time.

The second optimization objective was the delamination factor, DF.

DF ¼ max DF0;DF1ð Þ ð2:100Þ

This objective describes the surface quality of the produced hole.
It is possible to note that the first objective must be maximized while the second

one must be minimized. In order to homogenize all objectives, the MRR must be
multiplied by -1. After this change, there were only minimization objectives in
the problem.

There are some constraints that limit the search space in the considered opti-
mization problem.

Vmin �V �Vmax ð2:101Þ

fmin � f � fmax ð2:102Þ

MT�MAX � MT½ � ð2:103Þ

FF�MAX � FF½ � ð2:104Þ

P ¼ 2pMTN=6� 104 �PMOTg ð2:105Þ

Where, Vmax and Vmin are the maximum and minimum allowed values of the
cutting speed respectively, fmax and fmin are the maximum and minimum allowed
values of the feed rate respectively, [MT] and [FF] are the allowed values of the
cutting torque and cutting force respectively given by the technical features of the
machine tool, P is the cutting power, PMOT is the machine tool motor power, g is
the efficiency of the transmission, and N is the spindle speed in rpm.
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A micro-genetic algorithm was implemented to carry out the optimization of
the process parameters. An a posteriori approach was used to obtain a set of
optimal solutions. Finally, the obtained outcomes were arranged in graphical form
(Pareto’s front) and analyzed to make the proper decision for different process
preferences.

Onwubolu and Kumar [217] presented a mathematical model for correlating the
interactions of some drilling control parameters such as speed, feed rate and drill
diameter and their effects on some responses such as axial force and torque acting
on the cutting tool during drilling by means of RSM. For this exercise, a three-
level full factorial design was chosen for experimentation using a PC-based
computer numerically controlled drilling machine built in-house. The significance
of the mathematical model developed was ascertained using Microsoft Excel�

regression analysis module. The results obtained showed that the mathematical
model was useful not only for predicting optimum process parameters for
achieving the desired quality but for process optimization. Using the optimal
combination of these parameters is useful in minimizing the axial force and torque
of drilling operations; by extension, other drilling parameters such as cutting
pressure, MRR, and power could be optimized since they depend on the combi-
nation of drilling parameters which affect the axial force and torque.

Kuar et al. [161] carried out experimental investigations into CNC pulsed
Nd:YAG laser micro-drilling of zirconium oxide (ZrO2). Influence of laser
machining parameters on the heat affected zone (HAZ) thickness and phenomena
of tapering of the machined micro-holes was experimentally investigated. RSM-
based optimal parametric analysis was performed to determine the optimal setting
of process parameters such as pulse frequency and pulse width, lamp current, assist
air pressure for achieving minimum HAZ thickness and taper of the micro-hole
machined by pulsed Nd:YAG laser. Minimum HAZ thickness was obtained as
0.0675 mm when the lamp current, pulse frequency, assisted air pressure and pulse
width were set at optimal parametric setting i.e. 17 amp, 2.0 kHz, 2.0 kg/cm2 and
2% of the duty cycle, respectively. Minimum taper was achieved as 0.0319 at
optimal parametric setting i.e. the lamp current of 17 amp, pulse frequency of
2.0 kHz, assisted air pressure of 0.6 kg/cm2 and pulse width of 2% of the duty
cycle. Analysis was also carried out for multi-optimization of both the responses
i.e. HAZ thickness and taper during pulsed Nd:YAG laser micro-drilling on ZrO2.

Arul et al. [17] performed drilling experiments on a (0/± 45/90)2s 3-mm-thick
glass fiber-reinforced laminate using 4-, 6- and 8-mm-diameter HSS drills. The
machining response of the quasi-isotropic laminate was studied by monitoring the
thrust and torque. The performance of the HSS drills for different cutting condi-
tions was studied by measuring the tool wear. Delamination due to drilling is a
major concern in machining a composite laminate and was analyzed by using
linear elastic fracture mechanics, classical plate bending theory, and the mechanics
of composites. A mechanical model for evaluating the critical thrust at which
delamination was initiated at different ply locations was used, and the critical
thrust force at the onset of delamination was found to be 70 N. The work analyzed
data on the thrust force, torque, and tool life by using a group method data
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handling (GMDH) algorithm. An optimization algorithm using simulated
annealing with a performance index was then applied to search for the optimal
process parameters for delaminatien constrained drilling.

Onwubolu [211, 212] presented a mathematical model for correlating the
interactions of some drilling control parameters such as speed, feed rate and drill
diameter, and their effects on some responses such as axial force and torque acting
on the cutting tool during drilling by means of RSM. For this exercise, a three-
level full factorial design was chosen for experimentation using a computer-based
computer numerically controlled drilling machine built in-house. Second, since
finding the optimum set of experimental factors that produces maximum or mini-
mum value of response(s), is a major step in RSM, the author had described a new
approach which was the optimization of the mathematical model realized from the
RSM using one of the recent optimization techniques, Tribes. Comparing the
optimization results for another published response problem between Gauss-Jordan
algorithm and Tribes approaches, it was found that Tribes clocked a better result.
Consequently, the author had reported the use of RSM for analyzing the cause and
effect of process parameters on responses, but also on optimization of the process
parameters themselves in order to realize optimal responses.

Sheng and Tomizuka [266] developed an intelligent control system using neural
network and fuzzy logic to control thrust force in drilling process. Drill head
position information is included in neural network model and fuzzy logic was used
to deal with gain variation due to drill wear. The proposed model was compared
with simulation and experimental results. It was found that the method worked
well over a wide operating range.

Ghaiebi and Solimanpur [102] dealt with the optimization of hole-making
operations in conditions where a hole may need several tools to get completed. The
objective was to minimize the summation of tool airtime and tool switch time.
This objective was affected by the sequence through which each operation of each
hole was done. The problem was formulated as a 0–1 non-linear mathematical
model. An ant algorithm was developed to solve the proposed mathematical
model. An illustrative example showed the application of the algorithm to opti-
mize the sequence of hole-making operations in a typical industrial part. The
performance of the proposed algorithm was tested through solving six benchmark
problems. The author’s assumption was that a hole is made in multiple passes each
of which need a particular tool and the machining process can be started from any
point.

Mohan et al. [194] conducted a series of experiments using TRIAC VMC CNC
machining center to machine the composite laminate specimens at various cutting
parameters and material parameters. The measured results of delamination at the
entry and exit side of the specimen were measured and analyzed using commercial
statistical software MINITAB 14. The experimental results indicated that the
specimen thickness, feed rate and cutting speed are reckoned to be the most
significant factors contributing to the delamination. A S/N ratio was employed to
analyze the influence of various parameters on peel up and push down delami-
nation factor in drilling of glass fiber-reinforced plastic (GFRP) composite
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laminates. The main objective of the study was to determine factors and combi-
nation of factors that influence the delamination using Taguchi and RSM and to
achieve the optimization machining conditions that would result in minimum
delamination. From the analysis it was evident that among the all significant
parameters, specimen thickness and cutting speed had significant influence on peel
up delamination and the specimen thickness and feed had more significant influ-
ence on push down delamination. Confirmation experiments were conducted to
verify the predicted optimal parameters with the experimental results, good
agreement between the predicted and experimental results obtained to be of the
order of 99%. Garg et al. [101] compared BPNN with RBFN for prediction of
flank wear in drilling process. Chip thickness was used as additional parameter to
train the networks. From the results, the authors found that RBFN requires large
number of training patterns and large network architecture to achieve same level of
desired accuracy as the BPNN in machining copper and mild steel work piece with
HSS drill bits.

Ghaiebi and Solimanpur [102] used an ant algorithm to minimize tool air-time
and tool switching time in a multiple hole-making process employing several
tools. The authors found that the proposed method is effective and efficient
compared to traditional dynamic programming. Dvivedi and Kumar [79]
investigated ultrasonic drilling of commercially pure titanium and titanium alloy
(Ti-6Al-4v). During the experiments, process parameters such as work piece, grit
size, slurry concentration, power rating and tools were changed to explore their
effect on the surface roughness. Taguchi’s technique was applied to obtain an
optimal setting of ultrasonic drilling process parameters. Average surface rough-
ness (Ra) was measured by using the Optical Profiling System. Two-dimensional
and three-dimensional contour plots were obtained from the profiling system to
quantify and visualize the surface roughness. From the experimental results and
further analysis, it was concluded that the effect of slurry concentration and grit
size had a significant effect on surface roughness more than other parameters.

Kurt et al. [162] reported application of Taguchi methods to optimize surface
finish and hole diameter accuracy in the dry drilling of Al 2024 alloy. The
parameters of hole quality were analyzed under varying cutting speeds (30, 45, and
60 m/min), feed rates (0.15, 0.20, and 0.25 mm/rev), depths of drilling (15 and
25 mm), and different drilling tools (uncoated and TiN- and TiAlN-coated) with a
118� point angle. This study included dry drilling with HSS twist drills. The
settings of the drilling parameters were determined by using Taguchi’s experi-
mental design method. Orthogonal arrays of Taguchi, the S/N ratio, the ANOVA,
and regression analyses were employed to find the optimal levels and to analyze
the effect of the drilling parameters on surface finish and hole diameter accuracy
values.

Arul et al. [18] employed acoustic emission (AE) sensing for on-line detection
of workpiece status and to improve the process stability and workpiece quality by
minimizing associated defects. Drilling trials were conducted on woven glass
fabric/epoxy with high-speed steel (HSS) drills to determine the relationship
between AE rms and cutting parameters. The variation of AE rms and power were
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in close correlation to the flank wear and hole shrinkage. The experimental results
showed that AE was very sensitive to the response of the drilling environment.
Gaitonde et al. [94] presented the application of the Taguchi optimization method
for simultaneous minimization of burr height and burr thickness influenced by
cutting conditions and drill geometry. The Taguchi design approach to the multi-
objective optimization problem was based on the introduction of a new concept of
fitness function for each trial of orthogonal array. The fitness function was derived
through mapping the objective functions of the drill optimization problem. Opti-
mal values of cutting speed, feed, point angle and lip clearance angle were
determined for selected drill diameter values to minimize burr height and burr
thickness during drilling of AISI 316L stainless steel workpieces.

Chang et al. [50] considered a scheduling problem for drilling operation in a
real-world printed circuit board factory. Two derivatives of multi-objective genetic
algorithms were proposed under two objectives, i.e. makespan and total tardiness
time. The algorithms possessed a rare characteristic from traditional multi-
objective genetic algorithms. The crossover and mutation rates of the proposed
algorithms can be variables or adjusted according to the searching performance
while the rates of traditional algorithm are fixed. Production data retrieved from
the shop floor were used as the test instances. The numerical results indicated that
both the proposed multi-objective genetic algorithms performed satisfactorily and
the adaptive multi-objective genetic algorithm performs better. Abrão et al. [2]
presented a literature survey on the machining of composite materials, more
specifically on drilling of GFRP and CFRP. Aspects such as tool materials and
geometry, machining parameters and their influence on the thrust force and torque
were investigated. Additionally, the quality of the holes produced was also
assessed, with special attention paid to the delamination damage. The results
indicated that despite the fact that some aspects, such as the effect of cutting
parameters and tool geometry on the quality of the hole had been extensively
studied over the last years, the phenomena associated to shearing of polymeric
composite materials require additional studies in order to allow a better under-
standing of the behavior of this category of materials when subjected to cutting.

Tsao [292] investigated the thrust force and surface roughness of core drill with
drill parameters (grit size of diamond, thickness, feed rate and spindle speed) in
drilling CFRP laminates. A L27 (3

13) orthogonal array and S/N were employed to
analyze the effect of drill parameters. Using Taguchi method for design of a robust
experiment, the interactions among factors were also investigated. The experi-
mental results indicated that thickness and feed rate were recognized to make the
most significant contribution to the overall performance. The correlation was
obtained by multi-variable non-linear regression and compared with the experi-
mental results. The confirmation tests demonstrated a feasible and an effective
method for the evaluation of drilling-induced thrust force and surface roughness
(errors within 10%) in drilling of composite material.

Choi et al. [62] used neural network to predict incipient stage of drill failure so
as to prevent any damage in the drilling process. Time and frequency domains of
feed motor current were taken as input parameters and drill wear state, viz.,
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0.1 mm for normal state and 0.9 mm for drill failure state, as output parameters of
the neural network. The authors found that the proposed algorithm predicted the
drill breakage accurately for different cutting conditions and machine tool types.
Basavarajappa et al. [32] discussed the influence of cutting parameters on drilling
characteristics of hybrid metal matrix composites (MMCs)—Al2219/15SiCp and
Al2219/15SiCp–3Gr. The composites were fabricated using stir casting method.
The Taguchi DoE and ANOVA were employed to analyze the drilling charac-
teristics of these composites. The experiments were conducted to study the effect
of spindle speed and feed rate on feed force, surface finish and burr height using
solid carbide multifacet drills of 5 mm diameter. The results revealed that the
dependent variables were greatly influenced by the feed rate rather than the speed
for both the composites. The ceramic–graphite reinforced composite has better
machinibility than those reinforced with SiCp composites.

Tsao and Hocheng [294] presented the prediction and evaluation of thrust force
and surface roughness in drilling of composite material using candle stick drill.
The approach was based on Taguchi method and the ANN. The experimental
results indicated that the feed rate and the drill diameter are the most significant
factors affecting the thrust force, while the feed rate and spindle speed contributing
most to the surface roughness. In this study, the objective was to establish a
correlation between the feed rate, spindle speed and drill diameter with the induced
thrust force and surface roughness in drilling composite laminate. The correlations
were obtained by multi-variable regression analysis and radial basis function
network (RBFN) and compared with the experimental results. The results indi-
cated that the RBFN is more effective than multi-variable regression analysis.

Zhu and Zhang [329] presented a new approach to solve the drilling path
optimization problem belonging to discrete space, based on the PSO algorithm.
Since the standard PSO algorithm is not guaranteed to be global convergent or
local convergent, based on the mathematical model, the algorithm was improved
by adopting the method to generate the stop evolution particle once again to obtain
the ability of convergence on the global optimization solution. Also, the operators
were proposed by establishing the Order Exchange Unit (OEU) and the Order
Exchange List (OEL) to satisfy the need of integer coding in drilling path opti-
mization. The experimentations indicated that the improved algorithm has the
characteristics of easy realization, fast convergence speed, and better global
convergence capability. The new PSO can play a role in solving the problem of
drilling path optimization.

Among the scientific problems in drilling, determining thrust forces for any drill
geometry and any work material remains an issue. This question is especially
critical in the context of the self-vibratory drilling (SVD) technology, since thrust
force governs the trajectory of cutting lips. In order to predict the dynamical
behavior of the self-vibratory drilling head (SVDH), Guibert et al. [110] developed
a numerical simulator to predict the relevant behavior of the SVD operations. The
authors had proposed to divide cutting edges into several parts in order to define
the local contribution of this part to the macroscopic thrust force. Local models
were identified during the penetration of the drill.
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Nandi and Davim [202] studied drilling performances with minimum quantity
lubricant (MQL). Fuzzy logic rules were used to develop fuzzy rule-based model
(FRBM). The performance of FRBM depends on two different aspects: structures
of fuzzy rules and the associated fuzzy sets (membership function distributions,
MFDs). The authors had investigated the performances of FRBMs based on
Mamdani and TSK-types of fuzzy logic rules with different shapes of MFDs for
prediction and performance analysis of machining with MQL in drilling of alu-
minum alloy. A comparison of the model predictions with experimental results and
those published in the literature showed that FRBM with TSK-type fuzzy rules
describes excellent trade-off with experimental measurements.

Lauderbaugh [167] presented a methodology to combine experimental, simu-
lation, and statistical tools to reduce the time and cost of parameter studies. The
statistical analysis was based on an experimentally verified simulation that predicts
burr height, force, heat flux, and temperature at breakthrough. The analysis was
based on parameters typical of 2024-T351 aluminum and 7075-T6 aluminum.
Parameter interactions were also considered. The results were compared well to
the experimental studies presented in the literature. Haber et al. [117] presented a
strategy for the optimal tuning of a fuzzy controller in a networked control system
using an off-line simulated annealing approach. The optimal tuning of the fuzzy
controller using a maximum known delay was based on the integral time absolute
error (ITAE) performance index. The goal was to obtain the optimal tuning
parameters for the input scaling factors where the ITAE performance index was
minimized. In this study, a step change in the force reference signal was consid-
ered as a disturbance, and the goal was to assess how well the system follows set-
point changes using the ITAE criterion. In order to improve the efficiency of high-
performance drilling processes while preserving tool life, the study focused on the
design and implementation of an optimal fuzzy-control system for drilling force.
Experimental tests of the drilling of two materials (GGG40 and 17-4 PH)
corroborated the excellent transient response and the minimum overshoot pre-
dicted by the simulation results. The optimal fuzzy-control system reduced the
influence of the increase in cutting force, eliminating the risk of rapid drill wear
and catastrophic drill breakage.

Rawat and Attia [241] presented an experimental investigation of the wear
mechanisms of tungsten carbide (WC) drills during dry high-speed drilling of
quasi-isotropic woven graphite fiber epoxy composites. Tool wear was evaluated
at spindle speeds of up to 15,000 rpm using a standard two flute drill. The authors
had examined the non-linear behavior of this tribo-system and the interdependence
of the wear process and cutting forces in relation to surface damage of the system
components. It was found that chipping and abrasion were the main mechanisms
controlling the deterioration of WC drill. The two friction regimes, the lightly and
heavily loaded, were found to dictate the increase in forces, delamination of
composite and surface roughness. The aggressive rubbing by fractured graphite
fibers and WC grains against the soft epoxy matrix caused high temperature rise
and consequently enhanced flank wear. During the primary and secondary wear
stages, wear on the flank face of main cutting edges was found to be dominant,

2.5 Drilling Process 141



while adhesion of carbon was found to occur along with abrasion in the tertiary
zone. Tool life results revealed the increase in the delamination and surface
roughness with transition from the primary to tertiary wear regime. The correlation
between tool wear, delamination damage and surface roughness was established.
Finally it was concluded that a tool replacement strategy could be devised by
monitoring the cutting forces.

Audy [21] presented the results of a systematic computer-assisted study focused
on determining, and describing, from a mathematical point of view, the relation-
ship between the drill point geometrical features and the performance measures as
assessed by the cutting forces and power in drilling. This was followed by a study
of predicted influences of drilling variables on the generated thrust, torque and
power. The results were presented for different types of modern commercial tool
surface coatings and work-piece materials. It was suggested that this sort of
information may be used, by both tool manufacturers and users, to assist in the
optimization, and selection, of the drill point geometrical features for ‘best’ per-
formance. Panda et al. [225] used two different types of ANN architectures viz.
back-propagation neural network (BPNN) and radial basis function network
(RBFN) in an attempt to predict flank wear in drills. Flank wear in drill depends
upon speed, feed rate, drill diameter and hence these parameters along with other
derived parameters such as thrust force, torque and vibration were used to predict
flank wear using ANN. Effect of using increasing number of sensors in the efficacy
of predicting drill wear by using ANN was studied. It was observed that inclusion
of vibration signal along with thrust force and torque leads to better prediction of
drill wear. The results obtained from the two different ANN architectures were
compared and some useful conclusions were derived.

Karnik et al. [140] focused on the analysis of delamination behavior as a
function of drilling process parameters at the entrance of the CFRP plates. The
delamination analysis in high-speed drilling was performed by developing an
ANN model with spindle speed, feed rate and point angle as the affecting
parameters. A multilayer feed-forward ANN architecture, trained using error back-
propagation training algorithm (EBPTA) was employed for this purpose. Drilling
experiments were conducted as per full factorial design using cemented carbide
(grade K20) twist drills. The ANN model so developed was validated by pre-
senting training and new testing input patterns. The validated ANN model was
then used to generate the direct and interaction effect plots to analyze the
delamination behavior. The simulation results illustrated the effectiveness of the
ANN models to analyze the effects of drilling process parameters on delamination
factor. The analysis also demonstrated the advantage of employing higher speed in
controlling the delamination during drilling.

Zolgharni et al. [331] demonstrated enhancements of performance and energy
efficiency of cutting tools by deposition of diamond-like carbon (DLC) coatings on
machine parts. DLC was deposited on steel drill bits, using plasma-enhanced
chemical vapor deposition (PECVD) with the acetylene precursor diluted with
argon, to produce a surface with low friction and low wear rate. Drill bit perfor-
mance in dry drilling of aluminum was quantified by analysis of power
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consumption and swarf flow. Optimized deposition conditions produced drill bits
with greatly enhanced performance over uncoated drill bits, showing a 25%
reduction in swarf clogging, a 36% reduction in power consumption and a greater
than five-fold increase in lifetime. Surface analysis with scanning electron
microscopy showed that DLC-coated drills exhibit much lower aluminum build up
on the trailing shank of the drill, enhancing the anti-adhering properties of the drill
and reducing heat generation during operation, resulting in the observed
improvements in efficiency.

Gaitonde et al. [95] presented the methodology of Taguchi optimization method
for simultaneous minimization of delamination factor at entry and exit of the holes
in drilling of SUPERPAN DÉCOR (melamine coating layer) medium density
fiberboard (MDF) panel. The delamination in drilling of MDF affects the aes-
thetical aspect of the final product and hence it is essential to select the best
combination values of the drilling process parameters to minimize it. The utility
concept was employed for the multi-performance characteristics optimization
using Taguchi design. The experiments were carried out as per L9 orthogonal array
with each experiment performed under different conditions of feed rate and cutting
speed. The ANOM was performed to determine the optimal levels of the param-
eters and the ANOVA was employed to identify the level of importance of the
machining parameters on delamination factor. The investigations revealed that the
delamination can be effectively reduced in drilling of MDF materials by
employing the higher cutting speed and lower feed rate values.

In their another work, Gaitonde et al. [96] presented the application of Taguchi
optimization method for simultaneous minimization of burr height and burr
thickness influenced by cutting conditions and drill geometry. Optimal values of
cutting speed, feed, point angle and lip clearance angle were determined for
selected drill diameter values to minimize burr height and burr thickness during
drilling of AISI 316L stainless steel workpieces. The effectiveness of the proposed
approach was demonstrated through simulation results and experimental verifi-
cations. In another work, Gaitonde et al. [97] investigated the application of
genetic algorithm (GA) for burr size minimization in drilling of AISI 316L
stainless steel using HSS twist drills. Experiments were planned as per central
composite rotatable DoE. The second order mathematical models for burr height
and burr thickness were developed using RSM with cutting speed, feed, drill
diameter, point angle and lip clearance angle as affecting parameters. The
developed RSM models were then employed with GA to determine the optimal
process parameters for a given drill diameter that results in minimum burr height
and thickness. The simulation results revealed that point angle and cutting speed
have significant effects in minimizing burr size.

Gaitonde et al. [98] presented the effects of process parameters on delamination
during high-speed drilling of CFRP composites. The drilling experiments using
cemented carbide (K20) twist drills were performed based on full factorial DoE
with three levels defined for each of the process parameters. The computed values
of delamination factor were empirically related to process parameters by devel-
oping a second order non-linear regression model based on RSM. The effects of
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cutting speed, feed rate and point angle on delamination factor were analyzed
using the models by generating response surface plots. The investigations revealed
that the delamination tendency decreases with increase in cutting speed. The study
also suggested low values of feed rate and point angle combination for reducing
the damage. The details of model development and model adequacy test by
ANOVA were presented by the authors.

Gaitonde et al. [99] attempted to predict and minimize the delamination in
drilling of MDF. The experiments were carried out on LAMIPAN PB panel based
on orthogonal array with feed rate and cutting speed as process parameters. The
second order delamination factor models at entry and exit of the holes were
developed using RSM. The parametric analysis was carried out to study the
interaction effects of the machining parameters. Taguchi’s quality loss function
approach was employed to simultaneously minimize the delamination factor at
entry and exit of the holes. From the ANOM and ANOVA, the optimal combi-
nation level and the significant parameters on delamination factor were obtained.
The optimization results showed that the combination of low feed rate with high
cutting speed was necessary to minimize delamination in drilling of MDF.

Haq et al. [118] presented a new approach for the optimization of drilling
parameters on drilling Al/SiC metal matrix composite with multiple responses
based on orthogonal array with grey relational analysis. Experiments were con-
ducted on LM25-based aluminum alloy reinforced with green-bonded silicon
carbide of size 25 lm (10% volume fraction). Drilling tests were carried out using
TiN-coated HSS twist drills of 10 mm diameter under dry condition. In this study,
drilling parameters namely cutting speed, feed and point angle were optimized
with the considerations of multi responses such as surface roughness, cutting force
and torque. A grey relational grade was obtained from the grey analysis. Based on
the grey relational grade, optimum levels of parameters were identified and sig-
nificant contribution of parameters was determined by ANOVA. Experimental
results had shown that the responses in drilling process can be improved effec-
tively through the new approach.

Singh et al. [276] made an attempt to investigate statistically the relative sig-
nificance of the drilling parameters on the thrust force and torque. The results of
ANOVA were then used to make assumptions for developing a Finite Element
model for predicting drilling-induced damage. The FE results were found in good
agreement with the experimental results.

Messaoud and Weihs [192] used non-linear time series modeling to setup an on-
line modeling approach of the time varying dynamics of the process. An on-line
monitoring strategy, based on control charts, was formed to detect chatter vibra-
tion. The results showed that the modeling approach provides an on-line procedure
that can answer questions about the time varying dynamics of the process. The on-
line monitoring strategy can detect the start of the transition from stable drilling to
chatter vibration and some alarm signals are related to changing physical condi-
tions of the process. Zhang and Chen [325] presented a study where the Taguchi
Design was applied to optimize the surface quality in a CNC drilling operation.
The control factors included feed rate, spindle speed, peck rate, and tool type while
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the noise factors simulated were shop vibration and the presence or absence of
magnetism in the workpiece material. Through statistical analysis of response
variables and S/N ratios, the determined significant factors were the spindle speed,
tool type, and peck rate, and the optimal combination of cutting parameters were
selected. Confirmation tests verified that the selected optimal combination through
Taguchi Design were able to achieve desired surface roughness.

Jadoun et al. [133] presented a study of the effect of process parameters on
production accuracy obtained through ultrasonic drilling of holes in alumina-based
ceramics using silicon carbide abrasive. Production accuracy in ultrasonic drilling
involves both dimensional accuracy (hole oversize) and form accuracy (out-of-
roundness and conicity). The parameters considered were workpiece material, tool
material, grit size of the abrasive, power rating and slurry concentration. Taguchi’s
optimization approach was used to obtain the optimal parameters. The significant
parameters were also identified and their effect on oversize, out-of-roundness and
conicity were studied. Johansen and Lund [138] studied the problem of maxi-
mizing the safety against failure of a fully three dimensional laminated composite
structure. The geometrically linear formulation of an eight node equivalent single
layer solid shell finite element which utilizes fully three dimensional linear elastic
orthotropic material properties was presented. Sensitivity analysis with respect to
localized failure criteria functions was performed through use of semi-analytically
calculated design sensitivities derived by the direct differentiation approach.
Models were hierarchically refined in a two stage procedure, where a coarse mesh
model was refined through the laminate thickness to obtain fully three dimensional
descriptions of the detailed stress–strain state in localized zones of interest, making
it possible to take into account in-plane and transverse delamination failure effects.

Prakash et al. [230] presented the systematic experimental investigation,
analysis and optimization of delamination factor in drilling of medium-density
fiberboards (MDF). Experiments were conducted on CNC drilling machine at
various cutting conditions. The parameters considered for the experiments were
cutting speed, feed rate and drill diameter. An empirical model was developed for
predicting the delamination factor at entry and exit of the holes in drilling of MDF
boards. Desirability function-based approach was employed for the optimization of
drilling parameters for minimizing the delamination factor at entry and exit in
drilling of MDF boards. The influences of different parameters and their interac-
tions are studied in detail and presented.

Kilickap [147] investigated the influence of the cutting parameters, such as
cutting speed and feed rate, and point angle on delamination produced when
drilling a GFRP composite. The damage generated associated with drilling GFRP
composites was observed, both at the entrance and the exit during the drilling.
Hence it was essential to obtain optimum cutting parameters minimizing delam-
ination during drilling of GFRP composites. The author had presented the appli-
cation of Taguchi method and ANOVA for minimization of delamination
influenced by drilling parameters and drill point angle. The optimum drilling
parameter combination was obtained by using the analysis of S/N ratio. The
conclusion revealed that feed rate and cutting speed were the most influential
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factors on the delamination. The best results of the delamination were obtained at
lower cutting speeds and feed rates. In another work, Kilickap [148] presented
the use of Taguchi and RSM for minimizing the burr height and the surface
roughness in drilling Al-7075. The Taguchi method was used to find optimal
cutting parameters. The author had investigated the influence of cutting parame-
ters, such as cutting speed and feed rate, and point angle on burr height and
surface roughness produced when drilling Al-7075. A plan of experiments, based
on L27 Taguchi design method, was performed drilling with cutting parameters in
Al-7075. All tests were conducted without coolant at cutting speeds of 4, 12, and
20 m/min and feed rates of 0.1, 0.2, and 0.3 mm/rev and point angle of 90�,
118�, and 135�. The orthogonal array, S/N ratio, and ANOVA were employed to
investigate the optimal drilling parameters of Al-7075. From the ANOM and
ANOVA, the optimal combination levels and the significant drilling parameters
on burr height and surface roughness were obtained. The optimization results
showed that the combination of low cutting speed, low feed rate, and high point
angle is necessary to minimize burr height. The best results of the surface
roughness were obtained at lower cutting speed and feed rates while at higher
point angle.

Chandrasekaran et al. [49] reviewed the application of soft computing tools to
four machining processes—turning, milling, drilling and grinding. The authors had
highlighted the progress made and discussed the issues that need to be addressed.
Iliescu et al. [130] presented the prediction and evaluation of thrust force in
drilling of carbon composite material. In order to extend tool life and improve
quality of hole drilling, a better understanding of uncoated and coated tool
behaviors is required. The authors had described the development of a phenom-
enological model between the thrust force, the drilling parameters and the tool
wear. The experimental results indicated that the feed rate, the cutting speed and
the tool wear were the most significant factors affecting the thrust force. The
model can be used for tool-wear monitoring.

Gómez et al. [105] studied a drilling process with different degrees of wear in
the drill bit to find relationships between acoustic emission (AE) and torque
measured during the drilling process, and also with the degree of wear of the tool.
SAE 1040 steel samples were drilled, making holes with 5 mm diameter twist drill
bits in continuous feed. The drill bits were modified with ‘‘artificial’’ (produced by
spark-erosion) and ‘‘real’’ (obtained by regular mechanical use) failures such as
different degrees of wear in the cutting edge and the outer corner. For every drilled
hole, torque and AE were simultaneously measured and acquired. The correlation
between the AE parameters and torque measured during the drilling process was
studied. Torque was measured as a control parameter to follow the dynamic
behavior of the drill bit. An alternative AE feature, called Mean Power (MP)
showed a good correlation with torque when the moving average (MA) was
computed. The AE mean power (MP) was related to different degrees of wear in
drill bits. Clusters for the different levels of wear in a 2-D plot were obtained. In
that plot the moving variance of the MP versus the moving average of the MP, for
each case of wear, were represented. This application was aimed at repetitive
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manufacturing operations, where many signals per second may be obtained with
fixed parameters as shape, drill bit diameter, spindle speed, and feed.

2.6 Finishing Processes

Interest in the precision machining of engineering materials has increased greatly.
To ensure reliable performance and prolonged service life of modern machinery,
its components require to be manufactured not only with high dimensional and
geometrical accuracy but also with high surface finish. The surface finish has a
vital role in influencing functional characteristics like wear resistance, fatigue
strength, corrosion resistance and power loss due to friction. Unfortunately, normal
machining methods like turning, milling or even classical grinding can not meet
this stringent requirement. Therefore, finishing processes like lapping, honing,
polishing, and superfinishing are being employed to achieve and improve the
functional properties in the machine component.

2.6.1 Lapping Process

Lapping is regarded as the oldest method of obtaining a fine finish. Lapping is
basically an abrasive process in which loose abrasives function as cutting points
finding momentary support from the laps. Material removal in lapping usually
ranges from 0.003 to 0.03 mm but many reach 0.08–0.1 mm in certain cases. Cast
iron is the mostly used lap material. However, soft steel, copper, brass, hardwood
as well as hardened steel and glass are also used. The abrasives of lapping include
Al2O3 and SiC (grain size 5–100 lm), Cr2O3 (grain size 1–2 lm), B4C3 (grain size
5–60 lm), and diamond (grain size 0.5–5 lm). Vehicle materials for lapping
include machine oil, rape oil, and grease. Technical parameters affecting lapping
processes are unit pressure, the grain size of abrasive, concentration of abrasive in
the vehicle, and lapping speed. Lapping is performed either manually or by
machine. Hand lapping is done with abrasive powder as lapping medium, whereas
machine lapping is done either with abrasive powder or with bonded abrasive
wheel. Figure 2.15 shows the scheme of lapping process.

Lapping, a typical finishing method, is generally used for the purpose of
obtaining a high quality of surface, but, because it is a very slow process, it needs
to be characterized and optimized. However, it is quite difficult to characterize and
optimize the process by means of a theoretical model because it is a very com-
plicated and random process, affected by numerous variables and factors of the
process as well as those of the environment. Thus, experimental approaches are
needed to analyze the process. The statistical design method makes the experi-
mental analysis efficient, systematic and logical. Chen et al. [57] carried out a
series of lapping experiments with a specially designed lapping machine.
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Workpiece materials used in the experiments were representatives of advanced
ceramics such as Si3N4, SiC, ZrO2 and Al2O3. Influences of the lapping pressure as
well as the relative speed on the material removal process were investigated. The
role of the hardness of the lapping plate on the lapping process was studied. The
results obtained through the study provided some useful information for improving
the efficiency of ceramics lapping.

Kim and Choi [151] used the experimental design method to analyze the
characteristics of the cylindrical lapping of fine-ceramics, Al2O3. An experimental
apparatus was manufactured by the authors in the laboratory. The lapping wheel
makes line-contact with the workpiece and has a traverse motion as well as a
vibrational motion in the axial direction. The lapping pressure was applied to the
workpiece by means of an air cylinder and was maintained at a constant value.
Cylindrical fine-ceramic workpieces, Al2O3, of length 120 mm and diameter
70 mm were used. The initial surface roughnesses had somewhat different values,
ranging from 1.5 to 1.6 lm according to the workpiece. Lapping compound was
made by mixing diamond abrasive and kerosine. In this experiment, the aim was to
obtain the effect of each variable on the response quantitatively and for this
purpose only two levels for each variable being selected. Lapping pressure, A (0.5
and 1 kgf/cm2); circumferential speed, B (11 and 22 m/min); vibrational fre-
quency, C (5 and 10 Hz); grain size, D (5–10 lm and 20–30 lm); lapping time, E
(10 and 20 min); and traverse speed, F (12.5 and 25 mm/min). High and low levels
were represented as +1, and -1, respectively. The optimal variable combination
for the improvement of surface roughness was found to be A+B-C+D+E+F+ which
represents the simplest form of characterization for the process.

The amount of surface roughness improvement was chosen as a response
variable, and surface roughnesses of ten points were measured for each experiment
and averaged for use in the calculations. The process of the cylindrical lapping of
fine-ceramics was characterized by computing the effects of each variable on the

Fig. 2.15 Lapping process
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response quantitatively in a screening experiment, the calculated effects deter-
mining which variables were significant or not. It appeared that three variables, i.e.
lapping pressure, abrasive grain size and lapping time, had significant effects on
the response. Each of these variables could be selected as a variable for RSM, but
the authors had selected only two variables, lapping pressure and lapping time.
Abrasive grain size was excluded because it did not have a continuous value. RSM
was then applied for the significant variables to determine the critical point (or the)
stationary point of lapping. The second order model for the surface roughness (Y)
fitted by the least-squares method is as follows:

Y ¼ 1:274þ 0:0043X1 þ 0:0124X2 � 0:0245X2
1 � 0:0021X2

2 ð2:106Þ

where X1 and X2 represent coded variables of lapping pressure and lapping time,
respectively. As a result, the time for the maximum improvement of surface
roughness under given lapping conditions as well as maximum improvement value
were predicted by the fitted model.

In another work, Kim and Choi [152] performed the cylindrical lapping
experiment using Taguchi’s L8 orthogonal array and analyzed by ANOVA table.
As a result, effective variables and interaction effects were identified and dis-
cussed. Also the optimal variable combination to obtain the largest percentage
improvement of surface roughness was selected and confirmatory experiments
were performed. Wang et al. [309] developed a computer-controlled system for
ultra-precision lapping of granite surface plates. The system can easily achieve a
high lapping efficiency and high flatness accuracy due to its capability of on-line
measurement of flatness, optimization of the lapping process, and automation of
the lapping operation. The system was successfully applied to a number of granite
surface plates, and the results showed that a flatness error of less than 2 lm over a
1 m 9 2 m area was obtained. The authors also presented the principle of on-line
measurement of flatness and experimental results based on the computer-
controlled lapping system.

Guevarra et al. [109] presented a new approach in lapping process in making
appropriate condition to improve the manufacturing operations for ball screw.
After grinding, high precision ball screw was lapped by highly skilled operators.
These operators have the ability to control and maintain the lapping conditions by
sensing the lapping torque manually. Prior to lapping process, the effective
diameter must be measured to find out the effective threaded profile along the
screw shaft. The section which has a large effective diameter will be primarily
lapped wherein the lapping torque is high. The authors had established a control
scheme on the automatic lapping machine for high precision ball screw in both
measuring and finishing process. A prototyped horizontal lapping machine with in-
process torque monitoring system was designed, built, and tested. This was to
determine the relationship among lapping torque, effective diameter, and error on
travel to establish the measurement system to control the finishing operations
efficiently and eventually improve and eliminate the various sorts of error com-
ponents in a ball screw. The experimental results showed that the new lapping
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method could adequately predict the effective diameter and error on travel by
observing the lapping torque.

Micro-ultrasonic assisted lapping shows a high feasibility of generating
microstructures with aspect ratios up to even larger than five in brittle materials.
Through introducing several innovative strategies such as rotated tool, on-machine
tool preparation, and vibration-applied workpiece, holes as small as 5 lm in
diameter have been machined in quartz glass and silicon. Complex structures like
spiral trenches have also been claimed true by use of the path-controlled scanning
mode. But, the currently available knowledge on micro ultrasonic assisted lapping
is still insufficient especially on tool wear, subsurface damage control, and rela-
tively coarse surface roughness in the scanning mode. Further investigations in
these aspects include the introduction of AE-based sensing and monitoring. Zhang
et al. [327] reviewed some new advances in micro ultrasonic assisted lapping. The
authors had opined that a success in this area of research would open up promising
prospects for cost-effective manufacture of micro fluidics and their wear-resistant
molds.

In general, to maximize the MRR in lapping operation, an optimum lapping
pressure and abrasive concentration in the vehicle, and lapping time have to be
chosen. With the increase in lapping pressure and MRR increases. However, MRR
increases only up to certain value of lapping pressure and then decreases. Both
MRR and surface roughness increase with the increase in abrasive grain size. The
grain size corresponding to permissible surface roughness and maximum MRR
may be different. Primary consideration is made on the permissible surface
roughness in selecting abrasive grain size. Both MRR and surface roughness
decrease with the increase in lapping time.

2.6.2 Honing Process

Honing is a finishing process, in which a tool called hone carries out a combined
rotary and reciprocating motion while the workpiece does not perform any
working motion. Most honing is done on internal cylindrical surface, such as
automobile cylindrical walls. The honing stones are held against the workpiece
with controlled light pressure. The honing head is not guided externally but,
instead, floats in the hole, being guided by the work surface. In honing rotary and
oscillatory motions are combined to produce a cross hatched lay pattern. The
honing stones are given a complex motion so as to prevent every single grit from
repeating its path over the work surface. The critical process parameters are,
(1) rotation speed, (2) oscillation speed, (3) length and position of the stroke, and
(4) honing stick pressure. With conventional abrasive honing stick, several strokes
are necessary to obtain the desired finish on the work piece. However, with
introduction of high-performance diamond and CBN grits it is now possible to
perform the honing operation in just one complete stroke. Advent of precisely
engineered microcrystalline CBN grit has enhanced the capability further. Honing
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stick with microcrystalline CBN grit can maintain sharp cutting condition with
consistent results over long duration. Figure 2.16 shows the honing process.

The important parameters that affect MRR and surface roughness (R) are,
(1) unit pressure, (2) peripheral honing speed, and (3) honing time. The unit
pressure should be selected so as to get minimum surface roughness with highest
possible MRR. An increase of peripheral honing speed leads to enhancement of
MRR and decrease in surface roughness. With increase in honing time, MRR
decreases. On the other hand, surface roughness decreases and after attaining a
minimum value again rises. The selection of honing time depends very much on
the permissible surface roughness.

Saljé and See [250] investigated the influence of honing stone topography on
honing process. By variation of sharpening conditions, honing stone topography
was adapted to the honing process so that a constant workpiece roughness was
produced immediately after sharpening. Also correlations between normal force,
tangential force, MRR and workplace roughness were investigated and different
strategies for supervising and controlling the honing process were given. Another
possibility for optimization was given by increasing the cutting speed.

Guo et al. [111] reported the optimization of the structure parameters by cal-
culating the machining accuracy coefficient and wear coefficient of inside-triangle
and outside-triangle radial structure honing wheels. With a design circulation
program and analyzing the results data, it was obvious that suitable radial structure
honing wheels were obtained to improve the machining accuracy in ultra-precision
plane honing. Furthermore, the results were used for the derivation of the best
pattern structure of the wheel with lesser honing wheel wear and high machining
accuracy.

Providing an analytical model for an abrasive process such as honing is
extremely difficult, if not impossible. The fact that using IS0 13565 will have to
deal with five surface roughness parameters further complicates the modeling task.
For decades, the arithmetic average (AA or Ra) and root sum of squares (RSS or
Rq) have been the two major surface roughness measures to define a broad range of
surfaces for a mechanical product. A number of drawbacks have been identified in
recent years with the above measures. To map more scientifically and closely the
surface roughness to the product functions and performances, ISO 13565 has
defined a different set of measures, including Rk, Rpk, Rvk, Mr1, and Mr2. This has
not only made process planning different and much more difficult, but also made

Fig. 2.16 Honing Process

2.6 Finishing Processes 151



modeling of the relationship between these roughness measures and the machining
parameters a multiple-input and multiple-output problem. While some companies
are trying the traditional trial-and-error method to implement the ISO 13565
standard, Feng et al. [88] applied ANNs to develop an empirical model for the
honing process of engine cylinder liners in order to help reduce emissions,
improve oil efficiency, and prolong engine life. Threefold cross-validation was
applied to develop the models. Hypothesis testing and the prediction error statistics
were employed to select the best model. Data from industrial experiments based on
fractional factorial design illustrated the goodness of the modeling approach and
the models.

Feng et al. [89] proposed a rigorous procedure for evaluating the validation and
data splitting methods in predictive regression modeling. Experimental data from a
honing surface roughness study was used to illustrate the methodology. In par-
ticular, the individual versus average data splitting methods as well as the fivefold
versus threefold cross-validation methods were compared. The authors had
showed that statistical tests and prediction errors evaluation are important in subset
selection and cross-validation of predictive regression models. No statistical dif-
ferences were found between the fivefold and the threefold cross-validation
methods, and between use of the individual and average data splitting methods in
predictive regression modeling.

Electro chemical honing (ECH) is a hybrid electrolytic precision micro-
finishing technology that integrates physicochemical actions of the and conven-
tional honing processes to provide controlled functional surface-generation and
fast material removal capabilities in a single operation. Dubey [75] presented a
Taguchi loss function-based hybrid strategy for the multi-performance optimiza-
tion of electrochemical honing process. The proposed strategy utilizes a radial
basis function neural network (RBFNN) for the process parametric mapping with
the loss functions of ECH multi-performance characteristics determined through a
Taguchi matrix robust experimental design. The network outputs were then unified
using desirability function (DF) approach to provide an objective function to
genetic algorithm (GA). Finally, GA predicts the optimal process parametric
settings for multi-performance optimization of ECH. Simulated results confirmed
the feasibility of the strategy and showed good close agreement with actual
experimental results over a wide range of machining conditions employed in the
process. In another work, Dubey [76] made a critical evaluation of Taguchi-
RBFNN-DF-GA strategy and GA-tuned fuzzy Taguchi inference application, their
prospective features, strengths and weaknesses for benefit of the user and research
fraternity. The methodologies were demonstrated using a case study of multi-
performance modeling and optimization control ECH, involving three perfor-
mance criteria. Results indicated that all three techniques are well suited to the
complex manufacturing processes that involve several correlated variables with
vaguely defined parametric relationships like in ECH. It was also found that the
predicted optimal results are sensitive to the way the factorial interactions are
treated. The actual experimental results at the optimal parametric conditions
predicted using the three approaches were quite close.
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Dubey [77] presented a utility-based Taguchi loss function strategy for the
multi-response optimization of ECH process. The approach utilized a composite
utility function using the Taguchi loss functions of multiple ECH responses in
selecting the optimal parametric settings such that the overall functional utility of
the product was maximized. The use of the Taguchi loss functions ensured the
process was robust against the random variations. Actual experiments confirmed
the feasibility of the strategy over a wide range of machining conditions employed
in ECH.

2.6.3 Superfinishing Process

Superfinishing is widely used as a subsequent operation after grinding to reduce
surface roughness and increase bearing load capacity. During superfinishing of
cylindrical surfaces, an axially oscillating abrasive stone is pressed against a
rotating workpiece. The ratio of axial oscillation frequency to workpiece rotational
frequency should be selected so as to avoid integer values, which result in low
stock removal, and half values, which can lead to lobe formation. Finer grit stones
provide smoother surface finishes but less stock removal; therefore, the grit size
selected should be only fine enough to generate the required surface roughness.
Varghese and Malkin [299] explored methods for enhancing superfinishing per-
formance. Experiments conducted on hardened bearing steel indicated the exis-
tence of an optimal applied contact pressure where both the stock removal and the
finishing ratio were maximum and the specific energy was minimum. Above the
critical pressure, the stock removal was adversely affected by loading of debris on
the stone surface. Applying ultrasonic vibrations normal to the surface was found
to reduce loading by promoting stone wear. Further enhancement in superfinishing
performance was achieved by providing axial grooves on the stone surface. The
use of ultrasonic vibrations together with axially grooved stones increased the
stock removal by as much as 65% while providing comparable surface roughness.
In another work, Varghese and Malkin [300] presented the details of selection of
optimal superfinishing conditions. Experimental results were presented that show
the effect of contact pressure, process kinematics, and grit size on superfinishing
behavior. An optimal contact pressure was found at which the removal rate was
maximized.

Simulation of wear evolution during abrasive processes is a very difficult task
compared to that of machining processes because of the degree of randomness of
geometry and disposition of cutting teeth. Superfinishing is a specific case of
abrasive process, where the temperature is not consistently involved. A wear
model and a numerical method of simulating the process, involving data collected
in a testing experiment that resulted in determining an abrasive function, were
presented by Neagu-Ventzel et al. [206] for the specific case of the superfinishing
the ball track of an inner bearing ring. Four types of stones were tested while
abrading a cylindrical sample of M50 steel, using a high fluidity oil as a lubricant.
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The abrasive function characteristic to the materials involved in the process was
determined. The wear volume of stone, that resulted in simulation and superfin-
ishing experiments, was compared for three of the stones, and a good agreement
between them was obtained, endorsing the viability of the simulation. The stability
of the results with mesh refinement was analyzed. Three other output parameters
of the simulated process and their dependency on the stone type were discussed.
This model of superfinishing wear and simulation of superfinishing process can be
used in conjunction with a database resulted from a standardized testing wear
experiment, for predicting the wear volume and distribution of tool and workpiece
in superfinishing.

Chang et al. [51] described a systematic investigation of the effect of process
parameters on evolution of superfinished surface texture. For a given stone, the
surface roughness reaches a steady state value as the process proceeds, regardless
of test conditions, in the rough finishing regime. An analysis of experimental
surface roughness data indicated that this process characteristic can be well
described by an exponential form of time dependence and the contact pressure has
no effect on this time dependence. Optimal performance associated with higher
MRR, fairly fine surface finish and less production time in rough superfinishing
can be achieved using higher workpiece rotational speed and contact pressure.

Bigerelle et al. [37] introduced an engineering attempt to rigorously model a
synchronizing functional surface (cone surface of idler gear) according to its finish
specifications. The virtual input surface was generated by an original fractal
function, which reproduces the surface ‘‘signature’’ due to the wheel grinding
process. To model the subsequent superfinishing operation by belt finishing pro-
cess, which uses a soft-coated belt as a tool, an algorithm simulating the abrasive
polishing conditions was developed and applied to rework the initial fractal sur-
face. The basic idea of this model was that the higher the height of a peak of the
profile, the lower its probability of resistance during an abrasion cycle. The belt
finishing process was modeled by five parameters: two parameters that charac-
terize the initial surface (fractal dimension and range amplitude) and three
parameters describing the abrasion polishing process (probability of resistance,
wear volume and the number of abrasion cycles). A functional model with an
optimization scheme was created. This simulation provides the morphology of the
initial surface and how to cope with the superfinishing process to obtain the
functionality of the surface. An elevated initial roughness was required from which
slow erosion was proceeded to erode peaks and conserve some valleys of the initial
profile (lubricant tanks). Finally, it was shown that automotive designers impose
morphological specifications obtained by the belt grinding process to prevent
scuffing of the motor parts. However, this methodology possesses some limita-
tions: characterizing a functionality of surfaces with roughness parameters reduces
irreversibly the information on surface and it is ambiguous to state that if a surface
is characterized by these parameters then its functionality is reached. A way to
minimize these artifacts is to characterize the surface with multi-scale measures, so
the surface will possess the same characteristic at all the scales. Even in this case,
it does not assume that other surfaces will not possess the same functionality: the
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multi-scale characterization must be proceeded by taking into account the perti-
nent scale on which the morphology plays a major role on the functionality of the
surface.

Jiang and Ge [136] described through centerless superfinishing as a final pro-
cess in roller bearing manufacturing to the better performance of bearings. Applied
loads, rotational speeds, reciprocating frequencies and amplitude of superfinishing
stones are crucial parameters, which mainly influence the surface topography, and
are difficult to be adjusted to achieve optimal superfinishing effect. A superfin-
ishing model was established, which included cutting and motion models and then
a simulation method was presented to form the topography on the condition of
various combinations of the above three parameters. This work provides a useful
means to select reasonable combination of superfinishing parameters for roller
bearing buildings.

Brinksmeier et al. [43] presented a new grinding strategy for a surface super-
finishing and a grind-strengthening of the surface layer of steels in a single
grinding step. Grinding with the new process strategy leads to benefits because a
grind-strengthened surface layer eliminates initial wear and abrasion within the
system, reduces surface finish roughness, extends fatigue strength, and reduces risk
of part failure during operation.

2.6.4 Ball-Burnishing Process

Ball burnishing, a plastic deformation process, is becoming more popular as a
finishing process. The ball-burnishing process consists of pressing hardened steel
rolls or balls into the surface of the workpiece and imparting a feed motion to the
same. Ball burnishing of a cylindrical surface is illustrated in Fig. 2.17. Burnishing
process has an influence on microstructure of the burnished components. The
parameters affecting the surface finish are: burnishing force, feed, ball or roller
material, number of passes, workpiece material, and lubrication.

Loh et al. [183] reported that, ball-burnishing parameters have an influence on
surface hardness of the burnished component. These parameters also influence
burnished surface wear resistance. Experimental work based on 34 factorial design
was carried out on a vertical machining center to establish the effects of ball-
burnishing parameters on the surface roughness of AISI 1045 specimens. Analyses
of the results by the ANOVA technique and the F test showed that the ball
material, the lubricant, the feed and the depth of penetration, have significant
effects on the surface roughness. A pre-machined surface roughness of 4 lm could
be finished to about 0.772 lm. In another work, Loh et al. [184] reported on the
optimization of the surface finish produced by the ball-burnishing process, using
the RSM technique. A second-order mathematical model correlating two pre-
dominant process parameters, viz, depth of penetration and feed, with the surface
roughness parameter Rtm was obtained. The model can be used in selecting the
optimum process parameters for obtaining a desired controlled surface finish. The
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optimum surface roughness predicted by the model was found to agree well with
the results of experiment.

The effect of the process on specimens of different materials was studied by
many authors. Lee et al. [170] reported that, the surface of 316L stainless steel was
improved by ball-burnishing process. The surface finish of brass components also
was improved by optimizing the number of ball passes with the burnishing force
[122]. The process also increased the adhesive wear resistance of an electrically
conductive polyester–carbon film [193]. Wear resistance and adhesive wear
resistance of the brass components were also increased by burnishing processes
[121].

El-Wahab and Abdelhay [85] developed a new algorithm for burnishing
complex profiles on CNC machine centers using a newly designed burnishing tool.
The selection of tool parameters was established to determine the burnishing ball
size, spring stiffness and retaining rim height to satisfy an optimum performance.
Experimental work and theoretical analysis were utilized for this purpose.
A burnishing algorithm was developed to compute the geometrical path of the tool
along a hemispherical contour shape, in order to ensure a uniform predetermined
burnishing force and to prevent any geometrical interference. The developed
algorithm introduced a new G-code function and new parameters to the tool data
memory. A case study was presented to illustrate and support the usage of both the
proposed tool design and new CNC algorithm.

To study the effect of burnishing process on the specimen’s characteristics as
well as to optimize the process parameters, models for the process are effective
tools. Shiou and Chen [268] introduced the possible ball-burnishing surface finish
process of a freeform surface plastic injection mold on a machining center. The
design and manufacture of a burnishing tool was first accomplished in this study.
The optimal plane ball-burnishing parameters were determined by utilizing the
Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a
machining center. Four burnishing parameters, namely the ball material, bur-
nishing speed, burnishing force, and feed, were selected as the experimental

Fig. 2.17 Ball-burnishing
process
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factors of Taguchi’s DoE to determine the optimal burnishing parameters, which
have the dominant influence on surface roughness. The optimal burnishing
parameters were found out after conducting the experiments of the Taguchi’s L18
orthogonal table, ANOVA, and the full factorial experiment. The optimal plane
burnishing parameters for the plastic injection mold steel PDS5 were the combi-
nation of the tungsten carbide ball, the burnishing speed of 200 mm/min, the
burnishing force of 300 N, and the feed of 40 lm. The surface roughness Ra of the
specimen could be improved from about 1–0.07 lm by using the optimal bur-
nishing parameters for plane burnishing. Applying the optimal burnishing
parameters for plane burnishing to freeform surface plastic injection mold, the
surface roughness Ra of freeform surface region on the tested plastic injection part
could be improved from about 0.842–0.187 lm, through a comparison between
using the fine milled and using the ball-burnished mold cavity. de Lacalle et al.
[71] studied the use of the ball-burnishing process to improve the final quality of
Inconel 718 surfaces. This process changes the roughness and residual stresses of
the previously end-milled surfaces, achieving the finishing requirements for engine
components. Both the burnishing system and main parameters were taken into
account, considering their influence on finishing. Workpiece surface integrity was
ensured due to the compression effect of this surface enhancement process and its
associated cold working. Results of different tested pieces were discussed in
relation to the maximum and mean surface roughness achieved microstructure and
surface hardness. Results of heat-treated low carbon mold steel P20 (32 HRC)
were compared with those for the nickel alloy Inconel 718 (solution treated and
age hardening, 40 HRC). The main conclusions were that using a large radial
width of cut in the previous end-milling operation, together with a small radial
width of cut during burnishing can produce acceptable final roughness and com-
pression cold working is higher and deeper in the Inconel 718 than in the steel
case.

Korzynski [157] proposed a model of burnishing using a spherical tool and
studied the force–surface roughness relation. Shiou and Ciou [270] developed a
vibration-assisted spherical polishing system driven by a piezoelectric actuator on
a machining center to improve the burnished surface roughness of hardened
STAVAX plastic mold stainless steel and to reduce the volumetric wear of the
polishing ball. The optimal plane surface ball-burnishing and vibration-assisted
spherical polishing parameters of the specimens were determined after conducting
the Taguchi’s L9 and L18 matrix experiments, respectively. The surface roughness
Ra = 0.10 lm, on average, of the burnished specimens could be improved to
Ra = 0.036 lm (Rmax = 0.380 lm) using the optimal plane surface vibration-
assisted spherical polishing process. The improvement of volumetric wear of the
polishing ball was about 72% using the vibration-assisted polishing process
compared with the non-vibrated polishing process. A simplified kinetic model of
the vibration-assisted spherical polishing system for the burnished surface profile
was also derived by the authors. Applying the optimal plane surface ball-
burnishing and vibrated spherical polishing parameters sequentially to a fine-
milled freeform surface carrier of an F-theta scan lens, the surface roughness of
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Ra = 0.045 lm, on average, within the measuring range of 149 lm 9 112 lm on
the freeform surface, was obtainable.

Rao et al. [239] carried out experimental work based on 34 factorial design to
establish the effects of ball-burnishing parameters on the surface hardness of high-
strength low alloy steels (HSLA) dual-phase (DP) steel specimens. Statistical
analysis of the results showed that the speed, feed, lubricant and ball diameter have
significant effect on surface hardness. In another work, Rao et al. [240] carried out
experimentation to establish the effect of burnishing parameters viz., feed rate,
speed, force, ball diameter and lubricant on surface hardness, and wear resistance
of HSLA dual-phase steel specimens. The result indicated that burnishing
parameters have significant effect on the surface hardness and wear resistance.

El-Tayeb et al. [84] designed and fabricated simple and inexpensive burnishing
tools, with interchangeable adapter for ball and roller. Then, ball-burnishing
processes were carried out on aluminum 6061 under different parameters and
different burnishing orientations to investigate the role of burnishing speed, bur-
nishing force and burnishing tool dimension on the surface qualities and tribo-
logical properties. The results showed that burnishing speed of 330 rpm and
burnishing force of 160 N produce optimum results. Meanwhile, a decrease in the
burnishing ball diameter led to a considerable improvement in the surface
roughness up to 75%. On the other hand, parallel burnishing orientation exhibited
lower friction coefficient compared to cross-burnishing orientation. Furthermore,
ball-burnishing process was capable of improving friction coefficient by 48%
reduction and weight loss by 60-80% reduction of burnished surface of Aluminum
6061.

Shiou and Hsu [271] aimed to improve surface roughness of the hardened and
tempered STAVAX plastic mold stainless steel using the ball grinding, ball-
burnishing and ball-polishing surface finish processes on a machining center. The
flat surface optimal ball-burnishing and spherical polishing parameters were
determined after conducting the Taguchi’s L9 and L18matrix experiments, ANOVA,
and the full factorial experiment, respectively. The surface roughness of the ground
test specimens could be improved from about Ra = 0.5167–0.123 lmon average by
using the optimal flat surface ball-burnishing parameters. The surface roughness of
the burnished specimens could be further improved to Ra = 20 nm (nm) by using
the spherical polishing process with determined optimal parameters. By using the
finest available commercial grain size of the abrasive material aluminum oxide
(Al2O3, WA) as 1 lm in diameter (grid no. 10,000), the mean surface roughness
value ofRa = 16.7 nm on average was possible. The determined flat surface optimal
burnishing and polishing parameters were then applied sequentially to the freeform
surface test object of a F-theta scan lens, to improve the surface roughness. The
surface roughness value Ra of freeform surface region on the STAVAX tested part,
which was hardened and tempered (HRC = 50), could be improved sequentially
from about 1.83 to 0.035 lm on average.

Shiou and Cheng [269] applied the sequential ball-burnishing and ball-polish-
ing processes successfully to the ultra-precision surface finish of the NAK80 mold
tool steel on a CNC machining center. The optimal flat surface polishing
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parameters of the developed system for the NAK80 mold tool steel were deter-
mined by conducting the experiments of the Taguchi’s L18 orthogonal table,
ANOVA, and the full factorial experiments. The burnished surface roughness of
the test specimens could be improved from about Ra 0.06 lm to 0.016 lm in
average using the determined optimal polishing parameters. Applying the optimal
flat surface ball-burnishing and ball-polishing parameters sequentially to a fine-
milled spherical lens mold cavity of NAK80 mold tool steel, the surface roughness
Ra of the surface on the tested parts could be improved sequentially from about
1.0 lm in average to 0.020 lm in average.

Laouar et al. [166] focused on the application of burnishing treatment (ball
burnishing) on XC48 steel and parameters optimization of treatment regime. Three
important parameters were considered: burnishing force, burnishing feed, and ball
radius. An empirical model was developed to illustrate the relationship between
these parameters and superficial layer characteristics defined by surface roughness
and superficial hardness. A program was developed in order to determine the
optimum treatment regimes for each characteristic. Ibrahim et al. [129] dealt with
the control of ball-burnishing parameters of steel components via fuzzy logic. The
burnishing tool using three balls was designed and constructed in such a way as to
replace the three original adjustable jaws of the center rest. The center rest and the
lathe saddle were clamped together to operate as one piece. Experimental work
was conducted on a lathe to study the effect of burnishing parameters (feed, speed,
force, and number of balls used in single pass) on surface characteristics (surface
roundness error). Experimental results from the work were used as a knowledge
base to prepare a fuzzy logic model to control burnishing parameters. The results
obtained from the experimental work and fuzzy model showed that good surface
characteristics can be achieved by using this center rest ball-burnishing tool.
Burnishing force, burnishing feed and number of balls in single pass are the most
important parameters that play an important role in controlling the values of all
surface characteristics. The results obtained from the fuzzy model were highly
consistent with experimental results.

Basak and Goktas [30] burnished an Aluminum alloy (Al 7075 T6) using
different burnishing parameters (number of revolution, feed, number of passes, and
pressure force) with burnishing apparatus. Burnishing parameters which affect to
surface roughness and surface hardness on Al 7075 T6 materials were discussed.
Using the experimental results a fuzzy logic model was used to achieve the best
parameters for the burnishing process. The fuzzy model predictions suggested that
the most suitable values for surface roughness were the pressure force of 200 N,
and a feed of 0.1 mm/rev with two tool passes. These results, which obtained from
the fuzzy model, were highly consistent with the experiments.

Pa [221] discussed the performance assessment of the continuous burnishing
processes following electrochemical finishing using a design, which incorporates a
finish-tool that includes an electrode and a nonconductive burnishing tool. It was
expected to spread a freeform surface finish instead of the conventional hand or
machine polishing. In the experiment, a model toy missile was taken as a work-
piece. The electrode was used with the continuous and pulsed direct current
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application. The burnishing tool used ceramic material and was connected with the
electrode and axial feed. It was found that the finished effect of the finish-tool with
convex features was better than mat of the concave features. Pulsing direct current
could slightly improve the effect of electrochemical finishing. This presents an
effective and low-cost finishing process that includes the design of a finish-tool,
which uses burnishing assistance, and follows electrochemical finishing after tra-
ditional machining makes the freeform surface of a workpiece smooth and bright.

El-Taweel and El-Axir [83] studied the analysis and optimization of the ball-
burnishing process. The Taguchi technique was employed to identify the effect of
burnishing parameters, i.e., burnishing speed burnishing feed, burnishing force and
number of passes, on surface roughness, surface micro-hardness, improvement
ratio of surface roughness, and improvement ratio of surface micro-hardness.
Taguchi tools such as ANOVA, S/N ratio and additive model were used to ana-
lyze, obtain the significant parameters and evaluate the optimum combination
levels of ball-burnishing process parameters. The analysis of results showed that
the burnishing force with a contribution percent of 39.87% for surface roughness
and 42.85% for surface micro-hardness had the dominant effect on both surface
roughness and micro-hardness followed by burnishing feed, burnishing speed and
then by the number of passes.

Korzynski and Pacana [158] presented the results of examining the centerless
roller burnishing technology worked out by them. The structure and the con-
struction details of a prototype device for the centerless burnishing of shafts were
presented. The experiments were carried on using 41Cr4 steel workpieces. The
effects of the workpiece hardness, the surface roughness before burnishing, the
deformation multiplicity and the tool interference on the roughness and the geo-
metric structure after burnishing were investigated. The significant influence of the
above parameters was confirmed and described as a mathematical power model. It
also showed a beneficial effect of centerless burnishing parameters on roughness
and geometric structure of the surface.
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Chapter 3

Modeling and Optimization of Modern

Machining Processes

3.1 Modern Machining Processes

Traditional machining processes, such as turning, grinding, drilling, milling, etc.,
remove material by chip formation, abrasion, or micro-chipping. There are situ-
ations, however, where these processes are not satisfactory, economical, or even
possible, for the following reasons [114]:

1. The hardness and strength of the material is very high (typically above 400 HB)
or the material is too brittle.

2. The work piece is too flexible, slender, or delicate to withstand the cutting or
grinding forces, or the parts are too difficult to fix.

3. The shape of the part is complex.
4. Surface finish and dimensional tolerance requirements are more rigorous than

those obtained by other processes.
5. Temperature rise and residual stresses in the work piece are not desirable or

acceptable.

These requirements have led to the development of modern machining pro-
cesses. Beginning in the 1940s, these advanced methods are called non-traditional
or modern or unconventional machining processes. Over the last four decades,
there has been a large increase in the number of non-traditional machining pro-
cesses (NTMPs). Today, NTMPs with vastly different capabilities and specifica-
tions are available for a wide range of applications. According to nature of energy
employed in machining, NTMPs are further classified into the following groups:

1. Mechanical processes such as ultrasonic machining, abrasive jet machining
(AJM), water jet machining (WJM), abrasive water jet machining (AWJM), etc.

2. Chemical and electrochemical processes such as electro-chemical machining
(ECM), electro-chemical grinding, electro-chemical honing, etc.
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3. Thermal and electro thermal processes such as electric discharge machining,
laser beam machining (LBM), plasma arc machining, ion beam machining, etc.

4. Finishing processes such as abrasive flow machining, magnetic abrasive fin-
ishing, etc.

The modeling and optimization aspects of some of the above modern
machining processes are described in this chapter.

3.2 AWJM Process

AWJM process uses a high velocity water jet in combination with abrasive par-
ticles for cutting different types of materials using a setup as shown in Fig. 3.1.
A stream of small abrasive particles is introduced and entrained in the water jet in
such a manner that water jet’s momentum is partly transferred to the abrasive
particles. The process thus combines the benefit of the two other advanced

Fig. 3.1 General scheme of
abrasive water jet machining
(AWJM) process (from [100];
reprinted with permission
from Elsevier)
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machining processes namely, WJM and AJM. This process relies on erosive action
of an abrasive laden water jet for applications of cutting, drilling, and general
cleaning and descaling of thick sections of very soft to very hard materials at high
rates. Visual examination of the cutting process in AWJM suggests two dominant
modes of material removal. First is erosion by cutting wear due to particle impact
at shallow angles on the top surface of the kerf. Second is deformation wear due to
excessive plastic deformation caused by particle impact at large angles, deeper into
the kerf.

A variety of materials can be machined by AWJM including copper and its
alloys, aluminum, lead, steel, tungsten carbide, titanium, ceramics, composites,
acrylic, concrete, rocks, graphite, silica glass, etc. Its most promising application
includes machining of sandwiched honeycomb structural materials frequently used
in the aerospace industries. The main advantages of the process include omni-
directional cutting, minimal thermal damage, no burrs, high cutting speed and
efficiency, suitability for automation, and cutting without delamination.

Comprehensive qualitative and quantitative analyses of the material removal
mechanism and subsequently the development of analytical models of material
removal are necessary for a better understanding and to achieve the optimum
process performance. Several attempts were made to study the influence of dif-
ferent process parameters on the important performance measures of AWJM
process. Hashish [82] used erosion model of Finnie [70] to develop a model to
predict combined depth of cut due to deformation wear and cutting wear. How-
ever, the use of this model is limited to brittle materials only and it does not
include the effect of particle size and shape. To overcome these limitations,
Hashish [81] developed an improved erosion model.

Hocheng and Chang [89] discussed the kerf formation of a ceramic plate cut by
an abrasive water jet (AWJ). The mechanism and the effectiveness of material
removal were studied and different materials were found to possess different
removal rates in machining and there also existed a critical combination of
hydraulic pressure, abrasive flow rate and traverse speed, below which through-cut
for a certain thickness could not be achieved. The wall finish achieved was
determined by the mesh size of the abrasives.

Kovacevic and Fang [123] showed that the selection of the AWJ cutting
parameters for a required depth of cut in the given material can be effectively done
by applying the principles of the fuzzy set theory. This approach eliminates the
need for extensive experimental work in order to select the magnitudes of the most
influential AWJ parameters on the depth of cut. A number of case studies were
performed to verify the validity of the proposed methodology for selecting the
AWJ cutting parameters in order to achieve the predetermined depth of cut.

Chen et al. [43] developed experimental techniques based on statistical
experimental design principles and theoretical investigations were conducted to
study AWJM cutting of alumina-based ceramics. Semi-empirical cutting depth
equations were determined for the prediction and optimization of the AWJM
cutting performance. Kovacevic et al. [124] reviewed the state of the art of
research and development in AWJM. Hoogstrate et al. [91] described the
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developments in equipment and process models which make it possible to exploit
the advantages of AWJ technology completely, thereby eliminating or minimizing
the disadvantages.

Arola and Ramulu [9] conducted an experimental study to determine the
influence of material properties on the surface integrity and texture that result from
AWJ machining of metals. A microstructure analysis, micro-hardness measure-
ments, and profilometry were used in determining the depth of plastic deformation
and surface texture that result from material removal. Models available for dry
abrasive erosion were adopted and found useful in understanding the influence of
material properties on the hydrodynamic erosion process. It was found that the
depth of subsurface plastic deformation is inversely proportional to a metals
strength coefficient and extends the greatest depth near jet entry in the initial
damage region. Choi and Choi [48] developed an analytical model to predict
volume of material removed by single abrasive particle and thickness of the
fracture developed backside of the target material.

Based on Hashish’s [81] improved erosion model, Paul et al. [180] developed
analytical model of generalized kerf shape for ductile materials considering var-
iation in kerf width along its depth. A mathematical model for total depth of cut for
polycrystalline materials accounting for the effects of abrasive particle size and
shape was further developed by Paul et al. [180]. However, this model is for brittle
materials only and it can cause an error of up to 20% in predicting the depth of cut.
Chen et al. [41] conducted experiments based on statistical design principles to
study AWJ machining of ceramics. The research work, involving multi-directional
cutting, was conducted to examine the effect of jet impact angles on cutting
quality. Furthermore, new cutting head oscillation techniques were applied for
better cutting.

Hassan and Kosmol [83] presented a model of AWJM using the finite element
method (FEM) in order to explain the abrasive particle–workpiece interaction
process. Also, the model predicts the depth of deformation as a result of abrasive
particle impact. The main objective was to develop an FE model which would
enable the prediction of the depth of cut without any cutting experiments. The new
model takes into account the precise representation of the constitutive behavior of
the workpiece material under AWJ dynamic loading conditions. Forces acting on
the abrasive particle were automatically calculated at each time step. The results
showed that plastic deformation was highly localized.

Vikram and Babu [240] proposed a new approach for modeling the three-
dimensional (3D) topography produced on AWJ machined surface. It makes use of
the trajectory of jet, predicted from the theory of ballistics and Bitter’s theory of
erosion for material removal, for numerically simulating the cutting front. The 2D
topography at different depths of the cut surface was generated by considering the
trajectories on the cutting front and the abrasive particles impacting the walls of
cut surface randomly. For realistic generation of topography on cut surfaces,
several instantaneous profiles generated in each region of cut were superimposed
to obtain an effective profile. The nature of effective profiles thus predicted was
analyzed and validated using power spectral density analysis. The effective
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profiles predicted at different depths were, in turn, used to generate the 3D
topography of AWJ machined surface. Results obtained with the proposed model
were validated with the experimental results.

Hoogstrate et al. [90] described the development of a ‘coherent set of models’
for a category of these processes, namely those which use high velocity of the
particles to obtain the necessary energy to machine a workpiece surface. The
usability of this ‘coherent set of models’ was explained with its application in
the field of high-pressure AWJ cutting. A forecast to the application of this
modeling technique to other loose abrasive machining processes as micro-
abrasive air jet machining was given. Wang and Guo [243] developed a semi-
empirical model for predicting the depth of jet penetration in AWJ machining of
polymer matrix composites. The plausibility of the model was then assessed by
analyzing the predicted trends of this performance measure and by comparing
with the experimental results. It is shown that the model gives adequate pre-
dictions and can be used for process planning.

Deam et al. [54] developed a model for predicting the shape of the cut profile
in industrial cutting processes and applied to AWJM. The well-known physics of
abrasive wear was used in the process model, which was cast in intrinsic
coordinates. This choice of coordinates enabled a formulation of the problem that
led to simple solutions and also a good understanding of the process. Akkurt
et al. [3] explained the effects of feed rate and thickness of workpiece on the
roughness. Considering experimental data, effects of the composition of the
material on surface roughness were assessed. The authors had evaluated the
deformation effect of AWJ on workpieces that have the same composition but
different thickness. In the study pure aluminum, Al-6061 aluminum alloy, brass-
353 (a ? b brass), AISI 1030 and AISI 304 steel materials were cut with AWJ at
different feed rates. Improvement in surface roughness of pure aluminum
remains in narrow limited range when compared with the ratio of decrease in
feed rate. Brass and AISI 1030 materials that have higher strength than alumi-
num resulted in higher surface roughness for thinner workpieces. Reducing feed
rate from 25 to 20 mm/min deteriorated the surface properties of 20 mm
thickness workpiece of AISI 304, in contrast to all of the other studied 20 mm
thickness materials.

Liu et al. [148] developed computational fluid dynamics (CFD) models for
ultrahigh velocity water jets and AWJs using the Fluent6 flow solver. Jet dynamic
characteristics for the flow downstream from a very fine nozzle were then simu-
lated under steady state, turbulent, two-phase and three-phase flow conditions.
Water and particle velocities in a jet were obtained under different input and
boundary conditions to provide an insight into the jet characteristics and a fun-
damental understanding of the kerf formation process in AWJ cutting. For the
range of downstream distances considered, the results indicate that a jet is char-
acterized by an initial rapid decay of the axial velocity at the jet centre while the
cross-sectional flow evolves toward a top-hat profile downstream.

Eltobgy et al. [68] developed a modified form of Finnie’s model for erosion
for application to AWJM. This modified form was able to deal with curved
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surfaces rather than flat surfaces only. Furthermore, the new modeling approach
was capable of simulating multiple particle erosion. This approach used stan-
dard material properties and required no calibration constants. The modelled
results agreed well with both experimental and analytical data. Shanmugam and
Masood [216] presented an investigation on the kerf taper angle, an important
cutting performance measure, generated by AWJM to machine two types of
composites: epoxy pre-impregnated graphite woven fabric and glass epoxy.
Comprehensive factorial DOE was carried out in varying the traverse speed,
abrasive flow rate, standoff distance and water pressure. Using the dimensional
technique and adopting the energy conservation approach, the kerf taper angle
was related to the operating parameters in the form of a predictive model.

Ma and Deam [152] measured the kerf geometry using an optical microscope.
Using these measurements, a simple empirical correlation for the kerf profile shape
under different traverse speed was developed that fits the kerf shape well. The
mechanisms underlying the formation the kerf profile were discussed and the
optimum speed for achieving the straightest cutting edge was presented. Junkar
et al. [107] presented an explicit finite element analysis (FEA) of a single abrasive
particle impact on stainless steel 1.4301 (AISI 304) in AWJ machining. In the
experimental verification, the shapes of craters on the workpiece material were
observed and compared with FEA simulation results by means of crater sphericity.
The influences of the impact angle and particle velocity were observed. Especially
the impact angle emerged as a very suitable process parameter for experimental
verification of FEA simulation, where crater sphericity was observed. Results of
the FEA simulation were in good agreement with those obtained from the
experimental verification.

Jegaraj and Babu [106] reported the experimental studies carried out to
investigate the influence of orifice and focusing tube bore variation on the per-
formance of AWJs in cutting 6063-T6 aluminum alloy. The performance was
assessed in terms of different parameters such as depth of cut, kerf width and
surface roughness. This study made use of Taguchi’s DOE and analysis of vari-
ance (ANOVA) to analyze the performance of AWJM. These experimental data
were used to build empirical models. An hybrid strategy combining the response
equations of the empirical model with fuzzy model was proposed to arrive at
suitable set of process parameters for achieving desired cutting performance
considering the variation in orifice and focusing tube bore.

Wang [242] presented a study of the depth of jet penetration (or depth of cut) in
AWJ machining of alumina ceramics with controlled nozzle oscillation. An
experimental investigation was carried out first to study the effects of nozzle
oscillation at small angles on the depth of cut under different combinations of
process parameters. Based on the test conditions, it was found that nozzle oscil-
lation at small angles can improve the depth of cut by as much as 82% if the
cutting parameters are correctly selected. Depending on the other cutting param-
eters, it was found that a high oscillation frequency (10–14 Hz) with a low
oscillation angle (4�–6�) can maximize the depth of cut. Using a dimensional
analysis technique, predictive models for jet penetration when cutting alumina
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ceramics with and without nozzle oscillation were developed and verified. Khan
and Haque [116] presented a comparative analysis of the performance of garnet,
aluminum oxide and silicon oxide during AWJM of glass. The study showed that
width of cut increases as the stand-off distance of the nozzle from the work is
increased which is due to divergence shape of the AWJ.

Srinivasu and Babu [230] presented a neuro-genetic approach to suggest the
process parameters for maintaining the desired depth of cut in AWJ machining by
considering the change in diameter of focusing nozzle, i.e., for adaptive control of
AWJ machining process. An artificial neural network (ANN)-based model was
developed for prediction of depth of cut by considering the diameter of focusing
nozzle along with the controllable process parameters such as water pressure,
abrasive flow rate and jet traverse rate. ANN model combined with genetic
algorithm (GA), i.e., neuro-genetic approach, was proposed to suggest the process
parameters. Further, the merits of the proposed approach were shown by com-
paring the results obtained with the proposed approach to the results obtained with
fuzzy-genetic approach [37]. Finally, the effectiveness of the proposed approach
was assessed by conducting the experiments with the suggested process parameters
and comparing them with the desired results.

Zaki et al. [260] provided a careful validation for the simulation of an
impinging abrasive liquid jet, taking progressively into account the necessary
features: impingement, free-surface, and particles. Orbanic and Junkar [175]
studied the macro-mechanism of AWJM from the point of cutting front and stri-
ation formation analysis. The striation on the surface cut with AWJM is a char-
acteristic phenomenon which is strongly present when cutting with high traverse
velocities for particular material type and thickness of workpiece. The connection
between the cutting front step formation and striation formation was explained
through series of experiments, which included visual observations of cutting
transparent material and through analogies, which deal with river meandering and
wear of pneumatic conveyor bends.

Azmir and Ahsan [13] conducted experimental investigations to assess the
influence of AWJM process parameters on surface roughness (Ra) of glass fiber
reinforced epoxy composites. The approach was based on Taguchi’s method and
analysis of variance (ANOVA) to optimize the AWJM process parameters for
effective machining. It was found that the type of abrasive materials, hydraulic
pressure, standoff distance and traverse rate were the significant control factors
and the cutting orientation was the insignificant control factor in controlling the Ra.
For noise factors effect, the forms of glass fibers and thickness of composite
laminate showed the greatest influence on Ra. A mathematical model was devel-
oped using piecewise linear regression analysis to predict the performance of Ra in
terms of the cutting parameters of AWJM. The models successfully predicted the
Ra of an AWJ machined glass/epoxy laminate within the limit of this study. It was
confirmed that the determined optimum combination of AWJM parameters satisfy
the real need for machining of glass fiber reinforced epoxy composites in practice.
In another work, Azmir and Ahsan [12] studied surface roughness (Ra) and kerf
taper ratio (TR) characteristics of an AWJ machined surfaces of glass/epoxy
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composite laminate. Taguchi’s DOE and analysis of variance were used to
determine the effect of machining parameters on Ra and TR. Hydraulic pressure
and type of abrasive materials were considered as the most significant control
factor in influencing Ra and TR, respectively. Due to hardness of aluminum oxide
type of abrasive materials, it performed better than garnet in terms of both
machining characteristics. Increasing the hydraulic pressure and abrasive mass
flow rate resulted in a better machining performance for both criteria. Meanwhile,
decreasing the standoff distance and traverse rate improved both criteria of
machining performance. Cutting orientation did not influence the machining
performance in both cases. So, it was confirmed that increasing the kinetic energy
of AWJM process may produce better quality of cuts.

Manu and Babu [159] presented a model of the AWJ turning process consid-
ering material removal from the circumference of a rotating cylindrical specimen.
The methodology involved the use of Finnie’s theory of erosion to estimate the
volume of material removed by the impacting abrasive particles. The model
considered the impact of jet at an angle to the workpiece surface to account for the
curvature of the workpiece. Unlike earlier works, this model considered the
continuous change in local impact angle caused by the change in workpiece
diameter. The flow stress of the workpiece material was determined using a novel
experiment involving the same abrasive and workpiece materials. The adequacy of
the proposed model was examined through AWJ turning tests under various
process parameter combinations. The final diameters predicted by the model were
found to be in good agreement with the experimental results.

Hlaváč [87] performed both the theoretical and the experimental works to
verify and specify the physical relationships among parameters of AWJs used for
cutting, the properties of cut materials and the output parameters of cutting,
usually the depth of the cut. The new part of the model was designed to enable the
calculation of the angle of the cutting head tilt so that the jet penetrating the
material might exit it approximately along the normal to the material surface
created at the point of jet axis entry. This model was experimentally verified and
its high reliability and applicability were confirmed on quasi-homogeneous
materials.

Srinivasu et al. [229] proposed AWJM as the ideal processing technique for
structural ceramics. 3D shapes can be generated by enveloping them with suc-
cessions of jet footprints (kerf geometries) generated by varying the process
operating parameters. To enable this, the authors had investigated the influence of
key kinematic operating parameters (i.e., jet impingement angle and jet feed rate)
on the kerf geometry and its dimensional characteristics. Furthermore, the kerf
generation mechanism under multi-pass jet erosion was analyzed to get control
over erosion depth in multi-pass machining. It was found that by varying jet
impingement angle (90�–40�), the symmetric/asymmetric kerf geometry was
intimately dependent on the variation of standoff distance (SOD), abrasive particle
velocity distributions and their local impact angles accounted across the jet foot-
print. Variation in jet feed rate influenced the exposure time of material to jet and
enhanced the erosion capability of abrasives impacting at shallow angles.
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Furthermore, at lower jet feed rates, the depth of erosion increased and the low
energy abrasive particles along trailing edge of jet plume got enough time to erode
the material that resulted in variation of slope of kerf walls and hence, overall
geometry. Based on these observations, the multi-pass trials showed that the
successive passes have to account for both the local impact angles of abrasive
particles as well as the actual SOD (SOD ? initial kerf depth). By understanding
the influence of key kinematic operating parameters on the kerf geometry and its
dimensional characteristics, the authors had established a good basis for devel-
oping strategies for controlled 3D AWJ machining of complex shapes.

Although AWJM has been employed in different setups (e.g., through cutting,
milling, turning and cleaning) to generate surfaces in various workpiece materials
(e.g., metallic alloys, ceramics and composites), up to now there is scarce
information on the use of this technology in cutting super-hard materials such as
diamond-based materials. Axinte et al. [11] reported on a preliminary study of
the capability of AWJ cutting of polycrystalline diamond (PCD) using abrasive
media with different hardness, i.e., aluminum oxide (Al2O3), silicon carbide
(SiC) and diamond. While keeping some operating parameters constant (pump
pressure, stand-off distance and size of abrasives), the feed was adjusted to
enable full jet penetration for each type of abrasives. It was found that not only
the material removal rates (MRR) vary significantly with the employment of
different types of abrasives but also the nozzle wear ratios, with further impli-
cations on the kerf quality (width, taper angle) of diamond cut surfaces. Fur-
thermore, in-depth studies of the cut surfaces helped to reveal the material
removal mechanism when different types of abrasives were employed: Al2O3—
low intensity erosion; SiC—medium erosion with undesired cracking; diamond—
high intensity erosion. The experimental results showed that while Al2O3 and
SiC abrasive media yield modest MRR (comparable with those obtained by
electro-discharge machining-EDM), the use of diamond abrasives can greatly
increase ([200 times) the productivity of AWJ through cutting of PCD test
pieces at acceptable roughness (Ra\ 1.6 lm) and integrity (i.e., crack-free) of
the cut surfaces.

Wang and Wang [245] conducted a theoretical analysis to develop a flow
model for the AWJ. The main concern was whether the abrasive particles could
be treated as a pseudo-fluid phase. A two-fluid model was developed based on
the fundamental laws of conservation. A control volume method was used to
discretize the equations, and a phase-coupled SIMPLE algorithm was adopted to
solve the pressure–velocity coupling equations. The quasi 2D flow field outside a
conventional nozzle used in AWJ was analyzed and computed to validate the
model.

Mostofa et al. [170] presented CFD and theoretical analyses to optimize the
mixing of components by the multi-phase approach. Water, air, and abrasives
were mixed in a mixing chamber. This modeling was used to predict the
influence of air and abrasives on the mixing at different distances within the
mixing tube. At the same time, particle tracking was conducted to monitor
the erosion rate density at the nozzle wall. Results showed that nozzle length has
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an effect on the mixing of water, air, and the abrasives, and that the velocity of
the water jet influences the erosion rate at the nozzle wall. The k - e turbulence
model was used for simulation of the abrasive coupled with air. This investi-
gation revealed that the erosion in the nozzle body is higher at the initial zone
and that as the length of the nozzle length increases, the volume fraction of air
increases accordingly.

Very few efforts were made for optimization of process parameters of AWJM
process parameters. Chakravarthy and Babu [38] considered three decision vari-
ables namely, water jet pressure, jet traverse feed, and abrasive flow rate to achieve
two conflicting objectives, i.e., maximization of production rate and minimization
of abrasive consumption. These two objectives were combined in a single
objective as a total of machining cost by assigning suitable weightages to each of
the objective. Genetic algorithm was used as a tool for optimization. However, the
authors had not considered any constraint and no bounds for variables were
specified. To overcome above limitations, Jain et al. [102] used genetic algorithm
as a tool for optimization of five process parameters of AWJM process namely,
water jet pressure at the nozzle exit (Pw), diameter of AWJ nozzle (dawn), feed rate
of nozzle (fn), mass flow rate of water (Mw), and mass flow rate of abrasives (Ma).
The authors obtained optimum values of process parameters for maximum MRR
with power consumption as a constraint. However, although GA has advantages
over the traditional optimization techniques, the successful application of GA
depends on the population size or the diversity of individual solutions in the search
space. If GA cannot hold its diversity well before the global optimum is reached, it
may prematurely converge to a local optimum. Hence, in this chapter an effort is
made to verify if any improvement in the solution is possible by employing some
other recent optimization techniques such as PSO and ABC algorithms to the same
optimization model.

The optimization model for AWJM process is formulated in the present work
based on the analysis given by Hashish [81]. The five decision variables consid-
ered for this model are: water jet pressure at the nozzle exit (Pw), diameter of AWJ
nozzle (dawn), feed rate of nozzle (fn), mass flow rate of water (Mw) and mass flow
rate of abrasives (Ma).

The objective is to maximize the MRR (Z1), given by Eq. 3.1

Maximize Z1 ¼ dawnfn hc þ hdð Þ; ð3:1Þ

where hc is the indentation depth due to cutting wear as given by Eq. 3.2

hc ¼ 1:028� 104:5n=C1=3
k f 0:4r

h i

d0:2awnM
0:4
a =f 0:4n

� �

MwP
0:5
w = Ma þMwð Þ

� �

� 18:48K2=3
a n1=3=C

1=3
k f 0:4r

h i

MwP
0:5
w = Ma þMwð Þ

� �

; if at � a0

ð3:2Þ

hc ¼ 0; if at � a0 ð3:3Þ

‘hd’ is the indentation depth due to deformation wear as given by Eq. 3.4.
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K1 ¼ 1:414� 104:5n ð3:8Þ

Ck ¼ 3; 000rfwf
0:6
r =qa

� �1=2
mm/sð Þ: ð3:9Þ

Values of the constants and parameters are given in Table 3.1.
The constraint on permissible value of surface roughness is given by Eq. 3.10.

1� PwMw=Pmax � 0: ð3:10Þ

The bounds for the five variables are given in Eqs. 3.11–3.15.

50� Pw � 400 MPað Þ ð3:11Þ

0:5� dawn � 5 mmð Þ ð3:12Þ

Table 3.1 Values of the constants and parameters (from [102]; reprinted with permission from
Elsevier)

Notation Description Value (unit)

qa Density of abrasive particles 3.95 9 10-6 (kg/mm3)
ma Poisson ratio of abrasive particles 0.25
EYa Modulus of elasticity of abrasive particles 350,000 (MPa)
fr Roundness factor of abrasive particles 0.35
fs Sphericity factor of abrasive particles 0.78
ga Proportion of abrasive grains effectively participating

in machining
0.70

mw Poisson ratio of work material 0.20
EYw Modulus of elasticity of work material 114,000 (MPa)
rew Elastic limit of work material 883 (MPa)
rfw Flow stress of work material 8,142 (MPa)
Cfw Drag friction coefficient of work material 0.002
n Mixing efficiency between abrasive and water 0.8
Pmax Allowable power consumption value 56 (kW)
Ka Constant 3
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0:2� fn � 25 mm/sð Þ ð3:13Þ

0:02�Mw � 0:2 kg/sð Þ ð3:14Þ

0:0003�Mw � 0:08 kg/sð Þ: ð3:15Þ

An example is considered to demonstrate and validate the PSO and ABC
algorithms for the optimization of process parameters of the AWJM process. The
example is based on the model proposed by Hashish [81]. Specifications of the
required parameters and values of the constants considered by Jain et al. [102],
given in Table 3.1, are used in the present work.

Controlling parameters for ABC:

• Number of employed bees = 5.
• Number of onlookers bees = 11.
• Number of scout bees = 1.
• Maximum The number of iterations = 150.

Controlling parameters for PSO:

• Number of particles in swarm = 5.
• Inertia weight = 0.65.
• Acceleration coefficient (C1) = 1.65.
• Acceleration coefficient (C2) = 1.75.
• Number of iterations = 50.

The optimum selection of operating parameters of PSO algorithm like accel-
eration constants ‘c1’ and ‘c2’ as well as inertia coefficient ‘w’ is very essential for
convergence of the algorithm. This can be achieved only when the condition given
by Eq. 3.16 is satisfied [25].

w[ 0:5 /1 þ /2ð Þ � 1; ð3:16Þ

where

/1 ¼ c1r1; /2 ¼ c2r2:

As the feasible range for w is 0–1 and for c1 and c2 is 0–2, the selected values of
w, c1 and c2 should be such that the Eq. 3.16 is satisfied for all possible values of
random numbers r1 and r2 in the range 0–1. Keeping in view of this, considerable
number of trials is conduced and the values of w, c1 and c2 are finally selected as
0.65, 1.65 and 1.75, respectively. Hence, the selected values of w, c1 and c2 in the
present work are appropriate for convergence of the algorithm.

For the above parameter settings, the results of optimization are shown in
Table 3.2.

It can be observed from Table 3.2 that PSO has given better results (i.e.,
maximum MRR) compared to GA and ABC algorithms. Optimality of the
solution could be confirmed from the Figs. 3.2, 3.3, 3.4, 3.5, and 3.6. Figures 3.2
and 3.3 show the variation of MRR with diameter of AWJ nozzle and feed rate
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of nozzle, respectively. Power consumption constraint is not shown in Fig. 3.2 as
well as in Fig. 3.3, as it attains almost constant positive value for all values of
‘dawn’ and ‘fn’. As shown in Figs. 3.2 and 3.3, the MRR increases with increase
in diameter of AWJ nozzle and feed rate of nozzle up to a certain critical values
of 3.242 mm and 13.084 mm/s, respectively. However, MRR drastically
decreases after these critical values. This is due to fact that for any value higher
than 3.242 mm and 13.084 mm/s for ‘dawn’ and ‘fn’, respectively, the angle of
impingement at the top of the machined surface ‘at’ exceeds the critical impact
angle ‘a0’, thereby making the cutting wear ‘hc’ = 0 as specified by condition
given in Eq. 3.3. From this point of view, the selection of diameter of AWJ
nozzle equal to 3.242 mm and feed rate of nozzle equal to 13.084 mm/s is
appropriate.

Table 3.2 Results of optimization using various algorithms

Method dawn
(mm)

fn
(mm/s)

Mw

(kg/s)
Pw

(MPa)
Ma

(kg/s)
a0
(deg)

at
(deg)

hc
(deg)

hd
(mm)

MRR
(mm3/S)

Power
(kW)

GA [102] 3.726 23.17 0.141 398.3 0.079 0.384 0.572 0.00 1.04 90.257 56
PSO 3.242 13.08 0.140 400 0.080 0.385 0.384 3.31 2.12 230.50 56
ABC 3.062 9.158 0.143 386 0.08 0.386 0.310 3.881 3.11 218.49 56

Fig. 3.2 Variation of mate-
rial removal rate with diam-
eter of abrasive water jet
nozzle

Fig. 3.3 Variation of mate-
rial removal rate with feed
rate of nozzle
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Figure 3.4 shows the variation of MRR and power consumption constraint with
mass flow rate of water. As shown in Fig. 3.4, the MRR initially increases grad-
ually with increase in mass flow rate of water up to a critical value of 0.14 kg/s and
thereafter the MRR suddenly increases as the condition specified by Eq. 3.2 is
satisfied at this value. After this critical point, the MRR again increases gradually.
From this point of view, higher value of mass flow rate of water is desired.
However, as shown in Fig. 3.4, the constraint on power consumption is violated
for any value of mass flow rate of water more than 0.14 kg/s. Hence, the optimum
value of mass flow rate of water equal to 0.14 kg/s is appropriate.

Figures 3.5 and 3.6 show variation of MRR with water jet pressure at nozzle
exit and mass flow rate of abrasives, respectively. As shown in Figs. 3.5 and 3.6,
MRR increases with increase in both these variables. It is also observed that the
critical point at which the condition specified by Eq. 3.2 is satisfied resulting into
highest MRR occurs at upper bound values of both water jet pressure at nozzle exit
and mass flow rate of abrasives. Therefore, selection of upper bound values equal
to 400 MPa and 0.080 kg/s, respectively, of water jet pressure at nozzle exit and
mass flow rate of abrasives are appropriate. Figure 3.7 shows the convergence of
PSO algorithm.

Fig. 3.4 Variation of mate-
rial removal rate and power
consumption constraint with
Mw
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For AWJM, if angle of impingement at the top of the machined surface ‘at’
exceeds the critical impact angle ‘a0’ then no material removal is assumed to occur
by cutting wear (hc = 0) and the material removal takes place only due to the
deformation wear, resulting into relatively less MRR [180]. As shown in Table 3.2,
for the solution obtained using genetic algorithm, as ‘at’ exceeds ‘a0’, indentation
depth of cutting wear (hc) becomes zero and hence results in less MRR as compared
to the solution obtained using particle swarm optimization (PSO) algorithm for
which ‘at’\ ‘a0’. The optimum values of process variables obtained using PSO
algorithm also results in higher value of depth of deformation wear (hd) than that
obtained using genetic algorithm, which further increases the MRR. The combined
effect thus leads to the improvement in objective function by about 155%.

Fig. 3.5 Variation of mate-
rial removal rate with water
jet pressure at nozzle exit

Fig. 3.6 Variation of mate-
rial removal rate with mass
flow rate of abrasives

Fig. 3.7 Convergence of
PSO algorithm
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3.3 Ultrasonic Machining Process

The use of new materials such as carbides, ceramics, nimonics, diamonds, etc., is
increasing in industries such as aerospace, nuclear engineering, manufacturing and
many others owing to their high strength to weight ratio, hardness and heat
resistant qualities. In spite of recent technological advancements, the conventional
machining processes such as turning, grinding, drilling, milling, etc., are inade-
quate to machine these materials from standpoint of economic production.
Besides, machining of these materials into complex shapes is difficult, time con-
suming and sometimes impossible. Advanced machining processes have emerged
to overcome these difficulties. Today, modern machining processes with vastly
different capabilities and specifications are available for a wide range of
applications.

Ultrasonic machining (USM) process is one of the modern machining pro-
cesses. The term ultrasonic is used to describe the vibratory wave of frequency
above that of upper frequency limit of the human ear. Ultrasonic machining is a
process in which material is removed due to action of abrasive grains [113]. The
abrasive particles are driven into the work surface by a tool oscillating normal to
the work surface at a high frequency. The tool is shaped as the approximate mirror
image of the configuration of cavity desired in workpiece. Figure 3.8 shows the
general arrangement of ultrasonic machining process [100].

USM process can handle large variety of materials as it is not limited by the
electrical or chemical characteristics of work material. The process has the

Fig. 3.8 Ultrasonic machining process (from [100]; reprinted with permission from Elsevier)
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advantage of machining hard and brittle materials into complex shapes with good
accuracy and reasonable surface finish. Considerable economy results from the
ultrasonic machining of hard alloy tools and dies on account of their high resis-
tance. The process is particularly suitable to make holes with a curved axis of any
shape that can be made on tool. However, the major limitation of the ultrasonic
machining process is its low MRR characteristic. It is therefore very essential to
improve the metal cutting rates for this process without affecting surface finish of
the work piece. This can be achieved through optimum selection of various
machining process parameters influencing the MRR and surface finish in ultra-
sonic machining process.

USM is characterized by low MRR and very little surface damage to the work
material. It can be used for machining both electrically conductive and non-
conductive materials preferably with low ductility and high hardness (above
40 HRC). Its potential is not limited by electrical or chemical characteristics of the
work material. Mechanisms of material removal in USM include: (1) mechanical
abrasion by direct hammering of abrasive particles, (2) micro-chipping due to
impacting action of freely moving abrasive particles, (3) cavitation effect of
abrasive slurry and (4) chemical action associated with the carrier fluid.

Various analytical MRR models for USM were suggested by researchers. Shaw
[218] was the first researcher to propose a static and simple analytical model
giving the relationship between MRR and vibration amplitude, frequency, abrasive
grit size and concentration, and feed force. But, its predictions do not agree well
with experimental observations. Miller [165] developed an MRR model based on
plastic deformation restricting its application to ductile materials only, while
Rosenberg et al. [201] included the statistical distribution of abrasive particle size
in their computationally intensive model. Cook [53] proposed the simplest model
to predict linear machining rate. Kainth et al. [109] proposed a model in which the
machining rate can be evaluated quantitatively using material properties of the tool
and workpiece which was not possible with earlier theories. This model, however,
predicts linear relation of MRR with static force that is not practically true. Nair
and Ghosh [171] also proposed another computationally intensive model simu-
lating the principles of elastic wave propagation. Wang and Rajurkar [244] sug-
gested a more realistic model taking into account the stochastic and dynamic
nature of the process. But, this is applicable to perfectly brittle materials only. Lee
and Chan [137] developed an analytical model to predict the effects of amplitude
of the tool tip, the static load applied and the size of the abrasive on the MRR and
the surface roughness. They concluded that increase the amplitude of the tool
vibration, the static load applied, and the grit size of the abrasive would result in an
increase in the MRR and roughening of the machined surfaces.

Komaraiah et al. [120] conducted experiments on the ultrasonic machining of
different workpiece materials—glass, porcelain, ferrite and alumina—using vari-
ous tool materials. The effects of mechanical properties of the workpiece and tool
materials on surface roughness and accuracy were analyzed. The influences of the
type and size of the abrasive grains used and the amplitude of ultrasonic oscilla-
tions were studied. An attempt was made to study the influence of the rotation of

3.3 Ultrasonic Machining Process 193



the workpiece, in addition to an ultrasonically oscillated tool, on the MRR and
surface roughness of the workpieces produced. The rotary mode of ultrasonic
machining was found to be superior to conventional ultrasonic machining.

Benkirane et al. [24] studied contour machining using a three-axis numerical
control machine. In order to understand its principles and to be able to predict the
MRR for modeling and simulation of the process, an experimental and analytical
work was carried out. The effects of the main parameters were studied using two
statistical methods. They showed an advantage for the neural network one, which
gave a more precise prediction of the removal rate compared with the Taguchi
method. Wiercigroch [247] postulated that the main mechanism of the enhance-
ment of MRR in ultrasonic machining is associated with high amplitudes forces
generated by impacts, which act on the workpiece and help to develop micro-
cracking in the cutting zone. The inherent non-linearity of the discontinuous
impact process was modelled to generate the pattern of the impact forces. A novel
procedure for calculating the MRR was proposed, which explained the experi-
mentally observed fall in MRR at higher static forces.

Rotary ultrasonic machining (RUM) is a hybrid process which combines
mechanisms of USM and grinding process. RUM has potential for higher MRR
and clean cuts while maintaining low cutting pressures and giving little surface
damage and strength reduction. Therefore, it is especially suitable for ceramic
machining. Also, the rotary motion of the tool in RUM enhances MRR, accuracy,
and tool life, and reduces cutting forces. Prabhakar et al. [186] proposed a theo-
retical MRR model based on brittle fracture whose predictions do not agree with
the experimental observations. Pei et al. [182] reported a mechanistic model to
predict MRR. Pei and Ferreira [181] also reported the modeling of material
removal in RUM by ductile mode. Jain and Jain [100] presented various analytical
models developed by the researchers for mechanical type modern machining
processes including the RUM process.

Ya et al. [250] analyzed the movement of the abrasive particles in the tool tip of
RUM. The impact and grinding of the abrasive in the tool tip on the machined
surface were considered as the main factors in the MRR. The crack propagation in
rotary USM was investigated using the theory of fracture mechanics. A mathe-
matical model for the MRR was proposed in order to provide a theoretical basis for
the analyzing of the process of rotary USM.

Hu et al. [96] proposed an approach to model the MRR during RUM of
ceramics and applied to predict the MRR for the case of magnesia stabilized
zirconia. A five factor two-level factorial design was used to study the relation-
ships between MRR and the controllable machining parameters. The results shed
more light on the material removal mechanism in RUM.

Ma et al. [153] proposed a theoretical model of the thrust cutting force in
ultrasonic elliptical vibration cutting and the reason for the machining accuracy
improvement by applying ultrasonic elliptical vibration was clarified theoretically.
Finally, the effect of ultrasonic elliptical vibration cutting on machining accuracy
was verified experimentally by utilizing an ultrasonic elliptical vibration cutting
system. Mitrofanov et al. [168] dealt with finite element (FE) modeling of
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ultrasonically assisted turning (UAT). In this processing technology, high fre-
quency vibration (frequency of 20 kHz and amplitude of 10 lm) was superim-
posed on the movement of the cutting tool. The developed FE model allows
transient, coupled thermomechanical modeling of both ultrasonic and conventional
turning of elasto-plastic materials. The Johnson–Cook material model was adopted
for Inconel 718 in simulations. Comparative analyses of temperature distribution
in the cutting region and cutting tool were carried out for both turning schemes.
Plastic strains during cutting and residual strains in the machined layer were
analyzed and compared with the results of nano-indentation tests of Inconel 718
specimens processed with and without application of ultrasonic vibration. Overall
reduction in cutting forces and temperatures for ultrasonic turning in comparison
to conventional turning was explained.

Li et al. [143] performed RUM to drill holes on CMC panels. The feasibility to
machine CMC using RUM was investigated. Cutting forces and MRR were
compared for machining of CMC with and without ultrasonic vibration and for two
types of CMC materials and one typical advanced ceramic material (alumina).
Furthermore, the authors had presented the results of a designed experimental
investigation into RUM of CMC. A three-variable two-level full factorial design
was employed to reveal main effects as well as interaction effects of three RUM
process parameters (spindle speed, feed rate, and ultrasonic power). The process
outputs studied included cutting force, MRR, and hole quality (in terms of chip-
ping dimensions).

Li et al. [139] developed a 3D FEA model to study the effects of three
parameters (cutting depth, support length, and pre-tightening load) on the maxi-
mum normal stress and von Mises stress in the region where the edge chipping
initiates. Two failure criteria (the maximum normal stress criterion and von Mises
stress criterion) were used to predict the relation between the edge chipping
thickness and the support length. Furthermore, a solution to reduce the edge
chipping was proposed based upon the FEA simulations and verified by
experiments.

Singh and Khamba [224] reviewed the fundamental principles of stationary
ultrasonic machining, the material removal mechanisms involved and the effect of
operating parameters on MRR, tool wear rate, and work piece surface finish of
titanium and its alloys for applications in manufacturing industries. Dvivedi and
Kumar [61] investigated ultrasonic drilling of Ti-6Al-4V. Process parameters such
as work piece, grit size, slurry concentration, power rating and tools were changed
to explore their effect on the surface roughness. Taguchi’s technique was applied
to obtain an optimal setting of parameters.

Singh and Khamba [222] used Taguchi approach to model the MRR during
ultrasonic machining of titanium and its alloys. Relationships between MRR and
other controllable machining parameters (power rating, tool type, slurry con-
centration, slurry type, slurry temperature, and slurry size) have been deduced
using Taguchi technique. In another work, Singh and Khamba [223] modeled
MRR, tool wear rate, and surface roughness during ultrasonic machining of
titanium and its alloys using Taguchi’s L18 orthogonal arrays. In another work,
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Singh and Khamba [220] modeled surface roughness in ultrasonic machining of
titanium using Buckingham-P approach.

Amini et al. [6] studied machining of IN738 with a tool vibrating at ultrasonic
frequency. The machining forces and stresses acting on the workpiece during the
process, and the effect of process parameters such as cutting speed, tool geometry
and vibration amplitude were investigated. The authors also worked out the
material and the optimum configuration of the vibratory tool able to operate at an
ultrasonic frequency within acceptable range. The results indicated that the forces
and the stresses acting on the workpiece followed periodic changes during ultra-
sonic assisted turning and were augmented with an increase in the ultrasonic
vibration amplitude or the cutting speed.

Hsu et al. [94] discussed the machining characteristics of Inconel 718 by
combining ultrasonic vibration with high-temperature-aided cutting. Taguchi
experimental design was used to clarify the influence of various machining
parameters on the machining characteristics. The authors had discussed six
machining parameters, including cutting tool made of different materials, depth of
cut, cutting speed, feed rate, working temperature and ultrasonic power. The
machining characteristics studied included surface roughness and cutting force to
the experimental results, as Inconel 718 is heated for high-temperature.

Pujana et al. [189] applied ultrasonic vibration on the drilling of Ti6Al4V
workpiece samples. Several parameters of ultrasonic assisted drilling were mon-
itored, including feed force, chip formation by means of high-speed imaging, and
temperature measurement on the drill tip by means of infrared radiation ther-
mometry. Ultrasonic assistance offered lower feed force and higher process
temperatures as compared to conventional drilling.

Nath and Rahman [173] found that the ultrasonic cutting mechanism is influ-
enced by three important parameters: tool vibration frequency, tool vibration
amplitude and workpiece cutting speed that determine the cutting force. However,
the relation between the cutting force and these three parameters was not clearly
established. Jadoun et al. [99] presented a study of the effect of process parameters
on production accuracy obtained through ultrasonic drilling of holes in alumina-
based ceramics using silicon carbide abrasive. Production accuracy in ultrasonic
drilling involves both dimensional accuracy (hole oversize) and form accuracy
(out-of-roundness and conicity). The parameters considered were workpiece
material, tool material, grit size of the abrasive, power rating and slurry concen-
tration. Taguchi’s optimization approach was used to obtain the optimal
parameters.

Kumar and Khamba [132] applied the Taguchi multi-objective optimization
technique for determining the optimum combination of various input factors as
type of abrasive slurry, their size and concentration, nature of tool material and
power rating of the machine for the ductile chip formation in the machining of
satellite. In another work, Kumar and Khamba [133] applied Taguchi approach for
statistical analysis of experimental parameters in ultrasonic machining of tungsten
carbide. Singh and Gill [219] carried out fuzzy modeling and simulation of
ultrasonic drilling of porcelain ceramic with hollow stainless steel tools.
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Singh and Khamba [221] used outcome of the Taguchi model for developing a
mathematical model for tool wear rate; using Buckingham’s p-theorem for sta-
tionary ultrasonic machining of titanium and its alloys. Six input parameters,
namely, tool material, power rating, slurry type, slurry temperature, slurry con-
centration, and slurry grit size were selected to give output in form of tool wear
rate. The authors had described the main effects of these variables on tool wear
rate.

Kumar and Khamba [134] explored the use of USM for commercial machining
of pure titanium and evaluation of MRR under controlled experimental conditions.
The optimal settings of parameters were determined through experiments planned,
conducted, and analyzed using Taguchi method. An attempt was made to construct
a micro-model for prediction of MRR in USM of titanium using dimensional
analysis. The predictions from this model were validated by conducting experi-
ments. A relation was established between the mode of material removal and the
energy input rate corresponding to the different process conditions.

The main effort made for optimization of process parameters of ultrasonic
machining process parameters by non-traditional optimization algorithms is by
Jain et al. [102]. The authors used genetic algorithm as a tool for optimization
of five process parameters of ultrasonic machining process namely, amplitude of
vibration, frequency of vibration, mean diameter of abrasive grain, volumetric
concentration of abrasive particles in slurry, and static feed force. However,
although genetic algorithm (GA) has advantages over the traditional optimiza-
tion techniques, the successful application of GA depends on the population size
or the diversity of individual solutions in the search space. If GA cannot hold
its diversity well before the global optimum is reached, it may prematurely
converge to a local optimum. Rao et al. [198] presented optimization aspects of
ultrasonic machining process. The objective considered was maximization of
MRR subjected to the constraint of surface roughness. The process variables
considered for optimization were amplitude of ultrasonic vibration, frequency of
ultrasonic vibration, mean diameter of abrasive particles, volumetric concen-
tration of abrasive particles, and static feed force. The optimization was carried
out using three non-traditional optimization algorithms namely, artificial bee
colony (ABC), modified harmony search (HS_M), and PSO. An application
example was presented and solved to illustrate the effectiveness of the presented
algorithms. The results of the presented algorithms were compared with the
previously published results obtained using genetic algorithm. Hence, efforts are
extended to use other optimization algorithms such as SA and SFL algorithms
to provide solutions. The optimization model of the USM process is given
below.

The objective is to maximize the MRR (Z1) [102],

Z1 ¼ 4:963A0:25
t K0:75

u F0:75
s A0:75

v C0:25
av dmfv

.

rfw ð1þ kÞð Þ0:75; ð3:17Þ

where the decision variables are Av, amplitude of vibration (mm); fv frequency of
vibration (Hz); dm mean diameter of abrasive grain (mm); Cav, columetric
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concentration of abrasive particles in slurry, and Fs, static feed force (N). Ku is a
constant of proportionality (mm-1) relating mean diameter of abrasive grains, and
diameter of projections on an abrasive grain (=Ku dm

2 ).
The constraint on permissible surface roughness Z2 is given below.

Z2 ¼ 1; 154:7 FsAvdmð Þ0:5
h i.

Atrfw ð1þ kÞð Þ0:5 Rað ÞmaxCav

h i

� 0: ð3:18Þ

The bounds for the five variables are as given by Eqs. 3.19–3.23.

0:005�Av � 0:1 mmð Þ ð3:19Þ

10; 000� fv � 40; 000 Hzð Þ ð3:20Þ

0:007� dm � 0:15 mmð Þ ð3:21Þ

0:05�Cav � 0:5 ð3:22Þ

4:5�Fs � 45 Nð Þ: ð3:23Þ

The combined objective function (Z) considering the objective (Z1) and con-
straint (Z2) is then formulated as:

Minimize Z ¼ �Z1 � penalty� Z2: ð3:24Þ

An adaptive penalty scheme [183] is used to accommodate the inclusion of
constraint. Using this approach, the fitness value (f0) is calculated as,

f 0 ¼ f þ
X

m

i¼1

kigi�avg if the constraint is violated; else f 0 ¼ f : ð3:25Þ

The penalty parameter is defined at each iteration as,

ki ¼ favg
�

�

�

� gi�avg

� �

,

X

m

i¼1

gl�avg

� �2
; ð3:26Þ

where f is the objective function value, m the number of constraints, g the specific
constraint value with violated constraint, favg the average of objective function
value in the current population, and gl-avg is the violation of lth constraint aver-
aged over the current population.

The parameter settings for the various techniques to solve the optimization
problem of USM process are given below:

Controlling parameters for PSO:

• Number of particles in swarm = 5.
• Inertia weight = 0.65.
• Acceleration coefficient (c1) = 1.65.
• Acceleration coefficient (c2) = 1.75.
• Number of iterations = 50.

198 3 Modeling and Optimization of Modern Machining Processes



Controlling parameters for SA:

• Initial temperature = 200.
• Decrement factor = 0.01.
• Number of iterations = 100.

Controlling parameters for HS_M:

• Harmony memory size = 5.
• Harmony memory consideration rate = 0.8.
• Pitch adjusting rate = 0.32.
• Number of improvisations = 150.

Controlling parameters for ABC:

• Number of employed bees = 5.
• Number of onlookers bees = 11.
• Number of scout bees = 1.
• Maximum number of iterations = 150.

Controlling parameters for SFL:

• Total number of frogs = 20.
• Number of memeflexes = 5.
• Number of frogs in each memeflex = 4.
• Number of improvisations = 50.

For the above parameter settings, the results of optimization are shown in
Table 3.3.

From Table 3.3, it can be understood that the PSO and ABC algorithms give
better results compared to other optimization algorithms. As shown in Table 3.5,
the result obtained using the presented algorithms, i.e., ABC and PSO algorithms
show significant improvement (%11%) and HS algorithm shows improvement of
about 9% over the result obtained using GA. It is interesting to note that although
the value of MRR obtained using ABC, PSO, and HS_M is almost same, the
optimal combination of parameters provided by these algorithms is markedly
different. This indicates that the model is highly multi-modal. The model
therefore has number of local optimum solutions also. As an illustration, one of

Table 3.3 Results of optimization of USM process using various algorithms

Method Av (mm) Fv (Hz) dm (mm) Cav Fs (N) MRR (mm3/s) Constraint value

GA [102] 0.0263 39333.9 0.1336 0.479 10.8 3.553 0.0214
ABC 0.0167 40000 0.15 0.5 16.4 3.941 0.0124
HS_M 0.0582 40000 0.15 0.5 4.5 3.870 0.0244
PSO 0.06 40000 0.15 0.5 4.5 3.95 0.0095
SA 0.077 40000 0.114 0.5 4.53 3.660 0.0185
SFL 0.02271 40000 0.14 0.5 12.78 3.894 0.0079
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the local optimum solutions obtained is Av = 0.0111 mm, fv = 25,000 Hz,
dm = 0.15 mm, Cav = 0.5, and Fs = 24.75 N, for which MRR = 2.5 mm3/s
with constraint value 0.000873. For this local optimum solution there is no
further scope of improvement as constraint value is almost equal to zero.
However, the global optimum solution obtained using PSO algorithm provides
MRR = 3.950 mm3/s, showing about 57% improvement over this local optimum
solution which is generally obtained using traditional methods of optimization.
This improvement using PSO algorithm is due to the collaborative population-
based search which the PSO algorithm follows. PSO system combines local
search methods through self experience with the global search methods through
neighboring experience, thus attempting to perfectly balance the exploration and
exploitation process. The improvement using ABC is mainly due to the fact that
the ABC algorithm combines both, the stochastic selection scheme based on the
fitness values carried out by onlooker bees, and greedy selection scheme used by
onlookers and employed bees to update the source position. Also, the neighbor
source production mechanism in ABC is similar to the mutation process, which
is self-adapting. The selection of operating parameters, i.e., number of employed
bees, number of onlooker bees and number of scouts, in ABC algorithm is
relatively easy as compared to GA, PSO and SA algorithms. HS algorithm shows
improvement over the genetic algorithm as it overcomes the drawback of GA’s
building block theory which works well only when the relationship among
variables in the chromosome is carefully considered. HS explicitly considers the
relationship using ensemble operation. This clearly justifies the use of advanced
optimization algorithms like ABC, HS, and PSO, as in present study, to solve
such multi-modal problem.

Optimality of the solution obtained by ABC algorithm could be confirmed from
the Figs. 3.9, 3.10, 3.11, 3.12, and 3.13. Figure 3.9 shows the variation of MRR
and constraint value with amplitude of ultrasonic vibrations. As shown in Fig. 3.9,

Fig. 3.9 Variation of mate-
rial removal rate and con-
straint value with amplitude
of ultrasonic vibrations
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Fig. 3.10 Variation of mate-
rial removal rate and con-
straint value with frequency
of ultrasonic vibrations

Fig. 3.11 Variation of mate-
rial removal rate and con-
straint value with diameter of
abrasive grains

Fig. 3.12 Variation of mate-
rial removal rate and con-
straint value with
concentration of abrasive
particles in slurry
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the MRR increases with increase in amplitude of ultrasonic vibration. From this
point of view higher value of amplitude should be selected. However, as shown in
Fig. 3.9, the constraint on surface roughness is violated for any value of amplitude
of ultrasonic vibration more than 0.01614. Hence, the optimum value of amplitude
of ultrasonic vibration equal to 0.01614 mm obtained using ABC algorithm is
appropriate. Figure 3.10 shows the variation of MRR and constraint value with
frequency of ultrasonic vibrations.

As shown in Fig. 3.10, the MRR increases with increase in frequency of
ultrasonic vibration, higher value of frequency of ultrasonic vibration is desired.
Also, as the surface roughness constraint is having a constant positive value, the
selection of upper bound value of frequency of ultrasonic vibration, i.e., 40,000 Hz
is appropriate.

Figures 3.11 and 3.12 show variation of MRR and constraint value with
diameter of abrasive grains and concentration of abrasive particles in slurry,
respectively.

MRR increases with increase in both the diameter of abrasive grains as well as
concentration of abrasive particles in slurry. Therefore, selection of higher values
of diameter of abrasive grains and concentration of abrasive particles in slurry are
desired. As the constraint on surface roughness is also satisfied at upper bound
value of these both variables, values of diameter of abrasive grains and concen-
tration of abrasive particles in slurry equal to 0.15 mm and 0.5, respectively,
provided by ABC algorithm are appropriate.

Figure 3.13 shows variation of MRR and constraint value with static feed force.
As shown in Fig. 3.13, the MRR increases with increase in static feed force also.
From this point of view, higher value of static feed force is desired. However, as
shown in Fig. 3.13, the constraint on surface roughness is violated for any value of
static feed force more than 16.407. Hence, the optimum value of static feed force
equal to 16.407 N is appropriate.

Fig. 3.13 Variation of
material removal rate and
constraint value with static
feed force
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3.4 Wire Electric Discharge Machining (WEDM) Process

WEDM is one of the widely accepted advanced machining processes used to
machine components with intricate shapes and profiles. It is considered as a unique
adaptation of the conventional EDM process which uses an electrode to initialize
the sparking process. As shown in Fig. 3.14, WEDM utilizes a continuously
traveling wire electrode made of thin copper, brass or tungsten. On application of a
proper voltage, discharge occurs between the wire electrode and the workpiece in
the presence of a flood of deionized water of high insulation resistance. The
material is eroded ahead of the wire through a series of repetitive sparks between
electrodes, i.e., workpiece and the wire.

WEDM has been gaining wide acceptance in modern tooling applications,
machining of advanced ceramic materials and modern composite materials due to
following reasons [88]:

• As the wire diameter is small (0.05–0.3 mm), the process is capable of
achieving very small corner radii.

• The wire is kept in tension using a mechanical tensioning device reducing the
tendency of producing inaccurate parts.

Fig. 3.14 Basic sheme of
wire EDM process (from
[197]; reprinted with permis-
sion from the Council of the
Institution of Mechanical
Engineers, UK)
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• During the WEDM process there is no direct contact between the workpiece and
the wire, eliminating the mechanical stresses during machining.

• WEDM process is able to machine exotic and high strength and temperature
resistive (HSTR) materials and eliminate the geometrical changes occurring in
the machining of heat-treated steels.

While the material removal mechanisms of EDM and WEDM are similar, their
functional characteristics are not identical. WEDM uses a thin wire continuously
feeding through the workpiece by a microprocessor, which enable parts of com-
plex shapes to be machined with exceptional high accuracy. A varying degree of
taper ranging from 15� for a 100 mm thick to 30� for a 400 mm thick workpiece
can also be obtained on the cut surface. The microprocessor also constantly
maintains the gap between the wire and the workpiece, which varies from 0.025 to
0.05 mm. WEDM eliminates the need for elaborate pre-shaped electrodes, which
are commonly required in EDM to perform the roughing and finishing operations.
In the case of WEDM, the wire has to make several machining passes along the
profile to be machined to attain the required dimensional accuracy and surface
finish. WEDM uses deionized water instead of hydrocarbon oil as the dielectric
fluid and contains it within the sparking zone. The deionized water is not suitable
for conventional EDM as it causes rapid electrode wear, but its low viscosity and
rapid cooling rate make it ideal for WEDM.

Wire EDM manufacturers and users always want to achieve higher machining
productivity with a desired accuracy and surface finish. Performance of the
WEDM process, however, is affected by many factors such as servo feed setting,
peak current, pulse on-time, pulse off-time, wire tension, etc., and a single
parameter change will influence the process in a complex way. Because of many
variables and the complex and stochastic nature of the process, achieving the
optimal performance, even for a highly skilled operator with a state-of-the-art wire
EDM machine is rarely possible. An effective way to solve this problem is to
discover the relationship between the performance of the process and its con-
trollable input parameters by modeling the process through suitable mathematical
techniques and optimization using suitable optimization algorithm.

Several attempts were made to study the influence of different process
parameters on the important performance measures of WEDM process such as
cutting rate, surface finish and MRR using various problem-solving tools. Quite a
few researchers had tried to optimize the cutting performance by adopting various
traditional and non-traditional optimization techniques. Metal removal rate (MRR)
and surface finish were optimized by Scott et al. [212] by explicit enumeration
based on signal-to-noise ratio. Further, they split the problem into optimization of
MRR with surface finish constraint and optimization of surface finish with MRR as
constraint and applied dynamic programming method. Wang and Rajurkar [246]
analyzed theoretically and experimentally an existing electrical discharge machine
servo mechanism and described modeling of the process. Spur and Schönbeck
[227] designed a theoretical model studying the influence of the workpiece
material and the pulse-type properties on the WEDM of a workpiece with an
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anodic polarity. Tarng et al. [233] used a simple weighting method to transform
the cutting velocity and surface roughness into a single objective and arrived at the
optimal parameters by employing simulated annealing technique. They considered
pulse on/off duration, peak current, open circuit voltage, servo reference voltage;
electrical capacitance and table speed are the critical parameters for the estimation
of the cutting rate and surface finish.

Anand [7] used a fractional factorial experiment with an orthogonal array
layout to obtain the most desirable process specification for improving the WEDM
dimensional accuracy and surface roughness. Liu and Esterling [147] proposed a
solid modeling method, which can precisely represent the geometry cut by the
WEDM process. Liao et al. [144] applied method of feasible direction for opti-
mization of the process parameters such as table feed rate and pulse on-time with
an objective as to maximize the MRR with surface roughness and spark gap as
constraints. In another work, Liao et al. [144] proposed an approach of deter-
mining the parameter settings based on the Taguchi quality design method and the
analysis of variance. The results showed that the MRR and surface finish are easily
influenced by the table feed rate and pulse on-time, which can also be used to
control the discharging frequency for the prevention of wire breakage.

Spedding and Wang [226] optimized the process parameter settings using ANN
modeling to characterize the WEDM workpiece surfaces. They obtained the opti-
mum combination of the parameters namely pulse width, time between two pulses,
wire mechanical tension, and wire feed space for maximum cutting speed, keeping
the surface roughness and waviness within the required limits. Hsue et al. [95]
developed a model to estimate the MRR during geometrical cutting by considering
wire deflection with transformed exponential trajectory of the wire centre. Konda
et al. [121] classified the various potential factors affecting the WEDM perfor-
mance measures into five major categories namely the different properties of the
workpiece material and dielectric fluid, machine characteristics, adjustable
machining parameters, and component geometry. In addition, they applied the DOE
technique to study and optimize the possible effects of variables during process
design and development, and validated the experimental results using noise-to-
signal (S/N) ratio analysis. Gokler and Ozanozgu [75] studied the selection of the
most suitable cutting and offset parameter combination to get a desired surface
roughness for a constant wire speed and dielectric flushing pressure. Han et al. [77]
developed a simulation system, which accurately reproduces the discharge phe-
nomena of WEDM. The system also applies an adaptive control, which automat-
ically generates an optimal machining condition for high precision WEDM.

Liao et al. [145] used a feed-forward neural network to estimate the workpiece
height and distinguish the machining condition in WEDM. Some experiments
were carried out to verify the effectiveness of this approach. Based on the on-line
estimated workpiece height, a rule-based strategy was proposed to maintain
optimal and stable machining. According to the rule-based strategy, servo voltage
and power settings can be adjusted correctly to suit the workpiece profile.
Experimental results demonstrated that high machining efficiency and stable
machining can be achieved by means of the rule-based control strategy.
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Huang and Liao [97] used grey relational and S/N ratio analysis to demonstrate
the influence of table feed and pulse on-time on the MRR. Tosun et al. [235]
investigated the effect of the pulse duration, open circuit voltage, wire speed and
dielectric flushing pressure on workpiece surface roughness. It was found that the
increasing pulse duration, open circuit voltage and wire speed increase with the
surface roughness, whereas increasing dielectric fluid pressure decreases the sur-
face roughness.

Puri and Bhattacharyya [190] carried out an extensive study of the wire lag
phenomenon in WEDM. All the machine control parameters were considered
simultaneously for the machining operation which comprised a rough cut followed
by a trim cut. The objective of the study was to carry out an experimental inves-
tigation based on the Taguchi method involving 13 control factors with three levels
for an orthogonal array L27 (3

3). The main influencing factors were determined for
given machining criteria, such as: average cutting speed, surface finish charac-
teristic and geometrical inaccuracy caused due to wire lag. Also, the optimum
parametric settings for different machining situations were found out and reported.

Tosun et al. [235] experimentally investigated the variation of workpiece sur-
face roughness with varying pulse duration, open circuit voltage, wire speed and
dielectric fluid pressure in WEDM process. Brass wire with 0.25 mm diameter and
SAE 4140 steel with 10 mm thickness were used as tool and workpiece materials
in the experiments, respectively. It was found experimentally that the increasing
pulse duration, open circuit voltage and wire speed, increase the surface roughness
whereas the increasing dielectric fluid pressure decreases the surface roughness. The
variation of workpiece surface roughness with machining parameters was mod-
elled using a power function. The level of importance of the machining parameters
on the workpiece surface roughness was determined using analysis of variance.

Saha et al. [203] developed a simple finite element model and a new approach
to predict the thermal distribution in the wire fairly accurately. The model can be
used to optimize the different parameters of the system to prevent wire breakage.
At any instant of time, the spatial heat distribution profile of the wire can be
mapped on the transient analysis of any point on the wire traversing through all the
heat zones from the top spool to the bottom end. Based on this principle, the finite
element model and optimization algorithm were used to determine that the heat
generated was the critical variable responsible for wire breakage. The model
successfully predicts the thermal distribution profile accurately for various wire
materials, for increased wire velocity and for reduction in heat transfer coefficient.
This simple model is a precursor for the development of 3D finite element models
that can describe the cross-sectional wire erosion as the workpiece cutting pro-
gresses. The modeling can lead to the development of a smart electro-discharge
machining system with a sensor and feedback control to increase the cutting speed
and minimize breakage.

Sanchez et al. [206] described a hybrid computer-integrated system for the
improvement of the accuracy of corner cutting that combines experimental
knowledge of the process and numerical simulation. Based on a technological
database and a user-friendly interface, the system allows the user to select the
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optimum cutting strategy, either by wire path modification (when productivity is
the main concern) or by cutting regime modification (when high accuracy is
required). Simulation supported the decision-taking process by reducing the cost
and time-consuming experimental trials. The validity of the system was tested
through a series of case studies, which showed the improvements in accuracy and
productivity with respect to the commonly used strategies.

Hascalyk and Caydas [80] through experimental investigations showed that
intensity of the process energy affects significantly the amount of recast, surface
roughness, and microcracking. Tosun et al. [236] presented an investigation on the
optimization and the effect of machining parameters on kerf and the MRR in
WEDM operations. The simulated annealing algorithm was then applied to select
optimal values of machining parameters for multi-objective problem considering
minimization of kerf and maximization of MRR. Hewidy et al. [84] developed a
mathematical model based on response surface methodology (RSM) for corre-
lating the inter-relationships of various WEDM machining parameters of Inconel
601 material such as peak current, duty factor, wire tension and water pressure on
the MRR, wear ratio and surface roughness.

Kuriakose and Shunmugam [135] presented a multiple regression model to
represent relationship between input variables and two conflicting objectives, i.e.,
cutting velocity and surface finish. A multi-objective optimization method based
on a Non-Dominated Sorting Genetic Algorithm (NSGA) was then used to opti-
mize Wire EDM process. The process engineer can select optimal combination of
parameters from the pareto-optimal solution set, depending on the requirements.
Sarkar et al. [210] obtained pareto-optimal combinations of process variables
namely pulse on-time, pulse off-time, peak current, servo reference voltage, wire
tension and dielectric flow rate for maximization of cutting speed with constraint
on surface roughness and dimensional deviation. However, the method of opti-
mization is not specified. Chiang and Chang [47] presented an effective approach
for the optimization of the WEDM process of Al2O3 particle-reinforced material
(6061 alloy) with multiple-performance characteristics based on the grey relational
analysis (GRA). The response table and response graph for each level of the
machining parameters were obtained form the grey relational grade. In this study,
the machining parameters namely the cutting radius of working piece, on-time of
discharging, off-time of discharging, arc on-time of discharging, arc off-time of
discharging, servo voltage, wire feed and water flow were optimized with con-
siderations of multiple-performance characteristics, such as the surface removal
rate and the maximum surface roughness.

Manna and Bhattacharyya [156] presented a reliable set of parameters that
demonstrate versatility, and numerous and diverse range based on experience and
technology. The authors had investigated the parameters setting during the
machining of aluminum-reinforced silicon carbide metal matrix composite (Al/
SiC-MMC). The Taguchi method was used to optimize the CNC-wire cut-EDM
parameters. According to the Taguchi quality design Concept, a L18 (21 9 37)
mixed orthogonal array was used to determine the S/N ratio, and an analysis of
variance (ANOVA) and the F test values were used to indicate the significant
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machining parameters affecting the machining performance. From experimental
results and through ANOVA and F test values, the significant factors were
determined for each machining performance criteria, such as the MRR, surface
roughness, gap current and spark gap (gap width). Considering these significant
CNC-wire cut-EDM parameters, verification of the improvement in the quality
characteristics for machining Al/SiC-MMC was made with a confirmation test
with respect to the chosen initial or reference parameter setting. Mathematical
models relating to the machining performance were established using the Gauss
elimination method for the effective machining of Al/SiC-MMC. The determined
optimal combination of CNC-wire cut-EDM parameters obtained from the study
satisfied the real requirement of quality machining of Al/SiC-MMC in practice.

Sarkar et al. [207] studied WEDM process of c titanium aluminide and
attempted to develop an appropriate machining strategy for a maximum process
criteria yield. A feed-forward back-propagation neural network (BPNN) was
developed to model the machining process. The three most important parame-
ters—cutting speed, surface roughness and wire offset—were considered as
measures of the process performance. The model is capable of predicting the
response parameters as a function of six different control parameters, i.e., pulse on-
time, pulse off-time, peak current, wire tension, dielectric flow rate and servo
reference voltage. Experimental results demonstrated that the machining model is
suitable and the optimization strategy satisfies practical requirements.

Kanlayasiri and Boonmung [110] developed a mathematical model using
multiple regression method to formulate the pulse on-time and pulse-peak current
to the surface roughness. Mahapatra and Patnaik [155] used Taguchi’s parameter
design, significant machining parameters affecting the performance measures were
identified as discharge current, pulse duration, pulse frequency, wire speed, wire
tension, and dielectric flow. It was observed that a combination of factors for
optimization of each performance measure was different. The relationship between
control factors and responses like MRR, SF and kerf were established by means of
non-linear regression analysis, resulting in a valid mathematical model. Finally,
genetic algorithm was employed to optimize the WEDM process with multiple
objectives. The study demonstrated that the WEDM process parameters can be
adjusted to achieve better MRR, surface finish and cutting width simultaneously.

Lee and Liao [138] presented a control system to improve the efficiency of
machining a workpiece with varying thickness in the WEDM process. The
abnormal ratio Rab defined by the proportion of abnormal sparks in a sampling
period was taken as the controlled variable. A gain self-tuning fuzzy control
algorithm was used so that the transient situation can be suppressed immediately and
a stable performance can be achieved. In addition, the grey predictor was adopted
to compensate the time-delayed Rab caused by the low-pass filter data processing.

Hargrove and Ding [79] developed a FEM program to model temperature
distribution in the workpiece under the conditions of different cutting parameters.
The thermal parameters of low carbon steel (AISI4340) were selected to conduct
this simulation. The thickness of the temperature affected layers for different
cutting parameters was computed based on a critical temperature value. Through
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minimizing the thickness of the temperature affected layers and satisfying a certain
cutting speed, a set of the cutting process parameters were determined for work-
piece manufacture. On the other hand, the experimental investigation of the effects
of cutting parameters on the thickness of the AISI4340 workpiece surface layers in
WEDM was used to validate the simulation results. This study is helpful for
developing advanced control strategies to enhance the complex contouring capa-
bilities and machining rate while avoiding harmful surface damage.

Han et al. [76] described the influence of the machining parameters (including
pulse duration, discharge current, sustained pulse time, pulse interval time, polarity
effect, material and dielectric) on surface roughness in the finish cut of WEDM.
Experiments proved that the surface roughness can be improved by decreasing both
pulse duration and discharge current. When the pulse energy per discharge is
constant, short pulses and long pulses will result in the same surface roughness but
dissimilar surface morphology and different MRR. The removal rate when a short
pulse duration is used is much higher than when the pulse duration is long.
Moreover, from the single discharge experiments, it was found that a long pulse
duration combined with a low peak value could not produce craters on the
workpiece surface any more when the pulse energy was reduced to a certain value.
However, the condition of short pulse duration with high peak value still could
produce clear craters on the workpiece surface. This indicated that a short pulse
duration combined with a high peak value can generate better surface roughness,
which cannot be achieved with long pulses. It was also found that reversed
polarity machining with the appropriate pulse energy can improve the machined
surface roughness somewhat better compared with normal polarity in finish
machining.

Yuan et al. [259] discussed the development of reliable multi-objective opti-
mization based on Gaussian process regression (GPR) to optimize the high-speed
wire-cut electrical discharge machining (WEDM-HS) process, considering mean
current, on-time and off-time as input features and material remove rate (MRR)
and Surface Roughness (SR) as output responses. Experiments were conducted to
evaluate the proposed intelligent approach in terms of optimization process
accuracy and reliability. The experimental results showed that GPR models have
the advantage over other regressive models in terms of model accuracy and feature
scaling and probabilistic variance.

Saha et al. [202] developed a second-order multi-variable regression model and
a feed-forward BPNN model to correlate the input process parameters, such as
pulse on-time, pulse off-time, peak current, and capacitance with the performance
measures namely, cutting speed and surface roughness while machining tungsten
carbide–cobalt (WC–Co) composite material. From a large number of neural
network architectures, 4-11-2 was found to be the optimal one to predict cutting
speed and surface roughness with 3.29% overall mean prediction error. The
multivariable regression model yielded an overall mean prediction error of 6.02%.
Both the models were used to study the effect of input parameters on the cutting
speed and surface roughness, and finally to corroborate them with those of the
experimental results. Scanning electron micrographs revealed that at higher energy
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level the machined surface was characterized by several microcracks and loosely
bound solidified WC grains.

Ramakrishnan and Karunamoorthy [193] described the development of ANN
models and multi-response optimization technique to predict and select the best
cutting parameters of WEDM process. To predict the performance characteristics
namely MRR and surface roughness, ANN models were developed using back-
propagation algorithms. Inconel 718 was selected as work material to conduct
experiments. A brass wire of 0.25 mm diameter was applied as tool electrode to
cut the specimen. Experiments were planned as per Taguchi’s L9 orthogonal array.
Experiments were performed under different cutting conditions of pulse on-time,
delay time, wire feed speed, and ignition current. The responses were optimized
concurrently using multi-response signal-to-noise (MRSN) ratio in addition to
Taguchi’s parametric design approach. Analysis of variance (ANOVA) was
employed to identify the level of importance of the machining parameters on the
multiple-performance characteristics. Finally, experimental confirmations were
carried out to identify the effectiveness of this proposed method.

Plaza et al. [185] presented two original models for the prediction of angular
error in WEDM taper-cutting to reduce the experimental load and to contribute a
more general approach to the problem. Results showed that part thickness and
taper angle are the most influencing variables in the problem.

Çaydas� et al. [33] developed an adaptive neuro-fuzzy inference system (AN-
FIS) model for the prediction of the white layer thickness (WLT) and the average
surface roughness achieved as a function of the process parameters. Pulse duration,
open circuit voltage, dielectric flushing pressure and wire feed rate were taken as
model’s input features. The model combined modeling function of fuzzy inference
with the learning ability of ANN; and a set of rules was generated directly from the
experimental data. The model’s predictions were compared with experimental
results for verifying the approach.

Rao and Pawar [197] highlighted the development of mathematical models using
response surface modeling (RSM) for correlating the inter-relationships of various
WEDM parameters such as pulse on-time, pulse off-time, peak current, and servo
feed setting on the machining speed and surface roughness. ABC algorithm was then
applied to find the optimal combination of process parameters with an objective of
achieving maximum machining speed for a desired value of surface finish.

Rao et al. [194] optimized the surface roughness of die sinking electric dis-
charge machining by considering the simultaneous affect of various input
parameters. The experiments were carried out on Ti6Al4V, HE15, 15CDV6 and
M-250. Experiments were conducted by varying the peak current and voltage and
the corresponding values of surface roughness were measured. Multiperceptron
neural network models were developed using Neuro Solutions package. Genetic
algorithm concept was used to optimize the weighting factors of the network. It
was observed that the error when the network was optimized by genetic algorithm
came down to less than 2% from more than 5%.

Chen et al. [42] analyzed variation of cutting velocity and workpiece surface
finish depending on WEDM process parameters during manufacture of pure
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tungsten profiles. A method integrating BPNN and simulated annealing (SA)
algorithm was proposed to determine an optimal parameter setting of the WEDM
process. The specimens were prepared under different WEDM process conditions
based on a Taguchi orthogonal array table. The results of 18 experimental runs
were utilized to train the BPNN predicting the cutting velocity, roughness average
(Ra), and roughness maximum (Rt) properties at various WEDM process conditions
and then the SAA approaches was applied to search for an optimal setting. In
addition, the analysis of variance (ANOVA) was implemented to identify signifi-
cant factors for the WEDM process and the proposed algorithm was also compared
with respect to the confirmation experiments. The results showed that the BPNN/
SA method is an effective tool for the optimization of WEDM process parameters.

Although various researchers have considered the effect of different process
variables on various performance measures, these efforts need to be further
extended by considering more performance measures and more input variables.
Machining speed and surface finish are considered to be very crucial and important
performance measures for WEDM, hence the same are considered in the present
work. A mathematical model relating these performance measures with four
important process parameters, namely pulse on-time (Ton), pulse off-time (Toff),
peak current (Ip) and servo feed setting (F), is developed using a second-order
RSM technique, as first-order models often give lack-of-fit [169].

Furthermore, it is revealed from the literature that mathematical programming
techniques like method of feasible direction, Taguchi methods, etc., had been used
to solve optimization problems in WEDM process. However, these traditional
methods of optimization do not fare well over a broad spectrum of problem
domains. Moreover, traditional techniques may not be robust and they tend to
obtain a local optimal solution. Considering the drawbacks of traditional optimi-
zation techniques, attempts are being made to optimize the machining problem
using evolutionary optimization techniques. These methods use the fitness infor-
mation instead of the functional derivatives making them more robust and effec-
tive. These methods thus avoid the problem of getting trapped in local optima and
enable to obtain a global (or nearly global) optimum solution. Efforts are
continuing to use more recent optimization algorithms, which are more powerful,
robust and able to provide accurate solution.

Now an example is presented to demonstrate the process parameter optimiza-
tion of WEDM process using recently developed optimization algorithms.

3.4.1 Example: Parameter Optimization of WEDM Process

Rao and Pawar [197] highlighted the development of mathematical models using
RSM for correlating the inter-relationships of various WEDM parameters such as
pulse on-time, pulse off-time, peak current, and servo feed setting on the
machining speed and surface roughness. A mathematical model relating these
performance measures with four important process parameters namely, pulse
on-time (Ton), pulse off-time (Toff), peak current (Ip) and servo feed setting (F), on
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cutting speed (V) and surface roughness (Ra) is developed using a second-order
RSM technique.

RSM is a collection of statistical and mathematical methods that are useful for
modeling and optimization of the engineering science problems. RSM quantifies
the relationship between the controllable input parameters and the obtained
responses. In modeling of manufacturing processes using RSM, sufficient data is
collected through designed experimentation. An experiment is designed with 2k

(where k = number of variables, in this study k = 4) factorial with central com-
posite-second-order ratable design is used. This consists of number of corner
points = 16, number of axial points = 8, and a centre point at zero level = 4. The
axial points are located in a coded test condition space through parameter ‘a’. For
the design to remain rotatable, ‘a’ is determined as (2k)� = 2. Thus, the coded
level for the axial points is at 2. The center point is repeated four times to estimate
the pure error. The coded value corresponding to actual value for each process
variable is derived using following formula:

Coded test condition ¼ ATC�MTCð Þ=0:5� RTC, ð3:27Þ

where ATC is actual test condition, MTC mean test condition and RTC is range of
test condition.

As an illustration, if actual test condition of ‘pulse on-time (Ton)’ is 5 then, the
corresponding coded value is [5 - ((4 ? 8)/2)]/[(8 - 4)/2] = -0.5.

The coded numbers are thus obtained from following transformation equations:

x1 ¼ Ton � Ton0ð Þ=DTon ð3:28Þ

x2 ¼ Toff � Toff0ð Þ=DToff ð3:29Þ

x3 ¼ Ip � Ip0
� �

=DIp ð3:30Þ

x4 ¼ F � F0ð Þ=DF ð3:31Þ

where x1, x2, x3 and x4 are the coded values of the variables Ton, Toff,Ip, and F,
respectively. Ton0, Toff0, Ip0, and F0 are the values of pulse on-time, pulse off-time,
peak current, and servo feed setting at zero level. DTon, DToff, DIp and DF are the
intervals of variation in Ton, Toff, Ip, and F, respectively. Table 3.4 shows coded
values of process variables. The details of experimental set-up used for data col-
lection are given below:

Table 3.4 Coded values of process variables (from [197]; reprinted with permission from the
Council of the Institution of Mechanical Engineers, UK)

Factors Coded levels

-2 -1 0 +1 +2

Pulse on-time 2 4 6 8 10
Pulse off-time 6 10 20 30 40
Peak current 65 90 115 140 165
Servo feed setting 20 30 40 50 60
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The details of the experiments are as below:

• Machine type/make: CNC-WEDM, Elektra ELPULSE-30.
• Workpiece specification: Rectangular cavity of size: 60 9 110 9 12 mm.
• Material: OHNS.
• Surface roughness measuring device: Hommel tester T-500.
• Wire material: Brass.
• Wire diameter: 0.25 mm.
• Wire tension: 8 N.
• Dielectric fluid: Deionized water.

The coded levels of the process variables are as shown in Table 3.4.
To study the effect of process parameters, i.e., Ton, Toff, Ip, and F, on perfor-

mance measures, i.e., machining speed (Vm) and surface roughness (Ra), a second-
order polynomial response is fitted to the data shown in Table 3.5 into the following
equations.

Table 3.5 The data collected through actual experiments (from [197]; reprinted with permission
from the Council of the Institution of Mechanical Engineers, UK)

S.no. Ton (ls) Toff (ls) Ip (Amp) F Vm (mm/min) Ra (lm)

1 -1 -1 -1 -1 1.15 1.6
2 1 -1 -1 -1 1.50 2.5
3 -1 1 -1 -1 0.93 1.5
4 1 1 -1 -1 1.16 1.8
5 -1 -1 1 -1 1.54 2.2
6 1 -1 1 -1 1.58 2.3
7 -1 1 1 -1 1.13 1.7
8 1 1 1 -1 1.30 2.0
9 -1 -1 -1 1 1.58 2.3
10 1 -1 -1 1 1.90 3.7
11 -1 1 -1 1 1.05 1.5
12 1 1 -1 1 1.48 2.4
13 -1 -1 1 1 1.90 3.1
14 1 -1 1 1 1.57 2.4
15 -1 1 1 1 1.10 1.5
16 1 1 1 1 1.28 2.1
17 0 0 0 0 1.55 3.4
18 0 0 0 0 1.55 4.0
19 0 0 0 0 1.56 3.5
20 0 0 0 0 1.56 3.5
21 2 0 0 0 1.75 3.3
22 -2 0 0 0 1.13 1.6
23 0 2 0 0 1.35 1.8
24 0 -2 0 0 1.95 2.6
25 0 0 2 0 1.60 1.2
26 0 0 -2 0 0.81 3.0
27 0 0 0 2 1.70 1.6
28 0 0 0 -2 0.95 3.7
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i¼1
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i þ

X

k

j[ 1

biixixj; ð3:32Þ

where ‘y’ is the response and the xi (1, 2, …, k) are coded levels of k quanti-
tative variables. The coefficient b0 is the free term, the coefficients bi are the
linear terms, the coefficients bii are the quadratic terms, and the coefficients bij
are the interaction terms. Equations 3.33 and 3.34 are then derived by deter-
mining the values of the coefficients using the least square technique for the
observations collected for machining speed (Vm) and surface roughness (Ra),
respectively.

Vm ¼ 1:555þ 0:109x1 � 0:187x2 þ 0:0929x3 þ 0:1279x4 þ 0:0393x1x2
� 0:0793x1x3 � 0:01188x1x4 � 0:01688x2x3 � 0:0493x2x4 � 0:0606x3x4

� 0:03219x21 þ 0:02031x220:0909x
2
3 � 0:06094x24 ð3:33Þ

Ra ¼ 3:6þ 0:2979x1 � 0:2979x2 � 0:1479x3 � 0:03542x4 þ 0:021875x1x2
� 0:2031x1x3 þ 0:04062x1x4 þ 0:01562x2x3 � 0:1531x2x4

� 0:1031x3x4 � 0:3182x21 � 0:3807x22 � 0:4057x23 � 0:2682x24 ð3:34Þ

To test whether the data are well fitted in model or not, the values of standard
error of estimates (S) of the regression analysis for machining speed and surface
roughness are obtained as 0.148 and 0.644, respectively, whereas the values of
standard deviation (Sy) for machining speed and surface roughness are obtained
as 0.443 and 1.186, respectively. As S\ Sy for regression analysis of both
machining speed and surface roughness, it indicates that both regression models
have merit.

The actual extent of improvement, using regression analysis rather than
describing data as an average value, is quantified by the coefficient of determi-
nation (R2), which varies from 0 to 1. Value of R2

= 1 indicates perfect fit,
whereas R

2
= 0 indicates no improvement. For machining speed and surface

roughness, R2 values are calculated as 0.89 and 0.71, respectively. The R2 value is
moderately high for machining speed and is moderate for surface roughness.
Hence, the models developed for machining speed and surface roughness fits the
data well. F statistics can be used whether these results with such high values of
R2, occurred by chance. Probability that these high values occurred by chance are
calculated as 0.000459 and 0.00805 for machining speed and surface roughness,
respectively. As these values are very small, it can be concluded that the regression
analysis is useful in predicting the response. Based on the analysis discussed, the
optimization model is as then formulated as below.

Objective function: Maximize Vm ðgiven by Eq: 3:31Þ

The constraint is to ensure that the surface roughness value (Ra) should not
exceed permissible surface roughness (Rper) as specified by Eq. 3.35 below
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Rper � Ra � 0; ð3:35Þ

where Ra is the surface roughness value as specified by Eq. 3.36. The upper and
lower bound values for these variables are as given below.

4� Ton � 8 ls ð3:36Þ

10� Toff � 30 ls ð3:37Þ

90� IP � 140 amp ð3:38Þ

30�F� 50 ð3:39Þ

3.4.1.1 Optimization Using ABC Algorithm

Following steps are used for Optimization using ABC algorithm to solve the above
optimization problem.

Step 1 Parameter selection
Food source represents a possible solution to the problem of minimization
of production-time in the present work. Number of initial solutions (i.e.,
the number of food sources) considered in this work are five. The value of
each food source depends on the fitness value of the objective function.
For every food source there is only one employed bee (employed for-
ager). In other words, the number of employed bees is equal to number of
food sources. Hence, in the present work number of employed bees is
considered to be four. The unemployed forager can be scout or an
onlooker bee. The number of onlooker bees must be greater than the
number of employed bees. When the algorithm is tried for parameters of
optimization values of number of employed bees = 10 and colony
size = 25, it is observed that as the number of onlooker bees and hence
the population size increases, the algorithm performs better in terms of
convergence rate. However, after a sufficient value of number of onlooker
bees, any increment in the value does not improve the performance of the
algorithm. For the problem considered in this work, number of onlooker
bees is considered to be 11, which can provide an acceptable convergence
speed for search. The colony size is the sum of number of employed bees
and number of onlooker bees. Hence, the colony size is 15. Number of
scout bees is usually 5–30% of the colony size. In the present work, the
number of scout bee is taken as 5% of the colony size, i.e., one. The
parameters of optimization thus selected in this example are summarized
as below:

• Number of employed bees = 4.
• Number of onlookers bees = 11.
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• Number of scout bees = 1.
• Maximum number of iterations = 150.

Step 2 Calculate the nectar amount of each food source
The employed bees are moved to the food sources and the nectar amount of
these food sources is evaluated based on their fitness value as defined by
the objective function given by Eq. 3.33 subjected to constraint given by
Eq. 3.34.

Step 3 Determine the probabilities using the nectar amount
If the nectar amount of a food source ‘‘hi’’ is Fi, then the probability (Pi) of
choosing this food source by an onlooker bee is expressed as:

Pi ¼ fi

,

X

S

k¼1

1=fkð Þ; ð3:40Þ

where ‘‘S’’ is the number of food sources.
Step 4 Calculate the number of onlooker bees, which will be sent to food sources

Based on the probabilities calculated in step 3, the number (N) of onlookers
bees sent to food source ‘‘hi’’ is calculated as:

N ¼ Pi � m ð3:41Þ

where ‘m’ is the total number of onlooker bees.
Step 5 Calculate the fitness value of each onlooker bee

After watching the dances of employed bees, an onlooker bee goes to the
region of food source ‘‘hi’’ by the probability given by Eq. 3.42.

hi cþ 1ð Þ ¼ hi cð Þ � /i cð Þ ð3:42Þ

where ‘‘c’’ is number of generation. /i (c) is a randomly produced step
to find a food source with a more nectar around ‘hi’. /i (c) is calculated
by taking the difference of the same parts of hi(c) and hk(c) (‘‘k’’ is a
randomly produced index) food positions. If the nectar amount Fi(c ? 1)
at hi(c ? 1) is higher than at hi(c), then the bees go to the hive and
share information with others and the position hi(c) of the food source is
changed to hi(c ? 1) otherwise hi(c) is kept as it is. If the position ‘hi’
of the food source ‘‘i’’ cannot be improved through the predetermined
number of trials, then that food source ‘hi’ is abandoned by its
employed bee and then the bee becomes a scout. The scout starts
searching new food source, and after finding the new source, the new
position is accepted as ‘hi’.

Step 6 Evaluate the best solution
Position of the best onlooker bee is identified for each food source. The
global best of the honeybee swarm in each generation is obtained and it
may replace the global best at previous generation if it has better fitness
value.
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Step 7 Update the scout bee
The worst employed bees, as many as the number of scout bees in the
population, are, respectively, compared with the scout solutions. If the
scout solution is better than employed solution, employed solution is
replaced with scout solution. Else employed solution is transferred to the
next generation without any change. The results of optimization by
applying the above steps of ABC algorithm are shown in Table 3.6.

3.4.1.2 Optimization Using PSO Algorithm

Determination of the optimum selection of operating parameters of PSO algorithm
like acceleration constants ‘c1’ and ‘c2’ as well as inertia coefficient ‘w’ is very
essential for convergence of the algorithm. Considering the velocity and positions
of a particle at discrete time steps, the following non-homogeneous recurrence
relation is obtained:

Xiþ1 ¼ ð1þ w� /1 � /2ÞXi � wXi�1 þ /1 � pBesti þ /2 � gBesti; ð3:43Þ

where /1 = c1 9 r1 and /2 = c2 9 r2.
This recurrence relation can be written in matrix–vector notation as the product

Xiþ1

Xi

1

2

4

3

5 ¼
1þ w� /1 � /2 �w /1 � pBesti þ /2 � gBesti

1 0 0
0 0 1

2

4

3

5

Xi

Xiþ1

1

2

4

3

5:

ð3:44Þ

Characteristic polynomial of the matrix in Eq. 3.44 is

1� kð Þ w� k 1þ w� /1 � /2ð Þ þ k2
� �

: ð3:45Þ

The solution to this polynomial gives the following eigen values,

k1 ¼ ð1þ w� /1 � /2 þ rÞ=2 ð3:46Þ

k2 ¼ ð1þ w� /1 � /2 � rÞ=2 ð3:47Þ

Table 3.6 The results of optimization for Ra = 2 lm using various algorithms

Method Ton (ls) Toff (ls) Ip (Amp) F Vm (mm/min)

ABC 8 30 132.57 50 1.422
PSO 4 23.23 140 50 1.420
HS_M 8 29.66 134.15 50 1.420
SA 8 29.66 134.15 50 1.414
SFL 7.972 29.8 133.375 50 1.419
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r ¼ 1þ w� /1 � /2ð Þ2�4w
	 
2

: ð3:48Þ

Now, to ensure the convergence of algorithm, the values of k1 and k2 should be
such that

max k1j j; k2j jð Þ\1: ð3:49Þ

This can be achieved only when the condition given by Eq. 3.48 is satisfied.

w[ 0:5 /1 þ /2ð Þ � 1: ð3:50Þ

As the feasible range for w is 0–1 and for c1 and c2 is 0–2, the selected values of
w, c1 and c2 should be such that the above equations are satisfied for all possible
values of random numbers r1 and r2 in the range 0–1. Keeping in view of this,
considerable number of trials are conduced and the values of w, c1 and c2 are
finally selected as 0.65, 1.65 and 1.75, respectively. Thus, the controlling para-
meters of PSO algorithm for the present case are:

• Number of particles in swarm = 5.
• Inertia weight = 0.65.
• Acceleration coefficient (C1) = 1.65.
• Acceleration coefficient (C2) = 1.75.
• Number of iterations = 50.

The results of optimization using the above parameter setting for PSO algo-
rithm are shown in Table 3.6.

3.4.1.3 Optimization Using SA Algorithm

Using the simulated annealing technique, the objective function to minimize the
machining speed is written as:

Min: Z ¼ �w� Z1 � P1 � Z2ð Þ; ð3:51Þ

where Z is the combined objective function, Z1 the objective function given by
Eq. 3.33, Z2 the constraint value given by Eq. 3.34, w the weight of the objective
function, and P1 is the penalties assigned for violation of constraints Z2. In present
case, P1 = 35 if a particular constraint is violated, else penalty = 0. However, one
may use any other penalty function method.

Penalty is defined in the objective function in such a way that a point having
higher value of ‘Z1’ but with small negative value of ‘Z2’ should be accepted at
higher temperature to search another point in the vicinity. However, it should be
ensured that such a point should never appear in the final solution. The initial
temperature is obtained by calculating the average of the function values at a
boundary points as given below:
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Initial temperature T0 ¼
X

ZNb ¼ =n; ð3:52Þ

where ZNb is the value of objective function at each boundary point and n is
the number of boundary points. The initial temperature is calculated as 1.40
and the decrement factor is considered as 0.01. At any current point X(t), the
new value of the parameters for the successive iterations is calculated using the
formula,

x t þ 1ð Þ ¼ x tð Þ þ r
X

N

Ri � 0:5N

 !

ð3:53Þ

where r = (Xmax - Xmin)/6; R is the random number; and N is the number of
random numbers used. In the present work, six random numbers are used. While
starting the process, the initial values for the parameters are taken as the average
of the respective parameter limits. The algorithm is terminated when a suffi-
ciently small temperature is obtained or a small enough change in function value
is found.

Therefore the parameter setting for SA algorithm is:

• Initial temperature = 1.40.
• Decrement factor = 0.01.
• Number of iterations = 100.

The results of optimization using the above parameter setting for SA algorithm
are shown in Table 3.6.

3.4.1.4 Optimization Using HS_M Algorithm

Controlling parameters of HS algorithm are the harmony memory size (HMS), or
the number of solution vectors in the harmony memory; harmony memory
considering rate (HMCR); pitch adjusting rate (PAR); number of decision
variables (N) and the number of improvisations (NI), or stopping criterion. The
harmony memory (HM) is a memory location where all the solution vectors (sets
of decision variables) are stored. This HM is similar to the genetic pool in the
GA. The HMCR and PAR are parameters that are used to improve the solution
vector. After several trial runs following values of controlling parameter of HS
algorithm are obtained;

• Harmony memory size = 5.
• Harmony memory consideration rate = 0.7.
• Pitch adjusting rate = 0.7.
• Number of improvisations = 150.

The results of optimization using the above parameter setting for HS_M
algorithm are shown in Table 3.6.
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3.4.1.5 Optimization Using SFL Algorithm

Following parameters of optimization of SFL are considered after several trial
runs.

• Total number of frogs = 20.
• Number of memeflexes = 5.
• Number of frogs in each memeflex = 4.
• Number of improvisations = 50.

The results of optimization using the above parameter setting for SFL algorithm
are shown in Table 3.6.

Now, using the parameter settings for various algorithms, results of optimiza-
tion of WEDM process are given in Table 3.6

The Optimality of the solution obtained using ABC algorithm could be con-
firmed from Figs. 3.15, 3.16, 3.17, and 3.18. Figure 3.15 shows the variation of
machining speed and constraint with pulse on-time.

As shown in Fig. 3.15, the machining speed increases with increase in pulse on-
time; hence higher value of pulse on-time is desired. Thus, the selection of upper
bound value of pulse on-time Ton = 8 ls is appropriate. It is also observed that the
surface roughness initially increases and then decreases with pulse on-time. Hence,
the constraint is initially violated beyond value of Ton % 5.3 ls, however, it is
satisfied again at Ton = 8 ls. Variation of machining speed and constraint with
pulse off-time is shown in Fig. 3.16.

As shown in Fig. 3.16, machining speed decreases but surface finish increases
with the increase in pulse off-time. Thus, from machining speed point of view,
lower value of pulse off-time is desired. However, upper bound value (30 ls) of
pulse off-time is selected as for any value below 30 ls, surface roughness con-
straint is violated. Figure 3.17 shows variation of machining speed and constraint
value with peak current.

Fig. 3.15 Variation of
machining speed and con-
straint value with pulse on-
time (from [197]; reprinted
with permission from the
Council of the Institution of
Mechanical Engineers, UK)
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As shown in Fig. 3.17, the machining speed initially increases slightly with
peak current up to certain value (%107 amps) and then decreases with increases in
peak current. Values of peak current up to 107 amp cannot be selected as for these
values the constraint is violated. From this point of view lower value of peak
current should be selected. As the value selected for peak current of 132.52 amp is
the lowest value at which the constraint is satisfied, is appropriate. Figure 3.18
shows variation of machining speed and constraint value with servo feed setting.

It is observed from Fig. 3.18 that servo feed setting has less effect on machining
speed but affects the surface roughness significantly. Better surface finish can be
achieved for higher value of servo feed setting. From this view point, selection of
upper bound value of servo feed setting (=50) is appropriate. Figure 3.19 shows
the convergence of ABC algorithm.

It is observed from the Table 3.6, that ABC algorithm outperforms other
algorithm in terms of accuracy of the solution for the present application. This is
due to the fact that ABC algorithm combines both, the stochastic selection scheme
carried out by onlooker bees, and greedy selection scheme used by onlookers and
employed bees to update the source position. The model formulated in this work is

Fig. 3.16 Variation of
machining speed and con-
straint value with pulse off-
time (from [197]; reprinted
with permission from the
Council of the Institution of
Mechanical Engineers, UK)

Fig. 3.17 Variation of
machining speed and con-
straint value with peak cur-
rent (from [197]; reprinted
with permission from the
Council of the Institution of
Mechanical Engineers, UK)
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of multi-modal nature as it has a number of local optima. As an illustration, for
desired value of Ra = 2.1 lm, one of the local optimum solution is: Ton = 4,
Toff = 10, Ip = 90, and F = 31 with corresponding value of Vm = 1.106 mm/min
and constraint value zero thus showing no scope for further improvement. How-
ever, the global optimum solution obtained using ABC provides Vm = 1.465 mm/
min, showing about 32% improvement over the local optimum solution which is
generally obtained using traditional methods of optimization. This clearly justifies
the use of advanced optimization algorithms.

3.5 ECM Process

ECM is one of the NTMPs used to machine extremely hard materials that are
difficult to cut cleanly using traditional methods of machining. The first process
resembling ECM was patented by Gusseff in 1929. Significant advances during the

Fig. 3.18 Variation of
machining speed and con-
straint value with servo feed
setting (from [197]; reprinted
with permission from the
Council of the Institution of
Mechanical Engineers, UK)

Fig. 3.19 Convergence of
ABC algortihm (from [197];
reprinted with permission
from the Council of the
Institution of Mechanical
Engineers, UK)
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1950s and 1960s developed ECM into a major technology in the aircraft and
aerospace industries to machine high-strength alloys. As of now, ECM is
employed in many ways by automotive, aerospace, nuclear, defense, tool and die
making, offshore petroleum, medical, and electronic industries (e.g., turbine
blades, engine castings, bearing cages, gears, dies and molds, artillery projectiles,
surgical implants, diagnostic devices, etc.).

The basis of ECM is the phenomenon of electrolysis, whose laws were estab-
lished by Faraday in 1833. Faraday proved that if two conductive poles are placed
in a conductive electrolyte bath and energized by a current, metal may be depleted
from the positive pole (anode) and plated onto the negative pole (cathode). Thus,
ECM can be used to remove an electrically conductive work piece material
through anodic dissolution. The principle and equipment used in ECM process is
illustrated in Fig. 3.20 [192].

The work piece and the tool are the anode and cathode, respectively, of an
electrolytic cell, and a constant potential difference (usually about 5–30 V) is
applied across them producing a high current density of 10–200 A/cm2. A suitable
electrolyte (NaCl or NaNO3 aqueous solution) is chosen so that the cathode shape
remains unchanged during electrolysis. The electrolyte is pumped at a rate
3–60 m/s, through the gap between the electrodes to remove the machining waste
(i.e., dissolved material, usually metal hydroxide) and to diminish unwanted
effects such as those that arise with cathodic gas generation and electrical heating.
The rate at which metal is then removed from the anode is approximately in
inverse proportion to the distance between the electrodes. As machining proceeds,
and with the simultaneous movement of the cathode at a typical rate, for example,
0.02 mm/s toward the anode, the gap width along the electrode length will
gradually tend to reach a steady-state value. Under these conditions, a shape,
approximately negative mirror image of the cathode, will be reproduced on the
anode as the cathode does not alter during the ECM process. A typical gap width
then can be about 0.4 mm.

Fig. 3.20 ECM principle
and equipment (from [200];
reprinted with permission
from the Council of the
Institution of Mechanical
Engineers, UK)
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No mechanical or thermal energy is involved in ECM process. Hard metals
can be shaped electrolytically using ECM and the rate of machining does not
depend on their hardness. The tool electrode used in the process does not wear,
and therefore soft metals can be used as tools to form shapes on harder work
pieces, unlike conventional machining methods. The process is used to smooth
surfaces, drill holes, form complex shapes, and remove fatigue cracks in steel
structures. Its combination with other techniques yields fresh applications in
diverse industries.

The characteristics of ECM can be summarized as given below:

• Mechanics of material removal: electrolysis.
• Medium: conducting electrolyte.
• Tool material: copper, brass and steel.
• Tool wear: infinite.
• Gap: 50–800 lm.
• MRR: 0.1–10 mm/min.
• Surface finish: very high order of 0.6 lm.
• Critical parameters: voltage, current, feed rate, electrolyte flow velocity, and
electrolyte conductivity.

• Materials application: all conducting metals and alloys.
• Shape application: blind complex cavities, curved surfaces, through cutting, and
large through cavities.

The advantages of ECM process can be stated as:

• No tool wear.
• Components are not subject to either thermal or mechanical stresses.
• Non-rigid and open work pieces can be machined easily as there is no contact
between the tool and work piece.

• Complex dimensional shapes can be machined repeatedly and accurately on
hard and high-strength metals.

• Deep holes can be drilled or several holes at once.
• Fragile parts which cannot take more loads and also brittle materials which tend
to develop cracks during machining can be machined easily.

• Smooth and bright surface finishes of 0.6 lm can be achieved.
• ECM is a time saving process when compared with conventional machining.

With recent advances in machining accuracy and precision, the electronics
industry has begun to use ECM for micromachining components. ECM with
pulsed DC voltage offers an enhanced accuracy control. The combination of ECM
with other machining processes has been shown to yield performance superior to
that achieved by individual processes. ECM and its pulse system are finding new
applications in finishing molds and dies for many industrial components. Through
its integration with many other enabling technologies, ECM is finding wider
applications and increasing acceptance in a variety of other industries.

Despite the advances, ECM process has certain limitations. Some of the limi-
tations can be stated as:
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• Higher initial investment.
• High specific energy consumption (about 150 times that required for conven-
tional processes) leading to high operating cost.

• High tooling cost.
• High maintenance cost.
• Unsuitable for electrically non-conducting materials and jobs with very small
dimensions.

• Problems of corrosion, toxicity, and safety.
• Problems of process monitoring and control, tool design, disposal of waste,
electrolyte processing, etc.

Due to these limitations, a very careful decision making during process
planning is necessary before using ECM for the practical purposes. ECM pro-
cess parameters optimization is an important component of this activity because
use of optimum process parameters can significantly improve the process per-
formance and process economics by reducing various costs. Generally, ECM
process parameters are selected either based on the experience, expertise, and
knowledge of the operator or from the propriety machining handbooks. Selec-
tion of process parameters based on the operator experience does not completely
satisfy the requirements of high efficiency and good quality. While machining
tables can be a better choice in a factory environment for one or two appli-
cations but cannot be used for a wide range of applications and operating
conditions. In most of the cases, selected process parameters are conservative
and far from the optimum. This hinders optimum utilization of the process
capabilities. Selecting optimum values of process parameters without optimi-
zation requires elaborate experimentation which is costly, time consuming, and
tedious. Therefore, most cost-effective, efficient, and economic utilization of
ECM necessitates selecting the optimum values of important ECM process
parameters so as to optimize the measures of process performance. These per-
formance measures generally include maximizing MRR and tool life, and
minimizing dimensional inaccuracy and machining cost. Minimizing dimen-
sional inaccuracy is an important aspect in those critical applications where tight
tolerances are desired.

Bhattacharyya and Sorkhel [22] highlighted features of the development of a
comprehensive mathematical model for correlating the interactive and higher-
order influences of various machining parameters on the dominant machining
criteria, i.e., the MRR and the overcut phenomena, through RSM, utilizing relevant
experimental data as obtained through experimentation. The authors highlighted
the various test results that also confirmed the validity and correctiveness of the
developed mathematical models for analyzing the effects of various process
parameters on the machining rate and overcut phenomena. Optimal combination of
these parameters can be used in order to achieve maximization of the MRR and the
minimum overcut effects for optimal accuracy of shape features.

Adam and Maria [2] presented the primary investigations of machining with a
flat rectangular universal electrode. The authors had developed a simple
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mathematical model for MRR and stated that in the case of sculptured surfaces
machining with flat ended electrode it was possible to reach higher MRR and
smaller surface waviness than with a ball ended electrode. However, further
investigations are required to prove these statements. Kozak [126] and Kozak et al.
[127] presented the concept and prototype of a computer-aided engineering (CAE)
system that can be used to solve different task of ECM, such as: tool-electrode
design, selection of optimal machining variant and input machining parameters
optimization. The system uses computer simulation software that was developed
for various kinds of ECM operations like: electrochemical (EC) sinking, EC
milling, EC smoothing, ECM-CNC with a universal electrode and numerically
controlled electrode movement, etc. The results of computer simulation of dif-
ferent ECM processes and results of experimental verifications were also pre-
sented. The CAE-ECM system was designed to solve the following technological
problems:

• Simulation of the work piece shape change during machining with a fixed tool-
electrode profile including accuracy analysis.

• Tool-electrode design for a required work piece shape.
• Simulation of ECM smoothing process.
• Determination of basic characteristics of different variants of the ECM process
(ECM with rotating electrode, pulse ECM, ECM with vibrating electrode, etc.).

Bhattacharyya and Munda [20] made an attempt to develop an experimental
set-up for carrying out in-depth research for achieving a satisfactory control of the
process parameters to meet the micromachining requirements. Keeping in view
these requirements, sets of experiments were carried out to investigate the influ-
ence of some of the predominant ECM process parameters such as machining
voltage, electrolyte concentration, pulse on-time and frequency of pulsed power
supply on the MRR and accuracy to fulfil the effective utilization of ECM system
for micromachining.

Purcar et al. [188] proposed a general applicable numerical method for the
simulation of 3D electrode shape changes obtained during ECM processes based
on the ‘‘marker’’ method. The electrode shape change was found by displacing
each node proportional with, and in the direction of the local current density
according to Faraday’s law. The local growth rate was obtained by numerically
solving the potential model using the boundary element method. Results related to
3D ECM of the letter ‘‘E’’ were presented. Hewidy et al. [85] presented an ana-
lytical approach to establish mathematical model in an endeavor to asses the
mechanism of metal removal for this novel and hybrid technique. The effect of
input parameters and machining conditions on the effectiveness of tool vibration
during ECM was fully investigated. The analytical model reveals that there could
be a great complexity in the relationship between the tool amplitude and the
equilibrium gap size, which could lead to tool damage, if the problem has not been
carefully considered.

Asokan et al. [10] conducted experiments on ECM setup and developed two
multiple regression models and an ANN model to determine the optimal
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machining parameters. In their work, current (C), voltage (V), flow rate (U), and
(inter-electrode) gap (G) were considered as machining process parameters, and
MRR and surface roughness were considered as objectives. The ranges of process
parameters considered by the authors are given below:

• Voltage, V (volts) = 20–32.
• Electrolyte flow velocity, U (m/s) = 6–9.
• Current, C (Amp) = 200–280.
• Inter-electrode gap, G (mm) = 0.1–0.5.

The authors had developed two models of multiple regressions and a model
of ANN to map the relationship between process parameters and the objectives
in terms of grey relational grade. The models were checked for their suit-
ability as best predictive models. Instead of using experimental values directly
in multiple regression models and ANN model, grey relational grades were
used to study about multi-response characteristics. GRA was used to convert
the multi-response optimization model into a single response grey relational
grade.

Asokan et al. [10] developed the following multiple regression models to
analyze the process parameters in ECM process:

Model I Linear model excluding interaction terms

Grade ¼ 0:702� 0:00010C � 0:00688V þ 0:0128U þ 0:062G ð3:54Þ

Model II Transformation of exponential model excluding interaction terms

Grade ¼ T � CaVbUcGd ; ð3:55Þ

where T, a, b, c, and d are constants.
A logarithmic transformation was applied to convert the non-linear form of
equation into the following linear form.

lnGrade ¼ lnT þ alnC þ blnV þ clnU þ dlnG: ð3:56Þ

This model assumes that there is a normal distribution of the dependent parameter
for every combination of the values of the independent parameters. The regression
equation developed using MINITAB software based on this model is shown
below.

GradeL ¼ 0:64� 0:083CL� 0:321VLþ 0:191FLþ 0:018GL: ð3:57Þ

The predicted values were calculated using the regression Eqs. 3.54–3.57.
The percentage deviation was computed between the experimental grade and
predicted grade of both training data and test data. ANOVA was used to
identify the significance of multiple regression models and the authors had
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reported that there was no significant difference between the training data and
test data.

In addition to developing the multiple regression models, Asokan et al. (2007)
developed an ANN model to check which prediction model was best. In ANN
model, the experimental data was normalized in the range of -1 to +1 using the
following equation:

Ao ¼ 2 a� aminð Þ= amax � aminð Þ � 1; ð3:58Þ

where An is the normalized input data, amax the maximum value of the input data,
amin the minimum value of the input data, and a is the input data to be normalized.

The process parameters and the output responses were organized into the input
layer and the output layer, respectively, to train the network. The input variables
were current, voltage, electrolyte flow rate, and gap. The total number of inputs
nodes was four. The network was built to relate the process parameters and output
responses. The output layer was considered as grey relational grade. The network
was trained using the training data sets with experimental grade. The training
parameters were set as follows:

• Learning rate = 0.01.
• Maximum allowed system error = 1e–10.
• Number of iterations = 10,000.

The network was tested, and ANOVA was performed and it was reported that
there was no significant difference between training data and test data.

The average percentage deviations for the training data of the linear regression
model, logarithmic transformation model, excluding interaction terms and ANN
model were 12.7, 25.6 and 3.03, respectively. The average percentage deviations
for the testing data of the three models were 9.83, 26.8 and 2.67. While examining
the average percentage deviations of three models, ANN was having less per-
centage deviation. Hence ANN was considered as the best prediction model as
compared to the regression models. Based on the testing results of the ANN, the
operating parameters were optimized. Finally, the optimal conditions obtained
were current at 200 A, voltage at 20 V, gap at 0.3 mm and flow rate at 9 m/s for
maximizing MRR and surface roughness simultaneously among the 32 experi-
mental data.

However, Asokan et al. [10] had not considered the effect of feed rate on the
objectives of maximizing MRR and minimizing surface roughness. Feed rate, f, is
an important process parameter that should be considered in the optimization
process. Also, the operating ranges selected for process parameters particularly for
the electrolyte flow rate, U, was low. Other important objectives such as maxi-
mizing dimensional accuracy and tool life were not considered. The alphabet ‘L’
was not explained. The authors had not considered any interaction effects of the
process parameters in multiple regression modeling. Furthermore, it is observed
that the authors had made many wrong calculations in determining the normalized
values of C, V, F, and G. These wrong calculations had resulted in wrong grey
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relational grades for ANN modeling. Hence, the subsequently drawn conclusion
that ANN model was the best predictive model is doubtful. As a result, the
optimization results obtained by Asokan et al. (2007) using ANN model are
questionable.

Munda and Bhattacharyya [21] attempted to establish a comprehensive
mathematical model for correlating the interactive and higher-order influences of
various machining parameters, i.e., machining voltage pulse on/off ratio,
machining voltage, electrolyte concentration, voltage frequency and tool vibration
frequency on the predominant micromachining criteria, i.e., the MRR and the
radial overcut (ROC) through RSM, utilizing relevant experimental data as
obtained through experimentation. Validity and correctiveness of the developed
mathematical models were also tested through analysis of variance. Optimal
combination of these predominant micromachining process parameters was
obtained from these mathematical models for higher machining rate with accuracy.
Considering MRR and ROC simultaneously optimum values of predominant
process parameters were obtained as: pulse on/off ratio 1.0, machining voltage
3 V, electrolyte concentration 15 g/l, voltage frequency of 42.118 Hz and tool
vibration frequency as 300 Hz. The effects of various process parameters on the
machining rate and radial overcut were also highlighted through different response
surface graphs.

Senthilkumar et al. [215] investigated the influence of some predominant ECM
process parameters such as applied voltage, electrolyte concentration, electrolyte
flow rate and tool feed rate on the MRR, and surface roughness to fulfill the
effective utilization of ECM of LM25 Al/10%SiC composites produced through
stir casting. The contour plots were generated to study the effect of process
parameters as well as their interactions. The process parameters were optimized
based on RSM approach.

The next section describes the input–output process parameter relationship
modeling and optimization of ECM process parameters.

3.5.1 Modeling and Optimization of ECM Process Parameters

ECM is a complex process and it is difficult to predict the changes that may occur
in the gap between cathode and anode, known as inter-electrode gap (IEG). The
electrolyte properties vary due to the emission of a considerable amount of heat
and gas bubbles. In addition, hydrodynamic parameters, such as pressure, also vary
along the electrolyte flow direction and make the analysis quite complicated.
Bhattacharyya et al. [19] proposed a 2D inter-electrode gap model in which
maximization of the MRR was considered as the objective function with tool feed
rate (f) and electrolyte flow velocity (U) as the design parameters. The three
constraints considered were temperature, passivity, and chocking. The temperature
constraint is to avoid boiling of electrolyte, the choking constraint is to avoid
electrolyte flow choking due to H2 gas, and the passivity constraint is to avoid
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formation of passive oxide film on the work surface due to O2 gas. The objective
function and the constraints are given below:

Objective function : maximize MRR ¼ Aaf mm3=s
� �

ð3:59Þ

where Aa is the projected area of work piece (mm2). Since Aa is constant, the
objective function is equivalent to: maximize MRR = fmax.

The objective of the model proposed by Bhattacharyya et al. [19] was to
maximize the feed rate satisfying the following three constraints:

1. The highest temperature attained by the electrolyte must be less that its boiling
point.

2. Choking of the electrolyte flow due to H2 gas should be avoided.
3. Passivation of the work surface due to O2 gas must not occur.

The model was based on many simplified assumptions. The temperature con-
straint line was found to run significantly below the optimal point, and so was not
considered. Thus, the optimization problem was reduced to:

Choking constraint:U� 2:60f 2 ð3:60Þ

Passivity constraint:U� 3:38f : ð3:61Þ

This problem was non-linear in nature and was solved by Bhattacharyya
et al. [19] using a graphical technique which, in itself, was less accurate. In the
above model, maximization of MRR was the only objective. Void fraction (i.e.,
volumetric gas concentration) was assumed to remain constant and a high value
for the void fraction (0.7) was used, and the electrolyte conductivity was
assumed to be a function of void fraction alone. However, it was shown by
Hopenfeld and Cole [92] that temperature also has a significant effect on the
electrolyte conductivity and hence, should be taken into account. Void fraction
and pressure also vary significantly and therefore, should not be assumed
constant during the process. Furthermore, parameter bounds for f and U should
be specified.

Kozak [125] developed a 2D optimization model for ECM under steady state
operating conditions, the objective was to maximize dimensional accuracy, i.e., the
difference in inter-electrode gap (lEG) at inlet and outlet. The variation in lEG
with respect to IEG at inlet is dependent upon the variation in electrolyte con-
ductivity along the electrolyte flow path. Electrolyte conductivity is a function of
the temperature and void fraction and is given by:

Kx=Ki ¼ 1� a0x
� �k

1þ a Tx � Tið Þð Þ; ð3:62Þ

where Kx is the electrical conductivity of electrolyte at a distance ‘x’ from the
electrolyte entrance, Ki the electrical conductivity of electrolyte at the inlet, a0x the
void fraction at a distance ‘x’ from the electrolyte entrance, k the exponent,
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a the temperature coefficient of electrolyte conductivity, and Tx and Ti are the
temperatures at a distance of ‘x’ from the inlet and at the inlet, respectively.

Since Kx/Ki is always greater than one, the minimization of the difference in
lEG at inlet and outlet is achieved by minimizing Kx/Ki. However, from a practical
point of view, expressing the dimensional accuracy in terms of an absolute value
(mm or lm) would be better than in terms of Kx/Ki.

El-Dardy [67] proposed a cost model of the ECM process considering various
costs involved in the process. The costs considered were, machining cost, elec-
trolyte cost, electrolyte changing cost, filter cost, filter cleaning cost, tool changing
cost, and non-productive cost. The cost equation was arranged in terms of decision
parameters namely, feed rate (f), electrolyte flow rate (U), and voltage (V).

N ¼ aþ bW þ cf=V ; ð3:63Þ

where n is the number of sparks per mm, andW is the metal removed in gm/liter of
electrolyte flow.

W ¼ 1; 000Aaqw=YiBU; ð3:64Þ

where qw is the density of work piece, Yi the inter-electrode gap at inlet, B the
width of work piece, and a, b, and c are constants.

El-Dardy [67] obtained the optimum values of the decision parameters by
partial differentiation of cost equation with respect to the decision parameters.
However, the values of decision parameters obtained were not practical, as no
constraints were considered in this model, Furthermore, some costs considered in
the analysis (e.g., filter cost, electrolyte changing cost, etc.) contribute little to the
objective function and can be neglected.

Hewidy et al. [86] analyzed the components of ECM cost such as costs of
power consumption, machining, electrolyte, and labor with the objective to set out
the basic principles for selecting a suitable electrochemical machine to meet the
local production requirements of a company. The authors mentioned about the
impossibility of having a generalized model for this purpose.

The models detailed above deal with single-objective optimization in ECM
process. However, from a practical point of view, it is desirable to analyze a multi-
objective problem. Acharya et al. [1] proposed a model, with three objective
functions [maximization of MRR, minimization of difference in inter-electrode
gap from inlet to outlet (or maximization of dimensional accuracy), and maxi-
mization of tool life]. Some of the assumptions made in earlier models had been
relaxed to bring the problem nearer to the real situation and all three design
parameters (feed rate, electrolyte flow velocity, and applied voltage) were taken
into account. The optimum values of these design parameters were determined by
satisfying constraints such as the boiling of the electrolyte, choking, passivity, and
range of design parameters. The authors had formulated a multi-objective problem
producing highly non-linearized equations. These were then linearized by
regression analysis and converted into a goal-programming format, as the goal-
programming solution technique requires the objective function and constraint
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equations in a linear form. The objective functions and the constraints are
explained below (from [1]; reprinted with permission from Elsevier):

Objective 1 Maximization of MRR

This is the product of projected area and tool feed rate and same as Eq. 3.57
proposed by Bhattacharyya et al. [19]. Thus, MRRmax = fmax

Objective 2 Maximization of dimensional accuracy

ECM, perhaps, is the only machining process which does not allow checking
the work piece dimensions in the course of machining. Although few techniques
such as ultrasonic measurement of inter-electrode gap can be used [51], it is
necessary to predetermine the control parameters to ensure the desired dimensional
accuracy. Dimensional accuracy depends upon the difference in inter-electrode
gap from inlet Yi to outlet Yo, which was given by:

Yo � Yi ¼ Ko=Kið Þ � 1½ 	KiMwgiV=qwZwFf ; ð3:65Þ

where Mw is the atomic weight of work piece, gi the current efficiency, Zw the
valency of work piece, F the Faraday’s constant, and Kx/Ki is same as given by
Eq. 3.62. Kx = Ko at outlet.

The objective of maximizing the dimensional accuracy (i.e., minimizing the
dimensional inaccuracy) was attained by minimizing (Yo - Yi).

Objective 3 Maximization of tool life

Ideally, there is no tool wear in ECM but in actual practice and high feed rates,
the tool eventually touches the work and results in sparking and wearing out of the
tool. Maximization of tool life is ensured by minimizing the number of sparks per
mm as given by the equation:

gmin ¼ aþ bEif
2=VU þ cf=V ð3:66Þ

Ei ¼ 1; 000� Aa=Bð Þ q2wZwF
� �

= KiMwgið Þ
� �

: ð3:67Þ

Temperature constraint. To avoid boiling of electrolyte, the electrolyte tem-
perature at the outlet should be less than the electrolyte boiling temperature.
Mathematically this can be expressed as,

Ti � 1=að Þ 1� 1þ Skf
2

� �

=U 1� a0max

� �n� �0:5
h i

� Tb; ð3:68Þ

where Sk ¼ 2a c2L
� ��

KiqeCeJcnð Þ ð3:69Þ

c ¼ ZwFqw=Mwgi ð3:70Þ

Tb is the permitted outlet temperature for electrolyte, L the length of work piece,
qe the density of electrolyte, Ce the specific heat of electrolyte, a0max the maximum
void fraction, and Jcn is the Joule’s constant.
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Passivity constraint. Oxygen evolved during ECM forms an oxide film, which
is the root cause of passivity. To avoid passivity, the thickness of the oxygen gas
bubble layer must be greater than the passive layer thickness. Mathematically this
can be expressed as,

Gt T0 þ 273ð Þf=Ua0max � 1 ð3:71Þ

Gt ¼ RqfRfLc=Potpi
� �

; ð3:72Þ

where R is the gas constant, qf the passive film density, Rf the roughness factor,
Po the pressure at outlet, tp the time taken for film formation, and i is the ionic
current density.

Chocking constraint. Hydrogen evolved at the cathode during ECM process can
choke the electrolyte flow. To avoid chocking of the electrolyte flow, maximum
thickness of the hydrogen bubble layer should be less than the equilibrium inter-
electrode gap. Mathematically, it can be expressed as,

Htf
2 To þ 273ð Þ

� ��

VUa0max 1� a0max

� �n
1þ a To � Tið Þð Þ

� �

� 1 ð3:73Þ

Ht ¼ MhRLc
2=ZhPoFKi; ð3:74Þ

where Mh is the atomic weight of hydrogen, and Zh is the valency of hydrogen.
Acharya et al. [1] used the following input data for developing the multiple

regression models:Mw = 56 g, qw = 7.86 g/cm3, Zw = 2, L = 3 cm, gi = 0.95,
Ki = 0.3333 S/cm, qe = 1 g/cm3, Ce = 0.997 cal/g�C, a = 0.02/�C, Mh = 1 g,
Zh = 1, qh = 0.003965 g/cm3, Rf = 1.25, qf = 0.042 g/cm3, tp = 60 s, i =

1.25 A/cm2, Ti = 27�C, R = 42,030 g cm/g k, J = 4.186 J/cal, Po = 6,000 gf/
cm2, Tb = 65�C, a0max = 0.7, Yi = 0.02 cm, a = -2.05, b = -0.325, and
c = 26.78.

Using multiple regression analysis, the equations for the objectives and the
constraints were reduced to the following forms:

The first objective, Z1, is to maximize the MRR and it is same as given by
Eq. 3.59 The second objective, Z2, is to maximize the dimensional accuracy (i.e.,
minimizing the dimensional inaccuracy) as given by following expression.

Z2 ¼ f 0:381067 � U�0:372623 � V3:155414 � e�3:128926; ð3:75Þ

where Z2 is the dimensional inaccuracy (lm).
The third objective, Z3, is to maximize the tool life by minimizing the number

of sparks per millimeter, which is given by the following expression:

Z3 ¼ f 3:528345 � U0:000742 � V�2:52255 � e0:391436; ð3:76Þ

where Z3 is the number of sparks per millimeter.

Temperature constraint:1� f 2:133007 � U�1:088937 � V�0:351436 � e0:321968
� �

� 0:

ð3:77Þ

3.5 ECM Process 233



Passivity constraint:

f�0:844369 � U�2:526076 � V1:546257 � e12:57697
� �

� 1� 0: ð3:78Þ

Choking constraint:

1� f 0:075213 � U�2:488362 � V0:240542 � e11:75651
� �

� 0: ð3:79Þ

Parameter bounds:

27� T � 65 
Cð Þ ð3:80Þ

300�U� 1; 000 cm/sð Þ ð3:81Þ

3�V � 21 Voltsð Þ: ð3:82Þ

The goodness of fit for the relationships given in Eqs. 3.75–3.79 was tested
with F and t tests and found to be satisfactory. The goals for tool life and
dimensional accuracy were kept at 4,000 sparks/m and 100 lm, respectively.

The model proposed by Acharya et al. [1] overcame the limitations of model
proposed by Bhattacharyya et al. [19]. However, this model did not include the
parameter bounds for feed rate and difference in inter-electrode gap. The opti-
mization model was based on approximated objective functions and constraints.
Furthermore, the rationale behind the selection of goals for dimensional accuracy
and tool life was not explained.

The drawbacks of the model proposed by Acharya et al. [1] were overcome by
Choobineh and Jain [49]. The authors had considered only two objective func-
tions, i.e., maximization of MRR and maximization of dimensional accuracy.
The third objective to maximize the tool life was eliminated as tool life is
overachieved in most of the practical cases. The authors had used fuzzy set
approach for assigning the degree of membership to each parameter within its
boundary interval, and vertex method to find appropriate distribution of the
objective functions. The modified goal-programming problem was then solved in
the same manner as in Acharya et al. [1]. The parameter bounds for f and
(Yo - Yi) were included and the goals for f and (Yo - Yi) were set as 0.02 mm/s
and 525 lm, respectively. The authors had obtained optimum dimensional
accuracy value of 181.07 lm for the optimum values of f = 0.01275 mm/s,
U = 400 cm/s, and V = 21 Volts.

Jain and Jain [101] formulated the optimization model based on the analysis
given in Acharya et al. [1] with certain modifications, i.e., expanding the parameter
bound ranges for the tool feed rate (f) and electrolyte flow velocity (U) but without
linearizing the objective functions and constraints. Based on the survey of feasible
operating ranges for the decision parameters of the ECM process, the authors had
presented information as given in Table 3.7. The optimization problem was then
solved using real-coded genetic algorithms (GA). The details of GA employed by
Jain and Jain [101] are given below:
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• Initial random number generation: Knuth’s random number generator.
• Reproduction operator: binary tournament selection.
• Crossover operator: simulated binary crossover (SBX) with SBX distribution
index gc = 2 and 10.

• Crossover probability: 0.9.
• Mutation: polynomial probability distribution parameter gm = 10 and 50.
• Mutation probability: reciprocal of number of decision parameters.
• Population size: 15, 20, and 25 times number of decision parameters.
• Number of generations: 100.

Reproduction, crossover, and mutation operators were directly applied to real
parameter values in real-coded GA. Based on the results for different combinations
of population size, SBX parameter, and polynomial mutation parameter, following
overall optimum solution was obtained in the 100th generation of third run for a
population size of 76, SBX parameter of 10, and polynomial mutation parameter
of 50.

• Tool feed rate, f (mm/s) = 0.008.
• Electrolyte flow velocity, U (cm/s) = 2978.45.
• Applied voltage, V (Volts) = 16.5.

However, Jain and Jain [101] considered only single-objective optimization
problem, i.e., to minimize the dimensional inaccuracy. It is also observed that
the results obtained using genetic algorithm [101] violate the passivity con-
straint when applied to the model of Acharya et al. [1]. Jain and Jain [101]
used the same model of Acharya et al. [1] for optimization of ECM process
parameters. Even though Jain and Jain [101] mentioned that all constraints were
satisfied, but when the values obtained by them are substituted in the constraint
equations, the passivity constraint gets violated. Same is the case for the value
of dimensional inaccuracy. Even though Jain and Jain [101] mentioned that the

Table 3.7 Feasible operating ranges of ECM process parameters (from [200]; reprinted with
permission from the Council of the Institution of Mechanical Engineers, UK)

References Tool feed rate
(mm/s)

Electrolyte flow velocity
(mm/s)

Applied voltage
(V)

Acharya et al. [1] – 3,000–10,000 3–21
Choobineh and Jain [49] 0.0100–0.025 4,000–20,000 3–21
Ghosh and Mallik [74] 0.0125–0.033 – 8–20
Benedict [23] 0.0080–0.320 15,000–60,000 4–30
McGeough [162] Up to 0.02 3,000–30,000 10–20
Mishra [167] 0.0085–0.217 25,000–50,000 2–30
Jain [103] – 20,000–30,000 5–25
Machinability Data Center

[154]
0.0085–0.217 25,000–50,000 5–30

Jain and Jain [101] 0.0080–0.200 3,000–50,000 3–21
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optimum value of dimensional accuracy was obtained as 7.463 lm, but the
value turns out to be 33.62 lm by putting the optimum values of genetic
algorithm in the model proposed by Acharya et al. [1]. Furthermore, genetic
algorithm has its own limitations such as risk of replacement of a good parent
string with the deteriorated child, less convergence speed and difficulty in
selecting the controlling parameters such as population size, crossover rate and
mutation rate.

Rao et al. [200] proposed the application of a PSO algorithm to the same
optimization model proposed by Acharya et al. [1] to find out if any improvement
in the solution was possible. The authors had applied PSO algorithm by expanding
the parameter bound ranges for the tool feed rate and electrolyte flow velocity. The
objectives considered were dimensional accuracy, tool life, and MRR subjected to
the constraints of temperature, choking, and passivity. Both single and multi-
objective optimization aspects were considered. The results of PSO algorithm were
compared with the results obtained by Acharya et al. [1], Choobineh and Jain [49],
and Jain and Jain [101]. The results obtained using PSO algorithm were proved to
be better and logical.

Now the same optimization problem is solved using ABC, SA, modified HS,
and SFL algorithms. The parameters of optimization for various advanced opti-
mization algorithms are selected as shown below.

Controlling parameters for ABC:

• Number of employed bees = 5.
• Number of onlookers bees = 11.
• Number of scout bees = 1.
• Maximum number of iterations = 150.

Controlling parameters for PSO:

• Number of particles in swarm = 5.
• Inertia weight = 0.65.
• Acceleration coefficient (C1) = 1.65.
• Acceleration coefficient (C2) = 1.75.
• Number of iterations = 50.

Controlling parameters for SA:

• Initial temperature = 200.
• Decrement factor = 0.01.
• Number of iterations = 100.

Controlling parameters for HS_M:

• Harmony memory size = 5.
• Harmony memory consideration rate = 0.8.
• Pitch adjusting rate = 0.3.
• Number of improvisations = 150.
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Controlling parameters for SFL:

• Total number of frogs = 20.
• Number of memeflexes = 5.
• Number of frogs in each memeflex = 4.
• Number of improvisations = 50.

The results of single-objective optimization are given in Table 3.8. It is
observed from the results that the solution obtained using shuffled frog leaping
algorithm gives significantly smaller value of dimensional inaccuracy as compared
to that of Acharya et al. [1], Choobineh and Jain [49], Jain and Jain [101], ABC,
harmony search, and PSO algorithm [200] when applied to the model of Acharya
et al. [1]. This improvement is mainly due to the use of better optimization
technique which combines the benefits of the genetic-based Memetic Algorithm
(MA) and the social behavior-based PSO algorithms.

Optimality of the above-mentioned solution could be confirmed from the
Figs. 3.21, 3.22, and 3.23. As shown in Fig. 3.21, the dimensional inaccuracy
increases with the tool feed rate. Therefore, the smallest possible value of the tool
feed rate will minimize the dimensional inaccuracy. Also, the passivity constraint
will be violated if higher value of tool feed rate is selected. Hence the tool feed rate
at the lower bound (f = 8 lm/s) is selected.

The variation of electrolyte flow velocity is shown in Fig. 3.22. As the
dimensional inaccuracy decreases with increase in the electrolyte flow velocity,
selection of higher value of electrolyte flow velocity is desirable. However, the
value of electrolyte flow velocity at lower bound (U = 300 cm/s) is obtained, as at
any higher value than this, the passivity constraint is violated. This may be the
reason for violation of passivity constraint for the solution obtained using genetic
algorithm [101] when used in the optimization model of Acharya et al. [1].

Figure 3.23 shows that the dimensional inaccuracy increases with increase in
voltage. Hence selection of lower value of applied voltage is desirable. However,
to ensure the non-negativity of passivity constraint, the value of voltage (V) equal
to 9.827 Volts is selected.

Table 3.8 Results of single-objective optimization

Method f (lm/s) U (cm/s) V (Volts) TC PC CC Z

GP [1] 18.96 179 15 0.001 2.422 0.204 100
Fuzzy [49] 12.75 400 21 0.841 0.0559 0.886 181.07
GA [101] 8 2,978.45 16.5 0.992 20.993 0.999 33.62
PSO 8 300 9.835 0.895 0.001 0.810 15.452
ABC 8 300 9.840 0.895 0.0025 0.813 15.470
SA 8 300 9.870 0.895 0.0072 0.813 15.620
HS_M 8 300 9.890 0.895 0.0104 0.813 15.720
SFL 8 300 9.827 0.895 0.0004 0.813 15.415

TC value of temperature constraint, PC value of passivity constraint, CC value of choking
constraint
The bold value shows that the constraint ‘PC’ was violated by the GA approach
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For multi-objective optimization the three objectives considered are, MRR,
dimensional inaccuracy, and tool life subjected to the constraints of temperature,
passivity, and chocking. Decision variables, variable bounds and constraints are
same as specified for single-objective optimization problem. The normalized

Fig. 3.21 Variation of the
objective function and the
constraints with tool feed rate
(from [200]; reprinted with
permission from the Council
of the Institution of
Mechanical Engineers, UK)

Fig. 3.22 Variation of the
objective function and the
constraints with electrolyte
flow rate (from [200];
reprinted with permission
from the Council of the
Institution of Mechanical
Engineers, UK)

Fig. 3.23 Variation of the
objective function and the
constraints with applied
voltage (from [200]; reprinted
with permission from the
Council of the Institution of
Mechanical Engineers, UK)
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combined objective function, Z, is formulated considering different weightages to
all objectives and is given by the following equation:

Z ¼ w1 Z1=Z1minð Þ þ w2 Z2=Z2minð Þ � w3 Z3=Z3maxð Þ; ð3:83Þ

where Z1min = 15.452 lm; Z2min = 1.055; and Z3max = = 25 lm/s. w1, w2, and
w3 are the weightages assigned to the objective functions Z1, Z2, and Z3, respec-
tively. The values of weightages can be calculated using the analytic hierarchy
process [196]. The results of multi-objective optimization of ECM process are
shown in Table 3.9.

It is observed from the results that the combined objective function, Z, obtained
by ABC algorithm shows substantial improvement over Acharya et al. [1],
Choobineh and Jain [49]. Although the results obtained by GA seem to be better
but these are not valid as the passivity constraint gets violated. Results obtained by
ABC, PSO, HS_M, and SA are equally good in terms of accuracy of solution. It
should be noted that for the present case the results obtained using SFL algorithm
are slightly better than even ABC, PSO, HS, and SA algorithms as SFL algorithm
combines the benefits of the genetic-based Mimetic Algorithm (MA) and is the
social behavior-based PSO algorithms.

It is observed from the review of past work that graphical solution technique
and mathematical programming techniques such as goal programming, partial
differentiation, multiple regression modeling, etc. had been used to solve the
problem of optimization of process parameters of ECM. However, these traditional
methods of optimization do not fare well over a broad spectrum of problem
domains. Moreover, traditional techniques are not robust. Due to the complex
nature of optimization problem, these techniques are not ideal for solving these
problems, as they tend to obtain a local optimal solution. To overcome the
drawbacks of traditional optimization techniques, researchers are now using
evolutionary optimization techniques. Evolutionary computation consists of a
variety of methods including optimization paradigms that are based on evolution
mechanisms such as biological genetics and natural selection. These methods use
the fitness information instead of the functional derivatives making them more

Table 3.9 Results of multi-objective optimization of ECM process

Method f (lm/s) U (cm/s) V (Volts) TC PC CC Z

GP [1] 18.96 179 15 0.001 2.422 0.204 18.22
Fuzzy [49] 12.75 400 21 0.841 0.0559 0.886 5.47
GA [101] 8 2978.45 16.5 0.992 20.993 0.999 1.23
PSO 8 300 13.225 0.905 0.583 0.799 1.811
ABC 8 339.166 13.33 0.918 0.215 0.851 1.767
SA 8 300 13.380 0.905 0.603 0.799 1.812
HS_M 8 300 13.14 0.905 0.567 0.800 1.802
SFL 8 300 13.33 0.905 0.603 0.799 1.801

TC value of temperature constraint, PC value of passivity constraint, CC value of choking
constraint
The bold value shows that the constraint ‘PC’ was violated by the GA approach
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robust and effective. Most commonly used non-traditional optimization technique
is the genetic algorithm. However, this method provides a near optimal solution for
a complex problem having large number of parameters and constraints. This is
mainly due to difficulty in determination of optimum controlling parameters.
Therefore the efforts are continuing to use more recent optimization algorithms,
which are more powerful, robust and able to provide accurate solution. It is also
proposed to integrate the ANN models with meta heuristics for finding the optimal
machining parameters.

3.6 LBM Process

LBM is accomplished by precisely manipulating a beam of coherent light to
vaporize unwanted material. LBM is particularly suited to making accurately
placed holes. It can be used to perform precision micromachining on all micro-
electronic substrates such as ceramic, silicon, diamond, and graphite. Examples of
microelectronic micromachining include cutting, scribing and drilling all sub-
strates, trimming any hybrid resistors, patterning displays of glass or plastic and
trace cutting on semiconductor wafers and chips.

Generation of the laser beam involves stimulating a lasing material by electrical
discharges or lamps within a closed container. As the lasing material is stimulated,
the beam is reflected internally by means of a partial mirror, until it achieves
sufficient energy to escape as a stream of monochromatic coherent light. Mirrors
or fiber optics are typically used to direct the coherent light to a lens, which
focuses the light at the work zone. The narrowest part of the focused beam is
generally less than 0.3 mm in diameter. Depending upon material thickness, kerf
widths as small as 0.1 mm are possible. In order to be able to start cutting from
somewhere else than the edge, a pierce is done before every cut. Piercing usually
involves a high power pulsed laser beam which slowly makes a hole in the
material.

There are three main types of lasers used in laser cutting. The CO2 laser is
suited for cutting, boring, and engraving. The neodymium (Nd) and neodymium
yttrium–aluminum–garnet (Nd–YAG) lasers are identical in style and differ only
in application. Nd is used for boring and where high energy but low repetition are
required. The Nd–YAG laser is used where very high power is needed and for
boring and engraving. Both CO2 and Nd/Nd–YAG lasers can be used for welding.
Common variants of CO2 lasers include fast axial flow, slow axial flow, transverse
flow, and slab.

CO2 lasers are commonly pumped by passing a current through the gas mix
(DC-excited) or using radio frequency energy (RF-excited). The RF method is
newer and has become more popular. Since DC designs require electrodes inside
the cavity, they can encounter electrode erosion and plating of electrode material
on glassware and optics. Since RF resonators have external electrodes they are not
prone to those problems.
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In addition to the power source, the type of gas flow can affect performance as
well. In a fast axial flow resonator, the mixture of carbon dioxide, helium and
nitrogen is circulated at high velocity by a turbine or blower. Transverse flow
lasers circulate the gas mix at a lower velocity, requiring a simpler blower. Slab or
diffusion cooled resonators have a static gas field that requires no pressurization or
glassware, leading to savings on replacement turbines and glassware.

The main strength of LBM process lies in its capability to machine almost all
type materials in comparison to other widely used advanced machining methods
such as EDM, ECM, and USM. In comparison to jet machining processes, it is
quite suitable for cutting small and thin sheets with high cutting rates and can be
applied to machine miniature objects unlike other jet machining processes such as
water jet, and AWJM methods. Though it is non-contact type advanced machining
method with high flexibility but thermal nature of the process requires careful
control of the laser beam to avoid any undesired thermal effect. Among different
variations, only laser drilling and cutting are being used most widely while 3-D
LBM operations are not fully developed and a lot of research work is required
before they can be put for industrial use. Unlike other, non-conventional energy
sources laser beam source of energy can also be used as assistance during con-
ventional machining of difficult-to-machine materials. The laser hybrid machining
processes such as laser-assisted turning (LAT), laser-assisted shaping (LAS), laser-
assisted grinding (LAG), laser-assisted EDM (LAEDM), laser-assisted ECM
(LAECM), ultrasonic-assisted LBM (UALBM), laser-assisted etching (LAE) were
found superior to a single machining technique in various machining applications.

The capability of LBM to cut complex shapes and drill micro-size holes with
close tolerances in wide variety of materials has opened a new door to industries.
Now-a-days, industries related to almost all manufacturing fields are adopting the
LBM processes. Some unique applications of LBM involves cutting of stainless
steel pipes with high cutting rates and at less cost than diamond saw cutting,
cutting complex shapes in car doors, cutting QFN packages in electronic indus-
tries, producing cooling holes in turbine engines in aircraft industry, micro-fab-
rication of vias in PCB. The coronary stents used in medical field are
micromachined by LBM. Unlike other thermal energy-based processes such as
EDM and ECM it provides lesser heat-affected zone (HAZ) that makes it suitable
for micromachining applications [62].

The literature related to modeling and optimization of LBM is mainly using
statistical DOE such as Taguchi method and response surface method. Several
analytical methods based on different solution methodologies, such as exact
solution and numerical solution, have also been examined related to LBM. Few
researchers concentrated on modeling and optimization of laser beam cutting
through artificial intelligence-based techniques such as ANNs and fuzzy logic.

Tam et al. [231] proposed an overall figure-of-merit (FOM) function which
integrates the weighted effects of the various quality characteristics of a laser-cut
specimen and the cost components of a production environment. Taguchi methods
and statistical techniques were used to formulate the experimental layout, to
analyze the effect of each control factor on the results, and to predict the optimum
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setting for each control factor. A set of confirmatory experiments was then con-
ducted to verify the estimated response. A Trumpf 2000 laser machine which
incorporated a Rofin Sinar RS500 laser was used to cut 4.5 mm thickness low-
carbon steel sheets. Five control factors were used in a modified L8 orthogonal
array design. A high FOM was obtained using the treatment conditions of: beam
power of 415 W, oxygen pressure of 0.12 MPa, focal position of 1/4, focal length
of 63.5 mm, and cutting speed of 0.8 m/min.

Tam et al. [232] reported the use of the Taguchi technique of experimental
design in optimizing the process parameters for drilling deep-holes in nickel-based
superalloy, Inconel 718. The thickness of the material was 25.0 mm. Oxygen was
the assist gas and the focal length of the focussing lens was 300 mm. The effects of
five process parameters—pulse energy, pulse duration, pulse shape, focal position,
and assist gas pressure—were explored. The various parameters were assigned to
an L18 orthogonal array. The primary response under study was the drilling time. It
was predicted that a minimum drilling time of 31.51 s was needed to drill a hole
with a pulse energy of 30.0 J, a pulse duration of 1.8 ms, a ‘‘treble’’ pulse shape,
and an oxygen pressure of 0.35 MPa.

Chen et al. [46] discussed the use of the Taguchi method of experimental design
in optimizing process parameters for micro-engraving of iron oxide-coated glass
using a Q-switched Nd:YAG laser. The effects of five key process parameters—
beam expansion ratio, focal length, average laser power, pulse repetition rate and
engraving speed—were explored. The primary response under study was the
engraving line width. An L16 orthogonal array was used to accommodate the
experiments. The study indicated that a minimum line width of 18 lm could be
obtained with beam expansion ratio of 59, focal length of 50 mm, laser average
power of 0.4 W, pulse repetition rate of 5 kHz, and engraving speed of 5,000 mm/
min.

Yilbas [255] examined the effect of the laser parameters and the material
properties on the hole quality. A statistical approach, referred to as factorial
design, was employed to test the significance level of the factors that affect the
hole quality. Three materials, stainless steel, nickel and titanium, were considered.
The experimental study yielded tables of significance of each factor on the aspects
that determined the quality of the holes. The hole geometry was evaluated by
assigning marks for each geometric feature, the marking scheme being conducted
relevant to the importance of the hole feature.

Aloke et al. [5] formulated a physical model to estimate the dimensional
accuracy of holes produced with laser cutting. The model included the assumption
that the layer adjacent to the hole is plastically deformed and contains residual
stresses up to the yield strength. The model was used to calculate the size of the
hole and cut-out disk of varying radii in steel plates with thicknesses of 3.2 mm
and 6.4 mm. The model-predicted data were verified with the experimental data
obtained using a 1 kW continuous wave CO2 laser. Results indicated that there
was an excellent correlation between the model and the experimental data espe-
cially for smaller diameter holes.
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Mathew et al. [161] conducted parametric studies on pulsed Nd:YAG laser
cutting of carbon fiber reinforced plastic composites. Predictive models were
developed based on important process parameters, viz. cutting speed, pulse energy,
pulse duration, pulse repetition rate, and gas pressure. The responses considered
were the HAZ and the taper of the cut surface. The optimization of process
parameters was done using RSM. The thermal properties of the constituent
material and the volume fraction of the fibers were understood as the principal
factors that control the cutting performance.

Kaebernick et al. [108] presented a 3D analytical model of pulsed laser cutting,
particularly aimed at predicting the quality of cut under various cutting conditions.
The model was based on infinitesimal point heat sources, representing the effect of
the laser beam on the surfaces inside the cutting zone, and it included the con-
tribution of the oxygen reaction to the heating of the metal. Experiments with an
Nd–YAG-Laser, cutting mild and stainless steel, were carried out to verify the
predicted cutting results for various speeds, powers and pulse characteristics.

Cenna and Mathew [34] presented a theoretical model considering the spatial
distribution of the laser beam, interaction time between the laser and the work
material, absorption coefficient of the laser beam at the laser wavelength and the
thermal properties of the material. It was assumed that the laser energy was
absorbed through the entire thickness of the material. The developed model pre-
dicts the various parameters in laser cutting of composite materials such as kerf
width at the entry and at the exit, MRR and energy transmitted through the cut
kerf. The theoretical analysis also determines the position of the beam with respect
to the cutting front. Experiments for different laser and material combinations to
evaluate the effects of cutting parameters on the cut quality were carried out to
compare with the predicted results. The results obtained showed very good
agreement.

Yousef et al. [257] described how a multi-layered neural network can be used to
model the non-linear laser micromachining process in an effort to predict the level
of pulse energy needed to create a dent or crater with the desired depth and
diameter. Laser pulses of different energy levels were impinged on the surface of
several test materials in order to investigate the effect of pulse energy on the
resulting crater geometry and the volume of material removed. The experimentally
acquired data was used to train and test the neural network’s performance. The key
system inputs for the process model were mean depth and mean diameter of the
crater, and the system outputs were pulse energy, variance of depth and variance of
diameter. This study demonstrated that the proposed neural network approach can
predict the behavior of the material removal process during laser machining to a
high degree of accuracy.

Pajak et al. [176] presented a mathematical modeling of the laser-assisted jet-
ECM (LAJECM). LAJECM process is a hybrid process, which combines a rela-
tively low-power laser beam and an electrolyte jet. Compared to single jet-ECM,
LAJECM yields better machining efficiency and precision, especially for small
hole machining. The laser beam transfers additional heat onto a specific area of the
work piece area resulting in changed machining conditions. This localization
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effect of machining is the key to improving accuracy and efficiency of the
LAJECM.

Yilbas [256] examined laser gas-assisted cutting process. Statistical method
based on factorial analysis was introduced to identify the influence of cutting
parameters on the resulting cut quality. International standards for thermal cutting
were employed to identify the measurable variables when assessing the cut quality.
Kerf width size was presented using scaling laws. Contribution of high tempera-
ture oxidation reaction in cutting due to assisting gas was accommodated in the
analysis. First and second law efficiencies for laser cutting process were formu-
lated. An experiment was conducted to assess the cutting quality and validate the
Kerf width predictions. It was found that increasing laser beam scanning speed
reduces the Kerf width while Kerf width increases with increasing laser output
power. The main effects of all the parameters employed have significant influence
on the resulting cutting quality.

Pan et al. [177] applied an Nd:YAG laser for thin plate magnesium alloy butt
welding. The welding parameters governing the laser beam in thin plate butt
welding were evaluated by measuring of the ultimate tensile stress. Kuar et al.
(2006) conducted experimental investigations into CNC pulsed Nd:YAG laser
micro-drilling of zirconium oxide (ZrO2). Influence of laser machining parameters
on the HAZ thickness and phenomena of tapering of the machined micro-holes
was experimentally investigated. RSM-based optimal parametric analysis was
performed to determine the optimal setting of process parameters such as pulse
frequency and pulse width, lamp current, assist air pressure for achieving mini-
mum HAZ thickness and taper of the micro-hole machined by pulsed Nd:YAG
laser. Minimum HAZ thickness was obtained as 0.0675 mm when the lamp cur-
rent, pulse frequency, assisted air pressure and pulse width were set at optimal
parametric setting, i.e., 17 amp, 2.0 kHz, 2.0 kg/cm2 and 2% of the duty cycle,
respectively. Minimum taper was achieved as 0.0319 at optimal parametric setting,
i.e., the lamp current of 17 amp, pulse frequency of 2.0 kHz, assisted air pressure
of 0.6 kg/cm2 and pulse width of 2% of the duty cycle. Lim et al. [146] studied on
optimal cutting conditions of a high-speed feeding type laser cutting machine
using Taguchi method.

Almeida et al. [4] investigated the effects of laser processing on the quality and
formation of phases in the cut surface. The cutting process was performed on
commercially pure titanium (grade 2) and alloy Ti-6Al-4V (grade 5) sheets. The
obtained samples were analyzed through optical microscopy in order to determine
the edge roughness formations. An increase on the superficial hardness on the cut
region and the formation of nitrogen precipitates under a thin layer of a melted
zone were verified. A factorial arrangement regarding the several combinations of
different processing factors was built and the influence of these specific parame-
ters, which were statistically significant for the process, was evaluated by the
analysis of variance statistical test.

Li and Tsai [140] presented a novel effective method for optimizing laser
cutting of specially shaped electronic printed circuit board (PCB) carrier substrates
of advanced integrated circuit (IC) back-end packages that have multiple-
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performance characteristics identified using GRA. Laser cutting parameters,
including laser beam parameters (average laser power and Q-switch frequency),
focusing parameters (laser beam focusing spot size), and machine parameters
(laser cutting speed), were optimized based on multiple-performance character-
istics. Some characteristics of the specially shaped flash memory module for IC
packages, such as smart disk (SD) cards were verified. The characteristics of
interest were the average surface roughness on a PCB substrate cross-section, and
the maximum width of the HAZ. Eight experiments were conducted using GRA to
optimize the settings for laser beam cutting parameters to generate various quality
characteristics. Analysis of the grey relational grade indicated the parameter sig-
nificance and the optimal parameter combinations for the laser cutting process.

Chang and Kuo [39] evaluated laser-assisted machining (LAM) as an eco-
nomically viable process for manufacturing precision aluminum oxide ceramic
parts. Experiments were conducted to obtain different measures of surface
roughness for Al2O3 work pieces machined by laser assisted turning using a
Nd:YAG laser.

The experimental results were analyzed using the Taguchi method, which
facilitated identification of optimum machining conditions. The findings indicated
that rotational speed, with a contribution percentage as high as 42.68%, had the
most dominant effect on LAM system performance, followed by feed, depth of
cut, and pulsed frequency. LAM’s most important advantage was reported as its
ability to produce much better work piece surface quality than does conventional
machining, together with larger MRR and moderate tool wear.

Li et al. [141] reported the study of optimal laser parameters for cutting QFN
(Quad Flat No-lead) packages using a diode pumped solid-state laser system. The
QFN cutting path includes two different materials, which are the encapsulated
epoxy and a copper lead frame substrate. The Taguchi’s experimental method with
orthogonal array of L9 (34) was employed to obtain optimal combinatorial
parameters. A quantified mechanism was proposed for examining the laser cutting
quality of a QFN package. The influences of the various factors such as laser
current, laser frequency, and cutting speed on the laser cutting quality was also
examined. From the experimental results, the factors on the cutting quality in the
order of decreasing significance were found to be (a) laser frequency, (b) cutting
speed, and (c) laser driving current. The optimal parameters were obtained at the
laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of
29 A. Besides identifying this sequence of dominance, matrix experiment also
determines the best level for each control factor. The verification experiment
confirmed that the application of laser cutting technology to QFN was very suc-
cessfully using the optimal laser parameters predicted from matrix experiments.

Masmiati and Philip [160] carried out experimental investigations to find the
optimum ranges of parameters for drilling of polymers using a carbon dioxide
(CO2) laser cutting machine. An attempt was made to plan the experiment using
Taguchi’s method. Matrix experiment L9 orthogonal array was used to conduct the
experiments with four factors and three levels of each factor. Through experiments
the effects of number of pulses, standoff distance, assist gas pressure and nozzle
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diameter on the circularity of hole, spatter thickness, hole taper and MRR was
assessed. The optimum conditions obtained from the analysis showed the com-
bination of parameters that improves hole quality.

Ghoreishi and Nakhjavani [73] used neural networks for process modeling of
laser cutting. Approximate experimental models of the process were developed by
the neural network (Generalized Regression Neural Network—GRNN) according
to the results of the experiments. Then the optimum input parameters (peak power,
pulse time, pulse frequency, number of pulses, gas pressure and focal plane
position) were specified using the genetic algorithm (GA) method, the results of
which were the optimum output parameters. The output parameters included the
hole entrance diameter, circularity of entrance and exit holes, hole exit diameter
and taper angle of the hole. The tests were carried out on stainless steel 304 sheets
with a thickness of 2.5 mm. A Nd:YAG laser machine was employed with a
wavelength of 1.06 lm. Oxygen was used as an assist gas. Diameter of the central
nucleus of laser beam was 600 lm. Considering the precision of the optimum
numerical results and the high speed of the neural network in modeling, this
method is reliable and economical and also confirms the qualitative results of the
previous studies. Therefore, one can use this method to optimally adjust input
parameters of the process in multipurpose and single purpose optimization modes,
which indicates substitute application of the method for optimizing the laser
percussion drilling process.

Dubey and Yadava [62] reviewed the research work carried out in the area of
LBM of different materials and shapes. It reported about the experimental and
theoretical studies of LBM to improve the process performance. Several modeling
and optimization techniques for the determination of optimum laser beam cutting
conditions were critically examined.

Analytical models are the mathematical models based on basic laws and
principles, of a manufacturing process. These models can be divided into three
categories, e.g., exact solution-based model, numerical solution-based model, and
stochastic solution-based model. Exact solution based models are normally based
on some hypothetical assumptions and sometimes they may not give the real
solution. Numerical models are complex mathematical models widely used in
engineering sciences but solution is based on numerical methods such as finite
difference method (FDM), FEM, boundary element method (BEM), etc. Stochastic
model is probabilistic in nature, i.e., for a range of inputs possibility of output falls
in a range and most appropriate solution is very difficult. In LBM, there are so
many analytical models which predict the system behavior in different operating
conditions. The works of various researchers on analytical modeling of LBM
process can be found in Dubey and Yadava [62].

Dubey and Yadava [63] presented a hybrid Taguchi method and response
surface method (TMRSM) for the multi-response optimization of a laser beam
cutting process. The approach first used the Taguchi quality loss function to find
the optimum level of input cutting parameters such as gas pressure, pulse width,
pulse frequency, and cutting speed. The optimum input parameter values were
further used as the central values in the response surface method to develop and
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optimize the second-order response model. The two quality characteristics Kerf
width (KW), and MRR, that are of different nature (KW is of the smaller-the-better
type, while MRR is of the higher the better type), were selected for simultaneous
optimization. The results showed considerable improvement in both the quality
characteristics when the hybrid approach was used, as compared the results of a
single approach. The authored had performed experiments on a 200 W pulsed
Nd:YAG LBM system with CNC work table. Oxygen was used as an assist gas.
Focal length of lens used was 50 mm. Nozzle diameter (1.0 mm), nozzle tip
distance (1.0 mm), and sheet material thickness (0.5 mm) were kept constant
throughout the experimentation. The two quality characteristics analyzed were
kerf width (KW) and MRR. The grain oriented high silicon-alloy steel sheet was
used in the experiments as sheet material. The variable input process parameters
(or control factors) considered were the gas pressure (1.5–3.5 kg/cm2), pulse width
or pulse duration (1.0–1.4 ms), pulse frequency (20–28 Hz), and cutting speed
(25–75 mm/min).

The second-order response surface models for KW (mm) and MRR (mg/min)
were developed from the experimental response values. The model developed
using MINITAB software are as shown below.

KW ¼ 0:1511þ 0:0746x1 þ 0:3736x2 � 0:0191x3 þ 0:0021x4 þ 0:0013x21
� 0:1274x22 þ 0:0008x23 � 0:0126x1x2 � 0:0029x1x3 þ 0:0010x2x3

ð3:84Þ

MRR ¼ �97:6352� 23:5623x1 þ 47:6419x2 þ 9:0159x3 þ 1:4135x4 þ 2:7470x21
� 23:456x22 � 0:1721x23 � 0:0027x24 þ 11:2499x1x2 þ 0:0417x1x3
� 0:1050x1x4 � 1:4063x2x3 þ 0:2750x2x4 þ 0:0175x3x4; ð3:85Þ

where x1 is the gas pressure (kg/cm2), x2 the pulse width (ms), x3 the pulse
frequency (Hz), and x4 is the cutting speed (mm/min).

From the developed models, it was clear that the pulse width, cutting speed,
square effect of pulse width, and interaction effect of pulse frequency and cutting
speed are the significant factors for KW because of the reason that the absolute
value of corresponding coefficients for these terms are quite high in comparison to
other terms. Likewise, the MRR was significantly affected by cutting speed, pulse
width, pulse frequency, and square effect of cutting speed.

The simultaneous optimization of weighted response for KW (weighting
factor = 0.8) and MRR (weighting factor = 0.2) was obtained using MINITAB
software. (1) The optimum value of KW and MRR obtained from multi-
objective optimization using Taguchi method only were 0.3733 mm and
124.1095 mg/min, respectively, while using the hybrid approach these values
were 0.3267 mm and 169.1667 mg/min, respectively. Hence a considerable
improvement for both quality characteristics was found with hybrid approach of
TMRSM.
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Dubey and Yadava [64] applied a hybrid approach of Taguchi method and
principal component analysis (PCA) for multi-objective optimization of pulsed
Nd:YAG laser beam cutting of nickel-based superalloy (SUPERNI 718) sheet to
achieve better cut qualities within existing resources. The three-quality charac-
teristics kerf width, kerf deviation (along the length of cut), and kerf taper were
considered for simultaneous optimization. The input parameters considered were
assist gas pressure, pulse width, pulse frequency, and cutting speed. Initially,
single-objective optimization was performed using Taguchi method and then the
signal-to-noise (S/N) ratios obtained were further used in PCA for multi-objective
optimization. The results included the prediction of optimum input parameter
levels and their relative significance on multiple quality characteristics.

Samant and Dahotre [204] investigated machining of alumina using a JK 701
pulsed Nd:YAG laser. A hydrodynamic machining model was developed which
incorporated the effect of multiple reflections on the amount of laser energy
absorbed, the thermal effects for melting the material, vapor pressure effect for
expelling out the molten material, material losses due to evaporation and the
inverse effect of surface tension on the expelled depth. The model also incorpo-
rated the transient effect of laser beam de-focusing due to change in machined
depth as a function of expelled material during machining for precise estimation of
the melted depth during each pulse. It was observed that the material removal was
a combination of melt expulsion and evaporation processes.

Çaydas� and Hasçalık [32] presented an effective approach for the optimization
of laser cutting process of St-37 steel with multiple-performance characteristics
based on the GRA. Sixteen experimental runs based on the Taguchi method of
orthogonal arrays were performed to determine the best factor level condition. The
response table and response graph for each level of the machining parameters were
obtained from the grey relational grade. The laser cutting parameters such as laser
power and cutting speed were optimized with consideration of multiple-perfor-
mance characteristics, such as work piece surface roughness, top kerf width and
width of HAZ. By analyzing the grey relational grade, it was observed that the
laser power has more effect on responses rather than cutting speed.

Samant et al. [205] optimized the efficacy of pulsed Nd:YAG laser for the laser
surface structuring (dressing) of porous alumina ceramic was optimized using the
Taguchi analytical procedure. The laser processing parameters such as the pulse
width, repetition rate and the scanning speed were evaluated and the factors
essential to optimize the interdendritic porosity and grain size were predicted. The
analysis of variance (ANOVA) helped to identify the processing parameters that
contributed to minimize the porosity and maximize the grain size. The pulse
repetition rate was the most significant factor in minimizing the interdendritic
porosity while the scanning speed played a vital role in increasing the grain size.
The Taguchi method could yield a combination of different process parameters
that could be used to optimize the microstructural features.

Tsai et al. [238] employed a multiple regression analysis, and an ANN to build
a predicting model for cutting Quad Flat Non-lead (QFN) packages using a Diode
Pumped Solid State Laser (DPSSL) System. The predicting model included three
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input variables of the current, the frequency and the cutting speed, and six cutting
qualities of depths of the cutting line, widths of HAZ and cutting line for epoxy
and for copper-compounded epoxy. After the training process from 27 sets of
training data including input data and its output qualities, the average training error
was 0.822% using a back-propagation (BP) neural network with Levenberg–
Marquardt (LM) algorithm. The testing accuracy was then verified with extra 14
sets of experimental data and the average predicting error was 1.512%. The results
showed that the ANN model has the predicting ability to estimate the laser cut-
ting qualities of QFN packages. Finally, a genetic algorithm (GA) was applied to
find the optimal cutting parameters that lead to least HAZ width and fast cutting
speed with complete cutting. The optimal combination found was the current of
29 A, the frequency of 2.7 kHz and the cutting speed of 3.49 mm/s. The GA was
helpful to determine the ideal laser cutting parameters in order to meet the desired
cutting qualities and to avoid unnecessary adjustments in the subsequent cutting
process.

Dhara et al. [57] investigated laser micromachining of tungsten-molybdenum
general purpose high-speed steel (Rex M2). Selection of optimum machining
parameter combinations for obtaining higher depth of groove and smaller height of
recast layer is a challenging task due to the presence of a large number of process
variables. There is no perfect combination of parameters which can simultaneously
result in both the highest depth of groove and lowest height of recast layer. The
authors had attempted to develop a strategy for predicting the optimum machining
parameter setting for the generation of the maximum depth of groove with min-
imum height of recast layer. The experiments were performed on a CNC pulsed
Nd:YAG laser machining system. Four parameters were chosen as inputs: lamp
current (A), frequency (B), pulse Width (C), and air pressure (D). The levels of
parameters selected were: 16, 17, and 18 amp for A; 4, 5, and 6 kHz for B; 4, 5,
and 6% for C; and 1, 2, and 3 kg/cm2 for D. There are other factors that can be
expected to have an effect on the measure of performance. In order to minimize
their effects, these parameters were held constant: the traverse speed (10 mm/s)
and type of assisted gas (air). Four input parameters with three levels could have a
total 34 combinations of experiments for full factorial design. A total of 33
experiments were conducted to get the responses. The responses considered were
the depth of groove and height of recast layer. Levenberg Marquadt (LM) algo-
rithm was used for training the feed-forward BPNN of type 4-25-2, one hidden
layer with 25 neurons. Neural network toolbox of MATLAB software was used.
After proper training of the network when the desired goal (the goal was set as the
network output at least 10-6 decimal point close to the target value) was achieved,
the network was simulated with other input parameters combinations and the
network responses were compared with experimental responses. Thus, validation
of the developed model was checked. Optimum parameter setting for the desired
responses was then found out using the responses of the network model. The
validation experiments for the developed model were conducted and it was found
that prediction accuracy of the model is quite good. A graphical method was used
to search out the optimal combinations of parameters from the set of all possible
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combination of parameters setting, i.e., 625 predictions. Seven optimum para-
metric combinations were identified out of 625 combinations. Through this opti-
mization strategy, one can obtain more optimal parametric combinations, which
will lead to efficient utilization of LBM in practice.

Dhupal et al. [58] proposed a RSM-based mathematical modeling and analysis
of machining characteristics of pulsed Nd:YAG laser during micro-grooving
operation on a work piece of aluminum titanate. Lamp current, pulse frequency,
pulse width, assist air pressure and cutting speed of laser beam were considered as
machining process parameters during pulsed Nd:YAG laser micro-grooving
operation. The response criteria selected for analysis were deviation of taper and
deviation of depth characteristics of micro-groove produced on a work piece made
of aluminum titanate (Al2TiO5). The analysis of variance test was also carried out
to check the adequacy of the developed regression mathematical models. The
optimal process parameter settings are assist air pressure of 1.3 kgf/cm2, lamp
current of 20.44 amp, pulse frequency of 1.0 kHz, pulse width of 10% of duty
cycle, and cutting speed of 10 mm/s for achieving the predicted minimum devi-
ation of taper and deviation of depth of laser micro-groove. From the analysis, it is
evident that the deviation of taper angle and deviation of depth of the micro-
groove can be reduced by a great extent by proper control of laser machining
process parameters during micro-grooving on aluminum titanate (Al2TiO5).

Rao and Yadava [195] presented a hybrid optimization approach for the
determination of the optimum laser cutting process parameters which minimize the
kerf width, kerf taper, and kerf deviation together during pulsed Nd:YAG laser
cutting of a thin sheet of nickel-based superalloy SUPERNI 718 (an equivalent
grade to Inconel 718). A hybrid approach of Taguchi methodology and GRA was
applied to achieve better cut qualities within existing resources. The input process
parameters considered were oxygen pressure, pulse width, pulse frequency, and
cutting speed. A higher resolution based L27 orthogonal array was used for con-
ducting the experiments for both straight and curved cut profiles. The designed
experimental results were used in GRA and the weights of the quality character-
istics were determined by employing the entropy measurement method. The sig-
nificant parameters were obtained by performing analysis of variance (ANOVA).
The optimized parameters for straight and curved laser cut profiles were compared.
On the basis of optimization results, it was found that the optimal parameter levels
suggested for straight cut profiles were not valid for curved cut profiles. The results
were verified by running confirmation tests.

Dhupal et al. [59] determined laser turning process parameters for producing
square micro-grooves on cylindrical surface. The experiments were performed
based on the statistical five level central composite design (CCD) techniques. The
effects of laser turning process parameters, i.e., lamp current, pulse frequency,
pulse width, cutting speed (revolution per minute, rpm) and assist gas pressure on
the quality of the laser turned micro-grooves were studied. A predictive model for
laser turning process parameters was created using a feed-forward ANN technique
utilizing the experimental observation data based on RSM. The optimization
problem was constructed based on RSM and was solved using multi-objective
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genetic algorithm (GA). The neural network coupled with genetic algorithm was
effectively utilized to find the optimum parameter value for a specific laser micro-
turning condition in ceramic materials. The optimal process parameter settings
were found as lamp current of 19 A, pulse frequency of 3.2 kHz, pulse width of
6% duty cycle, cutting speed as 22 rpm and assist air pressure of 0.13 N/mm2 for
achieving the predicted minimum deviation of upper width of -0.0101 mm, lower
width 0.0098 mm and depth -0.0069 mm of laser turned micro-grooves.

Karazi and Brabazon (2009) presented four models developed for the prediction
of the width and depth dimensions of CO2 laser-formed micro-channels in glass. A
33 statistical DOE model was built and conducted with the power, pulse repetition
frequency, and traverse speed of the laser machine as the selected parameters for
investigation. Three feed-forward, back-propagation ANN models were also
generated. These ANN models were varied to investigate the influence of varia-
tions in the number and the selection of training data. Model A was constructed
with 24 data randomly selected from the experimental results, leaving three data
points for model testing; Model B was constructed with the eight corner points of
the experimental data space, and seven other randomly selected data, leaving 12
data points for testing; and Model C was constructed with 15 randomly selected
data leaving 12 data points for testing. These models were developed separately
for both micro-channel width and depth prediction. These ANN models were
constructed in LabVIEW coding. The performance of these ANN models and the
DOE model were compared. When compared with the actual results two of the
ANN models showed greater average percentage error than the DOE model. The
other ANN model showed an improved predictive capability that was approxi-
mately twice as good as that provided from the DOE model.

Ciurana et al. [50] focused on modeling and optimizing process parameters in
pulsed laser micromachining. Use of continuous wave or pulsed lasers to perform
micromachining of 3-D geometrical features on difficult-to-cut metals is a feasible
option due the advantages offered such as tool-free and high precision material
removal over conventional machining processes. Despite these advantages, pulsed
laser micromachining is complex, highly dependent upon material absorption
reflectivity, and ablation characteristics. Selection of process operational param-
eters is highly critical for successful laser micromachining. A set of designed
experiments was carried out in a pulsed Nd:YAG laser system using AISI H13
hardened tool steel as work material. Several T-shaped deep features with straight
and tapered walls were machined as representative mold cavities on the hardened
tool steel. The relation between process parameters and quality characteristics was
modeled with ANN. Predictions with ANNs were compared with experimental
work. Multiobjective PSO of process parameters for minimum surface roughness
and minimum volume error was carried out. This result showed that proposed
models and swarm optimization approach are suitable to identify optimum process
settings.

Biswas et al. [29] conducted Nd:YAG laser micro-drilling of gamma-titanium
aluminide. The effect of different process parameters in the optimization of the
process was investigated. The aspects considered were the hole circularity at exit
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and the hole taper of the drilled hole. Lamp current, pulse frequency, air pressure
and thickness of the job were selected as independent process variables. The CCD
technique based on RSM was employed to plan the experiments to achieve opti-
mum responses with a reduced number of experiments.

Bruneel et al. [30] investigated the processing times of ultrafast laser machining
in the case of metals (copper and stainless steel). At a fluence of 2.5 J/cm2,
measurements of processing times were in good agreement with the calculations
based on the ablation rates. The influence of laser repetition rates for 1, 5, 10 and
15 kHz was studied. A linear reduction of the processing time was expected with
an increase of the repetition rate.

3.7 Electro Chemical Discharge Machining: A Hybrid

Machining Process

Electro Chemical Discharge Machining (ECDM) is a hybrid technology that
combines ECM and EDM. The ECM phase of this technology is responsible for
the dressing, i.e., for the anodic dissolution of the layer, whereas the EDM phase is
responsible for the trueing of the grinding wheel.

ECDM is a reproductive shaping process in which the form of the tool
electrode is mirrored on the workpiece. It uses two electrodes: one is a cathode
where the tool is connected, and the other is an anode or an auxiliary electrode.
The workpiece is placed just below the tool, and along with the auxiliary
electrode, is immersed in an electrolytic solution in a machining chamber. In the
ECDM process the thermal erosive effects of electrical discharge (ED) action
follows an electrochemical (EC) reaction. This electrochemical reaction helps in
the generation of the positively charged ions and gas bubbles, e.g., hydrogen.
These gas bubbles accumulate across the interface of the tool and the workpiece.
The ED action takes place between the tool and the electrolyte across the gas
bubble layers. If the applied DC power supply voltage is greater than the
breakdown voltage of the insulating layer of the gas bubbles, a spark is initiated.
Intensity and energy of the spark discharge increases with an increase in the
applied voltage between two electrodes. A non-conducting ceramic workpiece is
placed in the closed vicinity of the electrical discharge, and the material of the
workpiece is melted, vapourized and eroded due to the transmission of a fraction
of spark energy to the workpiece. This raises the temperature of the region
dramatically, and a part of the molten portion of the workpiece is removed due to
the mechanical shock resulting from the sudden phase change and the electrical
spark discharge. Additional material removal also takes places due to thermal
spalling. The thermal spalling of ceramics is usually defined as a mechanical
failure of the material without melting due to a localized, thermally induced
internal stress caused by a rapid temperature change that exceeds the bond
strength of the materials. In ECDM, the material undergoes thermal cycling

252 3 Modeling and Optimization of Modern Machining Processes



under a spark discharge condition when pulsed DC voltage is applied and a
complex temperature gradient is established. These results in internal thermal
stresses and leads to thermal spall [16–18, 71, 104, 105, 130, 237].

The average grain protrusion of ECDM conditioned grinding wheels is much
higher than the average grain protrusion of grinding wheels conditioned by means
of conventional trueing and dressing. While in the case of ECDM conditioning
grain protrusion is of approximately 75% of the average diameter of the grains, in
the case of conventional conditioning this value is only of about 25%. Compared
to conventional centerless grinding, ECDM centerless grinding produced much
better results concerning both the surface roughness and the roundness of the
ground workpieces.

Raghuram et al. [191] explored the influence of external circuit parameters on
the discharge process. The experimental results of average voltage and current
with NaOH and KOH electrolytes of 2, 5, 10 M concentrations with different
circuit configurations were reported. The instantaneous voltage—current behavior
during discharge at 60 V of NaOH, KOH and HCl electrolytes were reported also
for concentrations of 2 and 5 M. The best circuit configuration for the machining
of non-conducting material was discussed. The electrochemical discharge
machining (ECDM) has been proved to be a potential process for the machining of
high-strength non-conductive materials.

Schöpf et al. [211] illustrated the advantages of the ECDM trueing and dressing
technology in comparison to conventional mechanical trueing and dressing
methods concerning surface quality and roundness. The authors had presented
experiments concerning ‘‘ECDM centerless grinding of cermet’’ and demonstrated
that the ECDM technology is very suitable for the trueing and dressing of metal
bonded diamond grinding wheels and hence for the high precision grinding of
superhard cutting materials.

Peng and Liao (2004) developed a traveling wire electrochemical discharge
machining (TW-ECDM) and used the process to slice the small size (10–30 mm
diameter) optical glass and quartz bars. The electrical–thermal etching effect and
its feasibility were investigated. The energy release intensities and their physical
phenomena under different sizes of discharge wires, power source modulations
and methods of electrolyte supply were discussed. The pulsed DC power proved
better spark stability and more spark energy release proportion than constant DC
power. The input power was modulated to obtain the appropriate frequencies and
duty factors for machining glass and quartz materials. The ion translation rate,
the electrolyte immersing depth and the concentration of the alkali were found to
be the dominant factors of bubbles reaction. Based on the SEM photographs of
the workpiece surface, it was noted that the more purple the sparks from the
mixed gases of hydrogen and vapor, the better the etching effect was.

Wüthrich and Fascio [249] presented an overview of machining on non-con-
ducting materials using ECDM process. Mediliyegedara [163] presented new
developments in process control for the ECDM process. The design stages and the
implementation issues of a personal computer-based real time controller for the
ECDM process was discussed. A system identification experiment was carried out
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to obtain the dynamics of the system and a process control algorithm was
implemented in software form.

Sarkar et al. [207] described the development of a second-order, non-linear
mathematical model for establishing the relationship among machining param-
eters, such as applied voltage, electrolyte concentration and inter-electrode gap,
with the dominant machining process criteria, namely MRR, radial overcut
(ROC) and thickness of HAZ, during an ECDM operation on silicon nitride. The
model was developed based on RSM using the relevant experimental data, which
were obtained during an ECDM micro-drilling operation on silicon nitride
ceramics. The applied voltage (x1), electrolyte concentration (x2) and inter-
electrode gap (x3) were taken as controlling variables. During experimentation,
the applied voltage was varied from 50 to 70 V, electrolyte concentration was
varied from 10 to 30% by weight, and inter-electrode gap was varied from 20 to
40 mm. The mathematical relationship for correlating the MRR, ROC, and HAZ
and the considered machining process parameters were expressed, using RSM, as
given below:

MRR ¼ 0:60266þ 0:16049x1 � 0:04044x2 � 0:03481x3 þ 0:08781x21 � 0:03060x22
þ 0:01358x23 � 0:06500x1x2 � 0:037500x1x3 þ 0:04500x2x3 ð3:86Þ

ROC ¼ 0:16114þ 0:05333x1 � 0:01017x2 � 0:00716x3 þ 0:02454x21 þ 0:01727x22
þ 0:00598x23 þ 0:02603x1x2 � 0:00940x1x3 þ 0:01493x2x3 ð3:87Þ

HAZ ¼ 0:07835þ 0:01583x1 � 0:00418x2 � 0:00599x3 þ 0:00523x21 þ 0:00857x22
þ 0:00061x23 þ 0:00905x1x2 � 0:00060x1x3 þ 0:00382x2x3: ð3:88Þ

These developed mathematical models can be used to analyze the effects of
the machining parameters on the MRR, ROC, and the thickness of the HAZ in
the ECDM micro-drilling of silicon nitride. ANOVA and a confirmation test to
verify the fit and adequacy of the developed mathematical models were per-
formed. From the parametric analyses based on mathematical modeling, it was
recommended that applied voltage has more significant effects on MRR, ROC
and HAZ thickness during ECDM micro-drilling operation as compared to
other machining parameters such as electrolyte concentration and inter-electrode
gap.

Mediliyegedara et al. [164] presented the designing steps and simulation
results of a pulse classification system for the ECDM process using ANN. An
Electro-discharge machining (EDM) machine was modified by incorporating an
electrolyte system and by modifying the control system. Gap voltage and
working current waveforms were obtained. By observing the waveforms, pulses
were classified into five groups. A feed-forward neural network was trained to
classify pulses. Various neural network architectures were considered by
changing the number of neurons in the hidden layer. The trained neural networks
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were simulated. A quantitative analysis was performed to evaluate various neural
network architectures.

Kim et al. [118] applied a series of rectangular voltage pulses to reduce the
HAZ instead of the rectified or full-wave DC voltages. The effect of the frequency
and duty ratio of the voltage pulse on the ECDM of Pyrex glass was experi-
mentally investigated. The experimental results showed that the thermal damage of
the microdrilled hole decreases as the frequency increases and as the duty ratio
decreases. It was also found that the clearance increases as the tool diameter
decreases.

Han et al. [78] used a partially side-insulated electrode that maintained a
constant contact surface area with the electrolyte for the ECDM process to
ensure that a uniform gas film was formed. Visual inspections indicated that the
side-insulated tool provides new possibilities for describing the exact geometry
of a gas film by inducing single bubble formations. Experiment results dem-
onstrated that ECDM with a side-insulated electrode immersed in the electro-
lyte generated more stable spark discharges compared to non-insulated
electrodes. Microchannels were fabricated to investigate the effects of the side
insulation on the geometric accuracy and the surface integrity of the machined
part.

The ECDM process has the potential to machine electrically non-conductive
high-strength, high-temperature-resistant (HSHTR) ceramics, such as aluminum
oxide (Al2O3). However, the conventional tool configurations and machining
parameters show that the volume of material removed decreases with increasing
machining depth and, finally, restricts the machining after a certain depth. To
overcome this problem and to increase the volume of material removed during
drilling operations on Al2O3, Chak and Rao [36] considered two different types of
tool configurations, i.e., a spring-fed cylindrical hollow brass tool as a stationary
electrode and a spring-fed cylindrical abrasive tool as a rotary electrode. The
volume of material removed by each electrode was assessed under the influence of
three parameters, namely, pulsed DC supply voltage, duty factor, and electrolyte
conductivity, each at five different levels. The combined effect of the three
parameters, i.e., pulsed DC supply voltage (x1) varied from 60 to 120 V, duty
factor (x2) varied from 0.48 to 0.96, and electrolyte conductivity (x3) varied from
275 to 375 mmho/cm, on the total volume of material removed (Y) from alumina
by two types of tool electrode configurations for 20 sets of experiments was shown
as Y1 and Y2.

Y1 ¼ 6:42þ 4:99x1 þ 3:20x2 þ 2:10x3 þ 0:941x21 þ 0:185x22 � 0:101x23
þ 1:73x1x2 þ 1:12x1x3 þ 0:132x2x3 ð3:89Þ

Y2 ¼ 12:2þ 11:7x1 þ 5:47x2 þ 6:40x3 þ 3:61x21 þ 0:378x22 � 0:678x23 þ 1:66x1x2
þ 3:01x1x3 þ 1:37x2x3 ð3:90Þ
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Y1 corresponds to the stationary electrode and Y2 corresponds to the rotary
electrode. The results revealed that the machining ability of the abrasive rotary
electrode was better than the hollow stationary electrode, as it would enhance the
cutting ability due to the presence of abrasive grains during machining.

Sarkar et al. [208] carried out experimental investigations to study the range of
the parametric setting for micromachining operation as well as the effect of var-
ious process parameters such as applied voltage, electrolyte concentration and
inter-electrode gap on MRR, Radial Over-Cut (ROC) and HAZ thickness during
micro-drilling of non-conducting engineering ceramic materials such as aluminum
oxide and zirconium oxide. The experiments were performed using electrolyte of
KOH and NaOH salt solution. The investigation was made to find out the optimum
value of ECDM process parametric conditions for higher MRR, lower overcut and
also lower HAZ thickness during micro-drilling on ceramics. It was concluded that
the quality of the hole during micro-drilling greatly depends on the applied voltage
and electrolyte concentration.

Zheng et al. [262] designed and applied a novel pulse voltage configuration,
called offset pulse voltage, in the ECDM process to improve gas film stability. The
offset pulse voltage adds a constant voltage, called offset voltage, at Toff duration
to enhance gas film stability and to further promote the discharge performance.
The experimental results demonstrated that the increase in offset voltage at the
pulse off duration generates more stable discharges when compared to those
generated by the conventional pulse voltage. Results also showed that both the
mean machining time and time deviation were decreased around 60% without
sacrificing machining accuracy by an adequate offset voltage.

Sarkar et al. [209] investigated the influences of various power circuit config-
urations on the MRR, the tool wear rate (TWR), the radial overcut (ROC), and the
HAZ using an NaOH salt solution as electrolyte. The individual effects of the
inductance L, resistance R, and capacitance C of the power circuit on machining
performance were studied experimentally in order to find their optimal values.
Experiments were carried out to search for the pairwise effect of power circuit
variables by considering their optimal values according to a Taguchi L9 orthogonal
array. Maximum MRR and minimum TWR were achieved at LC/60 V/20wt %/
20 mm and RL/50 V/30 wt %/40 mm, respectively. Minimum ROC and mini-
mum HAZ thickness were obtained at RC/50 V/10 wt %/40 mm. Thus, from the
point of view of the accuracy and quality of the machined hole, an RC circuit was
found to be most suitable for the micromachining of electrically non-conducting
materials by the ECDM process.

Kulkarni [131] presented a systematic qualitative and quantitative analysis of
ECDM process through experimental investigations. In situ, transient measure-
ment of temperature (remotely sensed by pyrometer, at discharge striking zone)
synchronized with online process current were performed. These synchronized
measurements had led to qualitative formulation of the discharge formation and
material removal mechanisms. Two varieties of K-type were used to sense the
temperature at workpiece surface and temperature of electrolyte in the ECDM cell.
With the online and post-process measurements, quantitative analysis of the
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process was performed in terms of energy density striking the surface, geometry of
discharge-affected (striking) region, MRR, energy associated with major process
components and efficiency of the process. Energy density associated with a single
discharge was experimentally determined and capability of single discharge was
explained for utilization of ECDM process for micromachining.

Liu et al. [149] carried out an analysis of the discharge mechanism in elec-
trochemical discharge machining (ECDM) of a particulate reinforced metal matrix
composite and established a model to reveal the electric field acting on a hydrogen
bubble in ECDM process. The model was found capable of predicting the position
of the maximum field strength on the bubble surface as well as the critical
breakdown voltage for spark initiation, for a given processing condition. A set of
experiments was performed to verify the model and the experimental results
agreed well with the predicted values. The experimental results also showed that
an increase in current, duty cycle, pulse duration or electrolyte concentration
would promote the occurrence of arcing action in ECDM. Compared to EDM, the
volume of an arc eroded crater of ECDM was less than that of EDM. An XRD
analysis of the phases of the EDM and ECDM specimens showed that the Al4C3

phase was detected on the former but not on the latter.
It has been observed from the above research works that the research has not yet

been directed toward optimization of ECDM process parameters using advanced
optimization techniques such as GA, PSO, ABC, etc.

3.8 Micro-Milling Process

Micro-milling, which is defined as the downscaling of the conventional milling
process involving the use of end mill diameters in the sub-millimeter range [27],
has become an established process for manufacturing of 3D meso and micro-
components in metals and alloys. Micro-milling has its own characteristics, such
as size effect, cutter edge radius and minimum chip thickness. Forces are exerted
between the tool and the workpiece. Furthermore, tools used in micro-milling have
diameters down to 100 mm and are characterized by long and smooth connections
between the shaft and the cutting region. Micro-scale milling process is shown in
Fig. 3.24. Figure 3.24a, b shows 3D and 2D representation of micro-milling
process whereas, Fig. 3.24c, d shows deformation area in micro-milling. Fc and Fr

are the force component, R is cutter edge radius, h is uncut chip thickness and ft is
feed per tooth.

One of the most significant characteristics of the micro-scale milling operation
is the size effect. Some efforts have been carried out to explain it. Lucca et al.
[151] investigated the size effect of cutting energy of micro-scale machining
process through the experiments; they found non-linear increase in specific cutting
energy or cutting forces as the uncut chip thickness was decreased. Kopalinsky and
Oxley [122] studied the size effect with sharp tools by turning tests. They con-
cluded that the cause was the decrease in the tool chip interface temperature.
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Nakayama and Tamura [172] analyzed the size effect through experiments per-
formed at a very low cutting speed to minimize the temperature and strain rate
effects. They attributed this effect to plastic flow in the workpiece subsurface. The
experiments of the previous researchers [122, 172] implied that there should be
other underlying mechanisms for the size effect besides cutter edge radius, tem-
peratures and strain rate. On the other hand, a similar size effect in micro-
indentation tests was found in the mechanics studies, which was shown as
remarkable material strengthening behaviors at the micron level.

Few efforts were carried out to study the chip formation characteristic of micro-
milling processes. Shaw [217] studied the effect of round edges on the chip for-
mation in micro-scale machining and stated that the plastic deformations would be
prevented when the cutter edge radius is relatively larger than the uncut chip
thickness. Kim et al. [117] investigated the effect of static tool deflection on the
micro-milling and proposed a static chip model based on the attainable micro-scale
machining force data. Liu et al. [150] investigated the chip formation using
molecule dynamic (MD) simulations and presented an approach to calculate the
minimum chip thickness by identifying a local maximum in the radial thrust forces
in the micro-milling. Vogler et al. [241] determined the minimum chip thickness
for steel using finite element (FE) simulations with regard of the microstructure
properties of work material. Uhlmann and Schauer [239] developed innovative
tool design of micro-end mills using the parameter technology in a FEM strain

Fig. 3.24 Schematic representation of micro-milling process (from [136]; reprinted with
permission from Elsevier)
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simulation. The new tool design presented was successfully verified by micro-
milling the tool steel PM 9 190CrVMo 20 with a hardness of up to 62 HRC.

Micro-end milling (MEM) process promises to be an economical way to pro-
duce miniaturized components with excellent dimensional accuracy. However, to
ensure economical production and quality of the products, it is important to select
the most optimal cutting conditions required for the process. Many researchers had
worked on the optimization of cutting speed and feed rates, but most of these
works were restricted to turning of rotational parts although milling operations are
commonly employed in today’s manufacturing industry. While there are still quite
a few attempts at optimization of milling operations, most of these works were on
conventional end milling and peripheral milling operations [8]. In most of these
studies depth of cut was not considered as an active decision variable, thus
restricting them to single pass optimization strategies. Although optimization of
multi-pass milling operations had been worked out, different strategies such as
volume sectioning or optimal cut subdivision had been employed to find the
optimal depth of cut separately [56, 251]. This method did not consider the effect
of the depth of cut on the tool life and thus on the production cost. A machining
economics or optimization problem involves the determination of the optimal set
of cutting conditions viz. cutting speed, feed rate and depth of cut in order to
satisfy a certain objective viz. minimum production cost, minimum production-
time or maximum profit. The traditional methods often adopted for this process
include graphical methods [234], dynamic programming [225], geometric pro-
gramming [93] and numerical search methods [40] while modern intelligent
methods include ANN [264], simulated annealing [44], fuzzy logic [52], etc.

In addition, several analytical cutting force models [15, 60, 69, 115, 261] had
been developed to investigate the micro-scale machining process. Chae [35] sur-
veyed the state of art of micro-scale machining and reported that current resear-
ches had made valuable attempts in this field though most of them were carried out
by means of nano-level and macro-level approaches. From the discussions above,
it is obvious that the processing system for micro-scale milling is far from
established. Its characteristics need to be studied and the related mechanisms need
to be revealed through experiments and theoretical modeling.

In any machining operation, the tool wear increases initially with machining
time and then propagates gradually till a certain extent after which it increases
drastically causing tool failure. Usually in conventional end milling operations
with increase in depth of cut, the applied resultant cutting force for the material
removal increases causing an increase in the rate of increase of tool wear, thereby
causing tool failure. But in micro-end milling operations, unlike in conventional
end milling operations, the tool life of the cutter was observed to increase with the
increase in axial depth of cut up to a certain extent. This can be explained geo-
metrically by considering the total tool engagement of the cutter in the cutting
process. Total tool engagement is the angular length for which the cutting edge is
in contact with the workpiece in one rotation of the cutter. In micro-end milling
operations the depth of cut to the tool diameter ratio is much higher than that in
conventional end milling operations as shown in Fig. 3.25.
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In Fig. 3.25 the unwrapped helix of a conventional tool and a micro-tool are
shown and the amount of helix face involved in cutting for a certain depth of cut is
compared in both cases.

In this figure, d is the axial depth of cut, a1 ? b2 is the length of the unwrapped
helix of the conventional tool (diameter D2) and a2 ? b2 is the length of the
unwrapped helix of the micro-tool (diameter D1). Therefore,

b2= a1 þ b2ð Þ\b2= a1 þ b2ð Þ as a1 [ a2: ð3:91Þ

This implies that the proportion of the helix face involved in the cutting action
in the micro-tool is relatively higher than that in a conventional tool. This is
because the range of diameters of cutters used in MEM operations (0.5– 2.00 mm)
is not very high compared to the range of depths of cut (0.2–1.25 mm). This
eventually results in a greater proportion of the helix face of the cutter partici-
pating in the cutting action. Because of this the total tool engagement is relatively
higher in MEM operations than that in conventional end milling operations. This
results in lesser amount of idle distance traversed by the cutting edge in one
rotation of the tool, thereby reducing the intensity of the impact of the cutting edge
against the workpiece.

The optimization model of the micro-end milling process is formulated based
on the analysis given by Sreeram et al. [228]. The objective of this optimization
model is to determine the optimal cutting conditions including the cutting speed
(V), feed rate (f) and depth of cut (d) in order to minimize the unit production cost
(UC) to manufacture a single component. In addition, this combination of the
machining parameters should not violate the imposed set of constraints which
govern the machining process. In micro-end milling operations the size of the
product desired and the tool (end mill cutter) used are essentially small and hence
there is no separate finishing operation being considered as a part of the complete
machining operation. The unit production cost comprises raw material cost, actual
machining cost, tool replacement cost, tool cost and set-up cost. The cutting
constraints imposed on the machining process include the parameter bounds which
are the minimum and maximum permissible values of the cutting parameters viz.
the cutting speed, feed rate and depth of cut for MEM operations for the tool/
workpiece combination considered, machining power constraint and the cutting

Fig. 3.25 Unwrapped helix
faces of conventional tool
(right) and micro-tool (left)
(from [261]; reprinted with
permission from Elsevier)
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force constraint. While machining with slender end mills the surface roughness is
usually very low offering a good surface quality except while machining with a
broken tool. Tool breakage could easily be detected by drastic increase in the
cutting force values and thus can be avoided by keeping the cutting force con-
straint within a certain limit. The objective function for this optimization model is
described in the subsequent section.

In this model, the objective is to minimize the unit cost (UC) as given by the
following expression:

Minimize UC ¼ K1V
�1f�1d�1 þ K2V

a�1f b�1dc�1 ð3:92Þ

K1 ¼ C0pLWHbd�1=1; 000CDx�1z ð3:93Þ

K2 ¼ C0Tc þ KTð ÞpLWHbd�1=1; 000CDx�1z; ð3:94Þ

where a, b, c, d, x are exponents in tool life equation, CO is the direct labor
cost ? overhead ($/min), L the length of the workpiece to be machined (mm),
W the width of the workpiece to be machined (mm), H the depth of the workpiece
to be machined (mm), b the width of cut, Tc the tool changing time (min), C the
constant in tool life equation, D the diameter of the tool (mm), and z is the number
of teeth on cutter.

Following two constraints were considered.

• Cutting force constraints:
The cutting force as a single parameter is an optimal quantity for describing the
net effect of all input variables. It is imperative that the cutting force is main-
tained below the limiting force in order to ensure good surface quality and to
prevent breakage of cutting edges. In MEM, the diameter of cutters is very low
and the stress variation on the tiny shaft of the micro-tool is much higher than
that on a conventional tool. It is therefore very important to make sure that the
cutting force does not increase drastically beyond a certain allowable limit. The
cutting force constraint is expressed in terms of the cutting parameters as:

C1V
a1f a2da3 � 1� 0; ð3:95Þ

where a1, a2, a3 are the exponents in cutting force equation and

C1 ¼ K=Flim ð3:96Þ

Flim is the limiting cutting force (N).
• Cutting power constraint
The power required during the machining operations should not exceed the
maximum power available on the machine tool. For this case the expression for
cutting power given by Tolouei-Rad [234] is used. This constraint is expressed as:

C2Vdf
0:8 � 1� 0 ð3:97Þ

C2 ¼ 0:78Kpbwz=60pDgPmt; ð3:98Þ
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where Kp is the power constant depending on work piece material, w is the tool
wear factor, g the machine tool efficiency, and Pmt is the maximum allowable
cutting force.

Now to illustrate the optimization aspects of micro-milling process, the fol-
lowing example which deals with the micro-end milling of a thin wall on a steel
workpiece considered by Sreeram et al. [228] is considered. The workpiece is
shown in Fig. 3.26.

The operations required to be performed on this workpiece are given in
Table 3.10.

Sreeram et al. [228] used the following parameters of genetic algorithm for the
optimization of micro-end milling process:

• Cross-over probability = 0.4.
• Mutation probability = 0.08.
• Number of chromosomes in the population, Np = 200.

The results of optimization obtained using genetic algorithm had indicated a
unit cost of $1.75 while the catalogue values suggested a unit cost of $4.281. It is
clear that the obtained values of the unit cost by the genetic algorithm are much
lower than the corresponding values of the unit cost obtained from the catalogue
values of the parameters suggested by the tool manufacturer. The total cost of the
component has been reduced by 59.12% (from $4.281 to $1.75) of the cost
obtained by the parameter values suggested by the tool manufacturer. The effi-
ciency of the algorithm can further be improved by increasing the number of
iterations and widening the feed and cutting speed ranges a little more, as it can be
observed that the optimal cutting speed and feed per tooth values for the step

Fig. 3.26 Example work-
piece for micro-end milling
(from [228]; reprinted with
permission from Springer
Science ? Business Media)

Table 3.10 Operations to be performed on the workpiece (from [228]; reprinted with permission
from Springer Science ? Business Media)

Operation no. Operation type Tool Length (mm) Width (mm) Depth (mm)

1 Side milling Micro 30 end mill 0.3 1
2 Slot milling Micro 30 end mill 2 1
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obtained are the maximum permitted values. However, the limited ranges of
cutting parameters used are chosen carefully in order to avoid cutter breakage and
excessive vibrations during the machining operation.

The optimization of micro end milling process can be carried out using various
non-traditional techniques. Rao and Pawar [199] described the applications of non-
traditional optimization techniques for the process parameter optimization of
milling process and the same techniques can also be applied for the parameter
optimization of micro end milling process.

Kang et al. [115] presented a cutting force model and predicted the cutting force
in micro-end milling. The tool–workpiece contact at the flank face was considered
in this model. The model took into account the tool edge radius effect, which is a
characteristic of the micro-cutting mechanism. In this model, when the feed per
tooth reached the tool edge radius level, predictions could be made for the char-
acteristics of the feed and normal direction cutting forces that occur due to the tool
edge radius effect which was not considered in the previous models. In fact, there
was no difference between the cutting forces of the feed and normal directions
when the feed per tooth was small and this was also clearly shown in the prediction
results. Besides, the study clearly demonstrated that the predicted cutting forces
were consistent with the experimental cutting forces.

Newby et al. [174] presented an empirical model for the analysis of cutting
forces in micro-end milling operations. The approach used higher feed per tooth per
radius of cutter ratios (compared to conventional end milling operations) and the
true trochoidial nature of the tool edge path in the derivation of a chip thickness for
micro-end milling operations. Cutting experiments were conducted in the micro-
end milling regime and forces were recorded. These forces were then decomposed
in order to present new empirical formulae for cutting pressure constants in micro-end
milling operations. The model developed for cutting force constants can be used for
better understanding of friction and forces in the micro-end milling process.

Lai et al. [136] presented mechanisms studies of micro-milling operation
focusing on its characteristics, size effect, micro-cutter edge radius and minimum
chip thickness. First, a modified Johnson–Cook constitutive equation was formu-
lated to model the material strengthening behaviors at micron level using strain
gradient plasticity. A finite element model for micro-scale orthogonal machining
process was developed considering the material strengthening behaviors, micro-
cutter edge radius and fracture behavior of the work material. Then, an analytical
micro-scale milling force model was developed based on the FE simulations using
the cutting principles and the slip-line theory. Extensive experiments of OFHC
copper micro-milling using 0.1 mm diameter micro-tool were performed with
miniaturized machine tool, and good agreements were achieved between the
predicted and the experimental results. Finally, chip formation and size effect of
micro-milling were investigated using the proposed model, and the effects of
material strengthening behaviors and minimum chip thickness were discussed.

Demir [55] presented the application of micro-plasticity theory to predict the
forces and the surface quality that stem from the anisotropy in the mechanical
properties of single crystal fcc work-piece materials. The model predicts the
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experimental differences in the height between entrance and exit burrs of copper
single crystals observed in the studies of Min et al. [166]. The model is potentially
applicable to calibration of milling force models.

Bissacco et al. [28] presented a theoretical model for cutting force prediction in
micro-milling, taking into account the cutting edge radius size effect, the tool run
out and the deviation of the chip flow angle from the inclination angle. A
parameterization according to the uncut chip thickness to cutting edge radius ratio
was used for the parameters involved in the force calculation. The model was
verified by means of cutting force measurements in micro-milling. The results
showed good agreement between predicted and measured forces. It was also
demonstrated that the use of the Stabler’s rule was a reasonable approximation and
that micro-end mill run out was effectively compensated by the deflections
induced by the cutting forces.

Malekian et al. [157] investigated the mechanistic modeling of micro-milling
forces, with consideration of the effects of ploughing, elastic recovery, run-out,
and dynamics. A ploughing force model that took the effect of elastic recovery into
account was developed based on the interference volume between the tool and the
workpiece. The elastic recovery was identified with experimental scratch tests
using a conical indenter. The dynamics at the tool tip was indirectly identified by
performing receptance coupling analysis through the mathematical coupling of the
experimental dynamics with the analytical dynamics. The model was validated
through micro-end milling experiments for a wide range of cutting conditions. In
another work, Malekian et al. [158] examined factors affecting tool wear and a tool
wear monitoring method using various sensors, such as accelerometers, force and
acoustic emission sensors in micro-milling. The signals were fused through the
neuro-fuzzy method, which then determined whether the tool was in good shape or
was worn. An optical microscope was used to observe the actual tool condition,
based upon the edge radius of the tool, during the experiment without disengaging
the tool from the machine. The effectiveness of tool wear monitoring, based on a
number of different sensors, was also investigated. Several cutting tests were
performed to verify the monitoring scheme for the miniature micro-end mills.

Park and Malekian [178] examined the mechanistic modeling of shearing and
ploughing domain cutting regimes to accurately predict micro-milling forces. The
tool dynamics were indirectly identified by performing receptance coupling
analysis. Furthermore, the Kalman filter compensation method was used to pre-
cisely measure the forces to obtain the cutting constants. In another work, Park and
Rahnama [179] developed a robust chatter stability method based on the edge
theorem and the automated zero exclusion principle for predicting the stability
lobes, based on changing parameters between the minimum and maximum ranges
in micro-milling operations. Experimental tests were performed to indirectly
identify the tool tip dynamics through the receptance coupling method, to inves-
tigate process damping, and to identify changing dynamics. The stability lobes
were simulated, and the experimental cutting tests were carried out to compare the
results. The robust stability method with process damping results showed a good
correlation with the experimental results.
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Wissmiller and Pfefferkorn [248] characterized the heat transfer in micro-end
mill tools during machining operations. Tool temperatures, above the unmachined
workpiece surface, were measured using an infrared camera during slot milling of
aluminum (6061-T6) and steel (1018) with 300 lm-diameter two-flute tungsten
carbide end mills. The measured temperatures compared favorably with temper-
ature distributions predicted by a 2D, transient, heat transfer model of the tool. The
heat input was estimated by applying Loewen and Shaw’s heat partitioning
analysis.

Zhu et al. [263] proposed a multi-category classification approach for tool flank
wear state identification in micro-milling. Continuous Hidden Markov models
(HMMs) were adapted for modeling of the tool wear process in micro-milling, and
estimation of the tool wear state given the cutting force features. For a noise-robust
approach, the HMM outputs were connected via a medium filter to minimize the
tool state before entry into the next state due to high noise level. A detailed study
on the selection of HMM structures for tool condition monitoring was presented.
Case studies on the tool state estimation in the micro-milling of pure copper and
steel demonstrated the effectiveness and potential of these methods.

3.9 Micro-Drilling Process

Increasing demand for advanced difficult-to-process materials and the availability
of high-power lasers have stimulated interest in research and development related
to laser machining. The use of laser micro-drilling in manufacturing industry can
be attributed to several advantages like high production rate, applicable to both
conductive and non-conductive materials, no mechanical damage or tool wear due
to non-contact processing, improved product quality, low material wastage, low
production cost, small HAZ, and ecologically clean technology. The main issues
related to Micro-drilling using laser are taper formation, production of non-circular
holes, and thickness of HAZ. Yilbas and Yilbas [253] used a statistical method to
investigate the effects of the variation of single-pulse laser drilling parameters on
the hole geometry for Nimonic workpiece material using a full factorial design to
identify the main and first-order interaction effects on the hole quality in single-
pulse drilling including re-solidified material, taper, barreling, inlet cone, exit
cone, surface debris and mean hole diameter. Yilbas [254] examined four materials
nickel, tantalum, EN 58 B EN 58 B and titanium to obtain laser drilling speed
using a statistical analysis. Yeo et al. [252] reviewed the mechanisms of some laser
drilling processes, the types of laser used, the quality characteristics of a laser-
drilled hole, the effects of drilling parameters, and the advantages and limitations
of the laser hole-drilling operation.

Yilbas [255] conducted drilling experiments on three materials, stainless steel,
nickel and titanium, using single-pulsed laser beam. In addition to statistical
analysis of hole taper, some efforts have also been made to control hole taper via
the development of drilling techniques. Ghoreishi et al. [72] employed a statistical
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model to analyze and compare hole taper and circularity in laser percussion
drilling on stainless steel and mild steel. Jackson and O’Neill [98] investigated the
interaction phenomena of Q-switched, diode- pumped Nd:YAG laser using dif-
ferent wavelengths on tool steel. Bandhopadhayay et al. [14] investigated the
influence of the process variables on hole diameter and taper angle of drilled holes
produced on thick IN718 and Ti-6Al-4 V sheets by Nd:YAG laser.

Yu et al. [258] presented a new approach for effective self-flushing using
planetary movement. Through micro-holes with an aspect ratio of 18 were drilled.
This approach was also demonstrated by drilling blind non-circular micro-holes
with sharp corners and edges. The process performance characteristics were
analyzed under different machining conditions.

Pham et al. [184] presented some recent developments in micro-EDM in its
various forms (wire, drilling, milling and die-sinking) and discussed the main
research issues. The authors focused on the planning of the EDM process and the
electrode wear problem. Special attention was paid to the factors and procedures
influencing the accuracy achievable, including positioning approaches during
EDM and electrode grinding.

Chen and Darling [45] investigated the use of a near ultraviolet Nd:YAG laser
for rapid micromachining of sapphire and silicon. Cutting, marking and surface
ablation of both materials were produced by direct writing using a high-speed x–
y galvanomechanical beam positioner. Machining results such as ablation rate and
efficiency were discussed. The results showed that the quality and efficiency of the
laser machining depend on several factors, including focus length, beam feed rate
(cutting speed) and the pulse repetition rate. The surface morphology and ablation
rate indicated that the laser ablation process of sapphire could be a mixed
photothermal and photochemical process, while that of silicon appeared dominated
by a photothermal process when using a near UV nanosecond pulses.

Sen and Shan [213] highlighted the recent developments, new trends and the
effect of key factors influencing the quality of the holes produced by jet-electro-
chemical drilling processes. The authors made a comparative study of electro jet
drilling with another non-traditional hole-drilling process (laser percussion dril-
ling). The laser percussion welding showed the potential and versatility of the
electrochemical hole-drilling processes. In another work, Sen and Shan [214]
reported experimental findings on the effects of important process parameters such
as applied voltage, capillary outside diameter, feed rate, electrolyte concentration
and inlet electrolyte pressure on the productivity and the quality of small holes
(\800 lm dia) produced using the electrojet drilling process. Roundness error and
surface roughness were used as the response parameters for evaluating the quality
of hole whereas MRR was used as the response parameter for evaluating the process
productivity. The experiments were performed on SUPERNI 263A material.

Li et al. [142] reported an investigation into a sequential laser and EDM micro-
drilling technique for the manufacture of next generation fuel injection nozzles. A
laser-drilled pilot hole was rimmed out by EDM drilling. It was found that this
hybrid process eliminated the problems of recast and HAZ typically associated
with the laser drilling process. The new process had enabled a 70% reduction in
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total drilling time compared to standard EDM drilling. The quality of the holes was
as good as direct EDM drilling, thus eliminating the need for re-certification of the
drilling process. Various combinations of laser/EDM drilling conditions were
examined. Optimum diameters for the pilot hole and the EDM electrode were
identified for a particular diameter of fuel injection nozzle, giving the minimum
total drilling time and the best quality holes. A special system was designed to
enable the alignment of nozzles to be controlled to within ± 20 lm.

Kuar et al. [128] presented a CNC Nd:YAG laser system used for micro-drilling
operation. Figure 3.27 shows the CNC Nd:YAG laser micro-drilling set up. For
efficient micro-drilling operation the CNC Nd:YAG laser machining system
consists of the various subsystems such as; laser source and beam delivery unit,
power supply unit, radio frequency (RF) Q-switch driver unit, cooling unit and
CNC controller for X, Y, and Z axes movement. Laser head consists of Nd:YAG
rod and krypton arc lamp which are placed in two different focal point of an
elliptical cavity.

Lasing medium in Nd:YAG lasers is neodymium atoms are embedded in
yttrium aluminum garnet crystal host. Pump source is usually a krypton arc lamp.
Nd:YAG crystal is excited by krypton arc lamp. For amplification of light, optical
feedback is provided with 100% reflectivity rear mirror, and a front mirror of
reflectivity 80%. The Q-switching is an excellent method to produce very short
pulse width and very high peak power of laser light from a CW low-power laser.
Main power supply unit controls the laser output by controlling intensity of light

Fig. 3.27 Schematic representation of CNC Nd:YAG laser micro-drilling (from [128]; reprinted
with permission from Elsevier)
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emitted by krypton arc lamp. Cooling unit cools the system to avoid thermal
damage of laser cavity, lamp, Nd:YAG rod and Q-switch.

The CNC controller consists of X–Y–Z axes and a controlling unit. Stepper
motors are attached to each axis and connected to the controlling unit. This unit
can control the axis through computer unit. Nd:YAG laser machining system.
CNC Z-axis controller unit controls the Z-axis movement of lens. Over the table to
hold work piece, the developed fixture is placed. It takes care of the job posture.
CCD camera together with CCTV monitor is used for viewing the location of work
piece and also for checking the proper focusing condition of surface of work piece
before laser machining for achieving high quality laser micromachining charac-
teristics. Figure 3.27 shows the schematic representation of CNC Nd:YAG laser
micro-drilling system.

Kuar et al. [129] carried out experimental investigations into CNC pulsed
Nd:YAG laser micro-drilling of zirconium oxide (ZrO2). Influence of laser
machining parameters on the HAZ thickness and phenomena of tapering of the
machined micro-holes was experimentally investigated. RSM-based optimal
parametric analysis was performed to determine the optimal setting of process
parameters such as pulse frequency and pulse width, lamp current, assist air
pressure for achieving minimum HAZ thickness and taper of the micro-hole
machined by pulsed Nd:YAG laser. Minimum HAZ thickness was been obtained
as 0.0675 mm when the lamp current, pulse frequency, assisted air pressure and
pulse width were set at optimal parametric setting, i.e., 17 amp, 2.0 kHz, 2.0 kg/
cm2 and 2% of the duty cycle, respectively. Minimum taper was achieved as
0.0319 at optimal parametric setting, i.e., the lamp current of 17 amp, pulse fre-
quency of 2.0 kHz, assisted air pressure of 0.6 kg/cm2 and pulse width of 2% of
the duty cycle. Analysis was also carried out for multi-optimization of both the
responses, i.e., HAZ thickness and taper during pulsed Nd:YAG laser micro-
drilling on ZrO2.

Bigot et al. [26] investigated the optimization of machining parameters for
rough and fine machining in micro-EDM. In one case, the parameters were
selected to achieve the highest MRR. In the other case, the best surface roughness
was targeted. Some of the main difficulties linked with micro-EDM were caused
by the high wear occurring on the electrode. The study focused on a specific
combination of electrode and workpiece material and proposed a typical method
for micro-EDM process optimization. Kao and Shih [111] presented the design and
tuning of a three-input fuzzy logic controller for electrical discharge machining
(EDM) of diesel injector spray holes. The tuning process was based on the variable
type and discretization level to balance the data precision and computational time
for servo motion updates in the fuzzy logic controller and was performed to
improve the micro-hole EDM drilling time. The type and number of input
parameters were studied to select the gap voltage, spark ratio, and change of spark
ratio as input parameters for the fuzzy logic controller. A gain scheduling con-
troller was used as the baseline and showed excellent drilling time in drilling a
1.14 mm thick workpiece using a 150 lm diameter wire electrode. The tuned
fuzzy logic controller was comparable with the gain scheduling controller in
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drilling time and demonstrated its advantages on different EDM drilling config-
urations, including deep-hole and small-diameter micro-hole drilling.

Dubey and Yadava [62] reviewed the research work carried out in the area of
LBM of different materials and shapes. The authors reported about the experi-
mental and theoretical studies of LBM to improve the process performance.
Several modeling and optimization techniques for the determination of optimum
laser beam cutting conditions were critically examined. Dubey and Yadava [63]
presented a hybrid Taguchi method and response surface method (TMRSM) for
the multi-response optimization of a laser beam cutting process. The approach first
used the Taguchi quality loss function to find the optimum level of input cutting
parameters such as gas pressure, pulse width, pulse frequency and cutting speed.
The optimum input parameter values were further used as the central values in the
response surface method to develop and optimize the second-order response
model. The two quality characteristics Kerf width (KW), and MRR, that are of
different nature (KW is of the smaller-the-better type, while MRR is of the higher
the better type), were selected for simultaneous optimization. The results showed
considerable improvement in both the quality characteristics when the hybrid
approach was used, as compared the results of a single approach. The authored had
performed experiments on a 200 W pulsed Nd:YAG LBM system with CNC work
table. Oxygen was used as an assist gas. Focal length of lens used was 50 mm.
Nozzle diameter (1.0 mm), nozzle tip distance (1.0 mm), and sheet material
thickness (0.5 mm) were kept constant throughout the experimentation. The two
quality characteristics analyzed were kerf width (KW) and MRR. The grain ori-
ented high silicon-alloy steel sheet was used in the experiments as sheet material.
The variable input process parameters (or control factors) considered were the gas
pressure (1.5–3.5 kg/cm2), pulse width or pulse duration (1.0–1.4 ms), pulse fre-
quency (20–28 Hz), and cutting speed (25–75 mm/min).

The second-order response surface models for KW (mm) and MRR (mg/min)
were developed from the experimental response values. The model developed
using MINITAB software are as shown below.

KW ¼ 0:1511þ 0:0746x1 þ 0:3736x2 � 0:0191x3 þ 0:0021x4 þ 0:0013x21
� 0:1274x22 þ 0:0008x23 � 0:0126x1x2 � 0:0029x1x3 þ 0:0010x2x3

ð3:99Þ

MRR ¼ �97.6352��23.5623x1 þ 47.6419x2 þ 9.0159x3 þ 1.4135x4 þ 2.7470x21
� 23.456x22 � 0.1721x23 � 0.0027x24 þ 11.2499x1x2 þ 0.0417x1x3
� 0.1050x1x4 � 1.4063x2x3 þ 0.2750x2x4 þ 0.0175x3x4 ð3:100Þ

where x1 is the gas pressure (kg/cm2), x2 the pulse width (ms), x3 the pulse
frequency (Hz), and x4 is the cutting speed (mm/min).

From the developed models, it was clear that the pulse width, cutting speed,
square effect of pulse width, and interaction effect of pulse frequency and cutting
speed are the significant factors for KW because of the reason that the absolute
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value of corresponding coefficients for these terms are quite high in comparison to
other terms. Likewise, the MRR was significantly affected by cutting speed, pulse
width, pulse frequency, and square effect of cutting speed.

The simultaneous optimization of weighted response for KW (weighting fac-
tor = 0.8) and MRR (weighting factor = 0.2) was obtained using MINITAB
software. (1) The optimum value of KW and MRR obtained from multi-objective
optimization using Taguchi method only were 0.3733 mm and 124.1095 mg/min,
respectively, while using the hybrid approach these values were 0.3267 mm and
169.1667 mg/min, respectively. Hence a considerable improvement for both
quality characteristics was found with hybrid approach of TMRSM.

Dubey and Yadava [64] applied a hybrid approach of Taguchi method and
principal component analysis (PCA) for multi-objective optimization of pulsed
Nd:YAG laser beam cutting of nickel-based superalloy (SUPERNI 718) sheet to
achieve better cut qualities within existing resources. The three-quality charac-
teristics kerf width, kerf deviation (along the length of cut), and kerf taper were
considered for simultaneous optimization. The input parameters considered were
assist gas pressure, pulse width, pulse frequency, and cutting speed. Initially,
single-objective optimization was performed using Taguchi method and then the
signal-to-noise (S/N) ratios obtained were further used in PCA for multi-objective
optimization. The results included the prediction of optimum input parameter
levels and their relative significance on multiple quality characteristics.

Dubey and Yadava [65] optimized simultaneously two kerf qualities such as
kerf deviation and kerf width using Taguchi quality loss function during pulsed
Nd:YAG laser beam cutting of aluminum alloy sheet (0.9-mm thick). A consid-
erable improvement in kerf quality was reported. In another work, Dubey and
Yadava [66] reviewed the experimental investigations carried out to study the
effect of various factors/process parameters on the performance of Nd:YAG LBM.
The importance of different DOE methodologies used by various investigators for
achieving the optimum value of different quality characteristics was discussed.

Karazi et al. [112] developed four models for the prediction of the width and
depth dimensions of CO2 laser-formed micro-channels in glass. A 33 statistical
DOE model was built and conducted with the power (P), pulse repetition fre-
quency (PRF), and traverse speed (U) of the laser machine as the selected
parameters for investigation. Three feed-forward, back-propagation ANN models
were also generated. These ANN models were varied to investigate the influence
of variations in the number and the selection of training data. Model A was
constructed with 24 data randomly selected from the experimental results, leaving
three data points for model testing; Model B was constructed with the eight corner
points of the experimental data space, and seven other randomly selected data,
leaving 12 data points for testing; and Model C was constructed with 15 randomly
selected data leaving 12 data points for testing. These models were developed
separately for both micro-channel width and depth prediction. These ANN models
were constructed in LabVIEW coding. The performance of these ANN models and
the DOE model were compared. When compared with the actual results, two of
the ANN models showed greater average percentage error than the DOE model.
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The other ANN model showed an improved predictive capability that was
approximately twice as good as that provided from the DOE model.

Pradhan et al. [187] attempted to optimize micro-EDM process parameters for
machining Ti-6Al-4 V super alloy. To verify the optimal micro-EDM process
parameters settings, MRR, tool wear rate (TWR), over cut (OC) and taper were
chosen as observed performance criteria. In addition, four independent parameters
such as peak current, pulse on-time, flushing pressure, and duty ratio were adopted
for evaluation by the Taguchi method. From the ANOVA and S/N ratio graph, the
significant process parameters and the optimal combination level of machining
parameters were obtained. It was seen that machining performances were affected
mostly by the peak current and pulse on-time during micro-EDM of titanium alloy.
Mathematical models were developed to establish the relationship between various
significant process parameters and micro-EDM performance criteria.

Klocke et al. [119] investigated size effects by downscaling the twist drilling
process into the micro-range (diameter: d = 50 lm–1 mm). Therefore, experi-
mental Micro-drilling tests in steel AISI 1045 (normalized and full-annealed) were
performed with different cutting conditions (drill diameter, feed, cutting speed)
and compared with data obtained from conventional drilling. Various size effects
and its significant influence on the micro-cutting process were characterized with
help of the experimental results. Additionally, the formula of Victor–Kienzle was
adjusted to model the feed force in Micro-drilling operations.

Jadoun et al. [99] presented a study of the effect of process parameters on
production accuracy obtained through ultrasonic drilling of holes in alumina-based
ceramics using silicon carbide abrasive. Production accuracy in ultrasonic drilling
involves both dimensional accuracy (hole oversize) and form accuracy (out-of-
roundness and conicity). The parameters considered were workpiece material, tool
material, grit size of the abrasive, power rating and slurry concentration. Taguchi’s
optimization approach was used to obtain the optimal parameters. The significant
parameters were also identified and their effect on oversize, out-of-roundness and
conicity were studied. The results obtained were validated by conducting the
confirmation experiments.

Biswas et al. [29] studied Nd:YAG laser micro-drilling of gamma-titanium
aluminide, a new material which performed well in laboratory tests as well as in
different fields of engineering. The effect of different process parameters in the
optimization of the process was investigated. The aspects considered were the hole
circularity at exit and the hole taper of the drilled hole. Lamp current, pulse
frequency, air pressure and thickness of the job were selected as independent
process variables. The CCD technique based on RSM was employed to plan the
experiments to achieve optimum responses with a reduced number of experiments.
It was concluded that the various process parameters, i.e., lamp current, pulse
frequency, air pressure and thickness can be optimally controlled for achieving
desired responses like hole circularity at exit and hole taper using the developed
mathematical model based on RSM. In CNC Nd:YAG laser micro-drilling of
gamma-titanium aluminide, lamp current and sample thickness had shown a
significant effect on both responses, i.e., hole circularity at exit and hole taper.
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The pulse frequency and air pressure were dominant parameters for taper and for
hole circularity, respectively. The optimum value of hole circularity at exit was
calculated at lower values of lamp current, higher value of thickness and moderate
values of air pressure and pulse frequency. The optimum value of hole taper was
found out at lower value of lamp current, lower value of air pressure, higher value
of pulse frequency and at higher thickness. Optimum values of both the responses
were obtained at moderate values of lamp current, pulse frequency, air pressure
and at higher values of job sample thickness.

3.9.1 Optimization of Laser Micro-Drilling Process

Very few efforts have been made for optimization of micro-drilling operation.
Biswas et al. [29] developed a second-order response surface model to obtain the
effect of the important process variable of laser Micro-drilling process such as
lamp current (x1), pulse frequency (x2), air pressure (x3), and thickness (x4) on
two main responses namely circularity at exit (Ycircularity at exit) and hole taper
(Yhole taper). The bounds for the four process variables are shown in Table 3.11.

A second-order model was developed by Biswas et al. [29] for the two
responses, as given below:

Ycircularity at exit ¼ 0:93869� 0:01052x1 � 0:00268x2 þ 0:00372x3 þ 0:00059x4

� 0:00079x21 � 0:01529x22 � 0:00934x23 � 0:00304x24
� 0:00379x1x2 þ 0:00868x1x3 � 0:00685x1x4 � 0:00485x2x3
� 0:00383x2x4 þ 0:00596x3x4 ð3:101Þ

Yhole taper ¼ 0:09453þ 0:00413x1 þ 0:000350268x2 � 0:00187x3 � 0:01955x4

� 0:00036x21 � 0:00036x22 þ 0:00174x23 þ 0:00283x24 þ 0:0009x1x2
� 0:0006x1x3 � 0:00274x1x4 � 0:00115x2x3
þ 0:00278x2x4 þ 0:00173x3x4: ð3:102Þ

Based on the analysis discussed above, the optimization model was then for-
mulated as: maximize Ycircularity at exit (given by Eq. 3.101)

The constraint was related to the hole taper. The constraint was to ensure that
the hole taper (Yholetaper) should not exceed permissible value (Yper) as specified by
Eq. 3.103 given below.

Table 3.11 Bounds of process variables (from [29]; reprinted with permission from Elsevier)

Factors Bounds

Symbol (unit) Lower bound Upper bound

Lamp current x1 (A) 20 22
Pulse frequency x2 (kHz) 0.8 1.6
Air pressure x3 (kg/cm

2) 1 2
Thickness x4 (mm) 0.48 0.68
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Yper � Yhole taper � 0: ð3:103Þ

Biswas et al. [29] applied RSM approach to solve the above optimization
problem. RSM is intrinsic model-based technique when sequential experimenta-
tion is possible. It is also suitable when lower order polynomial regression
equation exists to establish the relation between response and decision variables at
the early stage of experimentation. However, RSM is unsuitable for solving highly
non-linear, multi-modal functions and also in case of multiple objectives (Carlyle
et al. [31]). Moreover, objective function needs to be continuously differentiable,
which may not be the case in many complex physical processes. Hence this
optimization problem is solved now using ABC to verify if any improvement is
possible over the solution obtained by Biswas et al. [29]. The results of optimi-
zation using RSM method, and ABC algorithm are shown in Table 3.12.

It is observed from Table 3.12 that the results obtained using ABC algorithm
are better than the results obtained using RSM method. This improvement is
possible as the ABC algorithm combines both, the stochastic selection scheme
carried out by onlooker bees, and greedy selection scheme used by onlookers and
employed bees to update the source position. Also the neighbor source production
mechanism in ABC is similar to the mutation process, which is self-adapting. The
random selection process carried out by the scout bees maintains diversity in the
solution. The ABC algorithm is thus flexible, simple to use and robust optimization
algorithm, which can be used effectively in the optimization of multimodal and
multi-variable problems.
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26. Bigot S, Valentinčič J, Blatnik O, Junkar M (2006) Micro-EDM parameters optimization.
In: Menz W, Dimov S, Fillon B (eds) 2nd international conference on multi-material micro
manufacture. Elsevier, Oxford

27. Bissacco G, Hansen HN, De Chiffre L (2006) Size effects on surface generation in micro-
milling of hardened tool steel. Ann CIRP 55(1):593–596

28. Bissacco G, Hansen HN, Slunsky J (2008) Modeling the cutting edge radius size effect for
force prediction in micro-milling. CIRP Ann Manuf Technol 57(1):113–116

274 3 Modeling and Optimization of Modern Machining Processes



29. Biswas R, Kuar AS, Sarkar S, Mitra S (2010) A parametric study of pulsed Nd:YAG laser
micro-drilling of gamma-titanium aluminide. Opt Laser Technol 42:23–31

30. Bruneel D, Matras G, Harzic RL, Huot N, König K, Audouard E (2010) Micromachining of
metals with ultra-short Ti-Sapphire lasers: prediction and optimization of the processing
time. Optics Lasers Eng 48(3):268–271

31. Carlyle WC, Montgomery DC, Runger GC (2000) Optimization problems and methods in
quality control and improvement. J Qual Technol 31:1–17

32. Çaydas� U, Hasçalık A (2008) Use of the grey relational analysis to determine optimum laser
cutting parameters with multi-performance characteristics. Opt Laser Technol 40(7):987–
994

33. Çaydas� U, Ahmet H, Ekici S (2009) An adaptive neuro-fuzzy inference system (ANFIS)
model for wire-EDM. Expert Syst Appl 36(3):6135–6139

34. Cenna AA, Mathew P (2002) Analysis and prediction of laser cutting parameters of
fibre reinforced plastics (FRP) composite materials. Int J Mach Tools Manuf 42:105–
113

35. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach
Tools Manuf 46:313–332

36. Chak S, Rao PV (2008) The drilling of Al2O3 using a pulsed DC supply with a rotary
abrasive electrode by the electrochemical discharge process. Int J Adv Manuf Technol
39:633–641

37. Chakravarthy PS, Babu NR (2000) A hybrid approach for selection of optimal process
parameters in abrasive water jet cutting. Proc Inst Mech Eng Part B J Eng Manuf 214:781–
791

38. Chakravarthy PS, Babu NR (1999) A new approach for selection of optimal process
parameters in abrasive water jet cutting. Mater Manuf Process 14(4):581–600

39. Chang CW, Kuo CP (2007) Evaluation of surface roughness in laser-assisted machining of
aluminum oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47(1):141

40. Chang T, Wysk RA, Davis RP, Choi B (1982) Milling parameter optimization through a
discrete variable transformation. Int J Prod Res 20:507

41. Chen L, Siores E, Wong WCK (1998) Optimising abrasive waterjet cutting of ceramic
materials. J Mater Process Technol 74(1–3):251–254

42. Chen HC, Lin JC, Yang YK, Tsai CH (2010) Optimization of wire electrical discharge
machining for pure tungsten using a neural network integrated simulated annealing
approach. Expert Syst Appl. doi:10.1016/j.eswa.2010.04.020

43. Chen L, Siores E, Wong WCK (1996) Kerf characteristic in abrasive waterjet cutting of
ceramic materials. Int J Mach Tools Manuf 36(11):1201–1206

44. Chen MC, Tsai DM (1996) A simulated annealing approach for optimization of multi-pass
turning operations. Int J Prod Res 34:2803

45. Chen TC, Robert B, Darling RB (2005) Parametric studies on pulsed near ultraviolet
frequency tripled Nd:YAG laser micromachining of sapphire and silicon. J Mater Process
Technol 169:214–218

46. Chen YH, Tam SC, Chen WL, Zheng HY (1996) Application of Taguchi method in the
optimization of laser micro-engraving of photomasks. Int J Mater Prod Technol 11(3–4):
333–344

47. Chiang KT, Chang FP (2006) Optimization of the WEDM process of particle-reinforced
material with multiple performance characteristics using grey relational analysis. J Mater
Process Technol 180(1–3):96–101

48. Choi GS, Choi GH (1997) Process analysis and monitoring in abrasive water jet machining
of alumina ceramics. Int J Mach Tools Manuf 37:295–307

49. Choobineh F, Jain VK (1993) A fuzzy sets approach for selecting optimum parameters of an
ECM process. Process Adv Mater 3:225–232

50. Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm
optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI
H13 steel. Mater Manuf Process 24(3):358–368

References 275

http://dx.doi.org/10.1016/j.eswa.2010.04.020


51. Clifton D, Mount AR, Alder GM, Jardine D (2002) Ultrasonic measurement of the inter-
electrode gap in electro chemical machining. Int J Mach Tools Manuf 42:1259–1267

52. Clodeinir RP, Guerra REH, Haber RH, Alique A, Ros S (1999) Fuzzy model and
hierarchical fuzzy control integration: an approach for milling process optimization. Comp
Ind 39:199

53. Cook NH (1966) Manufacturing analysis. Addison-Wesley, London
54. Deam RT, Lemma E, Ahmed DH (2004) Modeling of the abrasive water jet cutting process.

Wear 257(9–10):877–891
55. Demir E (2008) Taylor-based model for micro-machining of single crystal fcc materials

including frictional effects-application to micro-milling process. Int J Mach Tools Manuf
48(1):1592–1598

56. Dereli T, Filiz IH, Baykasoglu A (2001) Optimizing cutting parameters in process planning
of prismatic parts using genetic algorithms. Int J Prod Res 39:3303

57. Dhara SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric
optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39(1–2):39–46

58. Dhupal D, Doloi B, Bhattacharyya B (2008) Parametric analysis and optimization of
Nd:YAG laser micro-grooving of aluminum titanate (Al2TiO5) ceramics. Int J Adv Manuf
Technol 36(9–10):883–893

59. Dhupal D, Doloi B, Bhattacharyya B (2009) Modeling and optimization on Nd:YAG laser
turned micro-grooving of cylindrical ceramic material. Opt Lasers Eng 47(9):917–925

60. Dow TA, Miller EL, Garrard K (2004) Tool force and deflection compensation for small
milling tools. Precis Eng 28:31–45

61. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the
Taguchi technique. Int J Adv Manuf Technol 34(1–2):131–140

62. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf
48(6):609–628

63. Dubey AK, Yadava V (2008) Multi-objective optimization of laser beam cutting process.
Opt Laser Technol 40(3):562–570

64. Dubey AK, Yadava V (2008) Multi-objective optimization of Nd:YAG laser cutting of
nickel-based superalloy sheet using orthogonal array with principal component analysis.
Opt Lasers Eng 46(2):124–132

65. Dubey AK, Yadava V (2008) Optimization of kerf quality during pulsed laser cutting of
aluminum alloy sheet. J Mater Process Technol 204(1–3):412–418

66. Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—an
overview. J Mater Process Technol 195(1–3):15–26

67. El-Dardy MA (1982) Economic study of electro chemical machining. Int J Mach Tools
Manuf 22:147–158

68. Eltobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J
Mach Tool Manuf 45:1337–1346

69. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part I: new
model and theory. J Mech Phys Solids 51:715–742

70. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103
71. Gadalla AM, Bozkurt B, Faulk NM (1991) Modeling of thermal spalling during electrical

discharge mechanism of TiB2. J Am Ceram Soc 74:801–806
72. Ghoreishi M, Low DKY, Li L (2002) Comparative statistical analysis of hole taper and

circularity in laser percussion drilling. Int J Mach Tools Manuf 42:985–995
73. Ghoreishi M, Nakhjavani OB (2008) Optimization of effective factors in geometrical

specifications of laser percussion drilled holes. J Mater Process Technol 196(1–3):303–310
74. Ghosh A, Mallik AK (1985) Manufacturing science. Affiliated East-West Press, New Delhi
75. Gokler MI, Ozanozgu AM (2000) Experimental investigation of effects of cutting

parameters on surface roughness in the WEDM process. Int J Mach Tools Manuf
40(13):1831–1848

76. Han F, Jiang J, Yu D (2007) Finish cut of wire electrical discharge machining (WEDM). Int
J Adv Manuf Technol 34(5–6)

276 3 Modeling and Optimization of Modern Machining Processes



77. Han F, Kunieda MT, Sendai T, Imai Y (2002) High precision simulation of WEDM using
parametric programming. CIRP Ann Manuf Technol 51(1):165–168

78. Han MP, Min BK, Lee SJ (2008) Modeling gas film formation in electrochemical discharge
machining process using a side-insulated electrode. J Micromech Microeng 18:50–58

79. Hargrove SK, Ding D (2007) Determining cutting parameters in wire EDM based on
workpiece surface temperature distribution. Int J Adv Manuf Technol 34(3–4)

80. Hascalyk A, Caydas U (2004) Experimental study of wire electrical discharge machining of
AISI D5 tool steel. J Mater Process Technol 148:362–367

81. Hashish M (1989) A model for abrasive water jet (AWJ) machining. J Eng Mater Technol
111:154–162

82. Hashish M (1984) A modeling study of metal cutting with abrasive water jets. J Eng Mater
Technol 106:88–100

83. Hassan AI, Kosmol J (2001) Dynamic elastic–plastic analysis of 3D deformation in abrasive
waterjet machining. J Mater Process Technol 113(1–3):337–341

84. Hewidy MS, El-Taweel TA, El-Safty MF (2005) Modeling the machining parameters of
wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol
169:328–336

85. Hewidy MS, Ebeid SJ, El-Taweel TA, Youssef AH (2007) Modeling the performance of
ECM assisted by low frequency vibrations. J Mater Process Technol 189(1–3):466–472

86. Hewidy MS, Fattouh M, Elkhabeery M (1984) Some economical aspects of ECM processes.
In: Proceedings of first AME conference, TT8. Military Technical College, Cairo, pp 87–94
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Chapter 4

Modeling and Optimization of

Nano-finishing Processes

4.1 Introduction

Finishing operations represent a critical and expensive phase of overall production
processes. The most labor intensive, uncontrollable area in the manufacturing of
precision parts involves final finishing operations, which frequently demand as
much as 15% of the total manufacturing cost. The dimensional and alignment
accuracy and quality of surface finish are taken care of by finishing processes such
as grinding, lapping, honing, and super-finishing (i.e. traditional methods of fin-
ishing). But, the applications of these traditional abrasive finishing processes are
limited to the production of work pieces of basic forms such as flat, cylindrical,
etc. These finishing processes are being pushed to their limits of performance
especially in components of hard materials and complicated shapes. The need to
develop finishing processes with wider bounds of application areas, better quality
performance, higher productivity, and automatic operation has led to the devel-
opment of nano-finishing processes.

Majority of the nano-finishing processes are loose flowing abrasive-based
processes in which abrasive orientation and its geometry at the time of interaction
with the work piece is not fixed. There are some nano-finishing processes, which do
not come under the abrasive-based category, for example, laser beam machining,
electron beam machining, ion beam machining, and proton beam machining. The
abrasive-based nano-finishing processes include abrasive flow machining (AFM),
magnetic abrasive finishing (MAF), magnetorheological finishing (MRF), mag-
netorheological abrasive flow finishing (MRAFF), elastic emission machining
(EEM), magnetic float polishing (MFP), etc. EEM results in surface finish of the
order of sub-nanometer level using the nanometer size abrasive particles with the
precisely controlled forces. Except AFM and EEM, all other processes use a
medium whose properties can be controlled externally with the help of magnetic
field. This permits to control the forces acting on an abrasive particle; hence, the
amount of material removed is also controlled. This class of processes is capable to

R. V. Rao, Advanced Modeling and Optimization of Manufacturing Processes,
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produce surface roughness value of 8 nm or lower. Using better force control
and still finer abrasive particles, some of these processes may result in the
sub-nanometer surface roughness value on the finished part. This chapter presents
AFM, MAF, MRAFF, and electrolytic in-process dressing (ELID) processes and
their modeling and optimization aspects.

4.2 Abrasive Flow Machining Process

AFM, also called abrasive flow finishing (AFF), is an advanced finishing process
that can be used to deburr, radius, polish, remove recast layer, and produce
compressive residual stresses [22]. This process was developed by the Extrude
Hone Corporation, USA in 1960s as a method to deburr and polish difficult-
to-reach surfaces and edges by flowing abrasive laden polymer with special
rheological properties. Figure 4.1 shows the schematic diagram of AFM process.

AFM process removes small quantity of material by flowing a semisolid abra-
sive-laden compound called ‘media’ (abrasive particles uniformly suspended in
viscous chemical compound) through or across the surfaces of the work piece to be
finished. Two vertically opposed cylinders extrude media back and forth through
passages formed by the work piece and tooling. The machining action compares to
a grinding or lapping operation as the media gently and uniformly abrades the
surfaces and/or edges. The media acts as a ‘self deformable stone’ having

Fig. 4.1 Schematic diagram
of AFM process (from [25];
reprinted with permission
from Elsevier)
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protruding abrasive particles acting as cutting tools. The media is composed of
semisolid carrier (e.g. polyborosilixane) and abrasive grains. The abrasive action
during AFM depends on the extrusion pressure, flow volume, and media flow speed
determined by the machine setting in relation to media type, passage area and media
formulation, which includes media viscosity, and abrasive type and size.

AFM process is gaining widespread attention due to its ability to produce
consistent and predictable results. Removing stress raisers at sharp corners by
producing controlled radii on edges can substantially improve thermal and
mechanical fatigue strength of highly stressed components. Additional benefits
over traditional finishing processes include substantial time saving and better
control with regard to the accuracy and squareness of the bearing surfaces. The
process can deburr holes as small as 0.2 mm and radius edges from 0.025–1.5 mm.
Tolerances can be held to ±5 lm [59, 60].

The unique features of AFM such as versatility, efficiency, and economy make
the process useful to perform a wide range of precision machining operations in
the aerospace and automobile industries, manufacture of dies, and medical
instruments. Some of the components machined by AFM include fuel injector
nozzles, turbine blades, combustion liners, dies, etc. Materials from soft aluminum
to tough nickel alloys, ceramics and carbides had been successfully micro-
machined with this process. The process can simultaneously process multiple parts
or many areas of a single work piece. Inaccessible areas and complex internal
passages can be finished economically and effectively. Automatic AFM systems
are capable of handling thousands of parts per day, greatly reducing labor costs by
eliminating tedious handwork.

AFM process, however, is still in its early stages of development and extensive
research efforts are continuing globally to fully understand its process mechanism
and optimization. Much information is not available in the literature, which deals
with modeling and optimization of the process. The relationship between process
parameters and performance characteristics are not known completely. The
abrasion ability of abrasive media is governed by many factors, especially by grain
size, abrasive concentration, extrusion pressure, and hardness of work piece
material. In order to analyze the influence of such parameters and other AFM
conditions upon material removal and surface roughness of the machined surface,
experimental investigations had been carried out by many researchers [23, 59, 76].
A stochastic modeling and analysis technique called data dependent system (DDS)
was used by Williams and Rajurkar [76] to study the surface roughness profiles
before and after AFM. Rajeshwar et al. [56] presented a simulation model to
determine the characteristics of media flow during machining. The finite difference
method was chosen for obtaining the solution. Williams [75] used acoustic
emission signals to analyze the mechanism of surface generation in AFM and
compared them to the acoustic emission signals of grinding process. Jain and
Adsul [23] presented the effects of various parameters on material removal and
surface roughness in terms of polynomial equations. Although these investigations
are excellent, they seem to be rather lacking in theoretical treatment. Both
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theoretical and empirical studies of abrasive flow machining are greatly hampered
by the inherent random nature and multiplicity of parameters.

Jain et al. [29] used the experimental data and developed a back propagation
neural network for modeling of AFM process. The three layer back propagation
with four inputs, two outputs, and nine hidden nodes was employed for neural
network. The network was trained using 35 samples that span the allowable ranges
of input parameters. The inputs were media flow speed (v), percentage concen-
tration of the abrasives (c), abrasive mesh size (d), and number of cycles (n), and
outputs were material removal rate (MRR) and surface roughness (Ra). Random
generator was used to initialize the values of the learning parameter. In order to
decide the structure of neural network, the rate of error convergence was checked
by changing the number of hidden layers and by adjusting the learning rate and
momentum rate. As a result, a neural network with nine neurons in the hidden
layer was adopted for storing knowledge in the form of weights between neurons.
Simulation results showed a good agreement with experimental results for a wide
range of machining conditions. Based on these results, the possibility of using the
neural network model for surface quality and material removal rate prediction for
AFM process was confirmed. This model could be used to study the AFM process
by examining the effect of the input process parameters on the performance of
AFM process.

In addition, [29] developed the following equations for the predictions of MRR
and Ra using multiple regression analysis.

MRR ¼ 5:285� 10�10v1:6469c3:0776d�0:9371n�0:1893 ð4:1Þ

Ra ¼ 282; 751:0 v�1:8221c�1:3222d0:1368n�0:2258 ð4:2Þ

Results of these empirical models agree with experimental results and neural
network results of the authors. Unit of MRR used in regression analysis was grams
per minute and derived empirical relation also gives MRR in same units. Use of
volumetric units would have been more appropriate to as it eliminates dependence
on material density.

Jain and Jain [24] described the analysis and simulation of the profile of fin-
ished surface and material removal by the interaction of abrasive grains with the
work piece. Material removal in AFM process was simulated by successive
abrasive grains grooving in the work piece. The height of the profile at that
location was then modified to correspond to this interaction. The profile of the
work surface as each active grain slides over it was modified by transforming the
coordinates of the interfering profile of individual active grain to the work piece,
based on geometrical considerations alone. The successive new heights of the
work profile from the tip of the grain were then calculated, thus generating new
work surface profiles. After each grooving event, the groove width and volume of
material removal were calculated and stored. A simulated machined surface and
volume of material removed were obtained after all the active grains present in the
media participated during each AFM stroke. This process of simulation starting
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from generation of random numbers to modification of work piece surface profile
was continued until the required number of cycles of AFM process was completed.
For studying the characteristics of the machined surface, a projected profile length
of 12 mm was considered at a resolution of 1 lm. The numerical values of con-
ditions used in the simulation are given below:

• Work piece material: mild steel (0.25%C)
• Hardness of work piece material: 2,177.80 N/mm2

• Abrasive used: silicon carbide
• Mesh size of abrasives: 50–60
• Length of work piece: 38.5 mm
• Diameter of media cylinder: 87.5 mm
• Stroke length: 80 mm
• Density of sic abrasives: 3,220 kg/m3.

• Initial surface roughness of work piece: 2.25 lm

To compare the results predicted from simulation, Jain and Jain [24] carried out
the experiments and used response surface methodology (RSM) to develop mul-
tiple regression models for MRR and change in surface roughness DRa. The effects
of various parameters mainly, media pressure (x1), number of cycles (x2), reduc-
tion ratio (x3), and percentage concentration of abrasives (x4), on AFM perfor-
mance were studied. The following second order response surface equations were
obtained to predict MRR and change in surface roughness DRa.

MRR ¼ 21:714þ 4:358x1 þ 5:350x2 þ 6:658x3 þ 4:025x4 � 0:703x21
� 0:928x22 þ 1:808x23 þ 0:158x24 þ 0:262x1x2 þ 0:487x1x3
þ 0:862x1x4 þ 0:900x2x3 þ 0:375x2x4 þ 2:750x3x4 ð4:3Þ

DRa ¼ 0:617þ 0:101x1 þ 0:119x2 þ 0:107x3 þ 0:067x4 � 0:009x21
� 0:006x22 þ 0:029x23 þ 0:006x24 þ 0:023x1x2 � 0:0006x1x3
þ 0:0018x1x4 þ 0:0068x2x3 þ 0:0093x2x4 � 0:0118x3x4 ð4:4Þ

The results of the simulation and RSM were in good agreement, which justified
the use of this approach for simulating the surface obtainable in AFM. The sim-
ulation enabled the prediction of surface roughness and material removal with
reference to percentage concentration and mesh size of abrasives, extrusion
pressure, number of cycles, and reduction ratio. It was reported that MRR and DRa

increase with extrusion pressure, number of cycles, reduction ratio, and percentage
concentration.

Jain et al. [30] developed a model for the flow of AFM media through cylin-
drical work piece and solved the same using finite element method (FEM). The
model was shown to predict the radial stresses at the work piece surface with
reasonable accuracy. The normal stress, so obtained from the flow model, was used
for the estimation of MRR and surface roughness according to the following
analytical models.
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Total volume removed in Nc number of cycles ¼ nsAg

X

2Nc

i¼1

Li ð4:5Þ

Surface roughness after ithstroke Ri
a

� �

¼ Ri�1
a � NLs R

2
pmcAg=7R

2
w ð4:6Þ

where

ns ¼ 2pNLs R
2
pmc=Rw ð4:7Þ

Li ¼ 1� Ri
a

�

R0
a

� �� �

Lw ð4:8Þ

Ag ¼ d2m=4
� �

sin�1 2a=dmð Þ � að0:5dm � hÞ
� �

ð4:9Þ

a ¼ ðhðdm � hÞÞ1=2 ð4:10Þ

Ag is the cross-sectional area of the groove generated by a spherical abrasive
grain (mm2), dm the mean or average diameter of abrasive particles (mm), h is
depth of indentation or penetration depth (mm), Li the actual contact length
between work piece and abrasive particles during ith stroke (mm), Ls the stroke
length of piston in medium-containing cylinder in AFM process (mm), Lw the
length of work piece (mm), N the number of abrasive grains acting per unit area of
contact of AFM medium and cylinder, ns total number of abrasive grains indenting
the work piece surface per stroke, R0

a the initial surface roughness value (lm), Ri
a

the surface roughness value after the ith stroke (lm), Rpmc radius of medium-
containing cylinder in AFM process (mm), and Rw radius of work piece (mm).

However, the above Eqs. 4.5–4.10 are applicable only to axi-symmetric com-
ponents as media flow was assumed to be axi-symmetric. The authors did not
make a mention about the manner of computation of N. Furthermore, the analysis
is computationally extensive, as radial stress has to be calculated using finite
element method.

Jain and Adsul [23] studied the effects of different process parameters, such as
number of cycles, concentration of abrasive, abrasive mesh size, and media flow
speed, on material removal and surface finish. The dominant process parameter
found was concentration of abrasive, followed by abrasive mesh size, number of
cycles, and media flow speed. Experiments were performed with brass and
aluminum as work materials. The experiments were planned with different number
of cycles (0, 20, 40, 60, 80, and 100), concentration of abrasive in the media by
weight (50, 60, 70, and 80%), mesh size (100, 150, 180, and 240), and media flow
speed (406, 515, 652, and 812 mm/min).

The mathematical modeling of the AFM process was done using a multivari-
able curve fitting technique. The regression equations for MRR and change in
surface roughness DRa are given below.

For brass,

MRR ¼ 0:0164x0:76131 x2:08242 x�1:1028
3 x0:03724 ð4:11Þ
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DRa ¼ 9:98� 10�7x0:61091 x1:66982 x�0:4987
3 x1:00804 ð4:12Þ

For aluminium,

MRR ¼ 0:00032x0:78861 x2:31222 x�1:0825
3 x0:50604 ð4:13Þ

DRa ¼ 0:00116x0:55701 x0:95092 x�0:5885
3 x0:43204 ð4:14Þ

For brass, the dominating process parameter was abrasive concentration (x2),
followed by abrasive mesh size (x3), number of cycles (x1), and media flow speed
(x4). The exponent for abrasive mesh size was negative which means that as the
abrasive mesh size increases, MRR and DRa decrease. However, for aluminum,
the order of dominance of various parameters was different from that for brass.
The reasons for this behavior could not be found. Also, the approach seems to be
rather lacking in theoretical treatment.

Jain and Jain [25] presented the use of neural network for modeling and optimal
selection of input parameters of AFM process. First, a generalized back-
propagation neural network with four inputs, two outputs, and one hidden layer
was used to establish the process model. The inputs were media flow speed
(v) (cm/min), percentage concentration of the abrasives (c), abrasive mesh size (d),
and number of cycles (n), and outputs were material removal rate (MRR), and
surface roughness (Ra). A second network, which parallelizes the augmented
Lagrange multiplier (ALM) algorithm, determined the corresponding optimal
machining parameters by minimizing a performance index subjected to appro-
priate operating constraints. Simulation results confirmed the feasibility of this
approach, and showed a good agreement with experimental results for a wide
range of machining conditions. To validate the optimization results of the neural
network approach, optimization of the AFM process was carried out using genetic
algorithm. The equations used for optimization of MRR and Ra are shown below.

MRR ¼ 5:285� 10�7v1:6469c3:0776d�0:9371n�0:1893ðmg=minÞ ð4:15Þ

Ra ¼ 282; 751:0 v�1:8221c�1:3222d0:1368n�0:2258ðlmÞ ð4:16Þ

In order to use genetic algorithm (GA), the constrained optimization problem
was stated as follows,

Maximize; MRR ð4:17Þ

subject to: Ra �Ramax ð4:18Þ

x1i � xi � xui ð4:19Þ

where x1i and x
u
i are the lower and upper bounds on process parameters xi. Based on

the experimental setup and work piece used, the limits on the input parameters
were kept as 40 B v B 85, 33 B c B 45, 100 B d B 240, 20 B n B 1,205. The
following parameters were chosen for GA: population size 50, maximum number
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of generations 200, total string length 40, crossover probability 0.8, and mutation
probability 0.01. The results obtained by neural network approach and GA were
very close. It indicates that the neural network proposed by Jain and Jain [25]
possessed sufficient knowledge to perform optimization.

Jain and Jain [26] proposed a model for the determination of specific energy
and tangential forces in AFM process. It accounted for the process parameters of
AFM, e.g. grain size, applied pressure, hardness of work piece material, number of
cycles, and number of active grains. Heat transfer in AFM was also analyzed
considering heat flow to the work piece and medium and theoretical results were
compared with experimentally observed values of work piece temperatures. The
dependence of the work piece temperature on the AFM parameters was also
discussed. The model also predicts the fraction of heat entering into the work piece
and medium. However, this model had not analyzed AFM process as a two-
dimensional or three-dimensional unsteady state heat transfer problem to give
more realistic temperature change in AFM process.

Singh and Shan [65] applied a magnetic field around the component being
machined by AFM process to enhance the MRR. Gorana et al. [17] described a
suitable two-component disc dynamometer for measuring axial and radial force
components during AFM process. The influence of three controllable parameters
(i.e. extrusion pressure, abrasive concentration, and grain size) on the responses
(i.e. material removal, reduction in surface roughness, cutting forces, and active
grain density) were studied. The preliminary experiments were conducted to select
the ranges of parameters using single-factor experimental technique. Five levels
for abrasive concentration (40, 45, 50, 55 and 60%) and for extrusion pressure
(4, 5, 6, 7 and 8 MPa), and six levels for abrasive grain size (80, 120, 180, 220,
400, and 600 mesh) were used. A statistical 23 full factorial experimental tech-
nique was used to find out the main effect, interaction effect and contribution of
each parameter to the machined work piece surface roughness. It was concluded
that extrusion pressure, abrasive concentration, and grain size affect the cutting
forces, active grain density, and finally reduction in surface roughness. The
reduction in surface roughness was approximately linearly proportional to force
ratio. Scanning electron microscopy showed that rubbing and ploughing were the
possible mechanisms of material deformation.

Jain and Jain [27] developed a stochastic simulation model to determine the
active grain density on the media surface, which was in contact with the work
surface and correlated to experimental observations determined by a microscopic
method. The simulation enabled prediction of the active grain density at any
concentration and mesh size. The proposed stochastic simulation can be easily
extended for simulation of surface generation in abrasive flow machining.

Gorana et al. [18] conducted scratching experiments to study the material
removal mechanism in AFM process and developed theoretical expressions to
calculate radial and axial forces acting on a single abrasive grain. They also
measured these forces and active grain density experimentally. The conclusions
arrived by the analysis about the presence of rubbing and ploughing was in
agreement with the experimental AFM and scratching results. In another work [19],
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the authors had proposed an analytical model to simulate and predict the surface
roughness for different machining conditions in abrasive flow machining (AFM).
The kinematic analysis was used to model the interaction between grain
and work piece. Fundamental AFM parameters, such as the grain size, grain
concentration, active grain density, grain spacing, forces on the grain, initial
topography, and initial surface finish of the work piece were used to describe the
grain–work piece interaction. The AFM process was studied under a systematic
variation of grain size, grain concentration, and extrusion pressure with initial
surface finish of the work piece. Simulation results showed consistency with the
experimental results. It was concluded that active grain density during the AFM
process increases with an increase in extrusion pressure and abrasive concentration
in the medium, and this results in an increase in reduction in surface roughness
value.

Centrifugal force assisted abrasive flow machining (CFAAFM) process was
recently tried as a hybrid machining process with the aim towards the performance
improvement of AFM process by applying centrifugal force on the abrasive laden
media with a rotating centrifugal force generating rod introduced in the work piece
passage. Walia et al. [71] explored the application of centrifugal force for the
productivity enhancement of the process. The authors had reported that centrifugal
force enhances the material removal rate and improves the scatter of surface
roughness value in AFM. Cylindrical work pieces of brass were used for the
experiment. During the experiments, parameters such as rotational speed of rect-
angular rod, extrusion pressure, and grit size were varied to explore their effects on
material removal and scatter of surface roughness. Taguchi’s parameter design
strategy was applied to investigate the effect of process parameters on the material
removal and scatter of surface roughness values. In another work [72], the authors
had used an approach based on utility theory and Taguchi quality loss function for
simultaneous optimization of more than one response characteristics. Three
potential response parameters i.e. material removal, percent improvement of sur-
face finish, and scatter of surface roughness over the fine-finished surface of a
sleeve type work piece of brass were examined. Utility values based upon these
response parameters were analyzed for optimization using Taguchi approach.

Ali-Tavoli et al. [1] proposed an approach using group method of data handling
(GMDH)-type neural networks and genetic algorithms for modeling the effects of
number of cycles and abrasive concentration on both material removal rate and
surface roughness, using some experimentally obtained training and testing data
for brass and aluminum in AFM process. Genetic algorithms were successfully
used both for optimal design of generalized GMDH-type neural networks models
of abrasive flow machining and for multi-objective Pareto based optimization of
such processes. However, the approach had not considered other important process
input parameters such as media flow speed, abrasive mesh size, etc. Furthermore,
the approach is computationally more complex.

Wani et al. [74] proposed magnetic abrasive flow-finishing (MAFF) process
combining the features of abrasive flow machining and magnetic abrasive fin-
ishing. MAFF provides a high level of surface finish and close tolerances for wide
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range of industrial application. The authors focused on the modeling and simu-
lation for the prediction of surface roughness on the work piece surface finished by
MAFF process. A finite element model was developed to find the magnetic
potential distribution in the magnetic abrasive brush formed during finishing
action, and then it was used to evaluate machining pressure, surface finish, and
material removal.

Jain et al. [28] derived the following equation to evaluate final surface
roughness value after Ns number of strokes

ðRaÞNs
¼

R0
a 1� 226; 814 Kafm

�

HwR
0
a

� �

ðPh=dÞ ð1þ gaðApmcLs
�

AwÞcdNsÞ
1=2 � 1

� �n o2
	 
2

ð4:20Þ

where R0
a is initial surface roughness, Hw is Brinell hardness of work piece, Ph is

extrusion pressure, Apmc is cross-sectional area of piston of medium-containing
cylinder, Ls is stroke length of piston, Aw is cross-sectional area of work piece, ga
is proportion of abrasives effectively participating in machining, c is volumetric
concentration of abrasive particles, and d is mesh size. Kafm is a proportionality
constant relating normal radial stress acting on the abrasive grain, rr = KafmPh.
The following optimization model was formulated for AFM process based on the
developed surface roughness model.

Minimize; ðRaÞNs
ð4:21Þ

Subject to: 1� 226; 814

� Kafm

�

HwR
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a

� �

ðPh=dÞ ð1þ gaðApmcLs
�

AwÞcdNsÞ
1=2 � 1

� �n o2
� 0 ð4:22Þ

Equation 4.22 is a surface finish improvement constraint to ensure that the final
surface roughness value after AFM process is smaller than the initial surface
roughness value. Four decision parameters were considered by Jain et al. [28] in
the optimization, and these were concentration of abrasives by volume (c), abra-
sive mesh size (d), number of strokes (Ns), and extrusion pressure (Ph). The
parameter bounds for these four decision parameters were as shown below,
0.05 B c B 0.5, 8 B d B 1,000, 1 B Ns B 100, and 0.7 B Ph B 25.Values of the
constants were taken as, Apmc = 5,026.5 mm2, Aw = 484 mm2, Ls = 80 mm,
Hw = 2,000 MPa, ga = 0.2, Kafm = 0.4, and R0

a = 3.0 lm.
Jain et al. [28] used a real-coded GA with the following parameters to solve the

optimization problem: population size = 15, 20, and 25 times the number of
decision parameters, number of generations = 100, crossover probability = 0.9,
mutation probability = 1/Number of decision parameters, simulated binary
crossover (SBX) parameter ‘gc’ = 2 and 10, and parameter for polynomial
mutation ‘gm’ = 10 and 50.
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Following optimum solution was obtained in the 10th run for population
size = 80, SBX parameter ‘gc’ = 10, and polynomial mutation parameter
‘gm’ = 10.

c = 0.196 (i.e. 19.6%), d = 851, Ph = 0.81 N/mm2, Ns = 23.3 (&23), opti-
mum value of final surface roughness = 0.1041 lm, and value of surface finish
improvement constraint (given by equation 5.22) = 0.18628.

However, even though Jain et al. [28] claimed that the optimal value of final
surface roughness was 0.1041 lm, it can be found that the final surface roughness
value was actually 2.996 lm by substituting the values of c, d, Ns, and Ph in the
objective function given by Eq. 4.22. Since the initial value of surface roughness
given was R0

a = 3.0 lm, the calculated value of 2.999 lm indicates that there was
negligible improvement in the solution. Also, the value of surface finish
improvement constraint (given by Eq. 4.22) was 0.999 (instead of 0.18628, as
mentioned by Jain et al. [28]).

Rao et al. [58] proposed the application of PSO and SA algorithms to the
optimization model proposed by Jain et al. [28] to find out if any improvement in
the solution was possible. The following parameters were selected after various
trials for PSO and SA algorithms:

• For PSO, maximum number of iterations = 40, inertia weight factor
(w) = 0.65, and acceleration coefficients, c1 = 1.65 and c2 = 1.75, number of
particles in swarm = 3

• For SA, maximum number of iterations = 250, initial temperature = 100, and
temperature decrement factor = 0.1

Rao and Pawar [57] proposed the application of ABC algorithm and the fol-
lowing parameters were selected after various trials for ABC:

• Number of employed bees = 5, number of onlookers bees = 11, number of
scout bees = 1, maximum number of iterations = 30.

The results obtained were proved to be better without violating the surface
roughness constraint and only little iterations were required in ABC and PSO
algorithms for convergence to the optimal solution. Table 4.1 shows comparison
of the results of optimization using GA, PSO, SA, and ABC algorithms.

Table 4.1 Comparison of optimization results for AFM process

Reference Technique c d Ns Ph Ra Constraint value

Jain et al. [28] GA 0.196 851 23.3 0.81 0.1041a 0.18628a

GA 0.196 851 23.3 0.81 2.996b 0.999b

Rao et al. [58] PSO 0.32 1,000 73.10 15.96 0.000026 0.00293
Rao et al. [58] SA 0.217 622.3 73.69 15.20 0.000105 0.00705
Rao and Pawar [57] ABC 0.288 862.8 54.9 18.03 0.000013 0.002562
a Values wrongly calculated by Jain et al. [28]
b Corrected values
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It is observed from the numerical results that very high surface finish of
0.000013 lm is achieved by selecting optimum parameters as provided by ABC
without violating the surface roughness constraint. Although this value may not be
practically attainable as we cannot machine the material below its atomic size, but
it can be ensured that with the given set of parameters, maximum possible and
attainable value of surface finish will be obtained, as the values of suggested
optimum parameters lies within their specified bounds and also the set of optimum
parameters satisfies the constraint on attainable of surface finish.

Mollah and Pratihar [49] determined the input–output relationships of AFM
process using radial basis function networks (RBFNs). A batch mode of training
was adopted to implement the principle of back-propagation (BP) algorithm
(which works based on a steepest descent algorithm) and a genetic algorithm
(GA), separately. The performances of RBFN tuned by a BP algorithm and that
trained by a GA were compared on some test cases. The GA-optimized RBFN was
found to perform slightly better than the BP-tuned RBFN. The back-propagation
algorithm works on the principle of a steepest descent method, whose solutions
have the chance of getting stuck at the local minima, whereas the probability of the
GA solutions for being trapped at the local minima is less. However, their per-
formances may depend on the nature of the deviation (error) function.

Abrasive particle movement pattern is an important factor in estimating the
wear rate of materials, especially, as it is closely related to the burring, buffing, and
polishing efficiency of the AFM process. There are generally two kinds of particle
movement patterns in the AFM process, i.e. sliding–rubbing and rolling. In
mechanism, AFM particle–work piece interaction is taking place in any one or a
combination of the possible modes: elastic/plastic deformation by grooving par-
ticle movement; elastic/plastic deformation by rolling particle movement; chip
formation (micro-cutting) by grooving particle movement, ridge formation by
grooving and rolling particle movement, and low-cycle fatigue wear. Grooving
particle movement pattern has a greater contribution to wear mass loss of work
piece than rolling mode. Considering the machining efficiency of a machine part is
predominantly dependent upon its wear mass loss speed, it can be concluded that
particle movement patterns are key parameters to machining efficiency in AFM.
Fang et al. [11] investigated ellipsoidal particles to understand particle movement
patterns. An analytical model of ellipsoidal geometry to determine particle
movement patterns in AFM was proposed with given particle ellipticity, normal
load, particle size, and material hardness. From the analytical model and particle
movement pattern criterion proposed by the authors, a statistic prediction of
particle movement patterns was completed. It was found that a seat position of
ellipsoid is an easy grooving position for a particle and a large ellipticity value
predominantly increases grooving particle numbers. Kar et al. [36] attempted to
develop a new media based on viscoelastic carrier and its characterization for fine
finishing through AFM process. The silicone carbide of 80, 220, 400, 800, and
1,200 mesh size were used in the experimental work. The used rubbers (visco-
elastic carriers) for this investigation were natural rubber grade RMA-4 and butyl
rubber (IIR). The naphthenic oil was used as processing oil. The newly developed
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media was again characterized through rheological properties. It was found that
temperature, shear rate, creeping time, and frequency have impact on rheological
properties, and the percentage ingredients of media govern trends of their relations.

Uhlmann et al. [69] modeled the AFM process of advanced ceramic materials
using numerical simulation. A correlation between flow processes, surface for-
mation, and edge rounding was developed. An insight into a process model was
given, which was developed using modern simulation techniques. The objective of
their approach was to predict results like surface quality and edge rounding on any
user-defined geometry. Barletta [4] reviewed the use of abrasive fluidized bed
equipment in a broad range of manufacturing processes. In particular, applications
in deburring and finishing of complex-shaped metal components, super-finishing
of dies for injection molding, cleaning and polishing of electronic devices, and
surface preparation of tungsten carbide milling tools were reviewed. Attention was
focused on the effects of the most important process parameters, such as
machining time, abrasive type and mesh size, and flow or jet speed. The extent of
material removal and the change in surface roughness as a function of the process
parameters were addressed. Selected numerical and analytical models that are
useful for automation and control purposes were discussed.

In order to enhance productivity of the AFM process, several modifications are
being tried. Sankar et al. [61] introduced a concept of rotating the medium along
its axis to achieve higher rate of finishing and material removal. This process was
termed as drill bit-guided abrasive flow finishing (DBG-AFF) process. In order to
provide random motion to the abrasives in the medium and cause frequent re-
shuffling of the medium, the medium was pushed through a helical fluted drill,
which was placed in the finishing zone. The experiments were carried out to
compare AFM and DBG-AFF processes with AISI 1040 and AISI 4340 as work
piece materials. The performance of DBG-AFF compared to AFM is encouraging,
specifically with reference to percentage change in average surface roughness
(%DRa) and amount of material removed. Modeling using non-linear multi-
variable regression analysis and artificial neural networks were carried out to
conduct parametric analysis and understand, in depth, the DBG-AFF process. The
simulation data of neural network showed good agreement with experimental
results. In another work, Sankar et al. [62] studied the effects of different process
parameters, such as extrusion pressure, number of cycles, viscosity of the medium
on a change in average surface roughness (DRa), and material removal, while
machining a metal matrix composite (an aluminum alloy and its reinforcement
with SiC). The work pieces were initially ground to a surface roughness value
in the range of 0.6 ± 0.1 lm, and later were finished to the Ra value of
0.25 ± 0.05 lm using AFF process. The relationship between extrusion pressure
and DRa showed an optimum at about 6 MPa. In the same way, the relationship
between weight percentage of processing oil (plasticizer) and DRa also showed an
optimum at 10 wt%. An increase in work piece hardness required more number of
cycles to achieve the same level of improvement in DRa. Material removal also
increased with an increase in extrusion pressure and number of cycles, while it
decreased with an increase in processing oil content in the medium. It was also
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concluded that the mechanism of finishing and material removal in case of alloys
is different from that in case of MMC.

Jain et al. [32] attempted to analyze the AFM process using finite element
method (FEM) for finishing of external surfaces. Finite element model of forces
acting on a single grain was developed to study the material removal mechanism
of AFM. Response surface method (RSM) was used to carry out an experimental
research to analyze the effect of extrusion pressure and number of cycles on
material removal and surface finish. Results obtained from finite element analysis
for material removal were compared with the experimental data obtained during
AFM. It was concluded that the extrusion pressure affects the material removal
significantly and the effect of number of cycles on material removal was higher in
initial stage. For the same extrusion pressure and number of cycles, the increase in
DRa for conical surface was less compared to cylindrical surface.

Mali and Manna [47] used AFM to finish conventionally machined cylindrical
surface of Al/15 wt% SiCp–MMC work piece. The authors had presented the
utilization of robust design-based Taguchi method for optimization of AFM
parameters. The influences of AFM process parameters on surface finish and
material removal were analyzed. Taguchi experimental design concept, L18

(61 9 37) mixed orthogonal array was used to determine the S/N ratio and to
optimize the AFM process parameters. The mathematical models for Ra, Rt, DRa,
and DRt and MRR were established to investigate the influence of AFM param-
eters. Scanning electron micrographs testified the effectiveness of AFM process in
fine finishing of Al/15 wt% SiCp–MMC.

4.3 Magnetic Abrasive Finishing Process

Magnetic abrasive finishing (MAF) is one of the advanced finishing processes
capable of producing excellent surface finish of the order of few nanometers on flat
surfaces as well as internal and external surfaces of tube-type work pieces. The
process can finish not only ferromagnetic materials such as steel but also the non-
ferromagnetic materials such as stainless steel and brass. MAF process can be used
for finishing, cleaning, deburring, and burnishing of metallic parts, as well as other
advanced engineering material parts (e.g. parts made with silicon nitride, silicon
carbide, aluminum oxide, etc.). The process is based on the electromagnetic
behavior of the magnetic abrasive particles in the magnetic field. Figure 4.2 shows
the schematic diagram of MAF process [33].

The work piece to be finished is located between two magnetic poles and gap
between magnetic poles and work piece is filled with magnetic abrasive particles
consisting of abrasive grains and ferromagnetic particles. Magnetic abrasive par-
ticles can be bonded type or unbonded type. Bonded magnetic abrasive particles
are prepared by sintering of ferromagnetic particles and abrasives, whereas unb-
onded magnetic abrasive particles are a mechanical mixture of ferromagnetic
particles and abrasives powder with a small amount of lubricant. The bonded type
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Fig. 4.2 Schematic of MAF process (from [33]; reprinted with permission from Springer
Science ? Business Media)
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magnetic abrasive particles are mostly considered due to their excellent finishing
effects. The magnetic abrasive particles join each other along the lines of magnetic
force and form a magnetic abrasive flexible brush (MAFB) between the work piece
and the magnetic pole. This brush behaves like a multi-point cutting tool for the
finishing operation. When the magnetic N-pole is rotating, the MAFB also rotates
like a flexible grinding wheel and finishing is done according to the forces acting
on the abrasive particles [15, 33, 63, 77].

MAF process is gaining widespread attention due to its ability to produce
consistent and predictable results. MAF process can be employed to produce optical,
mechanical, and electronic components with micrometer or sub-micrometer form
accuracy and surface roughness within nanometer range with hardly any surface
defects. Finishing of bearings, precision automotive components, shafts, and artificial
hip joints made of oxide ceramic and cobalt alloy are some of the example products
for which this process can be applied. MAF process, however, is still in its early
stages of development and extensive research efforts are continuing globally to fully
understand its process mechanism and optimization. The following section describes
the modeling and optimization aspects of the MAF process.

The main objectives of any finishing process are to (1) minimize the final
surface roughness value and (2) minimize the size and shape inaccuracy. In MAF
process, the important parameters influencing the surface quality are magnetic
abrasive type and size, concentration of abrasives in ferromagnetic material,
working gap between work piece and magnetic poles, magnetic flux density,
relative motion between magnetic abrasive particles and work piece surface,
amplitude and frequency of vibrations, axial movement or feed, finishing
time, input current, and voltage applied to the electromagnet. To analyze the
influence of these parameters on the surface roughness and material removal,
many researchers carried out the experimental investigations.

Kremen et al. [42] developed a model to determine the time required to reduce
the initial out-of-roundness by a specified amount. The hyperbolic relation
between the normalized out-of-roundness error and finishing time was verified
with this model. However, the proposed relation to estimate the finishing time was
empirical. Kim and Choi [38] modeled and simulated the MAF process for fin-
ishing cylindrical work pieces. The surface roughness was predicted as a function
of finishing time by a model that was derived from the removed volume of
material. Kremen et al. [41] focused on the magnetic abrasive process as a sizing
process and presented a theory, which explained the out-of-roundness error phe-
nomenon based on force analysis of the material removal mechanism. Jain et al.
[31] presented the effect of working gap (which is the space between the work
piece and the electromagnets) and the circumferential speed on the performance of
two important process parameters i.e. surface finish and MRR of the MAF process.

The effect of finishing time and the particle size on the MRR and surface finish
in case of cylindrical magnetic abrasive finishing, using the unbonded magnetic
abrasives, was presented by Chang et al. [8]. Experimental results indicated that
steel grit is more suitable for MAF process because of its superior hardness and the
polyhedron shape. Mori et al. [50] explained the formation of magnetic abrasive
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brush from the viewpoint of brush forming energy. Polishing mechanism peculiar
to this process was explained. Singh et al. [64] applied Taguchi’s design of
experiments to find out important parameters influencing the surface quality
generated. Experimental results indicated that for a change in surface roughness,
voltage and working gap were found to be the most significant parameters fol-
lowed by grain mesh number and then rotational speed.

MAFF was tried as a hybrid machining process intended to provide high level
of surface finish and close tolerance for wide range of industrial applications. Wani
et al. [74] explored simulation method for prediction of surface roughness in
MAFF process. Ko et al. [39] observed that the continuous flow of coolant and the
Fe powder without abrasive was effective for deburring and surface quality.

Kim and Choi [38] developed a model for magnetic abrasive finishing of
cylindrical surface using bonded magnetic abrasive particles. Predictions of the
model developed by Kim and Choi [38] were in good agreement with the
experimental results. Based on this model, Jain et al. [28] presented the details of
parametric optimization of MAF process using a real coded genetic algorithm. The
optimization model was formulated as shown below:

Maximize DRa ¼ 9� 103KmafK
2
3AairlMl0

�

8pHwL
2
wtanh

� �

ðVt=dÞðwfI
2
�

ðK2 þ wfÞÞ

ð4:23Þ

where, DRa is the difference between initial and final surface roughness value
obtained by MAF, Kmaf is the constant of proportionality and a function of a
number of constants.

K2 ¼ 3ðlrf þ 2Þ=pðlrf � 1Þ ð4:24Þ

K2 ¼ nc=ðAairðIair=Aair þ lM=lemAMÞÞðper mmÞ ð4:25Þ

nc is the number of turns in magnetic coil, Aair the cross sectional area of air gap,
lair the length of air gap, lem the relative permeability of electromagnets, AM the
cross sectional area of magnet, lM the length of the magnet, lrf the relative per-
meability of ferromagnetic material, h the mean half asperity angle of abrasive
cutting edges, Hw the Brinell hardness of work material, Lw the length of work
piece to be machined, R0

a the initial surface roughness value, l0 the magnetic
permeability in vacuum, d the mean diameter of the magnetic abrasive particles,
v the relative velocity between magnetic abrasive particles and work piece, wf the
volume ratio of ferromagnetic material in the magnetic abrasive powder, I the
input current, and t is the finishing time.

The constraint is on obtainable value of surface roughness, which is mathe-
matically expressed as given below.
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� 0:0
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where na is the number of abrasives in magnetic abrasive particle.
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This constraint conveys the meaning that for a given machining pressure, a
critical value of surface roughness exists below which there is no further decrease
in surface roughness (i.e. no further improvement in the surface finish). Smaller
the positive fractional value of this constraint, smaller the value of the final surface
roughness and higher the difference between the initial and final surface roughness
values will be [28].

Five decision variables were considered by Jain et al. [28] in the optimization
problem, and these include mean diameter of the magnetic abrasive particles (d),
relative velocity between magnetic abrasive particles and work piece (v), volume
ratio of ferromagnetic material in the magnetic abrasive powder (w), input current
(I), and finishing time (t).

The parameter bounds for these five decision parameters were as shown as
follows: 0.015 B d B 0.15 (mm), 500 B v B 5,000 (mm/s), 0.3 B wf B 0.8,
1 B I B 10 (A), and 1 B t B 1,200 (s).

Values of the constants were taken as Kmaf = 27.86 9 10-6, nc = 2,000,
Aair = 350 mm2, lair = 20 mm, lem = 33, AM = 1,225 mm2, lM = 665 mm,
lrf = 7,000, h = 70�, Hw = 5,500 MPa, Lw = 20 mm, R0

a = 0.27 lm, l0 =

4p 9 10-7 H/m, and na = 10.
Jain et al. [28] used a real-coded genetic algorithm (GA) with the following

parameters to solve the above optimization problem.

• Population size = 15, 20, and 25 times the number of decision parameters.
• Number of generations = 100.
• Crossover probability = 0.9.
• Mutation probability = 1/number of decision parameters.
• Simulated binary crossover (sbx) parameter ‘gc’ = 2 and 10.
• Parameter for polynomial mutation ‘gm’ = 10 and 50.

Following optimum solution was obtained in the tenth run for population size of
80, SBX parameter ‘gc’of 10, and polynomial mutation parameter ‘gm’of 10.
d = 0.015 mm, v = 852.6 mm/s, wf = 0.446 (44.6%), I = 1.02 A, t = 5 s, opti-
mum value of the objective function i.e. difference between initial and final sur-
face roughness values DRa = 0.26873 lm, final surface roughness value = 0.27-
0.26873 = 0.00127 lm, and value of constraint on obtainable value of surface
roughness = 0.0006 lm.

However, even though Jain et al. [28] claimed that the optimal values of DRa

and the constraint on obtainable surface finish were 0.26873 and 0.0006 lm,
respectively, it can be found these values are actually 0.2739 and -0.0153 lm,
respectively, by substituting the values of d, v, wf, I, and t in the objective function
given by Eqs. 5.23 and 5.26. Thus, the constraint was violated and the results
presented by Jain et al. [28] are not valid.

Now, the PSO algorithm is applied to solve the above optimization problem.
The optimum selection of operating parameters of the algorithm like acceler-
ation constants ‘c1’ and ‘c2’ as well as inertia coefficient ‘w’ is very essential
for convergence of the algorithm. To ensure the convergence of PSO algorithm,
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the condition specified by Eq. 4.27 must be satisfied (Bergh and Engelbrecht
[5]).

max(jk1j; jk2jÞ\1 ð4:27Þ

where k1 and k2 are the Eigen values given by Eqs. 5.28 and 5.29.

k1 ¼ ð1þ w� /1 � /2 þ cÞ=2 ð4:28Þ

k2 ¼ ð1þ w� /1 � /2 � cÞ=2 ð4:29Þ

and

c ¼ ð1þ w� /1 � /2Þ
2 � 4w

h i1=2
ð4:30Þ

/1=r1 9 c1 and /2=r2 9 c2. Considering the feasible range for the value of
‘/1 ? /2’ as 0–4 and that for ‘w’ as 0–1, it can be observed that for convergent
trajectories the relation given by Eq. 4.31 must be satisfied.

w[ 0:5ð/1 þ /2Þ � 1 ð4:31Þ

Now, in the present study the values of w = 0.65, c1 = 1.65, and c2 = 1.75
are used. Considering the extreme possibility of random number as r1 = 0.95
and r2 = 0.95, the right hand term in Eq. 5.31 is 0.5 9 (0.95 9 1.65 ?

0.95 9 1.75) - 1 = 0.61, which is less than 0.65 thus satisfies the Eq. 4.31.
Hence, the values of w, c1, and c2 selected in the present work are appropriate for
convergence of the algorithm. Following optimum solution was obtained using the
proposed PSO algorithm: d = 0.015 mm, v = 2,458.7 mm/s, wf = 0.3 (30%),
I = 1.537 A, t = 1 s, optimum value of the objective function DRa = 0.2694 lm,
final surface roughness value = 0.27 - 0.2694 = 0.0006 lm, and value of con-
straint on obtainable value of surface roughness = 0.00122 lm. The results
obtained showed that very high surface finish could be obtained using the set of
optimum parameters suggested using PSO algorithm without violating the con-
straint on obtainable value of surface roughness. The initial surface finish of
0.27 lm is improved to 0.0006 lm in a very small finishing time.

The value of DRa decreases with increase in the diameter of the magnetic
abrasive particle, as it is a well-known fact that fine grains results into better
surface finish. Therefore, the smallest possible value of diameter of magnetic
abrasive particle will maximize ‘DRa’ and hence the surfaces finish. Also, the
constraint will be violated if higher value of diameter of magnetic abrasive particle
is selected. Hence, the diameter of magnetic abrasive particle at the lower bound
(d = 0.015 mm) is selected. As ‘DRa’ and hence the surface finish increases with
increase in the relative velocity ‘v’, selection of higher value of relative velocity
‘v’ is desirable. However, the value of relative velocity (v = 2,458.7 mm/s) is
obtained, as at any value higher than this, the constraint on obtainable value of
surface roughness is violated. DRa increases with increase in the volume ratio of
ferromagnetic material wf. However, as the constraint on obtainable value of the
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surface roughness is violated for any value of ‘wf’ higher than 0.3, the value of ‘wf’
at the lower bound (wf = 0.3) is selected.

DRa increases with increase in both the input current ‘I’ as well as finishing time
‘t’. However, selection of higher values of both these variables is restricted by the
attainable value of surface roughness and hence the optimum value of input cur-
rent (I) = 1.537 A and that of finishing time (t) = 1 s is selected.

Now, the same problem is attempted using the simulated annealing (SA)
technique. The objective function considering maximization of the difference
between the initial and final roughness value is written as:

Min: Z ¼ �Z1 � Penalty� Z2 ð4:32Þ

where, Z is the combined objective function, Z1 the objective function given by
Eq. 4.23, and Z2 is the constraint given by Eq. 4.30.

In the objective function, penalty is defined in such a way that a point having
higher value of ‘Z1’ but with small negative value of ‘Z2’ should be accepted at
higher temperature to search another point in the vicinity. However, it should be
ensured that such a point should never appear in the final solution. To take into
account the constraint on obtainable value of surface roughness, the penalty is
assigned as below.

Penalty ¼ Zmin=Z2max ð4:33Þ

where Zmin is the minimum value of combined objective function without con-
sidering penalty amd Z2max is the maximum of negative values of power con-
sumption constraint. In present case, penalty = 2, if Z2\ 0; else penalty = 0.

The initial temperature is obtained by calculating the average of the function
values at a boundary points as given by Eq. 4.34.

Initial temperature T0 ¼
X

ZNb=n ð4:34Þ

where ZNb is the value of objective function at each boundary point and n is
the number of boundary points. The initial temperature is calculated as 100 and
the decrement factor is considered as 0.1. At any current point X(t), the new
value of the parameters for the successive iterations is calculated using the
formula,

Xðt þ 1Þ ¼ XðtÞ þ r
X

N

i¼1

Ri � 0:5N

" #

ð4:35Þ

where r = (Xmax - Xmin)/6; R is the random number, and N is the number of
random numbers used. In the present work, six random numbers are used. While
starting the process, the initial values for the parameters are taken as the average of
the respective parameter limits. The algorithm is terminated when a sufficiently
small temperature is obtained or a small enough change in function value is found.
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Application of SA algorithm to solve the above optimization problem leads to
the following optimum solution: d = 0.0336 mm, v = 500 mm/s, wf = 0.568
(56.8%), I = 4.07 A, t = 1 s, optimum value of the objective function DRa =

0.26758 lm, final surface roughness value = 0.27 - 0.26758 = 0.00242 lm, and
value of constraint on obtainable value of surface roughness = 0.00154 lm.

Table 4.2 presents the compiled results of optimization of MAF process
parameters obtained using genetic algorithms [28], PSO, and SA algorithms. The
results obtained using PSO algorithm are comparatively better and only few
iterations are required in PSO algorithm for convergence to the optimal solution.
The results of SA are better than the results of GA in this example.

El-Taweel [10] integrated the electrochemical turning (ECT) process and MAF
to produce a combined process that improves the MRR and reduces surface
roughness (SR). The study emphasized the features of the development of com-
prehensive mathematical models based on response surface methodology (RSM)
for correlating the interactive and higher order influences of major machining
parameters, i.e. magnetic flux density, applied voltage, tool feed rate, and work
piece rotational speed on MRR and SR of 6061 Al/Al2O3 (10% wt) composite. The
results demonstrated that assisting ECT with MAF leads to an increase machining
efficiency and resultant surface quality significantly compared to that achieved
with the traditional ECT.

Kumar and Yadav [40] developed a mathematical model for the prediction of
magnetic potential using Maxwell’s equations and finite element method to find
the magnetic potential distribution within the gap between tool bottom surface and
work piece top surface. From magnetic potential model, the magnetic pressure
developed and corresponding heat flux generated on work piece surface were
evaluated. Furthermore, a mathematical model was developed for heat transfer in
the work piece and again finite element method was used for the prediction of
temperature rise in the work piece. The effects of various operating input
parameter on magnetic potential distribution in the gap and temperature rise in the
work piece were studied.

Im et al. [20] experimented on a STS 304 cylindrical work piece using MAF
process at 30,000 rpm, and the roughness, roundness, and changes in the micro-
diameter were investigated. The study showed that it is possible to control the
micro-diameter and weight of the STS 304 cylindrical work piece using a near

Table 4.2 Comparison of optimization results for MAF process

Technique d v wf I t DRa Constraint value

GAa 0.015 852.6 0.446 1.02 5 0.26873b 0.0006b

GA 0.015 852.6 0.446 1.02 5 0.2739c 0.0153c

PSO 0.015 2,458.7 0.3 1.537 1 0.2694 0.00122
SA 0.0336 500 0.568 4.070 1 0.26758 0.00154
a Jain et al. [28]
b Values wrongly calculated by Jain et al. [28]
c Corrected values
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linear approach. Surface roughness as fine as 0.06 lm and roundness as fine as
0.12 lm were achievable using a diamond paste with 1 lm particles. Vibrational
motion applied to the work piece improved the surface roughness. The improve-
ment of the surface roughness was achieved because the vibrational motion
effectively removes unevenness in the rotational direction and the direction
orthogonal to it.

Jain [21] gave a comprehensive overview of various flowing abrasive-based
micro-/nano-finishing processes. The author had proposed a generalized mecha-
nism of material removal for these processes and concluded that a single slot in the
magnet during MAF gives higher finishing rate compared to the magnet without
any slot. Yang et al. [78] used finite element method to analyze magnetic field
characteristics for three different magnetic poles such as solid cylindrical pole,
hollow cylindrical pole, and hollow cylindrical pole with grooves design. The
results showed that the hollow cylindrical with grooves can generate the better
surface roughness in MAF. The operations were demonstrated using a permanent
magnetic polishing mechanism installed at a CNC machining center. The opera-
tions were performed using Taguchi experimental design, considering the effects
of magnetic field, pole rotational speed, feed rate, working gap, abrasive, and
lubrication. The optimal parameter conditions was obtained after experimental
data analysis, the quality surface roughness (Rmax = 0.1 mm), which is similar to
a mirror surface, was obtained after confirmatory tests. The optimal parameter
conditions for material removal weight were also obtained in MAF. The results
showed that MAF technique can meet customer requirement and raise the value-
added products simultaneously.

Kwak [43] attempted to improve the magnetic flux density in magnetic
abrasive polishing process for non-ferrous materials, specially focused on mag-
nesium. The magnetic flux density for ferrous and non-ferrous materials was
simulated. To increase the magnetic flux density for non-ferrous materials, a
practical method that installed a permanent magnet at the opposite side of the
work piece to be machined was proposed and evaluated by computer simulation
and experimental verification. For determining a dominant process factor and
optimal conditions of the magnetic abrasive polishing for a thin magnesium plate
as a case study, the design of experimental method was adopted. From the
simulation and the experimentation, it was found that the location of the max-
imum magnetic flux density during the process was verified as a diameter/4
distance from the center of the inductor. When the working gap was 2 mm, the
maximum magnitude of the magnetic flux density for non-ferrous material with a
permanent magnet installed at the opposite side of the work piece surface to be
machined was increased by about 35%. The rotational speed of the tool had a
dominant effect on the improvement of surface roughness and the optimal
conditions for the magnetic abrasive polishing of the magnesium alloy were an
applied current of 2.0 A, working gap of 1 mm, rotational speed of 800 rpm and
amount of powder of 0.7 g.
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4.4 Magnetorheological Abrasive Flow Finishing Process

In magnetorheological abrasive flow finishing (MRAFF) process, magnetorhe-
ological polishing fluid (MRPF) is used as the medium. MRPF is a homogeneous
mixture of carbonyl iron particles (CIPs) and abrasive particles in a base medium
of grease and paraffin liquid. When an external magnetic field is applied, the CIPs
in the fluid form a chain-like structure along the lines of magnetic field in between
the two poles of an electromagnet. Surrounding CIPs chains give bonding strength
to the embedded abrasive particles. When MRPF is extruded through the passage
formed by the work piece and fixture, abrasive particles embedded into/between
the chains of CIPs and in contact with the work piece surface do cutting action by
shearing off peaks of surface undulations from the work piece surface. The basic
mechanism of MRAFF process is shown in Fig. 4.3. The MRPF is extruded from
the top MRPF cylinder to the bottom MRPF cylinder and vice versa, through the
work piece (fixture) by a hydraulic pump. Using the electromagnet, magnetic field
is applied selectively across the workpiece. Material removal from the work piece
surface can be controlled externally by controlling extrusion pressure and mag-
netic field (or current supplied to the electromagnet coils).

Magnetorheological abrasive flow finishing (MRAFF) process is developed for
super finishing of internal geometries of hard materials. This process relies for its
performance on magnetorheological effect exhibited by carbonyl iron particles
along with abrasive particles in non-magnetic viscoplastic base medium. The
extent of finishing action depends on radial and tangential forces coming on
abrasive particles due to carbonyl iron particles (CIPs) arranged in columnar
structure in the presence of external magnetic field.

Fig. 4.3 Mechanism of magnetorheological abrasive flow finishing process (from [35]; reprinted
with permission from Elsevier)
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Jha and Jain [35] designed a hydraulically powered experimental setup to study
the MRAFF process characteristics and performance. The setup consists of two
MR-polishing fluid cylinders, two hydraulic actuators, electromagnet, fixture, and
supporting frame. Experiments were conducted on stainless steel work pieces at
different magnetic field strength to observe its effect on final surface finish. No
measurable change in surface roughness was observed after finishing at zero
magnetic field. However, for the same number of cycles the roughness reduced
gradually with the increase of magnetic field. This validated the role of rheological
behavior of magnetorheological polishing fluid in performing finishing action.

In another work, Jha and Jain [34] conducted experiments on stainless steel
work pieces with different combinations of CIP and SiC particles in MRP fluid for
same volume concentration. CIP chain structure and surface roughness evaluation
model were proposed. Magnitudes of the forces on abrasive particles were then
calculated and change in surface roughness was computed using the model
developed to simulate final surface roughness. Based on the experimental work,
the authors had made the following conclusions:

• For the same magnetic flux density, the finishing forces on abrasive particles are
mainly dependent on number of CIPs in their vicinity, their micro-structural
arrangement, and size. The magnetic force on a carbonyl iron particle is a
function of particle volume, so size of CIP in comparison with abrasive size is
an important factor affecting final surface roughness obtained in MRAFF
process.

• Compared to the same size of CIP and abrasive particle, the surface finish
improvement rate decreases with decrease in abrasive particles size (keeping
CIP size constant) due to decrease in indenting force and sharing of the same
force by more number of abrasive particles. This is also because of the decrease
in interparticle magnetic force between CIPs which governs the holding force
during shear and restrain breaking of chains in case of smaller particles.

Das et al. [9] developed a new precision finishing process called magnetorhe-
ological abrasive flow finishing (MRAFF), which is basically a combination of
AFM and MRF, for nano-finishing of parts even with complicated geometry for a
wide range of industrial applications. The authors had discussed the theoretical
investigations into the mechanism of MRAFF process to study the effects of
various process parameters. An attempt was made to analyze the medium flow
through the fixture by finite difference method by assuming the medium as
Bingham plastic to evaluate the stresses developed during the process. A capillary
viscometer was designed and fabricated to study the effect of magnetic field on the
rheological properties of the medium. Microstructure of the mixture of ferro-
magnetic and abrasive particles in magnetorheological polishing fluid (MRPF) was
proposed, and normal force on the abrasive particles was calculated from the
applied magnetic field. A model for the prediction of material removal and surface
roughness was also presented. From the rheological experiments, it was concluded
that the viscosity of the fluid increases in a third-order logarithmic function and
also yield stress of the fluid increases with an increase in the magnetic field applied
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across the fixture. It was observed from the numerical simulation that higher axial
pressure gave rise to smaller plug flow region at a given magnetic field. From the
fluid flow analysis, it was concluded that for the same applied pressure a larger
plug flow region of the flowing fluid was obtained with higher magnetic field due
to the formation of strong structure of CIP chains with increased magnetic field.
Reduction in surface roughness value increased with an increase in current and
number of finishing cycles. The BCC chain structure proposed for the modeling of
a complex chain structure of MRPF seemed to be better represented and the
comparison of theoretical and experimental results of surface roughness of work
piece revealed that they were in good agreement.

4.5 Electrolytic In-process Dressing Process

The electrolytic in-process dressing (ELID) is a simple and efficient technique that
can be easily adopted for any conventional machine. The basic ELID system
consists of a metal-bonded diamond grinding wheel, an electrode, a power supply,
and an electrolyte as illustrated in Fig. 4.4. The metal-bonded grinding wheel is
made into a positive pole through the application of a brush smoothly contacting
the wheel shaft. An electrode made of copper, covering 1/6 of the grinding wheel
perimeter is connected to the negative pole. A straight type metal-bonded diamond
grinding wheel is mounted on a vertical spindle and the gap between the grinding
wheel and the electrode is adjusted to approximately 0.1–0.3 mm. In the small
clearance between the positive and negative poles, electrolysis occurs through the

Fig. 4.4 ELID setup (from [12]; reprinted with permission from Elsevier)
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supply of the grinding fluid and an electrical current. An electric current in the
form of square pulse wave is supplied from the ELID power supply to the positive
and negative poles. The peak current (Ip) and voltage can be varied within the
ranges 1–10 A and 30–90 V, respectively. The Ton and Toff time can be varied
from 1 to 10 ls using the timer switch provided on the ELID power supply. A
standard grinding coolant is diluted in water and used as an electrolyte and coolant
[12]. Metal-bonded super-abrasive diamond grinding wheels have superior
qualities such as high bond strength, high stability, and high grindability.

Electrolytic in-process dressing (ELID) is an effective method to dress the
grinding wheel during grinding. The wear mechanism of metal-bonded grinding
wheels dressed using ELID is different from the conventional grinding methods,
because the bond strength of the wheel-working surface is reduced by electrolysis.
The reduction of bond strength reduces the grit-depth-of-cut and hence the surface
finish is improved. The oxide layer formed on the surface of the grinding wheel
experiences macro-fracture at the end of wheel life while machining hard and
brittle work pieces. When the wheel wear is dominated by macro-fracture, the
wheel-working surface is free from loaded chips and worn diamond grits. When
the oxide layer is removed from the wheel surface, the electrical conductivity of
the grinding wheel increases, and that stimulates electrolytic dressing. The con-
ditions applied to the pulse current influence the amount of layer oxidizing from
the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear.
Shorter pulse ‘on’ time can be selected for a courser grit size wheel, since that type
of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired
for finer grit size wheels to obtain stable and ultra-precision surface finish [12].

Various applications of ELID process include finishing of structural ceramic
components [2, 3, 16, 79, 81], finishing of bearing steels [54], chemical vapor
deposited silicon carbides [37, 80], precision internal grinding [51], mirror surface
finish on optical mirrors [73, 79, 81], finishing of harder die materials such as
SKDII and SKII51 ([45, 46], precision grinding of Ni–Cr–B–Si composite coating
[66, 67], machining of micro-holes in hard and brittle materials [2], grinding of
silicon wafers [52, 70], etc.

Rahman et al. [55] made attempt to understand the fundamental characteristics
of ELID grinding and their influence on surface finish. The authors pointed out that
even though ELID process is highly suitable for producing nano-surface finish,
some non-linearities were found during in-process dressing due to the self-pro-
tecting oxide layer on the grinding wheel surface that resist the flow of current
[53]. The thickness of the layer affects the ground surface finish and other
parameters such as grinding force, grit protrusion, and wheel profile. Lee [44]
studied the advantages of controlled ELID grinding by measuring the gap between
the grinding wheel and the electrode. Controlled in-process dressing showed better
results than uncontrolled dressing. The electrical parameters (such as voltage,
current, current duty ratio), however, were considered to be the most influencing
parameters during in-process dressing. Change in any of the electrical parameters
affects the in-process dressing and the layer thickness.
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The condition of defect free ductile surface was reported by Bifano et al. [6].
The critical depth-of-cut (dc) to produce a defect free surface on hard and brittle
material was expressed as shown by the following equation:

dcaðE=HÞðKc=HÞ2 ð4:36Þ

where E is the Young’s modulus, H is the hardness, and Kc is the fracture
toughness. The critical depth-of-cut solely depends on the properties of material to
be machined. For BK7 optical glass, the critical depth-of-cut is approximately
equal to 45 nm. The maximum chip thickness or grit-depth-of-cut, hmax, is
expressed as,

hmax ¼ 2LsðVw=VcÞðae=dsÞ
1=2 ð4:37Þ

where Ls is the distance between the adjacent grits, Vw is the work speed (mm/
min), Vc is wheel peripheral speed (rpm), ae is the wheel depth of cut (lm), and ds
is the diameter of the wheel (mm). From the above expression, it is clear that the
maximum chip thickness depends on both machining and wheel parameters [48,
68]. If the penetration depth of a single grit is less than the critical depth-of-cut, the
chip deformation takes place plastically and that reduces the subsurface damages.
The condition for ductile mode grinding can be expressed as shown below:

hmax\dc: ð4:38Þ

The above condition can be obtained by controlling different machining param-
eters during grinding. For example, the increase of wheel speed or reduction of
depth-of-cut reduces the chip thickness, but it needs special machines or special
attachments. Recent studies show that ductile mode could be achieved using the
conventional machine with the super-abrasive grinding wheels and the ELID. The
superabrasive wheels reduce the distance between the adjacent grits (Ls) and
minimize the chip thickness, but there is no explanation about the significance of
bond strength and bonding mechanism during ELID grinding. The mode of
material removal varies from fracture to plastic scratching based on the hardness
of metal bond.

Fathima et al. [13] proposed a new grinding model for ultra-precision ELID
grinding. The main focus was to develop a force model for the ultra-precision
ELID grinding. When the material removal rate is very low, it is very important to
estimate the real contact area between the wheel and work surfaces. The developed
grinding model estimates the real contact area by considering the wheel and the
work surface characterization and the effect of the electrolytic reaction at the
grinding wheel edge. The effects of the microstructure changes on the wheel
surface by the electrochemical reaction were implemented in the model in order to
improve the efficiency of the developed model. The grinding model was simulated
and the simulated results were substantiated by the experimental findings.

Though the ELID technique is simple, successful, and effective, several
practical difficulties have been experienced and reported in the recent years. The
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selection of good correlation between the grinding and the ELID parameters and
the undefined wheel wear are some of the important factors to be considered.
The above mentioned factors significantly influence the geometrical accuracy
and the surface finish of the work piece, and hence it is very important to
optimize the parameters for utilization and implementation of the ELID tech-
nique in an efficient way. The advancements in the simulation and virtual
technologies in the recent years simplify several complicated manufacturing
tasks.

Fathima et al. [14] developed a knowledge based feedback control system for
optimizing and controlling the ELID process suitable for various materials and
applications. The feedback system consists of a computer controlled pulsed power
source (current and voltage in the form of pulse), the software necessary for the
user interface and the knowledge database. In this system, it is possible for the user
to describe the grinding job in terms of work material, wheel bond material and the
machining parameters required for the job. The information inputs are used to
select the optimized ELID parameters for the process, and to set the values for the
process control from the knowledge database. The optimized parameter settings
reduce the excessive wear rate of the wheel and improve the geometrical accuracy
of the work. The feedback control system controls and maintains the optimized set
values for ELID during grinding. However, it is difficult to eliminate the geo-
metrical inaccuracies of the work piece in a single cycle. The main aim of the
knowledge based feedback control system is to minimize the profile errors
occurred during ELID grinding and the number of correction cycles necessary for
obtaining the desired geometrical accuracy. It is expected that the number of
correction cycles required to finish the work piece with the desired specifications
using the feedback control system is expected to be less than the number of
correction cycles required for finishing the work piece with the conventional
controlled ELID process.

The optimization of the ELID grinding process was expressed as,

ELIDoptimized ¼ f ðEp;Gp;Pw;PmÞ for conventional ð4:39Þ

ELIDoptimized ¼ f ðEp;Gp;Pw;Pm; PIDpÞ for feedback control ð4:40Þ

where Ep is the ELID parameters, Gp the grinding parameters, Pw the properties of
the bond/layer, Pm the properties of the work material, and PIDp is the PID
controller parameters.From the feasibility studies conducted with the feedback
control system developed for precision grinding of various optical and non-optical
materials with different sizes, the authors had made the following observations:

• The response of the ELID process is different for different work materials and
hence the process has to be optimized based on the work material to be ground.

• The application of the feedback control system reduces the geometrical inac-
curacies and improves the surface finish especially on harder materials.

• The application of the feedback control system developed is very efficient for
reducing the overall geometrical inaccuracies while grinding large work pieces.
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• The application of the knowledge based feedback control system reduces the
ambiguities experienced during ELID grinding.

ELID is gaining popularity for machining hard and brittle materials due to its
excellent surface generation capabilities. However, no fundamental investigation
on the formation and erosion of the oxide layer deposited on the wheel was
satisfactorily conducted. Biswas et al. [7] conducted ELID grinding experiments
and it was found that the electrolytic current attains a steady value. The dressing
current is controlled by the oxide layer thickness, which in turn is determined by
its formation during electrolytic dressing and erosion during grinding. When these
formation and erosion rates reach equilibrium, a steady layer thickness is achieved,
producing steady current. The phenomenon was theoretically investigated by
formulating electrolytic dressing to find oxide formation per wheel rotation. The
theoretical results showed that a constant current value was achieved due to
equilibrium of oxide formation and erosion rates, and these were substantiated by
experimental findings.

Study of ELID grinding shows that it is highly suitable for achieving nano-
surface finishes on metals and non-metals. Different types of ELID process are
highly suitable for machining and finishing micro shapes. Nano-surface finish can
be achieved using ductile mode machining on hard and brittle materials. The
results show that the ELID grinding can produce ductile surfaces without any sub-
surface damage, which eliminates the lapping and polishing processes. Thus,
surface finish can be improved with higher accuracy and tolerance since the
component is produced using only one process. The major difficulties are the lack
of feedback devices to control the in-process dressing, optimization of machining
conditions, and modeling of ductile mode grinding. Efforts are being made in this
direction.
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Chapter 5

Modeling and Optimization of Rapid

Prototyping Processes

5.1 Introduction

In a competitive market, the speed with which a product flows from concept to
marketable product plays a crucial role. It is well known that products that are
introduced before their competitors are generally more profitable and enjoy a
larger share of the market. At the same time, there are important concerns
regarding the production of high-quality products. For these reasons, there is a
concerted effort to bring high-quality products to market quickly.

A new technology that considerably speeds the iterative product development
process is the concept and practice of rapid prototyping (RP). The advantages of
RP include

• Cost reduction up to 50%.
• Processing time reduction up to 75%. Physical models from CAD data files can
be manufactured in a matter of hours to allow rapid evaluation of manufactu-
rability and design effectiveness.

• Better visualization and concept verification.
• High design flexibility to enable short-term component modifications.
• Usage of prototype in subsequent manufacturing operations to obtain the final
parts.

• Cost-effective component production for demonstration purposes, and func-
tional test samples.

• Use of RP operations for production of rapid tooling for manufacturing
operations.

Rapid prototyping processes can be classified into three major groups: sub-
tractive, additive, and virtual. As the names imply, subtractive processes involve
material removal from a work piece larger than the final part; additive processes
build up a part by adding material incrementally; and virtual processes use
advanced computer-based visualization technologies.

R. V. Rao, Advanced Modeling and Optimization of Manufacturing Processes,
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There is a multitude of experimental RP methodologies either in development
or used by small groups of individuals. The additive RP processes that are cur-
rently commercially available include stereolithography (SLA), selective laser
sintering (SLS), laminated object manufacturing (LOM), fused deposition mod-
eling (FDM), solid ground curing (SGC), 3D printing, and Ink Jet printing
techniques.

Rapid prototyping systems have been used mainly in manufacturing industries
such as automobiles, electric home appliances, and aerospace. Generally, RP
processes begin with a stereolithography (STL) file that describes a model created
by a CAD surface or a solid modeler. The RP models can be used to visualize or
verify designs, to check for form, fit and function, or to produce a tooling
(or master) pattern for casting or molding [39]. The basic methodology for all
current RP techniques can be summarized as follows:

1. A CAD model is constructed and then converted to STL format. The resolution
can be set to minimize stair stepping.

2. The RP machine processes the STL file by creating sliced layers of the model.
3. The first layer of the physical model is created. The model is then lowered by

the thickness of the next layer, and the process is repeated until completion of
the model.

4. The model and any supports are removed. The surface of the model is then
finished and cleaned.

STL-based slicing is still the commonly used method in processing the problem
of layered manufacturing. The advantage of slicing a STL file is that the problem
is reduced to finding plane–intersections. Compared with STL-based slicing, direct
slicing avoids some approximation that exists in STL format file. Some researchers
propose a direct slicing method that can provide more exact laser beam paths by
slicing a constructive solid geometry (CSG) representation of a part. However, a
severe disadvantage of direct slicing is the capability among various CAD sys-
tems; in other words, it can only be used for a specific set of CAD software and
machine, and is not applicable to any other CAD combinations.

5.2 Modeling and Optimization

Studies had been conducted to improve and optimize the RP process, so as to
obtain high-quality parts produced on a wide range of commercial RP machines.
Allen and Dutta [2] developed a method for automatically computing the support
structure for the part in layer manufacturing and then deciding the best orientation
from a candidate list of orientations. Sreeram and Dutta [36] developed a method
to determine the optimal orientation based on variable slicing thickness in layered
manufacturing for a polyhedral object.

Kim et al. [18] developed an optimization technique for optimal part orientation
within the SLA process by considering an objective function related to the volume
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of trapped liquid resin, the total height of the part in the build direction, and the
area of surfaces with staircase protrusions. Frank and Fadel [10] proposed an
expert system tool that considers the various parameters that affect the production
of the prototype and recommends the best direction of building the part based on
both the user’s input as well as on a decision matrix implemented within the expert
system. Cheng et al. [7] presented a multi-objective approach for determining the
optimal part-building orientation. The authors had considered different objectives
such as part accuracy and building time. Objective functions were developed based
on known sources of errors affecting part accuracy and the requirements of good
orientations during the building of a model. The objective functions employed
weights assigned to various surface types affecting part accuracy. The primary
objective was to attain the specified accuracy achievable with the process. The
secondary objective was to minimize the building time. The authors gave exam-
ples to illustrate the algorithm for deriving the optimal orientation which can
assure better part quality and higher building efficiency.

Nyaluke et al. [27] discussed component development in RP and part placement
of models in the RP machine work space to optimize utilization of RP systems.
The algorithm proposed fills the work space with parts by partitioning the work
volume into layers and then filling these layers one after another.

Accurate build-time prediction for making stereolithography parts not only
benefits the service industry with information necessary for correct pricing and
effective job scheduling but also provides researchers with valuable information
for various build parameter studies. Instead of the conventional methods of pre-
dicting build time based on the part’s volume and surface, Chen and Sullivan [6]
presented detailed scan and recoat information from the actual build files by
incorporating the algorithms derived from a detailed study of the laser scan
mechanism of the stereolithography machine. It was found that the scan velocity
generated from the stereolithography machine depends primarily on the system’s
laser power, beam diameter, material properties, and the user’s specification of
cure depth. It was proved that this velocity is independent of the direction the laser
travels and does not depend on the total number of segments of the scan path. In
addition, the time required for the laser to jump from one spot to another without
scan is linearly proportional to the total jump distance and can be calculated by a
proposed constant velocity. It was concluded that the slower machine velocity
results in an undesired amount of additional cure and proves to be the main cause
of the Z dimensional inaccuracy.

Lan et al. [20] discussed the fabrication orientation problem from geometric
and algorithmic points of view, and established decision criteria for the determi-
nation of good fabrication orientation for SLA. Hur and Lee [16] developed an
algorithm to calculate the staircase area, quantifying the process errors by the
volume supposed to be removed or added to the part, and the optimum layer
thickness for the SLA system. They determined the optimum orientation based on
the user’s selection of primary criteria and the optimum thickness of the layers.

Solid ground curing (SGC) technology, one of the RP technologies, is suitable
of building multiple parts with different geometry and dimensions in batch
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production of rapid prototypes to minimize the cost of prototypes. However, the
layout of CAD models in a graphic environment is time-consuming. Because of
high cost of the resin, the layout of models in a batch is critical for the success of
the SGC operations in any industrial environment.

Pham et al. [32] developed a decision support tool to help RP users determine
a part orientation. Their tool considered many factors such as part cost, build
time, problematic features (e.g., pipes, shells, critical surfaces, holes, and axes),
optimally orientated features, overhanging area, and support volume for SLA. By
multiplying position score for each candidate orientation by the weights assigned
intuitively for each criterion, the total score for any candidate was obtained. The
orientation with the highest score was selected as the desirable build-up
direction.

Zhou et al. [43] conducted a detailed study of the most important five build
parameters that affect the quality and accuracy of the final stereolithography parts,
namely, the layer thickness, resultant overcure, hatch space, blade gap, and part
location. To reduce the large amount of total number of experiments required, the
study employed the Taguchi L27 orthogonal array for setting up the different
combinations of the respective control factors, each at three different levels. A
standard sample was developed which provides a benchmark for comparison of the
total of 20 different dimensional, geometrical, and surface features. Using the
RSM and ANOVA analysis techniques, together with the help of MINITAB
software, the factors that are most significant in affecting the quality and accuracy
of these 20 representative dimensional and form features, and surface roughness
were identified. The analysis results also suggested the best setting of these control
factors for each individual feature. For example, to build a square (or rectangular)
hole vertically, a low value of resultant overcure (e.g., 0.001 inches) and medium
layer thickness (e.g., 0.009 inches) must be used to effectively reduce the
dimensional error caused by the extra overcure at the down facing layer and to
provide adequate support so that the sagging problems can be eliminated. Aimed at
producing the best overall quality parts, the authors had proposed an optimal setup
of the build parameters for building a general part consisting of a mixture of the
various features. Finally, the respective total laser scan time and the corresponding
total recoating time were also examined separately for each of the 27 cases studied.
It was concluded that the suggested optimal build condition corresponds to the
least amount of laser scan time, although the total recoating time may increase due
to the smaller layer thickness used.

Hardjadinata and Doumanidis [13] introduced a new solid freeform fabrication
technology based on successive joining of thin metal foils by laser spot welding,
followed by laser cutting of each layer contour. This technology was implemented
in the laboratory using a robotic Nd:YAG laser station with optical fiber transfer,
and the optimal bonding and cutting conditions were determined experimentally
for steel prototypes. A flexible thermomechanical finite element model of the
process was established, with its boundary conditions calibrated and its predictions
verified by pyrometry and profilometry measurements. This numerical model was
used to study the layer deformation due to thermal gradients and to develop weld
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sequencing, cycle timing, and in-process heat treatment methods for minimization
of warping distortions and residual stresses. This new rapid manufacturing tech-
nology can fabricate high-strength, high-density multi-metal parts and metal
matrix composites as well as internal functional structures with encapsulated
active components.

Grujicic et al. [11] developed a model for in-flight melting of feed-powder
particles propelled through a laser beam in the Laser-Engineered Net Shaping
(LENS) process. The model was next incorporated in an optimization analysis to
determine optimum LENS process parameters (laser power, particle velocity, and
the angle between the laser-beam axis and particle trajectory), which maximize the
probability for in-flight particle melting while ensuring the absence of melting of
the surface of the substrate. A simple model, based on solution of the thermal
energy conservation equation, was also developed to determine the laser-power
threshold for melting of the substrate surface. The optimization analysis was then
applied to Inconel 625 Ni–Cr–Mo superalloy. The results showed that by maxi-
mizing the laser power and the residence time of the particles in the laser beam
(increases with reductions in particle velocity and particle trajectory angle), the
probability for in-flight particle melting can be greatly increased, i.e., relatively
coarse (-30/+40 mesh size) particles can be melted by propelling them through
the laser beam.

Choi and Samavedam [9] proposed a virtual reality (VR) system for modeling
and optimization of RP processes. VR is an advanced human–computer interface
that simulates a realistic environment and allows a designer to interact with it. The
essence of VR is immersion and interactivity, which differentiates it from CAD
systems. Immersion means to block out distractions and to focus on selective
information with which the designer wants to work. Interactivity implies the
ability that humans interact with events in the virtual world. Applications of VR
have recently gained considerable momentum in industries. The system aimed to
reduce the manufacturing risks of prototypes early in a product development cycle,
and hence, reduce the number of costly design-build-test cycles. It involved
modeling and simulation of RP in a virtual system, which facilitated visualization
and testing the effects of process parameters on the part quality. Modeling of RP
was based on quantifying the measures of part quality, which included accuracy,
build-time and efficiency with orientation, layer thickness, and hatch distance.
A mathematical model was developed to estimate the build-time of the SLS
process which is described below (from Choi and Samavedam [9]; reprinted with
permission from Elsevier):

The build-time estimator evaluates the time as a function of the laser velocity,
scan distance, and layer thickness. For SLS, the laser velocity derived from Steen
[37] is shown as Eq. 5.1.

Velocity vð Þ ¼ Pl 1� Rð Þð Þ= qdblm Cp Tm � Tbð Þ þ kLh
� �� �

ð5:1Þ

where, Pl is the laser power (W), R is the reflectivity of the mirror, q is the material
density (g mm-3), db is the laser beam diameter (mm), lm is the machine layer
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thickness (mm), Cp is the specific heat (J g
-1 K-1), Tm is the melting temperature

(K), Tb is the bed temperature (K), k is the sinter factor, and Lh is the latent heat
(J g-1).

The build-time of a part can be obtained by summing up the time taken for each
layer. The time taken for building a layer can be divided into the scan time and the
set-up time. The set-up time can be obtained from the machine manual, and it is
normally constant for all layers. The time required for scanning a layer varies
along the z-axis and can be obtained as a ratio of the scan distance to the scan
velocity. The total scan distance within a layer can be obtained from the hatch file.
The velocity can be estimated based on the process. For example, it can be esti-
mated from Eq. 5.1 for the SLS process.

Build time of a part ¼
X

NI

i¼1

Tli þ TsNl ð5:2Þ

Scan time Tlð Þ ¼ Ld=Lv ð5:3Þ

where, Tl is the scan time of a layer (s), Ts is the set-up time of a layer (s), Nl is the
total number of layers, Ld is the laser scan distance (mm), and Lv is the laser scan
velocity (mm s-1).

Setup time refers to the time that the SLS machine takes to spread a thin and
even layer of powder to be sintered for the next slice. It refers to everything the
machine does when it is not sintering.

Setup time Tsð Þ ¼ twd þ td þ twr þ th ð5:4Þ

where, twd is the time required for the work-bed to move down (s), td is the
material deposition time (s), twr is the time required for the work-bed to rise up (s),
and th is the time required to heat the material (s).

Build time of a part ¼ h=lmð ÞTs þ
X

NI

i¼1

dsi l=lmð Þ=Lv ð5:5Þ

where, h is the total height of the part (mm) and lm is the machine layer thickness
(mm).

The algorithm presented by Choi and Samavedam [9] is a useful step in
developing a build-time estimator for SLS machines. Unlike the previously
available algorithms, their algorithm included the material properties, process
parameters like layer thickness and hatch space and the machine parameters like
work-bed temperature, power, and laser reflectivity. The model was integrated
with the virtual simulation system to provide a test-bed to optimize the process
parameters.

Zhang et al. [42] presented the layout optimization using simulated annealing
(SA) technique. In model layout optimization, the model layout problem was
identified to improve the productivity of the SGC process and to reduce the cost
using SA technique. A move set to perturb new layout solutions was defined.
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A new objective function was proposed and compared with the conventional
linear-weighted objective function. The developed software tool kit can relieve
Cubital machine operators from tedious and not necessarily effective work of
packing part models on the DFE workstation. It can also receive the STL format
from Pro/Engineer, generate the envelope automatically, and update the STL files
of the models and the corresponding envelopes with the layout solution. The final
layout can be transformed into VRML format and viewed with VRML viewer. The
updated STL files can be directly loaded into the Cubital machine for manufac-
turing multiple parts in a batch.

To overcome the limitations of the layered manufacturing process, hybrid
rapid-prototyping systems that allow material removal and deposition are being
introduced. This approach should benefit from the advantages of conventional
layered manufacturing and traditional CNC machining processes. To realize these
advantages, however, an intelligent process plan must be generated. In the hybrid
rapid-prototyping process, a part is decomposed into thick-layered 3D shapes, such
that each layer can be machined and stacked easily. When each layer is generated
from the part’s shape, the build orientation is an important factor to be considered,
because it greatly influences the lead-time, the machining accuracy, and the
number of tool-accessible features in each setup. Hu et al. [15] described an
algorithm to determine the build orientation. It considers the deposition process
attributes and the machining process attributes simultaneously. The main criteria
considered for determining the build direction were the tool accessibility of the
machining features, the build time, the number of bridges, and the number of
supports. In addition, a method was presented to secure a part with bridges instead
of using specially designed fixtures.

Ahn et al. [1] characterized the properties of acrylonitrile butadiene styrene
(ABS) parts fabricated by the FDM 1650. Using a design of experiment (DOE)
approach, the process parameters of FDM, such as raster orientation, air gap, bead
width, color, and model temperature were examined. Tensile strengths and com-
pressive strengths of directionally fabricated specimens were measured and
compared with injection-molded FDM ABS P400 material. For the FDM parts
made with a 0.003 inch overlap between roads, the typical tensile strength ranged
between 65 and 72% of the strength of injection-molded ABS P400. The com-
pressive strength ranged from 80 to 90% of the injection-molded FDM ABS.
Several build rules for designing FDM parts were formulated based on experi-
mental results.

Harris et al. [14] conducted finite element analysis (FEA) on the ejection forces
in injection-mold tooling (insert) made with a steriolithography process and
concluded that smaller layer thickness and greater draft angle of the insert resulted
in lower ejection forces. Besides this, it was pointed out that the adjustment of
built layer thickness has a greater effect on ejection force than the adjustment of
draft angle. However, the focus of the work of Harris et al. [14] was on mini-
mization of the ejection force involved in the injection-molding process to avoid
premature failure of tooling. Increasing the strength (tensile) of the die in addition
to minimization of the ejection force would further increase the tool life.
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Pandey et al. [30] presented a semi-empirical model for evaluation of sur-
face roughness of a layered manufactured part by FDM. An attempt was made to
address the problem of surface roughness resulting due to staircase effect in rapid
prototyped parts using a simple material removal method, namely hot cutter
machining (HCM). A fractional factorial DOEs, with two levels and four process
parameters, was adopted to understand the effect of various process variables.
ANOVA was used to find the significance index for process variables, and con-
fidence level for the statistical model developed for the surface roughness of hot
cutter machined surface. It was concluded that the proposed machining method
was able to produce surface finish of the order of 0.3 lm with 87% confidence
level. In another work, Pandey et al. [31] proposed a slicing procedure for
FDM based on real-time edge profile of deposited layers. The procedure was
implemented and examples were included to explain the adaptive slicing method.

Yang et al. [41] proposed a process planning approach based on a multi-
orientational deposition (MOD) method to minimize the use of support structures,
so as to improve the efficiency in layered manufacturing process and surface
quality of a part built. An algorithm to determine the successive layer area dif-
ference for layer deposition and its application to overhang feature extraction and
reduction using the MOD method was also introduced.

Masood et al. [25] presented a generic algorithm to determine the best part
orientation for building a part in a layer-by-layer RP system. The algorithm works
on the principle of computing the volumetric error (VE) in a part at different
orientations and then determining the best orientation based on the minimum VE
in the part. The algorithm was shown to work for a part of any shape and com-
plexity, with any slice thickness, and for the orientation of a part about any
selected axis. The part orientation system based on this algorithm graphically
displays the VE at different part orientations and recommends the best part ori-
entation. The system can help RP users in creating RP parts with a higher level of
accuracy and surface finish.

Khan et al. [17] concluded that layer thickness, raster angle, and air gap
influence the elastic performance of the compliant FDM ABS prototype. Lee et al.
[22] performed experiments on cylindrical parts made from three RP processes
such as FDM, 3D printer, and nano composite deposition (NCDS) to study the
effect of build direction on the compressive strength. Experimental results showed
that compressive strength is 11.6% higher for axial FDM specimen as compared to
transverse FDM specimen. In 3D printing, diagonal specimen possessed maximum
compressive strength in comparison to axial specimen. For NCDS, axial specimen
showed compressive strength 23.6% higher than that of transverse specimen. Out
of three RP technologies, parts built by NCDS were severely affected by the build
direction.

Majumdar et al. [24] attempted laser-assisted fabrication of 316L stainless steel
using a high-power (1.5 kW) continuous-wave diode laser. The main process
variables for the present study were applied power density, scan speed, and powder
feed rate. A detailed microstructural study of the surface and cross-section of the
fabricated layer were carried out using optical and scanning electron microscopy
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to understand the influence of laser parameters on microstructure of the surface
and interface between the successive layers. The microstructure of the top layer
was equiaxed and the near substrate region was fine dendritic; however, at the
interface between two successive layers, it was coarsened. The morphology and
degree of fineness of the microstructure was found to vary with laser parameters.
The range of grain size (maximum grain size–minimum grain size) was taken as a
measure of homogeneity. It was found that with increasing the scan speed, the
range of grain size was minimized. Micro-porosities were present in the micro-
structure that reduced with increasing scan speed and found to be minimum at a
medium powder feed rate. The optimum processing conditions were established by
correlating the characteristics of the fabricated layer with process parameters.

Lee et al. [21] used the Taguchi method to find the optimal process parameters
for FDM rapid prototyping machine that was used to produce ABS compliant
prototype. An orthogonal array, main effect, the signal-to-noise (S/N) ratio, and
analysis of variance (ANOVA) were employed to investigate the process param-
eters in order to achieve optimum elastic performance of a compliant ABS pro-
totype so as to get maximum throwing distance from the prototype. Through this
study, not only can the optimal process parameters for FDM process be obtained,
but also the main process parameters that affect the performance of the prototype
can be found.

The FDM3000 rapid prototyping machine with Insight 3.1 software was used in
the study. Four parameters (air gap, raster angle, raster width, and layer thickness),
each at three levels were taken into consideration in the study. Air gap was
specified as solid fine, spare, and double wide. Raster angle was specified as
0�/90�, 45�/-45�, and 30�/60�. The 0�/90� angle means that FDM machine fab-
ricates the alternate layers of the catapult on the horizontal plane by changing
direction at 0� and 90� angles from the coordinate of the machine. Similarly, 45�/-
45� and 30�/60� indicate the same deposition pattern followed by the machine.

Raster width was specified as 0.305, 0.655, and 0.98 mm. Layer thickness was
varied from 0.178, 0.254, and 0.305 mm. The interactions between the parameters
were not considered and other factors such as temperature and humidity were kept
constant. The appropriate orthogonal array in this case was the standard L9. The
results were obtained by testing all the nine prototypes for different angles of
displacement, i.e., 10�, 15�, and 20�. Each prototype represented each experiment
of the orthogonal array. For 10� angle of displacement, air gap produced maximum
contribution to the output performance of the product (throwing distance). For 15�
angle of displacement, raster angle and layer thickness demonstrated almost equal
maximum contribution to the output performance of the product (throwing
distance), and for 20� angle of displacement, layer thickness gave the highest
contribution to the output performance.

Byun and Lee [4] aimed to determine the optimal build-up direction of a part
for different RP systems. The revised average weighted surface roughness, which
considers stair-stepping effect, build time calculated by laser/knife/nozzle travel,
and part cost calculated by build cost rate, labor cost rate, material cost, etc., were
considered. Among the orientation candidates chosen from the convex hull of
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a model, the best orientation was selected using the simple additive weighting
method, a widely used multi-criterion method for decision making. The best
orientation was also identified for each criterion. The algorithm can help RP users
select the best build-up direction of the part and create optimal process planning.

Xiaomin et al. [40] proposed a new approach as a prototyping direction opti-
mization of points data. Based on perspective theory, a curve surface was built up
on the peak point of the produced point lattice of an entity. A lattice grid was used
to represent the represent volume of the entity, which was employed in rapidly
calculating the represent volume in real time. After analyzing the optimal object
functions and strategy, authors adopted the genetic algorithm on selection of
operators, cross breeding operators, mutation operators, iteration termination
condition, and colony scales, etc. The optimization program was set up using
Matlab and the optimization was obtained for prototyping direction. The simula-
tion results showed that a three-dimensional reconstruction was not necessary
based on this proposed points data prototyping direction optimization. On the basis
of the proposed optimization approach, the best position of an entity can be located
for RP, which can increase prototyping efficiency and reduce the time and money
spending on prototyping.

Chockalingam et al. [8] attempted to study and optimize the Stereolithography
process parameters of layer thickness, post-curing time, and orientation for max-
imum part strength. The experimental levels set for these three parameters to
produce an SL part on an SLA 250/50 machine with CIBATOOL SL 5210 resin
were: 0.1 mm, 0.125 mm, and 0.15 mm for layer thickness (Lt), 60, 90, and
120 min for post-curing time (Pc), and HX, VX, and HY for orientation (O). 18
experiments were conducted with the process parameters set at appropriate levels
using L18 orthogonal array. The equation developed for part tensile strength is
given below.

TS ¼� 89:878L2t þ 16:8Lt þ 2:88� 10� 4P2
c � 0:062Pc

� 0:6345O2 þ ð2:5655ÞO� 0:068LtPc þ 7:667 ð5:6Þ

The optimal combination of process parameters was 0.1 mm layer thickness,
60 min post-curing time, and vertical orientation (VX).

For low-volume production or for RP, sheet metal stamping tools can be made
by an assemblage of steel sheets or layers and joined by several techniques (such
as screws, bolts, brazing, and adhesive). However, an important problem in the
design and the production of such tools is their mechanical behavior, in particular
the strength of joining techniques which is crucial in the aim of achieving the
highly required reliability of tools. If the mechanical behavior of tools can be
mastered and accurately predicted, it can increase the life duration of tools and be
more beneficial to the manufacturing community. In order to properly predict the
mechanical behavior of tools, numerical simulation of stamping, taking into
account elastic deformation of tools within a coupled FE analysis is needed.
However, simulation results show that the effort and computational times required
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for such a coupled simulation, in particular in a general three-dimensional (3D)
case, could be prohibitive and unrealistic.

Oudjene et al. [28] proposed and developed a numerical procedure in two steps,
which has the advantage of decoupling the simulation of the blank forming and the
stress analysis of the elastic tools. Numerical application was presented for a
layered stamping punch, based on the Stratoconception RP process, joined by
screws in addition to an epoxy adhesive. The results were focused on the screw
behavior, showing the potential interest of the developed procedure and numerical
modeling technologies in designing layered tools joined by screws. In another
work, Oudjene et al. [29] proposed and developed a simplified numerical proce-
dure, based on two steps, for the 3D stress analysis of deformable tools (layered or
not). In addition, an optimization procedure, based on DOEs and response surface
method, was established in order to optimize the screw positions, which were
crucial to the aim of achieving the required high strength and life duration of the
assembly technique by screws. The results showed the feasibility of the developed
procedure in the context of industrial applications.

In layer-based RP, a volumetric object is approximated as a pile of slices with
vertical walls. Process parameter selection in layer-based prototyping is a multi-
criteria multi-parameter optimization problem. A number of criteria may be used
for assessing the quality of the prototype. Volumetric accuracy of shape approx-
imation and building time are just two criteria taken in this work as an example.
Criteria depend on process parameters, most commonly in a mutually contradic-
tory manner. Model orientation and slice thickness constitute the minimum of
process parameters to be considered, but others may also be added. For this reason,
a neural network is used, trained by a number of input–output vectors, when
analytical formulae representing the dependency of criteria on process parameters
could not be developed and/or available numerical models take too long to exe-
cute. Vosniakos et al. [38] used neural network meta-models in the evaluation
(cost) function of a genetic algorithm, each representing a particular criterion, and
criteria were weighted according to the user’s particular view. A case study was
presented, referring to a wax model prototyping machine in which a particular tree
for investment casting was built. A new criterion for assessing the quality of shape
approximation was introduced, namely the local VE per slice.

Haipeng and Tianrui [12] presented a slicing algorithm based on the model
geometrical continuity. In the strategy, the grouping matrix and the active triangle
table were established by sorting for the triangular facets according to the mini-
mum and maximum z-axis value of the triangular facets. By generating new
intersecting facets table of each slicing plane and extracting only topology
information of the current slicing plane, inner memory was remarkably saved,
while the extracting time was also saved to some extent. The inefficient judgment
about the location relations of triangle facets and slicing plane was avoided, thus
advancing the slicing efficiency. Aiming at the inherence error in slicing operation
brought by the approximation of the standard STL model, such as the non-closed
cross-section contour and so on, an effective filtering and optimization algorithm
based on feature analysis for the slicing profile was proposed by the authors. Case
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study of a solid model was also presented to illustrate the feasibility and efficiency
for the developed algorithms and the proposed strategy. The steps of the slicing
algorithm proposed by Haipeng and Tianrui [12] are given below:

1. Input a STL file and get the maximum extent of this model.
2. Calculate the minimum and maximum z coordinates for each facet.
3. Construct the grouping matrix according to the minimum and maximum

z coordinates.
4. Build topological structure and generate the active triangular facet table for the

current layer.
5. Attach a sign to each edge in the active facet table. The sign has two values:

unprocessed means that the intersection points on the edge must be calculated
to obtain the slice contour and processed means that the edge has been cal-
culated. Use the aforementioned method to calculate the intersection point until
there is no edge signed unprocessed and put the intersections into the contour
array.

6. Move to the next layer and determine whether the slicing position exceed the
valid range. If no, return to Step 4. If yes, go to Step 7.

7. End procedure.

According to different RP methods, the processes and materials are quite dif-
ferent, and these RP materials should have special requirements to adapt to layer
manufacturing method, which has complex composition and strict percentage
requirements. To obtain desired dimensional tolerance and surface roughness with
enough strength and appropriate construction time, experimental research should
be performed for these different RP processes with specific material. Obviously,
RP experiments have long process time, and are affected by multi factors, which
include forming material composition and the process parameters. For optimal RP
results, appropriate experimental proposal should be designed to find the rela-
tionship between material composition and RP product performance. As powder-
based RP methods, three-dimensional printing (3DP), and selective laser sintering
(SLS) are the most prominent RP methods for their flexibility in material selecting.

Rozman et al. [34] presented a model-based optimization of the process of
printed circuit board laser structuring. For this purpose, a comprehensive theo-
retical model of the interaction between the traveling pulsed laser beam and
conductive layer, as well as between the laser beam and the induced plasma plume
was employed. The model was used to calculate process speed. Based on the
process speed determined, the influence of pulse power, duration, and frequency
on process speed was analyzed. In addition, an optimal range of process param-
eters with respect to process speed and quality was defined.

Nagahanumaiah et al. [26] presented a computer-aided rapid tooling process
selection and manufacturability evaluation methodology for injection molding,
supported by mold cost estimation models and RT process capability database.
Rapid tooling process selection was based on process capability mapping in
quality function deployment (QFD) against a set of tooling requirements that were
prioritized through pairwise comparison using analytical hierarchal process
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(AHP). The mold manufacturability for the selected RT process was carried out
using fuzzy-analytic hierarchy process (fuzzy-AHP) to identify problem features,
if any. This was followed by estimating the cost of RT mold and comparing it with
a conventional mold, using cost models developed based on the concept of cost
drivers and cost modifiers. The entire methodology was implemented in a software
program using Visual C++ in Windows environment and demonstrated on an
experimental mold as well as industrial cases. The proposed methodology enables
selecting an appropriate rapid tooling process for a given injection mold
requirement, and identifying critical features that could be modified to improve
manufacturability, thereby achieving better quality and lower cost of molded parts
along with shorter lead time.

Canellidis et al. [5] outlined the structure of a decision support system that
automates the build orientation selection in the SLA process. The methodology
employed a genetic algorithm, in order to search in an effective and quick way the
solution space, in conjunction with a multi-criteria objective function which was
employed for evaluating feasible solutions/orientations. For the formation of the
multi-criteria function, the estimated fabrication time, comprising the estimated
build time and post-processing time, and the average surface roughness of the part
were considered. The importance of each criterion was defined via weighting
factors. The associated software tool developed is fully customizable, allowing the
consideration of different machine configurations. Four test cases concerning parts
of different geometric complexity were examined. The computational results
showed reasonably good solutions/orientations achieved within acceptable com-
putational time limits. In order to improve the quality and optimality of the
solutions computed by the methodology as well as its practical applicability,
several issues for further research were identified. The authors concluded that a
major issue was the detailed investigation of post-processing time in conjunction
with surface quality. In this context, the assessment of accessibility of particular
surfaces requiring finishing (both support removal and polishing) in a given ori-
entation should be incorporated in the system. Furthermore, the surface roughness
criterion assessment could be enhanced by incorporating into the problem the
option of roughness tolerances and/or constraints for specific critical part surfaces.
Quality assessment could also be enhanced through the incorporation of further
criteria such as mechanical properties of the part and dimensional accuracy, which
can also be associated with specific dimensional part tolerances.

Li [23] showed that much experimental work can be greatly decreased by the
method of uniform design. The author’s research was based on 3DP technique, and
the research procedure can also be used for the development of SLS and other RP
techniques and experiments. Plaster-based compound powder, which has the
advantages of setting fast, with fine strength and surface finish and low cost,
innoxious, and suitable for model making, was selected as an example for the
experiments. The mean primary particle size of compound powder particle was
75 lm, without evident agglomeration. The plaster’s original solidification time
was less than 6 min, final solidification time was less than 30 min, and oven-dry
compress strength was more than 20 MPa. Some additions such as polyvinyl
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alcohol (PVA) and methyl cellulose (MC) powder as binder, a little anhydrite
(CaSO4) for setting speeder, and a little white carbon black for improving power’s
flowability were added. The bonder solution for the compound powder was
aqueous solution (distilled water[95%), with small amount of polyvinyl pyrrol-
idone (PVP) and some other additions. Uniform design was adopted to decide the
content of compound powder mixture for these multi-level, multi-factor 3DP
experiments with only limited experiment times. 11 sets of experiments were
conducted. For gross restriction of powder mixture, one component was removed
from the regression analysis. Anhydrite’s content (x4) had the least effect for the
experiments; thus the regression variables were plaster (x1), PVA (x2), MC (x3),
and white carbon black (x5). The SPSS statistic software was used to analyze the
11 groups of experiments to set up the regression functions. The regression
equations are as follows:

y1 ¼ 438:018þ 7:493x1 � 0:278x2x3 � 13:14x2x5 � 2:859=x5 ð5:7Þ

y2 ¼ 22:403þ 0:078x23 � 0:032x2x3 � 0:583x2x5 � 1419:927=x1 ð5:8Þ

y3 ¼ 14:839� 0:134x1 � 1:307x3 þ 0:229x23 þ 1:261x2x5 ��0:462=x5 ð5:9Þ

y4 ¼ �22:947þ 0:297x1 � 0:1x2x5 þ 0:104=x3 ð5:10Þ

y5 ¼ �12:641þ 0:196x1 þ 0:172x3 � 0:012x2x3 þ 2:461=x2 � 0:32=x2 ð5:11Þ

y6 ¼ �20:737þ 0:257x1 þ 1:124=x2 � 0:1=x5 ð5:12Þ

where, y1, y2, and y3 denotes the density of products, Z direction compression
strength, and surface evaluation respectively; y4, y5, and y6 denote the dimensional
difference percentage in the X, Y, Z directions.

To obtain the optimum powder mixture for 3DP process, a whole numerical
objective function was proposed.

min Y ¼ a1y1 þ � � � þ anyn ð5:13Þ

where, Y denotes the evaluation function; y1,…,yn denote the sub-objective
functions; and a1,…,an denote the weights of the sub-objective functions. The
weights present the relative importance of the different sub-objectives. The
assistant parameter method was used to get the weights. The equality and
inequality constraints of mixture considered were as given below.

x1 þ x2 þ x3 þ x4 þ x5 ¼ 100 ð5:14Þ

64� x1 � 100 ð5:15Þ

0:5� x2 � 25 ð5:16Þ

0:5� x3 � 5 ð5:17Þ
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0:2� x5 � 1 ð5:18Þ

The above problem is a non-linear multi-objective optimization with equality
and inequality constraints. The f min con function in optimization tool box of
MATLAB software was used to solve the above problem. First, the weights were
calculated and these were a1 = 0.0331, a2 = -0.2138, a3 = 0.1768, a4 = 0.1044,
a5 = 0.5959, and a6 = 0.3035. The optimal mixture found was 82.3%, 12.3%,
0.6%, 4.6%, and 0.2%.

The Internet, incorporating computers and multimedia, has provided tremen-
dous potential for remote integration and collaboration in business and manufac-
turing applications. Rapid prototyping and manufacturing (RPM) using the
Internet can further enhance the design and manufacturing productivity, speed, and
economy, as well as share the RP machines. Web-based RPM systems have been
developed and employed to implement remote service and manufacturing for RP,
enhance the availability of RPM facilities and improve the capability of rapid
product development for a large number of small- and medium-sized enterprises.
Lan [19] provided a comprehensive review of research on web-based RPM sys-
tems. Various architectures proposed for web-based RPM systems were presented.
Furthermore, some key issues and enabling tools to implement the remote RPM
systems, which involve (1) RPM process selection, (2) RP price quotation,
(3) STL Viewer, (4) RP data pre-processing, (5) job planning and scheduling,
(6) remote control and monitoring for RP machines, (7) security management, and
(8) applying new technologies and concepts to the systems, were described in
detail. The review gives an outlook on possible future development and research
direction for web-based RPM systems.

The increasing rate of transplants due to damaged or affected tissues or organs
by accidents or diseases and also by the aging of the population in many countries
has motivated the research of some novel and alternative ways focused on
restoring and replacing tissues. Biofabrication by means of RP techniques can help
in the fashioning and final production of scaffolds devoted to support and stimulate
the growth of new tissues. For soft tissues, a biomaterial known as Alginate has
been studied and used as raw-material for scaffold fabrication. A scaffold must
guarantee good strength and stiffness at the same time the material degrades
gradually. Rezende et al. [33] described a single mathematical model that
describes an interesting mechanical behavior of the degradation of alginated-
scaffolds. The optimization process scheme using genetic algorithms to maximize
the elastic modulus and therefore to aid the design of scaffolds in alginate was
proposed.

In the case of prototype manufacturing, the criteria of interest are mechanical
resistance, dimensional accuracy, surface quality, cost price, manufacturing time,
etc. The prototype material selection depends mostly on the functional role of the
prototype and its destination. The mechanical resistance depends on type of
material and type of RP system. Features such as dimensional accuracy, surface
quality, cost price, and manufacturing time depend essentially on the RP system.
The surface quality or surface roughness is a function of the material type used by
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RP system, layer thickness, and the existence or not of supports. The existence of
supports influences the post-processing time and so on. The importance is a
function of the prototype purpose. Each of the above criteria may become the
objective of the optimization problem. If there are several optimization criteria,
then the problem is that of a multi-objective optimization problem. Ancău and
Caizar [3] proposed the multicriterial optimization of RP processes. The mathe-
matical model of the optimization problem took into consideration surface quality
of the prototype and the time of manufacturing as optimization criteria. The sur-
face quality optimization criterion evaluation was done by the number of trian-
gular facets from the 3D model surface in STL format, which are inclined with a
specific angle, and the value of the area covered by these triangular facets.

Based on the mathematical model, a practical method to find the Pareto-optimal
set was developed as a main goal. To solve the optimization problem, a computer
program for RP processes simulation was designed. The program calculates the
geometry of successive layers, as well as the necessary time for their materiali-
zation. Depending on the importance degree of each optimization criterion, the
program offers the optimal solution. In addition, the program allows the user
intervention in solving the problem optimization. The authors had reported that the
manufacturing time is mostly influenced by height of the model along Oz axis, but
also by the size and geometry of the cross sections and the step effect affects the
surface quality. Theoretical concepts of multi-criterial optimization presented in
this research are useful regardless of the number of optimization criteria simul-
taneously considered.

The manufacturing time on SLS and LOM systems includes different compo-
nents. The general equation of the total manufacturing time T is (from Ancău and
Caizar [3]; reprinted with permission from Elsevier)

T ¼ Tpre þ Tpr þ Tpost ð5:19Þ

where Tpre is the preprocessing time; Tpr the processing time; and Tpost is the post-
processing time.

Ancău and Caizar [3] developed the cost models for SLS and LOM systems.
They assumed that the part material is plastic, with a constant layer thickness along
Oz axis. The manufacturing cost equation, given by the authors for SLS, is

C ¼ Cpre þ Cpr þ Cpost ð5:20Þ

where Cpre is the preprocessing cost; Cpr the processing cost; and Cpost is the post-
processing cost.

The preprocessing cost Cpre may be calculated with

Cpre ¼ Tpoz þ Tparam
� �

Coper þ Ccomp

� �

þ Tsetup � Coper ð5:21Þ

where Tpoz is the necessary time to scale and adjust the part position; Tparam is the
time to input the system parameters; Tsetup the setup time; Coper the operator salary
($/min); and Ccomp is the computational cost ($/min).
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Cpr ¼ Theat þ Tlp þ Tcool
� �

CSLS þ Cmat ð5:22Þ

where, Theat is the time to heat up the container; Tlp the time for layer processing;
Tcool the time to cool down the container; CSLS the cost of SLS system utilization
($/min); and Cmat is the material cost ($).

The time to heat up Theat is

Theat ¼ Nlb T1layer þ Tidle1
� �

ð5:23Þ

where Nlb is the number of layers from the base; T1layer the time to make one base
layer; and Tidle1 is the idle time per layer.

Tlp ¼ Np Tzp þ Tscan þ Tidle2
� �

ð5:24Þ

where, Np is the part layers number; Tzp the time for layer deposition during the
build phase; Tscan the time for scanning the part cross-section by laser; and Tidle2 is
the idle time per layer in the build phase (Tidle C 0).

Tcool ¼ N2 Tz2 þ Tidle3ð Þ ð5:25Þ

where, N2 is the number of layers in the canopy; Tz2 the time for layer deposition
during the cool down phase; and Tidle3 is the idle time per layer in the cool down
phase.

Cpost ¼ Trp þ Tpf
� �

Coper þ Caux ð5:26Þ

where Trp is the time to remove the part from the container; Tpf the necessary time
for prototype finishing; and Caux is the cost of additional materials needed in the
post-processing phase.

In the case of LOM, the manufacturing cost Cpr can be expressed by the
equation

Cpr ¼ Tbase CLOM þ Coper

� �

þ NpTlayerCLOM þ Cmat ð5:27Þ

where, Tbase is the time to build the part base; CLOM is the cost of LOM system
utilization ($/min); Coper is the operator salary ($/min); Np is the theoretical
number of layers; Tlayer is the sum of times for one layer construction; and Cmat is
the material cost.

Tlayer ¼ Tpgu þ Tmadv þ Theater þ Tcut þ Tpgd ð5:28Þ

where, Tpgu is the time needed by the system platform to rise up until the working
plan; Tmadv is the time for material advance with one step; Theater is the time for
heater motion forward and backward, so that the current layer is joined to prec-
edent layer; Tcut is the time for laser to cut inner and outer contours, crosshatches,
as well as the walls of the smallest box that enclose the prototype; and Tpgd is the
time for platform retract to ease the material advance.
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After the processing of the last layer, the prototype manufacturing is con-
sidered finished, and will start the post-processing phase. The prototype will be
extracted from the box and the material in excess will be removed. After this,
the prototype surface may be finished, painted etc. Even if the necessary time of
this phase cannot be accurately calculated, it can be estimated by taking into
account the part size, its geometric complexity, and the type of finishing oper-
ation required.

Sood et al. [35] considered five important process parameters of FDM such as
layer thickness, orientation, raster angle, raster width, and air gap. Their influence
on three responses such as tensile, flexural, and impact strength of test specimen
was studied. Experiments were conducted based on central composite design
(CCD) in order to reduce experimental runs. Empirical models relating response
and process parameters were developed. The validity of the models was tested
using analysis of variance (ANOVA). Response surface plots for each response
were analyzed and optimal parameter setting for each response was determined.
The major reason for weak strength was attributed to distortion within or between
the layers. Finally, concept of desirability function was used for maximizing all
responses simultaneously.

Part build orientation or orientation refers to the inclination of part in a build
platform with respect to X, Y, and Z axes. X and Y-axes are considered parallel
to build platform and Z-axis is along the direction of part build. It was specified
at three levels as 0�, 15�, and 30�. Layer thickness is the thickness of layer
deposited by nozzle and depends upon the type of nozzle used and it was
specified at three levels as 0.127, 0.178, and 0.254 mm. Raster angle is a
direction of raster relative to the X-axis of build table and it was specified at
three levels as 0�, 30�, and 60�. Part raster width (raster width) is the width of
raster pattern used to fill interior regions of part curves and it was specified at
three levels as 0.4064, 0.4564, and 0. 5064 mm. Raster-to-raster gap (air gap) is
the gap between two adjacent rasters on same layer; it was specified at three
levels as 0, 0.004, and 0.008 mm.

In order to build empirical models for tensile strength, flexural strength, and
impact strength, experiments were conducted based on CCD. Half factorial 25

unblocked design having 16 experimental runs, 10 (2K, where K = 5) axial runs
and six center runs was employed.

Response surface equations for tensile strength (TS), flexural strength (FS), and
impact strength (IS) are given by the following equations in terms of un-coded
units (from Sood et al. [35]; reprinted with permission from Elsevier):

TS ¼ 13:5625þ 0:7156A� 1:3123Bþ 0:9760C þ 0:5183E þ 1:1671 A� Að Þ

� 1:3014 B� Bð Þ � 0:4363 A� Cð Þ þ 0:4364 A� Dð Þ � 0:4364 A� Eð Þ

þ 0:4364 B� Cð Þ þ 0:4898 B� Eð Þ � 0:5389 C � Dð Þ þ 0:5389 C � Eð Þ

� 0:5389 D� Eð Þ ð5:29Þ
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FS ¼ 29:9178þ 0:8719A� 4:8741Bþ 2:4251C � 0:9096Dþ 1:6626E

� 1:7199 A� Cð Þ þ 1:7412 A� Dð Þ � 1:1275 A� Eð Þ þ 1:0621 B� Eð Þ

þ 1:0621 C � Eð Þ � 1:0408 D� Eð Þ ð5:30Þ

IS ¼ 0:401992þ 0:034198Aþ 0:008356Bþ 0:013673C þ 0:021383 A� Að Þ

þ 0:008077 B� Dð Þ ð5:31Þ

where, A is the layer thickness, B is the orientation, C is the raster angle, D is the
raster width, and E is the air gap.

The response surface plots involving interaction terms were studied and the
reasons behind the observed response were summarized as follows:

• Number of layers in a part depends upon the layer thickness and part orientation.
If number of layers is more, it will result in high-temperature gradient towards
the bottom of part. This will increase the diffusion between adjacent rasters and
strength will improve. But high-temperature gradient is also responsible for
distortion within the layers or between the layers. Moreover, increase in number
of layers also increases the number of heating and cooling cycles and thus
residual stress accumulation increases. This may result in distortion, interlayer
cracking, and part de-lamination or fabrication failure. Hence, strength will
reduce.

• Small raster angles are not preferable as they will result in long rasters which
will increase the stress accumulation along the direction of deposition resulting
in more distortion and hence weak bonding. But small raster angle also means
that rasters are inclined along the direction of loading and will offer more
resistance; thus strength will improve.

• Thick rasters result in stress accumulation along the width of part and have a
same effect as the long rasters. But this stress accumulation results in high
temperature near the boding surfaces which may improve the diffusion and may
result in strong bond formation.

• Zero air gap will improve the diffusion between the adjacent rasters but may
also decrease the heat dissipation as well as total bonding area.

To determine the optimal setting of process parameters that will maximize the
tensile strength, flexural strength, and impact strength, respectively, desirability
function (DF) was used.

DF ¼
Y

n

i¼1

dwii

 !1=p

ð5:32Þ
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where; p ¼
X

n

i¼1

wi

 !

ð5:33Þ

where, di is the desirability defined for the ith targeted output. For a goal to find a
maximum, di is calculated as shown below.

di ¼ 0; if Yi � lowi ð5:34Þ

di ¼ Yi � lowið Þ= Highi � lowið Þð Þ; if lowi\Yi\Highi ð5:35Þ

di ¼ 1; if Yi �Highi ð5:36Þ

where, Yi is the found value of the ith output during optimization process, and the
lowi, Highi are the minimum and maximum values, respectively of the experi-
mental data for the ith output. Since all the strengths were considered as equally
important. Optimum factor levels that maximize the desirability function were
calculated for respective strength together with its predicted value. The combined
desirability function when all three responses were maximized simultaneously was
also evaluated and the optimum factor levels were found.

Optimal factor setting for tensile and flexural strength was same, but it differed
in factor levels of orientation and raster angle for impact strength. As far as
simultaneous optimization of three strengths was considered, the factor levels were
completely different from individual optimal factor setting. The study can be
extended to reduce void formation and distortion and improve inter-laminar
bonding. This study can also be extended in the direction of more complicated
loading states, such as fatigue and vibration analysis.

RP is changing the way companies design and build products. Rapid proto-
typing has developed into three primary technological and application areas:
concept modeling, rapid prototyping for fit, and function applications, and rapid
manufacturing. It is believed that these three forms of free-form fabrication will
grow exponentially over time. To achieve this growth, several technological
developments related to materials, capacities of the RP machines, prototyping
speed, and cost are needed.
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Chapter 6

Environmental Aspects of Manufacturing

Processes

6.1 Environmentally Conscious Manufacturing

Nowadays, ever-increasing environmental problems are becoming a serious threat
to the survival and development of society. After the publishing of ISO 9000
quality management standards, the ISO 14000 environmental management system
standards, and the OHSAS 18001 occupational health and safety assessment series,
one of our greatest strategic challenges is to apply the three series integrated into a
management system in enterprises, not only from an engineering but also from a
business and marketing perspective. The manufacturing industry is one of the main
roots of environmental pollution. Therefore, minimizing the environmental impact
of the manufacturing industry has become an important topic for all manufac-
turers. During these critical times, an advanced manufacturing mode, green
manufacturing, suitable for a sustainable development strategy has been presented.

There is a growing interest in green manufacturing [also called environmentally
conscious manufacturing (ECM)]. The current focus on green manufacturing is
different from the traditional focus on pollution control. Here, the emphasis is on
life cycle assessment (LCA). Products or processes are seen as interacting with the
environment, and could have chain reaction effects on environmental pollution.
Thus, rather than looking at any product or process in isolation, the manufacturer
needs to adopt a cradle-to-grave approach for the product or process. For example,
how much energy is expended in unit product manufacturing, how much resources
are used, how much waste is created, and what are the product requirements for
transportation and distribution? These are not issues that product designers are
accustomed to considering. Their traditional role has been to look at the product on
its own, and design products that meet specific guidelines and that may become
environmental pollution laws. Today’s focus is different. Manufacturers must take
a product stewardship approach, and this will predict their survival in today’s
competitive environment [33].

R. V. Rao, Advanced Modeling and Optimization of Manufacturing Processes,
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Industrial economies have generated a tremendous amount of waste that is often
not reused or properly disposed. Industrial societies are increasingly faced with the
problems of hazardous waste management, locating new landfills, and the deple-
tion of raw materials. Rather than continuing with this cycle of waste and
extravagance, industrial economies should find better ways to convert wastes from
one industry into input in another industry. This implies interdependence between
industries, where one industry’s output could become another’s input. This cycle
of dependence or reuse of material is generally referred to as recycling, and its
goal is to eliminate or reduce waste.

The manufacturing industries must seek to minimize environmental impact and
resource consumption during the entire product cycle. Industrial risk and the
diversification of risk types have both increased with industrial development. At
the same time, the risk acceptability threshold of the population has decreased. In
response, industry has developed methodologies for risk prevention and protection
[55]. Green manufacturing was first proposed about 15 years ago, so there are only
few examples that can be used to evaluate risks, and many uncertain factors.
Because of this incomplete and uncertain knowledge, decision-making methods
based on probabilities to represent risk, which need many examples, cannot be
used for green manufacturing projects [22]. In addition, green manufacturing
involves a very wide range of topics, such as environmental consciousness, life
cycle thinking, and sustainable development, which all increase the risk. There-
fore, risk decision-making in green manufacturing projects must consider multiple
indicators. Hua et al. [22] reported that industries are implementing green man-
ufacturing projects for sustainable production for four types of risk categories:
technological, organizational, financial and circumstantial. Each category is rela-
ted to certain risk factors. These risks are described below:

• Technological risk—since the concept of green manufacturing is relatively new,
its theories and technologies are still being developed. Only experience will
show whether, or not, each technology can be used in green manufacturing
projects to create extended benefits for industry, society, and in ecology.
Therefore, there are many technological risk factors, including reliability,
maintenance, and applicability.

• Organizational risk—green manufacturing is a new manufacturing mode with
the product cycle extending to the entire product life (raw materials, production,
use, recycling, and disposal), so traditional management methods are not suit-
able. Therefore, the management system must be reformed to successfully
implement green manufacturing, which will lead to unpredictable risks. The
main organizational risk factors are the integration of the management approach,
the knowledge level of the lead group, and the knowledge level of the personnel.

• Financial risk—green manufacturing projects require a very long investment
period due to the length of the entire product cycle, which increases the risk.
Corporate income is gained by saving energy and materials, protecting the
environment and workers, improving productivity and product quality, reducing
costs, and by accurate market timing.
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• Circumstantial risk—green manufacturing projects are constrained not only by
internal resources, but also by external resources. Many uncertain circumstantial
factors can cause critical risks and such external factors include laws, regula-
tions, macro-economic changes, and industrial development.

Almost every function within organizations has been influenced by external and
internal pressures to become environmentally sound. Issues, such as green con-
sumerism and green product development have impacted marketing. Finance,
information systems and technology, human resources and training, engineering
and research, and development are all organizational functions that have been
influenced by these environmental pressures. One of the functions that has been
profoundly influenced by environmental pressures is the organizational operations
and manufacturing function. The traditional reactive responses to these pressures
are now being supplemented and replaced by more proactive, strategic, competi-
tive responses. The research topics on ECM programs have focused on managerial
practices, business processes, and technology. ECM programs include proactive
measures, such as life cycle analysis of products, design for the environment,
design for disassembly, total quality environmental management, remanufacturing,
ISO14000 certification, and green supply chains. Each of these programs crosses
inter- and intra-organizational boundaries. These programs work hand in hand with
other environmental alternatives, such as development of environmental man-
agement systems, and green purchasing [40, 46]. Fei et al. (2005) presented the
green manufacturing problem framework of machining systems. A series of
investigations and practices on green manufacturing in machining system, per-
formed by the authors for quite a long period, were introduced in brief, such as the
optimizing system for raw material cutting, the matching system for energy saving
in machining, the design of highly efficient dry hobbing machine tools, the multi-
objective decision-making model for green manufacturing in machining systems,
and the decision-making supporting system for green manufacturing in machining
processes.

Pusavec et al. [38, 39] presented general issues, methods and a case study for
achieving production sustainability on a machining technology level. To tackle
these issues, the authors promoted the concept of sustainable production via the
alternative machining technologies, namely cryogenic and high-pressure jet-
assisted machining that have a high potential to cut costs and improve com-
petitiveness by reducing resource consumption and thus creating less waste. The
authors opined that the future of sustainable production is going to entail the
use of alternative machining technologies to reduce consumption rates, envi-
ronmental burdens and health risks simultaneously, while increasing perfor-
mances and profitability. A case study of machining high-temperature Ni-alloy
(Inconel 718) had shown that tooling costs represent the major contribution to
the overall production cost, which contradicts previous analyses, and that sus-
tainable machining alternatives offer a cost-effective route to improve eco-
nomic, environmental, and social performance in comparison to conventional
machining.
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Achieving sustainability in manufacturing requires a holistic view spanning not
just the product, and the manufacturing processes involved in its fabrication, but
also the entire supply chain, including the manufacturing systems across multiple
product life cycles. This requires improved models, metrics for sustainability
evaluation, and optimization techniques at the product, process, and system levels.
Jayal et al. [24] presented an overview of recent trends and new concepts in the
development of sustainable products, processes and systems. Recent trends in
developing improved sustainability scoring methods for products and processes,
and predictive models and optimization techniques for sustainable manufacturing
processes, focusing on dry, near-dry and cryogenic machining as examples, were
described.

Now the concept of environmental conscious manufacturing is presented using
environment-friendly machining as an example. Machining is one of the most
important and major manufacturing processes, and it is estimated that machining
processes contribute about 5% of the GDP in the developed world. The indirect
impact of machining, due to its effect on surface integrity, and hence on product
life, is even greater. Moreover, as economic factors induce shorter product cycles,
and more flexible manufacturing systems, the importance of machining is expected
to increase even further.

6.2 Environment-friendly Machining

The heat is generated in metal cutting operations due to plastic deformation of
work materials, friction at the tool–chip interface, and friction between the
clearance face of the tool and the work piece. The heat generation increases the
temperature of both the work piece and the tool point, resulting in decrease in
hardness, and hence tool life. The machined surface will also be less smooth, and
the possibility of built-up edge increases. Therefore, the use of a cutting fluid
during a machining operation is very essential. The major factors that govern the
selection of cutting fluids are: (1) the machining process, (2) cutting tool material,
and (3) work piece material. Other factors, such as compatibility with the machine
tool, performance requirements, operator interaction, environment friendliness,
and economy must also be looked into.

6.2.1 Dry Machining

Machining of materials without using any cutting fluids is called dry machining.
However, in most of the cases, a machining operation without cutting fluid will be
acceptable only if it is possible to guarantee that this equals or surpasses the part
quality and machining times achieved in wet machining. The introduction of dry
machining requires suitable measures to compensate for the primary functions of
the cutting fluid. But this, in turn, calls for a very detailed analysis of the boundary
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conditions and for thorough understanding of the complex interrelationships which
link the process, tool, part and machine tool. Klocke and Eisenblatter [25] pre-
sented a wide range of examples of successful implementation of dry machining of
cast iron, steel, aluminum and even super alloys and titanium. The introduction of
dry cutting techniques may also include, MQL e.g. milling and drilling of alu-
minum alloys, to achieve part quality and machining times comparable with wet
cutting. In practice, dry machining is only practical when all operations can be
done dry. Very often, this is not the case under present conditions. Appropriate
action, therefore, has to be taken to further improve the technology of dry cutting.

Sreejith and Ngoi [50] presented a state-of-art and the recent advancements in
dry machining. Dry machining is only possible when all the operations can be
done dry. Technology has to be further improved if dry cutting is to be fully
employed in industries. Kirillov et al. [27] considered the basic aspects of dry
cutting of hard-to-machine materials, with compensation of the physical functions
of the lubricant and coolant fluids and such compensation measures include the use
of a hard-alloy tool with a multifunctional multilayer nanostructural alloy; a
system for ionizing the gas supplied to the cutting zone; and a device for gener-
ating tangential ultrasound waves applied to the cutting tool.

Dudzinski et al. [12] presented advances concerning dry and high-speed
machining of Inconel 718. Some solutions to reduce the use of coolants were
explored, and different coating techniques to enable a move towards dry
machining were examined. In dry machining, the positive effects of coolants have
to be obtained by another way. For the removal of chips from cutting zone, heat
evacuation must be guaranteed. The process must preserve an acceptable surface
integrity. Tools with high hot hardness, high refractivity, low adhesion and low
friction properties are required. Oxide PVD-coatings combine a reduction of
friction at elevated temperature with high wear resistance, and show excellent
performance during drilling high strength materials. Solid lubricants, such as
MoS2/titanium composite coatings or WC/C coatings give useful results when
machining Inconel 718 under dry conditions.

Experiments and machining simulation have to work together to find a way to
the dry cutting of Inconel 718. The objective is to find the suitable tool and
appropriate coating to define the better geometrical tool configuration and the
optimal cutting conditions to obtain more acceptable surface integrity and the
longer tool life.

Chiou et al. [8] investigated the performance of a cutting tool embedded with a
heat pipe on reducing cutting temperature and wear in machining. An embedded
heat pipe technology was developed to effectively remove the heat generated at the
tool–chip interface in machining, thereby, reducing tool wear and prolonging tool
life. In particular, the technique can effectively minimize pollution and contami-
nation of the environment caused by cutting fluids, and the health problems of skin
exposure and particulate inhalation in manufacturing. The ANSYS finite element
analysis simulations showed that the temperature near the cutting edge drops
significantly with an embedded heat pipe during machining. Experiments were
carried out to characterize the temperature distributions when performing turning
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experiments using a cutting tool installed with an embedded heat pipe. The per-
formance of the heat pipe on reducing the cutting tool temperature was further
supported by the observations of cutting tool material color, chip color, and the
chip radius of curvature.

Marksberry and Jawahir [34] presented a new method to predict tool-wear/tool-
life performance in near-dry machining (NDM) by extending a Taylor speed-based
dry machining equation. Experimental work and validation of the model was
performed in an automotive production environment in the machining of steel
wheel rims. Tool wear measurements obtained during the validation of the model
showed that NDM can improve tool-wear/tool-life over four times compared to
dry machining.

6.2.2 Cryogenic Machining

Cryogenic cooling in metal cutting has been studied nearly for six decades,
however, many of the studies and most remarkable of them particularly in terms of
application methods have been done in last decade and striking results have been
achieved. Cryogenic cooling is still attractive and has been examined in material
cutting field. Almost all type of materials from ductile to hard and brittles have
been machined in cryogenic cooling studies by many cutting tools. However,
different kinds of steels were used widely in tests; non-ferrous metals, non-
metallic and composite materials should be examined more. In addition, most of
the studies have included turning operations. Other machining operations such as
milling and drilling could be attempted more with cryogenic cooling. When
compared with dry cutting and conventional cooling, the most considerable
characteristics of the cryogenic cooling application in machining operations could
be determined as enabling substantial improvement in tool life and surface finish-
dimensional accuracy through reduction in tool wear through control of machining
temperature desirably at the cutting zone.

Cryogenic machining imparts several improvements that can be categorized as:
(1) environmentally friendly and safe: Nitrogen is a non-hazardous gas that con-
stitutes 79% of atmospheric air; (2) increased productivity: both hardness and
toughness of cutting tool materials have been shown to increase under cryogenic
cooling, allowing increased material removal rates. Tool wear was also observed
to be uniform and predictable, (3) improved surface quality: cryogenically
machined powder metal and hardened steel parts showed reduced surface and
subsurface damage, and improved fatigue resistance. Compressive residual stres-
ses and white layer characteristics have also been shown to improve with cryo-
genic cooling, (4) step reduction and process change: cryogenic cooling results in
more economical machining in the fully heat-treated condition for most PM parts,
allowing intermediate heat-treating steps to be eliminated. For hard materials,
cryogenic cooling may also enable a process change from slow grinding to a faster
hard turning process.
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Cryogenic cooling has been executed in cutting operations in different ways
using liquid nitrogen for pre-cooling the workpiece, cooling the chip, cooling the
cutting tool and cutting zone. Cutting tool and cutting zone have been cooled
cryogenically by heat transmission, general repulsing of the coolant to the cutting
zone and spraying in jets with nozzles too. Cold temperatures were also used for
strengthening of the cutting tools by cryogenic treatment. Many studies have been
done to explore the most efficient one. In these studies, comparisons have been
made between conventional cutting strategies and cryogenic cooling methods,
however, opposite outcomes have been proved by the researchers, such as pro-
ducing of the LN2 jet application was the best results, providing of indirect
cryogenic cooling better performance than LN2 sprays and being cooling of the
tool more significant than the cooling of workpiece at high-cutting speeds in
cryogenic machining and the opposite claim at low-cutting speeds regarding of
tool life.

Hong et al. [21] reviewed how the temperature affects Ti-6Al-4V properties,
and compared different cryogenic cooling strategies. Based on these findings, a
new economical cryogenic cooling approach was proposed. Using a minimum
amount of liquid nitrogen (LN2), this innovation featured a specially designed
micro-nozzle. Formed between the chip breaker and the tool rake face, the nozzle
lifts the chip and injects focused LN2 into the chip–tool interface at the point of
highest temperature. As the nitrogen evaporates, a nitrogen cushion formed by
evaporating nitrogen lowers the coefficient of friction between the chip and the
tool. An auxiliary mini-nozzle that sprays LN2 onto the flank at the cutting edge
further reduces the cutting temperature. The study found that the combination of
these two micro-nozzles provides the most effective cooling while using the lowest
LN2 flow rate. The cryogenic machining tests showed that tool life increases up to
five times the state-of the-art emulsion cooling, outperforming other machining
approaches.

Paul et al. [37] conducted experimental investigation in the role of cryogenic
cooling by liquid nitrogen jet on tool wear and surface finish in plain turning of
AISI 1060 steel at industrial speed-feed combination by two types of carbide
inserts of different geometric configurations. The results were compared with dry
machining and machining with soluble oil as coolant. The results indicated sub-
stantial benefit of cryogenic cooling on tool life and surface finish. This was
attributed to mainly reduction in cutting zone temperature and favorable change in
the chip–tool interaction. Further, it was evident that machining with soluble oil
cooling failed to provide any significant improvement in tool life, rather surface
finish was deteriorated. Dhar et al. [10] investigated the role of cryogenic cooling
by liquid nitrogen jet on average chip–tool interface temperature, tool wear,
dimensional accuracy and surface finish in turning AISI 4140 steel under industrial
speed–feed conditions.

De Chiffre et al. [9] carried out experimental investigations in which the effi-
ciency of cryogenic CO2 was compared with that of a commercial water-based
product with respect to tool life, cutting forces, chip disposal and workpiece
surface finish. The experimental results showed that CO2 applied at a rate of about
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6 g/s is an efficient coolant for threading as well as for parting/grooving stainless
steel. Threading can be carried out with gas alone but the best performance was
obtained adding 6 ml/min unadditivated vegetable oil to the gas. In the case of
parting/grooving, addition of oil (10 ml/min) to the gas is mandatory.

Dhar and Kamruzzman [11] dealt with experimental investigation in the role of
cryogenic cooling by liquid nitrogen jet on cutting temperature, tool wear, surface
finish and dimensional deviation in turning of AISI 4037 steel at industrial speed–
feed combination by coated carbide insert. The results were compared with dry
machining and machining with soluble oil as coolant. The results of the work
indicated substantial benefit of cryogenic cooling on tool life, surface finish and
dimensional deviation. This was attributed mainly to the reduction in cutting zone
temperature and favorable change in the chip–tool interaction. Further, it was
evident that machining with soluble oil cooling failed to provide any significant
improvement in tool life, rather surface finish was deteriorated.

Kumar and Choudhury [28] conducted experimental study of the effect of
cryogenic cooling on tool wear and high-frequency dynamic cutting forces gen-
erated during high-speed machining of stainless steel. Experiments were carried
out both in dry and cryogenic conditions as per design of experiments to under-
stand the relative advantage offered by cryogenic cooling. It was found from the
experimental results that cryogenic cooling was effective in bringing down the
cutting temperatures that attributed for the substantial reduction in the flank wear
(37.39%) and such input parameters as speed, feed and depth of cut were corre-
lated with output parameters, namely cutting force and flank wear through a
regression equation. It was concluded that cryogenic cooling is a possible answer
for high-speed environment-friendly machining.

Firouzdor et al. [14] studied the influence of deep cryogenic treatment on wear
resistance and tool life of M2 HSS drills in high-speed dry drilling configuration of
carbon steels. The experimental results indicated 77 and 126% improvement in
cryogenic-treated and cryogenic- and temper-treated drill lives, respectively. The
results of wear rate test were in agreement with drill life test. Chemical compo-
sition of chips were also reported to show the onset of seizure in drilling test and
the consequence of seizure in promoting dissolution wear by diffusion mechanism.
Wear resistance improvement was mainly attributed to the resistance of cryo-
genically treated drills against diffusion wear mechanism, due to the formation of
fine and homogeneous carbide particles during cryogenic treatment. In addition,
transformation of retained austenite to martensite played an effective role, i.e.
improved hardness values.

Aggarwal et al. [2] optimized multiple characteristics (tool life, cutting force,
surface roughness and power consumption) in CNC turning of AISI P-20 tool steel
using liquid nitrogen as a coolant. Four controllable factors of the turning process
viz. cutting speed (A), feed (B), depth of cut (C) and nose radius (D) were studied.
The ranges of A, B, C and D were 120–200 m/min, 0.10–0.14 mm/rev,
0.2–0.5 mm, and 0.4–1.2 mm respectively. Face centered central composite
design was used for experimentation. Response surface methodology was used for
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modeling the responses. The responses were consequently expressed in the form of
regression equations as follows:

Cutting force ¼ �220:74� 5:16Aþ 9507:92Bþ 470:92C� 23:24Dþ 4:41AB

þ 0:51AC� 1483:54BCþ 0:01A2 � 34885:52B2 � 172:63C2

þ 17:34D2 � 8:26 ð6:1Þ

Tool life ¼ 80:85� 0:19Aþ 98:14B� 12:78C� 0:38Dþ 0:08AB� 1048:38B2

� 14:69C2 � 0:083 ð6:2Þ

Surface roughness ¼ 6:97� 4:41E� 003A� 101:62B� 1:08C� 0:21Dþ 7:29e

� 003ACþ 4:58BC� 2:03BDþ 446:77B2 þ 0:05D2

� 2:083e� 003 ð6:3Þ

Power consumption ¼ 320:92þ 3:33A� 7888:88B� 51:85Cþ 161:11D

� 6:25ABþ 8:33ACþ 54166:66B2 � 533:33 ð6:4Þ

The high value of coefficient of determination indicated that the model ade-
quately explained the CNC turning process. The models were adequate, but it
would become very cumbersome to determine the optimal value using this tech-
nique. Desirability function was thus used to overcome this problem. Desirability
function was used for single and multiple response optimization.

Yildiz and Nalbant [58] investigated liquid nitrogen as a cryogenic coolant in
terms of application methods in material removal operations and its effects on
cutting tool and workpiece material properties, cutting temperature, tool wear/life,
surface roughness and dimensional deviation, friction and cutting forces. As a
result, cryogenic cooling has been determined as one of the most favorable method
for material cutting operations due to being capable of considerable improvement
in tool life and surface finish through reduction in tool wear through control of
machining temperature desirably at the cutting zone.

Reddy et al. [44] conducted machining studies on C45 workpiece using both
untreated and deep cryogenic-treated tungsten carbide cutting tool inserts. The
machinability of the C45 steel workpiece was evaluated in terms of flank wear of
the cutting tool inserts, main cutting force and surface finish of the machined
workpieces. The flank wear of deep cryogenic-treated carbide tools was lower than
that of untreated carbide tools on machining of C45 steel. The cutting force during
machining of C45 steel was lower with the deep cryogenic-treated carbide tools
when compared with the untreated carbide tools. The surface finish produced on
machining the C45 steel workpiece was better with the deep cryogenic treated
carbide tools than when compared with the untreated carbide tools.

El-Tayeb et al. [13] investigated the potential of cryogenic effect on frictional
behavior of a newly developed titanium alloy Ti–5Al–4V–0.6Mo–0.4Fe (Ti54)
sliding against tungsten carbide and compared with conventional titanium alloy
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Ti6Al4V (Ti64). Four models were developed to describe the interrelationship
between the friction coefficient (response) and independent variables such as
speed, load, and sliding distance (time). These variables were investigated using
the design of experiments and utilization of the response surface methodology
(RSM). Using this method, it was possible to study the effect of main and mixed
(interaction) independent variables on the friction coefficient (COF) of both tita-
nium alloys. Under cryogenic condition, the friction coefficient of both Ti64 and
Ti54 behaved differently, i.e. an increase in the case of Ti64 and decrease in the
case of Ti54. For Ti64, at higher levels of load and speed, sliding in cryogenic
conditions produced relatively higher friction coefficients when compared with
those obtained in dry air conditions. In contrast, introduction of cryogenic fluid
reduced the friction coefficients of Ti54 at all tested conditions of load, speed, and
time.

By using the factorial design, a total of 17 experiments were conducted and
regression coefficients were calculated. The full models for average friction
coefficients of Ti64 and Ti54 for each sliding condition, i.e. dry and cryogenic,
were obtained as shown below.

• For dry friction coefficient of Ti64D:

COFD64 ¼ 0:5694þ 0:0122Sþ 0:0422L þ 0:0139T� 0:0184L2 � 0:0074T2

� 0162S ð6:5Þ

• For cryogenic friction coefficient of Ti64C

COFC64 ¼ 0:5069þ 0:0395Sþ 0:0377Lþ 0:015Tþ 0:045LT ð6:6Þ

• For dry friction coefficient of Ti54D

COFD54 ¼ 0:5841þ 0:037Sþ 0:0451L þ 0:016T� 0:0264L2 þ 0:034SL
þ 0:0446LT ð6:7Þ

• For cryogenic friction coefficient of Ti54C

COFC54 ¼ 0:4581þ 0:0582Sþ 0:0549L� 0:0112T� 0:0185L2 � 0:0235T2

ð6:8Þ

where S sliding speed (m/s), L = 2 9 normal load (N), and T = 3 9 sliding
time (min).

It should be noted that the above equations are valid over the range of tested
conditions 0.1295\ speed\ 0.9705 m/s; 6.464\ load\ 22.956 N; 2.636\
sliding time\ 9.364 s for sliding the titanium alloys (Ti64D, Ti64C, Ti54D, and
Ti54C) on counterface of tungsten carbide. The established models indicated that
interaction of loads and speeds was more effective for both Ti-alloys, and have
the most substantial influence on the friction. In addition, coefficient of friction
(COF) for both alloys behaved linearly with the speed, but non-linearly with the
load.
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Abdulkareem et al. [1] studied the cooling effect of copper electrode on the die-
sinking of electrical discharge machining of titanium alloy (Ti-6Al-4V). Investi-
gation on the effect of cooling on electrode wear and surface roughness of the
workpiece was carried out. Design of experiment plan for rotatable central com-
posite design of second order with four variables at five levels each was employed
to carry out the investigation. Current intensity (I), pulse on-time (ton), pulse off-
time (toff), and gap voltage (v) were considered as the machining parameters, while
electrode wear and surface roughness were the responses. The analysis of the
influence of cooling on the responses was carried out and presented. It was pos-
sible to reduce electrode wear ratio up to 27% by electrode cooling. Surface
roughness was also reduced while machining with electrode cooling. After the
EDM of titanium alloy with and without liquid nitrogen using copper electrodes, it
was observed that the liquid nitrogen reduces the temperature of copper electrode
thereby minimizes its melting and vaporization and the cooling effect of liquid
nitrogen improves the electrical and thermal conductivities of copper. It was also
observed from the experimental results that irrespective of the values of the
machining parameters used, there was a reduction in wear of electrode and surface
roughness was smoother during the EDM of titanium alloy with liquid nitrogen.

Li et al. [31] studied the effect of deep cryogenic treatment (DCT) on the
microstructure and properties (hardness, toughness and the content of retained
austenite) of a new developed cold work die steel (Cr8Mo2SiV). The execution of
the DCT in different processes showed a varying effect on materials. It was shown
that the hardness of the DCT specimens was higher (+0.5HRC to +2HRC),
whereas the toughness was lower when compared with the conventionally treated
specimens (quenching and tempering).

Gill et al. [16] reviewed the cryoprocessing aspects of the cutting tools.
Cryoprocessing, a supplementary process to conventional heat treatment process,
is the process of deep-freezing materials at cryogenic temperatures to enhance the
mechanical and physical properties of materials being treated. The execution of
cryoprocessing on cutting tool materials increases wear resistance, hardness, and
dimensional stability and reduces tool consumption and down time for the machine
tool set up, thus leading to cost reductions. The three most significant parameters
of cryoprocessing identified as primarily affecting the wear resistance/tool life
were soaking temperature, soaking period, and cooling rate. However, these
treatment parameters need to be optimized with respect to tool material and type of
machining process. Determination of appropriate levels of the above parameters
will result in maximum wear resistance as well as save time and energy involved
in the process. The effects of cryoprocessing on tool steels and carbides, metal-
lurgical aspects including reduced amount of retained austenite, precipitation of
g-carbides, phase change in carbides, improvement in wear resistance, and
applications were reviewed for manufacturing industry. The improvement in wear
resistance and hardness by cryoprocessing was attributed to the combined effect of
conversion of retained austenite to martensite and precipitation of g-carbides in
case of tool steels. The phenomenon responsible for improved wear resistance in
carbide cutting tools is the combined effect of increased number of g phase
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particles and increase in bounding strength of binders used. Although it was
confirmed that cryogenic processing can improve the service life of tools, the
degree of improvement experienced and the underlying mechanism remains
ambiguous. The steps involved in cryoprocessing are critical enough to account for
the significant incongruity in post-treated performance.

Sharma et al. [48] presented an overview of major advances in techniques as
minimum quantity lubrication (MQL)/near-dry machining (NDM), high-pressure
coolant (HPC), cryogenic cooling, compressed air cooling and use of solid
lubricants/coolants. A brief survey of modeling/FEA techniques was also per-
formed and the following observations were made (from [48]; reprinted with
permission from Elsevier).

• The application of cryogenic cooling for turning of difficult to cut materials has
resulted in several fold increase in tool life without compromising on the
environmental conditions. Tool life improves dramatically due to the fact that
cryogenic fluid is able to penetrate the chip–tool interface and perform both
lubrication and cooling functions satisfactorily, but cooling function in partic-
ular. Productivity is also high as cryogenic cooling shows better results at higher
feed rates.

• With the MQL/NDM technique, there can be a remarkable reduction in
machining cost, quantity of lubricant used and surface roughness by properly
orienting the nozzle on flank face of the tool. Further performance of MQL can
be enhanced using chip evacuation system. From viewpoint of cost, health,
safety and environment, performance of MQL technique is better with the use of
vegetable oils as compared to mineral oils.

• Turning with HPC technique results in formation of segmented chips, better
penetration at interface and thus lower cutting force, better tool life and
acceptable surface finish. It seems to be a potential solution for turning of hard-
to-cut materials. Directing the nozzle at particular location plays a vital role in
machining with HPC.

• Performance of solid lubricants is better at higher cutting speed, it means they
offer opportunities for increasing the MRR. Higher the adhesion quality of solid
lubricants, better will be their performance. Pollution-free environment and
capacity to handle high-cutting temperature are encouraging the use of these
lubricants.

• Air, water vapor and other environment-friendly gases mixtures are better
solutions for green cutting. Air when mixed with oil gives better performance.
The use of water vapor as coolant is encouraging due to their better lubrication
qualities. Straight oils provide the best lubrication but poor cooling capacities.
Water, on the other hand, is an effective cooling agent, removing heat 2.5 times
more rapidly than the oil. The performance of water is encouraging when it is
mixed with soluble oils.

• Researchers proposed the use of vegetable oils as coolants in cutting. The
performance of coconut oil as coolant was encouraging at lower cutting speeds.

350 6 Environmental Aspects of Manufacturing Processes



It indicates that other types of vegetable oil can also be checked for their
suitability as coolant in turning process.

• The use of heat pipe arrangement in the tool holder is another alternative of low
cost environment-friendly cooling in machining.

• All types of cooling techniques gave good results with almost all the tool
materials in particular with carbide (coated/uncoated) and PCBN.

• Development of analytical models and application of FEA techniques helps in
predicting the tool wear, surface characteristics, fluid aerosol generation, etc.
under different cooling methods. These models and FEA techniques can serve as
a basis for planning machining process with use of different cooling techniques.

6.2.3 Solid Lubricant-Assisted Machining

Solid lubricant-assisted machining is a novel concept to control the machining
zone temperature without polluting the environment. Graphite and molybdenum
disulfide (MoS2) are the predominant materials used as solid lubricants [47]. In the
form of dry powder, these materials are effective lubricant additives due to their
lamellar structure. The lamellas orient parallel to the surface in the direction of
motion. Even between highly loaded stationary surfaces, the lamellar structure is
able to prevent contact. In the direction of motion, lamellas easily shear over each
other resulting in a low friction. Large particles perform better on relatively rough
surface at low speed, finer particle on relatively smooth surface and at higher
speeds. Other components that are useful solid lubricants include boron nitride,
polytetrafluoroethylene (PTFE), talc, calcium fluoride, cerium fluoride and tung-
sten disulfides.

Reddy and Rao [43] investigated the role of solid lubricant-assisted machining
with graphite and molybdenum disulfide lubricants on surface quality, cutting
forces and specific energy while machining AISI 1045 steel using cutting tools of
different tool geometry (radial rake angle and nose radius). The performance of
solid lubricant-assisted machining was studied in comparison with that of wet
machining. The results indicated that there was a considerable improvement in the
process performance with solid lubricant-assisted machining when compared with
that of machining with cutting fluids.

Experiments were carried out to study the effect of solid lubricants on surface
finish and chip thickness. It was observed that both the factors improved by the use
of solid lubricants because of effective removal of heat from the cutting zone [35].

During the machining of thoroughly hardened AISI 52100 steel with ceramic
inserts by using solid lubricants such as graphite and molybdenum disulfide, it was
observed that at high-cutting speed range, the solid lubricants were more effective.
Solid lubricant-assisted hard turning produced low value of surface roughness
when compared with the dry hard turning. The decrease in surface roughness due
to solid lubricants can be attributed to the inherent lubricating properties of the
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solid lubricants even at extreme temperatures. This is due to the layered lattice
structure of these lubricants [49].

Guleryuz et al. [18] reported the machining and wear performance of TiN-
coated and patterned carbide inserts incorporating indium as a solid lubricant.
Cutting tests were conducted by turning hardened 4340 steel in both lubricated and
dry conditions. During turning, periodic flank wear measurements were made. The
chips formed during cutting were examined by scanning electron microscopy, as
the condition of the chip reflects the conditions obtained during machining. Inserts
subject to dry machining were also examined using optical microscopy and X-ray
photoelectron spectroscopy to determine the extent of damage on the rake surface
as well as the degree of material transfer. The results showed indium to be
effective in reducing flank wear during lubricated machining, but little additional
benefit of patterning was observed. For dry machining, some degree of improve-
ment was noted in the patterned sample, but the degree of lubricity brought about
by the indium coating was not sufficient and the overall flank wear was higher than
the lubricated tests. However, the wear and damage on the rake surface along the
path of the chip was reduced by the presence of the in-containing micro-reservoirs.
An additional test was conducted using an instrument that simulates temperature
effects during machining, and it was found that the lubricity achieved by coatings
is lost above 450�C. These results suggest that the use of indium is limited to
below this temperature, and above this temperature transforms to a less lubricious
indium oxide.

Low values of surface roughness while turning with solid lubricants is due to
the inherent lubricating properties of these lubricants even at extreme tempera-
tures. Value of surface roughness produced by molybdenum disulfide as lubricant
is lower than that produced by graphite as lubricant due to its strong adhesion
quality in comparison to graphite. The value of cutting forces is less with solid
lubricants when compared with dry and wet machining due to the lattice layer
structure of solid lubricants, which acts as an effective lubricant film. Above all,
solid lubricants are environment-friendly and produce no harmful effect on the
newly generated work surface.

The role of machining process modeling is recognized in industry, due to the
relevant advantages that an effective and reliable model can supply [5]. Within this
framework, the potentialities linked to the use of advanced numerical models and
in particular finite-element techniques have been recognized by a large number of
researchers all over the world [29]. For machining under wet cutting conditions,
the research till now has been either experimental investigations or finite-element
method simulations. It is important to characterize the thermal field in the cutting
zone to design an efficient cryogenic cooling system for high-speed machining.
Researchers used Jeager’s model of moving heat sources and block partition
principles to estimate average temperature at the shear plane and at the chip–tool
interface. However, this model could not be taken into account variation in thermal
properties of work and tool material with temperature, the elasto-plastic nature of
chip–tool interaction, work–tool interaction at the wear land in flank, etc. [32].
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Three-dimensional FEM models are marginally more accurate than two-dimensional
models, but these are complex to develop and require more computational effort.

Considering the intricacies involved in the heat transfer of the cryogenic cutting
process, the FE results can be a good reference for understanding the temperature
distribution on tool [20]. Based on the finite difference method (FDM), a thermal
analysis was performed to decide the ejection direction of the coolant. It was
concluded that cooling fluid should be ejected towards the rake and clearance faces.

To address the issue of the environmental concerns of cutting fluids in near-dry
machining, Bell et al. [4] developed an analytical model to predict the aerosol
generation rate. The cutting fluid aerosol generation in turning process is due to
spin-off, splash and evaporation mechanism separately or in combination. In the
analytical model, two primary aerosol formation mechanisms were considered:
aerosol runaway and evaporation, when air–fluid mixture is applied to the insert
flank face. Both the analysis and experimental results showed that the aerosol
runaway has a significantly higher effect on aerosol generation in near-dry turning.
The analytical results showed a good agreement with the experimental results.

6.2.4 Minimal Quantity Lubrication Machining

Brinksmeier et al. [6] showed the effect of coolant type, coolant composition and
coolant supply on grinding processes and process results. Investigations in the
fields of fluid dynamic processes in supply nozzles and in the grinding zone are the
key to optimization of cooling and lubrication during grinding, thus offering the
chance to minimize the amount of coolant in circulation, leading to a reduction in
adverse environmental effects and cost.

Hassan and Yao [19] optimized the process of face milling of (a ? b) titanium
alloy while using MQL as the cooling technique using the Taguchi method. The
cutting speed, feed rate and depth of cut were optimized with consideration of
multiple performance characteristics including tool life, volume removed and
surface roughness. The experimental results showed that the multiple performance
characteristics can be simultaneously improved through this approach, and the feed
rate is the most influential cutting parameter in the face milling of titanium alloys.

Li and Liang [30] developed the analytical understanding of mechanical and
environmental effects of MQL in machining and profiles the MQL performance as
functions of machining and fluid application parameters. Physics-based predictive
models were formulated to quantitatively describe the resulting contact stress and
temperature distributions under completely dry, MQL (under boundary lubrica-
tion) and flood cooling conditions in cylindrical turning. On that basis, the air
quality effects in terms of cutting fluid aerosol emission rate and droplet size
distribution were derived through the modeling of evaporation, runaway aerosol
atomization, and dissipation processes. In addition, the abrasion, adhesion, and
diffusion wear mechanisms under time-evolving cutter geometry were quantita-
tively evaluated for the development of a tool wear and tool life relationship with
the fluid application condition. Experimental measurements of force, temperature,
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aerosol concentration, and tool flank wear rate in dry, MQL, and fluid cooling
cases were also pursued to calibrate and validate the predictive models. The MQL
performance profile was assessed through the sensitive analysis of tool utilization,
power consumption, and air quality with respect to MQL application parameters;
and it serves as a basis to support the overall optimization of machining process by
incorporating both mechanical and environmental considerations.

Bruni et al. [7] investigated the effect of lubrication-cooling condition on
surface roughness in finish face milling operations. Different cutting speeds and
lubrication-cooling conditions (dry, wet and MQL), in finish face milling of AISI
420 B stainless steel, were considered. Analytical and artificial neural network
models, able to predict the surface roughness under different machining condi-
tions, were proposed.

Iqbal et al. [23] studied the effects of four parameters, namely, hardened steel’s
microstructure, workpiece inclination angle, cutting speed, and radial depth of cut
on tool life and surface roughness (in directions of feed and pick-feed). The
milling was performed under environment of MQL, using coated carbide ball-nose
end mills. The quantification of the effects was done using a new response surface
methodology known as the D-optimal method. For tool life, workpiece material
was found as the most influential parameter followed by the rotational speed of
tool. High values of tool’s rotational speed proved unfavorable for tool life but
favorable for surface finish. In addition, the effects of workpiece inclination angle
and radial depth of cut were analyzed upon effective cutting speed and cusp height
and, subsequently, upon surface roughness. The major tool damage mechanisms
detected were notch wear, adhesion, and chipping. The severity of chipping was
relatively smaller when compared with that of adhesion and of notch wear because
of reduced effective cutting speeds and feed rate employed.

In the MQL technique, a large volume of oil mist is discharged to the envi-
ronment. Aoyama et al. [3] proposed a new lean lubrication system for a near-dry
machining process called ‘‘direct oil drop supply system (DOS)’’. The perfor-
mance of the DOS technique was evaluated by the milling processes. The DOS
technique can supply a very small oil drop directly to the cutting edge without
making oil mist, and the DOS showed almost same machining performances as
compared to the MQL technique.

Gaitonde et al. [16] investigated MQL in machining as an established alter-
native to completely dry or flood lubricating system from the viewpoint of cost,
ecology and human health issues. The work was aimed at determining the opti-
mum amount of MQL and the most appropriate cutting speed and feed rate during
turning of brass using K10 carbide tool. Taguchi technique with the utility concept,
a multi-response optimization method, was proposed for simultaneous minimiza-
tion of surface roughness and specific cutting force. The experiments were planned
as per Taguchi’s L9 orthogonal array with each experiment performed under
different conditions of MQL, cutting speed and feed rate. The analysis of means
(ANOM) and ANOVA on multi-response signal-to-noise (S/N) ratio were
employed for determining the optimal parameter levels and identifying the level of
importance of the process parameters. The optimization results indicated that
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MQL of 200 ml/h, cutting speed of 200 m/min and a feed rate of 0.05 mm/rev was
essential to simultaneously minimize surface roughness and specific cutting force.

Sreejith [51] reported on the effect of different lubricant environments when
6061 aluminum alloy was machined with diamond-coated carbide tools. The effect
of dry machining, MQL, and flooded coolant conditions was analyzed with respect
to the cutting forces, surface roughness of the machined work piece and tool wear.
The three types of coolant environments were compared. It was found that MQL
condition would be a very good alternative to flooded coolant/lubricant conditions.
Therefore, it appears that MQL, if properly employed, can replace the flooded
coolant/lubricant environment which is presently employed in most of the cutting/
machining applications, thereby not only the machining will be environmental-
friendly but also will improve the machinability characteristics.

Tasdelen [52] dealt with the results obtained at cutting with MQL at different
oil amounts, dry compressed air and emulsion. The results were discussed in terms
of wear, chip contact, forces/torques and surface finish. The short hole drilling
tests with indexable inserts showed that MQL and compressed air usage had
resulted lower wear both on the center and periphery insert compared to drilling
with emulsion. The surface finish values had shown that cutting with compressed
air resulted in side flow and sticking of the work piece material on the walls of the
hole that gave bad surface finish. The longer chips were evidenced for emulsion in
comparison to MQL and air assisted drilling.

Nandi and Davim [36] directed high-pressure coolant jets into the tool–chip
interface to sufficiently penetrate and change the thermal, frictional and
mechanical conditions in the cutting zone. High-pressure cooling using neat oil
and water-soluble oil was undertaken and its effects on machining evaluation
parameters such as chip form, chip breakability, cutting forces, coefficient of
friction, contact length, tool life and surface finish of the finished workpiece were
evaluated in comparison with those from the conventional cooling method. The
results showed that significant improvement in tool life and other evaluation
parameters could be achieved utilizing moderate range of coolant pressure.

Fratila [15] presented an overview on some requirements to be considered for a
successful MQL application into industrial practice. The evaluation of NDM
effects on the gear milling process efficiency, with respect to hob wear, surface
quality, cooling effect, and environment protection was carried out. Khan et al.
[26] presented the effects of MQL by vegetable oil-based cutting fluid on the
turning performance of low alloy steel AISI 9310 when compared with completely
dry and wet machining in terms of chip–tool interface temperature, chip formation
mode, tool wear and surface roughness. The MQL was provided with a spray of air
and vegetable oil. MQL machining performed much superior as compared to the
dry and wet machining due to substantial reduction in cutting zone temperature
enabling favorable chip formation and chip–tool interaction. It was also seen from
the results that the substantial reduction in tool wears resulted in enhanced the tool
life and surface finish.

Wang et al. [57] investigated the effects of different coolant supply strategies
(using flood coolant, dry cutting, and MQL) on cutting performance in continuous
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and interrupted turning process of Ti6Al4V. Based on the observation of the
cutting forces with the different coolant supply strategies, the mean friction
coefficient in the sliding region at the tool–chip interface WAS obtained and used
in a finite-element method (FEM) to simulate the deformation process of Ti6Al4V
during turning. From the FEM simulation and Oxley’s predictive machining the-
ory, cutting forces were estimated under different coolant supply strategies.

Nandi and Davim [36] studied the drilling performances with minimum
quantity lubricant (MQL). Fuzzy logic rules, which were derived based on fuzzy
set theory, were used to develop fuzzy rule-based model (FRBM). The perfor-
mance of FRBM depended on two different aspects: structures of fuzzy rules and
the associated fuzzy sets [membership function distributions (MFDs)]. The aim of
the study was to investigate the performances of FRBMs based on Mamdani and
TSK-types of fuzzy logic rules with different shapes of MFDs for prediction and
performance analysis of machining with MQL in drilling of aluminum alloy. A
comparison of the model predictions with experimental results and those published
in the literature showed that FRBM with TSK-type fuzzy rules described excellent
trade-off with experimental measurements.

Tawakoli et al. [53, 54] studied the influences of workpiece hardness and
grinding parameters including wheel speed, feed rate and depth of cut on the basis
of the grinding forces and surface quality properties to develop optimum grinding
performances, such as cooling, lubrication, high ecological and environmental
safety.

Rao and Patel [41] presented a cylindrical grinding operation in which four
short-listed grinding fluids were tested. Eight cutting fluid criteria were considered,
of which four were the machining process output variables such as wheel wear
(WW), tangential force (TF), grinding temperature (GT), and surface roughness
(SR), and four were the cutting fluid properties and characteristics, such as
recyclability (R), toxic harm rate (TH), environment pollution tendency (EP) and
stability (S). The authors had proposed a multiple attribute decision-making
(MADM) method known as PROMETHEE for selection of right cutting fluid. In
another work, Rao and Patel [42] proposed a novel MADM method for cutting
fluid selection considering the objective weights of the cutting fluid selection
attributes and the preferences of the decision maker.

Tawakoli et al. [53] carried out investigations on the influence of different types
of coolant lubricants and grinding wheels on the grinding process results. The tests
were performed in presence of fluid, air jet and 11 types of coolant lubricants, as
well as, in dry condition. The grinding wheels employed were vitrified bond
corundum, resin bond corundum and vitrified bond SG wheels. The results indi-
cated that SG wheels and MQL oils have potential in comparison to vitrified and
resin bond corundums and water miscible oils. In addition, the lowest thermal
damages, material side flow on the ground surface and wheel loading were gen-
erated by using the SG grinding wheel in MQL grinding process. In another work,
Tawakoli et al. [54] showed that the setting location of the nozzle is an important
factor regarding the effective application of MQL oil mist. It was shown that
optimal grinding results can be obtained when the MQL nozzle is positioned
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angularly toward the wheel (at approximately 10�–20� to the workpiece surface).
In addition, it was found that the efficient transportation of oil droplets to the
contact zone required higher mass flow rate of the oil mist towards the grains flat
area and longer deposition distance of an oil droplet. Grinding forces and surface
roughness has been achieved.

Sadeghi et al. [45] compared several grinding fluids, including mineral, vege-
table and synthetic esters oil, on the basis of the grinding forces and surface quality
properties that would be suitable for MQL grinding applications, to develop a
multifunctional fluid having the MQL results such as cooling, lubrication and high
ecological and environmental safety performances. The grinding performance of
fluids was also evaluated in dry and conventional fluid grinding techniques.

Tosun and Pihtili [56] presented the optimization of the face milling process of
7075 aluminum alloy by using the gray relational analysis for both cooling
techniques of conventional cooling and MQL, considering the performance
characteristics such as surface roughness and material removal rate. Experiments
were performed under different cutting conditions, such as spindle speed, feed
rate, cooling technique, and cutting tool material. The cutting fluid in MQL
machining was supplied to the interface of work piece and cutting tool as pul-
verize. An orthogonal array was used for the experimental design. Optimum
machining parameters were determined by the gray relational grade obtained from
the gray relational analysis.

As cutting fluids are widely used in industrial machining operations, and
because of their negative effects on health, safety, and environment, legislation
and public environmental concerns now have great impacts on their development.
Dry machining and minimum quantity lubrication (MQL) machining have been
successfully applied in some kinds of machining processes. However, in others,
such as grinding, it is very difficult to obtain good results without the help of
cutting fluids, because of the high amount of heat generated during grinding. As
for MQL machining, although progress is being made, we have a long way to go
before this problem is solved in applications workshops. Cryogenic machining,
even though proved useful, involves more cost. Therefore, research on the com-
position, supply techniques, selection, cleaning, and maintenance of cutting fluids
is still active at present. However, serious research efforts are going on for
developing the new technologies to avoid or minimize the use of cutting fluids.
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Appendix A

Meta-Heuristic Optimization Techniques:
Sample Codes

A.1 Sample Codes for Rough Grinding Process

A.1.1 ABC Code
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A.1.2 PSO Code
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A.1.3 SA Code
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algorithm, 39
Artificial immune algorithm, 42
Artificial neural networks, 7

B

Ball burnishing, 155

C

Cryogenic machining, 344

D

Drilling process, 125
Dry machining, 342
Dynamic programming, 23

E

Electro chemical machining, 222
Electro chemical discharge

grinding, 353
Electrolytic in-process

dressing process, 309
Environment-friendly

machining, 342
Environmentally conscious

manufacturing, 339

F

Factorial design
method, 15

Finish grinding, 105
Finishing processes, 147
Fuzzy set theory, 6

G

GA, 79, 82, 103, 105, 189, 199, 237, 239,
295, 305

Goal programming, 24
Geometric programming, 26
Genetic algorithms, 29
Green manufacturing, 339–341
Grey relational analysis, 10
GRG method, 25
Grinding process, 84

H

Harmony search
algorithm, 46

HS, 82, 101, 103, 105, 217,
236, 237, 239

Honing, 150
Hybrid algorithms, 49

I

Integer linear
programming, 28

K

Knowledge based
expert systems, 18
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L

Lapping, 147
Laser beam machining, 240
Laser micro-drilling, 267

M

Manufacturing processes, 1, 2, 339
Mathematical iterative search

methods, 22
Magnetic abrasive finishing

process, 298
Magneto-rheological abrasive flow

finishing process, 307
Meta-heuristics, 29, 361
Micro-drilling, 265
Micro-milling, 257
Milling process, 57
Minimal quantity lubrication

machining, 353
Multi-pass milling, 70, 80

N

Nano-finishing, 285
Non-traditional optimization, 4

P

Prinicipal component analysis, 20
Particle swarm optimization, 36
PSO, 77, 78, 82, 101, 103, 188, 190, 191, 199,

217, 218, 236, 237, 239, 295, 302,
303, 305, 366

Q

Quadratic programming, 27

R

Rapid prototyping, 317
References, 51, 160, 273, 313,

336, 357
Response surface methodology, 16
Rough grinding, 98, 361
RSM, 212, 272, 273

S

SA, 77, 78, 82, 101, 103, 105, 199,
217, 218, 236, 237, 239,
295, 305, 373

SFL, 82, 101, 103, 199, 217,
237, 239

Shuffled fog leaping algorithm, 45
Simulated annealing, 32
Solid lubricant assisted

machining, 351
Statistical regression technique, 4
Superfinishing, 153

T

Tabu search, 34
Taguchi fuzzy based approach, 15
Taguchi robust design method, 13
Turning process, 107

U

Ultrasonic machining, 192

W

Wire electric discharge
machining, 203
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