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Preface

Automatic speech recognition systems are increasingly applied for modern com-
munication. One example are call centers, where speech recognition based systems
provide information or help sorting customer queries in order to forward them to
the according experts. The big advantage of those systems is that the computers
can be online 24 h a day to process calls and that they are cheap once installed.

Travelers can find speech-to-speech translation systems commercially avail-
able, either via cellular phone or based on hand-held devices such as PDAs. These
translation systems typically provide translation from English to Japanese (or in
case of American military systems, to Arabic) and back. Pressing a push-to-acti-
vate button starts the recording of an utterance, which is recognized and translated.
The translated sentence is then played to the communication partner with a text-to-
speech (TTS) module.

Speech control is also a common feature of car navigation devices, for com-
mand and control purposes as well as destination input. Undeniably, speech
control increases comfort. It is also undisputed that speaking a telephone number
whilst driving rather than typing it on the tiny cellular phone keyboard is an
important safety measure, as the driver can still look and concentrate on traffic
without too much distraction by the input procedure. Speech controlled music
players will enter the mass market soon.

Moreover, in many of these applications of speech recognition, there are cases
when the speaker is not expressing himself in his mother tongue. Customers of call
centers are people who are not necessarily citizens of the country where the service
is offered nor have they mastered the local language to a native level of profi-
ciency. Translation systems for travelers as sold e.g. in Japan assume that most
foreign dialog partners the owner of a Japanese–English translation system
encounters speak English, native or as a second language. Car navigation systems
must offer drivers the possibility to set a destination abroad, therefore good sys-
tems have to support speech input of foreign place names. Finally, given the strong
internationalization of the music market, speech controlled music players must
cope with non-native speech input, e.g. for English language songs in Germany or
Spanish language songs in the United States.
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A speech recognition system recognizes words as a sequence of phonemes
defined in a pronunciation dictionary. These sequences do not entirely match non-
native speaker utterances as they deviate from the standard pronunciations of
words, inserting and omitting sounds as typical for the phonetic contexts of the
native language. They especially generate different sounds that are more familiar
from the speakers mother tongue but do not fully match the phonetic inventory of
the language the speaker has not fully mastered. For both humans and machines,
these deviations are a big hurdle to understand what a non-native speaker says. By
listening to accented speech for some time, humans can learn the specific accent
patterns and adapt to them to some extend.

The target of this research is to provide a method that adjusts an automatic
speech recognition system so that it can recover some of the errors caused by
non-native pronunciation. We relax the pronunciation dictionary constraints for
recognition of non-native speech. Then by training on a non-native speech sample,
we factor in the specific pronunciation error patterns of each accent without
attempting to represent them explicitly.
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tunity to do research at ATR. Furthermore we thank Konstantin Markov for
valuable discussions and helpful suggestions and Nobuaki Minematsu and Frank
Soong for analyzing this work and asking questions.
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work.
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Chapter 1

Introduction

1.1 This Book in a Nutshell

Recognizing the speech of non-native speakers is a challenge for automatic
speech recognition systems. Non-native speech recognition is an important issue
in applications such as speech-to-speech translation devices or speech dialog
systems.

The pronunciation of non-natives deviates from native speech, leading to inser-
tions, deletions and especially substitutions of sounds. The accent pattern depends
mainly on the mother tongue of the speaker, phoneme confusion matrices can
provide an illustration of those patterns.

There are two approaches to obtain knowledge about non-native pronunciation:
By expert analysis of a language, or by data-driven methods such as phoneme
recognition and comparison of the result to a native transcription. Only the
data-driven method is capable of handling multiple accents automatically.

We designed, collected and transcribed the ATR non-native English database
consisting of 96 speakers of five accent groups, Mandarin Chinese, French,
German, Italian and Japanese English. The data includes hotel reservation dialogs,
number sequences and phonetically compact sentences. This database is one of the
largest non-native databases, and has been made available at ATR to promote
non-native speech research and computer-assisted language learning system
development. It has been recorded with special care about countering anxiousness,
a special problem for non-native speech collections. It does not suffer from noise
or exotic vocabulary like military databases and does not have the spontaneous
speech effects of presentation or meeting transcriptions.

Native speakers with English teaching experience have rated the skills of the
speakers and marked mispronounced words. A rater calibration helped increasing
inter-rater consistency. About 9.3% of the words have been marked as mispro-
nounced, some were difficult for all accents, others accent-specific errors.

R.E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_1,
� Springer-Verlag Berlin Heidelberg 2011

1



These properties make the database most interesting for researchers in the
field of non-native speech and we hope it will help to make non-native speech
publications more comparable.

A common way to represent the non-native pronunciation variations is in the
form of confusion rules. We experimented with phoneme confusion rules extracted
from the training data set of the collected database. We examined their usefulness
on for phoneme lattice processing. When applying them on a pronunciation
dictionary, we found a tradeoff between considering pronunciation variations and
causing additional confusions: Adding some pronunciation variants helps, but
adding too many impairs recognition performance.

To automatically score the skill of a non-native speaker and detect mispro-
nounced words, we evaluated several feature types. To calculate a sentence-level
pronunciation score, the phoneme likelihood ratio and the phoneme accuracy
are the most reliable features. A class recognition rate of 86.6% was achieved.
To identify mispronounced words, the phoneme confusion ratio and the word
likelihood contributed well. Weighting false alarm errors higher, experiments
showed a 72% recognition rate, a reliability comparable to the human experts.

The core proposal of this book is a fully statistical approach to model non-
native speakers’ pronunciation. Second–language speakers pronounce words in
multiple different ways compared to the native speakers. Those deviations, may it
be phoneme substitutions, deletions or insertions, can be modeled automatically
with the proposed method.

Instead of fixed phoneme sequences as pronunciation baseforms, we use a
discrete HMM as a word pronunciation model. It is initialized on a standard
pronunciation dictionary, taking into account all baseform pronunciations. One
HMM is generated per word in the dictionary, with one state per phoneme in the
baseform pronunciation.

Non-native training data is segmented into word-length chunks, on which
phoneme recognition is performed. The probability distributions of the HMMs
are trained on these phoneme sequences. Evaluations showed that for non-native
speech, monophone acoustic models perform better than context-dependent
models, a tendency different from native speech. The likely reason is that the
coarticulation is different for non-native speech and that context-dependent models
are trained too closely to the specific acoustic context to deal with non-nativeness
effects.

To apply the models, both an N-best word level recognition and a utterance–
level phoneme recognition of the test data are required. A pronunciation score is
calculated by performing a Viterbi alignment with the HMM dictionary as model
and the phoneme sequence as input data. This score is a measure how well the
phonemes match with the pronunciation of the word sequence modeled by the
HMM. The n-best list is resorted according to pronunciation score, the hypothesis
with the highest score is selected as recognition result.

On the collected database, we conducted experiments to verify the applicability
of the proposed method. For each non-native speaker group, pronunciation HMMs
are trained and evaluated on a test set of non-native English in the regarding
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accent. The approach improves the recognition accuracy for all speaker groups,
the best results were achieved for Mandarin Chinese speakers with a relative
11.93% gain.

Experiments to combine the ’’pronunciation score’’ calculated with the pro-
nunciation HMMs together with language model score or acoustic model score
were conducted as well. Factoring in a language model showed to be an important
contribution, whereas the acoustic score does not contain additional information.
Experiments further showed that already rescoring with the initial models
increased performance to some extend, showing that the general relaxation of
pronunciation constraints from the baseform dictionary is already helpful.

1.2 Contribution of this Research

The contributions of this work on statistical language modeling of non-native
pronunciations to the research community are:

• Concept design, implementation and evaluation of a novel approach to handle
the pronunciation variations of non-native speech in an implicit and statistical
way using discrete hidden Markov models (HMM) as statistical dictionary. The
proposed models are proven to be effective in increasing recognition rates of
non-native speakers, independent of accent and without expert knowledge
necessary.

• Creation of a large database of non-native speech of around 100 speakers from 5
different accent groups, recorded under the most appropriate conditions and
including human expert pronunciation ratings.

While general pronunciation networks have already been proposed, modeling
non-native pronunciations with word-level HMMs and applying them for rescoring
is an original approach. Our evaluations show that they are effective and can allow
for any pronunciation variation, regardless of whether these variations have been
previously observed in the training data or not. Our method does not decrease
recognition performance due to additional confusions, which seems to be a sig-
nificant problem for the most common method of phoneme confusion rule gen-
eration. As it is a fully data-driven approach it may be applied to any accent, i.e.
pair of native and non-native language, without any need for expert knowledge
about the accent.

The outline of this book is as follows: First, we present the basics of automatic
speech recognition, followed by a brief introduction to non-native speech and its
challenges in Chap. 3. A literature survey describes the state of the art for non-
native speech recognition in Chap. 4. A significant contribution of this work is the
collection of a large non-native speech database, whose properties are shown in
Chap. 5. After describing experiments on rule-based non-native speech processing,
multilingual codebooks and automatic pronunciation skill scoring in Chap. 6, we
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propose and evaluate HMMs as a statistical lexicon for non-native speech rec-
ognition in Chap. 7. The document ends with a conclusion, critically discussing the
work and giving future directions. The appendix contains additional information
about the ATR non-native database, including phoneme confusion matrices, a
hotel reservation dialog sample, speaker properties and the human expert rating
procedure.
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Chapter 2

Automatic Speech Recognition

Automatic speech recognition (ASR) systems convert speech from a recorded audio
signal to text. Humans convert words to speech with their speech production mecha-
nism. An ASR system aims to infer those original words given the observable signal.
Themost common and as of today best method is the probabilistic approach. A speech
signal corresponds to anyword (or sequence ofwords) in the vocabulary with a certain
probability. Therefore, assuming a word x or word sequence X was spoken, we
compute a score for matching these words with the speech signal. This score is
calculated from the acoustic properties of speech sub-units (phonemes in the acoustic
model), linguistic knowledge about which words can follow which other words.
Including additional knowledge as the pronunciation score proposed in this work has
also shown to be helpful. Finally, we sort the possible word sequence hypotheses by
score, and pick the hypothesis with the highest score as recognition result.

The outline of a typical speech recognition system is shown in Fig. 2.1. The
process of speech recognition can be divided into the following consecutive steps.

• pre-processing (which includes speech/non-speech segmentation,)
• feature extraction,
• decoding, the actual recognition employing an acoustic and language model as
well as a dictionary,

• result post-processing.

In the following, these steps will be described in more detail.

2.1 Relevant Keywords from Probability Theory and Statistics

In order to understand automatic speech recognition, it is helpful to briefly review
some key concepts from general probability theory. For further reading, we refer to
[Huang 01, Bronstein 07].

R.E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_2,
� Springer-Verlag Berlin Heidelberg 2011
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2.1.1 Discrete and Continuous Probability Distribution

A discrete random variable X describes random experiments. An example is
rolling a dice, where X 2 ½1:::6�. The probability distribution PðX ¼ iÞ can be
given as shown in Table 2.1. That means, p(x) is a non-parametric discrete
distribution.

In the example shown in Table 2.1, X was a natural number. For the continuous
case with X 2 R, we have a probability density function pðX ¼ xÞ with
R1
�1 pðXÞdX ¼ 1. The true data density function is estimated with a parametric
curve. A mixture of N Gaussians is a good approximation to most densities:

pðXÞ ¼
X

N

i¼1

1

ð
ffiffiffi

2
p

pÞ j ri j
exp �ðX � liÞ2

2r2i

" #

ð2:1Þ

with li the mean and ri the variance of the ith Gaussian.

2.1.2 A Hidden Markov Models

A hidden Markov model (HMM) is a statistical model for a Markov process with
hidden parameters. Figure 2.2 shows an example for a three-state HMM. Each
state si has a probability density pi; pðxjsiÞ more precisely states the probability

Table 2.1 Example for a
discrete probability
distribution

X = a X = b … X = x

P(X) 0.1 0.07 … 0.09

s1 s2 s3enter exit

p(x|s2) p(x|s3)p(x|s1)

Fig. 2.2 A three-state hidden
Markov model

Decoding

Model Model

Acoustic Language

Dictionary

Pron.

n−best 

hypothesis

Post−

hypothesis

best

vector

featurespeech

waveform

speech

Pre−

processing

waveform

Feature

extraction processing

Fig. 2.1 Schematic outline of a typical speech recognition system
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density for the acoustic observation x for the state si. The three states s1; s2 and s3
together form the HMM for the word S. The observations X could be acoustic
observations or, in case of the pronunciation models, discrete phoneme symbols.

An HMM can be characterized by two sets of parameters: The transition matrix
A of the probabilities ast�1st to go from one state to another (including self-loops)
and the output probabilities B characterized by the densities.

2.1.3 Estimating HMM Parameters

HMMs are trained on data samples with the forward-backward or Baum-Welch
algorithm [Baum 66], which is similar to the EM-algorithm [Schukat-Talamazzini
95]. There is no analytical method to determine the HMM parameters, the Baum-
Welch algorithm performs an iterative estimation, which monotonously improves
the HMM parameter set U ¼ ðA;BÞ. [Huang 01] describes the algorithm in four
steps as follows:

1. Initialization: Choose an initial estimate U
2. E-Step: Compute the auxiliary function QðU;U0Þ based on U
3. M-step: Compute U0 to maximize the auxiliary Q-function.
4. Iteration: Set U ¼ U

0, repeat from step 2

with Q defined as

QðU;U0Þ ¼
X

S

PðX; SjU
PðXjUÞ logPðX; SjU0Þ ð2:2Þ

where

PðX; SjUÞ ¼
Y

T

t¼1

ast�1stpstðxtÞ ð2:3Þ

The initial parameters play an important role for this algorithm. There is no
guarantee that the algorithm will converge, the ideal number of iterations is typ-
ically determined heuristically.

HMM models are trained on data, for example an acoustic model on a speech
database. If the corpus includes the data of a sufficient number of speakers, it can
be assumed to be general, i.e. the model will acceptably represent the properties of
speakers not observed in the training database. Such a model is called speaker-
independent.

If the model is trained on a group of specific speakers, it is considered group-
dependent; for example a model trained on speakers from an accent group is
accent-dependent. It is theoretically possible to train a speaker-dependent model
on the data of a single speaker. However, such models are less reliable as there is a
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high chance that many relevant data items (such as phonemes in certain contexts)
have not been uttered by that speaker. There are algorithms to adapt a general
acoustic model to the properties of a specific speaker, such as the maximum
a posteriori (MAP) adaptation. Such models will have increased recognition per-
formance for the regarding subject but less match other speakers.

The MAP estimate to optimize the parameters U0 of an HMM can be expressed
as follows [Huang 01]:

U
0 ¼ argmax

U
½pðUjXÞ� ¼ argmax

U
½pðXjUÞ; pðUÞ� ð2:4Þ

This equation can be solved with the EM algorithm, with the Q-function defined
as:

QMAPðU;U0Þ ¼ log pðU0Þ þ QðU;U0Þ ð2:5Þ

2.2 Phonemes

Speech is composed of certain distinct sounds. A phoneme is defined as the
smallest unit of speech that distinguishes a meaning. Phonemes are characterized
by the way they are produced, especially:

• place of articulation,
• manner of articulation,
• voicing.

For each language, there is a specific set of phonemes. There are several
notations how to transcribe these phonemes. The most notable is the International
Phonetic Alphabet (IPA) [Association 99] which was developed by the Interna-
tional Phonetic Association beginning in 1888 with the goal of describing the
sounds of all human languages. IPA consists of many symbols that are not normal
Latin characters, i.e. not included in the standard ASCII codepage. This makes it
inconvenient to use them on computers.

Several systems have been proposed to transcribe phonemes with ASCII
symbols, with SAMPA [Wells 95] and ARPAbet [Shoup 80] being the most
common. For these phonetic alphabets mapping tables exist that convert from one
phonetic alphabet to the other, there is no fundamental difference between the
alphabets that could influence experimental results. In this work phonemes are
given in the ARPAbet notation, as the acoustic model is trained on the WSJ
database and the pronunciation dictionary for that data is provided in ARPAbet
notation.

For acoustic models in speech recognition, the units can be phonemes or units
considering phonemes and their acoustic contexts. Units considering only the left
or right context are called biphones, if they consider left and right context, they are
called triphones.
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2.3 Prosody

Besides the phonemes that carry the textual content of an utterance, prosodic
information [Noeth 90] gives valuable support to understand a spoken utterance. In
short, prosody is the rhythm, stress and intonation of continuos speech, and is
expressed in pitch, loudness and formants. Prosody is an important mean of
conveying non-verbal information.

Fujisaki [Fujisaki 96] considers two separate aspects of prosody, the ‘‘concrete
aspect’’—defining prosody in physical term, and the ‘‘abstract aspect’ ’—defining
prosody as influence to linguistic structure.

concrete aspect: phenomena that involve the acoustic parameters of pitch,
duration, and intensity

abstract aspect: phenomena that involve phonological organization at levels
above the segment

Prosody in speech has both, measurable manifestations and underlying prin-
ciples. Therefore the following definition is appropriate:

Prosody is a systematic organization of various linguistic units into an utterance
or a coherent group of utterances in the process of speech production. Its reali-
zation involves both segmental features of speech, and serves to convey not only
linguistic information, but also paralinguistic and non-linguistic information.

The individual characteristics of speech are generated in the process of speech
sound production. These segmental and suprasegmental features arise from the
influence of linguistic, paralinguistic, and nonlinguistic information. This explains the
difficulty of finding clear and unique correspondence between physically observable
characteristics of speech and the underlying prosodic organization of an utterance.

Linguistic information: symbolic information that is represented by a set of
discrete symbols and rules for their combination i.e. it can be represented explicitly
by written language, or can be easily and uniquely inferred from the context.

Paralinguistic information: information added to modify the linguistic informa-
tion. Awritten sentence can be uttered in variousways to express different intentions,
attitudes, and speaking styles which are under conscious control of the speaker.

Nonlinguistic information: physical and emotional factors, like gender, age, hap-
piness, crying,…which cannot be directly controlled by the speaker. These factors are
not directly related to (para-) linguistic contents, but influence the speech anyway.

Prosodic characteristics are typically expressed in several types of features,
which can serve as basis for automatic recognition. The most prominent of those
features are duration, loudness, pitch and glottal characteristics.

2.3.1 Duration

Utterances can be lengthened or shortened; the relative length carries prosodic
information. For example, [Umeno 03] shows that short non-verbal fillwords show
affirmation, whereas lengthened fillwords express disagreement.
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2.3.2 Power

The signal power or loudness of an utterance is another important prosodic feature.
In German and English the intensity often marks or emphasizes the central
information of a sentence. Without this information, spontaneous speech could be
ambiguous and easily misunderstood. The loudness is measured by the intensity of
the signal energy.

2.3.3 Pitch

At the bottom of the human vocal tract are the vocal cords, or glottis. For unvoiced
speech, the glottis remains open, for voiced speech it opens and closes periodi-
cally. The frequency of the opening is called the fundamental frequency or pitch. It
can be calculated from the spectrum [Kiessling 92] and its contour over the
utterance reveals several information. E.g. in Mandarin Chinese, the F0 carries
phonetic/lexical information, and in English or German, the pitch specifies a
question by a final fall-rise pattern [Sun 06, Waibel 88].

2.3.4 Glottal Characteristics

Physiological voice characteristics also contribute to convey non-verbal infor-
mation. The glottis is the vocal cord area of the human articulatory system and is
most commonly known for creating voicing in pronunciation by opening and
closing periodically. The interpretation and extraction of glottal characteristics
directly from the waveform without the need of special recording equipment is
described in literature [Hanson 97].

2.4 Speech to Text

In this section, we describe the steps from speech to text, beginning with recording
and pre-processing, over feature calculation to decoding and finally rescoring.

2.4.1 Pre-processing

Speech is recorded with a microphone and the signal is discretized with a
sampling frequency of e.g. 16 kHz. The Shannon sampling theorem states that a
bandwidth limited signal can be perfectly reconstructed if the sampling frequency
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is more than double of the maximum frequency. That means that in the sampled
data, frequencies up to almost 8 kHz are constituted correctly. While this is not
the total frequency range of human speech, it is more than double of what is
transmitted over telephone networks. These are typically limited to the
5 Hz–3.7 kHz range, and has shown in research to be sufficient for speech rec-
ognition applications. It is possible to remove frequencies below 100 Hz with a
high-pass filter as they tend to contain noise but can be considered of little
relevance for speech recognition.

An important part of pre-processing is also speech/non-speech segmentation.
As speech recognition systems will classify any sound to any phoneme with some
(even if very low) probability, background noise can cause insertions of phonemes
or words into the recognition result if the noise resembles the parameters of a
phoneme model better than those of a silence model. Such insertions can be
reduced by removing areas from the speech signal between the start of the
recording and the point of time when the user starts to speak, and after the end of
the utterance. This segmentation process is also called end point detection.

Signal energy based algorithms have been available for a long time [Rabiner
75, Reaves 93, Junqua 94]. When the signal energy exceeds a given threshold, the
start of a speech segment is detected. When the signal drops below a certain
threshold, the speech segment ends. As there are phonemes with low signal energy
and short pauses between words, this algorithm must be enhanced by time win-
dowing or additional prosodic features [Noeth 90, Gruhn 98] such as voicedness to
be reliable. Another common approach is based on Gaussian mixture models
[Binder 01]. Video signals can also be very helpful in detecting speaking activity
[Murai 00, Nishiura 01a, Nishiura 01b, Nishiura 02a, Nishiura 02b].

2.4.2 Feature Extraction

To calculate features, acoustic observations are extracted over time frames of
uniform length. Within these frames, the speech signal is assumed to be stationary.
The length of these frames is typically around 25 ms, for the acoustic samples in
this window one multi-dimensional feature vector is calculated. The time frames
are overlapping and shifted by typically 10 ms. On the time window, a fast Fourier
transformation is performed, moving into the spectral domain.

Human ears do not perceive all frequency bands equally. This effect can be
simulated with band-pass filters of non-uniform frequency band widths. Until
500 Hz, the width of the filters is 100 Hz, after that it increases logarithmically.
The filter center frequencies are defined in the so called Mel scale. The spectrum is
decorrelated with a discrete cosine transformation. Of the resulting coefficients, the
first coefficients carry the most significance. Therefore only the first e.g. ten
coefficients are selected as feature vector. The resulting features are called Mel
cepstra, commonly abbreviated as MFCC. Usually the normalized energy is
appended to the feature vector.
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A common further feature processing step is cepstral mean subtraction (CMS).
The goal of CMS is to remove the effects of a linear filter. For example the
microphones for recording the training data and the microphone during testing are
often different, CMS can contribute to recover from this effect. The average of the
features is calculated for every utterance, and subtracted from each feature vector.
As a result, the features during both test and training have a mean of zero.

Information lies not only in the feature vector itself, but also in the temporal
change. There are two common approaches how to capture this information:

• create a supervector concatenating consecutive feature vectors,
• append the derivatives and second derivatives to the feature vector.

The first method will lead to a vector of very high dimensionality that must be
projected down to a lower dimension with algorithms like principal component
analysis or linear discriminant analysis [Vasquez 08]. Dimensionality reduction
can also be applied to a feature vector with derivatives.

2.4.3 Decoding

Decoding is the process to calculate which sequence of words is most likely to
match to the acoustic signal represented by the feature vectors. For decoding three
information sources must be available:

• an acoustic model with an HMM for each unit (phoneme or word,)
• a dictionary, typically a list of words and the phoneme sequences they consist of,
• a language model with word or word sequence likelihoods.

A prerequisite for decoding is to know which words can be spoken. Those
words are listed in the dictionary, together with the according phoneme sequence.
The acoustic model typically has a probability density function that is a mixture of
Gaussians and gives a likelihood for each observed vector pðxjwÞ.

A language model is not an absolute requirement for decoding but increase
word accuracy [Tanigaki 00]; in some cases like a credit card recognition system
with a vocabulary consisting of the numbers 0–9, it can be acceptable to consider
all words equally likely. Language models are typically fixed grammars or n-gram
models. A 1-gram model lists words and their likelihoods, a 2-gram model lists
words and their likelihood given a preceding word and so on, providing the word
probability pðwÞ.

During decoding, we search for the word(s) w� that fits best to the observation
X, as given in this fundamental equation:

w� ¼ argmaxwðpðXjwÞpðwÞÞ ð2:6Þ

with pðwÞ Coming from the language model and pðXjwÞ calculated from the
sequence of phonemes in the word as defined by the dictionary:
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pðXjwÞ ¼ argmaxsð
Y

j

ðpðxjsjÞpðsjÞÞÞ ð2:7Þ

In theory, it is also necessary to consider pðxÞ, but as this term is the same for all
competing hypotheses, it can be neglected.

As the space of possible state sequences is astronomically large, it is not
possible to calculate the probabilities of all existing paths through the state net-
work: for T observations and N states, the complexity is OðNTÞ. To find the most
likely sequence of hidden states, the Viterbi search algorithm [Viterbi 79] is
employed. It can be summarized into four steps [Jelinek 97, Huang 01] as follows:
To find the optimal state sequences, find the maximizing sequence
s ¼ s1; . . .; sj; . . .; si�1; si whose probability is VtðiÞ to generate the observation Xt

at time t and ends in state i.

• Initialization: Set V0ðs0Þ ¼ 1
V1ðsÞ ¼ maxs0pðx1; sjs0ÞV0ðs0Þ ¼ pðx1; sjs0Þ

• Induction: VtðsÞ ¼ maxs0Vt � 1ðs0Þpðxt�1; sjs0Þ i.e. for each state sj at time t keep
only one path that leads to this state and discard all paths with lower probability.

• Termination: Find the state s� at the end of the state sequence si where VtðsÞ is
maximal.

• Traceback: Trace back from this state s� to the initial state along the remaining
transitions. The states along this path constitute the most likely state sequence
S� ¼ ðs�1; s�2; . . .; s�TÞ.

The complexity of the Viterbi algorithm is only OðN2TÞ. The list of all per-
mitted paths in the state network is called the lattice.

The dictionary contains a list of all words defined in a recognition scenario
and the phoneme sequence (and thereby HMM phoneme model sequence) of
each word. If the number of words is very small and those words are acoustically
different, very high speech recognition accuracies can be achieved. The larger the
dictionary, the more confusions are possible, leading to decreasing recognition
rates. The confusability depends not directly on the number of words, but on the
number of entries, i.e. pronunciation alternatives. Words can be spoken differ-
ently even in native language, such as the digit 0 in English as /zero/ or /o/.
Hitherto pronunciation dictionaries typically have more entries than words. Other
than specialized recognition tasks such as digit recognition, most large vocabu-
lary speech recognition systems have dictionary sizes of several 1,000 words,
dictation systems can reach several 10,000 words. In a real-world system it is not
always possible to predict which words a user might say. The larger the dic-
tionary, the less words fail recognition as out of vocabulary, but adding many
new words with similar phonemes leads to additional confusions and decreases
recognition rates. The language model is also affected by vocabulary size: The
smaller the number of words, the sharper a language model can describe the
permitted word sequences, leading to a direct relation between number of words
and recognizer performance.
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2.4.4 Post-processing

The result of the Viterbi search is not a single sequence of words, but a list of all
possible hypotheses sorted by total score. In practice, this number is usually
limited to the five or ten best hypotheses, the so-called n-best list. Rescoring this
list by employing additional sources of information is a common method to
improve the recognition accuracy of the top-scoring result.

A possible source of information is a higher-order language model. As they
require much more resources than unigram or bigram models, both in terms of
memory and computation cost, combinations of bigram model for decoding fol-
lowed by trigram model based rescoring are common.

In this work, we provide additional information about the pronunciation with
pronunciation models and apply them with a rescoring algorithm.

2.5 Applying Speech Recognition

In order to apply a speech recognition system, it is necessary to judge the per-
formance and to put it in a system environment with other related modules.

2.5.1 Evaluation Measures

The most common measures to evaluate the performance of a speech recognition
system are correctness, accuracy and error. These measures can be calculated on
phoneme and word level. There are three types of mistake a speech recognition
system can make:

• Substitution: At the position of a unit (word or phoneme), a different unit has
been recognized.

• Deletion: In the recognition result a unit is omitted.
• Insertion: The result contains additional units than were not spoken.

The type of error is determined by comparison with the correct transcription.
Some transcriptions contain information about noises in the speech signal. Even
though human noises can contain relevant information [Svojanovsky 04], omitting
those non-verbal sounds is not counted as recognition mistake. Likewise, an
acoustic model may contain special models to handle human noises such as
breathing and lip smacks or environment noises; additional noises in the recog-
nition result are not counted as insertion.

Correctness is defined as:

Corr ¼ N � D� S

N
ð2:8Þ
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with N being the number of units in the correct transcription, D the number of
deletions and S the number of substitutions. The accuracy is similar to the cor-
rectness, but additionally takes the number of insertions I into account:

Acc ¼ N � D� S� I

N
ð2:9Þ

Both measures are commonly given in percentage notation. Finally the error rate is
the sum of all types of errors divided by number of words in the transcription. The
error rate is closely related to the accuracy, usually only one of the two numbers is
given.

Err ¼ Dþ Sþ I

N
¼ 100%� Acc ð2:10Þ

In case the units are words, the error rate is commonly abbreviated WER, standing
for word error rate.

To calculate correctness and accuracy, the transcription is compared to the
highest scoring recognition result. In some cases it is necessary to determine the
best matching path among all possible paths in the recognition network to measure
the best theoretically achievable result. Such an extended evaluation yields the so-
called network correctness or network accuracy.

2.5.2 Speech Dialog Systems

In real-world applications, speech recognition are not employed stand-alone, but
embedded in an larger architecture that also involves other modules. The most
perceivable module other than speech recognition is speech synthesis or text-to-
speech (TTS). A TTS system receives a text string (and optionally phonetics) and
generates an audio file, which is played to the user as feedback.

Recognition and TTS are the user communication interfaces of a speech dialog
system (SDS). Depending on the application, an SDS also includes one or several
backend modules. Most important is a dialog manager, which implements the
dialog strategy [Minker 02b], i.e.:

• keep track of the information the user has already uttered,
• know which data must be available in order to fulfil a given task,
• trigger database queries,
• decide the next dialog step, especially feedback or question to the user.

Frequently employed other modules include a database access module or a
natural language understanding module [Minker 98b] which extracts keywords and
data from spontaneous utterances. Typical applications for SDSs are information
retrieval services, such as travel assistance systems (e.g. [Seneff 98]) for hotel
reservation, ticket booking etc., with a telephony or information kiosk interface.
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Also the control of a car navigation system can base on an SDS, keeping track of
previously input information and guiding the user during navigation destination
input.

There are several well-known systems to combine the modules to a SDS. The
‘‘DARPA Communicator’’, also known by the name of its reference implemen-
tation ‘‘Galaxy’’, is a modular architecture developed at MIT [Seneff 98].
A schematical layout is shown in Fig. 2.3. It was designed for speech recognition
based information retrieval systems. It consists of a central hub which interfaces
between servers like audio server, dialog manager, database etc. The hub behavior
is defined through a set of rules implemented in a special scripting language.

A speech-to-speech translation system can be seen as a special case of an SDS,
consisting of interacting modules, but without dialog manager or database backend
[Gruhn 01b, Gruhn 01c]. As such systems are not necessarily applied in fixed
places where computers with large processing power are available, but ‘‘in the
field’’, access to translation servers from lightweight clients is a key feature.
Popular approaches include cellular phones [Gruhn 00b, Gruhn 00a] or small-scale
portable computers such as PDAs [Gruhn 99, Singer 99a].

User utterances are recognized, translated to a pre-selected target language and
then played back with a TTS. To reduce the effect of recognition and translation
errors, feedback such as display of the recognized result is crucial. SMILE is a
translation system based on the architecture standard CORBA (Common Object
Request Broker Architecture [OMG 90]), supporting various input types, including
close-talking microphone and telephony hardware. As shown in Fig. 2.4, the
modules are operating independently and event-driven without a managing module
to steer the flow of information. The client interface is a reporting tool that pro-
vides final and intermediate results to the conversation partners. Each of the
modules can be included several times on distributed servers for high-speed
performance.

While evaluating a speech recognition system with correctness and accuracy is
quite straightforward, evaluating a speech dialog system [Minker 98a, Minker 02a]
or a speech-to-speech translation system [Sugaya 00] is still a open research topic.

Fig. 2.3 The DARPA
Communicator [Seneff 98]
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Additionally to the speech recognition evaluation, task completion rate is a popular
measure: The share of dialogs in which the human customer was able to achieve
his goal, such as getting a specific required information or booking a hotel room.

2.5.3 Focus of This Work

This research bases on a standard automatic speech recognition system. The
modules from speech recording to decoding follow the common practices as
described in this chapter. Our novel approach described in Chap. 7 focusses on the
post-processing part, as shown in Fig. 2.5. Here we apply discrete HMMs as
statistical pronunciation models for rescoring an n-best list. These discrete models
are trained as described in Sect. 2.1.3 with the result of a phoneme recognition as
input data.

Fig. 2.4 The speech and
multimodal interface for
multi-lingual exchange
(SMILE) architecture
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Fig. 2.5 The focus in this work lies on post-processing
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Chapter 3

Properties of Non-native Speech

A typical example for a speech recognition system that needs to understand non-
native speech is a car navigation system. In Europe, a driver who travels across
borders and inputs a destination city or street name of a foreign country into a
speech-controlled navigation system, is likely to mispronounce. In the United
States, the high number of immigrants with limited English skills, and foreign-
motivated place names are similar issues. A common workaround is to have users
spell the names, but this is a less comfortable way than just saying the place name,
and sometimes the correct spelling of a place name is not known either.

Non-native pronunciations are also a big issue for speech dialog systems that
target tourists, such as travel assistance or hotel reservation systems. Usually, they
provide only a few languages, or only the local language and English, and travelers
from other countries are expected to get the information they need with the English
version. While many travelers do speak English to some extend, the non-native
speech poses several challenges for automatic speech recognition.

3.1 Accent

People from different countries speak English with different accents, depending
mainly on the mother tongue and the foreign language [van Compernolle 01].
Other factors such as skill also have some effect. A person can understand non-
native speech easily because after a while the listener gets used to the style of the
talker, i.e. the insertions, deletions and substitutions of phonemes or wrong
grammar. The vocabulary and grammar of non-native speakers is often limited and
easy, but a recognizer takes no or only little advantage of this and is confused by
the different phonetics.

In literature, there are several terms to describe the language pair elements
involved in non-native speech. The mother tongue of the speaker is called main
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language, source language or L1. The language the speaker attempts to speak but
has not fully mastered yet is called the target language or L2. In papers focusing on
computer aided language learning, the terms L1 and L2 are more common.

For computer assisted language learning systems, minimal word pairs are of
special relevance. These are word pairs, that differ only in one sound, and for each
accent specific word pairs can be found where the discriminating sound is espe-
cially difficult to produce for people with specific accents. A well known example
is the discrimination between /L/ and /R/ in Japanese, one minimal word pair for
this accent would be read and lead.

To find out, which sounds are frequently confused for a given L1 - L2 pair, it
can be helpful to look at phoneme confusion matrices.

3.2 Phoneme Confusion

Figure 3.1 shows a phoneme confusion matrix comparing a phoneme recognition
result with a reference phoneme transcription. The notation is in ARPAbet
symbols (cf. Sect. 2.2). The darker a box is, the more frequently the regarding
confusion occurred. The phoneme recognition result represents which sounds the
speaker actually produced. The diagonal shows all cases of correct pronunciation,
all other entries are mispronunciations. This simple model is of course somewhat
distorted by random recognition errors, and all graphs show standard confusions
like between the very similar sounds /m/ and /n/. Still the graphs show clearly
some typical error patterns that are accent specific.

German speakers, for example, have difficulties producing a distinct /Z/ sound,
it sounds similar to the voiceless /S/. This confusion does also occur for Japanese

Fig. 3.1 Phoneme confusion matrix for German (left) and Japanese (right) speakers of English.
The x-axis shows the recognition result, the y-axis the correct phoneme
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speakers, but less frequently so. The reason is that the German language does not
have a /Z/ sound, whereas Japanese has both /S/ and /Z/. Japanese speakers of
English have problems producing the /R/ sound, the phoneme recognizer classifies
it as /L/ or a wide range of other phonemes. Again the reason is that the Japanese
language has no /R/. While the graphs also contain some random confusions, it is
still visible that there are some accent-specific confusion patterns.

The confusion matrices have been calculated on the ATR non-native speech
database, which contains also three native speakers of English, one Australian, one
British and one US-American. The data of three speakers of rather different types
of English may not be the ideal basis to calculate a confusion matrix from, but for
the purpose of illustration we calculated a phoneme confusion matrix for native
English as well. Subtracting the confusion values of the native speakers from one
of the accents’ confusion matrix and calculating the absolute values matix yields
an image visualizing the differences between native and non-native pronunciation
and recognition properties. An example for such an image is Fig. 3.2, where we
compare Japanese English to a native English matrix. Appendix B shows more
examples for phoneme confusion matrices..

3.3 Non-phonemic Differences

Non-native speakers have a limited vocabulary and a less than complete knowl-
edge of the grammatical structures of the target language. The limited vocabulary
forces speakers to express themselves in basic words, making their speech unusual

Fig. 3.2 Difference matrix
comparing native speakers of
English with Japanese
accented English. The darker,
the greater the difference
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for native speakers. At the same time this effect can make non-native speech easier
to understand for other non-natives.

Vocabulary limitation tends to be a less relevant issue for speech dialog
systems. In many applications the vocabulary is fixed and known to the speaker.
For example a user trying to input a destination in a foreign country may not know
the correct pronunciation of the place name, but he will know the orthography.
A similar effect occurs for a speech controlled media player: Even if the user has
difficulties translating a song title in a foreign language correctly, the word
sequence is usually known if the user has copied it to his media player.

The same holds for grammatical problems, for an address there is no grammar
and the word sequence of a song title is fixed and does not require the user to have
mastered the target language to reproduce.

For a travel arrangement task, both vocabulary limitation and grammar can be
issues. As long as the relevant keywords can be assumed to be known, keyword
spotting based algorithms are capable of circumventing grammatical problems.
If the vocabulary of the speaker does not allow to complete the task, providing
alternative language model options might help. But it will be difficult to cover all
possible variations how to describe unknown vocabulary.

A different major challenge about non-native speech processing lies in prosodic
effects and other non-phonetic differences like:

• lengthening
• hesitation
• stops
• filled pause insertion

As they occur randomly at any position in an utterance they can be hard to
predict and handle.

Word or phoneme lengthening is to some extend covered by the HMM archi-
tecture, as an increased self-loop time has little impact on the acoustic score.
Fillword insertions and hesitations can be permitted by a language model at any
position, but too long hesitations can mislead an endpoint detection module into
declaring an end of the utterance. The initial part of the utterance alone is less
likely to be meaningful and a misrecognition may occur, if the user continues his
utterance later, the second half may be misrecognized as well. Configuring
endpointing to be lenient about long pauses can address this problem, but if
background noise is an issue as well, an overall decreased recognition accuracy is
likely. If a user stops in the middle of a word, for example to review its pro-
nunciation or to think about how to continue an utterance, the regarding word will
probably be misrecognized.

The more spontaneously the utterance is spoken, the more likely such non-
phonetical problems are to occur. Read speech, or speech control of media and
navigation devices, is less likely to encounter those effects as the user need to think
less about what to say. But even with the relative absence of fillwords and hesi-
tations in such a more limited scenario, the pronunciation variations in non-native
speech are a big challenge.
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In this book, we concentrate on the pronunciation issues of non-native speech.
In order to separate spontaneous speech issues from pronunciation, we work on
read speech. This is a realistic scenario related to real-world applications like
media control or navigation. It is also the part where speech recognition tech-
nology as possibilities to recover from errors, whereas helping the user finding the
right words to say or to produce his utterance in a controlled matter is more a
design issue for dialog system construction.
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Chapter 4

Pronunciation Variation Modeling

in the Literature

In an automatic speech recognition system, speech properties are represented
usually by an acoustic model and a pronunciation dictionary. But every human has
a slightly different way to speak words. Those differences must be incorporated in
the underlying speech models.

While this problem is extreme for non-native speakers, it is also an issue for
native speakers, due to regional dialects that create variations in pronunciation, or
even pronunciation patterns that depend only on the individual. An example in
the German language is the /g/ e.g. at the end of the word richtig, which can be
pronounced either as [g] or as [ç] (in IPA-notation), depending only on the
speakers personal preference. Much literature is therefore analyzing pronunciation
variations in native speech.

On the acoustic model level, the usual approach is to collect a very large speech
database. If typical variations are sufficiently covered in the training data of the
acoustic model, speaker variations are included in the model statistics. Although
there is no clear definition of when a database is sufficient, experience shows that
acoustic models trained on large databases are quite reliable.

To target the properties of specific individual speakers, acoustic model adap-
tation techniques are available. The most common are maximum a-posteriori

(MAP) and Maximum Likelihood Linear Regression (MLLR). In both cases, the
user is required to utter some training sentences. The Gaussian density parameters
of a speaker independent acoustic model are adapted on this small data set. The
result is an acoustic model that is especially suitable to cover the special properties
of that speaker, but has lost general applicability.

Pronunciation lexicon adaptation methods can be grouped based on three key
properties [Strik 99]:

• The types of variations covered
• The methods to obtain the pronunciation information
• The representation of the information
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4.1 Types of Pronunciation Variations

Pronunciation variations can include phoneme substitutions, deletions and inser-
tions. These phoneme-level variations can be applied to given pronunciations in a
dictionary, adding additional entries. Most research follows this approach, because
it is easy to implement.

Cross-word variations also occur, especially in fast spontaneous speech. They
can be modeled by adding multi-word entries to the dictionary [Blackburn 95].
Of course only the most frequent expressions can receive this special treatment,
otherwise the dictionary size would increase too much.

4.2 Data-Driven and Knowledge-Based Methods

Knowledge about which pronunciation variations occur can be found in linguistic
literature or analysis of manually produced pronunciation dictionaries. It can also
be extracted in a data-driven way.

The data-driven method requires a speech database, ideally with phonetic
labels. If no such labeling is available, it can be generated automatically. A speech
recognizer with a list of phonemes as dictionary produces a sequence of phonemes.
Usually a phoneme bigram provides some phonotactic constraint. Such automat-
ically generated phoneme sequences always contain recognition errors, but as
large databases can be transcribed this way, and random errors can be averaged
out. Also, as manual phonetic transcriptions are subject to the individual percep-
tion of the human labeler, manual transcriptions are not free of error either
[Cucchiarini 93]. Errors that occur frequently and systematically are the very
information desired. Alternatively to phoneme recognition, a phonetic transcrip-
tion can also be achieved with forced alignment [Riley 99].

To apply the recognition results, the most frequent phoneme sequences of each
word can be collected to create a new pronunciation dictionary or to enhance an
existing one. The most frequent application is to compare the phoneme recognition
result to canonical pronunciations in a baseline dictionary by dynamic program-
ming. The resulting alignment serves as basis to generate the desired representa-
tion of pronunciation variations, most frequently phoneme confusion rules.

Comparing data-driven and knowledge-based approaches [Wester 00, Witt
99b], both can lead to roughly the same information. Therefore, data-driven
approaches are more desirable, as they require less human expert knowledge and
can easily be applied to many accent types.

In addition to provide information about pronunciation variation effects, data-
driven approaches are also affected by properties of the specific speech recognition
system (especially the acoustic model). Single insufficiently trained HMMs in an
acoustic model can produce phoneme confusion patterns, which are difficult to
distinguish from actual pronunciation variations. Compensating for these errors in
the dictionary leads to additional improvement in recognition accuracy.
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4.3 Representing Pronunciation Variations

4.3.1 Phoneme Confusion Rules

The most common approach to represent pronunciation variations is in the form of
rules, which are applied by generating additional entries in the pronunciation
dictionary [Binder 02, Sloboda 96, Yang 00, Amdal 00a]. These pronunciation
rewriting rules r can be formalized as [Cremelie 97]:

r : LFR ! F0 with Pr ð4:1Þ

with F, L, R and F0 being variable length phoneme sequences, also called pat-
tern. Pr is the firing or activation probability of the rule. A phoneme sequence F

with left context L and right context R is transformed into a sequence F0. The
firing probability can be calculated in data-driven approaches and are a measure
of how likely a pronunciation variation occurs. Based on these firing probabil-
ities, each additional dictionary entry can be assigned a pronunciation proba-
bility, which is helpful to scale the number of pronunciation variations added to
the dictionary.

Many dictionaries already include some common pronunciation variants, such
as the two pronunciations /i:D@r/ or /aID@r/ for the word either.

Experiments have shown that adding pronunciation variations to a dictionary
does have a big impact on the performance. But there is also a maximum average
number of pronunciations per word up to which recognition accuracy is increasing.
If too many pronunciations are added, additional confusions occur and recognition
accuracy deteriorates. Choosing the right pronunciation probability threshold(s)
is therefore a very important but tricky issue. Depending on the experimental
setup, this number lies between 1.1 and 1.5. There are several way to apply firing
probabilities of rules to scale the dictionary:

• Ignoring all rules with a firing probability below a certain threshold [Binder 02]
• Likewise, but setting separate thresholds for deletion, substitution and insertion
rules [Yang 02]

• Including only additional pronunciations of words for which the overall
pronunciation probability is sufficiently high.

An additional measure is the frequency of words in a large text corpus, words
that rarely occur at all should not cause too many entries in the dictionary. The
confusability between variants can also serve as criterion [Sloboda 96].

For rather homogenous speech such as the native speakers of the Wall Street
Journal database, adding pronunciation variants to the dictionary can show some
improvement but it is likely to be small [Yang 02].

For more speaker groups with stronger pronunciation deviations, such as non-
native speakers, the potential to improve recognition accuracy with this approach
is higher [van Compernolle 01, Goronzy 01].
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4.3.2 Pronunciation Networks

One possibility to generate pronunciation variations for a recognizer dictionary is
with neural networks. As with rules, output from a phoneme recognizer and
canonical transcription are aligned and the correspondence between the two pro-
nunciations used for neural network training. For each phoneme in a quinphone
context, there is an input unit. On the output layer, there is an insertion, deletion
and substitution unit for each phoneme. Applying the network on the baseline
dictionary leads to some word accuracy improvement [Fukada 97].

As HMMs have shown to be reliable for acoustic modeling, examining their
applicability to model pronunciation variations seems promising.

A simple idea is to build an acoustic model with words rather than phonemes as
base units to deal with multiple non-native accents. If the vocabulary size in a
recognition task is very small, such modeling is feasible and helpful [Teixeira 97],
but for large vocabularies, it will be difficult to find enough training data to reliably
train acoustic word models.

Therefore it seems more promising to keep acoustic modeling and lexicon
construction separate, e.g. with HMMs for lexicon construction.

The concept of generating HMMs to model pronunciation has been analyzed
for automatically generated acoustic subword units. This method has been applied
to an isolated word task with one Norwegian speaker [Paliwal 90] to generate
pronunciation dictionaries and for a database of 150 Korean speakers [Yun 99].

4.4 Other Related Topics

4.4.1 Computer Assisted Language Learning (CALL)

Learning a language requires expert knowledge to learn from, which can come
from a human teacher or a textbook. But human teachers are not always available
and costly, while textbooks alone can not provide feedback on pronunciation.
A computer program could provide all of these desired features, if a method to
provide feedback is found. Such software would make language study at home
much more effective. Research on computer aided language learning systems
therefore focuses on methods to automatically analyze pronunciation skill.

CALL systems ask speakers to utter text displayed on the screen and analyze it.
The text can be whole sentences, giving the learner feedback on his overall pro-
nunciation. To evaluate specific pronunciations, it is common to examine words or
minimal word pairs (i.e. two words that differ only in a single phone, such as lead
and read [Akahane-Yamada 04].

Many CALL systems apply a native HMM acoustic model, perform a forced
alignment on the utterance and calculate a rating of the speakers skill based on the
acoustic score, which is a probabilistic measure of similaristy to the native speech
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[Bernstein 90]. Additional information can also be extracted, e.g. speaking rate and
pause have been shown to be interesting features [Tomokiyo 00, Kato 04].

The quality of the automatic skill rating is evaluated by comparing it to
gradings by human experts (such as language teachers). Unfortunately, human
graders agree on speakers skills only to some limited extend, inter-grader corre-
lations tend to be around 65 %[Neumeyer 00, Cincarek 04a]. The correlation
between ratings and gradings is accordingly somewhat lower than this value. It is
therefore difficult to prove the validity of automatic ratings.

A different approach to measure nativeness is to recognize with a network of
two acoustic models in parallel, either native and non-native, or first and second-
language. A general rating can be calculated on which models the decoder applied
more often. The feedback of such an approach is especially valuable, as the system
can then point out to the user which sounds require additional attention [Kawaii
99]. Minimal word pairs are of high importance for this task.

4.4.2 Multilingual Speech Recognition

The topics non-native speech recognition and multilingual speech recognition are
sometimes confused. Multilingual speech recognition is any technology that
involves more than one language; if only two languages are considered the
research can be called bilingual.

Approaches typically focus on the acoustic model, as speech data is expensive
to collect and a method to generate an acoustic model without training would be
desirable. Such a model assembled from other languages is called cross-lingual.

After the discovery that the acoustic similarity of phonemes across language
can be exploited for building cross-lingual acoustic models [Köhler 96, Gruhn
01a], much research was conducted to create acoustic models of languages, for
which no or little speech data is available [Schultz 00b, Schultz 01]. Such rapid
prototyping is especially helpful to create ASR systems for minority languages or
languages of third-world countries where funds for data collection are not avail-
able; recognition rates are usually lower than those of ASR systems trained on a
large speech database. As phonetic contexts differ very much across languages,
such research tends to base on monophone models The users of such ASR systems
are assumed to be native speakers.

The typical approach to generate a multilingual acoustic model bases on a list
of phonemes in the source language(s) and the target language. For each phoneme
of the target language, a phoneme from one of the source languages is chosen. The
choice is often based on matching symbols in a phonetic alphabet. However, if
some data of the target language is available, similarity can also be determined in a
data-driven way. The acoustic models for the phonemes are combined together
into one model set, which is suitable for recognition in the target language to some
extend. In order to achieve matching acoustic conditions, a multilingual database
such as Globalphone [Schultz 00a] or CALLHOME [Billa 97] with similar or
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identical recording setup for each language is advantageous, somewhat tainting the
aim to avoid costly data collections.

Non-native speech can be considered a special case of this approach, an own
language for which little data is available. Acoustic models for non-native speech
can be generated by combining the acoustic models of native and foreign lan-
guage. Those bilingual models are accent-specific, but can capture the special
properties of that accent quite well [Übler 98.]. Most multilingual research seeks to
create an acoustic model for native speech without training data for that language,
which succeeds but leads to recognition rates lower than what can be expected
from a properly trained model. But for non-natives, accuracies higher than what
can be achieved with native models have been reported with multilingual models
[Übler 01].

Research has also been conducted in interpolating acoustic models of native
and foreign language [Steidl 04], leading to good results for specific accents. The
approach of generating a non-native pronunciation dictionary by recognizing
native speech of the target language with a phoneme recognizer of a source
language has also been analyzed, with relative word improvements of 5.2% rel-
ative [Goronzy 04].

There have been several attempts to make general purpose acoustic models
more suitable for recognition of non-native speech with the model adaptation
techniques MLLR or MAP, with a native speech database of the target language as
adaptation material. The advantage of such an approach is that there is no need to
collect a non-native database for training. The disadvantage is that the adaptation
cannot take into account which errors non-native speakers make and which sounds
are hard to pronounce. Literature is somewhat inconclusive about whether such an
approach can be effective or not, with one paper reporting amazing improvements
[Mengistu 08] and others being much less enthusiastic [Tomokiyo 01, Schultz 01].

Our approach of multilingual weighted codebooks described in Sect. 6.2 also
targets to exploit multilingual similarity for non-native speech recognition.

4.5 Relevance for This Work

For our work, we want to cover all types of pronunciation variations. While expert
knowledge might bring more accurate information about a given specific accent, it
does not generalize, making data-driven analysis the preferred way of obtaining
information. As form of representation, we will examine rules which we apply for
lattice processing in Sect. 6.1. However, because of the limitations of rules for
representing non-native variations, we propose a pronunciation network style
approach with HMMs as statistical lexicon in Chap. 7.

We will examine a multilingual approach for non-native speech recogntion in
Sect. 6.2 with multilingual weighted codebooks for semi-continuous HMMs.
Features to provide a skill scoring of non-native speakers as well as detecting
mispronounced words automatically are examined in Sect. 6.3.
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Chapter 5

Non-native Speech Database

One of the contributions of this work to the research community is the design,
recording and skill annotation of a large database of non-native English speech
uttered by speakers from several accent groups. This chapter gives an overview of
this database. We also summarize existing non-native speech databases and a
provide classification into database types, explain their limitations and the
importance of collecting our own database. All important details about data
recording setup and properties of the ATR non-native database collected in this
work are described in this chapter, some additional information of interest can be
found in the appendix.

5.1 Existing Non-native Speech Databases

Although the number of existing databases specializing on non-native speech is
considerably lower than the number of standard speech databases, several such
special speech data collections already exist.

It does not seem uncommon that a paper presenting results on non-native
speech is based on a private data collection of the regarding authors or institute. So
far, no ’’standard’’ database for non-native speech research has been generally
acknowledged in the research community, unlike for example TIMIT [Fisher 87]
for phoneme recognition or the AURORA series [Hirsch 00] for digit recognition
and noise compensation research. This has very serious implications:

• It seems difficult to compare different approaches towards non-native speech
recognition and judge the validity of proposed new methods.

• Collecting a new database is expensive (in terms of time and money resources).
This leads to much research being published on tiny databases or even indi-

R. E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_5,
� Springer-Verlag Berlin Heidelberg 2011
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vidual speakers or data that is recorded under questionable conditions. The
reliability of results calculated on too small databases is doubtful.

There have already been serious efforts to collect non-native speech databases,
which we discussed in [Raab 07].

Most of the corpora are collections of read speech, and the utterances are
collected from speakers of non-native English.

Table 5.1 gives detailed information about each corpus: The name of the cor-
pus, the institution where the corpus can be obtained, or at least further infor-
mation should be available, the language which was actually spoken by the
speakers, the number of speakers, the native language of the speakers, the total
amount of non-native utterances the corpus contains, the duration in hours of the
non-native part, the date of the first public reference to this corpus, some free text
highlighting special aspects of this database and a reference to another publication.
The reference in the last field is in most cases to the paper which is especially
devoted to describe this corpus by the original collectors. In some cases it was not
possible to identify such a paper. In these cases the paper where we first found
information about this corpus is referenced.

Some entries are left blank and others are marked with unknown. The difference
here is that blank entries refer to attributes we were not able to find information
about. Unknown entries, however, indicate that no information about this attribute
is available in the database itself. Example the MIT Jupiter corpus [Livescu 99]
has been collected as an open public system providing weather information to
random users, leading to a certain share of non-native speech. Due to the nature of
collection, there is no information available about the speaker properties other than
a non-nativeness flag set by the transcribers. Therefore this data may be less useful
for many applications. In the case where the databases contain native and non-
native speech, the we aimed to only list attributes of the non-native part of the
corpus.

Onomastica [Onomastica 95] is not a speech database, but a non-native pro-
nunciation dictionary. We included it in this table, because due to its large size it is
a significant resource for non-native speech and deserves a reference.

Where possible, the name is a standard name of the corpus, for some smaller
corpora, however, there was no established name and hence an identifier had to be
created. In such cases, we chose a combination of the institution and the collector
of the database.

In order to provide the research community with an always up-to-date reference
list about non-native speech databases, a website was created at the English lan-
guage Wikipedia [Wikipedia 07] website where interested researchers can browse
for databases that fit their purposes or add information about new collections.
Keeping track permanently of every data collection in the world is hardly possible
for a single person. Therefore Wikipedia was chosen as publication method so that
anybody who detects missing information can directly edit and update the table
without permission problems.
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Non-native speech research can be divided into several typical groups. It plays a
role in the research areas of speech recognizers, text to speech systems, pronun-
ciation trainers or computer assisted language learning systems. The task might be
to train, to adapt or only to test a system.

The best way to classify non-native speech databases is regarding to the type of
application they are designed for. The major fields are navigation devices or travel
assistance, military communications, presentation systems or computer assisted
language learning systems.

5.1.1 Speech Operated Travel Assistance

A possible future application of non-native speech recognizers are automatic
tourist information or hotel booking systems. As they are unlikely to cover any
language in the world, to interact with the system many travelers will have to
speak in English—non-native English.

A present application are navigation devices, where users can input destinations
in foreign countries by speech. As most mobile devices they still have to cope with
limited computing power. Therefore systems running on these devices are less
elaborated and do not allow natural spontaneous input.

Of course, of major interest for both systems are city and street names as well as
digits, for example for street numbers or postal addresses. Hence, a very inter-
esting corpus for this task would be the CrossTowns corpus, as it covers mainly
city names in a couple of languages. The strength of this corpus is that it includes
many language directions (speakers of one native language speaking another
language). Altogether the corpus covers 24 different language directions. Each
recording of a language direction contains two times 45 city names per speaker.
First the 45 city names are read from a prompt, and then they are repeated after
listening to the name via headphone. 13000 of the utterances are manually tran-
scribed at the phonetic level, and there is information about the language profi-
ciency of the speakers. A planned release at the European language resource
agency (ELRA/ELDA) in 2006 did not succeed. Unfortunately, licensing issues
prevent its public release, so that researchers outside the originating university
cannot access it. According to the author of the corpus a future release of this
corpus is undetermined.

Two further corpora exist for this domain: CLIPS-IMAG and the ISLE corpus.
The CLIPS-IMAG corpus is a collection of read speech with the advantage of
covering the tourist domain, which is likely to contain similar places of interest as
they will be demanded from navigation devices. With a total amount of 6 h of non-
native speech this corpus is also relatively large. The disadvantage is that it
consists of exotic language pairs (Chinese and Vietnamese speakers of French)
that may be of limited interest for most researchers or commercial developers.

Compared to the other databases applicable for this field of research, the ISLE
corpus has the disadvantage not to contain in-domain data, as it is more designed
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for CALL research (see below). Yet about half of the corpus are simple and short
utterances, which is at least somewhat comparable to plain command interaction
simple navigation systems can handle. ISLE is one of the largest non-native speech
corpora and has the advantage to be distributed by ELDA for a moderate price.
There are only two accents, German and Italian accented English in this corpus.
The speakers read 1300 words of a non-fictional, autobiographic text and 1100
words in short utterances which were designed to cover typical pronunciation
errors of language learners. The corpus is annotated at the word and at the phone
level, which makes it especially interesting for the development of Computer
Assisted Language Learning systems.

Because of the wide range of applications for call centers and automatic call
processing systems it is unlikely to find a non-native speech database that precisely
matches a given task, but from the viewpoint of domain, the travel assistance
databases are probably the closest match. Considering acoustic properties, the non-
native speech part of the Jupiter [Livescu 99] corpus is the largest fitting database,
although it still contains comparatively few utterances and lacks information about
the type of accent.

5.1.2 Military Communications

For automatic documentation of communication between soldiers from different
member countries and other purposes, the military has a strong interest in speech
recognition systems that are capable of handling non-native speech. To encourage
research in this field, NATO has recently released a couple of interesting corpora.
The M-ATC (Military Air Traffic Control) [Pigeon 07] covers pilot controller
communications with a variety of accents, strong background noise and a high
number of different speakers. The N4 corpus [Benarousse 99] contains recordings
from naval communication training sessions in the Netherlands. The transcriptions
of the N4 corpus are very rich regarding information about speaker background.
The airplane engine and communication channel noise in the N4 and M-ATC
corpora is so strong that several utterances were too unintelligible to be transcribed
by human listeners. This makes the corpus a very tough task and more relevant for
work about noisy speech, for which in turn the SPINE corpus [Zhang 02, Markov
03] of speech in noisy environment might be more interesting.

The Hiwire corpus contains spoken pilot orders that are input for the Controller
Pilot Data Link Communications [FAA 07]. An advantage of this corpus compared
to the two previously mentioned ones is that the recordings were originally made
in a studio. Thus this corpus provides clean speech as well noisy speech which was
obtained through convolution of clean speech and noise. The Hiwire and M-ATC
corpus yield the additional advantage to be free of charge for European
researchers. Besides the noise, the military corpora have the disadvantage of
containing very particular vocabulary, such as military keywords and geo
positions.
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5.1.3 Presentation Transcription

There are two databases that are likely to be useful for this application, namely
TC-STAR [van den Heuvel 06] and TED [Lamel 94]. The TC-STAR corpus
contains about 100 h of Spanish and English transcribed parliament speech each. It
is not a specific non-native database, but it includes 11 h of non-native English and
some amount of non-native Spanish in both training and test corpora of TC-STAR.
A larger part of the TC-STAR corpus is from non-native interpreters. As it is not
clear to what extent speech from a professional interpreter can really be considered
non-native speech the non-native interpreter part is not included in this number.
The speech is very spontaneous, containing restarts, hesitations and reactions to
the audience.

The Translanguage English Database (TED) is a corpus which contains almost
all presentations from the Eurospeech 1993. The speech material totals 47 h,
however only about 10 h are transcribed. Due to the typical mixture of presen-
tations from a variety of countries, it is believed that a large amount of the
presentations is given with non-native accents. The speech contains all artifacts
found in conference presentations, such as nervousness, room acoustic and
spontaneousness effects.

Databases are frequently not collected in order to achieve optimal data quality
that allows clear conclusions which method to deal with non-native effects. Rather,
databases are created where they are cheap to collect. Transcriptions from meet-
ings or political speeches are typical examples: The spontaneous speech effects
and acoustic condition as well as the unclear accent status cause these databases to
be rarely employed for non-native speech research.

5.1.4 Computer Assisted Language Learning

Most speech technologies only need orthographic transcriptions for the databases
to train systems. This is different for computer aided language learning (CALL)
systems. In order to detect and/or classify mispronunciation it is necessary to have
ratings of overall skill and pronunciation quality, as well as some kind of infor-
mation about pronunciation correctness at word level, either in form of markings
of incorrect words or in form of a transcription at the phonetic level. The quality of
these ratings is of utmost importance, as a typical target of CALL research is to
create an automatic scoring algorithm that matches the human ratings as closely as
possible, therefore resembling the opinion of human experts. Major corpora which
can provide proficiency ratings are ISLE, Cross Towns, and ERJ. Of these corpora,
the ISLE and Cross Towns corpus contain also transcriptions at the phonetic level.
The database of English read by Japanese (ERJ) has been collected at the Uni-
versity of Tokyo with the specific target of aiding CALL research. It focuses on
Japanese accented English. ISLE, as described in Sect. 5.1.1, was designed for the
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purpose of CALL research, making it its main field of application. Cross Towns
would also be a good corpus if it were publicly available.

5.2 The ATR Non-native Speech Database

A significant part of the work presented herein is the collection of a non-native
speech database. The collection was motivated by the problem that much research
on non-native speech is published with results calculated on individual databases
that in many cases are too small or unreliably collected, making it very hard to
judge the effectiveness of the proposed methods. Another important point is to
cover several different accent types. Many approaches need much expert knowl-
edge about the properties of a specific accent, and do not generalize as would be
needed for a successful commercial system dealing with non-native speech in
many languages. Furthermore, the database should be as versatile as possible,
allowing for non-native speech recognition based applications as well as CALL
research. For the latter, ratings by human experts are required. Finally, the data-
base must be made available to the research community in order to avoid creating
yet another local database.

5.2.1 Speakers

This ATR (Advanced Telecommunication Research Laboratory) non-native
speech database consists of 96 non-native speakers of English, covering many
types of non-native accents. Most speakers come from China, France, Germany,
Indonesia or Japan, with the Japanese speaker group being slightly larger than the
others, as the data was collected in Japan. The mother tongue of all subjects listed
under Chinese was Mandarin Chinese. Seven speakers have other native lan-
guages: Bulgarian, Spanish, Portuguese, Hindi, Sinhalese, Hungarian or Korean.
The age range is 21–52 years, but most speakers are around 30 years or younger.
Table 5.2 lists those speakers, further information about the individual speakers
can be found in Appendix C. Additionally, there is data from three male native
English speakers (one British, one Australian and one US-American citizen), but
as they are not non-native, they are not counted for the database size.

About half of the subjects are or were members of ATR at the time of the
recording. The remaining subjects in the database were hired through an agency.
There was no specific criteria about how the speakers were chosen, leading to a
wide skill range. One subject turned out to be hardly able to read Latin characters
and was rejected. Other than that, data from all speakers who were able to utter the
complete text set within 2 h was included (a native speaker requires less than
30 min for this task). For a few speakers with extraordinarily low skill or who had
to leave the session early, only a fragment is could be recorded. This data is not
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included in the official data set and was not employed for the work presented
herein.

Our database is not gender-balanced. When the database collection plan was
made, other experiments on non-native speech were also thought about, such as
automatically clustering non-native speakers on the acoustic model level. To avoid
that algorithm to only cluster by gender and to avoid the need to half the database
for that experiment, we decided to focus on male speakers. The agency that
provided the speakers found it easier to provide male subjects, too. Pronunciation
variations are known to depend on factors like native language or learning
experience, the gender has so far not been reported as a source of pronunciation
problems. Hitherto we can assume it has no effect on our research to accept a
gender imbalance.

5.2.2 Data Contents and Properties

Each subject reads a uniform set of around 150 sentences as listed in Table 5.3. It
includes 25 credit card style number sequences, 48 phonetically compact sentences
(a randomly chosen subset of the TIMIT SX set, see Sect. 7.5.1) and six hotel
reservation dialogs with 73 utterances in total.

The C-STAR research consortium has been conducting research in speech-to-
speech translation for travel assistance [C-Star 99]. In order to analyze such dia-
logs, they have collected and transcribed several conversations (between native
speakers), giving one speaker the role of a traveler and the other speaker the role of
a receptionist at a hotel. The transcriptions of five of these dialogs were included in
the sentence list. Furthermore, one of the typical demonstration sample dialogs,
‘‘demo02’’, was also added. A transcription sample from the hotel reservation
dialogs can be found in Appendix A. Two of the hotel reservation dialogs,
TAS22001 and TAS3202, were defined as test set of about three minutes, the rest
of about eleven minutes as training data.

The sentence set was chosen based on which data is helpful for non-native
speech research. These are some phonetically compact sentences for good pho-
netic coverage, and some sentences from the target scenario, which is hotel
reservation.

Table 5.2 First language
distribution and age ranges in
the ATR non-native speech
database

NNS-DB # Male # Female Age

Chinese 16 2 21–52
French 15 1 21–42
German 15 0 23–43
Indonesian 15 1 24–43
Japanese 15 9 21–45
Other 5 2 31–42
Total 81 15 21–52
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One may argue that depending on the experience of the individual speaker some
parts of the text set might be very difficult and the text set should take this into
account. But before the recordings it is not clear to data collectors what tasks will
be regarded as easy or difficult by the foreign speakers. Therefore we chose to
pursue a uniform text set.

The recording equipment consisted of a Sennheiser HD-410 close-talking
microphone and a Sony DAT recorder. The speech was recorded at 48 kHz and
downsampled to 16 kHz with 16 bit precision. Of the hardware, only a display
and mouse were in the vicinity of the speaker during recording. The PC was
shielded from the recording booth to avoid background noises e.g. from the PC
ventilation. To ensure no noise from the power network disturbs the recording
hardware, the power supply was routed through a special power line network
noise filter.

The recordings took place in two separate sessions. The first session consisted
of eleven Japanese, two German and two native English speakers, the second
session covered the rest. The recording setup is identical for the two sessions. For
organisatory reasons, there was a time gap between the two sessions, therefore the
smaller data set from the first session was already applied in some experiments
(which are marked accordingly).

The recording software is interactive and controlled by the speaker. The soft-
ware presents one sentence at a time to the speaker. Clipping and too low volume
problems are automatically detected and indicated on a graphical user interface
(GUI) to ensure acoustic quality. After uttering one sentence, the speaker could
listen to the speech and record it again if he was not satisfied with the recorded
utterance. Additionally, a recording supervisor asked the speaker to repeat if some
noise or non-verbal human sound occurred during the speech, or the speaker made
severe reading mistakes such as leaving out words.

If speakers felt unsure about how to pronounce a word, they were encouraged to
attempt saying them the way they believe correct, as low confidence in the
speakers’ own language skill is a frequent problem. If the pronunciation of a word
was completely unknown, a supervisor would assist.

Table 5.3 Detailed contents for each speaker of the ATR SLT non-native English database

Set Contents #Words #Utterances

SX 48 phonetically rich sentences from the TIMIT database 395 48
TAC22012 252 19
TAS12008 Hotel reservation dialogs 104 9
TAS12010 144 12
TAS22001 162 10
TAS32002 182 13
demo02 70 10
DIGITS Credit card numbers 200 25
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5.2.3 Speaker Anxiety

A major issue in collecting non-native speech is to reduce the anxiety of the
subject. Having to talk in a foreign language knowing that the speech is being
recorded is a cause for stress. Less proficient speakers are more anxious about
recordings of their speech as they regard the situation as a test of their proficiency
of the foreign language. An extra factor may be that the speakers are being paid for
the recording and feel pressure to produce good work. Unfortunately in a setup
where the speakers are not paid it is difficult to accumulate a large number of
motivated speakers, especially speakers other than students. Some initial record-
ings were conducted in an acoustic chamber. There, we observed that anxiety adds
several additional artifacts to the speech:

• Sentences are artificially segmented into words.
• Speakers hyperarticulate words in an attempt to speak especially clearly.
• The speaking rate is—depending on the individual—much higher or lower than
natural.

• Additional pronunciation mistakes occur because the speaker cannot remember
the correct pronunciation.

• Due to lowered self-confidence, the speaker asks for help from the instructor
more often.

• Nervous speakers also tend to get a sore throat quicker.

Such anxiety effects are a recording setup effect and are not necessarily
expected in a real-world target system. In a speech-controlled car navigation for
example, there is typically no critical audience, the user has as many attempts as he
wishes and a haptical input system as backup, so there is no reason to be nervous.
CALL systems are typically used alone, with no second person listening in front of
whom the user could feel ashamed about his pronunciation. Presentation speech
does contain anxiety, and because of the combination of non-native, spontaneous
and anxious speech effects it is a very difficult task, discouraging the use of such
databases at the current state of technology for non-native speech research. Mil-
itary speakers such as flight controllers train the occurring situations, which can be
expected to reduce nervousness. Also, they do not talk to a system but to a human
dialog partner.

To reduce anxiety of the speakers, several measures were implemented.
Although an acoustic chamber was available, we chose to record in a normal
meeting room. An acoustic chamber is a room with walls especially designed to
absorb sound and noise-free air supply. Because of the expensive wall padding
necessary, acoustic chambers tend to be small. A person entering an acoustic
chamber for the first time tends to feel uncomfortable or even scared because of
the unnatural silence, an effect we had to avoid. Therefore we built a recording
booth in a normal meeting room using sound-absorbing panels. The booth was
half-open to the back and not fully closed on the top to avoid claustrophobic
feelings. While significantly reducing reverberance, with this construction we
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could avoid the eerie atmosphere of a real acoustic chamber and were able to get
both good data and comparatively relaxed speakers. The room had normal air
conditioning. While we chose a location within the room with low noise, a min-
imum amount of background noise was unavoidable.

An instructor sat directly next to the speaker. The main role of the instructor
was to give initial explanations how to use the recording equipment and software
and to supervise the recording. However, a very important duty was also to
reassure the speaker that he is doing all well and as expected. This can be achieved
simply by nodding friendly whenever the speaker looks up. In case the instructor
had to correct an utterance, special care was taken to be friendly and polite.

As a final measure, the subjects had to make pauses regularly and drink an
alcohol-free beverage of their choice, which creates an opportunity to tell the
speaker he is performing better than many other speakers, relaxes the speaker and
counters sore throats.

5.2.4 Skill Annotation

As this database also aims to be applicable in CALL research, annotations of
general skill and pronunciation errors are necessary. They are needed to validate or
train an automatic scoring system.

Fifteen English teachers were hired via an agency each for one day. All teachers
were native English speakers from the United States or Canada. One day is not
enough to annotate the whole sentence set, therefore the TIMIT SX set was chosen
for the ratings. We did not want to extend the evaluation over more than one day,
as we would have expected a change in rating behavior on the next day and
consistency of the ratings is an important issue. The SX set is phonetically com-
pact, i.e. it is designed to cover as many biphone combinations as possible,
therefore providing a good basis for examining pronunciation errors in phonetic
contexts. Annotating the SX set took around 6 h. Each evaluator had to listen to
1,152 utterances (48 TIMIT sentences times 24 non-native speakers) in order to
assign a utterance-level rating from 1 (best) to 5 (worst) in terms of pronunciation
and fluency to each utterance and mark any words which are mispronounced. In
total the speech data of 96 non-native speakers was evaluated, i.e. since there are
15 evaluators and each evaluator annotated the data of 24 non-native speakers,
each speaker is assessed by three to four evaluators.

Each evaluator was given a comprehensive instruction sheet. The ratings were
conducted on a web browser based interface. In the beginning, each evaluator had
to listen to a uniform set of 22 calibration sentences. This set consists of 22
different sentences of 22 different non-native speakers. The evaluator had to assign
a rating from 1 to 5 to each calibration sentence considering pronunciation and
fluency. The selection criterion for the speakers was their recognition rate in the
hotel reservation tasks TAS22001 and TAS32002 with a native acoustic model.
For each of the five major first languages, one speaker with the highest, one
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speaker with the lowest and one speaker with a medium recognition rate were
selected. Furthermore, one sentence of one speaker each of the remaining first
languages (Bulgarian, Spanish, Portuguese, Hindi, Sinhalese, Hungarian and
Korean) was included. Since the evaluators were asked to assign level 1 to the best
utterances and level 5 to the worst utterances and to use each level at least once,
they had an anchor for future ratings. The target of this calibration was to induce
consistent rating behavior. The complete calibration set was accessible on one
browser page, so that the evaluators could correct their earlier ratings after com-
paring to later utterances.

In the next step 48 sentences of 24 speakers were presented separately to the
evaluator. The order of presentation was determined randomly and was different
for each evaluator. The evaluator had first to listen to an utterance, mark mis-
pronounced words and finally select a level of proficiency. For these utterance
level ratings, the evaluators were instructed to ignore sentence intonation, for
marking of words to consider phonetic pronunciation errors but to ignore wrong
lexical stress. The evaluator was not allowed to go back to already processed
utterances and change previously assigned labels. Table 5.4 shows the distribution
of the marks 1 (very good English) to 5 (unintelligible pronunciation) and the
number of words that were perceived as mispronounced (binary label).

To measure to what extend the evaluators agreed, and thus how reliable the
ratings are, two types of measures can be employed:

• Pairwise correlation
• Open correlation

The equations for the two correlation measures are explained in Sect. 6.3.3.
The pairwise correlation on utterance level ranges between the rather low value

of 0.28 and the acceptable value of 0.65, with an average of 0.49. Comparing to
other work in literature [Franco 00], where an average correlation of 0.65 is
reported, the correlation seems somewhat low. There are several possible reasons:

• The English teaching experience of the evaluators varies, with some teachers
even having phonetic background knowledge, and others only on-the-job
training as teachers.

• The interpretation of the term ‘‘mispronounced’’ and the marks 1 to 5 is subject
to individual opinions. 22 utterances as evaluator training set might have been
too short. For example, one evaluator reported he changed his behavior during

Table 5.4 Distribution of the expert pronunciation quality ratings at the word and the sentence
level

Level Sentence Word

Label 1 2 3 4 5 Mispron.

Freq. 382 1791 1744 623 68 3528
8.3% 38.9% 37.8% 13.5% 1.5% 9.3%
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the experiment. On the other hand, having a longer calibration set would have
stretched the ratings over more than one day, and the evaluators might have
required another calibration on the next day.

• The evaluation strictness was very variant among the evaluators. For example,
the pair with the lowest pairwise correlation consists of the evaluator who
marked the most words as mispronounced and the one who marked the least.

The second measure is the so-called open correlation [Franco 00], which is the
correlation between the mean rating of all but one evaluator and the remaining
evaluator. The utterance-level inter-rater open correlation is between 0.45 and
0.70. Averaging the correlation values for all evaluators results a mean of 0.60.

The open correlation can also be calculated on speaker level. For each evaluator
and speaker, the mean of the utterance-level ratings is computed. Calculating the
inter-rater open correlation on these means leads to values between 0.88 and 0.98,
with an average of 0.94.

This averaging out of individual evaluator effects shows that the ratings are
sufficiently stable to be used as reference for research in automatic pronunciation
scoring or computer aided language learning systems. In Appendix D we give
detailed information about the rating procedure, in [Cincarek 04a] we further
discuss inter- and intra-rater consistencies.

Table 5.5 shows a list of the words marked most often as mispronounced by at
least one evaluator. The phonetic transcription is given in the IPA alphabet.
Apparently, words with an x are hard to pronounce for any non-native speaker. On
the other hand, the word rare is hardly a problem for German speakers of English,
whereas most Chinese and Japanese speakers failed to pronounce it correctly. The
ranking takes word frequency into account, looking only at the absolute number of
error marks, the word ‘‘the’’ is the most frequently mispronounced word.

There is also a clear relation between length of a word and its chance to be
marked as mispronounced. As Fig. 5.1 shows, the higher the number of phonemes
in a word, the higher the relative marking frequency. This seems easy to under-
stand, since an evaluator may mark a word if there is at least one mispronounced
phoneme and the possibility for mispronunciation increases with the number of
phonemes.

5.2.5 Comparison to Existing Databases

The ATR non-native database is a large step ahead for research on non-native
speech. With almost 100 speakers and 15000 utterances, it is far larger than most
non-native databases containing only small numbers of subjects and spoken sen-
tences. Only large databases allow for a division in development and test set and
still lead to statistically relevant results.

In order to examine the generality of data-driven methods it is important to have
comparable data of several non-native accents. The ATR non-native database
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includes five large accent groups of non-native English. Other major databases like
[Byrne 98, Minematsu 02] focus on a single accent. Our database has precise
information about speaker properties, especially native language, which is nec-
essary to train accent-dependent models. This information is missing in other
databases [Benarousse 99, van den Heuvel 06].

Skill and mispronunciation annotation is a prerequisite to conduct research in
automatic pronunciation scoring for CALL systems. Our database provides both a

Table 5.5 Words with a high mispronunciation frequency

Word Pronunciation All German French Indonesia China Japan

Extra 1.00 1.00 1.00 1.00 1.00 1.00

Exposure 1.00 1.00 1.00 1.00 1.00 1.00

Exam 1.00 1.00 1.00 1.00 1.00 1.00

Box 1.00 1.00 1.00 1.00 1.00 1.00

Mirage 0.92 0.71 1.00 0.94 0.94 0.92

Centrifuge 0.85 0.93 0.86 0.94 0.89 0.72

Bugle 0.85 0.64 1.00 1.00 0.89 0.72

Frantically 0.84 0.79 0.81 0.88 0.67 0.96

Purchase 0.76 0.64 0.94 0.81 0.67 0.76

Rare 0.75 0.36 0.69 0.75 0.89 0.88

Contagious 0.74 0.57 0.69 0.81 0.83 0.72

Formula 0.73 0.79 0.88 0.81 0.67 0.56

Ambulance 0.73 0.64 0.81 0.75 0.78 0.72

Development 0.70 0.36 0.88 0.94 0.67 0.64

Pizzerias 0.69 0.36 0.56 0.88 0.78 0.76

Guard 0.69 0.43 0.75 0.75 0.83 0.68

Colored 0.69 0.50 0.81 0.56 0.67 0.84

Chablis 0.69 0.36 0.44 0.88 0.83 0.80

Thursdays 0.68 0.50 0.69 0.75 0.67 0.76

Mergers 0.67 0.29 0.69 0.81 0.72 0.72
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Fig. 5.1 Relationship
between the number of
phonemes in a word and its
relative marking frequency
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sentence-level rating as well as mispronounced word tags. Other corpora with such
labels focus only on a single accent [Minematsu 04] or on learners of Japanese
[Minematsu 02] which makes studies difficult for non-Japanese researchers.

Non-nativeness is already a challenging problem for speech recognizers, if
overlapped by strong noise or extreme spontaneousness, speech recognition
accuracy becomes so low that random effects can influence blur performance
measures. Some databases that are large but contain such additional challenges
[Lamel 94, Teixeira 97, Pigeon 07] find little use in the research community. We
took special care in order to avoid such overlapping in the design of our recording
environment.

Finally a database is only helpful if it is possible to acquire at least a research
license. The otherwise very interesting Cross-Towns corpus [Schaden 02] unfor-
tunately remains closed property of the collecting institute, with no release planned
for the near future. The ATR non-native database can be licensed at ATR, a well-
known source of speech databases in Japan.
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Chapter 6

Handling Non-native Speech

Other than the main contribution of this work, the HMMs as statistical pronun-
ciation models we describe in Chap. 7, we have conducted several experiments to
handle non-native speech. These include rule-based phoneme lattice processing
and multilingual weighted codebooks of semi-continuous HMM based recogniz-
ers. Section 6.3 gives a brief outlook into automatic scoring of non-native speakers
pronunciation and mispronounced word detection, comparing a wide range of
features on sentence and word level. Automatic scoring algorithms are the basis
for computer assisted language learning (CALL) systems. Finally, we look into the
prosodic analysis of non-verbal utterances in Sect. 6.4 as they can contribute to a
deeper understanding of non-phonemic effects. In the following, we will describe
those experiments.

6.1 Rule-Based Lattice Processing

An interesting rule-based approach to compensate non-native pronunciation errors
is processing multilingual phoneme lattices [Gruhn 02, Binder 02]. The goal of this
technique is to correct variations in pronunciation at the phoneme level. As we
analyze specifically Japanese speakers of English, we take into account the pos-
sibility that Japanese speakers use phonemes more similar to Japanese than to
English by applying a bilingual acoustic model. To keep as much information of
the original speech as possible, all phonemes of the English and the Japanese
language are included into a bilingual HMM acoustic model. Consonants that
share the same IPA-symbol are represented only once, to reduce the confusion.
According to rules all Japanese phonemes are matched on English phonemes and
additional variations for English phonemes are added, too. Comparable Methods at
the word level [Tomokiyo 00] have already achieved good results, but if a word is
misrecognized because of differences in pronunciation, it is lost for further

R. E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_6,
� Springer-Verlag Berlin Heidelberg 2011
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processing. By adding the pronunciation variations to the phoneme-lattice, this
new approach allows a more robust recognition, without putting many variations
of the same word into the dictionary.

Training data for the native English acoustic model (AM) was the training set of
the WSJ database and conducted as described in Sect. 7.5.1, except that the
software ATR-SPREC [Singer 99b] was used for acoustic model training and
recognition. The Japanese AM training was conducted on the ATR’s Japanese
TRA-Database [Nakamura 96], a read speech database in a hotel reservation
scenario. The separately trained English and Japanese models were merged into
one mixed HMM set.

The non-native database for both rule generation and test was a part of the
ATR non-native English database described in Chap. 5 containing only the first
eleven Japanese speakers of English. In this subset, we have 1342 utterances for
training and 244 for test. The division into test and training sets is identical to
the choice given there, the test set consists of two hotel reservation dialogs.
Evaluations were based on the smaller dictionary with 6,700 pronunciations for
2,700 words.

6.1.1 Rule Generation

An unrestricted 1-best phoneme-recognition was performed on the non-native
training data and the result matched to the transcription by dynamic programming.
As shown in Fig. 6.1 the results are the recognized phonemes and a sequence,
containing the phoneme when recognized correctly, $I for insertion and $S for
substitutions. Deletions would be marked with $D. The substitutions are the basis
information for the rule generation.

The variations in pronunciation extracted have to be transformed from an
unsorted order into rules containing information about the frequency of appear-
ance. The number Nphrec!phcorr of each variation phrec ! phcorr is counted and
divided by the frequency Nphrec of the phoneme phrec.

Fig. 6.1 Overview on rule
derivation from n-best result,
transcription DP-alignment
for ‘‘thank you’’. $S marks
substitutions and $I

insertions. Japanese phonems
are written in lower case and
English phonemes in capital
letters
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Psub ¼ Pðphi;corrjphj;recÞ ¼
Nphi;rec!phj;corr

Nphi;rec

: ð6:1Þ

For this calculation, only correct recognized phonemes and substitutions, but
not the insertions and deletions were taken in account. All rules were added to the
list, without any limitation to probability [Amdal 00a]. A selection of rules more
frequent than a given probability threshold Tsub takes place during application
though. It is important to notice that, unlike in [Witt 99b], there is no mapping of a
recognized phoneme to one target phoneme. The original phoneme is substituted
by likely variations, which are only from the English phoneme set and also can
contain the original phoneme.

6.1.2 Lattice Processing

Figure 6.2 explains the lattice processing algorithm. It is applied on the phoneme
lattice created by the decoder (Fig. 6.3). All Japanese phonemes are substituted
with English variations. If rules for an English phoneme are existent, they are also
going to be applied. In this case, the phoneme is substituted by its variations,
which can contain the phoneme itself, too. The log-likelihood for these new
possible phonemes is calculated using the log-likelihood LðphorigÞ of the original
phoneme and the previous calculated probability PðphrecjphcorrÞ for the variation.

LðphnewÞ ¼ LðphorigÞ þ logðPðphrecjphcorrÞÞ ð6:2Þ

After the new variations are included, a phoneme might appear more than once
between the same nodes. In this case, it is dynamically reduced to one arc and the
likelihoods of this arc is adjusted. The resulting lattice has more arcs than the
original but the same number of nodes and contains only phonemes of the English
phoneme-set.

We evaluated the performance depending on the number of rules. Each rule has
a probability Psub measuring the occurrence frequency during training, we select
only those rules with Psub larger than a threshold Tsub, experimenting with values
from 3 to 11%. The total number of rules in the rule-set was 1298. Including rules
with lowest occurrence worsened the result as random phoneme confusions by
recognition errors during rule generations start to have a large impact. In Table 6.1
we show two measures to evaluate the performance, phoneme net accuracy (PNA)
and phoneme best correctness (PBC). PNA is the accuracy for the best path
through the phoneme lattice, ignoring the score. PBC is the correctness rate of the
1st best result with the highest acoustic score.

As it can be seen in Table 6.1, the phoneme net-accuracy has a maximum for a
threshold of 7% (80 rules). If more rules are applied, the recognition suffers from
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confusion, for fewer rules, the recognition result converges to the recognition rate
of the unprocessed lattice. The overall phoneme best correct rate for the processed
lattice is lower than for the unprocessed lattice. As PNA results prove, the correct
phonemes do exist in the lattice. This may be indicating that the calculation of the
score during variation application is not yet optimal.

Ph2 Ph4

Ph3

Ph4b

Ph4aPh1b

Ph1a

Ph2

Ph3a

Ph3

Ph1

Ph4
Ph1

Fig. 6.3 An example for a lattice before (left) and after processing (right)

Fig. 6.2 The lattice
processing algorithm
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6.1.3 Extension to Word Level

In order to get an estimate how well the method performs not only for phoneme
recognition, we extended the method by transforming the phoneme to a word level
as shown in Fig. 6.4. As a phoneme lattice tend to have in the order of 103 nodes
and the dimension of arcs is 106 this problem does not seem to be solvable in
reasonable time. For the calculation of the word correct rate, only the number of
correct words as defined in the transcription is necessary. Thus, the dictionary-
lookup was restricted to those entries. With this evaluation method, we achieved
an improvement from 73.0% to 82.3% word correctness. But these numbers must
be seen with some caution, as e.g. in the example shown in Fig. 6.4 a misrecog-
nition from the word hello to low (both including the phoneme sequence /L+OW/)
is not possible.

Table 6.1 Phoneme lattice processing with variable sized rule sets, depending on occurrence
frequency

Tsub Unpr 0.03 0.07 0.08 0.10 0.11

# Rules — 236 80 65 50 44
PNA 57.3% 64.7% 65.9% 64.4% 62.0% 60.9%
PBC 34.5% 30.1% 31.5% 31.5% 32.5% 32.3%

Fig. 6.4 Example for a
conversion from a phoneme
to a word lattice
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6.1.4 Applying Rules on the Pronunciation Dictionary

Alternatively to lattice processing, the phoneme confusion rules can also be
applied to add pronunciation variants to a standard dictionary. During lattice
processing, we could take the probability of a rule directly into account by
adjusting the arc likelihood and therefore theoretically apply all rules given. A
standard pronunciation dictionary does not contain such probabilities, and there-
fore we cannot apply all possible rules to the dictionary. Especially as frequently
not only one, but several rules can be applied to a word and the number of possible
permutations explodes for long words. Similarly to the lattice processing, we
consider only those rules, whose probability Psub is larger than a defined threshold
Tsub. The results for various choices of Tsub and therefore number of entries in the
dictionary are shown in Table 6.2. Non-nativeness is a term covering a wide range
of skills. To examine performance for good and bad speakers, the test set was
divided into four groups of equal size with the baseline performance of each
speaker as clustering criterion.

While the experiments in this section show that rule-based phoneme lattice
parsing can improve recognition accuracy, the gain is only small or existing but
impractical to apply in a real world system. A general problem about rule-based
approaches is that errors other than substitutions are difficult to handle - in fact, in
this approach, they are not considered at all. This limits the performance of such
approaches.

6.2 Multilingual Weighted Codebooks

For the special case of semi-continuous HMMs, multilingual weighted codebooks
[Raab 08a] have proven to be an effective method to increase performance for non-
native speech recognition [Raab 08b, Raab 08c].

Semi-continuous systems are based on a vector quantization (VQ). As the
codebooks for VQ are calculated on the training data of the acoustic model, they
only fully represent the properties of the one language they were made for and
perform much worse for speech from other languages. Semi-continuous HMMs

Table 6.2 Recognition results (word accuracy) comparing a baseline pronunciation dictionary
and dictionaries including added pronunciation variations

Tsub Unpr 0.08 0.10 0.15 0.17 0.20
Dict size 6664 41151 23506 14218 12142 9994

Total 23.24 25.00 25.95 25.90 26.49 25.81
Good 48.12 42.08 46.59 48.01 49.64 48.19
Medium 29.06 30.77 31.62 32.30 33.16 31.62
Poor 12.48 20.51 19.49 17.26 17.43 16.75
Bad 2.91 5.24 5.23 5.97 5.52 5.47
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are typically applied in limited-resource tasks such as car navigation devices and
have to optimally support a main language for commands and navigation, but also
recognize some additional languages e.g. for input of international destinations.
Resource reasons prevent simply multiplying the codebook size, and the focus on
the main language forbids creating a fully multilingual codebook. The multilingual
acoustic model, on the other hand, can be a simple concatenation of several
monolingual models as not all languages are required at the same time.

To achieve the first priority aim of keeping the main language accuracy, the
multilingual weighted codebooks (MWCs) created always contain all Gaussians
from the main language codebook. The Gaussians that originate from the main
language always remain unchanged. To improve the performance on the additional
languages, the MWCs will also contain some Gaussians which originate from
codebooks from the additional languages, with one additional Gaussian being
added per iteration. After the multilingual weighted codebook is generated, the
acoustic model has to be retrained with the new codebook.

The proposed MWC is therefore the main language codebook plus some
additional Gaussians. Figure 6.5 depicts an example for the extension of a code-
book to cover an additional language. From left to right one iteration of the
generation of MWCs is represented in a simplified two dimensional vector space.

The picture to the left shows the initial situation. The X’s are mean vectors from
the main language codebook, and the area that is roughly covered by them is
indicated by the dotted line. Additionally, the numbered O’s are mean vectors
from the second language codebook. Supposing that both X’s and O’s are optimal
for the language they were created for, it is clear that the second language contains
sound patterns that are not typical for the first language (O’s 1, 2 and 3).

The picture in the center shows the distance calculation. For each of the second
language codebook vectors, the nearest neighbor among the main language Gaussians
is determined. These nearest neighbor connections are indicated by the dotted lines.

The right picture presents the outcome of one iteration. From each of
the nearest neighbor connections, the largest one was chosen as this is obviously
the mean vector which causes the largest vector quantization error. In the pictures,

Fig. 6.5 Basic idea of multilingual weighted codebooks
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this is O number 2. Thus the Gaussians from O number 2 was added to the main
language codebook.

Experiments were conducted on the ISLE corpus [Menzel 00] of non-native
English. The results show it is possible to get the same performance with only 10%
additional codebook vectors as with concatenating both codebooks. The overall
improvement (either with a double codebook or 10% increased codebook size) has
been a relative 10% compared to a monolingual codebook.

Further optimization of the approach is possible in an on-demand system [Raab
11]: After analyzing the required language combinations for a given application in a
specific context, a multilingual acoustic model can be created on-the-fly, based on
multilingual codebooks. While such generated acoustic models perform inferior to
properly trained models, they still have the advantage of accomodating even exotic
accents.

6.3 Automatic Scoring of Non-native Pronunciation Skills

To learn a second language without a human teacher, computer assisted language
learning (CALL) systems are very helpful. While grammar and vocabulary can be
learned in self-study, for pronunciation some kind of correctness judgement is
needed. From a pedagogical point of view, a system for computer assisted pro-
nunciation training should provide the student an overall assessment of pronun-
ciation quality to verify correctness, pinpoint certain rather than highlight all
mistakes, and possibly suggest a remedy [Neri 04]. In order to provide feedback
without human assistance, methods for automatically scoring the pronunciation
quality at different levels of granularity are required.

In this research [Cincarek 09, Cincarek04b], we present a pronunciation scoring
method applicable independently of the non-native’s first language. We provide a
method to derive feedback about mispronunciations at the phoneme level from
word level scoring.

The method has been evaluated on the database explained in Chap. 5. As only
for the TIMIT phonetically compact sentences human skill ratings are available,
only those sentences were the basis for pronunciation scoring. The experimental
setup is as described in Sect. 7.5: A monophone acoustic model trained on the WSJ
database is used for phoneme and word recognition, combined with a hotel res-
ervation task language model.

In [Cincarek 09], we propose the following features for automatic pronuncia-
tion scoring:

6.3.1 Sentence Level Pronunciation Scoring

In Table 6.3 variables and symbols used in feature definitions are summarized.
Feature extraction is carried out separately for each sentence S. A sentence can be
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said to consist of either N phoneme segments or M word segments, which are also
made up of phoneme segments. It is assumed, that there are no intra-word pauses,
but only inter-word pauses. The duration of a phoneme segment Xi with label pi is
denoted as Ti. Word durations are denoted as Dj. The total duration TS of a
sentence is defined as the duration of all phonemes plus inter-word pauses in the
sentence. Leading and trailing silence segments are ignored. The rate of speech
(ROS) is a measure of the speaking rate. It can be defined as the number of
phonemes, syllables or words per time.

The rate of speech can be used as pronunciation feature. However experiments
revealed that there is a higher correlation for the reciprocal phoneme-based rate of
speech, i.e. the mean phoneme duration:

(MeanPhDur)R ¼ 1

RðphÞ ð6:3Þ

Another feature is the duration score [Neumeyer 00] to measure deviations
from the duration characteristics typical for native speech. The duration log-
likelihood of the phoneme models in the sentence is summed up as follows:

(DurScore)D ¼ 1

N

X

N

i¼1

logP
ðphÞ
dur ðTi � RðphÞjpiÞ ð6:4Þ

A phoneme duration probability density function (pdf) can be estimated from
transcribed native speech data. Instead of approximating the pdf with a histogram,
the log-normal density function

P
ðphÞ
dur ðtjpÞ ¼

1

t
ffiffiffiffiffiffiffiffiffiffi

2pr2p

q exp �
ðlog t � mpÞ

2

2r2p

" #

ð6:5Þ

Table 6.3 Definition of
variables and symbols for
sentence level pronunciation
features

Entity Symbol Definition

Sentence S Word sequence ðW1; . . .;WMÞ

Phoneme sequence ðp1; . . .; pNÞ

Phoneme segments ðX1; . . .;XNÞ

Segment X Frame sequence ðx1; . . .; xT Þ

Frame x Acoustic features ðx1; . . .; xdÞ
Duration T Phoneme segment duration (X)

D Word segment duration (W)
TS Total sentence duration

# Phonemes N No. of phoneme segments in S

# Words M No. of word segments in S

Speaking rate RðphÞ # Phonemes (N) / Time (TS)

RðwdÞ # Words (M) / Time (TS)
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is employed, since phoneme durations are distributed log-normal. The parameters
mp and rp are obtained by maximum-likelihood estimation based on ROS-nor-
malized duration samples for each phoneme. This normalization is necessary in
order to account for variations of the speaking rate.

The acoustic model likelihood LðXÞ ¼ logPðXjkpÞ can be considered as a
measure of acoustic similarity between the target speech and the context-inde-
pendent acoustic model kp for phoneme p. Here, the original definition of the
likelihood-based pronunciation feature [Neumeyer 00] is modified by additionally
normalizing with the rate of speech, since the correlation to human ratings
increased further.

(SentLh1)L ¼ 1

N

X

N

i¼1

LðXiÞ
Ti � RðphÞ

ð6:6Þ

To calculate feature L, each segment’s likelihood is divided by its actual
duration. Alternatively, normalization is possible by dividing with the expected
(phoneme or word) duration. This is realized for the following new pronunciation
feature:

(SentLh2) E ¼
1

M

X

M

j¼1

LðWjÞ

D
ðeÞ
j � RðwdÞ

ð6:7Þ

LðWjÞ denotes the sum of phoneme model log-likelihoods of word Wj. An

estimate for the expected word duration DðeÞ
j is the sum of the mean duration of the

phonemes of word Wj.
Besides the phoneme likelihood, the phoneme posterior probability PðpijXÞ is a

promising pronunciation feature. In [Neumeyer 00] it was shown to be the feature
with highest correlation to human ratings. Its calculation was simplified to the
likelihood ratio

LrðXijpiÞ ¼
X

Ti

t¼1

log
PðxtjpiÞ

Pðxtjq�t Þ
ð6:8Þ

where q�t is the name of the model with highest likelihood given frame xt. In
practice, qt was obtained by unconstrained phoneme recognition. Thus a likelihood
ratio score was obtained for each phoneme segment. These scores are normalized
by the actual segment duration, summed up and finally divided by the number of
segments N. Here, the feature is modified to

(LhRatio)K ¼

PN
i¼1 LrðXiÞ

PN
i¼1 T

ðeÞ
i � RðphÞ

ð6:9Þ
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i.e. normalizing the segments posterior scores by the product of the speaking rate
and the expected segment duration TðeÞ, since the correlation to human ratings
increased further.

An indicator of how well an utterance can be recognized is the phoneme or
word accuracy. The former is a better measure, since it is based on a larger number
of tokens. The accuracy can be calculated as the normalized minimum-edit-
distance:

(PhAcc)A ¼ MinEditDistðq; pÞ
maxfjqj; jpjg ð6:10Þ

The distances of insertions, deletions and substitutions are uniformly set to one.
jpj means the number of phonemes in the phoneme reference vector p. q denotes
the phoneme recognition hypothesis. A is zero if reference and hypothesis are
identical and greater than zero, if there are recognition errors.

Being unsure about a word’s pronunciation may introduce inter-word pauses.
Consequently, it is worth considering the total duration (PauseDur) P of inter-
word pauses [Teixeira 00] within a sentence as a feature.

As a further new pronunciation feature the probability of the recognized pho-
neme sequence q given an n-gram language model (LM) is employed. The LM
should be trained on canonic phoneme transcriptions of valid sentences of the
target language, because a foreign language student should acquire standard
pronunciation.

ðPhSeqLhÞM ¼ 1

RðphÞ logPðqjLMÞ ð6:11Þ

Each pronunciation feature is intended to measure certain aspects of pronun-
ciation. R;D and P are measures for temporal characteristics like the fluency of a
speaker. L and K are intended to measure the segmental quality. M and A can be
considered as indicators for both kinds of characteristics.

There are two approaches for sentence scoring that we examined. The Gaussian
classifier with maximum likelihood decision rule itself can provide a discrete
scoring result (hard scoring). A continuous scoring result (soft scoring) can be
obtained by calculating the expected score value from the likelihood of the class
models and the class prior probabilities. The latter are considered to be distributed
uniformly. Another approach for soft scoring is to use a linear combination of the
pronunciation features. The weighting coefficients for each feature can be esti-
mated using linear regression.

6.3.2 Word Level Pronunciation Scoring

Any feature defined for the sentence level can be applied to the word level in
principle, since sentences consisting of only one word are valid. However,
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preliminary investigations revealed that features with high quality for the sentence
level are not necessarily good for the word level. Table 6.4 briefly explains
variables and symbols employed for feature definitions.

Instead of using a duration-normalized likelihood or the likelihood ratio, the
plain sum of phoneme log-likelihoods W1 had a higher discriminative ability.
Normalization of this feature is possible by dividing with the number of phonemes
n in each word.

(WLh1)W1 ¼
X

n

i¼1

LðXiÞ (WLh2)W2 ¼
1

n
W1 ð6:12Þ

The sentence duration score D is a good word level feature without
modifications:

(DurS1)W3 ¼
X

n

i¼1

S
ðphÞ
dur ðTi � RðphÞjpiÞ ð6:13Þ

The following normalizations of W3 were advantageous in some cases:

(DurS2)W4 ¼
1

n
W3 (DurS3)W5 ¼ W3R ð6:14Þ

Confidence measures showed to have the highest discrimination ability. The
feature C1 is a high-level confidence measure derived with the phoneme correlation
technique from [Cox 02]. It is based on the phoneme confusion matrices for
correctly pronounced and mispronounced words. The confusion probabilities are
calculated at the frame level. As for the calculation of the likelihood ratio in Eq.
6.8 q�t denotes the phoneme label of the speech frame derived from unconstrained
phoneme recognition. The label pt is obtained from the forced-alignment.

(PhCfRatio) C1 ¼
1

D

X

D

t¼1

log
Pðq�t jpt;wrongÞ

Pðq�t jpt; correctÞ
ð6:15Þ

Another confidence measure is the word posterior probability (WPP) [Wessel
01]. It measures the degree to which a word recognition hypothesis can be trusted.

Table 6.4 Definition of
variables and symbols for
word level pronunciation
features

Entity Symbol Definition

Word W Word labels ðW1; . . .;WMÞ

Sequence O Acoustic observ. ðO1; . . .;OMÞ

Word W Phoneme labels ðp1; . . .; pnÞ
O Acoustic segments ðX1; . . .;XnÞ

Phoneme X Frame sequence ðx1; . . .; xT Þ

segment Reference labels ðp1; . . .; pT Þ
Hypothesis labels ðq�1; . . .; q

�
T Þ

# Phonemes n No. of phonemes in word W
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It may be assumed, that the value of the WPP also reflects the pronunciation
quality of a word. The word level pronunciation feature C2 is based on the sentence
likelihood. It was calculated via N-best lists in order to be independent from the
architecture and implementation of a speech recognizer.

ðWPPÞ C2 ¼

P

V

PðOjVÞf ðWjjViÞ
P

V

PðOjVÞ ð6:16Þ

The summation is carried out over the word sequences V ¼ ðV1;V2; . . .;Vi; . . .Þ
of each hypothesis from the N-best list. The function f ðWjjViÞ returns 1, if the
overlapping condition for the reference word Wj and a word Vi in the hypothesis is
met. Otherwise its value is 0. The language model probability PðVÞ is not
employed for the calculation of the WPP, since the feature should only be based on
acoustic evidence.

Mispronounced words could be detected using a continuous word score as in
sentence scoring and a threshold to decide on mispronunciations. Since the pur-
pose is in the end to discriminate correctly pronounced words (correct) from
mispronounced words (wrong), the issue is a two-class classification problem. For
the discrimination of the two classes of correctly pronounced and mispronounced
words the Gaussian classifier is employed. Other methods for classification,
decision trees (CART) and Gaussian Mixture Models (GMMs) after reduction of
the feature space dimension with principal component analysis (PCA) could not
outperform the Gaussian classifier.

6.3.3 Scoring Experiments

To evaluate the scoring system, we assigned skill scores to the phonetically
compact sentences from the ATR database. To measure the performance of the
scoring system, the correlation coefficient C(X,Y) is employed. It is defined as

CðX; YÞ ¼
Pn

i¼1ðxi � lXÞðyi � lYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðxi � lXÞ2

Pn
i¼1ðyi � lYÞ2

q ð6:17Þ

where the values xi; yi of the random variables X, Y are corresponding pronunci-
ation annotations with index i assigned by the human labelers and the automatic
scoring system, respectively.

The performance for sentence scoring with the Gaussian classifier and linear
transformation based on single features is shown in Table 6.5. The table shows the
correlation to the human ratings. The best four single features are the likelihood
ratio K followed by the phoneme accuracy A, the duration score D and the
likelihood score E normalized by the expected word duration.
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It is possible to combine those features with linear combination. The results are
shown in Table 6.6. The lower three sets include features which can be calculated
given only the forced-alignment. There is a remarkable increase in performance if
the features based on the recognition result are also employed (upper three sets).

Table 6.7 shows the positive effect of score adjustment. Scoring results ‘1’ or
‘5’ almost never occur. In total, the sentence level scoring with the feature set
K;A;M;D leads to a class recognition rate of 86.6%.

For sentence level scoring, the goal of an automatic system is to be as close as
possible to the ratings of human experts. For the binary problem of word pro-
nunciation correctness, special attention must be payed on the type of error. In a
real system, not pointing out a mispronounced word is much less a problem than
scolding a student for a word he has pronounced correctly. Therefore, for word
pronunciation analysis, we calculate the weighted recognition rate (WRR): The
error of misclassifying a correctly pronounced word as mispronounced is weighted
three times higher than falsely accepting a mispronounced word as correct.
Table 6.8 shows the WRR for discriminating correctly pronounced words from
mispronounced words based on single pronunciation features. The best two fea-
tures are the phoneme confusion ratio C1 and the word likelihood W1.

As for sentence scoring, the n-best feature sets are determined heuristically with
the floating search algorithm. Table 6.9 shows the combination leading to the best
recognition rate. There was no significant increase in performance if employing
five or more features.

Measures that are based on phoneme recognition accuracy or related scores
have shown a high relevance for pronunciation scoring. Figure 6.6 illustrates the
correlation between phoneme error rate of the speech recognizer and human rating.
The rates were calculated over the TIMIT SX sentence set. As this type of text is
comparatively difficult to pronounce, the phoneme error rates can exceed 100% for
the lower-skill speakers. It is clearly visible that speakers who received a high
rating by human evaluators also scored lower phoneme error rates by the speech
recognizer.

The reliability of word level mispronunciation detection can be assessed when
comparing the confusion matrix of human evaluators with the classifier’s confu-
sion matrix. To obtain the former, the majority voting of all but one evaluator was
taken as reference and tested against the decision of the remaining evaluator.

Table 6.5 Sentence scoring
based on single pronunciation
features sorted by correlation
to human ratings

Feature Correlation

K (LhRatio) 0.50
A (PhAcc) 0.44
D (DurScore) 0.42
E (SentLh2) 0.40
L (SentLh1) 0.38
M (PhSeqLh) 0.38
R (MeanPhDur) 0.35
P (PauseDur) 0.31
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The average performance of four reference and test combinations is shown in the
Table 6.10. There is a disagreement about 8% of the correct words and 42% of the
wrong words. From the left table it is clear, that the detection of mispronounced
works equally well by automatic classification. However, at the same time the
classification error for correctly pronounced words is about 10% higher than for
the human evaluators.

Table 6.6 Result for
sentence scoring by linear
combination of multiple
pronunciation features

Feature Correlation

K;A;M;D 0.59
K;M 0.58
K;A 0.55
D; E 0.52
D;L;R 0.48
D;L 0.47

Table 6.7 Confusion matrix
obtained after rounding
scores with feature
combination K;A;M;D

1 2 3 4 5

1 52 35 12 1 0
2 25 39 24 10 2
3 11 27 34 20 9
4 1 8 21 31 39
5 0 0 4 33 63

Table 6.8 Weighted
recognition rate (WRR) for
word classification with a
Gaussian classifier based on
single pronunciation features
for the word level

Feature WRR

C1 (PhCfRatio) 66.6
C2 (WPP) 66.0

W1 (WLh1) 65.8
A (PhAcc) 64.7

M (PhSeqLh) 64.1
W3 (DurS1) 64.0
W5 (DurS3) 61.2
W4 (DurS2) 58.0
W2 (WLh2) 54.5

Table 6.9 Weighted
recognition rate with the
Gaussian classifier based on
multiple pronunciation
features

Features WRR

W1; C2 (WLh1, WPP) 70.7
W1; C2;W4 (+DurS2) 71.6
W1; C2;W4; C1 (+PhCfRatio) 72.2
W1; C2;W4; C1;W2 (+WLh2) 72.1
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In conclusion the proposed method to score the pronunciation skill of non-
native speakers was almost as reliable as human expert ratings. For an estimation
of pronunciation skill on sentence level, phoneme sequence probability and
durations score was the most successful feature combination. The word posterior
probability and phoneme confusion probability ratio of correctly pronounced and
mispronounced words were identified as new word level features that contribute
greatly to recognition rates, leading to a total weighted recognition rate of 72%.
Perfect detection remains difficult though, and even human evaluators show some
level of disagreement.

6.4 Classification of Non-Verbal Utterances

Listening to non-native speech, it is common to perceive an increased occurence
of hesitations, fillwords, non-verbal expressions, duration variation and other
prosodic effects. The most likely reason is insecurity: Speakers have to think
about how to pronounce words, and at the same time prefer shorter common
words which they have encountered with relative frequency and know how to

Table 6.10 Comparison of
the confusion matrices of the
human evaluators and the
automatic scoring

Correct Wrong

Machine

Correct 82.9 17.1
Wrong 42.1 57.9
Humans

Correct 91.9 8.1
Wrong 42.2 57.8

Fig. 6.6 Correlation
between phoneme error rate
and human rating
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employ. Therefore automatic classification of common fillwords and non-verbal
expressions can be seen as an important part of non-native speech recognition
research.

Fillwords, or filled pauses, are common in most languages. They are transcribed
with words like ‘‘well’’ or ‘‘ah’’ in English, ‘‘äh’’ in German or ‘‘un’’ in Japanese.
Depending on their prosodic properties they can carry a wide range of meanings.
In a dialog they take the role of providing a conversational backchannel giving
feedback from affirmation to disagreement. This backchannel information is very
relevant as one of its functions is to express understanding of the previous utter-
ance, which is crucial for conversation with a non-native speaker. Fillwords can
also express emotions.

In this section, we analyze how to classify non-verbal utterances by prosodic
means in order to test the feasibility of such an approach. While this experiment is
conducted on a monolingual scenario, conclusions can still be drawn on the reli-
ability of automatic interpretation of prosodic features.

6.4.1 Data

The database described in Sect. 5.2 consists of read speech which contains limited
to no prosodic effects. Therefore experiments on prosodic properties have to be
conducted on different data. As currently no suitably labeled non-native database
is available, we chose to analyze native Japanese speech [Svojanovsky 04]. The
data for this experiment was collected for the JST/CREST ESP (Japan Science &
Technology Agency / Core Research for Evolutional Science and Technology)
project [Campbell 00] and is a subset of 150 hours of Japanese everyday speech.
The speaker is a Japanese female wearing a microphone and a Minidisc recorder
whole day. Minidisc recordings undergo a lossy compression; acoustic quality
issues are discussed in [Campbell 02]. The data consists of 2649 Japanese ‘‘un’’
backchannels. 482 of these utterances are labeled, the remaining 2167 are unla-
beled. Table 6.11 illustrates the numeric labels assigned to each backchannel and
its meaning as speech act.

Table 6.11 Label number
and according speech act

Number Speech act

1 Listen
2 Understand
3 Interest
4 Affirm
5 Affirm overall
6 Call back
7 Disagree
8 Emotion
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6.4.2 Features

Classification and clustering of non-verbal utterances was conducted based on the
features described in Sect. 2.3, namely duration (abbreviated as dur), power (Pwr),
pitch (F0) and glottal characteristics.

For this experiment, we consider power relative to the rest of the utterance.
Therefore we have four subtypes of power based features:

Pwrmean: the mean power
Pwrmin: the minimum power
Pwrmax: the maximum power
Pwrpos: the position of the maximum power relative to the duration of the

examined word or speech segment

There are several features that we derive from pitch in this experiment:

F0mean: the mean pitch
F0min: the minimum pitch
F0max: the maximum pitch
F0pos: the position of the maximum pitch relative to the duration of the

examined word or segment
F0vcd: the occurrence of voiced pitch relative to the duration of the examined

word or segment
F0grad: the gradient from the position of the minimum and the position of the

maximum of the pitch, relative to the duration

From the wide range of glottal features the following are extracted from the
speech signal at the position with the highest energy:

Adduction quotient (H1-H2): the difference between the first and the second
harmonic indicates a vowel. The value changes
when the open quotient rises. H1-H2 is a well-
used indication of opening quotient or adduction
quotient.

Spectral tilt (H1-A3): the amplitude of the third formant relative to the
first harmonic H1-A3 is an evidence for spectral
tilt and displays the abruptness of the cut off of
the airflow.
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6.4.3 Experimental Setup

The feature vectors of the data are normalized to values between 0.0 and 1.0. The
training data is unlabeled and consists of 2147 utterances. The labeled data is
divided into 2 parts, the development set and the test set. Table 6.12 shows the
frequency of the labels and the arrangement to the sets.

In the experiments, algorithms such as nearest neighbor, furthest neighbor, or a
combination of split&merge and k-Means cluster the training set into a specific
number of clusters.

Bottom Up: This method starts with as many clusters as vectors
in the set. Each vector belongs to its own cluster.
The two nearest clusters are merged. This step
continues until the number of clusters is reduced to
a specific value.

Top Down: In this method all vectors are initially gathered in
one big cluster. Then this cluster is split into two
new clusters. Any vectors in this cluster are
assigned to one of two new clusters which are
represented by two vectors from this cluster. These
two vectors can be the two furthest neighbors in the
old cluster. Since the calculation of the furthest
neighbors costs time, an improved algorithm termed
as fast split is established in this project. Here the
furthest vector to the average center is calculated.
This vector is the first representative of the new
cluster, the second one is the furthest neighbor to
this vector.

k–Means: The k–Means algorithm classifies all data to a given
number of clusters. The representatives of the
clusters are recalculated and the clusters are emp-
tied. Then the data is classified again. With each
step, the shape of the clusters becomes clearer. The
algorithm stops after a specific number of steps or a
special criterion. The quality of the cluster strongly
depends on the initial clusters. In this approach the
initial clusters are represented by arbitrarily chosen
vectors from the training data set. Three different
initial vectors are tested in this project.

Table 6.12 Frequency of the
label numbers in
development set (dev) and
test set (test)

Number 1 2 3 4 5 6 7 8

dev 189 23 10 7 2 1 7 3
test 188 23 9 7 3 0 8 2
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Split & Merge: This method is a combination of the Bottom Up and
Top Down approach. The widest cluster is split into
two new clusters until a certain number of clusters
is produced. Then the nearest clusters are merged
again. The number of clusters to produce changes
with every single step.

Bottom Up + k–Means: In this method the clusters will be produced with
the Bottom Up method explained above. But during
the clustering process after a frequently number of
merging steps, the k–Means algorithm based on the
already existing clusters runs. Then the Bottom Up

continues.
Split & Merge + k–Means: This is an extended version of Split & Merge

algorithm. Every time the algorithm swaps from
merge mode to split mode and from split mode to
merge mode the k–Means algorithm runs to reshape
the produced clusters.

The clustering algorithms are based on a distance measure between clusters.
After preliminary experiments we chose the furthest neighbor distance. This
method measures the distance between the furthest vectors from two clusters,
which is the maximum distance of all vector pairs between both clusters.

As most of the available data is unlabeled, the experiment is setup as described
in Fig. 6.7. First, the unlabeled training data set undergoes unsupervised cluster-
ing. By using the clusters to evaluate the development set, each cluster is assigned
a label, resulting in a labeled cluster set. This labeled cluster set is the classifier on
which the final recognition rate is calculated.

For an experimental setup, a clustering method and a weighting of features of
the distance calculation is used. The first cycle of an experiment clustered the set
into a number of clusters between 10 and 20. In a second cycle, the set is clustered
into 50 clusters. Both results are evaluated and compared. A setup which indicates
significant improvements by increasing the number of clusters is probably more
useful to solve the existing problem than one without improvements. Obviously,
these setups cluster the set into clusters which are more representative. Setups with
few improvements scale the problem down. A 2-level classification will not solve
the problem, because sub-clusters would not constitute significant better
representatives.

6.4.4 Classes and Features

A visualization of the data and the experiments lead to the conclusion, that class 1
and 2, 4 and 5, as well as 7 and 8, are hardly separable; their behavior is too
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similar. But due to the fact that their meaning is also similar, these classes can be
merged. Figure 6.8 illustrates the distribution of the classes in the feature space,
reduced to the dimensions F0mean, and Dur. It can be seen that Class 1+2 covers a
large part of the space, while class 3 is scattered. Class 6 consists of only one
vector. Class 7+8 overlap with 1+2, but are distinguishable from other classes.

Several preliminary experimental setups indicated that F0mean, F0grad, Dur,
H1-H2, and H1-A3 are more important than the power features. A higher
weighting of these features improved the clustering and classification. This result
covers the observations of Umeno [Umeno 03]. Disregarding the prosodic features
Pwrmax, Pwrmin, and Pwrmean improved the performance, combined with giving
high weights to F0mean, F0grad, Dur, H1-H2, and H1-A3.

6.4.5 Clustering Methods

The experiments proved, that neither a nearest neighbor nor a furthest neighbor
clustering is sufficient for the existing problem. No weighting of the features
achieved an average class recognition greater than 40%. A weighting showed no
significant improvements. Many vectors on the edge of the training set are formed
to clusters, which consist of just one or two vectors. These are not representative
for the set. About 80% of the development set are assigned to one or two clusters
in the center of the training set. The classification assigned no or just one vector to
more than 60% of the formed clusters. Table 6.13 shows the average class rec-
ognition rate and the percentage of misclassified vectors of each clustering
method.

Fig. 6.7 Clustering algorithm utilizing the large unlabeled training set
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A combination of K-Means and split&merge algorithms leads to the best
results. After classification, the development set is distributed more uniformly over
the clusters. 68.6% of the classes could be recognized using only 15 clusters, but
still 39.2% of the vectors are classified incorrectly. A high number of vectors of
class 1+2 are assigned to incorrect classes. After evaluation of these clusters, a
further clustering setup ran on 5 of these clusters and created 5 to 10 sub-clusters.
The weightings differed in these setups.

A 2-level classification achieves an average class recognition rate of 83.9% on
the development set, while the misclassification of vectors is only 27.7%. The test
set classification leads to the confusion matrix illustrated in Table 6.14. Classifying
class 6 is impossible as there is only one instance in the data.

Fig. 6.8 Visualization of
non-verbal utterance classes
in the labeled development
set

Table 6.13 Comparison of
clustering methods: Average
class recognition rate (recog)
and misclassification (error)

Not weighted Weighted

Recog (%) Error (%) Recog (%) Error (%)

Bottom up 60.9 36.0 53.2 43.6
Top down 42.1 56.4 59.3 34.9
S&M 60.3 53.1 57.1 44.8
K-Means 54.4 29.8 62.9 42.7
S&M + K-Means 61.3 50.2 68.6 39.2
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6.4.6 Results

A 2-level classification achieves an average recognition rate of 66.1%. A com-
bination of split&merge and k-Means clustering algorithms in both levels leads to
this result. The power extrema showed to be unimportant for clustering, probably
due to the differing recording conditions, while F0mean, F0grad, Dur, H1-H2, and
H1-A3 distinguish as most relevant features.

The first level of classification already achieves an average recognition rate of
64.5%. This rough estimate has a misclassification of 62.9%. The second level
does not improve the average recognition rate significantly, but the misclassifi-
cation shrinks to a value of 30.4%. In this step the estimated class is separated
from other classes, mainly class 1+2. Class 4+5 distinguished in H1-A3, F0-Grad,
and F0max, while class 7+8 distinguished in Dur and F0max. Class 3 causes
problems, because the feature vectors are scattered over whole feature space.
Because of the lack of data, a reasonable classification and testing of class 6 is
impossible. Class 1 and 2, 4 and 5, as well as 7 and 8 are merged, because behavior
and meaning is too similar to achieve a satisfying classification without being
aware of the context.

6.5 Lessons Learned

From the experiments described in this chapter, we can conclude: The most
straightforward approach to deal with non-native pronunciation variations is to
generate phoneme confusion rules. This method is also very popular in literature
and does improve recognition results, but only to a limited extend. Either rules are
chosen based on heuristically determined thresholds, or an explosion of alterna-
tives must be dealt with. Hitherto it seems more promising to model pronunciation
variations statistically and implicitly in HMMmodels, as this type of model will be
effective without thresholds. The increase of the number of possible pronunciation
alternatives can be handled by applying the pronunciation network in the post-
processing phase as rescoring function.

Table 6.14 Confusion
matrix on test set using a
weighted 2-level
classification. Absolute
number (n) and percentage of
vectors in each class is given

Class Classified as

1+2 3 4+5 7+8

n % n % n % n %

1+2 148 70.1 26 12.3 13 6.2 24 11.4
3 4 44.4 4 44.4 1 11.1 0 0.0
4+5 3 30.0 0 0.0 7 70.0 0 0.0
7+8 2 20.0 0 0.0 0 0.0 8 80.0
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The ATR non-native speech database collected herein has proven to be a good
basis for CALL research, with the proposed automatic pronunciation scoring
features and algorithm being almost as reliable as human experts. We can also see
that in special situations like a limited resource scenario with semi-continuous
HMM acoustic models, local solutions as multilingual weighted codebooks can
lead to good improvements.

Attempting the classification of non-verbal utterances remains a challenge.
Although fillwords used to provide backchannel information during a dialog is
possible to some extend, phoneme-level classification can be conducted with much
higher reliability.
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Chapter 7

Pronunciation HMMs

As the literature and experiments introduced in the preceding chapters showed, the
performance for non-native speech recognition can be improved by considering
the variations in pronunciation.

But we also saw that an explicit formulation of these variations e.g. as rules
leads to a tradeoff between the number of variations considered and the dictionary
or lattice size, which leads to confusions and again to a decrease in recognition
accuracy. An unsolved problem about rules is also how to deal with insertions and
deletions. A model is needed that handles pronunciation variations implicitly, and
with sufficient context to cover insertions or deletions as well.

A further requirement for a promising approach of treating pronunciation
variations is to take the statistical properties of these variations into account. Some
variations are more frequent than others.

Finally, only data-driven approaches are powerful enough to be employed for a
multitude of accents. Expert analysis of specific accents could lead to more precise
models, but this seems to be impractical for real-world systems that have to deal
with many native/non-native language pairs. We need a method that can extract
pronunciation variations automatically from non-native training data without
knowledge-based expert interference. Ideally, this method should also be able to
allow for unseen pronunciation variations, as training data is always limited and
some variations might not have been encountered during training.

These requirements can be covered by our proposed method [Gruhn 04c]:
HMM-based statistical pronunciation models. The HMMs handle all variations
implicitly and take the statistical properties of the variations into account. They
can be derived and trained automatically from baseline pronunciation dictionaries
and non-native training data. They even provide the possibility to allow unseen
pronunciation variations with some minimum probability.

In this chapter, we explain the generation of pronunciation HMMs, the training
approach and how they are applied to increase recognition rates for non-native
speech.

R. E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_7,
� Springer-Verlag Berlin Heidelberg 2011
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7.1 Why HMMs?

There are many ways to model probabilistic events. Other than HMMs, for
example neural networks and finite state automatons are common in the field of
speech recognition.

Non-native speech data is generally in rather short supply, and we cannot hope
for too many instances of individual words in training data. Some words even have
to be modeled without training data. HMMs are more straightforward to initialize
to a specific behavior than neural networks with hidden layers. But the main
problem about neural networks is that they are discriminative models, which
generally require more training data in order to avoid local effects impairing model
behaviour. HMMs are generative models and are less error-prone in a scarce
training data scenario. Finally, during application the desired result is a score of
similarity rather than a classification result, which is more straightforward to
extract from HMMs.

Finite state automatons (FSA) are another common generative modeling
approach in speech recognition. The basic architecture of such a model would be
similar to the modeling with HMMs, and it can be assumed that the pronunciation
models could also have been examined with FSAs. HMMs were preferred because
of convenient and training software being available for HMMs and the author’s
familiarity with it rather than any general theoretic reason.

7.2 Generation and Initialization

For each word in the vocabulary, one discrete untied HMM is generated.
The models are initialized on the phoneme sequence in some baseline pro-

nunciation lexicon. The number of states for a word model is set to be the number
of phonemes in the baseline pronunciation, plus enter and exit states.

Each state has a discrete probability distribution of all phonemes. The phoneme
sequence(s) in the baseline dictionary are given a high probability and all other
phonemes some low but non-zero value. Forward transition between all states is
allowed, with initial transition probabilities favouring a path that hits each state
once. The more states are skipped the lower is the transition probability.

Phoneme deletions are covered by state skip transitions, phoneme insertions are
modeled by state self-loop transitions. The models may also be able to deal with
spontaneous speech effects such as word fragments or restarts, which are basically
consecutive phoneme deletions. But this has not been further analyzed in these
experiments, as such effects do no occur in read speech.

Figure 7.1 shows as an example the HMM for the word ‘‘and’’ initialized from
two pronunciation variants ‘‘ae n d’’ and ‘‘ax n d’’. The first state has output
probabilities of almost 0:5 for each /ae/ and /ax/, and some small probability for all
other phonemes (which are not shown in the figure). The output probabilities add
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up to one. As the second and third phonemes of that word are assumed to be
identical in the two pronunciation alternatives of this example, they are assigned a
probability of around 0:99 in the second and third state, respectively. Each state
also has self-loops to allow insertions.

7.3 Training

As illustrated in Fig. 7.2, two levels of HMM-based recognition are involved in
pronunciation HMM training:

• Acoustic level: phoneme recognition to generate the phoneme sequence Si from
the acoustic features Oi

• Phoneme label level: For training, the phoneme sequences Si are considered as
input. For all words, a discrete word HMM is trained on all instances of that word
in the training data. The models are applied for rescoring, generating a pronun-
ciation score given the observed phoneme sequence Si and the word sequence.

The first step requires a standard HMM acoustic model, and preferably some
phoneme bigram language model as phonotactic constraint. The continuous
training speech data is segmented to word chunks based on time information
generated by Viterbi alignment. Acoustic feature vectors are decoded to an 1-best
sequence of phonemes.

The probability distribution as well as the transition probabilities are re-esti-
mated on the phoneme sequences of the training data. For each word, all instances
in the training data are collected and analyzed. The number of states of each word
model remains unchanged.

Data sparseness is a common problem for automatically trained pronunciation
modeling algorithms. In this approach, pronunciations for words that do appear
sufficiently frequent in the training data, the pronunciations are generated in a data-
driven manner.

The training of the pronunciation models takes place on the training data of
every speaker of the regarding accent group, the test utterances are not included.
The rather small number of speakers per accent group made a speaker-close setup
necessary. In total, five models are trained. For rare words, the algorithm falls back
to the baseform phoneme sequences from a given lexicon while still allowing

Enter d  .99 Exitae  .495

ax  .495 ...

...

n  .99

...

Fig. 7.1 An example
discrete word HMM for the
word ‘‘and’’, initialized with
two pronunciation variations
for the first phoneme
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unseen pronunciations with a low likelihood. This combination is expected to
make it more robust than for example an application of phoneme confusion rules
on a lexicon could be.

7.4 Application

Figure 7.3 shows the way pronunciation word models are applied by rescoring an
N-best recognition result. On a non-native test utterance, both a 1-best phoneme
recognition and a N-best (word-level) recognition steps are performed.

In standard Viterbi alignment, a speech signal is aligned to a reference text
transcription using an acoustic model, with an acoustic score as a by-product
Figure 7.4. In this approach, the time-aligned lattice is of no interest, although
usually it is the main target of Viterbi alignment. Figure 7.5 gives a graphical
explanation.

With the pronunciation HMMs as ‘‘acoustic model’’ and each N-best hypothesis
as reference, a Viterbi alignment results in an ‘‘acoustic score’’, which is in fact the
pronunciation score. Additionally to the pronunciation score calculated from the
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pronunciation HMMs, a word bigram model is applied to equate a language model
score for each of the N best. Similar to (acoustic) speech recognition, the weighted
combination of language model and pronunciation score turned out to perform
best. The total score for each hypothesis i is calculated as StotalðiÞ ¼ SacousticðiÞþ
kSLMðiÞ. The hypothesis achieving the highest total combined score among the
N-best is selected as correct.

Phonetic networks in general could also be applied directly in the decoder, for
example by constructing parallel models [Minematsu 03] or incorporating into a
Bayesian Network [Sakti 07]. But the high degree of freedom such models allow
will cause additional recognition errors, as the proposed method allows any pro-
nunciation with a minimum likelihood. Pronunciation networks are more reliable
if applied in a separate post-processing step.

7.5 Experimental Setup

7.5.1 Data and Software

Additionally to the database presented in Chap. 5, the following standard databases
have been part of the experimental setup:

and  when   would you   like    to   stay

anywhere    you d       like    to   stay

ae n l eh n w ih ch ih  l eh k t ix s t ey

-69.0

-82.5

and  what I would you   like    to   stay -75.0

pronunciation

score
n-best

phoneme sequence

.

.

.

Fig. 7.4 For each n-best
hypothesis of an utterance
(bottom three lines), a
pronunciation score is
calulated relative to the
phoneme sequence (top line).
The correct result is ‘‘and
when would you like to stay’’

phoneme sequence

string

reference

transcription

alignment

time-aligned lattice

(not used)
pronunciation

score

pronunciation 

model

Fig. 7.5 The Viterbi
alignment algorithm is used
to calculate the pronunciation
score
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Wall Street Journal (WSJ) Corpus The Wall Street Journal Corpus [Paul 92]
was collected in two phases: the pilot project CSR-WSJ0 in 1991 and the main
project CSR-WSJ1 from 1992 to 1993. The collection has been sponsored by the
Advanced Research Projects Agency (ARPA) and the Linguistic Data Consortium
(LDC) and has been carried out by MIT, Texas Instruments and SRI International.
WSJ1 contains about 73 hours (approx. 78,000 utterances) of speech for training
and 8 hours (approx. 8,200 utterances) of speech for testing purposes. The speakers
of the training set are from North America and read texts from the Wall Street
Journal newspaper. The data was recorded with a Sennheiser close-talking head-
mounted microphone.

In this research all acoustic models are trained on the WSJ database. The
selected training set consists of about 30,000 utterances of 200 speakers from
WSJ1 and 7,200 utterances from WSJ0.

In order to evaluate the performance of the acoustic model built with the
training data, the Hub2 test set was used. It comprises 20 utterances of ten native
speakers each.

Furthermore, a phoneme bigram model was trained on the result of a forced
alignment of the WSJ corpus.

TIMIT Corpus The TIMIT corpus [Fisher 87] was sponsored by the Defense
Advanced Research Project Agency (DARPA) and set up by Texas Instruments
(TI), MIT and SRI. The corpus contains a total of 6300 sentences, 10 sentences
spoken by each of 630 speakers from eight major dialect regions of the U.S. These
10 sentences are from three different sets:

• SA: dialect sentences, which are meant to expose the dialectal variants of
speakers within US English.

• SX: phonetically compact sentences, which are designed to provide a good
coverage of pairs of phones.

• SI: phonetically diverse sentences, which are selected from the Brown Corpus
and the Playwrights Dialog in order to add diversity in sentence types and
phonetic contexts.

For none of the experiments described in this book the speech data of the TIMIT
corpus has been used. Rather, sentence list of the TIMIT SX set was basis for the
database collection described in Chap. 5.

SLDB The corpus used for English language modeling [Masataki 97] was
chosen from Speech and Language Data Base (SLDB [Nakamura 96]) and the
smaller LDB corpus, with a total of 2,072 conversations. The task is hotel and
travel arrangement. In this data, each conversation consists of two conversation
sides. Conversation sides are identified with labels: clerk, customer or interpreter.
Here, clerk and customer are from native English speakers, interpreter denotes that
it is a translated sentence from a Japanese-English dialog. Each dialog consists of
typically 12 to 13 utterances. The average number of words per utterance is 11.

HTK is a standard toolkit for model training and speech recognition [Woodland
93]. All acoustic model training, language model training, speech recognition and
forced alignment steps have been conducted with HTK version 3.2. HTK supports
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discrete HMM models, therefore we could also train the pronunciation models
with HTK tools.

7.5.2 Acoustic and Language Models

The acoustic models are trained on the native English speech data from the Wall
Street Journal speech corpus described in Sect. 7.5.1.

The phoneme set consists of 43 phonemes, including two silence models, as
listed in Table 7.1. Most research on the WSJ data bases on a similar phoneme set,
which is also applied in this work. The notation is in capital letters and it contains
the symbol SIL for silence. Following the usual HTK conventions, additionally the
short-pause symbol SP is included.

Three acoustic models have been trained, a monophone, a right context biphone
and a triphone model. The sizes are as follows:

• the monophone HMM model has 132 states and 16 mixture components per
state,

• the biphone model 3000 states and 10 mixture components per state,
• the triphone model 9600 states and 12 mixture components per state.

All models have been trained with up to 16 mixtures, the numbers of mixtures
listes above showed the best performance in phoneme recognition, as described in
Sect. 7.6 To verify the general quality of the acoustic models and to ensure no
mistake happened during training, the models were evaluated on the Hub2 task of
the WSJ database. The word error rates of these models for the native English test
set are 19.2%, 15.2% and 6.4%, respectively. These rates are comparable to
standard results reported in the literature and at levels that can be expected for such
a setup and task complexity. It can be concluded that there is no problem about the
acoustic models and that they are suitable for further experiments.

With HTK, we created feature vectors from the speech files. The features are 12
MFCC coefficients, energy and the first and second derivatives, leading to a 39-
dimensional feature vector. Cepstral mean normalization is applied.

All acoustic models are speaker independent models, we did not apply speaker
adaptation methods such as MLLR. Adapting the acoustic model is of course a
valid approach to increase recognition rates, but a different one, which was not the
focus of this work. Pronunciation modeling and acoustic model adaptation address
similar problems, both attempt to compensate the speakers pronunciation anom-
alies. Both approaches taken by themselves can improve recognition accuracy, and
speaker adaptation gives more improvement than any type of pronunciation

Table 7.1 The English 43 model phoneme set in ARPAbet notation

AA AE AH AO AW AX AXR AY B CH D DH DX EH ER EY F G HH
IH IX IY JH K L M N NG OW P R S SH T TH UH UW V W Y Z SIL SP
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modeling. Doing pronunciation rescoring combined with adaptation does not help
any further. The reason is that speaker adaptation is more specifically adapting to
the speakers properties (not only his non-nativeness), something we do not attempt
with pronunciation modeling. In our approach we are targeting an accent group
rather than a specific person. In general, speaker adaptation methods can be
applied for the whole group, but the point is that speaker adaptation makes the
acoustic model speaker dependent, and every time there is a new speaker,
retraining is necessary. With the statistical lexicon, the AM is still speaker
independent.

A bigram language model was trained on the SLDB travel and hotel reservation
domain database. The model is a simple word bigram language model without
classes, even though the database contains part-of-speech tags.

Two types of dictionaries have been the base of both pronunciation HMM
creation and N-best recognition, a LVCSR dictionary with 8875 entries for 7311
words is used in the main experiment. The 7.3k words fully cover a general travel
scenario.

Some experiments that focus on the data collected in the first session consisting
of a group of Japanese speakers of English were conducted with a more specialized
hotel reservation dialogue dictionary of 6650 entries for 2712 words.

The test set contains 344 words in two dialogs with 23 utterances in total. In the
mostly used 7,300word dictionary case, the perplexity of the languagemodelwas 32.

7.6 Phoneme Recognition

As a data-driven approach, the pronunciation modeling method proposed in this
book includes a phoneme recognition step. For native speakers, context-dependent
acoustic models achieve higher accuracy than monophone models. To examine the
impact of acoustic model context for non-native speakers, phoneme recognition
was performed on full utterances with a monophone, (right-context) biphone and
triphone model.

Table 7.2 shows the phoneme accuracy for monophone, biphone and triphone
models on the non-native data. Acoustic models were trained with up to 16
mixture components for each context size; in Table 7.2, only the best performing
number of mixtures (as listed above) is shown.

A phoneme bigram model trained on the result of a forced alignment of native
speech (WSJ) provided some phonotactic constraint.

Table 7.2 Phoneme
accuracy in %, compared to a
canonical transcription

CH FR GER IN JP

Monophone 39.21 45.41 48.85 43.31 37.74
Biphone 29.54 37.87 41.15 33.84 29.24
Triphone 30.07 41.57 45.45 27.08 29.46
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The reference for evaluation is also a canonical transcription generated auto-
matically from a baseline native speaker oriented lexicon by forced alignment.
This forced alignment can only include those variations included in the baseline
pronunciation dictionary. It relies of the speakers saying exactly what they are
supposed to say. If a correct phoneme transcription were available, higher numbers
could be expected. For context dependent units, we consider only the center
phonemes for calculating recognition accuracy.

The monophone model performs best for all speaker groups. Although the
tendencies in recognition rates are not exactly the same for all data points, there
clearly is an overall trend: The less context the models include, the better is the
phoneme accuracy. We can conclude that the phonetic context for native English
speakers is considerably different to non-native speakers.

The phoneme recognition rates are somewhat lower than what is usually seen
for native speech and not at the same level for all speaker groups. Although there
may be random differences in the educational background of the speakers, a
more likely reason can be found when comparing the American English and
regarding native IPA phoneme sets: German has at least 28, Indonesian 26,
French 25, Mandarin Chinese 21 and Japanese 19 phones in common with
American English. This makes it intrinsically more difficult for Chinese and
Japanese speakers to achieve as high phoneme (and word) accuracies as the other
speaker groups. Figure 7.6 visualizes the missing phonemes, divided by conso-
nants and vowels.

The phoneme recognition rates on the non-native data may appear somewhat
low, but they are at levels that have to be expected for non-native speakers
Table 7.3. For comparison, Table 7.4 shows phoneme recognition results for the
monophone and triphone acoustic models for the WSJ Hub2 test set. Reference
was a forced alignment result. In the native case, triphones perform much better

Fig. 7.6 Phoneme coverage of US English and selected other languages, for consonants and
vowels
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than monophones and a phoneme recognition accuracy of 67.31% could be
achieved.

7.7 Rescoring with Pronunciation HMMs

7.7.1 Word HMM Initialization

The discrete probability distribution for each state is initialized depending on the
baseform phoneme sequence(s) as given in the lexicon. The correct phoneme has a
probability of 0.99. If more than one pronunciation variant is included in the
lexicon, the variations all have the same probability, totaling 0.99. The possibility
that some pronunciation variants are more frequent than others can not be taken
into account at this stage. All other phonemes are assigned some very small but
non-zero probability.

The transition probabilities depend on the number of succeeding phonemes in
the baseline lexicon. The probability to skip k phonemes is initialized to 0:05k.
Insertions are allowed with a chance of 0.05. The transition to the next state
therefore has a probability of slightly below 0.9, so that the probabilities add up to 1.
In our experiments, we allowed up to three skips in the initial models. Those
numbers are chosen heuristically and showed to perform acceptably well. As the
probabilities are modified in the training process, they are mainly relevant for
words for which no training samples are available.

7.7.2 Training of Word HMMs

For the training of the word models, the non-native training data set is segmented
into single words based on time information acquired by Viterbi alignment. On
these word chunks, phoneme recognition is performed, as explained in Sect. 7.3
The phoneme recognition result is converted into discrete features, with one
feature file for each word of the training data.

Table 7.3 Distribution of
errors for the monophone
model (relative share of total
errors)

CH FR GER IN JP

Del 17.62 21.84 23.94 20.31 18.36
Ins 19.52 14.54 14.53 14.90 18.24
Sub 62.85 63.60 61.51 64.77 63.38

Table 7.4 Phoneme
recognition performance in %
for the native English WSJ
database Hub2 task

Acoustic Model Correct Accuracy

Monophone 36.41 32.71
Triphone 70.97 67.31

80 7 Pronunciation HMMs



7.7.3 Rescoring with Word HMMs

The HMM pronunciation models are applied in the form of rescoring the N-best
decoding result as described in Sect. 7.4. Table 7.5 shows word error rates with
and without pronunciation rescoring. The numbers have been calculated for the
complete database and the large vocabulary setup.

There are several aspects about the rescoring algorithm that require closer
examination in order to find a deeper understanding of the benefits of the proposed
statistical pronunciation models. The following experiments we conducted on the
smaller setup of 11 Japanese speakers and with the more specialized 2700 word
dictionary.

7.7.3.1 Language Model Weight

One issue is the language model scale factor. Rule-based approaches usually find
that if too many pronunciation variants are added to a dictionary, the recognition
rate drops again because additional confusions occur. Some papers (e.g. [Kim 07])
try to conceal this effect by factoring in a single-digit perplexity language model.
In such a setup, it is advantageous to allow as many words as possible to be
permitted in the decoder: The language model will, if scaled high enough, remove
all the nonsense confusions. Such a setup is not valid for real-world systems, as in
real world speech recognition systems usually the speaker has more freedom to
make utterances, and if the dialog structure actually is that strict or the vocabulary
size that low, there is little need for pronunciation modeling. With the proposed
statistical pronunciation models, any pronunciation is basically possible as all
phoneme sequences are given a non-zero likelihood. This makes an analysis of the
influence of the language model necessary.

The language model score is added to the pronunciation score with a weighting
factor k. Figure 7.7 shows the word error rate dependent on k. The baseline
performance (horizontal line) of 32.54% word error rate can be improved to
29.04%. The correct choice of the language model score weight is important, in
this experiment a factor of 5 was the optimum. It can be seen clearly that the
performance is best if the weighting of the language model score is neither too low
nor inappropriately high. This means that there is a clear positive effect from
pronunciation modeling and that factoring in a language model does help. But it is
not the only relevant contributor, as overweighting the language model causes the
error rate to rise again.

Table 7.5 Word error rates
in % for non-native speech
recognition without and with
pronunciation rescoring

CH FR GER IN JP avg

Baseline 51.23 37.93 31.77 40.48 56.92 45.88
Rescoring 45.12 34.80 29.88 38.31 52.36 42.14
Rel. impr. 11.93 8.25 5.94 5.36 8.01 8.15
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7.7.3.2 Training Iterations

The pronunciation HMMs are initialized from the baseline pronunciation dictio-
nary, then several re-estimation iterations modify the probabilities. The effect of
these training steps can be seen in Fig. 7.8, showing the results of experiments on
the development set. Most improvement can be gained with the initial models
already, from 32.54 to 29.88% WER. The first training iteration reduces the WER
to 29.11%, further iterations bring only minor improvement. Limited coverage of
the test data due to small training data may be the reason why the effect of
increased training is limited.

7.7.3.3 Factoring in the Acoustic Score

In the previous experiments, the pronunciation score was combined with a
weighted language model score. Rescoring only on the basis of the pronunciation
score did improve the word error rate. But the pronunciation information alone did
not perform as well as when language model information was added.

One possible extension would be to take the acoustic score into account
additionally, or instead of the language model score. The acoustic score for each of
the hypotheses is calculated at the N-best recognition step and therefore the
additional consideration does not cause any extra computation cost. The acoustic
score can be weighted relative to the pronunciation (and language model) scores.

Fig. 7.7 Word error rate for
rescoring of N-best based on
pronunciation score
combined with weighted
language model scores

Fig. 7.8 Word error rate for
rescoring of N-best based on
pronunciation score
combined with weighted
language model scores
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But it turns out that considering the acoustic score for rescoring does not lead to
any improvement. The results of an experiment conducted on the smaller set of
Japanese speakers is shown in Fig. 7.9. The baseline system (horizontal dashed
line) considers only pronunciation and language model score, the language model
weight is set to 5. Independent from the acoustic score weight, the baseline system
always performs slightly better than the system considering the acoustic score.
Results including the acoustic score at various scaling factors basically are all the
same without showing any statistically significant tendency.

7.7.3.4 Data Coverage

For acoustic models, phonemes are usually chosen as basic unit rather than words.
The reason is that for such small units, the number of training items is much higher
than for large units. For pronunciation modeling, phonemes are not the optimal
unit because of the strong context or even word dependency of pronunciation
errors. The drawback of large units is that not all words can be trained: Only
15.3% of the 7312 words are in the training data and can serve to reestimate the
HMM parameters, the rest of the word models remains in the initial state.

A level between words and phonemes are syllables. The words in the pro-
nunciation dictionary can be split into syllables automatically with syllabification
software such as [Fisher 96], resulting in 3422 distinct syllables. While the dic-
tionary size decreases, the number of units in the test data actually increases, from
141 words to 182 syllables. While this makes syllables unlikely to be a better unit
for pronunciation modeling, other sub-word units such as syllable compounds
might be an interesting target for future experiments.

All in all, the results show that pronunciation HMMs as statistical lexicon are an
effective way to increase performance for non-native speech recognition. An
average recognition rate increase of relative 8.2% was achieved. The improvement
has been proven to be causal by pronunciation rescoring. The remaining gap to
native performance could be narrowed by increased training data coverage. To
achieve this, it is necessary to either increase the amount of training data even
further or choose units other than words for modeling with HMMs.

Fig. 7.9 Considering the
acoustic score additionally to
pronunciation and language
model score does not lead to
WER reduction
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Chapter 8

Outlook

In this research, we proposed HMM based statistical pronunciation modeling for
non-native speech recognition. This method is data-driven, and has shown to be
applicable to any given accent type without need for expert knowledge about the
specific accent.

Motivated from patterns visible in a phoneme confusion matrix, rules seem
capable of representing pronunciation variations of accented speech. Literature
shows rules are a popular form to convey and apply pronunciation information to
the dictionary of a speech recognition system. But as we have shown, there are
limitations to the rule-based approach: Less frequent variations have to be disre-
garded, as they otherwise cause additional confusion.

Pronunciation HMMs are a soft form of representation that allows to retain
more of the information given in the training data than explicit representations
such as rules which require hard decisions. Rules also require to search for
thresholds in order to balance additional pronunciation variations in a dictionary
with the number of additional confusions caused.

In our proposed statistical dictionary, the pronunciation variation information is
represented implicitly in the form of HMMs. The models are applied by calcu-
lating a pronunciation score with the Viterbi alignment technique and rescoring the
n-best hypothesis list. Handling a model that allows a multitude of possible pro-
nunciations with different likelihoods through rescoring has shown to be robust
against confusions, as in no experiment the rescoring decreased performance.

There are several databases in existence, but most of them are very small, of
unsuitable acoustic condition or unavailable to the public. We therefore collected a
database of non-native English speech as part of this work. It includes 96 speakers
of five accent groups (Mandarin Chinese, French, German, Indonesian, Japanese).
With over 22 h of speech it is one of the largest existing non-native speech
databases.

The data consists of read speech, such as hotel reservation dialogs, number
sequences and phonetically rich sentences. Each speaker produced a uniform set of

R. E. Gruhn et al., Statistical Pronunciation Modeling for Non-Native Speech Processing,
Signals and Communication Technology, DOI: 10.1007/978-3-642-19586-0_8,
� Springer-Verlag Berlin Heidelberg 2011
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146 utterances. The data collection was conducted with special care to avoid
speaker anxiousness.

Pronunciation skill ratings on sentence and word level by human experts make
the database applicable for research in the field of computer assisted language
learning. For such ratings, the learning process of the experts during the scoring
could be a problem: humans might chance their rating behavior over time.
We aimed at avoiding such effects by calibrating the experts with a uniform initial
sentence set and presenting the target utterances in random order to several raters.

The database yields a higher number of male speakers, however for the purpose
of non-native accent analysis, this gender imbalance did not show any impacts on
the results. The data is available for a fee at ATR, a well-known collector and
distributor of speech databases in Japan.

For all experiments with non-native speakers, monophone acoustic models
performed better than context-dependent ones. The coarticulation effects signifi-
cantly differ between native and non-native speakers, and the more specialized
context-dependent models do not match non-native speech sufficiently well.

Pronunciation scoring improved the word error rate in average from 45.88 to
42.15%, a relative error rate reduction of 8.15%. This demonstrates the effec-
tiveness of the proposed approach in a non-native speech recognition scenario.
The highest improvement was achieved for the Chinese accented speakers, with a
relative 11.93% gain. The tendency of improvement was the same for all accent
groups. Differences in the baseline performance can be explained with the smaller
overlap of the phoneme sets especially of the Asian languages with the American
English set. The German speakers obtained the highest baseline performance, due
to the high number of English phonemes also existing in the German language.

The rescoring procedure provides best results if the pronunciation score is
considered in combination with a weighted language model score calculated from
a word bigram. Overweighting the language model reduced performance again,
proving that the contribution from the pronunciation model is important. Factoring
in the acoustic score on the other hand turned out to be hurting rather than helping
during the rescoring process.

The pronunciation HMMs in the initialized state already lead to some
improvement through the pronunciational relaxation provided by the models. This
supports the initialization concept. Training the models on the results of a pho-
neme recognition further increases their modeling accuracy as expected. As our
pronunciation model is applied as rescoring, we can take advantage of the mul-
titude of allowed pronunciation variants without causing confusion. This would be
the case with all other dictionary modification approaches.

A possible extension to our pronunciation modeling approach seems to lie in
the combination with acoustic model adaptation. Pronunciation modeling and
acoustic model adaptation address similar problems. They attempt to compensate
the speakers pronunciation anomalies. Both approaches taken by themselves may
improve recognition accuracy, with MAP speaker adaptation performing better
compared to pronunciation modeling. Combining pronunciation rescoring with
acoustic model adaptation does not seem to help any further. The reason is that
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MAP speaker adaptation is more specifically adapting to the speakers properties
(not only his non-nativeness). This was not attempted with the pronunciation
modeling research reported here. We are targeting a general accent group rather
than a specific speaker, leaving the acoustic model speaker independent.

Another remaining problem is the data coverage. From the available speech,
two hotel reservation dialogs were chosen as test set randomly. Only a rather
limited share of the vocabulary in the test set could be trained on the given data. As
shown in this work, trained models can be expected to perform better than the
models directly generated from a pronunciation dictionary. Many word models
remain in the initial state with default transition and output probabilities. In a large
vocabulary scenario, this gap can never be fully avoided. Modeling at the syllable
level rather than at the word level does not seem to help. The coverage may be
increased by applying additional non-native speech databases. However, the
experiments have also shown that even unseen pronunciation variations are cov-
ered by the baseline models. This represents a clear advantage over other non-
native speech pronunciation modeling methods.

For each accent group, a separate accent model is trained. In applications where
the accent of the speaker is unknown, automatic classification of the accent will be
necessary. Applying such an accent classifier is also left as future work.

While we have examined various measures for scoring the pronunciation of
non-native speakers, we have not attempted to apply the pronunciation HMMs for
this purpose. Training a native English pronunciation model and comparing the
score of the native model with the accent models would be a possible experiment.
The comparison would not be helpful for scoring though, as we could only
measure similarity to the given accents. It is imaginable that such a comparison
might be useful for accent classification.

It may also be helpful to initialize the transition probabilities in the pronunci-
ation models based on an examination of typical insertion and deletion error
frequencies rather than uniform. The expected gain would be small though, as the
contribution of the transitions to the total score is comparatively low, and easy
applicability of our approach would suffer somewhat. Still, further improving the
initial models would be a possible continuation of this research.

We evaluated the (monophone) acoustic models on the native English Hub5
task and achieved a 19.2% error rate. For the hotel reservation task of the ATR
non-native speech database, a similar performance could be expected for native
speakers. Even with pronunciation rescoring, the error rates for non-natives are
still below this level. Example for German speakers we reduced a 31.8% word
error rate to 29.9%. Such an improvement of absolute 2% is helpful, but still less
than the ‘‘gap to nativeness’’ of around 12% additional word error. Therefore even
with this work the problem of non-native speech recognition can not be seen as
summarily solved yet. Further improvement could be found in pronunciation
models that take skill into account additionally to accent, but for such a specific
model, training data is unlikely to ever be sufficient.

Real applications will have to deal with effects that cannot be handled on
pronunciation level, such as the speaker completely omitting words. In such cases,

8 Outlook 87



only a dedicated language model could compensate. A further real-world problem
are in-word pauses caused by hesitations of non-native speakers who have to
rethink how to continue a sentence. The proposed pronunciation models could deal
with this, as inserting silence within words can be allowed. But this effect is not
seen in the test data, as our recording conditions of read speech prevent it.

Non-native speech recognition is necessary for applications such as speech-to-
speech translation, car navigation, automatic telephone call processing and auto-
matic travel assistance. The latter two applications are typically on server systems
where computation is not a central issue. The first two systems run typically on
low-resource hardware. The proposed method adds phoneme recognition and a
score calculation with the Viterbi algorithm to the standard speech recognizer
setup. But as both additions are lightweight in terms of calculation cost and
memory consumption, they can be implemented even in low-resource systems
such as embedded hardware or hand-held computers.

Therefore we can conclude that we have proposed a method that is effective in
supporting non-native speech recognition and that is applicable in real-world
systems. All in all, we achieved an average word error rate reduction of 8.15%,
showing the effectiveness of the proposed method.
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Appendix A: Hotel Reservation Dialog

This chapter gives an example for a hotel reservation dialog side as used in the
data collection. The dialog shown here is TAC22012 as it is given in the
transcription files. One side is a Japanese traveler (not listed below), the other side
an English speaking hotel clerk.

good afternoon new york city hotel can i help you

okay for how many people would that be

okay and could i have your name please

okay mr. tanaka and when would you like the room for

okay so that ’s one night for one adult and two children is that

correct

okay uhmm we do have one twin room available on the fifteenth

and we could put a cot in the room for your other child

that ’s okay the cots are quite big even adults can sleep on them

okay a twin room is a hundred and thirty dollars plus service

charge and tax

i ’m sorry uhmm all the doubles are booked and so are all the sin-

gles which probably wouldn’t be appropriate anyway

okay sure and would you like breakfast sir

sure we have the continental breakfast which is ten dollars and an

english breakfast which is twelve dollars

so ahh will that be one continental breakfast or would you like it

for the children also
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okay no problem and will you be paying by cash or charge sir

okay could i have your number in that case please

okay thank you and when does it expire

thank you and could i have your address and telephone number

please mr. tanaka

so that ’s two six seven five two one zero three eight seven room five

o seven washington hotel

okay mr. tanaka so my name is mary phillips and i ’ll be seeing you

soon bye now
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Appendix B: Confusion Matrices

This chapter shows phoneme confusion matrices for the five large accent groups
described in Chap. 5. The images are comparing a phoneme recognition result
obtained by recognition with the monophone acoustic model with a reference
phoneme transcription obtained by forced alignment. The darker a box is, the more
frequently the regarding confusion occured. The phoneme recognition result rep-
resents which sounds the speaker actually produced. The diagonal shows all cases
of correct pronunciation, all other entries are mispronunciations. This simple
model is of course somewhat distorted by random recognition errors, still the
graphs show clearly some typical error patterns. The x-axis shows the recognition
result, the y-axis the correct phoneme (Figs. B.1, B.2, B.3).

Fig. B.1 Phoneme confusion
matrix for Mandarin Chinese
speakers of English
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The non-native speech database contains also three native speakers of English,
one Australian, one British and one US-American (Figs. B.4, B.5). The data of
three speakers of rather different types of English is not be the ideal basis to
calculate a confusion matrix from, and only three speakers may not be enough to
derive a pattern. But for the purpose of illustration we calculated a phoneme
confusion matrix for native English as well, which is found in Fig. B.6.

Fig. B.2 Phoneme confusion
matrix for French speakers of
English

Fig. B.3 Phoneme confusion
matrix for German speakers
of English
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Substracting the confusion values of the native speakers from one of the accents’
confusion matrix and calculating the absolute values matix yields an image
visualizing the differences between native and non-native pronunciation and
recognition properties. An example for such an image is Fig. B.7, where we
compare Japanese English to a native English matrix. The darker, the greater the
difference.

Fig. B.4 Phoneme confusion
matrix for Indonesian speak-
ers of English

Fig. B.5 Phoneme confusion
matrix for Japanese speakers
of English
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Fig. B.6 Phoneme confusion
matrix for three native
speakers of English

Fig. B.7 Difference matrix
comparing native speakers of
English with Japanese accen-
ted English
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Appendix C: Speaker Information

This chapter explains specific details about the speakers. Each speaker is identified
with a four-symbol ID number, consisting of the letter M or F identifying the
gender followed by a running three-digit number.

For each speaker, the average human rating on utterance level, the number of
mispronounced words (MisW), the ratio of mispronounced words (MisR), the
phoneme recognition accuracy (PA) with a monophone acoustic model, age and
first language are shown. For some Japanese speakers, the age information is not
available. The table is sorted by the individual pronunciation skill ratings as
calculated in [Cincarek 04a].

Speaker Rating MisW MisR PA Age Native

F018 1.03 7 0.02 21.27 - Japanese
M076 1.30 29 0.07 26.48 43 German
M036 1.40 21 0.05 22.40 30 German
M052 1.43 17 0.04 38.35 36 German
M078 1.43 18 0.05 25.00 35 German
F022 1.60 27 0.07 18.43 45 Japanese
M001 1.65 33 0.08 33.99 39 German
M055 1.67 66 0.17 25.88 52 Chinese
M054 1.75 54 0.14 28.88 28 German
M040 1.77 41 0.10 11.56 21 Chinese
M051 1.77 62 0.16 32.90 26 German
M071 1.77 25 0.06 16.67 39 German
F026 1.80 56 0.14 25.39 28 Chinese
M042 1.82 52 0.13 31.59 33 Hungarian
M033 1.83 47 0.12 35.26 30 Indonesian
M056 1.83 59 0.15 28.95 35 German

(continued)
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(continued)

Speaker Rating MisW MisR PA Age Native

M014 1.87 58 0.15 12.47 35 Japanese
F021 1.90 66 0.17 30.08 40 Korean
M044 1.90 71 0.18 17.50 25 French
M066 1.93 72 0.18 24.20 30 French
M026 1.95 71 0.18 32.33 42 French
M072 1.97 62 0.16 18.27 26 French
M032 2.00 49 0.12 14.16 32 Spanish
F009 2.02 77 0.19 22.52 - Japanese
F025 2.03 41 0.10 22.55 35 Portuguese
F012 2.07 72 0.18 2.30 - Japanese
M039 2.07 37 0.09 9.37 33 Sinhalese
M061 2.10 58 0.15 26.87 25 Indonesian
M073 2.10 37 0.09 28.25 27 French
F023 2.12 64 0.16 22.34 26 Japanese
F024 2.15 65 0.16 21.20 25 French
M045 2.17 64 0.16 30.95 23 French
M050 2.17 45 0.11 26.67 29 Indonesian
M010 2.20 85 0.22 22.68 25 German
M024 2.20 47 0.12 15.45 21 French
M034 2.20 86 0.22 26.67 23 German
F014 2.23 78 0.20 14.66 - Japanese
M006 2.23 64 0.16 29.73 26 German
M043 2.25 74 0.19 20.97 24 French
M085 2.25 68 0.17 29.40 28 French
F010 2.27 63 0.16 15.21 - Japanese
M021 2.30 72 0.18 23.69 26 German
M080 2.30 87 0.22 12.87 24 French
M022 2.38 90 0.23 1.50 42 Bulgarian
M059 2.38 62 0.16 6.66 43 Indonesian
M037 2.43 71 0.18 13.17 25 French
F019 2.47 62 0.16 18.45 26 Indonesian
M023 2.47 109 0.28 10.35 24 French
M030 2.47 82 0.21 12.14 35 Chinese
M077 2.47 103 0.26 11.32 30 French
M092 2.47 47 0.12 17.76 26 German
F008 2.50 83 0.21 18.42 - Japanese
M016 2.53 60 0.15 -4.13 37 Japanese
F013 2.57 65 0.16 8.67 - Japanese
M089 2.60 101 0.26 14.88 25 Indonesian
M060 2.62 97 0.25 13.59 24 Japanese
M035 2.65 121 0.31 19.51 23 French
M027 2.67 101 0.26 13.08 31 Hindi
M075 2.67 85 0.22 20.99 29 Indonesian
M068 2.70 95 0.24 0.41 32 Indonesian
M082 2.70 121 0.31 23.84 22 Japanese

(continued)
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(continued)

Speaker Rating MisW MisR PA Age Native

M031 2.73 96 0.24 8.28 38 Indonesian
M058 2.73 88 0.22 2.57 39 Japanese
M063 2.73 93 0.24 23.04 36 Indonesian
M065 2.73 92 0.23 20.75 22 Japanese
M084 2.73 56 0.14 -13.75 25 Chinese
M074 2.75 107 0.27 6.45 25 Chinese
M011 2.77 78 0.20 6.78 41 Japanese
M012 2.83 100 0.25 5.42 29 Japanese
M067 2.83 96 0.24 4.20 25 Chinese
M087 2.83 88 0.22 11.48 24 Indonesian
M046 2.87 74 0.19 17.68 31 Indonesian
M053 2.87 79 0.20 7.33 40 Chinese
M029 2.88 121 0.31 18.24 22 French
M069 2.90 108 0.27 0.34 24 Japanese
M070 2.95 125 0.32 -2.98 22 Japanese
M041 2.98 124 0.31 16.62 30 Indonesian
F011 3.00 132 0.33 12.59 - Japanese
M028 3.00 109 0.28 16.98 33 Chinese
M090 3.00 110 0.28 10.26 30 Indonesian
M083 3.05 131 0.33 4.68 24 Japanese
M038 3.10 108 0.27 15.92 30 Indonesian
M015 3.12 100 0.25 8.82 29 Japanese
M057 3.15 120 0.30 12.27 26 Chinese
M064 3.23 117 0.30 -3.25 21 Japanese
M013 3.30 76 0.19 -21.71 22 Japanese
F020 3.33 166 0.42 7.67 30 Chinese
M049 3.47 132 0.33 -2.99 33 Chinese
M086 3.58 124 0.31 8.63 28 Indonesian
M062 3.67 148 0.37 8.60 31 Chinese
M047 3.70 128 0.32 10.93 37 Chinese
M093 3.73 167 0.42 -17.39 31 Japanese
M088 3.93 181 0.46 3.45 27 Chinese
M025 3.97 216 0.55 1.09 37 Chinese
M081 4.07 118 0.30 -28.39 28 Chinese
M091 4.27 137 0.35 -4.61 31 Chinese
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Appendix D: Human Evaluation

This chapter gives further information about the human expert ratings. The rating
instructions are followed by the personal background of the evaluators and the list
of speakers assigned to each rater. Finally screenshots of the evaluation browser
interface are shown.

Evaluation Instructions

• The aim of this experiment is to obtain an assessment of proficiency of non-
native speakers in terms of pronunciation and fluency.

• First we would like you to listen to 22 utterances. Each sentence is uttered by a
different speaker. Please assign a level of proficiency to each utterance. Each
level of proficiency should be selected at least once. Level 1 (green) should be
used for maximum proficiency, Level 5 (red) for minimum proficiency present
among speakers. The purpose of this step is to give a feeling of how to use the
grading scale.

• Then you will start evaluation for a subset of 100 non-native speakers. There are
48 different utterances per speaker. They are presented in random order. You
can listen twice to an utterance if it seems necessary to you. First we would like
to ask you to mark any mispronounced words. Please tolerate any pronunciation
variations which may exist in standard British or standard American English.
Please consider only phonetic errors and ignore wrong lexical stress.

• There may be some words a speaker has (completely) misread. Please also mark
these words as mispronounced.

• Next, we would like you to select a level of overall proficiency for the utterance
by considering both pronunciation and fluency. Badly pronounced words,
misread words, strong non-native accent, long pauses between words, stuttering,
etc. should have an influence on your assessment. Please ignore sentence
intonation for your evaluation.

99



• If there is an utterances which was not playable, please skip the sentence by
selecting *NONE*, any proficiency level and clicking on the submit button.
Please write down the number of any sentence for which the utterance was not
playable on this instruction sheet.

Evaluator Information

Table D.1 from [Cincarek 04a] gives information about the human evaluators,
who marked mispronounced words and assigned ratings to each utterance of the
non-native speakers. The evaluators 3 and 16 grew up and went to school in
Canada, all other evaluators in the United States.

Table D.2 from [Cincarek 04a] shows the utterances of which speakers were
assigned to which rater for evaluation. All evaluators processed 1152 utterances
(24 speakers times 48 sentences).

Rating Interface

Figure D.3 from [Cincarek 04a] shows the web-browser based evaluation screen
the human raters used for accessing and rating the speech. The data was
transmitted via the HTTP protocol to a script which stored the ratings in a file.

Table D.1 Information about the evaluators

Evaluator
ID

Working places Teaching
experience

Background in
phonetics

2 Private school (Japan) 9 months No
3 Private school (Japan) 6 months Yes
5 Private school/companies (Japan) 5 years Yes
6 Private school/companies/privately 4–5 years No
7 Privately (Japan) 2–3 years Some
8 Privately (Japan) 1–2 years Yes
9 University (Japan) 5 years Yes
10 Public school (Japan) 3 years Some
11 Private school (Japan, Canada) 2–3 years Yes
12 Private school (Japan) 17 months No
13 Private school (Japan) 18 months No
15 Privately (Japan) 3-4 years No
16 Private schools/companies (Taiwan, Hong Kong, Japan,

Canada)
8 years No

17 Company (Japan) 6 years Some
20 Various places (Europe,Asia) Creation of teaching

material (e.g. audio CDs for TOIEC test)
9 years Yes
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Evaluation of utterance 2 of 1152

Click on hyperlink *PLAY* to replay the utterance.1.
Mark mispronounced words. Click on checkbox for *NONE* if there 
are not any.

2.

Select level of proficiency considering pronunciation and fluency.3.
Go on to the next utterance by clicking on the submit button.4.

*PLAY* Mispronounced? 

HIS 

SHOULDER 

FELT 

AS 

IF 

IT 

WERE 

BROKEN 

*NONE*

Proficiency level (Pronunciation, Fluency) 

1 2 3 4 5

Submit  Reset

Table D.2 Which rater evaluated which non-native speaker?

Evaluator
IDs

Non-native speaker IDs

8 12 16 20 M082 M027 M077 F018 M044 M088 M010 M080 M072 M064 M030 M049 M025
M033 M093 F012 M023 F014 M014 M055 M061 M028 M056 M076

5 9 13 17 M029 M021 M038 M057 F021 M047 M066 F023 M011 M054 F009 M075 M031
M034 M067 M051 M015 M032 M062 M006 F008 M065 M090 M086

2 6 10 F010 M071 M052 M045 M024 M081 F025 M092 M016 M078 M073 M040 F013
M046 M053 F022 M084 M091 M039 F019 M013 M036 M050 M037

3 7 11 15 M074 M043 M026 M070 M060 F024 F026 M022 M041 F011 M087 M058 M042
M069 M012 F020 M085 M068 M089 M063 M059 M083 M001 M035
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Glossary

AM Acoustic model

ASCII American standard code for information interchange

ASR Automatic speech recognition

ATR Advanced Telecommunication Research Laboratories

C-STAR Consortium for speech translation advancedresearch

CALL Computer assisted language learning

CART Classification and regression tree

CMS Cepstral mean substraction

DAT Digital audio tape

ELDA Evaluations and Language Resources DistributionAgency

ELRA European Language Resource Agency

EM Expectation maximization

ERJ English read by Japanese

FSA Finite state automaton

GMM Gaussian mixture model

GUI Graphical user interface

HMM Hidden Markov model

IPA International phonetic alphabet

ISLE Interactive spoken language education project

L1 Native language of a speaker
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L2 An aquired language a person is speaking with a non-native accent

LM Language model

M-ATC Military Air Traffic Control

MAP Maximum a-posteriori

MFCC Mel frequency cepstral coefficients

MIT Massachusetts Institute of Technology

MLLR Maximum likelihood linear regression

MWC Multilingual weighted codebooks

NATO North Atlantic Treaty Organisation

NICT National Institute of Information and Communications Technology

PBC Phoneme best correctness

PC Personal computer

PCA Principal component analysis

PDA Personal digital assistant

PNA Phoneme net accuracy

ROS Rate of speech

SAMPA Speech assessment methods phonetic alphabet

SDS Speech dialog system

SMILE Speech and multimodal interface for multilingual exchange

SPINE Speech in Noisy Environments

TED Translanguage English database

TIMIT A database created by Texas Instruments and MIT

TTS Text to speech

VQ Word error rate

WPP Word posterior probability

WRR Weighted recognition rate

WSJ Wall Street Journal
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