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Preface

A new computing model, extends the von Neumann stored program control (SPC)

computing model to program and execute self-configuring, self-monitoring, self-

healing, self-protecting and self-optimizing (in short, self-managing or self-*)

distributed software systems. As opposed to self-organizing systems that evolve

based on probabilistic considerations, this approach focuses on the encapsulation,

replication, and execution of distributed and managed (regulated) tasks that are

specified precisely. Its innately parallel architecture (non-von Neumann), and its

architectural resiliency of cellular organisms, are ideally suited to exploit the

many-core architecture and low-latency bandwidth networks emerging in the new

generation of data centers to improve the price/performance of IT infrastructure by

orders of magnitude.

The new computing model (known as the Distributed intelligent managed

element (DIME) Network Architecture) consists of a signaling network overlay

over the computing service network and allows parallelism between the control

(setup, monitoring, analysis and reconfiguration based on workload variations,

business priorities and latency constraints) and the computing functions of the

distributed software components. A workflow is implemented as a set of tasks,

arranged or organized in a directed acyclic graph (DAG) and executed by a

managed network of DIMEs. These tasks, depending on user requirements are

programmed and executed as loadable modules in each DIME. The distributed

software components along with associated profiles defining their use and man-

agement constraints are executed by DIMEs endowed with self-management and

signaling-enabled-control architecture. The profiles are used as blueprints to setup,

execute and control the down-stream DAG at each node based on global and local

policies which depend on business priorities, workload fluctuations and latency

constraints. A new class of distributed systems with the architectural resilience of

cellular organisms are possible using the DIME network architecture with

signaling to monitor and regulate the execution of computational workflows with

self-* properties.

We describe two proofs-of-concept implementations; one using a new native

operating system called Parallax which is specially designed using the DIME
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computing model to monitor and control multi-core and many-core processors in

an Intel processor based server; another using a conventional operating system

(Linux) to encapsulate a process as a DIME. The results suggest that the service

management can be decoupled from the underlying hardware infrastructure

management by utilizing signaling based dynamic configuration of DIME network

architecture, and potentially reduce the layers of management software in devel-

oping next generation highly-scalable, parallel, distributed virtual service creation,

delivery, and assurance platforms.

The purpose of this research brief is to introduce some new ideas based on the

study of cellular organisms, human organizational networks and telecommunica-

tion networks to improve the resiliency, efficiency and scaling of distributed

systems executing various computational workflows. The ideas extend the current

von-Neumann computing model by separating the services management from

services execution exploiting the parallelism and performance offered by the new

class of many-core processors.

The DIME network architecture is a departure from conventional wisdom

currently being pursued by the universities and corporate research & development.

It adds monitoring and control to each Turing computing node and a parallel

signaling enabled network to implement the management of temporal behavior of

workflows executed as directed acyclic graphs using a network of managed Turing

machines.

The concept of a parallel signaling channel is foreign to the current generation

of IT professionals, except for those with telecommunications or voice over IP

experience, who are by now either retired or dead. Signaling allows establishing

equilibrium patterns and monitor and control exceptions system-wide. It allows

contention resolution based on system-wide view and eliminates race conditions

and other common issues found in current distributed computing practice. In

systems with strong dynamic coupling between various elements of the system,

where each change in one element continually influences other element’s direction

of change, signaling in the computational model helps implement system-wide

coordination and control based on system-wide priorities, workload fluctuations

and latency constraints.

We have demonstrated the feasibility of this approach using two prototypes.

However, in order to take these concepts to practical application in mission critical

environments, the DIME network architecture requires its validation and accep-

tance by a larger community. This research brief presents the concept and the

results for such validation and analysis.
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Chapter 1

An Introduction to the Design of a New

Class of Distributed Systems

Abstract Globalization, communication, collaboration, and commerce at the

speed of light are creating a demand for highly resilient, efficient, and scalable

distributed transactions through various applications such as high frequency

trading, social networking, and federated enterprise business process automation.

Current computing models based on serial von-Neumann stored program control

implement the services and their management in a serial fashion. On the other

hand, the dynamic coupling between various elements of the system, where each

change in one element continually influences some other element’s direction of

change, introduces a highly temporal element and parallelism to the distributed

transactions. This research brief introduces a new distributed computing model

that exploits the parallelism and performance offered by the new generation of

many-core processors to improve the resiliency, efficiency, and scaling of dis-

tributed transactions.

Communication, Collaboration, and Commerce

at the Speed of Light

‘‘There is nothing more difficult to take in hand, more perilous to conduct, or more

uncertain in its success, than to take the lead in the introduction of a new order of

things.’’—Niccolo Machiavelli, ‘‘The Prince’’ 1469–1527

High speed computers connected with low latency networks today, can execute

1,000 trades per second; exchanges can process trades in less than 500 ls (or

millionths of a second). By 2010 High Frequency Trading accounted for over 70%

of equity trades taking place in the US. In high-frequency trading, programs

analyze market data from disparate sources in real-time to capture trading

R. Mikkilineni, Designing a New Class of Distributed Systems, SpringerBriefs
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opportunities that may open up for only a fraction of a second to several hours.

In essence, the high-frequency traders utilize distributed computing networks of

stored program computing elements whose resources are shared to execute busi-

ness processes to accomplish a common goal. Other examples of distributed

computing are the social networking applications such as Facebook, Twitter etc.,

which connect millions of geographically separated end users to communicate and

collaborate transcending national and cultural boundaries. Enterprises use feder-

ated systems to collaborate and execute common business processes spanning

across distributed resources belonging to different owners.

Global connectivity, resulting communication, collaboration, and commerce at

the speed of light have created the ‘‘network effect’’ which impacts the result of a

transaction between participants much faster than the increase of the number of

participants. Originally the network effect was used by Theodore Veil [1] to gain

monopoly in telephone service and it was later popularized by Robert Metcalfe [2]

with his law which states that the cost of the network increases with the number of

participants as N while the value of the network increases as N2. Later, Rod

Beckstrom presented a mathematical model [3] for describing networks that are in

a state of positive network effect and also the ‘‘inverse network effect’’’ with an

economic model. ‘‘Beckstrom’s Law’’ says that the value of a network is the net

value of each user’s transaction summed up for all users. At its core, the concept is

about transactions: The value for users is the total benefits from all transactions in

a network minus the cost of those transactions. The network effect is a temporal

many body effect with complex interactions and the result depends on not only the

nature of distributed transactions but also on how they are managed.

Sharing of resources and collaboration through distributed transactions, while

they provide leverage and synergy, also pose problems such as contention for same

resources, issues of trust, and management of the impact of latency in commu-

nication among the participants. The discipline of distributed computing systems

addresses these issues.

Distributed Systems and their Management

Distributed systems, in essence, consist of a set of physically and may be geo-

graphically distributed autonomous components that communicate and collaborate

to accomplish a goal using local and/or remote and private and/or shared resources

in an optimal fashion. Distributed systems consist of consumers and suppliers

exchanging services using local and/or remote resources and can compose them to

create other value added services. The resulting shared transactions among a

network of consumers and suppliers require an orderly managed process for

communication, collaboration, contention resolution, and assurance of end to end

transaction integrity that addresses each transaction’s fault, configuration,

accounting, performance and security (FCAPS) constraints defined based on the

nature of the transaction. The end-to-end transaction-level integrity mandates a
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stringent system-wide distributed management infrastructure in addition to com-

ponent level FCAPS management and service execution.

Distributed systems support both component level autonomy to optimally uti-

lize the resources and system-wide collaboration and coordination to accomplish

the system-level goal through distributed transactions. The autonomy assumes that

each entity participating as an actor in a distributed system has certain abilities

such as control over local resources to provide the service, communication

capability to participate in the transaction, and the ability to define and execute the

services. The distributed transaction is defined by the end-to-end transaction goal

that utilizes the component resources, and the nature of the transaction defines the

end-to-end resource coordination and management. There are transactions where

perception, cognition and action are clearly separated. There are other transactions

in which there is dynamic coupling between various elements of the system, where

each change in one element continually influences every other element’s direction

of change. These transactions tightly integrate a system’s sensory and control

functions with analysis. High frequency trading is one such example where

monitoring and control of various components in the distributed system are per-

formed in microseconds. In addition, when the distributed system supports a large

number of transactions, additional management of resources to resolve contention

based on end-to-end goal requirements, latency constraints and environmental

changes, become essential. The highly temporal nature of distributed computing,

with dynamic coupling, connectivity and system-wide coordination introduces a

natural element of parallelism between a service transaction and its management.

In summary, distributed systems are characterized by a set of autonomic loosely

coupled self-managing nodes executing concurrent tasks collaborating and coor-

dinating to support highly temporal distributed transactions accomplishing a sys-

tem-wide goal. The resiliency of the distributed system depends heavily on both

the node resiliency and the network resiliency. Current computing models based

on serial von-Neumann stored program control implement the services and their

management in a serial fashion. For example, an operating system’s task for

resource allocation such as open(), and close () are mixed with service execution

tasks such as read() and write(). All these instructions are serially processed by the

von Neumann computing model implementing a Turing machine. This approach

gives raise to many of the current distributed computing practices. However there

are two major drivers forcing a reexamination of how distributed systems are

managed:

1. According to Prahlad and Krishnan [4], in an enterprise that is competing

globally, the traditional sources of advantage—access to technology, labor and

capital—are no longer unique differentiators for most firms. They say that the

‘‘new source of competitive differentiation may lie in the internal capacity to

reconfigure resources in real-time.’’ This mandates the real-time management

of business process execution which in turn demands 100% availability, reli-

ability, performance optimization and security of the distributed computing

infrastructure implementing the business processes.
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2. Communication, collaboration and commerce at the speed of light are driving

the need for massively scalable service deployment, and the increasing demand

to do ‘‘more with less’’ is driving the infrastructure consolidation and new

approaches to distributed computing efficiency.

The demand for improving distributed transaction resiliency (of FCAPS man-

agement), efficiency, and scaling are pushing for a search for new approaches to

distributed computing practice.

Other distributed systems in nature such as cellular organisms, human orga-

nizational networks and telecommunication networks provide clues to designing

highly resilient, efficient and scalable distributed computing systems. This research

brief examines these distributed systems and their management to identify key

abstractions and patterns that contribute to their resiliency, efficiency, and scaling.

All the three examples presented have a set of common abstractions that are

essential in exhibiting the common characteristics of high resiliency, efficiency,

and scaling. These attributes are:

1. A parallel overlay of a management channel to facilitate system-wide collab-

oration, coordination and control to assure end-to-end transaction integrity and

successful completion of system-wide goals.

2. Both component level autonomy to optimally manage local resources and

system-wide management to optimally share the local and remote resources to

accomplish system-wide goals.

We exploit these abstractions to design a new class of distributed systems

offering the architectural resiliency of cellular organisms, the scalability of human

organizational networks and the telecom grade trust and efficiency of telecom-

munication networks. We propose a novel and interesting non-von Neumann

computing model that exploits parallelism of the new generation multi-core and

many-core processors with high bandwidth inter-process communications. The

new computing model separates service management from the service execution

and exploits an overlay of signaling network to provide system-wide collaboration,

coordination and control. This approach extends the current serial von-Neumann

computing model by adding the management overlay and thus avoids making

changes to the current service execution paradigms.

This approach is quite distinct from current grid and cloud computing

approaches [5, 6] which implement automation of services management using a

mixture of node level service management (which uses serial von Neumann

computing model) and a plethora of resource management systems to coordinate

and control network level service management. We argue that while these

approaches are successful to a certain extent, they suffer from limitations of

resiliency, efficiency, and scaling. We show that the separation of services man-

agement from their execution allows a decoupling of services management and

control from the underlying hardware infrastructure management and control.

Thus the new computing model allows the design and execution of resilient ser-

vices using not so reliable hardware infrastructure just as the cellular organisms
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do. This has profound implications on next generation hardware design which

could eliminate the need for special purpose hardware, hardware clustering and

extensive resource management strategies for providing FCAPS resilience [7].

We demonstrate the feasibility of this new approach by implementing auto-

scaling, self-repair and self-management features in two cases:

1. By implementing the new computing model in Linux operating system to

encapsulate a process demonstrating dynamic reconfiguration of services and

their management and

2. By implementing the new computing model in a native operating system called

Parallax in a multi-core Intel server written in assembler language with C and

C++ interfaces also demonstrating dynamic reconfiguration of services and

their management.

These two prototypes demonstrate the feasibility of the new approach. How-

ever, in order to take these concepts to practical application in mission critical

environments, the DIME network architecture requires its validation and accep-

tance by a larger community. This research brief presents the concept and the

results for such validation and analysis.

Evolution, Revolution and the Adoption

of Disruptive Innovation

The IT landscape is filled with unfulfilled technology promises, surprise winners

and the meteoric rise and sudden fall of various technology companies. Evolution

has a way of selecting best practices that lower system’s entropy and assure its

survival. Sometimes it prefers incremental improvements to optimize in its current

local minimum. Other times it prefers a new local minimum that is radically

different from its current equilibrium.

Technology or process innovation that improves productivity (and lowers the

entropy) evolves through three distinct phases (namely, the incubating, emerging

and mature phases) which have different returns on investment. Disruptive tech-

nologies that raise the productivity from one level to a next higher level occur

through evolutionary need for competitiveness. Figure 1.1 summarizes the three

phases of innovation in Information Technologies.

Traditionally, as technologies start to mature, governments and corporations

have devoted a part of their revenues (taxes or profits) in incubating technologies

as an investment to their future competitiveness and survival. History has shown

that this investment is about 3–6% of their revenue. History also has shown that

such investment attracts the creative scientists and engineers to nurture the culture

of collaboration and structures that cultivate talent (without the near-term profit

oriented cut-throat competition) and go on to achieve Nobel prizes and National

Science Awards. Corporate R&D, University research, DARPA and NSF funded

projects, traditionally fulfilled this role.
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The figure shows three different stages of technology (S-curve) evolution. The

conventional data centers using various server, network and storage resource

management strategies is considered mature technology since the productivity

improvements have reached a plateau. The cloud computing technology is

emerging to provide productivity gains through automation of various service

management tasks going beyond resource management. The many-core processors

and the new opportunity to exploit the resulting hardware advances with paral-

lelism and performance offer a new opportunity that is currently in the incubating

stage.

The evolution from one phase to another is gradual. When the incubating

technologies start to show promise as emerging technologies, the animal spirits of

Venture Capitalists start smelling high profits and exploit entrepreneur’s product

development expertise and establish product leadership. The culture and structure

required in the incubating phase are different (at least it was in the past when

institutions such as AT&T Bell Labs invested a portion of their revenue in research

for research sake) from the culture and structure required for exploiting emerging

technologies.

As the products, processes, services and technologies prove themselves in

customer environments, conventional capitalism kicks in and large corporations

exploit scale through establishing operational excellence and customer intimacy.

Again the evolution emphasizes that the culture and structure that is exploited by

conventional capitalism are different from the cultures that support disruptive

innovation and establishing product leadership. The culture of control that helps in

establishing operational excellence fails miserably in creating disruptive

innovation.

The long and short of the discussion is that the patterns of evolutionary

advantage are different in supporting different phases of implementing produc-

tivity improvements and establishing competitive differentiation. We believe that

exploiting the hardware revolution with many-core processors with the non-von

Fig. 1.1 Technology

innovation and adoption

phases
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Neumann computing model proposed here is part of disruptive innovation that can

provide orders of magnitude improvement in resiliency, efficiency, and scaling of

distributed computing systems. However, a lack of immediate profits and the

potential risk make it an incubating technology that requires a different approach

from projects that have immediate commercial success for its validation and

acceptance.

Organization of this Research Brief

The purpose of this research brief is to introduce some new ideas based on the

study of cellular organisms, human organizational networks and telecommunica-

tion networks to improve the resiliency, efficiency, and scaling of distributed

systems executing various computational workflows. The ideas extend the current

von-Neumann computing model by separating the services management from

services execution exploiting the parallelism and performance offered by the new

class of many-core processors.

Current Information Technology solutions have become silos of server, storage

and network infrastructure with poor end-to-end distributed transaction reliability,

availability, performance and security as recent episodes at Sony, Amazon,

Google, and RSA [8–11] demonstrate. The service failures and security breaches

caused big losses and major disruptions to the affairs of their customers. We

believe that there is a need for reexamining the fundamental architectural foun-

dation of Information Technologies to transform the data centers from their current

role of being just managed server, networking, and storage hosting centers

(whether physical or virtual), to true service switching centers with telecom grade

trust. Current advances in many-core processors and the associated power and

space savings offer an opportunity to refresh the current data centers with new

innovation. Current operating systems and management paradigms are not ade-

quate to leverage the full potential of the hardware innovation offered by these

many-core processors. We need a paradigm shift from resource switching and

connection management to services switching and service connection manage-

ment. We also believe that new approaches are essential to replace the current

efforts to replicate the complexity inside the data center today, also inside the

many-core servers. The organization of the rest of the research brief is aimed at

making a case for a paradigm shift to a new class of distributed systems design and

execution.

Chapter 2 provides a review of current state of the art and science of distributed

systems and understanding of distributed systems design to make a case for the

need to change. Chapter 3 introduces the new non-von Neumann computing model

derived from studying the cellular organisms, human organizational networks and

telecommunication networks which use signaling and self-management to improve

their resiliency, efficiency, and scaling. Chapter 4 provides a discussion of two

implementations of the new computing model to demonstrate feasibility. The first
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implementation demonstrates the non-von Neumann computing model in a con-

ventional operating system (Linux) which allows the migration of current service

architectures with minimal disruption. The second approach demonstrates a new

native operating system that exploits the parallelism of the many-core servers to

create a new class of resilient, efficient and scalable distributed systems. Chapter 5

presents some conclusions based on our experience with the implementations and

points to a few new research directions to take these ideas forward.

Only time will tell if these ideas will bear fruit. But again, as Mitchell Waldrop

points out, revolutions are not revolutions if they are believed in at the start. Are

they?

‘‘How did it go in Berkeley? Did they like your ideas?’’

‘‘It was the pits,’’ said Arthur. ‘‘Nobody there believes in increasing returns.’’

Susan Arthur had seen her husband returning from the academic wars before.

‘‘Well,’’ she said, trying to find something comforting to say, ‘‘I guess it

Wouldn’t be a revolution; would it, if everybody believed in it at the start?’’

—Waldrop, M.M., ‘‘complexity: The Emerging Science at the Edge of

Order and Chaos’’, New York, Simon and Schuster, (1992) p 19.
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Chapter 2

Understanding Distributed Systems

and Their Management

Abstract An analysis of current implementation of distributed computing and its

management using the von-Neumann stored program control computing model is

presented to identify ways to improve the resiliency, efficiency and scaling of

distributed transactions supporting the demands of communication, collaboration

and commerce at the speed of light. A comparison with other distributed com-

puting models such as the cellular organisms, human organizational networks and

telecommunication networks points to a new computing model that leverages

parallelism, signaling and end-to-end transaction management improving the

resilience, efficiency and scaling of distributed transactions.

Stored Program Control Computing Model, Distributed

Computing, and Management

‘‘Despite more than 30 years of progress towards ubiquitous computer connectivity, dis-

tributed computing systems have only recently emerged to play a serious role in industry

and society. Perhaps this explains why so few distributed systems are reliable in the sense

of tolerating failures automatically, or guaranteeing properties such as high availability, or

having good performance even under stress, or bounded response time, or offer security

against intentional threats. In many ways the engineering discipline of reliable distributed

computing is still in its infancy.

Reliability engineering is a bit like alchemy. The field swirls with competing schools of

thought. Profound arguments erupt over obscure issues, and there is little consensus on

how to proceed even to the extent that we know how to solve many of the hard prob-

lems.’’—Kenneth Paul Birman [1].

‘‘The sharing of resources is a main motivation for constructing distributed systems’’—

George Coulouris, Jean Dollimore, Tim Kindberghy [2].
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‘‘A distributed system is a collection of independent computers that appears to the users as

a single coherent system.’’—Andrew S. Tanenbaum and Martin van Steen [3]

Since von Neumann [4] discussed, at the Hixon symposium in 1948, his views

on the resilience of the cellular organisms and the shortcomings of the stored

program control machines he designed, the quest for building reliable systems on

an infrastructure that is not, often, reliable has been the holy grail of information

technologies. As Birman points out, distributed systems pose more of a challenge

because of the need for the management to coordinate the collaborating resources

that span across different hardware and geographies to accomplish the goals of the

overall system. A transaction to accomplish a system goal in a distributed system

by definition spans across distributed shared resources transcending geographical

boundaries. Fault, configuration, accounting (of who uses what resources), per-

formance and security management of distributed resources that collaborate using

different communication mechanisms and network connections determine the

overall response time and success or failure of the end-to-end transaction. The

shortcomings or, the aspects of alchemy as Birman [1] puts it, arise from a lack of

consistent treatment of distributed computing and its management. In this chapter

we revisit the stored program control computing model, traditional treatment of

distributed systems, and their management strategies to show that many of the

issues are a result of the coupling of computing tasks and their management tasks

implemented using the stored program control computing model. We also study

other distributed systems such as cellular organisms, human network organization

and telecommunication networks that are proven to be very resilient, to define a

new class of distributed computing systems.

Current distributed computing practices have their origin from the server-

centric von Neumann Stored Program Control (SPC) architecture that has evolved

over the last five decades. In its simplest form, the computation and storage are

separated using CPU and memory devices. A single storage structure holds both

the set of instructions on how to perform the computation and the data required or

generated by the computation. Such machines are known as stored-program

computers. The separation of storage from the processing unit is implicit in this

model. The ability to treat instructions as data is what makes compilers possible.

It is also a feature that can be exploited by computer viruses when they add copies

of themselves to existing program code. The problem of unauthorized code rep-

lication can be addressed by the use of memory protection support. Virtual

memory architectures have incorporated management of computing and storage

resources in the operating systems. During last five decades, many layers of

computing abstractions have been introduced to map the execution of complex

computational workflows to a sequence of 1 s and 0 s that eventually get stored in

the memory and operated upon by the CPU to achieve the desired result. These

include process definition languages, programming languages, file systems, dat-

abases, operating systems etc.

While this has helped in automating many business processes, computing

remained mainly centralized in islands of main frames and mini computers with
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occasional time-sharing thrown in until Ethernet was introduced to connect mul-

tiple computers. Distributed computing utilizing networked computing resources

came of age in the 1970s, starting from a client–server computing model, and has

fully developed to current grid-computing and cloud computing implementations

where hundreds of physical and virtual servers are used in distributed grids and

clouds to provide orchestrated computational workflow execution. With the steady

increase of computing power in each node and connectivity bandwidth among the

nodes, during the last three decades, sharing of distributed resources by multiple

applications to increase utilization has improved the overall efficiency in imple-

menting business processes and workflow automation. Sharing of resources and

collaboration, provide leverage and synergy, but also pose problems such as

contention for same resources, failure of participating nodes, issues of trust, and

management of latency and performance. These problems are well articulated in

literature and the discipline of distributed computing is devoted to address them.

There are three major attributes that must be considered in designing distributed

systems:

1. Resiliency: Collaboration of distributed shared resources can only be possible

with a controlled way to assure both connection and communication during the

period of collaboration. In addition, the reliability, availability, accounting,

performance, and security of the resources have to be assured so that the users

can depend on the service levels they have negotiated for. The FCAPS man-

agement allows proper allocation of resources to appropriate consumers con-

sistent with business priorities, requirements and latency constraints. It also

assures that the connection maintains the service levels that are negotiated

between the consumers and the suppliers of the resources. Resiliency therefore

consists of the ability to:

a. Measure the FCAPS parameters both at the individual resource level and at

the system level and

b. Control the resources system-wide based on the measurements, business

priorities, varying workloads, and latency constraints of the distributed

transactions.

In an ideal environment, resources are offered as services and consumers who

consume services will be able to choose the right services that meet their

requirements or the consumers will specify their requirements and the service

providers can tailor their services to meet consumer’s requirements. The specifi-

cation and execution of services must support an open process where services can

be discovered and service levels are matched to consumer requirements without

depending on the underlying mechanisms in which services are implemented.

In addition service composition mechanisms must be available to dynamically

create new value added services by the consumers.

2. Efficiency: The effectiveness of the use of resources to accomplish the overall

goal of the distributed system depends on two components:
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a. Individual resource utilization efficiency which measures the cost of exe-

cuting a task by the component with a specified service level and

b. The coordination and management cost which assures that the distributed

components are contributing to the overall goals of the system with specified

end-to-end transaction service level.

The efficiency is measured in terms of return on investment (ROI) and total cost

of ownership (TCO) of the distributed system.

3. Scaling: As the requirements in the form of business priorities, workload

variations or latency constraints change, the distributed system must be

designed to scale accordingly. The scaling may involve dialing-up or dialing-

down of resources, geographically migrating them and administratively

extending the reach based on policies that support centralized, locally auton-

omous or a hybrid management with coordinated orchestration

Therefore, strictly speaking, distributed computing, should address, (a) the

computational workflow execution implemented by the SPC computing nodes and

(b) the management workflow which addresses the management of the network of

computing nodes to assure connectivity, availability, reliability, utilization, per-

formance, and security (FCAPS) of the distributed resources. Figure 2.1, shows a

group of SPC nodes connected by different mechanisms (shared memory, PCI

Express and Socket communications) with different bandwidths.

Fig. 2.1 A network of stored program control nodes implementing computational workflow and

the resource management workflow
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Traditionally, the operating system provided the node resource management

(memory, CPU cycles, bandwidth, storage capacity, throughput and its rate of

Input/Output). Various network, storage and server management systems provided

the FCAPS management of resources at the network or system level. As the

distributed transactions start spanning across many nodes and networks across

various geographies, the end to end response becomes a function of workloads on

individual nodes, sub-networks, business priorities that control access to various

applications sharing the resources and the overall latency constraints. In order to

control the end-to-end transaction FCAPS, both management workflows and

computational workflows are implemented using the same SPC computing net-

work. Many of the functions controlling the provisioning, fault management,

utilization control, performance and security monitoring and control are distrib-

uted in various nodes as workflows using the same SPC nodes.

The server, network and storage resources are monitored and controlled by

different management workflows often duplicating many functions. The open

systems approach, multiple vendor products evolving simultaneously to specialize

in server, network and storage functions to improve resiliency, efficiency and

scaling, and a lack of end-to-end systems optimization strategies in point products,

all have contributed to creating a complex web of hardware and software systems

in the IT data center. Figure 2.2 shows the evolution of the management

workflows.

With the advent of virtualization technologies, the resource management is

accessible through automation systems reducing the labor intensive server, net-

work and storage management functions thus reducing the human latency involved

Fig. 2.2 Layers of management governing the behavior of computational workflows with

system, server, network and storage management systems

Stored Program Control Computing Model, Distributed Computing, and Management 13



in responding to changing circumstances. Both grid and cloud computing tech-

nologies make use of system-wide resource management to control the resource

allocation priorities based on specific application requirements such as business

priorities, workload fluctuations and latency constraints. The management systems

monitor the resource utilization characteristics across the system and implement

appropriate control workflows to reconfigure the resources. Figure 2.3 shows the

evolution of resiliency with the advent of grid and cloud computing.

As the number of CPUs within an enclosure increase, the distributed resource

control within the enclosure (processors and cores in each processor) is relegated

to the local operating system in that enclosure and it implements appropriate

management workflows to match the demands of applications that request the

resources.

The system level management is implemented using a plethora of resource

management systems. The resulting layers of computational and management

workflows improve resiliency, efficiency and scaling of distributed systems.

Figure 2.4 shows the evolution of resiliency, efficiency and scaling with the

introduction of grid and cloud computing technologies.

The picture shows the FCAPS management ability and the resulting resiliency

of a distributed system, its scaling ability to be able to add the number of com-

puting elements and the efficiency (shown by the size of the sphere). Conventional

computing where server, network and storage management are resource centric

Fig. 2.3 Automation of application-centric management governing the behavior of computa-

tional workflows with virtual server, network and storage management systems
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and are static (i.e., applications do not have the ability to request more or less

resources based on their workloads and latency constraints), the resiliency and

scaling are still limited by the human latency involved in resource management

using various management systems. The physical server is the computing unit in

conventional computing which provides FCAPS management. With the advent of

virtualization technologies, another layer of application-centric dynamic resource

management albeit using multiple management systems, improves the resilience,

efficiency and scaling. In this case, a virtual server constitutes a computing unit

with FCAPS management.

In both cases, the computational workflow and management workflow are

implemented using the SPC computing node (either a physical server based

application or virtual server based application) and are executed in a serial fashion

as shown in Fig. 2.5.

In this approach, the end-to-end distributed transaction resilience is dependent

on detecting changes required and correcting them and the serial nature of this

process introduces an inherent latency in the process. If the timescale, in which the

external requirements change because of the changes in business priorities,

workloads fluctuations or latency constraints, is much larger than the time it takes

to respond, the serial process does not pose a serious problem. On the other hand,

if the scale of changes varies by orders of magnitude in a short period of time as

experienced by current Internet based service delivery on a global scale, the

von-Neumann bottleneck becomes pronounced and will adversely impact the

resiliency, efficiency and scaling of distributed transactions.

The limitations of the SPC computing architecture were clearly on his mind

when von Neumann gave his lecture at the Hixon symposium in 1948 in Pasadena,

California [4]. He pointed out that ‘‘Turing’s procedure is too narrow in one

respect only. His automata are purely computing machines. Their output is a piece

of tape with zeros and ones on it.’’ However, he saw no difficulty in principle in

dealing with the broader concept of an automaton whose output is other automata

Fig. 2.4 Resiliency,

Efficiency and Scaling of

Computing systems
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and in deriving from it the equivalent of Turing result. He went on to make this

remark. ‘‘Normally, a literary description of what an automaton is supposed to do

is simpler than the complete diagram of the automaton. It is not true a priori that

this always will be so. There is a good deal in formal logic which indicates that

when an automaton is not very complicated the description of the function of the

automaton is simpler than the description of the automaton itself, as long as

the automaton is not very complicated, but when you get to high complications,

the actual object is much simpler than the literary description.’’ He went on to say,

‘‘It is a theorem of Gödel that the description of an object is one class type higher

than the object and is therefore asymptotically infinitely longer to describe.’’ The

conjecture of von Neumann leads to the fact that ‘‘one cannot construct an

automaton which will predict the behavior of any arbitrary automaton [5].’’ This is

the case with the Turing machine implemented by the SPC model.

Cellular Organisms, Genes, Chromosomes

and Distributed Computing

It turns out that the description and the execution of the described function play a

crucial role in cellular organisms giving them the capability to replicate, repair,

recombine and reconfigure themselves. These genetic transactions are supported

by DNA (Deoxyribonucleic acid), genes and chromosomes. As Mitchell Waldrop

Fig. 2.5 Distributed computational and management workflow implementation using the stored

program control computing model where the node is either a physical server or a virtual server
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explains in his book on Complexity [6], ‘‘the DNA residing in a cell’s nucleus was

not just a blue-print for the cell—a catalog of how to make this protein or that

protein. DNA was actually the foreman in charge of construction. In effect, was a

kind of molecular-scale computer that directed how the cell was to build itself and

repair itself and interact with the outside world.’’ The conjecture of von Neumann

leads to the fact that the SPC computing model alone is not adequate for self-

replication and self-repair. Organisms somehow have managed to precisely

encapsulate the descriptions of building and running a complex system such as a

human being in a simpler vehicle such as a set of genes and chromosomes. They

have also managed to invent mechanisms for replication, repair, recombination

and rearrangement to execute the descriptions precisely. According to Jacob and

Monod [7], ‘‘The gene circuitry of an organism connects its gene set (genome) to

its patterns of phenotypic expression. The genotype is determined by the infor-

mation encoded in the DNA sequence, the phenotype is determined by the context

dependent expression of the genome, and the circuitry interprets the context and

orchestrates the patterns of expression. Gene circuits sense their environmental

context and orchestrate the expression of a set of genes to produce appropriate

patterns of cellular response.’’

The relationship between von Neumann’s self-replication and genetic behavior

was recognized by Chris Langton [8] who created a new field called artificial life,

which evolved to throw light on self-organization and the emergence of order from

chaos. The field of artificial life and genetic programming focus on self-organi-

zation under probabilistic evolution rules that reduce overall entropy of the system.

However, equally fascinating feature of the genome is its ability to reproduce itself

with a precision that is unparalleled.

As George Dyson, in his book ‘Darwin among the Machines,’ observes [9]

‘‘The analog of software in the living world is not a self-reproducing organism, but

a self-replicating molecule of DNA. Self-replication and self-reproduction have

often been confused. Biological organisms, even single-celled organisms, do not

replicate themselves; they host the replication of genetic sequences that assist in

reproducing an approximate likeness of them. For all but the lowest organisms,

there is a lengthy, recursive sequence of nested programs to unfold. An elaborate

self-extracting process restores entire directories of compressed genetic programs

and reconstructs increasingly complicated levels of hardware on which the oper-

ating system runs.’’ Life, it seems, is an executable directed acyclic graph (DAG)

and a managed one at that.

A cell is formed by a stable pattern of chemical molecules that establish

equilibrium with its environment and optimize resource utilization to maintain its

equilibrium. According to Richard Dawkins [10], ‘‘DNA molecules do two

important things. Firstly, they replicate, that is to say they make copies of them-

selves. This has gone on non-stop ever since the beginning of life and the DNA

molecules are now very good at it indeed.’’

It is one thing to speak of the duplication of DNA. But if the DNA is really a set

of plans for building a body, how are the plans put into practice? How are they

translated into the fabric of the body? Dawkins poses these questions and answers
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them. ‘‘This brings me to the second important thing DNA does. It indirectly

supervises the manufacture of a different kind of molecule—protein. The coded

message of the DNA, written in the four-letter nucleotide alphabet, is translated in

a simple mechanical way into another alphabet. This is the alphabet of amino acids

which spells out protein molecules.’’

The indirect supervision task mentioned by Dawkins is related to the function

of the Gene, which is a piece of DNA material that contains all the information

needed to ‘‘build’’ specific biological structure. Genes thus contain the information

to make proteins, the body’s building blocks. Proteins make up the structure of the

organs and tissues; they are also needed for the body’s chemical functions and

pathways. Each protein performs a specific job in the body’s different types of

cells, and the information for making at least one protein is contained in a single

gene. The pattern or sequence of the genes is like a blueprint that tells the body

how to build its different parts. The Genes constitute the workflow components for

building the biological system consisting of a group of cells that act with a single

purpose which is to propagate the equilibrium patterns they have found to survive.

Cells may have a variety of fates: they may divide and increase in number,

differentiate into different kinds of cells, or die (apoptosis). ‘‘Determination of the

fate of a cell starts when a protein called a signaling molecule binds to a receptor

embedded in the cell membrane,’’ says Yasushi Sako, [11] Chief Scientist,

Cellular Informatics Laboratory, RIKEN Advanced Science Institute in Japan.

When bound by a signaling molecule, the receptor is activated and information is

transmitted into the cell. The information is then conveyed from one protein to

another within the cell through repeated binding, dissociation and migration until it

eventually reaches the cell nucleus, where it induces the expression of a specific

gene. This gene triggers various cellular responses, including proliferation, growth

inhibition, differentiation, apoptosis, and oncogenic transformation.

Even the simplest unicellular organism provides a good example of self-man-

agement and reproduction to sustain life. However, more recent studies in evo-

lutionary developmental biology throw fundamental insights into the inner

workings of how groups of cells are organized and orchestrated to create what the

biologist Sean B. Carroll calls ‘‘endless forms more beautiful’’ [12]. He points out

that ‘‘just about 1.5%, codes for the roughly 25,000 proteins in our bodies. So what

else is there in the vast amount of our DNA? Around 3% of it, made up of about

100 million individual bits, is regulatory. This DNA determines when, where, and

how much of a gene’s product is made.’’ With modularity, multi-functionality and

redundancy built in its architecture, how does orchestration take place? The

orchestration is accomplished by ‘‘parallel and sequential actions of tool kit

genes—dozens of genes acting at the same time and same place, many more genes

acting in different places at the same time, and hundreds of toolkit genes acting in

sequence.’’ Each gene may have multiple switches which can be switched on or off

by the gene toolkit thus controlling the behavior of the gene. ‘‘The developmental

steps executed by individual switches and proteins are connected to those of other

genes and proteins. Larger sets of interconnected switches and proteins form local

‘‘circuits’’, which are part of still larger ‘‘networks’’ that govern the development
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of complex structures. Animal architecture is a product of genetic regulatory

network architecture.’’

He goes on to say ‘‘another class of toolkit members belong to so-called sig-

naling pathways. Cells communicate with one another by sending signals in the

form of proteins that are exported and travel away from their source. Those pro-

teins then bind to receptors on other cells, where they trigger a cascade of events,

including changes in cell shape, migration, the beginning or cessation of cell

multiplication, and the activation or repression of genes.’’

To summarize, the key abstractions the cell architecture supports are:

4. The spelling out of computational workflow components as a stable sequence of

patterns that accomplishes a specific purpose,

5. A parallel management workflow specification with another sequence of pat-

terns that assures the successful execution of the system’s purpose (the com-

puting network) and

6. A signaling mechanism that controls the execution of the workflow for gene

expression (the regulatory network)

7. Real-time monitoring and control to execute genetic transactions which provide

the self-* properties

Human Networks and Distributed Computing

Another example of a distributed system is the human network which has

developed sophisticated abstractions and complex patterns for individuals to col-

laborate together and accomplish a common objective. The human networks are

considered intelligent because they accomplish their goals in multiple ways using

information collected from the external world and using it to control it. Just as

cellular organisms have developed evolutionary best practices and pass them on

from survivors to their successors, humans have evolved organizational best

practices to leverage their individual capabilities as part of a group by defining and

accomplishing common goals with high resiliency, effectiveness and scaling.

A human network consists of a group of individuals organized to communicate and

collaborate globally to carry out individual tasks executing a part of a distributed

transaction using local intelligence and resources. Each group has a purpose and

can be part of a larger group with its purpose consistent with that of the larger

group. Each individual contributes (taking advantage of specialization) to the

overall execution of the distributed transaction (implementing separation of con-

cerns) as a part of the workflow as a managed directed acyclic graph. The group

implements both the node-level and the network-level FCAPS management giving

it the self-* management capabilities.

The effectiveness of the human network depends on the connections, com-

munication and mastery (or specialization) of the individual human object. Better

the quality of mastery of the individual node, the quality of connection and
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communication, higher the effectiveness. Humans have created organizational

frameworks through evolution. According to Malone [13], organization consists of

connected ‘‘agents’’ accomplishing results that are better than if they were not

connected. An organization establishes goals, segments the goals into separate

activities to be performed by different agents, and connect different agents and

activities to accomplish the overall goals. Scalability is accomplished through

hierarchical segmentation of activities and specialization.

There is always a balance between the cost of coordination of the agents and

economies of scale obtained from increasing the network size which defines the

nature of the connected network. Efficiency of the organization is achieved

through specialization and segmentation. On the other hand agility of an organi-

zation depends on how fast the organization can respond to changes required to

accomplish the goals by reconfiguring the network. Dynamic reconfiguration is

accomplished using signaling abstractions such as addressing, alerting, supervision

and mediation.

Both efficiency and agility are achieved through a management framework that

addresses FCAPS of all network elements (in this case the agents). Project man-

agement is a specific example where Fault, configuration, accounting, performance

and security are individually managed to provide an optimal network configuration

with a coordinated work-flow. Functional organizations, and hierarchical and

matrix organizational structures are all designed to improve the resiliency, effi-

ciency, scaling and agility of an organization to accomplish the goals using both

FCAPS management and signaling.

Connection management is achieved through effective communications

framework. Over time, human networks have evolved various communications

schemes and signaling forms the fundamental framework to configure and

reconfigure networks to provide the agility. There are four basic abstractions that

comprise signaling:

1 Alerting,

2 Addressing,

3 Supervision and

4 Mediation

Organizational frameworks are designed to implement these abstractions using

distributed object management in human networks. Signaling allows prioritization

of the network objectives and allocates resources in the form of distributed agents

to accomplish the objectives and provides management control to resolve con-

tention and mitigate risk. Elaborate workflows are implemented using the sig-

naling mechanism to specialize and distribute tasks to various agents. The agents

are used to collect information, analyze it and execute controls while organizing

themselves as a group to accomplish the required goals.

Thus organizational hierarchies, project management, process implementation

through workflows are all accomplished through the network object model with

FCAPS abstractions and signaling. It is important to note that the signaling

abstractions, while commonly used, have not been discussed widely in the
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distributed computing domain. First clear articulation is found in the description of

SS7 signaling in telecommunications domain and a reference to it by Gartner

group [14].

Telecommunications and Distributed Computing

For much of its history, AT&T and its Bell System functioned as a legally

sanctioned, regulated monopoly. The fundamental principle, formulated by AT&T

president Theodore Vail in 1907, was that the telephone by the nature of its

technology would operate most efficiently as a monopoly providing universal

service. Vail wrote in that year’s AT&T Annual Report [15] that government

regulation, ‘‘provided it is independent, intelligent, considerate, thorough and just’’

was an appropriate and acceptable substitute for the competitive marketplace.’’

From the beginning of AT&T to today’s remaking of at&t, much has changed but

two things that remain constant are the universal service (on a global scale) and the

telecom grade ‘‘trust’’ (providing reliable, secure and high performance connection

at a reasonable cost) that are taken for granted. The Plain Old Telephone System

(POTS) altered the communication landscape by connecting billions of humans

anywhere any time at a reasonable cost. It provided the necessary managed

infrastructure to create the voice dial tone, deliver it on demand and assure the

connection to meet varying workloads and individual preferences with high

availability, optimal performance and end-to-end connection security. The service

assurance set a standard known as ‘‘telecom grade trust’’. Two major factors that

contributed to the telecom grade trust are the end-to-end network management of

various elements and the signaling network [14] that is used to dynamically

manage the resources for every connection based on profiles.

Entry for FCAPS in Wikipedia, [16] states that it ‘‘is the ISO Telecommuni-

cations Management Network model and framework for network management.

FCAPS is an acronym for fault, configuration, accounting, performance, and

security which are the management categories into which the ISO model defines

network management tasks. In non-billing organizations, accounting is sometimes

replaced with administration. The comprehensive management of an organiza-

tion’s information technology (IT) infrastructure is a fundamental requirement.

Employees and customers rely on IT services where availability and performance

are mandated, and problems can be quickly identified and resolved. Mean time to

repair (MTTR) must be as short as possible to avoid system downtimes where a

loss of revenue or lives is possible’’.

All intelligent telecommunication network elements today are FCAPS enabled

and Operation Support Systems are designed to provide day to day operations and

management. The operation support systems and the network elements utilize the

signaling abstractions to provide an elaborate communication infrastructure that

enables collection, analysis and control of various elements to accomplish the

business goals.
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Similarly, the network infrastructure that forms the backbone of the Internet

(consisting of the servers, routers, switches and other network elements) has lib-

erally borrowed the FCAPS and signaling abstractions to implement agility and

resiliency required. In fact FCAPS awareness has become a mandatory require-

ment to be a network element in both telecommunications and Information

Technology infrastructure. As an example, as storage also became networked,

various storage network elements have started to become FCAPS aware and

participate in a common management framework.

Client Server, Peer-to-Peer, Grid and Cloud

Computing Management

Resiliency, efficiency and scaling of a distributed system are very much dependent

on the division of responsibilities between individual computing nodes, the

placement of them, and connectivity between the nodes. In the SPC architecture,

as we discussed earlier, the computational workflow and the management work-

flow are distributed among the various nodes. An SPC node provides an atomic

computing unit and is programmed to perform useful activity with well-defined

responsibility and interact with each other using a communication channel. Dif-

ferent placements of the responsibilities and communication schemes define var-

ious derived computing models [3]. We will discuss some of these models with

respect to their resiliency, efficiency and scaling characteristics.

Client–Server and Peer-to-Peer Models

Each node in this model is a physical container managed by a single operating

system to allocate resources to various hosted processes executing different tasks

contributing to either the computing workflow or management workflow consti-

tuting a distributed transaction. The container may be a server providing services

or a client receiving the services or both. Over a period of time, TCP/IP has

become the standard for communication between processes located on different

containers. Within the container the processes communicate via high speed shared

memory or the PCI bus depending on the physical architecture. In the client server

model, a server can be a client or a client a server depending on the context.

Services are implemented using multiple processes supported by the local

operating system which communicate and collaborate with each other to imple-

ment the distributed transactions. Various FCAPS management workflows are

implemented both using code that is mixed with the service workflow and separate

processes in various nodes. For example replication is used to improve fault tol-

erance, performance and availability.
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In peer-to-peer model, applications as processes in the operating system play a

similar role, interacting cooperatively as peers to perform distributed transactions

or computations without any distinction between clients and servers. The code in

the peer processes also provides FCAPS management by maintaining consistency

of application-level resources and synchronizes application-level actions when

required.

Grid and Cloud Computing

Grid computing is designed to share disparate, loosely coupled IT resources across

organizations and geographies. Using a grid middleware, the IT resources are

offered as services. These resources include almost any IT component—computer

cycles, storage spaces, databases, applications, files, sensors, or scientific instru-

ments. Resources can be shared within a workgroup or department, across different

organizations and geographies, or outside the enterprise.

Figure 2.6 depicts the role of Grid middleware and associated management

software. The resources can be dynamically provisioned to users or applications

that need them on demand.

With the advent of virtualization technologies, the physical enclosure that

supported one operating system now allows multiple operating systems.

Figure 2.7 shows the new cloud computing model where multiple managed

virtual servers contained in a physical enclosure can be dynamically provisioned,

an operating system installed in every virtual server and applications can be run to

share the CPU, network and storage resources.

Grid and cloud computing advances attempt to compensate for the deficiencies

of the resource-centric management systems of conventional computing at the

Fig. 2.6 Grid Computing Model
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application level by creating additional layers of resource utilization monitoring

and management [17, 18]. Resulting automation and end-to-end visibility offered

through collaborating management systems compensate for the inadequacy of the

individual node operating system to see the global resource utilization involved in

the distributed transaction. The distributed transaction resiliency, efficiency and

scaling are improved through the control of end-to-end resources involved in the

transaction.

Hardware Upheaval and The von Neumann Bottleneck

According to András Vajda [19], ‘‘The chip industry has recently coined the ‘new’

Moore’s law, predicting that the number of cores per chip will double every two

years over the next decade, leading us to the world of many-core processors-

loosely defined as chips with several tens but more likely hundreds, or even

thousands of processor cores.’’ The reason for this shift from increasing clock

speed to improve performance to increasing the number of cores in the same chip

is two-fold:

1. Around the year 2004, the single processor clock-speed reached a maximum at

about 4 GHz even though, the Moore’s law allowed more transistors in smaller

areas. The chip vendors decided to address this problem by increasing the

number of cores in a chip thus improving the overall computing power.

2. This had the added advantage of saving power consumption and improving

power dissipation, required to support higher speeds.

As the capabilities and speed of cores kept improving, the memory access speed

lagged behind which led to the implementation of hardware multi-threading, a

Fig. 2.7 Cloud computing model
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mechanism through which a core could support multiple thread contexts in

hardware (including program counter and register sets, but sharing for example the

cache memory) and fast switching between hardware threads stalled due to high

latency operations. In addition, the many-cores in a chip also provide high-

bandwidth interconnect which links multiple cores together to provide a single

logical processing unit together.

The hardware advances implementing a large network of cores in a chip and a

large network of chips in a server (often connected by a high-speed PCIExpress

bus) create a new challenge to the current operating systems, and software practices

that have their origins from the von Neumann serial computing model. The many-

core architecture pushes the network of computing nodes inside a single enclosure

with far higher bandwidths and faster access to stored program instructions than is

possible by connecting different devices as is the state-of-the-art practice today in

grid and cloud computing. This adds a new dimension in distributed transaction

processing where resources now collaborate and cooperate inside the enclosure at

high speed and the hardware multi-threading compounds the software challenge to

take advantage of the inherent parallelism offered. There are three major reasons

why the hardware upheaval unleashed by the many-core processors is making the

current distributed software architectures to be reexamined:

1. The role of an operating system is to provide an abstraction layer of underlying

hardware, taking care of interrupts, processor management, low-level interac-

tion with peripherals, and allocate resources to applications with a unified

interface for their use and management. Current generation operating systems

which are node centric are not scalable because they do not have visibility of

resources across the entire network. Figure 2.8 shows the recursive nature of

networked SPC nodes with different resource allocation and management

requirements. It is easy to see how the current device-centric OSs with their

evolution from single-thread operating system data structures to support multi-

threaded operating system data structures over time, with a large and complex

code-base dealing with choosing correct lock granularity for performance,

reasoning about correctness, and deadlock prevention are inadequate for net-

work-centric resource management [20].

2. Application response time, in a many-core system depends on run-time work-

load fluctuations and latency constraints in a shared processor and core net-

work-infrastructure as shown in Fig. 2.8. It therefore, becomes imperative to

bring distributed transaction management infrastructure inside the many-core

device allocating appropriate resources to various services that consume them

based on business priorities, workload fluctuations and latency constraints. For

example, if two computing nodes involved in collaboration with each other are

in two different devices, the communication channel must be switched to socket

communication, where as if they are communicating across two cores, shared

memory would be an appropriate resource to be allocated. In a web based

distributed transaction that spans across multiple geographies, the dynamic

nature of the transaction demands dynamic resource allocation to optimally

Hardware Upheaval and The von Neumann Bottleneck 25



execute the transaction. Current operating systems and management systems fall

short in providing dynamic resiliency, efficiency and scaling for two reasons:

• The serial nature of von-Neumann computing node forces both service

execution and service management to be intermixed as discussed above and

introduces a level of complexity in dynamically managing resources globally

based on changing business priorities, workload fluctuations and latency

constraints.

• Current generation management systems have their origins in TCP/IP based

narrow bandwidth environment and are not suited to leverage the high

bandwidth and fast access to memory made available in many-core servers.

3. It is hard to imagine replicating current TCP/IP based socket communication,

‘‘isolate and fix’’ diagnostic procedures, and the multiple operating systems (that

do not have end-to-end visibility or control of business transactions that span

across multiple cores, multiple chips, multiple servers and multiple geographies)

inside the next generation many-core servers without addressing their shortcom-

ings. In order to cope with the scaling issues and utilize many-core technologies

effectively, next generation service architecture has to emulate the architectural

resiliency of cellular organisms that tolerate faults and implement command and

control structures which enable execution of self-configuring, self-monitoring,

self-protecting, self-healing and self-optimizing (in short self-*) business pro-

cesses. Figure 2.9 shows the need for improving the resiliency, efficiency and

scaling of many-core software services and their management architecture.

It is clear that current approaches to resource management, albeit with auto-

mation, are not sensitive to the distributed nature of transactions and contention

Fig. 2.8 The many-core servers and the recursive network-centric resource allocation and

management requirements
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resolution of shared distributed resources, at best, is complex involving many

layers of management systems. As von Neumann [4] pointed out, current design

philosophy that ‘‘errors will become as conspicuous as possible, and intervention

and correction follow immediately’’ does not allow scaling of services manage-

ment with increasing number of computing elements involved in the transaction.

Comparing the computing machines and living organisms, he points out that the

computing machines are not as fault tolerant as the living organisms. More recent

efforts, in a similar vein, are looking at resiliency borrowing from biological

principles [21] to design future Internet architecture.

In the next chapter, we will revisit the design of distributed systems with a new

non-von Neumann computing model (called Distributed Intelligent Managed

Element (DIME1) Network computing model) that integrates computational

workflows with a parallel implementation of management workflows to provide

dynamic real-time FCAPS management of distributed services and end-to-end

service transaction management.

The DIME network architecture provides a new direction to harness the power

of many core servers with the architectural resiliency of cellular organisms and a

high degree of scaling and efficiency. The DIME network architecture was first

presented in WETICE 2010 in Larissa, Greece based on the workshop discussions

started in WETICE 2009 in Groningen, Netherlands [22–24].
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Chapter 3

Distributed Intelligent Managed Element

(DIME) Network Architecture

Implementing a Non-von Neumann

Computing Model

Abstract A new computing model called Distributed Intelligent Managed

Element incorporates fault, configuration, accounting, performance and security

(FCAPS) management using a signaling network overlay and allows the dynamic

control of a set of distributed computing elements in a network. Each node is a

computing entity (a Turing machine implemented using von-Neumann computing

model) modified by endowing it with self-management and signaling capabilities

to collaborate with similar nodes in a network. The separation of parallel com-

puting and management channels allows the end to end transaction management of

computing tasks (provided by the autonomous distributed computing elements) to

be implemented as network-level FCAPS management.

The DIME Network Architecture and the Anatomy

of a DIME

‘‘Our notion that Turing machines represent the basis for our current view of cognition is

completely off-track’’—Louise Barrett, ‘‘Beyond the Brain: How Body and Environment

Shape Animal and Human Minds’’, Princeton University Press, Princeton, NJ, 2011, p. 121.

The raison d’etre for Distributed Intelligent Managed Element (DIME) com-

puting model is to fully exploit the parallelism, distribution and massive scaling

possible with multi-core and many-core processor based servers, laptops and

mobile devices supporting hardware assisted virtualization and create a computing

architecture in which the services and their management in real-time are decoupled

from the hardware infrastructure and its management. However, the model lends

itself to be implemented (i) from scratch to exploit the many core servers and

(ii) in current generation servers exploiting multi-thread computing features

available in current operating systems such as Linux and Windows.

R. Mikkilineni, Designing a New Class of Distributed Systems, SpringerBriefs

in Electrical and Computer Engineering, DOI: 10.1007/978-1-4614-1924-2_3,

� The Author(s) 2011
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Borrowing the fault, configuration, accounting, performance and security

(FCAPS) management and signaling abstractions from cellular organisms and

human networks, the DIME computing model [1] exploits the parallelism to

implement a signaling network overlay over a network of von Neumann SPC

computing nodes. The computing node is either a core in a many-core server,

a process in a conventional operating system, or a processor in any mobile device or

a laptop. Multiple threads available in each core or an operating system process

implementation are exploited to implement a self-managed computing element

called the DIME. Each DIME presents a computing element that can execute a

managed computing process with fault, configuration, accounting, performance and

security management. Figure 3.1 shows a comparison between the von Neumann

SPC computing model and the DIME computing model. The DIME network

computing model exploits the multithread capability offered in the computing

element (either as a process in a conventional operating system or as a core in a

many-core system) to separate management and computing threads. The parallelism

is exploited to implement the management of a Turing machine. The parallel

signaling network allows the management of a network of managed Turing nodes.

The recursive network composition model is ideally suited to implement recursive

state machines and thus implement service workflows.

Fig. 3.1 The von-Neumann and DIME computing models. For a description of the DIME network

architecture and the genetic transactions, please see the video http://youtu.be/Ft_W4yBvrVg
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The parallelism of service execution and service regulation allows real-time

monitoring of service behavior and control, based on policies and constraints

specified by the regulators both at the node level and at the network level. The

DIME network architecture thus allows the description and management of the

service to be separated from the execution of the service (using a computing thread

called Managed Intelligent Computing Element (MICE)). The signaling control

network allows parallel management of the service workflow. In Step 1, the ser-

vice regulator instantiates the DIME and provisions the MICE based on service

specification. In Step 2, the MICE is loaded, executed, and managed by the service

regulation policies. At any time, the MICE can be controlled through its FCAPS

management mechanism by the service regulator.

There are three key features in this model that differentiate it from all other

models:

1. The self-management features of each SPC node with FCAPS management

using parallel threads allow autonomy in controlling local resources and pro-

vide services based on local policies. Each node keeps its state information and

history of its transactions. The DIME node provides managed computing ser-

vices, using the MICE to other DIMEs based on local and global policies.

2. The network aware signaling abstractions allow a group of DIMEs to be pro-

grammed to manage themselves with sub-network/network level FCAPS

management based on group policies and execute a service workflow as a

managed directed acyclic graph (DAG).

3. Run-time profile based FCAPS management (at the group level and at the node

level) allows a composition scheme by redirecting the MICE I/O to provide

recombination and reconfiguration of serviceworkflows dynamically at run-time.

The MICE provides the logical type that performs everything that is feasible

within that logical type (a Turing machine) and the DIME FCAPS management

provides a higher logical type (management of the Turing machine) which

describes and controls what is feasible in the MICE [2]. These features provide the

powerful genetic transactions namely, replication, repair, recombination and

reconfiguration that have proven to be essential for the resiliency of cellular

organisms [3].

The self-management of the DIME and the task execution (using the MICE) are

performed in parallel using the stored program control computing devices.

Figure 3.2 shows the anatomy of a DIME. Each DIME is implemented as group of

multi-process, multi-thread components, as shown in Fig. 3.2.

The DIME orchestration template provides the description for instantiating the

DIME using an SPC computing device with appropriate resources required (CPU,

memory, network bandwidth, storage capacity, throughput and IOPs). The

description contains the resources required, the constraints and the addresses of

executable modules for various components and various run time commands the

DIME obeys. This description is called the regulatory gene and contains all the

information required to instantiate the DIME with its FCAPS management
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components, the MICE and the signaling framework to communicate with external

DIME infrastructure.

The configuration commands provide the ability for the MICE to be set up with

appropriate resources and I/O communication network to be set up to communi-

cate with other DIME components to become a node in a service delivery network

implementing a workflow.

Figure 3.3 shows the service implementation with a service regulator and the

service execution package [4].

Signaling allows groups of DIMEs to collaborate with each other and imple-

ment global policies with high degree of agility that the parallelism offers. The

signaling abstractions are:

1. Addressing: For network based collaboration, each FCAPS aware DIME must

have a globally unique address and any services platform using DIMEs must

provide name service management.

2. Alerting: Each DIME is capable of self-identification, heartbeat broadcast, and

provides a published alerting interface that describes various alerting attributes

and its own FCAPS management.

3. Supervision: Each DIME is a member of a network with a purpose and a role.

The FCAPS interfaces are used to define and publish the purpose, role and

various specialization services that the DIME provides as a network community

member. Supervision allows contention resolution based on roles and purpose.

Supervision also allows policy monitoring and control.

Fig. 3.2 The anatomy of a DIME using parallelism and multi-threading capabilities
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4. Mediation: When the DIMEs are contending for resources to accomplish their

specific mission, or require prioritization of their activities, the supervision

hierarchy is assisted with mediation object network that provides global policy

enforcement.

The DIME local Manager (DLM) sets up the other DIME components;

it monitors their status and manages their execution based on local policies. Upon a

request to instantiate aDIME, theDLM, based on the role assumed by theDIME, sets

up and starts three independent threads to provide the Signaling Manager (SM), the

MICE Manager (MM) and the FCAPS Manager (FM) functions.

The SM is in charge of the ‘‘signaling channel’’. It sends or receives commands

related to the management and setting up of DIME to guarantee a scalable, secure,

robust and reliable workflow execution. It also provides inter-DIME switching and

routing1 functions.

The MM is a passive component which starts an independent process,

the MICE, which in turn executes the task (or tasks), assigned to that DIME and, on

completion, notifies the event to the SM. All the actions related to the task execution,

which are performed by the MICE including memory, network, and storage I/O, are

parameterized and can be configured and managed dynamically by the SM through

Fig. 3.3 The service regulator and service package implementation using a DIME

1 Each DIME is globally addressable and supports network connectivity for both signaling and

computing workflows using inter-DIME routing and switching.
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the FM via theMM. This enables both the ability to set up the execution environment

on the basis of the user requirements and, overall, the ability to reconfigure this

environment, at run-time, in order to adapt it to new, foreseen or unforeseen, con-

ditions (e.g. faults, performance and security conditions).

The FM is the ‘‘connection point’’ between the channels for workflow

management and workflow execution. It processes the events received from the

SM or from the MM and configures the MICE appropriately to load and execute

specific tasks (by loading program and data modules available from specified

locations). The main task of FM is the provisioning of FCAPS management for

each task loaded and executed in the local DIME. This makes the FM a key

component of the entire system:

1. It handles autonomously all the issues regarding the management of faults,

resources utilization, performance monitoring and security,

2. It provides a ‘‘separation of concerns’’ which decouples the management layer

from the execution layer,

3. It simplifies the configuration of several environments on the same DIME to

provide appropriate FCAPS management of each task that is assigned to the

MICE which in turn, performs the processing of the task based on an associated

profile.

Not all the components seen above have to be active, at the same time: the

DLM will start only the components that are required to accomplish the func-

tionalities specified by the role of each DIME in the network.

DIME Network Architecture and the Architectural

Resiliency of Cellular Organisms

The DIME network architecture supports the genetic transactions of replication,

repair, recombination and rearrangement. Figure 3.4 shows a single node execu-

tion of a service in a DIME network.

A single node of a DIME can execute a workflow by itself. Instantiating a sub-

network provides a way to implement a managed DAG executing a workflow.

Replication is implemented by executing the same service as shown in Fig. 3.5.

By defining service S1 to execute itself, we replicate S1 DIME. Note that S1 is

a service that can be programmed to terminate instantiating itself further when

resources are not available. In addition, dynamic FCAPS (parallel service moni-

toring and control) management allows changing the behavior of any instance

from outside (using the signaling infrastructure) to alter the service that is

executed.

The ability to execute the control commands in parallel allows dynamic

reconfiguration or replacement of services during run time. For example by

stopping service S1 and loading and executing service S2, we dynamically change
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the service during run time. We can also redirect I/O dynamically during run time.

Any DIME can also allow a sub-network instantiation and control as shown

in Fig. 3.6. The workflow orchestrator instantiates the worker nodes, monitors

heartbeat and performance of workers and implement fault tolerance, recovery,

and performance management policies.

Fig. 3.4 Single node

execution of a DIME

Fig. 3.5 DIME replication
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It can also implement accounting and security monitoring and fault manage-

ment using the signaling channel. Redirection of I/O allows dynamic reconfigu-

ration of worker input and output thus providing computational network control.

Figure 3.7 shows the workflow for self-repair. Service S1, instantiates service S2

and replicates it, loads and executes service executables from S2 executing

‘‘HelloWorld’’ application. DIME 1 also executes the fault management policy to

monitor heart-beats from DIME 2 and DIME 3 and to re-instantiate a DIME 4 if

any heart-beat fails.

DIME Network Architecture with a Native OS

in a Multi-Core Processor

Current generation Operating systems cannot scale to encompass the resource

management when the number of cores in a many core server reaches a threshold

dictated by mechanisms choosing correct lock granularity for performance,

reasoning about correctness, and deadlock prevention. The impact of the operating

system gap (the difference between the number of cores available in a server and

the number of cores visible to a single instance of the operating system deployed in

it) is dramatic when you consider current deployment scenarios. In one instance,

a 500 core server is used as 250 dual core servers with 250 Linux images. In this

case, in spite of proximity and high bandwidth, the TCP/IP based socket

Fig. 3.6 Dynamic service replication and reconfiguration
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abstractions limit the performance by not utilizing the hardware resources and

parallelism made available with new many-core architectures.

Using the DIME architecture we propose a new scheme in which a native

operating system is implemented that converts each core into a DIME and provides

inter-DIME and intra-DIME signaling capability to implement network-wide

FCAPS management of service workflows. Figure 3.8 shows the DIME imple-

mentation in multi-core servers [5, 6].

A native OS called Parallax is implemented, to demonstrate feasibility, using

the assembler language at the lowest level for efficiency and provides a

C/C ++ programming API for higher level programming. It is implemented to

execute on 64-bit multi-core Intel processors. Each core is encapsulated as a DIME

addressable as a network element with its own FCAPS management module. Each

DIME has two communications channels supported by Ethernet, one for signaling

and another for MICE I/O communications. The signaling Channel is used to

execute FCAPS commands and change FCAPS parameters at run time. The data

channel is dynamically reconfigurable to set up inter-MICE communications,

I/O paths and network and storage paths. This allows a composition scheme for

creating a network of MICEs to execute a DAG very similar to using PIPE in

UNIX but while the applications are running. The kernel provides memory

management, CPU resource management, storage/file management, network

routing and switching functions, and signaling management.

Fig. 3.7 Self-repair workflow
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Each DIME maps to different pages in the linear memory system and cannot

access pages to which it is not assigned. Security is provided at the hardware level

for this memory protection. Once a program has completed its execution, all

memory that it had in use is returned to the system. Limits can be set on how much

memory each DIME is able to allocate for itself. Memory is divided into a shared

memory partition where the Parallax Kernel resides and partitions that are devoted

to each core. Memory can be dynamically adjusted on each core on as needed basis

in 2 MiB chunks. Memory allocated to a DIME (core) can only be accessed by that

DIME based on its security configuration. With dedicated resources, each DIME

can be viewed as its own separate computing entity. If a DIME completes its task

and is free, it is given back to the pool of available resources. The network

management assures discovery and allocation of available DIMEs in the pool for

new tasks. The signaling allows addressability at the thread level.

Parallax offers local storage per server (Shared with each DIME within the

system) as well as centralized file storage shared via the Orchestrator between all

servers. Booting the OS via the network is also a possibility for systems that do not

need permanent storage or for cost saving measures.

Under Parallax, all network communication is done over raw Ethernet frames.

Conventional operating systems use TCP/IP as the main communication protocol.

By using raw packets we have created a much simpler communication framework

as well as removed the overhead of higher-level protocols, thereby increasing the

maximum throughput. The use of raw Ethernet packets has already seen great

success with the ATAoE protocol invented by Co-Raid for use in their network

storage devices. Eventually, PCIExpress, and TCP/IP will be added along with

Shared Memory.

Fig. 3.8 Parallax (a native operating system) implementing DIME network architecture in a

multi-core server
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Under Parallax, each DIME is addressable as a separate entity via the signaling

and data channels. With the signaling layer, program parameters can be adjusted

during run-time. DIMEs have the ability to communicate with other DIMEs for

co-operation. The Orchestrator, from which the policies are implemented, com-

municates with the DIMEs for the purpose of coordination and control. Instruction

types can be directly encoded into the 16-bit Ether-Type field of each Ethernet

frame shown in Fig. 3.2. By making use of the EtherType field for specific pur-

poses we can streamline the way in which packets are routed within a system.

Packets can be tagged as Signaling/Data packets as well as whether or not they are

destined for the overall system or rather just a specific DIME.

The proof-of-concept prototype system consists of three components:

1. A service component development program that takes assembler or C/C++

programs and compiles them to be executed on an Intel Xeon multi-core Servers.

2. Parallax Operating System that is used to boot the servers with Intel Xeon cores

and create the DIME Network with each core acting as a DIME. The DIME

allows dynamic provisioning of memory for each DIME. It supports executing

multiple threads concurrently to provide DIME FCAPS management over a

signaling channel. It enables fault management by broadcasting a heartbeat

over the signaling network. It allows loading, executing, and stopping an

executable on demand. It supports DIME discovery through signaling channel.

3. A run-time service orchestrator that allows DIME network management.

Figure 3.9 shows the Proof-of-concept set up using three servers with Intel-

Xeon processors where a DIME networks is deployed and various features such as

discovery, service scaling, fault management and dynamic reconfiguration are

demonstrated.

There are parallel efforts that are underway to architect a new OS for many-core

servers:

1. Tessellation [7]: It is predicated on two central ideas: Space–Time Partitioning

(STP) and Two-Level Scheduling. STP provides performance isolation and

strong partitioning of resources among interacting software components, called

Cells. Two-Level Scheduling separates global decisions about the allocation of

resources to Cells from application-specific scheduling of resources within

Cells.

2. Barrellfish [8]: It uses a multi-kernel model which calls for multiple indepen-

dent OS instances communicating via explicit messages. Barrelfish factors the

OS instance on each core into a privileged-mode CPU driver and a distin-

guished user-mode monitor process. CPU drivers are purely local to a core, and

all inter-core coordination is performed by monitors. The distributed system of

monitors and their associated CPU drivers encapsulate the functionality found

in a typical monolithic microkernel such as scheduling, communication,

and low-level resource allocation. The rest of Barrelfish consists of device

drivers and system services (such as network stacks, memory allocators, etc.)

which, run in user-level processes as in a microkernel. Device interrupts are
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routed in hardware to the appropriate core, de-multiplexed by that core’s CPU

driver, and delivered to the driver process as a message.

3. Factored Operating System (FOS) [9]: According to the authors, ‘‘FOS is a new

operating system targeting many-core systems with scalability as the primary

design constraint, where space sharing replaces time sharing to increase

scalability. We describe FOS which is built in a message passing manner, out of

a collection of Internet inspired services. Each operating system service is

factored into a set of communicating servers which in aggregate implement a

system service. These servers are designed much in the way that distributed

Internet services are designed, but instead of providing high level Internet

services, these servers provide traditional kernel services and replace traditional

kernel data structures in a factored, spatially distributed manner. FOS replaces

time sharing with space sharing. In other words, FOS’s servers are bound to

distinct processing cores and by doing so do not fight with end user applications

for implicit resources such as TLBs and caches.’’ They suggest redesigning

traditional OSs using their approach for scalability.

4. Helios [10]: Helios is an operating system designed to simplify the task of

writing, deploying, and tuning applications for heterogeneous platforms. Helios

introduces satellite kernels, which export a single, uniform set of OS abstrac-

tions across CPUs of disparate architectures and performance characteristics.

Access to I/O services such as file systems are made transparent via remote

message passing, which extends a standard microkernel message-passing

abstraction to a satellite kernel infrastructure. Helios retargets applications to

available ISAs by compiling from an intermediate language. The authors

Fig. 3.9 The proof-of-concept setup. A video of the demo is available at http://www.youtube.com/

watch?v=y-0R-cRLFsk
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compare their approach to Barrelfish as follows: Barrelfish focuses on gaining a

fine-grained understanding of application requirements when running applica-

tions, while the focus of Helios is to export a single-kernel image across

heterogeneous coprocessors to make it easy for applications to take advantage

of new hardware platforms.’’

5. Corey [11]: The authors argue that applications should control sharing: ‘‘the

kernel should arrange each data structure so that only a single processor need

update it, unless directed otherwise by the application. Guided by this design

principle, this chapter proposes three operating system abstractions (address

ranges, kernel cores, and shares) that allow applications to control inter-core

sharing and to take advantage of the likely abundance of cores by dedicating cores

to specific operating system functions. Measurements of micro-benchmarks

on the Corey prototype operating system, which embodies the new abstractions,

show how control over sharing can improve performance. Application bench-

marks, using MapReduce and a Web server, show that the improvements can be

significant for overall performance: MapReduce on Corey performs 25% faster

than on Linux when using 16 cores. Hardware event counters confirm that these

improvements are due to avoiding operations that are expensive on multicore

machines.’’

All these efforts recognize the importance of application’s requirements in

controlling the resources and provide a way to mediate between the many-core

resources and fluctuating application needs. All these approaches implement

application services and the resource mediation services using the same serial von

Neumann SPC model.

However, the DIME approach proposed in this chapter takes a different route to

leverage the parallelism offered by multi-core and many-core architecture to

implement the service management workflow as an overlay over the service

workflow implemented over a network of SPC nodes. The separation and parallel

implementation of the service regulation improve both the resilience, and the

efficiency. The recursive (or fractal-like) network composition model eliminates

the scaling limitation.

DIME Network Architecture Implementation in Linux

The DIME computing model offers a simple way to implement service virtual-

ization independent of current generation virtualization technologies. One imple-

mentation [4] uses the multi-process, multi-thread support in the Linux operating

system to implement the DIME network. By encapsulating a Linux based pro-

cesses with parallel FCAPS management and providing a parallel signaling

channel, this implementation demonstrates auto-scaling, self-repair, live-migra-

tion, performance management and dynamic reconfiguration of workflows without

the need for a Hypervisor-based server virtualization.
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Two points are worth noting about this implementation:

1. The workflow assigned to a DIME network consists of a set of tasks arranged in

a DAG. Each node of this DAG contains both the task executables (which itself

could be another DAG) and the profile DAG as a tuple\ task (SP), profile

(SR)[: in this way, it is possible not only to specify what a DIME has to do or

execute but also its management (how this has to be done and under what

constraints). These constraints allow the control of FCAPS management both at

the node level and the sub-network level. In essence, at each level in the DAG,

the tuple gives the blueprint for both management and execution of the down-

stream graph. Under these considerations, it is easy to understand the power of

the proposed solution in designing self-configuring, self-monitoring, self-

protecting, self-healing and self-optimizing distributed service networks.

2. An ad hoc DIME network, with parallel signaling and computing workflows, is

implemented using two classes of DIMEs. Signaling DIMEs responsible for the

management layer at the network level are of the type Supervisor and the

Mediator. The Supervisor sets up and controls the functioning of the sub

network of DIMEs where the workflow is executed. It coordinates and

orchestrates the DIMEs through the use of the Mediators. A Mediator is a

specialized DIME for providing predefined roles such as fault or configuration

or accounting or performance or security management. Worker DIMEs con-

stituting the ‘‘execution’’ layer of the network perform domain specific tasks

that are assigned to them. A worker DIME, in practice, provides a highly

configurable execution environment built on the basis of the requirements/

constraints expressed by the developers and conveyed by the Service Regulator.

The deployment of DIMEs in the network, the number of signaling DIMEs

involved in the management level, the number of available worker DIMEs and the

division of the roles are established on the basis of the number and the type of tasks

constituting the workflow and, overall, on the basis of the management profiles

related to each task. The profiles play a fundamental role in the proposed solution;

each profile, in fact, contains the indication about the control and the configuration of

both the signaling layer and execution environment for setting up the DIME that will

handle the related task. Figure 3.10 shows the DIMEs in Linux schematic.

Using signaling and FCAPSmeasurements, it is possible to identify each DIME’s

context and configure resources appropriately based on end to end transaction

latency requirements (using shared memory, PCIExpress and socket communica-

tions), workload fluctuations and business priorities. The architectural innovation

introduced here based on FCAPS and signaling abstractions radically transforms the

Linux process implementationwith a resiliency that surpasses current state of the art.

For example, fault management, performance management, security management

are implemented at both the process level using a self-managed DIME and at the

DIME network level which assures service workflow FCAPS management that

spans across multiple processes that are distributed. When two DIMEs reside in the

same enclosure where shared memory is more effective, the communication is

dynamically configured to support shared memory. When two DIMEs are separated
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by geography the communication is configured to support socket based TCP/IP.

Figure 3.10 shows how multiple Linux images are injected with a middleware

library called DIMEX which implements the DIME network architecture. The

middleware allows executing current services/applications in a DIME or write new

applications that exploit run-time FCAPS management to implement end-to-end

distributed transaction management. In the next chapter, we will discuss various

features demonstrated by the prototype.

Grids, Clouds, DIMEs and Their Management

The DIME Network architecture brings FCAPS management to a von Neumann

computing element either by encapsulating a process in a conventional operating

system or a core in a many-core server using a native operating system.

The programmability and execution of management at the node level and at the

network level using parallel signaling network provides a fine-grain end-to-end

distributed transaction management. It is therefore possible to implement end-to-

end resource management that contributes to a distributed transaction which

Fig. 3.10 Each process in Linux is encapsulated as a DIME with FCAPS management and

signaling capability. In the many-core server, multiple images of Linux are deployed. In each

image, the processes are encapsulated as DIMEs and inter-DIME communication is provided

through shared memory, PCIExpress or socket based on requirement
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assures its availability, performance, reliability and security to be commensurate

with business priorities, workload fluctuations and latency constraints. Constant

monitoring and control based on required service level assurance brings the

resiliency of cellular organisms to distributed transaction management. The sep-

aration of services management from underlying infrastructure management

reduces or eliminates the dependence of applications on myriad server, network

and storage management systems.

Figure 3.11 shows the resiliency, efficiency and scaling diagram comparing the

DIME networks with conventional computing, Grid and Cloud computing

architectures.

As the number of cores in a many-core server increase, while current OSs and

various management systems (server management, virtual server management,

network resource mediation systems and storage resource mediation systems)

increase the complexity, the scaling of DIME network architecture allows many of

the features offered by current virtualization technologies such as auto-scaling,

self-repair, auto-performance management, live migration etc. without the need for

complex hypervisor or other technologies.

Both signaling and service component network management allow a new way

using service switching to provide FCAPS management which, heretofore has

been provided by multiple resource management systems. The service-centricity

as opposed to resource-centric management could offer simplicity of resource

deployment with many-core server. When using a 500 or 1000 core server and

using WAN connectivity between the servers, it would be unnecessary to use

Storage Area Networks with Fibre channel inside the server or the data center.

Similarly, with end-to-end transaction security management which controls reads

and writes at every node, current Firewall and routing technologies need not be

replicated inside the server. Figure 3.12 shows new many-core server architecture

with DIME networks.

In the DIME network architecture, the multi-tenancy is transformed from the

number of users that can be supported with FCAPS management in a container

(A physical server in conventional computing and a virtual server in a cloud) to

Fig. 3.11 The resiliency,

efficiency and scaling with

non-von Neumann DIME

network architecture showing

the transition from a physical

server to virtual server to a

virtual service container as an

atomic managed

computational unit
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number of service transactions that are supported with FCAPS management in a

distributed set of enclosures. Each service transaction can be dynamically con-

figured with assurance of FCAPS management of all the nodes that contribute to

the transaction based on business priorities, workload fluctuations and latency

constraints.

In a network-centric service switching architecture an end-to-end distributed

transaction becomes a connection management task. For example all reads and

writes are controlled by network level and node level policies. The service

switching architecture brings features such as call waiting, call forwarding, call

broadcast, and the 800 service call to manage the distributed transaction FCAPS

service levels based on service profiles of both suppliers and consumers.

It is also important to note that while the hardware upheaval offers major cost

savings in power and space savings alone, a transition from conventional com-

puting with multi-tenancy at the physical server is improved by the multi-tenancy

at the virtual server level by the number of virtual servers that can be run in a

single enclosure. The DIME network architecture takes the scaling to the next

higher level by the number of service transactions that can be supported in an

enclosure when more resources have to be added.

In the next chapter we will discuss some applications of the DIME network

architecture both in the short runwhere current generation hardware and software are

transparently migrated and in the long run where a new class of distributed services

are designed, deployed and assured using the new architecture. The latter is very

Fig. 3.12 A many-core Server WAN network. The signaling and FCAPS management at both

the node level and the network level allows a simplification of service management by

eliminating many of the current generation resource management automation systems and

replacing it with services switching
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useful for meeting the scaling requirements of cloud based services. With a unifying

paradigm, the DNA allows transparency of private and public clouds without any

dependence on how the underlying infrastructure is deployed ormanaged as long as it

supports a multi-threaded parallel execution of computing tasks.
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Chapter 4

Designing Distributed Services Creation,

Service Delivery and Service Assurance

with the Architectural Resilience

of Cellular Organisms

Abstract The DIME computing model is implemented in two platforms to

demonstrate its feasibility and evaluate its usefulness: 1. DIMEs in Linux approach

demonstrates the encapsulation of a Linux process as a DIME to demonstrate

dynamic reconfiguration of service regulation to implement self-repair, auto-

scaling, performance management etc., and 2. A native operating system called

Parallax encapsulates each core into a DIME in a many-core server to demonstrate

the implementation of a distributed service workflow with dynamic FCAPS

management of distributed transactions. This chapter discusses how these proto-

types could influence the next generation distributed services creation, delivery,

and assurance infrastructure.

The Dial-Tone Metaphor and the Service Creation,

Delivery and Assurance Platforms

‘‘La plus que ça change, la plus que c’est la même chose?’’

Although, it is not fashionable in the current IT circles, we use the dial-tone

metaphor to describe service connection management with telecom grade trust

between service providing computing engines and service consuming computing

engines. Originally, the dial-tone was introduced to assure the telephone user that

the exchange is functioning when the telephone is taken off-hook by breaking the

silence (before an operator responded) with an audible tone. Later on, the auto-

mated exchanges provided a benchmark for telecom grade trust that assures

managed resources on-demand with high availability, performance and security.

Today, as soon as the user goes on hook, the network recognizes the profile based

on the dialing telephone number. As soon as the dialed party number is dialed,

R. Mikkilineni, Designing a New Class of Distributed Systems, SpringerBriefs

in Electrical and Computer Engineering, DOI: 10.1007/978-1-4614-1924-2_4,
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the network recognizes the destination profile and provisions all the network

resources required to make the desired connection, to commence billing, to

monitor and to assure the connection availability, performance and security till one

of the parties initiates a disconnect. The continuous visibility and control of the

connection allows service assurance even in the case of an earthquake or any such

natural disaster. Call waiting, call forwarding, 800 service call model and multi-

party conferencing—all these features contribute to the ‘‘telecom-grade trust’’ that

the telecommunication network has come to symbolize.

The reference model [1] shown in Fig. 4.1, identifies three dial-tones, namely,

(1) The resource dial-tone that assures computing element resources (CPU,

memory, network bandwidth, storage capacity, throughput ad IOPS) on demand,

(2) The service management dial-tone providing FCAPS management services and

signaling services for use in various computing service workflow creation, and

delivery, and (3) The service delivery dial-tone that delivers and assures the ser-

vice at run-time to end users who use the services on demand.

The reference model describes the relationships of various stakeholders

(1) Infrastructure Providers, (2) Service Providers, (3) Service Developers, and

(4) End Users. Below, we revisit how the reference model will affect, benefit and

be deployed by each of the stake holders.

Infrastructure providers: These are vendors who provide the underlying

computing, network and storage infrastructure that can be carved up into logical

clouds of computers which will be dynamically controlled to deliver massively

scalable and globally interoperable service network infrastructure. The infra-

structure will be used by both service creators who develop the services and also

the end users who utilize these services. This is very similar to switching, trans-

mission and access equipment vendors in the telecom world who incorporate

service enabling features and management interfaces right in their equipment.

Current storage and computing server infrastructure has neither the ability to

Fig. 4.1 Service creation, delivery and assurance reference model
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dynamically dial-up and dial-down resources nor the capability for dynamic usage-

aware management which will help eliminate the numerous layers of present day

management systems contributing to the total cost and human latency involved.

The new reference architecture provides requirements for the infrastructure

vendors to eliminate current systems administration oriented management para-

digm and enable next generation real-time, on-demand, FCAPS-based manage-

ment so that applications can dynamically request the dial-up and dial-down of

allocated resources.

Service providers: With the deployment of the infrastructure satisfying the

requirements of the new reference architecture, service providers will be able to

assure both service developers and service users that resources will be available on

demand. They will be able to effectively measure and meter resource utilization

end-to-end usage to enable a dial-tone for computing service while managing

service levels to meet the availability, performance and security requirements for

each service. The service provider will now manage the application’s connection

to computing, network and storage resource with appropriate service level

agreements. This is different from most current cloud computing solutions that are

nothing more than hosted infrastructure or applications accessed over the Internet.

This will also enable a new distributed virtual services operating system that

provides distributed FCAPS-based resource management on demand.

Service Developers: They will be able to develop cloud-based services using

the management services API to configure, monitor and manage service resource

allocation, availability, utilization, performance and security of their applications

in real-time. Service management and service delivery will now be integrated into

application development to allow application developers to be able to specify run

time service level agreements.

End Users: Their demand for choice, mobility and interactivity with intuitive

user interfaces will continue to grow. The managed resources in the reference

architecture will now not only allow the service developers to create and deliver

services that end users can dynamically access on devices of their choice, but also

enable service providers with the capability to provision in real-time to respond to

changing demands, and to charge the end-users by metering exact resource usage

for the desired service levels.

DIME Network Architecture and the Resilient Service

Creation, Delivery and Assurance Environment

In its essence, the von Neumann computing model implements both service and its

regulation in a serial fashion using a Turing machine. Even with extensions to the

von-Neumann computing model, such as cache memory, virtual memory and

multi-threading, the service and its regulation are specified at compile time,

executed serially and management cannot be controlled at run time. Over time,
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the static nature of service control which originated from the server-centric

administrative paradigm is compensated by myriad administrative systems, spe-

cialized hardware solutions and cross-domain management systems resulting in

the increase of both cost and complexity.

The DIME network architecture on the other hand, exploits the parallelism to

address the temporal phenomena involved in assuring transaction integrity in a

distributed system. Figure 4.2 shows the comparison between von-Neumann

model of service implementation and DIME network based service

implementation.

Louise Barrett [2] making a case for the animal and human dependence on their

bodies and environment—not just their brains—to behave intelligently, highlights

the difference between Turing Machines implemented using von Neumann

architecture and biological systems. ‘‘Although the computer analogy built on von

Neumann architecture has been useful in a number of ways, and there is also no

doubt that work in classic artificial intelligence (or, as it is often known, Good Old

Fashioned AI: GOFAI) has had its successes, these have been somewhat limited, at

least from our perspective here as students of cognitive evolution.’’ She argues that

the Turing machines based on algorithmic symbolic manipulation using von

Neumann architecture, gravitate toward those aspects of cognition, like natural

language, formal reasoning, planning, mathematics and playing chess, in which the

processing of abstract symbols in a logical fashion and leaves out other aspects of

cognition that deal with producing adoptive behavior in a changeable environment.

Unlike the approach where perception, cognition and action are clearly separated,

she suggests that the dynamic coupling between various elements of the system,

where each change in one element continually influences every other element’s

direction of change has to be accounted for in any computational model that

includes system’s sensory and motor functions along with analysis. This emphasis

on the sensory monitoring of the environment, dynamic coupling, connectivity and

system-wide coordination is also confirmed by observations on cell communica-

tion. As mentioned in Chap. 2, according to biologist Sean B. Carroll [3], DNA

determines when, where, and how much of a gene’s product is made. Animal

architecture is a product of genetic regulatory network architecture.

Cellular organisms developed very sophisticated computing models well before

their brains evolved. The architectural resiliency of cellular organisms stems from

their ability to manage highly temporal phenomena. System-wide connectivity and

coordination require a sense of time, history and synchronization between various

tasks performed by a group of loosely coupled elements which, as Louis Barrett

points out, the Turing machine implemented using the stored program control

lacks. Discussing the nature of temporal phenomena, she writes ‘‘This means

simply that the actual rates and rhythms that characterize a particular process play

an important and central role in getting the job done. This could be the way that the

underlying physical processes of the brain work (how long it takes for a neuro-

transmitter, like nitric oxide or glutamate, to diffuse through the brain, for

example, or how long it takes for such neurotransmitters to modulate neuronal

activity), which in turn could affect the specific duration or rates of change in other
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physiological processes. Similar intrinsic rhythms in the body may also be

important, as will other aspects of the body dynamics that relate to, for example,

the mechanical properties of the muscle, which dictate where and how fast an

animal can move. These bodily processes may, in turn, need to be synchronized

precisely with temporal processes occurring outside of the animal in the envi-

ronment.’’ She also points out that the coordination and synchronization requires

system-wide information processing and routing that the brain provides.

Compare this with the quest for real-time information processing currently

being driven by global communication, collaboration and commerce at the speed

of light. Whether it is high frequency trading, web-based commerce, social net-

working or federated enterprise computing, the ability to manage highly temporal

phenomena in real-time is becoming critical. System-wide connectivity, high

availability, security and performance management require coordination with a

sense of time, history and synchronization between various tasks performed by a

group of loosely coupled elements.

Figure 4.3 shows the DIME network service delivery and assurance

infrastructure.

The ability of the DIME network to monitor and control the service through the

parallelization of service delivery and its regulation decouples the services

management from the underlying hardware infrastructure management.

For example, if hardware that supports a particular DIME fails, the fault man-

agement policies monitoring the service heartbeat will immediately kick-in the

Fig. 4.2 The separation of service and its regulation using parallelism, signaling and self-

management abstractions. A video explains the non-von Neumann behavior with parallel signaling

overlay over the serial von-Neumann computing network (http://youtu.be/j13qAPZR6G8)
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recovery policies both at the node level and at the network level. The services

deployed either in the DIME node or a sub-network of DIMEs, which are affected

by the hardware, are appropriately recovered based on the policies independent of

the operating system or the hardware configuration of the hardware host. This is in

contrast to current cloud architecture where the services are not independent of the

local operating system (in this case a virtual server) and the server configuration.

The decoupling of services management from the underlying hardware infra-

structure management allows designing and deploying highly reliable services

without requiring highly reliable clusters and specialized enterprise class hard-

ware. The resulting simplification and commoditization of infrastructure hardware

hopefully, reduces costs of transactions and improves resiliency of service

delivery.

DIMEs in Linux Implementation

Figure 4.4 shows the implementation of DIME network architecture in Linux

operating system [4]. Each Linux process is encapsulated in a DIME in which the

service regulation and service execution are implemented in parallel. The service

regulator defines the service fault, configuration, accounting, performance and

Fig. 4.3 Service delivery and assurance infrastructure showing the decoupling of services

management from infrastructure management

52 4 Designing Distributed Services Creation, Service Delivery and Service Assurance



security policies which are executed as parallel threads control the loading and

executing of the service executable.

DIME network with parallel signaling and computing workflows is imple-

mented using two classes of DIMEs:

1. Signaling DIMEs responsible for the management layer at the network level are

of the type Supervisor and the Mediator. The Supervisor sets up and controls

the functioning of the sub network of DIMEs where the workflow is executed.

It coordinates and orchestrates the DIMEs through the use of the Mediators.

A Mediator is a specialized DIME for providing predefined roles such as fault

or configuration or accounting or performance or security management. The

Configuration Manager performs network-level configuration management and

provides directory services. These services include registration, indexing, dis-

covery, address management and communication management with other

DIME networks. The Fault Manager guarantees the availability and reliability

in the sub network by coordinating the ‘‘Fault’’ components of the FM of all the

DIMEs involved in the workflow provisioning. The Fault Manager DIME

detects and manages the faults in order to assure the correct completion of the

workflow. The Performance Manager coordinates performance management at

the network level and coordinates the performance using the information

received through the signaling channel from each node. The Security Manager

assures network level security by coordinating with the individual DIME

component security. The Account Manager tracks the utilization of the network

wide resources by communicating with the individual DIMEs.

2. Worker DIMEs constituting the ‘‘execution’’ layer of the network perform

domain specific tasks that are assigned to them. A worker DIME, in practice,

Fig. 4.4 The screenshot of DIMEs in Linux orchestrator creating the DIME network
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provides a highly configurable execution environment built on the basis of the

requirements/constraints expressed by the developers and conveyed by the

Service Regulator.

The deployment of DIMEs in the network, the number of signaling DIMEs

involved in the management level, the number of available worker DIMEs and the

division of the roles are established on the basis of the number and the type of

tasks constituting the workflow and, overall, on the basis of the management

profiles related to each task. The profiles play a fundamental role in the proposed

solution; each profile, in fact, contains the indication about the control and the

configuration of both the signaling layer and execution environment for setting up

the DIME that will handle the related task.

The task profile (SR) is used to set up the environments in a DIME and execute

the task (SP). Each workflow assigned to the Supervisor DIME consists of a set of

tasks arranged in a DAG. Each node of this DAG contains both the task execu-

tables (which itself could be another DAG) and the profile DAG as a tuple\task

(SP), profile (SR)[: in this way, it is possible not only to specify what a DIME has

to do or execute but also its management (how this has to be done and under what

constraints). These constraints allow the control of FCAPS management both at

the node level, the sub-network level, and the network level.

The supervisor DIME, upon receiving the workflow, identifies the number of

tasks and their associated profiles. It instantiates other DIMEs based on the

information provided, by selecting the resources among the ones available, both

the management and the execution layers. In particular, the number of tasks is used

to determine the number of needed DIMEs while the information within the

profiles becomes instrumental to define (1) the signaling sub-network, (2) the type

of relationship between the mediator DIMEs composing the signaling sub-network

and the FM of each worker DIME and, finally, (3) the configuration of all the

MICEs of each worker DIME to build the most suitable environment for the

execution of the workflow. In this way, the Supervisor is able to create a sub-

network that implements specific workflows that are FCAPS managed both at

management layer (through the mediators) and at execution layer (through the FM

of each worker DIME).

Figure 4.5 shows the DIME orchestrator performing the functions of the

FCAPS supervisory DIME (creating worker DIMEs and implementing policies

during run-time) and two worker DIMEs executing same application (reading a

number from a shared data store incrementing it by one unit and storing it) in

parallel. The prototype demonstrates following features:

1. DIME worker fault management which assures when a heartbeat fails from a

worker DIME, the orchestrator re-instantiates the worker, re-loads and executes

the program

2. Dynamic redirection of input/output to a file or another DIME

3. Monitoring and managing performance parameters from each DIME (received

periodically by querying the system) and
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4. Simple security check with login authentication before executing regulation

commands by each worker.

5. Network-wide auto-scaling, self-repair, performance monitoring and manage-

ment and distributed workflow execution

The details of DIMEs in Linux implementation are discussed in [4]. This paper

demonstrates the implementation of parallel signaling channel for service man-

agement and demonstrates auto-scaling, self-repair and performance management

of Linux processes encapsulated as DIMEs.

DIMEs in Multi-Core Server Using a Native

Operating System Called Parallax

The Parallax implementation [5, 6] demonstrates the auto-scaling, self-repair and

dynamic input/output redirection features supported by DIME network architec-

ture. A DIME network orchestrator is used to instantiate and provide FCAPS

management of a DIME network implemented across multiple multi-core servers.

Figure 4.6 shows the orchestrator screenshot along with discovery and FCAPS

management menus. Figure 4.7 shows self-repair execution. The figure shows the

screen for dynamically reconfiguring FCAPS parameters of each application at run

time and the application status.

Two programs ‘‘Counter.app’’ with self-repair policy associated with it and the

‘‘helloWorld.app’’ with no self-repair policy associated are shown running before

Fig. 4.5 Screenshot showing the execution of ‘‘counter.app’’ by two worker DIMEs that are

regulated by the orchestrator DIME implementing FCAPS management
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the hardware fault on the server running these applications. After the hardware

fault, the application with self-repair policy is automatically recovered on a new

server where a free DIME was available and the program with no recovery policy

associated is not recovered. The details of implementation of Parallax are

described in [5, 6]. Implemented in assembler with C and C++ interface, Parallax

has a very small footprint and encapsulates each core into an FCAPS managed and

signaling enabled DIME. An orchestrator allows creating services with service

regulation and service executable packages and orchestrates the workflow based

on policies. The orchestrator is used to demonstrate auto-scaling, self-repair, and

input/output redirection during run-time.

In summary, both DIMEs in Linux and Parallax approaches have demonstrated

the feasibility of service management separation from service execution and

Fig. 4.6 DIME network orchestrator screenshot showing the status of two DIMEs running two

different applications running on Parallax operating system in a multi-core server (A video

demonstrates the input/output redirection, self-repair and auto-scaling features supported by

Parallax http://youtu.be/IMXxmRSVGoI)

Fig. 4.7 Application (counter.app) running in two DIMEs (before and after recovery)
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dynamic reconfiguration of service regulation to implement self-repair, auto-scaling,

performance management etc. The purpose of this research brief is to propose a new

approach different from conventional computing and current cloud and grid com-

puting approaches and to demonstrate its feasibility. These approaches demonstrate

self-repair, auto-scaling and livemigration, albeit on a small prototype scale, without

the use of Hypervisor or a plethora of management systems. In order to take this

research to next level, it requires larger participation from the research community.

Only such an effort with an open mind will decide whether this approach has any

merit. Given the established and vested interests in existing approaches it is not easy

to get attention to new ideas either through academic research or venture capital. This

research brief is an open call for such an effort.
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Chapter 5

Dime Network Architecture: Future

Research Directions and Conclusion

Abstract The DIME computing model, with FCAPS management and signaling,

allows establishing equilibrium patterns and monitor and control exceptions

system-wide. It allows contention resolution based on system-wide view and

eliminates race conditions and other common issues found in current distributed

computing practice. In systems with strong dynamic coupling between various

elements of the system, where each change in one element continually influences

other element’s direction of change, signaling helps implement system-wide

coordination and control based on system-wide priorities, workload fluctuations,

and latency constraints. These features are used to identify some future research

directions. In order to take these concepts to practical application in mission

critical environments, the DME network architecture based prototypes require

validation and acceptance by a larger community.

Designing a New Class of Distributed Systems

Using DIME Network Architecture

‘‘Prediction is not therefore a simple concept, especially when one has the notion of time to

incorporate. The nature and complexity of what one extrapolates from, the precision with

which the processes of development are thought to be known, whether the outcome pre-

dicted has a contaminating effect on the prediction in question andmay thus modify, how far

into the future this extrapolation is intended to predict, the range of variables which can be

accommodated in calculations; all these are some of the many and more obvious problems

which make foretelling the future a hazardous business’’—Leo Howe, ‘‘Predicting the

Future’’, edited by Leo Howe and Alan Wayne, Cambridge University Press, 1993, p. 4.

Current work on DIME network architecture was first presented in WETICE 2010 in Larissa,
Greece based on the workshop discussions started in WETICE 2009 in Groningen, The
Netherlands.

R. Mikkilineni, Designing a New Class of Distributed Systems, SpringerBriefs

in Electrical and Computer Engineering, DOI: 10.1007/978-1-4614-1924-2_5,

� The Author(s) 2011
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The DIME network architecture departs from conventional von Neumann

computing model implementing a Turing machine. It adds self-monitoring and

self-control of each Turing computing node and a parallel signaling enabled net-

work to implement the management of temporal behavior of workflows executed

as directed acyclic graphs using a network of managed Turing machines. The two

prototypes demonstrate that the parallel signaling overlay and continuous moni-

toring and control (at specified interval based on business priorities, workload

fluctuations and latency constraints) enable programming auto-scaling, self-repair,

performance optimization and end-to-end transaction management. The signaling

abstractions uniquely differentiate this approach from conventional computing or

the grid and cloud strategies.

Signaling in the DIME network architecture is as important as it is in cellular

organisms to provide resilience [1, 2]. In summary, the DIME network architecture

adopts the following key abstractions:

1. Parallel signaling channel for monitoring and control of a distributed network

of autonomous computing elements (the Turing machines),

2. Programmable self-managing capabilities at the node and the network level

providing a way to create a blueprint for the business workflow (managed

Turning machine network) and

3. A mechanism to monitor and execute FCAPS policies based on business pri-

orities, workload fluctuations and latency constraints.

The recursive network composition abstractions with network, sub-network,

and node level, combined with signaling overlay provide a powerful ‘‘network’’

effect that has been exploited in biology and other domains as we attempted to

demonstrate in this research brief. This approach is in contrast to the current

approaches [3–10] that use von-Neumann computing model for service manage-

ment where management and execution of services are serialized both in the node

(operating system) and the network (a plethora of resource and service manage-

ment systems). The demonstration of live migration of services is accomplished by

DIME networks depending on end-to-end service level monitoring and control of

distributed transactions as opposed to resource management at each node.

The advent of many-core severs with hundreds and even thousands of computing

cores with high bandwidth communication among them makes the current gener-

ation server, networking and storage equipment and their management systems

which have evolved from server-centric and bandwidth limited architectures

completely unsuited to use in the next generation computing infrastructure effi-

ciently. It is hard to imagine replicating current TCP/IP based socket communi-

cation, ‘‘isolate and fix’’ diagnostic procedures, and the multiple operating systems

(that do not have end-to-end visibility or control of business transactions that span

across multiple cores, multiple chips, multiple servers and multiple geographies)

inside the next generation many-core servers without addressing their shortcom-

ings. In order to cope with the scaling issues and utilize many-core technologies

effectively, next generation service architecture has to emulate the architectural

resiliency of cellular organisms that tolerate faults and implement command and
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control structures which enable execution of self-configuring, self-monitoring, self-

protecting, self-healing and self-optimizing (in short self-*) business processes. We

argue that the recursive network nature of many-core servers with different band-

widths at different levels is ideally suited to exploit the DIME network architecture.

The DIME network architecture offers new directions of research to provide next

level of scaling, telecom grade trust through end-to-end service FCAPS optimi-

zation and reduced complexity in developing, deploying and managing distributed

federated software systems executing temporal business workflows. To our

knowledge, the suggestion to use signaling overlay to manage a Turing machine is

proposed for the first time using the DIME computing model in WETICE 2010

[11]. Similarly, the separation of service execution and its management are

implemented in the Parallax operating system for the first time at the operating

system level. For example every open(), close(), read() and write() operations are

part of dynamically reconfigurable operations made possible by parallel signaling

channel. This implementation of signaling in the operating system allows the ser-

vice execution to be dynamically controlled at run time based on FCAPS policies

allowing auto-scaling, self-repair, performance monitoring and control, end-to-end

transaction security as the two prototypes we have developed demonstrate.

The beauty of the DIME computing model is that it does not impact the current

implementation of the service workflow using von-Neumann SPC nodes. But by

introducing parallel control and management of the service workflow, the DIME

network architecture improves the scaling, agility and resilience of existing

computational workflows both at the node level and at the network level. The

signaling based network level control of a service workflow that spans across

multiple nodes allows the end-to-end connection level quality of service man-

agement independent of the hardware infrastructure management systems. The

only requirement for the hardware infrastructure provider is to assure that the node

OS provides the required services for the DIME to load the service regulator and

the service execution packages to create and execute the DIME network. The

parallax OS is designed to do just that.

The network management of DIME services allows different network config-

urations and management strategies to be dynamically re-configured such as

hierarchical scaling using the network composition of sub-networks or peer–peer

management systems or client server computing networks. Each DIME with its

autonomy on local resources through FCAPS management and its network

awareness through signaling can keep its own history to provide negotiated ser-

vices to other DIMEs thus enabling a collaborative workflow execution.

Future Research Directions

The two implementations, we have demonstrated provide opportunities to migrate

existing services to DIME network architecture (encapsulating each process in a

conventional operating system in a DIME) or create a new class of self-* service
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workflows (using a native operating system tuned for the new generation of many-

core servers by encapsulating each core as a DIME). This approach allows legacy

applications to make themselves avail the resiliency, efficiency and scaling while

new applications to take full advantage of programming self-* management.

We identify just a few possible areas of future research that may prove

effective:

1. Implementing DNA in current operating systems, as the DIMEs in Linux [12]

approach illustrates, provides an immediate path to enhance efficiency of

communication between multiple images deployed in a many-core server

without any disruption to existing applications. Current generation operating

systems, such as Linux and Windows, can support only few tens of CPUs in a

single instance and are inadequate to manage servers that contain hundreds of

processors, each with multiple cores. The solutions currently proposed for

solving the scalability issue in these systems, i.e. the use of single system

image, SSI [13] or the introduction of multiple instances of the OS in a single

enclosure with socket connectivity (e.g. [14]), are inefficient. For example two

Linux images communicate with each other using socket communication even

though they are neighbors in the same enclosure with shared memory and

PCIExpress availability. The DIME network architecture fills this operating

system gap (defined as the difference between the number of cores available in

an enclosure and the number of cores visible to a single image instance of

an OS) by dynamically switching the communication behaviors from shared

memory or PCIExpress or Socket communication depending on a transaction

need.

2. Auto-scaling, performance optimization, end-to-end transaction security and

self-repair attributes allow various applications currently running under Linux

or Windows to migrate easily to more efficient many-core operating platforms

while avoiding a plethora of management systems. Implementing DNA on

virtual servers in current cloud computing infrastructure such as Amazon AWS

or Microsoft Azure by encapsulating a process in conventional OS allows inter-

cloud resiliency, efficiency and scaling. In addition, the service management

independence from infrastructure management allows a new level of visibility

and control to service delivery in these clouds.

3. Implementing a new OS such as Parallax [15, 16] allows designing a new class

of scalable, and self-* distributed systems design transcending physical, geo-

graphical and enterprise boundaries with true decoupling between services and

the infrastructure that they reside on. The service creation and workflow

orchestration platforms can be implemented on current generation development

environments whereas the run time services deployment and management can

be orchestrated in many-core servers with DNA as demonstrated in the

prototype.

4. Signaling and FCAPS management implemented in hardware to design a new

class of storage could allow the design of next generation IT hardware infra-

structure with Self-* properties and application awareness.
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5. As hundreds of cores in a single processor enable thousands of cores in a server,

the networking infrastructure and associated management software including

routing, switching and firewall management will migrate to the server inside

from the data center outside. The DIME network architecture with its con-

nection FCAPS management using signaling control will eliminate the need to

replicate current network management infrastructure (e.g., TCP/IP, IP address

based firewall management etc.) also inside the server. The routing and

switching abstractions will be incorporated in intra-DIME and Inter-DIME

communication and signaling infrastructure.

6. The separation of services management from the underlying hardware infra-

structure management allows a certain relief from denial of services attacks on

the infrastructure. For example, the signaling allows detection of poor response

and immediate response in case of an attack on a particular portion of the

infrastructure.

Eventually, it is possible to conceive of signaling being incorporated in the

many-core processor itself to leverage the DNA in hardware.

Conclusion

We argue that the DIME network architecture is a next step in the evolution of

computing models from von-Neumann serial computing to a network-centric

parallel non-von Neumann computing model where each Turing machine is

managed and signaling enabled. Figure 5.1 shows the evolution of network-centric

services delivery which started with voice services (which connected billions of

humans to communicate with each other) and evolved to the internet based data

services (which connected billions of computing devices to exchange data) to the

next evolution of collaborating distributed services infrastructure (connecting

trillions of individual service modules to collaborate with each other).

Evolution of living organisms has taught us that the difference between survival

and extinction is the information processing ability of the organism to:

1. Discover and encapsulate the sequences of stable patterns that have lower

entropy, which allow harmony with the environment providing the necessary

resources for its survival,

2. Replicate the sequences so that the information (in the form of best practices)

can propagate from the survived to the successor,

3. Execute with precision the sequences to reproduce itself,

4. Monitor itself and its surroundings in real-time, and

5. Utilize the genetic transactions of repair, recombination and re-arrangement to

sustain existing patterns that are useful.

The DIME network architecture attempts to implement similar behavior in

computing architecture to improve the resiliency, efficiency and scaling of

Future Research Directions 63



computational workflows based on dynamic interactions of various components

and their environment. This is made possible by two technology advances—the

many-core processors with parallelism and performance required to effectively

implement the new computing model and the high bandwidth that allows the

temporal dynamics of distributed computing to be effectively managed.

By supporting the four genetic transactions of replication, repair, recombination

and reconfiguration, the DIME computing model comes close to what von

Neumann was searching for in his Hixon lectures [17]. ‘‘The basic principle of

dealing with malfunctions in nature is to make their effect as unimportant as

possible and to apply correctives, if they are necessary at all, at leisure. In our

dealings with artificial automata, on the other hand, we require an immediate

diagnosis. Therefore, we are trying to arrange the automata in such a manner that

errors will become as conspicuous as possible, and intervention and correction

follow immediately.’’ Comparing the computing machines and living organisms,

he points out that the computing machines are not as fault tolerant as the living

organisms. He goes on to say ‘‘It’s very likely that on the basis of philosophy that

every error has to be caught, explained, and corrected, a system of the complexity

of the living organism would not run for a millisecond.’’ The DIME implemen-

tation of self-repair using the Parallax operating system and the DIMEs in Linux,

described in this research brief, both point to a potential new approach for

designing a new class of distributed systems. The purpose of this research brief is

to offer an alternative. Only time will tell if the new approach is useful enough to

cross the barriers to adoption in mission critical environments.

Fig. 5.1 The evolution of network-centric intelligence
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