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To my Parents



Preface

This book is an attempt at a comprehensive treatment of those medical imaging
techniques commonly referred to as Computed Tomography (CT) and sometimes
known as Computerised Tomography, which rely on X-rays for their action. As
this is a place to explain my reasons for writing the book, I would like to begin by
assuring the reader of my passion for the medical technology discussed here. My
main motivation in publishing this work was a desire to share with the widest
possible readership my fascination with the topic. I would expect the target
audience for this account to be primarily academics, students and technicians
involved with biomedical engineering, as well as doctors and medical technicians
concerned with medical imaging. The structure and content of the book place
particular emphasis on issues related to the reconstruction of images from pro-
jections, a key problem in tomography. This reflects my area of interest in the field.
Other problems will be treated as technical and physical background to the
reconstruction algorithms, in so far as is necessary for an understanding of how
they work (and perhaps a little more). The reconstruction algorithms covered relate
to all the basic designs of tomographic equipment, from the first Hounsfield
scanner to the most recent spiral CT devices for reconstructing images in three
dimensions. I hope that the summaries of various practical implementations of the
algorithms will help people to test the individual reconstruction methods for
themselves. The final chapter contains an account of a virtual test environment so
that those without access to physical measurement data from a real scanner can
carry out these tests. Perhaps it is a good point here to wish you the best of luck.

There is another reason for engaging the reader at this point, in addition to
spreading enthusiasm for the subject. It is to thank those particularly who have
made significant contributions to the conception of ‘‘the work’’. I would like to
start with my lecturer Professor Ryszard Tadeusiewicz. It was at his lecture that I
first heard about the reconstruction problem. It was then, perhaps thanks to his
eloquence, that I was quite simply struck by the ‘‘beauty’’ of the problem. The
second person who, in my academic life, had a decisive influence on the direction
of my research was Professor Leszek Rutkowski. He, as my academic supervisor,
always gave me enough freedom to choose the direction of my own interests.
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However, I also cannot forget those individuals and institutions that, during the
writing of this monograph, enabled me to bring the project to fruition. Amongst
these I would like to stress the contribution of Dr. Marek Waligóra from the
Private Health Care Group ‘‘Unimed’’ in Czestochowa, who provided me with the
tomographic images contained in the book, and offered advice on all contentious
medical issues. I would like to thank Mr Marcin Gabryel for his assistance in
preparing the program listings included in the book. These should prove very
useful to those wishing to test the reconstruction algorithms described here. I
would also like to offer my special thanks to Japan Industries Association of
Radiological Systems (JIRA) and Sumio Makino for allowing the publication of
historical photographs related to the development of computed tomography
techniques. A significant role was also played by Ms. Claire Protherough, on
behalf of Springer Publishing. She showed great patience with such an ill-disci-
plined author as myself and took such care during the editorial work on the
publication. This book would probably not have arisen at all without Mike Bu-
tynski, who not only translated the text from the Polish language but also, thanks
to his physics background, helped me with many of the basic problems that arose
during the writing of this monograph. Thank you, Mike, for the heart that you put
into the book. To others not mentioned here by name, but who helped with this
work, I apologise and ask for understanding.

In conclusion, I would like to hope, dear reader, that you are willing to spare the
book a moment of your attention and not regard it as time ill spent.

Częstochowa, March 2010 Robert Cierniak
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Chapter 1

Introduction

Only a few devices in the rich arsenal of medical equipment can match the
popularity of the computed tomography scanner (or CT scanner). Its invention
undoubtedly initiated a revolution in diagnostic technology by allowing us to look
inside a person and obtain a very clear anatomical image without violating the
outer surface of his body, in other words, non-invasively. Throughout the indus-
trialised world, it would be difficult to find anyone who was not familiar with CT
scanning either personally or indirectly, perhaps via an acquaintance or a popular
science television programme.

Anyone who encounters CT is amazed by its research possibilities and its
diagnostic precision. However, the CT scanner is more than just a collection of
technical solutions or an example of a successful implementation of long-term
biomedical engineering research. This wonderful instrument unquestionably rep-
resents the embodiment of the power of human thought and the proud spirit of
man, who throughout the ages has worked on the problem of how to look inside his
earthly form without the use of a scalpel and without causing haemorrhaging.
When we stand before such a complex machine, we find ourselves asking: where
does this seemingly inconceivable idea come from, this bloodless ‘‘cutting’’ of a
person slice by slice, then to reassemble the slices to describe in detail the result of
this incredible journey deep into the human body? It is worth therefore looking a
little closer at this piece of medical history, to have a more complete understanding
of the field of tomography.

The examination of a person’s anatomy, as a preliminary to performing various
diagnostic procedures, is a technique that has been used for centuries. However,
people have not always been convinced that it was necessary to know about the
structure of the human body, let alone about the physical diagnosis of internal
illnesses. The belief in a link between the body and the suffering of sick people
probably arose by the way of observation of the changes that occurred in the
appearance of people afflicted with various kinds of illness. This also probably
aroused a curiosity about the structure of the human body, the operation of its
individual parts, and the links between symptoms and the pattern of pathology.
A number of historical sources indicate that people first investigated the internal
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structure of the body through human dissection, a process that aroused ambivalent
emotions.1 Dissections were probably already being performed in ancient times by
scholars such as Alcmeon, Erasistratus, Galen and Herophilos of Alexandria.

In the middle ages, there was a reluctance to continue this earlier work and so
there was a reduction in the number of such procedures performed. At that time,
people perceived the human body to be the seat of the soul and thus the property of
the Creator. They endowed it with a kind of inviolability clause and surrounded it
with a special taboo. It was forbidden to carry out any kind of human dissection,
thereby removing the only possible source of knowledge about the human anatomy
at that time. Until the sixteenth century, therefore, the only available description of
the inside of a person was the ancient work of Galen De usu patrium, based on
which people created a variety of ideas about the human body, its nature and
structure (see Fig. 1.1).

A fundamental shift in the perception of the body and knowledge of anatomy
came with the renaissance. The new ideological and philosophical trends of this
period very much favoured anthropological research. It is significant, for those
interested in human affairs, that it was at this time that geographical exploration
was being carried out on a large scale. In the course of their distant journeys,
travellers discovered new lands, previously unknown animal and plant species,
and, in the eyes of people from the Old World, strange peoples with strange
customs and different attitudes to the body. These journeys had a great effect on
European imagination and consciousness. Differences between peoples not only

Fig. 1.1 The transcendental
human

1 The word tomography comes from the Greek words tomos, meaning slice, and graphia,
meaning writing or description.
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aroused curiosity but also induced a deeper reflection on their own organism and
its structure.

At the turn of the fifteenth and sixteenth centuries, people began to perform
dissections openly. Yet secret dissections had already taken place earlier, in fif-
teenth century Florence. Leonardo da Vinci carried out 30 such procedures in
1470, producing descriptions and drawings. However, it was Andreas Vesalius,
professor of medicine at the University of Padua, who profoundly transformed our
way of thinking about the nature of man. In 1543, he published his work De

humani corporis fabrica. It signalled a revolution in the understanding of man and
his body. Anthropologists started to think of homo sapiens exclusively as an
arrangement of bones and muscles, disregarding those elements of human nature,
important to medieval scholars, which were supposed to emphasize the relation-
ship of the human being with the Transcendent. The renaissance conception of
man as a carnal being was dominant for many centuries. The development of
empirical investigation of the body and the observation of variations in the
structure of tissues permitted the drawing of conclusions about the normal and
abnormal functioning of the human organism. This, in turn, led to the evolution of
the field of medicine known today as pathophysiology.

Of course, pathophysiology owes a great deal to a certain accidental discovery
by Wilhelm Conrad Röntgen at the end of the nineteenth century, that is, to the
discovery of X-rays. Thanks to pictures taken using röntgen radiation, it was now
possible to look at the internal organism of a person without violating the outer
surface of his body (see Fig. 1.2). The use of X-ray apparatus to diagnose many
serious illnesses and complex post-traumatic complications quickly became
standard clinical practice. This type of apparatus still forms the basic equipment of
departments of imaging diagnostics in hospitals, and devices making use of X-rays
in varying degrees find their application in operating theatres, dental practices or
even mobile mammographic screening units. Moreover, although it soon tran-
spired that X-radiation is harmful to the human organism, this did not alter the fact
that its impact on our understanding of the human interior was nothing less than

Fig. 1.2 X-ray picture of a
chest
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astonishing. With time, one of the more important applications of this radiation
turned out to be CT.

If we compare the use of X-ray techniques in medicine to the revolution that
brought about the industrial age, then we can certainly argue that the formulation
of the principles of computed tomography and the design of the CT scanner is
evidence of the arrival of a new period in the history of knowledge and technol-
ogy: the third phase, the information age.2 The arrival of a new era inevitably
involves the enrichment of familiar earlier technologies with new ideas and their
practical application. In the case of CT, this has meant the application of not only
X-rays but also of the mathematical algorithms that allow the reconstruction of an
image of any given cross-section of a person’s body. By suitably arranging a set of
these cross-sections, it is possible to visualise, in three dimensions, the anatomical
structure of any part of a human body. A spatial image such as this is of enormous
help in medical diagnosis. An example of a tomographic cross-section is shown in
Fig. 1.3.3

Tomographic examination is currently one of the basic techniques of medical
diagnosis. Indeed, the significance of tomographic techniques in contemporary
medicine is clearly demonstrated by the fact that when this type of apparatus in a
hospital breaks down, doctors will avoid making a definitive diagnosis until an
examination can be carried out in another centre.

This book is an attempt at a comprehensive and detailed portrayal of the subject
of X-ray CT, beginning with its history, followed by its physical and technical
concepts, its parameters and principles of operation, and concluding with methods
of solving the image reconstruction problem. Much space is devoted to this last
issue because it is of fundamental significance for the operation of the equipment,

2 Toffler A.: The third wave. Bantam Books, New York, 1980
3 Image made available by the Private Health Care Group ‘‘Unimed’’, Czestochowa, Poland.

Fig. 1.3 Tomographic image
of the sinuses in the frontal
plane
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whereas a more modest amount of space is devoted to the section discussing the
physical and technical concepts. The aim of the chapters on the technical aspects
of CT scanners is to raise awareness of the nature of the image reconstruction
problem. Chapters 3 and 4 therefore are concerned with topics relating to the
construction of CT scanners and the physics of their operation. This then allows us
to formulate the reconstruction problem for every type of projection system.

Chapter 9 completes the remaining two parts of the work, discussing the
technical parameters describing practical CT scanners, together with methods and
procedures for determining values that indicate the quality of the reconstructed
image.

The fundamental issue of image reconstruction methods has been organised by
taking into consideration the two most important approaches: transformation
(analytical) reconstruction methods and algebraic reconstruction techniques
(ART). The first of these methods is covered in Chaps. 5, 6 and 7, while the second
is covered in Chap. 8.

The prevalence of certain transformation reconstruction methods in practical
scanners has meant that Chaps. 5, 6 and 7 are dominated by discussion of algo-
rithms. Chapter 5 also considers issues that are fundamental for other approaches
to solve the reconstruction problem. ART algorithms are considered in Chap. 8.
Chapter 10 contains descriptions of standard methods of obtaining projection
values using mathematical modelling. These are extremely useful for carrying out
computer simulations of various types of projection systems.

Finally, I hope that you will share, at least to some degree, my passion for the
subject of this book and that you will kindly forgive any possible mistakes that you
may find. As the medieval scribes used to say, ‘‘God did not create this, but the
hand of a sinner’’. Following their example and after wishing you a fruitful read,
there only remains for me to say:

I beg you dear reader if you find any mistake or shortcoming [...] don’t despise me because
of my human frailty, but forgive me all and that shortcoming or error correct.4

4
The Liturgikon, pp. 1727–1738, Supraśl, Poland
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Chapter 2

Some Words About the History

of Computed Tomography

We could limit the story of the beginnings of computed tomography to mentioning
Allan MacLeod Cormack and Godfrey Newbold Hounsfield, the authors of this
groundbreaking invention, and to placing their achievements on a timeline, from
Cormack’s theoretical idea in the late 1950s to Hounsfield’s development of a
practical device in the late 1960s. However, perhaps we should broaden our
horizons and look back through the centuries to obtain a more complete view of
the development of human thought and aspirations, which led to the invention of a
device without which it would be difficult to imagine contemporary medicine.

This story begins in ancient times about 400 BC, when the Greek philosopher
Democritus first described matter as a cluster of invisible and at the same time
indivisible particles. He called these particles atoms, from the Greek, atomos,
meaning indivisible. He also studied the invisible forces which caused attraction
and repulsion. Their action was observed for example, when, after being rubbed
with fur, amber attracted various small objects. Today we know that the cause of
this mysterious attraction is the electric force. We can see the evidence of
Democritus’ research in the use of the word ‘‘electron’’, which in Greek means
amber, to name one of the elementary particles. Now, over two thousand years
later, this physical phenomenon, first observed by ancient scholars, is exploited in
the modern X-ray tube.

X-radiation, used in X-ray computed tomography, is an electromagnetic wave.
The English physicist Michael Faraday (1791–1867) observed the phenomenon of
electromagnetism and in 1831, he formulated his famous laws of electromagnetic
induction. Twenty-nine years later, in 1860, this discovery by the ‘‘father of
electromagnetism’’ allowed another pioneer, the Scot, James Clark Maxwell, to
formulate the laws, which are included in the equations that bear his name.
Maxwell’s equations comprehensively expressed the ideas of electricity and
magnetism in their dynamic form and provided a revolutionary stimulus, which led
to the development of the later technologies of radio and television and of course,
radiology.

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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The accidental discovery of the radiation, known today as X-radiation,1 trig-
gered a revolution in our knowledge of the inside of the human body. The dis-
covery was made on 8th November 1895 by the German scientist Wilhelm Conrad
Röntgen (1845–1923) (see Fig. 2.1a) and it marked the beginning of his glittering
career and fame. Röntgen, at that time professor of physics at the University of
Würzburg, was in his blacked out laboratory (see Fig. 2.1b) investigating the glow
that occurred during electric discharges inside an evacuated glass tube, a Crookes
tube. An example of a Crookes tube and ancillary equipment, similar to that used
in his famous experiment, is shown in Fig. 2.2a.

Röntgen was working on the properties of cathode rays, and in particular on the
determination of their range outside the tube (his description of the experiment is
shown in Fig. 2.2b). During the experiment, completely unexpectedly, he observed
something unusual; a screen coated with crystals of barium platinocyanide started
to glow. The screen was made of fluorescent paper, which at that time was used
routinely to detect ultraviolet radiation. While he was carrying out the experiment,
the screen happened, by chance, to be in the laboratory within range of the radi-
ation coming from the tube. Röntgen noticed that the screen was too far away from
the source for the cathode rays to have been the cause of the glow. He was also
surprised that tightly covering the tube with cardboard did not eliminate the effect;
this contradicted his assumption that the glow, occurring during the electrical
discharge inside the tube, was the cause of this phenomenon.

If anyone today wanted to reproduce Röntgen’s experiment of the evening of
8th November 1895, he would need to the follow these instructions:

Fig. 2.1 Wilhelm C. Röntgen (a) and the room where he discovered X-rays (b)

1 X-radiation (or X-rays) seemed to Röntgen to be so inexplicable and mysterious that he took
inspiration from mathematicians and named it after the symbol X: the symbol of the unknown in
mathematics.
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Recipe for X-rays á la Röntgen. Take an induction coil consisting of a primary coil with a
few hundred turns of thick wire (the current in this coil is about 20A), a secondary coil
with 200 thousand turns of thin wire, and a contact-breaker (invented by Deprez) with
platinum contacts (this breaks the current in the primary coil 15-20 times a second).
Transform the constant primary voltage from a 32V battery to an alternating secondary
voltage of 40-60 kV. Apply this voltage to a Crookes vacuum tube which has previously
been evacuated to a pressure of 0.01 Torr (mmHg) using a mercury pump. Cover the tube
with blackened cardboard. Put aside a little time for pumping out the tube. This can take a
number of hours, but may well extend to several days. Place a screen coated with crystals
of barium platinocyanide near the cathode end of the tube. While the electric discharge is
taking place inside the tube, place various objects between the tube and the screen and
observe the image appearing on it. Try to resist experimenting on your own hands.

During the few days following the 8th November, Röntgen carried out a series
of tests in which he placed various objects between the tube and the screen. It was
then that he also noticed, clearly outlined on the screen, the skeleton of his own
hand.

He was not sure however, to what extent his observations were scientifically
valid, as he mentioned in letters to friends. Röntgen confided to them: ‘‘I have
discovered something interesting but I don’t know if my observations are correct’’.
Nevertheless, he conducted further experiments. When, on 28 December 1895, he
was finally certain that the mysterious rays really existed, he sent a report of his
research to the Würzburg Physical Medical Society, in which he wrote:

If the discharge of a fairly large induction coil is put through a Hittorf vacuum tube or
through a Lenard tube, Crookes tube or other similar apparatus, which has been evacuated,
the tube covered with thin, quite tightly fitting, black cardboard, and if the whole apparatus
is placed in a completely dark room, then with every discharge a bright flickering is

Fig. 2.2 Crookes tube from the time of Röntgen (a) and circuitry similar to that used in his
famous experiment (b)
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observed on a paper screen coated with barium platinocyanide, placed near the induction
coil [4].

Attached to the 11-page report was the famous X-ray picture of a hand, which
most probably belonged to Röntgen’s wife, Bertha (see Fig. 2.3).

The report contained a detailed list of the properties of X-rays. From the point
of view of the medical applications of the radiation, the most significant of these
were:

• the ability of various materials of the same thickness to transmit X-rays depends
to a great extent on their densities,

• the ability of samples of the same material to transmit X-rays depends on their
thickness; an increase in thickness of the material decreases the transmission of
the rays,

• photographic plates are sensitive to X-rays.

After the results of the experiment were reported in The New York Times,
Röntgen’s career, and that of X-rays, took off. By January 1896, the whole world
knew about the wonderful discovery, and people, not just those connected with
science, were overwhelmed by a peculiar ‘‘X-ray mania’’. Röntgen’s success
culminated in 1901 with the Nobel Prize, the first in history to be awarded for
physics.

The technique of making X-ray photographs, to enable the observation of the
internal features of a person without any surgical intervention, quickly found

Fig. 2.3 Röntgen’s report on
his research into X-rays—the
enclosed X-ray picture of the
hand of his wife, Bertha
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justified recognition among doctors and spread around the whole world. People
began to build devices for taking X-ray pictures for medical purposes, and X-ray
research developed so quickly that by 1897, William Morton had taken the first
picture of a whole skeleton using X-rays. Figure 2.4 shows a picture of one of the
pioneering devices in an X-ray room of the time.

We should not forget however, that Röntgen’s epoch-making discovery was
made possible by the inventions of several earlier innovators. Among those, we
should mention the Italian Evangelista Torricelli, inventor of the mercury
barometer (1643) and the German Otto von Guericke, creator of the vacuum pump.
Their work contributed to William Crookes’ (1832–1919) construction of the
vacuum tube. This was widely known in Röntgen’s time and, of course, was used
by him in his first experiments. Other elements of the equipment used by Röntgen
came directly from the ideas of Gaston Plant, the designer of the electric battery
that Röntgen used as his source of electrical energy.

Over the years, the design of X-ray equipment was refined to obtain better and
better two-dimensional images of the inside of the human body. The American
Thomas Alva Edison (1847–1931), for example, made a significant contribution to
the development of medical imaging techniques. He was, among other things, the
author of many improvements to the design of X-ray tubes. The German Hermann
von Helmholtz (1821–1894), on the other hand, investigated the nature of X-rays;
he was interested in the mathematical equations describing their properties and in
measuring their penetration through different materials.

Fig. 2.4 X-ray room from
the early years of radiography
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The initial euphoria surrounding the diagnostic possibilities of X-ray pictures
gradually gave way to a realisation of the limitations of body imaging methods in
only two dimensions. In the year after the discovery of X-rays, E. Thompson was
already attempting to obtain a three-dimensional X-ray image using stereoscopic
techniques. The solution he proposed involved taking two X-ray pictures, displaced
with respect to each other, of a patient who remained motionless. The diagnostician
could then use a stereoscope to view the images with depth perspective.

At this point, it is worth mentioning that Poles also made their contribution to the
improvement of X-ray imaging techniques. In particular, the experiments of Doctor
Karol Mayer from the Krakow Clinic of Internal Medicine are acknowledged as a
prelude to tomography. In 1916, he obtained stratigraphic images using a moving
X-ray tube and a stationary film cassette, a method which resembles the process of
scanning by computed tomography. Carlo Baese patented a similar imaging method
in 1915 and described it in his paper Methods and equipment for the location of

foreign bodies in the human body by use of X-rays. The technique devised by Baese
depended on the simultaneous movement of tube and film cassette.

In 1922, the CT scanner came still closer to fruition; A.E.M. Bocage obtained a
patent entitled Methods and equipment for obtaining radiological images of cross-

sections of the body not obscured by tissue structures in front of or behind the cross-

section. During the same period, B.G. Ziedses des Plantes conducted research into
his concept of planigraphy, which was put into practice by Massiot in 1935.

A further step along the road towards contemporary scanners was the use, by
the German doctor Willy Kuhn, of gamma radiation to obtain a layered image of
tissues, in 1963.

The discovery of X-rays was a necessary but insufficient condition for the rise
of computed tomography. Its design also depended on the development of com-
putational techniques, which enabled the building of the computer, a device having
fundamental significance for modern imaging techniques.

Perhaps we could think of the ‘‘computer’’ story as having started with the
human hand, undoubtedly the first calculating device. By means of an ingenious
system of counting, using the fingers, the early peoples of Europe and the Near
East could calculate up to 9999. The Chinese even pushed the upper limit of
calculation to ten billion. The results of calculations were recorded in various ways
such as by making cuts in animal bones and in wooden tablets. The Incas used a
so-called kipu, that is, a system of strings with knots on them. However, people
were soon dissatisfied with such an approach to calculations; they needed
instruments that were capable of carrying out complicated arithmetic and even of
interpreting the data obtained.

One of the first ‘‘calculating machines’’, consisting of a tablet and stones, was
the abak; this would be familiar to the ancient Greeks and Romans. Its operation
was very straightforward. A series of columns of stones2 were arranged on the

2 It is not by accident that the word calculation has its roots in the Latin word for pebble—
calculus.
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tablet and the stones moved to perform the arithmetical operations. It is interesting
that in China they still use an abacus which they call the suan-pan, based on
similar principles.

In the 17th century, a mathematician from Scotland, John Napier, well-known
today as the creator of logarithm tables, built a system for the multiplication of
numbers, a set of rods of square cross-section known as Napier’s bones. To use
them to multiply, it was necessary to sort through the rods to find the appropriate
digits, place the rods next to each other in the appropriate order and then read off
the result. In about 1630, the German Wilhelm Schickard, amongst others, me-
chanised this idea using systems of cogs and dials.

Further innovations were introduced by some of the most outstanding figures in
the world of science. Among these was Blaise Pascal (1623–1662), who designed
a machine to perform addition and subtraction. Contemporary computer scientists
have shown their appreciation of his services to computational technology by
naming one of the most popular high-level computer languages after him. At this
point, it is impossible not to mention Gottfried W. Leibniz (1646–1716), who
significantly reduced the degree of complexity of his predecessors’ calculating
machines by introducing a drum with teeth of unequal length. The next step in the
evolution of calculating machines was the arithmometer, examples of which were
built independently by F.S. Baldwin and W.T. Odhner; the mechanics of calcu-
lating machines reached their zenith with these devices.

Today’s computers owe their computational power to progress in the fields of
electricity and electronics. Scientists designed prototypes of new components
which were soon manufactured and applied practically. Particularly noteworthy
here are the inventions of the electronic valve (produced by the Philips company in
1917), the transistor (developed by the Americans John Bardeen and Walter H.
Brattain in 1948) as well as the integrated circuit (developed by a group of
researchers at Intel under the direction of Ted Hoff in 1969). These innovations
might well have contributed only to the improvement of the calculating function of
existing instruments, if it were not for the appearance of the English mathemati-
cian, physicist and philosopher Alan Turing.

Turing (1912–1954) transformed the ordinary calculating machine into a device
that could be regarded as a prototype computer. In his paper On Computable

Numbers with an Application to the Entscheidungsproblem [5], he discussed the
possibility of building a programmable calculating machine. He considered three
factors: logical instructions, the equivalent of today’s microprocessor instructions;
a thought process, in effect an algorithm; and a ‘‘machine’’. Turing argued that it
was possible to write down an analytical thought process as a finite series of simple
instructions, and then to execute these using the machine. He reasoned therefore
that every process, which could be expressed logically, could be implemented by
means of tables described in his work, these constituting the essence of the Turing
machine.

The universal Turing machine contained the idea of creating a device, which
knew a ‘‘code’’ that it could use to record each computational procedure. It was
now only a step away from the creation of a computer programming language. It is
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not by accident that the word code has been used at this point. During World War
II, Turing became an expert in cryptography while engaged in decoding German
Enigma cipher machines. This kind of experience was undoubtedly to be of great
help in his work on computing languages.

It is worth commenting on the significant contribution to the process of
decoding the famous Enigma cipher system made by the Polish mathematicians:
M. Rejewski, J. Ró _zycki, and H. Zygalski. It was they who broke the code of the
early versions of Enigma.

The first computer in the world to be officially recognised as such is the ENIAC
machine (Electronic Numerical Integrator and Calculator) from 1946. In fact, the
first computer was three years older and was built during the war at the Bletchley
Park centre, by a group under the direction of Max Newman. The existence of the
computer, called Colossus I, was kept secret until 1976. It is worth remembering
that the first computers were far from perfect. They contained about 18 thousand
very unreliable valves; this meant that the time that the computers were out of
commission considerably exceeded the time that they worked. Over the years,
engineering advances and progress towards the miniaturisation of components in
computers led to the development of microcomputers.

It is at this point that the two separate strands of discovery and invention come
together; the path leading to the discovery and exploitation of X-rays meets that
leading to the refinement of computational techniques. Without this convergence,
there would probably not have been computed tomography today.

The two people generally credited with inventing computed tomography were
awarded the Nobel Prize for Physiology or Medicine in 1979: Allan MacLeod
Cormack (1924–1998) and Godfrey Newbold Hounsfield (1919–2004). Although
the Norwegian Abel conceived the idea of tomography significantly earlier (in
1826), and then the Austrian Radon developed it further,3 it was only the solution
proposed by Cormack and Hounsfield that fully deserves the name computed
tomography.

Born in South Africa, Allan MacLeod Cormack first encountered issues asso-
ciated with tomography during his work at the Department of Physics at the
University of Cape Town; he was working on the measurement of the X-ray
absorption of various body tissues. He later moved to Harvard University and, in
1956, began work on the problem of image reconstruction of X-ray projections.
First, he solved the problem theoretically and then confirmed the results of his
research experimentally using cutlets of horsemeat and pork, and apparatus that he
had built himself. Figure 2.54 shows the apparatus which Cormack used for his
first experiments in 1963.

3 The Radon transform forms the basis of methods of image reconstruction from projections, the
fundamental mathematical problem in computed tomography.
4 The Homepage of the Japan Industries Association of Radiological Systems (JIRA) and Sumio
Makino: Key words for success or failure of enterprises—From case study of X-ray CT business,
Japan Planning Center.
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Cormack published the results of his research in an article entitled Represen-

tation of a Function by its Line Integrals, in The Journal of Applied Physics and
later in Physics of Medical Biology [2].

As a theoretical physicist, Cormack was not concerned about the practical
application of his research. It was the work of the Englishman Godfrey Newbold
Hounsfield, employed at the Central Research Laboratories of EMI Ltd., which led
to the construction of the first CT scanner; Hounsfield and his creation are shown
in Fig. 2.7a.5 During World War II, Hounsfield had worked on the technical
development of radar air defence systems; this undoubtedly influenced his later
achievements in the field of tomography. In 1967, independently of Cormack, he
began his research on tomography, initially using gamma radiation, which has
similar properties to X-radiation. Hounsfield developed a different approach to the
problem of image reconstruction from that of his predecessor and he used the
power of the computers available at that time to carry out the complicated cal-
culations needed. In this way, the concept of computed tomography found its
practical expression. A photograph of the CT scanner, which Hounsfield used in
the laboratory, is shown in Fig. 2.6a.

The first laboratory tests revealed the great complexity of the technical prob-
lems facing the builders of the scanner; because of the low output of the gamma
ray source (Americium, Am) individual exposures took a long time, so scans took
as long as nine days. The first experiments were carried out on a human brain
prepared in formalin, the brain of a living calf and the kidneys of a pig and it was
difficult to differentiate the healthy tissues from the unhealthy. Nevertheless, after
about 28 thousand measurements and a process of reconstruction taking about
2.5 hours, an image was obtained with enough contrast to enable the observation
of the differences between the tissues of the brain. The resolution of the image was
80 9 80 pixels (see Fig. 2.6b). Hounsfield finally patented his device in 1968.

In order to confirm the results of his initial research, further experimental work
was necessary, this time using living tissues. Hounsfield also took the opportunity

Fig. 2.5 Tomographic
device built by Cormack in
1963

5 In 1958, Hounsfield was, among other things, leader of the group, which built the EMIDEC
1100, the first computer in Great Britain to be made entirely of OC72 transistors.
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to refine the design of the scanner. As a result, he was in a position to begin the
clinical test phase, during which an X-ray tube replaced the source of gamma
radiation. This shortened the time spent taking the measurements to nine hours.
The actual process of image reconstruction was reduced to 20 minutes.

In September 1971, with the participation of the neurologists James Ambrose
and Louis Kreel, an improved prototype scanner, the EMI Mark I, was installed at
the Atkinson Morley’s Hospital in Wimbledon (CT scanners at that time were
known as EMI-scanners; see Fig. 2.7a). Because of the small size of the opening in
which the scan was carried out, this apparatus could only be used to produce
images of the head. In order to reduce the range of radiation intensities registered
by the detectors, the head was placed in a rubber membrane filled with water.

The first tomographic examination of a patient took place on 1 October 1971. It
was of a woman with a suspected brain tumour. On the image obtained, it was

Fig. 2.7 The EMI Mark I scanner (a) and a transverse image of the brain (b)

Fig. 2.6 Laboratory scanner used by G.N. Hounsfield (a) and an image of a preserved brain,
obtained using this equipment in 1968 (b)
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possible to differentiate clearly between the physiological areas of the brain and
the round, darker pathological area where a cyst was developing (see Fig. 2.7b).

The basic parameters of the scanner used at that time were as follows:

• scan time: about 4.5 min,
• reconstruction time: 20 s,
• cross-section thickness: 13 mm,
• image matrix: 80 9 80 pixels, where each pixel represented an area 3 9 3 mm.

In his first scanner, Hounsfield used a reconstruction algorithm, which is known
today as the algebraic reconstruction technique (ART).

In April 1972, at a seminar at the British Institute of Radiology, Hounsfield
formally presented the results he had obtained using the EMI scanner, and
descriptions of the device appeared in many publications, including for example in
the British Journal of Radiology [1, 3].

After these first successes, Hounsfield’s group continued its research at the
Atkinson Morley’s Hospital and at The National Hospital, Queen Square in
London. At this point, the fascinating story of the development of computed
tomography began to gather momentum; numerous neurologists, radiologists,
physicists, engineers and data processing specialists all started working on
methods of obtaining and interpreting tomographic images.

By the end of 1973, the first commercial CT scanner was on the market; this
was the EMI CT 1000, a development of the Mark I computer (see Fig. 2.8).6 Due
to the increased pace of development, in the course of 1973, the time to acquire an

Fig. 2.8 The EMI scanner with instrumentation and images obtained with it (a), and the front
cover of a company brochure describing the new technology

6 The Homepage of the Japan Industries Association of Radiological Systems (JIRA) and Sumio
Makino: Key words for success or failure of enterprises—From case study of X-ray CT business,
Japan Planning Center.
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image was reduced to 20 s. Next, the number of detectors was increased to 30; this
allowed the acquisition of a reconstructed image with a resolution of 320 9 320
pixels.

From the very beginning, computed tomography was commercially significant.
Six EMI CT 1000 models were sold in 1973, two of them to the United States, and

Fig. 2.9 Turning points in the history of computed tomography

Fig. 2.10 Co-creators of computed tomography: Allan MacLead Cormack (a), Godfrey
Newbold Hounsfield (b)
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each for the not inconsiderable sum of approximately £100,000. In the course of
the following two years, the market for CT scanners reached a value of about
£40,000,000.

In 1974, competition for the EMI scanner appeared in the form of designs by
such firms as Neurscan (head scanner) and Disco (whole body scanner). The year
1975 brought an avalanche of different models. Unfortunately, the production
capacity of EMI did not allow it to hold on to its leading position, which was soon
taken by such giants as Technicare and General Electric, who quickly took a major
share of the scanner market. Manufacturers from continental Europe, such as
Siemens and Philips (in 1974 and 1975, respectively) soon followed in the foot-
steps of the Americans. They all joined in the race to capture as much of this very
important medical technology market as possible.

If we compare the first scanners with today’s successors, it is striking how much
progress has been made in their design and manufacture in such an extremely short
time. Contemporary CT scanners can scan in a few hundred milliseconds and
reconstruct an image of 2048 9 2048 pixels. The most important events in the
history of the development of computed tomography are shown on a timeline in
Fig. 2.9.

Finally, it is also interesting to note that the two people, who are recognised by
historians of science as the fathers of computed tomography (see Fig. 2.10a and
2.10b), only met each other for the first time in 1979 at the presentation ceremony,
where they jointly received the Nobel Prize in Psychology or Medicine.
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Chapter 3

Technical Concepts of X-ray Computed

Tomography Scanners

Medical examinations using computed tomography are currently standard hospital
practice. Back in the 1980s, its use was relatively rare, and was available only in a
limited number of specialised medical centres. Today it is hard to imagine medical
diagnosis without it.

Nowadays, hospitals in most major cities are equipped with CT devices. They
are deployed, taking into account the prevailing demographic situation, so that
optimal use is made of the equipment and the time needed for a patient to reach a
centre is minimised. Computed tomography is used in the diagnosis of many
conditions, both chronic and acute.

The installation of a CT scanner requires complex preparatory work. For a
medical centre to be able to carry out on-site tomographic examinations, it must
first adapt a suite of rooms for the purpose. The CT room must meet several
requirements

• it must have floors with adequate load-carrying capacity,
• its walls must be constructed of X-ray absorbing material (this is usually a
barium (Ba) plaster),

• the floor should be lined with material that is both anti-slip and antistatic.

Separate rooms should be provided for the CT scanner and for the radiographers;
the rooms must be separated from each other by special window-glass (containing
lead, Pb), to protect against X-rays. In addition, a suite of CT rooms must comply
with all the health and welfare regulations, which are typically required for units
carrying out medical X-ray examinations. A typical CT suite showing the location of
the various elements of the scanner is illustrated in Fig. 3.1.

We can consider the CT scanner as being composed of two layers: the computer
layer and the physical layer. The computer layer consists of the operating system1

responsible for running the tomography application, file management and com-
munication with external devices; and the tomography application itself. The latter

1 As a rule, the UNIX operating system.

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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has two basic functions: user and utility. The user function carries out the tasks
associated with the preparation of the scanner for operation, the management of
the scanning process itself, the acquisition of the projection data, image recon-
struction, support functions aiding diagnosis from the reconstructed images and
archiving of the tomographic images. The utility function deals with the technical
parameters of the scanner, the diagnosis of errors and other service tasks.

A CT scanner consists of the following main elements

• a data acquisition system that carries out the X-ray projections,
• a computer to reconstruct the images from the projections and to assist in the
analysis of the reconstructed images,

• a variable power supply,
• a monitor to display the routine operation of the computer system and to act as
an interactive interface in the diagnosis of the reconstructed images,

• a documentation camera to produce an image on film similar to traditional X-ray
images,

• other data archiving systems, such as tape or disk, collectively referred to as
storage devices,

• other elements.

As can be seen from Fig. 3.1, the scanner itself is situated behind a screen to
protect the operators from the harmful effects of the X-rays emitted by the tube.
The other components of the CT system are located in the same room as the
technicians and doctors.

3.1 Data Acquisition Systems

Whatever the differences in design of the different generations of scanners, the
main elements remain the same. Figure 3.2 presents three orthogonal views of a

Fig. 3.1 A general view of a CT scanner installation

22 3 Technical Concepts of X-ray Computed Tomography Scanners



standard design of data acquisition system. Some elements of the apparatus shown
in Fig. 3.2 are immediately recognisable, while others are part of the larger units
and are not visible. The main components of the scanner design are:

• The gantry with a central opening, into which the patient is moved during the
examination. This is the most recognisable element of the CT scanner;

• The X-ray tube, the source of the X-rays that pass through the body situated in
the gantry and carry the information about the structure of the body to the
detectors. The information is in the form of a series of projections;

• The detector array converts the projection values, in the form of radiation
intensities, into electrical quantities. Usually, the whole detector array rotates
synchronously with the X-ray tube around the test object;

• The table allows the patient to be manoeuvred easily into position. The table can
be controlled manually before the actual scan begins, but it moves automatically
during the scan. The table can be moved into or out of the gantry along the axis of
the patient’s body, as well as up and down. This allows the patient to be appro-
priately positioned depending on which part of the body is being examined.

Fig. 3.2 Views of a CT
scanner; a from the front,
b from the side, c from the
top
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The scanner also contains a number of sub-systems that drive and control the
device, enable precise positioning of the patient during the scan as well as facil-
itate communication with the patient.

The evolution of CT scanners has been marked by changes to the design of the
projection sub-systems of the data acquisition system [2, 3, 18]. In comparing
these designs, only those that represent commonly used classes of CT devices are
listed below; non-typical or prototype designs have been omitted.

The design of each of the CT scanner generations contains one of three basic
tube-detector projection systems

• a projection system using a parallel beam of radiation (a parallel-beam
system),

• a system using a beam of radiation in the shape of a fan (a fan-beam system),
• a system using a beam of radiation in the shape of a cone (a cone-beam system).

Structural and functional details of each of these projection systems will be
described in Chaps. 5, 6 and 7 when discussing the algorithms used to reconstruct
the images from the projections. Here, however, we will focus on the evolution of
successive generations of scanners.

3.1.1 First-Generation Scanners

First-generation scanners, sometimes called pencil beam or translation/rotation

single detector scanners, belong to the class of device that uses a parallel-beam
projection system. Figure 3.3 shows how a single projection is carried out in this
type of system [3, 18].

Fig. 3.3 A parallel-beam
projection system
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In this type of scanner, there are two components to the movement of the rigidly
coupled tube-detector system: a lateral movement to make a single projection and
a circular movement about the central opening in the gantry to gather all the
projections necessary to reconstruct the image.

The acquisition of the individual projections can be either continuous or dis-
crete, but each of these projections is obtained only at a discrete angle of rotation
of the projection system. It is easy to see how this method of scanning is not fast
enough (it takes approximately 5 min); both the single detector and the X-ray tube
must travel a distance equal to the diameter of the gantry opening, twice during
each projection. A sequence of two projections for this type of scanner is shown in
more detail in Fig. 3.4.

First-generation scanners are prime examples of devices having a parallel-beam
projection system. The procedure for obtaining images of successive cross-sec-
tions with this type of scanner is explained in Fig. 3.5.

The short arrows in the diagram show the positioning of the patient lying on the
table while successive cross-sections are obtained. They represent the small sliding
movements of the table that take place after all the projections needed to recon-
struct the image of a single slice have been performed. After each movement, the
procedure for the collection of the projections for the next image is repeated.

3.1.2 Second-Generation Scanners

Great progress was made (compared to the design of first-generation scanners)
when scanners with a larger number of detectors in the array were introduced
around 1972. These second-generation scanners, sometimes called partial fan-

beam or translation/rotation multiple detector scanners, had between 3 and 52
detectors in the array. The use of the fan-shaped radiation beam [3, 18] enabled the
projections to cover a larger area of the patient’s body at any one time and resulted
in the reduction of the number of projections needed to reconstruct an image of
satisfactory quality. Figure 3.6 illustrates the scanning sequence for this generation
of scanner.

In this approach, the time to obtain the projections necessary for the recon-
struction of one image was reduced to about 300 s, even though the movement of
the tube-detector array was still a combination of lateral and rotational motion.
This system can be considered as a transitional stage between the parallel-beam
projection system and the fan-beam system.

3.1.3 Third-Generation Scanners

Further steps to improve the CT scanner were next directed towards the elimi-
nation of the lateral movement of the tube-detector system. In 1976, scanner
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Fig. 3.4 The projection sequence in first-generation scanners: a the first projection, b the return
pass, c the second projection, d the return, e a series of three projections
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designers managed to limit the movement in the projection system exclusively to
rotational movement [3, 18, 22, 25]. This was the so-called fan-beam or contin-
uous rotation scanner. By fan-beam, we mean here a projection system with a
beam of radiation in the shape of a fan with an angular spread of between 40 and
55 degrees, enough to encompass the whole of the test object, as shown in Fig. 3.7.

The sequence of individual projections for this type of scanner is shown in
Fig. 3.8. An obvious consequence of this modification was the need to increase the
number of detectors in the array moving synchronously with the rotating X-ray
tube (up to 1,000 detector elements). As a result of these design changes, the time
to acquire a reconstructed image was reduced to about 5 s. Scanners of this
generation are examples of the implementation of the fan-beam projection system
in its purest form.

In this scanner, after all the projections have been made for the first image, the
table moves and the whole procedure is repeated for the next cross-section of the
body. The sequence of projections for reconstructing the images of successive
slices of the patient’s body is shown in Fig. 3.9, where the short arrows once again
indicate the positioning of the patient lying on a table.

3.1.4 Fourth-Generation Scanners

The next, fourth generation of scanners, introduced in 1978, differed only slightly
from the third generation. In the earlier designs, the detector array moved around
the test object together with the X-ray tube. Now the rotation of the array was
eliminated by arranging it on a stationary ring with a radius larger than the radius
of the circle described by the tube [3, 18]. The result was a scanner known as the
rotate-fixed scanner; the word rotate in the name refers to the movement of the
tube and the word fixed to the array of detectors. In order to maintain an adequate

Fig. 3.5 Obtaining a sequence of image slices in a parallel-beam scanner
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Fig. 3.6 The projection sequence in second-generation scanners: a the first projection, b the
return pass, c the second projection, d the return, e a series of three projections
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resolution of the radiation intensity measurements, the number of detectors in the
array was increased and now ranged from 600 to 5,000 detector elements. The time
taken to obtain one image using this design however was still about 5 s. The group

Fig. 3.7 A fan-beam system

Fig. 3.8 The projection sequence in third-generation scanners: a the first projection, b the
second projection, c a set of two projections
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to which this scanner belonged remained the same; it was still classified as a fan-
beam scanner. The projection sequence for this type of scanner is shown in
Fig. 3.10.

Fig. 3.9 Obtaining a sequence of image slices in a fan-beam scanner

Fig. 3.10 The projection sequence in fourth-generation scanners: a the first projection, b the
second projection, c a set of two projections

30 3 Technical Concepts of X-ray Computed Tomography Scanners



3.1.5 Spiral Scanners

We saw earlier that successive generations of scanners used either parallel beams
of radiation or fan beams. On closer analysis, a problem becomes apparent with the
projection systems used in these generations: there is no movement along the axis
of the patient during each of the projections. In 1989, to remedy this situation, the
first designs of scanners appeared which combined the movement of the tube
around the patient with a simultaneous smooth displacement of the patient into the
opening of the gantry [3, 18, 26]. The projection system moved in a spiral around
the patient.

In the initial phases of the development of spiral tomography, the scanners used
a detector array in shape of an arc of a circle, similar to the design of third-
generation scanners.2 The device was called a single-slice spiral computed

tomography scanner or SSCT. Figure 3.11 shows the spiral motion of the tube and
detectors around the patient.

In 1998, an improved design of scanner emerged: the multi-slice spiral com-

puted tomography scanner (MSCT) [1, 14]. The projection system still moved in a
spiral but the detector array was made up of between 8 and 34 rows of detectors,
making it possible for this design of scanner to obtain four adjacent slices
simultaneously.

The beam now took the shape of a cone (see Fig. 3.12); this cone-beam was the
most natural shape for a beam of X-rays. Previous designs of spiral scanner had
used a radiation beam in which the individual rays were almost parallel to each
other. The new design permitted three-dimensional projection techniques to be
mastered and so paved the way for the development of reconstruction techniques
operating in three dimensions.

The first cone-beam spiral CT scanners (CBCT) were put into operation in the
years 2001–2002 [21, 33]. The cone-shaped radiation beam made it possible to
increase the width of the detector array to 16 or even 320 elements, thereby
allowing the simultaneous acquisition of up to 256 adjacent image slices with
these scanners. The main advantages of this design were the increased scanning
speed and the reduction of the impact of collimation inaccuracies on the quality of
the reconstructed image. The reduction in collimation losses had the additional
advantage of allowing a reduction in the power of the X-ray tube. The combination
of the cone-beam and the spiral motion of the projection system resulted in a
significant reduction in the time taken to complete the scan (down to 2 min, or
even less) and during this time, the images of many adjacent slices could be
reconstructed. The spiral movement of the projection system also enabled the slice
resolution to be increased so that a slice could be obtained with resolution
0.23 mm. The principle of the spiral path cone-beam scanner is illustrated in
Fig. 3.13.

2 In practice, using an array consisting of two rows of detectors.
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Spiral scanners are currently the standard tomographic equipment used in
clinical practice. Because of the reduced time needed to complete a scan, they can
be used to study organs, such as the heart or lungs, which are physiologically in
motion. In addition, by synchronising the working phases of the heart with the
acquisition of the projections, it is even possible to obtain a dynamic tomographic
image. Spiral tomography with its short exposure time also makes it possible to
examine people, who for various reasons, cannot remain motionless for long, such
as children or emotionally disturbed patients.

3.2 X-ray Sources

The X-ray tube is the fundamental element in the projection system of every CT
scanner. Its operation is based on the complex physical principles involved in the
generation of X-rays. Knowledge of these principles helps us to design improved
X-ray equipment and apply them in a variety of different medical devices.

Fig. 3.12 A cone-beam
projection system

Fig. 3.11 Rotation of the tube around the patient combined with a smooth displacement of the
patient through the gantry
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3.2.1 The Physics of X-ray Sources

X-rays are generated by physical processes that take place within matter at the
atomic level. Quanta of electromagnetic radiation with wavelengths in the range
10-12 to 10-8 m (0.01–100 Å) (in medical applications, in the range 6 9 10-12 to
1.2 9 10-10m (0.06–1.2 Å)) are produced as a consequence of two processes: the
transition of electrons between the inner shells of an atom and the deceleration of
charged particles caused by electromagnetic fields within matter. Both of these
phenomena occur during the generation of X-radiation in X-ray tubes.

Each transition of an electron from a shell with a higher energy level to a shell
with a lower level is accompanied by the emission of a quantum of radiation with
energy equal to the energy difference between the shells [29]. Physicists call this
characteristic X-ray radiation and it has typical quantum energies in the range
0.052–129.544 keV. As only shells with specific energy levels are allowed in
atoms, the quantum energies of characteristic radiation can only have discrete
values within this range. The generation of this type of X-rays is illustrated in
Fig. 3.14a.

When electromagnetic fields within matter cause charged particles such as
electrons, protons, a-particles or heavy ions to decelerate [29], the energy lost is
emitted as X-ray quanta. This energy can take any value in a range reaching up to
20 MeV. This type of X-ray radiation is often called bremsstrahlung, which is
German for braking or deceleration radiation. A diagram of the generation of
bremsstrahlung or continuous X-rays is given in Fig. 3.14b.

Characteristic X-rays are emitted when matter is bombarded by charged par-
ticles with sufficiently large kinetic energies to be able to knock electrons out of
their orbits in the atoms.

If we assume that an electron is knocked out of a shell that has an energy level
E1, then after a time interval of the order of 10-15 s, another electron from a shell

Fig. 3.13 The movement of the projection system relative to the patient in a spiral scanner
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of higher energy E2 fills the resulting vacancy and simultaneously a quantum of
radiation is emitted with energy

ht ¼ E1 � E2; ð3:1Þ

where h is Planck’s constant; t is the frequency of the quantum of radiation
emitted.

The energy levels in the atom can be defined by the following equation [29]

E n; l; jð Þ ¼ c1
m

mþ me

Z � r1ð Þ2

n2
þ c2

Z � r2ð Þ2

n4
n

j� 0:5
� 0:75

� �

 !

; ð3:2Þ

where c1, c2 are constants; m is the mass of the nucleus with charge Z; me is the
mass of an electron; r1 is the total screening constant, which specifies the
screening of the nuclear charge by all the electrons; r2 is the internal screening
constant, which specifies the screening by the inner electrons; n, l, j are, respec-
tively, the principal quantum number, the orbital momentum quantum number, the
total angular momentum quantum number.

Since electrons can be found only at specific energy levels, the quantum
energies emitted by the electrons when they fill the vacancies can only have
discrete values. Every time an electron from a higher energy level fills a vacancy, a
characteristic X-ray line is produced. The term ‘‘characteristic line’’ comes from
the fact that atoms of different elements are characterised by different sets of lines,
whereas the term ‘‘characteristic series’’ refers to a collection of all these char-
acteristic X-ray lines. The so-called K, L, and M series are associated with the
filling of vacancies in the K, L, and M shells of the atom, in order of increasing
energy levels of the shells. The number of possible electron transition lines is also
limited by the so-called selection rules. These establish conditions as to which
transitions can occur between the quantum numbers n, l, j. The equations below
describe the requirements imposed by these rules [29]

Dn 6¼ 0; Dlj j ¼ 1; Djj j ¼ 0 or 1; ð3:3Þ

Fig. 3.14 The physical processes responsible for the generation of X-rays: a characteristic
radiation, b continuous X-rays (bremsstrahlung)
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where Dn, Dl, Dj are the changes in the quantum numbers during the transition of
electrons between different energy levels.

The conventional symbols used to represent the characteristic X-ray lines of the
K and L series are shown in Fig. 3.15.

When it comes to the practical use of individual characteristic X-ray lines, the
relative probability of transition (i.e. the probability of filling a vacancy) is par-
ticularly important. It is this, which manifests itself through the emission of a
specific characteristic X-ray line.

At this point, let us examine one of the explanations adopted by physicists to
explain the generation of continuous X-rays. It is generally known that the electric
field of a charge at rest has only a radial component Er. The production of con-
tinuous X-rays however depends on the formation of a transverse electric field
component Et of the electron. This happens when an electron decelerates as it
strikes a target material. The process is illustrated in Fig. 3.16.

In the diagram below, the electron moves along the x-axis at a speed V � c (c,
the speed of light) and is suddenly decelerated and brought to a complete halt in a
time Dt. Within a radius r = ct of the halted charge, the electric field is radial.
However, at a distance greater than rD = c(t ? Dt), the electric field has only a
transverse component, i.e. the field is the field of a moving charge. The zone of
radius r expands at the speed of light. In the region rD - r of width ct, the electric
field pattern exhibits a smooth transition between the zone where the field

Fig. 3.15 The K and L series of characteristic X-ray lines
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component is radial and the zone where it is transverse. Consequently, in that
region, there is both a transverse as well as a radial component: mutually per-
pendicular field components at right angles to the direction of the propagating
wave. According to Maxwell’s equations, this is a prerequisite for the formation of
an electromagnetic field. If we assume that the electron reduces its speed by DV as
a result of the deceleration, we can write down the following ratio

Etj j

Erj j
¼

Et

Er

¼
t � V � sinH

c
� Dt ¼

a � t

c
sinH; ð3:4Þ

where Et is the transverse component of the electric field; Er is the radial com-
ponent of the electric field; H is the angle of incidence of the radiation; a is the
retardation. Furthermore, if we express the radial component of the electric field
by

Er ¼
e

r2
; ð3:5Þ

where e is the charge on the electron, we obtain the following equation

Et ¼
e�a

c2 � r
sinH: ð3:6Þ

This approximate relationship for the transverse component of the electric field
can then be substituted into an equation expressing the intensity of the electro-
magnetic radiation as a function of Et

I ¼
c

4p
E2
t ¼

e2

4c3 � p
�
a2

r2
sinH: ð3:7Þ

A prerequisite for the generation of bremsstrahlung is a non-zero value of the
retardation a. This happens in the X-ray tube by the action of a force on the
moving charge in the opposite direction to its movement. Because of the non-zero
scattering cross-sections of the charged particles (whatever their angle of inci-
dence) and the different amounts by which the retarded particles change their
speed, the frequency spectrum of the radiation produced is continuous throughout
its entire frequency range.

The X-ray spectrum produced by the tube is the sum of the energies of both of
the above processes, in other words, a combination of discrete characteristic
X-rays and continuous X-rays. An example of the combined X-ray spectrum

Fig. 3.16 The generation of
continuous X-rays during the
deceleration of an electron
(bremsstrahlung)
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obtained by bombarding a sample of molybdenum (Mb) with electrons is shown in
Fig. 3.17.

The description of the production of X-rays given above is by way of an
introduction to the topic of X-ray tube design, in particular, to the design of the
tubes used in computed tomography.

3.2.2 X-ray Tubes

Wilhelm Röntgen, while using a Crookes tube to examine the behaviour and
properties of cathode rays and without realising it at the time, discovered X-rays
and the mechanism that produces them (see Chap. 2). An insight into how the
Crookes tube operates as an X-ray tube can be gained from the description of
the physics of X-ray generation given in the previous section. A diagram of the
experiment performed in 1895 is shown in Fig. 3.18.

Röntgen used two voltage sources: one to supply current to heat the cathode;
the second, a high voltage source, to produce the cathode rays. By doing so, he
produced a beam of electrons, which collided with the positively charged anode
(the anticathode) with great energy and directly resulted in the production of X-
rays.

The design of tubes used to produce X-rays has changed substantially compared
to the early days. A diagram of an X-ray tube with a stationary anode is shown in
Fig. 3.19.

The most important parts of the X-ray tube are situated inside an envelope made
of Pyrex glass or metal where the pressure is in the range 10-3–10-5 Pa. Two
metal electrodes supply a low voltage (of the order of several volts) to the tube.
This causes a current to flow through the coil, which heats the cathode. Two other
electrodes, the cathode and anode (sometimes called the anticathode), supply a

Fig. 3.17 The energy
spectrum of X-rays obtained
by bombarding a sample of
molybdenum
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high voltage (between 5 kV and approximately 100 kV; in computed tomography
between 80 and 140 kV). In order to reduce the number of electrical connections, a
single electrode often combines the cathode with one of the heater coil
connections.

An important element in the design of the cathode is the focus, the part of the
cathode that emits the electrons. The more the focus resembles a point source, the
sharper the images that are obtained during a projection [32]. The oldest method of

Fig. 3.18 The generation of
X-rays during the experiment
carried out by Wilhelm
Röntgen in 1895: a the
electrical connections,
b collision of the electrons
with the anode, c the
production of X-rays
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focusing the electron beam involved the use of metal shields and electrostatic
lenses. Another design solution is a cathode in the form of an elongated coil
emitting electrons through an elongated opening, whose longitudinal axis is par-
allel to the axis of the anode, as shown in Fig. 3.20 [29].

In this design, if we imagine a mirror placed on the anode, inclined at a slight
angle to the cathode surface, the focus, as viewed from the screen, appears fore-
shortened. In this way, we artificially reduce the size of the focus of the tube.

The electrons emitted by the cathode are accelerated to high energies, up to
103 eV (sometimes even 106 eV), but only a fraction of them hit the anode, located
opposite, with great speed.

Fig. 3.19 A stationary anode
X-ray tube

Fig. 3.20 Focusing the X-
rays in a tube with a linear
focus
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The anode (anticathode) is a much more complex element of the X-ray tube. Its
end face is cut at a slight angle of 10�–20� and has a layer of material with a large
atomic number, such as tungsten, deposited on it. For radiological applications, it
is better if the radiation from the tube is as monochromatic as possible. Therefore,
the material used to cover the anode contains elements (such as Cu, Al or Mg),
which emit appropriate lines of characteristic radiation, such as the Ka1;2 lines. In
addition, various impurities are used to concentrate the radiation of the selected
line. An important component of the X-ray monochromatising system is the
window (usually beryllium, Be) through which the radiation leaves the glass
envelope. The small atomic number of beryllium (Z = 4) minimises the absorp-
tion of the Ka1;2 lines while suppressing the remaining components of the radiation
spectrum. Various types of filter can also be used to filter out frequencies other
than those of the selected characteristic lines, suppressing the Kb lines, for
example, and eliminating the parts of the spectrum in the soft radiation range. Soft
radiation is strongly absorbed by the surface structure of the tissues being
examined and, as it is not important for obtaining the projection, it exposes the
patient to unnecessary radiation. A comparison of the elements most commonly
used in this way is shown in Table 3.1. Figure 3.21 illustrates the process of
shaping the X-ray spectrum.

An appropriate filter is matched by selecting the absorption threshold so that it
lies between the Ka and Kb series of the X-ray spectrum. Materials with atomic
numbers 1 or 2 less than the anode material have this property.

X-ray tubes are estimated to be only 1% efficient; the energy not used to
produce radiation is converted into heat. Previously, in order to conduct the heat
away more effectively, a tubular or cylindrical anode was often made from a single
crystal of copper. Currently, in the newer types of X-ray tube, the anode is usually
cooled using water or oil. It is also possible to cool the envelope of the tube in this
way, as it is completely encased in a lead shield. The shield also has an opening

Table 3.1 Comparison of elements used in anodes and filters

Anode
material

Element used for
the filter

Thickness of the
filter [l m]

Absorption of the
Ka series [%]

Absorption of the
Kb series [%]

Zirconium
(Zr)

Vanadium (V) 15.3 46.7 99.6

Iron (Fe) Manganese
(Mn)

15.1 36.1 99.5

Cobalt (Co) Iron (Fe) 14.7 44.7 99.4
Nickel (Ni) Cobalt (Co) 14.3 42.9 99.2
Copper (Cu) Nickel (Ni) 15.8 42.5 98.9
Molybdenum

(Mo)
Zirconium (Zr) 63.0 44.2 98.4

Silver (Ag) Lead (Pb) 41.3 44.8 74.3
Tungsten (W) Various – – –
Rhodium

(Rh)
Various – – –
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that forms part of the collimator. Only a small part of the radiation produced by the
tube passes through the collimator to the outside; the material of the shield absorbs
the rest.

In order to build X-ray tubes for use in computed tomography, a design was
needed that prevented the anode from overheating in conditions where the power
could be as high as 50 kW. The solution proved to be a tube designed with
a rotating cathode, as shown in Fig. 3.22.

Figure 3.22 shows a flat cylinder made of a material with a high melting point
(e.g. graphite). The edge facing the cathode is bevelled and covered with a
material that emits X-rays when bombarded by the high-energy electrons emitted
by the cathode.

During the production of the beam of electrons, the cylindrical anode is rotated
at a speed of about 3,000 rpm. This is made possible because the anode is attached
to the rotor of a motor whose stator windings are located outside the envelope of
the tube. When the tube is in operation, electrons hit the anode at different places,
thus artificially increasing its active surface. In addition, the inclination of the
active plane with respect to the longitudinal surface of the cathode increases the
concentration of the radiation beam, as was explained for the case of the standard
X-ray tube [29].

In 64-slice spiral scanners, a design of X-ray tube with two focuses was used
[3], as illustrated in Fig. 3.23. In this tube, the deflection system switches the beam
of electrons emitted by the cathode at a rate of 4,640 times per second. This
produces two beams of electrons, which then hit the anode, generating two sep-
arate beams of X-rays. The use of this dual focus design of X-ray source allows us
to obtain a reconstructed slice thickness of 0.4 mm. It also eliminates artefacts
from the image, caused by the spiral motion of the projection system.

Fig. 3.21 Shaping the
radiation spectrum of the X-
ray tube
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At this point, we will give a qualitative and quantitative description of the
production of bremsstrahlung (i.e. continuous radiation). Most of the energy
emitted by an X-ray tube is in the form of this type of radiation. We can say
approximately that

Fig. 3.22 An X-ray tube with a rotating anode

Fig. 3.23 A dual focus X-ray tube

42 3 Technical Concepts of X-ray Computed Tomography Scanners



Power of tube ¼ k � U2
R � IR � Z; ð3:8Þ

where k ffi 10�9 is a coefficient of proportionality; UR is the voltage between the
anode and cathode; IR is the current flowing through the tube; Z is the atomic
number of the element of the anode.

Note that the easiest way to alter the cathode current IR in the tube is by
changing the current flowing through the heater. The minimum wavelength
obtained from the X-ray tube is determined however using the relationship

kmin ¼
hc

eUR

: ð3:9Þ

As we can see from the above, by adjusting the voltage between the anode and the
cathode we can alter both the power of the tube and the wavelength of the radiation
and so influence the high-energy components of the radiation spectrum. This
voltage however does not affect the power of the characteristic radiation. All that is
required to produce this component of the spectrum is a certain minimum level of
voltage.

In medicine, the term ‘‘hard’’ is used to describe high frequency X-rays with
their high penetrating power; the word ‘‘soft’’ is used for lower frequency radiation
with lower penetrating power.

3.2.3 Electrical Aspects of X-ray Tubes

When considering the design and the operating principles of X-ray tubes, it should
be pointed out that their electrical properties are not essentially different from
those of other vacuum tubes, such as diodes. Let us start by considering a simple
system (see Fig. 3.24), where a voltage is applied between the anode and cathode
of the tube and a current flows.

We can use this system to examine the shape of the electrical characteristic of
the X-ray tube, that is, the relationship between voltage UR applied across the
anode and cathode and the current IR that flows through the tube, for a given heater
current Ih. A plot of the characteristic curves is shown in Fig. 3.25.

It can be proved analytically that the shapes of the characteristics in Fig. 3.25
correspond to the Child–Langmuir equation [4, 23]

IRðURÞ ¼ 2:34 � 10�6Sanode

d2ak
� U

3=2
R ; ð3:10Þ

where Sanode is the active area of the electron beam, i.e. the area of the anode; dak is
the distance between the anode and cathode.

The individual characteristic curves of the tube relate to different values of
heater current Ih. The non-saturated, working region of the X-ray tube is called the
Langmuir region. This is the active part of the characteristic curve. The saturated
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area is called the Richardson region. This saturation of the tube’s characteristic is
due to the limited number of electrons that can be emitted from the cathode at any
given temperature or heater current Ih.

From Eq. 3.10, we can conclude that the resistance of the tube while conducting
a current is

R ¼
UR

IR
¼ c

1

U
3
2
R

; ð3:11Þ

where c is a coefficient of proportionality.
As mentioned earlier, an X-ray tube behaves like a diode; it conducts current in

only one direction, the direction of the voltage applied between the anode and
cathode. The equivalent circuit of an X-ray tube is shown in Fig. 3.26.

In order for it to generate X-rays, the tube should be connected to an electronic
circuit such as that illustrated in Fig. 3.27, which is used to produce X-rays for
medical applications.

Fig. 3.25 The electrical
characteristics of an X-ray
tube

Fig. 3.24 A simple power
supply for an X-ray tube
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3.3 X-ray Detectors

X-ray detectors have a similar function in computed tomography to photographic
film in conventional X-ray radiography, that of creating the image from a pro-
jection of X-rays [1]. The following types of X-ray detector are currently used in
computed tomography

• xenon proportional chambers, in which the electrical output signal is propor-
tional to the intensity of the radiation that ionises the gas atoms inside microgap
gas chambers (MGC) [27, 28];

• scintillation detectors [7, 8, 10, 12, 15].

Fig. 3.26 The equivalent
circuit of an X-ray tube

Fig. 3.27 A circuit diagram for an X-ray tube used for medical purposes
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Most third-generation scanner use xenon proportional chambers, as they are
much cheaper than the scintillation detectors used in subsequent generations. The
gas in the ionization chamber of a xenon detector is at high pressure (about 10atm)
[8]. A design of this type of detector is shown in Fig. 3.28.

In this detector, a high voltage of about 140 kV is applied across the electrodes.
The voltage must not be too large however or it could cause so-called gas
amplification. If an X-ray photon penetrates the detector’s window (typically
aluminium), there is a high probability of it ionizing the xenon inside. The
probability of this happening is proportional to the length of the chamber and the
pressure inside.

The current that flows between the electrodes and through the gas ionised by the
X-rays is proportional to the intensity of the X-rays. Xenon proportional chambers
work in such a way that almost no heating occurs after the ionization event, and so
it only takes a short time for them to return to a state of readiness. This is highly
significant when applying the technique to spiral projection systems. The high-
voltage electrodes are often made of tantalum and the ion-collecting electrodes of
copper. To get some idea of the dimensions of these detectors, the length of a
xenon chamber is often quoted as 6 cm and the width of a single cell as about
1 mm (1.5 mm) [13]. Because of the difficulty of obtaining suitably convergent
electrodes while maintaining the standard 8 cm length of chamber, chambers are
currently produced with a length of 3–6 cm. In general, the efficiency of these
detectors is about 60%, and their main advantages are low cost and small size.

In later generations of CT scanner, from the fourth generation onwards, ceramic
(scintillation) detectors are used to measure X-ray intensity. The design of these
detectors is described by Fig. 3.29 [13].

When X-rays strike a scintillator crystal a range of physical phenomena are
produced, namely

Fig. 3.28 A xenon
proportional chamber
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• the photoelectric effect,
• the Compton effect,
• pair production.

Scintillation detectors make use of the photoelectric effect. Photons of X-rays
knock electrons out of their orbit and these, in the presence of a phosphor, produce
a flash of light (luminescent radiation) in the ultraviolet or visible range of
wavelengths [11, 30]. Detector arrays in the newer scanners are constructed with
scintillation detectors made from materials such as sodium iodide (NaI) doped
with thallium (Tl), caesium iodide (CsI), cadmium tungstate (CdWO4), zinc sul-
phide (ZnS), naphthalene, anthracene and other compounds based on rare earth
elements, or gadolinium oxysulfide (GD2O2S) [8] and finally from rare earth based
garnet material (98% garnet, 2% rare earth—cerium). The scintillator crystals have
a thickness of 1–2 mm and are shaped so that the majority of the photons created
as described above pass through the rear wall of the crystal. Here, a photomulti-
plier amplifies the light signal and photo-detectors convert the light into an elec-
trical signal.

Scintillation detectors have a high time resolution [8]. This is because the
duration of the flash in a scintillator is extremely short; for example for NaI, it lasts
0.25 ns. In addition, because the materials from which scintillators are made have
a large atomic number, these sensors absorb radiation strongly and this affects their
detection efficiency. Because there are two processes involved in this type of
measurement, we have to take care that the light contact between the scintillator
and the photo-detectors is good enough to maintain an adequate level of detection
efficiency. An individual semiconductor detector has greater measurement sensi-
tivity than an individual ionization chamber in a xenon detector, but ionization
chambers can be packed much more densely, so that the overall sensitivities of the
xenon and the semiconductor detectors are very similar.

Fig. 3.29 Scintillation
detectors
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3.3.1 Detector Matrices

The introduction of scanner designs with projection systems moving in a spiral
required the development of detector arrays that could measure the intensity of
X-ray beams having non-zero solid angle along the axis of the patient [20].

Since the introduction of multi-slice spiral tomography (MSCT), there has been
rapid development of technologies allowing the manufacture of detector matrices
with very sophisticated specifications in terms of size and efficiency. An example
of a design of detector array, which enables the subsequent reconstruction of four
slices simultaneously in an MSCT scanner, is shown in Fig. 3.30.

In the outermost detectors of an array, a phenomenon called image smearing
occurs in the reconstructed slices [20, 31]. This happens because, for a slice of
nominal width of 1 mm, the effective width of the outer slice is 6.6 mm (see the
right half of Fig. 3.30b). In practice, in order to solve this problem, we sum the
electrical signals from outer detectors to obtain a single slice (see the left half of
Fig. 3.30b). This reduces the effective width of the slice in question (in this case,
reduced to 4.7 mm).

The existence of certain design factors in detector arrays, such as gaps between
the individual detectors, has led manufacturers of these components to carry out
further research. In order to compensate for the increased angle of incidence of the
X-rays on the screen, adaptive array detectors (AAD) have been used in some
design solutions [18, 26]. In these, instead of separate electrical connections to
each detector, some of the detectors in the array have been physically integrated.
An example of this type of detector array is shown in Fig. 3.31.

Spiral cone-beam scanners that reconstruct 128 slices simultaneously use a
technique called z-Sharp by one manufacturer and z-Wobble by another. These
projection systems use a dual focus X-ray tube and a specially adapted detector
array. The arrangement is shown in Fig. 3.32. By doubling the number of photo-
detectors in relation to the number of scintillator crystals and by changing the
focus of the X-ray tube at high frequency, it has been possible to obtain images
with very high contrast. At the same time, the width of the image slices has been
reduced to less than 0.4 mm.

3.3.2 Detector Parameters

The literature lists the following parameters that describe the quality of mea-
surements achieved by various X-ray detectors

• quantum efficiency,
• energy resolution,
• afterglow,
• stability over time,
• inertia,
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• spatial resolution,
• resistance to irradiation damage,
• internal detector noise.

The quantum efficiency is defined as the ratio between the number of quanta
registered by the detector and the total number of quanta striking the detector. The
limited extent to which gas detectors absorb X-rays reduces their efficiency to
between 30 and 60%. Because the atomic numbers of materials used to construct

Fig. 3.30 A detector array
used in spiral tomography:
a front and side views of the
array, b image smearing in
the outer layers
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scintillators are much larger than the atomic numbers of gases, semiconductor
detectors have significantly better quantum efficiencies than xenon proportional
chambers (from 98 to 99.5%) [15]. On the other hand, the two-stage conversion
process of X-ray quanta into an electrical signal in semiconductor detectors results
in additional losses due to the conversion of the light photons into electrical
impulses, which evens out the benefits of the two detection techniques.

Quantum efficiency has an effect on the minimum radiation dose that must be
applied in order to obtain an image with a specific contrast and signal-to-noise
ratio (SNR). Figure 3.33 shows a graph of the transfer characteristic of an Si (Li)
semiconductor detector with a beryllium window of thickness 8 lm.

Energy resolution is described as the full width at half maximum (FWHM) of
the detector’s transfer characteristic as a function of the incident X-ray photon
energy. Figure 3.34 shows the characteristics of three types of detector and how
the FWHM is determined.

As shown in Fig. 3.34, we first find the X-ray frequency at which maximum
detection occurs and then determine the maximum value and divide it by two to
get the reference level. This is the level at which we estimate the width of the
transfer function, which in turn determines the energy resolution of the detector.
The smaller the width, the higher the energy resolution of the detector and the less
image distortion caused by a polychromatic X-ray beam.

The stability over time of measurements obtained using different types of X-ray
detectors is determined above all by the radiation intensity. Xenon proportional

Fig. 3.32 A detector array
using z-Sharp or z-Wobble

technology (side view)

Fig. 3.31 A modified
detector used in spiral
tomography: front view of the
array, and side view
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chambers meet the highest specifications in terms of their insensitivity to radiation
overload. Semiconductor detectors have a tendency to change their properties
during irradiation, resulting in a change in transfer characteristics. All semicon-
ductor crystals however are able to return to their initial properties after a certain
period after the irradiation has stopped. This time may be hours or minutes,
depending on the type of material. At present, the aim is to obtain semiconductor
detectors with a return time of the order of seconds [15].

After the X-rays have interacted with the sensors in the matrix, degradation of
the output signal occurs. This can also happen when there are sudden large
changes of attenuation coefficient along the path of the rays reaching the detector.
Two parameters are used to quantify this degradation: primary speed and after-

glow. The primary speed can be understood as one of the impulse response
parameters of the detector, which is obtained after the input of a brief pulse of
X-rays. Afterglow occurs following a sudden change in X-ray intensity, caused in
turn by defects in the crystal structure in the detectors. The existence of electron
traps where the crystal defects are situated causes optical recombination of the
electrons. This shows up as thermal motion. Image distortions arising from the

Fig. 3.33 The transfer
characteristic of an Si (Li)
semiconductor detector

Fig. 3.34 Determination of
the energy resolution

3.3 X-ray Detectors 51



degradation of the output signal of the detectors (especially ceramic detectors) are
of low frequency and are difficult to eliminate using algorithms [15, 19].

Although both types of detector have comparable spatial resolution (for
example, the width of one ceramic detector in an array may be 0.95 mm [8]), the
prospect of the miniaturisation of semiconductor detectors is encouraging scanner
designers to use them in an ever greater range of components.

3.4 Imaging in Computed Tomography Devices

The part of the scanner, which allows us to make a diagnosis after the examination
has been carried out, is the monitor. Note, however, that diagnostically useful
images can also then be sent to a device (i.e. the documentation camera) that
records them onto photographic film. In both cases, it is the image reconstructed
from the projections performed earlier, which carries the information about the
tissue structure and the possible presence of abnormalities. In a CT scanner, the
projections are made through the medium of X-rays. The reconstructed image,
which can be analysed on the monitor and/or exposed on film is simply the X-ray
attenuation coefficient distribution of the test object (the patient’s body), which can
be written as follows

l : ðx; yÞ 2 R
2�!

l
lðx; yÞ 2 lmin; lmax½ �; ð3:12Þ

alternatively, in the discrete version

l̂ : 1; 2; . . .; If g � 1; 2; . . .; Jf g�!
l̂
l̂ i; jð Þ 2 lmin; lmax½ �: ð3:13Þ

Both for technical as well as practical reasons, it is more convenient to use a digital
image. Before tackling the issue of digital visualisation, we should first clarify the
concept of luminance, which is a key term used to describe images.

3.4.1 Luminance of the Image

Luminance is defined by the following equation [16]

lumðx; yÞ,

Z

1

0

KðkÞIlightðx; y; kÞdk; ð3:14Þ

where k is the wavelength of the light; Ilight(x, y, k) is the distribution of the light
emitted by the object; K(k) is a function relating the efficiency of the visual system
to the wavelength of the light.
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This function assigns a value for the luminous intensity to each point on an
image and will be referred to as the luminance of the analogue image. The
assignment can be described by the following transformation

lum : N�!
lum

lummin; lummax½ � � R; ð3:15Þ

where N ¼ ðx; yÞ : 0	 x	 xmax; 0	 y	 ymaxf g � R� R; lummin is the minimum
luminance in the image; lummax is the maximum luminance in the image, xmax is
the horizontal size of the image; ymax is the vertical size of the image.

The analogue luminance of the image as defined above forms the basis of
operations that change the appearance of the image on the computer monitor into a
form that is useful for the radiologist. It is also important to look at the following
two processes: discretisation of the analogue image and quantisation of the image.

3.4.2 Discretisation and Quantisation of the Image

In order to digitise an image, the analogue image as represented by its luminance
must be subjected to sampling (discretisation) and quantisation [9, 16], in the order
given in Fig. 3.35.

As shown in Fig. 3.35, the analogue luminance of the image is first subjected to
sampling, using the following transformation

^lumði; jÞ ¼ lumðx; yÞ � combðx; y;Dx;DyÞ; ð3:16Þ

where Dx ¼
1

2fx0
is the horizontal raster discretisation; Dy ¼

1
2fy0

is the vertical raster

discretisation; fx0 , fy0 are the horizontal and vertical cut-off frequencies of the
image, and where

combðx; y;Dx;DyÞ,
X

I

i¼1

X

J

j¼1

dðx� iDx; y� jDyÞ; ð3:17Þ

where I, J are the number of image points sampled vertically and horizontally,
respectively.

By combining Eqs. (3.16) and (3.17), we obtain the formula

^lumði; jÞ ¼
X

I

i¼1

X

J

j¼1

lumðx; yÞ � d x� iDx; y� jDy

� �

: ð3:18Þ

Fig. 3.35 Sampling and
quantisation of an analogue
image
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In the image to be digitised, the units of area, to which uniform luminance values are
assigned, are called pixels and are indexed using i = 1, 2,…, I; j = 1, 2,…, J.
In practice, the display resolutions most often used for tomographic images are:
256 9 256, 320 9 320, 512 9 512, 1,024 9 1,024 and 2,048 9 2,048.

In the frequency domain, the following relationship corresponds to the trans-
formation defined by Eq. (3.18)

^LUM fx; fy
� �

¼ LUM fx; fy
� �


 COMB fx; fy
� �

: ð3:19Þ

The next step in converting the analogue image into a digital image is quantisation

^lumc : Nc!
^lumc
X; ð3:20Þ

where Nc ¼ iDx; jDy

� �

: 0	 i	 xmax; 0	 j	 ymax

� �

� I� I; X ¼ 0; 1; �; 2q � 1f g;
q is the number of bits used to encode the luminance value of the image point, in
natural binary code.

The luminance as defined by (3.20) is called the digital luminance of the image,
and each point on the image is defined by the digital luminance function ^lumcði; jÞ.
There are obvious similarities between the transformations (3.15) and (3.20) but
the former describes the luminance distribution of the analogue image and the
latter of the digital image. The range of values of ^lumcði; jÞ depends on the number
of quantisation levels, which in turn depends on the number of bits assigned to
encode the luminance of the pixels. This is usually 8 bits, representing 256
quantisation levels or 9 bits and 512 quantisation levels.

In order for the projections performed by the scanner to be subjected to the
reconstruction process, we need to obtain the attenuation coefficient distribution in
the cross-section of the test object. To display the reconstructed image of the
attenuation coefficient distribution lðx; yÞðl̂ði; jÞÞ on the computer screen in a way
that will be diagnostically useful however, we need to apply the following non-
linear transformation

imaging : lðx; yÞ 2 HU �!
imagingðC;WÞ

^lumc 2 X ð3:21Þ

or in the discrete version

imaging : l̂ði; jÞ 2 HU �!
imagingðC;WÞ

^lumcði; jÞ 2 X: ð3:22Þ

It is common practice in medical applications to use units on the Hounsfield scale:
Hounsfield units (HU) [3, 17]. Their value usually varies in the range -1,000 to
3,000, making it necessary to apply a so-called window. This term defines a section
of the scale, which is determined by two parameters: the window centre C and the
window width W. The first parameter specifies the centre of the range of the scale
to be framed by the window; the second is the width of this range.
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In practice, the assignment (3.22) is performed according to the following rules

1. the points at which the function l̂ði; jÞ is to be determined, are assigned to
corresponding points on the screen;

2. the luminance values at these points are determined as follows

^lumcði; jÞ ¼

0 for l̂ði; jÞ	C � W
2

2q � 1 for l̂ði; jÞ�C þ W
2

l̂ i;jð Þ�CþW
2ð Þ� 2q�1ð Þ

W

� �

div 1 for C � W
2\l̂ i; jð Þ\C þ W

2

8

>

>

>

>

<

>

>

>

>

:

; ð3:23Þ

A pictorial representation of this assignment, for q = 8 is given in Fig. 3.36.

In practice, a variety of different values of C and W are used, for example,
C = 1, 000 HU and W = 2, 500 HU for bone imaging, C = - 50 HU and
W = 400 HU for the mediastinum, C = - 600 HU and W = 1, 700 HU for the
lungs.

Fig. 3.36 Applying an
imaging window to values on
the Hounsfield scale

Fig. 3.37 Arrangement of
pixels in a digital image
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A diagram of a digital image created in this way is given in Fig. 3.37 [9].
For three-dimensional images, the term voxel (a contraction of the term volume

element) is often used. A voxel is the three-dimensional equivalent of a pixel.
A graphical interpretation of this concept is shown in Fig. 3.38.

3.4.3 The Display of Reconstructed Images

During a comprehensive tomographic examination, a series of actions are per-
formed, the result of which is a set of images of successive slices of the patient’s
body. During the preliminary phase of the procedure, the table with the patient on
it is positioned inside the opening of the gantry. The distance that the patient is
inserted into the gantry, the height of the table, and the angle of inclination of the
gantry are all factors that can be adjusted. All of these options are shown in
Fig. 3.39.

The position of the patient at this stage depends on the part of the body that is to
be scanned. In order to position the appropriate region of the patient’s body
accurately, a preliminary scan is performed to produce a reference image similar to
a standard X-ray image (see the illustration in Fig. 3.40). Some scanner manu-
facturers call this a topogram or toposcan.

The main difference between this image and an ordinary X-ray image is that it
is in electronic form. The scanner’s application software uses this image to
determine the positions at which subsequent projections will be performed. The
places where image slices are planned are indicated using a feature of the appli-
cation called field of view (FOV) markers, as shown in Fig. 3.40. Scans are then
carried out on the motionless patient according to the parameters determined by
the radiology staff.

Fig. 3.38 Voxels in a three-
dimensional image
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It is worth mentioning that, in order to enhance the view of certain organs, the
scan is often preceded by the intravenous injection of a contrast agent into the
patient.

The digital images obtained after reconstructing all the images of the individual
slices of the patient’s body are known as tomograms. Each of the tomograms may
be visualised on demand as described below. An example of a set of tomograms is
shown in Fig. 3.40.3

This set of tomographic images forms the basis of the next phase of the
process: diagnosis. During diagnosis, the radiologist may use additional features
of the tomography software to identify a region of interest (ROI) (and possibly
enlarge it), to measure distances on the tomogram, calculate the radiation
attenuation coefficients of selected areas and to display the attenuation coeffi-
cients of any of the slices, etc. In addition, the use of windows with different
values of C and W presents the radiologist with a great opportunity to evaluate
different diagnostic aspects of the image (see the displays of the same recon-
structed image using windows with different parameters in Fig. 3.41 (see
footnote 3).

Fig. 3.39 Positioning the patient in the gantry

3 Image made available by the Private Health Care Group ‘‘Unimed’’, Czestochowa, Poland.
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After obtaining a complete set of tomographic images of neighbouring slices, it
is possible to use special techniques to visualise the results of the scan in three
dimensions.

One of these techniques is multi-planar reconstruction (MPR) also known as
multi-planar reformatting. Using this technique, we can obtain images of any
plane in the body (unlike standard X-ray images, these images represent the

Fig. 3.40 A reference image of the brain and a series of selected slices

Fig. 3.41 The same slice viewed with different values of window parameters: the left image with
the pulmonary window (C = - 600, W = 1, 600), the right image with the mediastinal window
(C = 50, W = 350)
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properties of the tissues in the selected layer only). An example of an image
obtained in this way is shown in Fig. 3.42 (see footnote 3).

With a three-dimensional image of the human body at our disposal, we can
construct a three-dimensional model of any organ, using a technique called volume
rendering [34]. Because some organs have a relatively uniform structure, it is
possible to obtain 3D images of such structures as blood vessels, soft tissue or
bone.

One use of this imaging method is in the visualisation of internal voids in the
body, so-called virtual endoscopy. This technique allows us to carry out a virtual
examination of organs such as the bronchi, the gastrointestinal tract or blood
vessels; it lets us ‘‘wander’’ around inside these organs and study their internal
surfaces.

A variant of the image rendering technique mentioned above is an approach
called three-dimensional surface shaded display (3D SSD) [6, 24]. In this method,
the shading of the three-dimensional surface of the object is obtained by using
simple thresholding. A virtual light source is placed near the test object, and the
attenuation of the light intensity as it encounters elements of the object is simu-
lated. It is easy to obtain images of objects such as bone, which have high values of
HU, using this technique. An example of this visual effect is shown in Fig. 3.43
(see footnote 3).

Another approach, called maximum intensity projection (MIP) [5], enables us to
visualise the structure of a test object by selecting the highest value of HU
coefficient occurring along the path of the rays passing through the object at a
given angle of observation. It allows us in particular to examine blood vessels,
after the injection of a contrast agent. An example image obtained using this
technique is shown in Fig. 3.44 (see footnote 3).

The scanner’s user software also provides a number of additional visual effects
to aid the correct interpretation of reconstructed images. These include various
kinds of spatial rotation, shading, highlighting, etc. The radiologist can also choose
to archive images that he thinks are diagnostically important. The number of

Fig. 3.42 An image of
lumbar vertebrae obtained
using the MPR technique
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archived images is limited however by the large size of the image files and the
limited capacity of the computer’s permanent storage.

As a rule, after all the examinations and imaging have been completed, a
collection of diagnostically useful images is selected and earmarked for physical
archiving using the documentation camera. In this way, we obtain a film similar in
appearance to a standard X-ray film, but with the images arranged on it in an
appropriate order.
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Chapter 4

The Physics of Data Acquisition

The chance discovery of X-rays, followed by deeper understanding of their nature,
properties and methods of generation led not only to the creation of devices to
perform standard X-ray photographs (see Fig. 4.1) and mammograms but also to
the creation of radiotherapy devices and the development of computed
tomography.

4.1 X-ray Propagation Through Matters

In order to help us to understand the nature of X-rays let us assume that we have a
beam of monoenergetic photons. One of the fundamental quantities associated
with radiation is its intensity I, which is defined as the amount of photon energy
passing through unit area in unit time:

I ¼
number of photons � hm

S � t
1

cm2 � s

� �

ð4:1Þ

where h is Planck’s constant, m is the frequency of the photon of radiation emitted,
S is area, and t is time.

When an X-ray beam of intensity I(0) is directed at an object, certain physical
processes take place within the object. These processes are responsible for the
attenuation of the radiation, its loss of energy and the consequent raising of the
object’s temperature. The mechanisms involved include

• the photoelectric effect (absorption),
• incoherent and coherent scattering.

In the case of the photoelectric effect, the X-ray photons interact with the
electron shells of the atoms in the irradiated sample [1]. Some of the incident
photon energy is used to overcome the binding energy of electrons that are ejected;
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the rest of the energy is transferred to the photoelectrons in the form of kinetic
energy

Ei ¼ Eb þ Ek; ð4:2Þ

where Eb is the electron binding energy, Ek is the kinetic energy transferred to the
photoelectron, Ei = hm is the energy of the incident photon.

The vacancies in lower electron shells cause other electrons from higher shells
to move into them. The energy difference between the electron that was removed
and the electron brought from the higher shell is emitted as a quantum of sec-
ondary X-ray energy. In each element, only certain transitions between shells are
permitted and so the quanta of secondary radiation emitted will have well-defined
characteristic wavelengths.

Another effect that influences the attenuation of the radiation is scattering, both
coherent (Rayleigh) and incoherent (Compton) scattering [1]. In the first case, the
X-ray photons incident on the sample change direction without loss of energy. In
the second case, the radiation quanta both change their direction and lose energy
during their interaction with the electrons. The remaining energy of a scattered
quantum can be expressed by

En ¼
hm

1þ f 1� cos nð Þ
; ð4:3Þ

where f is the ratio of the incident quantum energy to the rest energy of the target
electron with which the quantum interacts, n is the angle of scattering, En = hm0 is
the energy of the scattered quantum, and m0 is the frequency of the scattered
quantum.

All of the factors mentioned above are responsible, in varying degrees, for the
attenuation of X-rays as they pass through an object. If we accept that each of the
three factors mentioned above has an influence on the radiation passing through
the sample then we should be able to determine the total value of the factor
attenuating this radiation. This is called the mass attenuation coefficient [17, 19] or

Fig. 4.1 The hand of
Professor Albert von
Kölliker, the first publicly
performed X-ray, 23 January
1896
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alternatively the linear attenuation coefficient [4] (for the sake of simplicity the
linear attenuation coefficient will in future be referred to as the attenuation
coefficient):

l ¼ la þ lc þ ln; ð4:4Þ

where la is the true absorption coefficient caused by the photoelectric effect
(absorption), lc is the scattering coefficient for coherent scattering, ln is the
scattering coefficient for incoherent scattering.

The value of the attenuation coefficient is a characteristic of a particular sub-
stance and is given in tables of physical constants.

It should be stressed that the attenuation coefficient is the link between the
physical processes occurring inside a substance as X-rays pass through and the
mathematical relationships allowing us to quantify the interaction.

To define the basic mathematical relationships describing the passage of X-rays
through matter, let us consider a beam of radiation of intensity I(0) directed at a
uniform object of cross-sectional area 1 m2, as shown in Fig. 4.2.

Let us assume that in 1 m3 of the irradiated material there are N centres of
interaction, which cause the incident radiation to undergo attenuation, and that
after passing through a distance u the radiation intensity has a value I(u). In an
extremely thin layer of width du there will be N � du centres of interaction. The
total reduction of X-ray intensity dI(u) in this layer is proportional to the number
of incident photons per unit time and to the number of centres of interaction in the
layer:

dI uð Þ ¼ �r � I uð Þ � Ndu; ð4:5Þ

where r (m2) is the constant of proportionality (dependent on the type of material)
known as the total cross-section.

This relationship is only valid for isotropic scattering of photons or ejected
electrons, where the total cross-section r(/, w) is constant, i.e. not dependent on
the direction of scattering (the angles / and w are directions in the spherical
coordinate system). Dividing both sides of Eq. 4.5 by I(u) and integrating both
sides over the thickness of the sample U, as in the equation below:

Fig. 4.2 The attenuation of
X-rays as they pass through
matter
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Z

U

0

dI uð Þ

I uð Þ
¼ �r � N

Z

U

0

du; ð4:6Þ

we obtain the relationship [17, 19]:

I Uð Þ ¼ I 0ð Þ � e�rNU ¼ I 0ð Þ � e�lconstU; ð4:7Þ

where lconst = rN (m-1) is the attenuation coefficient (dependent on the
material).

If we have a heterogeneous sample of material (such as the human body), we
should replace the attenuation coefficient in Eq. 4.7 with the integral of the
attenuation coefficient over the path through which the radiation passes (see
Fig. 4.3). So for a one-dimensional path, the equation takes the following form:

I Uð Þ ¼ I 0ð Þ � e
�
R

U

0

l uð Þdu

; ð4:8Þ

where l(u) is the function defining the attenuation coefficient distribution along
the path of the radiation.

The determination of l(u) allows us to define the spatial structure of the human
body in terms of the ability of its individual layers to attenuate radiation. This will
allow us to distinguish the body tissues in a tomographic image, characterised as

Fig. 4.3 The transmission
of radiation through matter.
a A homogeneous attenuation
coefficient, b a linearly
increasing attenuation
coefficient
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they are by the distinct properties of their constituent elements and compounds,
e.g. calcium and water. Table 4.1 shows the proportions of certain elements in
selected tissues.

For convenience during diagnosis, the Hounsfield scale has been introduced
[11] to define the degree of attenuation of radiation by various substances.
The so-called Hounsfield number for a particular tissue is defined relative to the
attenuation properties of water, as follows:

HUtissue ¼ 1; 000
ltissue � lH20

lH20

; ð4:9Þ

where ltissue is the resultant X-ray attenuation coefficient for the tissue, lH20
is the

X-ray attenuation coefficient for water.
Hounsfield numbers can range from -1,000 for gases up to a maximum of

3,000 for bone. We can, therefore, express the range of Hounsfield numbers as
follows:

HU 2 �1; 000; 3; 000½ � � R: ð4:10Þ

Hydrated body tissues have a Hounsfield numbers that varies in the region of
HU = 0. The Hounsfield numbers for various tissues are given in Table 4.2.

Table 4.1 The proportions of some elements in selected tissues (in the case of blood given in
mg/dm3, for the remaining tissues in lg/g of dry mass ppm)

Element Blood Brain Liver Lungs Muscles

Sodium (Na) 1,970.00 10,000.00 5,500.00 1,200.00 4,000.00
Potassium (K) 1,620.00 11,600.00 7,400.00 8,600.00 10,500.00
Mercury (Hg) 0.0078 – 0.0220 0.03 0.02
Calcium (Ca) 61.00 320.00 140.00 480.00 105.00
Gold (Au) 0.0002 0.50 0.0001 0.30 0.40
Iron (Fe) 447.00 200.00 520.00 1,300.00 140.00

Table 4.2 Hounsfield numbers for selected tissues

Tissue Before the application of contrast After the application of contrast

Brain 35 45
Fresh blood in the brain 65 –
Liver 50 80–90
Kidneys 27–30 100
Spleen 50 70–80
Pancreas 20–30 50
Muscles 40 –
Fat -70 to -110 –
Bone 300–1,300 –
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4.2 The Radon Transform

Equation 4.8 is fundamental for X-ray imaging techniques and provides a starting
point for considering the physical processes involved. It is, therefore, worth
looking at this relationship once more, this time from the point of view of the
transmission of an X-ray beam through a sample with specific attenuation
characteristics:

I Uð Þ ¼ I 0ð Þ � e
�
R

U

0

l x;yð Þdu

; ð4:11Þ

where I(0) is the initial X-ray intensity, I(U) is the X-ray intensity after passing
through a distance U, l(x, y) is the function defining the spatial distribution of the
attenuation coefficient in the sample.

In the rest of this chapter, we assume that the object being X-rayed is a patient’s
body, whose form depends on its anatomical structure. Knowledge of the spatial
distribution of the attenuation coefficient l(x, y) allows us, in most cases, to get a
picture of the arrangement of various organs inside the body and makes it possible
to diagnose the location of possible injuries. In the next chapters, we will discuss
the image reconstruction algorithms that are used to obtain information about the
form of l(x, y) anywhere in the body from these X-ray projections.

Finding the logarithm of both sides of Eq. 4.11, we obtain a quantity that has
fundamental significance for image reconstruction algorithms:

p, ln
I 0ð Þ

I Uð Þ

� �

¼

Z

U

0

l x; yð Þdu; ð4:12Þ

In a projection system consisting of an X-ray tube, the patient’s body and a
photographic film, the quantity p can be interpreted as the ratio of the X-ray
intensity directed at a given point in the body to the radiation intensity after
passing through the body. In practice, this means less darkening of the photo-
graphic film in those places where there has been more attenuation of the radiation
as it passes through the various tissues (i.e. there is a negative image on the X-ray
film). Figure 4.4 illustrates this effect for a spherical object.

To obtain a picture of the inside of an object, it is necessary to collimate the
stream of X-rays to create a suitably shaped beam with which to obtain the
projection. Here, by ‘‘projection’’, we mean the image produced on the screen by
the X-rays falling on it after they have passed through the patient’s body. If the
radiation is collimated into a very narrow parallel beam, then we need only use a
screen in the form of a thin strip, as shown in Fig. 4.5.

To obtain an image of the cross-section of an object in the plane of the pro-
jection, we need to identify parameters for the quantity p, as shown in Fig. 4.6.
Here the first parameter is the variable s, describing the axis perpendicular to the
direction of the incident X-ray. The value s = 0 defines the principal axis of
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projection. The second parameter is the angle a at which, at any given moment, the
projection is made. This is measured relative to the principal projection axis. The
point about which the scanner rotates lies on the principal projection axis and for
practical reasons is located inside the test object.

Fig. 4.5 Obtaining
projections using a parallel
beam of X-rays

Fig. 4.4 Darkening of a
photographic film by X-rays

Fig. 4.6 Projections carried
out at an angle a
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We can write the variable p and its parameters as follows:

p s; að Þ ¼

Z

u

l x; yð Þdu; ð4:13Þ

where the parameters vary within the ranges: -?\ s\?, 0 B a\ p.
In the literature, this equation is often called the Radon transform [9, 11, 14, 16]

and is represented mathematically by

R : l x; yð Þ 2 HU�!
R
p s; að Þ 2 R: ð4:14Þ

In computed tomography, the Radon transform is performed physically by the
attenuation of the X-rays as they pass through the tissues. The task of the apparatus
is simply to transmit an appropriately collimated beam of radiation, and then,
using sensors placed on the screen, to record the intensity of the radiation after it
has passed through the sample.

As shown in Fig. 4.7, the X-ray intensity at a point on the screen corresponds to
a single value of p(s, a). As the radiation is in the form of a parallel beam, only
material lying in the path of the ray arriving at that point is responsible for the
attenuation of the radiation. It follows from Eq. 4.13 that the attenuation takes
place along the straight line defined by the parameter u, where the total path length
is U.

There is, however, a problem with the use of relationship (4.13). The problem
lies in the dependence of the attenuation function on the spatial variables (x, y).
The integration with respect to variable u takes place along a line at a distance
s from the projection axis. This means that we need to find a formula for con-
verting from the fixed coordinate system (x, y) into the moving system (s, u),
which is rotated by an angle a with respect to the (x, y) system. The geometry of

Fig. 4.7 The geometry of the
parallel-beam scanner
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the situation is illustrated in Fig. 4.7. This helps to identify the line along which
the incident ray lies.

Using Fig. 4.7, we can derive the trigonometric relationships given in
Table 4.3. These relationships allow us to convert the coordinates of any point in
the fixed coordinate system into coordinates in the moving system and vice versa.

Proof Figure 4.8 illustrates the trigonometric relationships in a parallel-beam
scanner.

// Combining the elements s = s0 ? s0 0 Based on Fig. 4.8
// The x-relationship in the fixed coordinate
// system (x, y) s0

x
¼ cos a Based on Fig. 4.8

// The y-relationship in the fixed coordinate
// system (x, y) s00

y
¼ cos p

2 � a
� �

¼ sin a Based on Fig. 4.8

s ¼ x cos aþ y sin a Substituting into the equation given in
step 1 of this proof

and

// Combining the elements u = u0 ? u0 0 Based on Fig. 4.8
// The x-relationship in the fixed coordinate
// system (x, y) u0

y
¼ cos a Based on Fig. 4.8

// The y-relationship in the fixed coordinate
// system (x, y) u00

x
¼ cos p

2 � a
� �

¼ sin a Based on Fig. 4.8

u ¼ �x sin aþ y cos a Substituting into the equation given in
step 1 of this proof

Using the trigonometric conversions given in Table 4.3, we can modify
Eq. 4.13 as follows:

p s; að Þ ¼

Z

1

�1

Z

1

�1

l x; yð Þd x cos aþ y sin a� sð Þdxdy: ð4:15Þ

The equation above means that in order to determine the projection function for a
particular point s on the screen and a particular angle of rotation a of the scanner,
we simply need to sum the values of the attenuation coefficients of the patient’s
body along the path of the ray that strikes that point on the screen.

Table 4.3 Trigonometric
relationships between the
moving coordinate system
(s, u) and the fixed system
(x, y)

(x, y)?(s, u) (s, u)?(x, y)

s ¼ x cos aþ y sin a x ¼ s cos a� u sin a

u ¼ �x sin aþ y cos a y ¼ s sin aþ u cos a
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4.3 X-ray Collimators

The acquisition of projection values in any CT scanner requires an appropriate
projection system (construction details can be found in Chaps. 5, 6 and 7). One of
the defining characteristics of a projection system is the shape of X-ray beam used
to determine the individual projection values. To obtain a useful beam of the
desired shape, the X-rays need to be collimated. A drawing of an X-ray collimator
is given in Fig. 4.9.

For convenience, in our theoretical discussions, we will replace the X-ray tube
as the source of radiation with a single point situated at the focus of the tube. The
beam of radiation produced by the tube is first constrained spatially by the initial
collimator (called a pre-collimator). In different designs of CT scanner, collimators
with different aperture shapes are used to obtain beams such as those shown
schematically in Fig. 4.10.

Figure 4.9 shows the basic layout of a collimator system in which the radiation
beam gradual widens as it passes through the irradiated space where the test object
is placed. However, when considering reconstruction algorithms we often make a

Fig. 4.8 Details of the
trigonometric relationships in
a parallel-beam scanner

Fig. 4.9 An X-ray
collimator
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simplification; we define the thickness of the radiation beam BW (beam width) as
the width of the beam as it crosses the principal projection axis. Before the beam
formed in this way reaches the radiation detectors however, further, final colli-
mation takes place. This is to limit the effect of scattering on the measurements.

In Fig. 4.9, the symbol Rd represents the distance of the screen from the main
projection axis (the middle of the (x, y) coordinate system) and Rf represents the
distance of the focus from the main projection axis. It is worth mentioning that in
practice we use the following X-ray beam widths, for example: bones 1 mm,
lungs, blood vessels 2–3 mm, kidneys, pancreas 5 mm, chest, liver 8 mm.

4.4 Physical Causes of Artefacts in the Reconstructed Image

All image reconstruction methods produce post-scanning distortions, mainly due
to simplifications made during signal processing. We can deal with these kinds of
distortions to a limited extent using algorithms. However, there are some artefacts
whose causes are not related to the reconstruction method used but result from the
physical conditions in which the projections were made. Technical and design
limitations of the projection system can have a negative impact on the image
quality obtained by computed tomography techniques. Some of the more serious
physical factors affecting image quality include:

• the polychromatic nature of the X-ray beam,
• the non-zero thickness of the beam,
• shortcomings in the collimator,

Fig. 4.10 Shapes of X-ray
beams used in CT scanner
projection systems: a a
parallel beam of radiation, b a
fan beam of radiation, c a
beam in the form of a cone
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• the presence of metal elements in the patient’s body,
• measurement noise.

It is worth devoting some attention to these factors, and to methods of reducing
their impact.

4.4.1 Spectral Nonlinearities

The equation defining the projection function, the Radon transform, is the integral
of the attenuation values along the path of the ray, but only when the radiation is
monochromatic. However, this assumption rarely holds true in real projection
systems where the radiation intensity measured by the individual detectors is
expressed by the following relationship [11, 14]:

I ¼

Z

I0 Eð Þ � e
�
R

U

0

l x;y;Eð Þdu

dE; ð4:16Þ

where I0(E) is the energy spectrum of the radiation source, U is the distance that
the ray travels from the source to the detector, l(x, y, E) is the attenuation of
radiation with quantum energy E at a specific point in the test object.

Assumptions about the monochromatic nature of the radiation can be expressed
as follows:

I Eð Þ ¼ I0 � d E � E�ð Þ: ð4:17Þ

If we use assumption (4.17) in Eq. 4.16 we get back to Eq. 4.11, defining the
intensity of monochromatic X-rays after they have passed through a sample of
thickness U. However, we cannot just forget about the realities of the practical
situation, so we have take into account the polychromatic nature of the radiation
source. As we can see, for example, in Fig. 3.17, the energy spectrum of a radi-
ation source has an upper limit. This allows us to derive an equation to define the
projection function for polychromatic radiation in a way similar to that for the
monochromic case:

p s; að Þ ¼

Z

u

l x; y; �Eð Þdu; ð4:18Þ

where l x; y; �Eð Þ is the attenuation coefficient, at a point in the test object with
coordinates (x, y), of a ray of average energy �E:

We can evaluate the integral in Eq. 4.18, which defines the projection p(s, a)
for a polychromatic beam, using the following relationship:
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Z

l x; y; �Eð Þdu ¼

R

I0 Eð Þ � e
�
R

U

0

l x;y;Eð Þdu

dE
R

I0 Eð ÞdE
: ð4:19Þ

Here, the estimator of the integral of the attenuation coefficient distribution is
biased, since it depends on the form of the X-ray energy spectrum. Furthermore,
the dependence of the estimator on the attenuation value (in turn dependent on the
quantum energy) indicates the presence of strong nonlinearities. These arise during
the passage of polychromatic radiation because the various components of its
energy spectrum are not attenuated uniformly. This happens because of the so-
called beam hardening effect. Thus, we cannot express the value of Eq. 4.19 as a
linear relationship with the integral of the attenuation coefficient distribution.
However, we can use its expansion [2, 5, 14]:

ln
I0 Eð Þ

I

� �

¼ a0 þ a1 �

Z

l x; y;E
� �

duþ a2

Z

l x; y; �Eð Þdu

� �2

þ � � � : ð4:20Þ

When the X-ray source is monochromatic or the attenuation coefficient does not
depend on the energy of the incident radiation, the above equation can be reduced
to the single component with the coefficient a1. The contributions of the remaining
components of the expansion depend on the distribution of I0(E) and on the
strength of the dependence of l(x, y) on E. Artefacts caused by the nonlinearities
discussed here appear in the reconstructed image especially when a low energy
beam is used. This is because in the low energy range l(x, y) is strongly dependent
on E.

Artefacts resulting from the polychromatic nature of the X-ray beam can be
eliminated in many ways [3, 6, 12, 14, 15]. One of the early correction methods
was to use a compensating bag of water, which surrounded the test object during a
scan [12, 14]. This reduced the degree of variation of the attenuation coefficients of
the tissues and corrected for the nonlinearity in Eq. 4.19.

Another way to correct for this kind of nonlinearity is to linearize the expo-
nential function, using the following relationship [14]:

e�
R

l x;yð Þdu ffi 1�
Z

l x; yð Þdu: ð4:21Þ

By substituting this into Eq. 4.19, we can obtain a formula defining the projection
integral free of nonlinearities. Unfortunately, the linearization (4.21) is only valid
for projection values satisfying the condition:

Z

l x; yð Þdu\1; ð4:22Þ

which for many regions of the human body restricts the use of such methods far
too severely.
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In computed tomography, the most popular method of reducing the effect of the
X-ray spectral distribution is to use special phantoms, which, in structure, size and
type of material, resemble the parts of the human body being examined [14]. In
this method, the projection is first made with the phantom placed in the scanner at
a location corresponding to the position in the body of the part selected for
examination. In this way, we obtain the radiation intensity after passage of the
radiation along the path U from source to detector as follows:

I Uð Þ ¼ I0 � e
�
R

U

0

l x;yð Þdu

¼ I0 � e
�lphantomU; ð4:23Þ

which, for the phantom, can be summarized as l(x, y) = const = lphantom.
In the next stage of the procedure, projections are carried out on the actual part

of the patient’s body. The difference between the measurement of radiation
intensity made during the actual examination and the measurement made using the
phantom is defined by the following Eq. 4.23:

I Uð Þ � Iphantom Uð Þ ¼ I0 � e
�
R

U

0

l x;yð Þdu

� I0 � e
�lphantomU: ð4:24Þ

After suitable mathematical manipulation, we can represent this difference by:

I Uð Þ � Iphantom Uð Þ ¼ I0 � e
�lphantomU � e

�
R

U

0

l x;yð Þdu�lphantomU

� �

� 1

0

B

@

1

C

A
: ð4:25Þ

Assuming a structural similarity between the phantom and the test object, we can
say that in all probability:

Z

U

0

l x; yð Þdu� lphantom � U � 1; ð4:26Þ

which allows us to use the linearization expressed by Eq. 4.21. So, we now have a
linear version of the relationship defining the radiation intensity measured by the
detector, after the radiation has passed through the test area of the human body:

I Uð Þ ¼ I0 � e
�lphantomU � lphantom � U�

Z

U

0

l x; yð Þdu

0

@

1

Aþ Iphantom Uð Þ: ð4:27Þ

This method reduces the effect that nonlinearities, caused by the use of poly-
chromatic X-rays, have on the quality of the reconstructed image obtained by
computed tomography.
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4.4.2 Beam-width Nonlinearities

The next source of non-linear distortion in practical projection systems is related to
the fact that the beam width of the collimated X-rays is non-zero with respect to
the z axis. For the sake of simplicity, we will assume that the beam is parallel and
has an angle of projection of zero, i.e. a = 0. This means that the rays making up
the beam will be parallel to the y axis of the projection system. We can therefore
formulate the relationship defining the projection function measured by the radi-
ation sensors on the screen [6, 14] as follows:

I Uð Þ ¼

Z Z

dist x; zð Þe�
R

l x;y;zð Þdy
dxdz; ð4:28Þ

where dist(x, z) is a function defining the radiation distribution in the test layer.
Of course, if the thickness of the body layer irradiated by the beam is very

small, then we can omit that dimension from the formula above and so eliminate
the problem. In practice, however, it is necessary to take the whole of Eq. 4.28 into
account, especially in cases where, within the irradiated layer, there are sudden
changes in the coefficient l(x, y, z) along the z axis. In that situation, the presence
of the exponential term in Eq. 4.28 causes stratification of various parts of the
radiation beam, as far as its attenuation along the z axis is concerned. So, as with
the nonlinear distortion discussed previously, we can now expand Eq. 4.28 as
follows:

ln
I0 Eð Þ

I

� �

¼ a0 þ a1 �

Z

�l x; y; zð Þdyþ a2

Z

�l x; y; zð Þdy

� �2

þ � � � ; ð4:29Þ

where �l x; y; zð Þ is the mean value of the attenuation coefficient along the z axis.
Faced with such strong nonlinearities, the most effective way to eliminate these

artefacts is to use narrow beams of radiation.
Alternatively, we can minimise this distortion with a technical solution using an

array of small detectors in place of a single large one. Assuming that each detector
l in the array is very small, we can modify Eq. 4.28 as follows:

Il Uð Þ ¼

Z Z

distl x; zð Þe�
R

l x;y;zð Þdy
dxdz ¼ Il 0ð Þe�

R

l x;yð Þdy; ð4:30Þ

where Il(0) = $$ distl(x,z)dxdz is a function defining the radiation distribution in
the test layer.

Each sensor in the array makes its contribution to the measurement of the
intensity and the average value of the projection function recorded by the sensors
is defined by the relationship:

p s; a0ð Þ ¼ p x; a0ð Þ ¼

Z

�l x; y; zð Þdu ¼
1
L
�
X

L

l¼1

ln
Il 0ð Þ

Il Uð Þ

� �

: ð4:31Þ
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This use of the average value of the radiation intensities as measured by the
individual detectors of the matrix, results in the elimination of the non-linear
distortions caused by the non-zero thickness of the radiation beam.

4.4.3 Scatter Nonlinearities

X-rays scattered by the test object during a CT scan (especially as a result of
incoherent or Compton scattering) cause additional components to appear in the
individual intensity measurements [8, 10]. Figure 4.11 shows the result of radia-
tion intensity measurements made at the screen and shows a combination of two
phenomena—absorption (I) and scattering (Is).

The radiation intensity recorded is the sum of these two components:

Isum ¼ I þ Is; ð4:32Þ

and after appropriate modification takes the following form:

ln Isumð Þ ¼ ln I � 1þ
Is

I

� �

: ð4:33Þ

If the term Is
I
is small compared to one, we can say:

� ln Isumð Þ 	 � ln I �
Is

I
: ð4:34Þ

After subtracting ln I0ð Þ from both sides of Eq. 4.34, we obtain:

� ln
Isum

I0

� �

	 � ln
I

I0

� �

�
Is

I
: ð4:35Þ

Fig. 4.11 Components of
radiation intensity
measurements made at angles
0� and 90�
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Bearing in mind the definition of a projection given in Eq. 4.12, the equation
above leads to the following:

psum 	 p�
Is

I
: ð4:36Þ

where psum 
 � ln Isum
I0

� 	

:

From Eq. 4.36, we can assume that a reduction of the measured radiation
intensity I corresponds to rays passing through areas with high absorption
coefficient. This implies an increase in the value of Is

I
; that is an increase in the

influence of the scattering effect on the measurements (as can be seen in
Fig. 4.11, the influence of the term Is

I
is greater at an angle of projection a = 0�

than at an angle a = 90�). The artefacts produced in this way appear as black
stripes in the reconstructed image of the object’s cross-section. We can coun-
teract distortions caused by the scattering effect in two ways: by increasing the
precision of the collimator and using an algorithm to correct the radiation
intensity measurements. The first of these methods relies on designing the col-
limator in such a way as to eliminate as many as possible of the X-ray photons
that do not strike the radiation detectors perpendicularly. In the second method,
the simplest correction algorithm relies on pre-determining the value of Is

I
for

each detector at all projection angles, using an appropriate phantom. The cor-
rection parameters, established in this way, are then added to each of the pro-
jection values obtained by the scanner.

4.4.4 Metal Artefacts

From a physical point of view, metallic elements in the body form regions of very
strong X-ray attenuation when compared to the surrounding soft tissue or even
when compared to bones. This is due to the high atomic number of metallic
elements. However, from a mathematical point of view, metal fillings, plates or
fragments of bullets lodged in the body are simply treated as opaque areas. In a
reconstructed tomographic image, the artefacts created by the presence of such
objects appear in the form of streaks radiating out from the location of the metal
element.

In most publications, the problem of reducing distortions caused by the pres-
ence of metallic elements is reduced to solving the reconstruction problem from
incomplete projections [7, 13, 18, 20]. The variety of possible approaches and the
limited scope of this book do not allow for a deeper analysis of algorithms
developed to eliminate this kind of artefact. It is worth mentioning, however, that
the most popular practical approaches are based on determining the missing
projection values using measurements from the immediate neighbourhood of the
pieces of metal.
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4.4.5 Measurement Noise

In contrast to techniques using electromagnetic waves in the radio waveband,
where the quantum energy is relatively low, the X-radiation used in computed
tomography operates with highly energetic quanta. In radio wave applications, the
main form of noise is Gaussian noise from thermal sources. In the case of X-rays,
the level of noise is determined by the number of incident quanta per information
unit, e.g. per image pixel. This means a strong dependence of the signal to noise
ratio (SNR) on the irregularity of the density of radiation quanta in the beam
incident on the test object. When using reconstruction methods by convolution and
back-projection, we can use the following relationship to define the level of var-
iance r2l of the estimated value of the attenuation coefficient l [14]:

r2l ¼
W

�t � zth

Z

1

�1

h2 sð Þds; ð4:37Þ

where W is the number of projections carried out, �t is the mean photon density of
the X-ray beam, zth is the thickness of the beam of radiation, h(s) is the convo-
lution kernel, used in the convolution and back projection method.

Using Eq. 4.37, we can derive an equation for the SNR in the reconstructed
image:

SNR ¼
Dl

rl
¼ 1 � Dl � sdet �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tdet �W
p

; ð4:38Þ

where Dl is the change in attenuation coefficient in the region of interest, 1 is a
constant of order unity which depends on the kernel used, �tdet is the mean number
of photons incident on the radiation detector; sdet is the width of the radiation
detector perpendicular to the direction of the radiation.

In contrast to other methods of determining the SNR for projections, in the
reconstruction method using convolution there is a strong dependence of SNR on
the size of the detector sdet. Thus, an attempt to increase the resolution of CT
scanners by reducing the size of the radiation detectors reduces the SNR in
Eq. 4.38. This is easy to see, if we realise that:

�tdet � s2det; ð4:39Þ

hence,

SNR ¼
Dl

rl
� 1 � Dl � sdet �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2det �W
q

� 1s2det: ð4:40Þ

The dependence of the SNR on the parameter 1, defining the effect of the con-
volution kernel, is evident in the reconstructed image by the different noise levels
in different areas of the scan. This occurs especially when the part of the body
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under investigation includes oval structures. The combination of such rounded
structures and the radial nature of the convolution kernels causes the rays passing
through the middle of the structures to be more affected by noise than the rays
passing through their edges.
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Chapter 5

Reconstruction from Parallel-beam

Projections

Because of the performance limitations of scanners that used parallel beams of
X-rays, engineers were obliged to modify the design of this system. However, the
fact remains that all new generation CT scanners are based on parallel-beam image
reconstruction algorithms. So, rather than algorithms dictated by the actual
geometry of their projection systems, in most new image reconstruction techniques
we use parallel beam methods.

This means that in order to understand fully the construction and algorithms of
the current generations of CT scanners, it is essential to have an in-depth
knowledge of all aspects of the operation of scanners that use parallel-beam X-ray
projection systems. It is also necessary to indicate the differences between the
actual cross-section of the patient’s body and the image obtained by projection and
back-projection, to show what causes these differences and to show how to
describe them mathematically.

This will allow us to get to the core of the process of using parallel X-ray
projections to obtain information about the structure of an organism’s internal
tissues. The solution of this problem for parallel-beam systems was fundamental
for the development of the first generation CT devices.

5.1 Geometry of the Parallel-beam Scanner

Figure 5.1 shows schematically a method of carrying out a parallel-beam pro-
jection [5–7] irrespective of the type and generation of CT device.

As can be seen in Fig. 5.1a, the moveable part of the scanner, consisting of an
emitter of X-rays and a screen on which radiation detectors are placed, revolves
around the body being examined. The body remains motionless the whole time the
system rotates. During this rotation, radiation is emitted from the source, is col-
limated into a very narrow parallel beam, penetrates the object and reaches the
detectors. The detectors measure the intensity of the radiation as it arrives at the

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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screen. Each measurement of radiation intensity at the screen is evaluated relative
to the original radiation intensity as defined by (4.12). This is the value of the
projection function and is represented by p

p(s, ap) , where the parameters of the

Fig. 5.1 The geometry of a
parallel-beam scanner: a a
pictorial view; b a view in the
x, y plane; c the geometrical
relationships; d the polar
coordinate system
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rays originating from the emitter and reaching the screen are represented in this
system by:

ap—the angle at which the projection is carried out, i.e. the angle between the

x-axis and the s-axis of the rotated scanner;

s—the position of a particular place on the screen, with respect to the axis of the

moving scanner, at the time the projection is made.

The distribution of the radiation intensity observed on the screen varies with the

angle through which the scanner is rotated.

This method of scanning only allows us to obtain the image of the attenuation

coefficient distribution for one cross-section of the body under examination. The

width of this slice is determined by the capacity of the projection system and is one

of the basic parameters of CT scanners. If required, the next cross-section can be

obtained by repeating the scan-reconstruction procedure at another position on the

z-axis.

Figure 5.1b shows the scanner geometry in the plane of the x and y coordinates,

that is in the plane perpendicular to the z-axis. The coordinate system (s, u) is also

shown in the diagram. This indicates the situation after rotation of the scanner

through an angle ap. The relationships between the coordinates in these two sys-

tems have been shown earlier, in Table 4.3. Using these relationships, we can

modify 4.15, describing the Radon transform, into a form more convenient for

further consideration:

ppðs; apÞ ¼

Z

þ1

�1

l s cos ap � u sin ap; s sin ap þ u cos apð Þdu; ð5:1Þ

where -?\ s\?, 0 B ap\ p.

The projection function defined in this way allows for easy physical interpre-

tation. Its value at each point on the screen (a distance s from the origin of the

(x, y) coordinate system) is the sum of all the values of attenuation coeffi-

cient l(x, y) encountered by the ray on its way to that point. This equation only

applies to a scan carried out at a particular angle ap.

Often, when considering image reconstruction problems, we use a polar coor-

dinate system (r, /) [5] as shown in Fig. 5.1d. The most important relationships

between this coordinate system and the two coordinate systems encountered earlier

are given in Table 5.1.

Figure 5.1b illustrates another, practical consideration concerning the scans,

namely the limited space in which they take place. Because of the geometry of the

scanner’s rotational movement, during the scan, the data acquisition takes place

Table 5.1 Relationships

between coordinate system

(r, /) and coordinate systems

(x, y) and (s, u)

ðr;/Þ �! ðx; yÞ ðr;/Þ �! ðs; uÞ

x ¼ r cos/ s ¼ r cosðap � /Þ

y ¼ r sin/ u ¼ r sinðap � /Þ
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inside the circle of radius R. The cross-section of the patient’s body must be
contained entirely within this circle. Furthermore, the table on which the patient
lies is positioned in the space so that his body fits comfortably inside the scanner’s
gantry. The remaining space in the tunnel is filled with air of minimal value of
attenuation coefficient l(x, y) (lair = -1,000 on the Hounsfield scale). It should
be mentioned that no function limited in space, including this function describing
projection pp(s, ap), can possess a finite spectrum [8, 15], represented here by
P(f, ap), where

Pðf ; apÞ ¼ F 1 ppðs; apÞf g ¼

Z

þ1

�1

ppðs; apÞe�j2pfsds: ð5:2Þ

This fact has substantial implications for the selection of filters for some recon-
struction methods. This will be discussed later.

5.2 Geometry of the Discrete Parallel-beam Scanner

For various reasons, problems arise in practical projection systems in adapting the
image reconstruction algorithm to the discrete nature of the projections. The
projections are discrete with respect to both the angle at which they are obtained
and the finite number of places on the screen at which their values are measured.
There is also a fundamental difference between the approach to the question of
discretisation in a system with one detector and one with a matrix of detectors.
However, in both systems we have to take into consideration the distribution
function characterising the way in which the individual detectors respond to the
radiation reaching them. That function will be represented by d(s), and an example
of its form is shown in Fig. 5.2.

In first generation CT scanner, which had only one detector, carrying out the
projections more closely resembled what we understand by a process of ‘‘scan-
ning’’ across the object. It depended on the simultaneous lateral displacement of
the X-ray tube and detector on opposite sides of the object and the continuous
measurement of the radiation during the whole exposure. This procedure was
repeated for each discrete value of projection angle. The arrangement for the
acquisition of a single projection is shown diagrammatically in Fig. 5.3. Taking
into account the distribution function of a particular detector, the projection

Fig. 5.2 An example of a
distribution function of an
X-ray detector
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function value obtained at the aperture of the detector can be described using the
following formula [9]:

~ppðs; apÞ ¼

Z

pp _s; apð Þd _s� sð Þd_s ¼ ppðs; apÞFdðsÞ; ð5:3Þ

where pp(s, ap) is the original projection function; ~ppðs; apÞ is the projection
function registered by the detector; d(s) is the distribution function of the detector;
F is the cross-correlation operator.

It should be noted that, in this case, it is the hardware that is carrying out the
low-pass filtering of projection pp(s, ap) , using the following frequency domain
relationship:

Fig. 5.3 The scanning
process in a system with one
radiation detector: a the
projection at angle ap1; b the
projection at angle ap2
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~Pðf ; apÞ ¼ Pðf ; apÞDð�f Þ; ð5:4Þ

where D(f) is the Fourier transform of function d(s).
If necessary, the projection function (5.3) can be subjected to filtering even

before the sampling process. This sampling process is described by the following
mathematical transformation [9]:

~̂ppðs; apÞ ¼ ~ppð_s; apÞ� comb s

Dp
s

� �

; ð5:5Þ

where Ds
p is the sampling interval (the distance between the individual detectors

on the screen); combðxÞ ¼
P1

l¼�1 dðx� lÞ is the sampling function, as shown in
Fig. 5.4; l 2 I:

Because of the excessive time taken for each projection in a system with only
one detector, subsequent generations of scanners used a complex matrix of
detectors and simultaneous acquisition of projections. This arrangement also
reduced the total radiation dose needed for a projection at a particular angle. If, as
in the previous case, we take into account the particular distribution of the detector
matrix, we obtain the following projection function [9] sampled at the hardware
level:

~̂ppðs; apÞ ¼
Z

pp _s; apð Þd s� _sð Þd_s� comb s

Dp
s

� �

¼ pp s; apð Þ � dðsÞð Þ� comb s

Dp
s

� �

;

ð5:6Þ

where * is the convolution operator.
In the frequency domain, this relationship is expressed as:

~̂Pðf ; apÞ ¼ Dp
s Pðf ; apÞDðf Þð Þ � COMB Dp

s � f
� �

; ð5:7Þ

which, assuming the projection function has an infinite spectrumP(f, ap), repre-
sents a spectrum with overlapping segments, as shown in Fig. 5.5.

This overlapping of the individual components of spectrum ~̂Pðf ; apÞ (known as
aliasing) occurs least when the width of the individual detectors in the matrix is a
maximum [9], that is, when:

dðsÞ ¼ rect
s

Dp
s

� �

: ð5:8Þ

Fig. 5.4 An example of a sampling function
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This form of detector distribution means that the surface of the screen is com-
pletely covered by a homogeneously active surface of detectors, as shown in
Fig. 5.6.

A further consequence of using the detector matrix distribution (5.8) is the fact
that the spectrum of this function:

Dðf Þ ¼ Dp
s � sinc Dp

s � f
� �

ð5:9Þ

has its first zero at:

f ¼ � 1
Dp
s

; ð5:10Þ

which causes repeating segments of spectrum ~̂Pðf ; apÞ at equal frequency intervals:

Df ¼ 1
Dp
s

: ð5:11Þ

As can be seen from Fig. 5.7, this results in a reduction of the overlapping effect of

the individual segments of spectrum ~̂Pðf ; apÞ because in this case Df is twice as
large as the cut-off frequency of the hypothetically band-limited spectrum ~Pðf ; apÞ:

Clearly, the use of a low-pass filter does not completely eliminate the effect of
the overlapping individual segments of the spectrum.

However, a mechanical solution has been suggested [10], which, thanks to the
use of a suitably designed projection system, has improved this situation. In this
approach, rotating the system through 180� about the object is accompanied by a

smooth displacement of the detector panel by a distance Dp
s

2 with respect to its
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Fig. 5.5 The spectrum of the
sampled projection function
~̂Pðf ; apÞ; obtained at the
aperture of the detector
matrix

Fig. 5.6 The screen
distribution, assuming the
detector distribution from
(5.8)
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starting position. In this way, we get an effective shortening of the sampling

interval to Dp
s

2 ; and thereby an increase of the separation along the frequency axis of

spectrum ~̂Pðf ; apÞ to:

Df ¼
2
Dp
s

: ð5:12Þ

This is a great improvement in comparison with the cases considered previously.

The spectrum ~̂Pðf ; apÞ obtained using this technique is illustrated in Fig. 5.8.
In practice however, we only have a few projection function values available:

i.e. those measured at the places on the screen where the radiation sensors are
located. The number of sensors is limited and represented by the symbol L. There
are two cases concerning this number, which we should take into consideration:
the odd and the even case. This condition has an influence on the deployment of
the sensors with respect to the main axis of the moving projection system. If the
number of detectors in the matrix is represented by l, then the range of possible
values of this parameter is specified in the following way:

l 2 L#; . . .;L"
� �

: ð5:13Þ

where [8]:

L# ¼
�ðL�1Þ

2 for l even
�L
2 for l odd

�

; ð5:14Þ
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Fig. 5.7 The spectrum
~̂Pðf ; apÞ for the radiation
detector arrangement with a
distribution defined by (5.8)
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L" ¼
ðL�1Þ

2 for l even
L
2 � 1 for l odd

�

: ð5:15Þ

Taking into account the geometry of the moving projection system, the location of
the individual radiation sensors when a particular projection is carried out can be
defined by:

sl ¼ l�Dp
s : ð5:16Þ

It follows from the Kotelnikov–Shannon sampling theorem that if the cut-off
frequency of the Fourier distribution spectrum of the object’s projection function is
f0 then the distance between the individual detectors should fulfil the condition:

Dp
s �D

p
s;0; ð5:17Þ

where D
p
s;0 ¼ 1

2f0
is the Nyquist interval.

The number of detectors on an annular screen of radius R, enabling the
reconstruction of a limited image, is therefore:

L� 4f0R: ð5:18Þ

In addition, we can assume that the resolution of the detectors is equal to the
resolution of the reconstructed image obtained:

Dp
s ¼ Dx ¼ Dy; ð5:19Þ

where Dx is the horizontal raster discretisation of the digital image; Dy is the
vertical raster discretisation of the digital image.

It now remains for us to establish the relationships concerning the limited
number of projections made during one full revolution of the scanner. The indi-
vidual projections made at discrete angles ap are indexed using w = 0,..., W,
where W is the maximum number of projections made during one half-turn.

Because of the symmetry property of the Radon transform, projections can only
be carried out during one half-turn, that is:

Dp
a ¼

p

W
; ð5:20Þ

where Da
p is the angle through which the tube-screen system is rotated after making

each projection.
We can therefore state that the exposure to X-rays and the collection of

information about the radiation intensity reaching the screen after passing through
the patient’s body occurs when:

a
p

w ¼ w�Dp
a: ð5:21Þ

The angle Da
p represents the sampling interval during the rotation of the projection

system. The only way to reduce distortion in the reconstructed image, caused by
too small an angular sampling frequency, is to reduce the interval Da

p.
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For example, in the methods to be described in Sect. 5.4 the number of pro-
jections made should be greater than the cut-off value [1, 8]:

Wmin ¼
pL
2

þ 1: ð5:22Þ

The geometrical relationships of the discrete projection system described above
are illustrated in Fig. 5.9.

In order to simplify matters later in the text, we will assume that the detector
distribution of each individual detector in the matrix has the following form:

dðsÞ ¼ dðsÞ: ð5:23Þ

Fig. 5.9 The geometry of a
discrete projection system: a
the projection at angle a1

p; b
the projection at angle a2

p
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In view of this, each projection value in a parallel-beam system at angle aw
p ,

determined at a point sl on the screen will be represented by the discrete form of
the projection function as follows:

p̂pðl;wÞ ¼ pp l�Dp
s ;w�Dp

a

� �

; ð5:24Þ

where w is the projection number; l is the detector number, in the matrix.
A significant problem in discrete implementations of image reconstruction

methods however, is the effect of the overlapping of the segments of the spectrum
arising after the sampling process. It follows from sampling theory that the discrete
version of the Fourier transform, represented by P̂pðf ; apÞ is a quantity defined by
the following relationship [8]:

P̂ðf ; apÞ ¼
X

1

i¼�1
P f þ i

Dp
s

; ap
� �

; ð5:25Þ

which can also be written as:

P̂ðf ; apÞ ¼ Dp
s

X

1

i¼�1
pp iDp

s ; a
p

� �

e�j2piDp
s ; ð5:26Þ

where P̂ðf ; apÞ ¼ Pðf ; apÞ; when the range of index i is limited to the case of i = 0.
This means that for projection functions pp(s, ap) limited in space, for which the

frequency spectrum is infinite, the component spectra P(f, ap) in spectrum P̂ðf ; apÞ
overlap when i = 0. This represents a serious source of distortion in reconstructed
images.

5.3 Image Reconstruction from Projections: Problem

Formulation

When trying to devise a way of determining the distribution of func-
tion l(x, y) defining the internal structure of a patient’s body, we make use of the
concept of the Radon transform described in Chap. 4. We can justify the use of the
Radon transform in medical imaging because it is identical to the projection
function whose values are measured by a parallel-beam scanner.

The next step towards obtaining a diagnostically useful tomographic image is to
apply the idea of back-projection to the Radon transform as follows [5, 6, 8]:

Bðx; yÞ ¼
Z

p

0

pp x cos ap þ y sin ap; apð Þdap: ð5:27Þ
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Equation (5.27) allows us to assign to each point in space (x, y), the sum of all the
projection function values, which correspond to the rays going through each point
in the course of obtaining the projections.

Assuming that every point in the object has an influence on the projection
function value at the place on the screen reached by the ray passing through the
point, we can say that summation (5.27) contains information about the attenuation
coefficient at that point. At the same time however, it would be mistaken to believe
that we could obtain the true attenuation coefficient distribution simply by carrying
out back-projection directly after the acquisition process. Such an attempt would
produce an indistinct image. Hopes of easy success would turn out to be unfounded
because back-projection is not the same as the inverse Radon transform and the
image defined by function ~lðx; yÞ ¼ Bðx; yÞ; obtained in this way, would be dis-
torted so much as to make any medical interpretation impossible. The process of
obtaining the image l(x, y) by projection and back-projection is shown in
Figure 5.10.

Because of its fundamental significance for computed tomography, the rela-
tionship between the attenuation function ~lðx; yÞ; obtained by projection and back-
projection, and the actual attenuation function l(x, y) of the cross-section of the
object, is worth analysing in some detail. The equation defining this relationship is
as follows [5, 6, 8]:

Fig. 5.10 Obtaining an
image by projection and
back-projection
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~lðx; yÞ ¼ lðx; yÞ � x2 þ y2
� ��1

2¼
Z

þ1

�1

Z

þ1

�1

lð _x; _yÞ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� _xð Þ2þ y� _yð Þ2

 �

r ð5:28Þ

where this equation is defined with the exception of points ð _x; _yÞ; for which
x ¼ _x ^ y ¼ _y:

Proof

//Let ~lðx; yÞ ¼ Bðx; yÞ
~lðx; yÞ ¼

R

p

0
pp x cos ap þ y sin ap; apð Þdap ¼

Follows from the definition of
back-projection

//Substituting the expression for the projection
//values pp(s, ap)

¼
R

p

0

R

þ1

�1

R

þ1

�1
lð _x; _yÞ � d _x cos ap þ _y sin ap � sð Þd _xd _y

� �

dap ¼

Coordinates _x; _yð Þ refer to all
points in the reconstructed
image, variable s only to
those points which, for a
particular projection, lie on
the same straight line as the
reconstructed image point
specified by coordinates
(x, y)

//Substituting the formula for the distance s of the reconstructed image point
//(x, y) from the main axis of the scanner (see Table 4.3)

¼
R

p

0

R

þ1

�1

R

þ1

�1
l _x; _yð Þ � d _x cos ap þ _y sin ap � x cos ap � y sin apð Þd _xd _y

� �

dap ¼

//Simplifying the expression

¼
R

p

0

R

þ1

�1

R

þ1

�1
lð _x; _yÞ � d _x� xð Þ cos ap þ _y� yð Þ sin apð Þd _xd _y

� �

dap ¼

//Changing the order of the integration

¼
R

þ1

�1

R

þ1

�1
l _x; _yð Þ

R

p

0
d _x� xð Þ cos ap þ _y� yð Þ sin apð Þ

� �

dapd _xd _y ¼

//Using the substitution:
//d _x� xð Þ cos ap þ _y� yð Þð Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x�xð Þ2þ _y�yð Þ2ð Þ
p

¼
R

þ1

�1

R

þ1

�1
lðx; yÞ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� _xð Þ2þ y� _yð Þ2ð Þ
p d _xd _y ¼

Proof of the substitution used is
given in Appendix A, in the
discussion of the properties
of the d(x, y) function

//Final form

¼ lðx; yÞ � x2 þ y2ð Þ�
1
2:

h

If the attenuation coefficient distribution is to be considered in polar coordi-
nates, then we could write the polar equivalent of (5.28) as:

~lðr;/Þ ¼ lðr;/Þ � 1
jrj ð5:29Þ

We can conclude from inspection of (5.28) that the image obtained by back-
projection does carry information about the actual form of the attenuation function,
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but distorted by the geometrical factor ðx2 þ y2Þ�
1
2: The principle behind the for-

mation of these distortions is explained in Fig. 5.11, for the simplified case when
only two projections are performed.

A result of the interaction of this geometrical distorting factor on the original
attenuation function is the appearance of artefacts (elements of the image that do
not exist in reality). They take the form of a line lying along the path of the ray as
can be seen in Fig. 5.11. Obviously, this only happens when, in the course of a
particular projection, the ray passing through the distorted points of the image
encounters somewhere else an element of non-zero value of l(x, y). In other
words, as a result of back-projection, the ray passing through that point of non-zero
value of l(x, y) transmits this value to all the image points lying in its path. When
data acquisition is carried out continuously, it is convenient to assume that the
object consists of one non-zero point at its centre, as follows:

lðx; yÞ ¼ dðx� x0; y� y0Þ; ð5:30Þ

where (x - x0,y - y0) is the coordinates of the centre of the object’s cross-section.
As a result of carrying out projections followed by the process of back-

projection, the image obtained could be represented as in Fig. 5.12.

In the frequency domain, the geometrical distorting function funðx; yÞ ¼

ðx2 þ y2Þ�
1
2 is represented by:

FUN f1; f2ð Þ ¼ f 21 þ f 22
� ��1

2: ð5:31Þ

The Fourier equivalent of relationship (5.29) is:

~Mðf Þ ¼
1
jf j
Mðf Þ; ð5:32Þ

where

jf j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22

q

: ð5:33Þ

Fig. 5.11 The formation of image distortions obtained after back-projection: a a sequence of two
projections; b the image showing the artefacts formed after the process of back-projection
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Expression (5.32) forms a convenient starting point for a whole class of analytical
image reconstruction methods, which will be the subject of the following sections
of the chapter.

5.4 Reconstruction Methods by Convolution/Filtration

and Back-Projection

At this point, we will introduce the most popular and most often used family of
image reconstruction algorithms, especially as far as medical computed tomog-
raphy is concerned. Underlying this type of algorithm is the assertion that at each
angle, every individual result streaming into the computer may be adapted to the
reconstruction task in an appropriate way. To help us in our task we will use the
projection-slice theorem, which relates a projection to a cross-section of the
reconstructed image [5, 8]. This can be expressed by the following equation:

Pðf ; apÞ ¼ M f cos ap; f sin apð Þ: ð5:34Þ

Proof

Pðf ; apÞ ¼
R

1

�1

pp s; apð Þe�j2pfsds
Follows from the definition

of the Fourier transform

//The projection for one particular s is the integral
//over all points lying in one straight line

P f ; apð Þ ¼
R

þ1

�1

R

þ1

�1

lðx; yÞd x cos ap þ y sin ap � sð Þe�j2pfsdsdu ¼

Follows from the definition
of the Radon transform
(4.15)

//Modifying the above (see (5.1) and Table 4.3)

¼
R

þ1

�1

R

þ1

�1

l s cos ap � u sin ap; s sin ap þ u cos apð Þe�j2pfsdsdu ¼

//Converting this to the (x, y) coordinate system (see Table 5.1)

¼
R

þ1

�1

R

þ1

�1

lðx; yÞe�j2pf x cos apþy sin apð Þdxdy ¼

//Modifying the above (see Table 4.3)

¼
R

þ1

�1

R

þ1

�1

l s cos ap � u sin ap; s sin ap þ u cos apð Þ � e�j2pfx cos apþy sin apdx
� �

e�j2pfy sin apdy ¼

//Final form
¼ M f cos ap; f sin apð Þ:

Follows from the definition
of the two-dimensional
Fourier transform

h

From relationship (5.34) it follows that the frequency spectrum P(f, ap) of a
projection carried out at an angle ap is equal to a section of the two dimensional
spectrum M(f1,f2) of the original image. The points making up this section fulfil
two conditions: f1 = f cos ap and f2 ¼ f sin ap; which means that they lie in a
straight line at an angle ap with respect to the f1 axis. Figure 5.13 explains this
relationship (5.34) graphically.
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In practice, this means that instead of filtering the whole image in two
dimensions, it is enough to filter all projections p(s, ap) in one dimension, using the
familiar filter form |f|. It is only after the filtering of the individual projections that
they take part in the process of back-projection. This resembles a sort of pre-
processing carried out on the projections, in order to prevent them from intro-
ducing distortion in the subsequently reconstructed image. By treating the results
streaming into the computer system in this way, we can also significantly reduce
the calculation time needed to reconstruct the image. A general flowchart for
reconstruction methods based on relationship (5.34) is given in Fig. 5.14.

Up to now, we have aimed to show that instead of filtering the image obtained
after back-projection in two dimensions, we can filter each projection separately
and only later carry out the back-projection. Before we do this however, we need
to determine how to carry out the one-dimensional filtering of the individual
projections. We can accomplish this by establishing the form of the inverse Radon
transform R-1{p(s,ap)}. This transform should not be confused with the idea of
back-projection B{p(s, ap)}, which only allows us to obtain an image with geo-
metric distortions. The following rule shows how we can obtain the reconstructed
image from the inverse Radon transform:

lðx; yÞ ¼ R�1 R lðx; yÞf gf g: ð5:35Þ

Fig. 5.12 Image of a point-
object obtained after
projection followed by back-
projection

Fig. 5.13 The relationship
between the one-dimensional
Fourier transform of
projection p(s, ap) and a
section of the two-
dimensional spectrum of the
original image l(x, y)
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The following equation fulfils the requirements of (5.35) and is proved below [5]:

lðx; yÞ ¼ R�1 p s; apð Þð Þ ¼
1
2p2

Z

p

0

Z

þ1

�1

oppðs;apÞ
os

x cos ap þ y sin ap � s
dsdap: ð5:36Þ

Proof

Fig. 5.14 Flowchart for reconstruction methods using one-dimensional filtration

//The inverse Fourier transform

lðx; yÞ ¼
R

þ1

�1

R

þ1

�1

M f1; f2ð Þej2p f1xþf2yð Þdf1df2 ¼

//Converting to polar coordinates

¼

Z

2p

0

Z

þ1

0

M f cos ap; f sin apð Þ

� ej2pf x cos apþy sin apð Þ cos ap f sin ap

sin ap f cos ap

�

�

�

�

�

�

�

�

df dap ¼

Changing the limits of integration

(continued)

5.4 Reconstruction Methods by Convolution/Filtration and Back-Projection 99



(continued)
//Simplifying the expression

¼
R

2p

0

R

1

0
Pðf ; apÞej2pf x cos apþy sin apð Þfdfdap ¼

Using relationship (5.34)

//Splitting the integral into two components

¼

Z

p

0

Z

1

0

Pðf ; apÞej2pf x cos apþy sin apð Þfdfdap

þ

Z

p

0

Z

1

0

P f ; ap þ pð Þej2pf x cos apþy sin apð Þfdfdap ¼

One component considers angles of
rotation ap 2 0; p½ � and the other
ap 2 p; 2p½ �

¼
Z

p

0

Z

1

0

Pðf ; apÞej2pf x cos apþy sin apð Þfdfdap

þ
Z

p

0

Z

1

0

P �f ; apð Þej2pf x cos apþy sin apð Þfdfdap ¼

Using the property of the Fourier
transform: P(f, ap ? p) =
P(- f, ap)

//Changing the limits of integration

¼
Z

p

0

Z

1

0

Pðf ; apÞej2pf ðx cos apþy sin apÞfdfdap

þ
Z

p

0

Z

0

�1

Pðf ; apÞej2pf ðx cos apþy sin apÞð�f Þdfdap ¼

//Combining the two components into one integral

¼
R

p

0

R

1

�1
jf j � Pðf ; apÞ � ej2pf x cos apþy sin apð Þdf

� �

dap ¼
The value of function |f| is never

negative

¼
R

p

0

R

1

�1
Pðf ; apÞ � f � signðf Þ � ej2pf x cos apþy sin apð Þdf

� �

dap ¼ After substituting: |f| = f�sign(f)

¼
R

p

0
F�1
1 Pðf ; apÞ � f � signðf Þð Þ

� �

dap ¼ After applying the definition of the
inverse Fourier transform

¼
R

p

0
F�1
1 f � Pðf ; apÞð Þ � F�1

1 signðf Þð Þ
� �

dap ¼ The product of the functions in the
frequency domain is equal to
their convolution in the s-domain
(see Appendix A)

¼
R

p

0

1
j2p2


 �

oppðs;apÞ
os


 �

� �1
jps


 �
 �

dap ¼ After determining the inverse
Fourier transform of both
functions

¼
R

p

0

R

1

�1
1

j2p2
opp _s;apð Þ

o_s
� �1
jp s�_sð Þd_sda

p ¼ Follows from the definition of
convolution

//Simplifying the expression

¼ 1
2p2

R

p

0

R

1

�1

opp _s;apð Þ
o_s

� 1
s�_sð Þd_sda

p ¼

//Final form

¼ 1
2p2

R

p

0

R

1

�1

oppðs;apÞ
os

� 1
ðx cos apþy sin ap�sÞ dsda

p

h
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For practical reasons, another form of (5.36) is often used:

lðx; yÞ ¼

Z

p

0

�pp x cos ap þ y sin ap; apð Þdap; ð5:37Þ

where

�pp x cos ap þ y sin ap; apð Þ ¼

Z

1

�1

jf j � Pðf ; apÞej2pf x cos apþy sin apð Þdf ð5:38Þ

is the projection after the filtering process.
It is necessary to stress that (5.37) defines the inverse Radon transform [4, 5, 7],

that is, quite simply it is the process reversing the Radon transform. This fact will
be used next to develop two competing methods of reconstructing the image:

• the convolution and back-projection method,
• the filtration and back-projection method.

In both of these methods, which follow from (5.37), the main aim is to obtain
filtered projection values �ppðs; apÞ: These methods will be the subject of later
sections of this chapter, but first we will analyse some of the filters that could be
used.

5.4.1 Choice of the Filter Forms

The image reconstruction methodology formulated in the previous section relies
for its operation on the appropriate preparation (i.e. filtering) of each projection
individually. Irrespective of the domain in which this process occurs, the design of
filters relies on an equation appearing in the proof of relationship (5.36) [5]:

lðx; yÞ ¼
Z

p

0

Z

1

�1

jf j � Pðf ; apÞej2pf x cos apþy sin apð Þdfdap: ð5:39Þ

At this point, it is worth reminding ourselves of the geometry of the moving
projection system of the CT scanner and emphasizing the restricted space in which
the projections pp(s, ap) are carried out. No function limited in space can have a
finite frequency spectrum, in this case represented by P(f, ap). Because at some
stage of the reconstruction process, function pp(s, ap) is always subjected to
sampling, the conditions will be such as to cause overlapping of the components of
the frequency spectrum P̂ðf ; apÞ: The source of this effect is the form of the
frequency spectrum P̂ðf ; apÞ of the sampled function pp(s, ap). This spectrum
consists of a series of spectra P(f, ap) displaced with respect to each other on the
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frequency axis (see Fig. 5.5 and Eq. 5.25). Since function P(f, ap) is unbounded,
parts of the components of the total spectrum P̂ðf ; apÞ would overlap each other
causing distortion in the reconstructed image (so-called aliasing) [2]. In consid-
ering this problem further, we will distinguish two cases [9]:

• a projection system with one scanning detector,
• a projection system with a matrix of detectors.

By using a projection system with one scanning detector, we can significantly
limit the effect discussed above. As already mentioned during our discussion of the
design limitations of this generation of scanner (see Sect. 5.2), a process of low-
pass filtering of the individual projections already occurs at the hardware level, in
accordance with (4). This limits the bandwidth of the spectrum P(f, ap) of the
individual projections. It is most important that this process take place before the
sampling of the projection function so as to minimise the incidence of the phe-
nomenon of the overlapping components of spectrum P̂ðf ; apÞ: If necessary, we
can also carry out further remedial low-pass filtering by using signal processing.
Both of these procedures result in a preventative limiting of the bandwidth of
spectrum P(f, ap) and a significant reduction in the number of artefacts appearing
in the reconstructed image.

During the development of computed tomography, a design emerged which
used a matrix of detectors. This significantly reduced the time taken to acquire the
projection values. In such a system, the sampling is carried out by the array of
detectors at the same time as the value of the projection function is being deter-
mined. Because of this, preliminary limiting of the frequency bandwidth of the
projection becomes impossible. This lack of a finite frequency spectrum causes
overlapping of the individual components of the spectrum P̂ðf ; apÞ of the sampled
projection function and so is a direct cause of distortion in the reconstructed image.

In each of the two cases discussed above it is necessary to apply filters per-
mitting partial rejection of the components of spectrum P̂ðf ; apÞ [8], other than the
first component, which is identical to spectrum P(f, ap). However, we need to
reconcile ourselves with the real threat of interference in the reconstructed image.

The filtering of spectrum P(f, ap) takes place with the aid of a suitably well-
matched window function and the process can be represented by the following
operation [5]:

�Pðf ; apÞ ¼ Pðf ; apÞWðf Þ; ð5:40Þ

where �Pðf ; apÞ is the filtered spectrum of the projection function pp(s, ap); W(f) is
the window function, defining the part of the spectrum of projection P(f, ap) under
consideration.

We also need to be aware that, in practice, minimising the side effects of the
sampling process by filtering also applies to the sampled projection function
p̂ðl;wÞ: The following equation defines the filtering process as applied to the
combined frequency spectrum P̂ðf ; apÞ :
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�̂Pðf ; apÞ ¼ P̂ðf ; apÞWðf Þ; ð5:41Þ

where �̂Pðf ; apÞ is the filtered spectrum of the sampled projection function p̂ðl;wÞ:
The basic condition imposed on the form of the applied window function is that:

Wðf Þ ¼ 0 for jf j � f0; ð5:42Þ

where f0 is the cut-off frequency of the filter.
For the unbounded frequency spectrum P(f, ap), f0 has the value:

f0 ¼
1

2Dp
s

; ð5:43Þ

where Ds
p is the sampling interval.

The most straightforward form of window function is a function with the fol-
lowing properties [5, 6, 8]:

WRL ¼ 1 for jf j � f0
0 for jf j[ f0

�

; ð5:44Þ

the graph of which is shown in Fig. 5.15.
The window function defined in (5.44) can also be represented in the following,

equivalent way:

WRL ¼ rect
f

2f0

� �

: ð5:45Þ

Taking into consideration the bandwidth limitation of function P(f, ap) introduced
in relationship (41), we can modify (5.39) as follows:

�lðx; yÞ ¼
Z

p

0

Z

þ1

�1

jf jWRLðf ÞPðf ; apÞej2pf x cos apþy sin apð Þdfdap: ð5:46Þ

The application of the window function forces us to accept the fact that the
reconstructed function �lðx; yÞ describing the image will only be a band-limited

Fig. 5.15 The window
function defined by (5.44)
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approximation of l(x, y). In view of this, (5.46) can be converted into the fol-
lowing form:

�lðx; yÞ ¼

Z

p

0

Z

f0

�f0

jf jWRLðf ÞPðf ; apÞej2pf x cos apþy sin apð Þdfdap: ð5:47Þ

Applying the product theorem of the frequency function to formula (5.47)
(obtained by restricting the limits of integration), we obtain:

�lðx; yÞ ¼

Z

p

0

Z

R

�R

ppðs; apÞh x cos ap þ y sin ap � sð Þdsdap; ð5:48Þ

where

hðsÞ ¼ hRLðsÞ ¼

Z

f0

�f0

jf jWRLðf Þej2pfsdf : ð5:49Þ

Equation (5.48) resembles relationship (5.47) in its relevance to the convolution
and back-projection reconstruction method. In the back-projection process, each
projection pp(s, ap) is filtered before the summation process, as shown below:

�lðx; yÞ ¼

Z

p

0

�ppðs; apÞdap; ð5:50Þ

where

�ppðs; apÞ ¼

Z

R

�R

pp _s; apð Þ � h s� _sð Þd_s: ð5:51Þ

Equation (5.49) defines the filter h(s) in the spatial domain. The equivalent
function in the frequency domain is:

HRLðf Þ ¼ jf jWRLðf Þ ¼ jf jrect f

2f0

� �

: ð5:52Þ

In the literature, this filter is known by an abbreviation of the names of its authors,
namely Ram–Lak [11, 12] (a contraction of the Indian names Ramachandran and
Lakshminarayanan). Figure 5.16 shows the frequency graph of this filter.

Unfortunately a filter such as this, with the acute gradients apparent in
Fig. 5.16, causes oscillations in the filtered signal �ppðs; apÞ; and thus distortions in
the reconstructed image. Furthermore, this filter has a natural tendency to prefer
the higher frequencies, which due to the low signal-to-noise ratio (SNR) (or high
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level of noise compared to the signal) of the images causes an intensification of the
noise. In order to eliminate these undesirable properties a different filter form was
proposed, as defined by the formula:

Hðf Þ ¼ jf jWðf Þ; ð5:53Þ

in which [8]:

Wðf Þ ¼
1� e�jf j

f0
for jf j � f0

0 for jf j[ f0

�

; ð5:54Þ

where f0 is the cut-off frequency of the filter; e is a value in the range [0,1].
Figure 5.17 shows the window function expressed by (5.54), for selected values

of e.
A graphical interpretation of the filters resulting from the window function as

defined in the equation above, for the same selected values of e, is found in
Fig. 5.18.

Currently, in commonly applied reconstruction procedures such as the convo-
lution and back-projection algorithm, filters defined in the s-domain are used. In
the s-domain, in order to determine the filter form from relationship (5.53) we need
to determine the inverse Fourier transform, as follows:

hðsÞ ¼ F�1
1 fHðf Þg ¼ F�1

1 fjf jWðf Þg ¼
Z

1

�1

jf jWðf Þej2pfsdf : ð5:55Þ

Fig. 5.16 The Ram–Lak
filter in the frequency domain

Fig. 5.17 The window
function W(f) defined by
(5.54)
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Using the window function (5.54) with a cut-off frequency of f0 ¼
1

2Dp
s
; we can

express the above relationship in the following way:

hðsÞ ¼ F�1
1 fHðf Þg ¼

Z

f0

�f0

jf j � 1� ejf j
f0

� �

ej2pfsdf : ð5:56Þ

The greatest problem in establishing the final form of (5.56) is the determination of
the inverse Fourier transform for a function containing the factor |f|. If we apply the
approximation [6, 13]:

jf j ffi lim
g!0

jf je�gjf j

 �

; ð5:57Þ

we can prove (the proof of the inverse Fourier transform of function |f| is found in
Appendix A, Sect. A.2) that the solution of (5.56) is the following formula defining
the frequency form of this filter (proof in Appendix A, Sect. A.2):

hðsÞ ¼ 1

2 Dp
s

� �2

sin ps
Dp
s


 �

ps
Dp
s

þ

� 1

4 Dp
s

� �2 sin
ps

2Dp
s

� �

ps

2Dp
s

� �2

�e
sin ps

Dp
s


 �

2psDp
s

þ
cos ps

Dp
s


 �

psð Þ2
�
Dp
s sin

ps
Dp
s


 �

psð Þ3

0

@

1

A:

ð5:58Þ

Formula (5.58) generates a whole class of filters, for which the particular form of
the point spread function h(s) depends on the value of e.

It is easy to find the equivalent discrete version [8] of this formula by substi-
tuting s = l�Ds

p:

ĥðlÞ ¼

3�2e

12 Dp
sð Þ2 for l ¼ 0

� e

plDp
sð Þ2 for l even and l 6¼ 0

� 1�e

plDp
sð Þ2 for l odd

8

>

>

>

<

>

>

>

:

: ð5:59Þ

Fig. 5.18 The filters in the
frequency domain, based on
the window function
W(f) defined by (5.54)
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If we then assume that e = 0, we obtain a form of the aforementioned Ram–Lak
filter:

hRLðsÞ ¼
1

2 Dp
s

� �2

sin ps
Dp
s


 �

ps
Dp
s

�
1

4 Dp
s

� �2

sin ps
2Dp

s


 �

ps
2Dp

s

0

@

1

A

2

; ð5:60Þ

while in the discrete version

ĥRLðlÞ ¼

1

2Dp
sð Þ

2 for l ¼ 0

0 for l even and l 6¼ 0
� 1

plDp
sð Þ

2 for l odd

8

>

>

<

>

>

:

: ð5:61Þ

Figure 5.19 shows a Ram–Lak filter in the s-domain, in a continuous as well as a
discrete form. Other filters of this type, assuming values e ¼ 1

2 and e = 1, have also
been considered to see how useful they could be for application in the convolution
and back-projection reconstruction method [8]. However, until now, they have not
found wider application and so will not be discussed any further here. Because of
the limited space in CT scanners, the spectrum of their images is infinitely wide.
Under these conditions, the use of filters which have a sudden drop in the
transmission bandwidth at relatively low cut-off frequency f0 (as is the case with

Fig. 5.19 A Ram–Lak filter in the s-domain: a in a continuous form; b in a discrete form
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Ram–Lak filters) causes oscillations, which lead to distortions in the reconstructed
image. However, because of the adverse signal-to-noise ratio at high frequencies
too large a value of f0 causes an increase in noise. In the light of such serious
disadvantages, new, alternative solutions to this type of filter are still being sought.

In practical applications, the Shepp–Logan filter [8, 14] (so-called by com-
bining the names of its creators) is of great significance. The formula for this type
of window function is:

WSLðf Þ ¼

sin
pf
2f0


 �

pf
2f0

�

�

�

�

�

�

�

�

�

�

�

�

for jf j � f0

0 for jf j[ f0

8

>

>

<

>

>

:

; ð5:62Þ

where f0 is the cut-off frequency of the filter.
The complete frequency form of the Shepp–Logan filter, obtained from the

window function described by relationship (5.62), is given by the formula below
and is shown graphically in Fig. 5.20:

HSLðf Þ ¼ jf jWSLðf Þ ¼
sin pf

2f0


 �

pf
2f0

�

�

�

�

�

�

�

�

�

�

�

�

rect
f

2f0

� �

: ð5:63Þ

By substituting formula (5.63) into (5.55) and taking the value of the cut-off
frequency to be f0 ¼ 1

2Dp
s
; we obtain an s-domain filter that is useful for the con-

volution and back-projection reconstruction method:

hSLðsÞ ¼ �
ffiffiffi

2
p

pDp
s

� �21� 2 s
Dp
s
sin ps

Dp
s


 �

4 s
Dp
s


 �2
�1

; ð5:64Þ

which, after substituting s = l�Ds
p, leads to the discrete equation for this filter

presented below:

ĥSLðlÞ ¼ �
ffiffiffi

2
p

pDp
s

� �2
1

4l� 1
: ð5:65Þ

Fig. 5.20 A Shepp–Logan
filter in the frequency domain
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As we did in the case of the Ram–Lak filter, we can also show the function devised
by Shepp and Logan both in its continuous and its discrete form (see Fig. 5.21).

Tables 5.2, 5.3 and 5.4 include a survey of the more popular implementations
of filters [5], which owing to the role that they play in the reconstruction problem
bear the name convolution kernels. As well as the two filter forms introduced
above, the tables also contain the well-known Low-pass cosine and the generalised
Hamming filters.

Table 5.2 Examples of convolution kernels in the frequency domain

Type of filter Response in the frequency domain H(f)

Shepp–Logan (Shepp and Logan)
HSLðf Þ ¼ jf jWSLðf Þ ¼

sin
pf
2f0


 �

pf
2f0

�

�

�

�

�

�

�

�

�

�

�

�

rect
f

2f0


 �

Ram–Lak (Ramachandran and
Lakshminarayanan)

HRLðf Þ ¼ jf jrect f

2f0


 �

Low-pass cosine HLCðf Þ ¼ jf j cos pf
2f0


 �

rect
f

2f0


 �

Generalised Hamming HGHðf Þ ¼ jf j gþ 1� gð Þ cos pf
2f0


 �
 �

rect
f

2f0


 �

g – parameter

Fig. 5.21 A Shepp–Logan filter in the s-domain: a in the form of a continuous function; b in its
discrete form
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The Shepp–Logan filter gives better results than the Ram–Lak in the presence of
low-level noise. However, the general Hamming filter, whose parameter g can be
optimised for the noise content, gives good results in the presence of high-level noise.

Other possible forms of filters such as Hann, Parzen and Blackman filters are
presented, for example, in book [3].

5.4.2 Reconstruction Method by Convolution and Back-Projection

Among the methods for obtaining reconstructed images in modern CT scanners,
the one that deserves particular attention is that using convolution and back-
projection [4–6, 8]. Thanks to the simplicity of its implementation, it has virtually
cornered the market for reconstruction software and despite a huge number of rival
algorithms, this method occupies the leading position.

In the convolution and back-projectionmethod, filtering takes place in the s-domain
using the following equation derived in the proof of relationship (5.36) above:

lðx; yÞ ¼

Z

p

0

F�1
1 Pðf ; apÞ � f � signðf Þð Þ

� �

dap: ð5:66Þ

Table 5.3 Point spread functions of the convolution kernels

Type of filter Point spread function h(s)

Shepp–Logan

hSLðsÞ ¼ �
ffiffi

2
p

pDp
s


 �21�2 s
Dp
s

sin ps
Dp
s

� �

4
s

Dp
s

� �2

�1

Ram–Lak

hRLðsÞ ¼ 1

2 Dp
sð Þ2

sin
ps

Dp
s

� �

ps
Dp
s

� 1

4 Dp
sð Þ2

sin
ps

2Dp
s

� �

ps

2Dp
s

0

B

B

@

1

C

C

A

2

Low-pass cosine hLCðsÞ ¼ 1
2 hRL s� Dp

s

2


 �

þ hRL sþ Dp
s

2


 �
 �

Generalised Hamming hGHðsÞ ¼ ghRLðsÞ þ 1�g
2 hRL s� Dp

s

� �

þ hRL sþ Dp
s

� �� �

g – parameter

Table 5.4 Discrete implementation of convolution kernels

Type of filter Discrete point spread function ĥðlÞ
Shepp–Logan

ĥSLðlÞ ¼ �
ffiffi

2
p

pDp
s


 �2
1

4l�1

Ram–Lak

ĥRLðlÞ ¼

1

2Dp
sð Þ2 for l ¼ 0

0 for l even and l 6¼ 0
� 1

plDp
sð Þ2 for l odd

8

>

>

<

>

>

:

Low-pass cosine ĥLCðlÞ ¼ 1
2Dp

s
ĥRL l� 1

2

� �

þ ĥRL lþ 1
2

� �� �

Generalised Hamming ĥGHðlÞ ¼ g
Dp
s
ĥRLðlÞ þ 1�g

2Dp
s
ĥRL l� 1ð Þ þ ĥRL lþ 1ð Þ
� �

g – parameter
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By applying the Fourier transform of the product function (see Appendix A),
(5.66) can be converted into the following form:

lðx; yÞ ¼

Z

p

0

F�1
1 Pðf ; apÞð Þ � F�1

1 f � signð Þ
� �

dap; ð5:67Þ

and hence eventually:

lðx; yÞ ¼
Z

p

0

ppðs; apÞ � F�1
1 f � signðf Þð Þ

� �

dap: ð5:68Þ

By comparing this with (5.37) we obtain:

�pp x cos ap þ y sin ap; apð Þ ¼ ppðs; apÞ � F�1
1 f � signðf Þð Þ: ð5:69Þ

It is now worth looking at equations that describe this method from the point of
view of the application of the Hilbert transform. This transform is defined as:

HðfunÞ 
 funðsÞ � 1
ps

¼ 1
p

Z

1

�1

fun _sð Þ
s� _s

d_s: ð5:70Þ

By suitably selecting fun(s), we can state that [5, 6]:

~H
1
2p

oppðs; apÞ
os

� �

¼ 1
2p2

Z

1

�1

opp _s; apð Þ
os

1
s� _s

d_s ¼ �ppðs; apÞ: ð5:71Þ

In this way, we obtain �ppðs; apÞ from the original projection pp(s, ap) and so we can
write:

�ppðs; apÞ ¼ ~H
1
2p

D ppðs; apÞð Þ
� �

; ð5:72Þ

where

D ppðs; apÞð Þ ¼ oppðs; apÞ
os

: ð5:73Þ

The values �ppðs; apÞ obtained in this way, according to (5.37), need only be sub-
jected to the process of back-projection in order to reconstruct the final image. The
whole process can be reduced to the following:

lðx; yÞ ¼ B ~H
1
2p

ppðs; apÞð Þ0
� �� �

¼ 1
2p

B ~H D ppðs; apÞð Þð Þ
� �

ð5:74Þ
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or to the equivalent form:

lðx; yÞ ¼ B ppðs; apÞ � F�1
1 fjf jg

� �

: ð5:75Þ

Figure 5.22 illustrates the image reconstruction process as expressed by (5.75).
At this point, it is worth looking at the effect of limiting the space in which the

projections pp(s, ap) are carried out in the s-domain, that is to say, the physical
boundaries of the space in which we can place the patient undergoing tomographic
examination. If we assume that �lðx; yÞ is a function with a finite spectrum
approximating to l(x, y), then (5.46) assumes the following form:

�lðx; yÞ ¼
Z

p

0

Z

þ1

�1

Wðf Þ � rect f

2f0

� �

� Pðf ; apÞ � f � signðf Þej2pfsdf

0

@

1

Adap; ð5:76Þ

where f0 is the cut-off frequency of function pp(s, ap).

Fig. 5.22 A flowchart of one of the reconstruction methods using the inverse Radon transform—

the convolution and back-projection method
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Because the value of the window function is W(f) = 0 for |f|[ f0, we can make
the following transformation:

�lðx; yÞ ¼

Z

p

0

Z

þ1

�1

Pðf ; apÞej2pfsdf

0

@

�
Z

f0

�f0

Wðf Þ � rect f

2f0

� �

� f � signðf Þej2pfsdf

1

C

A
dap:

ð5:77Þ

From a comparison of (5.77) and (5.37), it follows that in this case:

�lðx; yÞ ¼
Z

p

0

��ppðs; apÞdap; ð5:78Þ

where

��pp x cos ap þ y sin ap; apð Þ ¼ ppðs; apÞ �
Z

f0

�f0

Wðf Þ � f � signðf Þej2pfsdf ð5:79Þ

and bearing in mind our earlier consideration of convolution kernels, that is the
convolving functions, we can finally write:

�lðx; yÞ ¼
Z

p

0

ppðs; apÞ � hXXðsÞdap; ð5:80Þ

where hXX(s) is the point spread function of the selected convolution kernel.
The conversion of this reconstruction method into its discrete form is given

below.

5.4.3 Discrete Implementation of the Reconstruction Method

by Convolution and Back-Projection

The limited number of projections carried out during each revolution of the X-ray
tube and the limited resolution at which the radiation intensities are measured have
been given earlier by (5.16) and (5.21) and their associated descriptions. According
to these equations, the angles at which the individual discrete projections are carried
out are represented by aw

p
= wDa

p; w = 0,..., W - 1 and at each of these angles,
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we use radiation detectors placed at equal intervals at locations sl = l�Ds
p on the

screen, where the index variable is l = -(L - 1)/2,..., 0,..., (L - 1)/2. It is
therefore only the projection values p̂pðl;wÞ; obtained at these defined angles and
these selected points, that are available to the reconstruction algorithm.

The procedure for obtaining a reconstructed image from projection values
defined in this way is outlined in the steps shown below, which are based on the
sequence of operations set out in the formula [5]:

�lðx; yÞ ¼ B ppðs; apÞ � hXXðsÞ

 �

: ð5:81Þ

Step I In order to carry out the subsequent steps in this image reconstruction
method, we need to begin by performing convolution operations on each
projection delivered in turn by the scanner, using a suitably well-matched
convolution kernel representing the filter. Bearing in mind the factors involved
in the discrete implementation of the algorithm, we need to consider what
conditions must be fulfilled in order for the filtered projection function �ppðs; apÞ
(having the form (5.79) in the continuous version) to reduce to the following,
discrete form:

�̂ppðl;wÞ ¼ Dp
s

X

1

_l¼�1
p̂pð_l;wÞĥðl� _lÞ: ð5:82Þ

The proof of relationship (5.82) is based on the discrete approximation of the
convolution theorem assuming a band-limited function pp(s, ap). For now, it will
be enough to restrict the summation limits to the values -(L - 1)/2 B l B

(L - 1)/2 and to choose an appropriate discrete form of filter for this application.
Table 5.4 includes the discrete formulas of four of the most popular filters,
obtained by the substitution of ĥðlÞ ¼ hðl � Dp

s Þ into the corresponding continuous
versions presented in Table 5.3. Using the selected convolution kernel, the final
discrete filtering takes place according to the following equation:

�̂ppðl;wÞ ¼ Dp
s

X

ðL�1Þ=2

_l¼�ðL�1Þ=2
p̂pð_l;wÞĥXXðl� _lÞ; ð5:83Þ

where XX is the symbol representing the selected convolution kernel (e.g. ‘RL’).
If the frequency spectrum of the discrete projection function p̂pðl;wÞ is repre-

sented by P̂ðf ;wÞ; then after carrying out the projection method �̂ppðl;wÞ described
above, we obtain the frequency characteristic �̂Pðf ;wÞ: Obviously, the form of

spectrum �̂Pðf ;wÞ depends on the type of filter applied. These operations are per-
formed with the aim of preventing geometrical distortions in the projections.

Step II Although as a result of carrying out the previous phase of the recon-

struction algorithm we obtain the projection function �̂ppðl;wÞ devoid of
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geometrical distortions, these projection values most often relate to a line of travel
which does not go through the discrete points (i, j) needed for (5.88). It then becomes
necessary to apply yet another step in the processing of projection �̂ppðl;wÞ: inter-
polation based on the projections made by the rays passing nearest to the point
(i, j) under consideration. An illustration of the application of linear interpolation is
given in Fig. 5.23.

The interpolation operation carried out on the values of projection function
�̂ppðl;wÞ can be written mathematically as follows:

_�pp iDx coswD
p
a þ jDy sinwD

p
a;wD

p
a

� �

¼ Dp
s

X

l

�̂ppðl;wÞ

� I iDx coswD
p
a þ jDy sinwD

p
a � lDp

s

� �

;

ð5:84Þ

where I(Ds) is the interpolation function, defining the dependence of the value of
_�ppðs;wDp

aÞ at any point on the screen on the value �̂ppðl;wÞ at a measured point, as a
function of the distance between the two points.

If we apply a linear interpolation function of the following form [5]:

IL ¼
1
Dp
s
1� Dsj j

Dp
s


 �

for jDsj �Dp
s

0 for jDsj[Dp
s

(

; ð5:85Þ

Fig. 5.23 The interpolation
of projection values at a point
of interest based on values
obtained from neighbouring
projection lines
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where Ds ¼ iDx coswD
p
a þ jDy sinwD

p
a � lDp

s ; then formula (5.84) becomes:

_�pp sij;wD
p
a

� �

ffi ~̂pp l#;w
� �

þ sij

Dp
s

� l#
� �

~̂pp l";w
� �

� ~̂pp l#;w
� �� �

; ð5:86Þ

where sij ¼ iDi cosD
p
a þ jDj sinD

p
a is the coordinate defining the position of point

(i, j) on the screen, during a projection carried out at angle aw
p
= wDa

p;
l; = Trunc(sij, Ds

p) is the position of the first of the rays passing in the vicinity of
point (i,j); l: = l; ? 1 is the position of the second of the neighbouring rays.

The frequency form of the interpolation function obtained from (5.85) is given
by this formula:

ILðf Þ ¼
sin pf

2f0


 �

pf
2f0

0

@

1

A

2

; ð5:87Þ

and is shown in Fig. 5.24.
The process of linear interpolation is explained in more detail by Fig. 5.25.

Step III Our consideration of the discrete convolution and back-projection
reconstruction algorithm can be concluded by re-stating (5.78), a fundamental
equation for the method. This basically says that we can reconstruct the image of
an object by having available suitably pre-prepared projections. The original
projections must be processed, of course, in such a way that the inversibility
principle of the Radon transform is maintained. In the discrete case, we can replace
the integral in (5.78) with the trapezoidal rule (which approximates to the integral),
according to the formula:

�̂l i; jð Þ ffi Dp
a �

X

W�1

w¼0

_�pp iDx coswD
p
a þ jDy sinwD

p
a;wD

p
a

� �

: ð5:88Þ

By completing the summation in formula (5.88), we complete the process of back-
projection, the last step in the image reconstruction process. An overview of the
actions performed during implementation of the convolution and back-projection
reconstruction method is shown diagrammatically in Fig. 5.26.

Fig. 5.24 The frequency
spectrum of the interpolation
function from (5.85)
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5.4.4 Reconstruction Method by Filtration and Back-Projection

In contrast to the previous convolution and back-projection approach to the
reconstruction problem, in this algorithm filtering takes place in the frequency
domain [5]. In order to derive a formula for this method, we need to make use of
the following equation again (introduced in the proof of (5.36)):

lðx; yÞ ¼

Z

p

0

F�1
1 Pðf ; apÞð Þ � f � signðf Þ

� �

dap: ð5:89Þ

In this case, after applying the Fourier transform to the individual projections we
obtain:

Fig. 5.25 The linear interpolation of projection values at points through which the rays do not
pass
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lðx; yÞ ¼

Z

p

0

F�1
1 F1 ppðs; apÞð Þð Þ � f � signðf Þ

� �

dap; ð5:90Þ

which means that, with reference to (5.37), we can apply the following
substitution:

�pp x cos ap þ y sin ap; apð Þ ¼ F�1
1 F1 ppðs; apÞð Þ � f � signðf Þð Þ: ð5:91Þ

As we already know how to prevent distortion of the projections in this algorithm,
we can write:

Fig. 5.26 A flowchart of the discrete convolution and back-projection algorithm
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�ppðs; apÞ ¼ F�1
1 jf j � F1 ppðs; apÞð Þð Þ: ð5:92Þ

Using (5.92) and (5.90) and assuming unlimited space, we can express the fil-
tration and back-projection reconstruction method in the following way:

lðx; yÞ ¼ B F�1
1 jf j � F1 ppðs; apÞð Þð Þ

� �

: ð5:93Þ

Figure 5.27 shows a flowchart of the actions performed in this reconstruction
method, based on formula (5.93).

If however we take into account the physical constraint of the space available as
well as the effect of sampling on the projection spectrum, then we should include
the window function in (5.89) as we did with the convolution and back-projection

Fig. 5.27 A flowchart for the filtration and back-projection reconstruction method
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method. This entails the following modification of the reconstructed attenuation
function with band-limited spectrum:

�lðx; yÞ ¼

Z

p

0

Z

þ1

�1

Wðf Þ � rect f

2f0

� �

� Pðf ; apÞ � f � signðf Þej2pfsdf

0

@

1

Adap; ð5:94Þ

where f0 is the cut-off frequency of function pp(s, ap).
By considering the value of the window function W(f) for |f|[ f0 to be equal to

zero, the above relationship takes the form:

�lðx; yÞ

¼
Z

p

0

Z

þ1

�1

Z

þ1

�1

ppðs; apÞe�j2pfsds

0

@

1

AWðf Þrect f

2f0

� �

f � signðf Þej2pfsdf dap:

ð5:95Þ
By comparing (5.95) and (5.37), it follows that:

�lðx; yÞ ¼
Z

p

0

��ppðs; apÞdap; ð5:96Þ

where

��pp x cos ap þ y sin ap; apð Þ ¼
Z

þ1

�1

Z

þ1

�1

ppðs; apÞe�j2pfsds

0

@

1

A �Wðf Þ � rect f

2f0

� �

� f

� signðf Þej2pfsdf :
ð5:97Þ

Taking into account earlier considerations regarding convolution kernels, we can
finally write:

�lðx; yÞ ¼
Z

p

0

Z

þ1

�1

Pðf ; apÞ � HXXðf Þej2pfsdf

0

@

1

Adap; ð5:98Þ

where HXX(f) is the spectrum of the selected convolution kernel.

On the basis of formula (5.98) we are now able to define the sequence of
operations for obtaining a reconstructed image from the projections as:

�lðx; yÞ ¼ B F�1
1 F1 ppðs; apÞf g � HXXðf Þ

 �
 �

: ð5:99Þ

The process of adapting this algorithm to the discrete form of the projection
function is discussed next.
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5.4.5 Discrete Implementation of the Reconstruction Method

by Filtration and Back-Projection

In the practical implementation of this reconstruction algorithm, as in the previous
method, projections are only carried out at specific angles ap, i.e. only at angles
aw
p
= w�Da

p; w = 0,..., W - 1, where Da
p represents the angle through which the

source-screen system is rotated after each projection. While these projections are
being carried out at angles aw

p , the X-ray intensity is measured by radiation
detectors placed on a screen at accurately determined positions s, fulfilling the
condition sl = l�Ds

p; l = -L/2, ..., 0,..., (L/2) - 1. Here, L is the number of
detectors on the screen, while Ds

p is the distance between detectors. Bearing in
mind the future use of FFT algorithms, the quantity L is chosen to be equal to a
positive integer power of 2.

Taking these circumstances into account, the filtration and back-projection
reconstruction method is implemented in the following sequence [5]:

Step I Since in this reconstruction approach we use discrete forms of projection
(represented by p̂pðl;wÞ; l ¼ �L=2; . . .; 0; . . .; ðL=2Þ � 1; w = 0,..., W - 1) and
especially since their spectra are obtained using FFT algorithms, it becomes
necessary to change the sample index of the projection function. The value of
L is increased to a multiple of itself and is then represented by �L: So the new
sequence �l becomes �l ¼ 1; . . .; �L: The relationship between L and �L determines
the sampling resolution of the spectrum and might have a value of say �L ¼ 2L:
The new range of the sample index is increased to �L according to the following
pattern:

�̂ppð�l;wÞ ¼
p̂p �l� 1;w

 �

for �l ¼ 1; . . .;L=2

0 for �l ¼ L=2þ 1; . . .; �L� L=2

p̂p �l� �L� 1;w

 �

for �L� L=2þ 1; . . .; �L

8

>

>

<

>

>

:

: ð5:100Þ

This procedure is illustrated in Fig. 5.28.

Step II In this step, the individual projections �̂ppð�l;wÞ;w ¼ 0; . . .;W� 1 are
transferred to the frequency domain using an FFT algorithm (an implementation of
one of the FFT algorithms is found in Appendix B). In other words, this stage

determines the spectra of the individual projections �̂
Pð�l;wÞ;�l ¼ 1; . . .; �L; for

w = 0,..., W - 1.
The change in the sample index is applied to the discrete spectrum of the

selected filter �̂H
XXð�lÞ; where �l ¼ 1; . . .; �L: Obviously, this action is performed only

once, at the beginning of the reconstruction process, using one of the possible
filters presented in Table 5.2. The spectrum of the chosen filter is prepared
according to the following transformation:
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�̂
H

XX �l

 �

¼
HXX �l� 1


 �

� Df


 �

for �l ¼ 1; . . .; �L=2

HXX �l� �L� 1

 �

� Df


 �

for �l ¼ �L=2þ 1; . . .; �L

8

>

<

>

:

; ð5:101Þ

in which Df is the spectrum sampling interval, where

Df ¼
1
�L
Dp
s : ð5:102Þ

Fig. 5.28 The shift of sampling sequence needed for the implementation of FFT algorithms

Fig. 5.29 The filtered projection after the sequence of operations carried out in the frequency
domain
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Step III As outlined by relationship (5.98), it is necessary here to multiply the

discrete values of the frequency function �̂
P �l;w

 �

of the individual projections

w = 0,..., W - 1 by the sampled values of the spectrum of the selected filter
�̂
H

XX �l

 �

:

�̂�P �l;w

 �

¼ �̂
P �l;w

 �

� �̂HXX �l

 �

; ð5:103Þ

for each �l ¼ 1; . . .; �L:

Step IV The result of each of these multiplications for w = 0,..., W - 1 is

subjected to inverse Fourier transformation (IFFT) to obtain �̂�p
pð�l;wÞ; where

�l ¼ 1; . . .; �L; w ¼ 0; . . .;W� 1: An implementation of one of the IFFT algorithms
can be found in Appendix B.

Step V In this step, the projection values �̂�p
pð�l;wÞ;�l ¼ 1; . . .; �L need to be indexed,

in a way which is the reverse of the process in Step I, to obtain values �̂ppðl;wÞ
arranged in the order l = -L/2, ..., 0,..., (L/2) - 1, as follows:

�̂ppðl;wÞ ¼
�̂�p
pðlþ 1;wÞ for l ¼ 0; . . .; ðL=2Þ � 1

�̂�p
pð�Lþ lþ 1;wÞ for l ¼ �L=2; . . .;�1

8

<

:

: ð5:104Þ

The process of obtaining projection �̂ppðl;wÞ; defined in this way, is shown in
Fig. 5.29.

Step VI The paths of the projections �̂ppðl;wÞ; obtained as described in previous
stages of the reconstruction process, can often miss discrete points (i, j) of the
image, as expressed in (5.88). It is therefore necessary to interpolate the projection
values _�ppðsij;wÞ going through point (i, j), based on the values of function �̂ppðl;wÞ:
Equation (5.84) shows the formal notation for this operation. We usually consider
the two lines directly neighbouring the line in question _�ppðsij;wÞ; applying the
principle of linear interpolation defined by formula (5.85). Thus, the values of
this projection _�ppðsij;wÞ assigned to the individual discrete points of the image
i = I/2,..., 0,..., I/2 - 1; j = J/2,..., 0,..., J/2 - 1 can now be written down in a
similar way to (5.86).

Step VII After obtaining projection values _�ppðsij;wÞ for all anglesw = 0,..., W - 1,
we can use (5.88) to carry out the summation that completes the discrete version of
the back-projection operation. Combining the projections in this way, at the indi-
vidual points (i, j) of the image, concludes the reconstruction process.

An overview of all the operations performed in the course of image recon-
struction using the filtration and back-projection algorithm is shown in the flow-
chart in Fig. 5.30.
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Fig. 5.30 A flowchart of the discrete version of the filtration and back-projection algorithm
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Chapter 6

Reconstruction fromFan-beamProjections

The limitations of CT scanner projection systems that used parallel beams of
radiation had become a major obstacle to the development of computed tomog-
raphy. In order to overcome these growing technical barriers, engineers searched
for solutions that used a single X-ray tube in which the radiation was collimated
into a narrow beam in the shape of a fan (a fan-beam). This increased the speed
with which each projection was carried out, as it eliminated unnecessary lateral
movement of the tube-detector system. At the same time, it made more efficient
use of the power emitted by the tube; the beam angle of the radiation was sig-
nificantly increased compared to previous designs resulting in a shorter radiation
exposure time for the patient and the distortions due to patient movement were
minimised. This solution represents essentially a compromise between the sim-
plicity of the projection system and an increase in the speed of the scanner.

The change to the shape of the radiation beam made it necessary to adapt the
reconstruction algorithms to the new projection geometry. This chapter will intro-
duce two basic types of reconstruction algorithm [2, 3, 4, 5, 6, 9] that were devised
for fan-beam projections. However, we will not cover other popular solutions,
descriptions of which can be found in the literature of the subject [1, 7, 8].

6.1 Geometry of the Fan-beam Scanner

A diagram of a projection system that uses X-rays collimated into the shape of a
fan is shown in Fig. 6.1, together with key geometrical relationships [6].

As can be seen from Fig. 6.1, the moving fan-beam system consists of an X-ray
tube and a screen in the shape of the arc, on which a matrix of detectors is placed.
The axis of rotation of the system and the axis of symmetry of the radiation beam
both play an important role in determining the geometric relationships in the
system. The axis of rotation is directed along a line perpendicular to the cross-
section of the test object, and its point of intersection with this cross-section is

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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indicated on the diagram by 0. The system rotates about this axis when making
projections. The distance of the X-ray tube from the axis of rotation is represented
by Rf. The whole of the cross-section of the test object must lie within the fan of
X-rays produced by the tube, regardless of the angle at which the projection is
made. We can identify a ray emitted by the tube at a given angle of rotation and
reaching a particular radiation detector, by the pair of parameters (b, a f) where:

b —the angle that the ray makes with the principal axis of the radiation beam;
a f —the angle of rotation of the fan-beam system.

In contrast to the parallel-beam system, the projections in this system are
carried out during one complete revolution. Thus, the angle af, at which a pro-
jection is made, will be in the range [0,2p). The angle varies within the range
[bmin, bmax], where:

bmax ¼ �bmin ¼ arcsin
R
Rf

� �

; ð6:1Þ

Fig. 6.1 A fan-beam scanner
a a 3D view of the system, b
basic geometrical
relationships
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where: R is the radius of the circle defining the space in which the examination is
made; Rf is the radius of the circle described by the focus of the tube.

If we also assume that:

Rf ¼ 2R; ð6:2Þ

then possible values for the angle b lie within the range [-p/6,p/6].
We will represent the projection function acquired in a fan-beam system by the

expression pf(b, af). All of the procedures described below will use these pro-
jections pf(b, af); [bmin, bmax]; [0, 2p) to reconstruct the image using solutions
obtained for parallel-beam systems. There are two dominant solutions to this
problem. The first of these relies on inspecting the rays in the fan-beam for rays
that correspond to those in a parallel beam, a process known as rebinning. The
second solution makes direct use of the convolution and back-projection recon-
struction method.

6.2 Geometry of the Discrete Projection System

Fan-beam scanners can be divided into two systems: those that have an even
distribution of useful rays in the fan (equiangular sampling), and those that have
an even distribution of detectors on the screen (equispaced sampling). We can
combine the features of both these systems by using a screen curved in an arc in
which the focus of the radiation source is situated. Each of these two systems will
require a different approach to the reconstruction algorithm. For technical reasons,
in medical tomography we use a fan-beam system with equiangular sampling.

In fan-beam scanners, we must also take into account the discrete nature of the
projection function. Individual projections are obtained at predetermined angles ac

f,
using radiation detectors placed on a screen in the shape of an arc. The angular
distance bg is determined by the location of the detectors. The angular distances
between the detectors have a constant value Db. We can therefore state that only
the projection values p̂f ðg; cÞ; obtained at specific projection angles and only for
the angles b, determined by the position of the detectors on the screen, are used by
the reconstruction algorithm. Details of this fan-beam system are shown in
Fig. 6.2.

In practical fan-beam scanners, the individual projections are evenly spaced
throughout a complete revolution. Thus, the discrete angles at which the projec-
tions are made can be written as:

afc ¼ c � Df
a; ð6:3Þ

where: Da
f is the angle through which the tube-screen system is rotated after each

projection; c = 0, 1, …, C -1 is the sample index of each projection; C = 2p div Da
f

is the maximum number of projections.
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If we assume that the total number of detectors is odd and that they are arranged
on the screen so that the angles between the rays reaching them are equal, then a
particular location on the arc can be defined by the angle:

bg ¼ g � Db; ð6:4Þ

where: Db is the angular distance between the radiation detectors; g = -(H - 1)/
2, …, 0, …, (H - 1)/2 is the index of the detectors in the matrix; H ¼
2ðarcsin R

Rf

div DbÞ þ 3 is the maximum number of detectors on the screen.

At this point, we will ignore concerns about the transfer functions of the various
radiation detectors and we will make an assumption similar to that in (5.23).

Fig. 6.2 Discrete fan-beam
system: a a projection at an
angle a f

1, b a projection at an
angle a f

2
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This means that for a fan-beam system, the projection values available are as
follows:

p̂f ðg; cÞ ¼ pf gDb; cD
f
a

� �

; ð6:5Þ

where: c is the number of the projection; g is the number of the detector in the
matrix.

Frequency issues concerning the projections have been discussed extensively in
Chap. 5, so we will now move on to look at some reconstruction methods for this
type of scanner.

6.3 Reconstruction Method with Rebinning

This method uses rebinning (sometimes referred to as re-sorting) [2, 3, 4, 9] to
reconstruct images from fan-beam projections. In the first stage of the method we
inspect all of the projections pf(b, a f); b [ [bmin, bmax]; 0 B a f

\ 2p for rays
whose paths would correspond to those of the hypothetical parallel rays
p p(s,ap); - R B s B R; 0 B ap\ 2p. This process is based on the premise that, in
one of the fan-beams emitted in the course of making all of the projections, there
will always be a ray, which would be equivalent to a ray in the virtual parallel-
beam, directed towards the radiation detectors at an angle ap and at a distance
s from the centre of rotation. We can use this collection of parallel projections to
reconstruct the image using well-known methods devised for actual parallel-beam
systems. A flowchart outlining this method is shown in Fig. 6.3.

Using the geometric relationships between the parameters of a ray in one
system with those of the corresponding ray in the other system, as shown in
Fig. 6.4, we can derive the following:

pf ðb; af Þ ¼ ppðs; apÞ ¼ pp Rf sin b; a
f þ b

� �

; ð6:6Þ

which is equivalent to:

ppðs; apÞ ¼ pf ðb; af Þ ¼ pf arcsin
s

Rf

� �

; ap � arcsin
s

Rf

� �� �

: ð6:7Þ

From (6.7), we can easily find the ray in the fan-beam system equivalent to a ray in
the parallel-beam system, for which:

a f ¼ ap � arcsin
s

Rf
; ð6:8Þ

and

b ¼ arcsin
s

Rf
: ð6:9Þ
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All of the parallel projection values obtained in this way then become inputs for
the reconstruction procedures developed for actual parallel-beam systems.

In practice however, we need to adapt the rebinning method described above to
the discrete nature of the projections obtained by the scanner with respect to both
the angle af at which the projections are carried out, and to the angle b at which the
radiation intensities are measured by the detectors on the screen.

Fig. 6.4 Geometrical
relationships between a fan-
beam and a parallel-beam
projection system

Fig. 6.3 The image reconstruction method with rebinning, for a fan-beam system
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6.4 Discrete Implementation of the Reconstruction Method

with Rebinning

In implementing the discrete version of the reconstruction method with rebinning
[3] we will first of all consider how the fan-beam projection values specified by the
parameters (bg, a

f
c) are related to the parallel-beam raster determined by the pair

(sl, a
p
w), where:

sl ¼ l � Dp
s ; ð6:10Þ

where: l = -(L - 1)/2, …, 0, …, (L - 1)/2 is the sample index of the detectors
in the parallel-beam system; L = 2(R div Ds

p) ? 1 is the maximum number of
detectors on the screen in the parallel-beam system; Ds

p is the distance between
detectors in the parallel-beam system, and

a
p

w ¼ w � Dp

w; ð6:11Þ

where: w = 0, …, W - 1 is the index of the individual projections in the parallel-
beam system; W = 2p div Da

p is the maximum number of projections; Da
p is the

angular distance between projections.
The next step will be to reconstruct the image using one of the methods devised

for the parallel-beam system.
A detailed discussion of both these basic phases of the algorithm is given below

as consecutive steps in the processing of the projection values p̂ f ðg; cÞ ¼
p f ðgDb; cD

f
aÞ; g ¼ �ðH� 1Þ=2; . . .; 0; . . .; ðH� 1Þ=2; c ¼ 0; 1; . . .;C� 1, obtained

using the discrete fan-beam scanner.

Step I In order to convert the projection values from one system to the other we
use the relationships:

blw ¼ arcsin
sl

Rf
; ð6:12Þ

a
f

lw ¼ a
p

w � arcsin
sl

Rf
: ð6:13Þ

This means that we more or less know the projection value in the fan-beam system,
which is equivalent to the projection value in the hypothetical parallel-beam
system at a given point on the screen and a given angle of projection. Unfortu-
nately, more often than not, the ray with these particular calculated parameters is
missing from the set of rays emitted in the fan-beam. As a result, the parameters
must be interpolated based on projection values from the immediate neighbour-
hood of the calculated pair (blw, a

f
lw). With this in mind, we first determine the

relative values of the parameters of the interpolated ray:
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glw ¼
blw

D
f

b

; ð6:14Þ

clw ¼
a
f

lw

Df
a

; ð6:15Þ

and then define the neighbourhood mentioned above as a group of four projection
values:

p̂f g
"
lw; c

"
lw

� �

; p̂f g
#
lw; c

"
lw

� �

; p̂f g
"
lw; c

#
lw

� �

; p̂f g
#
lw; c

#
lw

� �

; ð6:16Þ

where: g#
lw ¼ Truncðglw; 1Þ; g

"
lw ¼ g

#
lw þ 1; c#

lw ¼ Truncðclw; 1Þ; c
"
lw ¼ c

#
lw þ 1.

There then only remains for us to make use of this selection of projection values

to interpolate the values p̂p l;wð Þ ¼ pp sl; a
p

w

� �

:We could use bilinear interpolation,

for instance, to estimate the projection value of the hypothetical ray:

_̂pp l;wð Þ ¼ c
"
lw � clw

� �

g
"
lw � glw

� �

p̂f g
#
lw; c

#
lw

� �

þ glw � g
#
lw

� �

p̂f g
"
lw; c

#
lw

� �h i

þ clw � c
#
lw

� �

g
"
lw � glw

� �

p̂f g
#
lw; c

"
lw

� �

þ glw � g
#
lw

� �

p̂f g
"
lw; c

"
lw

� �h i

ð6:17Þ

The process of obtaining these virtual parallel projections is repeated for all
projection angles w = 0, 1, …, W - 1 (in this case, it is best to assume that
Da
f
= Da

p) and for all the hypothetical radiation detectors situated at locations
identified by the index l = -(L - 1)/2, ..., 0, ..., (L - 1)/2, where it can be
assumed that:

Dp
s ¼ Rf sinDb: ð6:18Þ

Step II These approximate values of the virtual parallel-beam projections
_̂ppðl;wÞ; l ¼ �ðL� 1Þ=2; . . .; 0; . . .; ðL� 1Þ=2;w ¼ 0; 1; . . .;W� 1 can be used
with any of the reconstruction methods developed for parallel-beam systems.
Because it is easy to implement, this could be the convolution and back projection
method discussed in Sect. 5.4. As the projection angles in our virtual parallel-beam
system can vary within the range 0 B ap\ 2p, the result of the reconstruction
procedure needs to be divided by 2.

The flowchart in Fig. 6.5 shows the stages in the signal processing for the
discrete version of the method with rebinning.

134 6 Reconstruction from Fan-beam Projections

http://dx.doi.org/10.1007/978-0-85729-027-4_5#Sec4


6.5 Direct Fan-beam Reconstruction Method

An alternative to the previous approach to the problem of image reconstruction
from fan-beam projections is a method that involves the direct use of the fan-beam
projections in an algorithm designed originally for the parallel-beam system [4, 5,
6]. This method deals with the same problem as the rebinning algorithm: the

Fig. 6.5 A flowchart of the discrete version of the image reconstruction method with rebinning,
for fan-beam projections
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reconstruction of the image from the same fan-beam projections pf(b, af);
b [ [bmin, bmax]; 0 B af\ 2p. The purpose of this technique however is to find a
parallel-beam reconstruction formula into which the fan-beam projection values
can be entered directly. The method that we will adapt for this purpose is the
convolution and back-projection algorithm. A simplified flowchart of the approach
adopted in this section is given in Fig. 6.6.

Key equations for the convolution and back-projection reconstruction algo-
rithm, (5.50) and (5.51), will be adapted here to handle fan-beam projections. For a
better understanding of how this can be done, it is worth returning to Fig. 6.4. We
can use this diagram to derive the following trigonometric relationships between
quantities in the parallel-beam system and those in the fan-beam system:

s ¼ Rf � sin b ð6:19Þ

and

ap ¼ af þ b: ð6:20Þ

However, in further discussions of the fan-beam system, we need to be able to
express the trigonometric relationships in polar coordinates, as shown in Fig. 6.7.
This diagram shows how to determine the parameters of points inside the test
cross-section during a fan-beam projection. The following equations show
relationships between selected parameters of a point during the projection
pp(s, ap):

r cosðap � /Þ � s ¼ _u sinð _b� bÞ; ð6:21Þ

Fig. 6.6 Image reconstruction directly from fan-beam projections
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_b ¼ arctan
af � /

Rf þ r sinðap � /Þ

� �

; ð6:22Þ

_u2 ¼ ½r cosðap � /Þ�2 þ ½Rf þ r sinðap � /Þ�2: ð6:23Þ

The following sequence of equations is based on relationships described in earlier
chapters and if we begin by taking into consideration the definition of the two-
dimensional inverse Fourier transform, we obtain:

lðx; yÞ ¼

Z

1

�1

Z

1

�1

Mðf1; f2Þ � ej2p f1xþf2yð Þd f1d f2; ð6:24Þ

Fig. 6.7 Determination of
the polar coordinates of a
point in the plane of a fan-
beam projection: a derivation
of (6.21), b derivation of
(6.22) and (6.23)
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which after converting to polar coordinates and using (5.34) takes the form:

lðx; yÞ ¼

Z

p

0

Z

1

�1

fj jPðf ; apÞ � ej2pf ðx cos apþy sin apÞdfdap: ð6:25Þ

In this situation, it is worthwhile carrying out the process of back projection during
one complete revolution of the projection system. This leads to the following
change to the limits of integration:

lðx; yÞ ¼ 1
2

Z

2p

0

Z

1

�1

fj jPðf ; apÞ � ej2pf x cos apþy sin apð Þdfdap: ð6:26Þ

Then after transferring the projections into the frequency domain, we have the
formula:

lðx; yÞ ¼ 1
2

Z

2p

0

Z

1

�1

Z

1

�1

fj jpp s; apð Þ � ej2pf x cos apþy sin apð Þ � e�j2pfsdsdf dap: ð6:27Þ

Arranging the right hand side of the above formula and changing the order of
integration, we get:

lðx; yÞ ¼ 1
2

Z

1

�1

Z

1

�1

Z

2p

0

fj jppðs; apÞ � ej2pf ðx cos apþy sin ap�sÞdapdsdf : ð6:28Þ

Next, after converting the attenuation function into polar coordinates by using the
relationships in Table 5.1 we obtain:

lðr cos/; r sin/Þ ¼ 1
2

Z

1

�1

Z

1

�1

Z

2p

0

fj jppðs; apÞ � ej2pf ½r cosðap�/Þ�s�dapdsdf : ð6:29Þ

Note here that the substitution x cos ap þ y sin ap ¼ _s ¼ r cosðap � /Þ refers to the
point (r, /), to which the reconstruction process applies, and the variable s spec-
ifies the location on the screen. Of course, we should also take into account the
application of the window function, which, according to Sect. 5.4 and (5.45),
should be placed appropriately in the formula above to finally obtain:

�lðr cos/; r sin/Þ ¼
1
2

Z

1

�1

Z

1

�1

Z

2p

0

fj j �Wðf Þppðs; apÞ � ej2pf ½r cosðap�/Þ�s�dapdsd f :

ð6:30Þ
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By using Eqs. (6.21)–(6.23) in the above equation and at the same time changing
the limits of integration we obtain a relationship, which is fundamental for the fan-
beam image reconstruction method:

�lðr cos/; r sin/Þ ¼
Rf

2

Z

1

�1

Z

bmax

bmin

Z

2p�b

�b

fj j �Wðf Þ � pf ðb; af Þ � cos b

� ej2pf _u sinð _b�bÞdaf dbdf :

ð6:31Þ

The angle af has a periodicity of 2p, which means that we can change the limits of
integration to the range: 0 to 2p. This would give us the following equation:

�lðr cos/; r sin/Þ ¼ Rf

2

Z

1

�1

Z

bmax

bmin

Z

2p

0

fj j �Wðf Þ � pf ðb; af Þ � cos b

� ej2pfu sinð _b�bÞdaf dbd f :

ð6:32Þ

We are now ready to begin adapting the equation above to the convolution and
back projection method, which we met during our discussion of the parallel-beam
system. To do this, we will rework (6.32) to resemble (5.78) as much as possible,
that is to say, to the form:

�lðr cos/; r sin/Þ ¼
Z

2p

0

�pf ð _b; af Þdaf ; ð6:33Þ

where

�pf ð _b; af Þ ¼
Z

bmax

bmin

pf ðb; af Þ � Rf

2
cos b � hð _u � sinð _b� bÞÞdb; ð6:34Þ

and the convolving function has the following interpretation:

hð _u � sinð _b� bÞÞ ¼
Z

1

�1

fj j �Wðf Þ � ej2pf _u sinð _b�bÞd f : ð6:35Þ

Unfortunately, there is a serious drawback associated with the use of the fan-beam
reconstruction method formulated like this. It stems from the dependence of (6.35)
on the parameter _u; which poses certain practical problems when carrying out the
calculations during the reconstruction process. Instead of a simple formula for the
convolution kernel, as we had in the case of the parallel-beam system, it now
becomes necessary to determine a different form of the kernel for every point of
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the object’s cross-section. This is because _u represents the distance of the point
(r, /) from the radiation source at coordinates ðRf ; a

f þ p
2Þ. Therefore, by changing

the angle a f, we also change _u and consequently we need to adjust the value of the
convolution kernel. We will take action later to eliminate this undesirable situa-
tion. With this in mind, we will reverse our strategy for this method; we will make
the relationship defining the convolving function, introduced for the convolution
and back-projection method in the parallel-beam system, resemble (6.34), for-
mulated for the fan-beam system. This adjustment is based on a term in (5.79),
which is reproduced here in a suitably amended form:

hðsÞ ¼

Z

f0

�f0

fj j �Wðf Þ � ej2pfsd f : ð6:36Þ

In this equation, the integration is carried out with respect to the frequency f. The
next step will be to make a substitution for f, using the following expression:

f f ¼ f � _u � sin b
Rf � b

: ð6:37Þ

If at the same time we change the limits of integration, the convolving function
will be modified to:

hð _u sin bÞ ¼ Rf � b
_u � sin b

� �2

�hf Rf � b
� �

; ð6:38Þ

where

h f ðRf � bÞ ¼
Z

f
f

0

�f
f

0

fj j �W f � f0
f
f
0

 !

� ej2pfRf bdf ð6:39Þ

and

f
f
0 ¼ f0 � _u � sin b

Rf � b
: ð6:40Þ

This substitution now allows us to use the convolution kernel hf(Rf �b), which we
already know from its use in the parallel-beam system (see Table 5.3). Unfortu-
nately, even here we encounter problems caused by the dependence of the cut-off
frequency f0

f on the parameter _u. On the other hand, if we were to establish a
constant value for f0

f it would mean that the reconstruction process for the point
(r, /) would have a different resolution (determined by the value of the cut-off
frequency f0) for every angle a f. However, if we put aside the assumption of
uniform resolution for the resulting reconstructed image, then, by manipulating the
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values _u and f0, the varying value of f0
f can be fixed as f0

f. Assuming a constant cut-
off frequency f0

f
= f0

f , (6.38) can be written as:

~hð _u sin bÞ ¼
Rf � b
_u � sin b

� �2

�~hf ðbÞ; ð6:41Þ

where:

~hf ðbÞ ¼
Z

f
f

0

�f
f

0

fj j �W f � f0
f
f
0

 !

� ej2pfRf bd f : ð6:42Þ

This compromise allows us to put (6.38) into a more convenient form for carrying
out the calculation:

~hð _u sinbÞ ¼ h0ðf0; _uÞ � h00ðbÞ: ð6:43Þ

After obtaining this form of the convolution kernel, the equation describing the
filtering of the projections becomes:

�pf ð _b; af Þ ¼ h0ðf0; _uÞ �
Z

bmax

bmin

pf ðb; af Þ � Rf

2
cos b � h00ð _b� bÞdb; ð6:44Þ

which automatically reduces the computational inputs necessary for this
method.

At this point, we now have the theoretical framework for deriving the discrete
algorithm for the convolution and back-projection reconstruction method for fan-
beam systems.

6.6 Discrete Implementation of the Direct Fan-beam

Reconstruction Method

The process of implementing the discrete version of the convolution and back-
projection reconstruction algorithm for the fan-beam system is similar to the
solution for the parallel-beam system. Once again, there are geometric factors
introduced by the limited number of projections made during one revolution of the
tube and by the limited resolution at which the radiation intensities are measured
during each projection. These elements of the algorithm, discrete at the design
level, were introduced by (6.3) and (6.4).

Possible practical reconstruction procedures for this method are aimed at
implementing (6.33) and (6.44). The various stages in this process are given
below [4].
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Step I We need to begin our discussion of the discrete version of the convolution
and back-projection reconstruction algorithm by making corrections for
the geometry of the fan-beam projections: p̂f ðg; cÞ; g ¼ �ðH� 1Þ=2; . . .;

0; . . .; ðH� 1Þ=2; c ¼ 0; 1; . . .;C� 1: To do this, each projection value p̂f ðg; cÞ is
processed for every projection angle using the following formula:

p̂fcorðg; cÞ ¼ p̂f ðg; cÞ � cosðgDbÞ: ð6:45Þ

Step II At this stage, the geometrically corrected functions p̂ f
cor g; cð Þ are filtered

using an appropriate convolution kernel, as we did with the convolution and back-
projection method for the parallel-beam system. By carrying out the convolution
operation given in (6.44) and using the modified and conditioned convolving
function we obtain:

�̂pf ð _g; cÞ ffi Db �
X

ðH�1Þ=2

g¼�ðH�1Þ=2
p̂fcorðg; cÞ � ~̂h

XXð _u � sinð _g� gÞDbÞ; ð6:46Þ

where: ~̂h
XXð _u � sinðgDbÞÞ is one of the discrete convolution kernels whose argu-

ment is related to that of its continuous form given in (6.41); XX is a symbol
representing the selected convolution kernel (e.g. ‘‘RL’’ or ‘‘SL’’).

As a result of this operation, we obtain ‘‘prophylactic’’ cleared projections, free
from geometrical distortions. At this point, the definition of the convolution kernel
~̂h
XXðlÞ becomes extremely important. Consequently, we will select the window

function:
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ð6:47Þ

where: f0
f is the cut-off frequency of the filter; e is a value in the range [0,1], which

will then be substituted into (6.35). At the same time, we will take into account the
assumption made in the previous section concerning the constant value of the cut-
off frequency:

f
f
0 ¼ f

f
0 ¼

1
2Rf � Db

; ð6:48Þ

in order to obtain the following family of convolution kernels, based on (5.59) and
(6.47):
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~̂h
XX
ð _u � sinðgDbÞÞ ¼

1
_u2

3�2e
12ðDbÞ2

for g ¼ 0

� 1
_u2

e
p2 sin2ðgDbÞ

for g even and g 6¼ 0

� 1
_u2

1�e
p2 sin2ðgDbÞ

for g odd
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>

>

>

>

<

>

>

>

>

:

: ð6:49Þ

If, in addition, we assume that e = 0, this equation then represents the Ram-Lak
convolution kernel for the fan-beam system:

~̂h
RLð _u � sinðg � DbÞÞ ¼

1
_u2

1

4 Dbð Þ2 for g ¼ 0

0 for g even and g 6¼ 0

� 1
_u2

1
p2 sin2 g�Dbð Þ for g odd

8

>

>

>

>

<

>

>

>

>

:

: ð6:50Þ

By applying this to (6.46), we obtain an equation for removing geometrical
distortions from the projections. It is important to note that (6.50) describing
the convolving function also satisfies the condition established in (6.43),
because in the elements of the Ram-Lak convolution kernel, we can isolate the
components:

~̂h
RL0ðf0; _uÞ ¼

1

ð _uÞ2
ð6:51Þ

and

~̂h
RL00ðg � DbÞ ¼

1

4 Dbð Þ2 for g ¼ 0

0 for g even and g 6¼ 0

� 1
p2 sin2 gDbð Þ for g odd

8

>

>

>

>

<

>

>

>

>

:

: ð6:52Þ

Therefore, we can now take the opportunity to rewrite (6.46) in a form that allows
for easier calculation:

�̂pf ð _g; cÞ ffi Db �
X

ðH�1Þ=2

g¼�ðH�1Þ=2
p̂fcorðg; cÞ � ~̂h

RL00ðð _g� gÞDbÞ; ð6:53Þ

where the factor 1
_u2
is taken into account at a later stage.

Step III Unfortunately, these projection values most often relate to rays which do
not pass through the raster points (i, j) of the reconstructed image. Because of this,
we need to introduce one more stage in the processing of these projections: linear
interpolation based on the projection values �̂pf ð _g; cÞ of the two rays passing nearest
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to the point (i, j). The interpolation problem for the fan-beam system is illustrated
in Fig. 6.8.

The interpolation stage for the projection �̂pf ð _g; cÞ can be written as follows:

_�p f _bij; c � Df
a

� �

ffi Db �
X

_g

�̂pf ð _g; cÞ � Ið _bij � _g � DbÞ; ð6:54Þ

where: Ið _bij � _g � DbÞ is the interpolation function, defining the dependence of the

value of _�pf ð _bij; c � Df
aÞ at any point on the screen, on the value �̂pf ð _g; cÞ at a mea-

sured point, as a function of the distance between the two points.
If we use the linear interpolation function defined by the formula:

ILðD _bÞ ¼
1
D2
b

� 1� jD _bj
Db

� �

for jD _bj �Db

0 for jD _bj[Db

;

(

ð6:55Þ

Fig. 6.8 Interpolation of projection values in a fan-beam system: a selection of the rays to use
for the interpolation, b trigonometric analysis of linear interpolation
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where:

D _b ¼ _bij � _g � Db ð6:56Þ

and

_bij ¼ arctan
iDx � cos cDf

a þ jDy � sin cDf
a

Rf þ iDx � sin cDf
a � jDy � cos cDf

a

; ð6:57Þ

then the projection values at discrete points of the image are expressed as follows:

_�p f _bij; a
f
c

� �

ffi ~̂p f _g#; c
� �

þ
_bij

Db

� _g#

 !

~̂p f _g";w
� �

� ~̂p f _g#;w
� �� �

; ð6:58Þ

where, _bij is the parameter defining the position of the point (i, j) on the screen, for

a projection angle afc ¼ cDf
a; _g

# ¼ Trunc _bij;Db

� �

is the position of the first of the

rays passing in the neighbourhood of the point ði; jÞ; _g" ¼ _g# þ 1 is the position of
the second of the rays passing near the point (i, j).

In this way, we can calculate the approximate projection values _�pf ð _bij; a
f
cÞ for

all points of the discrete image with raster i = - (I - 1)/2, …, 0, …, (I - 1)/2;
j = - (J - 1)/2, …, 0, …, (J - 1)/2, for each projection angle 0 B ac

f
\ 2p.

Step IV Equation (6.33), describing the fundamental relationship for the convo-
lution and back-projection reconstruction method, says that we can reconstruct the
image of an object using suitably pre-prepared projections. Of course, the original
projections must be processed in such a way that the inversibility principle of the
Radon transform is maintained (see Sect. 5.4). In the discrete case, we can replace
the integral in (6.33) with the trapezoidal rule (which approximates to the integral),
according to the formula:

�̂lði; jÞ ffi Df
a �

Rf

2
�
X

C�1

c¼0

1
_u2 i; j; cð Þ

_�pf _bij; cD
f
a

� �

: ð6:59Þ

It is also important to take into account (6.23), which defines the value of the
variable _u, representing the distance of the point in the (x, y) space from the
radiation source. In order to make this variable dependent on the discrete
parameters (i, j, c), we can convert (6.23) using the equations for converting polar
coordinates into rectangular coordinates given in Table 5.1. This gives us the
following relationship:

_uði; j; cÞ ¼ iDx � cos cDf
a þ jDy � sin cDf

a

� �2þ Rf þ iDx � sin cDf
a � jDy � cos cDf

a

� �2
:

ð6:60Þ
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In the context of the whole procedure for implementing the convolution and back-
projection method, this is essentially the last step in the reconstruction of the
image. The implementation of the discrete version of this algorithm is illustrated in
Fig. 6.9.

Fig. 6.9 The discrete version of the convolution and back-projection algorithm for the fan-beam
system
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Chapter 7

Spiral Tomography

Since the beginning of the 1990s, the use of spiral tomography scanners has been
increasingly widespread [7, 35, 44, 54]. The name comes from the shape of the
path that the X-ray tube and its associated detector array follow with respect to the
patient. In the English-language literature, there is still some debate concerning
the choice of name for this type of device: helical or spiral tomography scanner.
The spiral path of the projection system as it rotates around the patient is the result
of a combination of two types of movement: a longitudinal translation of the table
with the patient on it and a rotary movement of the projection system around the
longitudinal axis of the patient. This type of path could not have been achieved if
it had not been for the development of slip rings in 1985. These rings enabled the
supply of high voltage electricity to the X-ray tube through special brushes
that allowed the continuous rotation of the projection system around the patient
[12, 14].

Spiral tomography scanners are distinguished from their predecessors by an
increased scan rate and improved high- and low-contrast resolution [35, 65, 67].
For this type of scanner, we can identify three main groups of design solution,
three consecutive stages in the development of spiral tomography:

• single-slice computed tomography (SSCT),
• multi-slice computed tomography (MSCT),
• cone-beam computed tomography (CBCT).

In all these designs, the same procedure for carrying out a tomographic
examination is appropriate, as shown in Fig. 7.1a [7].

In earlier designs of spiral CT scanners, because of the limited power of the
tube and its limited rate of rotation around the test object, the projection param-
eters were essentially a compromise between scan resolution (i.e. the image
density along the axis of the test object), the level of noise, as well as the time to
acquire the images and adapt the radiation power to the type of material being
examined. The use of spiral tomography was to eliminate the barriers that had
prevented the further development of the older techniques. By using a projection

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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system that moved in a spiral path, it was possible to increase the scanning res-
olution and reduce the time needed for the whole examination as well as the time
for each individual scan. During a spiral scan, X-rays are emitted continuously
throughout the whole examination, until all necessary projections have been
obtained. Note that, unfortunately, this also increases the demands made on the
thermal durability of the X-ray tube.

With the introduction of CBCT technology and the use of a cone-beam of
radiation in conjunction with a matrix of radiation detectors instead of a single row
of detectors came other significant improvements. In addition to a considerable
improvement in the scan rate and an increase in the resolution of the scanner along
the axis of the patient, there was also a reduction in both the level of noise in the
reproduced image and the amount of heat emitted by X-ray tube.

With all these advantages, spiral scanners have become the currently prevailing
standard in the market for medical devices, superseding scanners in which the
table was stationary during the scan.

7.1 Single Slice Computed Tomography—SSCT

The very first design of spiral tomography device, the single slice computed

tomography scanner (SSCT), used an array of X-ray detectors arranged in a single
row. As with fan-beam scanners, these detectors were placed on an arc-shaped
screen in a plane perpendicular to the axis of the patient. The main distinguishing

Fig. 7.1 The procedure for carrying out a CT examination: a using spiral tomography; b using
previous generations of scanners
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feature of the new design, however, was the combination of the rotary motion of
the projection system with a steady forward displacement of the patient during the
scan. This resulted in the elimination of the time interval between each individual
scan and so significantly reduced the time taken for the entire CT examination.

There are many algorithms that use the projections obtained from spiral pro-
jection systems having a single row of detectors. These methods include 360�
linear interpolation (360� LI) [35, 44], 80� linear interpolation (180� LI) [22],
180� linear extrapolation (180� LE) [7], non-linear interpolation [3] and others.
However, we will only discuss the first two of these in this chapter, due mostly to
their popularity amongst the manufacturers of CT scanners.

7.1.1 The Geometry of the Scanner

The geometry of a spiral projection system with a single row of detectors is
illustrated in Figs. 7.2 and 7.3.

The moving projection system consists of an X-ray tube rigidly connected to a
detector matrix on an arc-shaped screen. The matrix consists of a single row of
detectors. The tube together with the detectors rotates around the z-axis, the
principal axis of the system. At the same time as the projection system rotates, the
patient table steadily moves forward. This means that the rotating projection
system moves around the z-axis along a spiral path. A fan-beam of radiation
emitted by the tube passes through the test object and finally reaches the detector
matrix on the screen. Figure 7.3a shows the projection geometry in the

Fig. 7.2 The projection
system of a single slice spiral
scanner: a three-dimensional
perspective view
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(x, y) plane, i.e. the plane of the reconstructed slices. In this system, the rays that
are emitted by the tube and that reach the screen are identified by:

b—the angle between a particular ray in the beam and the axis of symmetry of the
moving projection system;

ah—the angle at which the projection is made, i.e. the angle between the axis of
symmetry of the rotated projection system and the y-axis.

This pair of parameters specifies every ray during the whole projection process.
The projection values measured on the screen in a fan-beam system can be
represented by ph(b, ah). The projections are made throughout the entire multi-
rotation movement of the tube around the test object. Thus, the angles ah at which
the radiation measurements are made will be within the range 0 B ah B 2p
whereas the range of the angle b is [-bmax, bmax], where bmax is defined as:

bmax ¼ �bmin ¼ arcsin
R
Rf

� �

; ð7:1Þ

Fig. 7.3 The projection
system of a single slice spiral
scanner: a the geometry of
the fan-beam projection
system in the plane
perpendicular to the axis of
rotation; b the path traced by
projection system relative to
the test object in the plane
along the axis of rotation
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where R is the radius of the circle defining the space in which the scan is carried
out; Rf is the radius of the circle described by the focus of the tube.

If we assume that the patient table moves forward continuously and that the
system starts at the point z0 = 0 when ah = 0, we can use the following linear
function to determine the location of the centre of the projection system z0:

z0 ¼ k � a
h

2p
; ð7:2Þ

where k is the translation of the table during one complete rotation of the tube
around the patient, i.e. the relative travel of the spiral path traced by the tube,

measured in m
rad

h i

.

The array of detectors placed in an arc on the screen is designed to measure the
intensity of the X-rays passing through the test object. As with fan-beam scanners,
this is done by placing the screen in a plane perpendicular to the z-axis. The main
difference between spiral tomography and previous solutions is the continuous
change of position of the projection system during successive projections.

7.1.2 The Geometry of the Discrete Scanner

The design of the single slice spiral scanner has to take into account the discrete
nature of the projections. A general view of the design of a discrete spiral fan-
beam projection system is given in Fig. 7.4.

In this system, the acquisition of the measurements of the projection function
ph(b, ah) only takes place at certain angles of rotation ah, determined by the
relationship:

ahh ¼ h � Dh
a; ð7:3Þ

where Dh
a ¼ 2p

H2p is the angle through which the tube-screen system is rotated fol-

lowing each projection; H2p is the number of projections made during one full
rotation of the projection system; h ¼ 0; . . .;H� 1 is the global projection index;
H ¼ number of rotations �H2p is the total number of projections.

The position of the detector in the matrix is determined by the index g. In
practice, in view of the fact that the detector array consists of a finite number of
detectors, the value of the projection function ph(b, ah) is only obtained at certain
angles b, determined by the relationship:

bg ¼ g � Df

b; ð7:4Þ

where Df

b is the angular distance between the individual radiation detectors placed

on the screen; g ¼ �ðH� 1Þ=2; . . .; 0; . . .; ðH� 1Þ=2; H is an odd number of
detectors in the array.
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Therefore, in summary, we can say that in the discrete projection system of the
SSCT spiral scanner we only obtain projection values p̂hðg; hÞ ¼ phðbg; a

h
hÞ, for

g ¼ �ðH� 1Þ=2; . . .; 0; . . .; ðH� 1Þ=2 and h ¼ 0; . . .;H� 1.
Bearing in mind the reconstruction algorithms used in SSCT spiral scanners, we

might pause for a moment to consider the problem of determining the thickness of
the slices, represented in the literature by the abbreviation SW (slice width). As in
spiral tomography a projection is only made once for any given angle ah, the rest
of the data needed for the reconstruction process have to be obtained from pro-
jections made at other angles. The faster the forward movement of the patient
table, the greater the errors involved in recovering the missing projections and the
poorer the quality of the reconstructed image of the slice. The following parameter
specifies the rate of translation of the table in relation to the width of the slice:

pitch ¼
k

SW
; ð7:5Þ

where SW is the nominal width of the slice whose image is to be reconstructed
(related to the width of the collimated X-ray beam).

Figure 7.5 shows the geometry of three commonly used pitch values:

• pitch[ 1.0—the consecutive loops of the path traced by the radiation beam
around the patient’s body are separate from each other (similar to an extended
spring);

Fig. 7.4 A sequence of two projections in the discrete version of the SSCT spiral scanner
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• pitch = 1.0—the consecutive loops are in close contact with each other, remi-
niscent of a compressed spring;

• pitch[ 1.0—the consecutive loops exhibit overlapping.

The choice of the value of k, for a fixed beam width SW, affects the possible
levels of resolution RI of the reconstructed slices in the z-direction. A value of
pitch C 1.0 means that the radiation passes through no point on the z-axis more
than once. For all values of pitch less than one, the radiation passes through the
same point on the z-axis several times. It is worth mentioning that projections are
usually carried out at a pitch setting of 1.5.

7.1.3 The 360� LI Reconstruction Algorithm

The 360� LI (360� linear interpolation) reconstruction algorithm [7, 35, 44] uses
projections ph(b, ah) obtained from a spiral projection system. We can obtain the
fan-beam projections pf ðb; af Þ; b 2 �bmax; bmax½ � needed for reconstructing a

Fig. 7.5 A spiral projection
system with various values of
pitch
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cross-section of the patient’s body by applying a suitable interpolation formula to
the measurements made by the scanner. However, we already know from Chap. 6
that it is possible to reconstruct an image from fan-beam projections by reducing
the problem to that of a parallel-beam system. The full 360� LI method is illus-
trated graphically in Fig. 7.6. In the first stage of this reconstruction algorithm, we
make the conversion from the spiral projection system to the fan-beam system.
The main problem that arises is that, because of the translational movement of the
patient table in the spiral projection system, only one projection value ph(b, ah) is
measured at any one position of the table. If the slice lies in a plane a distance zp
from the start of the scan, the only beam of radiation in this plane is that associated
with the projection made at the angle:

Fig. 7.6 Stages in the 360� LI reconstruction algorithm (applicable also to the 180� LI method)
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ahp ¼
2p � zp

k
: ð7:6Þ

One projection is not enough, however, to complete the reconstruction process for
the whole slice. Therefore, we have to find other ways to make up for this
deficiency.

The 360� LI reconstruction algorithm relies on the linear interpolation (LI) of
the missing fan-beam projections to reconstruct a slice from the measurements
made in the spiral system. In this algorithm, the missing values for the angles

af 2 ½0; 2pÞ � ahp mod 2p
n o

are made up for by projections at angles in the range

ahp � 2p; ahp þ 2p
� �

using linear interpolation, as follows:

_php b; ah1
� �

¼ w1 � php b; ah1
� �

þ w2 � php b; ah2
� �

; ð7:7Þ

where

w1 ¼
ahp � ah2

ah1 � ah2
ð7:8Þ

and

w2 ¼
ah1 � ahp

ah1 � ah2
; ð7:9Þ

for ah2 ¼ ah1 � 2p; ah1 2 ahp; a
h
p þ 2p

� �

.

Figure 7.7 illustrates the method of carrying out linear interpolation using the
360� LI algorithm.

Fig. 7.7 Linear interpolation
using the 360� LI
reconstruction algorithm
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Using Eq. 7.7 it is possible to acquire all the projections _php b; ah
� �

; ah 2

ahp; a
h
p þ 2p

h �

lying in the plane of the slice, independently of the variable z. Therefore,

for any z = zp, we can describe the conversion from the spiral to the fan-beam pro-
jection system as follows:

pf b; af
� �

� _php b; ah
� �

; ð7:10Þ

where

pf b; af
� �

¼
_php b; ah � ah0
� �

for ah 2 ah0; a
h
p þ 2p

h �

^ b 2 �bmax; bmax½ �

_php b; ah � ah0 þ 2p
� �

for ah 2 ahp; a
h
0

h �

^ b 2 �bmax; bmax½ �

8

<

:

;

ð7:11Þ

and ah0 is calculated using:

ah0 ¼ 2p Trunc
ahp

2p
; 1

 !

þ 1

 !

: ð7:12Þ

The assignment described using Eqs. 7.10–7.12 allows us to obtain the projections
pf b; af
� �

; b 2 �bmax; bmax½ � in the hypothetical fan-beam projection system in the
range af 2 0; 2p½ Þ.

These projections pf b; af
� �

; b 2 �bmax; bmaxð �; af 2 0; 2p½ Þ are further pro-
cessed using the methods developed for the fan-beam projection system discussed
in Chap. 6.

7.1.4 Discrete Implementation of the 360� LI Reconstruction

Method

In the discrete version of the 360� LI reconstruction method, the projections are
only made at certain locations on the z-axis and only at certain points on the
screen. The places where the intensity measurements are made are determined by
the topology of radiation detectors situated on the arc-shaped screen. It is also
assumed that the detectors are arranged to ensure an even distribution of useful
rays in the beam. The angle at which a given ray in the fan-beam falls on a given
detector is indexed using the variable g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2,
where H is an odd number of detectors in the array. During a scan, the middle of
the beam of radiation passes through a particular point on the z-axis only once. As
we only perform a limited number of projections, not all places on the z-axis lie in
the plane of the incident radiation. To identify the angles ah

h at which the radiation
beam is emitted, we use the index h ¼ 0; . . .;H� 1; where H is the number of
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projections made during the scan. It is also convenient to assume that the value Dh
a

is a complete divisor of the angle 2p.
We can summarise this by saying that only those discrete projection values

defined for p̂h g; hð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1, are
available to the reconstruction algorithm.

Before beginning the scan, we need to decide on the positions on the z-axis of
the slices to be reconstructed. The projections to be considered in later stages of
the process are chosen relative to one of the slices; let us say the slice at zp. If the
first projection takes place at an angle ah = 0, the hypothetical beam will pass
through the point zp at the angle described by (7.6).

The projections that will take part in the reconstruction of the slice at zp are
represented by p̂h g; hð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1,

for which
ahp�2pð Þ
Dh
a

� h� ahpþ2pð Þ
Dh
a

. The following procedure leads to the reconstruc-

tion of the image based on these projections.

Step I Instead of using Eq. 7.7, we can start by establishing the weightings for
each of the projections p̂h g; hð Þ performed at angles in the range
ahp�2pð Þ
Dh
a

� h� ahpþ2pð Þ
Dh
a

using the following weighting function (a graph of the

function w(h) is shown in Fig. 7.8):

w hð Þ ¼

2pþahp�h�Dh
a

2p for ahp\h � Dh
a � ahp þ 2p

1 for h � Dh
a ¼ ahp

2pþh�Dh
a�ahp

2p for ahp � 2p� h � Dh
a\ahp

0 for h � Dh
a [ ahp þ 2p _ h � Dh

a\ahp � 2p

8

>

>

>

>

>

<

>

>

>

>

>

:

: ð7:13Þ

Each projection value p̂h g; hð Þ is then multiplied by the appropriate weighting:

_̂php g; hð Þ ¼ w hð Þ � p̂h g; hð Þ: ð7:14Þ

As filtration and back-projection is a linear transformation, we can interpret it as an
interpolation carried out at later stages of the process.

Fig. 7.8 A graph of the
function w(h) defining the
weightings given to each
projection p̂h g; hð Þ in the 360�
LI method
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Step II In order to reconstruct the image, we use one of the methods devised for
fan-beam projection systems and make the following assignment:

pf g; cð Þ � _̂php g; hð Þ; ð7:15Þ

substituting:

c ¼
h� h0 if h� h0

h� h0 þH2p if h\h0

(

ð7:16Þ

and calculating h0 using:

h0 ¼ ahp div 2p
� �

�H2p: ð7:17Þ

We also assume that all the calculations are carried out with indices in the ranges:
ahp�2pð Þ
Dh
a

� h� ahpþ2pð Þ
Dh
a

;� H� 1ð Þ=2� g� H� 1ð Þ=2.

Step III The projections pf g; cð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; c ¼
0; . . .;C� 1, obtained from the previous stage of the processing can then be
subjected to any of the reconstruction procedures originally intended for fan-beam
projection systems. At the same time, the number of fan-beam projections taken
into account by the algorithm is set at:

C ¼ 2 �H2p: ð7:18Þ

The flowchart shown in Fig. 7.9 illustrates all the steps and signals for the discrete
version of the 360� LI algorithm used in the SSCT scanner.

7.1.5 The 180� LI Reconstruction Algorithm

The 180� LI (linear interpolation) algorithm [7, 47] uses the projections ph b; ah
� �

made by the spiral scanner to reconstruct the image of individual slices of the
patient’s body. Once again, we apply an appropriate interpolation formula to
obtain the fan-beam projections pf b; af

� �

; b 2 �bmax; bmax½ � needed for the
reconstruction process. The 180� LI method is illustrated by Fig. 7.6.

The main problem with the implementation of this algorithm is the lack of a
complete set of projections in the plane of the slice at a distance zp from the start of
the scan. In the spiral scanner, the patient table moves, and therefore the values of
only one projection ph(b, ah ) are measured at each angle of rotation ah of the tube.
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In order to obtain the missing projections, the 360� LI method uses linear inter-
polation based on projections made when z = zp.

When the beam of radiation passes through the point z = zp, the angle at which
the projection is performed ahp can be determined using Eq. 7.6.

The main difference between the 180� LI and 360� LI algorithms is the method
of selecting the projections to be interpolated. In contrast to the previous method,

Fig. 7.9 A flowchart of the 360� LI algorithm used in the SSCT scanner
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the 180� LI algorithm relies on projections made in the range ah 2 ahp�
h

p� 2bmax; a
h
p þ pþ 2bmax�. The way in which the range of ah is selected in the

180� LI interpolation method is illustrated in Fig. 7.10.
The 180� LI interpolation method makes use of a certain redundancy of

information contained in the set of projections. So, if we consider all the projec-
tions made by the fan-beam system during all the rotations of the tube around the
z-axis, we can always find an equivalent for the projection value pf b; _af

� �

from
projection values on the opposite side, at angles in the range af 2 _af�

�

p� 2bmax; _a
f � pþ bmax�; b 2 �bmax; bmax½ �. The selection of these complemen-

tary pairs is shown in Fig. 7.11.
In order to solve the problem of acquiring the projection values pf b; _af

� �

; _af 2
0; 2p½ �; b 2 �bmax; bmax½ � we need to consider that ph(b, ah) occurs several times in

the range ah 2 ahp � p� 2bmax; a
h
p þ pþ 2bmax

h i

. This situation is illustrated by

Fig. 7.12, which represents the projections ph b; _ah
� �

in the (b, ah) space within the

ranges: b 2 �bmax; bmax½ �; ah 2 ahp � p� 2bmax; a
h
p þ pþ 2bmax

h i

.

By careful analysis of Fig. 7.12, we can see that the projection values ph b; _ah
� �

have their equivalents in the areas with the same shade of grey. This means that in
areas in the (b, ah) space with the same shade, we can find points corresponding to
rays lying in the same plane parallel to the z-axis. For projections related to area 1,
their equivalents can be found in areas 4 and 7. Similarly, area 2 corresponds to
areas 5 and 8, and area 3 matches area 6.

In the 360� LI method, in order to determine a projection value for a selected
slice, we considered two projections suitably weighted according to their degree of

Fig. 7.10 Linear
interpolation in the
reconstruction algorithm
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influence on the outcome of the interpolation. In the 180� LI method, the
weighting is determined in a much more complex way. This is because when
obtaining some of the projection values pf b; _af

� �

we have two and in some cases
three suitable projections ph(b, ah) to choose from. These can be seen as identical
shaded areas in Fig. 7.12. These areas can be formed into pairs as shown in
Table 7.1, each pair assigned to one of four groups of interpolated projection
values.

Fig. 7.11 Selecting
complementary projection
values

Fig. 7.12 The projections
ph b; _ah
� �

in the (b, ah) space
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To avoid having to extrapolate projection values, we need to choose corre-
sponding areas that are on opposite sides of the ah ¼ ahp axis. There are two such
pairs of areas in Table 7.1, each duplicated by another pair, which therefore allows
us to eliminate them from the interpolation process.

If we were to disregard areas 1 and 8, it would result only in the elimination of
the duplicates corresponding to groups I and IV. As we can see, areas 1 and 8 are
on the edge of the (b, ah) space and have a negligible effect on the interpolation.

So, having looked at all the ways of selecting pairs of areas for groups I-IV, and
eliminated the pairs 1 $ 7 and 2 $ 8, and all those involving extrapolation, there
only remain three suitable combinations of areas in groups I-III.

After careful analysis of these choices, based on Fig. 7.12, we can deduce a

general rule for interpolating the value _ph _b; _ah
� �

; ahp � _ah � ahp þ pþ 2b from

ph(b, ah), with parameters (b, ah) within the ranges -bmax B b B bmax and
_af � p� 2bmax � ah � _af þ 2pþ bmax. The rule says that in order to obtain any

projection value _php
_b; _ah
� �

needed for reconstructing the slice at z = zp, we must

find a suitable projection ph1 b1; a
h
1

� �

, where

ah1 ¼ _ah ð7:19Þ

and

b1 ¼ _b: ð7:20Þ

The other projection value ph2 b2; a
h
2

� �

needed to perform the interpolation has
parameters defined by the following equations:

b2 ¼ �b1 ð7:21Þ

and

ah2 ¼ ah1 � pþ 2b1: ð7:22Þ

Linear interpolation of the value _php
_b; _ah
� �

from the values ph1 b1; a
h
1

� �

and

ph2 b2; a
h
2

� �

is performed using the equation:

_php
_b; _ah
� �

¼ w1 � ph1 b1; a
h
1

� �

þ w2 � ph2 b2; a
h
2

� �

; ð7:23Þ

Table 7.1 The assignment of
pairs of areas from Fig. 7.12
to groups of interpolated
projection values

Group number Pairs of areas from Fig. 7.12

I 4 $ 7; 4 $ 1; (extrapolation);
II 3 $ 6
III 2 $ 5; 2 $ 8;
IV 1 $ 7; 1 $ 4; (extrapolation);
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where the weights in the above relationship are calculated as follows:

w1 ¼
ahp � ah2

ah1 � ah2
; ð7:24Þ

and

w2 ¼
ah1 � ahp

ah1 � ah2
: ð7:25Þ

After calculating all _php
_b; _ah
� �

;�bmax � _b� bmax; a
f
p\

_ah � ahp þ pþ 2 _b; we can

then transpose them to the hypothetical fan-beam system and obtain the values
pf(b, af). To do this, we simply make the appropriate assignment:

pf b; af
� �

� _php
_b; _ah
� �

: ð7:26Þ

To adapt the values of the function pf(b, af) obtained from (7.26) to the recon-
struction methods described in Chap. 6, we need to take care to preserve the usual
ranges for these projections, namely: b [ [-bmax, bmax] and af 2 0; 2p½ Þ. We can
do this by giving parts of the projection values from areas 5 to 7 in Fig. 7.12
appropriate values from areas 2 to 4, using the equation:

_php
_b; _ah
� �

¼ _php � _b; _ah þ pþ 2 _b
� �

; ð7:27Þ

for _b 2 �bmax; bmax½ � ^ _ah 2 ahp � p� 2 _b; ahp
� �

.

After extending the range of the interpolated projections _php
_b; _ah
� �

as described

above, we still need to fill the gaps in relation to parts of areas 1 and 8, which we
can write as follows:

_php
_b; _ah
� �

¼
_php

_b; _ah
� �

for _b 2 0;bmax½ � ^ _ah 2 ahp þ p� 2 _b;ahp þ p
h i

_php
_b; _ah þ 2p
� �

for _b 2 �bmax;0½ � ^ _ah 2 ahp � p;ahp � p� 2 _b
h i

8

<

:

:

ð7:28Þ

After increasing the ranges of _php
_b; _ah
� �

we are now able to implement assignment

(7.26) using the following formula:

pf b; af
� �

¼
_php

_b; _ah � _ah0

� �

if _ah � _ah0

_php
_b; _ah � _ah0 þ 2p
� �

if _ah\ _ah0

8

<

:

; ð7:29Þ
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where _ah0 is calculated from:

_ah0 ¼ 2p _ah div 2p
� �

: ð7:30Þ

With the set of fan-beam projections pf(b, af) calculated for the angle of rotation
af 2 0; 2p½ Þ and for b [ [-bmax, bmax], we can then start the reconstruction of the

image of the slice at zp ¼ k
ahp
2p.

7.1.6 Discrete Implementation of the 180� LI

Reconstruction Method

The implementation of the discrete 180� LI reconstruction method relies on
measurements made only at particular projection angles and only at particular
points on the screen. The places where the radiation intensities are measured
are determined by the location of the detectors in the array on the arc-shaped
screen. If the useful rays are evenly distributed in the fan-beam, the angle at
which a ray strikes a detector is represented by the variable g ¼
� H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2, where H is an odd number of detectors in
the array. During a scan, only a limited number of projections are made, so
only certain places on the z-axis will lie in the plane of the incident radiation.
The indices h ¼ 0; . . .;H� 1 are used to identify the angles ahh at which the
beam of radiation is emitted, where H is the number of projections made
during the scan. We can therefore say that only those discrete projection values
p̂h g; hð Þ defined for g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1, are
available to the reconstruction algorithm.

Before beginning the actual scan, we need to decide on the positions on the z-
axis of the slices to be reconstructed. Let us say for argument’s sake that a
particular slice is located at zp. If the first projection is made at an angle ah = 0,
then the angle at which the hypothetical beam passes through the point zp is
determined by Eq. 7.6.

In reconstructing the image of the slice at zp, the projections that are involved

are represented by p̂h g; hð Þ, where ahp�p�2bmaxð Þ
Dh
a

� h� ahpþpþ2bmaxð Þ
Dh
a

.

The following steps are designed to lead to the reconstruction of the image,
based on these projections.

Step I Due to the linearity of the filtration and back-projection process, Eqs. 7.24
and 7.25, defining the weightings assigned to individual projection values, can be
replaced by the function w(g, h) defined by the following formula:
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w g;hð Þ¼

ahp�h�Dh
aþp�2g�Db

p�2g�Db
for ahp\h �Dh

a�ahpþp�2g �Db

1 for h �Dh
a¼ahp

h�Dh
a�ahpþpþ2g�Db

pþ2g�Db
for ahp�p�2g �Db�h �Dh

a\ahp

0 for h �Dh
a\ahp�p�2g �Db_h �Dh

a[ahpþp�2g �Db

8

>

>

>

>

>

<

>

>

>

>

>

:

:

ð7:31Þ

A graph of the function w bg; a
h
h

� �

, which is the continuous equivalent of the
discrete weighting function w(g, h) from Eq. 7.31, is shown in Fig. 7.13.

It is easy to show that the sum of two weights on opposite sides of the w bg; a
h
h

� �

axis, a distance p - 2b1 away from each other on the ahh axis and satisfying the
relationship b2 = -b1 is equal to 1, i.e. that:

w b1; a
h
1

� �

þ w �b1; a
h
1 � pþ 2b1

� �

¼ 1: ð7:32Þ

The individual projection values p̂h g; hð Þ within the ranges � H� 1ð Þ=2� g�
H� 1ð Þ=2; ahp�p�2g�Dbð Þ

Dh
a

� h� ahpþp�2g�Dbð Þ
Dh
a

, obtained from the detectors, can be

transformed using these weightings. This is a form of interpolation performed in
later stages of the procedure. The linear transformation of the entire set of pro-
jection functions needed for the reconstruction of the image of the slice at zp is
implemented using:

_̂php g; hð Þ ¼ w g; hð Þp̂h g; hð Þ: ð7:33Þ

Fig. 7.13 A graph of the weighting function w bg; a
h
h

� �

determining the weight assigned to each
projection p̂h g; hð Þ in the 180� LI method
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Step II In order to reconstruct the image of the cross-section at z = zp, we use one
of the methods designed for fan-beam projection systems and in order to obtain the
hypothetical fan-beam projection we use the following:

pf g; cð Þ � _̂php g; hð Þ; ð7:34Þ

for the ranges � H� 1ð Þ=2� g� H� 1ð Þ=2; ahp�p�2bð Þ
Dh
a

� h� ahpþp�2bð Þ
Dh
a

.

The projection values pf(g, c) obtained from (7.34) can be used directly in any
of the reconstruction methods originally devised for fan-beam systems, as con-
sidered in Chap. 6. But first, we need to adapt the projections _̂php g; hð Þ so that the
indexing and the range are suitable for fan-beam reconstruction algorithms:

_̂php g; hð Þ ¼

_̂php g; h� 2p
Dh
a

� �

for g 2 0; H�1
2

� 	

^ h 2 ahpþp�2gDb

Dh
a

;
ahpþp

Dh
a

� i

_̂php g; hþ 2p
Dh
a

� �

for g 2 �H�1
2 ; 0

� 	

^ h 2 ahp�p

Dh
a

;
ahp�p�2gDb

Dh
a

� i

_̂php g; hð Þ for the remaining

8

>

>

>

>

>

<

>

>

>

>

>

:

:

ð7:35Þ

It remains only to convert the indices of the two projection systems:

c ¼ h� h0 if h� h0
h� h0 þ C if h\h0




; ð7:36Þ

for �bmax

Db
� g� bmax

Db
;
ahp�p

Dh
a

� h� ahpþp

Dh
a

, calculating h0 using:

h0 ¼
2p ahp þ p

� �

div 2p
� �

Dh
a

; ð7:37Þ

where

C ¼ 2p

Dh
a

: ð7:38Þ

Step III The projections pf g; cð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; c ¼ 0; . . .;
C� 1, obtained in this way, can then be subjected to any of the reconstruction
procedures originally intended for fan-beam systems (implementation details are
given in Chap. 6).

The flowchart shown in Fig. 7.14 illustrates all the steps and signals for the
discrete version of the 180� LI algorithm used in SSCT scanners.
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Fig. 7.14 A flowchart of the 180� LI algorithm used in SSCT scanners
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7.2 Multi-Slice Computed Tomography—MSCT

The previous design of spiral scanner, the single-slice CT scanner (SSCT), had
only one row of detectors in the array. Adding additional rows of detectors to the
array created the multi-slice computed tomography (MSCT) scanner [2, 22, 43].
Practical MSCT devices contain between 8 and 34 rows of detectors and so it is
possible to acquire projections simultaneously for the subsequent reconstruction of
up to four slices [52].

MSCT scanners have improved specifications compared to spiral scanners that
have only one row of detectors. There is an eightfold increase in the rate of
acquisition of the reconstructed images (four times the number of reconstructed
slices in half the time). The scanning resolution is increased. The level of image
noise is reduced (the current in the X-ray tube can be increased because of the
reduced time taken to perform the whole scan). There is also a more effective use
of the power of X-ray tube [15].

It should be stressed, however, that in large part the procedure for acquiring the
projections in MSCT technology is the same as in SSCT. The similarity between
the two types of tomography is particularly marked as far as the shape of the beam
of radiation is concerned; there are the same assumptions about the fan-shaped
beams reaching each row of detectors in the MSCT scanner. As might be expected,
the reconstruction algorithms developed for MSCT are only slightly modified
versions of those developed for SSCT.

Amongst the reconstruction methods devised for use in MSCT tomography, we
should particularly mention the algorithm described in the literature as extended
360� linear interpolation (ex-360� LI). Other approaches include extended 180�
linear interpolation (ex-180� LI) [34, 60] and an approach using an adaptive axial

interpolator (AAI) [52]. In this book, however, we will consider the ex-180� LI

algorithm, as it is simply a modification of the 180� LI algorithm used in the SSCT
technique.

7.2.1 The Geometry of the Scanner

Key quantities involved in the acquisition of the projection values in a multi-slice
spiral scanner together with an indication of essential elements of the geometry of
the projection system are given in Figs. 7.15 and 7.16.

A perspective view of the projection system is presented in Fig. 7.15. The
moving projection system consists of an X-ray tube rigidly coupled to a screen in
the shape of a partial cylinder. A multi-row detector matrix (in this case, 4 rows) is
placed on the screen. This system rotates around the z-axis (the principal axis of
the projection system) with a simultaneous longitudinal displacement during the
projection. This means that the rotating projection system moves around the z-axis
along a spiral path. A cone-beam of radiation emitted by the tube travels through
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Fig. 7.15 The projection
system of a multi-slice spiral
scanner—a three-dimensional
perspective view

Fig. 7.16 The projection
system of a multi-slice spiral
scanner: a the geometry of
the fan-beam projection
system in the plane
perpendicular to the axis of
rotation; b the location of the
test object in the plane
containing the axis of rotation
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the test object and finally reaches the detector matrix on the screen. Owing to the
limited number of rows in the matrix and the small distance between them, the
projections reaching each of the individual rows are essentially fan-beams and can
be treated as such [52]. Figure 7.16b illustrates the projection geometry, identical
to that in an SSCT scanner, in the x–y plane. In this system, the rays that are
emitted by the tube and that reach the screen are identified by:

b—the angle between a particular ray in the beam and the axis of symmetry of the
moving projection system;

ah—the angle at which the projection is made;
_z—the displacement of the ray relative to the start of the z-axis.

These three parameters specify every ray during the whole projection process.
Thus, the projection values measured on the screen in a system made up of a set of
fan-beams can be represented by ph b; ah; _z

� �

. As the projections are made during a
large number of rotations of the projection system around the test object, the angle
ah is determined by 0 B ah B 2 p�number_of_rotations. The values of the angle b
are situated within the range [-bmax, bmax], in which:

bmax ¼ arcsin
R
Rf

� �

; ð7:39Þ

where R is the radius of the circle defining the space in which the scan is made; Rf

is the radius of the circle described by the tube.
The location z0 of the projection system along the z-axis is a function of the

angle ah. Assuming the patient table moves forward uniformly and that z0 = 0
when ah = 0 we can write the following linear relationship, which determines the
current location z0:

z0 ¼ k � a
h

2p
; ð7:40Þ

where k is the relative travel of the spiral described by the tube around the test

object, measured in m
rad

h i

.

In this design, the X-ray beam falls on a much broader, multi-row array of
detectors on the screen. This is demonstrated by Fig. 7.17.

As shown in Fig. 7.17, the beam of radiation emitted by the source passes
through the narrow slit of the collimator. This results in a cone-beam. As a con-
sequence of the beam of radiation spreading in the plane parallel to the z-axis we
need to convert the distances appearing on the screen into distances on the z-axis
using the following formula:

_z ¼ z0 þ zd
Rd

Rd þ Rf

; ð7:41Þ

where Rd is the radius of the circle described by the screen.
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The array of detectors placed on the cylindrical screen is designed to measure
the intensity of the X-rays passing through the test object. The detectors in the
array are arranged in rows encompassing the z-axis. Further details of the con-
struction of the detector array will be given when we discuss the discrete version
of this projection system.

A further problem that needs to be considered by reconstruction algorithms is
the inclination of the gantry during a scan. The solution to this problem, for
projection systems with up to four rows of detectors, can be found in the articles
[23, 24].

7.2.2 The Geometry of the Discrete Scanner

The projection system presented above with its multi-row detector array found its
practical application in spiral scanners. As with all previous designs, the MSCT
spiral scanner also had to take into account the discrete nature of the projections
obtained.

Figure 7.18 shows orthogonal views of the projection system at two different
projection angles. As we can see from the diagram, the quantities Rd and Rf are
many times greater than the width of the detectors dw. In addition, the gaps
between the individual rows of detectors are very small. We can therefore regard
the beams travelling from tube to detector as being approximately parallel. This
allows us to assume that the radiation beam is made up of fans with a total

Fig. 7.17 The geometry of
the spiral projection system
of the MSCT
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thickness BW (the beam width). Since each detector has a width dw, the intensity
measurements are made only within this restricted area. This arrangement forms a
part of the collimation system. The width of the cross-section, SW (slice width),
can therefore be calculated from the value of dw in the z-direction, using the
equation:

SW ¼ dw
Rd

Rd þ Rf

: ð7:42Þ

The individual rows of detectors in the array, and therefore the individual fans of
radiation, are numbered using the index k ¼ 1; 2; . . .;K. In the case of the detector
array shown in Fig. 7.18, K = 4.

The remaining elements of the quantisation process of the projection values do
not differ from those discussed for other designs of fan-beam scanner. However,
because of the introduction of a new convention for representing the projection
parameters in this approach, they are described again below.

In this system, acquisition of the projection values ph b; ah; _z ah; k
� �� �

only takes
place at specific angles of rotation ah, determined by the relationship:

ahh ¼ h � Dh
a; ð7:43Þ

Fig. 7.18 The discrete version of the MSCT scanner
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where Dh
a ¼ 2p

H2p is the angle through which the tube-screen system is rotated fol-

lowing each projection; H2p is the number of projections made during one full
rotation of the projection system; h ¼ 0; . . .;H� 1 is the global projection index;
H ¼ number of rotations �H2p is the total number of projections.

The position of the detector in the matrix is determined by the pair (g, k), where
g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2 is number of the detector in the row and
k ¼ 1; 2; . . .;K is the number of the row in which the detector is located. L and K
represent, respectively, the total number of detectors in each row and the total
number of rows. It is convenient to assume that K is an even number.

With this design of detector array, we obtain projection values ph b; ah; _z
� �

only
for the selected projection angle b, determined by the relationship:

bg ¼ g � Df

b; ð7:44Þ

where Df

b is the angular distance between the individual radiation detectors placed

on the cylindrical screen.
Therefore, we can summarise by saying that in the discrete projection system of

the MSCT spiral scanner we can only obtain the projection values p̂h g; h; kð Þ ¼
ph bg; a

h
h; k

� �

for g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1; k ¼ 1;
2; . . .;K.

Looking back to the discussion summarised by Eq. 7.42, it is advisable, for
discrete projections, to reformulate the relationship describing the displacement of
the detectors with respect to the z-axis. As the detector array has multiple rows, it
is necessary to consider the position of each of the rows of detectors individually.
In addition, it is convenient to establish the point z0 = 0 as a point of reference in
the z direction. Finally, we can conclude that the position of a given row of
detectors with respect to the z-axis is given by:

_z ah; k
� �

¼ k
ah

2p
þ k � Kþ 1

2

� �

� SW: ð7:45Þ

Another very important scan parameter in a spiral scanner is the pitch. Unlike the
definition of the similar quantity given in Eq. 7.5, the definition in the MSCT
projection system must take into account the number of rows of detectors in the
array:

pitchd ¼
k

K � SW: ð7:46Þ

Figure 7.19 shows a graphical interpretation of the parameter pitchd defined by
Eq. 7.46, relative to the parameter pitch. It is clear from this that the faster the
forward movement of the patient table (i.e. higher values of pitch and pitchd),
the greater the errors involved in recovering the missing projections and the poorer
the quality of the resulting reconstructed image.
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The choice of the value for k (for a fixed beam width SW) affects the z-axis
resolution attainable for the reconstructed images. For a standard detector array
with 4 rows, the pitchd is four times smaller than the pitch.

7.2.3 The z-Filtering Reconstruction Algorithm

The z-filtering reconstruction algorithm is based on linear interpolation methods
used for SSCT scanners (360� LI and 180� LI). In this case, however, we use
projections ph b; ah; _z

� �

obtained from a spiral projection system with a multi-row
detector array to reconstruct the image of the selected cross-section. In the
z-filtering algorithm, the function ph b; ah; _z

� �

is used to calculate the hypothetical
fan-beam projections pf ðb; af Þ; ½�bmax; bmax�; ah 2 0; 2p½ Þ, which are then used to
reconstruct the image of the slice at location z = zp.

Before proceeding to a discussion of the z-filtering algorithm, we should first
examine the circumstances in which the projections ph b; ah; _z

� �

are performed in
an MSCT scanner [26, 27, 58]. What is important here is the pitch parameter that
determines the relative positions of the projections ph b; ah; _z ah; k

� �� �

along the z-
axis. Figure 7.20a illustrates a situation where pitchd = 2 (for simplicity, only rays
corresponding to b = 0 for each projection are indicated in the diagram). The
different lines in this diagram represent the rays assigned to specific rows of
detectors, more specifically to one of the detectors in each row. The dotted lines
represent the rays corresponding to projection values ph 0; ah þ p; _z

� �

made after
half a rotation. As can be seen from the diagram, the rays of the two adjacent
projections ph 0; ah; _z

� �

and ph 0; ah þ 2p; _z
� �

coincide in two instances. In addition,
all the rays of the complementary projection ph 0; ah þ p; _z

� �

are duplicated by rays
coming from ph 0; ah; _z

� �

or ph 0; ah þ 2p; _z
� �

. This duplication of the radiation
measurements is not helpful, as it means that in spite of an expanded array of
detectors, there is no increase in the measurement resolution. The situation can be

Fig. 7.19 A graphical
interpretation of the
parameter pitchd in the
MSCT scanner
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avoided, however, by using non-integer values for pitchd [27, 66], for example:
pitchd = 0.5; 1.5. Figure 7.20b shows the advantage of this, in terms of the spread
of the rays from the projections ph 0; ah; _z

� �

; ph 0; ah þ p; _z
� �

and ph 0; ah þ 2p; _z
� �

.
If we were also to draw the extra rays associated with the complementary pro-
jection ph 0; ah � p; _z

� �

, we would see an evenly spaced, four-fold increase in the
density of the rays for b = 0. In general, this means an increase in the density of
the projections for all angles b and consequently a potential increase in the z-axis
resolution of the reconstructed slice images.

However, the direct transfer of any of the SSCT spiral scanner reconstruction
methods (such as 360� LI or 180� LI) to a scanner with a multi-row detector array
would not result in any benefit from the increased z-axis sampling resolution.
Therefore, a new method designed for MSCT scanners has been proposed:
z-filtering [27, 58]. A diagram of this method is shown in Fig. 7.21.

The z-filtering reconstruction algorithm makes use of projection values from
every detector row to obtain the hypothetical projections made in the plane of the
slice. The interpolation process in this method uses a filter of width FW (filter
width). The main elements of the interpolation are shown located on the z-axis in
Fig. 7.22 [58].

As shown in Fig. 7.22, the range used to interpolate the projections _ph b; ah; zp
� �

is restricted to _z 2 zp � FW
2 ; zp þ FW

2

� 	

. But we also take into account two additional
projections: the projection on the z-axis just before _z ¼ zp � FW

2 and the one just
after _z ¼ zp þ FW

2 . It should be stressed that in this arrangement, as well as using
measurements from all the detector rows, we also use the projections made after
complete rotations and the complementary projections, i.e. those obtained after
half-rotations (or more specifically, when the angle of rotation of the projection
system is ah þ integer value � p� 2b and the angle of the ray in the fan is -b).
All of the projections in the set are arranged temporarily in order of their

Fig. 7.20 Selecting values of pitchd: a the overlap of the rays when pitchd = 2; b the increase in
the density of the rays when pitchd = 2.5
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Fig. 7.21 The z-filtering algorithm used in MSCT tomography
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occurrence on the z-axis and are indexed using the index i ¼ 1; 2; . . .; Imax. The
projection value ph1 b; ah; _z

� �

represents the additional projection lying just before
_z ¼ zp � FW

2 and the projection value phImax
b; ah; _z
� �

the one just after _z ¼ zp þ FW
2 .

The interpolation procedure used in the z-filtering algorithm then proceeds as
described below [58].

The first stage in the processing of the projection values ph b; ah; _z
� �

involves
re-sampling within the range zp � FW

2 ; zp þ FW
2

� 	

with a resolution:

Dz ¼
FW

2Jþ 1
; ð7:47Þ

where J is the number of re-sampling points.
The individual positions where re-sampling occurs are arranged in the order:

_zj ¼ zp þ j � Dz; ð7:48Þ

where -J B j B J.
The re-sampled values _phj b; ah; zp

� �

are determined from two adjacent projec-

tions phi b; ah; _z
� �

on the z-axis, using an interpolation formula, for example:

_phj b; ah; zp
� �

¼ 1� w b; ah; i jð Þ
� �� �

� phi jð Þ b; ah; _z
� �

þ w b; ah; i jð Þ
� �

� phi jð Þþ1 b; ah; _z
� �

; ð7:49Þ

in which:

w b; ah; i jð Þ
� �

¼ _zj � _z1

_z2 � _z1

�

�

�

�

�

�

�

�

; ð7:50Þ

where i(j) is the index of the last in the series of projections phi b; ah; _z
� �

, where
_z� _zj; _z1 is the _z-coordinate of the projection ph

i jð Þ b; ah; _z
� �

; _z2 is the _z-coordinate

of the projection ph
i jð Þþ1 b; ah; _z

� �

.

The next step of the process is to filter the re-sampled projections _phj b; ah; zp
� �

.
Examples of different shapes of filter are shown in Fig. 7.23 [58].

In each case, the equation defining the filtering process can be written as
follows:

Fig. 7.22 Determining the
neighbourhood of a slice
using a filter of width FW
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_ph b; ah; zp
� �

¼
PJ

j¼�J ĥ
X
j � _phj b; ah; zp

� �

PJ
j¼�J ĥ

X
j

; ð7:51Þ

where ĥXj is the discrete form of the convolving function.

Fig. 7.23 Filter function shapes: a rectangular function (smoothing filter); b edge enhancement
function; c modified function
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Using this two-stage interpolation formula, we obtain the projection values
_ph b; ah; zp
� �

, in the reconstruction plane zp. In this way, the problem of the multi-
row detector matrix system has been reduced to that of the SSCT scanner.

Use of the procedure described by Eqs. 7.10–7.12 then allows us to define the
projections pf(b, af) made in the hypothetical fan-beam projection system in the
z = zp plane. After this operation, we can begin to reconstruct the image using a
method designed for fan-beams.

7.2.4 Discrete Implementation of the z-filtering Reconstruction

Method

The discrete version of the z-filtering reconstruction algorithm operates only on
certain projections carried out at particular locations on the z-axis and for X-ray
intensity measurements made only at particular places on the screen. The points on
the screen where the measurements are made are determined by the location of the
detectors on the partial drum-shaped array.

During the whole scan, the middle of the radiation beam only passes through
each point on the z-axis once and as only a limited number of projections are
carried out, only certain locations on the z-axis lie in the plane of the incident
radiation. These places are referenced using the index h ¼ 0; . . .;H� 1, where H
is the number of projections made during the entire scan.

The angle at which a particular ray in the beam falls on a suitable detector will
be indexed using the variable g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2, where H is
an odd number of detectors in each row of the array. The number of the row in
which a specific detector is situated is determined by the variable k ¼ 1; 2; . . .;K,
where K is the total number of rows of detectors in the array (this is usually an
even number).

Therefore, we can summarise by saying that only the discrete projection
values p̂h g; h; kð Þ for g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1;
k ¼ 1; 2; . . .;K are available to the reconstruction algorithm.

In order to carry out the z-filtration reconstruction process, we reduce the
problem to that of a hypothetical fan-beam projection system and then use any of
the methods devised for the fan-beam system to obtain an image of the slice at zp.
To do this, we need to calculate all the necessary projections
p̂f gf ; c
� �

; gf ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; c ¼ 0; . . .;C� 1, where C ¼ 2p
Df
a

.

It is also important to pay attention to the relationships between the parameters
of the spiral projection system and those of the fan-beam system, for rays lying in
the same plane parallel to the z-axis. These relationships can be determined by the
following systems of equations:

h ¼ cþ h0 þ np if cDb\ahp þ p� h0

cþ h0 � Cþ np if cDb � ahp þ p� h0

(

ð7:52Þ
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and

g ¼ gf ð7:53Þ

for n ¼ 0;�2;�4;�6; . . .; and for the complementary rays, i.e. those projected
from the opposite side:

h ¼
cþ h0 þ np� 2gf if cDb\ahp þ p� h0

cþ h0 � Cþ np� 2gf if cDb � ahp þ p� h0

8

<

:

ð7:54Þ

and

g ¼ �gf ð7:55Þ

for n ¼ �1;�3;�5; . . .; where in all instances h0 is calculated using:

h0 ¼
2p ahp þ p

� �

div 2p
� �

Dh
a

: ð7:56Þ

Consecutive stages in the determination of the projection values p̂f gf ; c
� �

;

gf ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; c ¼ 0; . . .;C� 1 are presented below.

Step I During the preliminary phase, when the parameters for the scan are
established, the radiologist determines the position z = zp of the reconstruction
plane. If the projections start at angle a0

h
= 0, then the angle of the principal

axis of the hypothetical beam, at the moment it passes through the point zp, can
be determined from Eq. 7.6. Knowing this, and parameters such as the distance
dw between the rows of detectors, the resolution Dh

a at which the projections are
made, and k, we can use Eqs. 7.52–7.56 to establish which of the projection
values p̂h g; h; kð Þ (the direct and the complementary projections) will cross the
z-axis through the section zp � FW

2 ; zp þ FW
2

� 	

, i.e. which of them satisfy the
condition:

zp �
FW
2

� k
h � Dh

a

2p
þ k þ Kþ 1

2

� �

� dw � zp þ
FW
2

; ð7:57Þ

where FW is the width of the filter; dw is the distance between the detectors along
the z-axis.

The projections satisfying these conditions are arranged in the order in which
they occur along the z-axis, starting from the point z ¼ zp � FW

2 , and given an index
i ¼ 2; 3; . . .; I� 1. The value I - 2 represents the number of projection values
situated within the range specified by (7.57).
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The projection value p̂h1 g; h; kð Þ situated just before this range is given the index
i = 1; the next sample to be selected is the first projection value p̂hI g; h; kð Þ just
after the range. So the sequence of projections p̂hi g; h; kð Þ finally taken into account
in subsequent stages of the process is indexed i ¼ 1; 2; 3; . . .; I.

Step II All of the projections p̂hi g; h; kð Þ; i ¼ 1; 2; 3; . . .; I, obtained from the first
stage of the process, are filtered as follows:

_pf bf ; af
� �

¼

P

I

i¼1
p̂hi g; h; kð Þ � ĥRecti

P

I

i¼1
ĥRecti

; ð7:58Þ

where ĥRecti are the weightings for the rectangular filter.

The weighting factors ĥRecti are determined based on the premise that their
values depend on the density of the sampled series p̂hi g; h; kð Þ at a given location on
the z-axis. Figure 7.24 shows how the values of ĥRecti can be calculated for a
rectangular filter, for selected index values i = 2; i = I - 2; i = I.

As we can see from Fig. 7.24, the value of the weighting factor ĥRecti , assigned
to a particular sample taken from the series p̂hi g; h; kð Þ, is proportional to the
sample’s area of influence on the area defined by the rectangular filter function.
This allows us to attempt an accurate calculation of the weightings ĥRecti . The
equations defining these values differ depending on the value of the index
i. Determinations of the weights ĥRecti for the different categories of samples
p̂hi g; h; kð Þ are shown below:

ĥRect1 ¼ 1
FW

Z

z2�zmin

0

€z

z2 � z1
d€z ¼ 1

FW
z2 � zminð Þ2
2 z2 � z1ð Þ ; ð7:59Þ

Fig. 7.24 Determining the weighting factors for a rectangular filter
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ĥRect2 ¼ 1
FW

Z

z3�z2

0

1� _z

z3 � z2

� �

d _zþ
Z

z2�zmin

0

1� €z

z2 � z1

� �

d€z

0

@

1

A

¼ 1
FW

z3 � z2

2
þ z2 � zmin �

z2 � zminð Þ2
2 z2 � z1ð Þ

 !

;

ð7:60Þ

ĥRecti ¼ 1
FW

Z

zi�zi�1

0

_z

zi � zi�1
d _zþ

Z

ziþ1�zi

0

1�
_€z

ziþ1 � zi

� �

d _€z

0

@

1

A ¼ 1
FW

ziþ1 � zi�1

2

� �

;

ð7:61Þ

for 2\ i\ I - 1,

ĥRectI�1 ¼ 1
FW

Z

zmax�zI�1

0

1� _z

zI
� zI�1

� �

d _zþ
Z

zI�1�zI�2

0

1� €z

zI�1
� zI�2

� �

dd _z

0

@

1

A

¼ 1
FW

zI�1 � zI�2

2
þ zmax � zI�1 �

zmax � zI�1ð Þ2
2 zI � zI�1ð Þ

 !

;

ð7:62Þ

ĥRectI ¼ 1
FW

Z

zmax�zI�1

0

_z

zI
� zI�1d _z ¼

1
FW

zmax � zI�1ð Þ2
2 zI � zI�1ð Þ ; ð7:63Þ

where z, _z, €z are coordinates whose ranges are indicated in Fig. 7.24; zmin, zmax are,
respectively, the points on the z-axis indicating the beginning and end of the area
covered by the filter.

Note that the sum of all the weighting factors calculated using Eqs. 7.59–7.63 is
1, after normalisation by the filter width FW (the area determined by the shape of
the filter function used). Therefore, for a rectangular filter such as that in
Fig. 7.23a, Eq. 7.51 takes the form:

_p f g; cð Þ ¼
X

i¼1

p̂hi g; h; kð Þ � ĥRecti : ð7:64Þ

For a filter with different characteristics, we need to modify Eqs. 7.59–7.63
appropriately. For example, Eq. 7.61 can be modified to obtain the following
equation:

ĥXi ¼
1

FW

Z

zi�zi�1

0

1� _z

zi� zi�1
� filter _zð Þ

� �

d _zþ
Z

zi�ziþ1

0

1�
_€z

ziþ1� zi
� filter _€z

� �

� �

d _€z

0

@

1

A;

ð7:65Þ
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where filter _zð Þ is the function of the filter used, such as one of those shown in
Fig. 7.23b or 7.23c.

Step III Using the interpolated projection values _pf gf ; c
� �

obtained from the
hypothetical fan-beam projection system, we can now reconstruct the image of the
slice at z = zp.

A flowchart for implementing the discrete z-filtering reconstruction method is
shown in Fig. 7.25.

7.3 Cone-Beam Spiral Computed Tomography—CBCT

An important factor in the design of the MSCT spiral scanner was the assumption
that the individual fan-beams making up the cone-shaped beam of radiation are
parallel. This assumption presented an obstacle to attempts to increase the number
of rows in the detector array. With the development of cone-beam computed

tomography (CBCT) there was a break with previous thinking, which led to a
substantial increase in the width of the detector array. This in turn led to such an
increase in scanning rate that it now became possible to scan organs physiologi-
cally in motion, such as the heart. Furthermore, because of the small distance
between the rows of detectors it was also possible to increase the scan resolution
along the z-axis significantly.

An additional advantage of the new projection geometry was the increase in the
effective solid angle of the X-rays. This vastly improved the efficiency of the
scanner in regard to the amount of information obtained from the radiation energy
used. It reduced the amount of energy lost in the tube, which allowed the tube
current to be increased, thereby reducing the level of noise in the reconstructed
image.

Increasing the width of the detector array and the consequent departure from the
assumption of parallel fan-beams made it necessary to develop new reconstruction
algorithms that were specially designed for systems with a conical beam of
radiation. Theoretical studies [36, 63] led to the conclusion that it was indeed
possible to reconstruct the image using three-dimensional projections recorded by
a two-dimensional detector array. A sufficient condition for the exact recon-
struction of the radiation attenuation coefficient at a point in three-dimensional
space from a conical projection is the existence of at least one cone-shaped source
of radiation in each plane that contains the point [16, 55, 64]. This statement led to
the development of a whole series of reconstruction algorithms, of which the best
known are: exact cone-beam reconstructions—based on Smith’s theory [56, 71,
74], the Grangeat approach [10, 25, 37, 41, 45, 60] and the method developed by
Tuy [75].

Practical medical scanners suffer from a number of technical problems, how-
ever. For example, some positions of the radiation source (the X-ray tube) are not
physically possible (the problem of longitudinal irradiation of the patient’s body)
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and the whole body cannot be included in a simultaneous measurement of radi-
ation intensity (the detector array has finite size). This made it necessary to
develop algorithms that take these circumstances into consideration. A range of

Fig. 7.25 A flowchart of the z-filtering algorithm used for the MSCT scanner
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algorithms has been developed for longitudinally truncated data to take account
of the finite number of projections of an object of theoretically infinite length (the
so-called long object): the local region-of-interest (L-ROI or Local-ROI) method
[50, 51, 59], zero-boundary (ZB) algorithms [11] and the virtual circle (VC)
approach [38, 39].

Other approaches were also developed, which assumed an approximate solution
to the problem of reconstruction from conical projections. This type of algorithm,
known in the literature as approximate cone-beam reconstruction, includes
methods such as the PI method (n-PI) [8, 9, 48, 61, 62], single slice reconstruction
(SSR) [46], multi-row Fourier reconstruction (MFR) [4, 5, 49], adaptive multiple

plane reconstruction (AMPR) [53], nutating slice reconstruction (NSR) [40],
general surface reconstruction (GSR) [6] and others [73]. These methods have a
shorter calculation time than exact algorithms, as well as less noise and lower
distortion in the reconstructed image.

The rest of this chapter describes two practical approximate cone-beam
reconstruction methods for spiral projection systems. These are included due to
their usefulness in medical applications and their commercial importance. They
are the Feldkamp algorithm [13] and the reconstruction procedure described in the
literature by its abbreviation ASSR [29–31] (advanced single slice rebinning).

7.3.1 The Geometry of the Cone-Beam Scanner

A diagram of the cone-beam scanner, together with key trigonometric relation-
ships, is shown in Figs. 7.26 and 7.27 [29, 49, 68].

Fig. 7.26 The projection
system of a cone-beam
scanner—a three-dimensional
perspective view
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A three-dimensional view of the scanner is given in Fig. 7.26. The system
consists of an X-ray tube and a rigidly coupled, partial cylindrical screen with a
multi-row matrix of detectors. During a scan, this assembly rotates around the
z-axis, the principal axis of the system, and at the same time, the patient table
moves into the gantry. The moving projection system thus traces a spiral path
around the z-axis. Figure 7.27a shows the projection geometry in a plane per-
pendicular to the z-axis. Each ray emitted by the tube at a particular angle of
rotation and reaching any of the radiation detectors can be identified by b; ah; _z

� �

,
as follows:

b—the angle between a particular ray in the beam and the axis of symmetry of the
moving projection system;

ah—the angle at which the projection is made, i.e. the angle between the axis of
symmetry of the rotated projection system and the y-axis;

_z—the z-coordinate relative to the current position of the moving projection
system.

Therefore, the projection function measured at the screen in a cone-beam
system can be represented by ph b; ah; _z

� �

.

Fig. 7.27 The projection
system of a cone-beam
scanner: a the geometry of
the cone-beam projection
system in a plane
perpendicular to the axis of
rotation; b the location of the
test object in the plane along
the axis of rotation of the
projection system
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The angle ah at which the projections are made is determined by the double
inequality 0� ah � 2p�number of rotations, whilst the value of the angle b is
within the range [-bmax, bmax], where

bmax ¼ arcsin
R
Rf

� �

; ð7:66Þ

where R is the radius of the circle defining the space in which the scan is carried
out; Rf is the radius of the circle described by the focus of the tube.

Unlike b, which is an angle, _z represents a distance on the screen. It is the
distance between the point where a ray strikes the screen and the vertical plane of
symmetry of the projection system. For convenience, this distance is usually
calculated relative to the z-axis, as shown in Fig. 7.28.

Assuming that the tube rotating around the test object starts at a projection
angle ah = 0, the vertical plane of symmetry of the projection system (and the
focus of the tube) moves along the z-axis and its current location along the axis is
defined by the relationship:

z0 ¼ k � a
h

2p
; ð7:67Þ

where k is the relative travel of the spiral described by the tube around the test

object, measured in m
rad

h i

.

As with MSCT scanners, one of the basic parameters for a particular scan is the
pitchd value. This is defined in Eq. 7.46 and illustrated in Fig. 7.19, but is also
applicable to cone-beam tomography.

Fig. 7.28 The geometry of
the scanner in the x–z plane
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The array of detectors on the cylindrical screen is designed to measure the
intensity of the cone of X-rays. The detectors in the array are arranged in mutually
perpendicular rows and columns, the rows partially encircling the z-axis. Further
details of the design of the detector array will be given during discussion of the
discrete version of the projection system, which is used in practice.

7.3.2 The Geometry of the Discrete Cone-Beam Scanner

The cone-beam projection system found application in spiral scanners. When
designing this generation of device the discrete nature of the projections had to be
taken into account. The stages of the discretisation process are the subject of the
following discussion.

A method of measuring the X-ray intensity in a practical cone-beam scanner is
shown in Fig. 7.29.

The acquisition of the projection values ph b; ah; _z
� �

only takes place at specific
angles of rotation ah:

ahh ¼ h � Dh
a; ð7:68Þ

Fig. 7.29 The discrete version of the cone-beam scanner
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where Dh
a ¼ 2p

H2p is the angle through which the tube-screen system is rotated fol-

lowing each projection; H2p is the number of projections made during one full
rotation of the projection system; h ¼ 0; . . .;H� 1 is the global projection index;
H ¼ number of rotations �H2p is the total number of projections.

The position of a detector in the matrix is determined by the pair (g, k), where
g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2 is the number of the detector (channel) and
k ¼ 1; 2; . . .;K is the number of the column (row). H and K denote the total
number of detectors in the columns and the total number of columns, respectively.
It is helpful to assume that the useful rays striking the detectors in the individual
columns are distributed evenly, i.e. Db ¼ const, and that the individual channels

are equidistant from each other on the screen, i.e. Dh
z ¼ const. These assumptions

make it easy to locate the detectors in the array on the surface of the partial
cylinder, as shown in Fig. 7.30.

In practice, given this design of detector array, we obtain the projection values
ph b; ah; _z
� �

only at certain angles b, determined by:

bg ¼ g � Df

b; ð7:69Þ

where Df

b is the angular distance between the radiation detectors on the cylindrical

screen.
As shown in Fig. 7.31, the angles between the individual rays, incident on the

screen, vary. This means that the relative distances between the individual
detectors in the z-direction also vary. However, if we assume that the number of
columns is within reasonable limits, the distance between the detectors relative to
the z-axis is [49]:

_Dh
z ffi Dh

z �
R f

Rf þ Rd

: ð7:70Þ

Fig. 7.30 The topology of
the detectors on the screen of
a multi-row spiral scanner
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The further the detectors are from the y-axis, the smaller the intervals between the
detectors become, relative to the z-axis. If necessary, we can compensate for this
effect, during design, by increasing the size of those detectors that are more distant
from the vertical plane of symmetry of the screen [29].

Using Eq. 7.70, we can calculate the distance of each detector from the x-
y plane, measured along the z-axis:

_̂zk ¼ ẑk �
Rf

Rf þ Rd

ffi k � Kþ 1
2

� �

� Dh
z �

Rf

Rf þ Rd

; ð7:71Þ

where Rf is the distance from the focus of the X-ray tube to the principal axis of the
projection system; Rd is the smallest distance from the partial cylinder on which
the detector matrix is placed to the principal axis of the projection system.

It is also important to note that _Dh
z is equal to the thickness of the cross-section

of the reconstructed image, the slice width (SW), one of the key parameters in
computed tomography.

In summary, the projections obtained in the discrete cone-beam scanner are
represented by p̂ g; h; kð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;
H� 1; k ¼ 1; 2; . . .;K.

7.3.3 The Feldkamp Algorithm

One of the principal reconstruction methods devised for the cone-beam spiral
scanner is the generalised Feldkamp algorithm [13, 69]. A diagram of the recon-
struction process for this heuristic method is shown in Fig. 7.32. The algorithm is a

Fig. 7.31 Determining
distances on the screen
relative to the z-axis
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development of a conventional fan-beam reconstruction approach. The fan-beam
projections are filtered in two dimensions and then back-projected in three
dimensions. A number of modifications to this algorithm have also been
developed, such as extended parallel back-projection (EPBP) [28, 32] and others
[17, 18, 68, 70].

Before discussing the two-dimensional filtration phase of the Feldkamp algo-
rithm, it is worth first returning to the implementation of the direct fan-beam
reconstruction method considered in Chap. 6. Accordingly, we can write a set of
equations describing this reconstruction method for the Ram-Lak filter [33, 42]:

Fig. 7.32 A flowchart for the Feldkamp algorithm
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�lðx; yÞ ¼ Rf

2
�
Z

2p

0

�p f _b; a f
� �

da f ; ð7:72Þ

where

�p f _b; a f
� �

¼ 1
_u2

�
Z

bmax

bmin

p f _b; a f
� �

� cos _bRL b� _b
� �

d _b; ð7:73Þ

where, by using Table 4.3 and Eqs. 7.22–7.23, it can be shown that:

_b ¼ arctan
x cos af þ y sin af

Rf þ x sin af � y cos af

� �

; ð7:74Þ

_u2 ¼ x cos af þ y sin af
� �2þ Rf þ x sin af � y cos af

� �2
: ð7:75Þ

The fan-beam reconstruction method expressed by Eqs. 7.72–7.75, however, has to
be adapted to the conditions of the spiral cone-beam projection system. In order to
do this, the first problem we have to address is how to make use of the projection
values ph b; ah; _z

� �

obtained from rays in the cone-beam, which do not lie in the
(x, y) plane. Those are the projection values ph b; ah; _z

� �

with _z 6¼ 0.
In the generalised Feldkamp algorithm, the cone-beam is considered as a

combination of multiple fan-beams lying in planes inclined at different angles to
the central plane perpendicular to the z-axis. The location of one of these com-
ponents is illustrated in Fig. 7.33.

Fig. 7.33 The position of
one of the components of the
cone-beam
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If we consider this component to be lying in the plane of a new coordinate
system (x0, y0), then the reconstruction algorithm given by Eqs. 7.72–7.75 for the
slice in this plane can be expressed as follows:

�l x0; y0ð Þ ¼
R0
f

2
�
Z

2p

0

�p0h _b0; a0h
� �

da0h; ð7:76Þ

�p0f _b0; a0h
� �

¼ 1
_u02

�
Z

bmax

bmin

p0f _b0; a0h
� �

� cos _b0 � hRL b0 � _b0
� �

d _b0; ð7:77Þ

_b0 ¼ arctan
x cos a0h þ y sin a0h

Rf þ x sin a0h � y cos a0h

� �

; ð7:78Þ

_u02 ¼ x cos a0h þ y sin a0h
� �2þ R0

f þ x sin a0h � y cos a0h
� �2

: ð7:79Þ

The contribution that the filtered projection p0f ðb0; a0hÞ makes to the value assigned
to the voxel �l x; y; zð Þ of the reconstructed image is determined by the relationship:

d�l x; y; zð Þ ¼
R0
f

2 � _u02 �
Z

bmax

bmin

p _b0; a0h
� �

� cos _b0 � h _b0 � b0
� �

d _b0da0h: ð7:80Þ

In the next step, we have to consider the filtered projection values �p0f b0; a0h
� �

in
terms of the coordinate system of planes parallel to the central plane. We do this
by bearing in mind the simple geometric relationships between the angles mea-
sured on the central plane and the angles describing the planes inclined to it, i.e.:

b0 ¼ b ð7:81Þ

and

a0h ¼ ah: ð7:82Þ

The coordinates of a point in the rotated coordinate system (x0, y0) projected onto a
similarly rotated system in the (x, y) plane can also be determined, using the
following relationships:

s0 ¼ s ð7:83Þ

and

u0

R0
f

¼ u

Rf

: ð7:84Þ
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Note also that the distance between the radiation source and the principal axis of
the projection system, measured on the (x0, y0) plane, is:

R0
f

� �2
¼ Rf

� �2þ_z2: ð7:85Þ

It is also worth noting that in both the (x, y) and the (x0, y0) coordinate systems, the
linear velocity of the radiation source rotating around the principal axis of the
projection system is a constant:

-Focus � Rf ¼ -0
Focus � R0

f : ð7:86Þ

Using the definition of angular velocity -Focus ¼ dah

dt
, we can easily obtain the

relationship between the angular increments dah in both systems:

dah � Rf ¼ dah0 � R0
f ; ð7:87Þ

which, after combining with Eq. 7.85, gives us the following relationship:

dah0 ¼ dah � Rf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
f þ _z2

q : ð7:88Þ

Using Eqs. 7.81–7.84 and 7.88, Eq. 7.80 can be converted to the following form:

d�lðx; y; zÞ ¼ Rf

2 � _u2 �
Z

bmax

�bmax

ph _b; ah; _z
� �

� cos _b � hRL b� _b
� �

d _bdah; ð7:89Þ

where

_b ¼ arctan
x cos ah þ y sin ah

Rf þ x sin ah � y cos ah

� �

; ð7:90Þ

_u2 ¼ x cos ah þ y sin ah
� �2þ Rf þ x sin ah � y cos ah

� �2þðz0 � zpÞ2: ð7:91Þ

We can now carry out the three-dimensional back-projection by integrating both
sides of Eq. 7.89 with respect to the angle of rotation of the projection system ah.
The image reconstruction method for a slice at a distance zp from the point z = 0
can thus be illustrated by the equation:

�l x; y; zp
� �

¼ Rf

2

Z

ahpþp

ahp�p

1

_u2
�
Z

bmax

�bmax

ph _b; ah; _z
� �

� cos _b � hRL b � _b
� �

d _bdah;

ð7:92Þ
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where

ahp ¼
2p � zp

k
: ð7:93Þ

The final problem to be solved is the determination of the value of _z. This variable
represents the inclination of the fan with respect to the perpendicular plane of
symmetry of the projection system, measured along the z-axis. A method of
determining this value is shown in Fig. 7.34.

The value of _z is calculated by simply using the relationship:

_z ¼ Rf � z0
Rf � u

; ð7:94Þ

where z0 is the equivalent to the z-coordinate but in the local coordinate system
(x, y, z0) and is found using the simple relationship:

z0 ¼ k � a
h

2p
� zp: ð7:95Þ

The quantities _b and _u2 are calculated using Eqs. 7.90 and 7.91.
When the scanner gantry is tilted, as is often to the case when scanning the head,

the basic Feldkamp algorithm has to be modified. Descriptions of practical solutions
to this algorithmic problem can be found in the articles [1, 19, 20, 57, 72].

7.3.4 Discrete Implementation of the Feldkamp Algorithm

In the cone-beam spiral scanner, the reconstruction algorithm only makes use of
projections obtained at particular angles and measured only at particular points on
the partial drum-shaped screen.

Fig. 7.34 A method of
determining _z
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In addition, the detectors are assumed to be arranged on the screen in a way that
ensures a uniform distribution of useful rays in the planes that contain the detector
rows and the radiation source.

Fan-shaped sections of the cone-beam strike individual rows of detectors
k ¼ 1; 2; . . .;K, where K is an even number of rows. Each row has an identical arc
shape.

The angle at which a ray of the fan-beam strikes a detector in a particular row is
indexed using the variable g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2, where H is an
odd number of detectors in each row of the array.

During an examination of a patient’s body using spiral tomography, the beam of
radiation (more specifically its middle) only passes through a specific point on the
z-axis once. As mentioned previously, only a limited number of projections are
made, each of which is indexed using the variable h ¼ 0; . . .;H� 1 where H is the
total number of projections made during the scan.

Therefore, the reconstruction algorithm only makes use of the projection values
p̂h g; h; kð Þ; g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1; k ¼ 1; 2; . . .;K.

When setting the parameters for an examination, the positions on the z-axis,
where the cross-sections are to be reconstructed, are established. We will con-
centrate on one of these, located at zp. If the first projection takes place at an angle
ah0 = 0, the angle at which the middle of the cone-beam passes through the point
z = zp is determined by Eq. 7.93.

Considering these factors, we can proceed with the reconstruction procedure as
expressed entirely by Eq. 7.92.

Step I In this stage of the process, all of the projection values p̂h g; h; kð Þ;
g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2; h ¼ 0; . . .;H� 1; k ¼ 1; 2; . . .;K, are sub-
jected to geometric correction, using the relationship:

p̂hcorr g; h; kð Þ ¼ p̂h g; h; kð Þ � cos gDb

� �

: ð7:96Þ

Step II All of the fan-beam projections p̂hcorr g; h; kð Þ; h ¼ 0; . . .;H� 1;
k ¼ 1; 2; . . .;K can then be processed directly using a Ram-Lak filter, as explained
in Chap. 6:

�̂ph g; h; kð Þ ¼ Db �
X

ðH�1Þ=2

_g¼�ðH�1Þ=2
p̂hcorr _g; h; kð Þ � ĥRL g� _gð Þ � Db

� �

: ð7:97Þ

Step III Often there is no ray that actually passes exactly through a particular
discrete point in space, or voxel, (i, j, n) and so there is no projection value
available to the reconstruction algorithm. This means that the missing projection
value has to be interpolated based on adjacent filtered measurements �̂ph g; h; kð Þ,
using a technique such as bilinear interpolation:
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_̂�p
h
bij hð Þ; h; _zijn hð Þ
� �

¼ k" � _zijn
_Dh
z

 !

� g" �
bij

Db

� �

� �̂ph g#; h; k#
� �

þ
bij

Db

� g#
� �

� �̂ph g"; h; k#
� �

� �

þ _zijn
_Dh
z

� k#
 !

� g" �
bij

Db

� �

� �̂ph g#; h; k"
� �

þ
bij

Db

� g#
� �

� �̂ph g"; h; k"
� �

� �

:

ð7:98Þ

The quantities bij and _zijn represent the coordinates of the discrete point
(i, j, n) expressed as parameters of the projection carried out at the angle h.

The geometric relationships in Fig. 7.35 can be used to find the value of _zijn.
Using the diagram below, it can easily be shown that _zijn is calculated as follows:

_zijn hð Þ ¼ Rf � z0 � zp
� �

Rf � uij
ð7:99Þ

where

z0 ¼ k � h � D
h
a

2p
ð7:100Þ

and

uij ¼ �iDxy � sin h � Dh
a

� �

þ jDxy � cos h � Dh
a

� �

; ð7:101Þ

where Dxy is the interval between individual points on the reconstructed image;
Dz is the interval between the reconstructed slices.

Fig. 7.35 Geometric
relationships used in the
determination of _zijn
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The value of bij for the image point (i, j) in any slice at an angle of rotation ah0
of the cone-beam projection system can be determined using Fig. 7.36.

The value of bij is easily determined from the formula for the sine of the angle
indicated in the right-angled triangle in Fig. 7.36:

bij hð Þ ¼ arcsin
sij

Rf � uij

� �

; ð7:102Þ

where

sij ¼ iDxy � cos hDh
a

� �

þ jDxy � sin hDh
a

� �

; ð7:103Þ

and uij has already been determined in Eq. 7.101.
To obtain the final form of Eq. 7.98 we only have to determine the four pro-

jection values �̂ph g#; h; k#
� �

; �̂ph g"; h; k#
� �

; �̂ph g#; h; k"
� �

; �̂ph g"; h; k"
� �

taking part in
the bilinear interpolation. Their indices are defined as follows:

k# ¼ Trunc _zij; _Dz

� �

; k" ¼ k# þ 1; ð7:104Þ

and

g# ¼ Trunc bij;Db

� �

; g" ¼ g# þ 1: ð7:105Þ

Step IV It is at this stage of the process that the three-dimensional back-projection
is performed. Every point in the coordinate space is given a value equal to the sum
of all the projection values from all the rays passing through the point. For the

Fig. 7.36 Geometric
relationships used in the
determination of bij

200 7 Spiral Tomography



projections _̂�p
h
bij; h; _zijn
� �

made at angle h; h ¼ 0; . . .;H� 1, the operation can be
written:

�̂l i; j; zp
� �

ffi Rf

2
Dh
a �
X

h

1
_u2ijn

� _̂�p bij; h; _zijn
� �

; ð7:106Þ

where, from Fig. 7.35, we can show that:

_u2ijn ¼ s2ij þ Rf � uij
� �2þðz0 � zpÞ2; ð7:107Þ

where uij is calculated from Eq. 7.101.
A flowchart of the discrete version of the Feldkamp algorithm is given in

Fig. 7.37.

7.3.5 The Advanced Single-Slice Rebinning Algorithm—ASSR

The advanced single-slice rebinning algorithm (ASSR) is one of the more com-
plex reconstruction methods [4, 5, 29–31]. It is a development of a technique
known as single-slice rebinning [46]. The premise behind the operation of ASSR is
that image distortion can be reduced by adjusting the position of the imaged slice
to match the spiral path of the X-ray tube. This involves calculating the appropriate
angle of inclination of the plane with respect to the z-axis. The size of the angle
depends on the position at which the reconstruction is performed. This algorithm,
unlike the similar solutions described in [21, 40], uses a rebinning strategy.

By analysing the components of the motion of the projection system shown in
Fig. 7.27, we can represent the spiral path of the moving tube using the following
relationship:

focus ah
� �

¼
x ah
� �

y ah
� �

z ah
� �

2

4

3

5 ¼
�Rf � sin ah
Rf � cos ah

ka
h

2p

2

4

3

5: ð7:108Þ

On the other hand, any point on the partial cylindrical screen is related to the
(x, y, z) coordinate system by the following vector equation:

screen b; ah; _z
� �

¼
x

y

z

2

4

3

5

¼
�Rf � sin ah
Rf � cos ah

ka
h

2p

2

4

3

5þ Rf þ Rd

� �

�
sin ah þ b
� �

� cos ah þ b
� �

0

2

4

3

5þ _z �
1
0
0

2

4

3

5:

ð7:109Þ
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Fig. 7.37 A flowchart of the Feldkamp algorithm
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These trigonometric relationships can easily be determined using Fig. 7.38, which
shows the cone-beam projection system with a partial cylindrical screen.

It is much more useful, however, to represent the screen mathematically as a flat
screen with coordinates (w, v). Whilst retaining the cylindrical design of the screen
in practice, we can assume the existence of a corresponding flat screen:

screen w; ah; v
� �

¼
x

y

z

2

4

3

5 ¼
Rd � sin ah
�Rd � cos ah

ka
h

2p

2

4

3

5þ w �
� cos ah

� sin ah

0

2

4

3

5þ v �
0
0
1

2

4

3

5:

ð7:110Þ

As with the previous equation, this is based on a diagrammatic description (see
Fig. 7.39, which illustrates how to calculate the various components of the vector
screen).

Fig. 7.38 Trigonometric relationships in a cone-beam projection system with a partial
cylindrical screen

Fig. 7.39 Trigonometric relationships in a cone-beam projection system with a flat screen
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Equation 7.110 can be written equivalently in normal notation to indicate the
condition imposed on the points in space, which lie on the flat screen:

Rd � x sin ah þ y cos ah ¼ 0: ð7:111Þ

Figures 7.40a and 7.40b can be used to derive relationships that allow us to cal-
culate the coordinates of the projection of any point in the (x, y, z) space onto a
screen (either flat or partial cylindrical), at a particular angle of rotation of the
projection system ah.

For the coordinates on a flat screen, we need to consider the geometry in the
(x, y) plane. Using the Thales theorem, we can see from Fig. 7.40a that the

Fig. 7.40 Determining the
coordinates of the projection
of a given point onto the
screen: a in the (x, y) plane;
b in the plane that contains
the ray passing through the
point (x, y, z)
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following relationship is appropriate for the projection of a point in space onto a
flat screen:

w

Rf þ Rd

¼ �s

Rf � u
: ð7:112Þ

The quantities s and u represent the coordinates of a point in the (x, y) system
rotated by an angle ah. Using the basic relationships given in Table 4.3, we can
obtain the final form of the equation of the w-coordinate of the projection of the
point (x, y) onto a flat screen:

w ¼ � x cos ah þ y sin ah
� �

� Rf þ Rd

� �

Rf þ x sin ah � y cos ah
: ð7:113Þ

Figure 7.40b shows how to determine the v-coordinate of the projection onto the
screen of the same point in space (x, y, z). This time, however, we consider the
(x, z) plane. Here we can observe the triangle in the z-direction, for which the
following holds true:

Rf þ Rd

Rf � u
¼ v

z� k ah

2p

: ð7:114Þ

Using the equation for the u-coordinate given in Table 4.3, we obtain the final
form of the equation for the v-coordinate of the projection of the point onto the flat
screen:

v ¼
z� k ah

2p

� �

� Rf þ Rd

� �

Rf þ x sin ah � y cos ah
: ð7:115Þ

For a cylindrically shaped screen, the coordinates b; _zð Þ identify the ray passing
through the point in space (x, y, z), at a projection angle ah. For practical reasons,
it is important to be able to find the relationships between the coordinates of the
projection of any point (x, y, z) onto both types of screen.

Using Fig. 7.40a it is easy to find the relationship between the value of the w-
coordinate on the flat screen and the angle b between the ray and the principal axis
of the beam:

w ¼ � Rf þ Rd

� �

tan b: ð7:116Þ

We can also use Fig. 7.40a to obtain the second of the required relationships:

cos b ¼ Rf þ Rd

dscreen
: ð7:117Þ

We can then use Fig. 7.40a to derive the following ratio:

_zscreen

v
¼ Rf þ Rd

dscreen
; ð7:118Þ
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which, combined with Eq. 7.117, immediately gives:

v ¼ _zscreen

cos b
¼ _z

cos b

Rf þ Rd

Rf

: ð7:119Þ

The following pair of equations, obtained by rearranging equations (7.116) and
(7.119), allows us to calculate the coordinates of the projection of the point
(x, y, z) onto a cylindrically shaped screen:

b ¼ �arctan
w

Rf þ Rd

ð7:120Þ

and

_z ¼ v � cos b � Rf

Rf þ Rd

¼ v Rf þ Rd

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf þ Rd

� �2þw2
q � Rf

Rf þ Rd

: ð7:121Þ

The main distinguishing feature of the ASSR reconstruction algorithm is its
abandonment of interpolation in the z-direction in the first stage of the process, in
favour of finding the reconstruction plane that best matches the path that the
projection system traces around the test object. The position of the reconstruction
plane is defined by the parameter ahp, which corresponds to the place on the z-axis
at which the reconstruction plane has a point in common with the spiral path of the
moving X-ray tube. For simplicity, we will begin by assuming that ah ¼ ahp ¼ 0.
The position of the reconstruction plane in the (x, y, z) space satisfying this
assumption is shown in Fig. 7.41.

The inclination of the reconstruction plane with respect to the x-axis, and thus
the middle ray of the fan-beam at the point ah ¼ ahp, is represented by t. In order to
optimise the positioning of the plane, we allow any value for this angle, that is,
where t = 0. The points on the plane can be described by the following
relationship:

x � tan t� z ¼ 0: ð7:122Þ

Fig. 7.41 The location of the
reconstruction plane in
(x, y, z) space in the ASSR
reconstruction method
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By calculating the variable z from this equation, it is easy to determine the cross-
section of the cylinder (defined by Eq. 7.108), which contains the reconstruction
plane. This cross-section is the ellipse calculated using the following vector
equation:

ellipse ah
� �

¼
x

y

z

2

4

3

5 ¼
�Rf sin a

h

Rf cos a
h

x tan t

2

4

3

5 ¼ Rf �
� sin ah

cos ah

� tan t � sin ah

2

4

3

5 ð7:123Þ

for ah [ [-p, p].
The rotation of the reconstruction plane about the y-axis is shown in Fig. 7.42.
Up to now, in order to facilitate the derivation of the various geometric rela-

tionships, we have introduced a number of simplifications to the design of the
projection system. However, when considering the actual operation of real scan-
ners, we have to take into account several additional factors. The first of these is
the fact that the reconstruction plane might not actually be situated at the origin of
the coordinate system, i.e. ahp 6¼0. This broadening of the problem means that
(7.123) now becomes:

ellipse ah
� �

¼
x

y

z

2

4

3

5 ¼ Oþ Rf �
� sin ah

cos ah

� tan t � sin ah � ahp

� �

2

6

4

3

7

5
; ð7:124Þ

where

O ¼
0
0
k
ahp
2p

2

4

3

5: ð7:125Þ

Fig. 7.42 The geometry of the reconstruction plane rotated about the y-axis: a the reconstructed
slice before rotation; b the reconstructed slice after rotation about the y-axis
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We can now represent the condition that the points lying in the reconstruction
plane must satisfy, in a way similar to Eq. 7.122:

x cos ahp � tan tþ y sin ahp � tan tþ k
ahp

2p
� z ¼ 0: ð7:126Þ

The imaging of a single slice takes place in the plane described by Eq. 7.126, for
points inside the cylindrical path of the projection system. Of course, the image is
reconstructed from projections made in this case by only those selected rays in the
conical beam, which lie exactly in the plane at three positions, that is for: ah ¼ ahp,

ah ¼ ahp þ ah
 and ah ¼ ahp � ah
. The location of this reconstructed slice is illus-
trated by Fig. 7.43.

In order to obtain the other projection values needed for the reconstruction we
need to use an approximation. In this algorithm, we calculate the necessary values
using a fan-beam-based longitudinal approximation and further discussion will be
based on this particular methodology.

Before proceeding to the presentation of the ASSR algorithm, it is important to
first deal with the geometric relationships between the various coordinate systems
considered in this reconstruction method. The first of the orthogonal coordinate
systems represents the (x, y, z) space globally, whilst the second, local system
(x0, y0, z0) contains the reconstruction plane. The relationship between these two
spaces is illustrated in Fig. 7.44.

The original global coordinate system (x, y, z), rotated around the z-axis, is
represented by the triad (s, u, r). If we consider that the (s, u, r) system was
rotated through an angle ahp (due to our choice of reconstruction plane at ah ¼ ahp)
then the following vector equation allows us to convert between the coordinates of
both these spaces:

x

y

z

2

4

3

5 ¼ s � sþ u � uþ r � r; ð7:127Þ

Fig. 7.43 Location of the
reconstructed slice when
ahp 6¼ 0
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where the base vectors s, u and r are expressed as follows:

s ¼
cos ahp
sin ahp
0

2

4

3

5; u ¼
� sin ahp
cos ahp
0

2

4

3

5; r ¼
0
0
1

2

4

3

5: ð7:128Þ

If the (s, u, r) system is rotated through a further angle ap, the base vectors s, u and
r become:

sðapÞ ¼
cos ahp þ ap

� �

sin ahp þ ap

� �

0

2

6

6

4

3

7

7

5

; uðapÞ ¼
� sin ahp þ ap

� �

cos ahp þ ap

� �

0

2

6

6

4

3

7

7

5

; rðapÞ ¼
0
0
1

2

4

3

5:

ð7:129Þ

The local coordinate system defining the reconstruction plane is represented by
(x0, y0, z0). However, the (x0, y0, z0) system rotated around the z0-axis is represented
by (s0, u0, r0) (which means that x0 and y0 lie in the reconstruction plane). The
geometrical relationships between these coordinates are shown in Fig. 7.45.

It is important to note that because we are searching for the optimum position of
the reconstruction plane with respect to the spiral path of the moving projection
system, the reconstruction plane is rotated around the y-axis and the (x0, y0, z0)
system is rotated through an angle ahp around the z-axis. Therefore, in order to
convert the coordinates of a point (x0, y0, z0) in the system into coordinates in the
(x, y, z) system, we need to perform a two-stage process. The first of these con-
verts the points in the (x0, y0, z0) space into auxiliary coordinates (x00, y00, z00), which
means that the original system is rotated by an angle -t about the y00-axis (this is
shown in Fig. 7.46a):

Fig. 7.44 The global and
local coordinate systems
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x00

y00

z00

2

4

3

5 ¼
x0 cos t� z0 sin t

y0

x0 sin tþ z0 cos t

2

4

3

5: ð7:130Þ

The second spatial transformation converts the points in the (x00, y00, z00) system,
rotated by the angle ap

h about the z-axis, into the global coordinate system
(x, y, z) (see Fig. 7.46b):

x

y

z

2

4

3

5 ¼
x00 cos ahp � y00 sin ahp
x00 sin ahp þ y00 cos ahp

z00

2

4

3

5: ð7:131Þ

Fig. 7.45 Coordinate systems rotated through the angle ahp þ ap: a the global system; b the local
system

Fig. 7.46 The two-stage transformation of the space where the reconstruction takes place into
the global space: a the transition from (x0, y0, z0) coordinates to auxiliary coordinates (x00, y00, z00);
b the transition from (x00, y00, z00) coordinates to global coordinates (x, y, z)
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Combining the transformations (7.130) and (7.131), we obtain the direct transform
of the (x0, y0, z0) space into the (x, y, z) space, which is represented by the matrix
equation:

x

y

z

2

4

3

5 ¼ x0 � x0 þ y0 � y0 þ z0 � z0; ð7:132Þ

where the base vectors x0, y0 and z0 are expressed as follows:

x0 ¼
cos t � cos ahp
cos t � sin ahp

sin t

2

4

3

5; y0 ¼
� sin ahp
cos ahp
0

2

4

3

5; z0 ¼
� sin t � cos ahp
� sin t � sin ahp

cos t

2

4

3

5: ð7:133Þ

If we use a parallel projection system, the vector equation representing the
relationship between the global coordinate system and the local system of the
reconstruction plane is as follows:

x � xþ y � yþ z � z ¼ Oþ x0 � x0 þ y0 � y0 þ z0 � z0: ð7:134Þ

For the reconstruction plane, that is, where z0 = 0, Eq. 7.134 takes the form:

x � xþ y � yþ z � z ¼ Oþ x0 � x0 þ y0 � y0: ð7:135Þ

So far, we have only considered the central ray of the fan-shaped beam of radiation
in the reconstruction plane. In order for the remaining rays to be regarded as
elements of the hypothetical parallel beam, we need to consider an additional
rotation of the coordinate system (x0, y0, z0) about the z0-axis. If the angle of this
rotation is represented by a0p, then we need to combine a third transformation
(from the (s0, u0, r0) space to the (x, y, z) space) with the two discussed previously:

x

y

z

2

4

3

5 ¼ s0 � s0 þ u0 � u0 þ r0 � r0; ð7:136Þ

where the base vectors in this vector equation have the following form:

s0 ¼
cos t � cos ahp � cos a0p � sin ahp � sin a0p
cos t � sin ahp � cos a0p þ cos ahp � sin a0p

sin t � cos a0p

2

4

3

5; ð7:137Þ

u0 ¼
� cos t � cos ahp � sin a0p � sin ahp � cos a0p
� cos t � sin ahp � sin a0p þ cos ahp � cos a0p

� sin t � sin a0p

2

4

3

5; ð7:138Þ

r0 ¼
� sin t � cos ahp
� sin t � sin ahp

cos t

2

4

3

5: ð7:139Þ
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In the ASSR reconstruction method, we need to determine the ray in the
(s, u, r) system (more specifically in the (s, u) plane, when r = 0) equivalent to
the ray passing through in the (s0, u0, r0) system (when r0 = 0), i.e. in the recon-
struction plane. What we are looking for is the projection of a ray with parameters
ðs0a0pÞ onto the (s, u) plane, in the form of a ray with the parameters (s, ap). The
relationship linking the parameters of the two rays can be found by noticing that
their projections onto the (x, y) plane lie on the same straight line. To simplify
matters, if we assume that the plane of the projection in the global (x, y, z) coor-
dinate system is z = 0, then the required relationship is determined using the
matrix equation:

1 0 0
0 1 0
0 0 1

2

4

3

5 Oþ s0 � s0 þ u0 � u0ð Þ ¼
x

y

z

2

4

3

5 ¼ s � sþ u � u: ð7:140Þ

It is important to note that each of the actual rays considered is either parallel to
the s-axis or the s0-axis. Thus, the point (s1,u1) corresponds to the point ðs01; 0Þ, and
the point (s1,0) corresponds, in turn, to another point on the ray in the (s0, u0) plane,
such as the point defined by the pair ðs01; u02Þ. It is possible therefore to make
Eq. 7.140 independent of the variables u0 and u, which consequently leads to the
following:

s ¼ s0 � cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 a0p þ cos2 t � sin2 a0p
p ; ð7:141Þ

cos ap ¼ cos a0p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 a0p þ cos2 t � sin2 a0p
p ; ð7:142Þ

sin ap ¼ sin a0p � cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 a0p þ cos2 t � sin2 a0p
p ð7:143Þ

and (for converting the coordinates in the opposite direction):

s0 ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 t � cos2 ap
p ; ð7:144Þ

cos a0p ¼ cos ap � cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 t � cos2 ap
p ; ð7:145Þ

sin a0p ¼ sin ap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 t � cos2 ap
p : ð7:146Þ

At the same time, it is worth using Eqs. 7.141–7.146 to determine the following
trigonometric relationship for use later:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 t � cos2 ap
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 a0p þ cos2 t � sin2 a0p
p

¼ cos t: ð7:147Þ
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After these preliminary discussions concerning the spatial factors relating to the
projections and the location of the reconstruction plane, we are now ready to
formulate the actual ASSR reconstruction procedure represented in Fig. 7.47.

At this point, we will examine the successive signal processing stages of the
ASSR method.

7.3.5.1 Adjusting the Reconstruction Plane

After selecting the angle of rotation ahp of the spiral projection system so that the
central ray of the beam intersects the z-axis at the midpoint of reconstructed slice,

Fig. 7.47 A flowchart of the ASSR reconstruction method
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we then have to determine the inclination of the plane of the slice. This angle of
inclination is represented by the symbol t.

In determining the optimum value for the angle t, it is useful first to impose the
condition ahp ¼ 0. The next step is to propose a selection criterion for the optimum
angle. One possible optimisation criterion [29–31] is represented by the following
formula:

topt ¼ min
t

Z

ap

�ap

ellipseðahÞ � focusðahÞ
�

�

�

�dah

0

@

1

A: ð7:148Þ

Due to the symmetry of the integrand about ah = 0, the above equation can also be
written equivalently:

topt ¼ min
t

Z

ap

0

ellipseðahÞ � focusðahÞ
�

�

�

�dah

0

@

1

A: ð7:149Þ

The appearance of the quantity represented by the letter a in the above formula
requires some comment. It represents the range of the angle ah taken into account
during the reconstruction of the slice image at ahp ¼ 0. If, for example, a = 1 then

this range is ahp � p; ahp þ p
h i

.

Considering Eq. 7.149 further, it can be shown that:

ellipseðahÞ � focusðahÞ
�

�

�

� ¼ Rf tan t sin a
h � k

ah

2p

�

�

�

�

�

�

�

�

: ð7:150Þ

The functions Rf tan t sin a
h and ka

h

2p have three points in common in the range

ahp � p; ahp þ p
h i

if:

Rf tan t sin a
h � k

ah

2p
� 0 for ah ¼ 0 ð7:151Þ

and

Rf tan t sin a
h � k

ah

2p
� 0 for ah ¼ ap: ð7:152Þ

We can therefore say that the reconstruction plane and the spiral path of the
moving tube have three common points: ah = 0, ah ¼ �ah
, if:

1� ah

2p
Rf tan t�

aah

sin aahð Þ: ð7:153Þ

This is illustrated in Fig. 7.48.
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The determination of ah
 should then permit us to calculate the angle of incli-
nation of the reconstruction plane using the formula:

tan t ¼ kah

2pRf sin ah


: ð7:154Þ

Before we do this, however, we need to have chosen the value of ah
 in such a way
as to minimise the value of the integral in Eq. 7.149. By inspecting Fig. 7.48 and
assuming the best fit of the reconstruction plane to the spiral path of the moving
tube, we can conclude intuitively that in order to meet the optimisation criterion
(7.149), we should use the following formula representing the average distance

between the functions Rf tan t sin a
h and ka

h

2p:

Dzmean ¼
Z

ap

0

kah
 sin a
h

2ap2 sin ah

� kah

2ap2

�

�

�

�

�

�

�

�

dah: ð7:155Þ

Because of the difference between the two areas of integration (before and after
ah ¼ ah
), Eq. 7.155 can be converted to the following form:

Dzmean ¼
k

2a
p2

Z

ah


0

ah
 sin a
h

sin ah

� ah

� �

dah þ
Z

ap

ah


ah � ah
 sin a
h

sin ah


� �

dah

0

B

@

1

C

A
: ð7:156Þ

By evaluating Eq. 7.156, we obtain the following simplified equation:

Dzmean ¼
k

2ap2
ah


sin ah

1þ cosðapÞ � 2 cos ah

� �

þ 1
2
a2p2 � ah


� �2
� �

: ð7:157Þ

Treating the right-hand side of Eq. 7.157 as a function of ah
, we can determine the
value of ah
 for which the function is a minimum. This is identical to obtaining the

Fig. 7.48 Graphs of
Rf tan t sin a

h and ka
h

2p,
assuming the condition in
(7.153) is fulfilled
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smallest average distance between the functions Rf tan t sin a
h and ka

h

2p, for a given
parameter a. To do this, we equate the derivative of Dzmean to zero, that is we
calculate the value ah
 from the equation:

dDzmean

dah

¼ 0: ð7:158Þ

To obtain ah
 in this way, the reconstruction plane must lie as close as possible to

the path of the moving tube, within the range ahp � p; ahp þ p
h i

of course:

ah
 ¼
1
2
1þ cosðapÞð Þ: ð7:159Þ

By combining Eq. 7.159 and Eq. 7.154, we obtain the following value for the
optimum angle of inclination of the reconstruction plane:

t ¼ arctan
k � arccos 1

2 1þ cos apð Þð Þ
� �

2pRf sin arccos 1
2 1þ cos apð Þð Þ
� �� �

 !

: ð7:160Þ

7.3.5.2 Longitudinal Approximation

Longitudinal approximation uses the fact that both the real ray obtained physically
from the projection and the ray from the approximated projection are in the same
plane parallel to the z-axis. If that plane is represented by the symbol A, then this
property can be written as follows:

A k z ¼
0
0
1

2

4

3

5: ð7:161Þ

The position of plane A with respect to the reconstruction plane is shown in
Fig. 7.49.

The vectors A k u0 a0pð Þ and Oþ s0 � s0ða0pÞ 2 A uniquely identify plane A,
which means that all of the points in the plane satisfy the equation:

u0 a0pð Þ � zð Þ
x

y

z

2

4

3

5� Oþ s0 � s0 a0pð Þð Þ

0

@

1

A ¼ 0: ð7:162Þ

The point in the plane A of most interest is where the plane intersects with the
spiral path of the moving X-ray tube. This point can be determined from the
following matrix equation:

u0ða0pÞ � zð Þ ellipseðahÞ � Oþ s0 � s0 a0pð Þð Þ
� �

¼ 0: ð7:163Þ
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From relationships (7.124), (7.125) and (7.137)–(7.139), we can see that the fol-
lowing equations are satisfied for this point:

ellipseðahÞ � Oþ s0 � s0ða0pÞð Þ

¼

�Rf sin a
h � s0 cos t � cos ahp � cos a0p � sin ahp � sin a0p

� �

Rf cos a
h � s0 cos t � sin ahp � cos a0p þ cos ahp � sin a0p

� �

�Rf tan t sin ah � ahp

� �

� kah

2p � s0 sin t � cos a0p

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð7:164Þ

and

u0ða0pÞ � z ¼ a

a
cos t � cos ahp � sin a0p þ sin ahp � cos a0p

cos t � sin ahp � sin a0p � cos ahp � cos a0p
0

2

6

6

4

3

7

7

5

; ð7:165Þ

where a is a real positive coefficient.
Taking into account the need to set the scalar product of the vectors in Eqs.

7.164 and 7.165 to zero, and defining:

_ah ¼ ah � ahp ð7:166Þ

as the angle of rotation of the projection system with respect to the point related to
the place where the reconstruction is carried out, we obtain, after a series of
operations, the following equation:

Rf cos a0p sin _ah � sin a0p cos _ah cos t
� �

þ s0 cos t ¼ 0: ð7:167Þ

Fig. 7.49 The geometry of
the longitudinal
approximation
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We can simplify this equation using the Eqs. 7.144–7.146 and write it in terms of
variables in the global coordinate system:

Rf sin _ah � ap
� �

� s ¼ 0: ð7:168Þ

This formula can then be used to determine the relative angle of rotation of the
projection system, at which the path of the moving tube intersects the plane in
which the longitudinal approximation will take place. The result is represented by
the following relationship:

_ahðap; sÞ ¼ ap � arcsin
s

Rf

: ð7:169Þ

We can draw one more conclusion from these considerations. It concerns the range
of projection angles ah needed for the reconstruction process. If ap varies within
the range [-ap, ap], and the range needed for the parameter s for each projection
value is [-R, R], then it is necessary to perform the projections at the angles

ah 2 ahp � apþ arcsin R
Rf
; ahp þ ap� arcsin R

Rf

h i

.

In order for the approximation of the projection values to have as small an error
as possible, we have to try to select a ray for this operation, which deviates as little
as possible from the virtual path of the ray of the calculated projection. To help us
think about this more clearly, we can determine two geometric constructions, as
indicated in Fig. 7.50.

The first of these constructions involves establishing the plane that intersects
the surface of the reconstructed slice at the points O, ellipse ah � p

2

� �

and
ellipse ah þ p

2

� �

, and that contains the position of the tube, focus(ah). The line

Fig. 7.50 Determining the
optimum ray in a fan, for
purposes of approximation
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representing the intersection of this plane with the reconstructed slice is the set of
points satisfying the equation:

line1 ¼ Oþ a1 ellipse ah þ p

2

� �

� ellipse ah � p

2

� �� �

¼ O� 2a1Rf

cos ah

sin ah

tan t � cos ah � ahp

� �

2

6

4

3

7

5

; ð7:170Þ

where a1 is any real coefficient.
The second construction is the plane containing the point focus(ah) and the line

at a distance s0 � sða0pÞ from the centre of the coordinate system O, represented by
the vector u0ða0pÞ. The points of intersection of this plane with the ellipse of the
reconstructed slice lie along the straight line with the equation:

line2 ¼ Oþ s0 � s0ða0pÞ þ a2u
0ða0pÞ; ð7:171Þ

where a2 is any real coefficient.
The point of intersection of these two lines satisfies the following vector

equation:

Oþ a1 ellipse ah þ p

2

� �

� ellipse ah � p

2

� �� �

¼ Oþ s0 � s0 a0pð Þ þ a2u
0 a0pð Þ:

ð7:172Þ

Subtracting the vector O from both sides of this equation and multiplying both
sides by s0 a0pð Þðs0 _apð Þ � s0 _apð Þ ¼ 1; u0 a0pð Þ � s0 a0pð Þ ¼ 0), we obtain an equation that
represents the parameter a1:

s0 ¼ a1 ellipse ah þ p

2

� �

� ellipse ah � p

2

� �� �

� s0 a0pð Þ

¼ �2a1Rf

cos _ah cos a0p þ sin _ah sin a0p cos t

cos t
:

ð7:173Þ

Substituting the value -2a1Rf, determined from relationship (7.173), into
Eq. 7.171, we obtain a formula from which we can calculate the coordinates of the
point in the reconstructed slice where line1 and line2 intersect:

point ¼
x

y

z

2

4

3

5 ¼ Oþ s0 cos t

cos _ah cos a0p þ sin _ah sin a0p cos t

cos ah

sin ah

tan t � cos _ah
� �

2

4

3

5:

ð7:174Þ

Using matrix Eq. 7.174, we can easily calculate the coordinates (x, y, z) of the
point point and then, using Eqs. 7.113 and 7.115, determine where it is projected
onto the screen:
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wpoint ¼
Rf þ Rd

Rf

� �s0 � cos t
cos _ah cos a0p þ sin _ah sin a0p cos t

ð7:175Þ

and

vpoint ¼
Rf þ Rd

Rf

� s0 cos _ah sin t

cos _ah cos a0p þ sin _ah sin a0p cos t
� k

_ah

2p

� �

: ð7:176Þ

Converting these equations into the global coordinate system:

wpoint ¼ �Rf þ Rd

Rf

� �s

cos ah � ahp � ap
� � ð7:177Þ

and

vpoint ¼
Rf þ Rd

Rf

�
s � cos ah � ahp

� �

� tan t

cos ah � ahp � ap
� � � k

_ah � ahp

2p

0

@

1

A: ð7:178Þ

The projection value measured when parallel X-rays pass through the recon-
struction plane of a test object with attenuation function l(x, y, z) can be deter-
mined from the formula:

p0 s0; a0pð Þ ¼
Z

lðx; y; zÞ � d x0 cos a0p þ y0 sin a0p � s0ð Þdx0dy0: ð7:179Þ

The geometric relationships used to formulate this equation are shown in Fig. 7.51.
To avoid having to transfer the results of the reconstruction procedure to the

global coordinate system, the projection values from Eq. 7.179 should be defined
earlier, through the exclusive use of quantities related to the target (x, y, z) system.

Fig. 7.51 Determining a
parallel projection value in
the reconstruction plane
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First, we need to convert the argument of the Dirac delta. We can do this by using
vector Eq. 7.135 to obtain the system of equations:

x ¼ x0 cos ahp cos t� y0 sin ahp
y ¼ x0 sin ahp cos tþ y0 cos ahp

(

: ð7:180Þ

Hence, the variables x0 and y0 can be expressed as follows:

x0 ¼ x
cos ahp
cos t

þ y
sin ahp
cos t

y0 ¼ �x sin ahp þ y cos ahp

(

: ð7:181Þ

Using these relationships together with Eqs. 7.144–7.146, we can modify the Dirac
function appearing in the integration in Eq. 7.179:

d x0 cos a0p þ y0 sin a0p � s0ð Þ ¼ d
x cos ahp þ ap

� �

þ y sin a ahp þ ap
� �

� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ap þ cos2 t sin2 ap
p

0

@

1

A:

ð7:182Þ

And finally, after using the Dirac delta scaling property, we obtain the equation:

d x0 cos a0p þ y0 sin a0p � s0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ap þ cos2 t sin2 ap
p

� d x cos ahp þ ap
� �

þ y sin a ahp þ ap
� �

� s
� �

:

ð7:183Þ

The second of these essential changes concerns the variables with respect to which
the integration is carried out. When converting the variables of integration to x and
y, we need to calculate the Jacobian:

o x0; y0ð Þ
oðx; yÞ ¼ 1

cos t
: ð7:184Þ

After performing both these conversions, the integral Eq. 7.179 becomes:

p0p s0; a0pð Þ ¼
Z

lðx; y; zÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ap þ cos2 t sin2 ap
p

cos t

� d x cos ahp þ ap
� �

þ y sin a ahp þ ap
� �

� s
� �

dxdy: ð7:185Þ

However, it would still be difficult to carry out any kind of reconstruction
procedure using projection values calculated like this. This is because the density
of the hypothetical detectors on the virtual screen varies depending on the angle of
incidence of the parallel beam. To allow for this, we need to deform the ellipse of
the reconstructed slice into a circle as observed from the point of view of the
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projection system. This is done by using a geometric factor to convert all the
projection values determined from Eq. 7.185:

~ppðs; apÞ ¼ cos t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ap þ cos2 t sin2 ap
p � p0p s0; a0pð Þ

¼
Z

l x; y; zð Þ � d x cos ahp þ ap
� �

þ y sin a ahp þ ap
� �

� s
� �

dxdy:

ð7:186Þ

A small point that is also worth considering is the fact that the real rays used for
the interpolation actually pass through the various tissues along a longer path than
that of the interpolated rays. This means that we have to make another correction,
which can be written as follows:

ppðs; apÞ ¼ CORRECTION � ~ppðs; apÞ; ð7:187Þ

where CORRECTION is a correction factor.
It only remains to determine the correction factor CORRECTION. Once again,

it is important to remember here that both the interpolated ray and the real ray lie
in the same plane, parallel to the z-axis. The interpolation error is proportional to
the value of the angle. If both rays pass through almost the same tissues, the
projection values associated with these rays will be related to the corresponding
path lengths through the tissues. Owing to this, we can derive the angle-dependent
correction factor by using the cosine of the angle:

CORRECTION ¼ ppðs; apÞ
~ppðs; apÞ ¼

u

~u
¼ cos e; ð7:188Þ

where e is the angle between the real and the virtual ray.
The geometry of this method of determining the correction factor is shown in

Fig. 7.52.
We still have to decide, however, how to actually calculate the value of the

cosine correction factor. To do this, notice first that the direction and sense of the

Fig. 7.52 The geometry of
the cosine correction factor
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virtual interpolated ray are defined by the vector u0ða0pÞ, and for the real ray they
are defined by the difference between the vectors screen (w, v, ah) and focus (ah).
The scalar product of these two vectors is expressed as follows:

screen w; v; ah
� �

� focus ah
� �� �

� u0 a0pð Þ ¼ screen w; v; ah
� �

� focus ah
� �











� u0 a0pð Þk k � cos e;
ð7:189Þ

where e is the angle between the vector u0ða0pÞ and the vector screen (w, v, ah) -
focus (ah).

Consequently, from Eq. 7.189, we calculate the cosine correction factor of the
interpolation as follows:

cos e ¼ screenðw; v; ahÞ � focus ah
� �� �

screen w; v; ahð Þ � focusðahÞk k � u
0 a0pð Þ; ð7:190Þ

where u0ða0pÞk k ¼ 1.
Using the relationships (7.108), (7.110) and (7.137)–(7.139) in Eq. 7.190, we

obtain the following formula:

cos e ¼

w cos ah � Rþ Rdð Þ sin ah
w sin ah � Rþ Rdð Þ cos ah

v

2

4

3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ v2 þ Rþ Rdð Þ2
q �

� sin ap þ ahp

� �

cos t

cos ap þ ahp

� �

cos t

� sin ap sin t

2

6

6

4

3

7

7

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 t sin2 ap
p : ð7:191Þ

After rearranging Eq. 7.191, we obtain a computable formula for the required
factor:

CORRECTION¼ cos e

¼w sin _ah� ap
� �

costþ RþRdð Þcos _ah� ap
� �

cost� v sinap sint
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2þ v2þ RþRdð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 apþ cos2 t sin2 ap
p

;

ð7:192Þ

where _ah ¼ ah � ahp still holds true.

7.3.5.3 Reconstruction by Convolution/Filtration and Back-Projection

Now that we have pp(s, ap), we can proceed to the final signal processing stages of
the ASSR reconstruction method, that is, the use of any reconstruction method
originally devised for a parallel projection system.

During the final operation, the back-projection of the filtered values �ppðs; apÞ,
we need to bear in mind that the parameter a may have a value other than 1. This
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means we have to convert the relationship defining the back-projection operation
to the following form:

lðx; yÞ ¼

R

ap

�ap

�pp s; apð Þdap

2a
: ð7:193Þ

In addition, if the gantry of the scanner is tilted, the reconstruction algorithm needs
to take this into account. A practical solution to this problem is described in the
article [31].

7.3.6 Discrete Implementation of the ASSR Algorithm

In a spiral cone-beam projection system, the ASSR algorithm can only make use of
projections obtained at certain angles and measured only at particular points on the
partial cylindrical-shaped screen.

The beam of radiation formed by the collimator reaches the individual detector
rows k ¼ 1; 2; . . .;K, where K is an even number of rows placed on the screen. In
any given row, selected rays in the beam strike the detectors, each of which is
indexed by the variable g ¼ �ðH� 1Þ=2; . . .; 0; . . .; ðH� 1Þ=2, where H is an odd
number of detectors in each row of the array (number of channels).

During a spiral tomography examination, the radiation beam (actually its
centre) only passes once through any point on the z-axis. In practice, only a limited
number of projections are carried out, each of which is indexed by the variable
h ¼ 0; . . .;H� 1, where H� 1 is the total number of projections made during the
examination.

So, we can sum up by saying that the reconstruction algorithm has available to
it the projection values p̂hðg; h; kÞ, in the ranges: g ¼ �ðH� 1Þ=2; . . .; 0; . . .;
ðH� 1Þ=2; h ¼ 0; . . .;H� 1; k ¼ 1; 2; . . .;K.

Before using the algorithm, we need to determine the location of the middle of
the reconstructed slice on the z-axis, a basic parameter for the examination. This
position is represented by zp or by the angle of rotation of the projection system ahp
at the moment the centre of symmetry of the cone-beam intersects with it. A way
of converting zp into ahp is given by Eq. 7.93.

Next, using Eq. 7.160, we calculate the angle through which the reconstructed
slice is rotated about the y-axis when the projection system is at an angle ahp. This
angle is represented by the symbol t.

Having determined the initial parameters ahp and t, we are ready to perform the
reconstruction procedures using a rebinning strategy. That means relating
the results of the projections made in the cone-beam system to the raster of the

parallel-beam system as defined by the pair sl; a
p

w

� �

, where

sl ¼ l � Ds; ð7:194Þ
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where l ¼ �ðL� 1Þ=2; . . .; 0; . . .; ðL� 1Þ=2 is the index of the detectors in the
parallel-beam system; L is the maximum number of detectors on the screen in the
parallel-beam system; Ds is the distance between the detectors in the parallel-beam
system, and

a
p

w ¼ w � Dp
a; ð7:195Þ

where w ¼ 0; . . .;W� 1 is the index of the projections in the parallel-beam sys-
tem; Dp

a is the maximum number of projections.
The indices ordering the projections made in the hypothetical parallel-beam

system have the following relationships with the parameters of the cone-beam
projection:

L ¼ 2 R div Dp
s

� �

þ 1 ð7:196Þ

and

W ¼ Trunc a � 2p;Dp
a

� �

: ð7:197Þ

The procedure for obtaining the individual parallel projection values ppðsl; apwÞ
with indices in the ranges: l ¼ �ðL� 1Þ=2; . . .; 0; . . .; ðL� 1Þ=2 and w ¼
0; . . .;W� 1 is as follows.

Step I For each value of l and w, we calculate the optimum angular position of the
projection system (along the lines of Eq. 7.169) for performing longitudinal
approximation. We can calculate this position using the relationship:

ahlw ¼ wDp
a � arcsin

lDp
s

Rf

þ ahp ð7:198Þ

and we can calculate the position of virtual detectors on a flat screen (using Eqs.
7.177) and (7.178), which would measure the projection values best suited for
further processing, using the following two equations:

wlw ¼ Rf þ Rd

Rf

� �lDs

cos ah
lw � ahp � wDa

� � ð7:199Þ

and

vlw ¼ Rf þ Rd

Rf

�
lDp

s � cos ahlw � ahp

� �

� tan t

cos ahlw � ahp � wDp
a

� � � k
_ahlw � ahp

2p

0

@

1

A: ð7:200Þ
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As wlw and vlw apply to a flat screen, they need to be converted into the coordinates
of the real partial cylindrical screen, using the following two equations (see Eqs.
7.120 and 7.121):

blw ¼ �arctan
wlw

Rf þ Rd

ð7:201Þ

and

_zlw ¼ vlw � cos b � Rf

Rf þ Rd

: ð7:202Þ

It is highly unlikely that amongst the rays in the cone-beams there are any that
have parameters that exactly match these calculated values. The solution to this is
to interpolate these parameters from others in the neighbourhood. It is useful,
however, to define them first using their relative values, calculated as shown
below:

glw ¼
blw

Dh
b

; ð7:203Þ

hlw ¼
ahlw

Dh
a

ð7:204Þ

and

klw ¼ Kþ 1
2

þ _zlw

Dh
z

� Rf þ Rd

Rf

: ð7:205Þ

In order to carry out trilinear interpolation, we must next define what we mean by
the neighbourhood referred to above, using the following set of eight projection
values:

p̂h g
"
lw; h

"
lw; k

"
lw

� �

; p̂h g
#
lw; h

"
lw; k

"
lw

� �

; p̂h g
"
lw; h

#
lw; k

"
lw

� �

; p̂h g
#
lw; h

#
lw; k

"
lw

� �

;

p̂h g
"
lw; h

"
lw; k

#
lw

� �

; p̂h g
#
lw; h

"
lw; k

#
lw

� �

; p̂h g
"
lw; h

#
lw; k

#
lw

� �

; p̂h g
#
lw; h

#
lw; k

#
lw

� �

;

ð7:206Þ

where g
#
lw ¼ Trunc glw;1

� �

; g
"
lw ¼ g

#
lwþ 1; h#

lw ¼ Trunc hlw;1
� �

; h
"
lw ¼ h

#
lwþ 1; k#

lw ¼
Trunc klw;1

� �

; k
"
lw ¼ k

#
lwþ 1:

The next step in the process is to begin the interpolation of the projection values

_̂pp l;wð Þ ¼ _pp sl; a
p

w

� �

. We can do this using trilinear interpolation as follows:
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Fig. 7.53 A flowchart of the discrete version of the ASSR image reconstruction method for
cone-beam projections
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_̂pp l;wð Þ¼ h
"
lw�hlw

� �

� k
"
lw�klw

� �

g
"
lw�glw

� �

p̂h g
#
lw;h

#
lw;k

#
lw

� �

þ glw�g
#
lw

� �

p̂h g
"
lw;h

#
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� �h ih
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#
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#
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þ klw�k
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g
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� �h ii

ð7:207Þ

Step II After the calculation of a given projection value _̂ppðl;wÞ, in accordance
with Eqs. 7.186 and 7.187 we need to subject it to the following correction
operation:

p̂p l;wð Þ ¼ 1
2a

cos e
cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ap þ cos2 t sin2 ap
p � _̂ppðl;wÞ; ð7:208Þ

where cos e is determined using Eq. 7.192.
The parallel projection values p̂pðl;wÞ; l ¼ �ðL� 1Þ=2; . . .; 0; . . .; ðL� 1Þ=2

and w ¼ 0; . . .;W� 1 obtained like this can be used in any reconstruction method
devised for a parallel projection system, such as the convolution and back-
projection method discussed in Sect. 5.4.

Figure 7.53 shows the signal processing stages for the discrete version of the
ASSR method.
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Chapter 8

Algebraic Reconstruction Techniques

The group of algorithms known by their initials algebraic reconstruction tech-
niques (ARTs) is the second most popular family of reconstruction methods.
However, ART techniques belong in turn to a broader methodology, which makes
use of finite series expansion [4, 5, 15, 16, 18].

All approaches related to this methodology are characterised by a simplification
carried out at the very beginning of the reconstruction process [5]. This simplifi-
cation relies on the assumption that the reconstructed image consists of a finite
number of elements. In this group of methods (unlike analytical methods), this
kind of discretisation takes place before the introduction of a discrete form of
algorithm. At the conceptual stage, the area of interest is divided into blocks of
identical size, each of which is defined as having a uniform radiation attenuation
coefficient and the geometrical centre of each block will be considered as corre-
sponding to one pixel of the reconstructed digital image. The topology of the
reconstructed image is shown in Fig. 8.1.

As can be seen from Fig. 8.1, each block in the image is identified horizontally
by the coordinate i = 1,…,I and vertically by j = 1,…,J. Thus, within each block
of the image, the uniform attenuation coefficient can be represented by lij.

One very important characteristic, which may persuade us to use algebraic
algorithms, is that they enable us in becoming independent of the geometry of the
projection system. Here, we will assume that projections are made using a parallel-
beam system [1], although any other system can be considered just as easily.

Therefore, as we did when we considered analytical reconstruction methods,
each projection value obtained at an angle aw

p and measured at a point on the screen
a distance sl away from the axis of the projection will be represented by the
discrete form of the projection function:

p̂p l;wð Þ � pp lDp
s ;wD

p
a

� �

; ð8:1Þ

where l is the detector number, in the matrix; w is the projection number, Ds
p is the

distance between the individual detectors on the screen, Da
p is the angle through

which the tube-screen arrangement is rotated after each projection.

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
DOI: 10.1007/978-0-85729-027-4_8, � Springer-Verlag London Limited 2011
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Assuming this approach to the topology of the reconstructed image and having
available a set of projections w = 1,…,W - 1, each measured at points on the
screen l ¼ �L=2; . . .; 0; . . .; L=2ð Þ � 1 (where W is the maximum number of
projections and L is an even number of detectors on the screen), we are now able to
formulate the image reconstruction problem for algebraic methods.

8.1 Formulation of the Algebraic Problem of Image

Reconstruction from Projections

Before we consider this problem further, perhaps it is appropriate to return to the
Radon transform defined earlier, in this case in its discrete form:

p̂p l;wð Þ � R l x; yð Þð Þ: ð8:2Þ

The algebraic approach, in addition to this, assumes that a given attenuation
coefficient distribution l x; yð Þ can be represented approximately as a finite, linear
combination of basis functions and constant coefficients [5, 18], which can be
written as follows:

l x; yð Þ ffi l̂ i; jð Þ ¼
X

I

i¼1

X

J

j¼1

lij.ij x; yð Þ; ð8:3Þ

Fig. 8.1 Projection system geometry of the algebraic image reconstruction method
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where .ij x; yð Þ is the elements of a set of basis functions; lij is a constant coeffi-
cient within the block i; jð Þ; i ¼ 1; . . .; I; j ¼ 1; . . .; J:

A basis function in its simplest form might be

.ij x; yð Þ ¼ 1 when x; yð Þ is in the block i; jð Þ
0 when x; yð Þ is outside block i; jð Þ

�

; ð8:4Þ

but there are also other forms of this function [15].
Taking into consideration formula (8.3), we can represent Eq. 8.2 by the fol-

lowing relationship:

p̂p l;wð Þ ¼ R l x; yð Þð Þ ffi R
X

I

i¼1

X

J

j¼1

lij.ij x; yð Þ

 !

: ð8:5Þ

Given the linearity property of the Radon transform, this formula can be converted
to:

p̂p l;wð Þ ffi
X

I

i¼1

X

J

j¼1

lijR .ij x; yð Þ
� �

: ð8:6Þ

So, for the algebraic method, the result of a projection carried out at an angle
ap = wDa

p and measured at a point of the screen s = lDs
p, in a parallel-beam

projection system, can be written

p̂p l;wð Þ ffi
X

I

i¼1

X

J

j¼1

lijvij l;wð Þ; ð8:7Þ

where the substitution

vij l;wð Þ ¼ R .ij x; yð Þ
� �

ð8:8Þ

can be interpreted physically as the contribution of a given image block with
parameters i; jð Þ to the formation of the projection value identified by the pair
l;wð Þ; measured at the screen. A description of one of the heuristic methods for
determining the value vij l;wð Þ is given below.

Bearing this in mind, i.e. the non-zero width of the radiation detector, it is
easy to ascertain the set of image blocks that have an influence on the
formation of the projection value p̂p l;wð Þ: As can be seen from Fig. 8.2a, as the
ray passes through the test object (the image), all the squares through which
part of the ray passes are taken into consideration. The next step is to consider
the contribution made by each image block to the way in which each ray l;wð Þ
passes through in the course of making a series of projections. This contribu-
tion can be calculated, for example, by counting the sub-blocks of a given
block i; jð Þ through which the ray l of projection w passes, as illustrated in
Fig. 8.2b (10 sub blocks).

8.1 Formulation of the Algebraic Problem of Image Reconstruction from Projections 235



The value of each contribution vij l;wð Þ varies between 0 and 1, where a value
equal to 0 means that the ray l;wð Þ does not pass through the block i; jð Þ and a
value of 1 means that the ray passes through only that block.

The determination and normalisation of the individual contributions vij l;wð Þ;
for each projection value is as follows:

vij l;wð Þ ¼ number of sub� blocksij l;wð Þ
P

Bl number of sub� blocks
; ð8:9Þ

where number of sub� blocksij l;wð Þ is the number of sub-blocks in the block
through which the ray l;wð Þ passes; number_of_sub - blocks is the number of
sub-blocks in each block; Bl is the number of blocks through which the ray l;wð Þ
passes.

If we know the values of vij l;wð Þ for all projection angles w = 1,…, W - 1,
and for all screen coordinates l ¼ �L=2; . . .; 0; . . .; L=2ð Þ � 1 then formula (8.7)
allows us to formulate a system of linear equations and so solve the reconstruction
problem using algebraic methods. This system of equations is solved with respect
to lij using various methods belonging to the whole class of ART algorithms. As
the dimensionality (I 9 J) of the array lij does not allow us to rewrite Eq. 8.7 in
vector form, we need to transform this matrix into vector l with dimensions I � J:
One possible way of implementing this transformation is the successive placing of
the columns j = 1,…, J of array lij into the vector l: If we do the same with the
projection matrix, we are able to rewrite the equation as

p ¼ vl; ð8:10Þ

Fig. 8.2 The determination of vij l;wð Þ : a determination of the set of image blocks taking part in
the formation of the projection value, b a way of determining the contribution a given image
block makes to the formation of a specific projection value
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where p is the projection vector with dimensions L �W; v is the matrix of values
vij l;wð Þ with dimensions L �W� I � J:

At this point, the image reconstruction problem has been reduced to solving the
matrix equation (8.10), that is, to estimate the value of matrix l based on the value
of matrix p.

The biggest advantage of the algebraic approach to the reconstruction task is
that it is independent of the actual geometry of the projection system. To use an
ART algorithm for projection systems other than parallel-beam systems, all we
need to do is to recalculate the matrix v: The biggest disadvantage of the approach
is the complexity of the calculation caused by the enormous size of the matrix v:
For example, if we have a system with 512 radiation detectors and we make 100
projections during one revolution of the projection system, for an image with
dimensions I 9 J = 256 9 256, the number of calculations amounts to
51,200 9 65,536. Fortunately, the complexity of the calculation is significantly
reduced by the fact that most of the values in the matrix v will be 0.

8.2 Algebraic Reconstruction Algorithms

The algebraic assumptions described above, especially with respect to the topol-
ogy of the reconstructed image, have become the basis for an entire class of
reconstruction algorithms aimed at solving the system of linear equations (8.7).

We will begin our consideration of selected algebraic reconstruction methods
with the earliest approach, the basic ART algorithm, and in subsequent sub-sec-
tions, we will consider increasingly sophisticated algorithms based on it.

8.2.1 Basic ART Algorithm

Kaczmarz [20] described the fundamentals of the algebraic reconstruction tech-
nique even before the emergence of computerised tomography. In Kaczmarz’s [11]
original version, ART was not concerned with the problem of reconstructing an
image from projections at all. However, it was identical to an algorithmic approach
published much later, specifically for computed tomography.

The basic ART reconstruction algorithm is the starting point for a number of
methods that use iteration to find the solution to the system of equations [5, 17, 18,
19]

p̂k ¼ vTkl; ð8:11Þ

where vTk is kth row of matrix v; pk is kth element of matrix p; k ¼ 1; . . .;L �W:
To make our task easier, we will assume that the number of blocks is equal to 2,

that is I � J ¼ 2: For this case, the equation can be written as
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vk1l1 þ vk2l2 ¼ p̂k; k ¼ 1; . . .;L �W: ð8:12Þ

As we can see, each of these L �W equations represents the equation of a straight
line. This line can be interpreted as the set of all points on the plane l1; l2ð Þ;

whose coordinates lt ¼ lt1; l
t
2

� �

; t = 1, 2,…,? satisfy one of Eq. 8.12. An
example of one of the lines described by 8.12, together with an interpretation of its
individual elements in coordinate system l1; l2ð Þ is shown in Fig. 8.3.

We can see from Fig. 8.3 that in general, the vector vk is a vector normal to the
hyperplane l; that is vk ? l; the proof of which is given below.

Proof By considering the difference l1�2 of the two vectors l1 ¼ l11; l
1
2

� �

and
l2 ¼ l21; l

2
2

� �

; fulfilling Eq. 8.11:

p̂k ¼ vTkl
1; and p̂k ¼ vTk l

2: ð8:13Þ

we obtain

// The difference of the vectors
l1�2 ¼ l1 � l2

vTk l
1�2 ¼ vTk l1 � l2ð Þ ¼ Multiplying both sides by vector vk

T

¼ vTk l
1 � vTk l

2 ¼

// Finally:
¼ p̂k � p̂k ¼ 0

The same p̂k occurs in both instances

If vTk l
1�2 ¼ 0; then the vector l1�2; parallel to the line described by Eq. 8.12,

is perpendicular to the vector vk: Thus, vector vk is perpendicular to the line. h

It is also worth noting that the scalar products occurring on the left side of each
equation of the system of equations (8.12) can be written in their equivalent form:

p̂k ¼ vk1l1 þ vk2l2 ¼ kvkk � klk � cos\ vk; lð Þ: ð8:14Þ

It follows that if individual rows vk of matrix v are normalised, i.e. each of the
components of the vector is divided by the length kvkk of the vector, then Eq. 8.14
can be presented in the following format:

Fig. 8.3 A graphical
interpretation of Eq. 8.12
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p̂k

kvkk
¼ vk1

kvkk
l1 þ

vk2
kvkk

l2 ¼ klk � cos\ vk; lð Þ: ð8:15Þ

Although, in this situation, the coefficients of the equation of the line have
changed, it is clear from Fig. 8.4 that this does not affect its location on the plane.

However, the interpretation of p̂k
kvkk

changes in a fundamental way. As follows

from Eq. 8.15 and as shown in Fig. 8.5, the quantity p̂k
kvkk

represents the shortest

distance of the straight line from the origin of the coordinate system l1; l2ð Þ:
As a result of the normalisation of all the rows vk of matrix v; the lengths of the

vectors vk become kvkk ¼ 1 for all k rows. For simplicity, we will temporarily
limit the number k to 2, which means that in the l1; l2ð Þ plane we can draw two
straight lines, represented by the equations:

v11
kv1k

l1 þ
v12
kv1k

l2 ¼
p̂1

kv1k
; ð8:16Þ

v21
kv2k

l1 þ
v22
kv2k

l2 ¼
p̂2

kv2k
: ð8:17Þ

The intersection of these two lines gives the solution of the system of equations for
the pair l1; l2ð Þ: To arrive at this solution, we can start from any point on the plane
l0 ¼ l01; l

0
2

� �

; and project this point onto the line with index k = 1. Because
kv1k ¼ 1; the length of the projection of vector l0 onto the line on which the

vector v1 lies, is equal to
vT1
kv1k

l0: However, the smallest distance of vector l0 from

the line, onto which we project it, is vT1
kv1k

l0 � p̂1
kv1k

: To be able to make the pro-

jection, we must give direction to this scalar value by multiplying by the vector
vT1
kv1k

; which gives us the vector vT1

kv1k�
p̂1
kv1k

l0
� �

vT1
kv1k

: Making this projection onto the

Fig. 8.4 A graphical
interpretation of Eq. 8.15
after the normalisation of
vector vk
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line relies on the subtraction of the vector vT1

kv1k�
p̂1
kv1k

l0
� �

vT1
kv1k

from the original

value l0 to obtain the new value _l1; located on the line. So, as a first step toward
solving (8.10) we can rewrite

_l1 ¼ l0 �
vT1

kv1k �
p̂1
kv1k

l0

 !

vT1
kv1k

vT1
kv1k

¼ l0 �
vT1l

0 � p̂1
� �

vT1

kv1k
2 : ð8:18Þ

A geometrical interpretation of one iteration in the ART reconstruction method is
illustrated in Fig. 8.6.

After conditioning the vector _l1 obtained in this way (a list of possible con-
ditions is shown in Table 8.1), we use it as the input for the next step of the
iteration. We will express the conditioning with the following function [18]
l1 ¼ condition _l1ð Þ:

In subsequent steps of the ART iteration algorithm, we project the vectors
lt onto successive hyperplanes defined by the vectors vk: This operation is
described by the following general relationship:

Fig. 8.5 A graphical
interpretation of p̂k

kvkk
from

Eq. 8.15

Fig. 8.6 A graphical
interpretation of one iteration
of the basic version of the
ART reconstruction method
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_ltþ1 ¼ lt �
vTk l

t � p̂k
� �

vTk

kvkk
2 ; ð8:19Þ

where t = 0, 1,…; vk and p̂k are used in a periodic way, i.e.: p̂t ¼ p̂k; vt ¼ vk when
k ¼ t mod I � Jð Þ þ 1:

As with the first iteration, the values of the elements of the vector _ltþ1 are
conditioned on the basis of the transformations shown in Table 8.1. After applying
the condition, the vectors automatically become the vectors ltþ1 and during this
process converge towards the optimal solution. In order to increase the accuracy of
the method defined by (8.10), further iterations of the algorithm run cyclically
along successive rows of the matrix v: After reaching the last row, the calculations
begin again at the first row, etc.

It is also worth stressing that the algorithm works in such a way that, at any
given moment, only one of the I � J equations is satisfied and by combining
Eqs. 8.11 and 8.19, we can rewrite

p̂tþ1 ¼ vTk _l
tþ1 ¼ vTk l

tþ1 �
vTk l

t � p̂k

kvkk
2 vTkvk: ð8:20Þ

This means that the k ¼ t mod I � Jð Þ þ 1th� equation is satisfied with the tth
iteration of the algorithm.

Table 8.1 Types of conditioning for the vectors _lt

ART algorithm convention Kind of relationship

Unconditioned algorithm lt ¼ condition _ltð Þ ¼ _lt

Partially conditioned algorithm
lt ¼ condition _ltð Þ ¼

0 for _lt\0
_lt for _lt � 0

�

Completely conditioned algorithm
lt ¼ condition _ltð Þ ¼

0 for _lt\0
_lt for 0� _lt � 1
1 for _lt [ 1

8

<

:

Fig. 8.7 A geometrical
interpretation of successive
iterations of the ART
algorithm for a case where
the lines are almost
perpendicular
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One reason why it is worth using this algorithm is the existence of lots of zeros
in matrix v: This redundancy in v causes an overwhelming number of mutually
perpendicular vectors vk in the I � J-dimensional space and so greatly speeds up the
algorithm. A geometrical interpretation of the ART method, for two dimensions
only, is given in Fig. 8.7.

Finally, it is worth adding that the basic ART algorithm is rather slow in
converging to a solution because of the difficulty in matching a criterion for
stopping the iterative process [24]. Because the algorithm results in successive
approximations to the solution, there are no guarantees of achieving the solution
exactly. The stopping criterion might take into account the degree of saturation of
the solution (i.e. a lack of progress in consecutive iterations) or there could be a
rigid criterion where the number of iterations was pre-determined.

8.2.2 Practical Approach to the Basic ART Algorithm

Step I The first step of the algorithm is to establish the initial value of the vector
l0 2 R

I�J; representing the reconstructed image. We also give an initial value t = 0
to the parameter controlling the iteration of the algorithm.

Step II Here, we calculate the vector _ltþ1 from the vector l0; the values pk and the
kth row of matrix v; using the iteration relationship:

_ltþ1 ¼ lt �
vTkl

t � p̂k
� �

vTk

kvkk
2 ;

where k ¼ t mod I � Jð Þ þ 1:

Step III The next step in the iteration of the vector ltþ1 representing the image is
to take the components of the vector obtained after making the transformation:

ltþ1 ¼ condition _ltþ1
� �

;

using one of the conditions contained in Table 8.1.

Step IV At this stage, we introduce the criterion for stopping the iterating algo-
rithm. We could base this criterion, for example, on choosing an acceptable
number of iterations t = tmax and/or on establishing a situation in which we
observe only small changes in the value of the vector ltþ1 in successive steps of
the algorithm. If the criterion allows the iteration process to continue, then we go
back to Step II and let:

lt �ltþ1: ð8:21Þ

A flowchart of this method can be found in Fig. 8.8.
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Fig. 8.8 The basic ART algorithm
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8.2.3 ART Algorithm with Relaxation

The ART algorithm with relaxation is similar in operation to the basic ART algo-
rithm.However, the difference is thatwe introduce an additional parameter called the
relaxation parameter to the basic iteration formula (8.19), as follows [5, 8]:

_ltþ1 ¼ lt � kt
vTkl

t � p̂k
� �

vTk

kvkk
2 ; ð8:22Þ

where kt is the tth element of a sequence of relaxation parameters ktf g
1
t¼0;

k ¼ tmod I � Jð Þ þ 1:
The condition placed on the values of sequence ktf g

1
t¼0 can be expressed by the

following inequality:

t1� kt� 2� t2; ð8:23Þ

where t1;t2 [ 0:
In essence, this method involves the lengthening or shortening of the vector

with which we project the initial vector lt onto the straight line p̂tþ1 ¼ vTtþ1 _l
tþ1: If

the magnitude of the parameter lies within the range 0\ kt\ 1, there is a
shortening of the correction vector, and if it is within the range 1\ kt\ 2, there is
a lengthening. Figure 8.9 shows the consequences of the use of kt in Eq. 8.24 for
the case of a two-dimensional space l1; l2ð Þ with two projections.

8.2.4 Practical Approach to the ART Algorithm with Relaxation

A systematic account of the algorithm is presented below.

Step I As with the basic ART algorithm, when we start this algorithm, the first
step is to determine the initial value of the vector l0 2 R

I�J; representing the image

Fig. 8.9 Geometric
relationships in the method
with relaxation
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reconstructed from the projections. We also assign an initial value t = 0 to the
parameter controlling the iteration of the algorithm.

Step II We now determine the vector _ltþ1 from the vector l0; the values pk and
the kth row of matrix v; using the iteration relationship:

_ltþ1 ¼ lt � kt
vTkl

t � p̂k
� �

vTk

kvkk
2 ;

where k ¼ tmod I � Jð Þ þ 1; kt is the tth element of a sequence of relaxation
parameters ktf g

1
t¼0 (this value changes during the iteration process); where

t1� kt� 2� t2 for each t; t1 [ 0, t2 [ 0:

Step III The next step in the iteration of the vector ltþ1 representing the image is
to take the components of the vector obtained after making the transformation:

ltþ1 ¼ condition _ltþ1
� �

;

using one of the conditions contained in Table 8.1.

Step IV At this stage, we introduce the criterion for stopping the iterating algo-
rithm. We could base this criterion, for example, on choosing an acceptable
number of iterations t = tmax and/or on establishing a situation in which we
observe only small changes in the value of the vector ltþ1 in successive steps of
the algorithm. If the criterion allows the iteration process to continue, then we go
back to Step II and let:

lt �ltþ1:

A flowchart of this method can be found in Fig. 8.10.

8.2.5 Chaotic ART Algorithm

The chaotic ART algorithm is an asynchronous method of reconstructing an image
from projections [6]. The description and proof of the convergence of this algo-
rithm can be found in the paper [13]. We can begin a description of the rela-
tionships in this reconstruction method with the basic iteration formula:

8k _l
t;k ¼ lt�1 � k

vTk l
t�1 � p̂k

� �

vTk

kvkk
2 ; ð8:24Þ

where vT1 is the kth row of matrix v; pk is the kth element of matrix p; l 2 R
I�J is

the matrix of the image divided into blocks; 0\ k\ 2 is the relaxation parameter;
k [ Kt is an element of the set Kt 	 1; 2; . . .; I � Jf g; which is a component part of
the chaotic set K ¼ Ktf g

1
t¼0:
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Fig. 8.10 ART algorithm with relaxation
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The chaotic way in which the elements of the sets Kt 	 1; 2; . . .; I � Jf g are
selected means that the following condition is satisfied:

lim
t!1

supKt ¼ 1; 2; . . .; I � Jf g: ð8:25Þ

In other words, each of the rows of matrices v and p occurs in the sets Kt in total an
infinite number of times.

The next value of lt in the whole recursive sequence, as it approaches the
optimal solution, is calculated on the basis of the weighted sum:

lt ¼
X

k2Kt

wt
k _l

t;k; ð8:26Þ

where the weighting of this sum satisfies the equation:

X

k2Kt

wt
k ¼ 1: ð8:27Þ

The principal feature of the chaotic algorithm, differentiating it from the basic
ART algorithm, is that the calculation of the next value of the solution is based on
the whole set of rows of matrices v and p. In each step of the algorithm, a different
set of these rows is chosen. In this case, this is done in a chaotic way.

8.2.6 Practical Approach to the Chaotic ART Algorithm

A systematic account of the algorithm is presented below.

Step I An arbitrary starting value is chosen for the matrix l0 2 R
I�J:

Step II For each t, the sets Kt 	 1; 2; . . .; I � Jf g are selected chaotically. In the
case of a finite number of iterations, it is necessary to ensure that all rows of the
matrices v and p occur in all the sets Kt, in total a sufficiently large number of
times.

Step III Each iteration of the algorithm makes use of all the rows of the matrices v
and p, whose indices belong to the current set Kt:

_lt;k ¼ lt�1 � k
vTk l

t�1 � p̂k
� �

vTk

kvkk
2 :

Step IV With a set of values _lt;k; k [ Kt we can find a solution to the system of
equations in the tth step:
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lt ¼
X

k2Kt

wt
k _l

t;k;

where
X

k2Kt

wt
k ¼ 1:

Step V This repeats the sequence of actions starting from Step III, until t = tmax.

A flowchart of this method can be found in Fig. 8.11.

8.3 Iterative Coordinate Descent Algorithm

The reconstruction algorithm known commercially as the adaptive statistical
iterative reconstruction (ASIR) method is based on an approach presented com-
prehensively in [27]—the iterative coordinate descent (ICD) algorithm. The main
distinguishing feature of this method is that it takes into consideration the statis-
tical nature of the X-ray intensity measurements obtained from the scanner. This
results in an effective reduction in the level of noise in the reconstructed image and
thus an improved low-contrast resolution of the scanners in which the recon-
struction algorithm is applied. As we know, the low-contrast resolution depends on
the radiation dose used during a scan. The greater the radiation intensity, the
sharper the image is, and vice versa [14]. With this approach, it becomes possible
to reduce the radiation dose absorbed by the patient while maintaining a reason-
able value of low-contrast resolution for the apparatus.

The method discussed here actually makes use of two ways to describe the
geometry of the projection system: that used in analytical reconstruction methods,
and that used in algebraic techniques. However, we describe the algorithm here, in
this chapter, because the main methodological burden of the algorithm is situated
in the stage where the image reconstruction is carried out algebraically.

8.3.1 The Geometry of the Projection System in 3D Space

This approach to image reconstruction is related in principle to the projection
system geometry discussed in the part of Sect. 7.3 concerned with the tube-
detector-table system. The main difference in this algebraic method is its treatment
of the geometry of the reconstructed image. The algorithm here is designed for
spiral cone-beam scanners, so the geometry of the projection system has to be
changed significantly as compared to that given in Sect. 8.1.
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Fig. 8.11 Chaotic ART algorithm
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In the paper [27], a different way of calculating the coefficients of the v matrix
from that given in Sect. 8.1 has been proposed. In this approach, the values of the
matrix elements v are determined from projections of the cubes, representing the
voxels of the reconstructed image, cast onto the detector array. Figure 8.12 shows
such a voxel projection, the so-called footprint, on the detector array. Note that the
index m determining the order of the voxels in the reconstructed 3D image changes
as follows: m ¼ 1; . . .; I; Iþ 1; . . .; I � J; I � Jþ 1. . .; I � J � N (using the notation
introduced in Sect. 3.4), where I and J are the numbers of pixels in the x–y plane
and N is the number of layers along the z axis in the 3D image.

In this algorithm, the contribution that a given voxel makes to the formation of
the projection value, reflecting the value of the corresponding element of the v

matrix, is calculated using an approach known as the 3D distance-driven method
[7]. What matters in this approach is that the contribution made depends on the
surface area of the detector under the footprint of the pixel. As the detectors are
2D, we need to take into consideration two footprints, one in the plane parallel to
the x–y coordinate system and the other in the plane parallel to the y–z system
(x–z). Examples of footprints in these two planes are shown in Fig. 8.13.

In Fig. 8.13, Dc and Dr represent the widths of the channels and rows,
respectively of the detector for which we are calculating the projection value;
dwc and dwr represent the widths of the voxel’s footprint on the detector array,
measured, respectively, along a tangent to the curve on which the detector channel
is located (at the mid-point of the detector) and along the line of the detector row.
The diagram also shows the distances between the projection of the centre of the
voxel onto the screen and centre of the detector, i.e. dvc (in the plane of the
detector channel) and dvr (in the plane of the detector row).

When calculating the values of dwc, dwr, dvc and dvr, we have to take into
consideration, the current positions of the radiation source and the detector array
relative to the voxel m. That is, we consider the angle axy between the line from the
tube focus to the centre of the voxel and the x- or y-axis, the angle az between the
line from the focus to the centre of the voxel and the x–y plane, and the distance of
the voxel from the tube focus.

With these values Dc, dwc, dvc, Dr, dwr and dvr we can then calculate the area of
a specific detector covered by the footprint of the voxel on the detector array. First,
however, for convenience, we introduce a ‘‘flattened’’ version of the footprint, as
shown in Fig. 8.14 [7].

Fig. 8.12 A voxel projection
onto the detector array
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This simplified form of the voxel footprint makes it easier to approximate the
shaded area shown in the diagram using the overlapping segments dwc and dvc in
one direction, and dwr and dvr in the other. From Fig. 8.15, we can calculate the
joint contribution of these segments in each of these dimensions, using the
following formula [27]:

D ¼ Dþ dw
2
� dvj j: ð8:28Þ

This measure obviously makes sense if there is partial coverage of the segments.
However, we also need to take into account other instances, such as when the
segments do not touch, or when one segment is completely contained inside
another, using the following formula:

D ¼ min max 0;
Dþ dw

2
� dvj j

	 


;min D; dw½ 


	 


: ð8:29Þ

Fig. 8.13 Voxel footprint
a aligned along the detector
channels of the array,
b aligned along the detector
rows of the array
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As suggested in [27], using a concept derived from [7], the overall contribution of a
given voxel to the formation of the projection value can be determined by the product
of the areas covered, normalised by the respectiveD quantities in the channel and the
row dimensions, multiplied by Dx

cos axy�cos az
(assuming that Dx = Dy = Dz). This last

factor corrects for the inclination of the beam passing from the tube focus through the
centre of the voxel. So, finally, we have the matrix element v for the kth projection
measurement of the mth voxel in the reconstructed 3D image:

vkm ¼
Dx

cos ay � cos az
�

min max 0; Drþdwr
2 þ dvrj j

� �

;min Dr; dwr½ 

� �

Dr

�

min max 0; Dcþdwc
2 þ dvcj j

� �

;min Dc; dwc½ 

� �

Dc

:

ð8:30Þ

Note also that in Eq. 8.30, ay is used to represent a version of the angle axy
restricted within the range ±45�, as follows:

Fig. 8.14 A ‘‘flattened’’
version of the footprint

Fig. 8.15 Evaluation of the
contribution of a voxel in
overlapping a detector
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ay ¼ axy þ
p

4

� �

mod
p

4
�
p

4
: ð8:31Þ

8.3.2 Formulation of the Reconstruction Problem in Terms

of Probability

We will start this algorithm by assuming that the most appropriate statistical model
to describe the number of photons leaving the X-ray tube in a given equal time
interval is the Poisson distribution. This defines the probability of recording the
number of X-ray photons k at the focus of the tube as follows:

P K ¼ kð Þ ¼
k�

k

k!
e�k

�

; ð8:32Þ

where k* is the expected value of a random variable K.
As we know from Chap. 4 (see Eq. 4.12), the projection value p̂ measured at a

given angle of rotation aw of the projection system by a given detector l is
determined by the following relationship:

p̂ l;wð Þ ¼ ln
I0

I

� �

ð8:33Þ

where I0 is the intensity of radiation emitted by the tube (it is assumed that this can
be determined accurately, by preliminary calibration of the projection system); I is
the intensity of the radiation after passing through the test object.

Transforming formula (8.33) and adjusting the indices by taking into account
the algebraic reconstruction problem formulated in Eq. 8.11, we obtain

Ik ¼ I0e
�p̂k ; ð8:34Þ

where

p̂k ¼
X

I�J

m¼1

vkmlm: ð8:35Þ

Assuming that the radiation intensity measured after passing through the test
object is proportional to the number of photons recorded by the detector during the
projection p̂k; and that this measurement also depends on the expected (average)
attenuation coefficients l*m, we obtain

Ik / k�k ¼ k0e
PI�J

m¼1
vkml

�
m : ð8:36Þ

On the other hand, the number of radiation quanta passing through the patient’s
body and arriving at the detector during the projection p̂k is dictated by the
statistics from Eq. 8.32, which can be rewritten as follows
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P Kk ¼ kkð Þ ¼ k�k
kk

kk!
e�k

�
k ; ð8:37Þ

where k*k is defined by relationship (8.36) and all the random variables Kk are
independent.

The probability in Eq. 8.37 can be regarded as a conditional probability, by
assuming that the expected value is equal to k*k:

P Kk ¼ kk k
�
k







� �

¼
k�k

kk

kk!
e�k

�
k : ð8:38Þ

Hence, if the expected number of recorded photons for each projection k is k*k, the
conditional probability of a given number of photons passing through during all
the projections will be

P K ¼ k k�jð Þ ¼
Y

L�W

k¼1

k�k
kk

kk!
e�k

�
k ; ð8:39Þ

where K ¼ Kk½ 
; k ¼ kk½ 
; k
� ¼ k�k

� �

:

Substituting relationship (8.36) into Eq. 8.39, we obtain the following formula:

P K ¼ k k�jð Þ ¼
Y

L�W

k¼1

k0e
PI�J

m¼1
vkml

�
m

� �kk

kk!
e�k0e

P�J

m¼1
vkml�m

¼ P K ¼ k l�jð Þ; ð8:40Þ

where l� ¼ l�k
� �

:

The resulting probability measure is determined by the expected values of the
attenuation coefficients lk

* in individual homogeneous blocks of the image. Based
on Eq. 8.40, we can devise a class of reconstruction algorithms known in the
literature as maximum-likelihood (ML) estimation methods [22]. In these meth-
ods, we manipulate the values of lk

* so as to maximise the probability defined in
Eq. 8.40, for measured values of kk. Unfortunately, the use of this method often
leads to instability in the reconstruction process [25]. One way to counteract these
negative effects is to introduce a stabilising factor (referred to in the literature as a
regularisation term) into the reconstruction method. This usually defines a priori

the structure of the reconstructed image and is intended to inhibit oscillations in
the reconstruction process and accelerate the convergence of the algorithm to a
solution. The whole expression to be optimised at this point consists of two terms:
the principal term (the basis for the maximum-likelihood method) and the
regularisation term (a priori information about the reconstructed image). Recon-
struction methods based on such a complex optimisation criterion are known in the
literature as maximum a posteriori (MAP) methods [3, 9]. The theoretical basis for
these methods is the Bayesian model, which in this case looks like this

P l� K ¼ kjð Þ ¼
P K \ l�ð Þ

P Kð Þ
¼

P l� \ Kð Þ

P Kð Þ
¼

P K ¼ k l�jð Þ

P Kð Þ
P l�ð Þ: ð8:41Þ
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Equation (8.41) links the conditional probability P K ¼ k l�jð Þ with the conditional
probability P l� K ¼ kjð Þ: The relationship between the probabilities P K ¼ k l�jð Þ
and P l� K ¼ kjð Þ can be represented in another way, by taking the logarithm of
both sides. This gives us:

ln P l� K ¼ kjð Þ ¼ ln P K ¼ k l�jð Þ þ ln P l�ð Þ� ln P Kð Þ: ð8:42Þ

Furthermore, when considering that we are optimising by searching for the best
solution using gradient methods, i.e. by differentiating the optimisation criterion
with respect to the variables lk

*, we can eliminate the ln P Kð Þ term on the right
hand side of Eq. 8.42 [23]. As a result, estimating the values lk

* will take place
a posteriori by solving the following optimisation problem:

l�max ¼ arg minl� ln P K ¼ k l�jð Þ þ ln P l�ð Þð Þ: ð8:43Þ

Let us consider, then, the first component of the optimisation criterion, which after
substituting Eq. 8.39 becomes:

lnP K ¼ kjk�ð Þ

¼
X

L�W

k¼1

ln
k0e
PI�J

m¼1
vkml

�
m

� �kk

kk!
e�k0e

PI�J

m¼1
vkml�m

0

B

B

B

@

1

C

C

C

A

¼
X

L�W

k¼1

kklnk0 � kk
X

I�J

m¼1

vkml
�
m � ln kk!ð Þ � k0e

PI�J

m¼1
vkml

�
m

 !

:

ð8:44Þ

If at this point, we represent the projection values that would result from the
determination of the expected values lm

* by

p̂�k ¼
X

I�J

m¼1

vkml̂
�
m; ð8:45Þ

then Eq. 8.44 can be converted into the following form:

lnP K ¼ k k�jð Þ ¼
X

L�W

k¼1

kkln k0 � kkp̂
�
k � ln kk!ð Þ � k0e

p̂�
k

� �

: ð8:46Þ

Expanding the k0e
p̂�
k component in Eq. 8.46 about the values:

p̂k ¼ ln
I0

Ik

� �

¼ ln
k0

kk

� �

ð8:47Þ

into a second-order Taylor series and taking into consideration Dp̂k ¼ p̂�k � p̂k; we
obtain the following relationship:
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ln P K ¼ k k�jð Þ ��
X

L�W

k¼1

�
kk

2
p̂�k � p̂k
� �2

þkkln k0ð Þ � ln kk!ð Þ � kk 1þ ln
k

kk

� �� �

:

ð8:48Þ

It should be stressed that the values p̂k are associated with actual measurements of
the intensity of the X-rays after passing through the test object.

A form of Eq. 8.48, which will be more useful later, is:

ln P K ¼ k k�jð Þ ��
X

L�W

k¼1

�
kk

2
p̂�k � p̂k
� �2

þfun kkð Þ

� �

; ð8:49Þ

where

fun kkð Þ ¼ kkln k0ð Þ � ln kk!ð Þ � kk 1þ ln
k

kk

� �

: ð8:50Þ

is a function independent of l̂k:
By taking Eq. 8.45 into consideration, Eq. 8.49 can also be represented by the

following matrix form:

lnP K ¼ k k�jð Þ �
1
2

vl� � pð ÞTD vl� � pð Þ þ fun kð Þ; ð8:51Þ

where D is a diagonal matrix:

D ¼

d1 0 � � � 0
0 d2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � dL�W

2

6

6

6

4

3

7

7

7

5

¼

k1 0 � � � 0
0 k2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � kL�W

2

6

6

6

4

3

7

7

7

5

: ð8:52Þ

In addition, it is assumed [26] that

dk ¼ kk ¼ k0e
�p̂k ffi

1
rp̂k

: ð8:53Þ

where rp̂k are the variances of the projection measurements p̂k:
Therefore, having formulated the ML term, it is now time to determine the form

of the regularisation term. A very popular image-processing tool for regularising
optimisation criteria is Markov random fields (MRF).

To begin with, let us define the concept of the random field as a set of random
variables S ¼ Sm;m 2 Mf g; where M ¼ m ¼ x; yð Þ; 0� x� I� 1; 0� y� Jf �1g
[10]. The digital imagel ¼ lm;m 2 Mf g can be regarded as an implementation of the
random field S, that is, as a set of random variables associated with the latticeM [12].

Defining the immediate neighbourhood of the pixel m as the set N mð Þ 	 Mm;

Mm ¼ M � mf g as the set of all neighbouring sites of the pixel m [ M, a given
random field is a Markov random field if
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1 For all m [ M, P lmð Þ[ 0;

2. For all m [ M, P lm lN mð Þ










� �

¼ P lm l�mj : m 2 N mð Þð Þ; where �m 2 Mm and

lN mð Þ ¼ l�mf Þ:

This second condition is known as the Markovianity and it means that the
probability that a pixel has a given value depends only on the image elements
immediately adjacent to that pixel.

One of the properties of MRFs is that it can be defined by the global Gibbs
distribution, which takes the following form

P lmð Þ ¼ 1
Z
e�E lmð Þ; ð8:54Þ

where

Z ¼
X

lm2S

e�E lmð Þ; ð8:55Þ

is known as the partition function or normalising constant and E lmð Þ is the energy
function.

The Gibbs distribution is related to the concept of a set of cliques C, i.e.
appropriate configurations of voxels connected to each other in a lattice, where the
members of a clique are statistically dependent on each other. It is important that
each pair of a given clique is immediately adjacent. There are several types of
clique, depending on the number of pixels in the clique: i.e. first-order clique,
second-order clique, etc., which are defined as:

C1 � M ¼ m : m 2 Mf g; ð8:56Þ

for the first-order clique,

C2 � m; �mð Þ : m; �m 2 M;m 6¼ �m;m 2 N �mð Þ; �m 2 N mð Þf g; ð8:57Þ

for the second-order clique.
A clique of type C2 with a 26-pixel neighbourhood in 3D space, is shown in

Fig. 8.16.
In this case, the definition of the energy in Eq. 8.54 can be represented by:

E lð Þ ¼
X

c2C

Vc lm : m 2 Cð Þ; ð8:58Þ

where the function Vc �ð Þ defines the clique potentials in clique C.
We can see from formula (8.43) that we are interested in the logarithm of the

probability (8.54). This is represented as follows (taking into consideration the
expected values of the attenuation coefficients in the reconstructed image):

ln P l̂�m
� �

¼ �ln Z �
X

c2C

Vc l̂m : m 2 Cð Þ: ð8:59Þ
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As gradient methods are used in the reconstruction algorithm, the -ln Z compo-
nent can be omitted, as a normalising constant.

In the paper [2], formulating the generalised Gaussian MRF (GGMRF)
reconstruction method, the following form of the logarithm of the probability from
Eq. 8.59 (referring to the relationship resulting from the Gibbs distribution), has
been proposed:

ln P l̂�m
� �

¼ �
1

fun rð Þ

X

m;�m2C

Vr l̂�m � l̂��m
� �

; ð8:60Þ

where m; �m ¼ 1; . . .; I � J; fun �ð Þ is a monotone increasing function; r is an
empirically determined scalar and controls the reconstructed prior image in the
neighbourhood of a given voxel, taking into consideration the noise model in
the image (methods of estimating the value of r are given in [21]); Vr �ð Þ is the
potential function, penalising local differences between neighbouring voxels in the
image.

In [2], it was assumed that funðrÞ ¼ ara and Vr l̂�m � l̂��m
� �

¼ wm�mq l̂�m � l̂��m
� �

;

where

q l̂�m � l̂��m
� �

¼ l̂�m � l̂��m












a
ð8:61Þ

for a C0.
In short, we can convert the logarithm from Eq. 8.60 into the following form:

lnP l̂�m
� �

¼ �
1
ara

X

m;�m2C

wm�m l̂�m � l̂��m












a
; ð8:62Þ

where wm�m are normalised weighting coefficients chosen as the inverse of the
distance between the voxels so that

P

m;�m2C wm�m ¼ 1:

Fig. 8.16 A clique with 26-
nearest neighbours
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The parameter a in Eq. 8.62 allows us to control the degree of edge pres-
ervation in the reconstructed image. It is of paramount importance for main-
taining the sharpness of the image when smoothing it by means of the lnP l̂�m

� �

term in the optimisation criterion (8.43). Parameter a in Eq. 8.62 plays a key role
in the trade-off between edge sharpness preservation and image smoothness, i.e.
noise reduction in the reconstructed image. Values of a[ 1 allow us to preserve
the convexity of the regularising function, making it much easier for the opti-
mising algorithm (reconstructing the image) to find the global extremum.
A value of a = 2 however causes substantial edge smoothing in the recon-
structed image. Thus, parameter a should have a value within the limits 1� a� 2
such as a = 1.2.

To increase the ability to influence the property of the regularising term with
respect to the above-mentioned trade-off between preserving the edges in the
image and eliminating noise, a modified form of the potential function has been
proposed [27]

q l̂�m � l̂��m
� �

¼
l̂�m � l̂��m












a

1þ l̂�m�l̂
�
�m

d



















a�b
; ð8:63Þ

where a represents the degree of nearness and b the degree of distance, between
the central pixel and a given pixel in the neighbourhood (in the literature b is
named q), where 1� b� a\2; d determines the approximate transition threshold
between low and high contrast regions in the reconstructed image.

If a is fixed, a smaller value of b results in improved performance of the
regularising term in preserving edges in the reconstructed image, since for large
l̂�m � l̂��m the values of the term become relatively constant. On the other hand, by
manipulating the value of d we can move the property towards either smaller or
greater values of l̂�m � l̂��m:

In the literature, the optimisation term based on the potential function given in
Eq. 8.63 is referred to as q-generalised Gaussian MRF (q-GGMRF).

The optimisation problem as written in Eq. 8.43 can easily be transformed into
a more convenient form for finding the minimum, that is for finding the optimal
reconstructed image. Equation (8.43) can thus be converted into the following
form:

l�max ¼ argmin
l�
�ln P K ¼ k l�jð Þ � ln P l�ð Þð Þ: ð8:64Þ

From our previous considerations based on Eq. 8.51 and 8.60, the reconstruction
problem reduced to the optimisation problem defined by Eq. 8.51 can be written as
follows:

l�max ¼ argmin
l�

1
2

p� vl�ð ÞTD p� vl�ð Þ þ
1

fun rð Þ

X

m;�m2C

Vr l̂�m � l̂��m
� �

 !

: ð8:65Þ
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8.3.3 Solving the Problem of Optimisation

As mentioned in Sect. 8.3.2, the functions defining the optimisation criterion are
convex, so we can use a number of methods for finding optimal solutions to
Eq. 8.65 and still be guaranteed to achieve a global minimum. The choice of a
suitable optimisation method should be guided mainly by considerations of
computational efficiency [27].

The first component of the optimisation criterion shown in Eq. 8.65 is
approximately a quadratic function, which means that in this optimisation problem
we can use a method known in the literature as the Newton iterative algorithm. To
demonstrate the ability of this algorithm to find the minimum of a quadratic
function, let us use a very simple example function: fun xð Þ ¼ x2:We will represent
the value of the variable x in the tth iterative step of the algorithm by x tð Þ: If we
expand fun xð Þ into a Taylor series about the value x tð Þ; the search for the extremum
of fun xð Þ can be written as:

funmin xð Þ ¼ min
x

Fun tð Þ xð Þ
� �

¼ min
x

fun x tð Þ
� �

þ x� x tð Þ
� �

fun0 x tð Þ
� �

þ
1
2

x� x tð Þ
� �2

fun00 x tð Þ
� �

� �

;
ð8:66Þ

which represents the approximation of the function fun xð Þ by the quadratic func-
tion Fun xð Þ in the neighbourhood of the point x tð Þ:

A necessary condition for the existence of an extremum of this function at x is
that the derivative of the function at that point equals 0:

dFun tð Þ xð Þ

dx
¼ 0; ð8:67Þ

hence

x tð Þ �
fun0 x tð Þ
� �

fun00 x tð Þð Þ
¼ x tð Þ �

2x tð Þ

2
¼ 0: ð8:68Þ

In this way, we achieve convergence of the optimisation algorithm to the solution
in one step. If fun xð Þ is approximately quadratic, as with the optimisation criterion
given in Eq. 8.65, the convergence will still be relatively fast. In that case, the

value x
tð Þ
min at which the function Fun tð Þ xð Þ is a minimum is only an approximation

to the value at which fun xð Þ actually has its minimum. Assuming that in sub-

sequent iterative steps we choose x tð Þ
min as the initial condition x tþ1ð Þ about which to

expand the function fun xð Þ, we can write:

dFun tð Þ xð Þ

dx













x¼x tþ1ð Þ

¼ fun0 x tð Þ
� �

þ x� x tð Þ
� �

fun00 x tð Þ
� �








x¼x tþ1ð Þ
¼ 0: ð8:69Þ
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Thus, by finding the roots of Eq. 8.69, we find successive approximations xðtÞ;
t = 1, 2,... to the value at which fun xð Þ is a minimum. This procedure for finding
the minimum is shown graphically in Fig. 8.17.

The algorithm described comprehensively in [27] is not simply a direct
application of Newton’s method to the MAP method. This is because the Taylor
series expansion only includes the ML term and not the a priori term. With this in
mind, we will use the following relationship to find the optimal solution:

l̂ tþ1ð Þ
m ¼ argmin

l[ 0

X

L�W

k¼1

dk

2
2vkm p̂k � v�kl

tð Þ
� �

l�m � l� tð Þ
m

� ��

 

þ v2km l�m � l� tð Þ
m

� �2
�

þ
1

fun rð Þ

X

m;�m2C

Vr l̂�m � l̂��m
� �

!

;

ð8:70Þ

where: vk is the kth row of the matrix v:
Note that we do not consider the Hessian matrix in the Taylor series expansion

of the quadratic term in Eq. 8.70. This means that in this approach, as one image
pixel is being improved by successive optimisation steps, the rest of the pixels
remain fixed. This leads to a significant speeding up of the reconstruction process.
To reduce any adverse effects introduced by this simplification, the sequence of
choosing the pixels for modification is determined randomly. The modification to
the algorithm for finding the optimal solution in multi-dimensional space is known
as the Newton–Raphson method [26, 27].

To change the individual image points, it now only remains for us to determine the
value at which the function in the brackets in Eq. 8.70 is a minimum. To do this, we
calculate the zero point of the derivative of the functionwith respect to lm

* , giving us:

X

K�H�H

k¼1

dkvkm p̂k � v�kl
tð Þ

� �

þ
X

K�H�H

k¼1

dkv
2
km l�m � l� tð Þ

m

� �

þ
1

fun rð Þ

X

m;�m2C

Qr l̂�m � l̂��m
� �

¼ 0;

ð8:71Þ

Fig. 8.17 Graphical
interpretation of Newton’s
algorithm
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where: Qr �ð Þ is the first derivative of the potential function Vr �ð Þ and is called the
influence function.

For the q l̂�m � l̂��m
� �

function in Eq. 8.63, the influence function has the fol-
lowing form:

Qr l̂�m � l̂��m
� �

¼ wm�m

l̂�m � l̂��m












a

1þ l̂�m�l̂
�
�m

d



















a�b
a�

a� b

da�b

l̂�m � l̂��m












a

1þ l̂�m�l̂
�
�m

d



















a�b
sign l̂�m � l̂��m

� �

0

B

@

1

C

A
:
ð8:72Þ

To satisfy the assumptions for Eq. 8.70, we substitute l̂�m ¼ l̂� tþ1ð Þ
m into Eq. 8.71

and continue the next step of iteration process for l̂� tð Þ
m ¼ l̂� tþ1ð Þ

m :

8.4 Practical Approach to the Iterative Coordinate

Descent Alogorithm

The discussions above form the basis for the formulation of a reconstruction
algorithm from measurements made using a spiral projection system (scanner)
with a conical beam of radiation.

The geometry of this type of scanner is discussed in detail in Sect. 7.3 and this
will be the basis of our discussions here. In addition, as far as the geometry of the
reconstructed image is concerned, everything established in Sect. 8.3.1 is also
relevant here. The method given there for determining the elements of the matrix
coefficients v in the 3D image is particularly important. Therefore, the values of
the elements vkm; k ¼ 1; 2; . . .;K � H�H (K is the number of rows, H is the number
of detectors in each row placed on the screen (channels), H is the total number of
projections made during the examination); m ¼ 1; . . .; I; Iþ 1; . . .; I � J; I � Jþ
1. . .; I � J � N (I and J are the numbers of pixels in the x–y plane and N is the
number of slices of the spatial image along the z axis) are calculated a priori from
the projection parameters, before the actual process of reconstruction.

From the measurements made by the scanner we obtain the individual pro-
jection values p̂k; k ¼ 1; . . .;K � H �H:

The values vkm and p̂k represent the starting point for the reconstruction algo-
rithm presented in the following steps:

Step I It is worth mentioning that since the objective functions in the optimisation
problem are convex, to speed up the convergence of the algorithm to a solution,
the initial condition l� tð Þ for t = 0 is determined using a standard algorithm such
as the Feldkamp method, discussed in Chap. 6.

Step II The element l� tð Þ
m of the reconstructed image to be adjusted is selected

randomly.
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Fig. 8.18 A diagram of the iterative coordinate descent (ICD) algorithm
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Step III We determine the root of the following equation (see Eq. 8.71):

X

K�H�H

k¼1

dkvkm p̂k � v�kl
tð Þ

� �

þ
X

K�H�H

k¼1

dkv
2
km l�m � l� tð Þ

m

� �

þ
1

fun rð Þ

X

m;�m2C

Qr l̂�m � l̂��m
� �

¼ 0;

by, for example, performing a half-interval search.

The root of this equation is taken to be the next value of the reconstructed pixel,
i.e. l� tþ1ð Þ

m :

Step IV All the m-voxels are checked to see whether they have been improved. If
not, we return to Step II.

Step V The sequence of steps from Step II to Step IV is repeated until

8m l� tþ1ð Þ
m � l� tð Þ

m













\1HU;

where, on returning to Step II, we assign t = t ? 1.

The reconstruction algorithm described above is represented diagrammatically
in Fig. 8.18.

References

1. Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique: a new
implementation of the ART algorithm. Ultrason Imaging 6:81–94

2. Bouman C, Sauer K (1993) A generalized Gaussian image model for edge-preserving MAP
estimation. IEEE Trans Image Process 2(3):296–310

3. Bouman C, Sauer K (1996) A unified approach to statistical tomography using coordinate
descent optimization. IEEE Trans Image Process 5(3):480–492

4. Censor Y (1981) Row-action methods for huge and sparse systems and their applications.
SIAM Rev 23(3):444–464

5. Censor Y (1983) Finite series-expansion reconstruction methods. Proc IEEE 71:409–419
6. Chazan D, Miranker W (1969) Chaotic relaxation. Linear Algebra Appl 2:199–222
7. DeMan B, Basu S (2004) Distance-driven projection and backprojection in three dimensions.

Phys Med Biol 49:2463–2475
8. Eggermont PPB, Herman GT, Lent A (1981) Iterative algorithms for large partitioned linear

systems, with application to image reconstruction. Linear Algebra Appl 40:37–67
9. Geman S, McClure D (1985) Bayesian image analysis: an application to single photon

emission tomography. in: Proceedings of the statistical computing section. American
statistical association, pp 12–18

10. Geman S, McClure D (1987) Statistical methods for tomographic image reconstruction. Bull
Int Stat Inst LII-4 5–21

11. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for
three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481

12. Grimmett GR (1973) A theorem about random fields. Bull London Math Soc 5:81–84
13. Gubarieny N (1999) Generalized model of asynchronous iterations for image reconstruction.

Proc Confer PPAM’99, Kazimierz Dolny

264 8 Algebraic Reconstruction Techniques



14. Hara AK, Paden RG, Silva AC, Kujak J, Lawder HJ, Pavlicek W (2010) Iterative
reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J
Roentgenol 193(9):764–771

15. Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294
16. Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized

tomography. Academic Press, New York
17. Jähne B (1991) Digital image processing: concepts, algorithms and scientific applications.

Springer, Berlin
18. Jain AK (1989) Fundamentals of digitals image processing. Prentice-Hall, Englewood Cliffs
19. Kak AC, Slanley M (1988) Principles of computerized tomographic imaging. IEEE Press,

New York
20. Kaczmarz S (1937) Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad

Polon Sci Lett 35:355–357
21. Saquib SS, Bouman CA, Sauer K,(1998) ML parameter estimation for Markov random fields

with application to Bayesian tomography. IEEE Trans Image Process 7(7):1029–1044
22. Sauer K, Bouman C (1992) Bayesian estimation of transmission tomograms using

segmentation based otimization. IEEE Trans Nucl Sci 39(4):1144–1152
23. Sauer K, Bouman C (1993) A local update strategy for iterative reconstruction from

projections. IEEE Trans Signal Process 41(2):534–548
24. Tanabe K (1971) Projection method for solving a singular system of linear equations and its

applications. Numer Math 17:203–214
25. Thibault J-B, Sauer K, Bouman C (2000) Newton-style optimization for emission

tomographic estimation. J Electron Imag 9(3):269–282
26. Thibault J-B, Sauer KD, Bouman CA, Hsieh J (2006) A recursive filter for noise reduction in

statistical iterative tomographic imaging. SPIE 6065
27. Thibault J-B, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical

approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544

References 265



Chapter 9

Evaluation of CT Devices

The production of tomographic images can be regarded as the transformation of
the X-ray attenuation coefficient distribution in a patient’s body into a recon-
structed image. The final image is produced as a result of a whole chain of
processes and is affected by a range of factors including the technical parameters
of the scanner, the type of projection system, and finally the type of reconstruction
algorithm applied.

Assessment of the physical and technical capabilities of CT scanners is made
possible by the establishment of standardised, quantitative, comparative criteria.

9.1 Technical Parameters of CT Devices

As with any technical device, CT scanners can be described using standard
parameters [1, 2, 4, 7, 8]. When planning the purchase of a scanner, a health
service department should carefully analyse the models on the market using
standardized parameters that describe both their properties and capabilities. In
order to make the right decision concerning what is, after all, a considerable
financial investment, they need to strike a balance between the price of the
equipment and their expectations of the device. Parameters for the evaluation of
the quality of a CT scanner include:

• Cycle time The total time taken to scan and reconstruct the image. Note that the
smaller the cycle time, the greater the chance of avoiding the creation of arte-
facts caused by patient movement, including physiological movements such as
the beating heart or chest movements while breathing;

• Spatial resolution [12] The minimum area in the image in which changes can be
detected. This quantity is defined using the transfer function of the scanner
G(fx, fy) (called often the MTF, modulation transfer function [6]), an example of
which is given in Fig. 9.1 (because the function is axially symmetrical about the

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
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origin of the coordinate system, it can be represented by a single curve MFT(f)).
The transfer function defines the frequency domain relationship between the
original and the reconstructed image in the presence of noise, and determines the
ability of the scanner to capture rapidly changing attenuation coefficients in the
object. The spatial resolution is most often defined in terms of the cut-off fre-
quency of the one dimensional transfer function, i.e. the value at which the
function MTF(f) drops to the 50, 10 or 2% level. The value of this parameter
depends solely on the properties of the detectors and X-ray source used in the
scanner, on the method of sampling and on the method of reconstruction (the
interpolation method and kernel filter used).

• Low-contrast resolution (contrast detail) [5] The ability to detect small differ-
ences of attenuation coefficient in tissues. It is defined as the ratio between the
smallest detectable difference of attenuation coefficient (on the Hounsfield scale)
and the average value within an object of a given size, for a specific radiation
dose. This last factor is introduced because low-contrast resolution is propor-
tional to the radiation dose. Current scanners have a resolution of between 0.3
and 0.4%. This can be increased by increasing the radiation dose or extending
the scanning time.

• Uniformity [4] A measure of the homogeneity of the image (or rather the het-
erogeneity). This can be calculated from the average attenuation coefficients
measured at selected areas of a uniform standard water phantom (Sect. 9.2),
using the formula:

heterogenity ¼ lmaxðx; yÞ � lminðx; yÞ
lmaxðx; yÞ þ lminðx; yÞ ; ð9:1Þ

where lmax(x, y) is the highest average attenuation coefficient from among all the
selected areas of the phantom; lmin(x, y) is the smallest average attenuation
coefficient from among all the selected areas of the phantom.
• Linearity (sensitometry) [4, 10] defines the relationship between the attenuation
coefficients measured at the average energy of the scanner and the values assigned
to them on the Hounsfield scale for all types of tissue, using the formula:

Fig. 9.1 An example
transfer function
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linearity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
I

X

i¼1

I li � lavið Þ2
s

; ð9:2Þ

where li is the attenuation coefficient assigned to a given tissue, on the
Hounsfield scale; li

av is the attenuation coefficient measured at the average
energy of the scanner; I is the number of the tissue under consideration.

A practical method for determining this parameter using a phantom is given
in Sect. 9.2.

• Slice thickness The nominal thickness of the image cross-section. This is often
determined using the value of the full width at half maximum (FWHM) of the
scanner [3, 4], which is defined on the basis of the sensitivity function of the
scanner. An example of a sensitivity function is presented in a simplified form in
Fig. 9.2.

To determine the sensitivity function, a phantom composed of metal strips or
wires inclined at an angle is used (Sect. 9.2). The intensity of the X-rays is
measured along the main axis of the patient with respect to a fixed point, and the
results are then normalised relative to the maximum value. The slice thickness is
the distance between the two points on the graph of the sensitivity function,
which have values equal to half the maximum value. A typical value for this
parameter would be in the range 0.4–10 mm.

• Computed tomography dose index (CTDI) This index is measured in milligrays
(mGy). It defines what dose a patient absorbs when scanned by a particular CT
apparatus, and is determined as follows:

CTDI ¼ 1
jz2 � z1j

Z

z2

z1

DoseðzÞdz; ð9:3Þ

where Dose(z) is the distribution along the z-axis of the dose absorbed by a
phantom during the test; z1, z2 are the start and endpoints on the z-axis of the
measurements made by the dosimeter. The test measurements are made using an

Fig. 9.2 A simplified
example of the sensitivity
function of a scanner
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ionization chamber (diameter 10 mm, length 100 mm) placed inside a cylin-
drical phantom made from a substance similar to human tissue (e.g. poly-
methylmethacrylate). If we assume that the CTDI index varies linearly with the
distance between points on the surface and the centre of the phantom, its average
value for one scanned slice can be calculated using the formula:

nCTDIw ¼ 1
Q

1
3
CTDI100;c þ

2
3
CTDI100;p

� �

; ð9:4Þ

where Q is the current-time product during the test; the subscript 100 means
that the measurement was made using an ionization chamber of length
100 mm; c means that the measurement was made at the centre of the
phantom; p represents a value calculated on the basis of two to four mea-
surements made at the periphery of the phantom. Note that the nCTDIw index
can vary depending on the nominal thickness of the scanned slices. We can
determine the value of the dose absorbed by the patient during a scan by
using this parameter and taking into account other parameters such as: the
high-tension voltage of the tube, the current-time product used during the
scan, the thickness of the slices scanned and the number of those slices.
Clearly, the total dose absorbed by the patient should not exceed permissible
levels. Consequently, much of the efforts of manufacturers of tomographic
equipment are currently directed towards minimising this dose. The most
important approaches in this respect are presented in the paper [9].

• Pitch This factor is only relevant to spiral scan systems and is the ratio between
the displacement of the table with the patient on it and the thickness of the
scanned layer for one revolution of the scanner:

pitch ¼ k

SW
; ð9:5Þ

where k is the relative travel of the spiral described by the tube as it moves
around the test object in (mm/rad); SW is the nominal thickness of the layer in
(mm) (see Eq. 7.5 and the appropriate comment below it).

9.2 Phantoms

In order to control or verify the parameters of a scanner, specially developed
structures called phantoms are used. Some of these have become standards
whereas, due to the widely differing functional requirements placed on CT scan-
ners, the design of others has been specified by individual medical equipment
manufacturers.

This section will present the most popular standard phantoms and examples of
some of the phantoms provided by manufacturers of scanners.
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9.2.1 ATS Phantom

The ATS phantom was first proposed by the American Association of Physicists in
Medicine and was designed to test low-contrast resolution, one of the key
parameters that characterise tomographic devices. The design of this phantom,
together with its dimensions, is shown in Fig. 9.3.

Situated inside the Plexiglas housing of this phantom are rows of circular
inserts with diameters that change from row to row. These inserts have adjustable
attenuation coefficient values, expressed on the Hounsfield scale. The whole of the
inside of the phantom is filled with water.

During the measurement of low-contrast resolution, the phantom is subjected to
radiation of constant, standard intensity.

9.2.2 Moström’s Phantom

This phantom is used to measure the homogeneity of the image, as defined in the
previous section of this chapter [4, 11]. In the example of the phantom illustrated
in Fig. 9.4, the parameter I = 5.

9.2.3 Low-contrast Resolution Phantom

The earliest design of phantom used to measure low-contrast resolution is shown
in Fig. 9.5.

Fig. 9.3 The ATS phantom
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The metal rods, shown immersed in water in the diagram, are arranged in rows,
where both the diameter di and the distance between the rods 2di decrease as the
index i of the row increases. The low-contrast resolution of the scanner is deter-
mined by the smallest diameter of rod, which is visible as a distinct element in the
reconstructed image (see also [13]).

9.2.4 Spatial Resolution Phantom

Spatial resolution (units: lp/cm) is determined by the use of a phantom to measure
the point spread function. In this phantom, a length of stainless steel wire is placed
perpendicular to the test cross-section, as shown in Fig. 9.6 [4, 12].

The MTF, which directly determines the resolution of the scanner, can be
calculated using the Fourier transform of the reconstructed image. Because the
diameter of the wire is small in relation to the size of the pixels, it can be neglected
in the calculation.

Fig. 9.5 A phantom used to
determine low-contrast
resolution

Fig. 9.4 Moström’s
phantom
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9.2.5 CT Linearity Phantom

The phantom described here is used to assess the linearity of the tomographic
image as defined in Sect. 9.1. In the phantom illustrated in Fig. 9.7, the parameter
I = 5 (Eq. 9.2).

The five materials used here are selected according to the Hounsfield number
assigned to them. The Hounsfield numbers are chosen to cover the widest possible
range of the scale.

By drawing a graph (see Fig. 9.8) of the relationship between the Hounsfield
numbers assigned to these materials and their attenuation coefficients measured by
the scanner (at the average radiation energy), we can establish the nonlinearity
parameter based on Eq. 9.2.

Fig. 9.6 A phantom to
measure the point spread
function

Fig. 9.7 An example of a
CT linearity phantom
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9.2.6 Slice Thickness Phantom

The most popular solution to the problem of measuring the slice thickness is the
method using the phantom shown in Fig. 9.9 [3, 4]. This phantom has two alu-
minium strips of thickness b = 0.6 mm inclined to the reconstruction plane at a
fixed angle / (this angle is usually either 30 or 45%).

Figure 9.10 shows how the length d of the shadow of one of the metal strips,
which is visible in the tomographic image, is used to calculate the thickness of the
cross-section D, using the formula:

Fig. 9.8 Evaluation of the
linearity of a CT scanner

Fig. 9.9 Phantom to
measure the slice thickness:
a front view; b side view
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D ¼ d � tan/: ð9:6Þ

The method of determining the slice thickness, described above, assumes a neg-
ligible thickness for the aluminium strips. The absolute minimum slice thickness
that can be measured using this method is determined by the relationship:

Dmin ¼
b

cos/
: ð9:7Þ

For the angle / = 30� quoted earlier, the value Dmin is approximately 0.7 mm.
Since, in modern designs of scanner, slice thicknesses can be \0.4 mm, the
method of calculating D outlined here had to be modified. The modifications
included changes to the material used to make the metal strips in the phantom, the
thickness of the strips and the angle at which they are set. The strips in modern
designs of phantom are made from titanium, which gives better contrast; their
thickness is 0.05 mm and the angle / = 8�. The minimum slice thickness, which
can be determined with a phantom like this, is Dmin B 0.1 mm.

9.2.7 Phantom Simulating a Skull Bone

Filters are often used in reconstruction algorithms to compensate for the distortions
to the image at the boundary between the skull and the brain. The use of the
phantoms described above would cause these filters to have an adverse effect on
the reconstructed image in the absence of a substitute for the skull bone. For that
reason, a Teflon rim, as shown in Fig. 9.11, is usually fitted to one of the phantoms
described above (for example Fig. 9.11b) to simulate the skull bone [4].

Fig. 9.10 Measurement of the slice thickness: a tomographic image of the phantom shown in
Fig. 9.9; b the trigonometric relationships in the determination of the slice thickness
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9.2.8 Phantom Sets

In practice, phantom sets composed of several sections are often used; each section
may contain several (usually two) of the basic phantoms described above. An
example of a set of phantoms is shown in Fig. 9.12.

To facilitate accurate mounting of the phantom set, a reference point is marked
on the second section. The position of this point can be adjusted using a special
optical viewfinder in the gantry of the scanner.

A set like this enables quality control tests to be carried out on the whole
measurement system of the CT scanner: the X-ray tube, the radiation detectors and
the instrumentation.

Fig. 9.11 A phantom simulating the skull bone: a the design of the phantom; b how the phantom
is used to simulate the skull bone

Fig. 9.12 A phantom set
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9.3 Start-up and Test Procedures

To ensure reliable operation of the scanner throughout the whole of its working
life, it is important that all the manufacturer’s recommended procedures for start-
up and testing are followed.

As soon as the scanner is turned on, the start-up window of the scanner’s
application software informs the operator of the progress of the start-up proce-
dures. An example of a start-up window can be found in Fig. 9.13.

After sliding the table out of the scanner’s gantry (Feed Out), the quality of the
image is tested (Test Image), but without the emission of radiation. This is to
confirm the correct operation of the imaging system. The next step is to prepare the
tube for operation by heating it up (Warm Up). The next action (Calibration) takes
place in the absence of any radiation-absorbing material in the gantry of the
scanner. The measurements made at this time form the basis of the corrections that
must be made to the projections obtained during the routine operation of the
scanner. After calibration, procedures testing the operation of the scanner are
carried out (Quality). The procedures performed at this stage can be divided into
two types:

• qualitative tests, performed each day or weekly,
• stability tests, performed each month,
• annual tests.

A set of daily/weekly tests (performed by technicians) to check the quality of
the reconstructed image might include:

• a test to measure the homogeneity of the image, using a phantom such as that
shown in Fig. 9.6,

• a test of the point spread function, using a wire phantom as shown in Fig. 9.11,

Fig. 9.13 An example of a
start-up window for a CT
scanner
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• a check of the X-ray tube voltage.

A battery of tests performed by service personel or technicians on a monthly
basis might consist of the following items:

• spatial resolution,
• positioning accuracy,
• linearity,
• slice thickness.

Annual tests might be a combination of the following examinations (performed
by physicists):

• daily/weekly tests,
• index accuracy and table positioning test,
• contrast scale test,
• distance accuracy test,
• patient dose.

In an emergency, if the time needed to perform the entire start-up procedure
could affect the life or health of the patient, a fast start-up procedure (Quickstart)
can be carried out, which excludes all the points selected in the start-up window
shown in Fig. 9.13.

Appropriate tests should also be carried out on the scanner after the installation
of the equipment and after any routine maintenance or servicing. Application
software installed on the scanner’s computer enables the results of the tests to be
saved, so creating a history of the device for purposes of comparison.
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Chapter 10

Computer-Generated Projections

for Simulations

Any new image reconstruction algorithm or indeed any modification of an existing
method requires a computer simulation to verify its usefulness. In previous
chapters, a number of reconstruction methods have been introduced and in order to
facilitate their practical application, we took the opportunity to give their discrete
versions. One of the biggest problems when it comes to testing reconstruction
algorithms is the difficulty in obtaining a set of projection values measured
physically by a CT scanner. Moreover, if we were to use measurements obtained
from a scanner, we would really need a set of standard projections in order to
compare the different image reconstruction algorithms, particularly as real,
physical projections are affected by various types of distortion whose nature and
degree are uncertain.

However, mathematical models of phantoms have been proposed [4, 7], which
allow us to obtain virtual projection values. The main advantage of this approach is
that it makes it possible to standardise the data for the reconstruction algorithms
and therefore makes it much easier to compare results. It also becomes easier to
compare the reconstructed image with the original cross-section. In addition, a
number of studies have presented virtual models of organs and body parts such as
the heart [3] and the thorax (http://www.imp.uni-erlangen.de/phantoms/).

The best way of obtaining the projection value data needed for a simulation is
to use a mathematical model of a particular part of the body such as the model of a
head phantom proposed in [7] and described, for example, in [1, 2, 5, 6].
A mathematical model of a phantom of this type should have the following
characteristics:

• it should be possible to assemble the object from separate elements, each of
which has a constant attenuation coefficient,

• it should be easy to calculate of the path of a ray that passes through an element
of the phantom,

• the calculated projection values for the various elements of the phantom should
be additive (a consequence of the linearity property of the Radon transform).

R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering,
DOI: 10.1007/978-0-85729-027-4_10, � Springer-Verlag London Limited 2011
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10.1 Mathematical Model for Parallel-beam Projections

When we consider the conditions set out in the preceding section, in particular, ease
of calculation, the geometric shape most suitable for the construction of mathe-
matical phantoms is the ellipse. A phantom made up of ellipses allows us to obtain
the projection values for all points of interest on the screen, at any projection angle.
An example of the structure of a mathematical head phantom is given in Fig. 10.1.

This model consists of elliptical elements each having a constant value of
attenuation coefficient. Equations describing the individual ellipses and a table
containing their parameters are given below (the symbols of the variables used in
the model are illustrated in Fig. 10.2):

x2

a2
þ y2

b2
� 1; ð10:1Þ

for an ellipse centred at the origin of the coordinate system,

ðx� x0Þ2
a2

þ ðy� y0Þ2
b2

� 1; ð10:2Þ

for an ellipse with its centre displaced to the point (x0,y0),

ðx�x0Þcosa0þðy�y0Þsina0ð Þ2
a2

þ �ðx�x0Þsina0þðy�y0Þcosa0ð Þ2
b2

�1; ð10:3Þ

for an ellipse displaced to the point (x0,y0) and rotated about its centre by an angle
a0 (Table 10.1).

Fig. 10.1 The topology of a
mathematical model of a head
phantom

282 10 Computer-Generated Projections for Simulations



The image of the model head phantom is built up by superimposing successive
elements of the phantom using ellipses defined by the following equations with
appropriate parameters:

liðx; yÞ ¼
lconsti for x2

a2
þ y2

b2
� 1

0 for x2

a2
þ y2

b2
> 1

(

; ð10:4Þ

for an ellipse centred at the origin,

liðx; yÞ ¼
lconsti for ðx�x0Þ2

a2
þ ðy�y0Þ2

b2
� 1

0 for ðx�x0Þ2
a2

þ ðy�y0Þ2
b2

> 1

(

; ð10:5Þ

for an ellipse with its centre displaced to the point (x0,y0),

liðx; yÞ ¼
lconsti for ðx�x0Þ cos a0þðy�y0Þ sin a0ð Þ2

a2
þ �ðx�x0Þ sin a0þðy�y0Þ cos a0ð Þ2

b2
� 1

0 for ðx�x0Þ cos a0þðy�y0Þ sin a0ð Þ2
a2

þ �ðx�x0Þ sin a0þðy�y0Þ cos a0ð Þ2
b2

> 1

(

;

ð10:6Þ

Fig. 10.2 Symbols used to
describe the ellipses in the
model of the head phantom

Table 10.1 Parameters of the ellipses making up the mathematical model of the head phantom

Ellipse
number

Coordinates of the
centre

Semi-major
axis

Semi-minor
axis

Angle of rotation a0
(deg)

lconst

(x, y)

x0 y0 a b

I 0.0000 0.0000 0.6900 0.9200 0.0 2.00
II 0.0000 -0.0184 0.6624 0.8740 0.0 -0.98
III 0.2200 0.0000 0.1100 0.3100 -18.00 -0.02
IV -0.2200 0.0000 0.1600 0.4100 18.00 -0.02
V 0.0000 0.3500 0.2100 0.2500 0.00 0.01
VI 0.0000 0.1000 0.0460 0.0460 0.00 0.01
VII 0.0000 -0.1000 0.0460 0.0460 0.00 0.01
VIII -0.0800 -0.6050 0.0460 0.0230 0.00 0.01
IX 0.0000 -0.6050 0.0230 0.0230 0.00 0.01
X 0.0600 -0.6050 0.0230 0.0460 0.00 0.01
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for an ellipse displaced to the point (x0,y0) and rotated about its centre by an
angle a0. A phantom constructed in this way is shown in Fig. 10.3.

Assembling the mathematical model of the phantom from elliptical shapes as
described above allows us to use the superposition property of the Radon trans-
form. This means that for a given angle of incidence ap, we can sum the separately
evaluated projection values ppi(s, a

p) for the individual figures at each point s:

ppðs; apÞ ¼
X

10

i¼1

p
p
i ðs; apÞ: ð10:7Þ

For a single figure, the projection value at a given angle is expressed by:

p
p
i ðs; apÞ ¼ Du � lconsti ¼

2ab
ffiffiffiffiffiffiffiffiffi

s2m�s2
p
s2m

lconsti for sj j � sm

0 for sj j[ sm

(

; ð10:8Þ

where sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 cos2 ap þ b2 sin2 ap
p

is the distance of the ray (tangential to the
ellipse) furthest from the centre of the ellipse.

Proof

x2

a2
þ y2

b2
¼ 1 The equation of

the ellipse

//Substituting x ¼ s�y sin ap

cos ap
Using a

relationship
from Table 4.3

s�y sin apð Þ2
a2 cos2 ap

þ y2

b2
¼ 1

//Transforming the expression on the left hand side of the above equation
s2�2sy sin apþy2 sin2 ap

a2 cos2 ap
þ y2

b2
¼ 1

//Equivalently

(continued)

Fig. 10.3 The topology of
the ellipses making up the
mathematical model of the
head phantom
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(continued)
b2s2 � b22sy sin ap þ b2y2 sin2 ap þ y2a2 cos2 ap ¼ b2a2 cos2 ap

//Rearranging all monomials to one side of the equation
//and rearranging the square trinomial

y2 b2 sin2 ap þ a2 cos2 ap
� �

þ y �2b2s sin2 ap
� �

þ b2s2 � a2b2 cos2 ap ¼ 0
//Calculating the discriminant D0 of the square Substituting

s = sm//trinomial

D0 ¼ �2b2sm sin2 ap
� �2þ4 b2 sin2 ap þ a2 cos2 ap

� �

b2s2m � a2b2 cos2 ap
� �

¼ 0
//Rearranging and simplifying the expression

s2m ¼ a2 cos2 ap þ b2 sin2 ap

//Returning to the calculation of the discriminant of the square trinomial

D12 ¼ �2b2s sin2 ap
� �2�4 b2 sin2 ap þ a2 cos2 ap

� �

b2s2 � a2b2 cos2 apð Þ ¼
¼ 4aab4 sin2 ap cos2 ap � a2b2s2 cos2 ap þ a4b2 cos4 ap ¼
¼ 4a2b2 cos2 ap b2 sin2 ap � ss þ a2 cos2 ap

� �

¼
¼ 4a2b2 cos2 ap s2m � ss

� �

//The first root of the quadratic equation in the y-direction

y1 ¼
2b2s sin2 ap�2ab cos2 ap s2m�ssð Þ

2sm

//The second root of the quadratic equation in the y-direction

y2 ¼
2b2s sin2 apþ2ab cos2 ap s2m�ssð Þ

2sm

//The square of the difference of the roots in the y-direction

ðy1 � y2Þ2 ¼
4ab cos2 ap s2m�ssð Þ

2sm

� �2

//The first root of the quadratic equation in the x-direction

x1 ¼
2a2s sin2 ap�2ab cos2 ap s2m�ssð Þ

2sm

//The second root of the quadratic equation in the x-direction

x2 ¼
2a2s sin2 apþ2ab cos2 ap s2m�ssð Þ

2sm

//The square of the difference of the roots in the y-direction

ðx1 � x2Þ2 ¼ 4ab sin2 apðs2m�ssÞ
2sm

� �2

//The Euclidean distance between the two points where the path
//of the ray s intersects the ellipse:

Dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2ð Þ2þ y1 � y2ð Þ2
q

¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2b2 sin2 ap s2m�s2ð Þ
2sm

� �2

þ 4a2b2 cos2 ap s2m�s2ð Þ
2sm

� �2
s

¼

//Finally

¼ 2ab
ffiffiffiffiffiffiffiffiffiffiffiffi

ðs2m�s2Þ
p

sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ap þ cos2 ap
p

¼ 2ab
ffiffiffiffiffiffiffiffiffiffiffiffi

ðs2m�s2Þ
p

sm

h

For ellipses whose centres have been displaced by the vector (x0,y0) and/or
rotated by the angle a0, we can calculate the projection value using the following
relationship:

10.1 Mathematical Model for Parallel-beam Projections 285



p
p
i s; ap; ðx0; y0Þ; a0ð Þ ¼ p

p
i s� s0 cosðap � a

xy
0 Þ; ap � a0

� �

; ð10:9Þ

where

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 þ y20

q

; ð10:10Þ

a
xy
0 ¼ arctan

y0

x0

� �

: ð10:11Þ

The strategy in this case is to bring the centre of the displaced ellipse to the origin
of the coordinate system, and then to simulate the projection values there, bearing
in mind that the measurement was actually carried out on the screen at the
appropriately displaced point. For an ellipse rotated by a0 the simulation of the
projection values is carried out at a projection angle ap, adjusted by the angle a0.
The relevant trigonometric relationships and their interpretation are shown in
Fig. 10.4.

To calculate the distance sm
xy, between the ray passing through the centre of the

ellipse and the furthest rays still just passing through it, we use the relationship:

sxym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 cos2 ap � a0ð Þ þ b2 sin2 ap � a0ð Þ
q

: ð10:12Þ

Note that in Eq. 10.12, there is no term related to the displacement of the centre of
the ellipse. This means that ellipses whose centres have been displaced but not
rotated do not require a correction during the calculation of sm.

The determination of the parameters of the rays tangential to the ellipse is
illustrated further in Fig. 10.5.

Fig. 10.4 Determining the
projection value of an ellipse
rotated through an angle a0
and displaced by the vector
(x0, y0)
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Now that we have constructed the phantom model we can move on to obtain the
projections. To do this, we need to choose the resolution with which to calculate
the projections and to choose the angle through which the system is rotated after
each projection. The calculations are then performed using the procedure descri-
bed above.

10.2 Mathematical Model for Fan-beam Projections

The problem of image reconstruction from fan-beam projections was introduced in
Chap. 6. Here, we will apply the geometric relationships derived in that chapter to
formulate a method of obtaining fan-beam projection values for the mathematical
phantom just described in the previous section of this chapter. The most important
conclusion we can draw from our earlier investigations is that for any ray in a fan-
beam, we can find an equivalent ray in a hypothetical parallel-beam. Using
equations (6.19) and (6.20), we can define relationships that allow us to express the
parameters of a parallel-beam ray in terms of parameters specific to a ray in the
fan-beam:

s ¼ Rf sinb ð10:13Þ

and

ap ¼ af þ b; ð10:14Þ

where b is the angle between the ray and the principal axis of the fan-beam, af the
angle of rotation of the fan-beam projection system and Rf is the radius of the
circle described by the tube.

Fig. 10.5 Determining the
tangents to an ellipse rotated
through an angle a0 and dis-
placed by the vector (x0, y0)
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The next step is to determine the parallel projection values pi
p(s, ap) for all the

elements of the mathematical phantom, using the parameters established by
Eqs. 10.13 and 10.14. This is carried out as described in Sect. 10.1. The sum of
these projection values for all of the elements of the phantom gives us the pro-
jection value pf(b, af).

10.3 Mathematical Model for Cone-beam Spiral Projections

For projection systems that use a cone shaped beam of radiation moving in a
spiral around the patient, it becomes necessary to define the mathematical
phantom in three dimensions [4, 5]. This means that Eq. 10.1, defining the
ellipses (plane figures) that make up the mathematical phantom, needs to be
replaced by the equation of an ellipsoid (a three-dimensional solid), as in the
following equation:

x2

a2
þ y2

b2
þ z2

c2
� 1; ð10:15Þ

for ellipsoids centred at the origin of the coordinate system. For ellipsoids dis-
placed to the point (x0, y0, z0), the equation takes the form:

ðx� x0Þ2
a2

þ ðy� y0Þ2
b2

þ ðz� z0Þ2
c2

� 1: ð10:16Þ

If in addition, the ellipsoid is rotated in the (x, y) plane by an angle a0 about the
origin, then the above equation becomes:

ðx� x0Þ cos a0 þ ðy� y0Þ sin a0ð Þ2
a2

þ �ðx� x0Þ sin a0 þ ðy� y0Þ cos a0ð Þ2
b2

þ ðz� z0Þ2
c2

� 1: ð10:17Þ

The following table contains the set of parameters for the ellipsoids in a proposed
mathematical model of a head phantom [5].

A perspective view of the complete mathematical phantom, whose parameters
are given in Table 10.2, together with cross-sections in the (x, y) plane are shown
in Fig. 10.6.

Any parallel projection in 3D space can be regarded as a projection made in the
(x, y) plane by a beam of radiation parallel to the x-axis, after all the rays of the
beam have been subjected to two transformations combined. The first of these
transformations is rotation in the (x, y) plane by an angle a1

p about the z-axis. This
means that the coordinate system (x, y, z) can be replaced by the rotated system
(s, u, z), where

288 10 Computer-Generated Projections for Simulations



Table 10.2 Parameters of the ellipsoids making up the mathematical model of the head phantom

Ellipse
number

Coordinates of the centre S.-min.
axis x

S.-min.
axis y

S.-min.
axis z

Angle of
rotation
a0 (deg)

lconst(x, y)

x0 y0 z0 a b c

I 0.000 0.000 0.000 0.6900 0.9200 0.9000 0.0 2.00
II 0.000 0.000 0.000 0.6624 0.8740 0.8800 0.0 -0.98
III -0.220 0.000 -0.250 0.4100 0.1600 0.2100 108.0 -0.02
IV 0.220 0.000 -0.250 0.3100 0.1100 0.2200 72.0 -0.02
V 0.000 0.350 -0.250 0.2100 0.2500 0.5000 0.0 0.02
VI 0.000 0.100 -0.250 0.0460 0.0460 0.0460 0.0 0.02
VII -0.080 -0.650 -0.250 0.0460 0.0230 0.0200 0.0 0.01
VIII 0.060 -0.650 -0.250 0.0230 0.0460 0.0200 90.0 0.01
IX 0.060 -0.105 0.625 0.0400 0.0560 0.1000 90.0 0.02
X 0.000 0.100 0.625 0.0560 0.0400 0.1000 0.0 -0.02

Fig. 10.6 Mathematical
model of the head phantom
from Table 10.2: a a
perspective view, b a cross-
section in the plane A, c a
cross-section in the plane B
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s ¼ x cos a
p
1 þ y sin a

p
1 ð10:18Þ

and

u ¼ �x sin a
p
1 þ y cos a

p
1 : ð10:19Þ

The second transformation is rotation of the (s, u, z) system by an angle a2
p about

the s axis. If we introduce a new, rotated coordinate system s; _u; tð Þ, the coordi-
nates of any point in this space can be calculated using the following relationships:

t ¼ z cos a
p
2 þ �x sin a

p
1 þ y cos a

p
1

� �

sin a
p
2 ð10:20Þ

and

_u ¼ �z sin a
p
2 þ �x sin a

p
1 þ y cos a

p
1

� �

cos a
p
2: ð10:21Þ

Using these transformations leads to a situation in which the parallel beam falls
perpendicularly onto the screen to which the (t, s) coordinate system has been
assigned.

In a practical implementation of the spiral cone-beam scanner, each of the rays
emitted by the X-ray tube is characterised by the following parameters (see
Chap. 7):

b—the angle between the ray and the axis of symmetry of the moving projection
system,

ah—the projection angle, that is the angle between the axis of symmetry of the
moving projection system and the x axis,

_z—the distance along the z-axis, from the current centre of the projection system.

Because the shape of the screen of radiation detectors is cylindrical in this
system, there are certain additional operations that we need to perform. A major
problem is posed by the uniform distribution of detectors in the z-direction. Note
that in this case there is no uniformity of angular distance between the rays striking
the detectors. Therefore, to specify a ray in the (z, x) plane, it is better to consider
the distances on the principal z-axis of the projection system rather than the
distances on the screen, using:

_z ¼ z
Rf

Rf þ Rd

; ð10:22Þ

where Rf is the radius of the circle described by the tube-screen system, Rd is the
radius of the circle described by the screen.

In the y-direction, however, the cylindrical shape of the screen permits uniform
spacing of the detectors both in terms of linear distance on the screen and in terms
of angular distance between the rays striking the screen. In this situation, we can
use the angle b to specify a given ray in the (x, y) plane.

We will now attempt to replace any projection value in the cone-beam system
with a specific parallel projection value. The process of finding the parameters of
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the hypothetical parallel ray in the (x, y) plane is the same as in the case of the fan-
beam (see Sect. 10.2). This occurs with the projection system rotated by the angle
ah about the z-axis, as indicated in Fig. 10.7.

Using this diagram, it is easy to find the trigonometric relationships between the
parameters of the ray in question in the two projection systems:

s ¼ Rf sinb ð10:23Þ

and

a
p
1 ¼ ah þ b: ð10:24Þ

Using Fig. 10.8, however, we can find the geometrical transformations allowing
us to assign a ray in the (z, x) plane of the parallel-beam system to a ray in the

Fig. 10.7 Finding the ray in
the (x, y) plane in the paral-
lel-beam system equivalent to
a ray in the cone-beam

Fig. 10.8 Finding the ray in
the (z, x) plane in the parallel-
beam system equivalent to a
ray in the cone-beam
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cone-beam (in fact, to a segment of a fan-beam). The diagram also makes it easy to
determine the following parameters for the parallel ray under consideration:

_t ¼ _z
Rf cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf cos b
� �2þ_z2

q ; ð10:25Þ

where _z is calculated using relationship (10.22) and:

a
p
2 ¼ arcsin

_z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf cos b
� �2þ_z2

q : ð10:26Þ

It is easy now to determine the parameter t, using:

t ¼ _zþ zp
� �

cos a
p
2: ð10:27Þ

As with the two-dimensional mathematical head phantom, the final result of the
simulated measurement in three dimensions will be the sum of all the calculations
for the ellipsoids in Table 10.2, using a formula similar to Eq. 10.7:

pp s; t; a p
1 ; a

p
2

� �

¼
X

10

i¼1

p
p
i s; t; a p

1 ; a
p
2

� �

: ð10:28Þ

In a similar way to Eq. 10.8, we can obtain a formula that allows us to find the
projection value for a single ellipsoid in the 3D phantom:

p
p
i s; t;ap

1 ;a
p
2

� �

¼Du �lconsti

¼ lconsti �2abc
d2

dm½ �12

¼ lconsti �2abc
d2

d2� s2 c2 cos2 a
p
2þ b2 cos2 a

p
1 þa2 sin2 a

p
1

� �

sin2 a
p
2

� �	

� t2 a2 cos2 a
p
1 þb2 sin2 a

p
1

� � 7þ cos 4ap2
� �

8

� �

�2st sinap2 sina
p
1 cosa

p
1 b2�a2
� �


1
2

ð10:29Þ

for dm C 0, and

p
p
i s; t; a p

1 ; a
p
2

� �

¼ 0 ð10:30Þ

for dm\ 0, where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 a2 cos2 a
p
1 þ b2 sin2 a

p
1

� �

cos2 a
p
2 þ a2b2 sin2 a

p
2

q

.

A pictorial view of this method of obtaining the projection value of an ellipsoid
irradiated by a cone-beam is given in Fig. 10.9.

A problem still remains, however: how to determine the parallel projection value
for ellipsoids whose centres do not coincide with the point (x, y, z) = (0, 0, 0) or
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are rotated with respect to one of the (x, y, z) axes. In the first case, the centre of the
ellipsoid is translated by the vector (x0, y0, z0), while in the second, it is rotated by
the angle a0 in the (x, y) plane only. To determine the projection value of a 3D
ellipsoidal element of the model, which has been subjected to one of these trans-
formations, we simply use the following relationship:

p
p
i s; t; a p

1 ; a
p
2; x0; y0; z0ð Þ; a0

� �

¼ p
p
i s� s0 � cos a

xy
0 � a

p
1

� �

; t� t0 cos a
p
2; a

p
1 � a0; a

p
2

� �

:

ð10:31Þ

We will now attempt to determine correction parameters for the translated ellip-
soids. The geometrical relationships shown in Fig. 10.10 are helpful in formulating
expressions regarding correction in the s dimension.

Fig. 10.9 Determining the projection value of an ellipsoid using a cone-beam of radiation

Fig. 10.10 Determining the
correction of the centres of
displaced ellipsoids in the s

dimension

10.3 Mathematical Model for Cone-beam Spiral Projections 293



In a similar way to the 2D case, we can find the correction of the centres of
displaced ellipsoids in the s dimension based on relations (10.10) and (10.11).
Additionally, we can determine the following auxiliary parameter:

ucor ¼ s0 � sin a
xy
0 � a

p
1

� �

: ð10:32Þ

In the case of the correction of the centres of displaced ellipsoids in the t

dimension, Fig. 10.11 is very useful. It represents the geometrical relationships
when the projection system is rotated by the angle a2

p about the s-axis.
Based on Fig. 10.11 we can write:

t0 ¼ z0 þ ucor tan a
p
2 ¼ z0 þ s0 sin a

xy
0 � a

p
1

� �

tan a
p
2: ð10:33Þ

To calculate the value of d for ellipsoids rotated by a0, we use the relationship:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 a2 cos2 a
p
1 � a0

� �

þ b2 sin2 a
p
1 � a0

� �� �

cos2 a
p
2 þ a2b2 sin2 a

p
2

q

: ð10:34Þ

Note that irrespective of the projection angle, translation of the centre of the
ellipsoid does not affect the way we calculate this parameter. The trigonometric
relationships and the basic symbols used in this problem are presented in
Fig. 10.12.

The sum of the parallel projection values of all the elements of the phantom
determines the projection value p

h(b, ah, z).

10.4 Introduction of Noise to the Projections

All measurements of physical quantities are subject to noise. In order to simulate
the effect of measurement noise on the projection values obtained using the
mathematical phantom, we use the following equation:

Fig. 10.11 Determining the
correction of the centres of
displaced ellipsoids in the t

dimension
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p
p
normal s; a

pð Þ ¼ 1þ N p0; r
2

� �� �

pp s; apð Þ; ð10:35Þ

where pp{normal(s, a
p) is the parallel projection value distorted by normal noise,

N(p0, r2) is stochastic noise of normal distribution (p0, mean value and r2,
variance).

Suggested values [8] for the mean and the variance of the normal distribution
are p0 = 0 and r2 = (0.05)2, respectively.

A method for the computer generation of noise with a normal distribution is
given in Appendix B, for set values of p and r2.
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Appendix A

Functions and their Properties

A.1 The Dirac Delta Function

Definitions

The one-dimensional Dirac delta function:

lim
e!0

Z

e

�e

dðxÞ ¼ 1where dðxÞ ¼ 0 for x 6¼ 0 ðA:1Þ

Table A.1 Functions used in the book and their definitions

Section Name of
function

Definition

rect
rectðxÞ ¼ 1 for xj j� 1

2
0 for xj j\1

2

�

sign

signðxÞ ¼
1 for x[ 0
0 for x ¼ 0
�1 for x\0

8

<

:

sinc sincðxÞ ¼ sin pxð Þ
px

div division with no remainder: x div D = c; c 2 I; when
D � cj j � x ^ D � cþ 1ð Þj j � x

mod remainder after division: x mod D = c; c 2 I; when c + (x div D) = x

Trunc
Trunc x;Dð Þ ¼

x� xmod Dð Þð Þ
D

for x� 0
x� xmod Dð Þð Þ

D
� 1 for x[ 0

(

A.1 Dirac delta d
lim
x!0

R

x

�x

dðxÞ ¼ 1; where d(x) = 0 for x = 0

comb
combðxÞ ¼

P

1

i¼�1
d x� ið Þ

Convolution
fun1ðxÞ � fun2ðxÞ ¼

R

1

�1

fun1 x� _xð Þ � fun2 _xð Þd _x

(continued)
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The two-dimensional Dirac delta function:

lim
e!0

Z

e

�e

Z

e

�e

d x; yð Þ ¼ 1where d x; yð Þ ¼ 0 for x 6¼ 0 _ y 6¼ 0 ðA:2Þ

Proof of the scaling property of the Dirac delta function:

d axð Þ ¼ dðxÞ
aj j ðA:3Þ

An alternative definition of the Dirac delta function is:

dðxÞ ¼ lim
e!0

zeðxÞ; ðA:4Þ

where ze(x) is a function defined as:

zeðxÞ ¼
1
e

for 0� x� e

0 for the remaining x

�

; ðA:5Þ
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Table A.1 (continued)

Section Name of
function

Definition

A.2 Fourier
transform FUN fð Þ � F funðxÞf g,

R

1

�1

funðxÞe�j2pfxdx

A.3 Radon
transform p s; að Þ � R fun x; yð Þf g,

R

1

�1

fun x; yð Þ � d x cos aþ y sin a� sð Þdxdy

Hilbert
transform HfunðxÞ � H funðxÞf g,funðxÞ � 1

px
¼ 1

p

R

1

�1

fun _xð Þ
x� _x

d _x

Cross-
correlation fun1ðxÞIfun2ðxÞ ¼

R

1

�1

fun1 _xð Þ � fun2 _x� xð Þd _x

Fig. A.1 The form of function (3)



the graph of which is shown in Fig. A.1.
Thus substituting:

d axð Þ ¼ lim
e!0

ze axð Þ

into equation (A.1) we obtain:

lim
e!0

Z 1

�1
ze axð Þdx ¼ 1

aj j:

Thus, if the mass

Z

1

�1

d axð Þdx ¼ 1
aj j

Z

1

�1

dðxÞdx;

we obtain:

d axð Þ ¼ dðxÞ
aj j :

h

Proof of the Dirac delta function of a function:

d funðxÞð Þ ¼
X

l

d x� xlð Þ
dfun xlð Þ
dðxÞ

�

�

�

�

�

�

ðA:6Þ

If by definition we know that d(x) = 0 for every x = 0, then similarly:

d funðxÞð Þ ¼ 0

Table A.2 Properties of the Dirac delta function

Property Description

Scaling d axð Þ ¼ dðxÞ
aj j

One-dimensional shifting R

1

�1
fun _xð Þ � d x� _xð Þd _x ¼ funðxÞ

Two-dimensional Dirac delta d(x, y) = d(x)�d(y)

Two-dimensional shifting R

1

�1

R

1

�1
fun _x; _yð Þ � d x� _x; y� _yð Þd _xd _y ¼ fun x; yð Þ

Dirac delta function of a
function

d funðxÞð Þ ¼P
l

d x�xlð Þ
dfun xlð Þ
dðxÞ

�

�

�

�

where xl are zero points of the function

fun(x)
R

p

0
d x� _xð Þ cos aþ y� _yð Þ sin að Þda ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� _xð Þ2þ y� _yð Þ2
p
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for every value of fun(x) except where fun(x) = 0, i.e. the points at which x = xl,
where xl are the zero points of the function fun(x). At these points, we can regard

the derivative dfun xlð Þ
dx

as the local gradient of fun(x), i.e. the linear coefficient
appearing in fun(x) = alx + cl , where:

al ¼
dfun xlð Þ

dx

and cl = xl are the shifting constants.
Therefore, taking into consideration the scaling and shifting properties of the

Dirac delta proved earlier and the presence of many places where fun(x) is zero, we
can write the following:

d funðxÞð Þ ¼
X

l

1
alj jd x� clð Þ ¼

X

l

d x� xlð Þ
dfun xlð Þ
dðxÞ

�

�

�

�

�

�

h

Proof of the relationship:

Z

p

0

d x� _xð Þ cos aþ y� _yð Þ sin að Þda ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� _xð Þ2þ y� _yð Þ2
q ðA:7Þ

Z

p

0

d x� _xð Þ cos aþ y� _yð Þ sin að Þda ¼

//fun að Þ ¼ x� _xð Þ cos aþ y� _yð Þ sin a ¼
R

p

0
d fun að Þð Þda ¼

//Considering property (A.6)

¼
Z

p

0

X

l

d a� alð Þ
dfun alð Þ
d að Þ

�

�

�

�

�

�

0

B

@

1

C

A
da ¼

//where: fun alð Þ ¼ x� _xð Þ cos al þ y� _yð Þ sin al

¼
Z

p

0

X

l

d a� alð Þ
� x� _xð Þ sin al þ y� _yð Þ cos alj j

 !

da

¼
X

l

1
� x� _xð Þ sin al þ y� _yð Þ cos alj j

Z p

0
d a� alð Þda

� �

¼

//If a [ [0,p), then l [ {L} and
R

p

0
d a� alð Þda ¼ 1 in the function tan al
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¼ 1
� x� _xð Þ sin aL þ y� _yð Þ cos aLj j

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� x� _xð Þ sin aL þ y� _yð Þ cos aLð Þ2
q ¼

//Considering that: �x� _x
y� _y

¼ tan al ¼ sin al
cos al

) x� _xð Þ2
y� _yð Þ2 ¼

sin2 al
cos2 al

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� _xð Þ2þ y� _yð Þ2
q

h

A.2 The Fourier Transform

Definitions in one dimension:

The Fourier transform:

FUN fð Þ � F1 funðxÞf g,
Z

1

�1

funðxÞ � e�j2pfxdx ðA:8Þ

The inverse Fourier transform:

funðxÞ � F�1
1 FUN fð Þf g,

Z

1

�1

FUN fð Þ � ej2pfxdf ðA:9Þ

Definitions in two dimensions:

The Fourier transform:

FUN f1; f2ð Þ � F2 fun x; yð Þf g,
Z

1

�1

Z

1

�1

fun x; yð Þ � e�j2pf x cos apþy sin apð Þdxdy ðA:10Þ

The inverse Fourier transform:

funðxÞ � F�1
2 FUN f1; f2ð Þf g,

Z

1

�1

Z

1

�1

FUN f1; f2ð Þ � ej2pf x cos apþy sin apð Þdf1df2

ðA:11Þ

Proof of the Fourier transform of the function:
� 1

2pxð Þ2
$ fj j ðA:12Þ
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funðxÞ ¼
Z

1

�1

fj jej2pfxdf ¼

//Applying the approximation: fj j ffi lim
�!0

fj je�� fj j� �

Table A.3 Fourier transforms of various functions

fun(x)/fun(x, y) FUN(f)/FUN(f1,f2)

d(x) 1
d(x ± x0) e

±
j2pfx0

e
±
j2pax d(f ± a)

rect(x) sinc(f)
comb(x) comb(f)
� 1

2pxð Þ2
|f|

d(x, y) 1
d(x ± x0,y ± y0) e ± j2pf1x0�e ± j2pf2y0
e ± j2pa1x�e ± j2pa2y d(f1 ± a1,f2 ± a2)
rect(x, y) sinc(f1,f2)
comb(x, y) comb(f1,f2)

Table A.4 Properties of the Fourier transform

Transform
property

Form of the function/equivalent after Fourier transformation

One dimension funðxÞ $ FUN fð Þ
Rotation fun 	xð Þ $ FUN 	fð Þ
Linearity a1fun1ðxÞ þ a2fun2ðxÞ $ a1FUN1 fð Þ þ a2FUN2 fð Þ
Scaling

fun axð Þ $ FUN
f

að Þ
aj j

Shifting fun x	 x0ð Þ $ e	j2pfx0 � FUN fð Þ
Convolution funðxÞ ¼ fun1ðxÞ � fun2ðxÞ $ FUN fð Þ ¼ FUN1 fð Þ � FUN2 fð Þ
Product funðxÞ ¼ fun1ðxÞ � fun2ðxÞ $ FUN fð Þ ¼ FUN1 fð Þ � FUN2 fð Þ
Cross-correlation funðxÞ ¼ fun1ðxÞIfun2ðxÞ $ FUN fð Þ ¼ FUN1 fð Þ � FUN2 fð Þ where: fun2(x)

is real
Two dimensions fun x; yð Þ $ FUN f1; f2ð Þ
Rotation fun 	x;	yð Þ $ FUN 	f1;	f2ð Þ
Linearity a1fun1 x; yð Þ þ a2fun2 x; yð Þ $ a1FUN1 f;f2

� �

þ a2FUN2 f1; f2ð Þ
Separability fun1ðxÞ � fun2 yð Þ $ FUN1 f1ð Þ � FUN2 f2ð Þ
Scaling

fun ax; byð Þ $ FUN
f1
a
;
f2
bð Þ

abj j
Shifting fun x	 x0; y	 y0;ð Þ $ e	j2p f1x0þf2y0ð Þ � FUN f1; f2ð Þ
Convolution fun x; yð Þ ¼ fun1 x; yð Þ � fun2 x; yð Þ $

$ FUN f1; f2ð Þ ¼ FUN1 f1; f2ð Þ � FUN2 f1; f2ð Þ
Product fun x; yð Þ ¼ fun1 x; yð Þ � fun2 x; yð Þ $

$ FUN f1; f2ð Þ ¼ FUN1 f1; f2ð Þ � FUN2 f1; f2ð Þ
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¼ lim
�!0

Z

1

�1

fj j � e�� fj j � ej2pfxdf ¼

//Applying: |f| = f�sign(f)

¼ lim
�!0

Z

1

�1

f � sign fð Þ � �e��f �sign fð Þ � ej2pfxdf

¼ lim
�!0

�
Z

0

�1

f � e�f � ej2pfx þ
Z 1

0
f � e��f � ej2pfxdf

0

@

1

A

¼ lim
�!0

�
Z

0

�1

f � e �þj2pxð Þf þ
Z

1

0

f � e� ��j2pxð Þf df

0

@

1

A ¼

//Applying the theorem of integration by parts

¼ lim
�!0

e �þj2pxð Þf	 
0

�1
�þ j2pxð Þ2

�
e� ��j2pxð Þf	 
1

0

�� j2pxð Þ2

 !

¼ lim
�!0

�2 � 2pxð Þ2

�2 � 2pxð Þ2
� �2

0

B

@

1

C

A
¼ �1

2pxð Þ2

h

Proof of the inverse Fourier transform of the function:

FUN fð Þ ¼ fj j � 1� � fj j
f0

� �

� rect f

2f0

� �

ðA:13Þ

The derivation:

funðxÞ ¼
Z

1

�1

fj j � 1� � fj j
f0

� �

� rect f

2f0

� �

ej2pfxdf

¼
Z

f0

�f0

fj j � 1� � fj j
f0

� �

� ej2pfxdf

¼
Z

f0

�f0

fj j � ej2pfxdf � �

f0

Z

f0

�f0

f 2 � ej2pfxdf
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The first of these two components is calculated as follows:

Z

f0

�f0

fj j � ej2pfxdf

¼ �
Z

0

�f0

f � ej2pfxdf þ
Z

f0

0

f � ej2pfxdf

¼ � f

j2px
ej2pfx

�

�

�

�

0

�f0

þ
Z

0

�f0

1
j2px

� ej2pfxdf þ f

j2px
ej2pfx

�

�

�

�

f0

0

�
Z

f0

0

1
j2px

� ej2pfxdf

¼ �f0 � e�j2pf0x

j2px
þ e�j2pf0x

j2pxð Þ2
� 1

j2pxð Þ2
þ f0 � ej2pf0x

j2px
þ ej2pf0x

j2pxð Þ2
� 1

j2pxð Þ2

¼ f0 ej2pf0x � e�j2pf0x
� �

j2px
þ ej2pf0x þ e�j2pf0x

j2pxð Þ2
� 2

j2pxð Þ2

¼ f0 sin 2pf0xð Þ
px

þ 2

j2pxð Þ2
� 4 sin2 pf0xð Þ

2pf0xð Þ2
� 2

j2pxð Þ2

¼ 2f 20
sin 2pf0xð Þ

2px
� f 20

sin pf0xð Þ
pf0x

� �

As a rule, the second component is determined as shown in brief below:

� �

f0

Z

f0

�f0

f 2 � ej2pfxdf

¼ � �

f0
f 2

f 2

j2px
ej2pfx

�

�

�

�

f0

�f0

�2
Z

f0

�f0

f

j2px
� ej2pfxdf

0

B

@

1

C

A

¼ � �

f0
f 20
ej2pf0x � e�j2pf0x

�j2px
þ 2f

2pxð Þ2
ej2pfx

�

�

�

�

�

f0

�f0

�
Z

f0

�f0

2

2pxð Þ2
ej2pfxdf

0

B

@

1

C

A

¼ ��
f0 sin 2pf0xð Þ

px
þ 4 cos 2pf0xð Þ

2pxð Þ2
� 4 sin 2pf0xð Þ

f0 2pxð Þ3

 !

Taking both these components and substituting f0 ¼ 1
2Dp

s
; we obtain:

funðxÞ ¼ 1

2 Dp
s

� �2

sin px
D
p
s

� �

px
D
p
s

� 1

4 Dp
s

� �2

sin px
2Dp

s

� �

px
2Dp

s

0

@

1

A

2

��
sin px

D
p
s

2pxDp
s

þ
cos px

D
p
s

pxð Þ2
�
Dp
s sin

px
D
p
s

pxð Þ3

 !

h
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A.3 The Radon Transform

Definition

Table A.5 Properties of the Radon transform

Transform property Form of the function Equivalent after Radon transformation

fun(x, y) = fun(r, /) p(s, a)
Linearity a1fun1(x, y) + a2fun2(x, y) a1p1(s, a) + a2p2(s, a)
Space fun(x,y) = 0, p(s, a) = 0
limitedness for |x|[R or |y|[R for sj j[

ffiffiffi

2
p

R
Symmetry fun(x, y) is symmetrical p(s, a) = p(- s, a ± p)
Periodicity fun(x, y) is periodic p(s, a) = p(s, a ± 2ip) where i is an

integer value
Shifting fun(x - x0, y - y0) p s� x0 cos a� y0 sin a; að Þ
Rotation by a0 fun(r, / + a0) p(s, a + a0)
Scaling fun(ax, ay) 1

aj jp as; að Þ
Mass

Mass ¼
R

1

�1

R

1

�1
fun x; yð Þdxdy Mass ¼

R

1

�1
p s; að Þds
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p s; að Þ � R fun x; yð Þf g,
Z 1

�1
fun x; yð Þ � d x cos aþ y sin a� sð Þdxdy ðA:14Þ



Appendix B

Sample Code for Selected Functions

B.1 Determination of the Fast Fourier Transform Using

the Cooley Algorithm

We can use the implementation presented below of one of the FFT algorithms,
namely the Cooley Algorithm, to obtain the Fourier or inverse Fourier transform.
Firstly, we need to perform the following declarations using Java code:
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B.1.1 Determination of the FFT Transform

To determine the fast Fourier transform of a function represented by 512 samples,
we can use the following program code written in Java:
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B.1.2 Determination of the Inverse IFFT Fourier Transform

To determine the inverse fast Fourier transform of a function in the frequency
domain represented by 512 samples, we can use the following program code
written in Java:

310 Appendix B: Sample Code for Selected Functions



B.2 Generation of Normally Distributed

Pseudo-random Numbers

For a normal distribution with parameters (xav, r
2) = (3, 0.025), we can obtain a

random variable x of type real using the following Java code:
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Index

180�
LE, 151
LI, 151, 160
LI algorithm, 169
LI reconstruction method, 166
linear extrapolation, 151
linear interpolation, 151

360�
LI, 151
LI algorithm, 161
LI reconstruction algorithm, 155
LI reconstruction method, 158
linear interpolation, 151

3D SSD, 59

A

A priori, 254, 261, 262
AAD, 48
AAI, 170
Absorption, 63, 65, 78
Absorption

threshold, 40
Acquisition, 88
Adaptive

array detectors, 48
axial interpolator, 170
multiple plane reconstruction, 187
statistical iterative reconstruction, 248

Advanced
single slice rebinning, 187
single-slice rebinning algorithm, 201

Afterglow, 48, 51
Algebraic

algorithm, 233
approach, 234

reconstruction problem, 253
reconstruction techniques, 233

Aliasing, 88, 102
AMPR, 187
Analogue image, 52, 53
Annual tests, 281
Anode, 37
Anticathode, 37
Approximate cone-beam

reconstruction, 185
Arc shape, 198
Arc-shaped screen, 151
Arrayof detectors, 27
ART, 233, 237
Artefacts, 73, 79, 102
ASIR, 248
ASSR, 187, 201, 213, 228
ATS phantom, 273
Attenuation, 63
Attenuation coefficient, 65, 66

B

Back-projection, 80, 83, 93, 98, 111
Back-projection

operation, 125
process, 104

Basis functions, 235
Bayesian model, 254
Beam

hardening, 75
width, 73, 77, 155, 174

Bilinear interpolation, 134, 199
Bit, 54
Blackman, 110
Braking, 33
Bremsstrahlung, 33, 36, 42
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B (cont.)
Brushes, 149
BW, 73, 174

C

Cathode, 37
Cathode

current, 43
rays, 37

CBCT, 31, 149, 185
Centres of interaction, 65
Ceramic detectors, 46
Chamber, 46
Channels of the array, 251
Chaotic ART algorithm, 246
Characteristic

lines, 40
radiation, 34, 39
series, 34
X-ray line, 34
X-ray lines, 35
X-ray radiation, 33
X-rays, 37

Child-Langmuir, 43
Clique, 257
Coherent scattering, 63
Coil, 37
Collimator, 41, 72
Complementary

pairs, 162
projection, 163

Compton, 64
Compton effect, 47
Computed tomography dose index, 269
Conditional probability, 255
Cone-beam, 31, 150

spiral CT, 31
Cone-beam

computed tomography, 149, 185
scanner, 187, 190
system, 24

Conical beam, 185
Continuous

rotation scanner, 27
X-rays, 34, 36

Contrast
agent, 57, 59
detail, 268
scale test, 278

Convolution, 80
Convolution

and back-projection, 110
and back-projection method, 110

and back-projection reconstructionmethod,
104, 107, 129

kernel, 80, 110, 111, 113
operation, 114
theorem, 114

Convolving function, 113, 139
Cormack, 7, 15, 18
Correction factor, 222
Crookes, 37
Cross-correlation, 302
Cross-section, 54, 85, 97
CTDI, 269
Cut-off frequency, 89, 103, 107, 112, 141, 142,

268
Cycle time, 267
Cylindrical

anode, 40, 41
screen, 175, 188, 201

Cylindrical-shaped screen, 226

D

Data
acquisition system, 22, 23
archiving system, 22

Deceleration radiation, 33
Detection efficiency, 47
Detector, 46
Detectorarray, 23, 27, 31, 47, 48
Detector’swindow, 46
Digital image, 54
Dirac delta, 297, 298, 299
Discretisation, 53, 54
Display resolution, 54
Distance accuracy test, 281
Distance-driven method, 250
Documentation camera, 22, 52, 60
Drum-shaped

array, 181
screen, 197

Dual
focus, 24
focus X-ray tube, 48

E

Electron, 33
Electron

shell, 63
trap, 51

Electrostatic lenses, 39
EMI Mark I, 16
Emission of a quantum, 33
Energy
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level, 33
resolution, 48, 50

EPBP, 193
Equiangular sampling, 129
Equispaced sampling, 129
Ex-180�LI, 170
Ex-360�LI, 170
Exact

cone-beam reconstructions, 185
reconstruction, 187

Expected value, 255
Extended

360�linear interpolation, 170
parallel back-projection, 193

Extrapolate projection values, 164
Extrapolation, 164

F

Fan-beam, 24, 127
Fan-beam

projection system, 27
projections, 127
scanner, 30, 129
system, 24

Feldkamp
algorithm, 187, 192, 193, 201
method, 262

FFT, 121, 123
Fieldof view, 56
Filter, 40
Filter width, 184
Filteredprojection, 101
Filtering, 87, 98
Filteringof spectrum, 102
Filtration

and back-projection, 117
and back-projection method, 101

Final collimation, 73
Finite

frequency spectrum, 101
series-expansion, 233

First
generation CT scanner, 86
generation scanner, 24

Flat
cylinder, 41
screen, 205, 225

Focus, 38, 39, 48
Footprint, 250
Fourier transform, 301, 307, 308, 310
Fourth generation of scanners, 27
FOV, 56
Full width at half maximum, 50, 269

FW, 177, 183
FWHM, 50, 269

G

Gantry, 23, 56, 86
Gap, 48
Garnet material, 47
Gas, 46
Gas

amplification, 46
atoms, 45

General surface
reconstruction, 187

Generalised Gaussian MRF, 258
GGMRF, 258
Gibbs distribution, 257, 258
Global

Gibbs distribution, 257
minimum, 260

Gradient method, 255
GSR, 187

H

Half-interval search, 264
Hammingfilter, 110
Hann, 110
Hard, 43
Heater, 43
Helical, 149
High-contrastresolution, 149
Hilbert transform, 111, 299
Homogeneity, 271, 277
Hounsfield, 7, 14, 15, 17
Hounsfield

number, 67
scale, 54
units, 54

HU, 54

I

ICD, 248, 263
IFFT, 123
Image

reconstruction problem, 83
smearing, 48
smoothness, 259

Inclination of the gantry, 56
Incoherent, 63
Incomplete projections, 79
Index accuracy, 278
Inertia, 48
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I (cont.)
Infinite spectrum, 88
Initial collimator, 72
Internal

detector noise, 49
screening constant, 34

Interpolated projection, 163
Interpolation, 115
Function, 115
Inverse

Fourier transform, 105, 137, 305
Fourier transformation, 123
radon transform, 98, 112

Ion-collecting electrodes, 46
Ionization

chamber, 46, 47, 270
Iterative

coordinate descent, 248, 263
process, 241

J

Jacobian, 221

K

Kotelnikov–Shannon
sampling theorem, 91

L

L-ROI, 187
Langmuir region, 43
LI, 155
Linear

attenuation coefficient, 65
interpolation, 115, 117, 124, 144, 157

Linearity, 273, 305
Linearity phantom, 273
Linearization, 75, 76
Local region-of-interest, 187
Local-ROI, 187
Long object, 187
Longitudinal

approximation, 208, 216
Longitudinally truncated

data, 187
Low-contrast

resolution, 149, 248, 268, 271, 272
Low-pass

filter, 89
filtering, 87, 102

Luminance, 52, 53
Luminescent radiation, 47

M

MAP, 254, 261
Markov random fields, 256
Markovianity, 257
Mass attenuation coefficient, 64
Mathematical

head phantom, 292
models of phantoms, 281

Maximum
a posteriori, 254
intensity projection, 59

Maximum-likelihood
optimisationmethod, 254

Maxwell’s equations, 36
Mean value, 295
Measurement noise, 74
Metal elements, 74
Metallic elements, 79
MFR, 187
MGC, 45
Microgap gas chambers, 45
MIP, 59
ML, 254, 261
Modulation transfer function, 267
Monitor, 52, 53
Monochromatic, 40
Monoenergetic photons, 63
Moström’s phantom, 271
MPR, 58
MRF, 256
MSCT, 31, 48, 149, 170, 177, 185
MSCT

scanner, 176
MTF, 267, 272
Multi-planar

reconstruction, 58
reformatting, 58

Multi-row
detector array, 177
detector matrix, 181
Fourier reconstruction, 187

Multi-slice
computed tomograph, 149, 170
spiral computed tomography, 31
spiral scanner, 170
spiral tomography, 48

N

n-PI, 187
Newton iterative algorithm, 260
Noise

level, 80
Non-linear
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distortion, 77
distortions, 78
interpolation, 151

Nonlinearities, 74, 75
Nonlinearity, 75
Normal distribution, 312
NSR, 187
Nuclear charge, 34
Nutating slice reconstruction, 187
Nyquist interval, 91

O

Optimisation criterion, 260
Orbital momentum

quantum number, 34
Overheating, 41
Overlapping, 102
Overlapping

effect, 89
of the segments, 93
segments, 88

P

Pair production, 47
Parallel

beams, 83, 127
Parallel-beamsystem, 24
Partial fan-beam, 25
Parzen, 110
Patient dose, 278
Pencil beam, 24
Phantom set, 276
Photo-detector, 47
Photoelectric

effect, 47, 63, 65
Photoelectron, 64
Photographic film, 52
Photomultiplier, 47
Photon, 65
PI method, 187
Pitch, 154, 155, 270
Pixel, 54, 56
Point

spread function, 106, 113, 272, 277
Poisson distribution, 253
Polychromatic

beam, 74
X-ray beam, 50
X-rays, 76

Positioning accuracy, 278
Post-scanning distortions, 73
Pre-collimator, 72

Primary speed, 51
Principal

quantum number, 34
term, 254

Projection, 68
Projection-slice theorem, 97

Q

Q-generalised Gaussian MRF, 259
Q-GGMRF, 259
Qualitative tests, 277
Quanta

of electromagnetic radiation, 33
Quantisation, 53, 54
Quantisation

level, 54
Quantum, 64
Quantum

efficiency, 48, 50
of radiation, 33

R

Röntgen, 8, 9, 37
Radiation

detectors, 80
dose, 88, 248
intensity, 68
overload, 51
quanta, 64
spectrum, 43

Radon
transform, 14, 68, 70, 91,

234, 281, 305
Ram-Lak, 110
Ram-Lak

convolution kernel, 143
filter, 107, 193, 198

Random field, 256
Rare earth elements, 47
Rayleigh, 64
Re-sampling, 179
Re-sorting, 131
Rebinning, 131, 132, 136, 187
Rectangular filter, 183
Region

of interest, 57
Regularisation term, 254
Relaxation, 244
Relaxation

parameter, 244
Rendering technique, 59
Resistance, 44
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R (cont.)
Resistance

to irradiation damage, 49
RI, 155
Richardson region, 44
ROI, 57
Rotating cathode, 41
Rotor, 41
Rows of the array, 251

S

Sampling, 53, 103
Sampling

interval, 88
process, 88

Scattered quantum, 64
Scattering, 64, 79
Scattering

coefficient, 65
effect, 79

Scintillation
detector, 45, 47

Scintillator, 46
Scintillator

crystal, 46, 48
Second-generation scanner, 25
Semiconductor detector, 47
Sensitivity function, 269
Sensitometry, 268
Sharpness preservation, 259
Shepp–Logan

filter, 108
Signal-to-noise ratio, 80
Single

slice computed tomography, 149
slice reconstruction, 187

Single-slice
computed tomography, 149
rebinning, 201
spiral computed tomography, 31

Slice, 56
Slice

thickness, 269, 274, 278
width, 154, 174, 192

Slip rings, 149
Smith’s theory, 185
Smoothing, 259
Smoothing filter, 180
SNR, 80, 104
Soft, 40
Soft radiation, 40
Spatial

resolution, 49, 267, 268, 272, 278

Spiral
cone-beam scanner, 290
cone-beam scanners, 48
motion, 41
movement, 31
path, 201
tomography, 149

SSCT, 31, 149, 150, 154,
160, 168, 170

SSR, 187
Stability, 48
Stability

over time, 50
tests, 277

Start-up
procedure, 277
window, 277

Stationary
anode, 37
ring, 27

Statisticalmodel, 253
Stator, 41
Sufficient condition, 185
SW, 154, 174, 192, 270
System

of linear equations, 236

T

Table, 23, 56
Table

positioning test, 278
Third-generation scanner, 46
Three-dimensional surface

shaded display, 59
Tomogram, 57
Topogram, 56
Toposcan, 56
Total

angular momentum
quantum number, 34

cross-section, 65
screening constant, 34

Transfer
characteristic, 50
characteristics, 51
function, 50, 267, 268

Trilinear interpolation, 226
Tube, 24, 40
Two focuses, 41

U

Uniformity, 268
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V

Vacancy, 34
Variance, 295
Virtual

circle (VC) approach, 187
endoscopy, 59

Volume rendering, 59
Voxel, 56, 257
Voxel

projection, 250

W

Water phantom, 268
Weight, 165
Weighting

factors, 183
function, 159

Window, 40, 54
Window

centre, 54
function, 102, 103, 105, 108,

113, 120, 138
width, 54

X

X-ray
detector, 45
film, 60

intensity, 46, 65
photograph, 63
projection, 68
quanta, 33
radiography, 45
spectral distribution, 76
spectrum, 36, 40
tube, 35, 37, 72

X-rays, 9, 10, 63
Xenon, 45
Xenon

chamber, 46
detector, 46
proportional chamber, 45, 46
proportional chambers, 45

Z

Z-filtering, 179
Z-filtering reconstruction

algorithm, 176, 181
Z-Sharp, 48
Z-Wobble, 48
Zero-boundary

algorithms, 187
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