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Preface

This book is devoted to the theory of probabilistic information measures
and their application to coding theorems for information sources and
noisy channels, with a strong emphasis on source coding and stationary
codes. The eventual goal is a general development of Shannon’s mathe-
matical theory of communication for single user systems, but much of
the space is devoted to the tools and methods required to prove the
Shannon coding theorems, especially the notions of sources, channels,
codes, entropy, information, and the entropy ergodic theorem. These
tools form an area common to ergodic theory and information theory
and comprise several quantitative notions of the information in ran-
dom variables, random processes, and dynamical systems. Examples are
entropy, mutual information, conditional entropy, conditional informa-
tion, and relative entropy (discrimination, Kullback-Leibler information,
informational divergence), along with the limiting normalized versions
of these quantities such as entropy rate and information rate. In addi-
tion to information we will be concerned with the distance or distortion
between the random objects, that is, the accuracy of the representation
of one random object by another or the degree of mutual approximation.
Much of the book is concerned with the properties of these quantities,
especially the long term asymptotic behavior of average information and
distortion, where both sample averages and probabilistic averages are of
interest.

The book has been strongly influenced by M. S. Pinsker’s classic Infor-

mation and Information Stability of Random Variables and Processes and
by the seminal work of A. N. Kolmogorov, I. M. Gelfand, A. M. Yaglom,
and R. L. Dobrushin on information measures for abstract alphabets and
their convergence properties. The book also has as a major influence the
work of D.S. Ornstein on the isomorphism problem in ergodic theory,
especially on his ideas of stationary codes mimicking block codes im-
plied by the entropy ergodic theorem and of the d-bar distance between
random processes. Many of the results herein are extensions of their
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viii Preface

generalizations of Shannon’s original results. The mathematical mod-
els adopted here are more general than traditional treatments in that
nonstationary and nonergodic information processes are treated. The
models are somewhat less general than those of the Russian school of
information theory in the sense that standard alphabets rather than com-
pletely abstract alphabets are considered. This restriction, however, per-
mits many stronger results as well as the extension to nonergodic pro-
cesses. In addition, the assumption of standard spaces simplifies many
proofs and such spaces include as examples virtually all examples of
engineering interest.

The information convergence results are combined with ergodic the-
orems to prove general Shannon coding theorems for sources and chan-
nels. The results are not the most general known and the converses
are not the strongest available in the literature, but they are sufficiently
general to cover most sources and single-user communications systems
encountered in applications and they are more general than those en-
countered in most modern texts. For example, most treatments confine
interest to stationary and ergodic sources or even independent identi-
cally distributed (IID) sources and memoryless channels; here we con-
sider asymptotic mean stationary sources, both one-sided and two-sided
sources, and nonergodic sources. General channels with memory are
considered, in particular the class of d-bar continuous channels.

Perhaps more important than the generality of the sources and chan-
nels is the variety of code structures considered. Most of the literature
and virtually all of the texts on information theory focus exclusively on
block codes, while many codes are more naturally described as a station-
ary or sliding-block code — a time-invariant possibly nonlinear filter,
generally with a discrete output. Here the basic results of information
theory are described for stationary or sliding-block codes as well as for
the traditional block codes and the relationships between the two coding
structures are explored in detail. Stationary codes arose in ergodic the-
ory in the context of Ornstein’s proof of the isomorphism theorem in the
1970s, and they arise naturally in the communications context of clas-
sical information theory, including common coding techniques such as
time-invariant convolutional codes, predictive quantization, sigma-delta
coding, and wavelet transform based techniques that operate as sliding-
window or online filters rather than as block operations. Mathematically,
stationary codes preserve many of the statistical properties of the source
being coded such as stationarity, ergodicity, and mixing. In practice, sta-
tionary codes avoid the introduction of blocking artifacts not present in
the original source.

This book can be considered as a sequel to my book Probability, Ran-

dom Processes, and Ergodic Properties [58], as the first edition of this
book was a sequel to the first edition [56]. There the prerequisite re-
sults on probability, standard spaces, and ordinary ergodic properties
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may be found along with a development of the general sources consid-
ered (asymptotically mean stationary, not necessarily ergodic) and of the
process distortion measures used here. This book is self contained with
the exception of common (and a few less common) results which may
be found in the first book. Results quoted from the first book are cited
for both first and second editions as the numbering system in the two
editions differs.

It is my hope that the book will interest engineers in some of the
mathematical aspects and general models of the theory and mathemati-
cians in some of the important engineering applications of performance
bounds and code design for communication systems.

What’s New in the Second Edition

As in the second edition of the companion volume [58], material has been
corrected, rearranged, and rewritten in an effort to improve the flow of
ideas and the presentation. This volume has been revised to reflect the
changes in the companion volume, and citations to specific results are
given for both the first and second editions [55, 58]. A significant amount
of new material has been added both to expand some of the discussions
to include more related topics and to include more recent results on old
problems.

More general distortion measures are considered when treating the
process distance and distortion measures, consistent with extensions or
results in [55] on metric distortion measures to powers of metrics (such
as the ubiquitous squared-error distortion) in [58].

Three new chapters have been added: one on the interplay between
distortion and entropy, one on the interplay between distortion and in-
formation, and one on properties of good source codes — codes that are
either optimal or asymptotically optimal in the sense of converging to
the Shannon limit.

The chapter on distortion and entropy begins with a classic result
treated in the first edition, the Fano inequality and its extensions, but
it expands the discussion to consider the goodness of approximation of
codes and their relation to entropy rate. Pinsker’s classic result relat-
ing variation distance between probability measures and the divergence
(Kullback-Leibler) distance is now treated along with its recent extension
by Marton comparing Ornstein’s d-bar process distance to divergence
rate. The chapter contains a preliminary special case of the coding the-
orems to come — the application of the entropy ergodic theorem to the
design of both block and sliding-block (stationary) almost lossless codes.
The example introduces several basic ideas in a relatively simple context,
including the construction of a sliding-block code from a block code in a
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way that preserves the essential properties. The example also serves to
illustrate the connections between information theory and ergodic the-
ory by means of an interpretation of Ornstein’s isomorphism theorem —
which is not proved here — in terms of almost lossless stationary coding
— which is. The results also provide insight into the close relationships
between source coding or data compression and rate-constrained simu-
lation of a stationary and ergodic process, the finding of a simple model
based on coin flips that resembles as closely as possible the given pro-
cess.

The chapter on distortion and information adds considerable mate-
rial on rate-distortion theory to the treatment of the first edition, specif-
ically on the evaluation of Shannon distortion-rate and rate-distortion
functions along with their easy applications to lower bounds on per-
formance in idealized communications systems. The fundamentals of
Csiszár’s variational approach based on the divergence inequality is de-
scribed and some of the rarely noted attributes are pointed out. The
implied algorithm for the evaluation of rate-distortion functions (origi-
nally due to Blahut [18]) is interpreted as an early example of alternating
optimization.

An entirely new chapter on properties of good codes provides a devel-
opment along the lines of Gersho and Gray [50] of the basic properties
of optimal block codes originally due to Lloyd [110] and Steinhaus [175]
along with the implied iterative design algorithm, another early exam-
ple of alternating optimization. An incomplete extension of these block
code optimality properties to sliding-block codes is described, and a sim-
ple example of trellis encoding is used to exemplify basic relations be-
tween block, sliding-block, and hybrid codes. The remainder of the chap-
ter comprises recent developments in properties of asymptotically opti-
mal sequences of sliding-block codes as developed by Mao, Gray, and
Linder [117]. This material adds to the book’s emphasis on stationary
and sliding-block codes and adds to the limited literature on the subject.

Along with these major additions, I have added many minor results ei-
ther because I was annoyed to discover they were not already in the first
edition when I looked for them or because they eased the development
of results.

The addition of three new chapters was partially balanced by the
merging of two old chapters to better relate information rates for finite
alphabet and continuous alphabet random processes.

Errors

Typographical and technical errors reported to or discovered by me dur-
ing the two decades since the publication of the first edition have been
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corrected and efforts have been made to improve formatting and ap-
pearance of the book. Doubtless with the inclusion of new material new
errors have occurred. As I age my frequency of typographical and other
errors seems to grow along with my ability to see through them. I apolo-
gize for any that remain in the book. I will keep a list of all errors found
by me or sent to me at rmgray@stanford.edu and I will post the list at
my Web site, http://ee.stanford.edu/∼gray/.
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Introduction

Abstract A brief history of the development of Shannon information the-
ory is presented with an emphasis on its interactions with ergodic the-
ory. The origins and goals of this book are sketched.

Information theory, the mathematical theory of communication, has
two primary goals: The first is the development of the fundamental
theoretical limits on the achievable performance when communicating
a given information source over a given communications channel us-
ing coding schemes from within a prescribed class. The second goal is
the development of coding schemes that provide performance that is
reasonably good in comparison with the optimal performance given by
the theory. Information theory was born in a remarkably rich state in
the classic papers of Claude E. Shannon [162, 163] which contained the
basic results for simple memoryless sources and channels and intro-
duced more general communication systems models, including finite-
state sources and channels. The key tools used to prove the original re-
sults and many of those that followed were special cases of the ergodic
theorem and a new variation of the ergodic theorem which considered
sample averages of a measure of the entropy or self information in a
process.

Information theory can be viewed as simply a branch of applied prob-
ability theory. Because of its dependence on ergodic theorems, however,
it can also be viewed as a branch of ergodic theory, the theory of in-
variant transformations and transformations related to invariant trans-
formations. In order to develop the ergodic theory example of principal
interest to information theory, suppose that one has a random process,
which for the moment we consider as a sample space or ensemble of
possible output sequences together with a probability measure on events

xvii
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composed of collections of such sequences. The shift is the transforma-
tion on this space of sequences that takes a sequence and produces a
new sequence by shifting the first sequence a single time unit to the
left. In other words, the shift transformation is a mathematical model
for the effect of time on a data sequence. If the probability of any se-
quence event is unchanged by shifting the event, that is, by shifting all
of the sequences in the event, then the shift transformation is said to
be invariant and the random process is said to be stationary. Thus the
theory of stationary random processes can be considered as a subset of
ergodic theory. Transformations that are not actually invariant (random
processes which are not actually stationary) can be considered using sim-
ilar techniques by studying transformations which are almost invariant,
which are invariant in an asymptotic sense, or which are dominated or
asymptotically dominated in some sense by an invariant transformation.
This generality can be important as many real processes are not well
modeled as being stationary. Examples are processes with transients,
processes that have been parsed into blocks and coded, processes that
have been encoded using variable-length codes or finite-state codes, and
channels with arbitrary starting states.

Ergodic theory was originally developed for the study of statistical
mechanics as a means of quantifying the trajectories of physical or dy-
namical systems. Hence, in the language of random processes, the early
focus was on ergodic theorems: theorems relating the time or sample av-
erage behavior of a random process to its ensemble or expected behav-
ior. The work of Hoph [77], von Neumann [190] and others culminated
in the pointwise or almost everywhere ergodic theorem of Birkhoff [17].

In the 1940’s and 1950’s Shannon made use of the ergodic theorem in
the simple special case of memoryless processes to characterize the op-
timal performance possible when communicating an information source
over a constrained random medium or channel using codes. The ergodic
theorem was applied in a direct fashion to study the asymptotic behav-
ior of error frequency and time average distortion in a communication
system, but a new variation was introduced by defining a mathematical
measure of the entropy or information in a random process and charac-
terizing its asymptotic behavior. The results characterizing the optimal
performance achievable using codes became known as coding theorems.
Results describing performance that is actually achievable, at least in
the limit of unbounded complexity and time, are known as positive cod-

ing theorems. Results providing unbeatable bounds on performance are
known as converse coding theorems or negative coding theorems. When
the same quantity is given by both positive and negative coding the-
orems, one has exactly the optimal performance achievable in theory
using codes from a given class to communicate through the given com-
munication systems model.
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While mathematical notions of information had existed before, it was
Shannon who coupled the notion with the ergodic theorem and an in-
genious idea known as “random coding” in order to develop the coding
theorems and to thereby give operational significance to such informa-
tion measures. The name “random coding” is a bit misleading since it
refers to the random selection of a deterministic code and not a coding
system that operates in a random or stochastic manner. The basic ap-
proach to proving positive coding theorems was to analyze the average
performance over a random selection of codes. If the average is good,
then there must be at least one code in the ensemble of codes with per-
formance as good as the average. The ergodic theorem is crucial to this
argument for determining such average behavior. Unfortunately, such
proofs promise the existence of good codes but give little insight into
their construction.

Shannon’s original work focused on memoryless sources whose prob-
ability distribution did not change with time and whose outputs were
drawn from a finite alphabet or the real line. In this simple case the
well-known ergodic theorem immediately provided the required result
concerning the asymptotic behavior of information. He observed that
the basic ideas extended in a relatively straightforward manner to more
complicated Markov sources. Even this generalization, however, was a
far cry from the general stationary sources considered in the ergodic
theorem.

To continue the story requires a few additional words about measures
of information. Shannon really made use of two different but related
measures. The first was entropy, an idea inherited from thermodynamics
and previously proposed as a measure of the information in a random
signal by Hartley [75]. Shannon defined the entropy of a discrete time
discrete alphabet random process {Xn}, which we denote by H(X) while
deferring its definition, and made rigorous the idea that the the entropy
of a process is the amount of information in the process. He did this by
proving a coding theorem showing that if one wishes to code the given
process into a sequence of binary symbols so that a receiver viewing
the binary sequence can reconstruct the original process perfectly (or
nearly so), then one needs at least H(X) binary symbols or bits (converse
theorem) and one can accomplish the task with very close to H(X) bits
(positive theorem). This coding theorem is known as the noiseless source

coding theorem.
The second notion of information used by Shannon was mutual infor-

mation. Entropy is really a notion of self information — the information
provided by a random process about itself. Mutual information is a mea-
sure of the information contained in one process about another process.
While entropy is sufficient to study the reproduction of a single process
through a noiseless environment, more often one has two or more dis-
tinct random processes, e.g., one random process representing an infor-



xx Introduction

mation source and another representing the output of a communication
medium wherein the coded source has been corrupted by another ran-
dom process called noise. In such cases observations are made on one
process in order to make decisions on another. Suppose that {Xn, Yn} is
a random process with a discrete alphabet, that is, taking on values in
a discrete set. The coordinate random processes {Xn} and {Yn} might
correspond, for example, to the input and output of a communication
system. Shannon introduced the notion of the average mutual informa-
tion between the two processes:

I(X, Y) = H(X)+H(Y)−H(X,Y), (1)

the sum of the two self entropies minus the entropy of the pair. This
proved to be the relevant quantity in coding theorems involving more
than one distinct random process: the channel coding theorem describ-
ing reliable communication through a noisy channel, and the general
source coding theorem describing the coding of a source for a user sub-
ject to a fidelity criterion. The first theorem focuses on error detection
and correction and the second on analog-to-digital conversion and data
compression. Special cases of both of these coding theorems were given
in Shannon’s original work.

Average mutual information can also be defined in terms of condi-

tional entropy H(X|Y) = H(X,Y)−H(Y) and hence

I(X, Y) = H(X)−H(X|Y) = H(Y)−H(X|Y). (2)

In this form the mutual information can be interpreted as the informa-
tion contained in one process minus the information contained in the
process when the other process is known. While elementary texts on
information theory abound with such intuitive descriptions of informa-
tion measures, we will minimize such discussion because of the potential
pitfall of using the interpretations to apply such measures to problems
where they are not appropriate. (See, e.g., P. Elias’ “Information theory,
photosynthesis, and religion” in his “Two famous papers” [37].) Infor-
mation measures are important because coding theorems exist imbuing
them with operational significance and not because of intuitively pleas-
ing aspects of their definitions.

We focus on the definition (1) of mutual information since it does not
require any explanation of what conditional entropy means and since it
has a more symmetric form than the conditional definitions. It turns out
that H(X,X) = H(X) (the entropy of a random variable is not changed
by repeating it) and hence from (1)

I(X,X) = H(X) (3)
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so that entropy can be considered as a special case of average mutual
information.

To return to the story, Shannon’s work spawned the new field of in-
formation theory and also had a profound effect on the older field of
ergodic theory.

Information theorists, both mathematicians and engineers, extended
Shannon’s basic approach to ever more general models of information
sources, coding structures, and performance measures. The fundamen-
tal ergodic theorem for entropy was extended to the same generality
as the ordinary ergodic theorems by McMillan [123] and Breiman [20]
and the result is now known as the Shannon-McMillan-Breiman theorem.
Other names are the asymptotic equipartition theorem or AEP, the er-
godic theorem of information theory, and the entropy theorem. A variety
of detailed proofs of the basic coding theorems and stronger versions of
the theorems for memoryless, Markov, and other special cases of random
processes were developed, notable examples being the work of Feinstein
[39] [40] and Wolfowitz (see, e.g., Wolfowitz [196].) The ideas of measures
of information, channels, codes, and communications systems were rig-
orously extended to more general random processes with abstract alpha-
bets and discrete and continuous time by Khinchine [87], [88] and by Kol-
mogorov and his colleagues, especially Gelfand, Yaglom, Dobrushin, and
Pinsker [49], [104], [101], [32], [150]. (See, for example, “Kolmogorov’s
contributions to information theory and algorithmic complexity” [23].)
In almost all of the early Soviet work, it was average mutual information
that played the fundamental role. It was the more natural quantity when
more than one process were being considered. In addition, the notion
of entropy was not useful when dealing with processes with continuous
alphabets since it is generally infinite in such cases. A generalization
of the idea of entropy called discrimination was developed by Kullback
(see, e.g., Kullback [106]) and was further studied by the Soviet school.
This form of information measure is now more commonly referred to
as relative entropy, cross entropy, or Kullback-Leibler number, or infor-
mation divergence and it is better interpreted as a measure of similarity
or dissimilarity between probability distributions than as a measure of
information between random variables. Many results for mutual infor-
mation and entropy can be viewed as special cases of results for relative
entropy and the formula for relative entropy arises naturally in some
proofs.

It is the mathematical aspects of information theory and hence the
descendants of the above results that are the focus of this book, but the
developments in the engineering community have had as significant an
impact on the foundations of information theory as they have had on ap-
plications. Simpler proofs of the basic coding theorems were developed
for special cases and, as a natural offshoot, the rate of convergence to
the optimal performance bounds characterized in a variety of important
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cases. See, e.g., the texts by Gallager [47], Berger [11], and Csiszàr and
Körner [27]. Numerous practicable coding techniques were developed
which provided performance reasonably close to the optimum in many
cases: from the simple linear error correcting and detecting codes of
Slepian [171] to the huge variety of algebraic codes that have been imple-
mented (see, e.g., [12], [192],[109], [113], [19]), the various forms of con-
volutional, tree, and trellis codes for error correction and data compres-
sion (see, e.g., [189, 81]), and the recent codes approaching the Shannon
limits based on iterative coding and message passage ideas [126, 156],
codes which have their roots in Gallager’s PhD thesis on low density
parity check codes [48]. Codes for source coding and data compres-
sion include a variety of traditional and recent techniques for lossless
coding of data and lossy coding of realtime signals such as voice, au-
dio, still images, and video. Techniques range from simple quantization
to predictive quantization, adaptive methods, vector quantizers based
on linear transforms followed by quantization and lossless codes, sub-
band coders, and model coders such as the linear preditive codes for
voice which fit linear models to observed signals for local synthesis. A
sampling of the fundamentals through the standards can be found in
[50, 160, 144, 178].

The engineering side of information theory through the middle 1970’s
has been well chronicled by two IEEE collections: Key Papers in the De-

velopment of Information Theory, edited by D. Slepian [172], and Key

Papers in the Development of Coding Theory, edited by E. Berlekamp [13]
and many papers describing the first fifty years of the field were col-
lected into Information Theory: 50 Years of Discovery in 2000 [184]. In
addition there have been several survey papers describing the history of
information theory during each decade of its existence published in the
IEEE Transactions on Information Theory.

The influence on ergodic theory of Shannon’s work was equally great
but in a different direction. After the development of quite general er-
godic theorems, one of the principal issues of ergodic theory was the
isomorphism problem, the characterization of conditions under which
two dynamical systems are really the same in the sense that each could
be obtained from the other in an invertible way by coding. Here, how-
ever, the coding was not of the variety considered by Shannon — Shan-
non considered block codes, codes that parsed the data into nonover-
lapping blocks or windows of finite length and separately mapped each
input block into an output block. The more natural construct in ergodic
theory can be called a sliding-block code or stationary code — here the
encoder views a block of possibly infinite length and produces a single
symbol of the output sequence using some mapping (or code or filter).
The input sequence is then shifted one time unit to the left, and the same
mapping applied to produce the next output symbol, and so on. This is
a smoother operation than the block coding structure since the outputs
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are produced based on overlapping windows of data instead of on a com-
pletely different set of data each time. Unlike the Shannon codes, these
codes will produce stationary output processes if given stationary input
processes. It should be mentioned that examples of such sliding-block
codes often occurred in the information theory literature: time-invariant
convolutional codes or, simply, time-invariant linear filters are sliding-
block codes. It is perhaps odd that virtually all of the theory for such
codes in the information theory literature was developed by effectively
considering the sliding-block codes as very long block codes. Sliding-
block codes have proved a useful structure for the design of noiseless
codes for constrained alphabet channels such as magnetic recording de-
vices, and techniques from symbolic dynamics have been applied to the
design of such codes. See, for example [3, 118].

Shannon’s noiseless source coding theorem suggested a solution to
the isomorphism problem: If we assume for the moment that one of the
two processes is binary, then perfect coding of a process into a binary
process and back into the original process requires that the original pro-
cess and the binary process have the same entropy. Thus a natural con-
jecture is that two processes are isomorphic if and only if they have the
same entropy. A major difficulty was the fact that two different kinds of
coding were being considered: stationary sliding-block codes with zero
error by the ergodic theorists and either fixed length block codes with
small error or variable length (and hence nonstationary) block codes with
zero error by the Shannon theorists. While it was plausible that the for-
mer codes might be developed as some sort of limit of the latter, this
proved to be an extremely difficult problem. It was Kolmogorov [102],
[103] who first reasoned along these lines and proved that in fact equal
entropy (appropriately defined) was a necessary condition for isomor-
phism.

Kolmogorov’s seminal work initiated a new branch of ergodic theory
devoted to the study of entropy of dynamical systems and its applica-
tion to the isomorphism problem. Most of the original work was done
by Soviet mathematicians; notable papers are those by Sinai [168] [169]
(in ergodic theory entropy is also known as the Kolmogorov-Sinai invari-
ant), Pinsker [150], and Rohlin and Sinai [157]. An actual construction of
a perfectly noiseless sliding-block code for a special case was provided
by Meshalkin [124]. While much insight was gained into the behavior of
entropy and progress was made on several simplified versions of the
isomorphism problem, it was several years before Ornstein [138] proved
a result that has since come to be known as the Ornstein isomorphism
theorem or the Kolmogorov-Ornstein or Kolmogorov-Sinai-Ornstein iso-
morphism theorem.

Ornstein showed that if one focused on a class of random processes
which we shall call B-processes, then two processes are indeed isomor-
phic if and only if they have the same entropy. B-process are also called
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Bernoulli processes in the ergodic theory literature, but this is potentially
confusing because of the usage of “Bernoulli process” as a synonym of
an independent identically distributed (IID) process in information the-
ory and random process theory. B-processes have several equivalent def-
initions, perhaps the simplest is that they are processes which can be
obtained by encoding a memoryless process using a sliding-block code.
This class remains the most general class known for which the isomor-
phism conjecture holds. In the course of his proof, Ornstein developed
intricate connections between block coding and sliding-block coding. He
used Shannon-like techniques on the block codes, then imbedded the
block codes into sliding-block codes, and then used the stationary struc-
ture of the sliding-block codes to advantage in limiting arguments to ob-
tain the required zero error codes. Several other useful techniques and
results were introduced in the proof: notions of the distance between
processes and relations between the goodness of approximation and the
difference of entropy. Ornstein expanded these results into a book [140]
and gave a tutorial discussion in the premier issue of the Annals of Prob-

ability [139]. Several correspondence items by other ergodic theorists
discussing the paper accompanied the article.

The origins of this book lie in the tools developed by Ornstein for the
proof of the isomorphism theorem rather than with the result itself. Dur-
ing the early 1970’s I first become interested in ergodic theory because
of joint work with Lee D. Davisson on source coding theorems for sta-
tionary nonergodic processes. The ergodic decomposition theorem dis-
cussed in Ornstein [139] provided a needed missing link and led to an
intense campaign on my part to learn the fundamentals of ergodic the-
ory and perhaps find other useful tools. This effort was greatly eased by
Paul Shields’ book The Theory of Bernoulli Shifts [164] and by discussions
with Paul on topics in both ergodic theory and information theory. This
in turn led to a variety of other applications of ergodic theoretic tech-
niques and results to information theory, mostly in the area of source
coding theory: proving source coding theorems for sliding-block codes
and using process distance measures to prove universal source coding
theorems and to provide new characterizations of Shannon distortion-
rate functions. The work was done with Dave Neuhoff, like me then an
apprentice ergodic theorist, and Paul Shields.

With the departure of Dave and Paul from Stanford, my increasing in-
terest led me to discussions with Don Ornstein on possible applications
of his techniques to channel coding problems. The interchange often
consisted of my describing a problem, his generation of possible avenues
of solution, and then my going off to work for a few weeks to understand
his suggestions and work them through.

One problem resisted our best efforts–how to synchronize block codes
over channels with memory, a prerequisite for constructing sliding-block
codes for such channels. In 1975 I had the good fortune to meet and talk
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with Roland Dobrushin at the 1975 IEEE/USSR Workshop on Information
Theory in Moscow. He observed that some of his techniques for handling
synchronization in memoryless channels should immediately generalize
to our case and therefore should provide the missing link. The key ele-
ments were all there, but it took seven years for the paper by Ornstein,
Dobrushin and me to evolve and appear [68].

Early in the course of the channel coding paper, I decided that hav-
ing the solution to the sliding-block channel coding result in sight was
sufficient excuse to write a book on the overlap of ergodic theory and
information theory. The intent was to develop the tools of ergodic the-
ory of potential use to information theory and to demonstrate their use
by proving Shannon coding theorems for the most general known in-
formation sources, channels, and code structures. Progress on the book
was disappointingly slow, however, for a number of reasons. As delays
mounted, I saw many of the general coding theorems extended and im-
proved by others (often by J. C. Kieffer) and new applications of ergodic
theory to information theory developed, such as the channel modeling
work of Neuhoff and Shields [133], [136], [135], [134] and design methods
for sliding-block codes for input restricted noiseless channels by Adler,
Coppersmith, and Hasner [3] and Marcus [118]. Although I continued
to work in some aspects of the area, especially with nonstationary and
nonergodic processes and processes with standard alphabets, the area
remained for me a relatively minor one and I had little time to write.
Work and writing came in bursts during sabbaticals and occasional ad-
vanced topic seminars. I abandoned the idea of providing the most gen-
eral possible coding theorems and decided instead to settle for coding
theorems that were sufficiently general to cover most applications and
which possessed proofs I liked and could understand.

Only one third of this book is actually devoted to Shannon source
and channel coding theorems; the remainder can be viewed as a mono-
graph on sources, channels, and codes and on information and distortion
measures and their properties, especially their ergodic properties. The
sources or random processes considered include asymptotically mean
stationary processes with standard alphabets, a subject developed in de-
tail in my earlier book Probability, Random Processes, and Ergodic Prop-

erties, which was published by Springer-Verlag in 1988 [55] with a second
edition published by Springer in 2009. That books treats advanced prob-
ability and random processes with an emphasis on processes with stan-
dard alphabets, on nonergodic and nonstationary processes, and on nec-
essary and sufficient conditions for the convergence of long term sam-
ple averages. Asymptotically mean stationary sources and the ergodic
decomposition are there treated in depth and recent simplified proofs
of the ergodic theorem due to Ornstein and Weiss [141] and others are
incorporated. The next chapter of this book reviews some of the basic
notation of the first one in information theoretic terms, but results are
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often simply quoted as needed from the first book without any attempt
to derive them. The two books together are self-contained in that all sup-
porting results from probability theory and ergodic theory needed here
may be found in the first book. This book is self-contained so far as its
information theory content, but it should be considered as an advanced
text on the subject and not as an introductory treatise to the reader only
wishing an intuitive overview. The border between the two books is the
beginning of the treatment of entropy.

Here the Shannon-McMillan-Breiman theorem is proved using the cod-
ing approach of Ornstein and Weiss [141] (see also Shield’s tutorial paper
[165]) and hence the treatments of ordinary ergodic theorems in the first
book and the ergodic theorems for information measures in this book
are consistent. The extension of the Shannon-McMillan-Breiman theo-
rem to densities is proved using the “sandwich” approach of Algoet and
Cover [7], which depends strongly on the usual pointwise or Birkhoff
ergodic theorem: sample entropy is asymptotically sandwiched between
two functions whose limits can be determined from the ergodic theorem.
These results are the most general yet published in book form and differ
from traditional developments in that martingale theory is not required
in the proofs.

A few words are in order regarding topics that are not contained in
this book. I have not included the increasingly important and growing
area of multiuser information theory because my experience in the area
is slight and I believe this topic can be better handled by others.

Traditional noiseless coding theorems and actual codes such as the
Huffman codes are not considered in depth because quite good treat-
ments exist in the literature, e.g., [47], [1], [122]. The corresponding er-
godic theory result — the Ornstein isomorphism theorem — is also not
proved, because its proof is difficult and the result is not needed for the
Shannon coding theorems. It is, however, described and many techniques
used in its proof are used here for similar and other purposes.

The actual computation of channel capacity and distortion rate func-
tions has not been included because existing treatments [47], [18], [11],
[25] [57] are quite adequate. New to the second edition, however, is
a partial development of Csiszár’s [25] rigorous development of the
information-theoretic optimization underlying the evaluation of the rate-
distortion function.

This book does not treat code design techniques in any depth, but
in this second edition properties of optimal and asymptotically optimal
source codes are developed and these properties provide insight into the
structure of good codes and can be used to guide code design. The tra-
ditional Lloyd optimality properties for vector quantizers are described
along with recent results for sliding-block codes which resemble their
block coding cousins.
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J. C. Kieffer developed a powerful new ergodic theorem that can
be used to prove both traditional ergodic theorems and the extended
Shannon-McMillan-Brieman theorem [96]. He has used this theorem to
prove strong (almost everywhere) versions of the source coding theorem
and its converse, that is, results showing that sample average distortion
is with probability one no smaller than the distortion-rate function and
that there exist codes with sample average distortion arbitrarily close to
the distortion-rate function [99, 100].



 



Chapter 1

Information Sources

Abstract An information source or source is a mathematical model for a
physical entity that produces a succession of symbols called “outputs”
in a random manner. The symbols produced may be real numbers such
as voltage measurements from a transducer, binary numbers as in com-
puter data, two dimensional intensity fields as in a sequence of images,
continuous or discontinuous waveforms, and so on. The space contain-
ing all of the possible output symbols is called the alphabet of the source
and a source is essentially an assignment of a probability measure to
events consisting of sets of sequences of symbols from the alphabet. It
is useful, however, to explicitly treat the notion of time as a transforma-
tion of sequences produced by the source. Thus in addition to the com-
mon random process model we shall also consider modeling sources by
dynamical systems as considered in ergodic theory. The material in this
chapter is a distillation of [55, 58] and is intended to establish notation.

1.1 Probability Spaces and Random Variables

A measurable space (Ω,B) is a pair consisting of a sample space Ω to-
gether with a σ -field B of subsets of Ω (also called the event space). A
σ -field or σ -algebra B is a nonempty collection of subsets of Ω with the
following properties:

Ω ∈ B. (1.1)

If F ∈ B, then Fc = {ω :ω 6∈ F} ∈ B. (1.2)

If Fi ∈ B; i = 1,2, . . . , then
⋃

i

Fi ∈ B. (1.3)

From de Morgan’s “laws” of elementary set theory it follows that also
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∞⋂

i=1

Fi = (
∞⋃

i=1

Fci )
c ∈ B.

An event space is a collection of subsets of a sample space (called events
by virtue of belonging to the event space) such that any countable se-
quence of set theoretic operations (union, intersection, complementa-
tion) on events produces other events. Note that there are two extremes:
the largest possible σ -field of Ω is the collection of all subsets of Ω
(sometimes called the power set) and the smallest possible σ -field is
{Ω,∅}, the entire space together with the null set ∅ = Ωc (called the
trivial space).

If instead of the closure under countable unions required by (1.3), we
only require that the collection of subsets be closed under finite unions,
then we say that the collection of subsets is a field.

While the concept of a field is simpler to work with, a σ -field pos-
sesses the additional important property that it contains all of the limits
of sequences of sets in the collection. That is, if Fn, n = 1,2, · · · is
an increasing sequence of sets in a σ -field, that is, if Fn−1 ⊂ Fn and if
F = ⋃∞n=1 Fn (in which case we write Fn ↑ F or limn→∞ Fn = F ), then also F
is contained in the σ -field. In a similar fashion we can define decreasing
sequences of sets: If Fn decreases to F in the sense that Fn+1 ⊂ Fn and
F = ⋂∞n=1 Fn, then we write Fn ↓ F . If Fn ∈ B for all n, then F ∈ B.

A probability space (Ω,B, P) is a triple consisting of a sample space
Ω , a σ -field B of subsets of Ω , and a probability measure P which
assigns a real number P(F) to every member F of the σ -field B so that
the following conditions are satisfied:

• Nonnegativity:
P(F) ≥ 0, all F ∈ B; (1.4)

• Normalization:
P(Ω) = 1; (1.5)

• Countable Additivity:

If Fi ∈ B, i = 1,2, · · · are disjoint, then

P(
∞⋃

i=1

Fi) =
∞∑

i=1

P(Fi). (1.6)

A set function P satisfying only (1.4) and (1.6) but not necessarily (1.5)
is called a measure and the triple (Ω,B, P) is called a measure space.
Since the probability measure is defined on a σ -field, such countable
unions of subsets of Ω in the σ -field are also events in the σ -field.

A standard result of basic probability theory is that if Gn ↓ ∅ (the
empty or null set), that is, if Gn+1 ⊂ Gn for all n and

⋂∞
n=1Gn = ∅ , then

we have
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• Continuity at ∅:
lim
n→∞P(Gn) = 0. (1.7)

similarly it follows that we have

• Continuity from Below:

If Fn ↑ F, then lim
n→∞P(Fn) = P(F), (1.8)

and

• Continuity from Above:

If Fn ↓ F, then lim
n→∞P(Fn) = P(F). (1.9)

Given a measurable space (Ω,B), a collection G of members of B is
said to generate B and we write σ(G) = B if B is the smallest σ -field
that contains G; that is, if a σ -field contains all of the members of G,
then it must also contain all of the members of B. The following is a
fundamental approximation theorem of probability theory. A proof may
be found in Corollary 1.5.3 of [55] or Corollary 1.5 of [58]. The result is
most easily stated in terms of the symmetric difference ∆ defined by

F∆G ≡ (F ∩Gc)∪ (Fc ∩G).

Theorem 1.1. Given a probability space (Ω,B, P) and a generating field

F , that is, F is a field and B = σ(F), then given F ∈ B and ǫ > 0, there

exists an F0 ∈ F such that P(F∆F0) ≤ ǫ.
Let (A,BA) denote another measurable space. We will also use B(A)

as a synonym for BA. A random variable or measurable function defined
on (Ω,B) and taking values in (A,BA) is a mapping or function f : Ω→ A
with the property that

if F ∈ BA, then f−1(F) = {ω : f(ω) ∈ F} ∈ B. (1.10)

The name “random variable” is commonly associated with the special
case where A is the real line and B the Borel field, the smallest σ -field
containing all the intervals. Occasionally a more general sounding name
such as “random object” is used for a measurable function to implicitly
include random variables (A the real line), random vectors (A a Euclidean
space), and random processes (A a sequence or waveform space). We will
use the terms “random variable” in the more general sense. UsuallyAwill
either be a metric space or a product of metric spaces, in which case the
σ -field will be a Borel field BA or B(A) of subsets of A. If A is a product
of metric spaces, then BA will be taken as the corresponding product
σ -field, that is, the σ -field generated by the rectangles.
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A random variable is just a function or mapping with the property that
inverse images of “output events” determined by the random variable are
events in the original measurable space. This simple property ensures
that the output of the random variable will inherit its own probability
measure. For example, with the probability measure Pf defined by

Pf (B) = P(f−1(B)) = P(ω : f(ω) ∈ B); B ∈ BA,

(A,BA, Pf ) becomes a probability space since measurability of f and el-
ementary set theory ensure that Pf is indeed a probability measure. The
induced probability measure Pf is called the distribution of the random
variable f . The measurable space (A,BA) or, simply, the sample space
A, is called the alphabet of the random variable f . We shall occasion-
ally also use the notation Pf−1 which is a mnemonic for the relation
Pf−1(F) = P(f−1(F)) and which is less awkward when f itself is a func-
tion with a complicated name, e.g., ΠI→M.

It is often convenient to abbreviate an English description the of a
probability of an event to the pseudo mathematical form Pr(f ∈ F),
which can be considered shorthand for Pf (F) = P(f−1(F)) and can be
read as “the probability that f is in F .”

If the alphabet A of a random variable f is not clear from context, then
we shall refer to f as an A-valued random variable. . If f is a measurable
function from (Ω,B) to (A,BA), we will say that f is B/BA-measurable
if the σ -fields might not be clear from context.

Given a probability space (Ω,B, P), a collection of subsets G is a sub-
σ -field if it is a σ -field and all its members are in B. A random variable
f : Ω → A is said to be measurable with respect to a sub-σ -field G if
f−1(H) ∈ G for all H ∈ BA.

Given a probability space (Ω,B, P) and a sub-σ -field G, for any event
H ∈ B the conditional probability m(H|G) is defined as any function,
say g, which satisfies the two properties

g is measurable with respect to G (1.11)

∫

G
ghdP =m(G

⋂
H); all G ∈ G. (1.12)

An important special case of conditional probability occurs when study-
ing the distributions of random variables defined on an underlying prob-
ability space. Suppose that X : Ω → AX and Y : Ω → AY are two ran-
dom variables defined on (Ω,B, P) with alphabets AX and AY and σ -
fields BAX and BAY , respectively. Let PXY denote the induced distribu-
tion on (AX × AY ,BAX × BAY ), that is, PXY (F × G) = P(X ∈ F, Y ∈ G)
= P(X−1(F)

⋂
Y−1(G)). Let σ(Y) denote the sub-σ -field of B generated

by Y , that is, Y−1(BAY ). Since the conditional probability P(F|σ(Y)) is
real-valued and measurable with respect to σ(Y), it can be written as
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g(Y(ω)), ω ∈ Ω, for some function g(y). (See, for example, Lemma
5.2.1 of [55] or Lemma 6.1 of [58].) Define P(F|y) = g(y). For a fixed
F ∈ BAX define the conditional distribution of F given Y = y by

PX|Y (F|y) = P(X−1(F)|y); y ∈ BAY .

From the properties of conditional probability,

PXY (F ×G) =
∫

G
PX|Y (F|y)dPY (y);F ∈ BAX , G ∈ BAY . (1.13)

It is tempting to think that for a fixed y , the set function defined by
PX|Y (F|y); F ∈ BAX is actually a probability measure. This is not the case
in general. When it does hold for a conditional probability measure, the
conditional probability measure is said to be regular. This text will focus
on standard alphabets for which regular conditional probabilities always
exist.

1.2 Random Processes and Dynamical Systems

We now consider two mathematical models for a source: A random pro-
cess and a dynamical system. The first is the familiar one in elementary
courses, a source is just a random process or sequence of random vari-
ables. The second model is possibly less familiar — a random process
can also be constructed from an abstract dynamical system consisting
of a probability space together with a transformation on the space. The
two models are connected by considering a time shift to be a transfor-
mation.

A discrete time random process or, simply, a random process is a se-
quence of random variables {Xn}n∈T or {Xn;n ∈ T}, where T is an in-
dex set, defined on a common probability space (Ω,B, P). We define a
source as a random process, although we could also use the alternative
definition of a dynamical system to be introduced shortly. We usually
assume that all of the random variables share a common alphabet, say
A. The two most common index sets of interest are the set of all inte-
gers Z = {· · · ,−2,−1,0,1,2, · · · }, in which case the random process
is referred to as a two-sided random process, and the set of all nonneg-
ative integers Z+ = {0,1,2, · · · }, in which case the random process is
said to be one-sided. One-sided random processes will often prove to be
far more difficult in theory, but they provide better models for physical
random processes that must be “turned on” at some time or which have
transient behavior.

Observe that since the alphabet A is general, we could also model
continuous time random processes in the above fashion by letting A
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consist of a family of waveforms defined on an interval, e.g., the random
variable Xn could in fact be a continuous time waveform X(t) for t ∈
[nT , (n+ 1)T), where T is some fixed positive real number.

The above definition does not specify any structural properties of the
index set T . In particular, it does not exclude the possibility that T be
a finite set, in which case “random vector” would be a better name than
“random process.” In fact, the two cases of T = Z and T = Z+ will be
the only important examples for our purposes. Nonetheless, the general
notation of T will be retained in order to avoid having to state separate
results for these two cases.

An abstract dynamical system consists of a probability space (Ω,B, P)
together with a measurable transformation T : Ω → Ω of Ω into itself.
Measurability means that if F ∈ B, then also T−1F = {ω : Tω ∈ F}∈ B.
The quadruple (Ω,B,P ,T ) is called a dynamical system in ergodic the-
ory. The interested reader can find excellent introductions to classical
ergodic theory and dynamical system theory in the books of Halmos
[73] and Sinai [170]. More complete treatments may be found in [16],
[164], [149], [30], [191], [140], [46]. The term “dynamical systems” comes
from the focus of the theory on the long term “dynamics” or “dynam-
ical behavior” of repeated applications of the transformation T on the
underlying measure space.

An alternative to modeling a random process as a sequence or family
of random variables defined on a common probability space is to con-
sider a single random variable together with a transformation defined on
the underlying probability space. The outputs of the random process will
then be values of the random variable taken on transformed points in the
original space. The transformation will usually be related to shifting in
time and hence this viewpoint will focus on the action of time itself. Sup-
pose now that T is a measurable mapping of points of the sample space
Ω into itself. It is easy to see that the cascade or composition of measur-
able functions is also measurable. Hence the transformation Tn defined
as T 2ω = T(Tω) and so on (Tnω = T(Tn−1ω)) is a measurable function
for all positive integers n. If f is an A-valued random variable defined
on (Ω, B), then the functions fTn : Ω→ A defined by fTn(ω) = f(Tnω)
for ω ∈ Ω will also be random variables for all n in Z+. Thus a dynam-
ical system together with a random variable or measurable function f
defines a one-sided random process {Xn}n∈Z+ by Xn(ω) = f(Tnω). If it
should be true that T is invertible, that is, T is one-to-one and its inverse
T−1 is measurable, then one can define a two-sided random process by
Xn(ω) = f(Tnω), all n in Z.

The most common dynamical system for modeling random processes
is that consisting of a sequence space Ω containing all one- or two-sided
A-valued sequences together with the shift transformation T , that is,
the transformation that maps a sequence {xn} into the sequence {xn+1}
wherein each coordinate has been shifted to the left by one time unit.
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Thus, for example, let Ω = AZ+ = {all x = (x0, x1, · · · ) with xi ∈ A for
all i} and define T : Ω → Ω by T(x0, x1, x2, · · · ) = (x1, x2, x3, · · · ). T
is called the shift or left shift transformation on the one-sided sequence
space. The shift for two-sided spaces is defined similarly. The sequence-
space model of a random process is sometimes referred to as the Kol-
mogorov representation of a process.

The different models provide equivalent models for a given process
— one emphasizing the sequence of outputs and the other emphasis-
ing the action of a transformation on the underlying space in producing
these outputs. In order to demonstrate in what sense the models are
equivalent for given random processes, we next turn to the notion of the
distribution of a random process.

1.3 Distributions

While in principle all probabilistic quantities associated with a random
process can be determined from the underlying probability space, it is
often more convenient to deal with the induced probability measures or
distributions on the space of possible outputs of the random process. In
particular, this allows us to compare different random processes with-
out regard to the underlying probability spaces and thereby permits us
to reasonably equate two random processes if their outputs have the
same probabilistic structure, even if the underlying probability spaces
are quite different.

We have already seen that each random variable Xn of the random
process {Xn} inherits a distribution because it is measurable. To de-
scribe a process, however, we need more than just probability measures
on output values of separate individual random variables; we require
probability measures on collections of random variables, that is, on se-
quences of outputs. In order to place probability measures on sequences
of outputs of a random process, we first must construct the appropriate
measurable spaces. A convenient technique for accomplishing this is to
consider product spaces, spaces for sequences formed by concatenating
spaces for individual outputs.

Let T denote any finite or infinite set of integers. In particular, T =
Z(n) = {0,1,2, · · · , n − 1}, T = Z, or T = Z+. Define xT = {xi}i∈T. For
example, xZ = (· · · , x−1, x0, x1, · · · ) is a two-sided infinite sequence.
When T = Z(n) we abbreviate xZ(n) to simply xn . Given alphabets
Ai, i ∈ T , define the cartesian product space

×
i∈T
Ai = {all xT : xi,∈ Ai all i in T}.
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In most cases all of the Ai will be replicas of a single alphabet A and
the above product will be denoted simply by AT . Thus, for example,
A{m,m+1,··· ,n} is the space of all possible outputs of the process from
time m to time n; AZ is the sequence space of all possible outputs of a
two-sided process. We shall abbreviate the notation for the space AZ(n),
the space of all n dimensional vectors with coordinates in A, by An .

To obtain useful σ -fields of the above product spaces, we introduce
the idea of a rectangle in a product space. A rectangle in AT taking values
in the coordinate σ -fields Bi, i ∈ J, is defined as any set of the form

B = {xT ∈ AT : xi ∈ Bi; all i in J}, (1.14)

where J is a finite subset of the index set T and Bi ∈ Bi for all i ∈ J.
(Hence rectangles are sometimes referred to as finite dimensional rect-
angles.) A rectangle as in (1.14) can be written as a finite intersection of
one-dimensional rectangles as

B =
⋂

i∈J
{xT ∈ AT : xi ∈ Bi} =

⋂

i∈J
Xi
−1(Bi) (1.15)

where here we consider Xi as the coordinate functions Xi : AT → A
defined by Xi(xT) = xi.

As rectangles in AT are clearly fundamental events, they should be
members of any useful σ -field of subsets of AT. Define the product σ -
field BAT as the smallest σ -field containing all of the rectangles, that is,
the collection of sets that contains the clearly important class of rect-
angles and the minimum amount of other stuff required to make the
collection a σ -field. To be more precise, given an index set T of integers,
let RECT(Bi, i ∈ T) denote the set of all rectangles in AT taking coordi-
nate values in sets in Bi, i ∈ T . We then define the product σ -field of AT

by
BAT = σ(RECT(Bi, i ∈ T)). (1.16)

Consider an index set T and an A-valued random process {Xn}n∈T
defined on an underlying probability space (Ω,B, P). Given any index
set J ⊂ T , measurability of the individual random variables Xn im-
plies that of the random vectors XJ = {Xn;n ∈ J}. Thus the measur-
able space (AJ,BAJ) inherits a probability measure from the underlying
space through the random variables XJ. Thus in particular the measur-
able space (AT,BAT) inherits a probability measure from the underly-
ing probability space and thereby determines a new probability space
(AT,BAT, PXT), where the induced probability measure is defined by

PXT(F) = P((XT)−1(F)) = P(ω : XT(ω) ∈ F); F ∈ BAT. (1.17)
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Such probability measures induced on the outputs of random variables
are referred to as distributions for the random variables, exactly as in the
simpler case first treated. When T = {m,m + 1, · · · ,m + n − 1}, e.g.,
when we are treating Xnm = (Xn, · · · , Xm+n−1) taking values in An, the
distribution is referred to as an n-dimensional or nth order distribution
and it describes the behavior of an n-dimensional random variable. If T
is the entire process index set, e.g., if T = Z for a two-sided process or
T = Z+ for a one-sided process, then the induced probability measure is
defined to be the distribution of the process. Thus, for example, a proba-
bility space (Ω,B, P) together with a doubly infinite sequence of random
variables {Xn}n∈Z induces a new probability space (AZ,BAZ, PXZ) and
PXZ is the distribution of the process. For simplicity, let us now denote
the process distribution simply bym. We shall call the probability space
(AT,BAT,m) induced in this way by a random process {Xn}n∈Z the out-
put space or sequence space of the random process.

Since the sequence space (AT,BAT,m) of a random process {Xn}n∈Z
is a probability space, we can define random variables and hence also
random processes on this space. One simple and useful such definition
is that of a sampling or coordinate or projection function defined as
follows: Given a product space AT, define the sampling functions Πn :
AT → A by

Πn(xT) = xn, xT ∈ AT; n ∈ T. (1.18)

The sampling function is named Π since it is also a projection. Observe
that the distribution of the random process {Πn}n∈T defined on the
probability space (AT,BAT,m) is exactly the same as the distribution of
the random process {Xn}n∈T defined on the probability space (Ω,B, P).
In fact, so far they are the same process since the {Πn} simply read off
the values of the {Xn}.

What happens, however, if we no longer build the Πn on the Xn, that
is, we no longer first select ω from Ω according to P , then form the se-
quence xT = XT(ω) = {Xn(ω)}n∈T, and then define Πn(xT) = Xn(ω)?
Instead we directly choose an x in AT using the probability measure m
and then view the sequence of coordinate values. In other words, we are
considering two completely separate experiments, one described by the
probability space (Ω,B, P) and the random variables {Xn} and the other
described by the probability space (AT,BAT,m) and the random vari-
ables {Πn}. In these two separate experiments, the actual sequences se-
lected may be completely different. Yet intuitively the processes should
be the “same” in the sense that their statistical structures are identical,
that is, they have the same distribution. We make this intuition formal
by defining two processes to be equivalent if their process distributions
are identical, that is, if the probability measures on the output sequence
spaces are the same, regardless of the functional form of the random
variables of the underlying probability spaces. In the same way, we con-
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sider two random variables to be equivalent if their distributions are
identical.

We have described above two equivalent processes or two equiva-
lent models for the same random process, one defined as a sequence
of random variables on a perhaps very complicated underlying proba-
bility space, the other defined as a probability measure directly on the
measurable space of possible output sequences. The second model will
be referred to as a directly given random process or a the Kolmogorov

model for the random process.
Which model is “better” depends on the application. For example, a

directly given model for a random process may focus on the random
process itself and not its origin and hence may be simpler to deal with.
If the random process is then coded or measurements are taken on the
random process, then it may be better to model the encoded random
process in terms of random variables defined on the original random
process and not as a directly given random process. This model will
then focus on the input process and the coding operation. We shall let
convenience determine the most appropriate model.

We can now describe yet another model for the above random process,
that is, another means of describing a random process with the same dis-
tribution. This time the model is in terms of a dynamical system. Given
the probability space (AT,BAT,m), define the (left) shift transformation
T : AT → AT by

T(xT) = T({xn}n∈T) = yT = {yn}n∈T,

where
yn = xn+1, n ∈ T.

Thus the nth coordinate of yT is simply the (n+ 1)st coordinate of xT.
(We assume that T is closed under addition and hence if n and 1 are in
T, then so is (n + 1).) If the alphabet of such a shift is not clear from
context, we will occasionally denote the shift by TA or TAT . The shift can
easily be shown to be measurable.

Consider next the dynamical system (AT,BAT, P , T) and the random
process formed by combining the dynamical system with the zero time
sampling function Π0 (we assume that 0 is a member of T ). If we define
Yn(x) = Π0(Tnx) for x = xT ∈ AT, or, in abbreviated form, Yn = Π0Tn,
then the random process {Yn}n∈T is equivalent to the processes de-
veloped above. Thus we have developed three different, but equivalent,
means of producing the same random process. Each will be seen to have
its uses.

The above development shows that a dynamical system is a more fun-
damental entity than a random process since we can always construct an
equivalent model for a random process in terms of a dynamical system
— use the directly given representation, shift transformation, and zero
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time sampling function. Two important properties of dynamical systems
or random processes can be defined at this point, the implications will
be developed throughout the book. A dynamical system (AT,BAT, P , T)
is said to be stationary (with respect to T ) if the distribution P is invari-
ant with respect to P , that is,

P(T−1F) = P(F), all F ∈ BAT. (1.19)

In other words, probabilities of process events are unchanged by shift-
ing. The dynamical system is said to be ergodic if

If T−1F = F, then P(F) = 0 or 1, (1.20)

that is, all invariant events are trivial. Note that neither definition implies
or excludes the other.

The shift transformation on a sequence space introduced above is the
most important transformation that we shall encounter. It is not, how-
ever, the only important transformation. When dealing with transforma-
tions we will usually use the notation T to reflect the fact that it is often
related to the action of a simple left shift of a sequence, yet it should
be kept in mind that occasionally other operators will be considered and
the theory to be developed will remain valid, even if T is not required to
be a simple time shift. For example, we will also consider block shifts.

Most texts on ergodic theory deal with the case of an invertible trans-
formation, that is, where T is a one-to-one transformation and the in-
verse mapping T−1 is measurable. This is the case for the shift on AZ,
the two-sided shift. It is not the case, however, for the one-sided shift
defined on AZ+ and hence we will avoid use of this assumption. We will,
however, often point out in the discussion what simplifications or special
properties arise for invertible transformations.

Since random processes are considered equivalent if their distribu-
tions are the same, we shall adopt the notation [A,m,X] for a random
process {Xn;n ∈ T} with alphabet A and process distribution m, the
index set T usually being clear from context. We will occasionally abbre-
viate this to the more common notation [A,m], but it is often convenient
to note the name of the output random variables as there may be several,
e.g., a random process may have an input X and output Y . By “the asso-
ciated probability space” of a random process [A,m,X] we shall mean
the sequence probability space (AT,BAT,m). It will often be convenient
to consider the random process as a directly given random process, that
is, to view Xn as the coordinate functions Πn on the sequence space AT

rather than as being defined on some other abstract space. This will not
always be the case, however, as often processes will be formed by coding
or communicating other random processes. Context should render such
bookkeeping details clear.
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1.4 Standard Alphabets

A measurable space (A,BA) is a standard space if there exists a sequence
of finite fields Fn; n = 1,2, · · · with the following properties:

(1)Fn ⊂ Fn+1 (the fields are increasing).
(2)BA is the smallest σ -field containing all of the Fn (the Fn generate

BA or BA = σ(
⋃∞
n=1Fn)).

(3)An event Gn ∈ Fn is called an atom of the field if it is nonempty and
and its only subsets which are also field members are itself and the
empty set. If Gn ∈ Fn; n = 1,2, · · · are atoms and Gn+1 ⊂ Gn for all
n, then

∞⋂

n=1

Gn 6= ∅.

Standard spaces are important for several reasons: First, they are a gen-
eral class of spaces for which two of the key results of probability hold:
(1) the Kolmogorov extension theorem showing that a random process
is completely described by its finite order distributions, and (2) the ex-
istence of regular conditional probability measures. Thus, in particular,
the conditional probability measure PX|Y (F|y) of (1.13) is regular if the
alphabets AX and AY are standard and hence for each fixed y ∈ AY the
set function PX|Y (F|y); F ∈ BAX is a probability measure. In this case we
can interpret PX|Y (F|y) as P(X ∈ F|Y = y). Second, the ergodic decom-
position theorem of ergodic theory holds for such spaces. The ergodic
decomposition implies that any stationary process is equivalent to a mix-
ture of stationary and ergodic processes; that is, a stationary nonergodic
source can be viewed as a random selection of one of a family of sta-
tionary and ergodic sources. Third, the class is sufficiently general to in-
clude virtually all examples arising in applications, e.g., discrete spaces,
the real line, Euclidean vector spaces, Polish spaces (complete separable
metric spaces), etc. The reader is referred to [55] or [58] and the refer-
ences cited therein for a detailed development of these properties and
examples of standard spaces.

Standard spaces are not the most general space for which the Kol-
mogorov extension theorem, the existence of conditional probability,
and the ergodic decomposition theorem all hold. These results also hold
for perfect spaces which include standard spaces as a special case. (See,
e.g., [161],[174],[155], [114].) We limit discussion to standard spaces,
however, as they are easier to characterize and work with and they are
sufficiently general to handle most cases encountered in applications. Al-
though standard spaces are not the most general for which the required
probability theory results hold, they are the most general for which all
finitely additive normalized measures extend to countably additive prob-
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ability measures, a property which greatly eases the proof of many of the
desired results.

Throughout this book we shall assume that the alphabet A of the in-
formation source is a standard space.

1.5 Expectation

Let (Ω,B,m) be a probability space, e.g., the probability space of a di-
rectly given random process with alphabet A, (AT, BA

T,m). A real-valued
random variable f : Ω → R will also be called a measurement since it
is often formed by taking a mapping or function of some other set of
more general random variables, e.g., the outputs of some random pro-
cess which might not have real-valued outputs. Measurements made on
such processes, however, will always be assumed to be real.

Suppose next we have a measurement f whose range space or alpha-

bet f(Ω) ⊂ R of possible values is finite. Then f is called a discrete

random variable or discrete measurement or digital measurement or, in
the common mathematical terminology, a simple function.

Given a discrete measurement f , suppose that its range space is
f(Ω) = {bi, i = 1, · · · , N}, where the bi are distinct. Define the sets
Fi = f−1(bi) = {x : f(x) = bi}, i = 1, · · · , N . Since f is measurable,
the Fi are all members of B. Since the bi are distinct, the Fi are disjoint.
Since every input point in Ω must map into some bi, the union of the
Fi equals Ω. Thus the collection {Fi; i = 1,2, · · · , N} forms a partition
of Ω. We have therefore shown that any discrete measurement f can be
expressed in the form

f(x) =
M∑

i=1

bi1Fi(x), (1.21)

where bi ∈ R, the Fi ∈ B form a partition of Ω, and 1Fi is the indicator
function of Fi, i = 1, · · · ,M . Every simple function has a unique repre-
sentation in this form with distinct bi and {Fi} a partition.

The expectation or ensemble average or probabilistic average or mean

of a discrete measurement f : Ω → R as in (1.21) with respect to a
probability measure m is defined by

Emf =
M∑

i=0

bim(Fi). (1.22)

An immediate consequence of the definition of expectation is the sim-
ple but useful fact that for any event F in the original probability space,

Em1F =m(F),
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that is, probabilities can be found from expectations of indicator func-
tions.

Again let (Ω,B,m) be a probability space and f : Ω → R a measure-
ment, that is, a real-valued random variable or measurable real-valued
function. Define the sequence of quantizers qn : R→ R, n = 1,2, · · · , as
follows:

qn(r) =





n n ≤ r
(k− 1)2−n (k− 1)2−n ≤ r < k2−n, k = 1,2, · · · , n2n

−(k− 1)2−n −k2−n ≤ r < −(k− 1)2−n; k = 1,2, · · · , n2n

−n r < −n.

We now define expectation for general measurements in two steps. If
f ≥ 0, then define

Emf = lim
n→∞Em(qn(f )). (1.23)

Since the qn are discrete measurements on f , the qn(f ) are discrete mea-
surements on Ω (qn(f )(x) = qn(f (x)) is a simple function) and hence
the individual expectations are well defined. Since the qn(f ) are nonde-
creasing, so are the Em(qn(f )) and this sequence must either converge
to a finite limit or grow without bound, in which case we say it converges
to ∞. In both cases the expectation Emf is well defined, although it may
be infinite.

If f is an arbitrary real random variable, define its positive and neg-
ative parts f+(x) = max(f (x),0) and f−(x) = −min(f (x),0) so that
f(x) = f+(x)− f−(x) and set

Emf = Emf+ − Emf− (1.24)

provided this does not have the form +∞−∞, in which case the expec-
tation does not exist. It can be shown that the expectation can also be
evaluated for nonnegative measurements by the formula

Emf = sup
discrete g: g≤f

Emg.

The expectation is also called an integral and is denoted by any of the
following:

Emf =
∫
fdm =

∫
f(x)dm(x) =

∫
f(x)m(dx).

The subscript m denoting the measure with respect to which the expec-
tation is taken will occasionally be omitted if it is clear from context.

A measurement f is said to be integrable orm-integrable if Emf exists
and is finite. A function is integrable if and only if its absolute value is
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integrable. Define L1(m) to be the space of all m-integrable functions.
Given any m-integrable f and an event B, define

∫

B
fdm =

∫
f(x)1B(x)dm(x).

Two random variables f and g are said to be equalm-almost-everywhere
or equal m-a.e. or equal with m-probability one if m(f = g) = m({x :
f(x) = g(x)}) = 1. The m- is dropped if it is clear from context.

Given a probability space (Ω,B,m), suppose that G is a sub-σ -field
of B, that is, it is a σ -field of subsets of Ω and all those subsets are
in B (G ⊂ B). Let f : Ω → R be an integrable measurement. Then the
conditional expectation E(f |G) is described as any function, say h(ω),
that satisfies the following two properties:

h(ω) is measurable with respect to G (1.25)

∫

G
hdm =

∫

G
f dm; all G ∈ G. (1.26)

If a regular conditional probability distribution given G exists, e.g., if
the space is standard, then one has a constructive definition of condi-
tional expectation: E(f |G)(ω) is simply the expectation of f with re-
spect to the conditional probability measure m(.|G)(ω). Applying this
to the example of two random variables X and Y with standard alpha-
bets described in Section 1.2 we have from (1.26) that for integrable
f : AX ×AY → R

E(f) =
∫
f(x,y)dPXY (x,y) =

∫
(

∫
f(x,y)dPX|Y (x|y))dPY (y). (1.27)

In particular, for fixed y , f(x,y) is an integrable (and measurable) func-
tion of x.

Equation (1.27) provides a generalization of (1.13) from rectangles to
arbitrary events. For an arbitrary F ∈ BAX×AY we have that

PXY (F) =
∫ (∫

1F(x,y)dPX|Y (x|y)
)
dPY (y) =

∫
PX|Y (Fy |y)dPY (y),

(1.28)
where Fy = {x : (x,y) ∈ F} is called the section of F at y . If F is measur-
able, then so is Fy for all y . Alternatively, since 1F(x,y) is measurable
with respect to x for each fixed y , Fy ∈ BAX and the inner integral is
just ∫

x:(x,y)∈F
dPX|Y (x|y) = PX|Y (Fy |y).
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1.6 Asymptotic Mean Stationarity

Recall that a dynamical system (or the associated source) (Ω,B, P , T) is
said to be stationary if P(T−1G) = P(G) for all G ∈ B. It is said to be
asymptotically mean stationary or, simply, AMS if the limit

P(G) = lim
n→∞

1

n

n−1∑

k=0

P(T−kG) (1.29)

exists for all G ∈ B. The following theorems summarize several impor-
tant properties of AMS sources. Details may be found in Chapter 6 of
[55] or Chapter 7 of [58].

Theorem 1.2. If a dynamical system (Ω,B, P , T) is AMS, then P defined in

(1.29) is a probability measure and (Ω,B, P , T) is stationary. The distribu-

tion P is called the stationary mean of P . If an event G is invariant in the

sense that T−1G = G, then

P(G) = P(G).

If a random variable g is invariant in the sense that g(Tx) = g(x) with
P probability 1, then

EPg = EPg.
The stationary mean P asymptotically dominates P in the sense that if
P(G) = 0, then

lim sup
n→∞

P(T−nG) = 0.

Theorem 1.3. Given an AMS source {Xn} let σ(Xn, Xn+1, · · · ) denote the

σ -field generated by the random variables Xn, · · · , that is, the smallest

σ -field with respect to which all these random variables are measurable.

Define the tail σ -field F∞ by

F∞ =
∞⋂

n=0

σ(Xn, · · · ).

If G ∈ F∞ and P(G) = 0, then also P(G) = 0.

The tail σ -field can be thought of as events that are determinable by
looking only at samples of the sequence in the arbitrarily distant fu-
ture. The theorem states that the stationary mean dominates the original
measure on such tail events in the sense that zero probability under the
stationary mean implies zero probability under the original source.
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1.7 Ergodic Properties

Two of the basic results of ergodic theory that will be called upon exten-
sively are the pointwise or almost-everywhere ergodic theorem and the
ergodic decomposition theorem We quote these results along with some
relevant notation for reference. Detailed developments may be found in
Chapters 6–8 of [55] or Chapters 7–10 of [58]. The ergodic theorem states
that AMS dynamical systems (and hence also sources) have convergent
sample averages, and it characterizes the limits.

Theorem 1.4. If a dynamical system (Ω,B,m,T) is AMS with stationary

mean m and if f ∈ L1(m), then with probability one under m and m

lim
n→∞

1

n

n−1∑

i=0

fT i = Em(f |I),

where I is the sub-σ -field of invariant events, that is, events G for which
T−1G = G.

The basic idea of the ergodic decomposition is that any stationary
source which is not ergodic can be represented as a mixture of stationary
ergodic components or subsources.

Theorem 1.5. Ergodic Decomposition Given the standard sequence space

(Ω,B) with shift T as previously, there exists a family of stationary er-

godic measures {px ; x ∈ Ω}, called the ergodic decomposition, with the

following properties:

(a)pTx = px .

(b)For any stationary measure m,

m(G) =
∫
px(G)dm(x); all G ∈ B.

(c) For any g ∈ L1(m)

∫
gdm =

∫ (∫
gdpx

)
dm(x).

It is important to note that the same collection of stationary ergodic com-
ponents works for any stationary measure m. This is the strong form of
the ergodic decomposition.

The final result of this section is a variation on the ergodic decompo-
sition. To describe the result, we need to digress briefly to introduce a
metric on spaces of probability measures. A thorough development can
be found in Chapter 8 of [55] or Chapter 9 of [58]. We have a standard se-
quence measurable space (Ω,B) and hence we can generate the σ -field B
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by a countable field F = {Fn; n = 1,2, · · · }. Given such a countable gen-
erating field, a distributional distance between two probability measures
p and m on (Ω,B) is defined by

d(p,m) =
∞∑

n=1

2−n|p(Fn)−m(Fn)|.

Any choice of a countable generating field yields a distributional dis-
tance. Such a distance or metric yields a measurable space of probability
measures as follows: Let Λ denote the space of all probability measures
on the original measurable space (Ω,B). Let B(Λ) denote the σ -field of
subsets of Λ generated by all open spheres using the distributional dis-
tance, that is, all sets of the form {p : d(p,m) ≤ ǫ} for some m ∈ Λ
and some ǫ > 0. We can now consider properties of functions that carry
sequences in our original space into probability measures. The following
is Theorem 8.5.1 of [55] and Theorem 10.1 of [58].

Theorem 1.6. A Variation on the Ergodic Decomposition Fix a standard

measurable space (Ω,B) and a transformation T : Ω → Ω. Then there

are a standard measurable space (Λ,L), a family of stationary ergodic

measures {mλ;λ ∈ Λ} on (Ω,B), and a measurable mapping ψ : Ω → Λ
such that

(a)ψ is invariant (ψ(Tx) = ψ(x) all x);

(b)if m is a stationary measure on (Ω,B) and Pψ is the induced distribu-

tion; that is, Pψ(G) =m(ψ−1(G)) for G ∈ Λ (which is well defined from

(a)), then

m(F) =
∫
dm(x)mψ(x)(F) =

∫
dPψ(λ)mλ(F), all F ∈ B,

and if f ∈ L1(m), then so is
∫
fdmλ Pψ-a.e. and

Emf =
∫
dm(x)Emψ(x)f =

∫
dPψ(λ)Emλf .

Finally, for any event F , mψ(F) = m(F|ψ), that is, given the ergodic

decomposition and a stationary measure m , the ergodic component λ
is a version of the conditional probability under m given ψ = λ.

The following corollary to the ergodic decomposition is Lemma 8.6.2
of [55] and Lemma 10.4 of [58]. It states that the conditional probability
of a future event given the entire past is unchanged by knowing the
ergodic component in effect. This is because the infinite past determines
the ergodic component in effect.

Corollary 1.1. Suppose that {Xn} is a two-sided stationary process with

distribution m and that {mλ;λ ∈ Λ} is the ergodic decomposition and ψ
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the ergodic component function. Then the mapping ψ is measurable with

respect to σ(X−1, X−2, · · · ) and

m((X0, X1, · · · ) ∈ F|X−1, X−2, · · · ) =
mψ((X0, X1, · · · ) ∈ F|X−1, X−2, · · · ); m− a.e.



Chapter 2

Pair Processes: Channels, Codes, and

Couplings

Abstract We have considered a random process or source {Xn} as a se-
quence of random entities, where the object produced at each time could
be quite general, e.g., a random variable, vector, or waveform. Hence se-
quences of pairs of random objects such as {Xn, Yn} are included in the
general framework. We now focus on the possible interrelations between
the two components of such a pair process. First consider the situation
where we begin with one source, say {Xn}, called the input and use ei-
ther a random or a deterministic mapping of the input sequence {Xn}
to form an output sequence {Yn}. We generally refer to the mapping as
a channel if it is random and a code if it is deterministic. Hence a code
is a special case of a channel and results for channels will immediately
imply corresponding results for codes. The initial point of interest will
be conditions on the structure of the channel under which the result-
ing pair process {Xn, Yn} will inherit stationarity and ergodic properties
from the original source {Xn}. We will also be interested in the behavior
resulting when the output of one channel serves as the input to another,
that is, when we form a new channel as a cascade of other channels. Such
cascades yield models of a communication system which typically has a
code mapping (called the encoder) followed by a channel followed by
another code mapping (called the decoder). Lastly, pair processes arise
naturally in other situations, including coupling two separate processes
by constructing a joint distribution. This chapter develops the context
for the development in future chapters of the properties of information
and entropy arising in pair processes.

2.1 Pair Processes

A common object throughout this book and the focus of this chapter
is the idea of a pair process. The notation will vary somewhat depend-
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ing on the specific application, but basically a pair process is a ran-
dom process with two components, e.g., a sequence of random variables
{(Xn, Yn);n ∈ T} with alphabets A and B and process distribution p on
(AT×BT,B(AT×BT). When we wish to emphasize the names of the sepa-
rate component random variables and processes, we will often write AX
for A and AY for B and pXY for p. The process X or {Xn} will often have
the interpretation of being the input of a code or channel or a cascade of
such operations and Y or {Yn} the output. A pair process induces two
“marginal” process {Xn} with process distribution, say µ, and {Yn}, with
process distribution η. When we wish to emphasize the random variables
we might write pX or µX instead of µ and pY or µY or ηY instead of η. All
of these notations have their uses, and the added subscripts often help
sort out which random process or variables are important. Often we will
use X̂n as the second component instead of Y when it is viewed as an
approximation to the first component Xn.

2.2 Channels

A channel converts one information source – typically called the input

to the channel – into another – called the output. In general the opera-
tion is random and is specified by a conditional probability measure of
output sequences given an input sequence. The combination of an input
distribution with the channel yields a pair process, a process with an
input component and an output component. If the channel is determin-
istic rather than random, the operation is called a code. In this section
the basic definitions of channels and codes are introduced.

A fundamental nuisance in the development of channels and codes is
the notion of time. So far we have considered pair processes where at
each unit of time, one random object is produced for each coordinate of
the pair. In the channel or code example, this corresponds to one output
for every input. Interesting communication systems do not always easily
fit into this framework, and this can cause serious problems in notation
and in the interpretation and development of results. For example, sup-
pose that an input source consists of a sequence of real numbers and
let T denote the time shift on the real sequence space. Suppose that the
output source consists of a binary sequence and let S denote its shift.
Suppose also that the channel is such that for each real number in, three
binary symbols are produced. This fits our usual framework if we con-
sider each output variable to consist of a binary three-tuple since then
there is one output vector for each input symbol. One must be careful,
however, when considering the stationarity of such a system. Do we con-
sider the output process to be physically stationary if it is stationary
with respect to S or with respect to S3? The former might make more
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sense if we are looking at the output alone, the latter if we are looking
at the output in relation to the input. How do we define stationarity for
the pair process? Given two sequence spaces, we might first construct
a shift on the pair sequence space as simply the cartesian product of
the shifts, e.g., given an input sequence x and an output sequence y
define a shift T∗ by T∗(x,y) = (Tx, Sy). While this might seem nat-
ural given only the pair random process {Xn, Yn}, it is not natural in
the physical context that one symbol of X yields three symbols of Y . In
other words, the two shifts do not correspond to the same amount of
time. Here the more physically meaningful shift on the pair space would
be T ′(x,y) = (Tx, S3y) and the more physically meaningful questions
on stationarity and ergodicity relate to T ′ and not to T∗. The problem
becomes even more complicated when channels or codes produce a vary-
ing number of output symbols for each input symbol, where the num-
ber of symbols depends on the input sequence. Such variable rate codes
arise often in practice, especially for noiseless coding applications such
as Huffman, Lempel-Ziv, and arithmetic codes. While we will not treat
such variable rate systems in any detail, they point out the difficulty that
can arise associating the mathematical shift operation with physical time
when we are considering cartesian products of spaces, each having their
own shift.

There is no easy way to solve this problem notationally. We adopt the
following view as a compromise which is usually adequate for fixed-rate
systems. We will be most interested in pair processes that are station-
ary in the physical sense, that is, whose statistics are not changed when
both are shifted by an equal amount of physical time. This is the same
as stationarity with respect to the product shift if the two shifts corre-
spond to equal amounts of physical time. Hence for simplicity we will
usually focus on this case. More general cases will be introduced when
appropriate to point out their form and how they can be put into the
matching shift structure by considering groups of symbols and different
shifts. This will necessitate occasional discussions about what is meant
by stationarity or ergodicity for a particular system.

The mathematical generalization of Shannon’s original notions of
sources, codes, and channels are due to Khinchine [87] [88]. Khinchine’s
results characterizing stationarity and ergodicity of channels were cor-
rected and developed by Adler [2].

Say we are given a source [A,X, µ], that is, a sequence of A-valued
random variables {Xn;n ∈ T} defined on a common probability space
(Ω,F , P) having a process distribution µ defined on the measurable
sequence space (BT,BAT). We shall let X = {Xn;n ∈ T} denote the
sequence-valued random variable, that is, the random variable taking
values in AT according to the distribution µ. Let B be another alphabet
with a corresponding measurable sequence space (AT,BBT). We assume
as usual that A and B are standard and hence so are their sequence
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spaces and cartesian products. A channel [A, ν, B] with input alphabet
A and output alphabet B (we denote the channel simply by ν when these
alphabets are clear from context) is a family of probability measures
{νx ;x ∈ AT} on (BT,BBT) (the output sequence space) such that for
every output event F ∈ BBT νx(F) is a measurable function of x. This
measurability requirement ensures that the set function p specified on
the joint input/output space (AT×BT), BAT×BBT) by its values on rect-
angles as

p(G × F) =
∫

G
dµ(x)νx(F);F ∈ BBT, G ∈ BAT,

is well defined. The set function p is nonnegative, normalized, and count-
ably additive on the field generated by the rectangles G × F , G ∈ BAT,
F ∈ BBT. Thus p extends to a probability measure on the joint in-
put/output space, which is sometimes called the hookup of the source µ
and channel ν . We will often denote this joint measure by µν . The cor-
responding sequences of random variables are called the input/output

process.
Thus a channel is a probability measure on the output sequence space

for each input sequence such that a joint input/output probability mea-
sure is well-defined. The above equation shows that a channel is simply
a regular conditional probability, in particular,

νx(F) = p((x,y) : y ∈ F|x);F ∈ BBT, x ∈ AT.

We can relate a channel to the notation used previously for con-
ditional distributions by using the sequence-valued random variables
X = {Xn;n ∈ T} and Y = {Yn;n ∈ T}:

νx(F) = PY |X(F|x). (2.1)

Eq. (1.28) then provides the probability of an arbitrary input/output
event:

p(F) =
∫
dµ(x)νx(Fx),

where Fx = {y : (x,y) ∈ F} is the section of F at x.
If we start with a hookup p, then we can obtain the input distribution

µ as
µ(F) = p(F × BT);F ∈ BAT.

Similarly we can obtain the output distribution, say η, via

η(F) = p(AT × F);F ∈ BBT.

Suppose one now starts with a pair process distribution p and hence
also with the induced source distribution µ. Does there exist a channel ν
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for which p = µν? The answer is yes since the spaces are standard. One
can always define the conditional probability νx(F) = P(F × AT|X = x)
for all input sequences x, but this need not possess a regular version,
that is, be a probability measure for all x, in the case of arbitrary alpha-
bets. If the alphabets are standard, however, we have seen that a regular
conditional probability measure always exists.

2.3 Stationarity Properties of Channels

We now define a variety of stationarity properties for channels that are
related to, but not the same as, those for sources. The motivation be-
hind the various definitions is that stationarity properties of channels
coupled with those of sources should imply stationarity properties for
the resulting source-channel hookups.

The classical definition of a stationary channel is the following: Sup-
pose that we have a channel [A, ν, B] and suppose that TA and TB are the
shifts on the input sequence space and output sequence space, respec-
tively. The channel is stationary with respect to TA and TB or (TA, TB)-
stationary if

νx(T
−1
B F) = νTAx(F), x ∈AT, F ∈ BBT. (2.2)

If the transformations are clear from context then we simply say that the
channel is stationary. Intuitively, a right shift of an output event yields
the same probability as the left shift of an input event. The different
shifts are required because in general only TAx and not T−1

A x exists since
the shift may not be invertible and in general only T−1

B F and not TBF
exists for the same reason. If the shifts are invertible, e.g., the processes
are two-sided, then the definition is equivalent to

νTAx(TBF) = νT−1
A x
(T−1
B F) = νx(F), all x ∈ AT, F ∈ BBT (2.3)

that is, shifting the input sequence and output event in the same direc-
tion does not change the probability.

The fundamental importance of the stationarity of a channel is con-
tained in the following lemma.

Lemma 2.1. If a source [A, µ], stationary with respect to TA, is connected

to channel [A, ν, B], stationary with respect to TA and TB , then the result-

ing hookup µν is stationary with respect to the cartesian product shift

T = TA×B = TA × TB defined by T(x,y) = (TAx,TBy).

Proof: We have that

µν(T−1F) =
∫
dµ(x)νx((T

−1F)x).
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Now

(T−1F)x = {y : T(x,y) ∈ F} = {y : (TAx,TBy) ∈ F}
= {y : TBy ∈ FTAx} = T−1

B FTAx

and hence

µν(T−1F) =
∫
dµ(x)νx(T

−1
B FTAx).

Since the channel is stationary, however, this becomes

µν(T−1F) =
∫
dµ(x)νTAx(FTAx) =

∫
dµT−1

A (x)νx(Fx),

where we have used the change of variables formula. Since µ is station-
ary, however, the right hand side is

∫
dµ(x)νx(F),

which proves the lemma. ✷

Suppose next that we are told that a hookup µν is stationary. Does it
then follow that the source µ and channel ν are necessarily stationary?
The source must be since

µ(T−1
A F) = µν((TA × TB)−1(F × BT)) = µν(F × BT) = µ(F).

The channel need not be stationary, however, since, for example, the
stationarity could be violated on a set of µ measure 0 without affecting
the proof of the above lemma. This suggests a somewhat weaker notion
of stationarity which is more directly related to the stationarity of the
hookup. We say that a channel [A, ν, B] is stationary with respect to a

source [A, µ] if µν is stationary. We also state that a channel is stationary
µ-a.e. if it satisfies (2.2) for all x in a set of µ-probability one. If a channel
is stationary µ-a.e. and µ is stationary, then the channel is also stationary
with respect to µ. Clearly a stationary channel is stationary with respect
to all stationary sources. The reason for this more general view is that
we wish to extend the definition of stationary channels to asymptotically
mean stationary channels. The general definition extends; the classical
definition of stationary channels does not.

Observe that the various definitions of stationarity of channels imme-
diately extend to block shifts since they hold for any shifts defined on
the input and output sequence spaces, e.g., a channel stationary with re-
spect to TNA and TKB could be a reasonable model for a channel or code
that puts out K symbols from an alphabet B every time it takes in N
symbols from an alphabet A. We shorten the name (TNA , T

K
B )-stationary
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to (N,K)-stationary channel in this case. A stationary channel (without
modifiers) is simply a (1,1)-stationary channel in this sense.

The most general notion of stationarity that we are interested in is
that of asymptotic mean stationarity We define a channel [A, ν, B] to be
asymptotically mean stationary or AMS for a source [A, µ] with respect
to TA and TB if the hookup µν is AMS with respect to the product shift
TA × TB . As in the stationary case, an immediate necessary condition is
that the input source be AMS with respect to TA. A channel will be said
to be (TA, TB)-AMS if the hookup is (TA, TB)-AMS for all TA-AMS sources.

The following lemma shows that an AMS channel is indeed a gen-
eralization of the idea of a stationary channel and that the stationary
mean of a hookup of an AMS source to a stationary channel is simply
the hookup of the stationary mean of the source to the channel.

Lemma 2.2. Suppose that ν is (TA, TB)-stationary and that µ is AMS with

respect to TA. Let µ denote the stationary mean of µ and observe that µν
is stationary. Then the hookup µν is AMS with stationary mean

µν = µν.

Thus, in particular, ν is an AMS channel.

Proof: We have that

(T−iF)x = {y : (x,y) ∈ T−iF} = {y : T i(x,y) ∈ F}
= {y : (T iAx,T

i
By) ∈ F} = {y : T iBy ∈ FT iAx}

= T−iB FT iAx

and therefore since ν is stationary

µν(T−iF) =
∫
dµ(x)νx(T

−i
B FT iAx

)

=
∫
dµ(x)νT iAx

(FT iAx
) =

∫
dµT−iA (x)νx(F).

Therefore

1

n

n−1∑

i=0

µν(T−iF) = 1

n

n−1∑

i=0

∫
dµT−iA (x)νx(F)

→
n→∞

∫
dµ(x)νx(F) = µν(F)

from Lemma 6.5.1 of [55] or Lemma 7.9 if [58]. This proves that µν is
AMS and that the stationary mean is µν . ✷

A final property crucial to quantifying the behavior of random pro-
cesses is that of ergodicity. Hence we define a (stationary, AMS) channel
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ν to be ergodic with respect to (TA, TB) if it has the property that when-
ever a (stationary, AMS) ergodic source (with respect to TA) is connected
to the channel, the overall input/output process is (stationary, AMS) er-
godic. The following modification of Lemma 6.7.4 of [55] or Lemma 7.15
of [58] is the principal tool for proving a channel to be ergodic.

Lemma 2.3. An AMS (stationary) channel [A, ν, B] is ergodic if for all AMS

(stationary) sources µ and all sets of the form F = FA × FB , G = GA × GB
for rectangles FA, GA ∈ B∞A and FB , GB ∈ B∞B we have that for p = µν

lim
n→∞

1

n

n−1∑

i=0

p(T−iA×BF
⋂
G) = p(F)p(G), (2.4)

where p is the stationary mean of p (p if p is already stationary).

Proof: The proof parallels that of Lemma 6.7.4 of [55] or Lemma 7.15
of [58]. The result does not follow immediately from that lemma since
the collection of given sets does not itself form a field. Arbitrary events
F,G ∈ B∞A×B can be approximated arbitrarily closely by events in the
field generated by the above rectangles and hence given ǫ > 0 we can
find finite disjoint rectangles of the given form Fi, Gi, i = 1, · · · , L such
that if F0 =

⋃L
i=1 Fi and G0 =

⋃L
i=1Gi, then p(F∆F0), p(G∆G0), p(F∆F0),

and p(G∆G0) are all less than ǫ. Then

| 1
n

n−1∑

k=0

p(T−kF
⋂
G)− p(F)p(G)| ≤

| 1
n

n−1∑

k=0

p(T−kF
⋂
G)− 1

n

n−1∑

k=0

p(T−kF0

⋂
G0)|+

| 1
n

n−1∑

k=0

p(T−kF0

⋂
G0)− p(F0)p(G0)| + |p(F0)p(G0)− p(F)p(G)|.

Exactly as in Lemma 6.7.4 of [55], the rightmost term is bound above by
2ǫ and the first term on the left goes to zero as n→∞. The middle term
is the absolute magnitude of

1

n

n−1∑

k=0

p(T−k
⋃

i

Fi
⋂⋃

j

Gj)− p(
⋃

i

Fi)p(
⋃

j

Gj) =

∑

i,j


 1

n

n−1∑

k=0

p(T−kFi
⋂
Gj)− p(Fi)p(Gj)


 .

Each term in the finite sum converges to 0 by assumption. Thus p is
ergodic from Lemma 6.7.4 of [55] or Lemma 7.15 of [58]. ✷
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Because of the specific class of sets chosen, the above lemma con-
sidered separate sets for shifting and remaining fixed, unlike using the
same set for both purposes as in Lemma 6.7.4 of [55] or Lemma 7.15
of [58]. This was required so that the cross products in the final sum
considered would converge accordingly.

2.4 Extremes: Noiseless and Completely Random Channels

The first two examples of channels are the simplest, the first doing noth-
ing to the input but reproducing it perfectly and the second being use-
less (at least for communication purposes) since the output is random
and independent of the input. Both extremes provide simple examples
of the properties of channels, and the completely random example will
reappear when applying channel structure ideas to sources.

Noiseless Channels

A channel [A, ν, B] is said to be noiseless if A = B and

νx(F) =
{

1 x ∈ F
0 x 6∈ F

that is, with probability one the channel puts out what goes in, it acts as
an ideal wire. In engineering terms, it is discrete-time linear system with
impulse response equal to an impulse.

A noiseless channel is clearly stationary and ergodic.

Completely Random Channels

Suppose that η is a probability measure on the output space (BT,BBT)
and define a channel

νx(F) = η(F), F ∈ BBT, x ∈ AT.

Then it is easy to see that the input/output measure satisfies

p(G × F) = η(F)µ(G);F ∈ BBT, G ∈ BAT,

and hence the input/output measure is a product measure and the in-
put and output sequences are therefore independent of each other. This
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channel is called a completely random channel or product channel be-
cause the output is independent of the input.

This channel is quite useless because the output tells us nothing of the
input. The completely random channel is stationary (AMS) if the measure
η is stationary (AMS). Perhaps surprisingly, such a channel need not be
ergodic even if η is ergodic since the product of two stationary and er-
godic sources need not be ergodic. (See, e.g., [22].) We shall later see that
if η is also assumed to be weakly mixing, then the resulting channel is
ergodic.

A generalization of the noiseless channel that is of much greater in-
terest is the deterministic channel. Here the channel is not random, but
the output is formed by a general mapping of the input rather than being
the input itself.

2.5 Deterministic Channels and Sequence Coders

A channel [A, ν, B] is said to be deterministic if each input string x is
mapped into an output string f(x) by a measurable mapping f : AT →
BT. The conditional probability defining the channel is

νx(G) =
{

1 f(x) ∈ G
0 f(x) 6∈ G.

Note that such a channel can also be written as

νx(G) = 1f−1(G)(x).

A sequence coder is a deterministic channel, that is, a measurable map-
ping from one sequence space into another. It is easy to see that for a
deterministic code the hookup is specified by

p(F ×G) = µ(F
⋂
f−1(G))

and the output process has distribution

η(G) = µ(f−1(G)).

A sequence coder is said to be (TA, TB)-stationary (or just stationary)
or (TNA , T

K
B )-stationary (or just (N,K)-stationary) if the corresponding

channel is. Thus a sequence coder f is stationary if and only if f(TAx) =
TBf(x) and it is (N,K)- stationary if and only if f(TNA x) = TKB f(x).
Lemma 2.4. A stationary deterministic channel is ergodic.

Proof: From Lemma 2.3 it suffices to show that
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lim
n→∞

1

n

n−1∑

i=0

p(T−iA×BF
⋂
G) = p(F)P(G)

for all rectangles of the form F = FA × FB , FA ∈ BBT, FB ∈ BAT and
G = GA ×GB . Then

p(T−iA×BF
⋂
G) = p((T−iA FA

⋂
GA)× (T−iB FB

⋂
GB))

= µ((T−iA FA
⋂
GA)

⋂
f−1(T−iB FB

⋂
GB)).

Since f is stationary and since inverse images preserve set theoretic op-
erations,

f−1(T−iB FB
⋂
GB) = T−iA f−1(FB)

⋂
f−1(GB)

and hence

1

n

n−1∑

i=0

p(T−iA×BF
⋂
G) = 1

n

n−1∑

i=0

µ(T−iA (FA
⋂
f−1(FB))

⋂
GA

⋂
f−1(GB))

→
n→∞ µ(FA

⋂
f−1(FB))µ(GA

⋂
f−1(GB))

= p(FA × FB)p(GA ×GB)

since µ is ergodic. This means that the rectangles meet the required con-
dition. Some algebra then will show that finite unions of disjoint sets
meeting the conditions also meet the conditions and that complements
of sets meeting the conditions also meet them. This implies from the
good sets principle (see, for example, p. 14 of [55] or p. 50 in [58]) that
the field generated by the rectangles also meets the condition and hence
the lemma is proved. ✷

2.6 Stationary and Sliding-Block Codes

A stationary deterministic channel is also called a stationary code, so
it follows that the output of a stationary code with a stationary input
process is also stationary. A stationary code has a simple and useful
structure. Suppose one has a mapping f : AT → B, that is, a mapping
that maps an input sequence into a single output symbol. We can define
a complete output sequence y corresponding to an input sequence x by

yn = f(TnAx);n ∈ T, (2.5)

that is, we produce an output, then shift or slide the input sequence
by one time unit, and then we produce another output using the same
function, and so on. A mapping of this form is called a sliding-block code
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because it produces outputs by successively sliding an infinite-length
input sequence and each time using a fixed mapping to produce the out-
put. The sequence-to-symbol mapping implies a sequence coder, say f ,
defined by f(x) = {f(TnAx);n ∈ T}. Furthermore, f(TAx) = TBf(x),
that is, a sliding-block code induces a stationary sequence coder. Con-
versely, any stationary sequence coder f induces a sliding-block code f
for which (2.5) holds by the simple identification f(x) = (f (x))0, the
output at time 0 of the sequence coder. Thus the ideas of stationary
sequence coders mapping sequences into sequences and sliding-block
codes mapping sequences into letters by sliding the input sequence are
equivalent. We can similarly define an (N,K)-sliding-block code which
is a mapping f : AT → BK which forms an output sequence y from an
input sequence x via the construction

yKnK = f(TNnA x).

By a similar argument, (N,K)-sliding-block coders are equivalent to
(N,K)-stationary sequence coders. When dealing with sliding-block codes
we will usually assume for simplicity that K is 1. This involves no loss in
generality since it can be made true by redefining the output alphabet.

The following stationarity property of sliding-block codes follows
from the properties for stationary channels, but the proof is given for
completeness.

Lemma 2.5. If f is a stationary coding of an AMS process, then the process

{fn = fTn} is also AMS. If the input process is ergodic, then so is {fn}.
Proof: Suppose that the input process has alphabet AX and distribution
P and that the measurement f has alphabet Af . Define the sequence

mapping f : A∞X → A∞f by f(x) = {fn(x); n ∈ T}, where fn(x) =
f(Tnx) and T is the shift on the input sequence space A∞X . If T also

denotes the shift on the output space, then by construction f(Tx) =
Tf(x) and hence for any output event F , f

−1
(T−1F) = T−1f

−1
(F). Letm

denote the process distribution for the encoded process. Since m(F) =
P(f

−1
(F)) for any event F ∈ B(Af )∞ , we have using the stationarity of

the mapping f that

lim
n→∞

1

n

n−1∑

i=0

m(T−iF) = lim
n→∞

1

n

n−1∑

i=0

P(f
−1
(T−iF))

= lim
n→∞

1

n

n−1∑

i=0

P(T−if
−1
(F)) = P(f−1

(F)),

where P is the stationary mean of P . Thus m is AMS. If G is an in-

variant output event, then f
−1
(G) is also invariant since T−1f

−1
(G) =
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f
−1
(T−1G). Hence if input invariant sets can only have probability 1 or

0, the same is true for output invariant sets. ✷

Finite-length Sliding-Block Codes

Stationary or sliding-block codes have a simple description when the
sequence-to-symbol mapping characterizing the code depends on only a
finite number of the sequence values; that is, the mapping is measurable
with respect to a finite number of coordinates. As a particularly simple
example, consider the code depicted in Figure 2.1, where an IID process
{Zn} consisting of equiprobable coin flips is shifted into a length 3 shift
register at the completion of the shift the table is used to produce one
output value given the three binary numbers in the shift register. For

ZnZn−1Zn−2 Yn
000 0.7683
001 -0.4233
010 -0.1362
011 1.3286
100 0.4233
101 0.1362
110 -1.3286
111 -0.7683

{Zn} ✲ Zn Zn−1 Zn−2 shift register

❄❅
❅❘

�
�✠

✒✑
✓✏
φ

function, table

✲Yn = φ(Zn, Zn−1, Zn−2)

Fig. 2.1 A length 3 stationary code

the curious, this simple code tries to map coin flips into a sequence that
looks approximately Gaussian. The output values correspond to eight
possible values of an inverse cdf for a 0 mean Gaussian random variable
with variance 3/4 evaluated at 8 equally spaced points in the unit inter-
val. The values are “scrambled” to reduce correlation, but the marginal
distribution is an approximation to Shannon optimal distribution when
simulating or source coding an IID Gaussian sequence with mean 0 and
variance 1. All of these ideas will be encountered later in the book.

More generally, suppose that we consider two-sided processes and
that we have a measurable mapping

φ :
D×

i=−M
Ai → B

and we define a sliding-block code by

f(x) = φ(x−M , · · · , x0, · · · , xD),
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so that the output process is

Yn = φ(Xn−M , · · · , Xn, · · · , Xn+D),

a mapping of the contents of a shift register as depicted in Figure 2.2.
Note that the time order is reversed in the shift-register representa-

Xn✲Xn+D Xn−MXn· · · · · ·

❄
❳❳❳❳❳❳❳❳❳③

✏✏✏✏✏✏✏✏✮✍✌
✎☞
φ

❄
Yn = f(Xn+D, · · · , Xn, · · · , Xn−M)

Fig. 2.2 Stationary or sliding-block code

tion since in the shift register new input symbols flow in from the
left and exit from the right, but the standard way of writing a se-
quence is · · · , Xn−2, Xn−1, Xn, Xn+1, Xn+2, · · · with “past” symbols on
the left and “future” symbols on the right. The standard shift is the left

shift so that shifting the above sequence results in the new sequence
· · · , Xn−1, Xn, Xn+1, Xn+2, Xn+3, · · · . Rather than adding to the nota-
tional clutter by formally mapping sequences or vectors into a reversed-
time form, we shall suffer the minor abuse of notation and follow tra-
dition by using the first format (time increases to the left) for shift-
registers, and the second notation (time increases to the right) when
dealing with theory and stationary mappings. Context should make the
usage clear and clarification will be added when necessary.

The length of the code is the length of the shift register or dimension
of the vector argument, L = D +M + 1.

The mapping φ induces a sequence-to-symbol mapping f and a cor-
responding stationary sequence coder f . The mapping φ is also called a
sliding-block code or a finite-length sliding-block code or a finite-window
sliding-block code. M is called the memory of the code and D is called
the delay of the code sinceM past source symbols and D future symbols
are required to produce the current output symbol. The window length

or constraint length of the code is M +D + 1, the number of input sym-
bols viewed to produce an output symbol. If D = 0 the code is said to be
causal. If M = 0 the code is said to be memoryless.
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There is a problem with the above model if we wish to code a one-
sided source since if we start coding at time 0, there are no input sym-
bols with negative indices. Hence we either must require the code be
memoryless (M = 0) or we must redefine the code for the first M in-
stances (e.g., by “stuffing” the code register with arbitrary symbols) or
we must only define the output for times i ≥ M . For two-sided sources
a finite-length sliding-block code is stationary. In the one-sided case it
is not even defined precisely unless it is memoryless, in which case it is
stationary.

While codes that depend on infinite input sequences may not at first
glance seem to be a reasonable physical model of a coding system, it is
possible for such codes to depend on the infinite sequence only through
a finite number of coordinates. In addition, some real codes may indeed
depend on an unboundedly large number of past inputs because of feed-
back.

Sliding-Block Codes and Partitions

Codes mapping sequences (or vectors) into discrete alphabets have an al-
ternative representation in terms of partitions and range spaces or code-

books. Given a sliding-block code f : A∞ → B where B is discrete, suppose
that we index the members of the set B as B = {bi; i ∈ I} where I is a
finite or infinite collection of positive integers. Since codes are assumed
to be measurable mappings, the sets Pi = {x : x ∈ A∞ : f(x) = bi} =
f−1(bi), i ∈ I, collectively form a measurable partition P = {Pi, i ∈ I} of
A∞; that is, they are disjoint and collectively exhaustive. The sets Pi are
referred to as the atoms of the partition. The range space B = {bi; i ∈ I}
is called the codebook of the code f or output alphabet and it will be as-
sumed without loss of generality that its members are distinct. The code
f can be expressed in terms of its partition and codebook by

f(x) =
∑

i

bi1Pi(x), (2.6)

where 1P(x) is the indicator function for a set P . Conversely, given a
partition and a codebook, (2.6) describes the corresponding code.

B-Processes

One use of sliding-block codes is to provide an easy yet powerful gen-
eralization of the simplest class of random processes. IID random pro-
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cesses provide the simplest nontrivial example of a random process, typ-
ically the first example of a random process encountered in introductory
courses is that of sequence of coin flips or rolls of a die. IID processes
have no memory and are generally the easiest example to analyze. Sta-
tionary or sliding-block coding of an IID process preserves many of the
most useful properties of the IID process, including stationarity, ergodic-
ity, and mixing. In addition to providing a common mathematical model
of many real processes, processes formed this way turn out to be one of
the most important classes of processes in ergodic theory in a way that
is relevant to this book — the class of stationary codings of IID processes
is exactly the class of random processes for which equal entropy rate is
both necessary and sufficient for two processes to be isomorphic in the
sense that one can be coded by a stationary code into the other in an
invertible way. This result is Ornstein’s isomorphism theorem, a result
far beyond the scope of this book. But the importance of the class was
first recognized in ergodic theory, and adds weight to its emphasis in
this presentation of entropy and information theory.

A process is said to be a B-process if it can be represented as a finite-
alphabet stationary coding of an independent identically distributed (IID)
process, where the IID process need not have a finite alphabet. Such pro-
cesses are also called or Bernoulli processes in ergodic theory, but in in-
formation theory that name usually implies IID processes (often binary)
and not the more general case of any stationary coding of an IID pro-
cess, so here the name B-process will be used exclusively. The definition
also extends to continuous alphabet processes, for example a stationary
Gaussian autoregressive processes is also a B-process since it can be rep-
resented as the result of passing an IID Gaussian process through a sta-
ble autoregressive filter, which is a stationary mapping [173]. The empha-
sis here, however, will be on ordinary finite-alphabet B-processes. There
are many other characterizations of this class of random processes, but
the class of stationary codings of IID processes is the simplest and most
suitable for the purposes of this book.

Let µ denote the original distribution of the IID process and let η
denote the induced output distribution. Then for any output events F
and G

η(F
⋂
T−nB G) = µ(f−1

(F
⋂
T−nB G)) = µ(f−1

(F)
⋂
T−nA f

−1
(G)),

since f is stationary. But µ is stationary and mixing since it is IID (see
Section 6.7 of [55] or Section 7.7 of [58]) and hence this probability con-
verges to

µ(f
−1
(F))µ(f

−1
(G)) = η(F)η(G)

and hence η is also mixing. Thus a B-process is mixing of all orders and
hence is ergodic with respect to TnB for all positive integers n.
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B-processes can be thought of as the most random of random pro-
cesses since they have at their heart an IID process such as coin flips or
dice rolls.

2.7 Block Codes

Another case of sequence coding arises when we have a measurable map-
ping α : AN → BK and we define a sequence coder f(x) = y by

yKnK = (ynK , ynK+1, · · · , y(n+1)K−1) = α(xNnN),

that is, the input is parsed into nonoverlapping blocks of length N and
each is successively coded into a block of length K outputs without re-
gard to past or previous input or output blocks. Clearly N input time
units must correspond to K output time units in physical time if the
code is to make sense. A code of this form is called a block code and it
is a special case of an (N,K) sliding block code so that such a code is
(TNA , T

K
A )-stationary.

Block Independent Processes

As sliding-block coding of an IID process leads to a more general class
of random processes, one can also apply a block code to an IID pro-
cess to obtain a more general class of random processes including IID
processes as a special case (with blocklength = 1). The resulting process
will be block independent in the sense that successive K-blocks will be
independent since they depend on independent input N blocks. Unlike
B-processes, however, the new processes are not in general stationary or
ergodic even if the input was. The process can be modified by inserting
a random uniformly distributed start time to convert the K-stationary
process into a stationary process, but in general ergodicity is lost and
sample functions will still exhibit blocking artifacts.

Sliding-Block vs. Block Codes

We shall be interested in constructing sliding-block codes from block
codes and vice versa. Each has its uses. The random process obtained in
the next section by sliding-block coding a stationary and ergodic process
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will provide a key tool in constructing stationary codes and channels
from block-stationary ones.

2.8 Random Punctuation Sequences

This section develops an example of a sliding-block coding of a station-
ary and ergodic process to obtain a special random process called a ran-
dom punctuation sequence which can be used to imbed a block structure
into a stationary process in a way that preserves ergodicity and mixing
properties in codes and channels. Any stationary and ergodic process
can be used in the construction, but if the initial process is a B-process,
then the resulting puncutation process will also be a B-process.

The results are a a variant of a theorem of Shields and Neuhoff [167]
as simplified by Neuhoff and Gilbert [131] for sliding-block codings of
finite-alphabet processes.

Lemma 2.6. Suppose that {Xn} is a stationary and ergodic process. Then

given N and δ > 0 there exists a stationary (or sliding-block) coding

f : AT → {0,1,2} yielding a ternary process {Zn} with the following prop-

erties:

(a) {Zn} is stationary and ergodic.

(b) {Zn} has a ternary alphabet {0,1,2} and it can output only N-cells

of the form 011 · · ·1 (0 followed by N − 1 ones) or individual 2’s. In

particular, each 0 is always followed by at exactly N − 1 1’s.

(c) For all integers k

1− δ
N

≤ Pr(ZNk = 011 · · ·1) ≤ 1

N

and hence for any n

Pr(Zn is in an N − cell) ≥ 1− δ.
Comment: A process {Zn} with these properties is called an (N,δ)-
random blocking process or punctuation sequence {Zn}. As a visual aid,
a segment of a typical punctuation sequence might look like

· · ·111][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

]2[0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

]

[0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

][0 11 · · ·1︸ ︷︷ ︸
N−11’s

]222[0 11 · · ·1︸ ︷︷ ︸
N−11’s

]0111 · · ·

with the most of the sequence taken up by N-cells with a few 2’s inter-
spersed.
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Proof. A sliding-block coding is stationary and hence coding a station-
ary and ergodic process will yield a stationary and ergodic process
(Lemma 2.4), which proves the first part. Pick an ǫ > 0 such that ǫN < δ.
Given the stationary and ergodic process {Xn} (that is also assumed to
be aperiodic in the sense that it does not place all of its probability on a
finite set of sequences) we can find an event G ∈ BAT having probability
less than ǫ. Consider the event F = G−⋃N−1

i=1 T
−iG, that is, F is the collec-

tion of sequences x for which x ∈ G, but T ix 6∈ G for i = 1, · · · , N − 1.
We next develop several properties of this set.

First observe that obviously µ(F) ≤ µ(G) and hence µ(F) ≤ ǫ The
sequence of sets T−iF are disjoint since if y ∈ T−iF , then T iy ∈ F ⊂ G
and T i+ly 6∈ G for l = 1, · · · , N − 1, which means that T jy 6∈ G and
hence T jy 6∈ F for N−1 ≥ j > i. Lastly we need to show that although F
may have small probability, it is not 0. To see this suppose the contrary,
that is, suppose that µ(G −⋃N−1

i=1 T
−iG) = 0. Then

µ(G
⋂
(
N−1⋃

i=1

T−iG)) = µ(G)− µ(G
⋂
(
N−1⋃

i=1

T−iG)c) = µ(G)

and hence µ(
⋃N−1
i=1 T

−iG|G) = 1. In words, if G occurs, then it is certain
to occur again within the next N shifts. This means that with probability
1 the relative frequency of G in a sequence x must be no less than 1/N
since if it ever occurs (which it must with probability 1), it must there-
after occur at least once every N shifts. This is a contradiction, however,
since this means from the ergodic theorem that µ(G) ≥ 1/N when it was
assumed that µ(G) ≤ ǫ < 1/N . Thus it must hold that µ(F) > 0.

We now use the rare event F to define a sliding-block code. The general
idea is simple, but a more complicated detail will be required to handle
a special case. Given a sequence x, define n(x) to be the smallest i for
which T ix ∈ F ; that is, we look into the future to find the next occurrence
of F . Since F has nonzero probability, n(x) will be finite with probability
1. Intuitively, n(x) should usually be large since F has small probability.
Once F is found, we code backwards from that point using blocks of
a 0 prefix followed by N − 1 1’s. The appropriate symbol is then the
output of the sliding block code. More precisely, if n(x) = kN + l, then
the sliding-block code prints a 0 if l = 0 and prints a 1 otherwise. This
idea suffices until the event F actually occurs at the present time, that is,
when n(x) = 0. At this point the sliding-block code has just completed
printing an N-cell of 0111 · · ·1. It should not automatically start a new
N-cell, because at the next shift it will be looking for a new F in the
future to code back from and the new cells may not align with the old
cells. Thus the coder looks into the future for the next F ; that is, it again
seeks n(x), the smallest i for which T ix ∈ F . This time n(x) must be
greater than or equal to N since x is now in F and T−iF are disjoint for
i = 1, · · ·N − 1. After finding n(x) = kN + l, the coder again codes back
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to the origin of time. If l = 0, then the two codes are aligned and the
coder prints a 0 and continues as before. If l 6= 0, then the two codes
are not aligned, that is, the current time is in the middle of a new code
word. By construction l ≤ N − 1. In this case the coder prints l 2’s (filler
poop) and shifts the input sequence l times. At this point there is an
n(x) = kN for such that Tn(x)x ∈ F and the coding can proceed as
before. Note that k is at least one, that is, there is at least one complete
cell before encountering the new F .

By construction, 2’s can occur only following the event F and then no
more than N 2’s can be produced. Thus from the ergodic theorem the
relative frequency of 2’s (and hence the probability that Zn is not in an
N-block) is no greater than

lim
n→∞

1

n

n−1∑

i=0

12(Z0(T
ix)) ≤ lim

n→∞
1

n

n−1∑

i=0

1F(T
ix)N = Nµ(F) ≤ N δ

N
= δ,

(2.7)
that is,

Pr(Zn is in an N − cell) ≥ 1− δ.
Since Zn is stationary by construction,

Pr(ZNk = 011 · · ·1) = Pr(ZN0 = 011 · · ·1) for all k.

Thus

Pr(ZN0 = 011 · · ·1) = 1

N

N−1∑

k=0

Pr(ZNk = 011 · · ·1).

The events {ZNk = 011 · · ·1}, k = 0,1, . . . ,N − 1 are disjoint, however,
since there can be at most one 0 in a single block of N symbols. Thus

NPr(ZN = 011 · · ·1) =
N−1∑

k=0

Pr(ZNk = 011 · · ·1)

= Pr(
N−1⋃

k=0

{ZNk = 011 · · ·1}). (2.8)

Thus since the rightmost probability is between 1− δ and 1,

1

N
≥ Pr(ZN0 = 011 · · ·1) ≥ 1− δ

N

which completes the proof. ✷

The following corollary shows that a finite-length sliding-block code
can be used in the lemma.
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Corollary 2.1. Given the assumptions of the lemma, a finite-length sliding-

block code exists with properties (a)-(c).

Proof. The sets G and hence also F can be chosen in the proof of the
lemma to be finite dimensional, that is, to be measurable with respect
to σ(X−K , · · · , XK) for some sufficiently large K. Choose these sets as
before with δ/2 replacing δ. Define n(x) as in the proof of the lemma.
Since n(x) is finite with probability one, there must be an L such that if

BL = {x : n(x) > L},

then

µ(BL) <
δ

2
.

Modify the construction of the lemma so that if n(x) > L, then the
sliding-block code prints a 2. Thus if there is no occurrence of the de-
sired finite dimensional pattern in a huge bunch of future symbols, a 2
is produced. If n(x) < L, then f is chosen as in the proof of the lemma.
The proof now proceeds as in the lemma until (2.7), which is replaced by

lim
n→∞

1

n

n−1∑

i=0

12(Z0(T
ix)) ≤ lim

n→∞
1

n

n−1∑

i=0

1BL(T
ix)+ lim

n→∞
1

n

n−1∑

i=0

1F(T
ix)N ≤ δ.

The remainder of the proof is the same. ✷

Application of the lemma to an IID source and merging the symbols 1
and 2 in the punctuation process immediately yield the following result
since coding an IID process yields a B-process.

Corollary 2.2. Given an integer N and a δ > 0 there exists an (N,δ)-
punctuation sequence {Zn} with the following properties:

(a) {Zn} is B-process (and hence stationary, ergodic, and mixing).

(b) {Zn} has a binary alphabet {0,1} and it can output only N-cells of

the form 011 · · ·1 (0 followed by N − 1 ones) or individual ones; that

is, each zero is always followed by at least N − 1 ones.

(c) For all integers k

1− δ
N

≤ Pr(ZNk = 011 · · ·1) ≤ 1

N

and hence for any n

Pr(Zn is in an N − cell) ≥ 1− δ.

Random punctuation sequences are closely related to the Rohlin-
Kakutani theorem, a classic result of ergodic theory. The language and
notation is somewhat different and we shall return to the topic at the
end of this chapter.
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2.9 Memoryless Channels

Suppose that qx0(·) is a probability measure on BB for all x0 ∈ A and
that for fixed F ,qx0(F) is a measurable function of x0. Let ν be a channel
specified by its values on output rectangles by

νx(×
i∈J
Fi) =

∏

i∈J
qxi(Fi),

for any finite index set J ⊂ T. Then ν is said to be a memoryless channel.
Intuitively,

Pr(Yi ∈ Fi; i ∈ J|X) =
∏

i∈J
Pr(Yi ∈ Fi|Xi).

In fact two forms of memorylessness are evident in a memoryless
channel. The channel is input memoryless in that the probability of an
output event involving {Yi; i ∈ {k, k + 1, · · · ,m}} does not involve any
inputs before time k, that is, the past inputs. The channel is also input

nonanticipatory since this event does not depend on inputs after timem,
that is, the future inputs. The channel is also output memoryless in the
sense that for any given input x, output events involving nonoverlapping
times are independent, i.e.,

νx(Y1 ∈ F1

⋂
Y2 ∈ F2) = νx(Y1 ∈ F1)νx(Y2 ∈ F2).

2.10 Finite-Memory Channels

A channel ν is said to have finite input memory of order M if for all
one-sided events F and all n

νx((Yn, Yn+1, · · · ) ∈ F) = νx′((Yn, Yn+1, · · · ) ∈ F)

whenever xi = x′i for i ≥ n −M . In other words, for an event involving
Yi’s after some time n, knowing only the inputs for the same times and
M time units earlier completely determines the output probability. Sim-
ilarly ν is said to have finite anticipation of order L if for all one-sided
events F and all n

νx((· · · , Yn) ∈ F) = νx′((· · · , Yn) ∈ F)

provided x′i = xi for i ≤ n + L. That is, at most L future inputs must
be known to determine the probability of an event involving current and
past outputs.

Channels with finite input memory were introduced by Feinstein [41].
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A channel ν is said to have finite output memory of order K if for all
one-sided events F and G and all inputs x, if k > K then

νx((· · · , Yn) ∈ F
⋂
(Yn+k, · · · ) ∈ G) =

νx((· · · , Yn) ∈ F)νx((Yn+k, · · · ) ∈ G);

that is, output events involving output samples separated by more than
K time units are independent.

Channels with finite output memory were introduced by Wolfowitz
[195].

Channels with finite memory and anticipation are historically impor-
tant as the first real generalizations of memoryless channels for which
coding theorems could be proved. Furthermore, the assumption of finite
anticipation is physically reasonable as a model for real-world communi-
cation channels. The finite memory assumptions, however, exclude many
important examples, e.g., finite-state or Markov channels and channels
with feedback filtering action. Hence we will emphasize more general no-
tions which can be viewed as approximations or asymptotic versions of
the finite memory assumption. The generalization of finite input mem-
ory channels requires some additional tools and is postponed to the next
chapter. The notion of finite output memory can be generalized by using
the notion of mixing.

2.11 Output Mixing Channels

A channel is said to be output mixing (or asymptotically output indepen-
dent or asymptotically output memoryless) if for all output rectangles F
and G and all input sequences x

lim
n→∞ |νx(T

−nF
⋂
G)− νx(T−nF)νx(G)| = 0.

More generally it is said to be output weakly mixing if

lim
n→∞

1

n

n−1∑

i=0

|νx(T−iF
⋂
G)− νx(T−iF)νx(G)| = 0.

Unlike mixing systems, the above definitions for channels place con-
ditions only on output rectangles and not on all output events. Output
mixing channels were introduced by Adler [2].

The principal property of output mixing channels is provided by the
following lemma.
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Lemma 2.7. If a channel is stationary and output weakly mixing, then it

is also ergodic. That is, if ν is stationary and output weakly mixing and if

µ is stationary and ergodic, then also µν is stationary and ergodic.

Proof: The process µν is stationary by Lemma 2.1. To prove that it is
ergodic it suffices from Lemma 2.3 to prove that for all input/output
rectangles of the form F = FB×FA, FB ∈ BAT, FA ∈ BBT, and G = GB×GA
that

lim
n→∞

1

n

n−1∑

i=0

µν(T−iF
⋂
G) = µν(F)µν(G).

We have that

1

n

n−1∑

i=0

µν(T−iF
⋂
G)−m(F)m(G) =

1

n

n−1∑

i=0

µν((T−iB FB
⋂
GB)× (T−iA FA

⋂
GA))− µν(FB × FA)µν(GB ×GA) =

1

n

n−1∑

i=0

∫

T−iA FA
⋂
GA
dµ(x)νx(T

−i
B FB

⋂
GB)− µν(FB × FA)µ(GB ×GA) =

1

n

n−1∑

i=0

(∫

T−iA FA
⋂
GA
dµ(x)νx(T

−i
B FB

⋂
GB)

−
∫

T−iA FA
⋂
GA
dµ(x)νx(T

−i
B FB)νx(GB)

)
+

1

n

n−1∑

i=0

(∫

T−iA FA
⋂
GA
dµ(x)νx(T

−i
B FB)νx(GB)− µν(FB × FA)µν(GB ×GA)

)
.

The first term is bound above by

1

n

n−1∑

i=0

∫

T−iA FA
⋂
GA
dµ(x)|νx(T−iB FB

⋂
GB)− νx(T−iB FB)νx(GB)| ≤

∫
dµ(x)

1

n

n−1∑

i=0

|νx(T−iB FB
⋂
GB)− νx(T−iFB)νx(GB)|

which goes to zero from the dominated convergence theorem since the
integrand converges to zero from the output weakly mixing assumption.
The second term can be expressed using the stationarity of the channel
as ∫

FA
dµ(x)νx(GB)

1

n

n−1∑

i=0

1FA(T
i
Ax)νT iAx

(FB)− µν(F)µν(G).
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The ergodic theorem implies that as n → ∞ the sample average goes to
its expectation ∫

dµ(x)1FA(x)νx(FB) = µν(F)

and hence the above formula converges to 0, proving the lemma. ✷

The lemma provides an example of a completely random channel that
is also ergodic in the following corollary.

Corollary 2.3. Suppose that ν is a stationary completely random channel

described by an output measure η. If η is weakly mixing, then ν is ergodic.

That is, if µ is stationary and ergodic and η is stationary and weakly

mixing, then µν = µ × η is stationary and ergodic.

Proof: If η is weakly mixing, then the channel ν defined by νx(F) = η(F),
all x ∈ AT, F ∈ BBT is output weakly mixing. Thus ergodicity follows
from the lemma. ✷

2.12 Block Independent Channels

The idea of a memoryless channel can be extended to a block memo-
ryless or block independent channel. Given integers N and K (usually
K = N) and a probability measure qxN (·) on BKB for each xN ∈ AN such
that qxN (F) is a measurable function of xN for each F ∈ BKB . Let ν be
specified by its values on output rectangles by

νx(y : yi ∈ Gi; i =m, · · · ,m+n− 1) =
⌊ nK ⌋∏

i=0

qxNiN (Gi),

where Gi ∈ BB , all i, where ⌊z⌋ is the largest integer contained in z, and
where

Gi =
m+(i+1)K−1×
j=m+iK

Fj

with Fj = B if j ≥ m + n. Such channels are called block memoryless

channels or block independent channels.. A deterministic block indepen-
dent and block stationary channel is a sequence coder formed by a block
code.

The primary use of block independent channels is in the construction
of a channel given finite-dimensional conditional probabilities; that is,
one has probabilities for output K-tuples given input N-tuples and one
wishes to model a channel consistent with these finite-dimensional dis-
tributions. The finite-dimensional distributions themselves may be the
result of an optimization problem or an estimate based on observed
behavior. An immediate problem is that a channel constructed in this
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manner may not be stationary, although it is clearly (N,K)-stationary.
In Section 2.14 it is seen how to modify a block independent channel
so as to produce a stationary channel. The basic idea is to occasionally
insert some random spacing between the blocks so as to “stationarize”
the channel.

Block independent channels are a special case of the class of condi-
tionally block independent channels, which are considered next.

2.13 Conditionally Block Independent Channels

A conditionally block independent (CBI) channel resembles the block in-
dependent channel in that for a given input sequence the outputs are
block independent. It is more general, however, in that the conditional
probabilities of the output block may depend on the entire input se-
quence (or at least on parts of the input sequence not in the same time
block).

A channel is CBI if its values on output rectangles satisfy

νx(y : yi ∈ Fi; i =m, · · · ,m+n− 1) =
⌊ nK ⌋∏

i=0

νx(y : yNiN ∈ Gi).

where as before

Gi =
m+(i+1)K−1×
j=m+iK

Fj

with Fj = B if j ≥m+n. Block memoryless channels are clearly a special
case of CBI channels.

These channels have only finite output memory, but unlike the block
independent channels they need not have finite input memory or antici-
pation.

2.14 Stationarizing Block Independent Channels

Block memoryless channels (and CBI channels) are both block stationary
channels. Connecting a stationary input to a block stationary channel
will yield a block stationary input/output pair process, but it is some-
times desirable to have a stationary model. In this section we consider
a technique of “stationarizing” a block independent channel in order to
produce a stationary channel. Intuitively, a stationarized block indepen-
dent (SBI) channel is a block independent channel with random spacing
inserted between the blocks according to a random punctuation process.
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That is, when the random blocking process produces N-cells (which is
most of the time), the channel uses the N-dimensional conditional dis-
tribution. When it is not using an N cell, the channel produces some
arbitrary symbol in its output alphabet. We now make this idea precise.
Let N , K, and qxN (·) be as in block independent channel of Section 2.12.
We now assume that K = N , that is, one output symbol is produced for
every input symbol and hence output blocks have the same number of
symbols as input blocks. This is done for simplicity as the more general
case adds significant notational clutter for minimal conceptual gain.

Given δ > 0 let γ denote the distribution of an (N,δ)-random punc-
tuation sequence {Zn}. Let µ × γ denote the product distribution on
(AT × {0,1}T,BT

A × BT

{0,1}); that is, µ × γ is the distribution of the pair
process {Xn, Zn} consisting of the original source {Xn} and the random
punctuation source {Zn} with the two sources being independent of one
another. Define a regular conditional probability (and hence a channel)
πx,z(F), F ∈ {BB}T, x ∈ AT, z ∈ {0,1}T by its values on rectangles as
follows: Given z, let J2(z) denote the collection of indices i for which
zi = 2 and hence for which zi is not in an N-cell and let J0(z) denote
those indices i for which zi = 0, that is, those indices where N-cells be-
gin. Let q∗ denote a trivial probability mass function on B placing all of
its probability on a reference letter b∗. Given an output rectangle

F = {y : yj ∈ Fj ; j ∈ J} = ×
j∈J
Fj ,

define

πx,z(F) =
∏

i∈J⋂ J2(z)

q∗(Fi)
∏

i∈J⋂ J0(z)

qxNi (
i+N−1×
j=i

Fi),

where we assume that Fi = B if i 6∈ J. Connecting the product source
µ × γ to the channel π yields a hookup process {Xn, Zn, Yn} with distri-
bution, say, r , which in turn induces a distribution p on the pair process
{Xn, Yn} having distribution µ on {Xn}. If the alphabets are standard, p
also induces a regular conditional probability for Y given X and hence
a channel ν for which p = µν . A channel of this form is said to be an
(N,δ)-stationarized block independent or SBI channel.

Lemma 2.8. An SBI channel is stationary and ergodic. Thus if a stationary

(and ergodic) source µ is connected to an SBI channel ν , then the output

is stationary (and ergodic).

Proof: The product source µ × γ is stationary and the channel π is sta-
tionary, hence so is the hookup (µ × γ)π or {Xn, Zn, Yn}. Thus the pair
process {Xn, Yn}must also be stationary as claimed. The product source
µ × γ is ergodic from Corollary 2.3 since it can be considered as the in-
put/output process of a completely random channel described by a mix-
ing (hence also weakly mixing) output measure. The channel π is output
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strongly mixing by construction and hence is ergodic from Lemma 2.4.
Thus the hookup (µ × γ)π must be ergodic. This implies that the coor-
dinate process {Xn, Yn} must also be ergodic. This completes the proof.
✷

The block independent and SBI channels are useful primarily for prov-
ing theorems relating finite-dimensional behavior to sequence behavior
and for simulating channels with specified finite-dimensional behavior.
The SBI channels will also play a key role in deriving sliding-block cod-
ing theorems from block coding theorems by replacing the block distri-
butions by trivial distributions, i.e., by finite-dimensional deterministic
mappings or block codes.

The SMB channel was introduced by Pursley and Davisson [29] for
finite-alphabet channels and further developed by Gray and Saadat [70],
who called it a randomly blocked conditionally independent (RBCI) chan-
nel. We opt for the first name because these channels resemble block
memoryless channels more than CBI channels.

2.15 Primitive Channels

Primitive channels were introduced by Neuhoff and Shields [136, 133]
as a physically motivated general channel model. The idea is that most
physical channels combine the input process with a separate noise pro-
cess that is independent of the signal and then filter the combination in
a stationary fashion. The noise is assumed to be IID since the filtering
can introduce dependence. The construction of such channels strongly
resembles that of the SBI channels. Let γ be the distribution of an IID pro-
cess {Zn} with alphabet W , let µ × γ denote the product source formed
by an independent joining of the original source distribution µ and the
noise process Zn, let π denote the deterministic channel induced by a
stationary sequence coder f : AT×WT → BT mapping an input sequence
and a noise sequence into an output sequence. Let r = (µ × γ)π denote
the resulting hookup distribution and {Xn, Zn, Yn} denote the result-
ing process. Let p denote the induced distribution for the pair process
{Xn, Yn}. If the alphabets are standard, then p and µ together induce
a channel νx(F), x ∈ AT, F ∈ BBT. A channel of this form is called a
primitive channel.

Lemma 2.9. A primitive channel is stationary with respect to any station-

ary source and it is ergodic. Thus if µ is stationary and ergodic and ν is

primitive, then µν is stationary and ergodic.

Proof: Since µ is stationary and ergodic and γ is IID and hence mixing,
µ × ν is stationary and ergodic from Corollary 2.3. Since the determin-
istic channel is stationary, it is also ergodic from Lemma 2.4 and the
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resulting triple {Xn, Zn, Yn} is stationary and ergodic. This implies that
the component process {Xn, Yn} must also be stationary and ergodic,
completing the proof. ✷

2.16 Additive Noise Channels

Suppose that {Xn} is a source with distribution µ and that {Wn} is a
“noise” process with distribution γ. Let {Xn,Wn} denote the induced
product source, that is, the source with distribution µ×γ so that the two
processes are independent. Suppose that the two processes take values
in a common alphabet A and that A has an addition operation +, e.g., it is
a semi-group. Define the sliding-block code f by f(x,w) = x0 +w0 and
let f denote the corresponding sequence coder. Then as in the primitive
channels we have an induced distribution r on triples {Xn,Wn, Yn} and
hence a distribution on pairs {Xn, Yn} which with µ induces a channel ν
if the alphabets are standard.

Example 2.1. A channel of this form is called a additive noise channel or
a signal-independent additive noise channel.

If the noise process is a B-process, then this is easily seen to be a spe-
cial case of a primitive channel and hence the channel is stationary with
respect to any stationary source and ergodic. If the noise is only known
to be stationary, the channel is still stationary with respect to any sta-
tionary source. Unless the noise is assumed to be at least weakly mixing,
however, it is not known if the channel is ergodic in general.

2.17 Markov Channels

We now consider a special case where A and B are finite sets with the
same number of symbols. For a fixed positive integer K, let P denote the
space of all K × K stochastic matrices P = {P(i, j); i, j = 1,2, · · · , K}.
Using the Euclidean metric on this space we can construct the Borel
field P of subsets of P generated by the open sets to form a measur-
able space (P,P). This, in turn, gives a one-sided or two-sided sequence
space (PT,PT).

A map φ : AT → PT is said to be stationary if φTA = TPφ. Given a
sequence P ∈ PT, let M(P) denote the set of all probability measures
on (BT,BT) with respect to which Ym, Ym+1, Ym+2, · · · forms a Markov
chain with transition matrices Pm, Pm+1, · · · for any integer m, that is,
λ ∈M(P) if and only if for any m



50 2 Pair Processes: Channels, Codes, and Couplings

λ[Ym = ym, · · · , Yn = yn] = λ[Ym = ym]
n−1∏

i=m
Pi(yi, yi+1),

n > m,ym, · · · , yn ∈ B.

In the one-sided case onlym = 1 need be verified. Observe that in general
the Markov chain is nonhomogeneous.

A channel [A, ν, B] is said to be Markov if there exists a stationary
measurable map φ : AT → PT such that νx ∈M(φ(x)), x ∈ AT.

Markov channels were introduced by Kieffer and Rahe [98] who proved
that one-sided and two-sided Markov channels are AMS. Their proof is
not included as it is lengthy and involves techniques not otherwise used
in this book. The channels are introduced for completeness and to show
that several important channels and codes in the literature can be con-
sidered as special cases. A variety of conditions for ergodicity for Markov
channels are considered in [69]. Most are equivalent to one already con-
sidered more generally here: A Markov channel is ergodic if it is output
mixing.

2.18 Finite-State Channels and Codes

The most important special cases of Markov channels are finite-state
channels and codes. Given a Markov channel with stationary mapping φ,
the channel is said to be a finite-state channel (FSC) if we have a collection
of stochastic matrices Pa ∈ P; a ∈ A and that φ(x)n = Pxn , that is, the
matrix produced by φ at time n depends only on the input at that time,
xn. If the matrices Pa; a ∈ A contain only 0’s and 1’s, the channel is
called a finite-state code. There are several equivalent models of finite-
state channels and we pause to consider an alternative form that is more
common in information theory. (See Gallager [47], Ch. 4, for a discussion
of equivalent models of FSC’s and numerous physical examples.) An FSC
converts an input sequence x into an output sequence y and a state
sequence s according to a conditional probability

Pr(Yk = yk, Sk = sk; k =m, · · · , n|Xi = xi, Si = si; i < m) =
n∏

i=m
P(yi, si|xi, si−1),

that is, conditioned on Xi, Si−1, the pair Yi, Si is independent of all prior
inputs, outputs, and states. This specifies a FSC defined as a special
case of a Markov channel where the output sequence above is here the
joint state-output sequence {yi, si}. Note that with this setup, saying the
Markov channel is AMS implies that the triple process of source, states,
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and outputs is AMS (and hence obviously so is the Gallager input-output
process). We will adapt the Kieffer-Rahe viewpoint and call the outputs
{Yn} of the Markov channel states even though they may correspond to
state-output pairs for a specific physical model.

In the two-sided case, the Markov channel is significantly more gen-
eral than the FSC because the choice of matrices φ(x)i can depend on
the past in a very complicated (but stationary) way. One might think that
a Markov channel is not a significant generalization of an FSC in the one-
sided case, however, because there stationarity of φ does not permit a
dependence on past channel inputs, only on future inputs, which might
seem physically unrealistic. Many practical communications systems do
effectively depend on the future, however, by incorporating delay in the
coding. The prime example of such look-ahead coders are trellis and
tree codes used in an incremental fashion. Such codes investigate many
possible output strings several steps into the future to determine the
possible effect on the receiver and select the best path, often by a Viterbi
algorithm. (See, e.g., Viterbi and Omura [189].) The encoder then outputs
only the first symbol of the selected path. While clearly a finite-state ma-
chine, this code does not fit the usual model of a finite-state channel or
code because of the dependence of the transition matrix on future inputs
(unless, of course, one greatly expands the state space). It is, however, a
Markov channel.

2.19 Cascade Channels

We will often wish to connect more than one channel in cascade in order
to form a communication system, e.g., the original source is connected
to a deterministic channel (encoder) which is connected to a commu-
nications channel which is in turn connected to another deterministic
channel (decoder). We now make precise this idea. Suppose that we are
given two channels [A, ν(1), C] and [C, ν(2), B]. The cascade of ν(1) and
ν(2) is defined as the channel [A, ν, B] given by

νx(F) =
∫

CT

ν(2)u (F)dν
(1)
x (u).

In other words, if the original source sequence is X, the output to the
first channel and input to the second is U , and the output of the second

channel is Y , then ν(1)x (F) = PU|X(F|x), νu(G) = PY |U(G|u), and νx(G) =
PY |X(G|x). Observe that by construction X → U → Y is a Markov chain.

Lemma 2.10. A cascade of two stationary channels is stationary.

Proof: Let T denote the shift on all of the spaces. Then
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νx(T
−1F) =

∫

CT

ν(2)u (T
−1F)dν(1)x (u) =

∫

CT

ν(2)u (F)dν
(1)
x T

−1(u).

But ν(1)x (T−1F) = νTx(1)(F), that is, the measures ν(1)x T−1 and ν(1)Tx are
identical and hence the above integral is

∫

CT

ν(2)u (F)dν
(1)
Tx (u) = νTx(F),

proving the lemma. ✷

2.20 Communication Systems

A communication system consists of a source [A, µ], a sequence encoder
f : AT → BT (a deterministic channel), a channel [B, ν, B′], and a se-
quence decoder g : B′T → ÂT. The overall distribution r is specified by
its values on rectangles as

r(F1 × F2 × F3 × F4) =
∫

F1
⋂
f−1(F2)

dµ(x)νf(x)(F3

⋂
g−1(F4)).

Denoting the source by {Xn}, the encoded source or channel input pro-
cess by {Un}, the channel output process by {Yn}, and the decoded pro-
cess by {X̂n}, then r is the distribution of the process {Xn, Un, Yn, X̂n}. If
we let X,U ,Y , and X̂ denote the corresponding sequences, then observe
that X → U → Y and U → Y → X̂ are Markov chains. We abbreviate a
communication system to [µ, f , ν, g].

It is straightforward from Lemma 2.10 to show that if the source,
channel, and coders are stationary, then so is the overall process.

A key topic in information theory, which is a mathematical theory of
communication systems, is the characterization of the optimal perfor-
mance one can obtain for communicating a given source over a given
channel using codes within some available class of codes. Precise defini-
tions of optimal will be based on the notion of the quality of a system as
determined by a measure of distortion between input and output to be
introduced in Chapter 5.

2.21 Couplings

So far in this chapter the focus has been on combining a source [A, µ]
and a channel [A, ν, B] or a code which together produce a pair or in-
put/output process [A × B,π], where π = µν . The pair process in turn
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induces an output process, [B, η]. Given a pair process [A×B,π], the in-
duced input process [A, µ] and output process [B, η] can be thought of
as the marginal processes and µ and η the marginal distributions of the
pair process [A × B,π] and its distribution. From a different viewpoint,
we could consider the two marginal processes [A, µ] and [B, η] as being
given and define a coupling or joining of these two processes as any pair
process [A× B,π] having the given marginals. Here we can view π as a
coupling of µ and η.

In general, given any two processes [A, µ] and [B, η], let P(µ, η) de-
note the class of all pair process distributions corresponding to cou-
plings of the two given distributions. This class is not empty because,
for example, we can always construct a coupling using product mea-
sures. This corresponds to the pair process with the given marginals
where the two processes are mutually independent or, in other words,
the example of the completely random channel given earlier.

When it is desired to place emphasis on the names of the random pro-
cesses rather than the distributions, we will refer to a pair process dis-
tribution πX,Y with marginals πX and πY . If we begin with two separate
processes with distributions µX and µY , say, then P(µX , µY ) will denote
the collection of all pair processes with marginals πX = µX and πY = µY .
Occasionally πX,Y ∈ P(µX , µY ) will be abbreviated to πX,Y ⇒ µX , µY .

If one is given two sources and forms a coupling, then in the case
of processes with standard alphabets the coupling implies a channel
since the joint process distribution and the input process distribution
together imply a conditional distribution of output sequences given in-
put sequences, and this conditional distribution is a regular conditional
distribution and hence describes a channel.

Couplings can also be defined for pairs of random vectors rather than
random processes in a similar manner.

2.22 Block to Sliding-Block: The Rohlin-Kakutani Theorem

The punctuation sequences of Section 2.14 provide a means for convert-
ing a block code into a sliding-block code. Suppose, for example, that
{Xn} is a source with alphabet A and γN is a block code, γN : AN → BN .
(The dimensions of the input and output vector are assumed equal to
simplify the discussion.) Typically B is binary. As has been argued, block
codes are not stationary. One way to stationarize a block code is to use
a procedure similar to that used to stationarize a block independent
channel: send long sequences of blocks with occasional random spac-
ing to make the overall encoded process stationary. Thus, for example,
one could use a sliding-block code to produce a punctuation sequence
{Zn} as in Corollary 2.1 which produces isolated 0’s followed by KN 1’s
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and occasionally produces 2’s. The sliding-block code uses γN to encode
a sequence of K source blocks XNn , X

N
n+N , · · · , XNn+(K−1)N if and only if

Zn = 0. For those rare times l when Zl = 2, the sliding-block code pro-
duces an arbitrary symbol b∗ ∈ B. The resulting sliding-block code inher-
its many of the properties of the original block code, as will be demon-
strated when proving theorems for sliding-block codes constructed in
this manner. This construction suffices for source coding theorems, but
an additional property will be needed when treating the channel cod-
ing theorems and other applications. The shortcoming of the results of
Lemma 2.6 and Corollary 2.1 is that important source events can de-
pend on the punctuation sequence. In other words, probabilities can be
changed by conditioning on the occurrence of Zn = 0 or the beginning of
a block code word. In this section we modify the simple construction of
Lemma 2.6 to obtain a new punctuation sequence that is approximately
independent of certain prespecified events. The result is a variation of
the Rohlin-Kakutani theorem of ergodic theory [157] [83]. The develop-
ment here is patterned after that in Shields [164]. See also Shields and
Neuhoff [167].

We begin by recasting the punctuation sequence result in different
terms. Given a stationary and ergodic source {Xn} with a process dis-
tribution µ and a punctuation sequence {Zn} as in Section 2.14, define
the set F = {x : ZN(x) = 0}, where x ∈ A∞ is a two-sided sequence
x = (· · · , x−1, x0, x1, · · · ). Let T denote the shift on this sequence
space. Restating Corollary 2.1 yields the following.

Lemma 2.11. Given δ > 0 and an integer N , an L sufficiently large and a

set F of sequences that is measurable with respect to (X−L, · · · , XL) with

the following properties:

(A) The sets T iF , i = 0,1, · · · , N − 1 are disjoint.

(B)
1− δ
N

≤ µ(F) ≤ 1

N
.

(C)

1− δ ≤ µ(
N−1⋃

i=0

T iF).

So far all that has been done is to rephrase the punctuation result in
more ergodic theory oriented terminology. One can think of the lemma
as representing sequence space as a “base” F together with its disjoint
shifts T iF ; i = 1,2, · · · , N − 1, which make up most of the space, to-
gether with whatever is left over, a set G = A∞ −⋃N−1

i=0 T
iF , a set which

has probability less than δ which will be called the garbage set. This pic-
ture is called a tower or Rochlin-Kakutani tower. The basic construction
is pictured in Figure 2.3.



2.22 Block to Sliding-Block: The Rohlin-Kakutani Theorem 55

F

✻
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✻

T 2F

✻

T 3F

...
...

TNF

G

Fig. 2.3 Rohlin-Kakutani Tower

We can relate a tower to a punctuation sequence by identifying the
base of the tower, the set F , as the set of sequences of the underlying
process which yield Z0 = 0, that is, the punctuation sequence at time 0
yields a 0, indicating the beginning of an N-cell.

Partitions

We now add another wrinkle — consider a finite partition P = {Pi; i =
0,1, · · · ,‖P‖ − 1} of A∞. One example is the partition of a finite-
alphabet sequence space into its possible outputs at time 0, that is,
Pi = {x : x0 = ai} for i = 0,1, · · · ,‖A‖ − 1. This is the zero-time par-
tition for the underlying finite-alphabet process. Another possible parti-
tion would be according to the output of a sliding-block coding of x, the
zero-time partition of the sliding-block coding (or the zero-time partition
of the encoded process). In general there is a finite collection of impor-
tant events that we wish to force to be approximately independent of the
punctuation sequence and P is chosen so that the important events are
unions of atoms of P.

Given a partition P, we define the label function
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labelP(x) =
‖P‖−1∑

i=0

i1Pi(x),

where as usual 1P is the indicator function of a set P . Thus the label of
a sequence is simply the index of the atom of the partition into which it
falls.

As P partitions the input space into which sequences belong to atoms
of P, T−iP partitions the space according to which shifted sequences
T ix belong to atoms of P, that is, x ∈ T−iPl ∈ T−iP is equivalent to
T ix ∈ Pl and hence labelP(T ix) = l. The join

PN =
N−1∨

i=0

T−iP

partitions the space into sequences sharing N labels in the following
sense: Each atom Q of PN has the form

Q = {x : labelP(x)= k0, labelP(Tx)= k1, · · · , labelP(TN−1x)= kN −1}

=
N−1⋂

i=0

T−iPki

for some N tuple of integers k = (k0, · · · , kN − 1). In the ergodic theory
literature k is clled the P-N-name of the atom Q. For this reason we
index the atoms of PN = Q as Qk. Thus PN breaks up the sequence
space into groups of sequences which have the same labels for N shifts.

Gadgets

In ergodic theory a gadget is a quadruple (T , F,N,P) where T is a trans-
formation (for us a shift), F is an event such that T iF ; i = 01, . . . ,N−1 are
disjoint (as in a Rohlin-Kakutani tower), and P is a partition of

⋃N−1
i=0 T

iF .
For concreteness, suppose that P is the zero-time partition of an under-
lying process, say a binary IID process. Consider the partition induced in
F , the base of the gadget, by PN = {Qk}, that is, the collection of sets of
the form Qk∩F . By construction, this will be the collection of all infinite
sequences for which the punctuation sequence at time zero is 0 (Z0 = 0)
and the P-n label of the next N outputs of the process is k, in the binary
example there are 2N such binary N-tuples since ‖P‖ = 2. The setQk∩F
together with its N − 1 shifts (that is, the set

⋃N−1
i=0 T

i(Qk ∩ F)) is called
a column of the gadget.

Gadgets provide an extremely useful structure for using a block code
to construct a sliding-block code. Each atom Qk∩ F in the base partition
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contains all sequences corresponding the next N input values being a
given binary N-tuple following a punctuation event Z0 = 0.

Strengthened Rohlin-Kakutani Theorem

Lemma 2.12. Given the assumptions of Lemma 2.11 and a finite partition

P, L and F can be chosen so that in addition to properties (A)-(C) it is also

true that

(D)

µ(Pi|F) = µ(Pi|T lF); l = 1,2, · · · , N − 1, (2.9)

µ(Pi|F) = µ(Pi|
N−1⋃

k=0

T kF) (2.10)

and

µ(Pi
⋂
F) ≤ 1

N
µ(Pi). (2.11)

Comment: Eq. (2.11) can be interpreted as stating that Pi and F are ap-
proximately independent since 1/N is approximately the probability of
F . Only the upper bound is stated as it is all we need. Eq. (2.9) also im-
plies that µ(Pi

⋂
F) is bounded below by (µ(Pi)− δ)µ(F).

Proof: Eq. (2.10) follows from (2.9) since

µ(Pi|
N−1⋃

l=0

T lF) = µ(Pi
⋂⋃N−1

l=0 T
lF)

µ(
⋃N−1
l=0 T

lF)
=
∑N−1
l=0 µ(Pi

⋂
T lF)

∑N−1
l=0 µ(T

lF)

=
∑N−1
l=0 µ(Pi|T lF)µ(T lF)

Nµ(F)
= 1

N

N−1∑

l=0

µ(Pi|T lF)

= µ(Pi | F)

Eq. (2.11) follows from (2.10) since

µ(Pi
⋂
F) = µ(Pi|F)µ(F) = µ(Pi|

N−1⋃

k=0

T kF)µ(F)

= µ(Pi|
N−1⋃

k=0

T kF)
1

N
µ(
N−1⋃

k=0

T kF))

= 1

N
µ(Pi

⋂N−1⋃

k=0

T kF) ≤ 1

N
µ(Pi)

since the T kF are disjoint and have equal probability, The remainder of
this section is devoted to proving (2.9).
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We first construct using Lemma 2.11 a huge tower of size KN ≫ N ,
the height of the tower to be produced for this lemma. Let S denote the
base of this original tower and let ǫ by the probability of the garbage
set. This height KN tower with base S will be used to construct a
new tower of height N and a base F with the additional desired prop-
erty. First consider the restriction of the partition PN to F defined by
PN ⋂F = {Qk

⋂
F ; all KN-tuples k with coordinates taking values in

{0,1, · · · ,‖P‖ − 1}}. PN ⋂F divides up the original base according to
the labels of NK shifts of base sequences. For each atom Qk

⋂
F in this

base partition, the sets {T l(Qk

⋂
F); k = 0,1, · · · , KN − 1} are disjoint

and together form a column of the tower {T lF ; k = 0,1, · · · , KN − 1}. A
set of the form T l(Qk

⋂
F) is called the lth level of the column containing

it. Observe that if y ∈ T l(Qk

⋂
F), then y = T lu for some u ∈ Qk

⋂
F

and T lu has label kl. Thus we consider kl to be the label of the column
level T l(Qk

⋂
F). This complicated structure of columns and levels can

be used to recover the original partition by

Pj =
⋃

l,k:kl=j
T l(Qk

⋂
F)
⋂
(Pj

⋂
G), (2.12)

that is, Pj is the union of all column levels with label j together with that
part of Pj in the garbage. We will focus on the pieces of Pj in the column
levels as the garbage has very small probability.

We wish to construct a new tower with base F so that the probability
of Pi for any of N shifts of F is the same. To do this we form F dividing
each column of the original tower into N equal parts. We collect a group
of these parts to form F so that F will contain only one part at each level,
theN shifts of F will be disjoint, and the union of theN shifts will almost
contain all of the original tower. By using the equal probability parts the
new base will have conditional probabilities for Pj given T l equal for all
l, as will be shown.

Consider the atom Q = Qk

⋂
S in the partition PN ⋂S of the base of

the original tower. If the source is aperiodic in the sense of placing zero
probability on individual sequences, then the set Q can be divided into
N disjoint sets of equal probability, say W0,W1, · · · ,WN−1. Define the
set FQ by

FQ = (
(K−2)N⋃

i=0

T iNW0)
⋃
(
(K−2)N⋃

i=0

T 1+iNW1)
⋃
· · · (

(K−2)N⋃

i=0

TN−1+iNWN−1)

=
N−1⋃

l=0

(K−2)N⋃

i=0

T l+iNWl.

FQ contains (K − 2) N shifts of W0, of TW1, · · · of T lWl, · · · and of
TN−1WN−1. Because it only takes N-shifts of each small set and because
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it does not include the top N levels of the original column, shifting FQ
fewer than N times causes no overlap, that is, T lFQ are disjoint for
j = 0,1, · · · , N − 1. The union of these sets contains all of the origi-
nal column of the tower except possibly portions of the top and bottom
N − 1 levels (which the construction may not include). The new base F
is now defined to be the union of all of the FQk

⋂
S . The sets T lF are

then disjoint (since all the pieces are) and contain all of the levels of the
original tower except possibly the top and bottom N − 1 levels. Thus

µ(
N−1⋃

l=0

T lF) ≥ µ(
(K−1)N−1⋃

i=N
T iS) =

(K−1)N−1∑

i=N
µ(S)

≥ K − 2
1− ǫ
KN

= 1− ǫ
N

− 2

KN
.

By choosing ǫ = δ/2 and K large this can be made larger than 1 − δ.
Thus the new tower satisfies conditions (A)-(C) and we need only verify
the new condition (D), that is, (2.9). We have that

µ(Pi|T lF) = µ(Pi
⋂
T lF)

µ(F)
.

Since the denominator does not depend on l, we need only show the
numerator does not depend on l. From (2.12) applied to the original
tower we have that

µ(Pi
⋂
T lF) =

∑

j,k:kj=i
µ(T j(Qk

⋂
S)
⋂
T lF),

that is, the sum over all column levels (old tower) labeled i of the proba-
bility of the intersection of the column level and the lth shift of the new
base F . The intersection of a column level in the jth level of the original
tower with any shift of F must be an intersection of that column level
with the jth shift of one of the sets W0, · · · ,WN−1 (which particular set
depends on l). Whichever set is chosen, however, the probability within
the sum has the form

µ(T j(Qk

⋂
S)
⋂
T lF) = µ(T j(Qk

⋂
S)
⋂
T jWm)

= µ((Qk

⋂
S)
⋂
Wm) = µ(Wm),

where the final step follows since Wm was originally chosen as a subset
of Qk

⋂
S. Since these subsets were all chosen to have equal probability,

this last probability does not depend on m and hence on l and

µ(T j(Qk

⋂
S)
⋂
T lF) = 1

N
µ(Qk

⋂
S)
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and hence

µ(Pi
⋂
T lF) =

∑

j,k:kj=i

1

N
µ(Qk

⋂
S),

which proves (2.9) since there is no dependence on l. This completes the
proof of the lemma. ✷



Chapter 3

Entropy

Abstract The development of the idea of entropy of random variables
and processes by Claude Shannon provided the beginnings of informa-
tion theory and of the modern age of ergodic theory. Entropy and related
information measures will be shown to provide useful descriptions of
the long term behavior of random processes and this behavior is a key
factor in developing the coding theorems of information theory. Here the
various notions of entropy for random variables, vectors, processes, and
dynamical systems are introduced and and there fundamental properties
derived. In this chapter the case of finite-alphabet random processes is
emphasized for simplicity, reflecting the historical development of the
subject. Occasionally we consider more general cases when it will ease
later developments.

3.1 Entropy and Entropy Rate

There are several ways to introduce the notion of entropy and entropy
rate. The difference between the two concepts is that entropy is relevant
to a single random variable or random vector or, equivalently, to a parti-
tion of the sample space, while entropy rate describes a limiting entropy
per time unit is we look at sample vectors with increasing dimensions
or iterates of a partition. We take some care at the beginning in order to
avoid redefining things later. We also try to use definitions resembling
the usual definitions of elementary information theory where possible.
Let (Ω,B, P , T) be a dynamical system. Let f : Ω→ A be a finite-alphabet
measurement (a simple function) defined on Ω and define the random
process fn = fTn;n ∈ T. For the moment we focus on one sided pro-
cesses with T = {0,1,2, . . .}. If the transformation T is invertible, we can
extend the definition to all integer n and obtain a two-sided process with
T = Z. This process can be viewed as a coding of the original space, that
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is, one produces successive coded values by transforming (e.g., shifting)
the points of the space, each time producing an output symbol using the
same rule or mapping. If Ω is itself a sequence space and T is a shift,
then f is a sliding-block code as considered in Section 2.6 and it induces
a stationary sequence code f = {fTn;n ∈ T}.

In the usual way we can construct an equivalent Kolmogorov model
of this process. Let A = {a1, a2, . . . , a‖A‖} denote the finite alphabet of f

and let (AZ+ ,BZ+A ) be the resulting one-sided sequence space, where BA
is the power set. We abbreviate the notation for this sequence space to
(A∞,B∞A ). Let TA denote the shift on this space and let X denote the time
zero sampling or coordinate function and define Xn(x) = X(TnAx) = xn.
Letm denote the process distribution induced by the original space and

the fTn, i.e.,m = Pf = Pf
−1

where f(ω) = (f (ω), f (Tω), f (T 2ω), . . .).
Observe that by construction, shifting the input point yields an output

sequence that is also shifted, that is,

f(Tω) = TAf(ω).

Sequence-valued measurements of this form are called stationary or in-

variant codings (or time-invariant or shift-invariant codings in the case
of the shift) since the coding commutes with the transformations. Sta-
tionary codes will play an important role throughout this book and are
discussed in some detail in Chapter 2. If the input space Ω is itself a se-
quence space and T is a shift, then the code is also called a sliding-block

code to reflect the fact that the code operates by shifting the input se-
quence (sliding) and applying a common measurement or mapping to it.
Both the sequence-to-symbol mapping f and the sequence-to-sequence
mapping f are referred to as a sliding-block code, each implies the other.

The entropy and entropy rates of a finite-alphabet measurement de-
pend only on the process distributions and hence are usually more easily
stated in terms of the induced directly given model and the process dis-
tribution. For the moment, however, we point out that the definition can
be stated in terms of either system. Later we will see that the entropy of
the underlying system is defined as a supremum of the entropy rates of
all finite-alphabet codings of the system.

The entropy of a discrete alphabet random variable f defined on the
probability space (Ω,B, P) is defined by

HP(f ) = −
∑

a∈A
P(f = a) lnP(f = a). (3.1)

We define 0ln0 to be 0 in the above formula. We shall often use loga-
rithms to the base 2 instead of natural logarithms. The units for entropy
are “nats” when the natural logarithm is used and “bits” for base 2 log-
arithms. The natural logarithms are usually more convenient for mathe-
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matics while the base 2 logarithms provide more intuitive descriptions.
The subscript P can be omitted if the measure is clear from context. Be
forewarned that the measure will often not be clear from context since
more than one measure may be under consideration and hence the sub-
scripts will be required. A discrete alphabet random variable f has a
probability mass function (PMF), say pf , defined by pf (a) = P(f = a) =
P({ω : f(ω) = a}) and hence we can also write

H(f) = −
∑

a∈A
pf (a) lnpf (a).

It is often convenient to consider the entropy not as a function of
the particular outputs of f but as a function of the partition that f
induces on Ω. In particular, suppose that the alphabet of f is A =
{a1, a2, . . . , a‖A‖} and define the partition Q = {Qi; i = 1,2, . . . ,‖A‖}
by Qi = {ω : f(ω) = ai} = f−1({ai}). In other words, Q consists of dis-
joint sets which group the points in Ω together according to what output
the measurement f produces. We can consider the entropy as a function
of the partition and write

HP(Q) = −
‖A‖∑

i=1

P(Qi) lnP(Qi). (3.2)

Clearly different mappings with different alphabets can have the same
entropy if they induce the same partition. Both notations will be used
according to the desired emphasis. We have not yet defined entropy for
random variables that do not have discrete alphabets; we shall do that
later.

Return to the notation emphasizing the mapping f rather than the
partition. Defining the random variable P(f) by P(f)(ω) = P(λ : f(λ) =
f(ω)) we can also write the entropy as

HP(f ) = EP(− lnP(f)).

Using the equivalent directly given model we have immediately that

HP(f ) = HP(Q) = Hm(X0) = Em(− lnm(X0)). (3.3)

At this point one might ask why we are carrying the baggage of nota-
tions for entropy in both the original space and in the sequence space. If
we were dealing with only one measurement f (or Xn), we could confine
interest to the simpler directly-given form. More generally, however, we
will be interested in different measurements or codings on a common
system. In this case we will require the notation using the original sys-
tem. Hence for the moment we keep both forms, but we shall often focus
on the second where possible and the first only when necessary.
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The nth order entropy of a discrete alphabet measurement f with re-

spect to T is defined as

H(n)P (f ) = n−1HP(f
n)

where fn = (f , fT , fT 2, . . . , fTn−1) or, equivalently, we define the dis-
crete alphabet random process Xn(ω) = f(Tnω), then

fn = Xn = X0, X1, . . . , Xn−1.

As previously, this is given by

H(n)m (X) = n−1Hm(X
n) = n−1Em(− lnm(Xn)).

This is also called the entropy (per-coordinate or per-sample) of the ran-
dom vector fn or Xn. We can also use the partition notation here. The
partition corresponding to fn has a particular form: Suppose that we
have two partitions, Q = {Qi} and P = {Pi}. Define their join Q∨P
as the partition containing all nonempty intersection sets of the form
Qi
⋂
Pj . Define also T−1Q as the partition containing the atoms T−1Qi.

Then fn induces the partition

n−1∨

i=0

T−iQ

and we can write

H(n)P (f ) = H(n)P (Q) = n−1HP(
n−1∨

i=0

T−iQ).

As before, which notation is preferable depends on whether we wish to
emphasize the mapping f or the partition Q.

The entropy rate or mean entropy of a discrete alphabet measurement
f with respect to the transformation T is defined by

HP(f ) = lim sup
n→∞

H(n)P (f )

= HP(Q) = lim sup
n→∞

H(n)P (Q)

= Hm(X) = lim sup
n→∞

H(n)m (X).

Given a dynamical system (Ω,B, P , T), the entropy H(P, T) of the sys-
tem (or of the measure with respect to the transformation) is defined
by

H(P, T) = sup
f
HP(f ) = sup

Q
HP(Q), (3.4)
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where the supremum is over all finite-alphabet measurements (or cod-
ings) or, equivalently, over all finite measurable partitions of Ω. (We em-
phasize that this means alphabets of size M for all finite values of M .)
The entropy of a system is also called the Kolmogorov-Sinai invariant

of the system because of the generalization by Kolmogorov [102] and
Sinai [168] of Shannon’s entropy rate concept to dynamical systems and
the demonstration that equal entropy was a necessary condition for two
dynamical systems to be isomorphic.

Note that the entropy rate is well-defined for a continuous-alphabet
random process as the supremum over the entropy rates over all finite-
alphabet codings of the process. Such an entropy rate is usually infinite,
but it is defined.

Suppose that we have a dynamical system corresponding to a finite-
alphabet random process {Xn}, then one possible finite-alphabet mea-
surement on the process is f(x) = x0, that is, the time 0 output. In
this case clearly HP(f ) = HP(X) and hence, since the system entropy is
defined as the supremum over all simple measurements,

H(P, T) ≥ HP(X). (3.5)

We shall later see in Theorem 6.1 that (3.5) holds with equality for fi-
nite alphabet random processes and provides a generalization of entropy
rate for processes that do not have finite alphabets.

3.2 Divergence Inequality and Relative Entropy

Many of the basic properties of entropy follow from a simple result
known as the divergence inequality. A slight variation is well-known as
the log-sum inequality). The divergence or relative entropy is a variation
on the idea of entropy and it crops up often as a useful tool for proving
and interpreting results and for comparing probability distributions. In
this section several fundamental definitions and results are collected to-
gether for use in the next section in developing the properties of entropy
and entropy rate.

Lemma 3.1. Given two probability mass functions {pi} and {qi}, that is,

two countable or finite sequences of nonnegative numbers that sum to

one, then ∑

i

pi ln
pi
qi
≥ 0

with equality if and only if qi = pi, all i.

Proof: The lemma follows easily from the elementary inequality for real
numbers
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lnx ≤ x − 1 (3.6)

(with equality if and only if x = 1) since

∑

i

pi ln
qi
pi
≤
∑

i

pi(
qi
pi
− 1) =

∑

i

qi −
∑

i

pi = 0

with equality if and only if qi/pi = 1 all i. Alternatively, the inequality
follows from Jensen’s inequality [74] since ln is a convex

⋂
function:

∑

i

pi ln
qi
pi
≤ ln


∑

i

pi
qi
pi


 = 0

with equality if and only if qi/pi = 1, all i. ✷

The inequality has a simple corollary that we record now for later use.

Corollary 3.1. The function x ln(x/y) of real positive x,y is convex in

(x,y).

Proof. Let (xi, yi), i = 1,2, be pairs of real positive numbers, 0 ≤ λ ≤ 1,
and define x = λx1+(1−λ)x2 and y = λy1+(1−λ)y2. Apply Lemma 3.1
to the probability mass functions p and q defined by

p1 = λx1

λx1 + (1− λ)x2

p2 = (1− λ)x2

λx1 + (1− λ)x2

q1 = λy1

λy1 + (1− λ)y2

q2 = (1− λ)y2

λy1 + (1− λ)y2

yields

0 ≤
λx1

λx1 + (1− λ)x2
ln




λx1

λx1+(1−λ)x2

λy1

λy1+(1−λ)y2


+ (1− λ)x2

λx1 + (1− λ)x2
ln




(1−λ)x2

λx1+(1−λ)x2

(1−λ)y2

λy1+(1−λ)y2


 .

Cancelling the positive denominator and rearranging

λx1 ln
x1

y1
+ (1− λ)λx2 ln

x2

y2
≥

(λx1 + (1− λ)x2) ln

(
λx1 + (1− λ)x2

λy1 + (1− λ)y2

)
,

proving the claimed convexity. ✷
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The quantity used in Lemma 3.1 is of such fundamental importance
that we introduce another notion of information and recast the inequal-
ity in terms of it. As with entropy, the definition for the moment is only
for finite-alphabet random variables. Also as with entropy, there are a
variety of ways to define it. Suppose that we have an underlying measur-
able space (Ω,B) and two measures on this space, say P and M , and we
have a random variable f with finite alphabet A defined on the space and
that Q is the induced partition {f−1(a);a ∈ A}. Let Pf and Mf be the
induced distributions and let p and m be the corresponding probability
mass functions, e.g., p(a) = Pf ({a}) = P(f = a). Define the relative en-

tropy of a measurement f with measure P with respect to the measure
M by

HP‖M(f ) = HP‖M(Q) =
∑

a∈A
p(a) ln

p(a)

m(a)
=
‖A‖∑

i=1

P(Qi) ln
P(Qi)

M(Qi)
.

Observe that this only makes sense if p(a) is 0 whenever m(a) is, that
is, if Pf is absolutely continuous with respect to Mf or Mf ≫ Pf . Define
HP‖M(f ) = ∞ if Pf is not absolutely continuous with respect to Mf . The
measure M is referred to as the reference measure. Relative entropies
will play an increasingly important role as general alphabets are con-
sidered. In the early chapters the emphasis will be on ordinary entropy
with similar properties for relative entropies following almost as an af-
terthought. When considering more abstract (nonfinite) alphabets later
on, relative entropies will prove indispensible.

Analogous to entropy, given a random process {Xn} described by two
process distributions p and m, if it is true that

mXn ≫ pXn ; n = 1,2, . . . ,

−1Hp‖m(Xn)
and the relative entropy rate

Hp‖m(X) ≡ lim sup
n→∞

1

n
Hp‖m(Xn).

When dealing with relative entropies it is often the measures that
are important and not the random variable or partition. We introduce
a special notation which emphasizes this fact. Given a probability space
(Ω,B, P), with Ω a finite space, and another measure M on the same
space, we define the divergence of P with respect to M as the relative
entropy of the identity mapping with respect to the two measures:

D(P‖M) =
∑

ω∈Ω
P(ω) ln

P(ω)

M(ω)
.

then we can define for eachn thenth order relative entropyn
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Thus, for example, given a finite-alphabet measurement f on an arbitrary
probability space (Ω,B, P), if M is another measure on (Ω,B) then

HP‖M(f ) = D(Pf‖Mf ).

Similarly,
Hp‖m(Xn) = D(PXn‖MXn),

where PXn and MXn are the distributions for Xn induced by process
measures p and m, respectively. The theory and properties of relative
entropy are therefore determined by those for divergence.

There are many names and notations for relative entropy and diver-
gence throughout the literature. The idea was introduced by Kullback
for applications of information theory to statistics (see, e.g., Kullback
[106] and the references therein) and was used to develop information
theoretic results by Perez [145] [147] [146], Dobrushin [32], and Pinsker
[150]. Various names in common use for this quantity are discrimina-
tion, discrimination information, Kullback-Leibler (KL) number , directed
divergence, informational divergence, and cross entropy.

The lemma can be summarized simply in terms of divergence as in
the following theorem, which is commonly referred to as the divergence
inequality. The assumption of finite alphabets will be dropped later.

Theorem 3.1. Divergence Inequality Given any two probability measures

P and M on a common finite-alphabet probability space, then

D(P‖M) ≥ 0 (3.7)

with equality if and only if P = M .

In this form the result is known as the divergence inequality. The fact
that the divergence of one probability measure with respect to another is
nonnegative and zero only when the two measures are the same suggest
the interpretation of divergence as a “distance” between the two prob-
ability measures, that is, a measure of how different the two measures
are. It is not a true distance or metric in the usual sense since it is not a
symmetric function of the two measures and it does not satisfy the tri-
angle inequality. The interpretation is, however, quite useful for adding
insight into results characterizing the behavior of divergence and it will
later be seen to have implications for ordinary distance measures be-
tween probability measures.

The divergence plays a basic role in the family of information mea-
sures all of the information measures that we will encounter — entropy,
relative entropy, mutual information, and the conditional forms of these
information measures — can be expressed as a divergence.

There are three ways to view entropy as a special case of divergence.
The first is to permitM to be a general measure instead of requiring it to



3.3 Basic Properties of Entropy 69

be a probability measure and have total mass 1. In this case entropy is
minus the divergence if M is the counting measure, i.e., assigns measure
1 to every point in the discrete alphabet. If M is not a probability mea-
sure, then the divergence inequality (3.7) need not hold. Second, if the
alphabet of f is Af and has ‖Af‖ elements, then letting M be a uniform
PMF assigning probability 1/‖A‖ to all symbols in A yields

D(P‖M) = ln‖Af‖ −HP(f ) ≥ 0

and hence the entropy is the log of the alphabet size minus the diver-
gence with respect to the uniform distribution. Third, we can also con-
sider entropy a special case of divergence while still requiring that M be
a probability measure by using product measures and a bit of a trick. Say
we have two measures P and Q on a common probability space (Ω,B).
Define two measures on the product space (Ω×Ω,B(Ω×Ω)) as follows:
Let P ×Q denote the usual product measure, that is, the measure spec-
ified by its values on rectangles as P ×Q(F ×G) = P(F)Q(G). Thus, for
example, if P and Q are discrete distributions with PMF’s p and q, then
the PMF for P × Q is just p(a)q(b). Let P ′ denote the “diagonal” mea-
sure defined by its values on rectangles as P ′(F × G) = P(F ⋂G). In the
discrete case P ′ has PMF p′(a, b) = p(a) if a = b and 0 otherwise. Then

HP(f ) = D(P ′‖P × P).

Note that if we let X and Y be the coordinate random variables on our
product space, then both P ′ and P × P give the same marginal proba-
bilities to X and Y , that is, PX = PY = P . P ′ is an extreme distribution
on (X, Y) in the sense that with probability one X = Y ; the two coordi-
nates are deterministically dependent on one another. P × P , however,
is the opposite extreme in that it makes the two random variables X
and Y independent of one another. Thus the entropy of a distribution P
can be viewed as the relative entropy between these two extreme joint
distributions having marginals P .

3.3 Basic Properties of Entropy

For the moment fix a probability measure m on a measurable space
(Ω,B) and let X and Y be two finite-alphabet random variables defined
on that space. Let AX and AY denote the corresponding alphabets. Let
PXY , PX , and PY denote the distributions of (X, Y), X, and Y , respectively.

First observe that since PX(a) ≤ 1, all a, − lnPX(a) is positive and
hence

H(X) = −
∑

a∈A
PX(a) lnPX(a) ≥ 0. (3.8)
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From (3.7) with M uniform as in the second interpretation of entropy
above, if X is a random variable with alphabet AX , then

H(X) ≤ ln‖AX‖.

Since for any a ∈ AX and b ∈ AY we have that PX(a) ≥ PXY (a, b), it
follows that

H(X,Y) = −
∑

a,b

PXY (a, b) lnPXY (a, b)

≥ −
∑

a,b

PXY (a, b) lnPX(a) = H(X).

Using Lemma 3.1 we have that since PXY and PXPY are probability mass
functions,

H(X,Y)− (H(X)+H(Y)) =
∑

a,b

PXY (a, b) ln
PX(a)PY (b)

PXY (a, b)
≤ 0.

This proves the following result.

Lemma 3.2. Given two discrete alphabet random variables X and Y de-

fined on a common probability space, we have

0 ≤ H(X) (3.9)

and

max(H(X),H(Y)) ≤ H(X,Y) ≤ H(X)+H(Y) (3.10)

where the right hand inequality holds with equality if and only if X and

Y are independent. If the alphabet of X has ‖AX‖ symbols, then

HX(X) ≤ ln‖AX‖. (3.11)

There is another proof of the left hand inequality in (3.10) that uses an
inequality for relative entropy that will be useful later when considering
codes. The following lemma gives the inequality. First we introduce a
definition. A partition R is said to refine a partion Q if every atom in Q
is a union of atoms of R, in which case we write Q <R.

Lemma 3.3. Suppose that P and M are two measures defined on a com-

mon measurable space (Ω,B) and that we are given a finite partitions

Q <R. Then

HP‖M(Q) ≤ HP‖M(R)
and

HP(Q) ≤ HP(R).
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Comments: The lemma can also be stated in terms of random variables
and mappings in an intuitive way: Suppose that U is a random variable
with finite alphabet A and f : A → B is a mapping from A into another
finite alphabet B. Then the composite random variable f(U) defined by
f(U)(ω) = f(U(ω)) is also a finite alphabet random variable. If U in-
duces a partition R and f(U) a partition Q, then Q < R (since knowing
the value of U implies the value of f(U)). Thus the lemma immediately
gives the following corollary.

Corollary 3.2. If M ≫ P are two measures describing a random variable

U with finite alphabet A and if f : A→ B, then

HP‖M(f (U)) ≤ HP‖M(U)

and

HP(f (U)) ≤ HP(U).
Since D(Pf‖Mf ) = HP‖M(f ), we have also the following corollary which

we state for future reference.

Corollary 3.3. Suppose that P and M are two probability measures on a

discrete space and that f is a random variable defined on that space, then

D(Pf‖Mf ) ≤ D(P‖M).

The lemma, discussion, and corollaries can all be interpreted as saying
that taking a measurement on a finite-alphabet random variable lowers
the entropy and the relative entropy of that random variable. By choos-
ing U as (X, Y) and f(X,Y) = X or Y , the lemma yields the promised
inequality of the previous lemma.
Proof of Lemma: IfHP‖M(R) = +∞, the result is immediate. IfHP‖M(Q) =
+∞, that is, if there exists at least one Qj such that M(Qj) = 0 but
P(Qj) 6= 0, then there exists an Ri ⊂ Qj such that M(Ri) = 0 and
P(Ri) > 0 and hence HP‖M(R) = +∞. Lastly assume that both HP‖M(R)
and HP‖M(Q) are finite and consider the difference

HP‖M(R)−HP‖M(Q) =
∑

i

P(Ri) ln
P(Ri)

M(Ri)
−
∑

j

P(Qj) ln
P(Qj)

M(Qj)

=
∑

j




∑

i:Ri⊂Qj
P(Ri) ln

P(Ri)

M(Ri)
− P(Qj) ln

P(Qj)

M(Qj)


 .

We shall show that each of the bracketed terms is nonnegative, which
will prove the first inequality. Fix j. If P(Qj) is 0 we are done since then
also P(Ri) is 0 for all i in the inner sum since these Ri all belong to Qj .
If P(Qj) is not 0, we can divide by it to rewrite the bracketed term as
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P(Qj)




∑

i:Ri⊂Qj

P(Ri)

P(Qj)
ln
P(Ri)/P(Qj)

M(Ri)/M(Qj)


 ,

where we also used the fact that M(Qj) cannot be 0 since then P(Qj)

i⊂Qj ,P(Ri)/P(Qj)=P(Ri
⋂
Qj)/P(Qj)

= P(Ri|Qj) is an elementary conditional probability. Applying a similar
argument to M and dividing by P(Qj), the above expression becomes

∑

i:Ri⊂Qj
P(Ri|Qj) ln

P(Ri|Qj)
M(Ri|Qj)

which is nonnegative from Lemma 3.1, which proves the first inequality.
The second inequality follows similarly. Consider the difference

HP(R)−HP(Q) =
∑

j




∑

i:Ri⊂Qj
P(Ri) ln

P(Qj)

P(Ri)




=
∑

j

P(Qj)


−

∑

i:Ri⊂Qj
P(Ri|Qj) lnP(Ri|Qj)




and the result follows since the bracketed term is nonnegative since it is
an entropy for each value of j (Lemma 3.2). ✷

Concavity of Entropy

The next result provides useful inequalities for entropy considered as a
function of the underlying distribution. In particular, it shows that en-
tropy is a concave (or convex

⋂
) function of the underlying distribution.

The concavity follows from Corollary 3.5, but for later use we do a little
extra work to obtain an additional property. Define the binary entropy
function (the entropy of a binary random variable with probability mass
function (λ,1− λ)) by

h2(λ) = −λ lnλ− (1− λ) ln(1− λ).

Lemma 3.4. Let m and p denote two distributions for a discrete alphabet

random variable X and let λ ∈ (0,1). Then for any λ ∈ (0,1)

λHm(X)+ (1− λ)Hp(X) ≤ Hλm+(1−λ)p(X)
≤ λHm(X)+ (1− λ)Hp(X)+ h2(λ). (3.12)

would also have to be zero. Since R
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Proof: Define the quantities

I = −
∑

x

m(x) ln(λm(x)+ (1− λ)p(x))

and

J = Hλm+(1−λ)p(X) = −λ
∑

x

m(x) ln(λm(x)+ (1− λ)p(x))−

(1− λ)
∑

x

p(x) ln(λm(x)+ (1− λ)p(x)).

First observe that

λm(x)+ (1− λ)p(x) ≥ λm(x)

and therefore applying this bound to both m and p

I ≤ −lnλ−
∑

x

m(x) lnm(x) = − lnλ+Hm(X)

J ≤ −λ
∑

x

m(x) lnm(x)− (1− λ)
∑

x

p(x) lnp(x)+ h2(λ)

= λHm(X)+ (1− λ)Hp(X)+ h2(λ). (3.13)

To obtain the lower bounds of the lemma observe that

I = −
∑

x

m(x) lnm(x)(λ+ (1− λ) p(x)
m(x)

)

= −
∑

x

m(x) lnm(x)−
∑

x

m(x) ln(λ+ (1− λ) p(x)
m(x)

).

Using (3.6) the rightmost term is bound below by

−
∑

x

m(x)((λ+ (1− λ) p(x)
m(x)

− 1) = −λ− 1+ λ
∑

a∈A
p(X = a)+ 1 = 0.

Thus for all n
I ≥ −

∑

x

m(x) lnm(x) = Hm(X). (3.14)

and hence also

J ≥ −λ
∑

x

m(x) lnm(x)− (1− λ)
∑

x

p(x) lnp(x)

= λHm(X)+ (1− λ)Hp(X).

✷
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Convexity of Divergence

Relative entropy possesses a useful convexity property with respect to
the two probability measures, as described in the following lemma.

Lemma 3.5. D(P‖M) is convex in (P,M) for probability measures P , M
on a common finite-alphabet probability space, that is, if (Pi,Mi), i = 1,2
are pairs of probability measures, all of which are on a common finite-

alphabet probability space, and (P,M) = λ(P1,M1)+(1−λ)(P2,M2), then

D(P‖M) ≤ λD(P1‖M1)+ (1− λ)D(P2‖M2).

Proof. The result follows from the convexity of a ln(a/b) in (a, b) from
Corollary 3.1. ✷

Entropy and Binomial Sums

The next result presents an interesting connection between combina-
torics and binomial sums with a particular entropy. We require the fa-
miliar definition of the binomial coefficient:

(
n

k

)
= n!

k!(n− k)! .

Lemma 3.6. Given δ ∈ (0, 1
2] and a positive integer M , we have

∑

i≤δM

(
M

i

)
≤ eMh2(δ). (3.15)

If 0 < δ ≤ p ≤ 1, then

∑

i≤δM

(
M

i

)
pi(1− p)M−i ≤ e−Mh2(δ‖p), (3.16)

where

h2(δ‖p) = δ ln
δ

p
+ (1− δ) ln

1− δ
1− p .

Proof: We have after some simple algebra that

e−h2(δ)M = δδM(1− δ)(1−δ)M .

If δ < 1/2, then δk(1 − δ)M−k increases as k decreases (since we are
having more large terms and fewer small terms in the product) and hence
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if i ≤ Mδ,
δδM(1− δ)(1−δ)M ≤ δi(1− δ)M−i.

Thus we have the inequalities

1 =
M∑

i=0

(
M

i

)
δi(1− δ)M−i ≥

∑

i≤δM

(
M

i

)
δi(1− δ)M−i

≥ e−h2(δ)M
∑

i≤δM

(
M

i

)

which completes the proof of (3.15). In a similar fashion we have that

eMh2(δ‖p) = ( δ
p
)δM(

1− δ
1− p)

(1−δ)M .

Since δ ≤ p, we have as in the first argument that for i ≤ Mδ

(
δ

p
)δM(

1− δ
1− p)

(1−δ)M ≤ ( δ
p
)i(

1− δ
1− p)

M−i

and therefore after some algebra we have that if i ≤ Mδ then

pi(1− p)M−i ≤ δi(1− δ)M−ie−Mh2(δ‖p)

and hence

∑

i≤δM

(
M

i

)
pi(1− p)M−i ≤ e−Mh2(δ‖p)

∑

i≤δM

(
M

i

)
δi(1− δ)M−i

≤ e−nh2(δ‖p)
M∑

i=0

(
M

i

)
δi(1− δ)M−i = e−Mh2(δ‖p),

which proves (3.16). ✷

The following is a technical but useful property of sample entropies.
The proof follows Billingsley [16].

Lemma 3.7. Given a finite-alphabet process {Xn} (not necessarily station-

ary) with distribution m, let Xnk = (Xk, Xk+1, . . . , Xk+n−1) denote the ran-

dom vectors giving a block of samples of dimension n starting at time

k. Then the random variables n−1 lnm(Xnk ) are m-uniformly integrable

(uniform in k and n).

Proof: For each nonnegative integer r define the sets

Er (k,n) = {x : − 1

n
lnm(xnk ) ∈ [r , r + 1)}

and hence if x ∈ Er (k,n) then
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r ≤ − 1

n
lnm(xnk ) < r + 1

or
e−nr ≥m(xnk ) > e−n(r+1).

Thus for any r

∫

Er (k,n)

(
− 1

n
lnm(Xnk )

)
dm < (r + 1)m(Er (k,n))

= (r + 1)
∑

xnk∈Er (k,n)
m(xnk ) ≤ (r + 1)

∑

xnk

e−nr

= (r + 1)e−nr‖A‖n ≤ (r + 1)e−nr ,

where the final step follows since there are at most ‖A‖n possible n-
tuples corresponding to thin cylinders in Er (k,n) and by construction
each has probability less than e−nr .

To prove uniform integrability we must show uniform convergence to
0 as r →∞ of the integral

γr (k,n)=
∫

x:− 1
n lnm(xnk )≥r

(− 1

n
lnm(Xnk ))dm=

∞∑

i=0

∫

Er+i(k,n)
(− 1

n
lnm(Xnk ))dm

≤
∞∑

i=0

(r + i+ 1)e−n(r+i)‖A‖n ≤
∞∑

i=0

(r + i+ 1)e−n(r+i−ln‖A‖).

Taking r large enough so that r > ln‖A‖, then the exponential term is
bound above by the special case n = 1 and we have the bound

γr (k,n) ≤
∞∑

i=0

(r + i+ 1)e−(r+i−ln‖A‖)

a bound which is finite and independent of k and n. The sum can easily
be shown to go to zero as r → ∞ using standard summation formulas.
(The exponential terms shrink faster than the linear terms grow.) ✷

Variational Description of Divergence

Divergence has a variational characterization that is a fundamental prop-
erty for its applications to large deviations theory [182] [31]. Although
this theory will not be treated here, the basic result of this section pro-
vides an alternative description of divergence and hence of relative en-
tropy that has intrinsic interest. The basic result is originally due to
Donsker and Varadhan [35].
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Suppose now that P and M are two probability measures on a com-
mon discrete probability space, say (Ω,B). Given any real-valued random
variable Φ defined on the probability space, we will be interested in the
quantity

EMe
Φ. (3.17)

which is called the cumulant generating function of Φ with respect to M
and is related to the characteristic function of the random variable Φ as
well as to the moment generating function and the operational transform
of the random variable. The following theorem provides a variational
description of divergence in terms of the cumulant generating function.

Theorem 3.2.

D(P‖M) = sup
Φ

(
EPΦ − ln(EM(e

Φ))
)
. (3.18)

Proof: First consider the random variable Φ defined by

Φ(ω) = ln(P(ω)/M(ω))

and observe that

EPΦ − ln(EM(e
Φ)) =

∑

ω

P(ω) ln
P(ω)

M(ω)
− ln(

∑

ω

M(ω)
P(ω)

M(ω)
)

= D(P‖M)− ln 1 = D(P‖M).
This proves that the supremum over all Φ is no smaller than the diver-
gence.

To prove the other half observe that for any bounded random variable
Φ,

EPΦ − lnEM(e
Φ) = EP

(
ln

eΦ

EM(eΦ)

)
=
∑

ω

P(ω)

(
ln
MΦ(ω)

M(ω)

)
,

where the probability measure MΦ is defined by

MΦ(ω) = M(ω)eΦ(ω)∑
xM(x)eΦ(x)

.

We now have for any Φ that

D(P‖Q)−
(
EPΦ − ln(EM(e

Φ))
)
=

∑

ω

P(ω)

(
ln
P(ω)

M(ω)

)
−
∑

ω

P(ω)

(
ln
MΦ(ω)

M(ω)

)
=

∑

ω

P(ω)

(
ln
P(ω)

MΦ(ω)

)
≥ 0
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using the divergence inequality. Since this is true for any Φ, it is also true
for the supremum over Φ and the theorem is proved. ✷

3.4 Entropy Rate

For simplicity we focus on the entropy rate of a directly given finite-
alphabet random process {Xn}. We also will emphasize stationary mea-
sures, but we will try to clarify those results that require stationarity and
those that are more general.

As a reminder, we recall the underlying structure. Let A be a finite set.
Let Ω = AZ+ and let B be the sigma-field of subsets of Ω generated by the
rectangles. Since A is finite, (A,BA) is standard, where BA is the power
set of A. Thus (Ω,B) is also standard by Lemma 2.4.1 of [55] or Lemma
3.7 of [58]. In fact, from the proof that cartesian products of standard
spaces are standard, we can take as a basis for B the fields Fn generated
by the finite dimensional rectangles having the form {x : Xn(x) = xn =
an} for all an ∈ An and all positive integers n. (Members of this class of
rectangles are called thin cylinders.) The union of all such fields, say F ,
is then a generating field.

Again let {Xn;n = 0,1, . . .} denote a finite-alphabet random process
and apply Lemma 3.2 to vectors and obtain

H(X0, X1, . . . , Xn−1) ≤
H(X0, X1, . . . , Xm−1)+H(Xm, Xm+1, . . . , Xn−1); 0 <m < n. (3.19)

Define as usual the random vectors Xnk = (Xk, Xk+1, . . . , Xk+n−1), that
is, Xnk is a vector of dimension n consisting of the samples of X from k to
k+n− 1. If the underlying measure is stationary, then the distributions
of the random vectors Xnk do not depend on k. Hence if we define the
sequence h(n) = H(Xn) = H(X0, . . . , Xn−1), then the above equation
becomes

h(k+n) ≤ h(k)+ h(n); all k,n > 0.

Thus h(n) is a subadditive sequence as treated in Section 7.5 of [55] or
Section 8.5 of [58]. A basic property of subadditive sequences is that the
limit h(n)/n as n→∞ exists and equals the infimum of h(n)/n over n.
(See, e.g., Lemma 7.5.1 of [55] or Lemma 8.5.3 of [58].) This immediately
yields the following result.

Lemma 3.8. If the distribution m of a finite-alphabet random process

{Xn} is stationary, then

Hm(X) = lim
n→∞

1

n
Hm(X

n) = inf
n≥1

1

n
Hm(X

n).
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Thus the limit exists and equals the infimum.

The next two properties of entropy rate are primarily of interest be-
cause they imply a third property, the ergodic decomposition of entropy
rate, which will be described in Theorem 3.3. They are also of some in-
dependent interest. The first result is a continuity result for entropy rate
when considered as a function or functional on the underlying process
distribution. The second property demonstrates that entropy rate is ac-
tually an affine functional (both convex

⋃
and convex

⋂
) of the under-

lying distribution, even though finite order entropy was only convex
⋂

and not affine.
We apply the distributional distance described in Section 1.7 to the

standard sequence measurable space (Ω,B) = (AZ+ ,BZ+A ) with a σ -field
generated by the countable field F = {Fn; n = 1,2, . . .} generated by all
thin rectangles.

Corollary 3.4. The entropy rate Hm(X) of a discrete alphabet random

process considered as a functional of stationary measures is upper semi-

continuous; that is, if probability measures m and mn, n = 1,2, . . . have

the property that d(m,mn)→ 0 as n→∞, then

Hm(X) ≥ lim sup
n→∞

Hmn(X).

Proof: For each fixed n

Hm(X
n) = −

∑

an∈An
m(Xn = an) lnm(Xn = an)

is a continuous function of m since for the distance to go to zero, the
probabilities of all thin rectangles must go to zero and the entropy is
the sum of continuous real-valued functions of the probabilities of thin
rectangles. Thus we have from Lemma 3.8 that if d(mk,m)→ 0, then

Hm(X) = inf
n

1

n
Hm(X

n) = inf
n

1

n
lim
k→∞

Hmk(X
n)

≥ lim sup
k→∞

(
inf
n

1

n
Hmk(X

n)

)
= lim sup

k→∞
Hmk(X).

✷

The next lemma uses Lemma 3.4 to show that entropy rates are affine
functions of the underlying probability measures.

Lemma 3.9. Let m and p denote two distributions for a discrete alphabet

random process {Xn}. Then for any λ ∈ (0,1),

λHm(X
n)+ (1− λ)Hp(Xn) ≤ Hλm+(1−λ)p(Xn)

≤ λHm(Xn)+ (1− λ)Hp(Xn)+ h2(λ), (3.20)
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and

lim sup
n→∞

(−
∫
dm(x)

1

n
ln(λm(Xn(x))+ (1− λ)p(Xn(x))))

= lim sup
n→∞

−
∫
dm(x)

1

n
lnm(Xn(x)) = Hm(X). (3.21)

If m and p are stationary then

Hλm+(1−λ)p(X) = λHm(X)+ (1− λ)Hp(X) (3.22)

and hence the entropy rate of a stationary discrete alphabet random pro-

cess is an affine function of the process distribution.

Comment: Eq. (3.20) is simply Lemma 3.4 applied to the random vectors
Xn stated in terms of the process distributions. Eq. (3.21) states that
if we look at the limit of the normalized log of a mixture of a pair of
measures when one of the measures governs the process, then the limit
of the expectation does not depend on the other measure at all and is
simply the entropy rate of the driving source. Thus in a sense the se-
quences produced by a measure are able to select the true measure from
a mixture.
Proof: Eq. (3.20) is just Lemma 3.4. Dividing by n and taking the limit
as n → ∞ proves that entropy rate is affine. Similarly, take the limit
supremum in expressions (3.13) and (3.14) and the lemma is proved. ✷

We are now prepared to prove one of the fundamental properties of
entropy rate, the fact that it has an ergodic decomposition formula simi-
lar to property (c) of Theorem 1.5 when it is considered as a functional on
the underlying distribution. In other words, the entropy rate of a station-
ary source is given by an integral of the entropy rates of the stationary
ergodic components. This is a far more complicated result than property
(c) of the ordinary ergodic decomposition because the entropy rate de-
pends on the distribution; it is not a simple function of the underlying
sequence. The result is due to Jacobs [80].

Theorem 3.3. The Ergodic Decomposition of Entropy Rate

Let (AZ+ ,B(A)Z+ ,m,T) be a stationary dynamical system correspond-

ing to a stationary finite alphabet source {Xn}. Let {px} denote the er-

godic decomposition of m. If Hpx(X) is m-integrable, then

Hm(X) =
∫
dm(x)Hpx(X).

Proof: The theorem follows immediately from Corollary 3.4 and Lemma 3.9
and the ergodic decomposition of semi-continuous affine funtionals as
in Theorem 8.9.1 of [55] or Theorem 8.5 of [58]. ✷
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3.5 Relative Entropy Rate

The properties of relative entropy rate are more difficult to demonstrate.
In particular, the obvious analog to (3.19) does not hold for relative en-
tropy rate without the requirement that the reference measure be memo-
ryless, and hence one cannot immediately infer that the relative entropy
rate is given by a limit for stationary sources. The following lemma pro-
vides a condition under which the relative entropy rate is given by a
limit. The condition, that the dominating measure be a kth order (or
k-step) Markov source will occur repeatedly when dealing with relative
entropy rates. A discrete alphabet source is kth order Markov or k-step
Markov (or simply Markov if k is clear from context) if for any n and any
N ≥ k

P(Xn = xn|Xn−1 = xn−1, . . . , Xn−N = xn−N)
= P(Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k);

that is, conditional probabilities given the infinite past depend only on
the most recent k symbols. A 0-step Markov source is a memoryless
source. A Markov source is said to have stationary transitions if the above
conditional probabilities do not depend on n, that is, if for any n

P(Xn = xn|Xn−1 = xn−1, . . . , Xn−N = xn−N) =
P(Xk = xn|Xk−1 = xn−1, . . . , X0 = xn−k).

Lemma 3.10. If p is a stationary process andm is a k-step Markov process

with stationary transitions, then

Hp‖m(X) = lim
n→∞

1

n
Hp‖m(Xn) = −Hp(X)− Ep[lnm(Xk|Xk)],

where Ep[lnm(Xk|Xk)] is an abbreviation for

Ep[lnm(Xk|Xk)] =
∑

xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Proof: If for any n it is not true that mXn ≫ pXn , then Hp‖m(Xn) = ∞
for that and all larger n and both sides of the formula are infinite, hence
we assume that all of the finite dimensional distributions satisfy the
absolute continuity relation. Since m is Markov,

mXn(x
n) =

n−1∏

l=k
mXl|Xl(xl|xl)mXk(x

k).

Thus
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1

n
Hp‖m(Xn) = − 1

n
Hp(X

n)− 1

n

∑

xn
pXn(x

n) lnmXn(x
n)

= − 1

n
Hp(X

n)− 1

n

∑

xk

pXk(x
k) lnmXk(x

k)

− n− k
n

∑

xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Taking limits then yields

Hp‖m(X) = −Hp −
∑

xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk),

where the sum is well defined because if mXk|Xk(xk|xk) = 0, then so

must pXk+1(xk+1) = 0 from absolute continuity. ✷

Combining the previous lemma with the ergodic decomposition of en-
tropy rate yields the following corollary.

Corollary 3.5. The Ergodic Decomposition of Relative Entropy Rate

Let (AZ+ ,B(A)Z+ , p, T) be a stationary dynamical system correspond-

ing to a stationary finite alphabet source {Xn}. Let m be a kth order

Markov process for which mXn ≫ pXn for all n. Let {px} denote the er-

godic decomposition of p. If Hpx‖m(X) is p-integrable, then

Hp‖m(X) =
∫
dp(x)Hpx‖m(X).

3.6 Conditional Entropy and Mutual Information

We now turn to other notions of information. While we could do without
these if we confined interest to finite-alphabet processes, they will be
essential for later generalizations and provide additional intuition and
results even in the finite alphabet case. We begin by adding a second
finite-alphabet measurement to the setup of the previous sections. To
conform more to information theory tradition, we consider the measure-
ments as finite-alphabet random variables X and Y rather than f and
g. This has the advantage of releasing f and g for use as functions de-
fined on the random variables: f(X) and g(Y). It should be kept in mind,
however, that X and Y could themselves be distinct measurements on a
common random variable. This interpretation will often be useful when
comparing codes.

Let (Ω,B, P , T) be a dynamical system. Let X and Y be finite-alphabet
measurements defined on Ω with alphabets AX and AY . Define the con-

ditional entropy of X given Y by
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H(X|Y) ≡ H(X,Y)−H(Y).

The name conditional entropy comes from the fact that

H(X|Y) = −
∑

x,y

P(X = a,Y = b) lnP(X = a|Y = b)

= −
∑

x,y

pX,Y (x,y) lnpX|Y (x|y)

= −
∑

y

pY (y)

[∑

x

pX|Y (x | y) lnpX|Y (x|y)
]
,

where pX,Y (x,y) is the joint PMF for (X, Y) and

pX|Y (x|y) = pX,Y (x,y)/pY (y)

is the conditional PMF. Defining

H(X|Y = y) = −
∑

x

pX|Y (x|y) lnpX|Y (x|y)

we can also write

H(X|Y) =
∑

y

pY (y)H(X|Y = y).

Thus conditional entropy is an average of entropies with respect to con-
ditional PMF’s. We have immediately from Lemma 3.2 and the definition
of conditional entropy that

0 ≤ H(X|Y) ≤ H(X). (3.23)

The inequalities could also be written in terms of the partitions induced
by X and Y . Recall that according to Lemma 3.2 the right hand inequality
will be an equality if and only if X and Y are independent.

Define the average mutual information between X and Y by

I(X;Y) = H(X)+H(Y)−H(X,Y)
= H(X)−H(X|Y) = H(Y)−H(Y |X).

In terms of distributions and PMF’s we have that
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I(X;Y) =
∑

x,y

P(X = x,Y = y) ln
P(X = x,Y = y)
P(X = x)P(Y = y)

=
∑

x,y

pX,Y (x,y) ln
pX,Y (x,y)

pX(x)pY (y)
=
∑

x,y

pX,Y (x,y) ln
pX|Y (x|y)
pX(x)

=
∑

x,y

pX,Y (x,y) ln
pY |X(y|x)
pY (y)

.

Note also that mutual information can be expressed as a divergence by

I(X;Y) = D(PX,Y‖PX × PY ),

where PX × PY is the product measure on X,Y , that is, a probability
measure which gives X and Y the same marginal distributions as PXY ,
but under which X and Y are independent. Entropy is a special case of
mutual information since

H(X) = I(X;X).

We can collect several of the properties of entropy and relative en-
tropy and produce corresponding properties of mutual information. We
state these in the form using measurements, but they can equally well
be expressed in terms of partitions.

Lemma 3.11. Suppose that X and Y are two finite-alphabet random vari-

ables defined on a common probability space. Then

0 ≤ I(X;Y) ≤min(H(X),H(Y)).

Suppose that f : AX → A and g : AY → B are two measurements. Then

I(f (X);g(Y)) ≤ I(X;Y).

Proof: The first result follows immediately from the properties of en-
tropy. The second follows from Lemma 3.3 applied to the measurement
(f , g) since mutual information is a special case of relative entropy. ✷

The next lemma collects some additional, similar properties.

Lemma 3.12. Given the assumptions of the previous lemma,
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H(f(X)|X) = 0,

H(X, f (X)) = H(X),
H(X) = H(f(X))+H(X|f(X),

I(X;f(X)) = H(f(X)),
H(X|g(Y)) ≥ H(X|Y),

I(f (X);g(Y)) ≤ I(X;Y),

H(X|Y) = H(X, f(X,Y))|Y),

and, if Z is a third finite-alphabet random variable defined on the same

probability space,

H(X|Y) ≥ H(X|Y ,Z).

Comments: The first relation has the interpretation that given a random
variable, there is no additional information in a measurement made on
the random variable. The second and third relationships follow from the
first and the definitions. The third relation is a form of chain rule and
it implies that given a measurement on a random variable, the entropy
of the random variable is given by that of the measurement plus the
conditional entropy of the random variable given the measurement. This
provides an alternative proof of the second result of Lemma 3.3. The fifth
relation says that conditioning on a measurement of a random variable
is less informative than conditioning on the random variable itself. The
sixth relation states that coding reduces mutual information as well as
entropy. The seventh relation is a conditional extension of the second.
The eighth relation says that conditional entropy is nonincreasing when
conditioning on more information.

Proof: Since g(X) is a deterministic function of X, the conditional PMF
is trivial (a Kronecker delta) and hence H(g(X)|X = x) is 0 for all x,
hence the first relation holds. The second and third relations follow from
the first and the definition of conditional entropy. The fourth relation
follows from the first since I(X;Y) = H(Y)−H(Y |X). The fifth relation
follows from the previous lemma since

H(X)−H(X|g(Y)) = I(X;g(Y)) ≤ I(X;Y) = H(X)−H(X|Y).

The sixth relation follows from Corollary 3.3 and the fact that

I(X;Y) = D(PX,Y‖PX × PY ).

The seventh relation follows since

H(X, f(X,Y))|Y) = H(X, f(X,Y)), Y)−H(Y)
= H(X,Y)−H(Y) = H(X|Y).
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The final relation follows from the second by replacing Y by Y ,Z and
setting g(Y ,Z) = Y . ✷

In a similar fashion we can consider conditional relative entropies.
Suppose now that M and P are two probability measures on a common
space, that X and Y are two random variables defined on that space, and
that MXY ≫ PXY (and hence also MX ≫ PY ). Analagous to the definition
of the conditional entropy we can define

HP‖M(X|Y) ≡ HP‖M(X, Y)−HP‖M(Y).

Some algebra shows that this is equivalent to

HP‖M(X|Y) =
∑

x,y

pX,Y (x,y) ln
pX|Y (x|y)
mX|Y (x|y)

=
∑

y

pY (y)

(∑

x

pX|Y (x|y) ln
pX|Y (x|y)
mX|Y (x|y)

)
. (3.24)

This can be written as

HP‖M(X|Y) =
∑

y

pY (y)D(pX|Y (·|y)‖mX|Y (·|y)),

an average of divergences of conditional PMF’s, each of which is well
defined because of the original absolute continuity of the joint measure.
Manipulations similar to those for entropy can now be used to prove the
following properties of conditional relative entropies.

Lemma 3.13. Given two probability measures M and P on a common

space, and two random variables X and Y defined on that space with

the property that MXY ≫ PXY , then the following properties hold:

HP‖M(f (X)|X) = 0,

HP‖M(X, f (X)) = HP‖M(X),
HP‖M(X) = HP‖M(f (X))+HP‖M(X|f(X)), (3.25)

IfMXY = MX×MY (that is, if the PMFs satisfymX,Y (x,y) =mX(x)mY (y)),
then

HP‖M(X, Y) ≥ HP‖M(X)+HP‖M(Y)
and

HP‖M(X|Y) ≥ HP‖M(X).

Eq. (3.25) is a chain rule for relative entropy which provides as a corollary
an immediate proof of Lemma 3.3. The final two inequalities resemble
inequalities for entropy (with a sign reversal), but they do not hold for
all reference measures.
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The above lemmas along with Lemma 3.3 show that all of the informa-
tion measures thus far considered are reduced by taking measurements
or by coding. This property is the key to generalizing these quantities to
nondiscrete alphabets.

We saw in Lemma 3.4 that entropy was a convex
⋂

function of the un-
derlying distribution. The following lemma provides similar properties
of mutual information considered as a function of either a marginal or a
conditional distribution.

Lemma 3.14. Let µ denote a PMF on a discrete space AX , µ(x) = Pr(X =
x), and let ν be a conditional PMF, ν(y|x) = Pr(Y = y|X = x). Let µν de-

note the resulting joint PMF µν(x,y) = µ(x)ν(y|x). Let Iµν = Iµν(X;Y)
be the average mutual information. Then Iµν is a convex

⋃
function

of ν ; that is, given two conditional PMF’s ν1 and ν2, a λ ∈ [0,1], and

ν = λν1 + (1− λ)ν2, then

Iµν ≤ λIµν1 + (1− λ)Iµν2 ,

and Iµν is a convex
⋂

function of µ, that is, given two PMF’s µ1 and µ2,

λ ∈ [0,1], and µ = λµ1 + (1− λ)µ2,

Iµν ≥ λIµ1ν + (1− λ)Iµ2ν .

Proof. First consider the case of a fixed source µ and consider condi-
tional PMFs ν1, ν2, and for 0 ≤ λ ≤ 1 define ν = λν1 + (1 − λ)ν2.
Denote the corresponding input/output pair processes by pi = µνi,
i = 1,2, and p = λp1 + (1 − λ)p2 Let η (respectively, η1, η2, η) de-
note the PMF for Y resulting from ν (respectively ν1, ν2, ν), that is,
η(y) = Pr(Y = y) = ∑x µ(x)ν(y|x). Note that p1, p2, and p all have a
common input marginal PMF µ. We have that

µ × η = λµ × η1 + (1− λ)µ × η2

so that from Lemma 3.5

Iµν = D(µν||µ × η) = D(λp1 + (1− λ)p2‖λµ × η1 + (1− λ)µ × η2)

≤ λD(p1‖µ × η1)+ (1− λ)D(p2‖µ × η2)

= λIµν1 + (1− λ)Iµν2 ,

proving the convexity of mutual information with respect to the channel.
The author is indebted to T. Linder for suggesting this proof, which is
much simpler than the one in the first edition.

Similarly, let µ = λµ1 + (1 − λ)µ2 and let η1, η2, and η denote the
corresponding induced output PMF’s. Then
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Iµν = λ
∑

x,y

µ1(x)ν(y|x) log

(
ν(y|x)
η(y)

η1(y)

ν(y|x)
ν(y|x)
η1(y)

)

+ (1− λ)
∑

x,y

µ2(x)ν(y|x) log

(
ν(y|x)
η(y)

η2(y)

ν(y|x)
ν(y|x)
η2(y)

)

= λIµ1ν + (1− λ)Iµ2ν − λ
∑

x,y

µ1(x)ν(y|x) log
η(y)

η1(y)

− (1− λ)
∑

x,y

µ2(x)ν(y|x) log
η(y)

η2(y)

= λIµ1ν + (1− λ)Iµ2ν + λD(η1‖η)+ (1− λ)D(η2‖η)
≥ λIµ1ν + (1− λ)Iµ2ν (3.26)

from the divergence inequality. ✷

We consider one other notion of information: Given three finite-
alphabet random variables X,Y ,Z , define the conditional mutual infor-

mation between X and Y given Z by

I(X;Y |Z) = D(PXYZ‖PX×Y |Z) (3.27)

where PX×Y |Z is the distribution defined by its values on rectangles as

PX×Y |Z(F ×G ×D) =
∑

z∈D
P(X ∈ F|Z = z)P(Y ∈ G|Z = z)P(Z = z).

(3.28)
PX×Y |Z has the same conditional distributions for X given Z and for Y
given Z as does PXYZ , but now X and Y are conditionally independent
given Z . Alternatively, the conditional distribution for X,Y given Z under
the distribution PX×Y |Z is the product distribution PX|Z × PY |Z . Thus

I(X;Y |Z) =
∑

x,y,z

pXYZ(x,y, z) ln
pXYZ(x,y, z)

pX|Z(x|z)pY |Z(y|z)pZ(z)

=
∑

x,y,z

pXYZ(x,y, z) ln
pXY |Z(x,y|z)

pX|Z(x|z)pY |Z(y|z)
. (3.29)

Since
pXYZ

pX|ZpY |ZpZ
= pXYZ
pXpYZ

× pX
pX|Z

= pXYZ
pXZpY

× pY
pY |Z

we have the first statement in the following lemma.

Lemma 3.15.

I(X;Y |Z)+ I(Y ;Z) = I(Y ; (X,Z)), (3.30)

I(X;Y |Z) ≥ 0, (3.31)
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with equality if and only if X and Y are conditionally independent given

Z , that is, pXY |Z = pX|ZpY |Z . Given finite valued measurements f and g,

I(f (X);g(Y)|Z) ≤ I(X;Y |Z).

Proof: The second inequality follows from the divergence inequality (3.7)
with P = PXYZ andM = PX×Y |Z , i.e., the PMF’s pXYZ and pX|ZpY |ZpZ . The
third inequality follows from Lemma 3.3 or its corollary applied to the
same measures. ✷

Comments: Eq. (3.30) is called Kolmogorov’s formula. If X and Y are con-
ditionally independent given Z in the above sense, then we also have that
pX|YZ = pXY |Z/pY |Z = pX|Z , in which case Y → Z → X forms a Markov

chain — given Z , X does not depend on Y . Note that if Y → Z → X is
a Markov chain, then so is X → Z → Y . Thus the conditional mutual in-
formation is 0 if and only if the variables form a Markov chain with the
conditioning variable in the middle. One might be tempted to infer from
Lemma 3.3 that given finite valued measurements f , g, and r

I(f (X);g(Y)|r(Z))(?)≤ I(X;Y |Z).

This does not follow, however, since it is not true that ifQ is the partition

f(X),g(Y),r(Z)‖Pf(X)×g(Y)|r(Z))
is HPX,Y ,Z‖PX×Y |Z (f (X), g(Y), r(Z)) because of the way that PX×Y |Z is con-
structed; e.g., the fact that X and Y are conditionally independent given
Z implies that f(X) and g(Y) are conditionally independent given Z ,
but it does not imply that f(X) and g(Y) are conditionally indepen-
dent given r(Z). Alternatively, if M is PX×Z|Y , then it is not true that
Pf(X)×g(Y)|r(Z) equals M(fgr)−1. Note that if this inequality were true,
choosing r(z) to be trivial (say 1 for all z) would result in I(X;Y |Z) ≥
I(X;Y |r(Z)) = I(X;Y). This cannot be true in general since, for exam-
ple, choosing Z as (X, Y) would give I(X;Y |Z) = 0. Thus one must be
careful when applying Lemma 3.3 if the measures and random variables
are related as they are in the case of conditional mutual information.

We close this section with an easy corollary of the previous lemma and
of the definition of conditional entropy. Results of this type are referred
to as chain rules for information and entropy.

Corollary 3.6. Given finite-alphabet random variables Y , X1, X2, . . ., Xn,

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|X1, . . . , Xi−1)

Hp‖m(X1, X2, . . . , Xn) =
n∑

i=1

Hp‖m(Xi|X1, . . . , Xi−1)

corresponding to the three quantizers, thenD(P
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I(Y ; (X1, X2, . . . , Xn)) =
n∑

i=1

I(Y ;Xi|X1, . . . , Xi−1).

3.7 Entropy Rate Revisited

The chain rule of Corollary 3.6 provides a means of computing entropy
rates for stationary processes. We have that

1

n
H(Xn) = 1

n

n−1∑

i=0

H(Xi|Xi).

First suppose that the source is a stationary kth order Markov process,
that is, for any m > k

Pr(Xn = xn|Xi = xi; i = 0,1, . . . , n− 1)

= Pr(Xn = xn|Xi = xi; i = n− k, . . . , n− 1).

For such a process we have for all n ≥ k that

H(Xn|Xn) = H(Xn|Xkn−k) = H(Xk|Xk),

where Xmi = Xi, . . . , Xi+m−1. Thus taking the limit as n → ∞ of the nth
order entropy, all but a finite number of terms in the sum are identical
and hence the Cesàro (or arithmetic) mean is given by the conditional
expectation. We have therefore proved the following lemma.

Lemma 3.16. If {Xn} is a stationary kth order Markov source, then

H(X) = H(Xk|Xk).

If we have a two-sided stationary process {Xn}, then all of the previ-
ous definitions for entropies of vectors extend in an obvious fashion and
a generalization of the Markov result follows if we use stationarity and
the chain rule to write

1

n
H(Xn) = 1

n

n−1∑

i=0

H(X0|X−1, . . . , X−i).

Since conditional entropy is nonincreasing with more conditioning vari-
ables ((3.23) or Lemma 3.12), H(X0|X−1, . . . , X−i) has a limit. Again using
the fact that a Cesàro mean of terms all converging to a common limit
also converges to the same limit we have the following result.
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Lemma 3.17. If {Xn} is a two-sided stationary source, then

H(X) = lim
n→∞H(X0|X−1, . . . , X−n).

It is tempting to identify the above limit as the conditional entropy
given the infinite past,H(X0|X−1, . . .). Since the conditioning variable is a
sequence and does not have a finite alphabet, such a conditional entropy
is not included in any of the definitions yet introduced. We shall later
demonstrate that this interpretation is indeed valid when the notion of
conditional entropy has been suitably generalized.

The natural generalization of Lemma 3.17 to relative entropy rates un-
fortunately does not work because conditional relative entropies are not
in general monotonic with increased conditioning and hence the chain
rule does not immediately yield a limiting argument analogous to that
for entropy. The argument does work if the reference measure is a kth
order Markov, as considered in the following lemma.

Lemma 3.18. If {Xn} is a source described by process distributions p and

m and if p is stationary and m is kth order Markov with stationary tran-

sitions, then for n ≥ k Hp‖m(X0|X−1, . . . , X−n) is nondecreasing in n and

Hp‖m(X) = lim
n→∞Hp‖m(X0|X−1, . . . , X−n)

= −Hp(X)− Ep[lnm(Xk|Xk)].

Proof: For n ≥ k we have that

Hp‖m(X0|X−1, . . . , X−n) =
−Hp(X0|X−1, . . . , X−n)−

∑

xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Since the conditional entropy is nonincreasing with n and the remaining
term does not depend on n, the combination is nondecreasing with n.
The remainder of the proof then parallels the entropy rate result. ✷

It is important to note that the relative entropy analogs to entropy
properties often require kth order Markov assumptions on the reference
measure (but not on the original measure).

3.8 Markov Approximations

Recall that the relative entropy rate Hp‖m(X) can be thought of as a dis-
tance between the process with distribution p and that with distribution
m and that the rate is given by a limit if the reference measure m is
Markov. A particular Markov measure relevant to p is the distribution
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p(k) which is the kth order Markov approximation to p in the sense that
it is a kth order Markov source and it has the same kth order transition
probabilities as p. To be more precise, the process distribution p(k) is
specified by its finite dimensional distributions

p(k)Xk (x
k) = pXk(xk)

p(k)Xn (x
n) = pXk(xk)

n−1∏

l=k
pXl|Xkl−k(xl|x

k
l−k); n = k, k+ 1, . . .

so that
p(k)Xk|Xk = pXk|Xk .

It is natural to ask how good this approximation is, especially in the limit,
that is, to study the behavior of the relative entropy rate Hp‖p(k)(X) as
k→∞.

Theorem 3.4. Given a stationary process p, let p(k) denote the kth order

Markov approximations to p. Then

lim
k→∞

Hp‖p(k)(X) = inf
k
Hp‖p(k)(X) = 0.

Thus the Markov approximations are asymptotically accurate in the sense

that the relative entropy rate between the source and approximation can

be made arbitrarily small (zero if the original source itself happens to be

Markov).

Proof: As in the proof of Lemma 3.18 we can write for n ≥ k that

Hp‖p(k)(X0|X−1, . . . , X−n)

= −Hp(X0|X−1, . . . , X−n)−
∑

xk+1

pXk+1(xk+1) lnpXk|Xk(xk|xk)

= Hp(X0|X−1, . . . , X−k)−Hp(X0|X−1, . . . , X−n).

Note that this implies that p(k)Xn ≫ pXn for all n since the entropies are
finite. This automatic domination of the finite dimensional distributions
of a measure by those of its Markov approximation will not hold in the
general case to be encountered later, it is specific to the finite alphabet
case. Taking the limit as n→∞ gives

Hp‖p(k)(X) = lim
n→∞Hp‖p(k)(X0|X−1, . . . , X−n)

= Hp(X0|X−1, . . . , X−k)−Hp(X).

The corollary then follows immediately from Lemma 3.17. ✷

Markov approximations will play a fundamental role when consider-
ing relative entropies for general (nonfinite-alphabet) processes. The ba-
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sic result above will generalize to that case, but the proof will be much
more involved.

3.9 Relative Entropy Densities

Many of the convergence results to come will be given and stated in
terms of relative entropy densities. In this section we present a sim-
ple but important result describing the asymptotic behavior of relative
entropy densities. Although the result of this section is only for finite
alphabet processes, it is stated and proved in a manner that will extend
naturally to more general processes later on. The result will play a fun-
damental role in the basic ergodic theorems to come.

Throughout this section we will assume that M and P are two process
distributions describing a random process {Xn}. Denote as before the
sample vector Xn = (X0, X1, . . . , Xn−1), that is, the vector beginning at
time 0 having length n. The distributions on Xn induced by M and P
will be denoted by Mn and Pn, respectively. The corresponding PMF’s
are mXn and pXn . The key assumption in this section is that for all n if
mXn(xn) = 0, then also pXn(xn) = 0, that is,

Mn≫ Pn for all n. (3.32)

If this is the case, we can define the relative entropy density

hn(x) ≡ ln
pXn(xn)

mXn(xn)
= lnfn(x), (3.33)

where

fn(x) ≡



pXn (x

n)
mXn (xn)

if mXn(xn) 6= 0

0 otherwise
(3.34)

Observe that the relative entropy is found by integrating the relative
entropy density:

HP‖M(Xn) = D(Pn‖Mn) =
∑

xn
pXn(x

n) ln
pXn(xn)

mXn(xn)

=
∫

ln
pXn(Xn)

mXn(Xn)
dP (3.35)

Thus, for example, if we assume that

HP‖M(Xn) <∞, all n, (3.36)

then (3.32) holds.



94 3 Entropy

The following lemma will prove to be useful when comparing the
asymptotic behavior of relative entropy densities for different probabil-
ity measures. It is the first almost everywhere result for relative entropy
densities that we consider. It is somewhat narrow in the sense that it
only compares limiting densities to zero and not to expectations. We
shall later see that essentially the same argument implies the same re-
sult for the general case (Theorem 7.4), only the interim steps involving
PMF’s need be dropped. Note that the lemma requires neither stationar-
ity nor asymptotic mean stationarity.

Lemma 3.19. Given a finite-alphabet process {Xn} with process measures

P,M satisfying (3.32), Then

lim sup
n→∞

1

n
hn ≤ 0, M − a.e. (3.37)

and

lim inf
n→∞

1

n
hn ≥ 0, P − a.e.. (3.38)

If in addition M ≫ P , then

lim
n→∞

1

n
hn = 0, P − a.e.. (3.39)

Proof: First consider the probability

M(
1

n
hn ≥ ǫ) = M(fn ≥ enǫ) ≤ EM(fn)

enǫ
,

where the final inequality is Markov’s inequality. But

EM(fn) =
∫
dMfn =

∑

xn:mXn (xn) 6=0

mXn(x
n)
pXn(xn)

mXn(xn)

=
∑

xn:mXn (xn) 6=0

pXn(x
n) ≤ 1

and therefore

M(
1

n
hn ≥ ǫ) ≤ 2−nǫ

and hence ∞∑

n=1

M(
1

n
hn > ǫ) ≤

∞∑

n=1

e−nǫ <∞.

From the Borel-Cantelli Lemma (e.g., Lemma 4.6.3 of [55] or Lemma 5.17
of [58]) this implies that M(n−1hn ≥ ǫ i.o.) = 0 which implies the first
equation of the lemma.

Next consider
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P(− 1

n
hn > ǫ) =

∑

xn:− 1
n lnpXn (xn)/mXn (xn)>ǫ

pXn(x
n)

=
∑

xn:− 1
n lnpXn (xn)/mXn (xn)>ǫ and mXn (xn) 6=0

pXn(x
n)

where the last statement follows since if mXn(xn) = 0, then also
pXn(xn) = 0 and hence nothing would be contributed to the sum. In
other words, terms violating this condition add zero to the sum and
hence adding this condition to the sum does not change the sum’s value.
Thus

P(− 1

n
hn > ǫ)

=
∑

xn:− 1
n lnpXn (xn)/mXn (xn)>ǫ and mXn (xn) 6=0

pXn(xn)

mXn(xn)
mXn(x

n)

=
∫

fn<e−nǫ
dMfn ≤

∫

fn<e−nǫ
dMe−nǫ

= e−nǫM(fn < e−nǫ) ≤ e−nǫ.

Thus as before we have that P(n−1hn > ǫ) ≤ e−nǫ and hence that
P(n−1hn ≤ −ǫ i.o.) = 0 which proves the second claim. If also M ≫ P ,
then the first equation of the lemma is also true P -a.e., which when cou-
pled with the second equation proves the third. ✷



Chapter 4

The Entropy Ergodic Theorem

Abstract The goal of this chapter is to prove an ergodic theorem for
sample entropy of finite-alphabet random processes. The result is some-
times called the ergodic theorem of information theory or the asymp-

totic equipartition (AEP) theorem, but it is best known as the Shannon-
McMillan-Breiman theorem. It provides a common foundation to many
of the results of both ergodic theory and information theory.

4.1 History

Shannon [162] first demonstrated the convergence in probability of sam-
ple entropy to the entropy rate for stationary ergodic Markov sources.
McMillan [123] proved L1 convergence for stationary ergodic sources and
Breiman [20] [21] proved almost everywhere convergence for stationary
and ergodic sources. Billingsley [16] extended the result to stationary
nonergodic sources. Jacobs [79] [78] extended it to processes dominated
by a stationary measure and hence to two-sided AMS processes. Gray and
Kieffer [62] extended it to processes asymptotically dominated by a sta-
tionary measure and hence to all AMS processes. The generalizations to
AMS processes build on the Billingsley theorem for the stationary mean.

Breiman’s and Billingsley’s approach requires the martingale conver-
gence theorem and embeds the possibly one-sided stationary process
into a two-sided process. Ornstein and Weiss [141] developed a proof
for the stationary and ergodic case that does not require any martingale
theory and considers only positive time and hence does not require any
embedding into two-sided processes. The technique was described for
both the ordinary ergodic theorem and the entropy ergodic theorem by
Shields [165]. In addition, it uses a form of coding argument that is both
more direct and more information theoretic in flavor than the traditional
martingale proofs. We here follow the Ornstein and Weiss approach for
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the stationary ergodic result. We also use some modifications similar to
those of Katznelson and Weiss for the proof of the ergodic theorem. We
then generalize the result first to nonergodic processes using the “sand-
wich” technique of Algoet and Cover [7] and then to AMS processes using
a variation on a result of [62].

We next state the theorem to serve as a guide through the various
steps. We also prove the result for the simple special case of a Markov
source, for which the result follows from the usual ergodic theorem.

We consider a directly given finite-alphabet source {Xn} described by
a distribution m on the sequence measurable space (Ω,B). Define as
previously Xnk = (Xk, Xk+1, · · · , Xk+n−1). The subscript is omitted when
it is zero. For any random variable Y defined on the sequence space
(such as Xnk ) we define the random variablem(Y) bym(Y)(x) =m(Y =
Y(x)).

Theorem 4.1. The Entropy Ergodic Theorem

Given a finite-alphabet AMS source {Xn} with process distribution m
and stationary mean m, let {mx ;x ∈ Ω} be the ergodic decomposition of

the stationary mean m. Then

lim
n→∞

− lnm(Xn)

n
= h; m− a.e. and in L1(m), (4.1)

where h(x) is the invariant function defined by

h(x) = Hmx(X). (4.2)

Furthermore,

Emh = lim
n→∞

1

n
Hm(X

n) = Hm(X); (4.3)

that is, the entropy rate of an AMS process is given by the limit, and

Hm(X) = Hm(X). (4.4)

Comments: The theorem states that the sample entropy using the AMS
measurem converges to the entropy rate of the underlying ergodic com-
ponent of the stationary mean. Thus, for example, ifm is itself stationary
and ergodic, then the sample entropy converges to the entropy rate of
the process m-a.e. and in L1(m). The L1(m) convergence follows imme-
diately from the almost everywhere convergence and the fact that sam-
ple entropy is uniformly integrable (Lemma 3.7). L1 convergence in turn
immediately implies the left-hand equality of (4.3). Since the limit exists,
it is the entropy rate. The final equality states that the entropy rates of
an AMS process and its stationary mean are the same. This result follows
from (4.2)-(4.3) by the following argument: We have that Hm(X) = Emh
andHm(X) = Emh, but h is invariant and hence the two expectations are
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equal (see, e.g., Lemma 6.3.1 of [55] or Lemma 7.5 of [58]). Thus we need
only prove almost everywhere convergence in (4.1) to prove the theorem.

In this section we limit ourselves to the following special case of the
theorem that can be proved using the ordinary ergodic theorem without
any new techniques.

Lemma 4.1. Given a finite-alphabet stationary kth order Markov source

{Xn}, then there is an invariant function h such that

lim
n→∞

− lnm(Xn)

n
= h; m− a.e. and in L1(m),

where h is defined by

h(x) = −Emx lnm(Xk|Xk), (4.5)

where {mx} is the ergodic decomposition of the stationary mean m. Fur-

thermore,

h(x) = Hmx(X) = Hmx(Xk|Xk). (4.6)

Proof of Lemma: We have that

− 1

n
lnm(Xn) = − 1

n

n−1∑

i=0

lnm(Xi|Xi).

Since the process is kth order Markov with stationary transition proba-
bilites, for i > k we have that

m(Xi|Xi) =m(Xi|Xi−k, · · · , Xi−1) =m(Xk|Xk)T i−k.

The terms − lnm(Xi|Xi), i = 0,1, · · · , k− 1 have finite expectation and
hence are finite m-a.e. so that the ergodic theorem can be applied to
deduce

− lnm(Xn)(x)

n
= − 1

n

k−1∑

i=0

lnm(Xi|Xi)(x)− 1

n

n−1∑

i=k
lnm(Xk|Xk)(T i−kx)

= − 1

n

k−1∑

i=0

lnm(Xi|Xi)(x)− 1

n

n−k−1∑

i=0

lnm(Xk|Xk)(T ix)

→
n→∞ Emx(− lnm(Xk|Xk)),

proving the first statement of the lemma. It follows from the ergodic
decomposition of Markov sources (see Lemma 8.6.3 of [55] or Lemma
10.5 of [58]) that with probability 1, mx(Xk|Xk) = m(Xk|ψ(x),Xk) =
m(Xk|Xk), where ψ is the ergodic component function. This completes
the proof. ✷



100 4 The Entropy Ergodic Theorem

We prove the theorem in three steps: The first step considers station-
ary and ergodic sources and uses the approach of Ornstein and Weiss
[141] (see also Shields [165]). The second step removes the requirement
for ergodicity. This result will later be seen to provide an information
theoretic interpretation of the ergodic decomposition. The third step ex-
tends the result to AMS processes by showing that such processes inherit
limiting sample entropies from their stationary mean. The later exten-
sion of these results to more general relative entropy and information
densities will closely parallel the proofs of the second and third steps
for the finite case.

In subsequent chapters the definitions of entropy and information will
be generalized and corresponding generalizations of the entropy ergodic
theorem will be developed in Chapter 11.

4.2 Stationary Ergodic Sources

This section is devoted to proving the entropy ergodic theorem for
the special case of stationary ergodic sources. The result was originally
proved by Breiman [20]. The original proof first used the martingale con-
vergence theorem to infer the convergence of conditional probabilities
of the form m(X0|X−1, X−2, · · · , X−k) to m(X0|X−1, X−2, · · · ). This re-
sult was combined with an an extended form of the ergodic theorem
stating that if gk → g as k→∞ and if gk is L1-dominated (supk |gk| is in

L1), then 1/n
∑n−1
k=0 gkT

k has the same limit as 1/n
∑n−1
k=0 gT

k. Combining
these facts yields that that

1

n
lnm(Xn) = 1

n

n−1∑

k=0

lnm(Xk|Xk) = 1

n

n−1∑

k=0

lnm(X0|Xk−k)T k

has the same limit as

1

n

n−1∑

k=0

lnm(X0|X−1, X−2, · · · )T k

which, from the usual ergodic theorem, is the expectation

E(lnm(X0|X−) ≡ E(lnm(X0|X−1, X−2, · · · )).

As suggested at the end of the preceeding chapter, this should be minus
the conditional entropy H(X0|X−1, X−2, · · · ) which in turn should be the
entropy rate HX . This approach has three shortcomings: it requires a re-
sult from martingale theory which has not been proved here or in the
companion volume [55] or [58], it requires an extended ergodic theo-
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rem which has similarly not been proved here, and it requires a more
advanced definition of entropy which has not yet been introduced. An-
other approach is the sandwich proof of Algoet and Cover [7]. They show
without using martingale theory or the extended ergodic theorem that
1/n

∑n−1
i=0 lnm(X0|Xi−i)T i is asymptotically sandwiched between the en-

tropy rate of a kth order Markov approximation:

1

n

n−1∑

i=k
lnm(X0|Xk−k)T i →n→∞Em[lnm(X0|Xk−k)] = −H(X0|Xk−k)

and

1

n

n−1∑

i=k
lnm(X0|X−1, X−2, · · · )T i →

n→∞ Em[lnm(X0|X1, · · · )]

= −H(X0|X−1, X−2, · · · ).

By showing that these two limits are arbitrarily close as k → ∞, the re-
sult is proved. The drawback of this approach for present purposes is
that again the more advanced notion of conditional entropy given the
infinite past is required. Algoet and Cover’s proof that the above two en-
tropies are asymptotically close involves martingale theory, but this can
be avoided by using Corollary 7.4 as will be seen.

The result can, however, be proved without martingale theory, the
extended ergodic theorem, or advanced notions of entropy using the
approach of Ornstein and Weiss [141], which is the approach we shall
take in this chapter. In a later chapter when the entropy ergodic theorem
is generalized to nonfinite alphabets and the convergence of entropy
and information densities is proved, the sandwich approach will be used
since the appropriate general definitions of entropy will have been de-
veloped and the necessary side results will have been proved.

Lemma 4.2. Given a finite-alphabet source {Xn} with a stationary ergodic

distribution m, we have that

lim
n→∞

− lnm(Xn)

n
= h; m− a.e.,

where h(x) is the invariant function defined by

h(x) = Hm(X).

Proof: Define
hn(x) = − lnm(Xn)(x) = − lnm(xn)

and

h(x) = lim inf
n→∞

1

n
hn(x) = lim inf

n→∞
− lnm(xn)

n
.
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Since m((x0, · · · , xn−1)) ≤m((x1, · · · , xn−1)), we have that

hn(x) ≥ hn−1(Tx).

Dividing by n and taking the limit infimum of both sides shows that
h(x) ≥ h(Tx). Since the n−1hn are nonnegative and uniformly inte-
grable (Lemma 3.7), we can use Fatou’s lemma to deduce that h and
hence also hT are integrable with respect to m. Integrating with respect
to the stationary measure m yields

∫
dm(x)h(x) =

∫
dm(x)h(Tx)

which can only be true if

h(x) = h(Tx);m− a.e.,

that is, if h is an invariant function withm-probability one. If h is invari-
ant almost everywhere, however, it must be a constant with probability
one since m is ergodic (Lemma 6.7.1 of [55] or Lemma 7.12 of [58]).
Since it has a finite integral (bounded by Hm(X)), h must also be finite.
Henceforth we consider h to be a finite constant.

We now proceed with steps that resemble those of the proof of the
ergodic theorem in Section 7.2 of [55] or Section 8.1 or [58]. Fix ǫ > 0.
We also choose for later use a δ > 0 small enough to have the following
properties: If A is the alphabet of X0 and ‖A‖ is the finite cardinality of
the alphabet, then

δ ln‖A‖ < ǫ, (4.7)

and
−δ lnδ− (1− δ) ln(1− δ) ≡ h2(δ) < ǫ. (4.8)

The latter property is possible since h2(δ)→ 0 as δ→ 0.
Define the random variablen(x) to be the smallest integern for which

n−1hn(x) ≤ h+ ǫ. As in the proof of the ergodic theorem, n(x) in gen-
eral will be large in order to well approximate the limit infimum, but by
definition of the limit infimum there must be infinitely many n for which
the inequality is true and hence n(x) is everywhere finite, but it is not
bounded. Still mimicking the proof of the ergodic theorem, define a set
of “bad” sequences B = {x : n(x) > N} where N is chosen large enough
to ensure that m(B) < δ/2. Define a bounded modification of n(x) by

ñ(x) =
{
n(x) x 6∈ B
1 x ∈ B

so that ñ(x) ≤ N for all x ∈ Bc . We now parse the sequence into variable-
length blocks. Iteratively define nk(x) by
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n0(x) = 0

n1(x) = ñ(x)
n2(x) = n1(x)+ ñ(Tn1(x)x) = n1(x)+ l1(x)

...

nk+1(x) = nk(x)+ ñ(Tnk(x)x) = nk(x)+ lk(x),

where lk(x) is the length of the kth block:

lk(x) = ñ(Tnk(x)x).

We have parsed a very long sequence xL = (x0, · · · , xL−1), where

L ≫ N , into long blocks xnk(x), · · · , xnk+1(x)−1 = xlk(x)nk(x)
which begin

at time nk(x) and have length lk(x) for k = 0,1, · · · . We refer to this
parsing as the block decomposition of a sequence. The kth block, which
begins at time nk(x), must either have sample entropy satisfying

− lnm(x
lk(x)
nk(x)

)

lk(x)
≤ h+ ǫ (4.9)

or, equivalently, probability at least

m(x
lk(x)
nk(x)

) ≥ e−lk(x)(h+ǫ), (4.10)

or it must consist of only a single symbol. Blocks having length 1 (lk = 1)
could have the correct sample entropy, that is,

− lnm(x1
nk(x)

)

1
≤ h+ ǫ,

or they could be bad in the sense that they are the first symbol of a
sequence with n > N ; that is,

n(Tnk(x)x) > N,

or, equivalently,
Tnk(x)x ∈ B.

Except for these bad symbols, each of the blocks by construction will
have a probability which satisfies the above bound.

Define for nonnegative integers n and positive integers l the sets

S(n, l) = {x :m(Xln(x)) ≥ e−l(h+ǫ)},

that is, the collection of infinite sequences for which (4.9) and (4.10)
hold for a block starting at n and having length l. Observe that for such
blocks there cannot be more than el(h+ǫ) distinct l-tuples for which the
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bound holds (lest the probabilities sum to something greater than 1). In
symbols this is

||S(n, l)|| ≤ el(h+ǫ). (4.11)

The ergodic theorem will imply that there cannot be too many single
symbol blocks with n(Tnk(x)x) > N because the event has small proba-
bility. These facts will be essential to the proof.

Even though we write ñ(x) as a function of the entire infinite se-
quence, we can determine its value by observing only the prefix xN of
x since either there is an n ≤ N for which n−1 lnm(xn) ≤ h + ǫ or
there is not. Hence there is a function n̂(xN) such that ñ(x) = n̂(xN).
Define the finite length sequence event C = {xN : n̂(xN) = 1 and
− lnm(x1) > h + ǫ}, that is, C is the collection of all N-tuples xN that
are prefixes of bad infinite sequences, sequences x for which n(x) > N .
Thus in particular,

x ∈ B if and only if xN ∈ C. (4.12)

Recall that we parse sequences of length L≫ N and define the set GL
of “good” L-tuples by

GL = {xL :
1

L−N
L−N−1∑

i=0

1C(x
N
i ) ≤ δ},

that is, GL is the collection of all L-tuples which have fewer than δ(L −
N) ≤ δL time slots i for which xNi is a prefix of a bad infinite sequence.
From (4.12) and the ergodic theorem for stationary ergodic sources we
know that m-a.e. we get an x for which

lim
n→∞

1

n

n−1∑

i=0

1C(x
N
i ) = lim

n→∞
1

n

n−1∑

i=0

1B(T
ix) =m(B) ≤ δ

2
. (4.13)

From the definition of a limit, this means that with probability 1 we get
an x for which there is an L0 = L0(x) such that

1

L−N
L−N−1∑

i=0

1C(x
N
i ) ≤ δ; for all L > L0. (4.14)

This follows because if the limit is less than δ/2, there must be an L0

so large that for larger L the time average is at least no greater than
2δ/2 = δ. We can restate (4.14) as follows: with probability 1 we get
an x for which xL ∈ GL for all but a finite number of L. Stating this
in negative fashion, we have one of the key properties required by the
proof: If xL ∈ GL for all but a finite number of L, then xL cannot be in
the complement GcL infinitely often, that is,
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m(x : xL ∈ GcL i.o.) = 0. (4.15)

We now change tack to develop another key result for the proof. For
each L we bounded above the cardinality ||GL|| of the set of good L-
tuples. By construction there are no more than δL bad symbols in an
L-tuple in GL and these can occur in any of at most

∑

k≤δL

(
L

k

)
≤ eh2(δ)L (4.16)

places, where we have used Lemma 3.6. Eq. (4.16) provides an upper
bound on the number of ways that a sequence in GL can be parsed by
the given rules. The bad symbols and the final N symbols in the L-tuple
can take on any of the ‖A‖ different values in the alphabet. Eq. (4.11)
bounds the number of finite length sequences that can occur in each of
the remaining blocks and hence for any given block decomposition, the
number of ways that the remaining blocks can be filled is bounded above
by ∏

k:Tnk(x)x 6∈B
elk(x)(h+ǫ) = e

∑
k lk(x)(h+ǫ) = eL(h+ǫ), (4.17)

regardless of the details of the parsing. Combining these bounds we have
that

||GL|| ≤ eh2(δ)L × ‖A‖δL × ‖A‖N × eL(h+ǫ) = eh2(δ)L+(δL+N) ln‖A‖+L(h+ǫ)

or
||GL|| ≤ eL(h+ǫ+h2(δ)+(δ+NL ) ln‖A‖).

Since δ satisfies (4.7)–(4.8), we can choose L1 large enough so that
N ln‖A‖/L1 ≤ ǫ and thereby obtain

||GL|| ≤ eL(h+4ǫ); L ≥ L1. (4.18)

This bound provides the second key result in the proof of the lemma.
We now combine (4.18) and (4.15) to complete the proof.

Let BL denote a collection of L-tuples that are bad in the sense of hav-
ing too large a sample entropy or, equivalently, too small a probability;
that is if xL ∈ BL, then

m(xL) ≤ e−L(h+5ǫ)

or, equivalently, for any x with prefix xL

hL(x) ≥ h+ 5ǫ.

The upper bound on ||GL|| provides a bound on the probability of
BL
⋂
GL:
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m(BL
⋂
GL) =

∑

xL∈BL
⋂
GL

m(xL) ≤
∑

xL∈GL
e−L(h+5ǫ)

≤ ||GL||e−L(h+5ǫ) ≤ e−ǫL.
Recall now that the above bound is true for a fixed ǫ > 0 and for all
L ≥ L1. Thus

∞∑

L=1

m(BL
⋂
GL) =

L1−1∑

L=1

m(BL
⋂
GL)+

∞∑

L=L1

m(BL
⋂
GL)

≤ L1 +
∞∑

L=L1

e−ǫL <∞

and hence from the Borel-Cantelli lemma (Lemma 4.6.3 of [55] or Lemma
5.17 of [58]) m(x : xL ∈ BL

⋂
GL i.o.) = 0. We also have from (4.15),

however, that m(x : xL ∈ GcL i.o. ) = 0 and hence xL ∈ GL for all but a
finite number of L. Thus xL ∈ BL i.o. if and only if xL ∈ BL

⋂
GL i.o. As

this latter event has zero probability, we have shown thatm(x : xL ∈ BL
i.o.) = 0 and hence

lim sup
L→∞

hL(x) ≤ h+ 5ǫ.

Since ǫ is arbitrary we have proved that the limit supremum of the
sample entropy −n−1 lnm(Xn) is less than or equal to the limit infimum
and therefore that the limit exists and hence with m-probability 1

lim
n→∞

− lnm(Xn)

n
= h. (4.19)

Since the terms on the left in (4.19) are uniformly integrable from
Lemma 3.7, we can integrate to the limit and apply Lemma 3.8 to find
that

h = lim
n→∞

∫
dm(x)

− lnm(Xn(x))

n
= Hm(X),

which completes the proof of the lemma and hence also proves Theo-
rem 4.1 for the special case of stationary ergodic measures. ✷

4.3 Stationary Nonergodic Sources

Next suppose that a source is stationary with ergodic decomposition
{mλ; λ ∈ Λ} and ergodic component function ψ as in Theorem 1.6. The
source will produce with probability one underm an ergodic component
mλ and Lemma 4.2 will hold for this ergodic component. In other words,
we should have that
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lim
n→∞−

1

n
lnmψ(X

n) = Hmψ(X); m− a.e., (4.20)

that is,
m({x : − lim

n→∞ lnmψ(x)(x
n) = Hmψ(x)(X)}) = 1.

This argument is made rigorous in the following lemma.

Lemma 4.3. Suppose that {Xn} is a stationary not necessarily ergodic

source with ergodic component function ψ. Then

m({x : − lim
n→∞ lnmψ(x)(x

n) = Hmψ(x)(X)}) = 1; m− a.e.. (4.21)

Proof: Let
G = {x : − lim

n→∞ lnmψ(x)(x
n) = Hmψ(x)(X)}

and let Gλ denote the section of G at λ, that is,

Gλ = {x : − lim
n→∞ lnmλ(x

n) = Hmλ(X)}.

From the ergodic decomposition (e.g., Theorem 1.6 or [55], Theorem
8.5.1, [58], Theorem 10.1) and (1.28)

m(G) =
∫
dPψ(λ)mλ(G),

where

mλ(G) =m(G|ψ = λ) =m(G
⋂
{x : ψ(x) = λ}|ψ = λ)

=m(Gλ|ψ = λ) =mλ(Gλ)

which is 1 for all λ from the stationary ergodic result. Thus

m(G) =
∫
dPψ(λ)mλ(Gλ) = 1.

It is straightforward to verify that all of the sets considered are in fact
measurable. ✷

Unfortunately it is not the sample entropy using the distribution of
the ergodic component that is of interest, rather it is the original sample
entropy for which we wish to prove convergence. The following lemma
shows that the two sample entropies converge to the same limit and
hence Lemma 4.3 will also provide the limit of the sample entropy with
respect to the stationary measure.

Lemma 4.4. Given a stationary source {Xn}, let {mλ; λ ∈ Λ} denote the

ergodic decomposition and ψ the ergodic component function of Theo-

rem 1.6. Then
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lim
n→∞

1

n
ln
mψ(Xn)

m(Xn)
= 0; m− a.e.

Proof: First observe that if m(an) is 0, then from the ergodic decompo-
sition with probability 1mψ(an) will also be 0. One part is easy. For any
ǫ > 0 we have from the Markov inequality that

m(
1

n
ln
m(Xn)

mψ(Xn)
> ǫ) =m( m(X

n)

mψ(Xn)
> enǫ) ≤ Em( m(X

n)

mψ(Xn)
)e−nǫ.

The expectation, however, can be evaluated as follows: Let A(λ)n = {an :
mλ(an) > 0}. Then

Em

(
m(Xn)

mψ(Xn)

)
=
∫
dPψ(λ)

∑

an∈A n

m(an)

mλ(an)
mλ(a

n)=
∫
dPψ(λ)m(A

(λ)
n )≤ 1,

where Pψ is the distribution of ψ. Thus

m(
1

n
ln
m(Xn)

mψ(Xn)
> ǫ) ≤ e−nǫ.

and hence ∞∑

n=1

m(
1

n
ln
m(Xn)

mψ(Xn)
> ǫ) <∞

and hence from the Borel-Cantelli lemma

m(
1

n
ln
m(Xn)

mψ(Xn)
> ǫ i.o.) = 0

and hence with m probability 1

lim sup
n→∞

1

n
ln
m(Xn)

mψ(Xn)
≤ ǫ.

Since ǫ is arbitrary,

lim sup
n→∞

1

n
ln
m(Xn)

mψ(Xn)
≤ 0; m− a.e. (4.22)

For later use we restate this as

lim inf
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≥ 0; m− a.e. (4.23)

Now turn to the converse inequality. For any positive integer k, we
can construct a stationary k-step Markov approximation to m as in Sec-
tion 3.7 that is, construct a process m(k) with the conditional probabili-
ties
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m(k)(Xn ∈ F|Xn) =m(k)(Xn ∈ F|Xkn−k) =m(Xn ∈ F|Xkn−k)

and the same kth order distributions m(k)(Xk ∈ F) = m(Xk ∈ F). Con-
sider the probability

m(
1

n
ln
m(k)(Xn)

m(Xn)
≥ ǫ) =m(m

(k)(Xn)

m(Xn)
≥ enǫ) ≤ Em(m

(k)(Xn)

m(Xn)
)e−nǫ.

The expectation is evaluated as

∑

xn

m(k)(xn)

m(xn)
m(xn) = 1

and hence we again have using Borel-Cantelli that

lim sup
n→∞

1

n
ln
m(k)(Xn)

m(Xn)
≤ 0.

Apply the usual ergodic theorem to conclude that with probability 1 un-
der m

lim sup
n→∞

1

n
ln

1

m(Xn)
≤ lim
n→∞

1

n
ln

1

m(k)(Xn)
= Emψ[− lnm(Xk|Xk)].

Combining this result with (4.20) and Lemma 3.10 yields

lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ −Hmψ(X)−Emψ[lnm(Xk|Xk)]. = Hmψ||m(k)(X).

This bound holds for any integer k and hence it must also be true that
m-a.e. the following holds:

lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ inf

k
Hmψ||m(k)(X) ≡ ζ. (4.24)

In order to evaluate ζ we apply the ergodic decomposition of relative
entropy rate (Corollary 3.5) and the ordinary ergodic decomposition to
write

∫
dPψζ =

∫
dPψ inf

k
Hmψ||m(k)(X)

≤ inf
k

∫
dPψHmψ||m(k)(X) = inf

k
Hm||m(k)(X).

From Theorem 3.4, the right hand term is 0. If the integral of a nonneg-
ative function is 0, the integrand must itself be 0 with probability one.
Thus (4.24) becomes
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lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ 0,

which with (4.23) completes the proof of the lemma. ✷

We shall later see that the quantity

in(X
n;ψ) = 1

n
ln
mψ(Xn)

m(Xn)

is the sample mutual information (in a generalized sense so that it ap-
plies to the usually non-discrete ψ) and hence the lemma states that
the normalized sample mutual information between the process outputs
and the ergodic component function goes to 0 as the number of samples
goes to infinity.

The two previous lemmas immediately yield the following result.

Corollary 4.1. The conclusions of Theorem 4.1 hold for sources that are

stationary.

4.4 AMS Sources

The principal idea required to extend the entropy theorem from station-
ary sources to AMS sources is contained in Lemma 4.6. It shows that an
AMS source inherits sample entropy properties from an asymptotically
dominating stationary source (just as it inherits ordinary ergodic proper-
ties from such a source). The result is originally due to Gray and Kieffer
[62], but the proof here is somewhat different. The tough part here is
handling the fact that the sample average being considered depends on
a specific measure. From Theorem 1.2, the stationary mean of an AMS
source dominates the original source on tail events, that is, events in
F∞. We begin by showing that certain important events can be recast as
tail events, that is, they can be determined by looking at only samples
in the arbitrarily distant future. The following result is of this variety: It
implies that sample entropy is unaffected by the starting time.

Lemma 4.5. Let {Xn} be a finite-alphabet source with distribution m. Re-

call that Xnk = (Xk, Xk+1, · · · , Xk+n−1) and define the information density

i(Xk;Xn−kk ) = ln
m(Xn)

m(Xk)m(Xn−kk )
.

Then

lim
n→∞

1

n
i(Xk;Xn−kk ) = 0; m− a.e.
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Comment: The lemma states that with probability 1 the per-sample
mutual information density between the first k samples and future sam-
ples goes to zero in the limit. Equivalently, limits of n−1 lnm(Xn) will be
the same as limits of n−1 lnm(Xn−kk ) for any finite k. Note that the re-
sult does not require even that the source be AMS. The lemma is a direct
consequence of Lemma 3.19.
Proof: Define the distribution p =mXk×mXk,Xk+1,···, that is, a distribution
for which all samples after the first k are independent of the first k
samples. Thus, in particular, p(Xn) = m(Xk)m(Xnk ). We will show that
p≫m, in which case the lemma will follow from Lemma 3.19. Suppose
that p(F) = 0. If we denote X+k = Xk, Xk+1, · · · , then

0 = p(F) =
∑

xk

m(xk)mX+k (Fxk),

where Fxk is the section {x+k : (xk, x+k ) = x ∈ F}. For the above relation

to hold, we must have mX+k (Fxk) = 0 for all xk with m(xk) 6= 0. We also
have, however, that

m(F) =
∑

ak

m(Xk = ak, X+k ∈ Fak)

=
∑

ak

m(Xk = ak|X+k ∈ Fak)m(X+k ∈ Fak).

But this sum must be 0 since the rightmost terms are 0 for all ak

for which m(Xk = ak) is not 0. (Observe that we must have m(Xk =
ak|X+k ∈ Fak) = 0 if m(X+k ∈ Fak) 6= 0 since otherwise m(Xk = ak)
≥m(Xk = ak, X+k ∈ Fak) > 0, yielding a contradiction.) Thus p≫m and
the lemma is proved. ✷

For later use we note that we have shown that a joint distribution is
dominated by a product of its marginals if one of the marginal distribu-
tions is discrete.

Lemma 4.6. Suppose that {Xn} is an AMS source with distributionm and

suppose that m is a stationary source that asymptotically dominates m
(e.g., m is the stationary mean). If there is an invariant function h such

that

lim
n→∞−

1

n
lnm(Xn) = h; m− a.e.,

then also,

lim
n→∞−

1

n
lnm(Xn) = h; m− a.e.

Proof: For any k we can write using the chain rule for densities
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− 1

n
lnm(Xn)+ 1

n
lnm(Xn−kk ) = − 1

n
lnm(Xk|Xn−kk )

= − 1

n
i(Xk;Xn−kk )− 1

n
lnm(Xk).

From the previous lemma and from the fact thatHm(Xk) = −Em lnm(Xk)
is finite, the right hand terms converge to 0 as n→∞ and hence for any
k

lim
n→∞−

1

n
lnm(Xk|Xn−kk ) =

lim
n→∞(−

1

n
lnm(Xn)+ 1

n
lnm(Xn−kk )) = 0; m− a.e. (4.25)

This implies that there is a subsequence k(n)→∞ such that

− 1

n
lnm(Xk(n)|Xn−k(n)k(n) ) = − 1

n
lnm(Xn)− 1

n
lnm(Xn−kk(n)(n))→ 0; m−a.e.

(4.26)
To see this, observe that (4.25) ensures that for each k there is an N(k)
large enough so that N(k) > N(k− 1) and

m(| − 1

N(k)
lnm(Xk|XN(k)−kk )| > 2−k) ≤ 2−k. (4.27)

Applying the Borel-Cantelli lemma implies that for any ǫ,

m(| − 1/N(k) lnm(Xk|XN(k)−kk )| > ǫ i.o.) = 0.

Now let k(n) = k for N(k) ≤ n < N(k+ 1). Then

m(| − 1/n lnm(Xk(n)|Xn−k(n)k(n) )| > ǫ i.o.) = 0

and therefore

lim
n→∞

(
− 1

n
lnm(Xn)+ 1

n
lnm(Xn−k(n)k(n) )

)
= 0; m− a.e.

as claimed in (4.26).
In a similar manner we can also choose the sequence so that

lim
n→∞

(
− 1

n
lnm(Xn)+ 1

n
lnm(Xn−k(n)k(n) )

)
= 0; m− a.e.,

that is, we can choose N(k) so that (4.27) simultaneously holds for both
m and m. Invoking the entropy ergodic theorem for the stationary m
(Corollary 4.3) we have therefore that

lim
n→∞−

1

n
lnm(Xn−k(n)k(n) ) = h; m− a.e.. (4.28)
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From Markov’s inequality (Lemma 4.4.3 of [55] or Lemma 5.8 of [58])

m(− 1

n
lnm(Xnk ) ≤ −

1

n
lnm(Xnk )− ǫ) =m(

m(Xnk )

m(Xnk )
≥ enǫ)

≤ e−nǫEm
m(Xn−kk )

m(Xn−kk )

= e−nǫ
∑

xn−kk :m(xn−kk ) 6=0

m(xn−kk )

m(xn−kk )
m(xn−kk )

≤ e−nǫ.

Hence taking k = k(n) and again invoking the Borel-Cantelli lemma we
have that

m(− 1

n
lnm(Xn−k(n)k(n) ) ≤ − 1

n
lnm(Xn−k(n)k(n) )− ǫ i.o.) = 0

or, equivalently, that

lim inf
n→∞ − 1

n
ln
m(Xn−k(n)k(n) )

m(Xn−k(n)k(n) )
≥ 0; m− a.e. (4.29)

Therefore from (4.28)

lim inf
n→∞ − 1

n
lnm(Xn−k(n)k(n) ) ≥ h; m− a.e.. (4.30)

The above event is in the tail σ -field F∞ =
⋂
n σ(Xn, Xn+1, · · · ) since it

can be determined from Xk(n), · · · for arbitrarily large n and since h
is invariant. Since m dominates m on the tail σ -field (Theorem 1.3), we
have also

lim inf
n→∞ − 1

n
lnm(Xn−k(n)k(n) ) ≥ h; m− a.e.

and hence by (4.26)

lim inf
n→∞ − 1

n
lnm(Xn) ≥ h; m− a.e.

which proves half of the lemma. Since

m( lim
n→∞−

1

n
lnm(Xn) 6= h) = 0

and since m asymptotically dominates m (Theorem 1.2), given ǫ > 0
there is a k such that

m( lim
n→∞−

1

n
lnm(Xnk ) = h) ≥ 1− ǫ.
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Again applying Markov’s inequality and the Borel-Cantelli lemma as in
the development of (4.28) we have that

lim inf
n→∞ − 1

n
ln
m(Xnk )

m(Xnk )
≥ 0; m− a.e,

which implies that

m(lim sup
n→∞

− 1

n
lnm(Xnk ) ≤ h) ≥ 1− ǫ

and hence also that

m(lim sup
n→∞

− 1

n
lnm(Xn) ≤ h) ≥ 1− ǫ.

Since ǫ can be made arbitrarily small, this proves that m-a.e.

lim sup
n→∞

−n−1 lnm(Xn) ≤ h,

which completes the proof of the lemma. ✷

The lemma combined with Corollary 4.3 completes the proof of The-
orem 4.1. ✷

Theorem 4.1 and Lemma 2.5 immediately yield the following corollary
stating that a stationary coding of an AMS process has a well defined
entropy rate given by a limit, as in the case of a stationary process.

Corollary 4.2. Theorem 4.1 If f is a stationary coding of an AMS process,

then

H(f) = lim
n→∞

1

n
H(fn).

4.5 The Asymptotic Equipartition Property

Since convergence almost everywhere implies convergence in probabil-
ity, Theorem 4.1 has the following implication: Suppose that {Xn} is an
AMS ergodic source with entropy rate H. Given ǫ > 0 there is an N such
that for all n > N the set

Gn = {xn : |n−1hn(x)−H| ≥ ǫ} = {xn : e−n(H+ǫ) ≤m(xn) ≤ e−n(H−ǫ)}

has probability greater then 1 − ǫ. Furthermore, as in the proof of the
theorem, there can be no more than en(H+ǫ) n-tuples in Gn. Thus there
are two sets of n-tuples: a “good” set of approximately enH n-tuples
having approximately equal probability of e−nH and the complement of
this set which has small total probability. The set of good sequences are
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often referred to as “typical sequences” or “entropy-typical sequences”
in the information theory literature and in this form the theorem is called
the asymptotic equipartition property or the AEP.

As a first information theoretic application of an ergodic theorem, we
consider a simple coding scheme called an “almost noiseless” or “almost
lossless” source code. As we often do, we consider logarithms to the base
2 when considering specific coding applications. Suppose that a random
process {Xn} has a finite alphabet A with cardinality ‖A‖ and entropy
rate H. Suppose that H < log‖A‖, e.g., Amight have 16 symbols, but the
entropy rate is slightly less than 2 bits per symbol rather than log 16 = 4.
Larger alphabets cost money in either storage or communication appli-
cations. For example, to communicate a source with a 16 letter alphabet
sending one letter per second without using any coding and using a bi-
nary communication system we would need to send 4 binary symbols
(or four bits) for each source letter and hence 4 bits per second would be
required. If the alphabet only had 4 letters, we would need to send only
2 bits per second. The question is the following: Since our source has
an alphabet of size 16 but an entropy rate of less than 2, can we code
the original source into a new source with an alphabet of only 4 = 22

letters so as to communicate the source at the smaller rate and yet have
the receiver be able to recover the original source? The AEP suggests a
technique for accomplishing this provided we are willing to tolerate rare
errors.

We construct a block code of the original source by first picking a
small ǫ and a δ small enough so that H + δ < 2. Choose a large enough
n so that the AEP holds giving a set Gn of good sequences as above with
probability greater than 1−ǫ. Index this collection of fewer than 2n(H+δ)

< 22n sequences using binary 2n-tuples. The source Xk is parsed into
blocks of length n as Xnkn = (Xkn, Xkn+1, · · · , X(k+1)n) and each block
is encoded into a binary 2n-tuple as follows: If the source n-tuple is in
Gn, the codeword is its binary 2n-tuple index. Select one of the unused
binary 2n-tuples as the error index and whenever an n-tuple is not in
Gn, the error index is the codeword. The receiver or decoder than uses
the received index and decodes it as the appropriate n-tuple in Gn. If
the error index is received, the decoder can declare an arbitrary source
sequence or just declare an error. With probability at least 1−ǫ a source
n-tuple at a particular time will be in Gn and hence it will be correctly
decoded. We can make this probability as small as desired by taking n
large enough, but we cannot in general make it 0.

The above simple scheme is an example of a block coding scheme as
considered in Section 2.7. If considered as a mapping from sequences
into sequences, the map is not stationary, but it is block stationary in
the sense that shifting an input block by n results in a corresponding
block shift of the encoded sequence by 2n binary symbols.



Chapter 5

Distortion and Approximation

Abstract Various notions of the distortion between random variables,
vectors, and processes as well as between different codings of a com-
mon source are quantified in this chapter. A distortion measure is not a
“measure” in the sense used so far — it is an assignment of a nonnega-
tive real number which indicates how bad an approximation one symbol
or random object or coding is of another. The smaller the distortion,
the better the approximation. If the two objects correspond to the in-
put and output of a communication system, then the average distortion
provides a measure of the performance or fidelity of the system. Small
average distortion means high fidelity and good performance, while large
average distortion means low fidelity and poor performance. Distortion
measures generalize the idea of a distance or metric and they need not
have metric properties such as the triangle inequality and symmetry, but
such properties can be exploited when available and unsurprisingly the
most important notions of distortion are either metrics or simple func-
tions of metrics. We shall encounter several notions of distortion and
a diversity of applications, with the most important application being
the average distortion between input and output as a measure of the
performance of a communications system. Other applications include
extensions of finite memory channels to channels which approximate
finite memory channels, geometric characterizations of the optimal per-
formance of communications systems, approximations of complicated
codes by simpler ones, and modeling random processes.

5.1 Distortion Measures

Given two measurable spaces (A,BA) and (B,BB), a distortion measure

on A× B is a nonnegative measurable mapping ρ : A× B → [0,∞) which
assigns a real number ρ(x,y) to each x ∈ A and y ∈ B which can be
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thought of as the cost of reproducing x and y . The principal practical
goal is to have a number by which the goodness or badness of commu-
nication systems can be compared. For example, if the input to a com-
munication system is a random variable X ∈ A and the output is Y ∈ B,
then one possible measure of the performance or quality of the system
is the average distortion Eρ(X,Y). A distortion measure is essentially
the same as a loss, risk, or cost function in statistics.

Ideally one would like a distortion measure to have three properties:

• It should be tractable so that one can do useful theory.
• It should be computable so that it can be measured in real systems.
• It should be subjectively meaningful in the sense that small (large)

distortion corresponds to good (bad) perceived quality.

Unfortunately these requirements are often incompatible and one is
forced to compromise between tractability and subjective significance
in the choice of distortion measures. Among the most popular choices
for distortion measures are metrics or distances, but some practically
important distortion measures are not metrics in that they are not sym-
metric or do not satisfy the triangle inequality.

Two specific examples are by far the most important in information
theory, signal processing, communications, and statistics: the per sym-
bol Hamming distortion and squared-error distortion. While neither pro-
vides a panacea, the Hamming distortion is the most common distortion
measure for discrete alphabets and the squared-error for continuous al-
phabets for several reasons. Both are tractable and simple and easy to
compute. The Hamming distortion is arguably the most unforgiving dis-
tortion measure possible since the maximum distortion is assigned to
every pair unless they two match exactly. Average closeness with respect
to any distortion measure with a maximum value can be assured by en-
suring average closeness in the Hamming sense. The Hamming distance
is primarily used with discrete alphabet variables. Squared-error does
not play a similar “worst case” role, but it is an intuitive measure since
its average is the energy of the error between two variables. Variations
allowing linear weightings of variables and signals before evaluating the
average of a quadratic error yield a variety of distortion measures that
have proved useful in speech, voice, audio, image, and video processing,
especially in techniques incorporating “perceptual coding” where distor-
tion is measured according to its estimated impact on human perception.

Suppose that A,B ⊂ R. The Hamming distance is defined by

ρ(x,y) = dH(x,y) =
{

0 x = y
1 x ≠ y.

The Hamming distance is a distortion measure which is also a metric.
Given a probability measure p on (A × B,B(A × B)) let X and Y denote
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the coordinate random variables X(x,y) = x, Y(x,y) = y , then

EpdH = Pr(X ≠ Y).

The squared-error distortion is defined by

ρ(x,y) =| x −y |2 .

Squared error is not a metric, but it is the square of the metric | x −y |,
which means it inherits properties of a metric: it is symmetric and its
square root satisfies the triangle inequality. The average squared error
E[(X − Y)2] is often interpreted as the energy in the error signal.

The Hamming distance is well-defined if we consider vector alphabets
A,B ⊂ Rn: dH(xn, yn) = 0 if xn = yn and 0 otherwise. A far more
useful extension from scalars to vectors, however, is construction of the
vector distortion from the scalar Hamming distance in an additive or
linear fashion:

ρ(xn, yn) =
n−1∑

i=0

d(xi, yi), (5.1)

which is the number of coordinates in which the two vectors differ. This
distortion measure is referred to as the average Hamming distance or
mean Hamming distance.

Extending the squared-error distortion in a similar additive fashion to
vector spaces yields a squared-error distortion

ρ(xn, yn) =
n−1∑

i=0

| xi −yi |2 . (5.2)

This is not a metric, but it is the square of the Euclidean or ℓ2 distance:

ρ(xn, yn) = ‖xn −yn‖2
2.

These examples typify distortion measures and are the most important
special cases, but most of the results hold more generally and the devel-
opment will focus on distortion measures formed as a positive power of
a metric. Many of the results developed here will be for the case where
A is a Polish space, a complete separable metric space under a metric d,
and B is either A itself or a Borel subset of A. The distortion measure is
assumed to be a positive power of d. In this case the distortion measure
is fundamental to the structure of the alphabet and the alphabets are
standard since the space is Polish.
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5.2 Fidelity Criteria

It is often of interest to consider distortion between sequences as well as
between scalars and vectors. One approach to a distortion between se-
quences is to define a family of distortion measures between vectors of
all dimensions and consider limits. This is the idea behind a fidelity cri-
terion as defined by Shannon [162, 163]. Given “scalar” spaces A and B,
a fidelity criterion ρn, n = 1,2, · · · , is a sequence of distortion measures
on An × Bn. A candidate for the distortion between infinite sequences is
then the limit supremum of the per symbol distortion

ρ∞(x,y) = lim sup
n→∞

1

n
ρn(x

n, yn).

If one has a pair random process, say {Xn, Yn} with process distribution
p, then it is of interest to find conditions under which there is a limiting
per symbol distortion in the sense that the limit exists with p probability
1:

ρ∞(x,y) = lim
n→∞

1

n
ρn(x

n, yn). (5.3)

As one might guess, the distortion measures in the sequence need to
be interrelated in order to get useful behavior. The simplest and most
common example is that of an additive or single-letter fidelity criterion
which has the form

ρn(x
n, yn) =

n−1∑

i=0

ρ1(xi, yi).

Here if the pair process is AMS and ρ1 satisfies suitable integrability
assumptions, then the limiting per-symbol distortion

1

n
ρn(x

n, yn) = 1

n

n−1∑

i=0

ρ1(xi, yi).

will exist and be invariant from the ergodic theorem.
If the pair process is stationary rather than only AMS, then one can

consider the more general case where ρn is subadditive in the sense that

ρn(x
n, yn) ≤ ρk(xk, yk)+ ρn−k(xn−kk , yn−kk ).

In this case then stationarity of the pair process and integrability of ρ1

will ensure that n−1ρn converges from the subadditive ergodic theorem.
For example, if d is a distortion measure (possibly a metric) on A × B,
then
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ρn(x
n, yn) =



n−1∑

i=0

d(xi, yi)
p




1/p

for p > 1 is subadditive from Minkowski’s inequality.
By far the bulk of the information theory literature considers only

additive fidelity criteria and we will share this emphasis. The most
common examples of additive fidelity criteria involve defining the per-
letter distortion ρ1 in terms of an underlying metric d. For example,
set ρ1(x,y) = d(x,y), in which case ρn is also a metric for all n, or
ρ1(x,y) = dp(x,y) for some p > 0. If 1 > p > 0, then again ρn is a

metric for all n. If p ≥ 1, then ρn is not a metric, but ρ
1/p
n is a metric. We

do not wish to include the 1/p in the definition of the fidelity criterion,
however, because what we gain by having a metric distortion we more
than lose when we take the expectation. For example, a popular distor-
tion measure is the expected squared error, not the expectation of the
square root of the squared error.

The fidelity criteria introduced here all are context-free in that the dis-
tortion between n successive input/output samples of a pair process
does not depend on samples occurring before or after these n-samples.
Some work has been done on context-dependent distortion measures
(see, e.g., [107]), but we do not consider their importance sufficient to
merit the increased notational and technical difficulties involved. Hence
we shall consider only context-free distortion measures.

5.3 Average Limiting Distortion

Suppose that {Xn, Yn} is an AMS pair process with alphabet A × B. Let
p denote the corresponding distribution of the pair process. One mea-
sure of the quality (or rather the lack thereof) of approximation of X
by Y is given by the average limiting distortion with respect to a fi-
delity criterion. Given two sequences x and y and a fidelity criterion
ρn; n = 1,2, · · · , define the limiting sample average distortion or se-

quence distortion by

ρ∞(x,y) = lim sup
n→∞

1

n
ρn(x

n, yn)

and define the average sequence distortion

∆(p) = Epρ∞ = Ep
(

lim sup
n→∞

1

n
ρn(X

n, Yn)

)
.
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We focus on two important special cases. The first and most impor-
tant is that of AMS pair processes and additive fidelity criteria. We also
consider the case of subadditive distortion measures and systems that
are either two-sided and AMS or are one-sided and stationary. Unhappily
the overall AMS one-sided case cannot be handled as there is not yet a
general subadditive ergodic theorem for that case (from Theorem 8.5 of
[58] there is a theorem if in addition p is absolutely continuous with re-
spect to its stationary mean p ). In all of these cases we have that if ρ1 is
integrable with respect to the stationary mean process p, then

ρ∞(x,y) = lim
n→∞

1

n
ρn(x

n, yn); p − a.e., (5.4)

and ρ∞ is an invariant function of its two arguments, i.e.,

ρ∞(TAx,TBy) = ρ∞(x,y); p − a.e.. (5.5)

When a process distribution and fidelity criterion are such that (5.4)
and (5.5) are satisfied (at least with probability 1) we say that we have
a convergent fidelity criterion. This property holds, for example, by an
underlying assumption that p is AMS and that the fidelity criterion is
additive and the single-letter distortion is integrable with respect to the
stationary mean.

Since ρ∞ is invariant, we have from Lemma 6.3.1 of [55] or Corollary
7.10 of [58] that

∆(p) = Epρ∞ = Epρ∞. (5.6)

If the fidelity criterion is additive, then we have from the stationarity
of p that the average limiting distortion is given by

∆(p) = Epρ1(X0, Y0). (5.7)

If the fidelity criterion is subadditive and the processes stationary,
then this is replaced by

∆(p) = inf
N

1

N
EpρN(X

N , YN). (5.8)

Assume for the remainder of this section that ρn is an additive fidelity
criterion. Suppose that we know that p is N-stationary; that is, if T =
TA × TB denotes the shift on the input/output space AT × BT, then the
overall process is stationary with respect to TN . In this case

∆(p) = 1

N
EpρN(X

N , YN). (5.9)

We can also consider the behavior of the N-shift more generally when
the system is only AMS This will be useful when considering block codes.
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Suppose now that p is AMS with stationary mean p. Then from The-
orem 7.3.1 of [55] or Theorem 8.2 of [58], p is also TN -AMS with an
N-stationary mean, say pN . Applying the ergodic theorem to the N shift
then implies that if ρN is pN -integrable, then

lim
n→∞

1

n

n−1∑

i=0

ρN(x
N
iN , x̂

N
iN) = ρ(N)∞ (5.10)

exists pN (and hence also p) almost everywhere. In addition, ρ(N)∞ is N-
invariant and

Epρ
(N)
∞ = EpNρ(N)∞ = EpNρN(XN , X̂N). (5.11)

Comparison of (5.4) and (5.11) shows that ρ(N)∞ = Nρ∞ p-a.e. and hence

∆(p) = 1

N
EpNρN(X

N , X̂N) = 1

N
Epρ

(N)
∞ = Epρ1(X0, X̂0) = ∆(p). (5.12)

The key point here is that the measure of the quality or fidelity in
terms of one component of an AMS pair process approximating the other
is the same as that of the induced stationary mean, which can be de-
scribed in terms of the time 0 samples of the two random processes.

5.4 Communications Systems Performance

The primary application of the idea of distortion is to the quantifica-
tion of quality or fidelity in a communications system. Suppose that
[µ, f , ν, g] is a communications system with overall input/output pro-
cess is {Xn, X̂n} and alphabet A × Â. Let p denote the corresponding
distribution of the pair process comprised of the input and output. As
in Section 5.3, a natural measure of the (lack of) quality of the output
or reproduction signal X̂ as an approximation to the original input sig-
nal X is given by the average limiting distortion ∆(p), which in the
case of a communications system we call the performance of the sys-
tem. In this case there is much going on between the original input and
the final output, but it is still the pair process {Xn, X̂n} that determines
the performance of the system. Note that in the communications exam-
ple, the input/output process can be N-stationary if the source source
is N-stationary, the first sequence coder (N,K)-stationary, the channel
K-stationary (e.g., stationary), and the second sequence coder (K,N)-
stationary. It is the overall properties that matter when looking at the
performance.

If the source and codes are such that the input/output process is AMS,
then the results of Section 5.3 show that the performance satisfies
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∆(p) = 1

N
EpNρN(X

N , X̂N) = 1

N
Epρ

(N)
∞ = Epρ1(X0, X̂0). (5.13)

5.5 Optimal Performance

Given a notion of the performance of a communication system, it makes
sense to define the optimal performance achievable when communicat-
ing a source {Xn} with distribution µ over a channel ν . Suppose that E
is some class of sequence coders f : AT → BT. For example, E might
consist of all sequence coders generated by block codes with some con-
straint or by finite-length sliding-block codes. Similarly let D denote a
class of sequence coders g : B′T → ÂT. Define the operational distortion-

rate function (DRF) for the source µ, channel ν , and code classes E and
D by

∆(µ, ν,E,D) = inf
f∈E,g∈D

∆(µ, f , ν, g). (5.14)

When the code classes E,D are clear from context, the notation is sim-
plified to ∆(µ, ν). When the channel is assumed to be noiseless with
alphabet B with ‖B‖ letters, then all that will matter when considering
block and sliding-block codes is the channel rate R = log‖B‖ and the
notation is simplified to

δ(R,µ) = ∆(µ, ν) = ∆(µ, ν,E,D). (5.15)

When the class of codes being considered is that of sliding-block codes,
the operational DRF δ(R,µ) will be subscripted as δSBC(R, µ).

The goal of the coding theorems of information theory is to relate
the operational DRF of a source, channel, and code class to (hopefully)
computable functions of the source and channel. We will do this in stages
in later chapters: first we will focus on the source coding by assuming a
noiseless channel, then we will focus on reliable communication over a
noisy channel, and lastly we will combine the two.

5.6 Code Approximation

Suppose that {Xn} is an information source with process distribution
µ and suppose that f and g are two sliding-block codes which share
a common reproduction alphabet B. For the moment assume for sim-
plicity that the source is stationary. Let P and Q be the corresponding
partitions of sequence space, e.g., P = {Pi; i ∈ I} where Pi = f−1(bi).
Average distortion can be used to measure how good an approximation
one code is for another. This is of interest, for example, if one code is
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nearly optimal in some sense, but too complicated to be practical. If an-
other, simpler, code has approximately the same behavior, then it may
be a better choice for implementation. Given a distortion measure ρ, the
distortion between two codes f , g applied to a common source with dis-
tribution µ can be defined as

∆(f , g) = Eµρ(f , g). (5.16)

In the case where both f and g have discrete output alphabets, then a
natural distortion is the Hamming distortion and this becomes

∆H(f , g) = EµdH(f , g) = Pr(f ≠ g) = Pe, (5.17)

where Pe is a common notation for error probability, the probability that
the two discrete random variables f and g differ. This distance between
codes can be related to the partition distance of ergodic theory between
the two partitions P and Q which is defined by

| P −Q |=
∑

i∈I
µ(Pi∆Qi). (5.18)

We have that

∆H(f , g) = 1− Pr(f = g)
= 1−

∑

i

µ(Pi ∩Qi)

= 1

2

∑

i

(µ(Pi)+ µ(Qi)− µ(Pi ∩Qi))

= 1

2

∑

i

µ(Pi∆Qi) = 1

2
| P −Q | . (5.19)

So far we have considered only a single output of the code, which suffices
if the source is stationary. In general, however, we may wish to consider
AMS sources and an additive fidelity criterion based on the Hamming
distance, in which case the mean distortion is given by

1

n

n−1∑

i=0

Pr(fn ≠ gn),

where as usual fn = fTn, and its limit as n → ∞ are of interest. Since
stationary codings of an AMS source are jointly AMS, this average con-
verges and we can define a code distance

∆H(f , g) = Pe = lim
n→∞

1

n

n−1∑

i=0

Pr(fn ≠ gn). (5.20)
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If the source is stationary, then from the stationarity of sliding-block
codes this simplifies to Pe = Pr(f ≠ g).

The next lemma and corollary provide tools for approximating com-
plicated codes by simpler ones.

Lemma 5.1. Given a probability space (Ω,B, P) suppose that F is a gen-

erating field: B = σ(F). Suppose that B-measurable Q is a partition of

Ω and ǫ > 0. Then there is a partition Q′ with atoms in F such that

|Q −Q′| ≤ ǫ.

Proof: Let ‖A‖ = K. From Theorem 1.1 given γ > 0 we can find sets
Ri ∈ F such that P(Qi∆Ri) ≤ γ for i = 1,2, · · · , K − 1. The remainder
of the proof consists of set theoretic manipulations showing that we
can construct the desired partition from the Ri by removing overlapping
pieces. The algebra is given for completeness, but it can be skipped. Form
a partition from the sets as

Q′i = Ri −
i−1⋃

j=1

Rj , i = 1,2, · · · , K − 1

Q′K = (
K−1⋃

i=1

Q′i)
c .

For i < K

P(Qi∆Q′i) = P(Qi
⋃
Q′i)− P(Qi

⋂
Q′i)

≤ P(Qi
⋃
Ri)− P(Qi

⋂
(Ri −

⋃

j<i

Rj)). (5.21)

The rightmost term can be written as

P(Qi
⋂
(Ri −

⋃

j<i

Rj)) = P((Qi
⋂
Ri)− (

⋃

j<i

Qi
⋂
Ri
⋂
Rj))

= P(Qi
⋂
Ri)− P(

⋃

j<i

Qi
⋂
Ri
⋂
Rj), (5.22)

where we have used the fact that a set difference is unchanged if the
portion being removed is intersected with the set it is being removed
from and we have used the fact that P(F − G) = P(F) − P(G) if G ⊂ F .
Combining (5.21) and (5.22) we have that
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P(Qi∆Q′i) ≤ P(Qi
⋃
Ri)− P(Qi

⋂
Ri)+ P(

⋃

j<i

Qi
⋂
Ri
⋂
Rj)

= P(Qi∆Ri)+ P(
⋃

j<i

Qi
⋂
Ri
⋂
Rj)

≤ γ +
∑

j<i

P(Qi
⋂
Rj).

For j 6= i, however, we have that

P(Qi
⋂
Rj) = P(Qi

⋂
Rj
⋂
Qcj) ≤ P(Rj

⋂
Qcj)

≤ P(Rj∆Qj) ≤ γ,

which with the previous equation implies that

P(Qi∆Q′i) ≤ Kγ; i = 1,2, · · · , K − 1.

For the remaining atom:

P(QK∆Q′K) = P(QK
⋂
Q′cK

⋃
QcK

⋂
Q′K). (5.23)

We have

QK
⋂
Q′cK = QK

⋂
(
⋃

j<K

Q′j) = QK
⋂
(
⋃

j<K

Q′j
⋂
Qcj),

where the last equality follows since points in Q′j that are also in Qj
cannot contribute to the intersection with QK since the Qj are disjoint.
Since Q′j

⋂
Qcj ⊂ Q′j∆Qj we have

QK
⋂
Q′cK ⊂ QK

⋂
(
⋃

j<K

Q′j∆Qj) ⊂
⋃

j<K

Q′j∆Qj .

A similar argument shows that

QcK
⋂
Q′K ⊂

⋃

j<k

Q′j∆Qj

and hence with (5.23)

P(QK∆Q′K) ≤ P(
⋃

j<K

Qj∆Q′j) ≤
∑

j<K

P(Qj∆Q′j) ≤ K2γ.

To summarize, we have shown that

P(Qi∆Q′i) ≤ K2γ; i = 1,2, · · · , K.

Choosing γ so small that K2γ ≤ ǫ/K, the lemma is proved. ✷
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Corollary 5.1. Let (Ω,B, P) be a probability space and F a generating

field. Let f : Ω → A be a finite alphabet measurement. Given ǫ > 0 there

is a measurement g : Ω → A that is measurable with respect to F (that

is, g−1(a) ∈ F for all a ∈ A) for which ∆H(f , g) = Pr(f 6= g) ≤ ǫ.
Proof: Follows from the previous lemma by settingQ = {f−1(a); a ∈ A},
choosing Q′ from the lemma, and then assigning g for atom Q′i in Q′
the same value that f takes on in atom Qi in Q. Then

Pr(f 6= g) = 1

2

∑

i

P(Qi∆Q′i) =
1

2
| Q −Q′ |≤ ǫ.

✷

A stationary code f is a scalar quantizer if there is a map q : AX → Af
such that f(x) = q(x0). Intuitively, f depends on the input sequence
only through the current symbol. Mathematically, f is measurable with
respect to σ(X0). Such codes are effectively the simplest possible and
have no memory or dependence on the future.

Lemma 5.2. Let {Xn} be an AMS process with standard alphabet AX and

distribution µ. Let f be a stationary coding of the process with finite al-

phabet Af . Fix ǫ > 0. If the process is two-sided, then there is a scalar

quantizer q : AX → Aq, an integer N , and a mapping g : ANq → Af such

that

lim
n→∞

1

n

n−1∑

i=0

Pr(fi 6= g(q(Xi−N), q(Xi−N+1), · · · , q(Xi+N))) ≤ ǫ.

If the process is one-sided, then there is a scalar quantizer q : AX → Aq,
an integer N , and a mapping g : ANq → Af such that

lim
n→∞

1

n

n−1∑

i=0

Pr(fi 6= g(q(Xi), q(Xi+1), · · · , q(Xi+N−1))) ≤ ǫ.

Comment: The lemma states that any stationary coding of an AMS pro-
cess can be approximated by a code that depends only on a finite number
of quantized inputs, that is, by a coding of a finite window of a scalar
quantized version of the original process. In the special case of a finite
alphabet input process, the lemma states that an arbitrary stationary
coding can be well approximated by a coding depending only on a finite
number of the input symbols.
Proof: Suppose that m is the stationary mean and hence for any mea-
surements f and g

m(f0 6= g0) = lim
n→∞

1

n

n−1∑

n=0

Pr(fi 6= gi).
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Let qn be an asymptotically accurate scalar quantizer in the sense that
σ(qn(X0)) asymptotically generates B(AX). (Since AX is standard this
exists. If AX is finite, then take q(a) = a.) Then the finite fields

Fn = σ(qn(Xi); i = 0,1,2, · · · , n− 1) (5.24)

asymptotically generates B(AX)∞ for one-sided processes and

Fn = σ(qn(Xi); i = −n, · · · , n) (5.25)

does the same for two-sided processes. Hence from Corollary 5.1 given
ǫ we can find a sufficiently large n and a mapping g that is measurable
with respect to Fn such that m(f 6= g) ≤ ǫ. Since g is measurable with
respect to Fn, it must depend on only the finite number of quantized
samples that generate Fn. (See, e.g., Lemma 5.2.1 of [55] or Lemma 6.1
of [58].) This proves the lemma. ✷

5.7 Approximating Random Vectors and Processes

The material in this section draws heavily on Section 9.2 of [58], where
proofs and further details may be found.

In the previous sections it was pointed out that if one has a distortion
measure ρ on two random objects X and Y and a joint distribution on
the two random objects (and hence also marginal distributions for each),
then a natural notion of the difference between the random objects or
the poorness of their mutual approximation is the expected distortion
Eρ(X,Y). We now consider a different question: What if one does not
have a joint probabilistic description of X and Y , but instead knows only
their marginal distributions. What then is a natural notion of the distor-
tion or poorness of approximation of the two random objects? In other
words, we previously measured the distortion between two random ob-
jects whose stochastic connection was determined, possibly by a chan-
nel, a code, or a communication system. We now wish to find a similar
quantity for the case when the two random objects are only described
as individuals. One possible definition is to find the smallest possible
distortion in the old sense consistent with the given information, that
is, to minimize Eρ(X,Y) over all couplings of the marginal distributions
µX and µY ; that is, the minimization over all joint distributions consis-
tent with the given marginal distributions. Note that this will necessarily
give a lower bound to the distortion achievable when any specific joint
distribution is specified.

To be precise, suppose that we have random objects X and Y with
distributions µX and µY and alphabets A and B, respectively. Let ρ be a
distortion measure on A× B. Define the ρ-distortion (pronounced ρ-bar



130 5 Distortion and Approximation

and also written as “rho-bar”) between the random objects X and Y by

ρ(µX , µY ) = inf
π∈P

Epρ(X,Y), (5.26)

where P = P(µX , µY ) is the collection of all measures on (A×B,BA×BB)
with µX and µY as marginals; that is, if π ∈ P, then

π(A× F) = µY (F); F ∈ BB ;π(G × B) = µX(G); G ∈ BA. (5.27)

As observed in Section 2.21, P is not empty since, for example, it con-
tains the product measure µX × µY , so the optimization is well defined.

The above notation emphasizes that rho-bar measures the distortion
between two probability distributions µX and µY . As with the various no-
tations for entropy and entropy rate, it is often convenient to consider
the distortion as a measure of the difference of the random variables
rather than their distributions and write ρ(X,Y) for ρ(µX , µY ). The ran-
dom variable notation has the advantage of economy, but both forms
will be used.

This definition is more suited to random variables and vectors than
to random processes, but before extending the definition to processes
some historical remarks are in order.

The above formulation dates back to Kantorovich’s minimization of
average cost over couplings with prescribed marginals [85]. Kantorovich
considered compact metric spaces with metric cost functions. The mod-
ern literature considers cost functions that are essentially as general
as the distortion measures considered in information theoretic coding
theorems. Results exist for general distortion measures/cost functions,
but stronger and more useful results exist when the structure of met-
ric spaces is added by concentrating on distortion measures which are
positive powers of metrics.

The problem for Kantorovich arose in the study of resource allocation
in economics, work for which he later shared the 1974 Nobel prize for
economics. The problem is an early example of linear programming, and
Kantorovich is generally recognized as an inventor of linear program-
ming. Kantorovich later realized [86] that his problem was a generaliza-
tion of a 1781 problem of Monge [125], which can be described in in the
current context as follows. Fix as before the marginal distributions µX ,
µY . Given a measurable mapping f : A → B, define as usual the induced
measure µXf−1 by

µXf
−1(G) = µX(f−1(G));G ∈ BB . (5.28)

Define
ρ̃(µX , µY ) = inf

f :µXf−1=µY
EµXρ(X, f (X)). (5.29)
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In this formulation the coupling of two random objects by a joint mea-
sure is replaced by a deterministic mapping of the first into the second.
This effectively constrains the optimization to the special case of deter-
ministic mappings and the resulting optimization is no longer one with
linear constraints, which results in increased difficulty of analysis and
evaluation.

The problem of (5.26) is widely known as the Monge/Kantorovich op-

timal transportation or transport problem, and when the cost function
is a metric the resulting minimum average distortion has been called the
Monge/Kantorovich distance. There is also a more general meaning of
the name “Monge/Kantorovich distance,” as will be discussed. While it is
the Kantorovich formulation that is most relevant here, the Monge for-
mulation provides an interesting analogy when coding schemes are in-
troduced since the mapping f can be interpreted as a coding of X into Y .
A significant portion of the optimal transportation literature deals with
conditions under which the two optimizations yield the same values and
the optimal coupling is a deterministic mapping.

When the idea was rediscovered in 1974 [137, 66] as part of an ex-
tension of Ornstein’s d-distance for random processes [138, 139, 140]
(more about this later), it was called the ρ or “rho-bar distance.” It was
recognized, however, that the finite dimensional case (random vectors)
was Vasershtein’s distance [183], which had been popularized by Do-
brushin [34], and, in [137], as the transportation distance. In the optimal
transportation literature, the German spelling of Vasershtein, Wasser-
stein, also caught on as a suitable name for the Monge/Kantorovich dis-
tance and remains so.

The Monge/Kantorovich optimal cost provides a distortion or dis-
tance between measures, random variables, and random vectors. It has
found a wide variety of applications and there are several thorough
modern books detailing the theory and applications. The interested
reader is referred to [153, 154, 185, 186, 187] and the enormous num-
ber of references therein. The richness of the field is amply demon-
strated by the more than 700 references cited in [187] alone! Many ex-
amples of evaluation, dual formulations, and methods for constructing
the measures and functions involved have appeared in the literature.
Names associated with the distance include Gini [51], Fréchet [45], Vaser-
shtein/Wasserstein [183], Vallender [181], Dobrushin [34], Mallows [116],
and Bickel and Freedman [15]. It was rediscovered in the computer sci-
ence literature as the “earth mover’s distance” with an intuitive descrip-
tion close to that of the original transportation distance [159, 108].

Because of the plethora of contributing authors from different fields,
the distortion presents a challenge of choosing both notation and a
name. Because this book shares the emphasis on random processes with
Ornstein and ergodic theory, the notation and nomenclature will gener-
ally follow the ergodic theory literature and the derivative information
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theory literature. Initially, however, we adopt the traditional names for
the traditional setting, and much of the notation in the various fields is
similar.

5.8 The Monge/Kantorovich/Vasershtein Distance

Assume that both µX and µY are distributions on random objects X and
Y defined on a common Polish space (A,d). Define the distortion mea-
sure ρ = dp for p ≥ 0. The p = 0 case is shorthand for the Hamming
distance, that is,

d0(x,y) = dH(x,y) = 1− δx,y . (5.30)

Define the collection of measures Pp(A,B(A)) as the collection of all
probability measures µ on (A,B(A)) for which there exists a point a∗ ∈
A such that ∫

dp(x,a∗)dµ(x) <∞. (5.31)

The point a∗ is called a reference letter in information theory [47].
Define

dp(µX , µY ) = ρ(µX , µY )min(1,1/p) =
{
ρ(µX , µY ) 0 ≤ p ≤ 1

ρ1/p(µX , µY ) 1 ≤ p . (5.32)

The following lemma is Lemma 9.4 from [58]. It shows that dp is indeed
a metric on Pp(A,B(A)).

Lemma 5.3. Given a Polish space (A,d) with a Borel σ -field B(A), let

Pp(A,B(A)) denote the collection of all Borel probability measures on the

Borel measurable space (A,B(A)) with a reference letter. Then for any

p ≥ 0, dp is a metric on Pp(A,B(A)).

5.9 Variation and Distribution Distance

Two other notions of distance between random vectors or their distri-
butions µX and µY are useful for comparisons: the variation distance (or
variation or variational distance) and the distribution distance. Unfortu-
nately the notation in the literature is not consistent, with a factor of 2
often being present or not.

Pinsker [150] defined the variation of µX with respect to µY by
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var(µX , µY ) = sup
P

∑

i

| µX(Pi)− µY (Pi) | (5.33)

where the supremum is over all partitions P = {Pi}. This is often called
the variation distance between the two probability distributions, but un-
fortunately the usage is not uniform. In the case of discrete distributions,
the variation distance specializes to the distribution distance defined as
the ℓq norm between the probability mass functions

| µX − µY |=
∑

x∈A
| µX(x)− µY (x) | .

This is easy to see since the partition of the space into points yields

var(µX , µY ) = sup
P

∑

i

| µX(Pi)− µY (Pi) |

≥
∑

x∈A
| µX(x)− µY (x) |=| µX − µY |

and, conversely, given any atom P of any partition,

| µX(P)− µY (P) | = |
∑

a∈P
µX(a)−

∑

a∈P
µY (a) |

= |
∑

a∈P
(µX(a)− µY (a)) |

≤
∑

a∈P
| µX(a)− µY (a)) | .

Unfortunately a slightly different notion of distance is often given the
same name of variation or variational distance. It also has a separate
name of total variation or total variation distance, which we will adopt:

tvar(µX , µY ) = sup
G
| µX(G)− µY (G) |, (5.34)

where the supremum is over all events G. The total variation distance
quantifies the notion of the maximum possible difference between what
two measures can assign to a single event. The variation and total vari-
ation distances are related by a factor of 2, as is made precise in the
following lemma.

Lemma 5.4. Given two probability measures M,P on a common measur-

able space (Ω,B),
var(P,M) = 2 tvar(P,M). (5.35)

Proof. First observe that for any set F we have for the partition Q =
{F, Fc} that
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var(P,M) ≥
∑

Q∈Q
|P(Q)−M(Q)| = 2|P(F)−M(F)|

and hence

var(P,M) ≥ 2 sup
F∈B

|P(F)−M(F)| = tvar(P,M)

Conversely, suppose that Q is a partition which approximately yields the
variational distance, e.g.,

∑

Q∈Q
|P(Q)−M(Q)| ≥ var(P,M)− ǫ

for ǫ > 0. Define a set F as the union of all of the Q in Q for which
P(Q) ≥ M(Q) and we have that

∑

Q∈Q
|P(Q)−M(Q)| = P(F)−M(F)+M(Fc)− P(Fc) = 2(P(F)−M(F))

and hence
var(P,M)− ǫ ≤ sup

F∈B
2|P(F)−M(F)|.

Since ǫ is arbitrary, this proves the first statement of the lemma. ✷

The reader should be wary of the factor of 2 in the two definitions
of “variation distance” as it results in different statements of Pinsker’s
inequality in the literature.

5.10 Coupling Discrete Spaces with the Hamming Distance

Dobrushin [34] developed several interesting properties for the special
case of the transportation or Monge/Kantorovich distance, which he
called the Vasershtein distance [183], with a Hamming distortion. The
properties prove useful when developing examples of the process dis-
tance, so they are collected here.

For this section we consider probability measures µX and µY on a
common discrete space A. We will use µX to denote both the measure
and the PMF, e.g., µX(G) is the probability of a subset G ⊂ S and µ(x) =
µ({x}) is the probability of the one point set {x}. Specifically, X and Y
are random objects with alphabets AX = AY = A. Let (X, Y) denote the
identity mapping on the product space A×A and let X and Y denote the
projections onto the component spaces given by X(x,y) = x, Y(x,y) =
y . Denote as before the collection of all couplings π satisfying (5.27) by
P(µX , µY ).

The Hamming transportation distance is given by
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dH(µX , µY ) = inf
π∈P(µX ,µY )

dH(X, Y) = inf
π∈P(µX ,µY )

π(X ≠ Y).

The following is Lemma 9.5 of [58] stated in the vocabulary adopted
here.

Lemma 5.5. For discrete distributions µX , µY

dH(µX , µY ) = tvar(µX , µY ) = 1

2
var(µX , µY ) = 1

2
| µX − µY | .

5.11 Process Distance and Approximation

In information theory, ergodic theory, and signal processing, it is im-
portant to quantify the distortion between processes rather than only
between probability distributions, random variables, or random vectors.
This means that instead of having a single space of interest, one is
interested in a limit of finite-dimensional spaces or a single infinite-
dimensional space. In this case one needs a family of distortion mea-
sures for the finite-dimensional spaces which will yield a notion of dis-
tortion and optimal coupling for the entire process. We have seen in
Section 5.3 one way to do this when measuring distortion between two
components of a pair random process. In this section the topic is ex-
plored further with the goal of finding a useful measure of distortion or
distance between two random processes.

We shall focus on additive fidelity criteria which define the per-letter
distortion ρ1 in terms of an underlying metric d. The most commonly oc-
curring examples are to set ρ1(x,y) = d(x,y), in which case ρn is also
a metric for all n, or ρ1(x,y) = dp(x,y) for some p > 0. If 1 > p > 0,
then again ρn is a metric for all n. If p ≥ 1, then ρn is not a metric, but

ρ
1/p
n is a metric. We do not wish to include the 1/p in the definition of

the fidelity criterion, however, because what we gain by having a metric
distortion we more than lose when we take the expectation. For example,
a popular distortion measure is the expected squared error, not the ex-
pectation of the square root of the squared error. Thanks to Lemma 5.3
we can still get the benefits of a distance even with the nonmetric dis-
tortion measure, however, by taking the appropriate root outside of the
expectation.

A small fraction of the information theory and communications liter-
ature consider the case of ρ1 = f(d) for a nonnegative convex function
f , which is more general than ρ1 = dp if p ≥ 1. We will concentrate on
the simpler case of a positive power of a metric.

For the time being we will make the following assumptions:
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• {ρn;n = 1,2, . . .} is an additive fidelity criterion defined by

ρn(x
n, yn) =

n−1∑

i=0

dp(xi, yi), (5.36)

where d is a metric and p > 0. We will refer to this as the dp-
distortion. We will also allow the case p = 0 which is defined by

ρ1(x,y) = d0(x,y) = dH(x,y),

the Hamming distance dH(x,y) = 1− δx,y .
• The random process distributions µ considered will possess a ref-

erence letter in the sense of Gallager [47]: given a stationary µ it is
assumed that there exists an a ∈ A for which

∫
dp(x,a∗)dµ1(x) <∞. (5.37)

If the process is not stationary, we assume that there exists an a ∈ A
and ρ∗ <∞ such that for all marginal distributions µ1

n

∫
dp(x,a∗)dµ1

n(x) < ρ
∗ (5.38)

so that one reference letter works for all times n. This is trivially sat-
isfied if the distortion is bounded.

Define Pp(A,d) to be the space of all stationary process distributions
µ on (A,B(A))T satisfying (5.37), where both T = Z and Z+ will be con-
sidered. Note that previously Pp(A,d) referred to a space of distribu-
tions of random objects taking values in a metric space A. Now it refers
to a space of process distributions with all individual component ran-
dom variables taking values in a common metric space A, that is, the
process distributions are on (A,B(A))T.

In the process case we will consider Monge/Kantorovich distances on
the spaces of random vectors with alphabets An for all n = 1,2, . . ., but
we shall define a process distortion and metric as the supremum over all
possible vector dimensions.

Given two process distributions µX and µY describing random pro-
cesses {Xn} and {Yn}, let the induced n-dimensional distributions be
µXn , µYn . For each positive integer n we can define the n-dimensional
or n-th order optimal coupling distortion as the distortion between the
induced n-dimensional distributions:

ρn(µXn , µYn) = inf
π∈Pp(µXn ,µYn )

Eπρn(X
n, Yn) (5.39)
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The process optimal coupling distortion (or ρ distortion) between µX
and µY is defined by

ρ(µX , µY ) = sup
n

1

n
ρn(µXn , µYn). (5.40)

The extension of the optimal coupling distortion or transportation
cost to processes was developed in the early 1970s by D.S. Ornstein
for the case of ρ1 = dH and the resulting process metric, called the d
distance or d-bar distance or Ornstein distance, played a fundamental
role in the development of the Ornstein isomorphism theorem of er-
godic theory (see [138, 139, 140] and the references therein). The idea
was extended to processes with Polish alphabets and metric distortion
measures and the square of metric distortion measures in 1975 [66] and
applied to problems of quantizer mismatch [60], Shannon information
theory [63, 132, 64, 52, 67, 53], and robust statistics [142]. While there
is a large literature on the finite-dimensional optimal coupling distance,
the literature for the process optimal coupling distance seems limited to
the information theory and ergodic theory literature. Here the focus is
on the process case, but the relevant finite-dimensional results are also
treated as needed.

The key aspect of the process distortion is that if it is small, then
necessarily the distortion between all sample vectors produced by the
two processes is also small.

The dp-distance

The process distortion is a metric for the important special case of an
additive fidelity criterion with a metric per letter distortion. This subsec-
tion shows how a process metric can be obtained in the most important
special case of an additive fidelity criterion with a per letter distortion
given by a positive power of a metric. The result generalizes the special
cases of process metrics in [139, 66, 179] and extends the well known
finite-dimensional version of optimal transportation theory (e.g., Theo-
rem 7.1 in [186]).

Theorem 5.1. Given a Polish space (A,d) and p ≥ 0, define the additive

fidelity criterion ρn : An ×An → R+;n = 1,2, . . . by

ρn(x
n, yn) =

n−1∑

n=0

dp(xi, yi),

where d0 is shorthand for the Hamming distance dH . Define
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dp(µX , µY ) = sup
n
n−1ρ

min(1,1/p)
n (µXn , µYn) = ρmin(1,1/p)(µX , µY ). (5.41)

Then dp is a metric on Pp(A,d), the space of all stationary random pro-

cesses with alphabet A.

The theorem together with Lemma 5.3 says that if ρ1 = dp, then dp =
ρ1/p is a metric for both the vector and process case if p ≥ 1, and dp = ρ
is a metric if 0 ≤ p ≤ 1. The two cases agree for p = 1 and the p = 0
case is simply shorthand for the p = 1 case with the Hamming metric.
In the case of p = 0, the process distance d0 is Ornstein’s d-distance
and the notation is usually abbreviated to simply d to match usage in
the ergodic theory literature. It merits pointing out that d0(µXn , µYn) is
not the transportation distance with a Hamming distance on An, it is
the transportation distance with respect to the distance d(xn, yn) =∑n−1
i=0 dH(xi, yi), the sum of the Hamming distances between symbols.

This is also n times the average Hamming distance. The two metrics on
An are related through the simple bounds

n−1∑

i=0

dH(xi, yi) ≥ dH(xn, yn) ≥ 1

n

n−1∑

i=0

dH(xi, yi). (5.42)

The next theorem collects several more properties of the dp distance
between stationary processes, including the facts that the supremum
defining the process distance is a limit, that the distance between IID
processes reduces to the Monge/Kantorovich distance between the first
order marginals, and a characterization of the process distance as an
optimization over processes.

Theorem 5.2. Suppose that µX and µY are stationary process distributions

with a common standard alphabet A and that ρ1 = dp is a positive power

of a metric on A and that ρn is defined on An in an additive fashion as

before. Then

(a) limn→∞n−1ρn(µXn , µYn) exists and equals supnn
−1ρn(µXn , µYn).

Thus dp(µX , µY ) = limn→∞n−1ρ
min(1,1/p)
n (µXn , µYn).

(b) If µX and µY are both IID, then ρ(µX , µY ) = ρ1(µX0 , µY0) and hence

dp(µX , µY ) = ρmin(1,1/p)
1 (µX0 , µY0)

(c) Let Ps = Ps(µX , µY ) denote the collection of all stationary distribu-

tions πXY having µX and µY as marginals, that is, distributions on

{Xn, Yn} with coordinate processes {Xn} and {Yn} having the given

distributions. Define the process distortion measure ρ′

ρ′(µX , µY ) = inf
πXY∈Ps

EπXYρ(X0, Y0).

Then
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ρ(µX , µY ) = ρ′(µX , µY );
that is, the limit of the finite dimensional minimizations is given by a

minimization over stationary processes.

(d) Suppose that µX and µY are both stationary and ergodic. Define

Pe = Pe(µX , µY ) as the subset of Ps containing only ergodic processes,

then

ρ(µX , µY ) = inf
πXY∈Pe

EπXYρ(X0, Y0).

(e) Suppose that µX and µY are both stationary and ergodic. Let GX
denote a collection of frequency-typical or generic sequences for µX
in the sense of Section 8.3 of [55] or Section 7.9 of [58]. Frequency-

typical sequences are those along which the relative frequencies of a

set of generating events all converge and hence by measuring relative

frequencies on frequency-typical sequences one can deduce the under-

lying stationary and ergodic measure that produced the sequence. An

AMS process produces frequency-typical sequences with probability 1.

Similarly let GY denote a set of frequency-typical sequences for µY . De-

fine the process distortion measure

ρ′′(µX , µY ) = inf
x∈GX ,y∈GY

lim sup
n→∞

1

n

n−1∑

i=0

ρ1(x0, y0).

Then

ρ(µX , µY ) = ρ′′(µX , µY ).
that is, the ρ distortion gives the minimum long term time average

distance obtainable between frequency-typical sequences from the two

processes.

Proofs of these results can be found in Section 9.4 of [58], but the
proof of part (c) is not correct. For completeness the proof is presented
here.

Proof. (c)

(c) Given ǫ > 0 let π ∈ Ps(µX , µY ) be such that Eπρ1(X0, Y0) ≤
ρ′(µX , µY ) + ǫ. The induced distribution on {Xn, Yn} is then contained
in Pn(µXn , µYn), and hence using the stationarity of the processes

ρn(µXn , µYn) ≤ Eρn(Xn, Yn) = nEρ1(X0, Y0) ≤ n(ρ′(µX , µY )+ ǫ,

and therefore ρ′ ≥ ρ since ǫ is arbitrary.
Let πn ∈ Pn, n = 1,2, . . . be a sequence of measures such that

Eπn[ρn(X
n, Yn)] ≤ ρn + ǫn

where ǫn > 0 and ǫn → 0 as n → ∞. Let qn denote the product (block
independent) measure (AT,B(A)T)2 induced by the πn as explained
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next. Let G denote a countable generating field for the standard space
(A,B(A)). For any N and N-dimensional rectangle or cylinder of the
form F = ×i∈TFi with all but a finite number N of the Fi being A2 and
the remainder being in G2 define

qn(F) =
∏

j∈T
πn(Fjn × Fjn+1 × · · · × Fjn+n−1).

Thus qn assigns a probability to rectangles in a way that treats succes-
sive n-tuples as independent. Next “stationarize” qn to form a measure
on rectangles by averaging over n-shifts to form

πn(F) = 1

n

n−1∑

i=0

qn(T
−iF) = 1

n

n−1∑

i=0

∏

j∈T
πn(Fjn+i×Fjn+i+1×· · ·×Fjn+i+n−1).

This measure on the rectangles extends to a stationary pair process dis-
tribution. For any m = 1,2, . . . , n we can relate the mth marginal re-
strictions of πn to the corresponding original marginals. For example,
consider the Y marginal and let G = ×m−1

k=0 Gi ∈ Gm. Then

qn({x,y : xm ∈ Am, ym ∈ G) = πn(An × (G ×An−m))
= µYn(G ×An−m) = µYm(G)

and similarly if G ∈ B(A)m then

qn({x,y : xm ∈ G,ym ∈ Bm}) = µXm(G).

Thus

πmn (A
m ×G) (5.43)

= πn({(x,y) : xm ∈ Am, ym ∈ G})

= n−m+ 1

n
µYm(G)+ 1

n

m−1∑

i=1

µYm−i(×m−ik=i A)µY i(×i−1
k=0Gk) (5.44)

with a similar expression for G ×Am.
Since there are a countable number of finite dimensional rectangles

in BT with coordinates in G, we can use a diagonalization argument to
extract a subsequence πnk of πn which converges on all of the rectan-
gles. To do this enumerate all the rectangles, then pick a subsequence
converging on the first, then a further subsequence converging on the
second, and so on. The result is a limiting measure π on the finite-
dimensional rectangles, and this can be extended to a measure also de-
noted by π on (A,B(A))2, that is, to a stationary pair process distribu-
tion. Eq. (5.44) implies that for each fixed m
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lim
n→∞πn(A

m ×G) = πm(Am ×G) = µYm(G)
lim
n→∞πn(G ×A

m) = πm(G ×Am) = µXm(G)

and hence for any cylinder F ∈ B(A) that

π(AT × F) = µY (F)
π(F ×AT) = µX(F)

Thus π induces the desired marginals and hence π ∈ Ps and

ρ′(µX , µY ) ≤ Eπρ1(X0, Y0) = lim
k→∞

Eπnkρ1(X0, Y0)

= lim
k→∞

n−1
k

nk−1∑

i=0

Eqnkρ1(Xi, Yi) = lim
k→∞

(ρnk + ǫnk) = ρ(µX , µY ).

✷

Evaluating Process Distortion

Evaluation of the rho-bar distortion or d-bar distance can in general
be difficult analytically. Theorem 5.2 provides an important exception,
if both of the processes are IID then the process distance is given by
the distance between the zero-time samples, the first-order coupling dis-
tance. From Lemma 5.5, if the distance is with respect to the Hamming
distance, this in turn is given by half the variation distance. In [66] the
distance between Gaussian processes was shown to be the L2 distance
between the square roots of their power spectral densities.

5.12 Source Approximation and Codes

In Section 5.6 the approximation of the output of two codes applied to a
common source was considered. A natural variation on this idea is to fix
a code and look at the approximation of the two outputs resulting from
different sources. We again focus on the d-bar distance.

Lemma 5.6. Let µX and µY be distributions of two stationary random pro-

cesses on a common discrete alphabet, let f be a sliding-block code of

length N , and let µf(X) and µf(Y) denote the corresponding output distri-

butions of coding µX or µY with f . Then

d(µf(X), µf(Y)) ≤ Nd(µX , µY ).
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Proof. If f is a sliding-block code of length N then it depends only on
XNm = (Xm, Xm+1, . . . , Xm+N−1) for some fixed m. Choose a coupling of
the two processes yielding Pr(X0 ≠ Y0) = d(µX , µY ). We have not shown
that d-bar can be hit with equality like this, but it turns out to be the
case (and the following argument works with the addition of a small
ǫ > 0). This coupling of input processes implies a coupling of the output
processes, so that with a slight abuse of notation we have from the union
bound that

d(µf(X), µf(Y)) ≤ Pr(f (XNm) ≠ f(Y
N
m))

≤ Pr(XNm ≠ Y
N
m) ≤

m+N−1∑

i=m
Pr(Xi ≠ Yi)

= N Pr(X0 ≠ Y0) = Nd(µX , µY ).

✷

Thus in particular the output of a finite-length sliding-block code is a
continuous function of the input in d-bar distance (with respect to the
Hamming distance).

5.13 d-bar Continuous Channels

The d distance can be used to generalize some of the notions of discrete-
alphabet channels by weakening the definitions. The first definition is
the most important for channel coding applications. We confine interest
to the d-bar or d0 distance, the ρ-distortion for the special case of the
Hamming distance:

ρ1(x,y) = d1(x,y) =
{

0 if x = y
1 if x 6= y.

Suppose that [A, ν, B] is a discrete alphabet channel and let νnx denote
the restriction of the channel to Bn, that is, the output distribution on
Yn given an input sequence x. The channel is said to be d-continuous if
for any ǫ > 0 there is an n0 such that for all n > n0 dn(νnx , ν

n
x′) ≤ ǫ

whenever xi = x′i for i = 0,1, · · · , n. Alternatively, ν is d-continuous if

lim sup
n→∞

sup
an∈An

sup
x,x′∈c(an)

dn(ν
n
x , ν

n
x′) = 0,

where c(an) is the rectangle defined as all x with xi = ai; i =
0,1, · · · , n−1. d-continuity implies the distributions on output n-tuples
Yn given two input sequences are very close provided that the input
sequences are identical over the same time period and that n is large.
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This generalizes the notions of 0 or finite input memory and anticipa-
tion since the distributions need only approximate each other and do
not have to be exactly the same.

More generally we could consider ρ-continuous channels in a similar
manner, but we will focus on the simpler discrete d-continuous channel.
d-continuous channels possess continuity properties that will be use-

ful for proving block and sliding-block coding theorems. They are “con-
tinuous” in the sense that knowing the input with sufficiently high prob-
ability for a sufficiently long time also specifies the output with high
probability. The following two lemmas make these ideas precise.

Lemma 5.7. Suppose that x, x ∈ c(an) and

d(νnx , ν
n
x ) ≤ δ2.

This is the case, for example, if the channel is d continuous and n is chosen

sufficiently large. Then

νnx (Gδ) ≥ νnx (G)− δ

and hence

inf
x∈c(an)

νnx (Gδ) ≥ sup
x∈c(an)

νnx (G)− δ.

Proof: Again we assume that the infima defining the d distance are actu-
ally minima and hence there is a pmf p on Bn × Bn such that

∑

bn∈Bn
p(yn, bn) = νnx (yn)

and ∑

bn∈Bn
p(bn, yn) = νnx (yn);

that is, p has νnx and νnx as marginals, and

1

n
Epdn(Y

n, Y
n
) = d(νnx , νnx ).

As previously done, this is true within ǫ > 0 and the proof follows in the
same way with inequalities. Using the Markov inequality we can write

νnx (Gδ) = p(Yn ∈ Gδ) ≥ p(Y
n ∈ G and dn(Y

n, Y
n
) ≤ nδ)

= 1− p(Yn 6∈ G or dn(Y
n, Y

n
) > nδ)

≥ 1− p(Yn 6∈ G)− p(dn(Yn, Yn) > nδ)
≥ νnx (G)−

1

δ
E(n−1dn(Y

n, Y
n
)) ≥ νnx (G)− δ
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proving the first statement. The second statement follows from the first.
✷

Next suppose that [G, µ,U] is a stationary source, f is a stationary
encoder which could correspond to a finite length sliding block encoder
or to an infinite length one, ν is a stationary channel, and g is a lengthm
sliding-block decoder. The probability of error for the resulting hookup
is defined by

Pe(µ, ν, f , g) = Pr(U0 6= Û0) = µν(E) =
∫
dµ(u)νf(u)(Eu),

where E is the error event {u,y : u0 6= gm(Y−qm)} and Eu = {y :
(u,y) ∈ E} is the section of E at u.

Lemma 5.8. Given a stationary channel ν , a stationary source [G, µ,U],
a lengthm sliding-block decoder, and two encoders f and φ, then for any

positive integer r

|Pe(µ, ν, f , g)− Pe(µ, ν,φ,g)| ≤
m

r
+ r Pr(f 6= φ)+m max

ar∈Ar
sup

x,x′∈c(ar )
dr (ν

r
x , ν

r
x′).

Proof: Define Λ = {u : f(u) = φ(u)} and

Λr = {u : f(T iu) = φ(T iu); i = 0,1 · · · , r − 1} =
r−1⋂

i=0

T iΛ.

From the union bound

µ(Λcr ) ≤ rµ(Λc) = rPr(f 6= φ). (5.45)

From stationarity, if g = gm(Ym−q) then

Pe(µ, ν, f , g) =
∫
dµ(u)νf(u)(y : gm(y

m
−q) 6= u0)

= 1

r

r−1∑

i=0

∫
dµ(u)νf(u)(y : gm(y

m
i−q) 6= u0)

≤ m
r
+ 1

r

r−q∑

i=q

∫

Λr
dµ(u)νrf(u)(y

r : gm(y
m
i−q) 6= ui)+ µ(Λcr ). (5.46)

Fix u ∈ Λr and let pu yield dr (ν
r
f(u),φ(u)); that is,

∑
wr pu(y

r ,wr ) =
νrf(u)(y

r ),
∑
yr pu(y

r ,wr ) = νrφ(u)(wr ), and
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1

r

r−1∑

i=0

pu(y
r ,wr : yi 6= wi) = dr (νrf(u),φ(u)). (5.47)

We have that

1

r

r−q∑

i=q
νrf(u)(y

r : gm(y
m
i−q) 6= ui)

= 1

r

r−q∑

i=q
pu(y

r ,wr : gm(y
m
i−q) 6= ui)

≤ 1

r

r−q∑

i=q
pu(y

r,wr :gm(y
m
i−q) 6=wmi−q)+

1

r

r−q∑

i=q
pu(y

r,wr : gm(w
m
i−q) 6=ui)

≤ 1

r

r−q∑

i=q
pu(y

r ,wr : yri−q 6= wri−q)+ Pe(µ, ν,φ,g)

≤ 1

r

r−q∑

i=q

i−q+m∑

j=i−q
pu(y

r ,wr : yj 6= wj)+ Pe(µ, ν,φ,g)

≤mdr (νrf(u), νrφ(u))+ Pe(µ, ν,φ,g),

which with (5.45)-(5.47) proves the lemma. ✷

The following corollary states that the probability of error using
sliding-block codes over a d-continuous channel is a continuous func-
tion of the encoder as measured by the metric on encoders given by the
probability of disagreement of the outputs of two encoders.

Corollary 5.2. Given a stationary d-continuous channel ν and a finite

length decoder gm : Bm → A, then given ǫ > 0 there is a δ > 0 so that if f
and φ are two stationary encoders such that Pr(f 6= g) ≤ δ, then

|Pe(µ, ν, f , g)− Pe(µ, ν,φ,g)| ≤ ǫ.

Proof: Fix ǫ > 0 and choose r so large that

max
ar

sup
x,x′∈c(ar )

dr (ν
r
x , ν

r
x′) ≤

ǫ

3m

m

r
≤ ǫ

3
,

and choose δ = ǫ/(3r). Then Lemma 5.8 implies that

|Pe(µ, ν, f , g)− Pe(µ, ν,φ,g)| ≤ ǫ.

✷
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Given an arbitrary channel [A, ν, B], we can define for any block length
N a closely related CBI channel [A, ν̃, B] as the CBI channel with the same
probabilities on output N-blocks, that is, the same conditional probabil-
ities for YNkN given x, but having conditionally independent blocks. We
shall call ν̃ the N-CBI approximation to ν . A channel ν is said to be con-

ditionally almost block independent or CABI if given ǫ there is an N0 such
that for any N ≥ N0 there is an M0 such that for any x and any N-CBI
approximation ν̃ to ν

d(ν̃Mx , ν
M
x ) ≤ ǫ, all M ≥ M0,

where νMx denotes the restriction of νx to BNB , that is, the output distri-
bution on YN given x. A CABI channel is one such that the output dis-
tribution is close (in a d sense) to that of the N-CBI approximation pro-
vided that N is big enough. CABI channels were introduced by Neuhoff
and Shields [133] who provided several examples alternative characteri-
zations of the class. In particular they showed that finite memory chan-
nels are both d-continuous and CABI. Their principal result, however,
requires the notion of the d distance between channels. Given two chan-
nels [A, ν, B] and [A, ν′, B], define the d distance between the channels
to be

d(ν, ν′) = lim sup
n→∞

sup
x
d(νnx , ν

′N
x ).

Neuhoff and Shields [133] showed that the class of CABI channels is
exactly the class of primitive channels together with the d limits of such
channels.



Chapter 6

Distortion and Entropy

Abstract Results are developed relating the goodness of approximation
as measured by average Hamming distance between codes and and the
d-bar distance between sources to the closeness of entropy rate. A few
easy applications provide important properties of entropy rate.

One might suspect that if two codes for a common source closely ap-
proximate each other, then the resulting output entropies should also
be close. Similarly, it seems reasonable to expect that if two random pro-
cesses well approximate each other, than their entropy rates should be
close. Such notions of continuity of entropy with respect to the good-
ness of approximation between codes and processes are the focus of
this chapter and are fundamental to to the development and extensions
to follow. A few easy applications are collected in this chapter.

6.1 The Fano Inequality

A classic result of this type, showing that closeness in the average Ham-
ming distance between two codes forces the entropy to be close, was
first proved by Fano and is called Fano’s inequality [38]. The result has a
variety of extensions and applications.

Lemma 6.1. Given two finite alphabet measurements f and g on a com-

mon probability space (Ω,B, P) having a common alphabet A or, equiv-

alently, given the corresponding partitions Q = {f−1(a);a ∈ A} and

R = {g−1(a);a ∈ A}, define the error probability Pe = |Q − R| =

Pr(f 6= g). Then

H(f |g) ≤ h2(Pe)+ Pe ln(‖A‖ − 1)

and

|H(f)−H(g)| ≤ h2(Pe)+ Pe ln(‖A‖ − 1)

© Springer Science+Business Media, LLC 2011
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and hence entropy is continuous with respect to partition distance for a

fixed measure.

Proof: Let M = ‖A‖ and define a measurement

r : A×A→ {0,1, · · · ,M − 1}

by r(a, b) = 0 if a = b and r(a, b) = i if a 6= b and a is the ith letter
in the alphabet Ab = A − b. If we know g and we know r(f , g), then
clearly we know f since either f = g (if r(f , g) is 0) or, if not, it is equal
to the r(f , g)th letter in the alphabet A with g removed. Since f can be
considered a function of g and r(f , g),

H(f |g, r(f , g)) = 0

and hence

H(f ,g, r(f , g)) = H(f |g, r(f , g))+H(g, r(f , g)) = H(g, r(f , g)).

Similarly
H(f ,g, r(f , g)) = H(f ,g).

From Lemma 3.2

H(f ,g) = H(g, r(f , g)) ≤ H(g)+H(r(f , g))

or

H(f ,g)−H(g) = H(f |g) ≤ H(r(f , g))

= −P(r = 0) lnP(r = 0)−
M−1∑

i=1

P(r = i) lnP(r = i).

Since P(r = 0) = 1− Pe and since
∑
i 6=0 P(r = i) = Pe, this becomes

H(f |g) ≤ −(1− Pe) ln(1− Pe)− Pe
M−1∑

i=1

P(r = i)
Pe

ln
P(r = i)
Pe

− Pe lnPe

≤ h2(Pe)+ Pe ln(M − 1)

since the entropy of a random variable with an alphabet of size M − 1 is
no greater than ln(M − 1). This proves the first inequality. Since H(f) ≤
H(f ,g) = H(f |g)+H(g), this implies

H(f)−H(g) ≤ h2(Pe)+ Pe ln(M − 1).

Interchanging the roles of f and g completes the proof. ✷
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The lemma can be used to show that related information measures
such as mutual information and conditional mutual information are also
continuous with respect to the partition metric.

The following corollary extends the the lemma to repeated measure-
ments. Similar extensions may be found in Csiszár and Körner [27].

Again let f and g denote finite-alphabet measurements on a common
probability space, but now interpret them as sliding-block codes as in
Section 2.6; that is, let T denote a transformation on the common space
(e.g., the shift on a sequence space) and define fi = fT i, g = gT i so that
{fn, gn} is a pair process with a common finite alphabet. Define the nth
order per-symbol or mean probability of error

P (n)e = 1

n

n−1∑

i=0

Pr(fi 6= gi)

and observe that this is simply the normalized average of the additive
fidelity criterion corresponding to the Hamming distance:

P (n)e = 1

n
E



n−1∑

i=0

dH(xi, yi)


 .

If the transformation (or the pair process) is stationary, then P (n)e =
P (1)e = Pe.

Corollary 6.1. Given two sequences of measurements {fn} and {gn} with

finite alphabet A on a common probability space,

1

n
H(fn|gn) ≤ P (n)e ln(‖A‖ − 1)+ h2(P

(n)
e )

and

| 1
n
H(fn)− 1

n
H(gn)| ≤ P (n)e ln(‖A‖ − 1)+ h2(P

(n)
e ).

If {fn, gn} are also AMS and hence the limit

Pe = lim
n→∞P

(n)
e

exists, then if we define

H(f | g) = lim
n→∞

1

n
H(fn | gn) = lim

n→∞
1

n
(H(fn, gn)−H(gn)),

where the limits exist since the processes are AMS, then

H(f |g) ≤ Pe ln(‖A‖ − 1)+ h2(Pe)

|H(f)−H(g)| ≤ Pe ln(‖A‖ − 1)+ h2(Pe).
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Proof: From the chain rule for entropy (Corollary 3.6), Lemma 3.12, and
Lemma 6.1

H(fn|gn) =
n−1∑

i=0

H(fi|f i, gn) ≤
n−1∑

i=0

H(fi|gi) ≤
n−1∑

i=0

H(fi|gi)

≤
n−1∑

i=0

(
Pr(fi 6= gi) ln(‖A‖ − 1)+ h2(Pr(fi 6= gi))

)

from the previous lemma. Dividing by n yields the first inequality which
implies the second as in the proof of the previous lemma. If the pro-
cesses are jointly AMS, then the limits exist and the entropy rate results
follows from the continuity of h2 by taking the limit. ✷

6.2 Code Approximation and Entropy Rate

Corollary 6.1 has two simple but extremely important implications sum-
marized in the next corollary. The first part is immediate, that two
sliding-block codes which closely approximate each other in the code
distance must have approximately the same entropy rate. The second
part applies this observation to draw the similar conclusion that entropy
rate of a source is a continuous function with respect to the Ornstein
d-bar distance.

Corollary 6.2. For a fixed AMS source, entropy rate of a sliding-block en-

coding of the source is a continuous function of the (Hamming) code dis-

tance.

Entropy rate is a continuous function of the source with respect to the

Ornstein d-bar distance.

Proof. The first part follows since Pe in Corollary 6.1 is the code distance
between sliding-block codes f and g.

For the second part, if we can make dH between two processes {fn}
and {gn} arbitrarily small, then there is a coupling which yields an av-
erage Hamming distortion Pe as small as we would like, which in turn
implies from Corollary 6.1 that the two entropy rates are small. ✷

Combining Lemma 5.2 and Corollary 6.1 immediately yields the fol-
lowing corollary, which permits us to study the entropy rate of general
stationary codes by considering codes which depend on only a finite
number of inputs (and hence for which the ordinary entropy results for
random vectors can be applied).

Corollary 6.3. Let f be a stationary code of an AMS process X. As in

(5.24–5.25) define for positive integers n define Fn = σ(X0, X1, · · · , Xn)
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in the one-sided case and σ(X−n, · · · , Xn) in the two-sided case. Given

ǫ > 0 there exists for sufficiently large n a code g measurable with re-

spect to Fn such that

| H(f)−H(g) |≤ ǫ.

Corollary 6.3 can be used to show that entropy rate, like entropy, is
reduced by coding. The general stationary code is approximated by a
code depending on only a finite number of inputs and then the result
that entropy is reduced by mapping (Lemma 3.3) is applied.

Corollary 6.4. Given an AMS process {Xn} and a stationary coding f of

the process, then

H(X) ≥ H(f),
that is, stationary coding reduces entropy rate.

Proof: For integer n define Fn = σ(X0, X1, · · · , Xn) in the one-sided case
and σ(X−n, · · · , Xn) in the two-sided case. Then Fn asymptotically gen-
erates B(AX)∞. Hence given a code f and an ǫ > 0 we can choose using
the finite alphabet special case of the previous lemma a large k and a
Fk-measurable code g such that |H(f)−H(g)| ≤ ǫ. We shall show that
H(g) ≤ H(X), which will prove the lemma. To see this in the one-sided
case observe that g is a function of Xk and hence gn depends only on
Xn+k and hence

H(gn) ≤ H(Xn+k)
and hence

H(g) = lim
n→∞

1

n
H(gn) ≤ lim

n→∞
1

n

n

n+ kH(X
n+k) = H(X).

In the two-sided case g depends on {X−k, · · · , Xk} and hence gn de-
pends on {X−k, · · · , Xn+k} and hence

H(gn) ≤ H(X−k, · · · , X−1, X0, · · · , Xn+k) ≤ H(X−k, · · · , X−1)+H(Xn+k).

Dividing by n and taking the limit completes the proof as before. ✷

Dynamical Systems and Random Processes

It is instructive to apply Corollary 6.4 to relate the idea of the entropy
of a dynamical system with the entropy rate of a random process. The
result is not required for later coding theorems, but it provides insight
into the connections between entropy as considered in ergodic theory
and entropy as used in information theory. In addition, the development
involves some ideas of coding and approximation which are useful in
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proving the ergodic theorems of information theory used to prove cod-
ing theorems.

Let {Xn} be a random process with alphabet AX . Let A∞X denote
the one or two-sided sequence space. Consider the dynamical system
(Ω,B, P , T) defined by (A∞X ,B(AX)∞, P , T), where P is the process dis-
tribution and T the shift. Recall from Section 3.1 and Section 2.6 that
a stationary coding or infinite length sliding-block coding of {Xn} is a
measurable mapping f : A∞X → Af into a finite alphabet which produces
an encoded process {fn} defined by

fn(x) = f(Tnx); x ∈ A∞X .

The entropy H(P, T) of the dynamical system was defined in (3.4) by

H(P, T) = sup
f
HP(f ),

the supremum of the entropy rates of finite alphabet stationary codings
of the original process. We shall show that if the original alphabet is
finite, then the entropy of the dynamical system is exactly the entropy
rate of the process.

Theorem 6.1. Let {Xn} be a random process with finite alphabet AX . Let

A∞X denote the one or two-sided sequence space. Consider a dynamical sys-

tem (Ω,B, P , T) defined by (A∞X ,B(AX)∞, P , T), where P is an AMS process

distribution and T is the shift. Then

H(P, T) = H(X).

Proof: From (3.5), H(P, T) ≥ H(X). Conversely suppose that f is a code
which yields H(f) ≥ H(P, T) − ǫ. Since f is a stationary coding of
the AMS process {Xn}, Corollary 6.4 implies that H(f) ≤ H(X). Thus
H(P, T)− ǫ ≤ H(X), which completes the proof since ǫ is arbitrary. ✷

6.3 Pinsker’s and Marton’s Inequalities

Fano’s inequality shows that small probability of error between two pro-
cesses implies that the entropy rates of the processes must be close. A
converse of sorts for the special case where one of the two processes is
IID follows from an inequality of Marton, which in turn follows from an
inequality of Pinsker. In this section these inequalities are derived and
discussed.

The following inequality provides an upper bound to the variation
distance between to probability measures in terms of the divergence (see
[151], p. 58 of [27], (13) of [166]).
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Lemma 6.2. Pinsker’s Inequality
Given two probability measures M and P , the variation distance and

divergence satisfy the inequality

var(P,M) ≤
√

2D(P‖M).

Proof. Assume that M ≫ P since the result is trivial otherwise because
the right-hand side is infinite. The inequality will follow from the first
statement of Lemma 5.4 and the following inequality: Given 1 ≥ p,m ≥
0,

p ln
p

m
+ (1− p) ln

1− p
1−m − 2(p −m)2 ≥ 0. (6.1)

To see this, suppose the truth of (6.1). Since F can be chosen so that
2(P(F)−M(F)) is arbitrarily close to d(P,M), given ǫ > 0 choose a set F
such that [2(P(F)−M(F))]2 ≥ d(P,M)2−2ǫ. Since {F, Fc} is a partition,

D(P‖M)− d(P,M)
2

2
≥

P(F) ln
P(F)

M(F)
+ (1− P(F)) ln

1− P(F)
1−M(F) − 2(P(F)−M(F))2 − ǫ.

If (6.1) holds, then the right-hand side is bounded below by −ǫ, which
proves the lemma since ǫ is arbitrarily small. To prove (6.1) observe that
the left-hand side equals zero for p =m, has a negative derivative with
respect to m for m < p, and has a positive derivative with respect to
m for m > p. (The derivative with respect to m is (m − p)[1− 4m(1−
m)]/[m(1 −m).) Thus the left hand side of (6.1) decreases to its mini-
mum value of 0 as m tends to p from above or below. ✷

The lemma together with Lemma 5.5 yield the following corollary.

Corollary 6.5. Given two probability measures M and P , the transporta-

tion with respect to the Hamming distance (the first order Ornstein’s d-bar

distance) and divergence satisfy the inequality

dH(P,M) ≤
√
D(P‖M)

2
.

Marton extended Pinsker’s inequality to vectors produced by pro-
cesses when one of the processes is memoryless and thereby obtained
in the limit an inequality between Ornstein’s d-bar distance between pro-
cesses and the relative entropy rate of an arbitrary process with respect
to the IID process [120]. She subsequently extended this result from IID
to a class of Markov processes [121], but we shall concentrate on the
IID result, which is stated in the following lemma. The proof follows
Shields [166].
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Lemma 6.3. Marton’s Inequality Suppose that Xn and Yn are random

vectors with a common finite alphabet and probability mass functions

µXn and µYn and that Yn is memoryless (µYn is a product pmf). Then the

d-bar distance (mean Hamming) satisfies

1

n
dn(µXn , µYn) ≤

√
D(µXn‖µYn)

2n
. (6.2)

and hence in the limit

d(µX , µY ) ≤
√
D(µX‖µY )

2
(6.3)

Proof. Suppose that the common finite alphabet for Xn and Yn is A. First
note that for the case n = 1 Marton’s inequality and Pinker’s inequality
are the same so that

d1(µX0 , µY0) ≤
√
D(µX0‖µY0)

2
. (6.4)

Denote by p(1)(x0, y0) the coupling yielding (with the usual caveat)
the Hamming transportation distance d1(µX0 , µY0), that is, the pmf on
A×A with marginals µX0 and µY0 yielding the smallest E (dH(X0, Y0)) =
Pr(X0 ≠ Y0).

For n ≥ 2 consider Pinsker’s inequality applied to the distributions P
andM corresponding to the probability mass functions µXn−1|Xn−1(xn−1 |
xn−1) and µYn−1(yn−1):

dH(µXn−1|Xn−1(· | xn−1), µYn−1) ≤√
D(µXn−1|Xn−1(· | xn−1)‖µYn−1)

2
, xn ∈ An. (6.5)

Let p(n)(xn−1, yn−1 | xn−1) denote the coupling (on A × A) between
the pmfs µXn−1|Xn−1(· | xn−1) and µYn−1 on A yielding dH(µXn−1|Xn−1(· |
xn−1), µYn−1) (these exist from Theorem 5.2).

Taking expectations in (6.5) yields

∑

xn−1

µXn−1(xn−1)dH(µXn−1|Xn−1(· | xn−1), µYn−1) ≤

∑

xn−1

µXn−1(xn−1)

√
D(µXn−1|Xn−1(· | xn−1)‖µYn−1)

2
. (6.6)

Use these pmfs to construct a new pmf π (n)(xn, yn) on An × An de-
fined by
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π (n)(xn, yn) = p(1)(x0, y0)
n∏

i=2

p(i)(xi−1, yi−1 | xi−1).

This joint pmf has as its marginals µXn and µYn and hence is a coupling
of these two distributions. This implies that

Eπ (n) (dn(X
n, Yn)) ≥ dn(µXn , µYn). (6.7)

We also have that

Eπ (n) (dn(X
n, Yn))

= Eπ (n)


n−1∑

i=0

dH(Xi, Yi)


 =

n−1∑

i=0

Eπ (n) (dH(Xi, Yi)) =
n−1∑

i=0

Eπ (i) (dH(Xi, Yi))

=
∑

x0

∑

y0

p(1)(x0, y0)dH(X0, Y0)

+
n∑

i=2

∑

xi−1

µXi−1(xi−1)
∑

xi−1,yi−1

p(i)(xi−1, yi−1 | xi−1)dH(xi−1, yi−1)

= dH(µX0 , µY0)+
n∑

i=2

∑

xi−1

µXi−1(xi−1)dH(µXi−1|Xi−1(· | xi−1), Yi−1).

Apply Pinsker’s inequality from (6.4) and (6.6) and use (6.7) to write

dn(µXn , µYn)

≤ dH(µX0 , µY0)+
n∑

i=2

∑

xi−1

µXi−1(xi−1)dH(µXi−1|Xi−1(· | xi−1), Yi−1)

≤
√
D(µX0‖µY0)

2
+

n∑

i=2

∑

xi−1

µXi−1(xi−1)

√
D(µXi−1|Xi−1(· | xi−1)‖µYi−1)

2
.

Use the concavity of the square root twice to obtain

dn(µXn , µYn)

n
≤ 1

n

√
D(µX0‖µY0)

2
+

1

n

n∑

i=2

√∑
xi−1 µXi−1(xi−1)D(µXi−1|Xi−1(· | xi−1)‖µYi−1)

2

≤

√√√√√ 1

2n


D(µX0‖µY0)+

n∑

i=2

∑

xi−1

µXi−1(xi−1)D(µXi−1|Xi−1(· | xi−1)‖µYi−1)


.

The following string of equalities shows that the term in parentheses is
D(µXn‖µYn), which completes the proof of (6.2):



156 6 Distortion and Entropy

D(µXn‖µYn)
=
∑

xn
µXn(x

n) ln
µXn(xn)

µYn(xn)

=
∑

xn
µXn(x

n) ln
µX0(x0)

∏n−1
i=1 µXi|Xi(xi | xi)

µY0(x0)
∏n−1
i=1 µYi(yi)

=
∑

xn
µXn(x

n) ln


µX0(x0)

µY0(x0)

n−1∏

i=1

µXi|Xi(xi | xi)
µYi(yi)




=
∑

xn
µXn(x

n) ln
µX0(x0)

µY0(x0)
+
n−1∑

i=1

∑

xn
µXn(x

n) ln
µXi|Xi(xi | xi)
µYi(yi)

= D(µX0‖µY0)+
n−1∑

i=1

∑

xi

µXi(x
i)
∑

xi

µXi|Xi(xi | xi) ln
µXi|Xi(xi | xi)
µYi(yi)

= D(µX0‖µY0)+
n−1∑

i=1

∑

xi

µXi(x
i)D(µXi|Xi(· | xi)‖µYi).

✷

While Fano’s inequality deals with conditional entropy at its most ba-
sic level, Marton’s inequality deals with relative entropy. Just as Fano’s
inequality results in a relationship between the d-bar distance and the
difference of entropy rates, Marton’s inequality also has an implication
for entropy rates. If Y is IID and equiprobable as in the case of fair coin
flips, Marton’s inequality immediately yields the following corollary.

Corollary 6.6. Suppose that µX and µY are distributions of two stationary

processes with a common finite alphabet and that Y is both IID and has

equiprobable marginals. Then

d(X,Y) ≤
√
H(Y)−H(X)

2
.

Thus if an arbitrary stationary process has entropy rate close to that of
an IID equiprobable source with the same finite alphabet, then it must
be also close in Ornstein’s d-bar distance.

6.4 Entropy and Isomorphism

The results derived thus far in this chapter have as an easy application
one of the most important results of ergodic theory, the Kolmogorov-
Sinai theorem demonstrating that a necessary condition for two dynam-
ical systems to be isomorphic is that they have the same entropy rate.
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Roughly speaking, two random processes are isomorphic if each can be
coded into the other in a stationary and invertible way. The primary dif-
ficulty in making this result precise is developing the necessary defini-
tions, which will be related to the coding language used here. The focus
is on dynamical systems rather than on random processes because the
latter are more general and form the traditional context for treating iso-
morphic processes. The initial material follows [58].

There are several notions of isomorphism: isomorphic measurable
spaces, isomorphic probability spaces, and isomorphic dynamical sys-
tems. Isomorphic random processes are a special case of the latter.

Isomorphic Measurable Spaces

Two measurable spaces (Ω,B) and (Λ,S) are isomorphic if there exists
a measurable function φ : Ω → Λ that is one-to-one and has a measur-
able inverse φ−1. In other words, the inverse image φ−1(λ) of a point
λ ∈ Λ consists of exactly one point in Ω and the inverse mapping so
defined, say γ : Λ → Ω, γ(λ) = φ−1(λ), is itself a measurable mapping.
The function φ (or its inverse γ) with these properties is called an iso-

morphism. An isomorphism between two measurable spaces is thus an
invertible mapping between the two sample spaces that is measurable in
both directions.

Isomorphic Probability Spaces

Two probability spaces (Ω,B, P) and (Λ,S,Q) are isomorphic if there is
an isomorphism φ : Ω → Λ between the two measurable spaces (Ω,B)
and (Λ,S) with the added property that

Q = Pφ and P = Qφ−1

that is,

Q(F) = P(φ−1(F));F ∈ S;P(G) = Q(φ(G));G ∈ B.

Two probability spaces are isomorphic

1. if one can find for each space a random variable defined on that space
that has the other as its output space, and

2. the random variables can be chosen to be inverses of each other; that
is, if the two random variables are φ and γ, then φ(γ(λ)) = λ and
γ(φ(ω)) =ω.
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Note that if the two probability spaces (Ω,B, P) and (Λ,S,Q) are iso-
morphic and φ : Ω → Λ is an isomorphism with inverse γ, then the
random variable φγ defined by φγ(λ) = φ(γ(λ)) is equivalent to the
identity random variable i : Λ→ Λ defined by i(λ) = λ.

Isomorphism Mod 0

A weaker notion of isomorphism between two probability spaces is that
of isomorphism mod 0 . Two probability spaces are isomorphic mod 0
or metrically isomorphic if the mappings have the desired properties on
sets of probability 1, that is, the mappings can be defined except for
null sets in the respective spaces. Thus two probability spaces (Ω,B, P)
and (Λ,S,Q) are isomorphic (mod 0) if there are null sets Ω0 ∈ B and
λ0 ∈ S and a measurable one-to-one onto map φ : Ω − Ω0 → Λ − Λ0

with measurable inverse such that Q(F) = P(φ−1(F)) for all F ∈ S. This
weaker notion is the standard one in ergodic theory.

Isomorphic Dynamical Systems

Roughly speaking, two dynamical systems are isomorphic if one can be
coded or filtered onto the other in an invertible way so that the coding
carries one transformation into the other, that is, one can code from one
system into the other and back again and coding and transformations
commute.

Two dynamical systems (Ω,B, P , S) and (Λ,S,m,T) are isomorphic if
there exists an isomorphism f : Ω → Λ such that Tφ(ω) = φ(Sω);ω ∈
Ω. As with the isomorphism of probability spaces, isomorphic mod 0
means that the properties need hold only on sets of probability 1, but
we also require that the null sets in the respective spaces on which the
isomorphism is not defined to be invariant with respect to the appropri-
ate transformation. Henceforth isomorphism of dynamical systems will
be taken to mean isomorphism mod 0 with this constraint.

Isomorphic Random Processes

Suppose that the probability space (Λ,S,m) is the sequence space of a
directly given finite-alphabet random process, say (AT

X ,BT

AX , µX), T is the
shift on this space, and Π0 the sampling function on this space, then the
random process Xn = Π0Tn defined on (Λ,S,m) is equivalent to the ran-
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dom process Π0(φSn) defined on the probability space (Ω,B, P). More
generally, any random process of the form gTn defined on (Λ,S,m)
is equivalent to the random process g(φSn) defined on the probabil-
ity space (Ω,B, P). A similar conclusion holds in the opposite direction.
Thus, any random process that can be defined on one dynamical system
as a function of transformed points possesses an equivalent model in
terms of the other dynamical system and its transformation. In addition,
not only can one code from one system into the other, one can recover
the original sample point by inverting the code (at least with probability
1).

Isomorphism provides a variety of equivalent models for random pro-
cesses. The models can be quite different in appearance, yet each can be
transformed into the other by coding (for discrete alphabet processes)
or filtering (for continuous alphabet processes).

If X = {Xn} and Y = {Yn} are two finite-alphabet random processes
and they are isomorphic, then each is equivalent to a random process
formed by a stationary or sliding-block coding of the other. Equivalent
processes have the same process distributions and hence the same en-
tropy rates. Suppose that Y is equivalent to a stationary coding f of
X and that X is equivalent to a stationary coding g = f−1 of Y . From
Corollary 6.3, H(X) ≥ H(f(X)) = H(Y) and H(Y) ≥ H(g(X)) = H(X)
and hence H(X) = H(Y). This yields the random process special case
of one of the most famous results of ergodic theory, originally due to
Kolmogorov and Sinai. It is summarized in the following theorem.

Theorem 6.2. Kolmogorov-Sinai Theorem A necessary condition for two

AMS random processes to be isomorphic is that they have the same en-

tropy rates.

In the 1970s, Donald Ornstein proved in a remarkable series of papers
that were summarized in [139, 140] that equal entropy was also a suffi-
cient condition for two processes to be isomorphic if the processes were
B-processes, stationary codings or filterings of IID processes. This result
is now known as Ornstein’s isomorphism theorem or as the Kolmogorov-
Sinai-Ornstein isomorphism theorem. The general result is beyond the
scope of this book and no attempt at a proof will be made here. On the
other hand, stating the result reinforces the importance of the concept
of entropy and entropy rate beyond the domain of information and cod-
ing theory, and the result is useful for obtaining and interpreting results
relating source coding and simulating random processes, results which
have not yet yielded to simpler proofs. For reference we state without
proof the Ornstein theorem and a related result due to Sinai which is
used in the proof of Ornstein’s theorem. Excellent accessible (with re-
spect to the original papers) treatments of the Ornstein theory and the
Sinai theorem can be found in books by Shields [164] and by Kalikow
and McCutcheon [84].



160 6 Distortion and Entropy

Theorem 6.3. Ornstein Isomorphism Theorem Two B-processes are iso-

morphic if and only if they have the same entropy rate.

Theorem 6.4. Sinai’s Theorem Suppose that {Un} is a stationary and er-

godic process with entropy rate H(U), that {Xn} is a B-process with dis-

tribution µX and entropy rate H(X), and that H(X) ≤ H(U). Then there

is a sliding-block coding of U that has distribution µX .

Sinai’s theorem implies half the Ornstein theorem by showing that a
specified B-process can always be obtained by stationary coding of any

stationary and ergodic process having equal or greater entropy rate. The
hard part, however, is the other half — the demonstration that if the
entropy rates are equal and the process being encoded is also required
to be a B-process, then the stationary code can be made invertible. The
usual statement of the Sinai theorem is less general and considers the
case where {Xn} is IID rather than a B-process. The more general result
quoted here can be found, e.g., as 636 Theorem in [84], p. 141.

6.5 Almost Lossless Source Coding

The Ornstein and Sinai theorems at the heart of modern ergodic theory
are difficult to prove and require intricate and long arguments. Source
coding ideas using the properties of entropy and the Rohlin theorem,
however, yield approximate versions of the Ornstein results with proofs
that are germane to the present development and provide a relatively
simple example of techniques to be used in proving coding theorems in
later chapters. The results also provide useful interpretations of the Orn-
stein and Sinai results as idealized source coding and simulation, and of
almost lossless source coding as an approximation to isomorphism and
the Sinai theorem. To simplify the notation and the presentation, this
section concentrates on an archetypal problem of almost lossless source
coding, that is, of converting a stationary and ergodic discrete-alphabet
source with an arbitrary alphabet and known entropy rate into bits in
a way that is almost lossless in that the coding allows recovery of the
original sequence with small probability of error. This is a special case
coding for small average distortion with respect to a Hamming distance
on symbols. For simplicity and clarity, for the time being only the special
case of a source with entropy rate of 1 bit per symbol is considered. The
goal is to characterize the behavior of sliding-block codes. More general
results will be developed later.

Suppose that {Xn} is a stationary and ergodic source with a discrete
alphabet A, process distribution µX , and entropy rate H(X) = H(µX) =
1, where base 2 logarithms will be used throughout this section.
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Almost-Lossless Block Codes

The first step is a slight variation of the block code constructed using the
asymptotic equipartition property (AEP) of Section 4.5. Given ǫ > 0, there
is an n0 sufficiently large so that for all n ≥ n0 the set of entropy-typical
sequences

Gn = {xn : 2−n(H(X)+ǫ) ≤ µXn(xn) ≤ 2−n(H(X)−ǫ)}

satisfies
µXn(G

c
n) ≤ ǫ.

As outlined in Section 4.5, an initial approach to coding source n tu-
ples into binary n-tuples is to index the length n sequences in Gn by
binary n-tuples, encode each input vector into the index if the vector is
in Gn and some arbitrary binary n-tuple otherwise, and then decode the
binary n-tuple into the corresponding xn. With high probability (greater
than 1 − ǫ) the decoded vector will be the input vector, which in turn
implies the symbols will be correct with high probability. An immediate
problem, however, is that in general there will be too many vectors in
Gn. Observe that the number of vectors Gn, ‖Gn‖, can be bound above
using the inequality

1 ≥ Pr(Xn ∈ Gn) =
∑

xn∈Gn
µXn(x

n)

≥
∑

xn∈Gn
2−n(H(X)+ǫ) = ‖Gn‖2−n(1+ǫ)

so that ‖Gn‖ ≤ 2n(1+ǫ), but there are only 2n available binary n-tuples as
indices. Since there can be more than 2n entropy-typical sequences of a
source with entropy rate 1, there can be too few indices in {0,1}n for Gn.
We could avoid this problem by requiring that the source have entropy
rate H(X) strictly less than 1, but it is desirable to consider the case
where the source has the maximal entropy rate that can be squeezed
through the binary encoded process, which is the 1 bit per sample of
fair coin flips. So instead we modify the scheme.

One possible modification is as follows. We will use a slightly larger
blocklength N for the code than the vector dimension n of the entropy-
typical vectors. Toward this end choose δ0 > 0 and set

k = k(N) = ⌊δ0N⌋ + 1 = ⌈δ0N⌉, (6.8)

where as usual ⌊r⌋ is the greatest integer less than or equal to r . and
n = N − k so that N = n+ k. Note for later use that
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δ0N ≤ k ≤ δ0N + 1 (6.9)

(1− δ0)N − 1 ≤ n ≤ N(1− δ0). (6.10)

The encoder ignores the first k symbols of each input block. If the
n-tuple following the first k symbols is in Gn, it will be coded into the
binary N-tuple index. Map all n-tuples not in Gn into a fixed binary n-
tuple, say the all 0 n-tuple. We need to reserve 2n(1+ǫ) indices as above,
and we have 2N binary N-tuples, so there will be enough indices for all
of the entropy-typical N-tuples if (N − k)(1+ ǫ) ≤ N or

Nǫ

1+ ǫ ≤ k = ⌈δ0N⌉.

This will be true if δ0 ≥ ǫ/(1+ ǫ), so choose

δ0 = ǫ.

The decoder will map the first k ≈ ǫN symbols of each block into an
arbitrary k-tuple such as an all 0 k-tuple. The remaining n ≈ N(1−ǫ) bi-
nary symbols will be viewed as an index into Gn and the vector indexed
by the binary n-tuple will be the output. Note that if the corresponding
input n-tuple was in fact in Gn, all of the n corresponding output sym-
bols will be decoded correctly. Let X̂i denote the resulting reconstruction
symbols. The average error probability over a block satisfies

P (N)e = 1

N

N−1∑

i=0

Pr(Xi ≠ X̂i) ≤ k
N
+ n
N

1

n

k+n−1∑

i=k
Pr(Xi ≠ X̂i).

Since the event {Xi ≠ X̂i} for some i ∈ {k, k + 1, . . . , k + n − 1} is a
subset of the event {Xnk ≠ X̂nk } , Pr(Xi ≠ X̂i) ≤ Pr(Xnk 6∈ Gn) so that with
stationarity,

P (N)e ≤ k
N
+ n
N
µXn(G

c
n) ≤ ǫ+

1

N
+ µXn(Gcn), (6.11)

where we have used (6.9). Invoking the AEP of Section 4.5 with N satis-
fying N(1− δ0) ≥ n0 we have

P (N)e ≤ 2ǫ+ 1

N
. (6.12)

Thus there is an N0 such that

P (N)e ≤ 3ǫ, all N ≥ N0.

so the average probability of error can be made as small as we would like
by choosing a sufficiently large blocklength for the block code. Note that
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P (N)e = 1

N

N−1∑

i=0

E
(
dH(Xi, X̂i)

)
,

the average Hamming distortion for the block.
In the limit of large block length, block codes can be used to achieve

small average distortion in the sense that a discrete alphabet source with
entropy rate 1 bit per symbol can be coded into a binary sequence from
which we can recover the original source with asymptotically vanishing
mean per symbol error probability. As previously discussed, however, a
problem with the reproduction sequence X̂n in a block coding system
is that it will be neither stationary nor ergodic in general, and hence the
reconstructed sequence lacks important statistical properties of the orig-
inal source. In practical terms, there might (and often will) be artifacts
in the reproduction due to the blocking, and these artifacts can be ob-
jectionable perceptually even if the average distortion is small. The end
goal of this section will be to construct a sliding-block code with similar
average distortion, but having the property that the reproduction (and
the binary encoded sequence) is both stationary and ergodic.

Asynchronous Block Code

Essential to the operation of an ordinary block code is the synchroniza-
tion between the decoder and encoder — the decoder knows a priori
where the code blocks begin so it knows how to interpret binaryN-tuples
as indices. When the block code is stationarized to form a sliding-block
code, this synchronization is lost. As the next step towards constructing
a sliding-block code we again modify the block code so that the binary
codewords can be located even if the decoder does not know a priori
where the block boundaries are. Before synchronizing the code, assume
that ǫ is fixed as before and that the encoder blocks are divided as be-
fore into an initial k ≈ Nǫ symbols which will be ignored, followed by
n ≈ N(1 − ǫ) source symbols to be block coded using Gn. Now focus
on the binary index codebook containing a subset of {0,1}N and on the
decoder.

A classic method for accomplishing the goal of self-synchronization
of binary N-tuples is to initiate each binary code block of length N with
a synchronization sequence (or sync sequence, for short), a binary se-
quence of length, say, m that identifies the beginning of a code block.
Each binary N-tuple codeword will consist of a common sync sequence
of length m followed by a binary K-tuple with K = N −m. To ensure
that the sync sequence always identifies the first m symbols of a binary
code block, we no longer allow the remaining K binary symbols to be
unconstrained — we now prohibit the appearance of the sync sequence
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anywhere within the binary K-tuple that follows a sync sequence. Fur-
thermore, for any ℓ = 1,2, . . . ,m−1 we cannot allow the final ℓ symbols
of a sync m-tuple followed by the first m − ℓ binary symbols of any al-
lowed binary K-tuple (that is, any binary K-tuple appearing in the last
K positions of an allowed binary N-tuple index) to equal the sync se-
quence. This last problem is easy to avoid. If m is even, then choose the
first m/2 symbols of the sync sequence to be 0s and the remainder 1s.
If m is odd, then choose the first (m − 1)/2 symbols to be 0s and the
remainder 1s. If ℓ is greater than m/2 for m even or (m − 1)/2 if m
is odd, then it is not possible for an overlap of sync and codeword to
be mistaken for a sync since the possible false alarm begins with a 1
while a real sync must begin with a 0. if ℓ falls in the first half of a true
sync, there will be insufficient 0s in the k-tuple to be mistaken for a sync.
Thus we need only be concerned about avoiding a sync sequence inside
a binary K-tuple following a sync.

A sync sequence can occur in any of K −m = N − 2m positions in a
binary K-tuple, and all of the 2N−2m binary K tuples containing a sync in
any of the N − 2m possible positions are disallowed from the index set.
After removing all of these disallowed sequences there will be at least
2K − (N − 2m)2N−2m K-tuples remaining for indexing the codebook Gn.
Note that we have overcounted the number of sequences removed so
that we have at least M remaining since K-tuples with two or more sync
sequences within them get removed multiple times. Thus the condition
required for ensuring that there are enough indices for the words in Gn
is

2K − (N − 2m)2N−2m ≥ 2n(1+ǫ) (6.13)

To relate ǫ,n, k chosen previously to parse the encoder block, we now
derive the necessary conditions for K and m for obtaining arbitrarily
small average probability of error. Analogous to the synchronous case,
fix δ1 > 0 to be chosen shortly and define the sync sequence length
similarly to (6.8) by

m =m(N) = ⌈δ1N⌉ (6.14)

and set K = N −m. As earlier,

δ1N ≤m ≤ δ1N + 1

(1− δ1)N − 1 ≤ K ≤ N(1− δ1).

From (6.13) and the definitions we have the inequalities

2K − (N − 2m)2N−2m ≥ 2N(1−δ1) − (N − 2δ1N − 2)2N−2δ1N−2

2(1−ǫ)N(1+ǫ) ≥ 2n(1+ǫ)

and hence (6.13) will be satisfied and there will be sufficient indices for
all of the vectors in Gn if
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2N(1−δ1) − (N − 2δ1N − 2)2N−2δ1N−2 ≥ 2(1−ǫ
2)N

or
2−Nδ1 ≥ 2−ǫ

2N + (N − 2δ1N − 2)2−2δ1N−2

or
1 ≥ 2(δ1−ǫ2)N + [N(1− 2δ1N)− 2]2−δ1N−2.

If we choose δ1 <
√
ǫ, then the term on the right goes to zero with N

and hence for sufficiently large blocklength N there are sufficient binary
N tuples in a self-synchronized code for all vectors in Gn. The analysis
of the mean probability of error follows exactly as before. Note that δ0

yields the fraction of symbols k in the initial and ignored symbols in
the input source word, while δ1 yielded the fraction of initial symbols
constituting the sync sequence in the output or encoded binary word.

Sliding-Block Code

Let N and ǫ > 0 remain as before, where now N is chosen large enough
to ensure that µXn(Gn) ≤ ǫ in the previous subsections and construct an
asynchronous block code of blocklength N as there described. The sym-
bols k and m retain their meaning as the length of the input and output
prefixes. Fix δ2 > 0, and use Lemmas 2.11–2.12 to construct a Rohlin
tower with base F , height N , and µX(G) ≤ δ2 having the properties of
the lemmas. In particular assume that the finite partition considered is

P =
N−1∨

i=0

T−iP0,

where P0 is the zero-time partition for the finite-alphabet source, that
is, if the stationary random process {Xn} has alphabet A = {ai; i =
0,1 . . . ,‖A‖ − 1} P0 = {{x : X0(x) = x0 = ai}; i = 0,1 . . . ,‖A‖ − 1}.
Thus the atoms of P correspond to all sequences having initial N co-
ordinates xN = aN , for some aN ∈ AN . In other words, the atoms are
N-dimensional thin cylinders.

The sliding-block encoder operates as follows to map a sequence x
into a binary symbol. If x ∈ F , then use the asynchronous block code to
map xN into a binary N-tuple nN and put out the first symbol b0. This
will be the first symbol in the sync sequence. If x ∈ TF , then T−1x ∈ F .
Apply the block code to xN−1 = (x−1, x0, . . . , xN−2) to obtain bN and put
out the second symbol b1. Continue in this way: if x ∈ T iF for i =
0,1, . . . ,N−1, then T−ix ∈ F and apply the block code to xN−i to produce
bN and put out the ith symbol bi. Lastly, if x ∈ G, put out a 0 (that is, an
arbitrary symbol). This defines a stationary encoder for all infinite input
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sequences x. Since F is measurable with respect to a finite window and
block codes are used, the stationary code is described by a finite-length
sliding-block code.

The sliding-block decoder operates essentially in the same manner as
the asynchronous block code decoder. Suppose that the sync sequence
is a binary m-tuple sm. Given a received sequence b, look for an i =
0,1, . . . ,N − 1 for which bm−i = sm (there can be at most one). If there is
no such i, put out an arbitrary fixed reference symbol, say b∗. If there
is a match with a sync, form the binary N-tuple bN−i and use the block
decoder to map this into a reproduction vector x̂N . Put out x̂i. Recall
that x̂N will be a concatenation of k 0s followed by an n-tuple in Gn, the
collection of entropy-typical source vectors.

In a nutshell, the encoder uses the base of the Rohlin tower to initiate
a block coding, and usually the block code will be used repetitively until
eventually some spacing is thrown in to make things stationary. The re-
sulting binary codewords all have a unique prefix that can occur only at
the beginning of a code block.

Consider the error probability resulting from this sliding-block code.
Let X̂n denote the process resulting from encoding and decoding as
above and let {X0 ≠ X̂0} be short hand for the set of sequences {x :
X0(x) ≠ X̂0(x)}, where X0(x) = x0 is just the coordinate function, and
X̂0(x) is the output at time 0 of the cascade of the sliding-block encoder
and decoder. Then using total probability

Pe = Pr(X0 ≠ X̂0) = µX({X0 ≠ X̂0})

= µX({X0 ≠ X̂0} ∩G)+
N−1∑

i=0

µX({X0 ≠ X̂0} ∩ T iF).

Since
µX({X0 ≠ X̂0} ∩G) ≤ µX(Gn) ≤ δ2

and

µX({X0 ≠ X̂0} ∩ T iF) = µX({x : X0(x) ≠ X̂0(x)} ∩ T iF)
= µX(T−i{x : X0(x) ≠ X̂0(x)} ∩ F)
= µX({x : X0(T

ix) ≠ X̂0(T
ix)} ∩ F)

= µX({Xi ≠ X̂i} ∩ F)

using the stationarity of the process distribution and codes, we have that
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Pe ≤ δ2 +
N−1∑

i=0

µX({Xi ≠ X̂i} ∩ F)

≤ δ2 +
k−1∑

i=0

µX({Xi ≠ X̂i} ∩ F)+
N−1∑

i=k
µX({Xi ≠ X̂i} ∩ F)

≤ δ2 +
k−1∑

i=0

µX(F)+
N−1∑

i=k
µX({Xnk ≠ X̂nk } ∩ F)

≤ δ2 + k
N
+
N−1∑

i=k
µX({Xnk 6∈ Gn} ∩ F)

≤ δ2 + ǫ+ 1

N
+
N−1∑

i=k
µX({Xnk 6∈ Gn} ∩ F).

Lemma 2.12 implies that for any xN ,

µX({XN = xn} ∩ F) ≤ 1

N
µX({XN = xn})

and hence

µX({Xnk 6∈ Gn} ∩ F) =
∑

xN :xnk 6∈Gn
µX({XN = xn} ∩ F)

≤
∑

xN :xnk 6∈Gn

1

N
µX({XN = xn})

= 1

N
µX({Xnk 6∈ Gn}) =

1

N
µX({Xn 6∈ Gn}) ≤ ǫ

N
.

Thus

Pe ≤ δ2 + ǫ+ 1

N
+ N − k

N
ǫ ≤ δ2 + 2ǫ,

which can be made as small as desired by suitable choices of ǫ, δ2.
Summarizing, given any finite-alphabet stationary and ergodic source

X with entropy rate 1 bit per sample and ǫ > 0, a sliding-block en-
coder with binary outputs and a sliding-block decoder mapping binary
sequences into the source alphabet (both of finite length) can be con-
structed so that Pe ≤ ǫ. This implies that asymptotically optimal en-
coders fn and decoder gn can be constructed with resulting probability
of error Pe(fn, gn) going to 0 as n→∞.

This solves the theoretical problem of showing that a stationary and
ergodic process with entropy rate 1 can be coded into bits and decoded
in a stationary way so that the original source can be reconstructed with-
out error. This can be viewed as a stationary coding analog of Shannon’s
noiseless or lossless source coding theorem for variable-length block
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codes (which are not stationary). The stationary coding leads to some
additional properties, which are explored next.

6.6 Asymptotically Optimal Almost Lossless Codes

Continuing with the almost lossless codes of the previous section, sup-
pose that X is a stationary and ergodic finite-alphabet source with en-
tropy rate 1 bit per symbol. Suppose that we construct a sequence of
finite-length sliding block encoders fn and decoders gn which result in
encoded processes U(n) and decoded reproduction processes X̂(n). Since
coding can only reduce entropy rate, we have immediately that

H(X) = 1 ≥ H(U(n)) ≥ H(X̂(n)). (6.15)

Since the codes are asymptotically optimal,

lim
n→∞Pr(X0 ≠ X̂

(n)
0 ) = 0. (6.16)

The codes form a coupling between the input and output, and the prob-
ability of error is simply the expected Hamming distortion between the
pair. This distortion is bound below by Ornstein’s d-bar distance between
the processes, which means that

lim
n→∞d(X, X̂

(n)) = 0. (6.17)

Thus the output process converges in d-bar to the original source.
Eq. (6.16) implies from the process version of the Fano inequality that

lim
n→∞H(X̂

(n)) = H(X) = 1. (6.18)

From (6.15), this forces
lim
n→∞H(U

(n)) = 1. (6.19)

This suggests that the binary encoded process is looking more and more
like coin flips as n grows. Marton’s inequality as in Corollary 6.6 provides
a rigorous proof of this fact. Suppose that Z is the fair coin flip process,
an IID binary equiprobable process. Then from Corollary 6.6

d(U(n), Z) ≤
√

1

2
(H(Z)−H(U(n)))

which goes to 0 as n → ∞. Thus the encoded process converges to fair
coin flips in d-bar if the codes are asymptotically optimal, and the output
of the decoder converges to the original source in d-bar.
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Together these facts provide an approximate variation on the Orn-
stein isomorphism and Sinai theorems of ergodic theory. The isomor-
phism theorem states that a B-process with entropy rate 1 can be coded
into coin flips in an invertible manner. We have just seen that we can
map the original process into a process that is very close to coin flips in
d-bar, and then we can “invert” the mapping by another mapping which
produces a process very close to the original in d-bar. Thus almost loss-
less source coding can be interpreted as an approximate version of the
isomorphism theorem, and the isomorphism theorem can be interpreted
as a limiting version of the lossless coding result. The source coding re-
sult holds generally for stationary and ergodic processes, but turning it
into the vastly stronger isomorphism theorem requires B-processes. The
Sinai theorem states that we can model a process with prescribed distri-
butions and entropy rate 1 by a stationary coding of coin flips. We have
shown that a stationary coding of something d-bar close to coin flips can
be used to obtain something d-bar close to a prescribed process. This
can be interpreted as a simulation result, generating a desired process
from coin flips.

6.7 Modeling and Simulation

Random processes and dynamical systems can be used to model real
world phenomena in the sense that one can use statistical methods to fit
a probabilistic description to observed measurements. Such models are
based on an assumption that observed relative frequencies of measure-
ments predict future behavior, the fundamental idea of the ergodic the-
orem and the notion of AMS processes. Often models can be of a specific
form, such as Gaussian or Poisson, based on the observed or assumed
physics describing the production of the measured quantities. It also of-
ten occurs that the form of a model is assumed simply for convenience,
and its suitability for the signals in question may be controversial. In
some situations one might wish to place constraints on the model, but
not assume particular distributions. For example one might wish to al-
low only models of a particularly simple form with useful properties
such as B-processes, processes formed by stationary coding or filtering
of IID processes, or autoregressive processes, processes formed by lin-
ear filtering an IID process using a poles-only or autoregressive filter.
We shall later see (in Lemma 14.13) that a source can be communicated
with arbitrarily small distortion through a noisy channel if the source
has entropy rate less than a quantity determined by the channel (called
the channel capacity) and if the source is totally ergodic. This fundamen-
tal result of information theory implies that a particularly useful class
of models is the class with an entropy constraint. Furthermore, totally
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ergodic sources such as B-processes are amenable to reliable communi-
cation and hence a natural choice of model.

This raises the issue of how good a model is as a fit to a “real” pro-
cess, and process distortion measures provide a means of quantifying
just how good a model approximates a target process. This situation can
be idealized by a process distortion between a “true” distribution and the
model distribution, but this assumes the existence of the former. Theo-
rem 5.2 provides a practical means of estimating a process distortion by
finding the best match between a sequence produced by the target pro-
cess (which will produce a frequency-typical sequence with probability 1)
and the model’s collection of frequency-typical sequences. A minimum
distortion selection between a fixed sequence and a member of a col-
lection of sequences resembles the encoder we will encounter in source
coding in Chapter 12, so that the considerations of this section will shed
insight on the source coding problem.

With this introduction we formalize two optimization problems de-
scribing the fitting of a model from an interesting class of processes
to a target process so as to minimize a process distortion between the
target and the class. It is assumed that the target process distribution
exists, but it should be kept in mind that in the case of stationary and
ergodic processes, the process distortion can be estimated by finding
the best match between an example target sequence and the collection
of frequency-typical model sequences.

Suppose that µX is the distribution of a stationary source {Xn}. For
some class of random processes P define

ρ(µX ,P) = inf
µY∈P

ρ(µX , µY ). (6.20)

The previous discussion suggests the classes

P(R) = {µY : H(Y) ≤ R} (6.21)

PB(R) = {B-processes µY : H(Y) ≤ R} (6.22)

where R ≥ 0.
The first optimization problem originated in [65] and will be seen in

Chapter 12 to provide a geometric interpretation of Shannon source cod-
ing. The second originated in [53], where it was dubbed the “simulation
problem" because of its goal of generating a good model of a target pro-
cess as a sliding-block coding of a simple finite alphabet IID process
such as fair coin flips. The sliding-block simulating code was shown to
provide a good decoder in a source coding system. Both of these results
will be considered later. They are introduced here as a natural combi-
nation of distortion and entropy considerations. Since PB(R) ⊂ P(R),
ρ(µX ,PB(R)) ≥ ρ(µX ,P(R)).
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Of more practical interest than simply modeling or simulating a ran-
dom process as a B-process is the possibility of using a stationary en-
coding of a particular IID process such as fair coin flips or dice rolls. For
example, suppose that one is given an IID process Z with distribution µZ
and entropy rate H(Z) and one wishes to simulate a random process X
with distribution µX by applying a stationary code f to Z to produce a
process X̃ = f(Z) with entropy rate H(X̃) ≤ H(Z) which is as close as
possible to X in rho-bar:

∆X|Z = inf
f
ρ(µX , µf(Z)). (6.23)

From the definitions,

∆X|Z ≥ ρ(µX ,PB(H(Z))) (6.24)

since the optimization over B-processes formed by stationary codings
of Z is a more constrained optimization. Suppose, however, that X is
itself a B-process and that X̃ is a B-process approximately solving the
minimization of ρ(µX ,PB(H(Z))) so that X̃ is a B-process with H(X̃) ≤
H(Z) and ρ(µX , µX̃) ≤ ǫ for some small ǫ > 0. Then Sinai’s theorem
implies that X̃ (or rather a process equivalent to X̃) can be obtained as a
stationary coding of Z and hence

∆X|Z = ρ(µX ,PB(H(Z))).

If R = H(Z), this means that

∆X|Z = ρ(µX ,PB(R)) ≡ ∆X(R), (6.25)

a quantity that depends only on R and not on the structure of Z other
than its entropy rate!



Chapter 7

Relative Entropy

Abstract A variety of information measures have been introduced for
finite alphabet random variables, vectors, and processes: entropy, mu-
tual information, relative entropy, conditional entropy, and conditional
mutual information. All of these can be expressed in terms of divergence
and hence the generalization of these definitions and their properties to
infinite alphabets will follow from a general definition of divergence. In
this chapter the definition and properties of divergence in this general
setting are developed, including the formulas for evaluating divergence
as an expectation of information density and as a limit of divergences of
finite codings. We also develop several inequalities for and asymptotic
properties of divergence. These results provide the groundwork needed
for generalizing the ergodic theorems of information theory from finite
to standard alphabets. The general definitions of entropy and informa-
tion measures originated in the pioneering work of Kolmogorov and his
colleagues Gelfand, Yaglom, Dobrushin, and Pinsker

7.1 Divergence

Given a probability space (Ω,B, P) (not necessarily with finite alphabet)
and another probability measureM on the same space, define the relative

entropy or divergence of P with respect to M by

D(P‖M) = sup
Q
HP‖M(Q) = sup

f
D(Pf‖Mf ), (7.1)

where the first supremum is over all finite measurable partitions Q of Ω
and the second is over all finite alphabet measurements on Ω. The two
forms have the same interpretation: the divergence is the supremum of
the relative entropies or divergences obtainable by finite alphabet cod-
ings of the sample space. The partition form is perhaps more common
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when considering divergence per se, but the measurement or code form
is usually more intuitive when considering entropy and information. This
section is devoted to developing the basic properties of divergence, all of
which will yield immediate corollaries for the measures of information.

The first result is a generalization of the divergence inequality that
is a trivial consequence of the definition and the finite alphabet special
case.

Lemma 7.1. The Divergence Inequality:

For any two probability measures P and M

D(P‖M) ≥ 0

with equality if and only if P = M .

Proof. Given any partition Q, Theorem 3.1 implies that

∑

Q∈Q
P(Q) ln

P(Q)

M(Q)
≥ 0

with equality if and only if P(Q) = M(Q) for all atoms Q of the parti-
tion. Since D(P‖Q) is the supremum over all such partitions, it is also
nonnegative. It can be 0 only if P and M assign the same probabilities to
all atoms in all partitions (the supremum is 0 only if the above sum is 0
for all partitions) and hence the divergence is 0 only if the measures are
identical. ✷

As in the finite alphabet case, Lemma 7.1 justifies interpreting diver-
gence as a form of distance or dissimilarity between two probability mea-
sures. It is not a true distance or metric in the mathematical sense since
it is not symmetric and it does not satisfy the triangle inequality. Since
it is nonnegative and equals zero only if two measures are identical, the
divergence is a distortion measure on probability distributions as con-
sidered in Chapter 5. This view often provides interpretations of the ba-
sic properties of divergence. We shall develop several relations between
the divergence and other distance measures. The reader is referred to
Csiszár [26] for a development of the distance-like properties of diver-
gence.

As the supremum definition of divergence in the general case permits
an easy generalization of the divergence inequality, it also permits an
easy generalization of the basic convexity property of Corollary 3.5.

Lemma 7.2. The divergence D(P‖M) is a convex function of the pair of

probability measures (P,M).

The lemma can also be proved using the integral representation of di-
vergence as in Csiszár [25].
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The following two lemmas provide means for computing divergences
and studying their behavior. The first result shows that the supremum
can be confined to partitions with atoms in a generating field. This will
provide a means for computing divergences by approximation or limits.
The result is due to Dobrushin and is referred to as Dobrushin’s theo-
rem. The second result shows that the divergence can be evaluated as
the expectation of an entropy density defined as the logarithm of the
Radon-Nikodym derivative of one measure relative to the other. This re-
sult is due to Gelfand, Yaglom, and Perez. The proofs largely follow the
translator’s remarks in Chapter 2 of Pinsker [150] (which in turn follows
Dobrushin [32]).

Lemma 7.3. Suppose that (Ω,B) is a measurable space where B is gen-

erated by a field F , B = σ(F). Then if P and M are two probability

measures on this space,

D(P‖M) = sup
Q⊂F

HP‖M(Q).

Proof. From the definition of divergence, the right-hand term above is
clearly less than or equal to the divergence. If P is not absolutely con-
tinuous with respect to M , then we can find a set F such that M(F) = 0
but P(F) 6= 0 and hence the divergence is infinite. Approximating this
event by a field element F0 by applying Theorem 1.1 simultaneously to
M and G will yield a partition {F0, F

c
0} for which the right hand side of

the previous equation is arbitrarily large. Hence the lemma holds for this
case. Henceforth assume that M ≫ P .

Fix ǫ > 0 and suppose that a partition Q = {Q1, · · · ,QK} yields a
relative entropy close to the divergence, that is,

HP‖M(Q) =
K∑

i=1

P(Qi) ln
P(Qi)

M(Qi)
≥ D(P‖M)− ǫ/2.

We will show that there is a partition, say Q′ with atoms in F which
has almost the same relative entropy, which will prove the lemma. First
observe that P(Q) ln[P(Q)/M(Q)] is a continuous function of P(Q) and
M(Q) in the sense that given ǫ/(2K) there is a sufficiently small δ > 0
such that if |P(Q)− P(Q′)| ≤ δ and |M(Q)−M(Q′)| ≤ δ, then provided
M(Q) 6= 0

|P(Q) ln
P(Q)

M(Q)
− P(Q′) ln

P(Q′)
M(Q′)

| ≤ ǫ

2K
.

If we can find a partition Q′ with atoms in F such that

|P(Q′i)− P(Qi)| ≤ δ, |M(Q′i)−M(Qi)| ≤ δ, i = 1, · · · , K, (7.2)

then
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|HP‖M(Q′)−HP‖M(Q)| ≤
∑

i

|P(Qi) ln
P(Qi)

M(Qi)
− P(Q′i) ln

P(Q′i)
M(Q′i)

|

≤ K ǫ

2K
= ǫ

2

and hence
HP‖M(Q′) ≥ D(P‖M)− ǫ

which will prove the lemma. To find the partition Q′ satisfying (7.2), let
m be the mixture measure P/2 + M/2. As in the proof of Lemma 5.1,
we can find a partition Q′ ⊂ F such that m(Qi∆Q′i) ≤ K2γ for i =
1,2, · · · , K, which implies that

P(Qi∆Q′i) ≤ 2K2γ and M(Qi∆Q′i) ≤ 2K2γ; i = 1,2, · · · , K.

If we now choose γ so small that 2K2γ ≤ δ, then (7.2) and hence the
lemma follow from the above and the fact that

|P(F)− P(G)| ≤ P(F∆G). (7.3)

✷

Lemma 7.4. Given two probability measures P and M on a common mea-

surable space (Ω,B), if P is not absolutely continuous with respect to M ,

then

D(P‖M) = ∞.
If P ≪ M (e.g., if D(P‖M) < ∞), then the Radon-Nikodym derivative

f = dP/dM exists and

D(P‖M) =
∫

lnf(ω)dP(ω) =
∫
f(ω) lnf(ω)dM(ω).

The quantity lnf (if it exists) is called the entropy density or relative

entropy density of P with respect to M .

Proof. The first statement was shown in the proof of the previous
lemma. If P is not absolutely continuous with respect to M , then there is
a set Q such that M(Q) = 0 and P(Q) > 0. The relative entropy for the
partition Q = {Q,Qc} is then infinite, and hence so is the divergence.

Assume that P ≪ M and let f = dP/dM . Suppose that Q is an event
for which M(Q) > 0 and consider the conditional cumulative distribu-
tion function for the real random variable f given that ω ∈ Q:

FQ(u) = M({f < u}
⋂
Q)

M(Q)
;u ∈ (−∞,∞).

Observe that the expectation with respect to this distribution is
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EM(f |Q) =
∫∞

0
udFQ(u) = 1

M(Q)

∫

Q
f(ω)dM(ω) = P(Q)

M(Q)
.

We also have that
∫∞

0
u lnudFQ(u) = 1

M(Q)

∫

Q
f(ω) lnf(ω)dM(ω),

where the existence of the integral is ensured by the fact that u lnu ≥
−e−1.

Applying Jensen’s inequality to the convex
⋃

function u lnu yields
the inequality

1

M(Q)

∫

Q
lnf(ω)dP(ω) = 1

M(Q)

∫

Q
f(ω) lnf(ω)dM(ω)

=
∫∞

0
u lnudFQ(u)

≥ [
∫∞

0
udFQ(u)] ln[

∫∞

0
udFQ(u)]

= P(Q)

M(Q)
ln
P(Q)

M(Q)
.

We therefore have that for any event Q with M(Q) > 0 that

∫

Q
lnf(ω)dP(ω) ≥ P(Q) ln

P(Q)

M(Q)
. (7.4)

Let Q = {Qi} be a finite partition and we have

∫
lnf(ω)dP(ω) =

∑

i

∫

Qi
lnf(ω)dP(ω)

≥
∑

i:P(Qi) 6=0

∫

Qi
lnf(ω)dP(ω)

=
∑

i

P(Qi) ln
P(Qi)

M(Qi)
,

where the inequality follows from (7.4) since P(Qi) 6= 0 implies that
M(Qi) 6= 0 since M ≫ P . This proves that

D(P‖M) ≤
∫

lnf(ω)dP(ω).

To obtain the converse inequality, let qn denote the asymptotically
accurate quantizers of Section 1.5. From (1.23)

∫
lnf(ω)dP(ω) = lim

n→∞

∫
qn(lnf(ω))dP(ω).
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For fixed n the quantizer qn induces a partition of Ω into 2n2n + 1
atoms Q. In particular, there are 2n2n − 1 “good” atoms such that for
ω,ω′ inside the atoms we have that | lnf(ω)− lnf(ω′)| ≤ 2−(n−1). The
remaining two atoms group ω for which lnf(ω) ≥ n or lnf(ω) < −n.
Defining the shorthand P(lnf < −n) = P({ω : lnf(ω) < −n}), we have
then that

∑

Q∈Q
P(Q) ln

P(Q)

M(Q)
=

∑

good Q

P(Q) ln
P(Q)

M(Q)
+

P(lnf ≥ n) ln
P(lnf ≥ n)
M(lnf ≥ n) + P(lnf < −n) ln

P(lnf < −n)
M(lnf < −n).

The rightmost two terms above are bounded below as

P(lnf ≥ n) ln
P(lnf ≥ n)
M(lnf ≥ n) + P(lnf < −n) ln

P(lnf < −n)
M(lnf < −n)

≥ P(lnf ≥ n) lnP(lnf ≥ n)+ P(lnf < −n) lnP(lnf < −n).

Since P(lnf ≥ n) and P(lnf < −n) → 0 as n → ∞ and since x lnx → 0
as x → 0, given ǫ we can choose n large enough to ensure that the above
term is greater than −ǫ. This yields the lower bound

∑

Q∈Q
P(Q) ln

P(Q)

M(Q)
≥

∑

good Q

P(Q) ln
P(Q)

M(Q)
− ǫ.

¯
ω∈Q lnf(ω) and h= infω∈Q lnf(ω)

and note that by definition of the good atoms

h̄− h ≤ 2−(n−1).

We now have that

P(Q)h̄ ≥
∫

Q
lnf(ω)dP(ω)

and

M(Q)eh ≤
∫

Q
f(ω)dM(ω) = P(Q).

Combining these yields

P(Q) ln
P(Q)

M(Q)
≥ P(Q) ln

P(Q)

P(Q)e−h
= P(Q)h

≥ P(Q)(h̄− 2−(n−1))

≥
∫

Q
lnf(ω)dP(ω)− P(Q)2−(n−1).

Fix a good atomQand defineh= sup
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Therefore

∑

Q∈Q
P(Q) ln

P(Q)

M(Q)
≥

∑

good Q

P(Q) ln
P(Q)

M(Q)
− ǫ

≥
∑

good Q

∫

Q
lnf(ω)dP − 2−(n−1) − ǫ

=
∫

ω:| lnf(ω)|≤n
lnf(ω)dP(ω)− 2−(n−1) − ǫ.

Since this is true for arbitrarily large n and arbitrarily small ǫ,

D(P‖Q) ≥
∫

lnf(ω)dP(ω),

completing the proof of the lemma. ✷

It is worthwhile to point out two examples for the previous lemma. If
P and M are discrete measures with corresponding PMF’s p and q, then
the Radon-Nikodym derivative is simply dP/dM(ω) = p(ω)/m(ω) and
the lemma gives the known formula for the discrete case. If P and M are
both probability measures on Euclidean space Rn and if both measures
are absolutely continuous with respect to Lebesgue measure, then there
exists a density f called a probability density function or pdf such that

P(F) =
∫

F
f(x)dx,

where dx means dm(x) with m Lebesgue measure. (Lebesgue measure
assigns each set its volume.) Similarly, there is a pdf g forM . In this case,

D(P‖M) =
∫

Rn
f(x) ln

f(x)

g(x)
dx. (7.5)

The following immediate corollary to the previous lemma provides a
formula that is occasionally useful for computing divergences.

Corollary 7.1. Given three probability distributions M ≫ Q≫ P , then

D(P‖M) = D(P‖Q)+ EP(ln dQ
dM

).

Proof. From the chain rule for Radon-Nikodym derivatives (e.g., Lemma
5.7.3 of [55] or Lemma 6.6 of [58])

dP

dM
= dP
dQ

dQ

dM
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and taking expectations using the previous lemma yields the corollary.
✷

The next result is a technical result that shows that given a map-
ping on a space, the divergence between the induced distributions can
be computed from the restrictions of the original measures to the sub-
σ -field induced by the mapping. As part of the result, the relation be-
tween the induced Radon-Nikodym derivative and the original derivative
is made explicit.

Recall that if P is a probability measure on a measurable space (Ω,B)
and if F is a sub-σ -field of B, then the restriction PF of P to F is
the probability measure on the measurable space (Ω,F) defined by
PF(G) = P(G), for all G ∈ F . In other words, we can use either the prob-
ability measures on the new space or the restrictions of the probability
measures on the old space to compute the divergence. This motivates
considering the properties of divergences of restrictions of measures, a
useful generality in that it simplifies proofs. The following lemma can be
viewed as a bookkeeping result relating the divergence and the Radon-
Nikodym derivatives in the two spaces.

Lemma 7.5. (a) Suppose that M,P are two probability measures on a

space (Ω,B) and that X is a measurement mapping this space into (A,A).
Let PX and MX denote the induced distributions (measures on (A,A)) and

let Pσ(X) and Mσ(X) denote the restrictions of P and M to σ(X), the sub-

σ -field of B generated by X. Then

D(PX‖MX) = D(Pσ(X)‖Mσ(X)).

If the Radon-Nikodym derivative f = dPX/dMX exists (e.g., the above

divergence is finite), then define the function f(X) : Ω→ [0,∞) by

f(X)(ω) = f(X(ω)) = dPX
dMX

(X(ω));

then with probability 1 under both M and P

f(X) = dPσ(X)
dMσ(X)

.

(b) Suppose that P ≪ M . Then for any sub-σ -field F of B, we have that

dPF
dMF

= EM( dP
dM
|F).

Thus the Radon-Nikodym derivative for the restrictions is just the condi-

tional expectation of the original Radon-Nikodym derivative.

Proof. The proof is mostly algebra: D(Pσ(X)‖Mσ(X)) is the supremum
over all finite partitions Q with elements in σ(X) of the relative entropy
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HPσ(X)‖Mσ(X)(Q). Each element Q ∈ Q ⊂ σ(X) corresponds to a unique
set Q′ ∈ A via Q = X−1(Q′) and hence to each Q ⊂ σ(X) there is a
corresponding partition Q′ ⊂ A. The corresponding relative entropies
are equal, however, since

HPX‖MX (Q′) =
∑

Q′∈Q′
Pf (Q

′) ln
PX(Q′)
MX(Q′)

=
∑

Q′∈Q′
P(X−1(Q′)) ln

P(X−1(Q′))
M(X−1(Q′))

=
∑

Q∈Q
PX(Q) ln

PX(Q)

MX(Q)

= HPσ(X)‖Mσ(X)(Q).

Taking the supremum over the partitions proves that the divergences
are equal. If the derivative is f = dPX/dMX , then f(X) is measurable
since it is a measurable function of a measurable function. In addition, it
is measurable with respect to σ(X) since it depends on ω only through
X(ω). For any F ∈ σ(X) there is a G ∈A such that F = X−1(G) and

∫

F
f(X)dMσ(X) =

∫

F
f(X)dM =

∫

G
fdMX

from the change of variables formula (see, e.g., Lemma 4.4.7 of [55] or
Lemma 5.12 of [58]). Thus

∫

F
f(X)dMσ(X) = PX(G) = Pσ(X)(X−1(G)) = Pσ(X)(F),

which proves that f(X) is indeed the claimed derivative with probability
1 under M and hence also under P .

The variation quoted in part (b) is proved by direct verification using
iterated expectation. If G ∈ F , then using iterated expectation we have
that ∫

G
EM(

dP

dM
|F)dMF =

∫
EM(1G

dP

dM
|F)dMF .

Since the argument of the integrand is F -measurable (see, e.g., Lemma
5.3.1 of [55] or Lemma 6.3 of [58]), invoking iterated expectation (e.g.,
Corollary 5.9.3 of [55] or Corollary 6.5 of [58]) yields

∫

G
EM(

dP

dM
|F)dMF =

∫
EM(1G

dP

dM
|F)dM

= E(1G dP
dM

) = P(G) = PF(G),

proving that the conditional expectation is the claimed derivative. ✷
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Part (b) of the lemma was pointed out to the author by Paul Algoet.
Having argued above that restrictions of measures are useful when

finding divergences of random variables, we provide a key trick for treat-
ing such restrictions.

Lemma 7.6. Let M ≫ P be two measures on a space (Ω,B). Suppose that

F is a sub-σ -field and that PF and MF are the restrictions of P and M to

F Then there is a measure S such that M ≫ S ≫ P and

dP

dS
= dP/dM

dPF/dMF
,

dS

dM
= dPF
dMF

,

and

D(P‖S)+D(PF‖MF) = D(P‖M). (7.6)

Proof. If M ≫ P , then clearly MF ≫ PF and hence the appropriate
Radon-Nikodym derivatives exist. Define the set function S by

S(F) =
∫

F

dPF
dMF

dM =
∫

F
EM(

dP

dM
|F)dM,

using part (b) of the previous lemma. Thus M ≫ S and dS/dM =
dPF/dMF . Observe that for F ∈ F , iterated expectation implies that

S(F) = EM(EM(1F dP
dM
|F)) = EM(1F dP

dM
)

= P(F) = PF(F); F ∈ F

and hence in particular that S(Ω) is 1 so that dPF/dMF is integrable and
S is indeed a probability measure on (Ω,B). (In addition, the restriction
of S to F is just PF .) Define

g = dP/dM

dPF/dMF
.

This is well defined since with M probability 1, if the denominator is 0,
then so is the numerator. Given F ∈ B the Radon-Nikodym theorem (e.g.,
Theorem 5.6.1 of [55] or Theorem 6.2 of [58]) implies that

∫

F
gdS =

∫
1Fg

dS

dM
dM =

∫
1F

dP/dM

dPF/dMF
dPF/dMFdM = P(F),

that is, P ≪ S and
dP

dS
= dP/dM

dPF/dMF
,
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proving the first part of the lemma. The second part follows by direct
verification:

D(P‖M) =
∫

ln
dP

dM
dP =

∫
ln
dPF
dMF

dP +
∫

ln
dP/dM

dPF/dMF
dP

=
∫

ln
dPF
dMF

dPF +
∫

ln
dP

dS
dP

= D(PF‖MF)+D(P‖S).

✷

The two previous lemmas and the divergence inequality immediately
yield the following result for M ≫ P . If M does not dominate P , then the
result is trivial.

Corollary 7.2. Given two measures M,P on a space (Ω,B) and a sub-σ -

field F of B, then

D(P‖M) ≥ D(PF‖MF).
If f is a measurement on the given space, then

D(P‖M) ≥ D(Pf‖Mf ).

The result is obvious for finite fields F or finite alphabet measure-
ments f from the definition of divergence. The general result for arbi-
trary measurable functions could also have been proved by combining
the corresponding finite alphabet result of Corollary 3.2 and an approx-
imation technique. As above, however, we will occasionally get results
comparing the divergences of measures and their restrictions by com-
bining the trick of Lemma 7.6 with a result for a single divergence.

The following corollary follows immediately from Lemma 7.3 since
the union of a sequence of asymptotically generating sub-σ -fields is a
generating field.

Corollary 7.3. Suppose that M,P are probability measures on a measur-

able space (Ω,B) and that Fn is an asymptotically generating sequence

of sub-σ -fields and let Pn and Mn denote the restrictions of P and M to

Fn (e.g., Pn = PFn ). Then

D(Pn‖Mn) ↑ D(P‖M).

There are two useful special cases of the above corollary which follow
immediately by specifying a particular sequence of increasing sub-σ -
fields. The following two corollaries give these results.

Corollary 7.4. Let M,P be two probability measures on a measurable

space (Ω,B). Suppose that f is an A-valued measurement on the space.
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Assume that qn : A → An is a sequence of measurable mappings into fi-

nite sets An with the property that the sequence of fields Fn = F(qn(f ))
generated by the sets {q−1

n (a); a ∈ An} asymptotically generate σ(f).
(For example, if the original space is standard let Fn be a basis and let qn
map the points in the ith atom of Fn into i.) Then

D(Pf‖Mf ) = lim
n→∞D(Pqn(f )‖Mqn(f )).

The corollary states that the divergence between two distributions of
a random variable can be found as a limit of quantized versions of the
random variable. Note that the limit could also be written as

lim
n→∞HPf ‖Mf (qn).

In the next corollary we consider increasing sequences of random vari-
ables instead of increasing sequences of quantizers, that is, more ran-
dom variables (which need not be finite alphabet) instead of ever finer
quantizers. The corollary follows immediately from Corollary 7.3 and
Lemma 7.5.

Corollary 7.5. Suppose thatM and P are measures on the sequence space

corresponding to outcomes of a sequence of random variables X0, X1, · · ·
with alphabet A. Let Fn = σ(X0, · · · , Xn−1), which asymptotically gener-

ates the σ -field σ(X0, X1, · · · ). Then

lim
n→∞D(PX

n‖MXn) = D(P‖M).

We now develop two fundamental inequalities involving entropy den-
sities and divergence. The first inequality is from Pinsker [150]. The sec-
ond is an improvement of an inequality of Pinsker [150] by Csiszár [24]
and Kullback [105]. The second inequality is more useful when the diver-
gence is small. Coupling these inequalities with the trick of Lemma 7.6
provides a simple generalization of an inequality of [54] and will provide
easy proofs of L1 convergence results for entropy and information den-
sities. Recall from Section 5.9 that given two probability measures M,P
on a common measurable space (Ω,B), the variation distance between
them is defined by

var(P,M) ≡ sup
Q

∑

Q∈Q
|P(Q)−M(Q)|,

where the supremum is over all finite measurable partitions. We will pro-
ceed by stating first the end goal — the two inequalities involving diver-
gence — as a lemma, and then state a lemma giving the basic required
properties of the variational distance. The lemmas will be proved in a
different order.
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Lemma 7.7. Let P andM be two measures on a common probability space

(Ω,B) with P ≪ M . Let f = dP/dM be the Radon-Nikodym derivative and

let h = lnf be the entropy density. Then

D(P‖M) ≤
∫
|h|dP ≤ D(P‖M)+ 2

e
, (7.7)

∫
|h|dP ≤ D(P‖M)+

√
2D(P‖M). (7.8)

Lemma 7.8. Recall from Lemma 5.4 that given two probability measures

M,P on a common measurable space (Ω,B),

var(P,M) = 2 sup
F∈B

|P(F)−M(F)| = 2 tvar(P,M). (7.9)

If S is a measure for which P ≪ S and M ≪ S (S = (P + M)/2, for

example), then also

var(P,M) =
∫
|dP
dS
− dM
dS
|dS (7.10)

and the supremum in (5.35) is achieved by the set

F = {ω :
dP

dS
(ω) >

dM

dS
(ω)}.

Proof of Lemma 7.8: Suppose that a measure S dominating both P and
M exists and define the set

F = {ω :
dP

dS
(ω) >

dM

dS
(ω)}

and observe that
∫
|dP
dS
− dM
dS
|dS =

∫

F
(
dP

dS
− dM
dS
)dS −

∫

Fc
(
dP

dS
− dM
dS
)dS

= P(F)−M(F)− (P(Fc)−M(Fc))
= 2(P(F)−M(F)).

From the definition of F , however,

P(F) =
∫

F

dP

dS
dS ≥

∫

F

dM

dS
dS = M(F)

so that P(F)−M(F) = |P(F)−M(F)|. Thus we have that

∫
|dP
dS
− dM
dS
|dS = 2|P(F)−M(F)| ≤ 2 sup

G∈B
|P(G)−M(G)| = var(P,M).
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To prove the reverse inequality, assume that Q approximately yields the
variational distance, that is, for ǫ > 0 we have

∑

Q∈Q
|P(Q)−M(Q)| ≥ var(P,M)− ǫ.

Then

∑

Q∈Q
|P(Q)−M(Q)| =

∑

Q∈Q
|
∫

Q
(
dP

dS
− dM
dS
)dS|

≤
∑

Q∈Q

∫

Q
|dP
dS
− dM
dS
|dS

=
∫
|dP
dS
− dM
dS
|dS

which, since ǫ is arbitrary, proves that

var(P,M) ≤
∫
|dP
dS
− dM
dS
|dS,

Combining this with the earlier inequality proves (7.10). We have already
seen that this upper bound is actually achieved with the given choice of
F , which completes the proof of the lemma. ✷

Proof of Lemma 7.7: The magnitude entropy density can be written as

|h(ω)| = h(ω)+ 2h(ω)− (7.11)

where a− = −min(a,0). This inequality immediately gives the trivial left-
hand inequality of (7.7). The right-hand inequality follows from the fact
that ∫

h−dP =
∫
f[lnf]−dM

and the elementary inequality a lna ≥ −1/e.
The second inequality will follow from (7.11) if we can show that

2

∫
h−dP ≤

√
2D(P‖M).

Let F denote the set {h ≤ 0} and we have from (7.4) that

2

∫
h−dP = −2

∫

F
hdP ≤ −2P(F) ln

P(F)

M(F)

and hence using the inequality lnx ≤ x − 1 and Lemma 5.4

2

∫
h−dP ≤ 2P(F) ln

M(F)

P(F)
≤ 2(M(F)− P(F))
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≤ d(P,M) ≤
√

2D(P‖M),
completing the proof. ✷

Combining Lemmas 7.7 and 7.6 yields the following corollary, which
generalizes Lemma 2 of [62].

Corollary 7.6. Let P and M be two measures on a space (Ω,B). Suppose

that F is a sub-σ -field and that PF and MF are the restrictions of P and

M to F . Assume that M ≫ P . Define the entropy densities h = lndP/dM
and h′ = lndPF/dMF . Then

∫
|h− h′|dP ≤ D(P‖M)−D(PF‖MF)+ 2

e
, (7.12)

and

∫
|h− h′|dP ≤

D(P‖M)−D(PF‖MF)+
√

2D(P‖M)− 2D(PF‖MF). (7.13)

Proof. Choose the measure S as in Lemma 7.6 and then apply Lemma 7.7
with S replacing M . ✷

Variational Description of Divergence

As in the discrete case, divergence has a variational characterization that
is a fundamental property for its applications to large deviations theory
[182] [31]. We again take a detour to state and prove the property without
delving into its applications.

Suppose now that P andM are two probability measures on a common
probability space, say (Ω,B), such that M ≫ P and hence the density

f = dP
dM

is well defined. Suppose that Φ is a real-valued random variable defined
on the same space, which we explicitly require to be finite-valued (it can-
not assume ∞ as a value) and to have finite cumulant generating func-
tion:

EM(e
Φ) <∞.

Then we can define a probability measure Mφ by
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MΦ(F) =
∫

F

eΦ

EM(eΦ)
dM (7.14)

and observe immediately that by construction M ≫ MΦ and

dMΦ

dM
= eΦ

EM(eΦ)
.

The measure MΦ is called a “tilted” distribution. Furthermore, by con-
struction dMΦ/dM 6= 0 and hence we can write

∫

F

f

eφ/EM(eΦ)
dQ =

∫

F

f

eφ/EM(eΦ)

dMΦ

dM
dM =

∫

F
fdM = P(F)

and hence P ≪ MΦ and

dP

dMΦ =
f

eφ/EM(eΦ)
.

We are now ready to state and prove the principal result of this section,
a variational characterization of divergence.

Theorem 7.1. Suppose that M ≫ P . Then

D(P‖M) = sup
Φ

(
EPΦ − ln(EM(e

Φ))
)
, (7.15)

where the supremum is over all random variables Φ for which Φ is finite-

valued and eΦ is M-integrable.

Proof. First consider the random variable Φ defined by Φ = lnf and
observe that

EPΦ − ln(EM(e
Φ)) =

∫
dP lnf − ln(

∫
dMf)

= D(P‖M)− ln

∫
dP = D(P‖M).

This proves that the supremum over all Φ is no smaller than the diver-
gence. To prove the other half observe that for any Φ,

H(P‖M)−
(
EPΦ − lnEM(e

Φ)
)
= EP

(
ln
dP/dM

dP/dMΦ

)
,

where MΦ is the tilted distribution constructed above. Since M ≫ MΦ ≫
P , we have from the chain rule for Radon-Nikodym derivatives that

H(P‖M)−
(
EPΦ − lnEM(e

Φ)
)
= EP ln

dP

dMΦ = D(P‖MΦ) ≥ 0
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from the divergence inequality, which completes the proof. Note that
equality holds and the supremum is achieved if and only if MΦ = P . ✷

7.2 Conditional Relative Entropy

Lemmas 7.5 and 7.6 combine with basic properties of conditional prob-
ability in standard spaces to provide an alternative form of Lemma 7.6
in terms of random variables that gives an interesting connection be-
tween the densities for combinations of random variables and those for
individual random variables. The results are collected in Theorem 7.2.
First, however, several definitions are required. Let X and Y be random
variables with standard alphabets AX and AY and σ -fields BAX and BAY ,
respectively. Let PXY andMXY be two distributions on (AX×AY ,BAX×AY )
and assume that MXY ≫ PXY . Let MY and PY denote the induced
marginal distributions, e.g., MY (F) = MXY (AX × F). Define the (nonnega-
tive) densities (Radon-Nikodym derivatives):

fXY = dPXY
dMXY

, fY = dPY
dMY

so that

PXY (F) =
∫

F
fXYdMXY ; F ∈ BAX×AY

PY (F) =
∫

F
fYdMY ; F ∈ BAY .

Note thatMXY ≫ PXY implies thatMY ≫ PY and hence fY is well defined
if fXY is. Define also the conditional density

fX|Y (x|y) =



fXY (x,y)
fY (y)

; if fY (y) > 0

1; otherwise.

Suppose now that the entropy density

hY = lnfY

exists and define the conditional entropy density or conditional relative

entropy density by
hX|Y = lnfX|Y .

Again suppose that these densities exist, we (tentatively) define the con-

ditional relative entropy
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HP‖M(X|Y) = E lnfX|Y =
∫
dPXY (x,y) lnfX|Y (x|y)

=
∫
dMXY (x,y)fXY (x,y) lnfX|Y (x|y).

if the expectation exists. Note that unlike unconditional relative en-
tropies, the above definition of conditional relative entropy requires the
existence of densities. Although this is sufficient in many of the applica-
tions and is convenient for the moment, it is not sufficiently general to
handle all the cases we will encounter. In particular, there will be situa-
tions where we wish to define a conditional relative entropy HP‖M(X|Y)
even though it is not true that MXY ≫ PXY . Hence at the end of this
section we will return to this question and provide a general definition
that agrees with the current one when the appropriate densities exist
and that shares those properties not requiring the existence of densi-
ties, e.g., the chain rule for relative entropy. An alternative approach to a
general definition for conditional relative entropy can be found in Algoet
[6].

The previous construction immediately yields the following lemma
providing chain rules for densities and relative entropies.

Lemma 7.9.

fXY = fX|YfY
hXY = hX|Y + hY ,

and hence

D(PXY‖MXY ) = HP‖M(X|Y)+D(PY‖MY ), (7.16)

or, equivalently,

HP‖M(X, Y) = HP‖M(Y)+HP‖M(X|Y), (7.17)

a chain rule for relative entropy analogous to that for ordinary entropy.

Thus if HP‖M(Y) < ∞ so that the indeterminate form ∞ −∞ is avoided,

then

HP‖M(X|Y) = HP‖M(X, Y)−HP‖M(Y).

Since the alphabets are standard, there is a regular version of the con-
ditional probabilities of X given Y under the distribution MXY ; that is,
for each y ∈ B there is a probability measure MX|Y (F|y); F ∈ BA for
fixed F ∈ BAX MX|Y (F|y) is a measurable function of y and such that
for all G ∈ BAY

MXY (F ×G) = E(1G(Y)MX|Y (F|Y)) =
∫

G
MX|Y (F|y)dMY (y).
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Lemma 7.10. Given the previous definitions, define the set B̄ ∈ BB to be

the set of y for which

∫

A
fX|Y (x|y)dMX|Y (x|y) = 1.

Define PX|Y for y ∈ B̄ by

PX|Y (F|y) =
∫

F
fX|Y (x|y)dMX|Y (x|y); F ∈ BA

and let PX|Y (.|y) be an arbitrary fixed probability measure on (A,BA) for

all y 6∈ B̄. Then MY (B̄) = 1, PX|Y is a regular conditional probability for X
given Y under the distribution PXY , and

PX|Y ≪ MX|Y ; MY − a.e.,

that is, MY ({y : PX|Y (·|y) ≪ MX|Y (·|y)}) = 1. Thus if PXY ≪ MXY , we

can choose regular conditional probabilities under both distributions so

that with probability one under MY the conditional probabilities under P
are dominated by those under M and

dPX|Y
dMX|Y

(x|y) ≡ dPX|Y (·|y)
dMX|Y (·|y)

(x) = fX|Y (x|y); x ∈ A.

Proof. Define for each y ∈ B the set function

Gy(F) =
∫

F
fX|Y (x|y)dMX|Y (x|y); F ∈ BA.

We shall show that Gy(F), y ∈ B, F ∈ BA is a version of a regular con-
ditional probability of X given Y under PXY . First observe using iterated
expectation and the fact that conditional expectations are expectations
with respect to conditional probability measures ([55], Section 5.9) that
for any F ∈ BB

∫

F
[

∫

A
fX|Y (x|y)dMX|Y (x|y)]dMY (y)

= E(1F(Y)E[1A(X)fX|Y |Y]) = E(1F(Y)1A(X)fXY
fY

1fY>0)

=
∫

1A×F
1

fY
1{fY>0}fXY dMXY =

∫

A×F
1

fY
1{fY>0} dPXY

=
∫

F

1

fY
1{fY>0} dPY

∫

F

1

fY
dPY ,

where the last step follows since since the function being integrated de-
pends only on Y and hence is measurable with respect to σ(Y) and
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therefore its expectation can be computed from the restriction of PXY
to σ(Y) (see, for example, Lemma 5.3.1 of [55] or Lemma 6.3 of [58]) and
since PY (fY > 0) = 1. We can compute this last expectation, however,
using MY as

∫

F

1

fY
dPY =

∫

F

1

fY
fYdMY =

∫

F
dMY = MY (F)

which yields finally that

∫

F

[∫

A
fX|Y (x|y)dMX|Y (x|y)

]
dMY (y) = MY (F); all F ∈ BB .

If ∫

F
g(y)dMY (y) =

∫

F
1dMY (y), all F ∈ BB ,

however, it must also be true that g = 1 MY -a.e. (See, for example, Corol-
lary 5.3.1 of [55] or Corollary 6.1 of [58].) Thus we haveMY -a.e. and hence
also PY -a.e. that

∫

A
fX|Y (x|y)dMX|Y (x|y)]dMY (y) = 1;

that is, MY (B̄) = 1. For y ∈ B̄, it follows from the basic properties of
integration that Gy is a probability measure on (A,BA) (see Corollary
4.4.3 of [55] or Corollary 5.4 of [58]).

By construction, PX|Y (·|y)≪ MX|Y (·|y) for all y ∈ B̄ and hence this
is true with probability 1 underMY and PY . Furthermore, by construction

dPX|Y (·|y)
dMX|Y (·|y)

(x) = fX|Y (x|y).

To complete the proof we need only show that PX|Y is indeed a version
of the conditional probability of X given Y under PXY . To do this, fix
G ∈ BA and observe for any F ∈ BB that

∫

F
PX|Y (G|y)dPY (y) =

∫

F
[

∫

G
fX|Y (x|y)dMX|Y (x|y)]dPY (y)

=
∫

F
[

∫

G
fX|Y (x|y)dMX|Y (x|y)]fY (y)dMY (y)

= E[1F(Y)fYE[1G(X)fX|Y |Y] = EM[1G×FfXY ],

again using iterated expectation. This immediately yields

∫

F
PX|Y (G|y)dPY (y) =

∫

G×F
fXYdMXY =

∫

G×F
dPXY = PXY (G × F),
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which proves that PX|Y (G|y) is a version of the conditional probability
of X given Y under PXY , thereby completing the proof. ✷

Theorem 7.2. Given the previous definitions with MXY ≫ PXY , define the

distribution SXY by

SXY (F ×G) =
∫

G
MX|Y (F|y)dPY (y), (7.18)

that is, SXY has PY as marginal distribution for Y and MX|Y as the condi-

tional distribution of X given Y . Then the following statements are true:

1. MXY ≫ SXY ≫ PXY .

2. dSXY /dMXY = fY and dPXY /dSXY = fX|Y .

3. D(PXY‖MXY ) = D(PY‖MY )+D(PXY‖SXY ), and hence D(PXY‖MXY ) ex-

ceeds D(PY‖MY ) by an amount D(PXY‖SXY ) = HP‖M(X|Y).
Proof. To apply Lemma 7.6 define P = PXY , M = MXY , F = σ(Y), P ′ =
Pσ(Y), and M′ = Mσ(Y). Define S by

S(F ×G) =
∫

F×G
dPσ(Y)
dMσ(Y)

dMXY ,

for F ∈ BA and G ∈ BB . We begin by showing that S = SXY . All of the
properties will then follow from Lemma 7.6.

For F ∈ BAX and G ∈ BAY

S(F ×G) =
∫

F×G
dPσ(Y)
dMσ(Y)

dMXY = E
(

1F×G
dPσ(Y)
dMσ(Y)

)
,

where the expectation is with respect to MXY . Using Lemma 7.5 and iter-
ated conditional expectation (c.f. Corollary 5.9.3 of [55] or Corollary 6.5
of [58]) yields

E

(
1F×G

dPσ(Y)
dMσ(Y)

)
= E

(
1F(X)1G(Y)

dPY
dMY

(Y)

)

= E
(

1G(Y)
dPY
dMY

(Y)E[1F(X)|Y]
)

= E
(

1G(Y)
dPY
dMY

(Y)MX|Y (F|Y)
)

∫
MX|Y (F|y) dPY

dMY
(Y)dMY (y) =

∫

G
MX|Y (F|y)dPY (y),

proving that S = SXY . Thus Lemma 7.15 implies that MXY ≫ SXY ≫ PXY ,
proving the first property.

From Lemma 7.5, dP ′/dM′ = dPσ(Y)/dMσ(Y) = dPY /dMY = fY , prov-
ing the first equality of property 2. This fact and the first property imply
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the second equality of property 2 from the chain rule of Radon-Nikodym
derivatives. (See, e.g., Lemma 5.7.3 of [55] or Lemma 6.6 of [58].) Al-
ternatively, the second equality of the second property follows from
Lemma 7.6 since

dPXY
dSXY

= dPXY /dMXY
dMXY /dSXY

= fXY
fY
.

Corollary 7.1 therefore implies that D(PXY‖MXY ) = D(PXY‖SXY ) +
D(SXY‖MXY ), which with Property 2, Lemma 7.4, and the definition of
relative entropy rate imply Property 3. ✷

It should be observed that it is not necessarily true thatD(PXY‖SXY ) ≥
D(PX‖MX) and hence thatD(PXY‖MXY ) ≥ D(PX‖MX)+D(PY‖MY ) as one
might expect since in general SX 6= MX . These formulas will, however, be
true in the special case where MXY = MX ×MY .

We next turn to an extension and elaboration of the theorem when
there are three random variables instead of two. This will be a crucial
generalization for our later considerations of processes, when the three
random variables will be replaced by the current output, a finite number
of previous outputs, and the infinite past.

Suppose that MXYZ ≫ PXYZ are two distributions for three standard
alphabet random variables X, Y , and Z taking values in measurable
spaces (AX ,BAX ), (AY ,BAY ), (AZ ,BAZ ), respectively. Observe that the
absolute continuity implies absolute continuity for the restrictions, e.g.,
MXY ≫ PXY and MY ≫ PY . Define the Radon-Nikodym derivatives fXYZ ,
fYZ , fY , etc. in the obvious way; for example,

fXYZ = dPXYZ
dMXYZ

.

Let hXYZ , hYZ , hY , etc., denote the corresponding relative entropy den-
sities, e.g.,

hXYZ = lnfXYZ .

Define as previously the conditional densities

fX|YZ = fXYZ
fYZ

; fX|Y = fXY
fY
,

the conditional entropy densities

hX|YZ = lnfX|YZ ; hX|Y = lnfX|Y ,

and the conditional relative entropies

HP‖M(X|Y) = E(lnfX|Y )

and
HP‖M(X|Y ,Z) = E(lnfX|YZ).
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By construction (or by double use of Lemma 7.9) we have the following
chain rules for conditional relative entropy and its densities.

Lemma 7.11.

fXYZ = fX|YZfY |ZfZ ,
hXYZ = hX|YZ + hY |Z + hZ ,

and hence

HP‖M(X, Y ,Z) = HP‖M(X|YZ)+HP‖M(Y |Z)+HP‖M(Z).

Corollary 7.7. Given a distribution PXY , suppose that there is a product

distribution MXY = MX ×MY ≫ PXY . Then

MXY ≫ PX × PY ≫ PXY ,

dPXY
d(PX × PY )

= fXY
fXfY

= fX|Y
fX

,

d(PX × PY )
dMXY

= fXfY ,
D(PXY‖PX × PY )+HP‖M(X) = HP‖M(X|Y), and

D(PX × PY‖MXY ) = HP‖M(X)+HP‖M(Y).

Proof. First apply Theorem 7.2 with MXY = MX × MY . Since MXY is a
product measure, MX|Y = MX and MXY ≫ SXY = MX × PY ≫ PXY from
the theorem. Next we again apply Theorem 7.2, but this time the roles
of X and Y in the theorem are reversed and we replace MXY in the theo-
rem statement by the current SXY = MX × PY and we replace SXY in the
theorem statement by

S′XY (F ×G) =
∫

F
SY |X(G|x)dPX(x) = PX(F)PY (G);

that is, S′XY = PX × PY . We then conclude from the theorem that S′XY =
PX × PY ≫ PXY , proving the first statement. We now have that

MXY = MX ×MY ≫ PX × PY ≫ PXY

and hence the chain rule for Radon-Nikodym derivatives (e.g., Lemma
5.7.3 of [55] or Lemma 6.6 of [58]) implies that

fXY = dPXY
dMXY

= dPXY
d(PX × PY )

d(PX × PY )
d(MX ×MY )

.

It is straightforward to verify directly that
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d(PX × PY )
d(MX ×MY )

= dPX
dMX

dPY
dMY

= fXfY

and hence

fXY = dPXY
d(PX × PY )

)fXfY ,

as claimed. Taking expectations using Lemma 7.4 then completes the
proof (as in the proof of Corollary 7.1.) ✷

The lemma provides an interpretation of the product measure PX ×
PY . This measure yields independent random variables with the same
marginal distributions as PXY , which motivates calling PX × PY the inde-

pendent approximation or memoryless approximation to PXY . The next
corollary further enhances this name by showing that PX ×PY is the best
such approximation in the sense of yielding the minimum divergence
with respect to the original distribution.

Corollary 7.8. Given a distribution PXY letM denote the class of all prod-

uct distributions for XY ; that is, if MXY ∈M, then MXY = MX ×MY . Then

inf
MXY∈M

D(PXY‖MXY ) = D(PXY‖PX × PY ).

Proof. We need only consider those M yielding finite divergence (since if
there are none, both sides of the formula are infinite and the corollary is
trivially true). Then

D(PXY‖MXY ) = D(PXY‖PX × PY )+D(PX × PY‖MXY )
≥ D(PXY‖PX × PY )

with equality if and only if D(PX × PY‖MXY ) = 0, which it will be if
MXY = PX × PY . ✷

Recall that given random variables (X, Y ,Z) with distribution MXYZ ,
then X → Y → Z is a Markov chain (with respect toMXYZ ) if for any event
F ∈ BAZ with probability one

MZ|YX(F|y,x) = MZ|Y (F|y).

If this holds, we also say that X and Z are conditionally independent
given Y . Equivalently, if we define the distribution MX×Z|Y by

MX×Z|Y (FX × FZ × FY ) =
∫

Fy
MX|Y (FX|y)MZ|Y (FZ|y)dMY (y);

FX ∈ BAX ; FZ ∈ BAZ ; FY ∈ BAY ;

then Z → Y → X is a Markov chain ifMX×Z|Y = MXYZ . (See Section 5.10 of
[55] or Section 6.10 of [58].) This construction shows that a Markov chain
is symmetric in the sense that X → Y → Z if and only if Z → Y → X.
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Note that for any measure MXYZ , X → Y → Z is a Markov chain under
MX×Z|Y by construction.

The following corollary highlights special properties of the various
densities and relative entropies when the dominating measure is a
Markov chain. It will lead to the idea of a Markov approximation to an ar-
bitrary distribution on triples extending the independent approximation
of the previous corollary.

Corollary 7.9. Given a probability space, suppose that MXYZ ≫ PXYZ are

two distributions for a random vector (X, Y ,Z) with the property that

Z → Y → X forms a Markov chain under M . Then

MXYZ ≫ PX×Z|Y ≫ PXYZ

and

dPXYZ
dPX×Z|Y

= fX|YZ
fX|Y

(7.19)

dPX×Z|Y
dMXYZ

= fYZfX|Y . (7.20)

Thus

ln
dPXYZ
dPX×Z|Y

+ hX|Y = hX|YZ

ln
dPX×Z|Y
dMXYZ

= hYZ + hX|Y

and taking expectations yields

D(PXYZ‖PX×Z|Y )+HP‖M(X|Y) = HP‖M(X|YZ)
D(PX×Z|Y‖MXYZ) = D(PYZ‖MYZ)+HP‖M(X|Y).

Furthermore,

PX×Z|Y = PX|YPYZ , (7.21)

that is,

PX×Z|Y (FX × FZ × FY ) =
∫

FY×FZ
PX|Y (FX|y)dPZY (z,y). (7.22)

Lastly, if Z → Y → X is a Markov chain under M , then it is also a

Markov chain under P if and only if

hX|Y = hX|YZ (7.23)

in which case

HP‖M(X|Y) = HP‖M(X|YZ). (7.24)



198 7 Relative Entropy

Proof. Define

g(x,y, z) = fX|YZ(x|y,z)
fX|Y (x|y)

= fXYZ(x,y, z)
fYZ(y, z)

fY (y)

fXY (x,y)

and simplify notation by defining the measure Q = PX×Z|Y . Note that
Z → Y → X is a Markov chain with respect to Q. To prove the first
statement of the corollary requires proving the following relation:

PXYZ(FX × FY × FZ) =
∫

FX×FY×FZ
gdQ;

all FX ∈ BAX , FZ ∈ BAZ , FY ∈ BAY .

From iterated expectation with respect to Q (e.g., Section 5.9 of [55] or
Section 6.9 of [58])

E(g1FX (X)1FZ (Z)1FY (Y)) = E(1FY (Y)1FZ (Z)E(g1FX (X)|YZ))

=
∫

1FY (y)1FZ (z)(

∫

FX
g(x,y, z)dQX|YZ(x|y,z))dQYZ(y, z).

Since QYZ = PYZ and QX|YZ = PX|Y Q-a.e. by construction, the previous
formula implies that

∫

FX×FY×FZ
g dQ =

∫

FY×FZ
dPYZ

∫

FX
gdPX|Y .

This proves (7.21. Since MXYZ ≫ PXYZ , we also have that MXY ≫ PXY
and hence application of Theorem 7.2 yields

∫

FX×FY×FZ
gdQ =

∫

FY×FZ
dPYZ

∫

FX
gfX|YdMX|Y

=
∫

FY×FZ
dPYZ

∫

FX
fX|YZdMX|Y .

By assumption, however, MX|Y = MX|YZ a.e. and therefore

∫

FX×FY×FZ
g dQ =

∫

FY×FZ
dPYZ

∫

FX
fX|YZ dMX|YZ

=
∫

FY×FZ
dPYZ

∫

FX
dPX|YZ

= PXYZ(FX × FY × FZ),

where the final step follows from iterated expectation. This proves (7.19)
and that Q≫ PXYZ .

To prove (7.20) we proceed in a similar manner and replace g by
fX|YfZY and replace Q by MXYZ = MX×Y |Z . Also abbreviate PX×Y |Z to
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P̂ . As in the proof of (7.19) we have since Z → Y → X is a Markov chain
under M that

∫

FX×FY×FZ
g dQ =

∫

FY×FZ
dMYZ

∫

FX
g dMX|Y

=
∫

FY×FZ
fZY dMYZ

(∫

FX
fX|Y dMX|Y

)

=
∫

FY×FZ
dPYZ

(∫

FX
fX|Y dMX|Y

)
.

From Theorem 7.2 this is
∫

FY×FZ
PX|Y (FX|y)dPYZ .

But PYZ = P̂YZ and

PX|Y (FX|y) = P̂X|Y (FX|y) = P̂X|YZ(FX|yz)

since P̂ yields a Markov chain. Thus the previous formula is P̂ (FX × FY ×
FZ), proving (7.20) and the corresponding absolute continuity.

If Z → Y → X is a Markov chain under both M and P , then PX×Z|Y =
PXYZ and hence

dPXYZ
dPX×Z|Y

= 1 = fX|YZ
fX|Y

,

which implies (7.23). Conversely, if (7.23) holds, then fX|YZ = fX|Y which
with (7.19) implies that PXYZ = PX×Z|Y , proving that Z → Y → X is a
Markov chain under P . ✷

The previous corollary and one of the constructions used will prove
important later and hence it is emphasized now with a definition and
another corollary giving an interesting interpretation.

Given a distribution PXYZ , define the distribution PX×Z|Y as the Markov

approximation to PXYZ . Abbreviate PX×Z|Y to P̂ . The definition has two
motivations. First, the distribution P̂ makes Z → Y → X a Markov chain
which has the same initial distribution P̂ZY = PZY and the same con-
ditional distribution P̂X|Y = PX|Y , the only difference is that P̂ yields a
Markov chain, that is, P̂X|ZY = P̂X|Y . The second motivation is the fol-
lowing corollary which shows that of all Markov distributions, P̂ is the
closest to P in the sense of minimizing the divergence.

Corollary 7.10. Given a distribution P = PXYZ , let M denote the class of

all distributions for XYZ for which Z → Y → X is a Markov chain under

MXYZ (MXYZ = MX×Z|Y ). Then

inf
MXYZ∈M

D(PXYZ‖MXYZ) = D(PXYZ‖PX×Z|Y );
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that is, the infimum is a minimum and it is achieved by the Markov ap-

proximation.

Proof. If noMXYZ in the constraint set satisfiesMXYZ ≫ PXYZ , then both
sides of the above equation are infinite. Hence confine interest to the
case MXYZ ≫ PXYZ . Similarly, if all such MXYZ yield an infinite diver-
gence, we are done. Hence we also consider only MXYZ yielding finite
divergence. Then the previous corollary implies that MXYZ ≫ PX×Z|Y ≫
PXYZ and hence

D(PXYZ‖MXYZ) = D(PXYZ‖PX×Z|Y )+D(PX×Z|Y‖MXYZ)
≥ D(PXYZ‖PX×Z|Y )

with equality if and only if

D(PX×Z|Y‖MXYZ) = D(PYZ‖MYZ)+HP‖M(X|Y) = 0.

But this will be zero if M is the Markov approximation to P since then
MYZ = PYZ and MX|Y = PX|Y by construction. ✷

Generalized Conditional Relative Entropy

We now return to the issue of providing a general definition of condi-
tional relative entropy, that is, one which does not require the existence
of the densities or, equivalently, the absolute continuity of the underly-
ing measures. We require, however, that the general definition reduce to
that considered thus far when the densities exist so that all of the results
of this section will remain valid when applicable. The general definition
takes advantage of the basic construction of the early part of this sec-
tion. Once again let MXY and PXY be two measures, where we no longer
assume thatMXY ≫ PXY . Define as in Theorem 7.2 the modified measure
SXY by

SXY (F ×G) =
∫

G
MX|Y (F|y)dPY (y); (7.25)

that is, SXY has the same Y marginal as PXY and the same conditional
distribution of X given Y asMXY . We now replace the previous definition
by the following: The conditional relative entropy is defined by

HP‖M(X|Y) = D(PXY‖SXY ). (7.26)

If MXY ≫ PXY as before, then from Theorem 7.2 this is the same quan-
tity as the original definition and there is no change. The divergence of
(7.26), however, is well-defined even if it is not true that MXY ≫ PXY and
hence the densities used in the original definition do not work. The key
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question is whether or not the chain rule

HP‖M(Y)+HP‖M(X|Y) = HP‖M(XY) (7.27)

remains valid in the more general setting. It has already been proven in
the case thatMXY ≫ PXY , hence suppose this does not hold. In this case,
if it is also true that MY ≫ PY does not hold, then both the marginal and
joint relative entropies will be infinite and (7.27) again must hold since
the conditional relative entropy is nonnegative. Thus we need only show
that the formula holds for the case whereMY ≫ PY but it is not true that
MXY ≫ PXY . By assumption there must be an event F for which

MXY (F) =
∫
MX|Y (Fy)dMY (y) = 0

but

PXY (F) =
∫
PX|Y (Fy)dPY (y) 6= 0,

where Fy = {(x,y) : (x,y) ∈ F} is the section of F at Fy . Thus
MX|Y (Fy) = 0 MY -a.e. and hence also PY -a.e. since MY ≫ PY . Thus

SXY (F) =
∫
MX|Y (Fy)dPY (y) = 0

and hence it is not true that SXY ≫ PXY and therefore

D(PXY‖SXY ) = ∞,

which proves that the chain rule holds in the general case.
It can happen that PXY is not absolutely continuous with respect to

MXY , and yet D(PXY‖SXY ) <∞ and hence PXY ≪ SXY and hence

HP‖M(X|Y) =
∫
dPXY ln

dPXY
dSXY

,

in which case it makes sense to define the conditional density

fX|Y ≡ dPXY
dSXY

so that exactly as in the original tentative definition in terms of densities
(7.16) we have that

HP‖M(X|Y) =
∫
dPXY lnfX|Y .

Note that this allows us to define a meaningful conditional density even
though the joint density fXY does not exist! If the joint density does ex-
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ist, then the conditional density reduces to the previous definition from
Theorem 7.2.

We summarize the generalization in the following theorem.

Theorem 7.3. The conditional relative entropy defined by (7.26) and (7.25)

agrees with the definition (7.16) in terms of densities and satisfies the

chain rule (7.27). If the conditional relative entropy is finite, then

HP‖M(X|Y) =
∫
dPXY lnfX|Y ,

where the conditional density is defined by

fX|Y ≡ dPXY
dSXY

.

If MXY ≫ PXY , then this reduces to the usual definition

fX|Y = fXY
fY
.

The generalizations can be extended to three or more random variables
in the obvious manner.

7.3 Limiting Entropy Densities

We now combine several of the results of the previous section to obtain
results characterizing the limits of certain relative entropy densities.

Lemma 7.12. Given a probability space (Ω,B) and an asymptotically

generating sequence of sub-σ -fields Fn and two measures M ≫ P , let

Pn = PFn , Mn = MFn and let hn = lndPn/dMn and h = lndP/dM denote

the entropy densities. If D(P‖M) <∞, then

lim
n→∞

∫
|hn − h|dP = 0,

that is, hn → h in L1. Thus the entropy densities hn are uniformly inte-

grable.

Proof. Follows from the Corollaries 7.3 and 7.6. ✷

The following lemma is Lemma 1 of Algoet and Cover [7].

Lemma 7.13. Given a sequence of nonnegative random variables {fn}
defined on a probability space (Ω,B, P), suppose that

E(fn) ≤ 1; all n.
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Then

lim sup
n→∞

1

n
lnfn ≤ 0.

Proof. Given any ǫ > 0 the Markov inequality and the given assumption
imply that

P(fn > e
nǫ) ≤ E(fn)

enǫ
≤ e−nǫ.

We therefore have that

P(
1

n
lnfn ≥ ǫ) ≤ e−nǫ

and therefore

∞∑

n=1

P(
1

n
lnfn ≥ ǫ) ≤

∞∑

n=1

e−nǫ = 1

eǫ−1
<∞,

Thus from the Borel-Cantelli lemma (Lemma 4.6.3 of [55] or Lemma 5.17
of [58]), P(n−1hn ≥ ǫ i.o.) = 0. Since ǫ is arbitrary, the lemma is proved.
✷

The lemma easily gives the first half of the following result, which
is also due to Algoet and Cover [7], but the proof is different here
and does not use martingale theory. The result is the generalization of
Lemma 3.19.

Theorem 7.4. Given a probability space (Ω,B) and an asymptotically

generating sequence of sub-σ -fields Fn, let M and P be two probability

measures with their restrictions Mn = MFn and Pn = PFn . Suppose that

Mn≫ Pn for all n and define fn = dPn/dMn and hn = lnfn. Then

lim sup
n→∞

1

n
hn ≤ 0,M − a.e.

and

lim inf
n→∞

1

n
hn ≥ 0, P − a.e..

If it is also true that M ≫ P (e.g., D(P‖M) <∞), then

lim
n→∞

1

n
hn = 0, P − a.e..

Proof. Since
EMfn = EMnfn = 1,

the first statement follows from the previous lemma. To prove the sec-
ond statement consider the probability
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P(− 1

n
ln
dPn
Mn

> ǫ) = Pn(− 1

n
lnfn > ǫ) = Pn(fn < e−nǫ)

=
∫

fn<e−nǫ
dPn =

∫

fn<e−nǫ
fn dMn

< e−nǫ
∫

fn<e−nǫ
dMn = e−nǫMn(fn < e−nǫ) ≤ e−nǫ.

Thus it has been shown that

P(
1

n
hn < −ǫ) ≤ e−nǫ

and hence again applying the Borel-Cantelli lemma we have that

P(n−1hn ≤ −ǫ i.o.) = 0

which proves the second claim of the theorem.
IfM ≫ P , then the first result also holds P -a.e., which with the second

result proves the final claim. ✷

Barron [8] provides an additional property of the sequence hn/n. If
M ≫ P , then the sequence hn/n is dominated by an integrable function.

7.4 Information for General Alphabets

We can now use the divergence results of the previous sections to gener-
alize the definitions of information and to develop their basic properties.
We assume now that all random variables and processes are defined on
a common underlying probability space (Ω,B, P). As we have seen how
all of the various information quantities–entropy, mutual information,
conditional mutual information–can be expressed in terms of divergence
in the finite case, we immediately have definitions for the general case.
Given two random variables X and Y , define the average mutual infor-
mation between them by

I(X;Y) = D(PXY‖PX × PY ), (7.28)

where PXY is the joint distribution of the random variables X and Y and
PX × PY is the product distribution.

Define the entropy of a single random variable X by

H(X) = I(X;X). (7.29)

From the definition of divergence this implies that
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I(X;Y) = sup
Q
HPXY ‖PX×PY (Q).

From Dobrushin’s theorem (Lemma 7.3), the supremum can be taken
over partitions whose elements are contained in generating field. Letting
the generating field be the field of all rectangles of the form F × G, F ∈
BAX and G ∈ BAY , we have the following lemma which is often used as a
definition for mutual information.

Lemma 7.14.

I(X;Y) = sup
q,r
I(q(X); r(Y)),

where the supremum is over all quantizers q and r of AX and AY . Hence

there exist sequences of increasingly fine quantizers qn : AX → An and

rn : AY → Bn such that

I(X;Y) = lim
n→∞ I(qn(X); rn(Y)).

Applying this result to entropy we have that

H(X) = sup
q
H(q(X)),

where the supremum is over all quantizers.

By “increasingly fine” quantizers is meant that the corresponding par-
titions Qn = {q−1

n (a); a ∈ An} are successive refinements, e.g., atoms
in Qn are unions of atoms in Qn+1. (If this were not so, a new quantizer
could be defined for which it was true.) There is an important draw-
back to the lemma (which will shortly be removed in Lemma 7.18 for
the special case where the alphabets are standard): the quantizers which
approach the suprema may depend on the underlying measure PXY . In
particular, a sequence of quantizers which work for one measure need
not work for another.

An immediate corollary of Lemma 7.14 extends an inequality known
for the finite case to general alphabets. It is useful when one of the ran-
dom variables has finite entropy.

Corollary 7.11.

I(X;Y) ≤ H(Y).
Proof. Let quantizers q and r be quantizers of X and Y as previously.
The finite alphabet result of Lemma 3.11 implies that I(q(X); r(Y)) ≤
H(r(Y)). Taking the supremum over the quantizers yields the corollary.
✷

Given a third random variable Z , let AX , AY , and AZ denote the alpha-
bets of X, Y , and Z and define the conditional average mutual informa-
tion
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I(X;Y |Z) = D(PXYZ‖PX×Y |Z). (7.30)

This is the extension of the discrete alphabet definition of (3.27) and
it makes sense only if the distribution PX×Y |Z exists, which is the case if
the alphabets are standard but may not be the case otherwise. We shall
later provide an alternative definition due to Wyner [197] that is valid
more generally and equal to the above when the spaces are standard.

Note that I(X;Y |Z) can be interpreted using Corollary 7.10 as the
divergence between PXYZ and its Markov approximation.

Combining these definitions with Lemma 7.1 yields the following gen-
eralizations of the discrete alphabet results.

Lemma 7.15. Given two random variables X and Y , then

I(X;Y) ≥ 0

with equality if and only if X and Y are independent. Given three random

variables X, Y , and Z , then

I(X;Y |Z) ≥ 0

with equality if and only if Y → Z → X form a Markov chain.

Proof. The first statement follow from Lemma 7.1 since X and Y are
independent if and only if PXY = PX × PY . The second statement follows
from (7.30) and the fact that Y → Z → X is a Markov chain if and only if
PXYZ = PX×Y |Z (see, e.g., Corollary 5.10.1 of [55] or Corollary 6.7 of [58]).
✷

The properties of divergence provide means of computing and ap-
proximating these information measures. From Lemma 7.4, if I(X;Y) is
finite, then

I(X;Y) =
∫

ln
dPXY

d(PX × PY )
dPXY (7.31)

and if I(X;Y |Z) is finite, then

I(X;Y |Z) =
∫

ln
dPXYZ
dPX×Y |Z

dPXYZ . (7.32)

For example, if X,Y are two random variables whose distribution
is absolutely continuous with respect to Lebesgue measure dxdy and
hence which have a pdf fXY (x,y) = dPXY (xy)/dxdy , then

I(X;Y) =
∫
dxdyfXY (xy) ln

fXY (x,y)

fX(x)fY (y)
,

where fX and fY are the marginal pdf’s, e.g.,
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fX(x) =
∫
fXY (x,y)dy = dPX(x)

dx
.

In the cases where these densities exist, we define the information
densities

iX;Y = ln
dPXY

d(PX × PY )
(7.33)

iX;Y |Z = ln
dPXYZ
dPX×Y |Z

.

The results of Section 7.2 can be used to provide conditions under
which the various information densities exist and to relate them to each
other. Corollaries 7.7 and 7.8 combined with the definition of mutual
information immediately yield the following two results.

Lemma 7.16. Let X and Y be standard alphabet random variables with

distribution PXY . Suppose that there exists a product distribution MXY =
MX ×MY such that MXY ≫ PXY . Then

MXY ≫ PX × PY ≫ PXY ,

iX;Y = ln(fXY /fXfY ) = ln(fX|Y /fX)

and

I(X;Y)+HP‖M(X) = HP‖M(X|Y). (7.34)

Comment: This generalizes the fact that I(X;Y) = H(X) − H(X|Y) for
the finite alphabet case. The sign reversal results from the difference in
definitions of relative entropy and entropy. Note that this implies that
unlike ordinary entropy, relative entropy is increased by conditioning, at
least when the reference measure is a product measure.

The previous lemma provides an apparently more general test for the
existence of a mutual information density than the requirement that PX×
PY ≫ PXY , it states that if PXY is dominated by any product measure,
then it is also dominated by the product of its own marginals and hence
the densities exist. The generality is only apparent, however, as the given
condition implies from Corollary 7.7 that the distribution is dominated
by its independent approximation. Restating Corollary 7.7 in terms of
mutual information yields the following.

Corollary 7.12. Given a distribution PXY letM denote the collection of all

product distributions MXY = MX ×MY . Then

I(X;Y) = inf
MXY∈M

HP‖M(X|Y) = inf
MXY∈M

D(PXY‖MXY ).
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The next result is an extension of Lemma 7.16 to conditional infor-
mation densities and relative entropy densities when three random vari-
ables are considered. It follows immediately from Corollary 7.9 and the
definition of conditional information density.

Lemma 7.17. (The chain rule for relative entropy densities) Suppose that

MXYZ ≫ PXYZ are two distributions for three standard alphabet random

variables and that Z → Y → X is a Markov chain under MXYZ . Let fX|YZ ,

fX|Y , hX|YZ , and hX|Y be as in Section 7.2. Then PX×Z|Y ≫ PXYZ ,

hX|YZ = iX;Z|Y + hX|Y (7.35)

and

HP‖M(X|Y ,Z) = I(X;Z|Y)+HP‖M(X|Y). (7.36)

Thus, for example,

HP‖M(X|Y ,Z) ≥ HP‖M(X|Y).

As with Corollary 7.12, the lemma implies a variational description
of conditional mutual information. The result is just a restatement of
Corollary 7.10.

Corollary 7.13. Given a distribution PXYZ let M denote the class of all

distributions for XYZ under which Z → Y → X is a Markov chain, then

I(X;Z|Y) = inf
MXYZ∈M

HP‖M(X|Y ,Z) = inf
MXYZ∈M

D(PXYZ‖MXYZ),

and the minimum is achieved by MXYZ = PX×Z|Y .

The following corollary relates the information densities of the vari-
ous information measures and extends Kolmogorov’s equality to stan-
dard alphabets.

Corollary 7.14. (The chain rule for information densities and Kolmogorov’s

formula.) Suppose that X,Y , and Z are random variables with standard

alphabets and distribution PXYZ . Suppose also that there exists a distri-

bution MXYZ = MX × MYZ such that MXYZ ≫ PXYZ . (This is true, for

example, if PX × PYZ ≫ PXYZ .) Then the information densities iX;Z|Y , iX;Y ,

and iX;(YZ) exist and are related by

iX;Z|Y + iX;Y = iX;(Y ,Z) (7.37)

and

I(X;Z|Y)+ I(X;Y) = I(X; (Y , Z)). (7.38)
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Proof. If MXYZ = MX ×MYZ , then Z → Y → X is trivially a Markov chain
since MX|YZ = MX|Y = MX . Thus the previous lemma can be applied to
this MXYZ to conclude that PX×Z|Y ≫ PXYZ and that (7.35) holds. We
also have that MXY = MX ×MY ≫ PXY . Thus all of the densities exist.
Applying Lemma 7.16 to the product measures MXY = MX × MY and
MX(YZ) = MX ×MYZ in (7.35) yields

iX;Z|Y = hX|YZ − hX|Y = lnfX|YZ − lnfX|Y

= ln
fX|YZ
fX

− ln
fX|Y
fX

= iX;YZ − iX;Y .

Taking expectations completes the proof. ✷

The previous corollary implies that if PX × PYZ ≫ PXYZ , then also
PX×Z|Y ≫ PXYZ and PX × PY ≫ PXY and hence that the existence of
iX;(Y ,Z) implies that of iX;Z|Y and iX;Y . The following result provides a
converse to this fact: the existence of the latter two densities implies
that of the first. The result is due to Dobrushin [32]. (See also Theorem
3.6.1 of Pinsker [150] and the translator’s comments.)

Corollary 7.15. If PX×Z|Y ≫ PXYZ and PX × PY ≫ PXY , then also PX ×
PYZ ≫ PXYZ and

dPXYZ
d(PX × PYZ)

= dPXY
d(PX × PY )

.

Thus the conclusions of Corollary 7.14 hold.

Proof. The key to the proof is the demonstration that

dPXY
d(PX × PY )

= dPX×Z|Y
d(PX × PYZ)

, (7.39)

which implies that PX×PYZ ≫ PX×Z|Y . Since it is assumed that PX×Z|Y ≫
PXYZ , the result then follows from the chain rule for Radon-Nikodym
derivatives.

Eq. (7.39) will be proved if it is shown that for all FX ∈ BAX , FY ∈ BAY ,
and FZ ∈ BAZ ,

PX×Z|Y (FX × FZ × FY ) =
∫

FX×FZ×FY

dPXY
d(PX × PY )

d(PX × PYZ). (7.40)

The thrust of the proof is the demonstration that for any measurable
nonnegative function f(x, z)

∫

z∈FZ
f(x,y)d(PX×PYZ)(x,y, z) =

∫
f(x,y)PZ|Y (FZ|y)d(PX×PY )(x,y).

(7.41)
The lemma will then follow by substituting
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f(x,y) = dPXY
d(PX × PY )

(x,y)1FX (x)1FY (y)

into (7.41) to obtain (7.40).

1FX (x)1FY (y). Then both sides of (7.41) equal PX(FX)PYZ(FY × FY ) from
the definitions of conditional probability and product measures. In par-
ticular, from Lemma 5.10.1 of [55] or Corollary 6.7 of [58] the left-hand
side is
∫

z∈FZ
1FX (x)1FY (y)d(PX × PYZ)(x,y, z) = (

∫
1FXdPX)(

∫
1FY×FZ dPYZ)

= PX(F)PYZ(FY × FZ)

and the right-hand side is

∫
1FX (x)1FY (y)PZ|Y (FZ|y)d(PX × PY )(x,y) =

(

∫
1FX (x)dPX(x))(

∫
1FY (y)PZ|Y (FZ|y)dPY (y)) = PX(F)PYZ(FY ×FZ),

as claimed. This implies (7.41) holds also for simple functions and hence
also for positive functions by the usual approximation arguments. ✷

Note that Kolmogorov’s formula (7.36) gives a formula for computing
conditional mutual information as

I(X;Z|Y) = I(X; (Y , Z))− I(X;Y).

The formula is only useful if it is not indeterminate, that is, not of the
form∞−∞. This will be the case if I(Y ;Z) (the smaller of the two mutual
informations) is finite.

Corollary 7.5 provides a means of approximating mutual information
by that of finite alphabet random variables. Assume now that the random
variables X,Y have standard alphabets. For, say, random variable X with
alphabet AX there must then be an asymptotically generating sequence
of finite fields FX(n) with atoms AX(n), that is, all of the members of
FX(n) can be written as unions of disjoint sets in AX(n) and FX(n) ↑
BAX ; that is, BAX = σ(

⋃
nFX(n)). The atoms AX(n) form a partition of

the alphabet of X.
Consider the divergence result of Corollary 7.5. with P = PXY , M =

PX×PY and quantizer q(n)(x,y) = (q(n)X (x), q(n)Y (y)). Consider the limit
n → ∞. Since FX(n) asymptotically generates BAX and FY (n) asymp-
totically generates BAY and since the pair σ -field BAX×AY is generated
by rectangles, the field generated by all sets of the form FX × FY with
FX ∈ FX(n), some n, and FY ∈ FY (m), some m, generates BAX×AY .
Hence Corollary 7.5 yields the first result of the following lemma. The

To prove (7.41) first consider indicator functions of rectangles:f(x,y)=



7.4 Information for General Alphabets 211

second is a special case of the first. The result shows that the increas-
ingly fine quantizers of Lemma 7.14 can be chosen in a manner not de-
pending on the underlying measure if the alphabets are standard.

Lemma 7.18. Suppose that X and Y are random variables with standard

alphabets defined on a common probability space. Suppose that q(n)X , n =
1,2, · · · is a sequence of quantizers for AX such that the corresponding

partitions asymptotically generate BAX . Define quantizers for Y similarly.

Then for any distribution PXY

I(X;Y) = lim
n→∞ I(q

(n)
X (X);q(n)Y (Y))

and

H(X) = lim
n→∞H(q

(n)
X (X));

that is, the same quantizer sequence works for all distributions.

The following lemma generalizes Lemma 3.14 to standard alphabets.
The concavity with respect to the source follows in a manner similar to
the entropy result of Lemma 7.18 by combining the finite-alphabet result
of Lemma 3.14 with limiting quantization. The convexity with respect to
the channel does not readily follow in the same way because a channel
can not be quantized without using an input distribution to form a joint
distribution. The proof instead mimics the corresponding proof of the
finite case based on the convexity of divergence of Lemma 7.2, which in
turn follows from the finite alphabet result.

Lemma 7.19. Let X and Y be random variables with standard alphabets

AX and AY . Let µ denote a distribution on (AX ,BAX ), and let ν be a regu-

lar conditional distribution ν(F|x) = Pr(Y ∈ F|X = x), x ∈ AX , F ∈ BAY .

Let p = µν denote the resulting joint distribution. Let Iµν = Iµν(X;Y) be

the average mutual information. Then Iµν is a convex
⋃

function of ν and

a convex
⋂

function of µ.

Proof. The proof of convexity was suggested by T. Linder. Consider a
fixed source µ and consider channels ν1, ν2, and ν = λν1 + (1 − λ)ν2.
Denote the corresponding input/output pair processes by pi = µνi, i =
1,2, and p = λp1+(1−λ)p2 and the corresponding output processes by
ηi and η = λη1 + (1− λ)η2, e.g., η(G) = p(A∞X ×G) for all output events
G. Note that p1, p2, and p all have a common input distribution µ. We
have that

µ × η = λµ × η1 + (1− λ)µ × η2

so that from Lemma 7.2

Iµν = D(µν||µ × η) = D(λp1 + (1− λ)p2‖λµ × η1 + (1− λ)µ × η2)

≤ λD(p1‖µ × η1)+ (1− λ)D(p2‖µ × η2)

= λIµν1 + (1− λ)Iµν2 ,
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proving the convexity of mutual information with respect to the channel
in direct imitation of the proof for the finite case.

The concavity with respect to the source distribution follows from the
proof of the corresponding finite alphabet result, specifically the rep-
resentation of (3.26), coupled with a sequence of asymptotically accu-
rate quantizers for the input and output. As the quantization becomes
asymptotically accurate, all of the terms in (3.26) converge upward to
their limiting values, proving that (3.26) holds for the general distribu-
tions.

✷

Next consider the mutual information I(f (X), g(Y)) for arbitrary
measurable mappings f and g of X and Y . From Lemma 7.15 applied
to the random variables f(X) and g(Y), this mutual information can be
approximated arbitrarily closely by I(q1(f (X));q2(g(Y))) by an appro-
priate choice of quantizers q1 and q2. Since the composition of q1 and
f constitutes a finite quantization of X and similarly q2g is a quantizer
for Y , we must have that

I(f (X);g(Y)) ≈ I(q1(f (X));q2(g(Y)) ≤ I(X;Y).

Making this precise yields the following corollary.

Corollary 7.16. If f is a measurable function of X and g is a measurable

function of Y , then

I(f (X), g(Y)) ≤ I(X;Y).

The corollary states that mutual information is reduced by any mea-
surable mapping, whether finite or not. For practice we point out an-
other proof of this basic result that directly applies a property of diver-
gence. Let P = PXY , M = PX × PY , and define the mapping r(x,y) =
(f (x), g(y)). Then from Corollary 7.2 we have

I(X;Y) = D(P‖M) ≥ D(Pr‖Mr ) ≥ D(Pf(X),g(Y)‖Mf(X),g(Y)).

But Mf(X),g(Y) = Pf(X) × Pg(Y) since

Mf(X),g(Y)(FX × FZ) = M(f−1(FX)
⋂
g−1(FY )

= PX(f−1(FX))× PY (g−1(FY ))

= Pf(X)(FX)× Pg(Y)(FY ).

Thus the previous inequality yields the corollary. ✷

For the remainder of this section we focus on conditional entropy and
information.

Although we cannot express mutual information as a difference of
ordinary entropies in the general case (since the entropies of nondis-
crete random variables are generally infinite), we can obtain such a
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representation in the case where one of the two variables is discrete.
Suppose we are given a joint distribution PXY and that X is discrete.
We can choose a version of the conditional probability given Y so that
pX|Y (x|y) = P(X = x|Y = y) is a valid PMF (considered as a function of
x for fixed y) with PY probability 1. (This follows from Corollary 5.8.1
of [55] since the alphabet of X is discrete; the alphabet of Y need not be
even standard.) Define

H(X|Y = y) =
∑

x

pX|Y (x|y) ln
1

pX|Y (x|y)

and

H(X|Y) =
∫
H(X|Y = y)dPY (y).

Note that this agrees with the formula of Section 3.6 in the case that both
alphabets are finite. The following result is due to Wyner [197].

Lemma 7.20. If X,Y are random variables and X has a finite alphabet,

then

I(X;Y) = H(X)−H(X|Y).
Proof. We first claim that pX|Y (x|y)/pX(x) is a version of dPXY /d(PX ×
PY ). To see this observe that for F ∈ B(AX × AY ), letting Fy denote the
section {x : (x,y) ∈ F} we have that

∫

F

pX|Y (x|y)
pX(x)

d(PX × PY ) =
∫ ∑

x∈Fy

pX|Y (x|y)
pX(x)

pX(x)dPY (y)

=
∫
dPY (y)

∑

x∈Fy
pX|Y (x|y)

=
∫
dPY (y)PX(Fy |y) = PXY (F).

Thus

I(X;Y) =
∫

ln(
pX|Y (x|y)
pX(x)

)dPXY

= H(X)+
∫
dPY (y)

∑

x

pX|Y (x|y) lnpX|Y (x|y).

✷

We now wish to study the effects of quantizing on conditional infor-
mation. As discussed in Section 3.6, it is not true that I(X;Y |Z) is always
greater than I(f (X);q(Y)|r(Z)) and hence that I(X;Y |Z) can be written
as a supremum over all quantizers and hence the definition of (7.30)
and the formula (7.32) do not have the intuitive counterpart of a limit of
informations of quantized values. We now consider an alternative (and
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more general) definition of conditional mutual information due to Wyner
[197]. The definition has the form of a supremum over quantizers and
does not require the existence of the probability measure PX×Y |Z and
hence makes sense for alphabets that are not standard. Given PXYZ and
any finite measurements f and g on X and Y , we can choose a version
of the conditional probability given Z = z so that

pz(a, b) = Pr(f (X) = a,g(Y) = b|Z = z)

is a valid PMF with probability 1 (since the alphabets of f and g are finite
and hence standard a regular conditional probability exists from Corol-
lary 5.8.1 of [55] or Corollary 6.2 of [58]). For such finite measurements
we can define

I(f (X);g(Y)|Z = z) =
∑

a∈Af

∑

b∈Ag
pz(a, b) ln

pz(a, b)∑
a′ pz(a′, b)

∑
b′ pz(a, b′)

,

that is, the ordinary discrete average mutual information with respect to
the distribution pz.

Lemma 7.21. Define

I′(X;Y |Z) = sup
f ,g

∫
dPZ(z)I(f (X);g(Y)|Z = z),

where the supremum is over all quantizers. Then there exist sequences of

quantizers (as in Lemma 7.18) such that

I′(X;Y |Z) = lim
n→∞ I

′(qm(X); rm(Y)|Z).

I′ satisfies Kolmogorov’s formula, that is,

I′(X;Y |Z) = I((X,Z);Y)− I(Y ;Z).

If the alphabets are standard, then

I(X;Y |Z) = I′(X;Y |Z).

Comment: The main point here is that conditional mutual information
can be expressed as a supremum or limit of quantizers. The other results
simply point out that the two conditional mutual informations have the
same relation to ordinary mutual information and are (therefore) equal
when both are defined. The proof follows Wyner [197].

Proof. First observe that for any quantizers q and r of Af and Ag we
have from the usual properties of mutual information that

I(q(f(X)); r(g(Y))|Z = z) ≤ I(f (X);g(Y)|Z = z)
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and hence integrating we have that

I′(q(f(X)); r(g(Y))|Z) =
∫
I(q(f(X)); r(g(Y))|Z = z)dPZ(z)

≤
∫
I(f (X);g(Y)|Z = z)dPZ(z) (7.42)

and hence taking the supremum over all q and r to get I′(f (X);g(Y)|Z)
yields

I′(f (X);g(Y)|Z) =
∫
I(f (X);g(Y)|Z = z)dPZ(z). (7.43)

so that (7.42) becomes

I′(q(f(X)); r(g(Y))|Z) ≤ I′(f (X);g(Y)|Z) (7.44)

for any quantizers q and r and the definition of I′ can be expressed as

I′(X;Y |Z) = sup
f ,g
I′(f (X);g(Y)|Z), (7.45)

where the supremum is over all quantizers f and g. This proves the first
part of the lemma since the supremum can be approached by a sequence
of quantizers. Next observe that

I′(f (X);g(Y)|Z) =
∫
I(f (X);g(Y)|Z = z)dPZ(z)

= H(g(Y)|Z)−H(g(Y)|f(X), Z).

Since we have from Lemma 7.20 that

I(g(Y);Z) = H(g(Y))−H(g(Y)|Z),

we have by adding these equations and again using Lemma 7.20 that

I(g(Y);Z)+ I′(f (X);g(Y)|Z) = H(g(Y))−H(g(Y)|f(X), Z)
= I((f (X), Z);g(Y)).

Taking suprema over both sides over all quantizers f and g yields the
relation

I(X;Z)+ I′(X;Y |Z) = I((X,Z);Y),
proving Kolmogorov’s formula. Lastly, if the spaces are standard, then
from Kolmogorov’s inequality for the original definition (which is valid
for the standard space alphabets) combined with the above formula im-
plies that

I′(X;Y |Z) = I((X,Z);Y)− I(X;Z) = I(X;Y |Z).
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✷

7.5 Convergence Results

We now combine the convergence results for divergence with the def-
initions and properties of information densities to obtain several con-
vergence results for information densities. Unlike the results to come
for relative entropy rate and information rate, these are results involv-
ing the information between a sequence of random variables and a fixed
random variable.

Lemma 7.22. Given random variables X and Y1, Y2, · · · defined on a com-

mon probability space,

lim
n→∞ I(X; (Y1, Y2, · · · , Yn)) = I(X; (Y1, Y2, · · · )).

If in addition I(X; (Y1, Y2, · · · )) <∞ and hence PX×PY1,Y2,···≫ PX,Y1,Y2,···,
then

iX;Y1,Y2,··· ,Yn →n→∞ iX;Y1,Y2,···

in Ł1.

Proof. The first result follows from Corollary 7.5 with X,Y1, Y2, · · · , Yn−1

replacing Xn, P being the distribution PX,Y1,···, and M being the product
distribution PX × PY1,Y2,···. The density result follows from Lemma 7.12.
✷

Corollary 7.17. Given random variables X, Y , and Z1, Z2, · · · defined on

a common probability space, then

lim
n→∞ I(X;Y |Z1, Z2, · · · , Zn) = I(X;Y |Z1, Z2, · · · ).

If

I((X,Z1, · · · );Y) <∞,
( e.g., if Y has a finite alphabet and hence I((X,Z1, · · · );Y) ≤ H(Y) <∞),

then also

iX;Y |Z1,··· ,Zn →n→∞ iX;Y |Z1,··· (7.46)

in L1.

Proof. From Kolmogorov’s formula

I(X;Y |Z1, Z2, · · · , Zn) =
I(X; (Y , Z1, Z2, · · · , Zn))− I(X;Z1, · · · , Zn) ≥ 0. (7.47)
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From the previous lemma, the first term on the left converges as n→∞
to I(X; (Y , Z1, · · · )) and the second term on the right is the negative of
a term converging to I(X; (Z1, · · · )). If the first of these limits is finite,
then the difference in (7.5) converges to the difference of these terms,
which gives (7.46). From the chain rule for information densities, the
conditional information density is the difference of the information den-
sities:

iX;Y |Z1,··· ,Zn = iX;(Y ,Z1,··· ,Zn) − iX;(Z1,··· ,Zn)

which is converging in L1x to

iX;Y |Z1,··· = iX;(Y ,Z1,··· ) − iX;(Z1,··· ),

again invoking the density chain rule. If I(X;Y |Z1, · · · ) = ∞ then quan-
tize Y as q(Y) and note since q(Y) has a finite alphabet that

I(X;Y |Z1, Z2, · · · , Zn) ≥ I(X;q(Y)|Z1, Z2, · · · , Zn) →
n→∞ I(X;q(Y)|Z1, · · · )

and hence
lim inf
N→∞

I(X;Y |Z1, · · · ) ≥ I(X;q(Y)|Z1, · · · ).

Since the right-hand term above can be made arbitrarily large, the re-
maining part of the lemma is proved. ✷

Lemma 7.23. If

PX × PY1,Y2,···≫ PX,Y1,Y2,···

(e.g., I(X; (Y1, Y2, · · · )) <∞), then with probability 1.

lim
n→∞

1

n
i(X; (Y1, · · · , Yn)) = 0.

Proof. This is a corollary of Theorem 7.4. Let P denote the distribution
of {X,Y1, Y2, · · · } and let M denote the distribution PX × PY1,···. By as-
sumption M ≫ P . The information density is

i(X; (Y1, · · · , Yn)) = ln
dPn
dMn

,

where Pn and Mn are the restrictions of P and M to σ(X,Y1, · · ·Yn).
Theorem 7.4 can therefore be applied to conclude that P -a.e.

lim
n→∞

1

n
ln
dPn
dMn

= 0,

which proves the lemma. ✷

The lemma has the following immediate corollary.

Corollary 7.18. If {Xn} is a process with the property that
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I(X0;X−1, X−2, · · · ) <∞,

that is, there is a finite amount of information between the zero time

sample and the infinite past, then

lim
n→∞

1

n
i(X0;X−1, · · · , X−n) = 0.

If the process is stationary, then also

lim
n→∞

1

n
i(Xn;Xn) = 0.



Chapter 8

Information Rates

Abstract Definitions of information rate for processes with standard
alphabets are developed and a mean ergodic theorem for information
densities is proved. The relations among several different measures of
information rate are developed.

8.1 Information Rates for Finite Alphabets

Let {(Xn, Yn)} be a one-sided random process with finite alphabet A× B
and let ((A×B)Z+ ,B(A×B)Z+) be the corresponding one-sided sequence
space of outputs of the pair process. We consider Xn and Yn to be the
sampling functions on the sequence spaces A∞ and B∞ and (Xn, Yn)
to be the pair sampling function on the product space, that is, for
(x,y) ∈ A∞ × B∞, (Xn, Yn)(x,y) = (Xn(x), Yn(y)) = (xn, yn). Let p
denote the process distribution induced by the original space on the
process {Xn, Yn}. Analogous to entropy rate we can define the mutual
information rate (or simply information rate) of a finite alphabet pair
process by

I(X, Y) = lim sup
n→∞

1

n
I(Xn, Yn).

If the finite alphabet pair process is AMS, then

I(X;Y) = H(X)+H(Y)−H(X,Y) (8.1)

and from Theorem 4.1 the entropy rates with respect to the AMS distri-
bution equal those with respect to the stationary mean. These facts to-
gether with the properties of entropy rates of Theorems 3.3 and 4.1 yield
the following lemma, where analogous to Theorem 4.1 we define the ran-
dom variables p(Xn, Yn) by p(Xn, Yn)(x,y) = p(Xn = xn, Yn = yn),
p(Xn) by p(Xn)(x,y) = p(Xn = xn), and similarly for p(Yn).

© Springer Science+Business Media, LLC 2011
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Lemma 8.1. Suppose that {Xn, Yn} is an AMS finite alphabet random pro-

cess with distribution p and stationary mean p. Then the limits supremum

defining information rates are limits and

Ip(X, Y) = Ip(X, Y).

Ip is an affine function of the distribution p. If p has ergodic decomposi-

tion pxy , then

Ip(X, Y) =
∫
dp(x,y)Ipxy (X, Y).

If we define the information density

in(X
n, Yn) = ln

p(Xn, Yn)

p(Xn)p(Yn)
,

then

lim
n→∞

1

n
in(X

n, Yn) = Ipxy (X, Y)

almost everywhere with respect to p and p and in L1(p).

The L1 results are extensions of the results of Moy [127] and Perez [148]
for stationary processes, which in turn extended the Shannon-McMillan
theorem from entropies of discrete alphabet processes to information
densities. See also Kieffer [97].

The following lemmas follow either directly from or similarly to the
corresponding results for entropy rate of Section 6.1.

Lemma 8.2. Suppose that {Xn, Yn, X′n, Y ′n} is an AMS process and

P = lim
n→∞

1

n

n−1∑

i=0

Pr((Xi, Yi) 6= (X′i, Y ′i)) ≤ ǫ

(the limit exists since the process is AMS). Then

|I(X;Y)− I(X′;Y ′)| ≤ 3(ǫ ln(‖A‖ − 1)+ h2(ǫ)).

Proof: The inequality follows from Corollary 6.1 since

|(X;Y)− I(X′;Y ′)| ≤
|H(X)−H(X′)| + |H(Y)−H(Y ′)| + |H(X,Y)−H(X′, Y ′)|

and since Pr((Xi, Yi) 6= (Xi′, Yi′)) = Pr(Xi 6= Xi′ or Yi 6= Yi′) is no smaller
than Pr(Xi 6= Xi′) or Pr(Yi 6= Yi′). ✷

Corollary 8.1. Let {Xn, Yn} be an AMS process and let f and g be station-

ary measurements on X and Y , respectively. Given ǫ > 0 there is an N suf-

ficiently large, scalar quantizers q and r , and mappings f ′ and g′ which
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depend only on {q(X0), · · · , q(XN−1)} and {r(Y0), · · · , r (YN−1)} in the

one-sided case and {q(X−N), · · · , q(XN)} and {r(Y−N), · · · , r (YN)} in

the two-sided case such that

|I(f ;g)− I(f ′;g′)| ≤ ǫ.

Proof: Choose the codes f ′ and g′ from Lemma 5.2 and apply the previ-
ous lemma. ✷

Lemma 8.3. If {Xn, Yn} is an AMS process and f and g are stationary

codings of X and Y , respectively, then

I(X;Y) ≥ I(f ;g).

Proof: This is proved as Corollary 6.4 by first approximating f and g by
finite-window stationary codes, applying the result for mutual informa-
tion (Lemma 3.12), and then taking the limit. ✷

8.2 Information Rates for General Alphabets

Suppose that we are given a pair random process {Xn, Yn} with distribu-
tion p. The most natural definition of the information rate between the
two processes is the extension of the definition for the finite alphabet
case:

I(X;Y) = lim sup
n→∞

1

n
I(Xn;Yn).

This was the first general definition of information rate and it is due to
Dobrushin [32]. While this definition has its uses, it also has its problems.
Another definition is more in the spirit of the definition of information
itself: We formed the general definitions by taking a supremum of the
finite alphabet definitions over all finite-alphabet codings or quantizers.
The above definition takes the limit of such suprema. An alternative defi-
nition is to instead reverse the order and take the supremum of the limit
and hence the supremum of the information rate over all finite-alphabet
codings of the process. This reversal of supremum and limit provides
a definition of information rate similar to the definition of the entropy
of a dynamical system. There is a question as to what kind of codings
we permit, that is, do the quantizers quantize individual outputs or long
sequences of outputs. We shall shortly see that it makes no difference.
Suppose that we have a pair random process {Xn, Yn} with standard al-
phabets AX and AY and suppose that f : A∞X → Af and g : A∞Y → Ag
are stationary codings of the X and Y sequence spaces into a finite al-
phabet. Let {fn, gn} be the induced output process, that is, if T denotes
the shift (on any of the sequence spaces) then fn(x,y) = f(Tnx) and
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gn(x,y) = g(Tny). Recall that f(Tn(x,y)) = fn(x,y), that is, shifting
the input n times results in the output being shifted n times.

Since the new process {fn, gn} has a finite alphabet, its mutual in-
formation rate is defined. We define the information rate for general
alphabets by

I∗(X;Y) = sup
sliding-block codes f ,g

I(f ;g)

= sup
sliding-block codes f ,g

lim sup
n→∞

1

n
I(fn;gn).

We now focus on AMS processes, in which case the information rates
for finite-alphabet processes (e.g., quantized processes) is given by the
limit, that is,

I∗(X;Y) = sup
sliding-block codes f ,g

I(f ;g)

= sup
sliding-block codes f ,g

lim
n→∞

1

n
I(fn;gn).

Note for later use the following simple inequality which follows from the
the above facts and Corollary 7.11. As with that corollary, the result is
useful if the entropy rate of one component of the process is finite.

Lemma 8.4. Given an AMS pair process (X, Y) with standard alphabets,

I∗(X;Y) ≤ H(Y).

The following lemma shows that for AMS sources I∗ can also be eval-
uated by constraining the sliding-block codes to be scalar quantizers.

Lemma 8.5. Given an AMS pair random process {Xn, Yn} with standard

alphabet,

I∗(X;Y) = sup
q,r
I(q(X); r(Y)) = sup

q,r
lim sup
n→∞

1

n
I(q(X)n; r(Y)n),

where the supremum is over all quantizers q of AX and r of AY and where

q(X)n = q(X0), · · · , q(Xn−1).

Proof: Clearly the right hand side above is less than I∗ since a scalar
quantizer is a special case of a stationary code. Conversely, suppose
that f and g are sliding-block codes such that I(f ;g) ≥ I∗(X;Y) − ǫ.
Then from Corollary 8.1 there are quantizers q and r and codes f ′ and
g′ depending only on the quantized processes q(Xn) and r(Yn) such
that I(f ′;g′) ≥ I(f ;g) − ǫ. From Lemma 8.3, however, I(q(X); r(Y)) ≥
I(f ′;g′) since f ′ and g′ are stationary codings of the quantized pro-
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cesses. Thus I(q(X); r(Y)) ≥ I∗(X;Y) − 2ǫ, which proves the lemma.
✷

Corollary 8.2.

I∗(X;Y) ≤ I(X;Y).

If the alphabets are finite, then the two rates are equal.

Proof: The inequality follows from the lemma and the fact that

I(Xn;Yn) ≥ I(q(X)n; r(Y)n)

for any scalar quantizers q and r (where q(X)n is q(X0), · · · , q(Xn−1)).
If the alphabets are finite, then the identity mappings are quantizers and
yield I(Xn;Yn) for all n. ✷

Pinsker [150] introduced the definition of information rate as a supre-
mum over all scalar quantizers and hence we refer to this information
rate as the Pinsker rate. The Pinsker definition has the advantage that
we can use the known properties of information rates for finite-alphabet
processes to infer those for general processes, an attribute the first def-
inition lacks.

Corollary 8.3. Given a standard alphabet pair process alphabet AX ×AY ,

there is a sequence of scalar quantizers qm and rm such that for any

AMS pair process {Xn, Yn} having this alphabet (that is, for any process

distribution on the corresponding sequence space)

I(Xn;Yn) = lim
m→∞ I(qm(X)

n; rm(Y)
n)

I∗(X;Y) = lim
m→∞ I(qm(X); rm(Y)).

Furthermore, the above limits can be taken to be increasing by using finer

and finer quantizers.

Comment: It is important to note that the same sequence of quantizers
gives both of the limiting results.
Proof: The first result is Lemma 7.18. The second follows from the pre-
vious lemma. ✷

Observe that

I∗(X;Y) = lim
m→∞ lim sup

n→∞
1

n
I(qm(X); rm(Y))

whereas

I(X;Y) = lim sup
n→∞

lim
m→∞

1

n
I(qm(X); rm(Y)).

Thus the two notions of information rate are equal if the two limits can
be interchanged. We shall later consider conditions under which this is
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true and we shall see that equality of these two rates is important for
proving ergodic theorems for information densities.

Lemma 8.6. Suppose that {Xn, Yn} is an AMS standard alphabet random

process with distribution p and stationary mean p. Then

I∗p (X;Y) = I∗p (X;Y).

I∗p is an affine function of the distribution p. If p has ergodic decomposi-

tion pxy , then

I∗p (X;Y) =
∫
dp(x,y)I∗pxy (X;Y).

If f and g are stationary codings of X and Y , then

I∗p (f ;g) =
∫
dp(x,y)I∗pxy (f ;g).

Proof: For any scalar quantizers q and r of X and Y we have that
Ip(q(X); r(Y)) = Ip(q(X); r(Y)). Taking a limit with ever finer quan-
tizers yields the first equality. The fact that I∗ is affine follows sim-
ilarly. Suppose that p has ergodic decomposition pxy . Define the in-
duced distributions of the quantized process by m and mxy , that is,
m(F) = p(x,y : {q(xi), r(yi); i ∈ T} ∈ F) and similarly for mxy . The
mxy are stationary and ergodic since they are stationary codings of sta-
tionary ergodic processes and together they form an ergodic decompo-
sition of m, which must also be stationary. Let X′n, Y ′n denote the co-
ordinate functions on the quantized output sequence space (that is, the
processes {q(Xn), r(Yn)} and {X′n, Y ′n} are equivalent), then using the er-
godic decomposition of mutual information for finite-alphabet processes
(Lemma 8.1) we have that

Ip(q(X); r(Y)) = Im(X′;Y ′) =
∫
Imx′y′ (X

′;Y ′)dm(x′, y ′)

=
∫
Ipxy (q(X); r(Y))dp(x,y).

Replacing the quantizers by the sequence qm, rm the result then fol-
lows by taking the limit using the monotone convergence theorem. The
result for stationary codings follows similarly by applying the previous
result to the induced distributions and then relating the equation to the
original distributions. ✷

The above properties are not known to hold for I in the general case.
Thus although I may appear to be a more natural definition of mutual
information rate, I∗ is better behaved since it inherits properties from
the discrete alphabet case. It will be of interest to find conditions under
which the two rates are the same, since then I will share the properties
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possessed by I∗. The first result of the next section adds to the interest
by demonstrating that when the two rates are equal, a mean ergodic
theorem holds for the information densities.

8.3 A Mean Ergodic Theorem for Densities

Theorem 8.1. Given an AMS pair process {Xn, Yn} with standard alpha-

bets, assume that for all n

PXn × PYn ≫ PXnYn

and hence that the information densities

iXn;Yn = ln
dPXn,Yn

d(PXn × PYn)
are well defined. For simplicity we abbreviate iXn;Yn to in when there is

no possibility of confusion. If the limit

lim
n→∞

1

n
I(Xn;Yn) = I(X;Y)

exists and

I(X;Y) = I∗(X;Y) <∞,
then n−1in(Xn;Yn) converges in L1 to an invariant function i(X;Y). If

the stationary mean of the process has an ergodic decomposition pxy ,

then the limiting density is I∗pxy (X;Y), the information rate of the ergodic

component in effect.

Proof: Let qm and rm be asymptotically accurate quantizers for AX and
AY . Define the discrete approximations X̂n = qm(Xn) and Ŷn = rm(Yn).
Observe that PXn × PYn ≫ PXnYn implies that PX̂n × PŶn ≫ PX̂nŶn and
hence we can define the information densities of the quantized vectors
by

în = ln
dPX̂nŶn

d(PX̂n × PŶn)
.

For any m we have that
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∫
| 1
n
in(x

n;yn)− I∗pxy (X;Y)|dp(x,y) ≤
∫
| 1
n
in(x

n;yn)− 1

n
în(qm(x)

n; rm(y)
n)|dp(x,y)+

∫
| 1
n
în(qm(x)

n; rm(y)
n)− Ipxy (qm(X); rm(Y))|dp(x,y)+

∫
|Ipxy (qm(X); rm(Y))− I∗pxy (X;Y)|dp(x,y), (8.2)

where
qm(x)

n = (qm(x0), · · · , qm(xn−1)),

rm(y)
n = (rm(y0), · · · , rm(yn−1)),

and Ip(qm(X); rm(Y)) denotes the information rate of the process

{qm(Xn), rm(Yn);n = 0,1, · · · , }

when p is the process measure describing {Xn, Yn}.
Consider first the right-most term of (8.2). Since I∗ is the supremum

over all quantized versions,

∫
|Ipxy (qm(X); rm(Y))− I∗pxy (X;Y)|dp(x,y) =

∫
(I∗pxy (X;Y)− Ipxy (qm(X); rm(Y)))dp(x,y).

Using the ergodic decomposition of I∗ (Lemma 8.6) and that of I for
discrete alphabet processes (Lemma 8.1) this becomes

∫
|Ipxy (qm(X); rm(Y))− I∗pxy (X;Y)|dp(x,y) =

I∗p (X;Y)− Ip(qm(X); rm(Y)). (8.3)

For fixed m the middle term of (8.2) can be made arbitrarily small by
taking n large enough from the finite alphabet result of Lemma 8.1. The
first term on the right can be bounded above using Corollary 7.6 with
F = σ(q(X)n; r(Y)n) by

1

n

(
I(Xn;Yn)− I(X̂n; Ŷn)+ 2

e

)

which as n→∞ goes to I(X;Y) −I(qm(X); rm(Y)). Thus we have for any
m that
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lim sup
n→∞

∫
| 1
n
in(x

n;yn)− I∗pxy (X;Y)|dp(x,y) ≤

I(X;Y)− I(qm(X); rm(Y))+ I∗(X;Y)− I(qm(X); rm(Y))

which as m → ∞ becomes I(X;Y)− I∗(X;Y), which is 0 by assumption.
✷

8.4 Information Rates of Stationary Processes

In this section we introduce two more definitions of information rates for
the case of stationary two-sided processes. These rates are useful tools
in relating the Dobrushin and Pinsker rates and they provide additional
interpretations of mutual information rates in terms of ordinary mutual
information. The definitions follow Pinsker [150].

Henceforth assume that {Xn, Yn} is a stationary two-sided pair pro-
cess with standard alphabets. Define the sequences y = {yi; i ∈ T} and
Y = {Yi; i ∈ T}

First define

Ĩ(X;Y) = lim sup
n→∞

1

n
I(Xn;Y),

that is, consider the per-letter limiting information between n-tuples of
X and the entire sequence from Y . Next define

I−(X;Y) = I(X0;Y |X−1, X−2, · · · ),

that is, the average conditional mutual information between one letter
from X and the entire Y sequence given the infinite past of the X process.
We could define the first rate for one-sided processes, but the second
makes sense only when we can consider an infinite past. For brevity we
write X− = X−1, X−2, · · · and hence

I−(X;Y) = I(X0;Y |X−).

Theorem 8.2.

Ĩ(X;Y) ≥ I(X;Y) ≥ I∗(X;Y) ≥ I−(X;Y).

If the alphabet of X is finite, then the above rates are all equal.

Comment: We will later see more general sufficient conditions for the
equality of the various rates, but the case where one alphabet is finite is
simple and important and points out that the rates are all equal in the
finite alphabet case.
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Proof: We have already proved the middle inequality. The left inequality
follows immediately from the fact that I(Xn;Y) ≥ I(Xn;Yn) for all n.
The remaining inequality is more involved. We prove it in two steps. First
we prove the second half of the theorem, that the rates are the same if X
has finite alphabet. We then couple this with an approximation argument
to prove the remaining inequality. Suppose now that the alphabet of X
is finite. Using the chain rule and stationarity we have that

1

n
I(Xn;Yn) = 1

n

n−1∑

i=0

I(Xi;Y
n|X0, · · · , Xi−1)

= 1

n

n−1∑

i=0

I(X0;Yn−i|X−1, · · · , X−i),

where Yn−i is Y−i, · · · , Y−i+n−1, that is, the n-vector starting at −i. Since X
has finite alphabet, each term in the sum is bounded. We can show as in
Section 7.4 (or using Kolmogorov’s formula and Lemma 7.14) that each
term converges as i→∞, n→∞, and n−i→∞ to I(X0;Y |X−1, X−2, · · · )
or I−(X;Y). These facts, however, imply that the above Cesàro average
converges to the same limit and hence I = I−. We can similarly expand Ĩ
as

1

n

n−1∑

i=0

I(Xi;Y |X0, · · · , Xi−1) = 1

n

n−1∑

i=0

I(X0;Y |X−1, · · · , X−i),

which converges to the same limit for the same reasons. Thus Ĩ = I = I−
for stationary processes when the alphabet of X is finite. Now suppose
that X has a standard alphabet and let qm be an asymptotically accurate
sequences of quantizers. Recall that the corresponding partitions are
increasing, that is, each refines the previous partition. Fix ǫ > 0 and
choose m large enough so that the quantizer α(X0) = qm(X0) satisfies

I(α(X0);Y |X−) ≥ I(X0;Y |X−)− ǫ.

Observe that so far we have only quantized X0 and not the past. Since

Fm = σ(α(X0), Y , qm(X−i); i = 1,2, · · · )

asymptotically generates

σ(α(X0), Y ,X−i; i = 1,2, · · · ),

given ǫ we can choose for m large enough (larger than before) a quan-
tizer β(x) = qm(x) such that if we define β(X−) to be β(X−1), β(X−2), · · · ,
then

|I(α(X0); (Y , β(X
−)))− I(α(X0); (Y ,X

−))| ≤ ǫ
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and
|I(α(X0);β(X

−))− I(α(X0);X
−)| ≤ ǫ.

Using Kolmogorov’s formula this implies that

|I(α(X0);Y |X−)− I(α(X0);Y |β(X−))| ≤ 2ǫ

and hence that

I(α(X0);Y |β(X−)) ≥ I(α(X0);Y |X−)− 2ǫ ≥ I(X0;Y |X−)− 3ǫ.

But the partition corresponding to β refines that of α and hence in-
creases the information; hence

I(β(X0);Y |β(X−)) ≥ I(α(X0);Y |β(X−)) ≥ I(X0;Y |X−)− 3ǫ.

Since β(Xn) has a finite alphabet, however, from the finite alphabet re-
sult the left-most term above must be I(β(X);Y), which can be made
arbitrarily close to I∗(X;Y). Since ǫ is arbitrary, this proves the final
inequality. ✷

The following two theorems provide sufficient conditions for equality
of the various information rates. The first result is almost a special case
of the second, but it is handled separately as it is simpler, much of the
proof applies to the second case, and it is not an exact special case of
the subsequent result since it does not require the second condition of
that result. The result corresponds to condition (7.4.33) of Pinsker [150],
who also provides more general conditions. The more general condition
is also due to Pinsker and strongly resembles that considered by Barron
[8].

Theorem 8.3. Given a stationary pair process {Xn, Yn} with standard al-

phabets, if

I(X0; (X−1, X−2, · · · )) <∞,
then

Ĩ(X;Y) = I(X;Y) = I∗(X;Y) = I−(X;Y). (8.4)

Proof: We have that

1

n
I(Xn;Y) ≤ 1

n
I(Xn; (Y ,X−)) = 1

n
I(Xn;X−)+ 1

n
I(Xn;Y |X−), (8.5)

where, as before, X− = {X−1, X−2, · · · }. Consider the first term on the
right. Using the chain rule for mutual information
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1

n
I(Xn;X−) = 1

n

n−1∑

i=0

I(Xi;X
−|Xi) (8.6)

= 1

n

n−1∑

i=0

(I(Xi; (X
i, X−))− I(Xi;Xi)). (8.7)

Using stationarity we have that

1

n
I(Xn;X−) = 1

n

n−1∑

i=0

(I(X0;X−)− I(X0; (X−1, · · · , X−i)). (8.8)

The terms I(X0; (X−1, · · · , X−i)) are converging to I(X0;X−), hence the
terms in the sum are converging to 0, i.e.,

lim
i→∞

I(Xi;X
−|Xi) = 0. (8.9)

The Cesàro mean of (8.7) is converging to the same thing and hence

1

n
I(Xn;X−)→ 0. (8.10)

Next consider the term I(Xn;Y |X−). For any positive integers n,m we
have

I(Xn+m;Y |X−) = I(Xn;Y |X−)+ I(Xmn ;Y |X−, Xn), (8.11)

where Xmn = Xn, · · · , Xn+m−1. From stationarity, however, the rightmost
term is just I(Xm;Y |X−) and hence

I(Xm+n;Y |X−) = I(Xn;Y |X−)+ I(Xm;Y |X−). (8.12)

This is just a linear functional equation of the form f(n+m) = f(n)+
f(m) and the unique solution to such an equation is f(n) = nf(1), that
is,

1

n
I(Xn;Y |X−) = I(X0;Y |X−) = I−(X;Y). (8.13)

Taking the limit supremum in (8.5) yields

Ĩ(X;Y) ≤ I−(X;Y), (8.14)

which with Theorem 8.2 completes the proof. ✷

Intuitively, the theorem states that if one of the processes has finite
average mutual information between one symbol and its infinite past,
then the Dobrushin and Pinsker information rates yield the same value
and hence there is an L1 ergodic theorem for the information density.

To generalize the theorem we introduce a condition that will often
be useful when studying asymptotic properties of entropy and informa-
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tion. A stationary process {Xn} is said to have the finite-gap information

property if there exists an integer K such that

I(XK ;X−|XK) <∞, (8.15)

where, as usual, X− = (X−1, X−2, · · · ). When a process has this property
for a specific K, we shall say that it has the K-gap information property.
Observe that if a process possesses this property, then it follows from
Lemma 7.17

I(XK ; (X−1, · · · , X−l)|XK) <∞; l = 1,2, · · · (8.16)

Since these informations are finite,

P (K)Xn ≫ PXn ; n = 1,2, . . . , (8.17)

where P (K)Xn is the Kth order Markov approximation to PXn .

Theorem 8.4. Given a stationary standard alphabet pair process {Xn, Yn},
if {Xn} satisfies the finite-gap information property (8.15) and if, in addi-

tion,

I(XK ;Y) <∞, (8.18)

then (8.4) holds.

If K = 0 then there is no conditioning and (8.18) is trivial, that is, the
previous theorem is the special case with K = 0.

Comment: This theorem shows that if there is any finite dimensional fu-
ture vector (XK , XK+1, · · · , XK+N−1) which has finite mutual information
with respect to the infinite past X− when conditioned on the intervening
gap (X0, · · · , XK−1), then the various definitions of mutual information
are equivalent provided that the mutual information betwen the “gap”
XK and the sequence Y are finite. Note that this latter condition will
hold if, for example, Ĩ(X;Y) is finite.

Proof: For n > K

1

n
I(Xn;Y) = 1

n
I(XK ;Y)+ 1

n
I(Xn−KK ;Y |XK).

By assumption the first term on the left will tend to 0 as n → ∞ and
hence we focus on the second, which can be broken up analogous to the
previous theorem with the addition of the conditioning:

1

n
I(Xn−KK ;Y |XK) ≤ 1

n
I(Xn−KK ; (Y ,X−|XK))

= 1

n
I(Xn−KK ;X−|XK)+ 1

n
I(Xn−KK ;Y |X−, XK).
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Consider first the term

1

n
I(Xn−KK ;X−|XK) = 1

n

n−1∑

i=K
I(Xi;X

−|Xi),

which is as (8.7) in the proof of Theorem 8.3 except that the first K terms
are missing. The same argument then shows that the limit of the sum is
0. The remaining term is

1

n
I(Xn−KK ;Y |X−, XK) = 1

n
I(Xn;Y |X−)

exactly as in the proof of Theorem 8.3 and the same argument then
shows that the limit is I−(X;Y), which completes the proof. ✷

One result developed in the proofs of Theorems 8.3 and 8.4 will be
important later in its own right and hence we isolate it as a corollary.
The result is just (8.9), which remains valid under the more general con-
ditions of Theorem 8.4, and the fact that the Cesàro mean of converging
terms has the same limit.

Corollary 8.4. If a process {Xn} has the finite-gap information property

I(XK ;X−|XK) <∞

for some K, then

lim
n→∞ I(Xn;X−|Xn) = 0

and

lim
n→∞

1

n
I(Xn;X−) = 0.

The corollary can be interpreted as saying that if a process has the the
finite gap information property, then the mutual information between a
single sample and the infinite past conditioned on the intervening sam-
ples goes to zero as the number of intervening samples goes to infinity.
This can be interpreted as a form of asymptotic independence property
of the process.

Corollary 8.5. If a one-sided stationary source {Xn} is such that for some

K, I(Xn;Xn−K|XKn−K) is bounded uniformly in n, then it has the finite-gap

property and hence

I(X;Y) = I∗(X;Y).

Proof: Simply imbed the one-sided source into a two-sided stationary
source with the same probabilities on all finite-dimensional events. For
that source

I(Xn;Xn−K|XKn−K) = I(XK ;X−1, · · · , X−n−K|XK) →
n→∞ I(XK ;X−|XK).



8.4 Information Rates of Stationary Processes 233

Thus if the terms are bounded, the conditions of Theorem 8.3 are met
for the two-sided source. The one-sided equality then follows. ✷

The above results have an information theoretic implication for the
ergodic decomposition, which is described in the next theorem.

Theorem 8.5. Suppose that {Xn} is a stationary process with the finite-

gap property (8.15). Let ψ be the ergodic component function of Theo-

rem 1.6 and suppose that for some n

I(Xn;ψ) <∞. (8.19)

(This will be the case, for example, if the finite-gap information property

holds for 0 gap, that is, I(X0;X−) < ∞ since ψ can be determined from

X− and information is decreased by taking a function.) Then

lim
n→∞

1

n
I(Xn;ψ) = 0.

Comment: For discrete alphabet processes this theorem is just the er-
godic decomposition of entropy rate in disguise (Theorem 3.3). It also
follows for finite-alphabet processes from Lemma 4.3. We shall later
prove a corresponding almost everywhere convergence result for the cor-
responding densities. All of these results have the interpretation that the
per-symbol mutual information between the outputs of the process and
the ergodic component decreases with time because the ergodic compo-
nent in effect can be inferred from the process output in the limit of an
infinite observation sequence. The finiteness condition on some I(Xn;ψ)
is necessary for the nonzero finite-gap case to avoid cases such as where
Xn = ψ for all n and hence

I(Xn;ψ) = I(ψ;ψ) = H(ψ) = ∞,

in which case the theorem does not hold.

Proof:

Define ψn = ψ for all n. Since ψ is invariant, {Xn,ψn} is a station-
ary process. Since Xn satisfies the given conditions, however, I(X;ψ) =
I∗(X;ψ). But for any scalar quantizer q, I(q(X);ψ) is 0 from Lemma 4.3.
I∗(X;ψ) is therefore 0 since it is the supremum of I(q(X);ψ) over all
quantizers q. Thus

0 = I(X;ψ) = lim
n→∞

1

n
I(Xn;ψn) = lim

n→∞
1

n
I(Xn;ψ). ✷
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8.5 The Data Processing Theorem

The following is a basic property of a communication system. If a com-

munication system is stationary, then the mutual information rate be-

tween the overall input and output cannot exceed that over the channel.

The result is often called the data processing theorem.

Lemma 8.7. Suppose that a communication system is stationary in the

sense that the process {Xn, Un, Yn, X̂n} is stationary. Then

Ĩ(U ;Y) ≥ I(X;Y) ≥ I(X; X̂). (8.20)

If {Un} has a finite alphabet or if it has has the K-gap information prop-

erty (8.15) and I(UK , Y ) <∞, then

I(X; X̂) ≤ I(U ;Y).

Proof: Since {X̂n} is a stationary deterministic encoding of the {Yn}
I(X; X̂) ≤ I∗(X;Y). From Theorem 8.2 the right hand side is bounded
above by I(X;Y). For each n

I(Xn;Yn) ≤ I((Xn, U);Yn)
= I(Yn;U)+ I(Xn;Yn|U) = I(Yn;U),

where U = {Un, n ∈ T} and we have used the fact that X → U → Y is a
Markov chain and hence so is XN → U → YK and hence the conditional
mutual information is 0 (Lemma 7.15). Thus

I(X;Y) ≤ lim
n→∞ I(Y

n;U) = Ĩ(Y ;U).

Applying Theorem 8.2 then proves that

I(X; X̂) ≤ Ĩ(Y ;U).

If {Un} has finite alphabet or has the K-gap information property and
I(UK , Y ) < ∞, then from Theorems 8.2 or 8.4, respectively, Ĩ(Y ;U) =
I((Y ;U), completing the proof. ✷

The lemma can be easily extended to block stationary processes.

Corollary 8.6. Suppose that the process of the previous lemma is not

stationary, but is (N,K)-stationary in the sense that the vector process

{XNnN , UKnK , YKnK , X̂NnN} is stationary. Then

I(X; X̂) ≤ K
N
I(U ;Y).
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Proof: Apply the previous lemma to the stationary vector sequence to
conclude that

I(XN ; X̂N) ≤ I(UK ;YK).

But

I(XN ; X̂N) = lim
n→∞

1

n
I(XnN ; X̂nN) = lim

n→∞E
[
n−1iXnN ,X̂nN

]
,

which is N times the limiting expectation of a subsequence of the densi-
ties n−1iXn,X̂n , whose expectation converges to I(X;Y). Thus

I(XN ;XN) = NI(X; X̂).

A similar manipulation for I(UK ;YK) completes the proof. ✷

8.6 Memoryless Channels and Sources

A useful inequality is developed in this section for the mutual informa-
tion between the input and output of a memoryless channel. For contrast
we also describe the corresponding result for a memoryless source and
an arbitrary channel.

Lemma 8.8. Let {Xn} be a source with distribution µ and let ν be a chan-

nel. Let {Xn, Yn} be the hookup with distribution p. If the channel is mem-

oryless, then for any n

I(Xn;Yn) ≤
n−1∑

i=0

I(Xi;Yi)

If instead the source is memoryless, then the inequality is reversed:

I(Xn;Yn) ≥
n−1∑

i=0

I(Xi;Yi).

Thus if both source and channel are memoryless,

I(Xn;Yn) =
n−1∑

i=0

I(Xi;Yi).

Proof: First suppose that the process is discrete. Then

I(Xn;Yn) = H(Yn)−H(Yn|Xn).

Since by construction
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PYn|Xn(yn|xn) =
n−1∏

i=0

PY0|X0(yi|xi)

an easy computation shows that

H(Yn|Xn) =
n−1∑

i=0

H(Yi|Xi).

This combined with the inequality

H(Yn) ≤
n−1∑

i=0

H(Yi)

(Lemma 3.2 used several times) completes the proof of the memoryless
channel result for finite alphabets. If instead the source is memoryless,
we have

I(Xn;Yn) = H(Xn)−H(Xn|Yn) =
n−1∑

i=0

H(Xi)−H(Xn|Yn).

Extending Lemma 3.2 to conditional entropy yields

H(Xn|Yn) ≤
n−1∑

i=0

H(Xi|Yn)

which can be further overbounded by using Lemma 3.12 (the fact that
reducing conditioning increases conditional entropy) as

H(Xn|Yn) ≤
n−1∑

i=0

H(Xi|Yi)

which implies that

I(Xn;Yn) ≥
n−1∑

i=0

H(Xi)−H(Xi|Yi) =
n−1∑

i=0

I(Xi;Yi),

which completes the proof for finite alphabets.
To extend the result to standard alphabets, first consider the case

where the Yn are quantized to a finite alphabet. If the Yk are condi-
tionally independent given Xk, then the same is true for q(Yk), k =
0,1, · · · , n − 1. Lemma 7.20 then implies that as in the discrete case,
I(Xn;Yn) = H(Yn)−H(Yn|Xn) and the remainder of the proof follows
as in the discrete case. Letting the quantizers become asymptotically ac-
curate then completes the proof. ✷



Chapter 9

Distortion and Information

Abstract A pair random process (X, Y) = {Xn, Yn} can be generated
by a source and a channel, a source and a code, a combination of a
source, channel, encoder, and decoder, or two sources and a coupling.
We have developed in some detail the properties of two quantities char-
acterizing relations between the two components of a pair process: the
average distortion between the components and their mutual informa-
tion rate. In this chapter relations are developed between distortion and
rate, where rate is measured by mutual information. The primary results
concern the Shannon distortion-rate function and its dual, the Shannon
rate-distortion function, which will be seen to provide bounds on the
relationships between distortion and entropy and to characterize the
optimal performance in source coding and rate-constrained simulation
systems.

9.1 The Shannon Distortion-Rate Function

Given a source [A, µ] and a fidelity criterion ρn; n = 1,2, . . . defined on
A× Â, where Â is the reproduction alphabet, the Shannon distortion-rate
function (DRF) is defined in terms of a nonnegative parameter called rate

by

D(R,µ) = lim sup
N→∞

1

N
DN(R, µ

N)

where
DN(R, µ

N) = inf
pN∈RN(R,µN)

EpNρN(X
N , YN)

where RN(R, µN) is the collection of all distributions pN for the coordi-
nate random vectors XN and YN on the space (AN × ÂN , BNA ×BNÂ ) with
the properties that

© Springer Science+Business Media, LLC 2011
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(1) pN induces the given marginal µN ; that is, pN(F × ÂN) = µN(F) for
all F ∈ BNA , and

(2) the mutual information satisfies

1

N
IpN (X

N ; X̂N) ≤ R.

DN is called the Nth order distortion-rate function. IfRN(R, µN) is empty,
then DN(R, µN) is ∞.

Readers familiar with the rate-distortion theory literature may notice
that the definition is not the one usually encountered, which is an in-
fimum over N and not a limit supremum. This is simply because the
infimum is most useful for stationary processes, while the limit supre-
mum turns out to be the right form in the general AMS case eventually
considered here. It will be seen shortly that the two definitions are equal
if the source is stationary.

Various other notations are used for the distortion-rate function in the
literature and here when convenience suggests it. The distribution µ may
be dropped if it is fixed, writing D(R) instead of D(R,µ). Sometimes the
random variable is used instead of the distribution, e.g., writing DX(R)
for D(R,µ).

An alternative approach to minimizing over joint distributions with
a constrained input marginal is to minimize over test channels or regu-
lar conditional probabilities ν which induce a joint distribution by the
hookup µν . This is equivalent since we are considering only standard
alphabets and hence any joint distribution p with input marginal distri-
bution µ will induce a regular conditional probability distribution ν for
which p = µν .

One can also define the dual or inverse function to the distortion-rate
function, Shannon’s rate-distortion function, by

R(D,µ) = lim sup
N→∞

1

N
RN(D,µ

N) (9.1)

RN(D,µ
N) = inf

pN∈DN(D,µN)
IpN (X

N ; X̂N), (9.2)

where DN(D,µN) is the collection of all distributions pN for the coordi-
nate random vectors XN and YN on the space (AN × ÂN with the prop-
erties that

(1) pN induces the given marginal µN ; that is, pN(F × ÂN) = µN(F) for
all F ∈ BNA , and

(2) the average distortion satisfies

1

N
EpNρN(X

N , YN) ≤ D.
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In his original development of source coding subject to a fidelity cri-
terion or rate-distortion theory, Shannon considered the rate-distortion
function rather than the distortion-rate function [162, 163]. We empha-
size the distortion-rate function because it is a better match to the for-
mulation of source coding considered here. In particular, in communi-
cations applications it is usually the rate that is constrained by a com-
munications or storage medium such as a noisy channel or a limited
memory. The theory and algorithms for the evaluation of rate-distortion
tradeoffs are usually simpler if stated using the rate-distortion viewpoint
rather than the distortion-rate viewpoint, and most of the evaluation lit-
erature uses the rate-distortion approach. Hence we shall focus on the
distortion-rate function for most of the development, the corresponding
properties for rate-distortion functions follow similarly. For the discus-
sion of bounding and evaluating the functions, we shall use the rate-
distortion viewpoint.

9.2 Basic Properties

Lemma 9.1. DN(R, µ) and D(R,µ) are nonnegative, nonincreasing, and

convex
⋃

functions of R and hence are continuous in R for R > 0.

Proof: Nonnegativity is obvious from the nonnegativity of distortion.
Nonincreasing follows since if R2 > R1, then RN(R1, µN) ⊂ RN(R2, µN)
and hence a minimization over the larger set can not yield a worse
(larger) result. Suppose that pi ∈ RN(Ri, µN); i = 1,2 yields

EpiρN(X
N , YN) ≤ DN(Ri, µ)+ ǫ.

From Lemma 7.19 mutual information is a convex
⋃

function of the con-
ditional distribution and hence if p = λp1 + (1− λ)p2, then

Ip ≤ λIp1 + (1− λ)Ip2 ≤ λR1 + (1− λ)R2

and hence p ∈ RN(λR1 + (1− λ)R2) and therefore

DN(λR1 + (1− λ)R2) ≤ EpρN(XN , YN)
= λEp1ρN(X

N , YN)+ (1− λ)Ep2ρN(X
N , YN)

≤ λDN(R1, µ)+ (1− λ)DN(R2, µ).

Since D(R,µ) is the limit of DN(R, µ), it too is nonincreasing and convex.
It is well known from real analysis that convex functions are continuous
except possibly at their end points. ✷
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The following lemma shows that when the underlying source is sta-
tionary and the fidelity criterion is subadditive (e.g., additive), then the
limit defining D(R,µ) is an infimum.

Lemma 9.2. If the source µ is stationary and the fidelity criterion is sub-

additive, then

D(R,µ) = lim
N→∞

DN(R, µ) = inf
N

1

N
DN(R, µ).

Proof: Fix N and n < N and let pn ∈ Rn(R, µn) yield

Epnρn(X
n, Yn) ≤ Dn(R, µn)+ ǫ

2

and let pN−n ∈ RN−n(R, µN−n) yield

EpN−nρN−n(XN−n, YN−n) ≤ DN−n(R, µN−n)+
ǫ

2
.

pn together with µn implies a regular conditional probability q(F|xn),
F ∈ Bn

Â
. Similarly pN−n and µN−n imply a regular conditional probability

r(G|xN−n). Define now a regular conditional probability t(·|xN) by its
values on rectangles as

t(F ×G|xN) = q(F|xn)r(G|xN−nn ); F ∈ Bn
Â
, G ∈ BN−n

Â
.

Note that this is the finite dimensional analog of a block memoryless
channel with two blocks. Let pN = µNt be the distribution induced by µ
and t. Then exactly as in Lemma 8.8 we have because of the conditional
independence that

IpN (X
N ;YN) ≤ IpN (Xn;Yn)+ IpN (XN−nn ;YN−nn )

and hence from stationarity

IpN (X
N ;YN) ≤ Ipn(Xn;Yn)+ IpN−n(XN−n;YN−n)

≤ nR + (N −n)R = NR
so that pN ∈ RN(R, µN). Thus

DN(R, µ
N) ≤ EpNρN(XN , YN)
≤ EpN

(
ρn(X

n, Yn)+ ρN−n(XN−nn , YN−nn )
)

= Epnρn(Xn, Yn)+ EpN−nρN−n(XN−n, YN−n)
≤ Dn(R, µn)+DN−n(R, µN−n)+ ǫ.

Thus since ǫ is arbitrary we have shown that if dn = Dn(R, µn), then
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dN ≤ dn + dN−n; n ≤ N ;

that is, the sequence dn is subadditive. The lemma then follows immedi-
ately from the convergence of subadditive functions (e.g., Lemma 7.5.1
of [55] or Lemma 8.5.3 of [58]). ✷

IID Sources

If the source is IID, then the evaluation of the distortion-rate function
becomes particularly simple.

Lemma 9.3. If a source µ is IID, then N−1DN(R, µN) = D1(R, µ1) =
D(R,µ) for all N .

Proof. Suppose that the distribution pN for (XN , YN) approximately
yields DN(R, µN), that is, pN has µN as input marginal, I(pN) ≤ NR,
and

EpN
[
dN(X

N , YN)
]
≤ DN(R, µN)+ ǫ

for small ǫ > 0. Let pi denote the induced distribution for (Xi, Yi). Since
X is IID, all the pi have µ as input marginal. From Lemma 8.8, since µ is
IID

NR ≥ I(pN) = I(XN ;YN)) ≥
N−1∑

i=0

I(Xi;Yi) =
N−1∑

i=0

I(pi)

which implies with the convexity of D1(R, µ) in R that

1

N
(DN(R, µ

N)+ ǫ) ≥ 1

N
EpN

[
dN(X

N , YN)
]

= 1

N

N−1∑

i=0

Epi [d(Xi, Yi)] ≥
1

N

N−1∑

i=0

D1(I(pi), µ)

≥ D1(
1

N

N−1∑

i=0

I(pi), µ) ≥ D1(R, µ),

where the final step used the fact that D1(R, µ) is nonincreasing in its
argument. This proves that DN(R, µ) ≥ ND1(R, µ). If p1 approximately
achieves D1(R, µ) in the sense that I(p1) ≤ R and Ep1 [d(X0, Y0)] ≤
D1(R, µ)+ ǫ, then from Lemma 8.8I(pN) = NI(pi) ≤ NR and hence

DN(R, µ) ≤ EpN
[
ρN(X

N , YN)
]

= NEp1 [ρ(X0, Y0)] ≤ N[D1(R, µ
1)+ ǫ]

which implies that DN(R, µ) ≤ ND1(R, µ1) since ǫ is arbitrary. Thus
DN(R, µ) = ND1(R, µ1) ✷
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The corresponding result is true for the rate-distortion function.

9.3 Process Definitions of the Distortion-Rate Function

As with the ρ distance, there are alternative characterizations of the
distortion-rate function when the process is stationary. The remainder
of this section is devoted to developing these results. The idea of a sta-
tionarized block memoryless (SBM) channel will play an important role
in relating nth order distortion-rate functions to the process definitions.
We henceforth assume that the input source µ is stationary and we con-
fine interest to additive fidelity criteria based on a per-letter distortion
ρ = ρ1.

The basic process DRF is defined by

Ds(R, µ) = inf
p∈Rs(R,µ)

Epρ(X0, Y0),

where Rs(R, µ) is the collection of all stationary processes p having
µ as an input distribution and having mutual information rate Ip =
Ip(X;Y) ≤ R. The original idea of a process rate-distortion function was
due to Kolmogorov and his colleagues [101] [49] (see also [23]). The idea
was later elaborated by Marton [119], Gray, Neuhoff, and Omura [63], and
Hashimoto [76].

Recalling that the L1 ergodic theorem for information density holds
when Ip = I∗p ; that is, the two principal definitions of mutual information
rate yield the same value, we also define the process DRF

D∗s (R, µ) = inf
p∈R∗s (R,µ)

Epρ(X0, Y0),

whereR∗s (R, µ) is the collection of all stationary processes p having µ as
an input distribution, having mutual information rate Ip ≤ R, and having
Ip = I∗p . If µ is both stationary and ergodic, define the corresponding
ergodic process DRF’s by

De(R, µ) = inf
p∈Re(R,µ)

Epρ(X0, Y0),

D∗e (R, µ) = inf
p∈R∗e (R,µ)

Epρ(X0, Y0),

where Re(R, µ) is the subset of Rs(R, µ) containing only ergodic mea-
sures and R∗e (R, µ) is the subset of R∗s (R, µ) containing only ergodic
measures.

Theorem 9.1. Given a stationary source which possesses a reference letter

in the sense that there exists a letter a∗ ∈ Â such that
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Eµρ(X0, a
∗) ≤ ρ∗ <∞. (9.3)

Fix R > 0. If D(R,µ) <∞, then

D(R,µ) = Ds(R, µ) = D∗s (R, µ).

If in addition µ is ergodic, then also

D(R,µ) = De(R, µ) = D∗e (R, µ).

The proof of the theorem depends strongly on the relations among
distortion and mutual information for vectors and for SBM channels.
These are stated and proved in the following lemma, the proof of which
is straightforward but somewhat tedious. The theorem is proved after
the lemma.

Lemma 9.4. Let µ be the process distribution of a stationary source {Xn}.
Let ρn; n = 1,2, · · · be a subadditive (e.g., additive) fidelity criterion.

Suppose that there is a reference letter a∗ ∈ Â for which (9.3) holds. Let

pN be a measure on (AN × ÂN , BNA × BNÂ) having µN as input marginal;

that is, pN(F × ÂN) = µN(F) for F ∈ BNA . Let q denote the induced condi-

tional probability measure; that is, qxN (F), x
N ∈ AN , F ∈ BN

Â
, is a regular

conditional probability measure. (This exists because the spaces are stan-

dard.) We abbreviate this relationship as pN = µNq. Let XN , YN denote

the coordinate functions on AN × ÂN and suppose that

EpN
1

N
ρN(X

N , YN) ≤ D (9.4)

and
1

N
IpN (X

N ;YN) ≤ R. (9.5)

If ν is an (N,δ) SBM channel induced by q as in Section 2.14 and if p = µν
is the resulting hookup and {Xn, Yn} the input/output pair process, then

1

N
EpρN(X

N , YN) ≤ D + ρ∗δ (9.6)

and

Ip(X;Y) = I∗p (X;Y) ≤ R; (9.7)

that is, the resulting mutual information rate of the induced stationary

process satisfies the same inequality as the vector mutual information

and the resulting distortion approximately satisfies the vector inequality

provided δ is sufficiently small. Observe that if the fidelity criterion is ad-

ditive, the (9.6) becomes

Epρ1(X0, Y0) ≤ D + ρ∗δ.
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Proof: We first consider the distortion as it is easier to handle. Since the
SBM channel is stationary and the source is stationary, the hookup p is
stationary and

1

n
Epρn(X

n, Yn) = 1

n

∫
dmZ(z)Epzρn(X

n, Yn),

where pz is the conditional distribution of {Xn, Yn} given {Zn}, the punc-
tuation process of Section 2.14. Note that the above formula reduces to
Epρ(X0, Y0) if the fidelity criterion is additive because of the stationar-
ity. Given z, define Jn0 (z) to be the collection of indices of zn for which
zi is not in an N-cell. (See the discussion in Section 2.14.) Let Jn1 (z) be
the collection of indices for which zi begins an N-cell. If we define the
event G = {z : z0 begins an N − cell}, then i ∈ Jn1 (z) if T iz ∈ G. From
Corollary 2.2mZ(G) ≤ N−1. Since µ is stationary and {Xn} and {Zn} are
mutually independent,

nEpzρn(X
n, Yn) ≤

∑

i∈Jn0 (z)
Epzρ(Xi, a

∗)+N
∑

i∈Jn1 (z)
Epzρ(X

N
i , Y

N
i )

=
n−1∑

i=0

1Gc(T
iz)ρ∗ +

n−1∑

i=0

EpNρN1G(T
iz).

Since mZ is stationary, integrating the above we have that

Epρ1(X0, Y0) = ρ∗mZ(G
c)+NmZ(G)EpNρN ≤ ρ∗δ+ EpNρN ,

proving (9.6).
Let rm and tm denote asymptotically accurate quantizers on A and Â;

that is, as in Corollary 8.2 define

X̂n = rm(X)n = (rm(X0), · · · , rm(Xn−1))

and similarly define Ŷn = tm(Y)n. Then

I(rm(X)
n; tm(Y)

n) →
m→∞ I(X

n;Yn)

and
I(rm(X); tm(Y)) →

m→∞ I
∗(X;Y).

We wish to prove that

I(X;Y) = lim
n→∞ lim

m→∞
1

n
I(rm(X)

n; tm(Y)
n)

= lim
m→∞ lim

n→∞
1

n
I(rm(X)

n; tm(Y)
n)

= I∗(X;Y)
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Since I ≥ I∗, we must show that

lim
n→∞ lim

m→∞
1

n
I(rm(X)

n; tm(Y)
n) ≤ lim

m→∞ lim
n→∞

1

n
I(rm(X)

n; tm(Y)
n).

We have that

I(X̂n; Ŷn) = I((X̂n, Zn); Ŷn)− I(Zn, Ŷn|X̂n)

and

I((X̂n, Zn); Ŷn) = I(X̂n; Ŷn|Zn)+ I(Ŷn;Zn) = I(X̂n; Ŷn|Zn)

since X̂n and Zn are independent. Similarly,

I(Zn; Ŷn|X̂n) = H(Zn|X̂n)−H(Zn|X̂n, Ŷn)
= H(Zn)−H(Zn|X̂n, Ŷn) = I(Zn; (X̂n, Ŷn)).

Thus we need to show that

lim
n→∞ lim

m→∞

(
1

n
I(rm(X)

n; tm(Y)
n|Zn)− 1

n
I(Zn, (rm(X)

n, tm(Y)
n))

)
≤

lim
m→∞ lim

n→∞

(
1

n
I(rm(X)

n; tm(Y)
n|Zn)− 1

n
I(Zn, (rm(X)

n, tm(Y)
n))

)
.

Since Zn has a finite alphabet, the limits of n−1I(Zn, (rm(X)n, tm(Y)n))
are the same regardless of the order from Theorem 8.2. Thus I will equal
I∗ if we can show that

I(X;Y |Z) = lim
n→∞ lim

m→∞
1

n
I(rm(X)

n; tm(Y)
n|Zn)

≤ lim
m→∞ lim

n→∞
1

n
I(rm(X)

n; tm(Y)
n|Zn) = I∗(X;Y |Z).. (9.8)

This we now proceed to do. From Lemma 7.21 we can write

I(rm(X)
n; tm(Y)

n|Zn) =
∫
I(rm(X)

n; tm(Y)
n|Zn = zn)dPZn(zn).

Abbreviate I(rm(X)n; tm(Y)n|Zn = zn) to Iz(X̂n; Ŷn). This is simply
the mutual information between X̂n and Ŷn under the distribution for
(X̂n, Ŷn) given a particular random blocking sequence z. We have that

Iz(X̂
n; Ŷn) = Hz(Ŷn)−Hz(Ŷn|X̂n).

Given z, let Jn0 (z) be as before. Let Jn2 (z) denote the collection of all
indices i of zi for which zi begins an N cell except for the final such
index (which may begin an N-cell not completed within zn). Thus Jn2 (z)
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is the same as Jn1 (z) except that the largest index in the latter collection
may have been removed if the resulting N-cell was not completed within
the n-tuple. We have using standard entropy relations that

Iz(X̂
n; Ŷn) ≥

∑

i∈Jn0 (z)

(
Hz(Ŷi|Ŷ i)−Hz(Ŷi|Ŷ i, X̂i+1)

)

+
∑

i∈Jn2 (z)

(
Hz(Ŷ

N
i |Ŷ i)−Hz(ŶNi |Ŷ i, X̂i+N)

)
. (9.9)

For i ∈ Jn0 (z), however, Yi is a∗ with probability one and hence

Hz(Ŷi|Ŷ i) ≤ Hz(Ŷi) ≤ Hz(Yi) = 0

and
Hz(Ŷi|Ŷ i, X̂i+1) ≤ Hz(Ŷi) ≤ Hz(Yi) = 0.

Thus we have the bound

Iz(X̂
n; Ŷn) ≥

∑

i∈Jn2 (z)

(
Hz(Ŷ

N
i |Ŷ i)−Hz(ŶNi |Ŷ i, X̂i+N)

)
.

=
∑

i∈Jn2 (z)

(
Iz(Ŷ

N
i ; (Ŷ i, X̂i +N))− Iz(ŶNi ; Ŷ i)

)

≥
∑

i∈Jn2 (z)

(
Iz(Ŷ

N
i ; X̂Ni )− Iz(ŶNi ; Ŷ i)

)
, (9.10)

where the last inequality follows from the fact that I(U ; (V ,W)) ≥
I(U ;V).

For i ∈ Jn2 (z) we have by construction and the stationarity of µ that

Iz(X̂
N
i ; ŶNi ) = IpN (X̂N ; ŶN). (9.11)

As before let G = {z : z0 begins an N − cell}. Then i ∈ Jn2 (z) if T iz ∈ G
and i < n−N and we can write

1

n
Iz(X̂

n; Ŷn) ≥

1

n
IpN (X̂

N ; ŶN)
n−N−1∑

i=0

1G(T
iz)− 1

n

n−N−1∑

i=0

Iz(Ŷ
N
i ; Ŷ i)1G(T

iz).

All of the above terms are measurable functions of z and are nonneg-
ative. Hence they are integrable (although we do not yet know if the
integral is finite) and we have that
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1

n
I(X̂n; Ŷn) ≥

Ipn(X̂
N ; ŶN)mZ(G)

n−N
n

− 1

n

n−N−1∑

i=0

∫
dmZ(z)Iz(Ŷ

N
i ; Ŷ i)1G(T

iz).

To continue we use the fact that since the processes are stationary, we
can consider it to be a two-sided process (if it is one-sided, we can imbed
it in a two-sided process with the same probabilities on rectangles). By
construction

Iz(Ŷ
N
i ; Ŷ i) = IT iz(ŶN0 ; (Y−i, · · · , Y−1))

and hence since mZ is stationary we can change variables to obtain

1

n
I(X̂n; Ŷn) ≥ Ipn(X̂N ; ŶN)mZ(G)

n−N
n

− 1

n

n−N−1∑

i=0

∫
dmZ(z)Iz(Ŷ

N
0 ; (Ŷ−i, · · · , Ŷ−1))1G(z).

We obtain a further bound from the inequalities

Iz(Ŷ
N
0 ; (Ŷ−i, · · · , Ŷ−1)) ≤ Iz(YN0 ; (Y−i, · · · , Y−1)) ≤ Iz(YN0 ;Y−)

where Y− = (· · · , Y−2, Y−1). Since Iz(Y
N
0 ;Y−) is measurable and nonneg-

ative, its integral is defined and hence

lim
n→∞

1

n
I(X̂n; Ŷn|Zn) ≥ Ipn(X̂N ; ŶN)mZ(G)−

∫

G
dmZ(z)Iz(Y

N
0 ;Y−).

We can now take the limit as m →∞ to obtain

I∗(X;Y |Z) ≥ Ipn(XN ;YN)mZ(G)−
∫

G
dmZ(z)Iz(Y

N
0 ;Y−). (9.12)

This provides half of what we need.
Analogous to (9.9) we have the upper bound

Iz(X̂
n; Ŷn) ≤

∑

i∈Jn1 (z)

(
Iz(Ŷ

N
i ; (Ŷ i, X̂i+N))− Iz(ŶNi ; Ŷ i)

)
. (9.13)

We note in passing that the use of J1 here assumes that we are dealing
with a one-sided channel and hence there is no contribution to the in-
formation from any initial symbols not contained in the first N-cell. In
the two-sided case time 0 could occur in the middle of an N-cell and
one could fix the upper bound by adding the first index less than 0 for
which zi begins an N-cell to the above sum. This term has no affect on
the limits. Taking the limits as m →∞ using Lemma 7.14 we have that
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Iz(X
n;Yn) ≤

∑

i∈Jn1 (z)

(
Iz(Y

N
i ; (Y i, Xi+N))− Iz(YNi ;Y i)

)
.

Given Zn = zn and i ∈ Jn1 (z), (Xi, Y i)→ XNi → YNi forms a Markov chain
because of the conditional independence and hence from Lemma 7.15
and Corollary 7.14

Iz(Y
N
i , (Y

i, Xi+N)) = Iz(XNi ;YNi ) = IpN (XN ;YN).

Thus we have the upper bound

1

n
Iz(X

n;Yn) ≤ 1

n
IpN (X

N ;YN)
n−1∑

i=0

1G(T
iz)− 1

n

n−1∑

i=0

Iz(Y
N
i ;Y i)1G(T

iz).

Taking expectations and using stationarity as before we find that

1

n
I(Xn;Yn|Zn) ≤

IpN (X
N ;YN)mZ(G)− 1

n

n−1∑

i=0

∫

G
dmZ(z)Iz(Y

N
0 ; (Y−i, · · · , Y−1)).

Taking the limit as n→∞ using Lemma 7.22 yields

I(X;Y |Z) ≤ IpN (XN ;YN)mZ(G)−
∫

G
dmZ(z)Iz(Y

N
0 ;Y−). (9.14)

Combining this with (9.12) proves that I(X;Y |Z) ≤ I∗(X;Y |Z) and hence
that I(X;Y) = I∗(X;Y). It also proves that

I(X;Y) = I(X;Y |Z)− I(Z ; (X, Y)) ≤ I(X;Y |Z)
≤ IpN (XN ;YN)mZ(G) ≤ 1

N
IpN (X

N ;YN)

using Corollary 2.2 to bound mX(G). This proves (9.7). ✷

Proof of the theorem: We have immediately that

R∗e (R, µ) ⊂ R∗s (R, µ) ⊂ Rs(R, µ)

and
R∗e (R, µ) ⊂ Re(R, µ) ⊂ Rs(R, µ),

and hence we have for stationary sources that

Ds(R, µ) ≤ D∗s (R, µ) (9.15)

and for ergodic sources that
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Ds(R, µ) ≤ D∗s (R, µ) ≤ D∗e (R, µ) (9.16)

and
Ds(R, µ) ≤ De(R, µ) ≤ D∗e (R, µ). (9.17)

We next prove that
Ds(R, µ) ≥ D(R,µ). (9.18)

If Ds(R, µ) is infinite, the inequality is obvious. Otherwise fix ǫ > 0 and
choose a p ∈ Rs(R, µ) for which Epρ1(X0, Y0) ≤ Ds(R, µ) + ǫ and fix
δ > 0 and choose m so large that for n ≥m we have that

n−1Ip(X
n;Yn) ≤ Ip(X;Y)+ δ ≤ R + δ.

For n ≥m we therefore have that pn ∈ Rn(R + δ,µn) and hence

Ds(R, µ)+ ǫ = Epnρn ≥ Dn(R + δ,µ) ≥ D(R + δ,µ).

From Lemma 9.1 D(R,µ) is continuous in R and hence (9.18) is proved.
Lastly, fix ǫ > 0 and choose N so large and pN ∈ RN(R, µN) so that

EpNρN ≤ DN(R, µN)+
ǫ

3
≤ D(R,µ)+ 2ǫ

3
.

Construct the corresponding (N,δ)-SBM channel as in Section 2.14 with
δ small enough to ensure that δρ∗ ≤ ǫ/3. Then from Lemma 9.2 we
have that the resulting hookup p is stationary and that Ip = I∗p ≤ R and

hence p ∈ R∗s (R, µ) ⊂ Rs(R, µ). Furthermore, if µ is ergodic then so is
p and hence p ∈ R∗e (R, µ) ⊂ Re(R, µ). From Lemma 9.2 the resulting
distortion is

Epρ1(X0, Y0) ≤ EpNρN + ρ∗δ ≤ D(R,µ)+ ǫ.

Since ǫ > 0 this implies the exisitence of a p ∈ R∗s (R, µ) (p ∈ R∗e (R, µ)
if µ is ergodic) yielding Epρ1(X0, Y0) arbitrarily close to D(R,µ. Thus for
any stationary source D∗s (R, µ) ≤ D(R,µ) and for any ergodic source
D∗e (R, µ) ≤ D(R,µ).

With (9.15)–(9.18) this completes the proof. ✷

The previous lemma is technical but important in proving source cod-
ing theorems. It permits the construction of a stationary and ergodic pair
process having rate and distortion near that of that for a finite dimen-
sional vector described by the original source and a finite-dimensional
conditional probability.
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9.4 The Distortion-Rate Function as a Lower Bound

The Shannon distortion-rate function provides a simple lower bound to
the performance in source coding systems and in constrained rate sim-
ulation systems. Both results will follow from from a simple inequality
which we now develop.

Suppose that X is a stationary source with process distribution µ.
Suppose also that X is encoded and then decoded in order to obtain
a reproduction process X̂, but we do not know the details of the code
structures except that the resulting pair process (X, X̂) with distribution
p is AMS and the X̂ process has a finite entropy rate H(X̂) ≤ R. Let
η denote the distribution of X̂. Let p denote the stationary mean with
marginals µ = µ, since µ is stationary, and η. From Theorem 4.1,

H(X̂) = H(η) = H(η). (9.19)

For example, in a source coding system the codes might be stationary
codes or block stationary codes, or block codes, or possibly even variable
length codes, but the cascade of the operations must be AMS and yield a
finite entropy rate reproduction. If, for example, there is a common finite
alphabet for the output of the encoder and input to the decoder with 2R

letters, then since the decoder can not increase entropy rate, it must have
entropy rate no greater than R. In the constrained simulation problem,
the goal is to produce a process X̂ as a coding of an IID process Z such
thatH(X̂) ≤ R and the process X̂ is as close as possible to X with respect
to the ρ distance. The simulation problem was earlier formulated for
stationary coding, but for the moment we allow other coding structures
provided they yield an AMS process X̂. We assume an additive fidelity
criterion for which the single letter distortion is integrable with respect
to the stationary mean (so that the fidelity criterion is convergent in the
sense of Chapter 5). In this case the limiting distortion is

ρ∞ = lim sup
n→∞

1

n

n−1∑

i=0

ρ1(Xi, X̂i) = lim
n→∞

1

n

n−1∑

i=0

ρ1(Xi, X̂i)

where the limit exists p-a.e. and p-a.e. and

∆(p) = Epρ∞ = Epρ1(X0, X̂0) = ∆(p)
I∗(p) = I∗(p).

From Lemma 8.4,
I∗(p) ≤ H(η).

Putting all of this together, we have that
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∆(p) = ∆(p) = Epρ1(X0, X̂0)

I∗(p) = I∗(p) ≤ R

and hence that
∆(p) ≥ Ds(µ,R). (9.20)

The equation boils down to simply this: given any AMS pair process with
a given performance with respect to a fidelity criterion and an entropy
rate constraint on one component, then the average distortion can be
no smaller that the stationary process distortion-rate function for the
given constraint because the entropy rate of one component process
overbounds the mutual information rate between the two components.

Corollary 9.1. As in Section 5.4, consider a stationary source µ, a channel

ν , and code classes E, D for which if f ∈ E, g ∈ D, then the pair process

pX,X̂ consisting of the input and output of the cascade µfνg is AMS. Then

the operational DRF of (5.14) is bound below by the stationary process

Shannon DRF:

∆(µ, ν,E,D) = inf
f∈E,g∈D

∆(µ, f , ν, g) ≥ Ds(µ,H(pX̂)).

If there exists a reference letter and H(pX̂) <∞, then also ∆(µ, ν,E,D) ≥
D(µ,R).

For example, if the channel ν is noiseless with input alphabet A equal to
the output alphabet, then H(pX̂) ≤ R = log‖A‖ and the bound becomes

δ(R,µ) = ∆(µ, ν,E,D) ≥ Ds(R, µ), (9.21)

which is one form of the classic converse source coding theorem since
from Theorem 9.1 the stationary process definition and the Shannon
definitions are equal under the assumed conditions, that is, Ds(R, µ) =
D(µ,R).

Consider next the constrained rate simulation problem of Section 6.7
of the best coding of an IID process Z with entropy rate H(Z). Suppose
that X̂ is a process with distribution µX̂ for which

ρ(µX , µX̂) ≤ ∆X|Z + ǫ

for a small ǫ > 0, which implies that there is a coupling π with marginals
µX and µX̂ with H(µX̂) ≤ H(Z) and distortion

∆(π) ≤ ∆X|Z + ǫ

which from the lemma implies that

∆(π) ≤ Ds(H(Z), µ).
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Since ǫ was arbitrary, we have the following corollary.

Corollary 9.2. Given an IID process Z with entropy rate H(Z) and an

additive fidelity criterion ρn and a stationary process X, then

∆X|Z ≡ inf
f
ρ1(µX , µf(Z)) ≥ Ds(H(Z), µ).

Thus the constrained rate problem also has the Shannon distortion-rate
function as an unbeatable lower bound.

9.5 Evaluating the Rate-Distortion Function

The goal of this section is to consider an alternative characterization
of the optimization that defines the RDF given by R(D) = RX(D) =
RN(D,µX). The Shannon DRF and RDF are defined by information-
theoretic optimization problems. Since average distortion is linear in
terms of the joint distribution describing the random vectors and mu-
tual information is a convex ∪ function of the conditional probability
distribution of output given input — called the test channel, the tech-
niques of convex optimization provide an approach to evaluating the
DRF or RDF for specific sources and distortion measures of interest.
Shannon [163] provided the first examples of evaluation of the RDF for
memoryless sources with Hamming and squared-error distortion. Kol-
mogorov [101] considered the case of Gaussian vectors and processes
with respect to a squared error distortion. Gallager [47] provided gen-
eral Kuhn-Tucker conditions providing a variational approach to finding
the RDF (see also Berger [11]). A key aspect of the variational approach
is that the optimization over the test channel or pair distribution with
constrained input marginal leads to an optimization of a reproduction
distribution, the distribution of the output marginal of the pair distri-
bution or source/test-channel hookup. Blahut [18] found an alternative
formulation of the optimization in terms of relative entropy or diver-
gence and an iterative algorithm for numerical solution, and Csiszár [25]
extended these results and provided an elegant and rigorous develop-
ment for general alphabets.

For the rest of this section, we consider the finite-order Shannon rate-
distortion function (RDF) for vectors X = XN with distribution µX . We
drop the superscripts for the dimension as it is assumed fixed. We will
often drop the random variable subscript on a distribution if it is clear
from context, so that µ = µX throughout. We pause to summarize the
notational shortcuts for this section.

We consider joint distributions πX,Y and pX,Y for a pair of random
vectors (X, Y) with alphabet (AX × AY ,BAX × BAY )). Given a joint dis-
tribution πXY , denote the induced marginal distributions by πX and πY ,
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that is,

πX(G) = πXY (G ×AY );G ∈ BAX
πY (G) = πXY (AX ×G);G ∈ BAY .

The marginals pX and pY are similarly defined. If we are focusing only on
joint distributions, the subscripts indicating the random variables will be
dropped, that is, π = πX,Y and p = pX,Y . Throughout this section πX =
µX = µ and pX = µX = µ, either by assumption or by demonstration.
This constraint on the input distribution will be denoted by

π ∈ P(µX).

We will use η to denote a distribution on the reproduction Y , but it is
not fixed. It is used simply as shorthand for an output marginal, which
might be induced or optimized over. In particular, given a reproduction
distribution η, we will construct a special joint distribution p which will
be denoted pη. This admittedly takes liberties with notation, but pη will
mean a joint distribution constructed using a given reproduction distri-
bution η. The construction will be such that pη need not have η as its
marginal output distribution — η is simply used in the construction and
the form of pη depends on η.

We can express the RDF as

R(D) = inf
πXY :πXY∈P(µX),ρ(πXY )≤D

I(πXY ) (9.22)

where

ρ(πXY ) = EπXY (ρ(X, Y)) =
∫
dπXY (x,y)ρ(x,y) (9.23)

I(πXY ) = I(X;Y) =
∫
dπXY (x,y) log

πXY (x,y)

d(πX ×πY )(x,y)
(9.24)

For simplicity it is assumed that R(D) <∞ for D > 0 and that R(D)→ 0
as D → ∞. These assumptions reflect typical behavior and the details
required for removing these simplifying assumptions may be found in
Csiszár [25].

The most basic properties of the RDF parallel those for the DRF in
Lemma 9.1 as summarized in the following lemma. The proof is omitted
since it is a minor variation of the DRF case.

Lemma 9.5. The Shannon RDF R(D) is a nonnegative convex nonincreas-

ing function of D.

Note that convexity implies that R(D) can not be a constant other than
0 over an interval of D given our assumption that R(D) must go to zero
as D grows.
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Lemma 9.6. An equivalent definition for the RDF is

R(D) = inf
πXY :πXY∈P(µX),ρ(πXY )=D

I(πXY ); (9.25)

that is, the inequality constraint can be replaced by an equality constraint.

Proof. Suppose the contrary and hence there is a D0 < D such that we
can do better than D, that is for any ǫ > 0 we can find a π with D(π) <
D0 and I(π) ≤ R(D) + ǫ. But then I(π) ≥ R(D0) and hence, since ǫ
is arbitrary, R(D0) ≤ R(D). But R(D) is nonincreasing in D and hence
R(D0) = R(D), which violates the convexity of R(D). ✷

The constrained optimization over all distributions is traditionally
handled as an unconstrained minimization over distributions by focus-
ing on the function

F(s) = inf
πXY∈P(µX)

(I(πXY )+ sρ(πXY )) ; s ≥ 0.

The function can be thought of as a variational or Lagrange multiplier
formulation to remove the distortion constraint and incorporate it into
the functional being minimized, but we will not use calculus to accom-
plish the minimization as was done in the original derivations. Instead
we follow Csiszár’s [26] approach and use the divergence inequality re-
peatedly to find conditions for global optimality.

We have easily that

R(D) = inf
πXY :πXY∈P(µX),ρ(πXY )≤D

I(πXY )

= inf
πXY :πXY∈P(µX),ρ(πXY )≤D


I(πXY )+ sρ(πXY )−sρ(πXY )︸ ︷︷ ︸

≥−sD




≥ inf
πXY :πXY∈P(µX),ρ(πXY )≤D

(I(πXY )+ sρ(πXY ))− sD

≥ inf
πXY :πXY∈P(µX)

(I(πXY )+ sρ(πXY ))− sD = F(s)− sD.

Thus for any fixed D,

R(D)+ sD ≥ F(s) for all s ≥ 0. (9.26)

Consider a plot of R(d) with rate on the vertical axis (the y axis) and
distortion on the horizontal axis (the x axis). If s is fixed and d allowed
to vary over nonnegative numbers, F(s) − sd traces out a straight line
y = a−sx of slope −s in the plot with vertical axis intercept a = F(s). If
we fix a value of d = D, then for any value of s we have seen that it must
be true that R(D) ≥ F(s)− sD. But R(D) is a convex function, and hence
at any point (D,R)=(D,R(D)) lying on the R(D) curve there must exist
a straight line passing through the point with no points above the R(D)
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curve. Hence given a fixed D > 0, there must exist a slope −sD (perhaps
more than one) and a straight line y(x) = a− sDx with slope −sD which
passes through the point (D,R) such that y(D) = a − sDD = R(D) so
that the y axis intercept of the straight line is at a = R(D)+sDD. We say
that such an s is associated with D. Since this is a tangent line and no
points on the R(D) curve can lie below it, for any D′ we must have that

R(D′) ≥ y(D′) = a− sDD′ = R(D)+ sDD − sDD′

or, for all D′

R(D′)+ sDD′ ≥ R(D)+ sDD. (9.27)

Suppose that π ∈ P(µX) approximately yields F(sD) so that for small
ǫ > 0 I(π)+ sDρ(π) ≤ F(s)+ ǫ. Then from (9.27) and (9.26)

F(sD)+ ǫ ≥ R(ρ(π))+ sDρ(π) ≥ R(D)+ sDD ≥ F(sD), (9.28)

which since ǫ can be made arbitrarily small implies

F(sD) = R(D)+ sDD, (9.29)

showing that the lower bound of (9.26) is achieved if sD is associated
with D.

Conversely, suppose that if instead of starting with D, we fix s, and
π∗ achieves a minimum in F(s), that is,

F(s) = I(π∗)+ sρ(π∗) = inf
π∈P(µX)

(I(π)+ sρ(π)) .

Define Ds = ρ(π∗) and Rs = I(π∗), then

F(s) = Rs + sDs ≥ inf
π∈P(µX);ρ(π)≤Ds

I(π)+ sDs = R(Ds)+ sDs .

It is also true that

F(s) = inf
π∈P(µX);ρ(π)≤Ds

(I(π)+ sρ(π))

≤ inf
π∈P(µX);ρ(π)≤Ds

(I(π)+ sDs)

= inf
π∈P(µX);ρ(π)≤Ds

I(π)+ sDs
= R(Ds)+ sDs

and hence F(s) = R(Ds)+ sDs , which means that s is associated with Ds
and R(Ds) = F(s) = sDs .

Summarizing the preceding development yields the following result.

Lemma 9.7.

R(D) =max
s≥0
(F(s)− sD).
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The maximum is attained iff s is associated with D. If π achieves a mini-

mum in F(s), then s is associated with D = ρ(π) and R(D) = I(π).
The implication of the lemma is that the R(D) curve can be thought

of as being parametrized by s, the slope of the tangent to points on the
curve. For each value of s we try to minimize F(s) over all joint distribu-
tions π with marginal fixed by the source. If the minimizing distribution
is found, its mutual information and average distortion yield a point on
the rate-distortion curve. Thus the problem is to minimize F(s). This
topic is tackled next.

Recall from (7.28) the average mutual information can also be written
as a divergence as

I(πXY ) = D(πXY‖πX ×πY ),

so the problem is to find

F(s) = inf
πXY∈P(µX)

(D(πXY‖πX ×πY )+ sρ(πXY )) .

A useful approach both for the mathematics of the solution and for
suggesting an algorithm for computing the solution was introduced by
Blahut [18]. The math and the algorithm have interesting parallels with
the optimality properties of actual codes to be considered later and they
provide an early example of an alternating optimization (AO) algorithm,
an optimization that alternates between two steps, each of which opti-
mizes one component of the function being optimized for the other [14].
To set up the method we make a change in the target function by in-
troducing another distribution. This apparent complication will lead to
several useful results. Define the functional

J(πXY , η, s) = D(πXY‖πX × η)+ sρ(πXY ) (9.30)

and note that it differs from the function being optimized in F(s) only by
the replacement of the actual marginal πY in the divergence by a sepa-
rate distribution η. Corollary 7.12 implies an immediate relation between
the two:

D(πXY‖πX ×πY ) = inf
η
D(πXY‖πX × η). (9.31)

If D(πXY‖πX × η) is finite, then πXY will be absolutely continuous with
respect to the product measure πX × η.

Given a distribution η, we construct a new joint distribution pXY as
follows. If ρ(πXY ) is finite, then {x,y : ρ(x,y) < ∞} has positive prob-
ability and hence

γη,s(x) ≡ 1∫
e−ρ(x,y)dη(y)

<∞, µX − a.e..
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Given a reproduction distribution η, define a joint distribution pη by its
density or Radon-Nikodym derivative with respect to the product mea-
sure µX × η by

dpη(x,y)

d(µX × η)(x,y)
= γη,s(x)e−sρ(x,y).

In other words, the distribution is specified by its values on rectangles
as

pη(F ×G) =
∫

F×G
γη,s(x)e

−sρ(x,y)d(µX × η)(x,y).

Intuitively, the density is constructed so that if the logarithm is taken,
the result is the negative average distortion multiplied by s plus a nor-
malization term. This will be shortly seen to be useful in expressing
J(πXY , η, s) as a combination of simple terms. The X marginal of p = pη
is easily found using Fubini’s theorem to be

pX(F) = pη(F ×AY )

=
∫

F×AY

dpη(x,y)

d(µX × η)(x,y)
d(µX × η)(x,y)

=
∫

F×AY
γη,s(x)e

−sρ(x,y)d(µX × η)(x,y)

=
∫

F
dµX(x)

(
γη,s(x)

∫
e−sρ(x,y)dη(y)

)

=
∫

F
dµX(x) = µX(F),

the source distribution. The output distribution pY , however, is not eas-
ily found in general and, perhaps surprisingly, need not equal η.

The introduction of the additional distribution η and the construction
of the implied joint distribution pη allows the following representations
of the functional J(πXY , η, s).

Lemma 9.8. The functional J(πXY , η, s) = D(πXY‖πX×η)+sρ(πXY ) can

be expressed as

J(πXY , η, s) = J(πXY , πY , s)+D(πY‖η) (9.32)

=
∫
dµX(x) logγη,s(x)+D(πXY‖pη) (9.33)

= J(pη, η, s)+D(πXY‖pη). (9.34)

Proof. Csiszár [26] observes in his Lemma 1.3 that the equalities follow
from the chain rule for Radon-Nikodym derivatives. We provide more de-
tail to add insight. As in (9.31), Corollary 7.12 with MX = PX = πX = µX
yields (9.32) and (9.35) . The second equality is a result of rewriting
J(πXY , η, s) by replacing the average distortion as an expectation involv-
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ing the specially constructed joint distribution pη:

J(πXY , η, s)

= D(πXY‖πX × η)+ sρ(πXY )
=
∫
dπXY (x,y) log

dπXY
d(πX × η)

(x,y)−
∫
dπXY (x,y) log e−sρ(x,y)

=
∫
dπXY (x,y) log

dπXY
d(πX × η)

(x,y)

−
∫
dπXY (x,y) log

(
γη,s(x)e

−sρ(x,y)
)
+
∫
dπXY (x,y) logγη,s(x)

=
∫
dπXY (x,y) log

dπXY
d(µX × η)

(x,y)

−
∫
dπXY (x,y) log

dpη
d(µX × η)

(x,y)+
∫
dµX(x) logγη,s(x)

=
∫
dπXY (x,y) log

[(
dπXY

d(µX × η)
(x,y)

)
/

(
dpη

d(µX × η)
(x,y)

)]

+
∫
dµX(x) logγη,s(x)

=
∫
dπXY (x,y) log

dπXY
dpη

(x,y)+
∫
dµX(x) logγη,s(x)

= D(πXY‖pη)+
∫
dµX(x) logγη,s(x),

which shows explicitly the Radon-Nikodym derivative chain rule applica-
tion. We have that
∫
dµX(x) logγη,s(x)

=
∫
dpη(x,y) logγη,s(x) =

∫
dpη(x,y) log

(
γη,s(x)e

−sρ(x,y)esρ(x,y)
)

=
∫
dpη(x,y) log

dpη
d(µX × η)

+ s
∫
dpη(x,y)ρ(x,y)

= D(pη‖pX × η)+ sρ(pη) = J(pη, η, s),

which completes the proof. ✷

The representations of the lemma imply immediate lower bounds to
J(πXY , η, s) with obvious conditions for equality, as summarized in the
following corollary.
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Corollary 9.3.

J(πXY , η, s) ≥ J(πXY , πY , s) with equality if η = πY (9.35)

J(πXY , η, s) ≥
∫
dµX(x) logγη,s(x) (9.36)

= J(pη, η, s) with equality if πXY = pη (9.37)

F(s) = inf
η,π :πX=µX

J(π,η, s) (9.38)

= inf
η

∫
dµX(x) logγη,s(x)

= inf
η

∫
dµX(x) log

1∫
dη(y)e−ρ(x,y)

. (9.39)

Proof. The inequalities and conditions for equality (9.35-9.37) follow di-
rectly from the lemma and the divergence inequality. Eq. (9.38) follows
from the definition of F(s) since

inf
π :πX=µX ,η

J(π,η, s) = inf
π :πX=µX ,η

[D(π‖µX × η)+ sρ(π)]
= inf
π :πX=µX

[D(π‖πX ×πY )+ sρ(π)] = F(s)

and (9.39) follows since if we choose a reproduction distribution η within
ǫ of the infimum, then using pη yields J(pη, η, s) within ǫ of the infimum,
and hence F(s) can be no farther than ǫ from the infimum. Since ǫ is
arbitrary, F(s) must equal the infimum.

✷

The corollary suggests a numerical algorithm for evaluating the rate
distortion function. Given the input distribution µX , pick some repro-
duction distribution η(0). This η(0) together with µX implies a joint dis-
tribution p(0) = pη(0) with input marginal µX resulting in J(pη(0) , η

(0), s).

Replace η(0) by η(1) = p(0)Y , which yields J(pη(0) , η
(1), s) ≤ J(pη(0) , η(0), s),

that is, J can not increase. Then use the new reproduction marginal η(1)

to form a new joint distribution p(1), which results in J(p(1), η(1), s) ≤
J(pη(0) , η

(1), s). Continue in this matter, alternatively picking the best
joint distribution for the reproduction and vice versa. Since J is mono-
tonically nonincreasing and nonnegative, this is a descent algorithm and
hence it must converge. This is the idea behind Blahut’s algorithm [18]
for computing the rate-distortion function. Blahut discretizes the prob-
lem by quantizing the input and output spaces to make the algorithm
amenable to numerical solution. As discused by Rose [158], the algo-
rithm can be sensitive to the nature of the discretization. In particular,
a fixed quantization of source and reproduction can yield a suboptimal
support for the reproduction distribution

The corollary shows that F(s) can be stated as a optimization over
the reproduction distribution as in (9.39). If an optimal reproduction



260 9 Distortion and Information

distribution η∗ exists, then from Corollary 9.3 it must be true that the
optimal joint distribution is π∗X,Y with

π∗X,Y = pη∗ (9.40)

η∗ = π∗Y (9.41)

since otherwise either D(πXY‖pη∗) or D(πY‖η∗) would be nonzero and
hence J(πX,Y , η, s) could be further decreased towards its infimum by
substituting the appropriate joint or reproduction distribution. If the
optimal reproduction distribution exists, it is called the Shannon opti-

mal reproduction distribution. If these optimal distributions exist, then
together they induce a regular conditional probability measure P(X ∈
F | Y = y) given by

P(X ∈ F | Y = y) =
∫

F
dµ(x)γη∗,s(x)e

−sρ(x,y),

so that γη∗,s(x)e−sρ(x,y) has the interpretation of being the backward

test channel of the input given the output.
The following theorem summarizes the results developed in this sec-

tion. It comprises a combination of Lemma 1.2, corollary to Lemma 1.3,
and equations (1.11) and (1.15) in Csiszár [25].

Theorem 9.2. If R(D) <∞, then

R(D) = max
s≥0

(F(s)− sD) (9.42)

F(s) = inf
π∈P(µX)

(I(π)+ sd(π)) (9.43)

= inf
µY

∫
dµX(x) log

1∫
dµY (y)e−sd(x,y)

(9.44)

where the final line defines F(s) as an infimum over all distributions

on Â. There exists a value s such that the straight line of slope −s
is tangent to the rate-distortion curve at (R(D),D), in which case s is

said to be associated with D. If π achieves a minimum in (9.43), then

D = d(π),R(D) = I(π).

Thus for a given D there is a value of s associated with D, and for this
value the evaluation of the rate-distortion curve can be accomplished by
an optimization over all distributions µY on the reproduction alphabet.
If a minimizing π exists, then the resulting marginal distribution for
µY is called a Shannon optimal reproduction distribution. In general this
distribution need not be unique.

Csiszár [25] goes on to develop necessary and sufficient conditions for
solutions to the optimizations defining F(s) and R(D), but the above re-
sults suffice for our purpose of demonstrated the role of the divergence
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inequality in the optimization, and sketching the basic ideas underly-
ing numerical algorithms for computing the rate-distortion function and
the properties of optimal distributions in the Shannon sense. Conditions
for the existence of solutions and for their uniqueness are also devel-
oped in [25]. We here state without proof one such result which will be
useful in the discussion of optimality properties of source codes. The
result shows that under the assumptions of a distortion measure that is
a power of a metric derived from a norm, there exists a π achieving the
minimum of (9.2) and hence also a Shannon optimal reproduction distri-
bution. Both the lemma and the subsequent corollary are implied by the
proof of Csiszár’s Theorem 2.2 and the extension of the reproduction
space from compact metric to Euclidean spaces discussed at the bottom
of p. 66 of [25]. In the corollary, the roles of distortion and mutual in-
formation are interchanged to obtain the distortion-rate version of the
result.

Lemma 9.9. Given a random vector X with an alphabetAwhich is a finite-

dimensional Euclidean space with norm ‖x‖, a reproduction alphabet Â =
A, and a distortion measure d(x,y) = ‖x − y‖r , r > 0, then there exists

a distribution π on A × A achieving the the minimum of (9.2). Hence a

Shannon N-dimensional optimal reproduction distribution exists for the

Nth order rate-distortion function.

Corollary 9.4. Given the assumptions of the lemma, suppose that π (n),
n = 1,2, . . . is sequence of distributions on A × Â with marginals µX and

µY (n) for which for n = 1,2, . . .

I(π (n)) = I(X, Y (n)) ≤ R, (9.45)

lim
n→∞E[d(X,Y

(n))] = DX(R). (9.46)

Then µY (n) has a subsequence that converges weakly to a Shannon optimal

reproduction distribution. If the Shannon distribution is unique, then µY (n)
converges weakly to it.

The result is proved by showing that the stated conditions imply that
any sequence of distributions π (n) has a weakly converging subsequence
and that the limiting distribution inherits the properties of the individual
π (n). If the Shannon optimal distribution is unique, then we can assume

that µ(n)Y0
converges weakly to it.

Note that if there is a unique Shannon optimal reproduction distribu-
tion, then any sequence of π (n) for which (9.45–9.46) hold must converge
weakly to the optimal distribution.
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Support of Shannon Optimal Distributions

We close this chapter with a discussion of some of the interesting as-
pects of the Shannon optimal distribution. It is rare that an analytical for-
mula is known for the distribution, one of the notable exceptions being
a Gaussian IID source with variance σ 2. In this case the N-dimensional
Shannon optimal reproduction distributions are known to be the prod-
uct of N Gaussian distributions with variance σ 2 −D. In particular, the
reproduction distribution is continuous. This turns out to be an excep-
tion, a fact which has had an effect on the evaluation of rate-distortion
functions in the past. Some of the history and issues are discussed here.
The discussion follows that of [117].

The basic ideas behind Blahut’s algorithm were described in Sec-
tion 9.5. The algorithm works quite well for discrete sources, but his-
torically it has been applied to continuous sources in a way that often
provided incorrect or misleading results. In particular, the standard ap-
proach in the literature was to first quantize the source and reproduction
alphabet and then run the algorithm on the resulting discrete source. As
pointed out by S. Fix [43], the reproduction alphabet chosen in this way
was arbitrary and unchangeable by the algorithm itself. Fix proved that
in the case of the squared error distortion measure, it is often the case
that the optimal reproduction alphabet has finite support, that is, is con-
centrated on a specific finite set. If the initial quantization prior to the
Blahut algorithm does not take this into account, the subsequent opti-
mization can yield a poor solution to the original problem. This is not
an uncommon problem since, as Fix showed, the optimal reproduction
algorithm has finite support whenever a lower bound to the RDF due to
Shannon [163], the Shannon lower bound, does not hold with equality.
This occurs often for common sources and distortion measures. In fact
the IID Gaussian source with a squared error distortion and IID discrete
sources with a Hamming distortion are the only commonly encountered
cases where the Shannon lower bound does hold with equality. A clas-
sic example of the problem is with the simple uniform IID source and
a squared error distortion. Here the optimum reproduction alphabet is
not only finite, but it can be small — only three letters for a rate of 1 bit
per symbol. Inaccurate values for the RDF for this case based on Blahut’s
algorithm have been reported in the literature. A similar problem arises
with discrete sources if one is given the option finding an optimal recon-
struction alphabet instead of assuming that it is the same as the input al-
phabet. Early work on this problem was considered by T. Benjamin [9]. In
such cases the Blahut algorithm only adjusts the probabilities assigned
to the assumed reproduction alphabet, it does not seek an optimum al-
phabet. As pointed out by Fix, the general optimization problem can be
formulated, but it is a nonlinear optimization and no one approach is
clearly best. K. Rose [158] extended Fix’s result showing finite support
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of the optimal reproduction distribution when the Shannon lower bound
is not met. He developed a deterministic annealing algorithm with sup-
porting arguments and impressive experimental evidence showing that
the algorithm found the optimal reproduction alphabets and the best
existing estimates of the RDFs for several examples of IID sources.

Regrettably Fix’s fascinating work was never formally published out-
side of his dissertation, and the mathematical details are long and com-
plicated. His arguments are based on Csiszár’s [25] careful development,
which is partially developed in Section 9.5. Csiszár considered in depth
the issues of the existence of solutions and the asymptotics and his pa-
per is the definitive reference for the most general known results of this
variety. The results of Fix and Rose, however, add an important aspect
to the problem by pointing out that the choice of the support of the
reproduction distribution must be considered if accurate results are to
be obtained. This is important not only for the evaluation of the rate-
distortion functions, but to the characterization of approximately opti-
mal codes, as will be considered in Chapter 13.



Chapter 10

Relative Entropy Rates

Abstract Many of the basic properties of relative entropy are extended to
sequences of random variables and to processes. Several limiting proper-
ties of entropy rates are proved and a mean ergodic theorem for relative
entropy densities is given. The principal ergodic theorems for relative
entropy and information densities in the general case are given in the
next chapter.

10.1 Relative Entropy Densities and Rates

Suppose that p and m are two AMS distributions for a random process
{Xn} with a standard alphabet A. For convenience we assume that the
random variables {Xn} are coordinate functions of an underlying mea-
surable space (Ω,B) where Ω is a one-sided or two-sided sequence space
and B is the corresponding σ -field. Thus x ∈ Ω has the form x = {xi},
where the index i runs from 0 to ∞ for a one-sided process and from
−∞ to +∞ for a two-sided process. The random variables and vectors of
principal interest are Xn(x) = xn, Xn(x) = xn = (x0, · · · , xn−1), and
Xkl (x) = (xl, · · · , xl+k−1). The process distributions p and m are both
probability measures on the measurable space (Ω,B).

For n = 1,2, . . . let MXn and PXn be the vector distributions induced
by p and m. We assume throughout this section that MXn ≫ PXn and
hence that the Radon-Nikodym derivatives fXn = dPXn/dMXn and the en-
tropy densities hXn = lnfXn are well defined for all n = 1,2, . . . Strictly
speaking, for each n the random variable fXn is defined on the measur-
able space (An,BAn) and hence fXn is defined on a different space for
each n. When considering convergence of relative entropy densities, it
is necessary to consider a sequence of random variables defined on a
common measurable space, and hence two notational modifications are
introduced: The random variables fXn(Xn) : Ω→ [0,∞) are defined by
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fXn(X
n)(x) ≡ fXn(Xn(x)) = fXn(xn)

for n = 1,2, . . .. Similarly the entropy densities can be defined on the
common space (Ω,B) by

hXn(X
n) = lnfXn(X

n).

The reader is warned of the potentially confusing dual use of Xn in this
notation: the subscript is the name of the random variable Xn and the ar-
gument is the random variable Xn itself. To simplify notation somewhat,
we will often abbreviate the previous (unconditional) densities to

fn = fXn(Xn); hn = hXn(Xn).

For n = 1,2, . . . define the relative entropy by

Hp‖m(Xn) = D(PXn‖MXn) = EPXnhXn = EphXn(Xn).

Define the relative entropy rate by

Hp‖m(X) = lim sup
n→∞

1

n
Hp‖m(Xn).

Analogous to Dobrushin’s definition of information rate, we also define

H∗p‖m(X) = sup
q
Hp‖m(q(X)),

where the supremum is over all scalar quantizers q.
Define as in Chapter 7 the conditional densities

fXn|Xn =
fXn+1

fXn
= dPXn+1/dMXn+1

dPXn/dMXn
= dPXn|Xn
dMXn|Xn

(10.1)

provided fXn 6= 0 and fXn|Xn = 1 otherwise. As for unconditional den-
sities we change the notation when we wish to emphasize that the den-
sities can all be defined on a common underlying sequence space. For
example, we follow the notation for ordinary conditional probability den-
sity functions and define the random variables

fXn|Xn(Xn|Xn) =
fXn+1(Xn+1)

fXn(Xn)

and
hXn|Xn(Xn|Xn) = lnfXn|Xn(Xn|Xn)

on (Ω,B). These densities will not have a simple abbreviation as do the
unconditional densities.

Define the conditional relative entropy
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Hp‖m(Xn|Xn) = EPXn (lnfXn|Xn) =
∫
dp lnfXn|Xn(Xn|Xn). (10.2)

All of the above definitions are immediate applications of definitions of
Chapter 7 to the random variables Xn and Xn. The difference is that
these are now defined for all samples of a random process, that is, for
all n = 1,2, . . .. The focus of this chapter is the interrelations of these
entropy measures and on some of their limiting properties for large n.

For convenience define

Dn = Hp‖m(Xn|Xn); n = 1,2, . . . ,

and D0 = Hp‖m(X0). From Theorem 7.2 this quantity is nonnegative and

Dn +D(PXn‖MXn) = D(PXn+1‖MXn+1).

If D(PXn‖MXn) <∞, then also

Dn = D(PXn+1‖MXn+1)−D(PXn‖MXn).

We can write Dn as a single divergence if we define as in Theorem 7.2
the distribution SXn+1 by

SXn+1(F ×G) =
∫

F
MXn|Xn(F|xn)dPXn(xn); F ∈ BA; G ∈ BAn . (10.3)

Recall that SXn+1 combines the distribution PXn on Xn with the condi-
tional distribution MXn|Xn giving the conditional probability under M for
Xn given Xn. We shall abbreviate this construction by

SXn+1 = MXn|XnPXn . (10.4)

Then
Dn = D(PXn+1‖SXn+1). (10.5)

Note that SXn+1 is not in general a consistent family of measures in the
sense of the Kolmogorov extension theorem since its form changes with
n, the first n samples being chosen according to p and the final sam-
ple being chosen using the conditional distribution induced by m given
the first n samples. Thus, in particular, we cannot infer that there is a
process distribution s which has SXn ; , n = 1,2, . . . as its vector distribu-
tions.

We immediately have a chain rule for densities

fXn =
n−1∏

i=0

fXi|Xi (10.6)
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and a corresponding chain rule for conditional relative entropies similar
to that for ordinary entropies:

D(PXn‖MXn) = Hp‖m(Xn) =
n−1∑

i=0

Hp‖m(Xi|Xi) =
n−1∑

i=0

Di. (10.7)

10.2 Markov Dominating Measures

The evaluation of relative entropy simplifies for certain special cases
and reduces to a mutual information when the dominating measure
is a Markov approximation of the dominated measure. The following
lemma is an extension to sequences of the results of Corollary 7.13 and
Lemma 7.17.

Theorem 10.1. Suppose that p is a process distribution for a standard

alphabet random process {Xn} with induced vector distributions PXn ;

n = 1,2, . . .. Suppose also that there exists a process distribution m with

induced vector distributions MXn such that

(a)under m {Xn} is a k-step Markov source, that is, for all n ≥ k, Xn−k →
Xkn−k → Xn is a Markov chain or, equivalently,

MXn|Xn = MXn|Xkn−k ,

and

(b)MXn ≫ PXn , n = 1,2, . . . so that the densities

fXn = dPXn

dMXn

are well defined.

Suppose also that p(k) is the k-step Markov approximation to p, that is,

the source with induced vector distributions P (k)Xn such that

P (k)Xk = PXk

and for all n ≥ k
P (k)Xn|Xn = PXn|Xkn−k ;

that is, p(k) is a k-step Markov process having the same initial distribution

and the same kth order conditional probabilities as p. Then for all n ≥ k

MXn ≫ P (k)Xn ≫ PXn (10.8)



10.2 Markov Dominating Measures 269

and

dP (k)Xn

dMXn
= f (k)Xn ≡ fXk

n−1∏

l=k
fXl|Xkl−k , (10.9)

dPXn

dP (k)Xn
= fXn
f (k)Xn

. (10.10)

Furthermore

hXn|Xn = hXn|Xkn−k + iXn;Xn−k|Xkn−k (10.11)

and hence

Dn = Hp‖m(Xn|Xn)
= Ip(Xn;Xn−k|Xkn−k)+Hp‖m(Xn|Xkn−k).

Thus

hXn = hXk +
n−1∑

l=k

(
hXl|Xkl−k + iXl;Xl−k|Xkl−k

)
(10.12)

and hence

D(PXn‖MXn) =

Hp‖m(Xk)+
n−1∑

l=k
(Ip(Xl;X

l−k|Xkl−k)+Hp‖m(Xl|Xkl−k)). (10.13)

If m = p(k), then for all n ≥ k we have that hXn|Xkn−k = 0 and hence

Hp‖p(k)(Xn|Xkn−k) = 0 (10.14)

and

Dn = Ip(Xn;Xn−k|Xkn−k), (10.15)

and hence

D(PXn‖P (k)Xn ) =
n−1∑

l=k
Ip(Xl;X

l−k|Xkl−k). (10.16)

Proof: If n = k + 1, then the results follow from Corollary 7.9 and
Lemma 7.17 with X = Xn, Z = Xk, and Y = Xk. Now proceed by induc-
tion and assume that the results hold for n. Consider the distribution
QX(n+1) specified by QXn = PXn and QXn|Xn = PXn|Xkn−k . In other words,

QXn+1 = PXn|Xkn−kPXn

Application of Corollary 7.7 withright-hand Z = Xn−k, Y = Xkn−k, and
X = Xn implies that MXn+1 ≫ QXn+1 ≫ PXn+1 and that
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dPXn+1

dQXn+1
= fXn|Xn
fXn|Xkn−k

.

This means that we can write

PXn+1(F) =
∫

F

dPXn+1

dQXn+1
dQXn+1 =

∫

F

dPXn+1

dQXn+1
dQXn|Xn dQXn

=
∫

F

dPXn+1

dQXn+1
dPXn|Xkn−k dPX

n .

From the induction hypothesis we can express this as

PXn+1(F) =
∫

F

dPXn+1

dQXn+1

dPXn

dP (k)Xn
dPXn|Xkn−k dP

(k)
Xn

=
∫

F

dPXn+1

dQXn+1

dPXn

dP (k)Xn
dP (k)Xn+1 ,

proving that P (k)Xn+1 ≫ PXn+1 and that

dPXn+1

dP (k)Xn+1

= dPXn+1

dQXn+1

dPXn

dP (k)Xn
= fXn|Xn
fXn|Xkn−k

dPXn

dP (k)Xn
.

This proves the right-hand part of (10.9) and (10.10).
Next define the distribution P̂Xn by

P̂Xn(F) =
∫

F
f (k)Xn dMXn ,

where f (k)Xn is defined in (10.9). Proving that P̂Xn = P (k)Xn will prove both
the left hand relation of (10.8) and (10.9). Clearly

d̂PXn

dMXn
= f (k)Xn

and from the definition of f (k) and conditional densities

f (k)Xn|Xn = f
(k)

Xn|Xkn−k
. (10.17)

From Corollary 7.7 it follows that Xn−k → Xkn−k → Xn is a Markov

chain. Since this is true for any n ≥ k, P̂Xn is the distribution of a k-step
Markov process. By construction we also have that

f (k)
Xn|Xkn−k

= fXn|Xkn−k (10.18)

and hence from Theorem 7.2
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P (k)
Xn|Xkn−k

= PXn|Xkn−k .

Since also f (k)Xk = fXk , P̂Xn = P
(k)
Xn as claimed. This completes the proof of

(10.8)–(10.10). Eq. (10.11) follows since

fXn|Xn = fXn|Xkn−k ×
fXn|Xn
fXn|Xkn−k

.

Eq. (10.12) then follows by taking expectations. Eq. (10.12) follows from
(10.11) and

fXn = fXk
n−1∏

l=k
fXl|Xl ,

whence (10.13) follows by taking expectations. If m = p(k), then the
claims follow from (7.23)–(7.24). ✷

Corollary 10.1. Given a stationary source p, suppose that for some K
there exists a K-step Markov source m with distributions MXn ≫ PXn ,

n = 1,2, . . .. Then for all k ≥ K (10.8)–(10.10) hold.

Proof: If m is a K-step Markov source with the property MXn ≫ PXn ,
n = 1,2, . . ., then it is also a k-step Markov source with this property for
all k ≥ K. The corollary then follows from the theorem. ✷

Comment: The corollary implies that if any K-step Markov source dom-
inates p on its finite dimensional distributions, then for all k ≥ K the
k-step Markov approximations p(k) also dominate p on its finite dimen-
sional distributions.

The following variational corollary follows from Theorem 10.1.

Corollary 10.2. For a fixed k let LetMk denote the set of all k-step Markov

distributions. Then infM∈Mk D(PXn‖M) is attained by P (k), and

inf
M∈Mk

D(PXn‖M) = D(PXn‖P (k)Xn ) =
n−1∑

l=k
Ip(Xl;X

l−k|Xkl−k).

Since the divergence can be thought of as a distance between proba-
bility distributions, the corollary justifies considering the k-step Markov
process with the same kth order distributions as the k-step Markov ap-

proximation or model for the original process: It is the minimum diver-
gence distribution meeting the k-step Markov requirement.
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10.3 Stationary Processes

Several of the previous results simplify when the processes m and p
are both stationary. We can consider the processes to be two-sided since
given a stationary one-sided process, there is always a stationary two-
sided process with the same probabilities on all positive time events.
When both processes are stationary, the densities fXnm and fXn satisfy

fXnm =
dPXnm
dMXnm

= fXnTm = dPXn

dMXn
Tm,

and have the same expectation for any integer m. Similarly the condi-
tional densities fXn|Xn , fXk|Xnk−n , and fX0|X−1,X−2,··· ,X−n satisfy

fXn|Xn = fXk|Xnk−nTn−k = fX0|X−1,X−2,··· ,X−nT
n (10.19)

for any k and have the same expectation. Thus

1

n
Hp‖m(Xn) = 1

n

n−1∑

i=0

Hp‖m(X0|X−1, · · · , X−i). (10.20)

Using the construction of Theorem 7.2 we have also that

Di = Hp‖m(Xi|Xi) = Hp‖m(X0|X−1, · · · , X−i)
= D(PX0,X−1,··· ,X−i‖SX0,X−1,··· ,X−i),

where now
SX0,X−1,··· ,X−i = MX0|X−1,··· ,X−iPX−1,··· ,X−i ; (10.21)

that is,

SX0,X−1,··· ,X−i(F ×G) =∫

F
MX0|X−1,··· ,X−i(F|xi)dPX−1,··· ,X−i(x

i);F ∈ BA;G ∈ BAi .

As before the SXn distributions are not in general consistent. For ex-
ample, they can yield differing marginal distributions SX0 . As we saw in
the finite case, general conclusions about the behavior of the limiting
conditional relative entropies cannot be drawn for arbitrary reference
measures. If, however, we assume as in the finite case that the reference
measures are Markov, then we can proceed.

Suppose now that under m the process is a k-step Markov process.
Then for any n ≥ k (X−n, · · · , X−k−2, X−k−1) → Xk−k → X0 is a Markov
chain under m and Lemma 7.17 implies that
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Hp‖m(X0|X−1, · · · , X−n) =
Hp‖m(Xk|Xk)+ Ip(Xk; (X−1, · · · , X−n)|Xk) (10.22)

and hence from (10.20)

H̄p‖m(X) = Hp‖m(Xk|Xk)+ Ip(Xk;X−|Xk). (10.23)

We also have, however, that X− → Xk → Xk is a Markov chain under
m and hence a second application of Lemma 7.17 implies that

Hp‖m(X0|X−) = Hp‖m(Xk|Xk)+ Ip(Xk;X−|Xk). (10.24)

Putting these facts together and using (10.2) yields the following lemma.

Lemma 10.1. Let {Xn} be a two-sided process with a standard alphabet

and let p andm be stationary process distributions such that MXn ≫ PXn
all n andm is kth order Markov. Then the relative entropy rate exists and

Hp‖m(X) = lim
n→∞

1

n
Hp‖m(Xn)

= lim
n→∞Hp‖m(X0|X−1, · · · , X−n)

= Hp‖m(X0|X−)
= Hp‖m(Xk|Xk)+ Ip(Xk;X−|Xk)
= Ep[lnfXk|Xk(Xk|Xk)]+ Ip(Xk;X−|Xk).

Corollary 10.3. Given the assumptions of Lemma 10.1,

Hp‖m(XN|X−) = NHp‖m(X0|X−).

Proof: From the chain rule for conditional relative entropy (equation
(10.7),

Hp‖m(XN|X−) =
n−1∑

l=0

Hp‖m(Xl|Xl, X−).

Stationarity implies that each term in the sum equals Hp‖m(X0|X−),
proving the corollary. ✷

The next corollary extends Corollary 10.1 to processes.

Corollary 10.4. Given k and n ≥ k, let Mk denote the class of all k-step

stationary Markov process distributions. Then

inf
m∈Mk

Hp‖m(X) = Hp‖p(k)(X) = Ip(Xk;X−|Xk).
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Proof: Follows from (10.22) and Theorem 10.1. ✷

This result gives an interpretation of the finite-gap information prop-
erty (8.15): If a process has this property, then there exists a k-step
Markov process which is only a finite “distance” from the given process
in terms of limiting per-symbol divergence. If any such process has a
finite distance, then the k-step Markov approximation also has a finite
distance. Furthermore, we can apply Corollary 8.4 to obtain the general-
ization of the finite alphabet result of Theorem 3.4

.

Corollary 10.5. Given a stationary process distribution p which satisfies

the finite-gap information property,

inf
k

inf
m∈Mk

Hp‖m(X) = inf
k
Hp‖p(k)(X) = lim

k→∞
Hp‖p(k)(X) = 0.

Lemma 10.1 also yields the following approximation lemma.

Corollary 10.6. Given a process {Xn} with standard alphabet A let p and

m be stationary measures such that PXn ≪ MXn for all n andm is kth or-

der Markov. Let qk be an asymptotically accurate sequence of quantizers

for A. Then

Hp‖m(X) = lim
k→∞

Hp‖m(qk(X)),

that is, the divergence rate can be approximated arbitrarily closely by that

of a quantized version of the process. Thus, in particular,

Hp‖m(X) = H∗p‖m(X).

Proof: This follows from Corollary 7.3 by letting the generating σ -fields
be Fn = σ(qn(Xi); i = 0,−1, . . .) and the representation of conditional
relative entropy as an ordinary divergence. ✷

Another interesting property of relative entropy rates for stationary
processes is that we can “reverse time” when computing the rate in the
sense of the following lemma.

Lemma 10.2. Let {Xn}, p, andm be as in Lemma 10.1. If eitherHp‖m(X) <
∞ or HP‖M(X0|X−) <∞, then

Hp‖m(X0|X−1, · · · , X−n) = Hp‖m(X0|X1, · · · , Xn)

and hence

Hp‖m(X0|X1, X2, · · · ) = Hp‖m(X0‖X−1, X−2, · · · ) = Hp‖m(X) <∞.
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Proof: If Hp‖m(X) is finite, then so must be the terms Hp‖m(Xn) =
D(PXn‖MXn) (since otherwise all such terms with larger n would also
be infinite and hence H could not be finite). Thus from stationarity

Hp‖m(X0|X−1, · · · , X−n) = Hp‖m(Xn|Xn)
= D(PXn+1‖MXn+1)−D(PXn‖MXn)

D(PXn+1‖MXn+1)−D(PXn1 ‖MXn1 ) = Hp‖m(X0|X1, · · · , Xn)

from which the results follow. If on the other hand the conditional
relative entropy is finite, the results then follow as in the proof of
Lemma 10.1 using the fact that the joint relative entropies are arith-
metic averages of the conditional relative entropies and that the condi-
tional relative entropy is defined as the divergence between the P and S
measures (Theorem 7.3). ✷

10.4 Mean Ergodic Theorems

In this section we state and prove some preliminary ergodic theorems
for relative entropy densities analogous to those first developed for en-
tropy densities in Chapter 4 and for information densities in Section 8.3.
In particular, we show that an almost everywhere ergodic theorem for
finite alphabet processes follows easily from the sample entropy ergodic
theorem and that an approximation argument then yields an L1 ergodic
theorem for stationary sources. The results involve little new and closely
parallel those for mutual information densities and therefore the details
are skimpy. The results are given for completeness and because the L1

results yield the byproduct that relative entropies are uniformly inte-
grable, a fact which does not follow as easily for relative entropies as it
did for entropies.

Finite Alphabets

Suppose that we now have two process distributions p and m for a ran-
dom process {Xn} with finite alphabet. Let PXn and MXn denote the in-
duced nth order distributions and pXn andmXn the corresponding prob-
ability mass functions (pmf’s). For example, pXn(an) = PXn({xn : xn =
an}) = p({x : Xn(x) = an}). We assume that PXn ≪ MXn . In this case
the relative entropy density is given simply by

hn(x) = hXn(Xn)(x) = ln
pXn(xn)

mXn(xn)
,
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where xn = Xn(x).
The following lemma generalizes Theorem 4.1 from entropy densi-

ties to relative entropy densities for finite alphabet processes. Relative
entropies are of more general interest than ordinary entropies because
they generalize to continuous alphabets in a useful way while ordinary
entropies do not.

Lemma 10.3. Suppose that {Xn} is a finite alphabet process and that p
andm are two process distributions with MXn ≫ PXn for all n, where p is

AMS with stationary mean p̄,m is a kth order Markov source with station-

ary transitions, and {p̄x} is the ergodic decomposition of the stationary

mean of p. Assume also that MXn ≫ P̄Xn for all n. Then

lim
n→∞

1

n
hn = h; p − a.e. and in L1(p),

where h(x) is the invariant function defined by

h(x) = −Hp̄x(X)− Ep̄x lnm(Xk|Xk)

= lim
n→∞

1

n
Hp̄x‖m(X

n) = Hp̄x‖m(X),

where

m(Xk|Xk)(x) ≡ mXk+1(xk+1)

mXk(xk)
= MXk|Xk(xk|xk).

Furthermore,

Eph = Hp‖m(X) = lim
n→∞

1

n
Hp‖m(Xn), (10.25)

that is, the relative entropy rate of an AMS process with respect to a

Markov process with stationary transitions is given by the limit. Lastly,

Hp‖m(X) = Hp̄‖m(X); (10.26)

that is, the relative entropy rate of the AMS process with respect to m is

the same as that of its stationary mean with respect to m.

Proof: We have that

1

n
h(Xn) = 1

n
lnp(Xn)− 1

n
lnm(Xk)+ 1

n

n−1∑

i=k
lnm(Xi|Xki−k)

= 1

n
lnp(Xn)− 1

n
lnm(Xk)− 1

n

n−1∑

i=k
lnm(Xk|Xk)T i−k,

where T is the shift transformation, p(Xn) is an abbreviation for PXn(Xn),
and m(Xk|Xk) = MXk|Xk(Xk|Xk). From Theorem 4.1 the first term con-

verges to −Hp̄x(X)p-a.e. and in L1(p).
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Since MXk ≫ PXk , if MXk(F) = 0, then also PXk(F) = 0. Thus PXk and
hence also p assign zero probability to the event that MXk(X

k) = 0. Thus
with probability one under p, lnm(Xk) is finite and hence the second
term in 10.27 converges to 0 p-a.e. as n→∞.

Define α as the minimum nonzero value of the conditional probability
m(xk|xk). Then with probability 1 under MXn and hence also under PXn
we have that

1

n

n−1∑

i=k
ln

1

m(Xi|Xki−k)
≤ ln

1

α

since otherwise the sequence Xn would have 0 probability under MXn
and hence also under PXn and 0 ln 0 is considered to be 0. Thus the right-
most term of (10.27) is uniformly integrable with respect to p and hence
from Theorem 1.6 this term converges to Ep̄x(lnm(Xk|Xk)). This proves
the leftmost equality of (10.25).

Let p̄Xn|x denote the distribution of Xn under the ergodic component
p̄x . Since MXn ≫ P̄Xn and P̄Xn =

∫
dp̄(x)p̄Xn|x , if MXn(F) = 0, then

p̄Xn|x(F) = 0 p-a.e. Since the alphabet of Xn if finite, we therefore also
have with probability one under p̄ that MXn ≫ p̄Xn|x and hence

Hp̄x‖m(X
n) =

∑

an
p̄Xn|x(an) ln

p̄Xn|x(an)
MXn(an)

is well defined for p̄-almost all x. This expectation can also be written as

Hp̄x‖m(X
n) = −Hp̄x(Xn)− Ep̄x[lnm(Xk)+

n−1∑

i=k
lnm(Xk|Xk)T i−k]

= −Hp̄x(Xn)− Ep̄x[lnm(Xk)]− (n− k)Ep̄x[lnm(Xk|Xk)],

where we have used the stationarity of the ergodic components. Dividing
by n and taking the limit as n → ∞, the middle term goes to zero as
previously and the remaining limits prove the middle equality and hence
the rightmost inequality in (10.25).

Equation (10.25) follows from (10.25) and L1(p) convergence, that is,
sincen−1hn → h, we must also have that Ep(n−1hn(Xn))=n−1Hp‖m(Xn)
converges to Eph. Since the former limit is Hp‖m(X), (10.25) follows.
Since p̄x is invariant (Theorem 1.5) and since expectations of invariant
functions are the same under an AMS measure and its stationary mean
(Lemma 6.3.1 of [55] or Lemma 7.5 of [58]), application of the previous
results of the lemma to both p and p̄ proves that

Hp‖m(X) =
∫
dp(x)Hp̄x‖m(X) =

∫
dp̄(x)Hp̄x‖m(X) = Hp̄‖m(X),

which proves (10.27) and completes the proof of the lemma. ✷
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Corollary 10.7. Given p andm as in the Lemma, then the relative entropy

rate of p with respect to m has an ergodic decomposition, that is,

Hp‖m(X) =
∫
dp(x)Hp̄x‖m(X).

Proof: This follows immediately from (10.25) and (10.25). ✷

Standard Alphabets

We now drop the finite alphabet assumption and suppose that {Xn} is
a standard alphabet process with process distributions p and m, where
p is stationary, m is kth order Markov with stationary transitions, and
MXn ≫ PXn are the induced vector distributions for n = 1,2, . . . . Define
the densities fn and entropy densities hn as previously.

As an easy consequence of the development to this point, the ergodic
decomposition for divergence rate of finite alphabet processes combined
with the definition of H∗ as a supremum over rates of quantized pro-
cesses yields an extension of Corollary 8.2 to divergences. This yields
other useful properties as summarized in the following corollary.

Corollary 10.8. Given a standard alphabet process {Xn} suppose that p
and m are two process distributions such that p is AMS and m is kth

order Markov with stationary transitions and MXn ≫ PXn are the induced

vector distributions. Let p̄ denote the stationary mean of p and let {p̄x}
denote the ergodic decomposition of the stationary mean p̄. Then

H∗p‖m(X) =
∫
dp(x)H∗p̄x‖m(X). (10.27)

In addition,

H∗p‖m(X) = H∗p̄‖m(X) = Hp̄‖m(X) = Hp‖m(X); (10.28)

that is, the two definitions of relative entropy rate yield the same values

for AMS p and stationary transition Markov m and both rates are the

same as the corresponding rates for the stationary mean. Thus relative

entropy rate has an ergodic decomposition in the sense that

Hp‖m(X) =
∫
dp(x)Hp̄x‖m(X). (10.29)

Comment: Note that the extra technical conditions of Theorem 8.3 for
equality of the analogous mutual information rates Ī and I∗ are not
needed here. Note also that only the ergodic decomposition of the sta-
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tionary mean p̄ of the AMS measure p is considered and not that of the
Markov source m.

Proof: The first statement follows as previously described from the finite
alphabet result and the definition of H∗. The left-most and right-most
equalities of (10.28) both follow from the previous lemma. The middle
equality of (10.28) follows from Corollary 10.4. Eq. (10.29) then follows
from (10.27) and (10.28). ✷

Theorem 10.2. Given a standard alphabet process {Xn} suppose that p
andm are two process distributions such that p is AMS andm is kth order

Markov with stationary transitions andMXn ≫ PXn are the induced vector

distributions. Let {p̄x} denote the ergodic decomposition of the stationary

mean p̄. If

lim
n→∞

1

n
Hp‖m(Xn) = Hp‖m(X) <∞,

then there is an invariant function h such that n−1hn → h in L1(p) as

n→∞. In fact,

h(x) = Hp̄x‖m(X),
the relative entropy rate of the ergodic component p̄x with respect to

m. Thus, in particular, under the stated conditions the relative entropy

densities hn are uniformly integrable with respect to p.

Proof: The proof exactly parallels that of Theorem 8.1, the mean ergodic
theorem for information densities, with the relative entropy densities
replacing the mutual information densities. The density is approximated
by that of a quantized version and the integral bounded above using the
triangle inequality. One term goes to zero from the finite alphabet case.
Since H = H∗ (Corollary 10.8) the remaining terms go to zero because
the relative entropy rate can be approximated arbitrarily closely by that
of a quantized process. ✷

It should be emphasized that although Theorem 10.2 and Theorem 8.1
are similar in appearance, neither result directly implies the other. It
is true that mutual information can be considered as a special case of
relative entropy, but given a pair process {Xn, Yn} we cannot in general
find a kth order Markov distributionm for which the mutual information
rate Ī(X;Y) equals a relative entropy rate Hp‖m. We will later consider
conditions under which convergence of relative entropy densities does
imply convergence of information densities.



Chapter 11

Ergodic Theorems for Densities

Abstract This chapter is devoted to developing ergodic theorems first
for relative entropy densities and then information densities for the gen-
eral case of AMS processes with standard alphabets. The general results
were first developed by Barron using the martingale convergence theo-
rem and a new martingale inequality. The similar results of Algoet and
Cover can be proved without direct recourse to martingale theory. They
infer the result for the stationary Markov approximation and for the infi-
nite order approximation from the ordinary ergodic theorem. They then
demonstrate that the growth rate of the true density is asymptotically
sandwiched between that for the kth order Markov approximation and
the infinite order approximation and that no gap is left between these
asymptotic upper and lower bounds in the limit as k→∞. They use mar-
tingale theory to show that the values between which the limiting density
is sandwiched are arbitrarily close to each other, but in this chapter it is
shown that martingale theory is not needed and this property follows
from the results of Chapter 8.

11.1 Stationary Ergodic Sources

Theorem 11.1. Given a standard alphabet process {Xn}, suppose that p
andm are two process distributions such that p is stationary ergodic and

m is a K-step Markov source with stationary transition probabilities. Let

MXn ≫ PXn be the vector distributions induced by p and m. As before let

hn = lnfXn(X
n) = ln

dPXn

dMXn
(Xn).

Then with probability one under p

© Springer Science+Business Media, LLC 2011
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lim
n→∞

1

n
hn = Hp‖m(X).

Proof: Let p(k) denote the k-step Markov approximation of p as defined
in Theorem 10.1, that is, p(k) has the same kth order conditional prob-
abilities and k-dimensional initial distribution. From Corollary 10.1, if
k ≥ K, then (10.8)–(10.10) hold. Consider the expectation

Ep

(
f (k)Xn (X

n)

fXn(Xn)

)
= EPXn

(
f (k)Xn

fXn

)
=
∫ (
f (k)Xn

fXn

)
dPXn .

Define the set An = {xn : fXn > 0}; then PXn(An) = 1. Use the fact that
fXn = dPXn/dMXn to write

EP

(
f (k)Xn (X

n)

fXn(Xn)

)
=
∫

An

(
f (k)Xn

fXn

)
fXn dMXn =

∫

An
f (k)Xn dMXn .

From Theorem 10.1,

f (k)Xn =
dP (k)Xn

dMXn

and therefore

Ep

(
f (k)Xn (X

n)

fXn(Xn)

)
=
∫

An

dP (k)Xn

dMXn
dMXn = P (k)Xn (An) ≤ 1.

Thus we can apply Lemma 7.13 to the sequence f (k)Xn (X
n)/fXn(Xn) to

conclude that with p-probability 1

lim
n→∞

1

n
ln
f (k)Xn (X

n)

fXn(Xn)
≤ 0

and hence

lim
n→∞

1

n
lnf (k)Xn (X

n) ≤ lim inf
n→∞

1

n
fXn(X

n). (11.1)

The left-hand limit is well-defined by the usual ergodic theorem:

lim
n→∞

1

n
lnf (k)Xn (X

n) = lim
n→∞

1

n

n−1∑

l=k
lnfXl|Xkl−k(Xl|X

k
l−k)+ lim

n→∞
1

n
lnfXk(X

k).

Since 0 < fXk < ∞ with probability 1 under MXk and hence also un-
der PXk , then 0 < fXk(X

k) < ∞ under p and therefore n−1 lnfXk(X
k)

→ 0 as n → ∞ with probability one. Furthermore, from the pointwise er-
godic theorem for stationary and ergodic processes (e.g., Theorem 7.2.1
of [55] or Theorem 8.1 of [58]), since p is stationary ergodic we have with
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probability one under p using (10.19) and Lemma 10.1 that

lim
n→∞

1

n

n−1∑

l=k
lnfXl|Xkl−k(Xl|X

k
l−k)

= lim
n→∞

1

n

n−1∑

l=k
lnfX0|X−1,··· ,X−k(X0 | X−1, · · · , X−k)T l

= Ep lnfX0|X−1,··· ,X−k(X0|X−1, · · · , X−k)
= Hp‖m(X0|X−1, · · · , X−k) = Hp(k)‖m(X).

Thus with (11.1) it follows that

lim inf
n→∞

1

n
lnfXn(X

n) ≥ Hp‖m(X0|X−1, · · · , X−k) (11.2)

for any positive integer k. Sincem is Kth order Markov, Lemma 10.1 and
the above imply that

lim inf
n→∞

1

n
lnfXn(X

n) ≥ Hp‖m(X0|X−) = Hp‖m(X), (11.3)

which completes half of the sandwich proof of the theorem.
If Hp‖m(X) = ∞, the proof is completed with (11.3). Hence we can

suppose that Hp‖m(X) < ∞. From Lemma 10.1 using the distribution
SX0,X−1,X−2,··· constructed there, we have that

D(PX0,X−1,···‖SX0,X−1,···) = Hp‖m(X0|X−) =
∫
dPX0,X− lnfX0|X−

where

fX0|X− =
dPX0,X−1,···
dSX0,X−1,···

.

It should be pointed out that we have not (and will not) prove that
fX0|X−1,··· ,X−n →fX0|X− ; the convergence of conditional probability den-
sities which follows from the martingale convergence theorem and the
result about which most generalized Shannon-McMillan-Breiman theo-
rems are built. (See, e.g., Barron [8].) We have proved, however, that the
expectations converge (Lemma 10.1), which is what is needed to make
the sandwich argument work.

For the second half of the sandwich proof we construct a measure Q
which will be dominated by p on semi-infinite sequences using the above
conditional densities given the infinite past. Define the semi-infinite se-
quence

X−n = {· · · , Xn−1}
for all nonnegative integers n. Let Bnk = σ(Xnk ) and B−k = σ(X−k ) =
σ(· · · , Xk−1) be the σ -fields generated by the finite dimensional random
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vector Xnk and the semi-infinite sequence X−k , respectively. Let Q be the
process distribution having the same restriction to σ(X−k ) as does p and
the same restriction to σ(X0, X1, · · · ) as does p, but which makes X−

and Xnk conditionally independent given Xk for any n; that is,

QX−k = PX−k ,

QXk,Xk+1,··· = PXk,Xk+1,···,

and X− → Xk → Xnk is a Markov chain for all positive integers n so that

Q(Xnk ∈ F|X−k ) = Q(Xnk ∈ F|Xk).

The measure Q is a (nonstationary) k-step Markov approximation to
P in the sense of Section 7.2 and

Q = PX−×(Xk,Xk+1,··· )|Xk

(in contrast to P = PX−XkX∞k ). Observe that X− → Xk → Xnk is a Markov
chain under both Q and m.

By assumption,
Hp‖m(X0|X−) <∞

and hence from Lemma 10.1

Hp‖m(Xnk |X−k ) = nHp‖m(Xnk |X−k ) <∞

and hence from Theorem 7.3 the density fXnk |X−k is well-defined as

fXnk |X−k =
dSX−n+k
PX−n+k

(11.4)

where
SX−n+k = MXnk |XkPX−k , (11.5)

and
∫
dPX−n+k lnfXnk |X−k = D(PX−n+k‖SX−n+k)

= nHp‖m(Xnk |X−k ) <∞.

Thus, in particular,
SX−n+k ≫ PX−n+k .

Consider now the sequence of ratios of conditional densities

ζn =
fXnk |Xk(X

n+k)

fXnk |X−k (X
−
n+k)

.
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We have that ∫
dpζn =

∫

Gn
ζn

where
Gn = {x : fXnk |X−k (x

−
n+k) > 0}

since Gn has probability 1 under p (or else (11.6) would be violated).
Thus

∫
dpζn =

∫
dPX−n+k


fX

n
k |Xk(X

n+k)

fXnk |X−k
1{fXnk |X−k >0}




=
∫
dSX−n+kfX

n
k |X−k


fX

n
k |Xk(X

n+k)

fXnk |X−k
1{fXnk |X−k >0}




=
∫
dSX−n+kfX

n
k |Xk(X

n+k)1{fXnk |X−k >0}

≤
∫
dSX−n+kfX

n
k |Xk(X

n+k).

Using the definition of the measure S and iterated expectation we have
that

∫
dpζn ≤

∫
dMXnk |X−k dPX−k fXnk |Xk(X

n+k)

=
∫
dMXnk |XkdPX−k fXnk |Xk(X

n+k).

Since the integrand is now measurable with respect to σ(Xn+k), this
reduces to ∫

dpζn ≤
∫
dMXnk |XkdPXkfXnk |Xk .

Applying Lemma 7.10 we have

∫
dpζn ≤

∫
dMXnk |XkdPXk

dPXnk |Xk

dMXnk |Xk

=
∫
dPXkdPXnk |Xk = 1.

Thus ∫
dpζn ≤ 1

and we can apply Lemma 7.12 to conclude that p-a.e.

lim sup
n→∞

ζn = lim sup
n→∞

1

n
ln
fXnk |Xk

fXnk |X−k
≤ 0. (11.6)
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Using the chain rule for densities,

fXnk |Xk

fXnk |X−k
= fXn
fXk

× 1
∏n−1
l=k fXl|X−l

.

Thus from (11.6)

lim sup
n→∞


 1

n
lnfXn − 1

n
lnfXk −

1

n

n−1∑

l=k
lnfXl|X−l


 ≤ 0.

Invoking the ergodic theorem for the rightmost terms and the fact
that the middle term converges to 0 almost everywhere since lnfXk is
finite almost everywhere implies that

lim sup
n→∞

1

n
lnfXn ≤ Ep(lnfXk|X−k ) = Ep(lnfX0|X−) = Hp‖m(X). (11.7)

Combining this with (11.3) completes the sandwich and proves the
theorem. ✷

11.2 Stationary Nonergodic Sources

Next suppose that the source p is stationary with ergodic decomposition
{pλ; λ ∈ Λ} and ergodic component function ψ as in Theorem 1.6. We
first require some technical details to ensure that the various Radon-
Nikodym derivatives are well-defined and that the needed chain rules
for densities hold.

Lemma 11.1. Given a stationary source {Xn}, let {pλ; λ ∈ Λ} denote the

ergodic decomposition and ψ the ergodic component function of Theo-

rem 1.6. Let Pψ denote the induced distribution of ψ. Let PXn and PλXn
denote the induced marginal distributions of p and pλ. Assume that {Xn}
has the finite-gap information property of (8.15); that is, there exists a K
such that

Ip(XK ;X−|XK) <∞, (11.8)

where X− = (X−1, X−2, · · · ). We also assume that for some n

I(Xn;ψ) <∞. (11.9)

This will be the case, for example, if (11.8) holds for K = 0. Let m be a

K-step Markov process such that MXn ≫ PXn for all n. (Observe that such

a process exists since from (11.8) the Kth order Markov approximation

p(K) suffices.) Define MXn,ψ = MXn × Pψ. Then
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MXn,ψ ≫ PXn × Pψ ≫ PXn,ψ, (11.10)

and with probability 1 under p

MXn ≫ PXn ≫ P
ψ
Xn .

Lastly,

dP
ψ
Xn

dMXn
= fXn|ψ =

dPXn,ψ
d(MXn × Pψ)

. (11.11)

and therefore

dP
ψ
Xn

dPXn
= dP

ψ
Xn/dMXn

dPXn/dMXn
= fXn|ψ
fXn

. (11.12)

Proof: From Theorem 8.5 the given assumptions ensure that

lim
n→∞

1

n
Epi(X

n;ψ) = lim
n→∞

1

n
I(Xn;ψ) = 0 (11.13)

and hence PXn × Pψ ≫ PXn,ψ (since otherwise I(Xn;ψ) would be infinite
for some n and hence infinite for all larger n since it is increasing with
n). This proves the right-most absolute continuity relation of (11.10).
This in turn implies that MXn × Pψ ≫ PXn,ψ. The lemma then follows
from Theorem 7.2 with X = Xn, Y = ψ and the chain rule for Radon-
Nikodym derivatives. ✷

We know that the source will produce with probability one an ergodic
component pλ and hence Theorem 11.1 will hold for this ergodic com-
ponent. In other words, we have for all λ that

lim
n→∞

1

n
lnfXn|ψ(Xn|λ) = Hpλ(X); pλ − a.e.

This implies that

lim
n→∞

1

n
lnfXn|ψ(Xn|ψ) = Hpψ(X); p − a.e. (11.14)

Making this step precise generalizes Lemma 4.3.

Lemma 11.2. Suppose that {Xn} is a stationary not necessarily ergodic

source with ergodic component function ψ. Then (11.14) holds.

Proof: The proof parallels that for Lemma 4.3. Observe that if we have
two random variables U,V (U = X0, X1, · · · and Y = ψ above) and a
sequence of functions gn(U,V) (n−1fXn|ψ(Xn|ψ)) and a function g(V)
(Hpψ(X)) with the property

lim
n→∞gn(U,v) = g(v), PU|V=v − a.e.,
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then also
lim
n→∞gn(U,V) = g(V); PUV − a.e.

since defining the (measurable) set G = {u,v : limn→∞ gn(u,v) = g(v)}
and its section Gv = {u : (u,v) ∈ G}, then from (1.28)

PUV (G) =
∫
PU|V (Gv |v)dPV (v) = 1

if PU|V (Gv |v) = 1 with probability 1. ✷

It is not, however, the relative entropy density using the distribution
of the ergodic component that we wish to show converges. It is the origi-
nal sample density fXn . The following lemma shows that the two sample
entropies converge to the same thing. The lemma generalizes Lemma 4.3
and is proved by a sandwich argument analogous to Theorem 11.1. The
result can be viewed as an almost everywhere version of (11.13).

Theorem 11.2. Given a stationary source {Xn}, let {pλ; λ ∈ Λ} denote

the ergodic decomposition andψ the ergodic component function of Theo-

rem 1.6. Assume that the finite-gap information property (11.8) is satisfied

and that (11.9) holds for some n. Then

lim
n→∞

1

n
i(Xn;ψ) = lim

n→∞
1

n
ln
fXn|ψ
fXn

= 0; p − a.e.

Proof: From Theorem 7.4 we have immediately that

lim inf
n→∞ in(X

n;ψ) ≥ 0, (11.15)

which provides half of the sandwich proof.
To develop the other half of the sandwich, for each k ≥ K let p(k)

denote the k-step Markov approximation of p. Exactly as in the proof
of Theorem 11.1, it follows that (11.1) holds. Now, however, the Markov
approximation relative entropy density converges instead as

lim
n→∞

1

n
lnf (k)Xn (X

n) = lim
n→∞

1

n

∞∑

l=k
fXk|Xk(Xk|Xk)T k = EpψfXk|Xk(Xk|Xk).

Combining this with (11.14 we have that

lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)
fXn(Xn)

≤ Hpψ‖m(X)− EpψfXk|Xk(Xk|Xk).

From Lemma 10.1, the right hand side is just Ipψ(Xk;X
−|Xk) which from

Corollary 10.4 is just Hp‖p(k)(X). Since the bound holds for all k, we have
that
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lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)
fXn(Xn)

≤ inf
k
Hpψ‖p(k)(X) ≡ ζ.

Using the ergodic decompostion of relative entropy rate (Corollary 10.7)
that and the fact that Markov approximations are asymptotically accu-
rate (Corollary 10.5) we have further that

∫
dPψζ =

∫
dPψ inf

k
Hpψ‖p(k)(X)

≤ inf
k

∫
dPψHpψ‖p(k)(X)

= inf
k
Hp‖p(k)(X) = 0

and hence ζ = 0 with Pψ probability 1. Thus

lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)
fXn(Xn)

≤ 0, (11.16)

which with (11.15) completes the sandwich proof. ✷

Simply restating the theorem yields and using (11.14) the ergodic the-
orem for relative entropy densities in the general stationary case.

Corollary 8.3.1: Given the assumptions of Theorem 11.2,

lim
n→∞

1

n
lnfXn(X

n) = Hpψ‖m(X),p − a.e.

The corollary states that the sample relative entropy density of a pro-
cess satisfying (11.8) converges to the conditional relative entropy rate
with respect to the underlying ergodic component. This is a slight ex-
tension and elaboration of Barron’s result [8] which made the stronger
assumption that Hp‖m(X0|X−) = Hp‖m(X) < ∞. From Corollary 10.5
this condition is sufficient but not necessary for the finite-gap informa-
tion property of (11.8). In particular, the finite gap information property
implies that

Hp‖p(k)(X) = Ip(Xk;X−|Xk) <∞,
but it need not be true that Hp‖m(X) < ∞. In addition, Barron [8] and
Algoet and Cover [7] do not characterize the limiting density as the en-
tropy rate of the ergodic component, instead they effectively show that
the limit is Epψ(lnfX0|X−(X0|X−)). This, however, is equivalent since it
follows from the ergodic decomposition (see specifically Lemma 8.6.2 of
[55] or Lemma 10.4 of [58]) that fX0|X− = fX0|X−,ψ with probability one
since the ergodic component ψ can be determined from the infinite past
X−.
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11.3 AMS Sources

The following lemma is a generalization of Lemma 4.5. The result is due
to Barron [8], who proved it using martingale inequalities and conver-
gence results.

Lemma 11.3. Let {Xn} be an AMS source with the property that for every

integer k there exists an integer l = l(k) such that

Ip(X
k; (Xk+l, Xk+l+1, · · · )|Xlk) <∞. (11.17)

Then

lim
n→∞

1

n
i(Xk; (Xk + l, · · · , Xn−1)|Xlk) = 0; p − a.e.

Proof: By assumption

Ip(X
k; (Xk+l, Xk+l+1, · · · )|Xlk) =

Ep ln
fXk|Xk,Xk+1,···(X

k|Xk, Xk+1, · · · )
fXk|Xlk(X

k|Xlk)
<∞.

This implies that
PXk×(Xk+l,··· )|Xlk ≫ PX0,X1,···

with
dPX0,X1,···

dPXk×(Xk+l,··· )|Xlk
= fXk|Xk,Xk+1,···(Xk|Xk, Xk + 1, · · · )

fXk|Xlk(X
k|Xlk).

.

Restricting the measures to Xn for n > k+ l yields

dPXn

dPXk×(Xk+l,··· ,Xn)|Xlk
= fXk|Xk,Xk+1,··· ,Xn(X

k|Xk, Xk + 1, · · · )
fXk|Xlk(X

k|Xlk)
= i(Xk; (Xk + l, · · · , Xn)|Xlk).

With this setup the lemma follows immediately from Theorem 7.4. ✷

The following lemma generalizes Lemma 4.6 and will yield the general
theorem. The lemma was first proved by Barron [8] using martingale
inequalities.

Theorem 11.3. Suppose that p and m are distributions of a standard al-

phabet process {Xn} such that p is AMS andm is k-step Markov. Let p be

a stationary measure that asymptotically dominates p (e.g., the station-

ary mean). Suppose that PXn , PXn , and MXn are the distributions induced

by p, p, and m and that MXn dominates both PXn and PXn for all n and

that fXn and fXn are the corresponding densities. If there is an invariant

function h such that
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lim
n→∞

1

n
lnfXn(X

n) = h; p − a.e.

then also

lim
n→∞

1

n
lnfXn(X

n) = h; p − a.e.

Proof: For any k and n ≥ k we can write using the chain rule for densities

1

n
lnfXn − 1

n
lnfXn−kk

= 1

n
lnfXk|Xn−kk

.

Since for k ≤ l < n
1

n
lnfXk|Xn−kk

= 1

n
lnfXk|Xlk +

1

n
i(Xk; (Xk+l, · · · , Xn−1)|Xlk),

Lemma 11.3 and the fact that densities are finite with probability one
implies that

lim
n→∞

1

n
lnfXk|Xn−kk

= 0; p − a.e.

This implies that there is a subsequence k(n)→∞ such that

1

n
lnfXn(X

n)− 1

n
lnf

Xn−k(n)k(n) )
(Xn−k(n)k(n) ); → 0, p − a.e.

To prove this, for each k chose N(k) large enough so that

p(| 1

N(k)
lnf

Xk|XN(k)−kk
(Xk|XN(k)−kk )| > 2−k) ≤ 2−k

and then let k(n) = k for N(k) ≤ n < N(k + 1). Then from the Borel-
Cantelli lemma we have for any ǫ that

p(| 1

N(k)
lnf

Xk|XN(k)−kk
(Xk|XN(k)−kk )| > ǫ i.o.) = 0

and hence

lim
n→∞

1

n
lnfXn(X

n) = lim
n→∞

1

n
lnf

Xn−k(n)k(n)
(Xn−k(n)k(n) ); p − a.e.

In a similar manner we can also choose the sequence so that

lim
n→∞

1

n
lnfXn(X

n) = lim
n→∞

1

n
lnf

Xn−k(n)k(n)
(Xn−k(n)k(n) ); p − a.e.

From Markov’s inequality
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p

(
1

n
lnfXn−kk

(Xn−kk ) ≥ 1

n
lnfXn−kk

(Xn−kk )+ ǫ
)

= p(
fXn−kk

(Xn−kk )

fXn−kk
(Xn−kk )

≥ enǫ)

≤ e−nǫ
∫
dp
fXn−kk

(Xn−kk )

fXn−kk
(Xn−kk )

= e−nǫ
∫
dmfXn−kk

(Xn−kk ) = e−nǫ.

Hence again invoking the Borel-Cantelli lemma we have that

p(
1

n
lnfXn−kk

(Xn−kk ) ≥ 1

n
lnfXn−kk

(Xn−kk )+ ǫ i.o.) = 0

and therefore

lim sup
n→∞

1

n
lnfXn−kk

(Xn−kk ) ≤ h,p − a.e. (11.18)

The above event is in the tail σ -field
⋂
n σ(Xn, Xn+1, · · · ) since h is in-

variant and p dominates p on the tail σ -field. Thus

lim sup
n→∞

1

n
lnf

Xn−k(n)k(n)
(Xn−k(n)k(n) ) ≤ h; p − a.e.

and hence

lim sup
n→∞

1

n
lnfXn(X

n) ≤ h; p − a.e.

which proves half of the lemma.
Since p asymptotically dominates p, given ǫ > 0 there is a k such that

p( lim
n→∞n

−1f(Xn−kk ) = h) ≥ 1− ǫ.

Again applying Markov’s inequality and the Borel-Cantelli lemma as pre-
viously we have that

lim inf
n→∞

1

n
ln
f
Xn−k(n)k(n)

(Xn−k(n)k(n) )

f
Xn−k(n)k(n)

(Xn−k(n)k(n) )
≥ 0; p − a.e.

which implies that

p(lim inf
n→∞

1

n
f
Xn−k(n)k(n)

(Xn−kk ) ≥ h) ≥ ǫ

and hence also that

p(lim inf
n→∞

1

n
fXn(X

n) ≥ h) ≥ ǫ.
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−1hn≥
h, which completes the proof of the lemma. ✷

We can now extend the ergodic theorem for relative entropy densities
to the general AMS case.

Corollary 8.4.1: Given the assumptions of Theorem 11.3,

lim
n→∞

1

n
lnfXn(X

n) = Hpψ(X),

where pψ is the ergodic component of the stationary mean p of p.
Proof: The proof follows immediately from Theorem 11.3 and Lemma 11.1,
the ergodic theorem for the relative entropy density for the stationary
mean. ✷

11.4 Ergodic Theorems for Information Densities.

As an application of the general theorem we prove an ergodic theorem
for mutual information densities for stationary and ergodic sources. The
result can be extended to AMS sources in the same manner that the
results of Section 11.2 were extended to those of Section 11.3. As the
stationary and ergodic result suffices for the coding theorems and the
AMS conditions are messy, only the stationary case is considered here.
The result is due to Barron [8].

Theorem 11.4. Let {Xn, Yn} be a stationary ergodic pair random process

with standard alphabet. Let PXnYn , PXn , and PYn denote the induced dis-

tributions and assume that for all n PXn × PYn ≫ PXnYn and hence the

information densities

in(X
n;Yn) = dPXnYn

d(PXn × PYn)
are well-defined. Assume in addition that both the {Xn} and {Yn} pro-

cesses have the finite-gap information property of (11.8) and hence by the

comment following Corollary 10.1 there is a K such that both processes

satisfy the K-gap property

I(XK ;X−|XK) <∞, I(YK ;Y−|YK) <∞.

Then

lim
n→∞

1

n
in(X

n;Yn) = I(X;Y); p − a.e..

Proof: Let Zn = (Xn, Yn). Let MXn = P (K)Xn and MYn = P (K)Yn denote the
Kth order Markov approximations of {Xn} and {Yn}, respectively. The
finite-gap approximation implies as in Section 11.2 that the densities

Since ǫ can be made arbitrarily small, this proves that p-a.e. lim infn
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fXn = dPXn

dMXn
and fYn = dPYn

dMYn

are well-defined. From Theorem 11.1

lim
n→∞

1

n
lnfXn(X

n) = H
pX‖p(K)X (X0|X−) = I(Xk;X−|Xk) <∞,

lim
n→∞

1

n
lnfYn(Y

n) = I(Yk;Y−|Y k) <∞.

Define the measures MZn by MXn ×MYn . Then this is a K-step Markov
source and since

MXn ×MYn ≫ PXn × PYn ≫ PXn,Yn = PZn ,

the density

fZn = dPZn

dMZn

is well-defined and from Theorem 11.1 has a limit

lim
n→∞

1

n
lnfZn(Z

n) = Hp‖m(Z0|Z−).

If the density in(Xn, Yn) is infinite for any n, then it is infinite for all
larger n and convergence is trivially to the infinite information rate. If it
is finite, the chain rule for densities yields

1

n
in(X

n;Yn) = 1

n
lnfZn(Z

n)− 1

n
lnfXn(X

n)− 1

n
lnfYn(Y

n)

→
n→∞ Hp‖p(k)(Z0|Z−)−Hp‖p(k)(X0|X−)−Hp‖p(k)(Y0|Y−)
= Hp‖p(k)(X, Y)−Hp‖p(k)(X)−Hp‖p(k)(Y).

The limit is not indeterminate (of the form ∞−∞) because the two sub-
tracted terms are finite. Since convergence is to a constant, the constant
must also be the limit of the expected values of n−1in(Xn, Yn), that is,
I(X;Y). ✷



Chapter 12

Source Coding Theorems

Abstract The source coding theorems subject to a fidelity criterion are
develped for AMS sources and additive and subadditive distortion mea-
sures. The results are first developed for the classic case of block coding
and then to sliding-block codes. The operational distortion-rate function
for both classes of codes is shown to equal the Shannon distortion-rate
function.

12.1 Source Coding and Channel Coding

In this chapter and in Chapter 14 we develop the basic coding theorems
of information theory. As is traditional, we consider two important spe-
cial cases first and then later form the overall result by combining these
special cases. In the first case in this chapter we assume that the channel
is noiseless, but it is constrained in the sense that it can only pass R bits
per input symbol to the receiver. Since this is usually insufficient for the
receiver to perfectly recover the source sequence, we attempt to code the
source so that the receiver can recover it with as little distortion as pos-
sible. This leads to the theory of source coding or source coding subject

to a fidelity criterion or data compression, where the latter name reflects
the fact that sources with infinite or very large entropy are “compressed”
to fit across the given communication link. In Chapter 14 we ignore the
source and focus on a discrete alphabet channel and construct codes
that can communicate any of a finite number of messages with small
probability of error and we quantify how large the message set can be.
This operation is called channel coding or error control coding. We then
develop joint source and channel codes which combine source coding and
channel coding so as to code a given source for communication over a
given channel so as to minimize average distortion. The ad hoc division
into two forms of coding is convenient and will permit performance near

© Springer Science+Business Media, LLC 2011
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that of the operational distortion-rate function function for the single-
user or point-to-point communication systems and codes considered in
this book.

The Shannon coding theorems quantify the optimal performance that
can be achieved when communicating a given source through a given
channel, but they do not say how to actually achieve such optimal perfor-
mance. The Shannon theorems are at heart existence theorems and not
constructive. There is a huge literature on constructing channel codes
for reliable communication and source codes for analog-to-digital con-
version and data compression. Coding theory in the sense of a rigorous
approach to designing good codes is not treated or even surveyed here,
but there are a collection of results which use the information theoretic
techniques developed in this book to provide necessary conditions that
optimal or asymptotically optimal source codes must satisfy. Such con-
ditions highlight implications of the underlying theory for the behav-
ior of good codes and provide insight into the structure of good codes
and thereby suggest design techniques that can improve existing codes.
These results are developed in Chapter 13.

12.2 Block Source Codes for AMS Sources

We first consider a particular class of codes: block codes. For the time
being we also concentrate on additive distortion measures. Extensions
to subadditive distortion measures will be considered later. Let {Xn} be
a source with a standard alphabet A. Recall that an (N,K) block code of
a source {Xn}maps successive nonoverlapping input vectors {XNnN} into
successive channel vectors UKnK = α(XNnN), where α : AN → BK is called
the source encoder. We assume that the channel is noiseless, but that it
is constrained in the sense that N source time units corresponds to the
same amount of physical time as K channel time units and that

K log ||B||
N

≤ R,

where the inequality can be made arbitrarily close to equality by taking
N and K large enough subject to the physical stationarity constraint. R
is called the source coding rate or resolution in bits or nats per input
symbol. We may wish to change the values of N and K, but the rate is
fixed.

A reproduction or approximation of the original source is obtained by
a source decoder, which we also assume to be a block code. The decoder
is a mapping α : BK → ÂN which forms the reproduction process {X̂n}
via X̂NnN = α(UKnK); n = 1,2, . . .. In general we could have a reproduction
dimension different from that of the input vectors provided they corre-
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sponded to the same amount of physical time and a suitable distortion
measure was defined. We will make the simplifying assumption that they
are the same, however.

Because N source symbols are mapped into N reproduction symbols,
we will often refer to N alone as the block length of the source code. Ob-
serve that the resulting sequence coder is N-stationary. Our immediate
goal is now the following: Let E and D denote the collection of all block
codes with rate no greater than R and let ν be the given channel. What is
the optimal achievable performance ∆(µ,E, ν,D) for this system? Our
first step toward evaluating the operational DRF is to find a simpler and
equivalent expression for the current special case.

Given a source code consisting of encoder α and decoder β, define the
codebook to be

C = { all β(uK);uK ∈ BK},
that is, the collection of all possible reproduction vectors available to the
receiver. For convenience we can index these words as

C = {yi; i = 1,2, . . . ,M},

where N−1 logM ≤ R by construction. Observe that if we are given only a
decoder β or, equivalently, a codebook, and if our goal is to minimize the
average distortion for the current block, then no encoder can do better
than the encoder α∗ which maps an input word xN into the minimum
distortion available reproduction word, that is, define α∗(xN) to be the
uK minimizing ρN(xN , β(uK)), an assignment we denote by

α∗(xN) = argmin
uK

ρN(x
N , β(uK)).

The fact that no encoder can yield smaller average distortion than a mini-
mum distortion encoder is an example of an optimality property of block
codes. Such properties are the subject of Chapter 13. Observe that by
construction we therefore have that

ρN(x
N , β(α∗(xN))) =min

y∈C
ρN(x

N , y)

and the overall mapping of xN into a reproduction is a minimum distor-
tion or nearest neighbor mapping. Define

ρN(x
N ,C) =min

y∈C
ρN(x

N , y).

To prove that this is the best encoder, observe that if the source µ is
AMS and p is the joint distribution of the source and reproduction, then
p is also AMS. This follows since the channel induced by the block code
is N-stationary and hence also AMS with respect to TN . This means that
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p is AMS with respect to TN which in turn implies that it is AMS with
respect to T (Theorem 7.3.1 of [55] or Theorem 8.2 of [58]). Letting p
denote the stationary mean of p and pN denote the N-stationary mean,
we then have from (5.12) that for any block codes with codebook C

∆ = 1

N
EpNρN(X

N , YN) ≥ 1

N
EpNρN(X

N ,C),

with equality if the minimum distortion encoder is used. For this reason
we can confine interest for the moment to block codes specified by a
codebook: the encoder produces the index of the minimum distortion
codeword for the observed vector and the decoder is a table lookup pro-
ducing the codeword being indexed. We will be interested later in look-
ing at possibly nonoptimal encoders in order to decouple the encoder
from the decoder and characterize the separate effects of encoder and
decoder on performance.

A block code of this type is also called a vector quantizer or block

quantizer. Denote the performance of the block code with codebook C
on the source µ by

ρ(C, µ) = ∆ = Epρ∞.

Lemma 12.1. Given an AMS source µ and a block length N code book

C, let µN denote the N-stationary mean of µ (which exists from Corol-

lary 7.3.1 of [55] or Corollary 8.5 of [58]), let p denote the induced in-

put/output distribution, and let p and pN denote its stationary mean and

N-stationary mean, respectively. Then

ρ(C, µ) = Epρ1(X0, Y0) = 1

N
EpNρN(X

N , YN)

= 1

N
EµNρN(X

N ,C) = ρ(C, µN).

Proof: The first two equalities follow from (5.12), the next from the use
of the minimum distortion encoder, the last from the definition of the
performance of a block code. ✷

It need not be true in general that ρ(C, µ) equal ρ(C, µ). For example,
if µ produces a single periodic waveform with period N and C consists of
a single period, then ρ(C, µ) = 0 and ρ(C, µ) > 0. It is the N-stationary
mean and not the stationary mean that is most useful for studying an
N-stationary code.

We now define the operational distortion-rate function (DRF) for block
codes to be

δ(R,µ) = ∆(µ, ν,E,D) = inf
N
δN(R, µ), (12.1)

δN(R, µ) = inf
C: 1
N log ||C||≤R

ρ(C, µ), (12.2)
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where ν is the noiseless channel described earlier and E and D are
classes of block codes for the channel. δ(R,µ) is called the operational

block coding distortion-rate function (DRF).

Corollary 12.1. Given an AMS source µ, then for any positive integer N

δN(R, µT
−i) = δN(R, µNT−i); i = 0,1, . . . ,N − 1.

Proof: For i = 0 the result is immediate from the lemma. For i 6= 0 it
follows from the lemma and the fact that the N-stationary mean of µT−i

is µNT
−i (as is easily verified from the definitions). ✷

Reference Letters

Many of the source coding results will require a technical condition that
is a generalization of the reference letter condition of Theorem 9.1 for
stationary sources. An AMS source µ is said to have a reference letter

a∗ ∈ Â with respect to a distortion measure ρ = ρ1 on A× Â if

sup
n
EµT−nρ(X0, a

∗) = sup
n
Eµρ(Xn, a

∗) = ρ∗ <∞, (12.3)

that is, there exists a letter for which Eµρ(Xn, a∗) is uniformly bounded

above. If we define for any k the vector a∗k = (a∗, a∗, · · · , a∗) consist-
ing of k a∗’s, then (12.3) implies that

sup
n
EµT−n

1

k
ρk(X

k, a∗k) ≤ ρ∗ <∞. (12.4)

We assume for convenience that any block code of length N contains
the reference vector a∗N . This ensures that ρN(xN ,C) ≤ ρN(xN , a∗N)
and hence that ρN(xN ,C) is bounded above by a µ-integrable function
and hence is itself µ-integrable. This implies that

δ(R,µ) ≤ δN(R, µ) ≤ ρ∗. (12.5)

The reference letter also works for the stationary mean source µ since

lim
n→∞

1

n

n−1∑

i=0

ρ(xi, a
∗) = ρ∞(x, a∗),

µ-a.e. and µ-a.e., where a∗ denotes an infinite sequence of a∗. Since ρ∞
is invariant we have from Lemma 6.3.1 of [55] or Lemma 7.5 of [58] and
Fatou’s lemma (Lemma 4.4.5 of [55] or Lemma 8.5 of [58]) that
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Eµρ(X0, a
∗) = Eµ


 lim
n→∞

1

n

n−1∑

i=0

ρ(Xi, a
∗)




≤ lim inf
n→∞

1

n

n−1∑

i=0

Eµρ(Xi, a
∗) ≤ ρ∗.

Performance and Distortion-Rate Functions

We next develop several basic properties of the performance and the
operational DRFs for block coding AMS sources with additive fidelity
criteria.

Lemma 12.2. Given two sources µ1 and µ2 and λ ∈ (0,1), then for any

block code C

ρ(C, λµ1 + (1− λ)µ2) = λρ(C, µ1)+ (1− λ)ρ(C, µ2)

and for any N

δN(R, λµ1 + (1− λ)µ2) ≥ λδN(R, µ1)+ (1− λ)δN(R, µ2)

and

δ(R,λµ1 + (1− λ)µ2) ≥ λδ(R,µ1)+ (1− λ)δ(R, µ2).

Thus performance is linear in the source and the operational DRFs are

convex
⋂

in R. Lastly,

δN(R + 1

N
,λµ1 + (1− λ)µ2) ≤ λδN(R, µ1)+ (1− λ)δN(R, µ2).

Eµρ(XN ,C). The first inequality follows from the equality and the fact
that the infimum of a sum is bounded below by the sum of the infima.
The next inequality follows similarly. To get the final inequality, let Ci
approximately yield δN(R, µi); that is,

ρ(Ci, µi) ≤ δN(R, µi)+ ǫ.

Form the union code C = C1
⋃C2 containing all of the words in both of

the codes. Then the rate of the code is

Proof: The equality follows from the linearity of expectation sinceρ(C,µ)=
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1

N
log ||C|| = 1

N
log(||C1|| + ||C2||)

≤ 1

N
log(2NR + 2NR)

= R + 1

N
.

This code yields performance

ρ(C, λµ1 + (1− λ)µ2)

= λρ(C, µ1)+ (1− λ)ρ(C, µ2)

≤ λρ(C1, µ1)+ (1− λ)ρ(C2, µ2)

≤ λδN(R, µ1)+ λǫ+ (1− λ)δN(R, µ2)+ (1− λ)ǫ.

Since the leftmost term in the above equation can be no smaller than
δN(R + 1/N,λµ1 + (1− λ)µ2), the lemma is proved. ✷

The first and last inequalities in the lemma suggest that δN is very
nearly an affine function of the source and hence perhaps δ is as well.
We will later pursue this possibility, but we are not yet equipped to do
so.

Before developing the connection between the distortion-rate func-
tions of AMS sources and those of their stationary mean, we pause to
develop some additional properties for operational DRFs in the special
case of stationary sources. These results follow Kieffer [91].

Lemma 12.3. Suppose that µ is a stationary source. Then

δ(R,µ) = lim
N→∞

δN(R, µ).

Thus the infimum over block lengths is given by the limit so that longer

codes can do better.

Proof: Fix an N and an n < N and choose codes Cn ⊂ Ân and CN−n ⊂
ÂN−n for which

ρ(Cn, µ) ≤ δn(R, µ)+ ǫ
2

ρ(CN−n, µ) ≤ δN−n(R, µ)+ ǫ
2
.

Form the block length N code C = Cn × CN−n. This code has rate no
greater than R and has distortion



302 12 Source Coding Theorems

Nρ(C, µ) = Emin
y∈C

ρN(X
N , y)

= Eyn∈Cnρn(Xn, yn)+ EvN−n∈CN−nρN−n(XN−nn , vN−n)

= Eyn∈Cnρn(Xn, yn)+ EvN−n∈CN−nρN−n(XN−n, vN−n)
= nρ(Cn, µ)+ (N −n)ρ(CN−n, µ)
≤ nδn(R, µ)+ (N −n)δN−n(R, µ)+ ǫ, (12.6)

where we have made essential use of the stationarity of the source. Since
ǫ is arbitrary and since the leftmost term in the above equation can be
no smaller than NδN(R, µ), we have shown that

NδN(R, µ) ≤ nδn(R, µ)+ (N −n)δN−n(R, µ)

and hence that the sequence NδN is subadditive. The result then follows
immediately from Lemma 7.5.1 of [55] or Lemma 8.5.3 of [58]. ✷

Corollary 12.2. If µ is a stationary source, then δ(R,µ) is a convex
⋃

function of R and hence is continuous for R > 0.

Proof: Pick R1 > R2 and λ ∈ (0,1). Define R = λR1+(1−λ)R2. For large n
define n1 = ⌊λn⌋ be the largest integer less than λn and let n2 = n−n1.
Pick codebooks Ci ⊂ Âni with rate Ri with distortion

ρ(Ci, µ) ≤ δni(Ri, µ)+ ǫ.

Analogous to (12.6), for the product code C = C1 ×C2 we have

nρ(C, µ) = n1ρ(C1, µ)+n2ρ(C2, µ)

≤ n1δn1(R1, µ)+n2δn2(R2, µ)+nǫ.

The rate of the product code is no greater than R and hence the leftmost
term above is bounded below by nδn(R, µ). Dividing by n we have since
ǫ is arbitrary that

δn(R, µ) ≤ n1

n
δn1(R1, µ)+ n2

n
δn2(R2, µ).

Taking n→∞ we have using the lemma and the choice of ni that

δ(R,µ) ≤ λδ(R1, µ)+ (1− λ)δ(R2, µ),

proving the claimed convexity. ✷

Corollary 12.3. If µ is stationary, then δ(R,µ) is an affine function of µ.

Proof: From Lemma 12.2 we need only prove that

δ(R,λµ1 + (1− λ)µ2) ≤ λδ(R,µ1)+ (1− λ)δ(R, µ2).
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From the same lemma we have that for any N

δN(R + 1

N
,λµ1 + (1− λ)µ2) ≤ λδN(R, µ1)+ (1− λ)δN(R, µ2)

For any K ≤ N we have since δN(R, µ) is nonincreasing in R that

δN(R + 1

K
,λµ1 + (1− λ)µ2) ≤ λδN(R, µ1)+ (1− λ)δN(R, µ2).

Taking the limit as N →∞ yields from Lemma 12.3 that

δ(R + 1

K
,µ) ≤ λδ(R,µ1)+ (1− λ)δ(R, µ2).

From Corollary 12.2, however, δ is continuous in R and the result follows
by letting K →∞. ✷

The following lemma provides the principal tool necessary for relating
the operational DRF of an AMS source with that of its stationary mean.
It shows that the DRF of an AMS source is not changed by shifting or,
equivalently, by redefining the time origin.

Lemma 12.4. Let µ be an AMS source with a reference letter. Then for

any integer i δ(R, µ) = δ(R,µT−i).

Proof: Fix ǫ > 0 and let CN be a rate R block length N codebook for which
ρ(CN , µ) ≤ δ(R,µ)+ǫ/2. For 1 ≤ i ≤ N −1 choose J large and define the
block length K = JN code CK(i) by

CK(i) = a∗(N−i) ×
J−2×
j=0
CN × a∗i,

where a∗l is an l-tuple containing all a∗’s. CK(i) can be considered to
be a code consisting of the original code shifted by i time units and
repeated many times, with some filler at the beginning and end. Except
for the edges of the long product code, the effect on the source is to use
the original code with a delay. The code has at most (2NR)J−1 = 2KR2−NR

words; the rate is no greater than R.

For any K-block xK the distortion resulting from using C(i)K is given by

KρK(x
K ,CK(i)) ≤ (N − i)ρN−i(xN−i, a∗(N−i))+ iρi(xiK−i, a∗

i
). (12.7)

Let {x̂n} denote the encoded process using the block code CK(i). If n
is a multiple of K, then
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nρn(x
n, x̂n) ≤

⌊ nK ⌋∑

k=0

((N − i)ρN−i(xN−ikK , a
∗(N−i))+ iρi(xi(k+1)K−i, a

∗i))

+
⌊ nK ⌋J−1∑

k=0

NρN(x
N
N−i+kN ,CN).

If n is not a multiple of K we can further overbound the distortion by
including the distortion contributed by enough future symbols to com-
plete a K-block, that is,

nρn(x
n, x̂n) ≤ nγn(x, x̂)

=
⌊ nK ⌋+1∑

k=0

(
(N − i)ρN−i(xN−ikK , a

∗(N−i))+ iρi(xi(k+1)K−i, a
∗i)

)

+
(⌊ nK ⌋+1)J−1∑

k=0

NρN(x
N
N−i+kN ,CN).

Thus

ρn(x
n, x̂n) ≤ N − i

K

1

n/K

⌊ nK ⌋+1∑

k=0

ρN−i(XN−i(T kKx),a∗
(N−i)

)

+ i
K

1

n/K

⌊ nK ⌋+1∑

k=0

ρi(X
i(T (k+1)K−ix,a∗i)

+ 1

n/N

(⌊ nK ⌋+1)J−1∑

k=0

ρN(X
N(T (N−i)+kNx),CN).

Since µ is AMS these quantities all converge to invariant functions:

lim
n→∞ρn(x

n, x̂n) ≤ N − i
K

lim
m→∞

1

m

m−1∑

k=0

ρN−i(XN−i(T kKx),a∗
(N−i)

)

+ i
K

lim
m→∞

1

m

m−1∑

k=0

ρi(X
i(T (k+1)K−ix,a∗i)

+ lim
m→∞

1

m

m−1∑

k=0

ρN(X
N(T (N−i)+kNx),CN).

We now apply Fatou’s lemma, a change of variables, and Lemma 12.1
to obtain
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δ(R,µT−i) ≤ ρ(CK(i), µT−i)

≤ N − i
K

lim sup
m→∞

1

m

m∑

k=0

EµT−iρN−i(X
N−iT kK , a∗(N−i))

+ i
K

lim
m→∞

1

m

m−1∑

k=0

EµT−iρi(X
iT (k+1)K−i, a∗i)

+ EµT−i lim
m→∞

1

m

m−1∑

k=0

ρN(X
NT (N−i)+kN),CN).

≤ N − i
K

ρ∗ + i
K
ρ∗ + Eµ lim

m→∞
1

m

m−1∑

k=1

ρN(X
NT kNCN)

≤ N
K
ρ∗ + ρ(CN , µ).

Thus if J and hence K are chosen large enough to ensure thatN/K ≤ ǫ/2,
then

δ(R,µT−i) ≤ δ(R,µ),
which proves that δ(R,µT−i) ≤ δ(R,µ). The reverse implication is found
in a similar manner: Let CN be a codebook for µT−i and construct a
codebook CK(N − i) for use on µ. By arguments nearly identical to those
above the reverse inequality is found and the proof completed. ✷

Corollary 12.4. Let µ be an AMS source with a reference letter. Fix N and

let µ and µN denote the stationary and N-stationary means. Then for

R > 0
δ(R, µ) = δ(R,µNT−i); i = 0,1, . . . ,N − 1.

Proof: It follows from the previous lemma that the δ(R, µNT
−i) are all

equal and hence it follows from Lemma 12.2, Theorem 7.3.1 of [55] or
Theorem 8.2 of [58], and Corollary 7.3.1 of [55] or Corollary 8.5 of [58]
that

δ(R,µ) ≥ 1

N

N−1∑

i=0

δ(R,µNT
−i) = δ(R,µN).

To prove the reverse inequality, take µ = µN in the previous lemma and
construct the codes CK(i) as in the previous proof. Take the union code
CK =

⋃N−1
i=0 CK(i) having block length K and rate at most R + K−1 logN .

We have from Lemma 12.1 and (12.7) that

ρ(CK , µ) = 1

N

N−1∑

i=0

ρ(CK , µNT−i)

≤ 1

N

N−1∑

i=0

ρ(CK(i), µNT−i) ≤
N

K
ρ∗ + ρ(CN , µN)



306 12 Source Coding Theorems

and hence as before

δ(R + 1

JN
logN,µ) ≤ δ(R,µN).

From Corollary 12.1 δ(R, µ) is continuous in R for R > 0 since µ is
stationary. Hence taking J large enough yields δ(R, µ) ≤ δ(R,µN). This
completes the proof since from the lemma δ(R, µNT

−i) = δ(R,µN). ✷

We are now prepared to demonstrate the fundamental fact that the
block source coding operational distortion-rate function for an AMS
source with an additive fidelity criterion is the same as that of the sta-
tionary mean process. This will allow us to assume stationarity when
proving the actual coding theorems.

Theorem 12.1. If µ is an AMS source and {ρn} an additive fidelity crite-

rion with a reference letter, then for R > 0

δ(R,µ) = δ(R,µ).

Proof: We have from Corollaries 11.2.1 and 11.2.4 that

δ(R,µ) ≤ δ(R,µN) ≤ δN(R, µN) = δN(R, µ).

Taking the infimum over N yields

δ(R,µ) ≤ δ(R,µ).

Conversely, fix ǫ > 0 let CN be a block length N codebook for which
ρ(CN , µ)≤ δ(R,µ)+ǫ. From Lemma 12.1, Corollary 12.1, and Lemma 12.4

δ(R, µ)+ ǫ ≤ ρ(CN , µ) = 1

N

N−1∑

i=0

ρ(CN , µNT−i)

≥ 1

N

N−1∑

i=0

δN(R, µNT
−i) = 1

N

N−1∑

i=0

δN(R, µT
−i)

≥ 1

N

N−1∑

i=0

δ(R,µT−i) = δ(R,µ),

which completes the proof since ǫ is arbitrary. ✷

Since the DRFs are the same for an AMS process and its station-
ary mean, this immediately yields the following corollary from Corol-
lary 12.2:

Corollary 12.5. If µ is AMS, then δ(R,µ) is a convex function of R and

hence a continuous function of R for R > 0.
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12.3 Block Source Code Mismatch

In this section the mismatch results of [66] for metric distortion mea-
sures are extended to additive distortion mesures that are a power of
a metric, the class of fidelity criteria considered in Section 5.11. The
formulation of operational distortion-rate functions for block codes in
terms of the decoder or reproduction codebook alone can be combined
with the process metric using the same distortion to quantify the dif-
ference in performance when a fixed code is applied on two distinct
sources. The topic is of primary interest in the case where one designs
a codebook to be optimal for one source, but then applies the codebook
to actually code a different source. This can happen, for example, if the
codebook is designed for a source by using an empirical distribution
based on a training sequence, e.g., a clustering or learning algorithm is
used on data to estimate the source statistics. The code so designed is
then applied to the source itself, which results in a mismatch between
the distribution used to design the code and the true, but unknown, un-
derlying distribution. Intuitively, if the sources are close in some sense,
then the performance of the code on the separate sources should also
be close.

Suppose that {ρn} is an additive fidelity criterion with per-symbol
distortion that is a positive power of a metric, ρ1(x,y) = d(x,y)p, p ≥
0, as considered in Section 5.11. Fix a blocklength N , an N-dimensional
reproduction codebook C, and two stationary sources with distributions
µX and µY . Recall from (5.40) that the rho-bar distortion between the two
sources is

ρN(µXn , µYn) = inf
π∈P(µXN ,µYN )

EπρN(X
N , YN)

ρ(µX , µY ) = sup
N

1

N
ρN(µXN , µYN ).

We assume the existence of a reference letter so that all of the expec-
tations considered are finite. Fix N and suppose that π approximately
yields ρN(µXN , µYN ) in the sense that it has the correct marginals and
for small ǫ > 0

EπρN(X
N , YN) ≤ ρN(µXN , µYN )+ ǫ.

For any xN , yN , zN we have that

ρN(x
N , zN) =

N−1∑

i=0

ρ1(xi, zi) =
N−1∑

i=0

d(xi, zi)
p. (12.8)
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If d is a metric and 0 ≤ p ≤ 1, then ρN(xN , zN) is also a metric, in
particular it satisfies the triangle inequality. Thus in this case we have
that

ρN(C, µX) = EµX
(

min
zN∈C

ρN(X
N , zN)

)
= Eπ

(
min
zN∈C

ρN(X
N , zN)

)

= Eπ
(

min
zN∈C

[
ρN(X

N , YN)+ ρN(YN , zN)
])

= Eπ
(
ρN(X

N , YN)
)
+ Eπ

(
min
zN∈C

ρN(Y
N , zN)

)

≤ ρN(µXN , µYN )+ ǫ+ ρN(C, µY ).

Since ǫ is arbitrary,

ρN(C, µX) ≤ ρN(C, µY )+ ρN(µXN , µYN ). (12.9)

Reversing the roles of X and Y in (12.9) and using the fact that the pro-
cess distortion is an upper bound for the normalized vector distortion
implies the following bound on the mismatch in performance resulting
from applying the same block code to different sources:

| N−1ρN(C, µX)−N−1ρN(C, µY ) |≤ ρ(µX , µY ) (12.10)

−1 log||C||≤
R, normalizing the distortion, and using the fact that the process rho-bar
distortion is an upper bound for all vector distortions yields

N−1δN(R, µX)−N−1δN(R, µY ) ≤ ρ(µX , µY ).

Reversing the roles of X and Y yields

| N−1δN(R, µX)−N−1δN(R, µY ) |≤ ρ(µX , µY ) (12.11)

which yields the conclusion that the N-th order operational distortion-
rate functions are continuous functions of the source under the rho-bar
distortion, which in this case of 0 ≤ p ≤ 1 is the rho-bar distance. Since
the sources are assumed stationary, the limits as N →∞ exist so that

| δ(R,µX)− δ(R,µY ) |≤ ρ(µX , µY ) (12.12)

so that the operational block coding DRF is continuous with respect to
rho-bar.

Now consider the case where p > 1 so that ρN does not satisfy a
triangle inequality. Now, however,

ρN(x
N , zN) = dpN(xN , zN) =

N−1∑

i=0

d(xi, zi)
p

Taking the infimum of both sides (12.10)over all codesCwithN
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is the pth power of a metric dN , the ℓp norm on the vectors of the indi-
vidual distortions. Analogous to the previous case consider

ρN(C, µX) = EµX
(

min
zN∈C

ρN(X
N , zN)

)

= Eπ
(

min
zN∈C

dN(X
N , zN)p

)

= Eπ
(

min
zN∈C

[dN(X
N , YN)+ dN(YN , zN)]p

)

= Eπ
(
[min
zN∈C

(dN(X
N , YN)+ dN(YN , zN))]p

)

since f(x) = xp is monotonically increasing for positive p and hence the
minimum of the pth power of a quantity is the p power of the minimum.
Continuing,

ρN(C, µX) ≤ Eπ
(
[dN(X

N , YN)+ min
zN∈C

(dN(Y
N , zN))]p

)

and hence application of Minkowski’s inequality yields

ρN(C, µX)1/p ≤
[
Eπ

(
[dN(X

N , YN)+ min
zN∈C

(dN(Y
N , zN))]p

)]1/p

≤
[
Eπ

(
dN(X

N , YN)p
)]1/p +

[
Eπ

(
min
zN∈C

dN(Y
N , zN)p

)]1/p

≤ [ρN(µXN , µYN )+ ǫ
]1/p + ρN(C, µY )1/p.

which since ǫ > 0 is arbitrary,

ρN(C, µX)1/p ≤
[
ρN(µXN , µYN )

]1/p + ρN(C, µY )1/p

which in a similar fashion to the previous case results in

| (N−1ρN(C, µX))1/p − (N−1ρN(C, µY ))1/p | ≤ ρ(µX , µY )1/p
| (N−1δN(R, µX))

1/p − (N−1δN(R, µY ))
1/p | ≤ ρ(µX , µY )1/p

| δ(R,µX)1/p − δ(R,µY )1/p | ≤ ρ(µX , µY )1/p

so that again the rho-bar distortion provides a bound on the perfor-
mance mismatch of a single codebook used for different sources and
the block source coding operational distortion-rate functions are contin-
uous with respect to the rho-bar distortion.

This completes the proof of the following lemma.

Lemma 12.5. Assume an additive fidelity criterion with per-letter distor-

tion ρ1 = dp, a positive power of a metric, µX and µY two station-

ary process distributions, and C a reproduction codebook of length N .
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If 0 ≤ p ≤ 1, then

| N−1ρN(C, µX)−N−1ρN(C, µY ) | ≤ ρ(µX , µY ) (12.13)

| N−1δN(R, µX)−N−1δN(R, µY ) | ≤ ρ(µX , µY ) (12.14)

| δ(R,µX)− δ(R,µY ) | ≤ ρ(µX , µY ) (12.15)

and if 1 ≤ p, then

| (N−1ρN(C, µX))1/p − (N−1ρN(C, µY ))1/p | ≤ ρ(µX , µY )1/p (12.16)

| (N−1δN(R, µX))
1/p − (N−1δN(R, µY ))

1/p | ≤ ρ(µX , µY )1/p (12.17)

| δ(R,µX)1/p − δ(R,µY )1/p | ≤ ρ(µX , µY )1/p (12.18)

Thus the block source coding operational distortion-rate functions δN(R, µ)
and δ(R,µ) are continuous functions of µ in the rho-bar distortion (and

dp distance).

These mismatch results can be used to derive universal coding re-
sults for block source coding for certaom classes of sources. Universal
codes are designed to provide nearly optimal coding for a collection of
sources rather than for one specific source. The basic idea is to carve up
the class using the rho-bar distortion (or the corresponding dp-distance)
and to design a code for a specific representative of each subclass. If the
members of a subclass are close in rho-bar, then the representative will
work well for all sources in the subclass. The overall codebook is then
formed as the union of the subclass codebooks. Provided the number of
subclasses is small with respect to the block length, each subclass code-
book can have nearly the full rate in bits per symbol and hence provide
nearly optimal coding within the class. A minimum distortion rule en-
coder will find the best word within all of the classes. This approach to
universal coding is detailed in [66, 132]. A variety of other approaches
exist to this problem of source coding with uncertainty about the source,
see for example [92, 198, 199].

12.4 Block Coding Stationary Sources

We showed in the previous section that when proving block source cod-
ing theorems for AMS sources, we could confine interest to stationary
sources. In this section we show that in an important special case we can
further confine interest to only those stationary sources that are ergodic
by applying the ergodic decomposition. This will permit us to assume
that sources are stationary and ergodic in the next section when the ba-
sic Shannon source coding theorem is proved and then extend the result
to AMS sources which may not be ergodic.
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As previously we assume that we have a stationary source {Xn} with
distribution µ and we assume that {ρn} is an additive distortion measure
and there exists a reference letter. For this section we now assume in
addition that the alphabet A is itself a Polish space and that ρ1(r ,y) is
a continuous function of r for every y ∈ Â. If the underlying alphabet
has a metric structure, then it is reasonable to assume that forcing input
symbols to be very close in the underlying alphabet should force the
distortion between either symbol and a fixed output to be close also.
The following theorem is the ergodic decomposition of the block source
coding operational distortion-rate function.

Theorem 12.2. Suppose that µ is the distribution of a stationary source

and that {ρn} is an additive fidelity criterion with a reference letter. As-

sume also that ρ1(·, y) is a continuous function for all y . Let {µx} denote

the ergodic decomposition of µ. Then

δ(R,µ) =
∫
dµ(x)δ(R, µx),

that is, δ(R,µ) is the average of the operational DRFs of its ergodic com-

ponents.

Proof: Analogous to the ergodic decomposition of entropy rate of Theo-
rem 3.3, we need to show that δ(R,µ) satisfies the conditions of Theorem
8.9.1 of [55] or Theorem 8.5 of [58]. We have already seen (Corollary 12.3)
that it is an affine function. We next see that it is upper semicontinuous.
Since the alphabet is Polish, choose a distance dG on the space of sta-
tionary processes having this alphabet with the property that G is con-
structed as in Section 8.2 of [55] or Section 9.8 of [58]. Pick an N large
enough and a length N codebook C so that

δ(R,µ) ≥ δN(R, µ)− ǫ
2
≥ ρN(C, µ)− ǫ.

ρN(xN , y) is by assumption a continuous function of xN and hence so
is ρN(xN ,C) = miny∈C ρ(xN , y). Since it is also nonnegative, we have
from Lemma 8.2.4 of [55] or Lemma 9.3 of [58] that if µn → µ then

lim sup
n→∞

EµnρN(X
N ,C) ≤ EµρN(XN ,C).

The left hand side above is bounded below by

lim sup
n→∞

δN(R, µn) ≥ lim sup
n→∞

δ(R,µn).

Thus since ǫ is arbitrary,

lim sup
n→∞

δ(R,µn) ≤ δ(R,µ)
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and hence δ(R,µ) upper semicontinuous in µ and hence also measur-
able. Since the process has a reference letter, δ(R,µx) is integrable since

δ(R,µX) ≤ δN(R, µx) ≤ Eµxρ1(X0, a
∗)

which is integrable if ρ1(x0, a∗) is from the ergodic decomposition theo-
rem. Thus Theorem 8.9.1 of [55] or Theorem 8.5 of [58] yields the desired
result. ✷

The theorem was first proved by Kieffer [91] for bounded continuous
additive distortion measures. The above extension removes the require-
ment that ρ1 be bounded.

12.5 Block Coding AMS Ergodic Sources

We have seen that the block source coding operational DRF of an AMS
source is given by that of its stationary mean. Hence we will be able to
concentrate on stationary sources when proving the coding theorem.

Theorem 12.3. Let µ be an AMS ergodic source with a standard alphabet

and {ρn} an additive distortion measure with a reference letter. Then

δ(R,µ) = D(R,µ),

where µ is the stationary mean of µ. If µ is stationary, then

δ(R,µ) = D(R,µ).

Comment: Coupling the theorem with Lemma 12.5 shows that if the per-
symbol distortion is a positive power of a metric, dp , then the Shannon
distortion rate function is a continuous function of the source distri-
bution µ in terms of the corresponding rho-bar process distortion or
the corresponding dp-distance. This has the same flavor of Corollary 6.2
showing that entropy was a continuous function of the d-bar distance,
which assumed a mean Hamming distortion. The dual result to shows
that the Shannon rate-distortion function is a continuous function of
the source with respect to the rho-bar distortion.
Proof: From Theorem 12.1 δ(R,µ) = δ(R, µ) and hence we will be done
if we can prove that

δ(R,µ) = D(R,µ).
This will follow if we can show that δ(R,µ) = D(R,µ) for any stationary
ergodic source with a reference letter. Henceforth we assume that µ is
stationary and ergodic.

The negative or converse half of the theorem follows from Corol-
lary 9.1. As the specific case is simpler and short, a proof is included.
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First suppose that we have a codebook C such that

ρN(C, µ) = Eµ min
y∈C

ρN(X
N , y) = δN(R, µ)+ ǫ.

If we let X̂N denote the resulting reproduction random vector and let
pN denote the resulting joint distribution of the input/output pair, then
since X̂N has a finite alphabet, Lemma 7.20 implies that

I(XN ; X̂N) ≤ H(X̂N) ≤ NR

and hence pN ∈ RN(R, µN) and hence

δN(R, µ)+ ǫ ≥ EpNρN(XN ; X̂N) ≥ DN(R, µ).

Taking the limits as N →∞ proves the easy half of the theorem:

δ(R,µ) ≥ D(R,µ).

Recall that both operational DRF and the Shannon DRF are given by limits
if the source is stationary.

The fundamental idea of Shannon’s positive source coding theorem is
this: for a fixed block size N , choose a code at random according to a dis-
tribution implied by the distortion-rate function. That is, perform 2NR in-
dependent random selections of blocks of length N to form a codebook.
This codebook is then used to encode the source using a minimum dis-
tortion mapping as above. We compute the average distortion over this
double-random experiment (random codebook selection followed by use
of the chosen code to encode the random source). We will find that if
the code generation distribution is properly chosen, then this average
will be no greater than D(R,µ) + ǫ. If the average over all randomly se-
lected codes is no greater than D(R,µ) + ǫ, then there must be at least
one code such that the average distortion over the source distribution
for that one code is no greater than D(R,µ) + ǫ. This means that there
exists at least one code with performance not much larger than D(R,µ).
Unfortunately the proof only demonstrates the existence of such codes,
it does not show how to construct them.

To find the distribution for generating the random codes we use the
ergodic process definition of the Shannon distortion-rate function. From
Theorem 9.1 (or Lemma 9.4) we can select a stationary and ergodic pair
process with distribution p which has the source distribution µ as one
coordinate and which has

Epρ(X0, Y0) = 1

N
EpNρN(X

N , YN) ≤ D(R,µ)+ ǫ (12.19)

and which has
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Ip(X;Y) = I∗(X;Y) ≤ R (12.20)

(and hence information densities converge in L1 from Theorem 8.1). De-
note the implied vector distributions for (XN , YN), XN , and YN by pN ,
µN , and ηN , respectively.

For any N we can generate a codebook C at random according to ηN

as described above. To be precise, consider the random codebook as a
large random vector C = (W0,W1, · · · ,WM), where M = ⌊eN(R+ǫ)⌋ (where
natural logarithms are used in the definition of R), where W0 is the fixed
reference vector a∗N and where the remaining Wn are independent, and
where the marginal distributions for the Wn are given by ηN . Thus the
distribution for the randomly selected code can be expressed as

PC =
M×
i=1
ηN .

This codebook is then used with the optimal encoder and we denote the
resulting average distortion (over codebook generation and the source)
by

∆N = Eρ(C, µ) =
∫
dPC(W)ρ(W , µ) (12.21)

where

ρ(W , µ) = 1

N
EρN(X

N ,W) = 1

N

∫
dµN(xN)ρN(x

N ,W),

and where
ρN(x

N ,C) =min
y∈C

ρN(x
N , y).

Choose δ > 0 and break up the integral over x into two pieces: one
over a set GN = {x : N−1ρN(xN , a∗

N) ≤ ρ∗ + δ} and the other over the
complement of this set. Then

∆N ≤
∫

GcN

1

N
ρN(x

N , a∗N)dµN(xN)

+ 1

N

∫
dPC(W)

∫

GN
dµN(xN)ρN(x

N ,W), (12.22)

where we have used the fact that ρN(xN ,mW) ≤ ρN(xN , a∗N). Fubini’s
theorem implies that because

∫
dµN(xN)ρN(x

N , a∗N) <∞

and
ρN(x

N ,W) ≤ ρN(xN , a∗N),
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the limits of integration in the second integral of (12.22) can be inter-
changed to obtain the bound

∆N ≤ 1

N

∫

GcN

ρN(x
N , a∗N)dµN(xN)

+ 1

N

∫

GN
dµN(xN)

∫
dPC(W)ρN(xN ,W) (12.23)

The rightmost term in (12.23) can be bound above by observing that

1

N

∫

GN
dµN(xN)[

∫
dPC(W)ρN(xN ,W)]

= 1

N

∫

GN
dµN(xN)[

∫

C:ρN(xN ,C)≤N(D+δ)
dPC(W)ρN(xN ,W)

+ 1

N

∫

W :ρN(xN ,W)>N(D+δ)
dPC(W)ρN(xN ,W)]

≤
∫

GN
dµN(xN)[D + δ+ 1

N
(ρ∗ + δ)

∫

W :ρN(xN ,W)>N(D+δ)
dpC(W)]

where we have used the fact that for x ∈ G the maximum distortion is
given by ρ∗ + δ. Define the probability

P(N−1ρN(x
N ,C) > D + δ|xN) =

∫

W :ρN(xN ,W)>N(D+δ)
dpC(W)

and summarize the above bounds by

∆N ≤ D + δ+

(ρ∗ + δ) 1

N

∫
dµN(xN)P(N−1ρN(x

N ,C) > D + δ|xN)

+ 1

N

∫

GcN

dµN(xN)ρN(x
N , a∗N). (12.24)

The remainder of the proof is devoted to proving that the two inte-
grals above go to 0 as N →∞ and hence

lim sup
N→∞

∆N ≤ D + δ. (12.25)

Consider first the integral

aN = 1

N

∫

GcN

dµN(xN)ρN(x
N , a∗N) =

∫
dµN(xN)1GcN (x

N)
1

N
ρN(x

N , a∗N).

We shall see that this integral goes to zero as an easy application of the
ergodic theorem. The integrand is dominated by N−1ρN(xN , a∗

N) which
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is uniformly integrable (Lemma 4.7.2 of [55] or Lemma 5.23 of [58]) and
hence the integrand is itself uniformly integrable (Lemma 4.4.4 of [55]
or Lemma 5.9 of [58]). Thus we can invoke the extended Fatou lemma
(Lemma 4.4.5 of [55] or Lemma 5.10 of [58]) to conclude that

lim sup
N→∞

aN ≤
∫
dµN(xN) lim sup

N→∞

(
1GcN (x

N)
1

N
ρN(x

N , a∗N)
)

≤
∫
dµN(xN)(lim sup

N→∞
1GcN (x

N))(lim sup
N→∞

1

N
ρN(x

N , a∗N)).

We have, however, that lim supN→∞ 1GcN (x
N) is 0 unless xN ∈ GcN i.o. But

this set has measure 0 since with µN probability 1, an x is produced so
that

lim
N→∞

1

N

N−1∑

i=0

ρ(xi, a
∗) = ρ∗

exists and hence with probability one one gets an x which can yield

N−1ρN(x
N , a∗N) > ρ∗ + δ

at most for a finite number of N . Thus the above integral of the product
of a function that is 0 a.e. with a dominated function must itself be 0
and hence

lim sup
N→∞

aN = 0. (12.26)

We now consider the second integral in (12.24):

bN = (ρ∗ + δ) 1

N

∫
dµN(xN)P(N−1ρN(x

N ,C) > D + δ|xN).

Recall that P(ρN(xN ,C) > D+δ|xN) is the probability that for a fixed
input block xN , a randomly selected code will result in a minimum dis-
tortion codeword larger than D + δ. This is the probability that none of
theM words (excluding the reference code word) selected independently
at random according to to the distribution ηN lie withinD+δ of the fixed
input word xN . This probability is bounded above by

P(
1

N
ρN(x

N ,C) > D + δ|xN) ≤ [1− ηN( 1

N
ρN(x

N , YN) ≤ D + δ)]M

where

ηN(
1

N
ρN(x

N , YN) ≤ D + δ)) =
∫

yN : 1
N ρN(x

N ,yN)≤D+δ
dηN(yN).

Now mutual information comes into the picture. The above probability
can be bounded below by adding a condition:
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ηN(
1

N
ρN(x

N , YN) ≤ D + δ)

≥ ηN( 1

N
ρN(x

N , YN) ≤ D + δ and
1

N
iN(x

N , YN) ≤ R + δ),

where
1

N
iN(x

N , yN) = 1

N
lnfN(x

N , yN),

where

fN(x
N , yN) = dpN(xN , yN)

d(µN × ηN)(xN , yN) ,

the Radon-Nikodym derivative of pN with respect to the product mea-
sure µN ×ηN . Thus we require both the distortion and the sample infor-
mation be less than slightly more than their limiting value. Thus we have
in the region of integration that

1

N
iN(x

N ;yN) = 1

N
lnfN(x

N , yN) ≤ R + δ

and hence

ηN(ρN(x
N , YN) ≤ D + δ)

≥
∫

yN :ρN(xN ,yN)≤D+δ,fN(xN ,yN)≤eN(R+δ)
dηN(yN)

≥ e−N(R+δ)
∫

yN :ρN(xN ,yN)≤D+δ,fN(xN ,yN)≤eN(R+δ)
dηN(yN)fN(x

N , yN)

which yields the bound

P(
1

N
ρN(x

N ,C) > D + δ|xN)

≤ [1− ηN( 1

N
ρN(x

N , YN) ≤ D + δ)]M

≤ [1− e−N(R+δ)
∫

yN : 1
N ρN(x

N ,yN)≤D+δ, 1
N iN(x

N ,yN)≤R+δ
dηN(yN)fN(x

N , yN)]M ,

Applying the inequality

(1−αβ)M ≤ 1− β+ e−Mα

for α,β ∈ [0,1] yields
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P(
1

N
ρN(x

N ,C) > D + δ|xN) ≤

1−
∫

yN : 1
N ρN(x

N ,yN)≤D+δ, 1
N iN(x

N ,yN)≤R+δ
dηN(yN)× fN(xN , yN)

+ e[−Me−N(R+δ)].

Averaging with respect to the distribution µN yields

bN
ρ∗ + δ =

∫
dµN(xN)P(ρN(x

N ,C) > D + δ|xN)

≤
∫
dµN(xN)

(
1−

∫

yN :ρN(xN ,yN)≤N(D+δ), 1
N iN(x

N ,yN)≤R+δ
dηN(yN)

×fN(xN , yN)+ e−Me−N(R+δ)
)

= 1−
∫

yN : 1
N ρN(x

N ,yN)≤D+δ, 1
N iN(x

N ,yN)≤R+δ
d(µN × ηN)(xN , yN)

× fN(xN , yN)+ e−Me−N(R+δ)

= 1+ e−Me−N(R+δ) −
∫

yN : 1
N ρN(x

N ,yN)≤D+δ, 1
N iN(x

N ,yN)≤R+δ
dpN(xN , yN)

= 1+ e−Me−N(R+δ)

− pN(yN :
1

N
ρN(x

N , yN) ≤ D + δ, 1

N
iN(x

N , yN) ≤ R + δ). (12.27)

SinceM is bounded below by eN(R+ǫ)−1, the exponential term is bounded
above by

e[−e
(N(R+ǫ)e−N(R+δ)+e−N(R+δ)] = e[−eN(ǫ−δ)+e−N(R+δ)].

If ǫ > δ, this term goes to 0 as N →∞.
The probability term in (12.27) goes to 1 from the mean ergodic theo-

rem applied to ρ1 and the mean ergodic theorem for information density
since mean convergence (or the almost everywhere convergence proved
elsewhere) implies convergence in probability. This implies that

lim sup
n→∞

bN = 0

which with (12.26) gives (12.25). Choosing an N so large that ∆N ≤ δ, we
have proved that there exists a block code C with average distortion less
than D(R,µ)+ δ and rate less than R + ǫ and hence

δ(R + ǫ, µ) ≤ D(R,µ)+ δ. (12.28)

Since ǫ and δ can be chosen as small as desired and since D(R,µ) is a
continuous function of R (Lemma 9.1), the theorem is proved. ✷
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The source coding theorem is originally due to Shannon [162] [163],
who proved it for discrete IID sources. It was extended to stationary
and ergodic discrete alphabet sources and Gaussian sources by Gallager
[47] and to stationary and ergodic sources with abstract alphabets by
Berger [10] [11], but an error in the information density convergence re-
sult of Perez [148] (see Kieffer [89]) left a gap in the proof, which was
subsequently repaired by Dunham [36]. The result was extended to non-
ergodic stationary sources and metric distortion measures and Polish
alphabets by Gray and Davisson [59] and to AMS ergodic processes by
Gray and Saadat [70]. The method used here of using a stationary and er-
godic measure to construct the block codes and thereby avoid the block
ergodic decomposition of Nedoma [129] used by Gallager [47] and Berger
[11] was suggested by Pursley and Davisson [29] and developed in detail
by Gray and Saadat [70].

12.6 Subadditive Fidelity Criteria

In this section we generalize the block source coding theorem for station-
ary sources to subadditive fidelity criteria. Several of the interim results
derived previously are no longer appropriate, but we describe those that
are still valid in the course of the proof of the main result. Most impor-
tantly, we now consider only stationary and not AMS sources. The result
can be extended to AMS sources in the two-sided case, but it is not known
for the one-sided case. Source coding theorems for subadditive fidelity
criteria were first developed by Mackenthun and Pursley [111].

Theorem 12.4. Let µ denote a stationary and ergodic distribution of a

source {Xn} and let {ρn} be a subadditive fidelity criterion with a refer-

ence letter, i.e., there is an a∗ ∈ Â such that

Eρ1(X0, a
∗) = ρ∗ <∞.

Then the operational DRF for the class of block codes of rate less than R
is given by the Shannon distortion-rate function D(R,µ).

Proof: Suppose that we have a block code of length N , e.g., a block en-
coder α : AN → BK and a block decoder β : BK → ÂN . Since the source
is stationary, the induced input/output distribution is then N-stationary
and the performance resulting from using this code on a source µ is

∆N = Epρ∞ = 1

N
EpρN(X

N , X̂N),

where {X̂N} is the resulting reproduction process. Let δN(R, µ) denote
the infimum over all codes of length N of the performance using such
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codes and let δ(R,µ) denote the infimum of δN over all N , that is,
the operational distortion rate function. We do not assume a code-
book/minimum distortion structure because the distortion is now ef-
fectively context dependent and it is not obvious that the best codes will
have this form. Assume that given an ǫ > 0 we have chosen for each N a
length N code such that

δN(R, µ) ≥ ∆N − ǫ.

As previously we assume that

K log ||B||
N

≤ R,

where the constraint R is the rate of the code. As in the proof of the
converse coding theorem for an additive distortion measure, we have
that for the resulting process I(XN ; X̂N) ≤ RN and hence

∆N ≥ DN(R, µ).

From Lemma 9.2 we can take the infimum over all N to find that

δ(R,µ) = inf
N
δN(R, µ) ≥ inf

N
DN(R, µ)− ǫ = D(R,µ)− ǫ.

Since ǫ is arbitrary, δ(R,µ) ≤ D(R,µ), proving the converse theorem.
To prove the positive coding theorem we proceed in an analogous

manner to the proof for the additive case, except that we use Lemma 9.4
instead of Theorem 9.1. First pick an N large enough so that

DN(R, µ) ≤ D(R,µ)+ δ
2

and then select a pN ∈ RN(R, µN) such that

EpN
1

N
ρN(X

N , YN) ≤ DN(R, µ)+ δ
2
≤ D(R,µ)+ δ.

Construct as in Lemma 9.4 a stationary and ergodic process p which
will have (10.6.4) and (10.6.5) satisfied (the right Nth order distortion
and information). This step taken, the proof proceeds exactly as in the
additive case since the reference vector yields the bound

1

N
ρN(x

N , a∗N) ≤ 1

N

N−1∑

i=0

ρ1(xi, a
∗),

which converges, and since N−1ρN(xN , yN) converges as N → ∞ with
p probability one from the subadditive ergodic theorem. Thus the exis-
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tence of a code satisfying (12.28) can be demonstrated (which uses the
minimum distortion encoder) and this implies the result since D(R,µ) is
a continuous function of R (Lemma 9.1). ✷

12.7 Asynchronous Block Codes

The block codes considered so far all assume block synchronous com-
munication, that is, that the decoder knows where the blocks begin and
hence can deduce the correct words in the codebook from the index rep-
resented by the channel block. In this section we show that we can con-
struct asynchronous block codes with little loss in performance or rate;
that is, we can construct a block code so that a decoder can uniquely
determine how the channel data are parsed and hence deduce the cor-
rect decoding sequence. This result will play an important role in the
development in the next section of sliding-block coding theorems. The
basic approach is that taken in the development of asynchronous and
sliding-block almost lossless codes in Section 6.5.

Given a source µ let δasync(R, µ) denote the operational distortion
rate function for block codes with the added constraint that the decoder
be able to synchronize, that is, correctly parse the channel codewords.
Obviously

δasync(R, µ) ≥ δ(R,µ)
since we have added a constraint. The goal of this section is to prove the
following result:

Theorem 12.5. Given an AMS source with an additive fidelity criterion

and a reference letter,

δasync(R, µ) = δ(R,µ),

that is, the operational DRF for asynchronous codes is the same as that

for ordinary codes.

Proof: A simple way of constructing a synchronized block code is to
use a prefix code: Every codeword begins with a short prefix or source

synchronization word or, simply, sync word, that is not allowed to appear
anywhere else within a word or as any part of an overlap of the prefix
and a piece of the word. The decoder then need only locate the prefix in
order to decode the block begun by the prefix. The insertion of the sync
word causes a reduction in the available number of codewords and hence
a loss in rate, but ideally this loss can be made negligible if properly
done. We construct a code in this fashion by finding a good codebook of
slightly smaller rate and then indexing it by channel K-tuples with this
prefix property.
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Suppose that our channel has a rate constraint R, that is, if source
N-tuples are mapped into channel K-tuples then

K log ||B||
N

≤ R,

where B is the channel alphabet. We assume that the constraint is achiev-
able on the channel in the sense that we can choose N and K so that
the physical stationarity requirement is met (N source time units corre-
sponds to K channel time units) and such that

||B||K ≈ eNR, (12.29)

at least for large N .
If K is to be the block length of the channel code words, let δ be small

and define k(K) = ⌊δK⌋+1 and consider channel codewords which have
a prefix of k(K) occurrences of a single channel letter, say b, followed
by a sequence of K − k(K) channel letters which have the following con-
straint: no k(K)-tuple beginning after the first symbol can be bk(K). We
permit b’s to occur at the end of a K-tuple so that a k(K)-tuple of b’s
may occur in the overlap of the end of a codeword and the new prefix
since this causes no confusion, e.g., if we see an elongated sequence of
b’s, the actual code information starts at the right edge. Let M(K) de-
note the number of distinct channel K-tuples of this form. Since M(K) is
the number of distinct reproduction codewords that can be indexed by
channel codewords, the codebooks will be constrained to have rate

RK = lnM(K)

N
.

We now study the behavior of RK as K gets large. There are a total of
||B||K−k(K) K-tuples having the given prefix. Of these, no more than (K−
k(K))||B||K−2k(K) have the sync sequence appearing somewhere within
the word (there are fewer than K − k(K) possible locations for the sync
word and for each location the remaining K − 2k(K) symbols can be
anything). Lastly, we must also eliminate those words for which the first
i symbols are b for i = 1,2, . . . , k(K) − 1 since this will cause confusion
about the right edge of the sync sequence. These terms contribute

k(K)−1∑

i=1

||B||K−k(K)−i

bad words. Using the geometric progression formula to sum the above
series we have that it is bounded above by

||B||K−k(K)−1

1− 1/||B|| .
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Thus the total number of available channel vectors is at least

M(K) ≥ ||B||K−k(K) − (K − k(K))||B||K−2k(K) − ||B||
K−k(K)−1

1− 1/||B|| .

Thus

RK = 1

N
ln ||B||K−k(K) + 1

N
ln

(
1− (K − k(K))||B||−k(K) − 1

||B|| − 1

)

= K − k(K)
N

ln ||B|| + 1

N
ln

( ||B|| − 2

||B|| − 1
− (K − k(K))||B||−k(K)

)

≥ (1− δ)R + o(N),

where o(N) is a term that goes to 0 as N (and hence K) goes to infinity.
Thus given a channel with rate constraint R and given ǫ > 0, we can
construct for N sufficiently large a collection of approximately eN(R−ǫ)

channel K-tuples (where K ≈ NR) which are synchronizable, that is, sat-
isfy the prefix condition.

We are now ready to construct the desired code. Fix δ > 0 and then
choose ǫ > 0 small enough to ensure that

δ(R(1− ǫ), µ) ≤ δ(R,µ)+ δ
3

(which we can do since δ(R,µ) is continuous in R). Then choose an N
large enough to give a prefix channel code as above and to yield a rate
R − ǫ codebook C so that

ρN(C, µ) ≤ δN(R − ǫ, µ)+ δ
3

≤ δ(R − ǫ, µ)+ 2δ

3
≤ δ(R,µ)+ δ. (12.30)

The resulting code proves the theorem. ✷

12.8 Sliding-Block Source Codes

We now turn to sliding-block codes. For simplicity we consider codes
which map blocks into single symbols. For example, a sliding-block en-
coder will be a mapping f : AN → B and the decoder will be a mapping
g : BK → Â. In the case of one-sided processes, for example, the channel
sequence would be given by

Un = f(XNn )
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and the reproduction sequence by

X̂n = g(ULn).

When the processes are two-sided, it is more common to use memory
as well as delay. This is often done by having an encoder mapping f :
A2N+1 → B, a decoder g : B2L+1 → Â, and the channel and reproduction
sequences being defined by

Un = f(X−N , · · · , X0, · · · , XN),
X̂n = g(U−L, · · · , U0, · · · , UN).

We emphasize the two-sided case.
The final output can be viewed as a sliding-block coding of the input:

X̂n = g(f(Xn−L−N , · · · , Xn−L+N), · · · , f (Xn+L−N , · · · , Xn+L+N))
= gf(Xn−(N+L), · · · , Xn+(N+L)),

where we use gf to denote the overall coding, that is, the cascade of
g and f . Note that the delay and memory of the overall code are the
sums of those for the encoder and decoder. The overall window length
is 2(N + L)+ 1

Since one channel symbol is sent for every source symbol, the rate of
such a code is given simply by R = log ||B|| bits per source symbol. The
obvious problem with this restriction is that we are limited to rates which
are logarithms of integers, e.g., we cannot get fractional rates. As previ-
ously discussed, however, we could get fractional rates by appropriate
redefinition of the alphabets (or, equivalently, of the shifts on the corre-
sponding sequence spaces). For example, regardless of the code window
lengths involved, if we shift l source symbols to produce a new group of
k channel symbols (to yield an (l, k)-stationary encoder) and then shift a
group of k channel symbols to produce a new group of k source symbols,
then the rate is

R = k
l

log ||B||

bits or nats per source symbol and the overall code fg is l-stationary.
The added notation to make this explicit is significant and the general-
ization is straightforward; hence we will stick to the simpler case.

We can define the sliding-block operational DRF for a source and chan-
nel in the natural way. Suppose that we have an encoder f and a decoder
g. Define the resulting performance by

ρ(fg, µ) = Eµfgρ∞,

where µfg is the input/output hookup of the source µ connected to
the deterministic channel fg and where ρ∞ is the sequence distortion.
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Define
δSBC(R, µ) = inf

f ,g
ρ(fg, µ) = ∆(µ,E, ν,D), (12.31)

where E is the class of all finite-length sliding-block encoders and D is
the collection of all finite-length sliding-block decoders. The rate con-
straint R is determined by the channel.

Assume as usual that µ is AMS with stationary mean µ. Since the cas-
cade of stationary channels fg is itself stationary (Lemma 2.10), we have
from Lemma 2.2 that µfg is AMS with stationary mean µfg. This implies
from (5.12) that for any sliding-block codes f and g

Eµfgρ∞ = Eµfgρ∞

and hence
δSBC(R, µ) = δSBC(R, µ).

A fact we now formalize as a lemma.

Lemma 12.6. Suppose that µ is an AMS source with stationary mean µ
and let {ρn} be an additive fidelity criterion. Let δSBC(R, µ) denote the

sliding-block coding operational distortion-rate function for the source

and a channel with rate constraint R. Then

δSBC(R, µ) = δSBC(R, µ).

The lemma permits us to concentrate on stationary sources when
quantifying the optimal performance of sliding-block codes.

The principal result of this section is the following:

Theorem 12.6. Given an AMS and ergodic source µ and an additive fi-

delity criterion with a reference letter,

δSBC(R, µ) = δ(R,µ),

that is, the class of sliding-block codes is capable of exactly the same per-

formance as the class of block codes. If the source is only AMS and not

ergodic, then

δSBC(R, µ) ≥ δ(R,µ), (12.32)

Proof: The proof of (12.32) follows that of Shields and Neuhoff [167] for
the finite alphabet case, except that their proof was for ergodic sources
and coded only typical input sequences. Their goal was different because
they measured the rate of a sliding-block code by the entropy rate of its
output, effectively assuming that further almost-noiseless coding was to
be used. Because we consider a fixed channel and measure the rate in
the usual way as a coding rate, this problem does not arise here. From
the previous lemma we need only prove the result for stationary sources
and hence we henceforth assume that µ is stationary. We first prove
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that sliding-block codes can perform no better than block codes, that is,
(12.32) holds. Fix δ > 0 and suppose that f : A2N+1 → B and g : B2L+1 →
Â are finite-length sliding-block codes for which

ρ(fg, µ) ≤ δSBC(R, µ)+ δ.

This yields a cascade sliding-block code fg : A2(N+L)+1 → Â which we
use to construct a block codebook. Choose K large (to be specified later).
Observe an input sequence xn of length n = 2(N+L)+1+K and map it
into a reproduction sequence x̂n as follows: Set the first and last (N+L)
symbols to the reference letter a∗, that is, xN+L0 = xN+Ln−N−L = a∗(N+L).
Complete the remaining reproduction symbols by sliding-block coding
the source word using the given codes, that is,

x̂i = fg(x2(N+L)+1
i−(N+L) ); i = N + L+ 1, · · · , K +N + L.

Thus the long block code is obtained by sliding-block coding, except at
the edges where the sliding-block code is not permitted to look at pre-
vious or future source symbols and hence are filled with a reference
symbol. Call the resulting codebook C. The rate of the block code is less
than R = log ||B|| because n channel symbols are used to produce a re-
production word of length n and hence the codebook can have no more
that ||B||n possible vectors. Thus the rate is log ||B|| since the codebook
is used to encode a source n-tuple. Using this codebook with a minimum
distortion rule can do no worse (except at the edges) than if the original
sliding-block code had been used and therefore if X̂i is the reproduc-
tion process produced by the block code and Yi that produced by the
sliding-block code, we have (invoking stationarity) that

nρ(C, µ)

≤ E(
N+L−1∑

i=0

ρ(Xi, a
∗))+ E(

K+N+L∑

i=N+L
ρ(Xi, Yi))+ E(

K+2(L+N)∑

i=K+N+L+1

ρ(Xi, a
∗))

≤ 2(N + L)ρ∗ +K(δSBC(R, µ)+ δ)

and hence

δ(R,µ) ≤ 2(N + L)
2(N + L)+Kρ

∗ + K

2(N + L)+K (δSBC(R, µ)+ δ).

By choosing δ small enough and K large enough we can make make the
right hand side arbitrarily close to δSBC(R, µ), which proves (12.32).

We now proceed to prove the converse inequality,

δ(R,µ) ≥ δSBC(R, µ), (12.33)

which involves a bit more work.
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Before carefully tackling the proof, we note the general idea and an
“almost proof” that unfortunately does not quite work, but which may
provide some insight. Suppose that we take a very good block code, e.g.,
a block code C of block length N such that

ρ(C, µ) ≤ δ(R,µ)+ δ

for a fixed δ > 0. We now wish to form a sliding-block code for the
same channel with approximately the same performance. Since a sliding-
block code is just a stationary code (at least if we permit an infinite win-
dow length), the goal can be viewed as “stationarizing” the nonstationary
block code. One approach would be the analogy of the SBM channel. Since
a block code can be viewed as a deterministic block memoryless chan-
nel, we could make it stationary by inserting occasional random spacing
between long sequences of blocks. Ideally this would then imply the ex-
istence of a sliding-block code from the properties of SBM channels. The
problem is that the SBM channel so constructed would no longer be a de-
terministic coding of the input since it would require the additional input
of a random punctuation sequence. Nor could one use a random coding
argument to claim that there must be a specific (nonrandom) punctua-
tion sequence which could be used to construct a code since the deter-
ministic encoder thus constructed would not be a stationary function
of the input sequence, that is, it is only stationary if both the source
and punctuation sequences are shifted together. Thus we are forced to
obtain the punctuation sequence from the source input itself in order to
get a stationary mapping. The original proofs for this result [65, 67] used
a strong form of the Rohlin-Kakutani theorem of Section 2.22 given by
Shields [164]. The Rohlin-Kakutani theorem demonstrates the existence
of a punctuation sequence with the property that the punctuation se-
quence is very nearly independent of the source. Lemma 2.12 is a slightly
weaker result than the form considered by Shields.

The code construction described above can therefore be approximated
by using a coding of the source instead of an independent process.
Shields and Neuhoff [167] provided a simpler proof of a result equiv-
alent to the Rohlin-Kakutani theorem and provided such a construction
for finite alphabet sources. Davisson and Gray [28] provided an alterna-
tive heuristic development of a similar construction. We here adopt a
somewhat different tack in order to avoid some of the problems arising
in extending these approaches to general alphabet sources and to non-
ergodic sources. The principal difference is that we do not try to prove
or use any approximate independence between source and the punctu-
ation process derived from the source (which is code dependent in the
case of continuous alphabets). Instead we take a good block code and
first produce a much longer block code that is insensitive to shifts or
starting positions using the same construction used to relate block cod-
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ing performance of AMS processes to that of their stationary mean. This
modified block code is then made into a sliding-block code using a punc-
tuation sequence derived from the source. Because the resulting block
code is little affected by starting time, the only important property is
that most of the time the block code is actually in use. Independence of
the punctuation sequence and the source is no longer required. The ap-
proach is most similar to that of Davisson and Gray [28], but the actual
construction differs in the details. An alternative construction may be
found in Kieffer [93].

Given δ > 0 and ǫ > 0, choose for large enough N an asynchronous
block code C of block length N such that

1

N
log ||C|| ≤ R − 2ǫ

and
ρ(C, µ) ≤ δ(R,µ)+ δ. (12.34)

The continuity of the block operational distortion-rate function and the
theorem for asynchronous block source coding ensure that we can do
this. Next we construct a longer block code that is more robust against
shifts. For i = 0,1, . . . ,N − 1 construct the codes CK(i) having length
K = JN as in the proof of Lemma 12.4. These codebooks look like J −
1 repetitions of the codebook C starting from time i with the leftover
symbols at the beginning and end being filled by the reference letter. We
then form the union code CK =

⋃
i CK(i) as in the proof of Corollary 12.4

which has all the shifted versions. This code has rate no greater than
R − 2ǫ+ (JN)−1 logN . We assume that J is large enough to ensure that

1

JN
logN ≤ ǫ (12.35)

so that the rate is no greater than R − ǫ and that

3

J
ρ∗ ≤ δ. (12.36)

We now construct a sliding-block encoder f and decoder g from the
given block code. From Corollary 2.1 we can construct a finite length
sliding-block code of {Xn} to produce a two-sided (NJ, γ)-random punc-
tuation sequence {Zn}. From the lemma P(Z0 = 2) ≤ γ and hence by the
continuity of integration (Corollary 4.4.2 of [55] or Corollary 5.3 in [58])
we can choose γ small enough to ensure that

∫

x:Z0(x)=2
ρ(X0, a

∗) ≤ δ. (12.37)
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Recall that the punctuation sequence usually produces 0’s followed by
NJ − 1 1’s with occasional 2’s interspersed to make things stationary.
The sliding-block encoder f begins with time 0 and scans backward NJ
time units to find the first 0 in the punctuation sequence. If there is no
such 0, then put out an arbitrary channel symbol b. If there is such a
0, then the block codebook CK is applied to the input K-tuple xK−n to
produce the minimum distortion codeword

uK = min
y∈CK

−1ρK(x
K
−n, y)

and the appropriate channel symbol, un, produced by the channel. The
sliding-block encoder thus has length at most 2NJ + 1.

The decoder sliding-block code g scans leftN symbols to see if it finds
a codebook sync sequence (remember the codebook is asynchronous and
begins with a unique prefix or sync sequence). If it does not find one,
it produces a reference letter. (In this case it is not in the middle of a
code word.) If it does find one starting in position −n, then it produces
the corresponding length N codeword from C and then puts out the
reproduction symbol in position n. Note that the decoder sliding-block
code has a finite window length of at most 2N + 1.

We now evaluate the average distortion resulting from use of this
sliding-block code. As a first step we mimic the proof of Lemma 9.4 up
to the assumption of mutual independence of the source and the punc-
tuation process (which is not the case here) to infer that if a long source
sequence of length n yields the punctuation sequence z, then

ρn(x
n, x̂n) =

∑

i∈Jn2 (z)
ρ(xi, a

∗)+
∑

i∈Jn0 (z)
ρNJ(x

NJ
i , x̂

NJ
i ),

where Jn2 (z) is the collection of all i for which zi = 2 and hence zi is not
in an NJ-cell (so that filler is being sent) and Jn0 (z) is the collection of all
i for which zi is 0 and hence begins an NJ-cell and hence an NJ length
codeword. Each one of these length NJ codewords contains at most N
reference letters at the beginning and N reference letters at the end the
end and in the middle it contains all shifts of sequences of length N
codewords from C. Thus for any i ∈ Jn0 (z), we can write that

ρNJ(x
NJ
i , x̂

NJ
i ) ≤ ρN(xNi , a∗

N
)+ρN(xNi+NJ−N , a∗

N
)+

⌊ iN ⌋+JN−1∑

j=⌊ iN ⌋
ρN(x

N
j ,C).

This yields the bound
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1

n
ρn(x

n, x̂n) ≤ 1

n

∑

i∈Jn2 (z)
ρ(xi, a

∗)+

1

n

∑

i∈Jn0 (z)

(
ρN(x

N
i , a

∗N)+ ρN(xNi+NJ−N , a∗
N
)
)
+ 1

n

⌊ nN ⌋∑

j=0

ρN(x
N
jN ,C)

= 1

n

n−1∑

i=0

12(zi)ρ(xi, a
∗)+

1

n

n−1∑

i=0

10(zi)
(
ρN(x

N
i , a

∗N)+ ρN(xNi+NJ−N , a∗
N
)
)
+ 1

n

⌊ nN ⌋∑

j=0

ρN(x
N
jN ,C),

where as usual the indicator function 1a(zi) is 1 if zi = a and 0 other-
wise. Taking expectations above we have that

E

(
1

n
ρn(X

n, X̂n)

)
≤ 1

n

n−1∑

i=0

E
[
12(Zi)ρ(Xi, a

∗)
]

+ 1

n

n−1∑

i=0

E
[
10(Zi)

(
ρN(X

N
i , a

∗N)+ ρN(XNi+NJ−N , a∗
N
)
)
)
]

+ 1

n

⌊ nN ⌋∑

j=0

E
[
ρN(X

N
jN ,C)

]
.

Invoke stationarity to write

E(
1

n
ρn(X

n, X̂n)) ≤ E(12(Z0)ρ(X0, a
∗))+

1

NJ
E(10(Z0)ρ2N+1(X

2N+1, a∗(2N+1)
))+ 1

N
ρN(X

N ,C).

The first term is bounded above by δ from (12.37). The middle term can
be bounded above using (12.36) by

1

JN
E(10(Z0)ρ2N+1(X

2N+1, a∗(2N+1)
) ≤ 1

JN
Eρ2N+1(X

2N+1, a∗(2N+1)
)

= 1

JN
(2N + 1)ρ∗ ≤ (2

J
+ 1)ρ∗ ≤ δ.

Thus we have from the above and (12.34) that

Eρ(X0, Y0) ≤ ρ(C, µ)+ 3δ.
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This proves the existence of a finite window sliding-block encoder and a
finite window length decoder with performance arbitrarily close to that
achievable by block codes. ✷

The only use of ergodicity in the proof of the theorem was in the se-
lection of the source sync sequence used to imbed the block code in a
sliding-block code. The result would extend immediately to nonergodic
stationary sources (and hence to nonergodic AMS sources) if we could
somehow find a single source sync sequence that would work for all er-
godic components in the ergodic decomposition of the source. Note that
the source synch sequence affects only the encoder and is irrelevant to
the decoder which looks for asynchronous codewords prefixed by chan-
nel synch sequences (which consisted of a single channel letter repeated
several times). Unfortunately, one cannot guarantee the existence of a
single source sequence with small but nonzero probability under all of
the ergodic components. Since the components are ergodic, however, an
infinite length sliding-block encoder could select such a source sequence
in a simple (if impractical) way: proceed as in the proof of the theorem
up to the use of Corollary 2.1. Instead of using this result, we construct
by brute force a punctuation sequence for the ergodic component in ef-
fect. Suppose that G = {Gi; i = 1,2, . . .} is a countable generating field
for the input sequence space. Given δ, the infinite length sliding-block
encoder first finds the smallest value of i for which

0 < lim
n→∞

1

n

n−1∑

k=0

1Gi(T
kx),

and

lim
n→∞

1

n

n−1∑

k=0

1Gi(T
kx)ρ(xk, a

∗) ≤ δ,

that is, we find a set with strictly positive relative frequency (and hence
strictly positive probability with respect to the ergodic component in ef-
fect) which occurs rarely enough to ensure that the sample average dis-
tortion between the symbols produced when Gi occurs and the reference
letter is smaller than δ. Given N and δ there must exist an i for which
these relations hold (apply the proof of Lemma 2.6 to the ergodic com-
ponent in effect with γ chosen to satisfy (12.37) for that component and
then replace the arbitrary set G by a set in the generating field having
very close probability). Analogous to the proof of Lemma 2.6 we con-
struct a punctuation sequence {Zn} using the event Gi in place of G. The
proof then follows in a like manner except that now from the dominated
convergence theorem we have that
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E(12(Z0)ρ(X0, a
∗)) = lim

n→∞
1

n

n−1∑

i=0

E(12(Zi)ρ(Xi, a
∗)

= E( lim
n→∞

1

n

n−1∑

i=0

12(Zi)ρ(Xi, a
∗)) ≤ δ

by construction.
The above argument is patterned after that of Davisson and Gray [28]

and extends the theorem to stationary nonergodic sources if infinite win-
dow sliding-block encoders are allowed. We can then approximate this
encoder by a finite-window encoder, but we must make additional as-
sumptions to ensure that the resulting encoder yields a good approxi-
mation in the sense of overall distortion. Suppose that f is the infinite
window length encoder and g is the finite window-length (say 2L + 1)
encoder. Let G denote a countable generating field of rectangles for the
input sequence space. Then from Corollary 5.1 applied to G given ǫ > 0
we can find for sufficiently large N a finite window sliding-block code
r : A2N+1 → B such that Pr(r 6= f ′) ≤ ǫ/(2L+1), that is, the two encoders
produce the same channel symbol with high probability. The issue is
when does this imply that ρ(fg, µ) and ρ(rg, µ) are therefore also close,
which would complete the proof. Let r : AT → B denote the infinite-
window sliding block encoder induced by r , i.e., r(x) = r(x2N+1

−N ). Then

ρ(fg, µ) = E(ρ(X0, X̂0)) =
∑

b∈B2L+1

∫

x∈Vf (b)
dµ(x)ρ(x0, g(b)),

where
Vf (b) = {x : f(x)2L+1 = b}

and f(x)2L+1 is shorthand for f(xi), i = −L, . . . , L, that is, the channel
(2L + 1)-tuple produced by the source using encoder x. We therefore
have that

ρ(rg, µ) ≤
∑

b∈B2L+1

∫

x∈Vf (b)
dµ(x)ρ(x0, g(b))

+
∑

b∈B2L+1

∫

x∈Vr (b)−Vf (b)
dµ(x)ρ(x0, g(b))

= ρ(f , µ)+
∑

b∈B2L+1

∫

x∈Vr (b)−Vf (b)
dµ(x)ρ(x0, g(b))

≤ ρ(f , µ)+
∑

b∈B2L+1

∫

x∈Vr (b)∆Vf (b)
dµ(x)ρ(x0, g(b)).

By making N large enough, however, we can make
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µ(Vr (f )∆Vf (b))

arbitrarily small simultaneously for all b ∈ Â2L + 1 and hence force all
of the integrals above to be arbitrarily small by the continuity of inte-
gration. With Lemma 12.6 and Theorem 12.6 this completes the proof of
the following theorem.

Theorem 12.7. Theorem 11.7.2: Given an AMS source µ and an additive

fidelity criterion with a reference letter,

δSBC(R, µ) = δ(R,µ),

that is, the class of sliding-block codes is capable of exactly the same per-

formance as the class of block codes.

The sliding-block source coding theorem immediately yields an alter-
native coding theorem for a code structure known as trellis encoding

source codes wherein the sliding-block decoder is kept but the encoder
is replaced by a tree or trellis search algorithm such as the Viterbi algo-
rithm [44]. Details can be found in [53] and an example is discussed in
Section 13.3.

12.9 A Geometric Interpretation

We close this chapter on source coding theorems with a geometric inter-
pretation of the operational DRFs in terms of the ρ distortion between
sources. Suppose that µ is a stationary and ergodic source and that {ρn}
is an additive fidelity criterion. Suppose that we have a nearly optimal
sliding-block encoder and decoder for µ and a channel with rate R, that
is, if the overall process is {Xn, X̂n} and

Eρ(X0, X̂0) ≤ δ(R,µ)+ δ.

If the overall hookup (source/encoder/channel/decoder) yields a distri-
bution p on {Xn, X̂n} and distribution η on the reproduction process
{X̂n}, then clearly

ρ(µ,η) ≤ δ(R,µ)+ δ.
Furthermore, since the channel alphabet is B the channel process must
have entropy rate less than R = log ||B|| and hence the reproduction
process must also have entropy rate less than B from Corollary 6.4. Since
δ is arbitrary,

δ(R,µ) ≥ inf
η:H(η)≤R

ρ(µ,η).
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Suppose next that p, µ and η are stationary and ergodic and that H(η) ≤
R. Choose a stationary p having µ and η as coordinate processes such
that

Epρ(X0, Y0) ≤ ρ(µ, ν)+ δ.
We have easily that I(X;Y) ≤ H(η) ≤ R and hence the left hand side is
bounded below by the process distortion rate function Ds(R, µ). From
Theorem 9.1 and the block source coding theorem, however, this is just
the operational distortion-rate function. We have therefore proved the
following result [63].

Theorem 12.8. Let µ be a stationary and ergodic source and let {ρn} be

an additive fidelity criterion with a reference letter. Then

δ(R,µ) = inf
η:H(η)≤R

ρ(µ,η), (12.38)

that is, the operational DRF (and hence the distortion-rate function) of a

stationary ergodic source is just the “distance” in the ρ sense to the nearest

stationary and ergodic process with the specified reproduction alphabet

and with entropy rate less than R.



Chapter 13

Properties of Good Source Codes

Abstract Necessary conditions for a source code to be optimal or a se-
quence of source codes to be asymptotically optimal for a stationary
source are developed for block and sliding-block codes.

13.1 Optimal and Asymptotically Optimal Codes

In Eq. 5.14 the operational distortion-rate function (DRF) for the source
µ, channel ν , and code classes E and D was defined by

∆(µ, ν,E,D) = inf
f∈E,g∈D

∆(µ, f , ν, g). (13.1)

This chapter considers only source codes and hence the channel ν is
assumed to be noiseless. A source code (f , g) is said to be optimal if it
achieves the infimum, that is, if f ∈ E, g ∈ D, and

∆(µ, f , ν, g) = ∆(µ, ν,E,D). (13.2)

Optimal codes might not exist, but from the definition of infimum we
can always get close. Hence we define a sequence (fn, gn), n = 1,2, . . .
to be asymptotically optimal or a.o. if

lim
n→∞∆(µ, fn, ν, gn) = ∆(µ, ν,E,D). (13.3)

This chapter is concerned with developing the implications of a code be-
ing optimal or a sequence of codes being asymptotically optimal (which
can be interpreted as looking at good or nearly optimal codes). Note that
any property obtained for a.o. codes implies a result for optimal codes if
they exist by setting fn = f and gn = g for all n. We usually consider op-
timal and asymptotically optimal separately since the former is simpler
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when it is applicable. These implications are in terms of necessary con-
ditions for optimality or asymptotic optimality. The conditions describe
attributes of encoders, decoders, and the distributions of the encoded
and reproduction sequences. In the special case of squared-error distor-
tion, the behavior of second order moments of the reproduction and the
error sequence are quantified. We confine interest to stationary sources
in order to keep things relatively simple.

In (12.1-12.2) the definition of operational rate-distortion function was
specialized to the case of block codes of dimension N and code rate R
and to block codes of arbitrary dimension and code rate R, definitions
which we repeat here to have them handy:

δ(R,µ) = ∆(µ, ν,E,D) = inf
N
δN(R, µ),

δN(R, µ) = inf
C∈K(N,R)

ρ(C, µ),

where ν is a noiseless channel as described in Section 12.2, E and D are
classes of block codes for the channel, and K(N,R) is the class of all
block length N codebooks C with

1

N
log ||C|| ≤ R. (13.4)

It was there argued that given a decoder of block codes of length N , an
optimal encoder in the sense that no encoder could do better is given
by a minimum distortion search of the decoder codebook. This observa-
tion is the original example (in Shannon [163]) of an optimality property
of a source code — a necessary condition for a block code to be opti-
mal is that the encoder be a minimum distortion (or “nearest neighbor”)
mapping, at least with probability 1. Shannon defined his source codes to
have this property. Here we allow a more general definition of an encoder
to show how a decoder can be optimized for a fixed (but not necessarily
optimum) encoder, but observe a necessary condition for overall opti-
mality is that the encoder have this property, that is, that the encoder
be a minimum distortion search matched to the decoder. The introduc-
tion of this extra degree of freedom results in several useful properties,
analogous to the introduction of the extra distribution η in the evalu-
ation of rate-distortion functions which led to useful conditions for an
optimization and an alternating optimization algorithm in Section 9.5.
Block codes have other such optimality properties, many of which were
first observed in the scalar (quantization) case by Lloyd [110] and in the
vector case by Steinhaus [175].
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13.2 Block Codes

Block source codes are also called block quantizers, multidimensional
quantizers, and vector quantizers since they discretize or quantize a
continuous (or large discrete) space into a relatively small discrete index
set, and the indices are then decoded into approximations of the original
input vector. While the emphasis of this book is on sliding-block codes,
we treat the well-known optimality properties for block codes for two
reasons. First, one way to prove sliding-block coding theorems is to em-
bed a block code into a Rohlin tower to construct a stationarized version
of the block code with approximately the same per-symbol average dis-
tortion. Thus having a good block code can lead to a good sliding-block
code. Some proofs of the sliding-block coding theorems avoid directly
using block codes by taking advantage of results from ergodic theory,
but the ergodic theory results usually use block constructions in their
proofs as well. Second, the optimality properties of block codes are sim-
pler to state and prove and they provide some interesting comparisons
with the stationary code results of the next section.

This section treats well-known properties and methods for developing
the properties for vector quantizers with notational changes as needed
to be consistent with the book. The reader is referred to [50, 71] for
further discussion. The usual formulation for a block source coder for a
source X with alphabet AX involves two mappings, an encoder α : ANX →
I, where I is an index set of size M = ‖I‖, and a decoder β : I→ C, where
it is usually assumed that I is either a set of integers {0,1, . . . ,M − 1}
(common when the block code is considered outside the context of a
communications channel) or is a sequence space of channel symbols I =
AKU , where AU = {0,1} for binary channel codes or AU is some other
finite set of the form {0,1, . . . ,m− 1}, in which case M = ‖AU‖K .

The collection of reproduction words C is called the reproduction

codebook (or simply codebook if the usage is clear from context) and
it is usually assumed for convenience that the decoder is a one-to-one
mapping of indices into distinct reproduction codewords so that

C = {β(i); i ∈ C}

so that ‖C‖ = M . The code rate or transmission rate of the code is defined
by

R = logM,

where the units are bits per input vector if the logarithm is base 2 and
nats per vector if it is base e. It is common to consider the normalized
or per-symbol code rate of

R = 1

N
logM.
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Context should make clear if it is the normalized or unnormalized rate
being considered. In this section we emphasize a fixed N and hence usu-
ally do not normalize. If I = AKU , then the normalized rate is

R = K
N

log‖AU‖.

In the important simple special case where the code is binary and ‖AU‖ =
2, then R = K/N , the number of binary channel symbols produced by the
encoder for each N channel symbols put into it.

We simplify the vector notation in this section by dropping the sub-
scripts N and assume that X is a random vector with sample values x
chosen in a vector alphabet AX . Rates will not be normalized and the
dimension will be implicit.

An encoder α is equivalent to a partition of the vector input space AX
defined by P = {Pi; i ∈ I}, where

Pi = {x ∈ AX : α(x) = i}.

The partition notation provides a useful representation of the encoder
as

α(x) =
∑

i∈I
1Pi(x).

Similarly a decoder β is described by its reproduction codebook C.
Assuming that no errors are made in the transmission of the channel

codeword, then for most properties the specific nature of the index set
I is unimportant and all that matters is the number of elements M and
the codewords in C.

The combined operation of an encoder and decoder is often referred
to simply as a quantizer or vector quantizer . We will use Q to denote
both the pair Q = (α,β) and the overall operation defined by

Q(x) = β(α(x)).

Two quantizers will be said to be equivalent if they have the same index
set I and yield the same overall mapping Q. The rate of the quantizer
(unnormalized) is given by R = R(Q) = log(α(AX)), the log of the size
of the index set (or reproduction codebook).

The principal goal in the design of vector quantizers is to find a code-
book (decoder) and a partition (encoder) that minimizes an average dis-
tortion with respect to a distortion measure d. The average distortion
for a vector quantizer Q = (α,β) applied to a random vector X with
distribution µ is

∆(α,β) = E[ρ(X,Q(X))] =
∫
ρ(x,Q(x))dµ(x). (13.5)
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Define as earlier the operational distortion-rate function ∆(µ) by

∆(R) = inf
α,β:R(α)≤R

∆(α,β). (13.6)

A code is optimal if
∆(α,β) = ∆(R).

Recall that at present everything is for a fixed dimension N and that
the clutter of more notation will be necessary to make N explicit when
it is allowed to vary, for example if we wish to quantify the long term
performance when the block code is applied to an AMS source as in
Lemma 12.1.

The most fundamental of the conditions for optimality of a quantizer
(α,β) follows from the obvious inequality

∆(α,β) = E[ρ(X,Q(X))] =
∫
ρ(x,Q(x))dµ(x)

≥
∫

min
y∈C

ρ(x,y)dµ(x), (13.7)

where the minimum exists since the codebook is assumed finite. This
unbeatable lower bound to the average distortion for a quantizer with
reproduction codebook C and hence for a given decoder is achieved with
equality if the encoder is defined to be the minimum distortion encoder:

α(x) = argmin
i∈I

ρ(x, x̂i), (13.8)

where C = {x̂i; i ∈ I}. The encoder is not yet well defined in a strict
sense because there can be ties in distortion, in which case the encoder
has to chose among multiple indices yielding the same distortion. In this
case any tie-breaking rule can be used without affecting the distortion,
for example choose the index lowest in lexicographical order. It can be
assumed that the optimal encoder is of this form since, if it were not,
changing to a minimum distortion encoder can not increase the average
distortion. In the classic paper on source coding with a fidelity crite-
rion [163], Shannon assumed that encoders were of this form. We do
not make that assumption since it is useful to consider performance of
a quantizer as a function of decoder (codebook) and encoder (partition)
separately, but when all is said and done the best choice for an encoder
(in terms of minimizing average distortion) is the minimum distortion
encoder.

An alternative means of describing an optimal encoder is in terms of
the encoder partition by

Pi ⊂ {x : ρ(x, x̂i) ≤ ρ(x, x̂j); j ≠ i},
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where again some tie-breaking rule is needed to assign an index to points
on the border.

Next suppose that the encoder α or its partition P is specified. Given
any subset S ⊂ AX of probability µ(S) > 0, the point z ∈ Â (if it exists)
for which

E[d(X, z) | X ∈ S] = inf
y∈Â

E[d(X,y) | X ∈ S]

is called the centroid of S and denoted by cent(S). If the set S has zero
probability, then the centroid can be defined in an arbitrary fashion. The
name reflects the origins of the word as the centroid or center of gravity
of a set in Euclidean space with respect to the squared-error distortion
and Lebesgue measure. If the centroid exists, then

cent(S) = argmin
y∈Â

E[d(X,y) | X ∈ S].

Centroids exist for many distortion measures and sets of interest. For
example, if the AX = RN and the distortion is additive squared error
(the square of the ℓ2 norm of the vector difference), then the centroid is
given by the conditional expectation E[X | X ∈ S], the minimum mean-
squared estimate of the source vector given the event X ∈ S. Other inter-
esting distortion measures with centroids are considered in [50]. If the
appropriate centroids exist, then the properties of conditional expecta-
tion yield the inequality

E[d(X,Q(X))] =
∑

i∈I
E[d(X, x̂i)1Pi(X)]

=
∑

i∈I
E[d(X, x̂i) | X ∈ Pi]µ(Pi)

≥
∑

i∈I
cent(Pi)µ(Pi), (13.9)

which holds with equality if the decoder output or reproduction code-
word assigned to i is the centroid of Pi. In the squared error case this
has the intuitive interpretation of being the minimum mean-squared es-
timate of the input given the received index.

These two conditions were developed for squared error for vectors by
Steinhaus [175] and in the scalar case for more general distortion mea-
sures by Lloyd [110] and they have since become known as the Lloyd
conditions and quantizers which satisfy the conditions are sometimes
referred to as Lloyd-optimal quantizers, although satisfaction of the two
conditions does not ensure global optimality. Each condition, however,
ensures conditional optimality given the other component of the quan-
tizer and hence, as both Lloyd and Steinhaus observed, they provide
an iterative algorithm for improving the quantizer performance. Begin-
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ning with a distribution, distortion measure, and initial reconstruction
codebook, the optimal encoder is a minimum distortion mapping. The
decoder can then be replaced by the centroids. Each step can only de-
crease or leave unchanged the average distortion, hence the algorithm is
a descent algorithm with respect to average distortion. The distribution
can be an empirical distribution based on a training set of data, which
makes the algorithm an early example of clustering and statistical (or
machine) learning. The idea has been rediscovered in many fields, per-
haps most famously a decade later as the “k-means” clustering algorithm
of MacQueen [112]. This was one of the first examples of what has since
become known as an alternating optimization (AO) algorithm, where a
complicated optimization (e.g., nonconvex) can be broken down into two
separate simpler optimizations [14]. Taken together, the conditions
yield the following lemma.

Lemma 13.1. Lloyd Quantizer Optimality Properties An optimal quan-

tizer must satisfy the following two conditions (or be equivalent to a quan-

tizer which does):

Optimum encoder for a given decoder Given a decoder with repro-

duction codebook C = {x̂i; i ∈ I}, the optimal encoder satisfies

α(x) = argmin
i∈I

ρ(x, x̂i). (13.10)

Optimum decoder for a given encoder Given an encoder α, the opti-

mal decoder satisfies

β(i) = cent({x : α(x) = i}). (13.11)

The implications of these optimality properties for the design of vec-
tor quantizers are explored in depth in the literature. For example, see
[50, 61, 115, 128, 152, 71]. Two observations merit making. The decoder
for a block code is simple in principal, it is simply a table lookup. A
channel codeword provides an index and the output is the reproduc-
tion codeword in the codebook with that index. The encoder, however,
requires a minimum distortion search of the reproduction codebook to
find the best fit to the observed input vector. Search can be costly, how-
ever, especially as the dimension grows. There is a large literature on
techniques for avoiding a full search of a codebook, from forcing a struc-
ture on the codebook (such as a tree or trellis or as a linear combination
of basis vectors) to performing only a partial or approximate search. See,
e.g., [71].
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Moment Properties

In the special case of the squared-error distortion where

d(x,y) = ‖x −y‖2 =
N−1∑

i=0

(xi −yi)2,

where N is the dimension of the vectors x,y , optimal quantizers have
several additional interesting properties in terms of their moments. In
fact, the quantizers need not be optimal to have these properties, the
only requirement is that they satisfy the centroid condition so that the
codewords are given by

x̂i = E[X | α(X) = i], i ∈ I.

The following lemma collects these conditions. The results are simple
consequences of basic properties of vector linear prediction. The lemma
follows [50] Lemma 11.2.2. See also the scalar special case in Lemma
6.2.2.

Lemma 13.2. A vector quantizer which satisfies the centroid condition for

the squared-error distortion measure has the following properties:

1. E(Q(X)) = E(X)
2. E(XtQ(X)) = E(‖Q(X)‖2)
3. E((X −Q(X))tQ(X)) = 0
4. E(‖Q(X)‖2) = E(‖X‖2)− E(‖X −Q(X)‖2).

Proof. Let P = {Pi, i ∈ I} denote the partition associated with the parti-
tion and C = {x̂i; i ∈ I} the reproduction codebook. By assumption, the
x̂i are the centroids of the the partition cells Pi, which for squared error
are the conditional expectations of X given X ∈ Pi. Using conditional
expectation,

E(X) =
∑

E


X

∑

i∈I
1Pi(X)


 =

∑

i∈I
E(X1Pi(X))

=
∑

i∈I
µX(Pi)E(X | X ∈ Pi) =

∑

i∈I
µX(Pi)x̂i = E[Q(X))],

proving the first property. Since

Q(X) =
∑

i∈I
x̂i1Pi(X),

we have that
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E(XtQ(X)) = E(Xt

∑

i∈I
x̂i1Pi(X)


) =

∑

i∈I

(
E(1Pi(X)X

t)x̂i
)

=
∑

i∈I

(
µX(Pi)E(X

t | X ∈ Pi)x̂i
)
=
∑

i∈I

(
µX(Pi)x̂

t
i x̂i

)

=
∑

i∈I
µX(Pi)x̂

t
i x̂i = ‖Q(X)‖2,

proving the second property. The third property follows from the sec-
ond. The final property follows from expanding the left hand side and
using the second and third properties

E(‖X −Q(X)‖2) = E
(
(X −Q(X))t(X −Q(X))

)

= E
(
Xt(X −Q(X))

)
− E

(
Q(X)t(X −Q(X))

)

= E(‖X‖2)− E(XtQ(X))− 0

= E(‖X‖2)− E(‖Q(X)‖2).

. ✷

The lemma has the intuition that the centroid condition is sufficient to
ensure that the quantizer is an unbiased estimator of the input given the
index (or the quantized value itself). The second property shows that the
correlation of the quantizer output and the input equals the energy in
the quantizer output. In particular, the input and output are not uncor-

related. and hence can not be independent. This conflicts directly with
the frequently assumed model in the communications and signal pro-
cessing literature where quantizer error is treated as signal-independent
white noise. The third property shows that the error and the estimate
quantizer output (which is an estimate of the input given the quantizer
index) have 0 correlation, which is simply an example of the orthogonal-
ity property since, for a fixed encoder,Q(X) is an optimal linear estimate
for X given Q(X).

13.3 Sliding-Block Codes

A sliding-block code (f , g) for source coding is said to be optimum if it
yields an average distortion equal to the operational distortion-rate func-
tion, ∆(f , g) = ∆X(R). Unlike the simple scalar quantizer case (or the
nonstationary vector quantizer case), however, there are no simple con-
ditions for guaranteeing the existence of an optimal code. Hence usually
it is of greater interest to consider codes that are asymptotically optimal
in the sense that their performance approaches the optimal in the limit,
but there might not be a code which actually achieves the limit. Before
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considering asymptotic optimality, consider the natural extensions of
the quantizer optimality properties to a sliding-block code. Sliding-block
decoders do have a basic similarity to quantization decoders in that one
can view the contents of the decoder shift register as an index i in an
index set I and the decoder is a mapping of I into a single reproduction
symbol g(i) ∈ Â, say. Usually in practical systems the decoder has fi-
nite length, in which case the index set I is finite. If the encoder is given,
then the mapping of inputs into indices at a particular time is fixed, and
hence the centroid condition must still hold if the centroids exist for the
distortion measure being used. This yields the following lemma.

Lemma 13.3. If the encoder f in a sliding-block source coder is fixed and

results in decoder shift register contents U ∈ I at time 0, then a necessary

condition for the decoder g to be optimal with respect to the encoder is

that

g(i) = cent(X0 | U = i) ≡ argmin
y∈Â

E
(
ρ(X0, y) | U = i

)
(13.12)

The lemma follows in the same manner as the quantizer result, and
as in that case it implies for the squared-error distortion case that g(i)
be the conditional expectation of the input at the same time given the
contents of the shift register and knowledge of the encoder mapping
of inputs into indexes. The application of Lloyd’s centroid condition for
quantizers to sliding-block decoders was first treated by Stewart [176,
177]. This property can be used to tune a decoder to a training sequence
using an empirical conditional expectation.

Unfortunately the corresponding result for the encoder — that the
minimum distortion rule is the optimal encoder for a fixed decoder —
does not have a simple extension to sliding-block codes. There is, how-
ever, a hybrid system that couples a sliding-block decoder with a block
encoder which does resemble the Lloyd alternating optimization for vec-
tor quantization, and it has the added advantage that the minimum dis-
tortion search required of the encoder does not require computational
complexity increasing exponentially with the block length of the code.
The trick is that the sliding-block coder structure allows a low complex-
ity minimum distortion search. The technique is known as trellis source

encoding and it was introduced by by Viterbi and Omura [188] and the
connections with sliding-block codes and the Lloyd iteration were devel-
oped by Stewart et al. [53, 176, 177]. A brief overview is presented here
to illustrate the similarities among the Lloyd conditions, sliding-block,
and block codes. Details can be found in the cited references.

To keep things simple, we focus on one bit per symbol codes so
that the noiseless channel alphabet is binary and one reproduction sym-
bol is produced for each channel bit. Consider the simple sliding-block
code of Figure 2.1 with a more general decoder function g as in Fig-
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ure 13.1. The temporal operation of the decoder can be depicted as in

{Un} ✲ Un Un−1 Un−2

❄❅
❅❘

�
�✠

✒✑
✓✏
g

❄

X̂n = g(Un, Un−1, Un−2)

Fig. 13.1 A simple sliding-block decoder

Figure 13.2, a directed graph called a trellis. The decoder is viewed as a
finite-state machine where at time n the state consists of received chan-
nel symbols in the shift register except for the most recent — in this case
Sn = (Un−1, Un−2) so that there are four possible states {00,01,10,11}.
The states at a particular time are represented by the darkened circles
stacked vertically and labeled on the far left. If at time n the shift regis-
ter is in state sn = (un−1, un−2) and a channel symbol un is received,
then the output will be g(un, un−1, un−2) and the state will change
to sn+1 = (un, un−1). Thus the next-state rule given the current state
and the current received channel symbol can be described in a state
transition table as in Table 13.1. In general there is a next state rule

sn 11 10 01 00 11 10 00 01
un 1 1 1 1 0 0 0 0
sn+1 11 11 10 10 01 01 00 00

Table 13.1 State transition table

sn+1 = r(un, sn). The state transistions are noted in the trellis by con-
necting the states between times by a branch which is labeled by the
decoder output produced by the transition between the two states con-
nected by the branch. In the figure the upper branch shows the transition
if the channel symbol is a 1, the lower branch shows the transition if the
channel symbol is a 2. The picture for time n is replicated at every time
instant. The leftmost column of states can be considered as time 0 and
the trellis continues to replicate to the right. Continuing with this simple
example, suppose that the decoder g is fixed, and we want to design a
good encoder. While the end goal may be another sliding-block code to
match the theoretical emphasis, suppose for the time being that a block
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Fig. 13.2 Trellis diagram of sliding-block code

encoder is to be used. In that case, the trellis provides a picture of all of
the reproduction sequences available to the decoder, so the general prin-
cipal would be to observe an input sequence of length, say, L, and find
the best possible sequence of trellis branch labels through the trellis for
L steps, that is, find the minimum distortion path through the trellis. An
immediate issue how to initiate the encoding algorithm. In particular, if
we allow the search algorithm to consider all possible initial states, then
at the beginning of the block the decoder must be told what state to be-
gin in, that is, what paths through the trellis are allowed. The optimal
choice might be to place no constraint on the start, but this means that
many bits would need to be sent at the beginning of a block, while only
one bit per input sample would be required thereafter. The usual prac-
tical solution is to pick an arbitrary initial state, say the all-zero state,
to begin with. Then the path through the trellis can be sent with one bit
per branch for the current and future blocks. Hopefully the effects of an
arbitrary and possibly bad initial state will wash out with time.

Given that the encoder and decoder initialize their states to a common
state, say σ0, then as in the block source code case, the optimal encoder
for a source block xL of length L will choose the sequence of bits uL that
drives the decoder through the trellis so as to yield the smallest possible
total distortion; that is, the encoder will find

argmin
uL

L−1∑

i=0

ρ(xi, g(ui, si)).
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where the si are computed from the previous states and the inputs using
Table 13.1. What makes this structure so useful is that instead of having
to compute the distortions for all 2L possible reproduction L tuples with
respect to an observed input tuple, the minimum distortion path can be
found sequentially in time by a simple algorithm, as will be seen. An
immediate point is that if the decoder is a good sliding-block code, then
a natural choice for an encoder is a minimum distortion search through
all possible decoder sequences, that is, find the binary channel sequence
that will drive the decoder through the sequence of outputs that provide
a good match to an observed input sequence.

The 2L possible reproduction L-tuples correspond to the 2L possible
sequences of reproduction symbols or branch labels resulting from the
2L possible binary path maps through the trellis from the initial state
to one of the possible final states. A brute force minimization would be
to compute for each of these 2L path maps and their distortion with
respect to the input xL and choose the binary sequence which results in
the minimum distortion sequence of branch labels. The trellis structure
decreases the work, however, by eliminating the need for computing the
distortion for all possible paths through the trellis. Many of the paths are
bad and can not be candidates for the best path. Suppose that we know
the best paths into each of the 2K−1 possible states at time n = L − 1
along with the resulting total distortion resulting from the associated
sequence of reproductions/branch labels. Suppose that

υL ≡ argmin
uL

L−1∑

i=0

ρ(xi, g(ui, si))

is the best binary path map and that the resulting distortion is

∆L =
L−1∑

i=0

ρ(xi, g((υ
L)i, si)) =min

uL

L−1∑

i=0

ρ(xi, g(ui, si)),

where as always the state sequence is determined from the path map. As
the notation is cluttered enough already, this dependence is not shown
explicitly. Consider a time n < L. An optimal overall path map υL must
have resulted in the decoder being in some particular state, say s, at time
n, and in a binary path map υn(s) that resulted in the decoder being in
the state s at time n, and in a running distortion of

∆n(s) =
n−1∑

i=0

ρ(xi, g((υ
L)i, si)),

with sn = s = r(un−1, sn−1). Furthermore, this path must have been the

best path from the initial state σ0 through the state s at time n; that is,
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(υL0, υ
L
1, . . . , (υ

L)n−1) = υn(s) ≡ argmin
un

n−1∑

i=0

ρ(xi, g(ui, si))

∆n =
n−1∑

i=0

ρ(xi, g((υ
L)i, si)) =min

un

n−1∑

i=0

ρ(xi, g(ui, si)).

This follows from the additive nature of distortion since if the length n
prefix of υL, ((υL)0, (υL)1, . . . , (υL)n−1), were not the minimum distortion
path from the intitial state to state s at time n, then there would be
another path into this node with strictly smaller distortion. Were that the
case, however, that other path would be a better prefix to the overall path
and it would yield smaller total distortion by yielding smaller distortion
in the first n-tuple and no worse distortion for the remainder of the path.
The remainder of the path is not changed because the choices from time
n on depend only on the state of the decoder at time n. This argument
assumes that we know the state through which the optimal path passes.
In general we can only say before the optimal path is known that at
time n the decoder must be in some state. This implies, however, that
at time n at each state all we need track is what the best path so far
into that state is and what the corresponding distortion is. All inferior
paths into the state can be discarded as no longer being candidates for
prefix of an optimal path map. This yields a search algorithm for finding
the minimum distortion path through the trellis, which can be described
informally as follows.

Step 0 Given: input sequence xN , length K sliding-block decoder g,
initial state σ0. State space S = all 2K−1 binary (K − 1)-tuples. Next
state mapping: If the old state is s = (b0b1 · · · , bk−2, bK−1) and
the received channel symbol is u, then the next state is r(u, s) =
(u, b0, b1, · · · , bk−2). Define υ0(s) to be the empty set for all s ∈ S.
Define ∆n(s) = 0 for all s ∈ S. Set n = 1.

Step 1 For each s ∈ S:
There can be at most two previous states sn−1 = σ0 and σ1, say,
for which sn = s = r(0, σ0) = r(1, σ1) and for which sn−1 is reach-
able from the initial state. (For n ≥ K − 1 all states at time n are
reachable from the initial state.) If there are two such states, compare
δ0 = ∆n−1(σ0)+ρ(xn, g(0, σ0)) with δ1 = ∆n−1(σ1)+ρ(xn, g(1, σ1)).
If δ0 ≤ δ1, then set

υn(s) = (υn−1(σ0),0)

∆n(s) = ∆n−1(σ0)+ ρ(xn, g(0, σ0)),

otherwise set



13.3 Sliding-Block Codes 349

υn(s) = (υn−1(σ1),1)

∆n(s) = ∆n−1(σ1)+ ρ(xn, g(1, σ1)).

That is, choose the minimum distortion path available from the choice
of two paths entering state s at time n. This extends one of the two
candidate paths of length n− 1 available at the two allowed previous
states and extinguishes the other, which can not be the suffix of an
optimal path.
If there is only one allowed previous state σ , choose the path from
that single state using the update formula above. If there is no al-
lowed previous state, do nothing (there is no update to a best path or
associated distortion to the given state at time n).
Set n← n+ 1.

Step 2 If n < L, go to Step 1. If n = L, we have the best path maps
υL(s) and corresponding distortions ∆L(s) at time L− 1 for all states
s ∈ S. Set

s∗ = argmin
s∈S

∆L(s)

and finish with binary path map υL(s∗) as the encoded bit sequence
to be communicated to the receiver to drive the decoder to produce
the reproduction.

Instead of computing 2L separate distortions for L-tuples, the algo-
rithm computes 2K−1 incremental distortions at each time (level in the
trellis) and does the corresponding addition to maintain and store the
cumulative distortion up to that time. This is done for each of the L lev-
els of the trellis. Thus the algorithm complexity grows roughly linearly
and not exponentially in the encoder block size L, but it does grow with
the state space size and hence exponentially with the decoder shift reg-
ister length. Thus a relatively small decoder shift register length with a
large block length can yield an overall reasonable complexity. As of this
writing (2010) shift register lengths of over 20 and block lengths of a
million are reasonable. Decoding is of minimal complexity.

The basic optimality principle used here as that of dynamic program-
ming, and its applications to channel coding and source coding were
introduced by Andrew Viterbi. The algorithm is widely known as the
Viterbi algorithm in communications and signal processing. See, e.g.,
[44].

At this point we have a hybrid code with a sliding block decoder and
a block encoder. The block encoder can be made stationary using oc-
casional input-dependent spacing as in the theoretical constructions of
sliding-block codes from block codes, but in practice the Viterbi algo-
rithm is usually run on very long blocks. There are many variations on
the basic approach.
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Asymptotically Optimal Sliding-Block Codes

This subsection largely follows Mao, Gray, and Linder [117, 72]. A se-
quence of rate-R sliding-block codes fn, gn, n = 1,2, . . ., for source cod-
ing is asymptotically optimal (a.o.) if

lim
n→∞∆(fn, gn) = ∆X(R) = DX(R). (13.13)

An optimal code (when it exists) is trivially asymptotically optimal and
hence any necessary condition for an asymptotically optimal sequence
of codes also applies to a fixed code that is optimal by simply equating
every code in the sequence to the fixed code.

Similarly, a simulation code g is optimal if ρ(µX , µg(Z)) = ∆(X|Z) and
a sequence of codes gn is asymptotically optimal if

lim
n→∞ρ(µX , µgn(Z)) = ∆X|Z . (13.14)

Process approximation

The following lemma provides necessary conditions for asymptotically
optimal codes. The results are a slight generalization and elaboration of
Theorem 1 of Gray and Linder [72] as given in [117].

Lemma 13.4. Given a real-valued stationary ergodic process X, suppose

that fn, gn n = 1,2, . . . is an asymptotically optimal sequence of station-

ary source codes for X with encoder output/decoder input alphabet B of

size ‖B‖ = 2R for integer rate R. Denote the resulting reproduction pro-

cesses by X̂(n) and the B-ary encoder output/decoder input processes by

U (n). Then

lim
n→∞ρ(µX , µX̂(n)) = DX(R)

lim
n→∞H(X̂

(n)) = lim
n→∞H(U

(n)) = R
lim
n→∞d(U

(n), Z) = 0,

where Z is an IID equiprobable process with alphabet size 2R.

These properties are quite intuitive:

• The process distance between a source and an approximately opti-
mal reproduction of entropy rate less than R is close to the Shannon
distortion rate function. Thus frequency-typical sequences of the re-
production should be as close as possible to frequency-typical source
sequences.
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• The entropy rate of an approximately optimal reproduction and of the
resulting encoded B-ary process must be near the maximum possible
value in order to take advantage of all possible available information.

• The sequence of encoder output processes approaches an IID equiprob-
able source in the Ornstein process distance. If R = 1, the encoder
output bits should look like fair coin flips.

Proof. The encoded and decoded processes are both stationary and er-
godic since the original source is. From (12.38) and the source coding
theorem,

∆(fn, gn) = E[d(X0, X
(n)
0 )] ≥ ρ(µX , µX̂(n))

≥ inf
ν :H(ν)≤R

ρ(µX , ν) = ∆(µ,R) = DX(R).

The first inequality follows since the ρ distance is the minimum average
distortion over all couplings yielding the marginal distributions for X0

and X(n)0 . The second inequality follows since stationary coding reduces
entropy rate so that R ≥ H(U(n)) ≥ H(X̂(n)). Since the leftmost term
converges to the rightmost, the first equality of the lemma is proved.
From Lemma 8.4

R ≥ H(X̂(n)) ≥ I(X, X̂(n)).
From the process definition of the rate-distortion function, the dual to
the process definition of the distortion-rate function (the rate-distortion
formulation can be found in [119, 63, 76]), I(X, X̂(n)) ≥ RX(∆(fn, gn)).
Taking the limit as n → ∞, RX(∆(fn, gn)) converges to R since the
code sequence is asymptotically optimal and the Shannon rate-distortion
function is a continuous function of its argument except possibly at D =
0, the dual of Lemma 9.1. Thus limn→∞H(U(n)) = limn→∞H(X̂(n)) = R.
proving the second equality of the lemma.

From Marton’s inequality of Corollary 6.6,

N−1dN(µUN , µZN ) ≤
[

ln 2

2N
(NR −H(UN))

]1/2

and taking the limit as N →∞ using property (a) of Theorem 5.2 yields

d(µU , µZ) ≤
[

ln 2

2
(R −H(U))

]1/2

.

Applying this to U(n) and taking the limit using the previous part of the
lemma completes the proof. ✷

If X is a B-process, then a sequence of a.o. simulation codes gn yield-
ing a reproduction processes X̃(n) satisfies limn→∞ ρ(µX , µX̃(n)) = ∆X|Z =
DX(R) and a similar argument to the proof of the previous lemma im-
plies that limn→∞H(X̂(n)) = H(Z) = R.
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Moment conditions

The next set of necessary conditions concerns the squared-error distor-
tion and resembles the standard result for scalar and vector quantizers
described in Lemma 13.2. The proof differs, however, in that in the quan-
tization case the centroid property is used, while here simple ideas from
linear prediction theory accomplish a similar goal. Define in the usual
way the covariance COV(X, Y) = E[(X − E(X))(Y − E(Y))].
Lemma 13.5. Given a real-valued stationary ergodic process X, suppose

that fn, gn is an asymptotically optimal sequence of codes (with respect

to squared error) yielding reproduction processes X̂(n) with entropy rate

H(X̂(n)) ≤ R, then

lim
n→∞E(X̂

(n)
0 ) = E(X0) (13.15)

lim
n→∞

COV(X0, X̂
(n)
0 )

σ 2

X̂(n)0

= 1 (13.16)

lim
n→∞σ

2

X̂(n)0

= σ 2
X0
−DX(R). (13.17)

Defining the error as ǫ(n)0 = X̂(n)0 − X0, then the necessary conditions be-

come

lim
n→∞E(ǫ

(n)
0 ) = 0 (13.18)

lim
n→∞E(ǫ

(n)
0 X̂(n)0 )) = 0 (13.19)

lim
n→∞σ

2

ǫ(n)0

= DX(R). (13.20)

The results are stated for time k = 0, but stationarity ensures that they

hold for all times k.

Proof: For any encoder/decoder pair (fn, gn) yielding a reproduction
process X̂(n)

∆(fn, gn) ≥ inf
a,b∈R

∆(fn, agn + b)

≥ DX(R) = inf
f ,g

∆(f , g)

where the second inequality follows since scaling a sliding-block decoder
by a real constant and adding a real constant results in another sliding-
block decoder with entropy rate no greater than that of the input. The
minimization over a and b for each n is solved by standard linear pre-
diction techniques as
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an =
COV(X0, X̂

(n)
0 )

σ 2

X̂(n)0

(13.21)

bn = E(X0)− anE(X̂(n)0 ), (13.22)

inf
a,b
∆(fn, agn + b) = ∆(fn, angn + bn)

= σ 2
X0
− a2

nσ
2

X̂(n)0

. (13.23)

Combining the above facts we have that since (fn, gn) is an asymptot-
ically optimal sequence,

DX(R) = lim
n→∞∆(fn, gn) ≥ lim

n→∞∆(fn, angn + bn)
≥ DX(R) (13.24)

and hence that both inequalities are actually equalities. The final inequal-
ity (13.24) being an equality yields

lim
n→∞a

2
nσ

2

X̂(n)0

= σ 2
X0
−DX(R). (13.25)

Application of asymptotic optimality and (13.21) to

∆(fn, gn) = E
(
(X0 − X̂(n)0 )2

)

= E
(
([X0 − E(X0)]− [X̂(n)0 − E(X̂(n)0 )]

+ [E(X0)− E(X̂(n)0 )])2
)

= σ 2
X0
+ σ 2

X̂(n)0

− 2COV(X0, X̂
(n)
0 )

+ [E(X0)− E(X̂(n)0 )]2

results in

DX(R) = lim
n→∞

(
σ 2
X0
+ (1− 2an)σ

2

X̂(n)0

+ [E(X0)− E(X̂(n)0 )]2
)
. (13.26)

Subtracting (13.25) from (13.26) yields

lim
n→∞

(
(1− an)2σ 2

X̂(n)0

+ [E(X0)− E(X̂(n)0 )]2
)
= 0. (13.27)

Since both terms in the limit are nonnegative, both must converge to
zero since the sum does. Convergence of the rightmost term in the sum
proves (13.15). Provided DX(R) < σ

2
X0

, which is true if R > 0, (13.25) and

(13.27) together imply that (an − 1)2/a2
n converges to 0 and hence that
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lim
n→∞an = lim

n→∞
COV(X0, X̂

(n)
0 )

σ 2

X̂(n)0

= 1. (13.28)

This proves (13.16) and with (13.26) proves (13.17) and also that

lim
n→∞COV(X0, X̂

(n)
0 ) = σ 2

X0
−DX(R). (13.29)

Finally consider the conditions in terms of the reproduction error.
Eq. (13.18) follows from (13.15). Eq. (13.19) follows from (13.15)–(13.29)
and some algebra. Eq. (13.20) follows from (13.18) and the asymptotic
optimality of the codes. ✷

If X is a B-process so that ∆X|Z = DX(R), then a similar proof yields
corresponding results for the simulation problem. If gn is an asymptoti-
cally optimal (with respect to ρ2 distortion) sequence of stationary codes
of an IID equiprobable source Z with alphabet B of size R = log‖B‖
which produce a simulated process X̃(n), then

lim
n→∞E(X̃

(n)
0 ) = E(X0)

lim
n→∞σ

2

X̃(n)0

= σ 2
X0
−∆X|Z .

It is perhaps surprising that when finding the best matching process with
constrained rate, the second moments differ.

Finite-order distribution Shannon conditions for IID

processes

Several code design algorithms, including randomly populating a trel-
lis to mimic the proof of the trellis source encoding theorem [188], are
based on the intuition that the guiding principle of designing such a
system for an IID source should be to produce a code with marginal
reproduction distribution close to a Shannon optimal reproduction dis-
tribution [193, 42, 143]. The following result from [117] formalizes this
intuition.

Lemma 13.6. Given a real-valued IID process X with distribution µX , as-

sume that {fn, gn} is an asymptotically optimal sequence of station-

ary source encoder/decoder pairs with common alphabet B of size R =
log‖B‖ which produce a reproduction process X̂(n). Then a subsequence

of the marginal distribution of the reproduction process, µ
X̂(n)0

converges

weakly and in quadratic transportation distortion (ρ-bar distortion with

respect to squared error distortion) to a Shannon optimal reproduction
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distribution. If the Shannon optimal reproduction distribution is unique,

then µ
X̂(n)0

converges to it.

Proof: Given the asymptotically optimal sequence of codes, let πn de-
note the induced process joint distributions on (X, X̂(n)). The encoded
process has alphabet size 2R and hence entropy rate less than or equal
to R. Since coding cannot increase entropy rate, the entropy rate of the
reproduction (decoded) process is also less than or equal to R. Since the
input process is IID, Lemma 8.8 implies that for all N that

1

N
I(πNn ) =

1

N
I(XN , X̂N) ≥ 1

N

N−1∑

i=0

I(Xi, X̂
(n)
i )

= I(X0, X̂
(n)
0 ) = I(π1

n). (13.30)

The leftmost term converges to the mutual information rate between the
input and reproduction, which is bound above by the entropy rate of the
output so that

I(X0, X̂
(n)
0 ) ≤ R, all n. (13.31)

Since the code sequence is asymptotically optimal, (13.13) holds. Thus

the sequence of joint distributions πn for (X0, X̂
(n)
0 ) meets the condi-

tions of Corollary 9.4 and hence µ
X̂(n)0

has a subsequence which con-

verges weakly to a Shannon optimal distribution. If the Shannon opti-
mal distribution µY0 is unique, then every subsequence of of µ

X̂(n)0
has

a further subsequence which converges to µY0 , which implies that µ
X̂(n)0

converges weakly to µY0 . The moment conditions (13.15) and (13.17))

of Lemma 13.5 imply that E[(X̂(n)0 )2] converges to E[(X̂0)2]. The weak
convergence of a subsequence of µX̂(n) (or the sequence itself) and the
convergence of the second moments imply convergence in quadratic
transportation distortion (ρ-bar distortion with respect to squared error
distortion) [187]. ✷

Since the source is IID, the N-fold product of a one-dimensional Shan-
non optimal distribution is an N-dimensional Shannon optimal distribu-
tion. If the Shannon optimal marginal distribution is unique, then so is
the N-dimensional Shannon optimal distribution. Since Csiszár’s [25] re-
sults as summarized in Corollary 9.4 hold for the N-dimensional case,
we immediately have the first part of the following corollary.

Corollary 13.1. Given the assumptions of the lemma, for any positive inte-

gerN let µX̂(n) denote theN-dimensional joint distribution of the reproduc-

tion process X̂(n). Then a subsequence of the N-dimensional reproduction

distribution µX̂(n) converges weakly and in quadratic transportation dis-

tortion to the N-fold product of a Shannon optimal marginal distribution

(and hence to an N-dimensional Shannon optimal distribution). If the one

dimensional Shannon optimal distribution is unique, then µX̂(n) converges
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weakly and in quadratic transportation distortion to its N-fold product

distribution.

Proof: The moment conditions (13.15) and (13.17)) of Lemma 13.5 imply

that E[(X̂(n)k )2] converges to E[(X̂k)2] for k = 0,1, . . . ,N − 1. The weak
convergence of the N-dimensional distribution of a subsequence of µX̂(n)
(or the sequence itself) and the convergence of the second moments im-
ply convergence in quadratic transportation distortion [187]. ✷

There is no counterpart of this result for optimal codes as opposed
to asymptotically optimal codes. Consider the Gaussian case where the
Shannon optimal distribution is a product Gaussian distribution with
variance σ 2

X−DX(R). If a code were optimal, then for eachN the resulting
Nth order reproduction distribution would have to equal the Shannon
product distribution. But if this were true for all N , the reproduction
would have to be the IID process with the Shannon marginals, but that
process has infinite entropy rate.

If X is a B-process, then a small variation on the proof yields sim-
ilar results for the simulation problem: given an IID target source X,
the Nth order joint distributions µX̃(n) of an asymptotically optimal se-
quence of constrained rate simulations X̃(n) will have a subsequence that
converges weakly and in quadratic transportation distortion to an N-
dimensional Shannon optimal distribution.

Asymptotic Uncorrelation

Define as usual the covariance function of the stationary process X̂(n)

by KX̂(n)(k) = COV(X̂(n)i , X̂(n)i−k) for all integer k. The following theorem
states and proves an intuitive property nearly optimal codes for IID
sources must yield approximately uncorrelated reproduction processes.
The result is implied by the convergence of joint distributions to the
Shannon optimal distribution along with a technical moment condition
proved in the subsequent lemma.

Theorem 13.1. Given a real-valued IID process X with distribution µX ,

assume that fn, gn is an asymptotically optimal sequence of station-

ary source encoder/decoder pairs with common alphabet B of size R =
log‖B‖ which produce a reproduction process X̂(n). For all k ≠ 0,

lim
n→∞KX̂(n)(k) = 0 (13.32)

and hence the reproduction processes are asymptotically uncorrelated.

Proof. If the Shannon optimal distribution is unique, then µX̂(n) con-
verges in quadratic transportation distortion to theN-fold product of the
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Shannon optimal marginal distribution by Corollary 13.1. Lemma 13.7
which follows shows that this implies the convergence of KX̂(n)(k) =
COV(X̂(n)k , X̂(n)0 ) to 0 for all k ≠ 0. ✷

Taken together these necessary conditions provide straightforward
tests for code construction algorithms.

Lemma 13.7. Let µN denote the N-fold product of a probability distribu-
tion µ on the real line such that

∫
x2dµ(x) < ∞. Assume {νn} is a se-

quence of probability distribution on RN such that limn→∞ ρN(µN , νn) =
0. If Y (n)1 , Y (n)2 , . . . , Y (n)N are random variables with joint distribution νn,

then for all i ≠ j, limn→∞ E
[(
Y (n)i − E(Y (n)i )

)(
Y (n)j − E(Y (n)j )

)]= 0.

Proof. The convergence of νn to µN in quadratic transportation distor-
tion implies that there exist IID random variables Y1, . . . , YN with com-

mon distribution µ and a sequence or N random variables Y (n)1 , Y (n)2 , . . . ,

Y (n)N with joint distribution νn, all defined on the same probability space,
such that

lim
n→∞E[(Y

(n)
i − Yi)2] = 0, i = 1, . . . ,N. (13.33)

First note that this implies for all i

lim
n→∞E[(Y

(n)
i )2] = E[Y 2

i ]. (13.34)

Since lim
n→∞E|Y

(n)
i − Yi| = 0, the Cauchy-Scwartz inequality implies that

for all i
lim
n→∞E(Y

(n)
i ) = E(Yi). (13.35)

The statement is a direct consequence of the fact that in any inner
product space, the inner product is jointly continuous. Letting 〈X,Y 〉 =
E(XY) and ‖X‖ = [E(X2)]1/2 for random variables X and Y with finite
second moment defined on this probability space, we have the bound

∣∣〈Y (n)i , Y (n)j 〉 − 〈Yi, Yj〉
∣∣ ≤

∣∣〈Y (n)i , Y (n)j − Yj〉
∣∣+

∣∣〈Y (n)i − Yi, Yj〉
∣∣

≤ ‖Y (n)i ‖‖Y (n)j − Yj‖ + ‖Y (n)i − Yi‖‖Yj‖.

Since ‖Y (n)i ‖ converges to ‖Yi‖ by (13.34) and ‖Y (n)i − Yi‖ converges to

zero by (13.33), we obtain that 〈Y (n)i , Y (n)j 〉 converges to 〈Yi, Yj〉, i.e,

lim
n→∞E(Y

(n)
i Y (n)i ) = E(YiYj) = E(Yi)E(Yj)

since Yi and Yj are independent if i ≠ j. This and (13.35) imply the
lemma statement. ✷



Chapter 14

Coding for Noisy Channels

Abstract Reliable communication over a noisy channel is the focus of
this chapter. The chapter begins with a development of the classic fun-
damental results of Feinstein regarding reliable communication of block
codes and the relation of operational channel capacity to Shannon ca-
pacity for discrete channels. A technique of Dobrushin is used to extend
Feinstein’s results for channels with no input memory or anticipation
by making codes robust to small changes in the conditional distribu-
tions describing channels. This leads in turn to the extension of block
coding theorems to d-bar continuous channels, discrete noisy channels
where the noise distribution within a block can be well approximated
in a d-bar sense with only finite knowledge of past and future inputs.
Traditional channel coding theorems for block codes assume knowl-
edge of synchronization — when the blocks begin. Another technique of
Doburshin is used to synchronize block codes through noisy channels.
Combining synchronized block codes with the Rohlin-Kakutani theorem
yields a coding theorem for sliding-block channel coding. Finally, com-
bining the source coding theorems with channel coding theorems yields
joint-source and channel coding theorems.

14.1 Noisy Channels

In the treatment of source coding the communication channel was as-
sumed to be noiseless. If the channel is noisy, then the coding strategy
must be different, some form of error control is required to undo the
damage caused by the channel. The overall point-to-point communica-
tion problem is usually broken into two pieces: A source coder is de-
signed for a noiseless channel with a given resolution or rate and an
error correction code is designed for the actual noisy channel in order
to make it appear almost noiseless. The combination of the two codes
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then provides the desired overall code or joint source and channel code.
This division is natural in the sense that optimizing a code for a particu-
lar source may suggest quite a different structure than optimizing it for
a channel. The structures must be compatible at some point, however,
so that they can be used together. This division of source and channel
coding is apparent in the subdivision of this chapter. We begin with a
fundamental lemma due to Feinstein [39] which is the basis of tradi-
tional proofs of coding theorems for channels. It does not consider a
source at all, but finds for a given conditional distribution the maximum
number of inputs which lead to outputs which can be distinguished with
high probability. Feinstein’s lemma can be thought of as a channel cod-
ing theorem for a channel which is used only once and which has no
past or future. The lemma immediately provides a coding theorem for
the special case of a channel which has no input memory or anticipa-
tion. The difficulties enter when the conditional distributions of output
blocks given input blocks depend on previous or future inputs. This dif-
ficulty is handled by imposing some form of continuity on the channel
with respect to its input, that is, by assuming that if the channel in-
put is known for a big enough block, then the conditional probability
of outputs during the same block is known nearly exactly regardless of
previous or future inputs. The continuity condition which we shall con-
sider is that of d-continuous channels. Joint source and channel codes
have been obtained for more general channels called weakly continuous

channels (see, e.g., Kieffer [94] [95]), but these results require a variety of
techniques not yet considered here and do not follow as a direct descen-
dent of Feinstein’s lemma.

Block codes are extended to sliding-block codes in a manner simi-
lar to that for source codes: First it is shown that asynchronous block
codes can be synchronized and then that the block codes can be “sta-
tionarized” by the insertion of random punctuation. The approach to
synchronizing channel codes is based on a technique of Dobrushin [33].

We consider stationary channels almost exclusively, thereby not in-
cluding interesting nonstationary channels such as finite state channels
with an arbitrary starting state. We will discuss such generalizations and
we point out that they are straightforward for two-sided processes, but
the general theory of AMS channels for one-sided processes is not in a
satisfactory state. Lastly, we emphasize ergodic channels. In fact, for the
sliding-block codes the channels are also required to be totally ergodic,
that is, ergodic with respect to all block shifts.

As previously discussed, we emphasize digital, i.e., discrete, channels.
A few of the results, however, are as easily proved under somewhat more
general conditions and hence we shall do so. For example, given the back-
ground of this book it is actually easier to write things in terms of mea-
sures and integrals than in terms of sums over probability mass func-
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tions. This additional generality will also permit at least a description of
how the results extend to continuous alphabet channels.

14.2 Feinstein’s Lemma

Let (A,BA) and (B,BB) be measurable spaces called the input space and
the output space, respectively. Let PX denote a probability distribution on
(A,BA) and let ν(F|x), F ∈ BB , x ∈ B denote a regular conditional prob-
ability distribution on the output space. ν can be thought of as a “chan-
nel” with random variables as input and output instead of sequences.
Define the hookup PXν = PXY by

PXY (F) =
∫
dPX(x)ν(Fx|x).

Let PY denote the induced output distribution and let PX×PY denote the
resulting product distribution. Assume that PXY << (PX×PY ) and define
the Radon-Nikodym derivative

f = dPXY
d(PX × PY )

(14.1)

and the information density

i(x,y) = lnf(x,y).

We use abbreviated notation for densities when the meanings should be
clear from context, e.g., f instead of fXY . Observe that for any set F

∫

F
dPX(x)

(∫
dPY (y)f(x,y)

)
=
∫

F×B
d(PX × PY )(x,y)f(x,y)

=
∫

F×B
dPXY (x,y) = PX(B) ≤ 1

and hence ∫
dPY (y)f(x,y) ≤ 1; PX − a.e. (14.2)

Feinstein’s lemma shows that we can pick M inputs {xi ∈ A; i =
1,2, . . . ,M}, and a corresponding collection of M disjoint output events
{Γi ∈ BB ; i = 1,2, . . . ,M}, with the property that given an input xi
with high probability the output will be in Γi. We call the collection
C = {xi, Γi; i = 1,2, . . . ,M} a channel code or, simply, a code when the
meaning is clear from context, with codewords xi and decoding regions
Γi. We do not require that the Γi exhaust B.
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The generalization of Feinstein’s original proof for finite alphabets to
general measurable spaces is due to Kadota [82] and the following proof
is based on his.

Lemma 14.1. Given an integer M and a > 0 there exist xi ∈ A; i =
1, . . . ,M and a measurable partition F = {Γi; i = 1, . . . ,M} of B such that

ν(Γ ci |xi) ≤ Me−a + PXY (i ≤ a).

Proof: Define G = {x,y : i(x,y) > a} Set ǫ = Me−a + PXY (i ≤ a) =
Me−a + PXY (Gc). The result is obvious if ǫ ≥ 1 and hence we assume
that ǫ < 1 and hence also that

PXY (G
c) ≤ ǫ < 1

and therefore that

PXY (i > a) = PXY (G) =
∫
dPX(x)ν(Gx|x) > 1− ǫ > 0.

This implies that the set Ã = {x : ν(Gx|x) > 1−ǫ and (14.2) holds} must
have positive measure under PX We now construct a code consisting of
input points xi and output sets Γxi . Choose an x1 ∈ Ã and define Γx1 =
Gx1 . Next choose if possible a point x2 ∈ Ã for which ν(Gx2 − Γx1|x2) >
1 − ǫ. Continue in this way until either M points have been selected or
all the points in Ã have been exhausted. In particular, given the pairs
{xj , Γj}; j = 1,2, . . . , i− 1, satisfying the condition, find an xi for which

ν(Gxi −
⋃

j<i

Γxj |xi) > 1− ǫ. (14.3)

If the procedure terminates before M points have been collected, denote
the final point’s index by n. Observe that

ν(Γxic|xi) ≤ ν(Gxic|xi) ≤ ǫ; i = 1,2, . . . , n

and hence the lemma will be proved if we can show that necessarily n
cannot be strictly less than M . We do this by assuming the contrary and
finding a contradiction.

Suppose that the selection has terminated at n < M and define the set
F = ⋃ni=1 Γxi ∈ BB . Consider the probability

PXY (G) = PXY (G
⋂
(A× F))+ PXY (G

⋂
(A× Fc)). (14.4)

The first term can be bounded above as

PXY (G
⋂
(A× F)) ≤ PXY (A× F) = PY (F) =

n∑

i=1

PY (Γxi).
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We also have from the definitions and from (14.2) that

PY (Γxi) =
∫

Γxi
dPY (y) ≤

∫

Gxi

dPY (y) ≤
∫

Gxi

f(xi, y)

ea
dPY (y)

≤ e−a
∫
dPY (y)f(xi, y) ≤ e−a

and hence
PXY (G

⋂
(A× F)) ≤ ne−a. (14.5)

Consider the second term of (14.3):

PXY (G
⋂
(A× Fc)) =

∫
dPX(x)ν((G

⋂
(A× Fc))x|x)

=
∫
dPX(x)ν(Gx

⋂
Fc|x)

=
∫
dPX(x)ν(Gx −

n⋃

i=1

Γi|x). (14.6)

We must have, however, that

ν(Gx −
n⋃

i=1

Γi|x) ≤ 1− ǫ

with PX probability 1 or there would be a point xn+1 for which

ν(Gxn+1 −
n+1⋃

i=1

Γi|xn+1) > 1− ǫ,

that is, (14.3) would hold for i = n+ 1, contradicting the definition of n
as the largest integer for which (14.3) holds. Applying this observation
to (14.6) yields

PXY (G
⋂
(A× Fc)) ≤ 1− ǫ

which with (14.4) and (14.5) implies that

PXY (G) ≤ ne−a + 1− ǫ. (14.7)

From the definition of ǫ, however, we have also that

PXY (G) = 1− PXY (Gc) = 1− ǫ+Me−a

which with (14.7) implies that M ≤ n, completing the proof. ✷
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14.3 Feinstein’s Theorem

Given a channel [A, ν, B] an (M,n, ǫ) block channel code for ν is a col-
lection {wi, Γi}; i = 1,2, . . . ,M , where wi ∈ An, Γi ∈ BnB , all i, with the
property that

sup
x∈c(wi)

max
i=1,...,M

νnx (Γi) ≤ ǫ, (14.8)

where c(an) = {x : xn = an} and where νnx is the restriction of νx to BnB .
The rate of the code is defined as n−1 logM . Thus an (n,M, ǫ) channel
code is a collection of M input n-tuples and corresponding output cells
such that regardless of the past or future inputs, if the input during
time 1 to n is a channel codeword, then the output during time 1 to
n is very likely to lie in the corresponding output cell. Channel codes
will be useful in a communication system because they permit nearly
error free communication of a select group of messages or codewords.
A communication system can then be constructed for communicating a
source over the channel reliably by mapping source blocks into channel
codewords. If there are enough channel codewords to assign to all of the
source blocks (at least the most probable ones), then that source can be
reliably reproduced by the receiver. Hence a fundamental issue for such
an application will be the number of messages M or, equivalently, the
rate R of a channel code.

Feinstein’s lemma can be applied fairly easily to obtain something that
resembles a coding theorem for a noisy channel. Suppose that [A, ν, B] is
a channel and [A, µ] is a source and that [A×B,p = µν] is the resulting
hookup. Denote the resulting pair process by {Xn, Yn} For any integer
K let pK denote the restriction of p to (AK × BK , BKA × BKB ), that is, the
distribution on input/output K-tuples (XK , YK). The joint distribution
pK together with the input distribution µK induce a regular conditional
probability ν̂K defined by ν̂K(F|xK) = Pr(YK ∈ F|XK = xK). In particu-
lar,

ν̂K(G|aK) = Pr(YK ∈ G|XK = aK)
= 1

µK(aK)

∫

c(aK)
νKx (G)dµ(x). (14.9)

where c(aK) = {x : xK = aK} is the rectangle of all sequences with a
common K-dimensional output. We call ν̂K the induced K-dimensional

channel of the channel ν and the source µ. It is important to note that
the induced channel depends on the source as well as on the channel,
a fact that will cause some difficulty in applying Feinstein’s lemma. An
exception to this case which proves to be an easy application is that of a
channel without input memory and anticipation, in which case we have
from the definitions that
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ν̂K(F|aK) = νx(YK ∈ F); x ∈ c(aK).

Application of Feinstein’s lemma to the induced channel yields the
following result, which was proved by Feinstein for stationary finite al-
phabet channels and is known as Feinstein’s theorem:

Lemma 14.2. Suppose that [A × B, µν] is an AMS and ergodic hookup of

a source µ and channel ν . Let Iµν = Iµν(X;Y) denote the average mutual

information rate and assume that Iµν = I∗µν is finite (as is the case if

the alphabets are finite (Theorem 8.2) or have the finite-gap information

property (Theorem 8.4)). Then for any R < Iµν and any ǫ > 0 there exists

for sufficiently large n a code {wni ; Γi; i = 1,2, . . . ,M}, where M = ⌊enR⌋,
wni ∈ An, and Γi ∈ BnB , with the property that

ν̂n(Γ ci |wni ) ≤ ǫ, i = 1,2, . . . ,M. (14.10)

Comment: We shall call a code {wi, Γi; i = 1,2, . . . ,M} which satisfies
(14.10) for a channel input process µ a (µ,M,n, ǫ)-Feinstein code. The
quantity n−1 logM is called the rate of the Feinstein code.
Proof: Let η denote the output distribution induced by µ and ν . Define
the information density

in = dpn

d(µn × ηn)
and define

δ = Iµν − R
2

> 0.

Apply Feinstein’s lemma to the n-dimensional hookup (µν)n with M =
⌊enR⌋ and a = n(R + δ) to obtain a code {wi, Γi}; i = 1,2, . . . ,M with

max
i
ν̂n(Γ ci |wni )

≤ Me−n(R+δ) + pn(in ≤ n(R + δ))
= ⌊enR⌋e−n(R+δ) + p( 1

n
in(X

n;Yn) ≤ R + δ) (14.11)

and hence

max
i
ν̂n(Γ ci |wni ) ≤ e−nδ + p(

1

n
in(X

n;Yn) ≤ Iµν − δ). (14.12)

From Theorem 8.1 n−1in converges in L1 to Iµν and hence it also con-
verges in probability. Thus given ǫ we can choose an n large enough to
ensure that the right hand side of (14.11) is smaller than ǫ, which com-
pletes the proof of the theorem. ✷
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We said that the lemma “resembled” a coding theorem because a real
coding theorem would prove the existence of an (M,n, ǫ) channel code,
that is, it would concern the channel ν itself and not the induced channel
ν̂ , which depends on a channel input process distribution µ. The differ-
ence between a Feinstein code and a channel code is that the Feinstein
code has a similar property for an induced channel which in general de-
pends on a source distribution, while the channel code has this property
independent of any source distribution and for any past or future inputs.

Feinstein codes will be used to construct block codes for noisy chan-
nels. The simplest such construction is presented next.

Corollary 14.1. Suppose that a channel [A, ν, B] is input memoryless

and input nonanticipatory as defined in Section 2.9. Then a (µ,M,n, ǫ)-
Feinstein code for some channel input process µ is also an (M,n, ǫ)-code.

Proof: Immediate since for a channel without input memory and antici-
pation we have that νnx (F) = νnu(F) if xn = un. ✷

The principal idea of constructing channel codes from Feinstein codes
for more general channels will be to place assumptions on the channel
which ensure that for sufficiently large n the channel distribution νnx and
the induced finite dimensional channel ν̂n(·|xn) are close. This general
idea was proposed by McMillan [123] who suggested that coding theo-
rems would follow for channels that were sufficiently continuous in a
suitable sense.

The previous results did not require stationarity of the channel, but
in a sense stationarity is implicit if the channel codes are to be used
repeatedly (as they will be in a communication system). Thus the imme-
diate applications of the Feinstein results will be to stationary channels.

The following is a rephrasing of Feinstein’s theorem that will be use-
ful.

Corollary 14.2. Suppose that [A × B, µν] is an AMS and ergodic hookup

of a source µ and channel ν . Let Iµν = Iµν(X;Y) denote the average

mutual information rate and assume that Iµν = I∗µν is finite. Then for any

R < Iµν and any ǫ > 0 there exists an n0 such that for all n ≥ n0 there

are (µ, ⌊enR⌋, n, ǫ)-Feinstein codes.

As a final result of the Feinstein variety, we point out a variation that
applies to nonergodic channels.

Corollary 14.3. Suppose that [A× B, µν] is an AMS hookup of a source µ
and channel ν . Suppose also that the information density converges a.e.

to a limiting density

i∞ = lim
n→∞

1

n
in(X

n;Yn).

(Conditions for this to hold are given in Theorem 11.4.) Then given ǫ > 0
and δ > 0 there exists for sufficiently large n a [µ,M,n, ǫ + µν(i∞ ≤
R + δ)] Feinstein code with M = ⌊enR⌋.
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Proof: Follows from the lemma and from Fatou’s lemma which implies
that

lim sup
n→∞

p(
1

n
in(X

n;Yn) ≤ a) ≤ p(i∞ ≤ a).
✷

14.4 Channel Capacity

The form of the Feinstein lemma and its corollaries invites the question
of how large R (and hence M) can be made while still getting a code of
the desired form. From Feinstein’s theorem it is seen that for an ergodic
channel R can be any number less than I(µν) which suggests that if we
define the quantity

CAMS,e = sup
AMS and ergodic µ

Iµν , (14.13)

then if Iµν = I∗µν (e.g., the channel has finite alphabet), then we can con-
struct for some µ a Feinstein code for µ with rate R arbitrarily near
CAMS,e. CAMS,e is an example of a quantity called an information rate

capacity or, simply, capacity of a channel. We shall encounter a few
variations on this definition just as there were various ways of defin-
ing distortion-rate functions for sources by considering either vectors
or processes with different constraints. In this section a few of these
definitions are introduced and compared.

A few possible definitions of information rate capacity are

CAMS = sup
AMS µ

Iµν , (14.14)

Cs = sup
stationary µ

Iµν , (14.15)

Cs,e = sup
stationary and ergodic µ

Iµν , (14.16)

Cns = sup
n−stationary µ

Iµν , (14.17)

Cbs = sup
block stationary µ

Iµν = sup
n

sup
n−stationary µ

Iµν . (14.18)

Several inequalities are obvious from the definitions:

CAMS ≥ Cbs ≥ Cns ≥ Cs ≥ Cs,e (14.19)

CAMS ≥ CAMS,e ≥ Cs,e. (14.20)
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In order to relate these definitions we need a variation on Lemma 12.3.1
described in the following lemma.

Lemma 14.3. Given a stationary finite-alphabet channel [A, ν, B], let µ be

the distribution of a stationary channel input process and let {µx} be its

ergodic decomposition. Then

Iµν =
∫
dµ(x)Iµxν . (14.21)

Proof: We can write
Iµν = h1(µ)− h2(µ)

where

h1(µ) = Hη(Y) = inf
n

1

n
Hη(Y

n)

is the entropy rate of the output, where η is the output measure induced
by µ and ν , and where

h2(µ) = Hµν(Y |X) = lim
n→∞

1

n
Hµν(Y

n|Xn)

is the conditional entropy rate of the output given the input. If µk → µ on
any finite dimensional rectangle, then also ηk → η and hence Hηk(Y

n)→
Hη(Yn) so that it follows as in the proof of Corollary 3.4 that h1(µ) is
an upper semicontinuous function of µ. It is also affine because Hη(Y)
is an affine function of η (Lemma 3.9) which is in turn a linear function
of µ. Thus from Theorem 8.9.1 of [55] or Theorem 8.5 of [58]

h1(µ) =
∫
dµ(x)h1(µx).

h2(µ) is also affine in µ since h1(µ) is affine in µ and Iµν is affine in µ
(since it is affine in µν from Lemma 8.6). Hence we will be done if we can
show that h2(µ) is upper semicontinuous in µ since then Theorem 8.9.1
of [55] will imply that

h2(µ) =
∫
dµ(x)h2(µx)

which with the corresponding result for h1 proves the lemma. To see
this observe that if µk → µ on finite dimensional rectangles, then

Hµkν(Y
n|Xn)→ Hµν(Yn|Xn). (14.22)

Next observe that for stationary processes
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H(Yn|Xn) ≤ H(Ym|Xn)+H(Yn−mm |Xn)
≤ H(Ym|Xm)+H(Yn−mm |Xn−mm )

= H(Ym|Xm)+H(Yn−m|Xn−m)

which as in Section 2.4 implies that H(Yn|Xn) is a subadditive sequence
and hence

lim
n→∞

1

n
H(Yn|Xn) = inf

n

1

n
H(Yn|Xn).

Coupling this with (14.22) proves upper semicontinuity exactly as in the
proof of Corollary 3.4, which completes the proof of the lemma. ✷

Lemma 14.4. If a channel ν has a finite alphabet and is stationary, then

all of the above information rate capacities are equal.

Proof: From Theorem 8.2 I = I∗ for finite alphabet processes and hence
from Lemma 8.6 and Lemma 2.2 we have that if µ is AMS with stationary
mean µ, then

Iµν = Iµν = Iµν
and thus the supremum over AMS sources must be the same as that over
stationary sources. The fact that Cs ≤ Cs,e follows immediately from the
previous lemma since the best stationary source can do no better than to
put all of its measure on the ergodic component yielding the maximum
information rate. Combining these facts with (14.19)–(14.20) proves the
lemma. ✷

Because of the equivalence of the various forms of information rate
capacity for stationary channels, we shall use the symbol C to represent
the information rate capacity of a stationary channel and observe that
it can be considered as the solution to any of the above maximization
problems.

Shannon’s original definition of channel capacity applied to channels
without input memory or anticipation. We pause to relate this definition
to the process definitions. Suppose that a channel [A, ν, B] has no input
memory or anticipation and hence for each n there are regular condi-
tional probability measures ν̂n(G|xn); x ∈ An, G ∈ BnB , such that

νnx (G) = ν̂n(G|xn).

Define the finite-dimensional capacity of the ν̂n by

Cn(ν̂
n) = sup

µn
Iµnν̂n(X

n;Yn),

where the supremum is over all vector distributions µn on An. Define
the Shannon capacity of the channel µ by

CShannon = lim
n→∞

1

n
Cn(ν̂n)
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if the limit exists. Suppose that the Shannon capacity exists for a channel
ν without memory or anticipation. Choose N large enough so that CN is
very close to CShannon and let µN approximately yield CN . Then construct
a block memoryless source using µN . A block memoryless source is AMS
and hence if the channel is AMS we must have an information rate

Iµν(X;Y) = lim
n→∞

1

n
Iµν(X

n;Yn) = lim
k→∞

1

kN
Iµν(X

kN ;Y kN).

Since the input process is block memoryless, we have from Lemma 8.8
that

I(XkN ;Y kN) ≥
k∑

i=0

I(XNiN ;YNiN).

If the channel is stationary then {Xn, Yn} is N-stationary and hence if

1

N
IµN ν̂N (X

N ;YN) ≥ CShannon − ǫ,

then
1

kN
I(XkN ;Y kN) ≥ CShannon − ǫ.

Taking the limit as k→∞ we have that

CAMS = C ≥ I(X;Y) = lim
k→∞

1

kN
I(XkN ;Y kN) ≥ CShannon − ǫ

and hence
C ≥ CShannon.

Conversely, pick a stationary source µ which nearly yields C = Cs, that
is,

Iµν ≥ Cs − ǫ.
Choose n0 sufficiently large to ensure that

1

n
Iµν(X

n;Yn) ≥ Iµν − ǫ ≥ Cs − 2ǫ.

This implies, however, that for n ≥ n0

Cn ≥ Cs − 2ǫ,

and hence application of the previous lemma proves the following lemma.

Lemma 14.5. Given a finite alphabet stationary channel ν with no input

memory or anticipation,

C = CAMS = Cs = Cs,e = CShannon.
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The Shannon capacity is of interest because it can be numerically com-
puted while the process definitions are not always amenable to such
computation.

With Corollary 14.2 and the definition of channel capacity we have the
following result.

Lemma 14.6. If ν is an AMS and ergodic channel and R < C , then there

is an n0 sufficiently large to ensure that for all n ≥ n0 there exist

(µ, ⌊enR⌋, n, ǫ) Feinstein codes for some channel input process µ.

Corollary 14.4. Suppose that [A, ν, B] is an AMS and ergodic channel

with no input memory or anticipation. Then if R < C , the information

rate capacity or Shannon capacity, then for ǫ > 0 there exists for suffi-

ciently large n a (⌊enR⌋, n, ǫ) channel code.

Proof: Follows immediately from Corollary 14.3 by choosing a stationary
and ergodic source µ with Iµν ∈ (R,C). ✷

There is another, quite different, notion of channel capacity that we
introduce for comparison and to aid the discussion of nonergodic sta-
tionary channels. Define for an AMS channel ν and any λ ∈ (0,1) the
quantile

C∗(λ) = sup
AMS µ

sup{r : µν(i∞ ≤ r) < λ)},

where the supremum is over all AMS channel input processes and i∞ is
the limiting information density (which exists because µν is AMS and
has finite alphabet). Define the information quantile capacity C∗ by

C∗ = lim
λ→0
C∗(λ).

The limit is well-defined since the C∗(λ) are bounded and nonincreasing.
The information quantile capacity was introduced by Winkelbauer [194]
and its properties were developed by him and by Kieffer [90]. Fix an R <
C∗ and define δ = (C∗−R)/2. Given ǫ > 0 we can find from the definition
of C∗ an AMS channel input process µ for which µν(i∞ ≤ R + δ) ≤ ǫ.
Applying Corollary 14.3 with this δ and ǫ/2 then yields the following
result for nonergodic channels.

Lemma 14.7. If ν is an AMS channel and R < C∗, then there is an n0

sufficiently large to ensure that for all n ≥ n0 there exist (µ, fenRf ,n, ǫ)
Feinstein codes for some channel input process µ.

We close this section by relating C and C∗ for AMS channels.

Lemma 14.8. Given an AMS channel ν ,

C ≥ C∗.
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Proof: Fix λ > 0. If r < C∗(λ) there is a µ such that λ > µν(i∞ ≤ r) =
1− µν(i∞ > r) ≥ 1− Iµν/r , where we have used the Markov inequality.
Thus for all r < C∗ we have that Iµν ≥ r(1− µν(i∞ ≤ r)) and hence

C ≥ Iµν ≥ C∗(λ)(1− λ) →
λ→0
C∗.

✷

It can be shown that if a stationary channel is also ergodic, then
C = C∗ by using the ergodic decomposition to show that the supremum
defining C(λ) can be taken over ergodic sources and then using the fact
that for ergodic µ and ν , i∞ equals Iµν with probability one. (See Kieffer
[90].)

14.5 Robust Block Codes

Feinstein codes immediately yield channel codes when the channel has
no input memory or anticipation because the induced vector channel is
the same with respect to vectors as the original channel. When extending
this technique to channels with memory and anticipation we will try to
ensure that the induced channels are still reasonable approximations to
the original channel, but the approximations will not be exact and hence
the conditional distributions considered in the Feinstein construction
will not be the same as the channel conditional distributions. In other
words, the Feinstein construction guarantees a code that works well for
a conditional distribution formed by averaging the channel over its past
and future using a channel input distribution that approximately yields
channel capacity. This does not in general imply that the code will also
work well when used on the unaveraged channel with a particular past
and future input sequence. We solve this problem by considering chan-
nels for which the two distributions are close if the block length is long
enough.

In order to use the Feinstein construction for one distribution on an
actual channel, we will modify the block codes slightly so as to make
them robust in the sense that if they are used on channels with slightly
different conditional distributions, their performance as measured by
probability of error does not change much. In this section we prove that
this can be done. The basic technique is due to Dobrushin [33] and a sim-
ilar technique was studied by Ahlswede and Gács [4]. (See also Ahlswede
and Wolfowitz [5].) The results of this section are due to Gray, Ornstein,
and Dobrushin [68].

A channel block length n code {wi, Γi; i = 1,2, . . . ,M will be called δ-
robust (in the Hamming distance sense) if the decoding sets Γi are such
that the expanded sets
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(Γi)δ ≡ {yn :
1

n
dn(y

n, Γi) ≤ δ}

are disjoint, where

dn(y
n, Γi) = min

un∈Γi
dn(y

n, un)

and

dn(y
n, un) =

n−1∑

i=0

dH(yi, ui)

and dH(a, b) is the Hamming distance (1 if a 6= b and 0 if a = b). Thus
the code is δ-robust if received n-tuples in a decoding set can be changed
by an average Hamming distance of up to δ without falling in a different
decoding set. We show that by reducing the rate of a code slightly we can
always make a Feinstein code robust.

Lemma 14.9. Let {wi′, Γ ′i ; i = 1,2, . . . ,M′} be a (µ, enR
′
, n, ǫ)-Feinstein

code for a channel ν . Given δ ∈ (0,1/4) and

R < R′ − h2(2δ)− 2δ log(‖B‖ − 1),

where as before h2(a) is the binary entropy function −a loga − (1 −
a) log(1 − a), there exists a δ-robust (µ, ⌊enR⌋, n, ǫn)-Feinstein code for

ν with

ǫn ≤ ǫ+ e−n(R′−R−h2(2δ)−2δ log(‖B‖−1)−3/n).

Proof: For i = 1,2, . . . ,M′ let ri(yn) denote the indicator function for
(Γi)2δ. For a fixed yn there can be at most

2δn∑

i=0

(
n

i

)
(‖B‖ − 1)i = ‖B‖n

2δn∑

i=0

(
n

i

)
(1− 1

‖B‖)
i (1

‖B‖)
n−i

n-tuples bn ∈ Bn such that n−1dn(yn, bn) ≤ 2δ. Set p = 1− 1/‖B‖ and
apply Lemma 3.6 to the sum to obtain the bound

‖B‖n
2δn∑

i=0

(
n

k

)
(1− 1

‖B‖)
i(

1

‖B‖)
n−i ≤ ‖B‖ne−nh2(2δ‖p)

= e−nh2(2δ‖p)+n log‖B‖,

where
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h2(2δ‖p) = 2δ ln
2δ

p
+ (1− 2δ) ln

1− 2δ

1− p
= −h2(δ)+ 2δ ln

‖B‖
‖B‖ − 1

+ (1− 2δ) ln‖B‖
= −h2(δ)+ ln‖B‖ − 2δ ln(‖B‖ − 1).

Combining this bound with the fact that the Γi are disjoint we have that

M′∑

i=1

ri(y
n) ≤

2δn∑

i=0

(
n

i

)
(‖B‖ − 1)i ≤ e−n(h2(2δ)+2δ ln(‖B‖−1).

SetM = ⌊enR⌋ and select 2M subscripts k1, · · · , k2M from {1, · · · ,M′}
by random equally likely independent selection without replacement so
that each index pair (kj , km); j,m = 1, . . . ,2M ; j 6= m, assumes any
unequal pair with probability (M′(M′ − 1))−1. We then have that

E


 1

2M

2M∑

j=1

2M∑

m=1,m 6=j
ν̂(Γ ′kj

⋂
(Γ ′km)2δ|w′kj)




= 1

2M

2M∑

j=1

2M∑

m=1,m 6=j

M′∑

k=1

M′∑

i=1,i 6=k

1

M′(M′ − 1)

∑

yn∈Γ ′k
ν̂(yn|w′k)ri(yn)

≤ 1

2M

2M∑

j=1

2M∑

m=1,m 6=j

M′∑

k=1

1

M′(M′ − 1)

∑

yn∈Γ ′k
ν̂(yn|w′k)

M′∑

i=1,i 6=k
ri(y

n)

≤ 2M

M − 1
en(h2(2δ)+2δ log(‖B‖−1)

≤ 4e−n(R
′−R−h2(2δ)−2δ log(‖B‖−1) ≡ λn,

where we have assumed thatM′ ≥ 2 so thatM′−1 ≥ M′/2. Analogous to
a random coding argument, since the above expectation is less than λn,
there must exist a fixed collection of subscripts i1, · · · , i2M′ such that

1

2M

2M∑

j=1

2M∑

m=1,m 6=j
ν̂(Γ ′ij

⋂
(Γ ′im)2δ|wi′j) ≤ λn.

Since no more than half of the above indices can exceed twice the ex-
pected value, there must exist indices k1, · · · , kM ∈ {j1, · · · , j2M} for
which

M∑

m=1,m 6=j
ν̂(Γ ′kj

⋂
(Γ ′km)2δ|w′kj) ≤ 2λn; i = 1,2, . . . ,M.

Define the code {wi, Γi; i = 1, . . . ,M} by wi = w′ki and
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Γi = Γ ′ki −
M′⋃

m=1,m 6=i
(Γ ′km)2δ.

The (Γi)δ are obviously disjoint since we have removed from Γ ′ki all words
within 2δ of a word in any other decoding set. Furthermore, we have for
all i = 1,2, . . . ,M that

1− ǫ ≤ ν̂(Γ ′ki|w
′
ki
)

= ν̂(Γ ′ki
⋂

⋃

m 6=i
(Γ ′km)2δ


 |w′ki)+ ν̂(Γ

′
ki

⋂

⋃

m 6=i
(Γ ′km)2δ



c

|w′ki)

≤
∑

m 6=i
ν̂(Γ ′ki

⋂
(Γ ′km)2δ|w′ki)+ ν̂(Γi|wi)

< 2λn + ν̂(Γi|wi)

and hence

ν̂(Γi|wi) ≥ 1− ǫ− 8e−n(R
′−R−h2(2δ)−2δ log(‖B‖−1),

which proves the lemma. ✷

Corollary 14.5. Let ν be a stationary channel and let Cn be a sequence of

(µn, ⌊enR′⌋, n, ǫ/2) Feinstein codes for n ≥ n0. Given an R > 0 and δ > 0
such that R < R′−h2(2δ)−2δ log(‖B‖−1), there exists for n1 sufficiently

large a sequence C′n; n ≥ n1, of δ-robust (µn, ⌊enR⌋, n, ǫ) Feinstein codes.

Proof: The corollary follows from the lemma by choosing n1 so that

e−n1(R′−R−h2(2δ)−2δ ln(‖B‖−1)−3/n1) ≤ ǫ
2
.

✷

Note that the sources may be different for each n and that n1 does
not depend on the channel input measure.

14.6 Block Coding Theorems for Noisy Channels

Suppose now that ν is a stationary finite alphabet d-continuous chan-
nel. Suppose also that for n ≥ n1 we have a sequence of δ-robust
(µn, ⌊enR⌋, n, ǫ) Feinstein codes {wi, Γi} as in the previous section. We
now quantify the performance of these codes when used as channel
block codes, that is, used on the actual channel ν instead of on an in-
duced channel. As previously let ν̂n be the n-dimensional channel in-
duced by µn and the channel ν , that is, for µnn(a

n) > 0
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ν̂n(G|an) = Pr(Yn ∈ G|Xn = an) = 1

µnn(an)

∫

c(an)
νnx (G)dµ(x),

(14.23)
where c(an) is the rectangle {x : x ∈ AT; xn = an}, an ∈ An, and where
G ∈ BnB . We have for the Feinstein codes that

max
i
ν̂n(Γ ci |wi) ≤ ǫ.

We use the same codewords wi for the channel code, but we now use
the expanded regions (Γi)δ for the decoding regions. Since the Feinstein
codes were δ-robust, these sets are disjoint and the code well-defined.
Since the channel is d-continuous we can choose an n large enough to
ensure that if xn = xn, then

dn(ν
n
x , ν

n
x ) ≤ δ2.

Suppose that we have a Feinstein code such that for the induced channel

ν̂(Γi|wi) ≥ 1− ǫ.

Then if the conditions of Lemma 5.7 are met and µn is the channel input
source of the Feinstein code, then

ν̂n(Γi|wi) = 1

µnn(wi)

∫

c(wi)
νnx (Γi)dµ(x) ≤ sup

x∈c(wi)
νnx (Γi)

≤ inf
x∈c(wi)

νnx ((Γi)δ)+ δ

and hence

inf
x∈c(wi)

νnx ((Γi)δ) ≥ ν̂n(Γi|wi)− δ ≥ 1− ǫ− δ.

Thus if the channel block code is constructed using the expanded decod-
ing sets, we have that

max
i

sup
x∈c(wi)

νx((Γi)cδ) ≤ ǫ+ δ;

that is, the code {wi, (Γi)δ} is a (⌊enR⌋, n, ǫ + δ) channel code. We have
now proved the following result.

Lemma 14.10. Let ν be a stationary d-continuous channel and Cn; n ≥
n0, a sequence of δ-robust (µn, ⌊enR⌋, n, ǫ) Feinstein codes. Then for n1

sufficiently large and each n ≥ n1 there exists a (⌊enR⌋, n, ǫ + δ) block

channel code.

Combining the lemma with Lemma 14.6 and Lemma 14.7 yields the
following theorem.
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Theorem 14.1. Let ν be an AMS ergodic d-continuous channel. If R < C
then given ǫ > 0 there is an n0 such that for all n ≥ n0 there exist

(⌊enR⌋, n, ǫ) channel codes. If the channel is not ergodic, then the same

holds true if C is replaced by C∗.

Up to this point the channel coding theorems have been “one shot”
theorems in that they consider only a single use of the channel. In a
communication system, however, a channel will be used repeatedly in
order to communicate a sequence of outputs from a source.

14.7 Joint Source and Channel Block Codes

We can now combine a source block code and a channel block code of
comparable rates to obtain a block code for communicating a source
over a noisy channel. Suppose that we wish to communicate a source
{Xn} with a distribution µ over a stationary and ergodic d-continuous
channel [B, ν, B̂]. The channel coding theorem states that if K is cho-
sen to be sufficiently large, then we can reliably communicate length K
messages from a collection of ⌊eKR⌋ messages if R < C . Suppose that
R = C − ǫ/2. If we wish to send the given source across this channel,
then instead of having a source coding rate of (K/N) log‖B‖ bits or
nats per source symbol for a source (N,K) block code, we reduce the
source coding rate to slightly less than the channel coding rate R, say
Rsource = (K/N)(R − ǫ/2) = (K/N)(C − ǫ). We then construct a block
source codebook C of this rate with performance near the operational
DRF δ(Rsource, µ) defined in (12.1). Every codeword in the source code-
book is assigned a channel codeword as index. The source is encoded by
selecting the minimum distortion word in the codebook and then insert-
ing the resulting channel codeword into the channel. The decoder then
uses its decoding sets to decide which channel codeword was sent and
then puts out the corresponding reproduction vector. Since the indices
of the source code words are accurately decoded by the receiver with
high probability, the reproduction vector should yield performance near
that of δ((K/N)(C − ǫ), µ). Since ǫ is arbitrary and δ(R,µ) is a continu-
ous function of R, this implies that the optimal achievable performance
for block coding µ for ν is given by δ((K/N)C,µ), that is, by the opera-
tional distortion-rate function for block coding a source evaluated at the
channel capacity normalized to bits or nats per source symbol. Making
this argument precise yields the block joint source and channel coding
theorem.

A joint source and channel (N,K) block code consists of an encoder
α : AN → BK and decoder β : B̂K → ÂN . It is assumed that N source
time units correspond to K channel time units. The block code yields
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sequence coders α : AT → BT and β : B̂T → ÂT defined by

α(x) = {α(xNiN); all i}
β(x) = {β(xNiN); all i}.

Let E denote the class of all such codes (all N and K consistent with the
physical stationarity requirement). Let ∆∗(µ, ν,E) denote the block cod-
ing operational distortion-rate function function and D(R,µ) the Shan-
non distortion-rate function of the source with respect to an additive
fidelity criterion {ρn}. We assume also that ρn is bounded, that is, there
is a finite value ρmax such that

1

n
ρn(x

n, x̂n) ≤ ρmax

for all n. This assumption is an unfortunate restriction, but it yields a
simple proof of the basic result.

Theorem 14.2. Let {Xn} be a stationary source with distribution µ and

let ν be a stationary and ergodic d-continuous channel with channel ca-

pacity C . Let {ρn} be a bounded additive fidelity criterion. Given ǫ > 0
there exists for sufficiently large N and K (where K channel time units

correspond to N source time units) an encoder α : AN → BK and decoder

β : B̂K → ÂN such that if α : AT → BT and β : B̂T → ÂT are the induced

sequence coders, then the resulting performance is bounded above as

∆(µ,α, ν, β) = EρN(XN , X̂N) ≤ δ(K
N
C,µ)+ ǫ.

Proof: Given ǫ, choose γ > 0 so that

δ(
K

N
(C − γ), µ) ≤ δ(K

N
C,µ)+ ǫ

3

and choose N large enough to ensure the existence of a source codebook
C of length N and rate Rsource = (K/N)(C − γ) with performance

ρ(C, µ) ≤ δ(Rsource, µ)+ ǫ
3
.

We also assume that N (and hence also K) is chosen large enough so
that for a suitably small δ (to be specified later) there exists a channel
(⌊eKR⌋, K, δ) code, with R = C − γ/2. Index the ⌊eNRsource⌋ words in the
source codebook by the ⌊eK(C−γ/2⌋ channel codewords. By construction
there are more indices than source codewords so that this is possible.
We now evaluate the performance of this code.

Suppose that there are M words in the source codebook and hence
M of the channel words are used. Let x̂i and wi denote corresponding
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source and channel codewords, that is, if x̂i is the minimum distortion
word in the source codebook for an observed vector, thenwi is transmit-
ted over the channel. Let Γi denote the corresponding decoding region.
Then

EρN(X
N , X̂N) =

M∑

i=1

M∑

j=1

∫

x:α(xN)=wi
dµ(x)νKx (Γj)ρN(xN , x̂j)

=
M∑

i=1

∫

x:α(xN)=wi
dµ(x)νKx (Γi)ρN(xN , x̂i)

+
M∑

i=1

M∑

j=1,j 6=i

∫

x:α(xN)=wi
dµ(x)νKx (Γj)ρN(xN , x̂j)

≤
M∑

i=1

∫

x:α(xN)=wi
dµ(x)ρN(x

N , x̂i)

+
M∑

i=1

M∑

j=1,J 6=i

∫

x:α(xN)=wi
dµ(x)νKx (Γj)ρN(xN , x̂j)

The first term is bounded above by δ(Rsource, µ) + ǫ/3 by construction.
The second is bounded above by ρmax times the channel error probabil-
ity, which is less than δ by assumption. If δ is chosen so that ρmaxδ is
less than ǫ/2, the theorem is proved. ✷

Theorem 14.3. Let {Xn} be a stationary source source with distribution µ
and let ν be a stationary channel with channel capacity C . Let {ρn} be a

bounded additive fidelity criterion. For any block stationary communica-

tion system (µ, f , ν, g), the average performance satisfies

∆(µ, f , ν, g) ≤
∫

x
dµ(x)D(C,µx),

where µ is the stationary mean of µ and {µx} is the ergodic decomposition

of µ, C is the capacity of the channel, and D(R,µ) the Shannon distortion-

rate function.

Proof: Suppose that the process {XNnN , UKnK , YKnK , X̂
N
nN} is stationary and

consider the overall mutual information rate I(X; X̂). From the data pro-
cessing theorem (Lemma 8.7)

I(X; X̂) ≤ K
N
I(U ;Y) ≤ K

N
C.

Choose L sufficiently large so that

1

n
I(Xn; X̂n) ≤ K

N
C + ǫ



380 14 Coding for Noisy Channels

and

Dn(
K

N
C + ǫ, µ) ≥ D(K

N
C + ǫ, µ)− δ

for n ≥ L. Then if the ergodic component µx is in effect, the performance
can be no better than

EµxρN(X
n, X̂N) ≥ inf

pN∈RN( KN C+ǫ,µNx )
ρN(X

N , X̂N) ≥ DN(K
N
C + ǫ, µx)

which when integrated yields a lower bound of

∫
dµ(x)D(

K

N
C + ǫ, µx)− δ.

Since δ and ǫ are arbitrary, the lemma follows from the continuity of the
distortion rate function. ✷

Combining the previous results yields the block coding optimal achiev-
able performance for stationary sources and stationary and ergodic d-
continuous channels.

Corollary 14.6. Let {Xn} be a stationary source with distribution µ and let

ν be a stationary and ergodic d-continuous channel with channel capac-

ity C . Let {ρn} be a bounded additive fidelity criterion. The block coding

operational DRF of (5.14) is given by

∆(µ, ν,E,D) =
∫
dµ(x)D(C,µx).

14.8 Synchronizing Block Channel Codes

As in the source coding case, the first step towards proving a sliding
block coding theorem is to show that a block code can be synchronized,
that is, that the decoder can determine (at least with high probability)
where the block code words begin and end. Unlike the source coding
case, this cannot be accomplished by the use of a simple synchroniza-
tion sequence which is prohibited from appearing within a block code
word since channel errors can cause an unintended appearance of the
sync word at the receiver. The basic idea still holds, however, if the codes
are designed so that it is very unlikely that a non-sync word can be con-
verted into a valid sync word. If the channel is d-continuous, then good
robust Feinstein codes as in Corollary 14.5 can be used to obtain good
codebooks . The basic result of this section is Lemma 14.11 which states
that given a sequence of good robust Feinstein codes, the code length
can be chosen large enough to ensure that there is a sync word for a
slightly modified codebook; that is, the synch word has length a speci-
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fied fraction of the codeword length and the sync decoding words never
appear as a segment of codeword decoding words. The technique is due
to Dobrushin [33] and is an application of Shannon’s random coding
technique. The lemma originated in [68].

The basic idea of the lemma is this: In addition to a good long code,
one selects a short good robust Feinstein code (from which the sync
word will be chosen) and then performs the following experiment. A
word from the short code and a word from the long code are selected
independently and at random. The probability that the short decoding
word appears in the long decoding word is shown to be small. Since this
average is small, there must be at least one short word such that the
probability of its decoding word appearing in the decoding word of a
randomly selected long code word is small. This in turn implies that if
all long decoding words containing the short decoding word are removed
from the long code decoding sets, the decoding sets of most of the orig-
inal long code words will not be changed by much. In fact, one must
remove a bit more from the long word decoding sets in order to ensure
the desired properties are preserved when passing from a Feinstein code
to a channel codebook.

Lemma 14.11. Assume that ǫ ≤ 1/4 and {Cn;n ≥ n0} is a sequence of

ǫ-robust {τ,M(n),n, ǫ/2} Feinstein codes for a d-continuous channel ν
having capacity C > 0. Assume also that h2(2ǫ) + 2ǫ log(‖B‖ − 1) < C ,

where B is the channel output alphabet. Let δ ∈ (0,1/4). Then there exists

an n1 such that for all n ≥ n1 the following statements are true.

(A) If Cn = {vi, Γi; i = 1, . . . ,M(n)}, then there is a modified code-

book Wn = {wi;Wi; i = 1, . . . , K(n)} and a set of K(n) indices

Kn = {k1, · · · , kK(n) ⊂ {1, · · · ,M(n)} such that wi = vki , Wi ⊂
(Γi)ǫ2 ; i = 1, . . . , K(n), and

max
1≤j≤K(n)

sup
x∈c(wj)

νnx (W
c
j ) ≤ ǫ. (14.24)

(B) There is a sync word σ ∈ Ar , r = r(n) = ⌈δn⌉ = smallest integer

larger than δn, and a sync decoding set S ∈ BrB such that

sup
x∈c(σ)

νrx(S
c) ≤ ǫ. (14.25)

and such that no r -tuple in S appears in any n-tuple in Wi; that is, if

G(br ) = {yn : yri = br some i = 0, . . . , n−r} and G(S) = ⋃br∈S G(br ),
then

G(S)
⋂
Wi = ∅, i = 1, . . . , K(n). (14.26)

(C) We have that

‖{k : k 6∈ Kn}‖ ≤ ǫδM(n). (14.27)
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The modified codeWn has fewer words than the original code Cn, but
(14.27) ensures thatWn cannot be much smaller since

K(n) ≥ (1− ǫδ)M(n). (14.28)

Given a codebookWn = {wi,Wi; i = 1, . . . , K(n)}, a sync word σ ∈ Ar ,
and a sync decoding set S, we call the length n+r codebook {σ ×wi, S×
Wi; i = 1, . . . , K(n)} a prefixed or punctuated codebook.
Proof: Since ν is d-continuous, n2 can be chosen so large that for n ≥ n2

max
an∈An

sup
x,x′∈c(an)

dn(ν
n
x , ν

n
x′) ≤ (

δǫ

2
)2. (14.29)

From Corollary 14.5 there is an n3 so large that for each r ≥ n3

there exists an ǫ/2-robust (τ, J, r , ǫ/2)-Feinstein code Cs = {sj , Sj : j =
1, . . . , J}; J ≥ 2rRs , where Rs ∈ (0, C −h2(2ǫ)−2ǫ log(‖B‖−1)). Assume
that n1 is large enough to ensure that δn1 ≥ n2; δn1 ≥ n3, and n1 ≥ n0.
Let 1F denote the indicator function of the set F and define λn by

λn

= J−1
J∑

j=1

1

M(n)

M(n)∑

i=1

ν̂n(G((Sj)ǫ)
⋂
Γi|vi)

= J−1
J∑

j=1

1

M(n)

M(n)∑

i=1

∑

b′∈(Sj)ǫ

∑

yn∈Γi
ν̂n(yn|vi)1G(b′)(yn)

= J−1 1

M(n)

M(n)∑

i=1

∑

yn∈Γi
ν̂n(yn|vi)



J∑

j=1

∑

b′∈(Sj)ǫ
1G(b′)(y

n)


 . (14.30)

Since the (Sj)ǫ are disjoint and a fixed yn can belong to at most n−r ≤ n
sets G(br ), the bracket term above is bound above by n and hence

λn ≤ n
J

1

M(n)

M(n)∑

i=1

ν̂n(yn|vi) ≤ n
J
≤ n2−rRs ≤ n2−δnRs →

n→∞0

so that choosing n1 also so that n12−δnRs ≤ (δǫ)2 we have that λn ≤
(δǫ)2 if n ≥ n1. From (14.30) this implies that for n ≥ n1 there must
exist at least one j for which

M(n)∑

i=1

ν̂n(G((Sj)ǫ)
⋂
Γi|vi) ≤ (δǫ)2

which in turn implies that for n ≥ n1 there must exist a set of indices
Kn ⊂ {1, · · · ,M(n)} such that
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ν̂n(G((Sj)ǫ)
⋂
Γi|vi) ≤ δǫ, i ∈ Kn,‖{i : i 6∈ Kn}‖ ≤ δǫ.

Define σ = sj ; S = (Sj)ǫ/2, wi = vki , and Wi = (Γki
⋂
G((Sj)ǫ)c)ǫδ; i =

1, . . . , K(n). We then have from Lemma 14.10 and (14.29) that if x ∈
c(σ), then since ǫδ ≤ ǫ/2

νrx(S) = νrx((Sj)ǫ/2) ≥ ν̂r (Sj|σ)−
ǫ

2
≥ 1− ǫ,

proving (14.25). Next observe that if yn ∈ (G((Sj)ǫ)c)ǫδ, then there is a
bn ∈ G((Sj)ǫ)c such that dn(yn, bn) ≤ ǫδ and thus for i = 0,1, . . . , n−r
we have that

dr (y
r
i , b

r
i ) ≤

n

r

ǫδ

2
≤ ǫ

2
.

Since bn ∈ G((Sj)ǫ)c , it has no r -tuple within ǫ of an r -tuple in Sj and
hence the r -tuples yri are at least ǫ/2 distant from Sj and hence yn

∈ H((S)ǫ/2)c). We have therefore that (G((Sj)ǫ)c)ǫδ ⊂ G((Sj)ǫ)c and
hence

G(S)
⋂
Wi = G((Sj)ǫ)

⋂
(Γki

⋂
G((Sj)ǫ)

c)δǫ

⊂ G((Sj)ǫ/2)
⋂
(G((Sj)ǫ)

c)δǫ = ∅,

completing the proof. ✷

Combining the preceding lemma with the existence of robust Fein-
stein codes at rates less than capacity (Lemma 14.10) we have proved
the following synchronized block coding theorem.

Corollary 14.7. Le ν be a stationary ergodic d-continuous channel and fix

ǫ > 0 and R ∈ (0, C). Then there exists for sufficiently large blocklength

N , a length N codebook {σ ×wi, S ×Wi; i = 1, . . . ,M}, M ≥ 2NR, σ ∈ Ar ,
wi ∈ An, r +n = N , such that

sup
x∈c(σ)

νrx(S
c) ≤ ǫ,

max
i≤j≤M

νnx (W
c
j ) ≤ ǫ,

Wj
⋂
G(S) = ∅.

Proof: Choose δ ∈ (0, ǫ/2) so small that C − h(2δ) − 2δ log(‖B‖ − 1) >
(1 + δ)R(1 − log(1 − δ2)) and choose R′ ∈ ((1 + δ)R(1 − log(1 − δ2)),
C −h(2δ)− 2δ log(‖B‖ − 1). From Lemma 14.10 there exists an n0 such
that for n ≥ n0 there exist δ-robust (τ, µ,n, δ) Feinstein codes with
M(n) ≥ 2nR

′
. From Lemma 14.11 there exists a codebook {wi,Wi; i =

1, . . . , K(n)}, a sync word σ ∈ Ar , and a sync decoding set S ∈ BrB ,
r = ⌈δn⌉ such that
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max
j

sup
x∈c(wj)

νnx (W
c
j ) ≤ 2δ ≤ ǫ,

sup
x∈c(σ)

νrx(S) ≤ 2δ ≤ ǫ,

G(S)
⋂
Wj = ∅; j = 1, . . . , K(n), and from (14.28) M = K(n) ≥ (1 −

δ2)M(n). Therefore for N = n+ r

N−1 logM ≥ (n⌈nδ⌉)−1 log((1− δ2)2nR
′
)

= nR
′ + log(1− δ2)

n+nδ = R
′ +n−1 log(1− δ2)

1+ δ
≥ R

′ + log(1− δ2)

1+ δ ≥ R,

completing the proof. ✷

14.9 Sliding-block Source and Channel Coding

Analogous to the conversion of block source codes into sliding-block
source codes, the basic idea of constructing a sliding-block channel code
is to use a punctuation sequence to stationarize a block code and to use
sync words to locate the blocks in the decoded sequence. The sync word
can be used to mark the beginning of a codeword and it will rarely be
falsely detected during a codeword. Unfortunately, however, an r -tuple
consisting of a segment of a sync and a segment of a codeword may be
erroneously detected as a sync with nonnegligible probability. To resolve
this confusion we look at the relative frequency of sync-detects over a
sequence of blocks instead of simply trying to find a single sync. The idea
is that if we look at enough blocks, the relative frequency of the sync-
detects in each position should be nearly the probability of occurrence
in that position and these quantities taken together give a pattern that
can be used to determine the true sync location. For the ergodic theorem
to apply, however, we require that blocks be ergodic and hence we first
consider totally ergodic sources and channels and then generalize where
possible.

Totally Ergodic Sources

Lemma 14.12. Let ν be a totally ergodic stationary d-continuous channel.

Fix ǫ, δ > 0 and assume that CN = {σ × wi;S × Wi; i = 1, . . . , K} is a

prefixed codebook satisfying (14.24)–(14.26). Let γn : GN → CN assign an

N-tuple in the prefixed codebook to each N-tuple in GN and let [G, µ,U]
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be an N-stationary, N-ergodic source. Let c(an) denote the cylinder set or

rectangle of all sequences u = (· · · , u−1, u0, u1, · · · ) for which un = an.

There exists for sufficiently large L (which depends on the source) a sync

locating function s : BLN → {0,1, . . . ,N − 1} and a set Φ ∈ BmG , m =
(L+ 1)N , such that if um ∈ Φ and γN(U

N
LN) = σ ×wi, then

inf
x∈c(γm(um))

νx(y : s(yLN) = θ,θ = 0, . . . ,N − 1;yLN ∈ S ×Wi) ≥ 1− 3ǫ.

(14.31)

Comments: The lemma can be interpreted as follows. The source is
block encoded using γN . The decoder observes a possible sync word
and then looks “back” in time at previous channel outputs and calcu-
lates s(yLN) to obtain the exact sync location, which is correct with
high probability. The sync locator function is constructed roughly as fol-
lows: Since µ and ν are N-stationary and N-ergodic, if γ : A∞ → B∞

is the sequence encoder induced by the length N block code γN , then
the encoded source µγ−1 and the induced channel output process η
are all N-stationary and N-ergodic. The sequence zj = η(T jc(S))); j =
. . . ,−1,0,1, . . . is therefore periodic with period N . Furthermore, zj can
have no smaller period than N since from (14.24)–(14.26) η(T jc(S)) ≤ ǫ,
j = r + 1, . . . , n− r and η(c(S)) ≥ 1− ǫ. Thus defining the sync pattern
{zj ; j = 0,1, . . . ,N − 1}, the pattern is distinct from any cyclic shift of
itself of the form {zk, · · · , zN−1, z0, · · · , xk−1}, where k ≤ N − 1. The
sync locator computes the relative frequencies of the occurrence of S
at intervals of length N for each of N possible starting points to ob-
tain, say, a vector ẑN = (ẑ0, ẑ1, · · · , ẑN−1). The ergodic theorem implies
that the ẑi will be near their expectation and hence with high proba-
bility (ẑ0, · · · , ẑN−1) = (zθ, zθ+1, · · · , zN−1, z0, · · · , zθ−1), determining
θ. Another way of looking at the result is to observe that the sources
ηT j ; j = 0, . . . ,N − 1 are each N-ergodic and N-stationary and hence
any two are either identical or orthogonal in the sense that they place all
of their measure on disjoint N-invariant sets. (See, e.g., Exercise 1, Sec-
tion 6.7 of [55] or Section 8.2 of [58].) No two can be identical, however,
since if ηT i = ηT j for i 6= j; 0 ≤ i, j ≤ N − 1, then η would be periodic
with period |i − j| strictly less than N , yielding a contradiction. Since
membership in any set can be determined with high probability by ob-
serving the sequence for a long enough time, the sync locator attempts
to determine which of the N distinct sources ηT j is being observed.
In fact, synchronizing the output is exactly equivalent to forcing the N
sources ηT j ; j = 0,1, . . . ,N − 1 to be distinct N-ergodic sources. After
this is accomplished, the remainder of the proof is devoted to using the
properties of d-continuous channels to show that synchronization of the
output source when driven by µ implies that with high probability the
channel output can be synchronized for all fixed input sequences in a
set of high µ probability.
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The lemma is stronger (and more general) than the similar results of
Nedoma [130] and Vajda [180], but the extra structure is required for
application to sliding-block decoding.
Proof: Choose ζ > 0 so that ζ < ǫ/2 and

ζ <
1

8
min

i,j:zi 6=zj
|zi − zj|. (14.32)

For α > 0 and θ = 0,1, . . . ,N − 1 define the sets ψ(θ,α) ∈ BLNB and
ψ̃(θ,α) ∈ BmB , m = (L+ 1)N by

ψ(θ,α) = {yLN : | 1

L− 1

L−2∑

i=0

1S(y
r
j+iN)− zθ+j| ≤ α; j = 0,1, . . . ,N − 1}

ψ̃(θ,α) = Bθ ×ψ(θ,α)× BN−θ.

From the ergodic theorem L can be chosen large enough so that

η(
N−1⋂

θ=0

T−θc(ψ(θ,ζ))) = ηm(
N−1⋂

θ=0

ψ̃(θ, ζ)) ≥ 1− ζ2. (14.33)

Assume also that L is large enough so that if xi = x′i , i = 0, . . . ,m − 1
then

dm(ν
m
x , ν

m
x′ ) ≤ (

ζ

N
)2. (14.34)

From (14.33)

ζ2 ≥ ηm((
N−1⋂

θ=0

ψ̃(θ, ζ))c) =
∑

am∈Gm

∫

c(am)
dµ(u)νmγ(u)((

N−1⋂

θ=0

ψ̃(θ, ζ)c))

=
∑

am∈Gm
µm(am)ν̂((

N−1⋂

θ=0

ψ̃(θ, ζ))c|γm(am))

and hence there must be a set Φ ∈ BmB such that

ν̂m((
N−1⋂

θ=0

ψ̃(θ, ζ))c|γm(am)) ≤ ζ,am ∈ Φ, (14.35)

µm(Φ) ≤ ζ. (14.36)

Define the sync locating function s : BLN → {0,1, · · · , N − 1} as fol-
lows: Define the set ψ(θ) = {yLN ∈ (ψ(θ,ζ))2ζ/N} and then define

s(yLN) =
{
θ yLN ∈ ψ(θ)
1 otherwise
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We show that s is well-defined by showing that ψ(θ) ⊂ ψ(θ,4ζ), which
sets are disjoint for θ = 0,1, . . . ,N − 1 from (14.32). If yLN ∈ ψ(θ),
there is a bLN ∈ ψ(θ,ζ) for which dLN(yLN , bLN) ≤ 2ζ/N and hence for
any j ∈ {0,1, · · · , N − 1} at most LN(2ζ/N) = 2ζL of the consecutive
nonoverlapping N-tuples yNj+iN , i = 0,1, . . . , L − 2, can differ from the

corresponding bNj+iN and therefore

| 1

L− 1

L−2∑

i=0

1S(y
r
j+iN)− zθ+j| ≤ |

1

L− 1

L−2∑

i=0

1S(b
r
j+iN)− zθ+j| + 2ζ ≤ 3ζ

and hence yLN ∈ ψ(θ,4ζ). If ψ̃(θ) is defined to be Bθ ×ψ(θ)× BN−θ ∈
BmB , then we also have that

(
N−1⋂

θ=0

ψ̃(θ, ζ))ζ/N ⊂
N−1⋂

θ=0

ψ̃(θ)

since if yn ∈ (⋂N−1
θ=0 ψ̃(θ, ζ))ζ/N , then there is a bm such that bLNθ ∈

ψ(θ,ζ); θ = 0,1, . . . ,N−1 and dm(ym, bm) ≤ ζ/N for θ = 0,1, . . . ,N−1.
This implies from Lemma 14.10 and (14.34)–(14.36) that if x ∈ γm(am)
and am ∈ Φ, then

νmx (
N−1⋂

θ=0

ψ̃(θ)) ≥ νmx ((
N−1⋂

θ=0

ψ̃(θ, ζ))ζ/N)

≥ ν̂(
N−1⋂

θ=0

ψ̃(θ, ζ)|γm(am))− ζ
N

≥ 1− ζ − ζ
N
≥ 1− ǫ. (14.37)

To complete the proof, we use (14.24)–(14.26) and (14.37) to obtain
for am ∈ Φ and γm(aNLN) = σ ×wi that

νx(y : s(yLNθ ) = θ,θ = 0,1, . . . ,N − 1;yNLN ∈ S ×Wi)

≥ νmx (
N−1⋂

θ=0

ψ(θ))− νNT−NLx(S ×W c
i ) ≥ 1− ǫ− 2ǫ.

✷

Next the prefixed block code and the sync locator function are com-
bined with a random punctuation sequence of Lemma 2.12 to construct
a good sliding-block code for a totally ergodic source with entropy less
than capacity.

Lemma 14.13. Given a d-continuous totally ergodic stationary channel ν
with Shannon capacity C , a stationary totally ergodic source [G, µ,U]
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with entropy rate H(µ) < C , and δ > 0, there exists for sufficiently large

n, m a sliding-block encoder f : Gn → A and decoder g : Bm → G such

that Pe(µ, ν, f , g) ≤ δ.

Proof: Choose R, H < R < C , and fix ǫ > 0 so that ǫ ≤ δ/5 and
ǫ ≤ (R−H)/2. Choose N large enough so that the conditions and conclu-
sions of Corollary 14.7 hold. Construct first a joint source and channel
block encoder γN as follows: From the asymptotic equipartition property
(Lemma 4.2 or Section 4.5) there is an n0 large enough to ensure that for
N ≥ n0 the set

GN = {uN : |N−1hN(u)−H| ≥ ǫ}
= {uN : e−N(H+ǫ) ≤ µ(uN) ≤ e−N(H−ǫ)} (14.38)

has probability
µUN (GN) ≥ 1− ǫ. (14.39)

Observe that if M′ = ‖GN‖, then

2N(H−ǫ) ≤ M′ ≤ 2N(H+ǫ) ≤ 2N(R−ǫ). (14.40)

Index the members of GN as βi; i = 1, . . . ,M′. If uN = βi, set γN(uN) =
σ×wi. Otherwise set γN(uN)= σ×wM′+1. Since for largeN , 2N(R−ǫ)+1 ≤
2NR, γN is well-defined. γN can be viewed as a synchronized extension of
the almost noiseless code of Section 3.5. Define also the block decoder
ψN(yN) = βi if yN ∈ S × Wi; i = 1, . . . ,M′. Otherwise set ψN(yN) =
β∗, an arbitrary reference vector. Choose L so large that the conditions
and conclusions of Lemma 14.12 hold for C and γN . The sliding-block
decoder gm : Bm → G, m = (L + 1)N , yielding decoded process Ûk =
gm(Y

m
k−NL) is defined as follows: If s(yk−NL, · · · , yk−1) = θ, form bN =

ψN(yk−θ, · · · , yk−θ−N) and set Ûk(y) = gm(yk−NL, · · · , yk+N) = bθ ,
the appropriate symbol of the appropriate block.

The sliding-block encoder f will send very long sequences of block
words with random spacing to make the code stationary. Let K be a large
number satisfying Kǫ ≥ L + 1 so that m ≤ ǫKN and recall that N ≥ 3
and L ≥ 1. We then have that

1

KN
≤ 1

3K
≤ ǫ

6
. (14.41)

Use Corollary 2.1 to produce a (KN, ǫ) punctuation sequence Zn using a
finite length sliding-block code of the input sequence. The punctuation
process is stationary and ergodic, has a ternary output and can produce
only isolated 0’s followed by KN 1’s or individual 2’s. The punctuation
sequence is then used to convert the block encoder γN into a sliding-
block coder: Suppose that the encoder views an input sequence u =
· · · , u−1, u0, u1, · · · and is to produce a single encoded symbol x0. If u0
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is a 2, then the encoder produces an arbitrary channel symbol, say a∗.
If x0 is not a 2, then the encoder inspects u0, u−1, u−2 and so on into
the past until it locates the first 0. This must happen within KN input
symbols by construction of the punctuation sequence. Given that the
first 1 occurs at, say, Zl = 1, the encoder then uses the block code γN to
encode successive blocks of input N-tuples until the block including the
symbol at time 0 is encoded. The sliding-block encoder than produces
the corresponding channel symbol x0. Thus if Zl = 1, then for some J <
Kx0 = (γN(ul+JN))lmod N where the subscript denotes that the (lmod
N)th coordinate of the block codeword is put out. The final sliding-block
code has a finite length given by the maximum of the lengths of the code
producing the punctuation sequence and the code imbedding the block
code γN into the sliding-block code.

We now proceed to compute the probability of the error event {u,y :
Û0(y) 6= U0(u)} = E. Let Eu denote the section {y : Û0(y) 6= U0(u)}, f
be the sequence coder induced by f , and F = {u : Z0(u) = 0}. Note that
if u ∈ T−1F , then Tu ∈ F and hence Z0(Tu) = Z1(u) since the coding
is stationary. More generally, if uT−iF , then Zi = 0. By construction any
1 must be followed by KN 1’s and hence the sets T−iF are disjoint for
i = 0,1, . . . , KN − 1 and hence we can write

Pe = Pr(U0 6= Û0) = µν(E) =
∫
dµ(u)νf(u)(Eu)

≤
LN−1∑

i=0

∫

T−iF
dµ(u)νf(u)(Eu)+

KN−1∑

i=LN

∫

T−iF
dµ(u)νf(u)(Eu)

+
∫

(
⋃KN−1
i=0 T−iF)c

dµ(u)

= LNµ(F)+
KN−1∑

i=LN

∫

T−iF
dµ(u)νf(u)(Eu)+ ǫa ≤ 2ǫ

+
KN−1∑

i=LN

∑

akN∈GkN

∫

u′∈T−i(F ⋂ c(aKN))
dµ(u′)νf(u′)(y

′ : U0(u
′) 6= Û0(u

′)),

(14.42)

where we have used the fact that µ(F) ≤ (KN)−1 (from Corollary 2.1)
and hence LNµ(F) ≤ L/K ≤ ǫ. Fix i = kN + j; 0 ≤ j ≤ N − 1 and define
u = T j+LNu′ and y = T j+LNy ′, and the integrals become



390 14 Coding for Noisy Channels

∫

u′∈T−i(F ⋂ c(aKN))
dµ(u′)νf(u′)(y

′ : U0(u
′) 6= gm(Ym−NL(y ′))

=
∫

u∈T−(k−L)N(F ⋂ c(aKN))
dµ(u′)×

νf(T−(j+LN)u)(y : U0(T
j+LNu) 6= gm(Y−NLm(T j+NLy)))

=
∫

u∈T−(k−L)N(F ⋂ c(aKN))
dµ(u′)νf(T−(j+LN)u)(y : uj+LN 6= gm(ymj ))

=
∫

u∈T−(k−L)N(F ⋂ c(aKN))
dµ(u′)

× νf(T−(j+LN)u)(y : uNLN = ψN(yNLN) or s(yLNj 6= j)). (14.43)

If uNLN = βj ∈ GN , then uNLN = ψN(yNLN) if yNLN ∈ S × Wi. If u ∈
T−(k−L)Nc(aKN), then um = am(k−L)N and hence from Lemma 14.12 and
stationarity we have for i = kN + j that

∑

aKN∈GKN

∫

T−i(c(aKN)
⋂
F)
dµ(u)νf(u)(Eu)

≤ 3ǫ×
∑

aKN ∈ GKN
am(k−L)N ∈ Φ

⋂
(GLN ×GN)

µ(T−(k−L)N(c(aKN)
⋂
F))

+
∑

aKN ∈ GKN
am(k−L)N 6∈ Φ

⋂
(GLN ×GN)

µ(T−(k−L)N(c(aKN)
⋂
F))

≤ 3ǫ×
∑

aKN∈GKN
µ(c(aKN)

⋂
F))

+
∑

am(k−L)N∈Φc
⋃
(GLN×GN)c

µ(c(aKN)
⋂
F))

≤ 3ǫµ(F)+ µ(c(Φc)
⋂
F)+ µ(c(GN)

⋂
F). (14.44)

Choose the partition in Lemmas 2.11–2.12 to be that generated by the
sets c(Φc) and c(GN) (the partition with all four possible intersections of
these sets or their complements). Then the above expression is bounded
above by

3ǫ

NK
+ ǫ

NK
+ ǫ

NK
≤ 5

ǫ

NK

and hence from (14.42) Pe ≤ 5ǫ ≤ δ, which completes the proof. ✷

The lemma immediately yields the following corollary.

Corollary 14.8. If ν is a stationary d-continuous totally ergodic channel

with Shannon capacity C , then any totally ergodic source [G, µ,U] with

H(µ) < C is admissible.
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Ergodic Sources

If a prefixed blocklength N block code of Corollary 14.8 is used to block
encode a general ergodic source [G, µ,U], then successive N-tuples from
µ may not be ergodic, and hence the previous analysis does not apply.
From the Nedoma ergodic decomposition [129] (see, e.g., [55], p. 232, or
[58], p. 253), any ergodic source µ can be represented as a mixture of N-
ergodic sources, all of which are shifted versions of each other. Given an
ergodic measure µ and an integer N , then there exists a decomposition
of µ intoM N-ergodic,N-stationary components whereM dividesN , that
is, there is a set Π ∈ B∞G such that

TMΠ = Π
µ(T iΠ

⋂
T jΠ) = 0; i, j ≤ M, i 6= j

µ(
M−1⋃

i=0

T iΠ) = 1

µ(Π) = 1

M
,

such that the sources [G, µi, U], where

πi(W) = µ(W |T iΠ) = Mµ(W
⋂
T iΠ)

are N-ergodic and N-stationary and

µ(W) = 1

M

M−1∑

i=0

πi(W) = 1

M

M−1∑

i=0

µ(W
⋂
T iΠ). (14.45)

This decomposition provides a method of generalizing the results for
totally ergodic sources to ergodic sources. Since µ(·|Π) is N-ergodic,
Lemma 14.13 is valid if µ is replaced by µ(·|Π). If an infinite length
sliding-block encoder f is used, it can determine the ergodic component
in effect by testing for T−iΠ in the base of the tower and insert i dummy
symbols and then encode using the length N prefixed block code. In
other words, the encoder can line up the block code with a prespeci-
fied one of the N-possible N-ergodic modes. A finite-length encoder can
then be obtained by approximating the infinite-length encoder by a finite
length encoder. Making these ideas precise yields the following result.

Theorem 14.4. If ν is a stationary d-continuous totally ergodic channel

with Shannon capacity C , then any ergodic source [G, µ,U] with H(µ) <
C is admissible.

Proof: Assume that N is large enough for Corollary 14.7 and (14.38)–
(14.40) to hold. From the Nedoma decomposition
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1

M

M−1∑

i=0

µN(GN|T iΠ) = µN(GN) ≥ 1− ǫ

and hence there exists at least one i for which µN(GN|T iΠ) ≥ 1 − ǫ;
that is, at least one N-ergodic mode must put high probability on the
set GN of typical N-tuples for µ. For convenience relabel the indices so
that this good mode is µ(·|Π) and call it the design mode. Since µ(·|Π)
is N-ergodic and N-stationary, Lemma 14.12 holds with µ replaced by
µ(·|Π); that is, there is a source/channel block code (γN ,ψN) and a sync
locating function s : BLN → {0,1, · · · ,M − 1} such that there is a set
Φ ∈ Gm; m = (L + 1)N , for which (14.31) holds and µm(Φ|Π) ≥ 1 −
ǫ. The sliding-block decoder is exactly as in Lemma 14.12. The sliding-
block encoder, however, is somewhat different. Consider a punctuation
sequence or tower as in Lemma 2.12, but now consider the partition
generated by Φ, GN , and T iΠ, i = 0,1, . . . ,M − 1. The infinite length
sliding-block code is defined as follows: If u 6∈ ⋃NK−1

k=0 T kF , then f(u) =
a∗, an arbitrary channel symbol. If u ∈ T i(F ⋂T−jΠ) and if i < j, set
f(u) = a∗ (these are spacing symbols to force alignment with the proper
N-ergodic mode). If j ≤ i ≤ KN − (M − j), then i = j + kN + r for some
0 ≤ k ≤ (K − 1)N , r ≤ N − 1. Form GN(u

N
j+kN) = aN and set f(u) = ar .

This is the same encoder as before, except that if u ∈ T jΠ, then block
encoding is postponed for j symbols (at which time u ∈ Π). Lastly, if
KN − (M − j) ≤ i ≤ KN − 1, then f(u) = a∗.

As in the proof of Lemma 14.13

Pe(µ, ν, f , gm) =
∫
dµ(u)νf(u)(y : U0(u) 6= gm(Ym−LN(y)))

≤ 2ǫ+
KN−1∑

i=LN

∫
u ∈ T iFdµ(u)νf(u)(y : U0(u) 6= Û0(y))

= 2ǫ+
KN−1∑

i=LN

M−1∑

j=0

∑

aKN∈GKN∫

u∈T i(c(aKN)⋂F ⋂T−jΠ)
dµ(u)νf(u)(y : U0(u) 6= Û0(y))

≤ 2ǫ+
M−1∑

j=0

KN−(M−j)∑

i=LN+j

∑

aKN∈GKN∫

u∈T i(c(aKN)⋂F ⋂T−jΠ)
dµ(u)νf(u)(y : U0(u) 6= Û0(y))

+
M−1∑

j=0

Mµ(F
⋂
T−jΠ), (14.46)
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where the rightmost term is

M
M−1∑

j=0

µ(F
⋂
T−jΠ) ≤ M

KN
≤ 1

K
≤ ǫ.

Thus

Pe(µ, ν, f , gm) ≤ 3ǫ+
M−1∑

j=0

KN−(M−j)∑

i=LN+j

∑

aKN∈GKN∫

u∈T i(c(aKN)⋂F ⋂T−jΠ)
dµ(u)νf(u)(y : U0(u) 6= Û0(y)).

Analogous to (14.43) (except that here i = j + kN + r , u = T−(LN+r)u′)
∫

u′∈T i(c(aKN)⋂F ⋂T−jΠ)
dµ(u′)νf(u′)(y ′ : U0(u

′) = gm(Ym−LN(y ′)))

≤
∫

T j+(k−L)N(c(aKN)
⋂
F
⋂
T−jΠ)

dµ(u)×

νf(T i+LNu)(y : uNLN 6= ψN(yNLN) or s(yLNr ) 6= r).

Since u ∈ T j+(k−L)N(c(aKN)⋂F ⋂T−jΠ implies um = amj+(k−L)N , analo-
gous to (14.44) we have that for i = j + kN + r

∑

aKN∈GKN

∫

T i(c(aKN)
⋂
F
⋂
T−jΠ)

dµ(u)νf(u)(y : U0(u) 6= gm(Y−LNm(y)))

= ǫ
∑

aKN :amj+(k−L)N∈Φ
µ(T j+(k−L)N(c(aKN)

⋂
F
⋂
T−jΠ))

+
∑

aKN :amj+(k−L)N 6∈Φ
µ(T j+(k−L)N(c(aKN)

⋂
F
⋂
T−jΠ))

= ǫ
∑

aKN :amj+(k−L)N∈Φ
µ(c(aKN)

⋂
F
⋂
T−jΠ)

+
∑

aKN :amj+(k−L)N 6∈Φ
µ(c(aKN)

⋂
F
⋂
T−jΠ)

= ǫµ(T−(j+(k−L)N)c(Φ)
⋂
F
⋂
T−jΠ)

+ µ(T−(j+(k−L)N)c(Φ)c
⋂
F
⋂
T−jΠ).

From Lemma 2.12 (the Rohlin-Kakutani theorem), this is bounded
above by
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ǫ
µ(T−(j+(k−L)N)c(Φ)

⋂
T−jΠ)

KN
+ µ(T

−(j+(k−L)N)c(Φ)c
⋂
T−jΠ)

KN

= ǫµ(T
−(j+(k−L)N)c(Φ)|T−jΠ)µ(Π)

KN
+ µ(T

−(j+(k−L)N)c(Φ)c|T−jΠ)µ(Π)
KN

= ǫµ(c(Φ)|Π)µ(Π)
KN

µ(c(Φ)c|Π)µ(Π)
KN

+ ≤ 2ǫ

MKN
.

With (14.45)–(14.46) this yields

Pe(µ, ν, f , gm) ≤ 3ǫ+ MKN2ǫ

MKN
≤ 5ǫ, (14.47)

which completes the result for an infinite sliding-block code.
The proof is completed by applying Corollary 5.2, which shows that

by choosing a finite length sliding-block code f0 from Lemma 5.2 so that
Pr(f 6= f0) is sufficiently small, then the resulting Pe is close to that for
the infinite length sliding-block code. ✷

The theorem can be combined with the sliding block source coding
theorem to prove a joint source and channel coding theorem similar to
Theorem 14.2, that is, one can show that given a source with distortion
rate function D(R) and a channel with capacity C , then sliding-block
codes exist with average distortion approximately D(C).

We have considered only discrete channels, which is less general than
the continuous additive Gaussian noise channels considered in many
classic information theory texts. On the other hand, we have considered
more general memory structures than are usually encountered, and we
have followed the common thread of the book to develop coding theo-
rems for sliding-block codes as well as block codes.
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