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Preface

With increasing demands for efficiency and product quality and progressing integra-
tion of automatic control systems in high-cost and safety-critical processes, the field
of supervision (or monitoring), fault detection and fault diagnosis plays an important
role. The classical method of supervision is to check the limits of single variables
and alarming of operators. However, this can be improved significantly by taking
into account the information hidden in all measurements and by automatic actions to
keep the systems in operation.

During the last few decades theoretical and experimental research has shown
new ways to detect and diagnose faults. One distinguishes fault detection to recog-
nize that a fault happened, and fault diagnosis to find the cause and location of the
fault. Advanced methods of fault detection are based on mathematical signal and
process models and on methods of system theory and process modeling to generate
fault symptoms. Fault-diagnosis methods use causal fault—-symptom relationships by
applying methods from statistical decision, artificial intelligence and soft comput-
ing. Therefore, efficient supervision, fault detection and diagnosis is a challenging
field encompassing physical-oriented system theory, experiments and computations.
The considered subjects are also known as condition monitoring, fault detection and
isolation (FDI) or fault detection and diagnosis (FDD).

A further important field is fault management or asset management. This means
to avoid shutdowns by early fault detection and actions like process condition-based
maintenance or repair. If sudden faults, failures or malfunctions cannot be avoided,
fault-tolerant systems are required. Through methods of fault detection and recon-
figuration of redundant components, breakdown, and in the case of safety-critical
processes, accidents, may be avoided.

As the successor to the book Fault-Diagnosis Systems — An Introduction from
Fault Detection to Fault Tolerance this book describes applications of fault detection
and diagnosis to different kinds of technical processes and products.

The development of fault-detection and fault-diagnosis methods was paralleled
by experimental investigations with several technical processes at the Institute of
Automatic Control of the Darmstadt University of Technology from about 1975 and
frequently in cooperation with industrial partners. In this way the theoretically de-



VI Preface

veloped methods could be tested on real processes and the experimental results gave
hints for improvements and further ideas. Therefore, this book contains the main
results of 20 different processes, ranging from electrical drives and different actua-
tors, through machine tools, pumps and pipelines, to heat exchangers. (Theoretical
and practical results for combustion engines are published in another book Engine
Control and Diagnosis.)

The book is an introduction to the application of fault diagnosis and fault toler-
ance in the areas of electrical engineering, mechanical and chemical engineering and
computer science. It is addressed to students and practicing engineers in research
and development, design and manufacturing. Preconditions are basic undergraduate
courses in system theory, automatic control, and mechanical and/or electrical engi-
neering.

The author is grateful to his research associates, who have performed many
theoretical and practical research projects on the subject of this book since 1975,
among them H. Siebert, L. Billmann, G. Geiger, W. Goedecke, S. Nold, U. Raab,
B. Freyermuth, St. Leonhardt, R. Deibert, T. Hofling, T. Pfeufer, M. Ayoubi, P. Ballé,
D. Fiissel, O. Moseler, A. Wolfram, M. Miinchhof, F. Haus and M. Beck.

Finally, I especially would like to thank Brigitte Hoppe for the laborious and pre-
cise text setting, including the figures and tables in camera-ready form and Springer-
Verlag for the excellent cooperation.

Darmstadt, September, 2010
Rolf Isermann
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Supervision, fault-detection and diagnosis methods — a
short introduction !

The supervision of technical processes and the quality control of products is aimed
at showing the present state (condition monitoring), indicating undesired or unper-
mitted states, and taking appropriate actions to avoid damage or accidents. The de-
viations from normal process behavior result from faults and errors, which can be
attributed to many causes. They may result sooner or later in malfunctions or failures
if no counteractions are taken. One reason for supervision and quality control is to
avoid these malfunctions or failures.

The basic tasks of supervision, fault detection and fault management were al-
ready described in detail in a previous volume, [2.37]. Therefore, only some impor-
tant issues and some basic methods of fault detection and diagnosis which will be
used in this book are repeated in this chapter. The condensed presentation of the
methods is limited to linear processes. However, these methods can be expanded to
nonlinear processes as shown in the previous volume and in many of the following
application examples.

2.1 Basic tasks of supervision

A process or a product P which operates in open loop is considered, Figure 2.1a).
U(t) and Y (¢) are input and output signals, respectively. A fault can now appear due
to external or internal causes. Examples for external causes are environmental in-
fluences like humidity, dust, chemicals, electromagnetic radiation, high temperature,
leading, e.g. to corrosion or pollution. Examples for internal causes are missing lubri-
cation and therefore higher friction or wear, overheating, leaks, and shortcuts. These
faults F(¢) firstly affect internal process parameters ® by A®(z) like changes of
resistance, capacitance or stiffness and/or internal state variables x(¢) by Ax(¢) like
changes of mass flows, currents or temperatures, which are frequently not measur-
able. According to the dynamic process transfer behavior, these faults F(¢) influence

1 This chapter is a shortened version of Chapter 2 in [2.37]

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators, 11
Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,
DOI 10.1007/978-3-642-12767-0_2, © Springer-Verlag Berlin Heidelberg 2011



12 2 Supervision, fault-detection and diagnosis methods

the measurable output Y () by a change AY (7). However, it has to be taken into ac-
count that also natural process disturbances and noise N (¢) and also changes of the
manipulated variable U(¢) influence the output Y (¢).

E | external E
internal i faults F,
faults F F

N I RS
U P Y+AY W _ e C U P ’l+AY

v 4 § 4

O+AO® X+AX O+A® X+AX

(a) (b)

Fig. 2.1. Scheme of a process or product P influenced by faults F: a) process in open loop; b)
process in closed loop

Y

For a process operating in open loop a remaining fault f(z) generally results
in a permanent offset of AY(¢), as shown in Figure 2.2a). In the case of a closed
loop, 2.1b), the behavior is different, Figure 2.2b). Depending on the time history of
parameter changes A® (¢) or state-variable changes Ax(z) the output shows only a
somewhat shorter and vanishing small deviation AY (¢) if a controller with integral
behavior (e.g. a PI-controller) is used. But then the manipulated variable shows a
permanent offset AU(¢) for proportionally acting processes. If only the output Y (¢)
is supervised, the fault may not be detected because of the small and short deviation,
furthermore corrupted by noise. The reason is that a closed loop is not only able
to compensate for disturbances N (¢) but also to compensate for parameter changes
AO© (1) and state changes Ax(7) with regard to the control variable Y (). This means
that faults F(¢) may be compensated by the closed loop. Only if the fault grows in
size and causes the manipulated variable to reach a restriction value (saturation) may
a permanent deviation AY arise. Hence, for processes in closed loop U (#) should be
monitored, as well as Y (¢), which is frequently not realized. Mostly, only Y (¢) and
the control deviation e(t) are supervised.

The supervision of technical processes in normal operation or the quality con-
trol of products in manufacturing is usually performed by limit checking or threshold
checking of some few measurable output variables Y (¢), like pressures, forces, liquid
levels, temperatures, speeds, and oscillations. This means one checks if the quantities
are within a tolerance zone Y,y < Y (¢) < Ynax. If the tolerance zone is exceeded,
an alarm is raised. Hence, the first task in supervision is, Figure 2.3:

1. Monitoring: Measurable variables are checked with regard to tolerances, and
alarms are generated for the operator. After an alarm is triggered the operator then
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f[ﬁ‘ fV

> , :t
A@{ A®I
T :t T bt
T =t T ;t
AU AU
T > ] bt
(a) (b)

Fig. 2.2. Time behavior of a parameter change A® and measurable signals Y(¢) and U(¢)
after appearance of fault f: a) open loop; b) closed loop

has to take appropriate counteractions.

However, if exceeding a threshold implies a dangerous process state, the coun-
teraction should be generated automatically. This is a second task of supervision,
Figure 2.3:

2. Automatic protection: In the case of a dangerous process state, the monitoring
function automatically initiates an appropriate counteraction. Usually, the process is
then commanded to a fail-safe state, which is frequently an emergency shutdown.
Some examples are shown in [2.37], Chapter 2.

These classical methods of monitoring and automatic protection are suitable for
the overall supervision of the processes. To set the tolerances, compromises have to
be made between the detection size for abnormal deviations and unmeasurable or
wrong alarms because of normal fluctuations of the variables. Most frequently, limit
checking with fixed thresholds is applied which works well if the process stays in
a steady state or if the monitored variable does not depend on the operating point.
However, the situation becomes more involved if the monitored variable changes
dynamically with other operating points, e.g. forces in rolling mills or machine tools
or pressures and temperatures in chemical batch processes.

The advantage of the classical limit-value-based supervision method is their sim-
plicity and reliability for steady-state situations. However, it is only possible to react
after a relatively large change of a process feature, i.e. after a large sudden fault or
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A A
SW;:;}; to automatic frot-_
| :‘1 protection ecion g super-
state 4 visory
A level
signal .
<: alarm . moni-
i processing toring
\4 \ 4
F fault
iL au A control
measure- +
w U Y ments
process
[W,U] c =) op _T’_{> U, Y] levels
\

N process + control

Fig. 2.3. Monitoring and automatic protection

a long-lasting gradually increasing fault. In addition, an in-depth fault diagnosis is
usually not possible based on the threshold violation of one or a few variables.

To improve the supervision of technical processes or to improve the quality con-
trol of manufactured products a first step could be to implement additional sensors
which are related to expected faults and to implement the operator’s know-how in
computers. However, the use of additional sensors, cables, transmitters, and plugs
for getting better information on special faults does not only increase the costs but
at the same time deteriorates the overall reliability because the probability of faults
increases with more elements. Also the direct software implementation of operator
knowledge is a demanding task and does not lead much further without physically
based process models.

For large-scale processes with many monitored and limit-checked values, there
is another problem: after a severe process fault or failure several alarms may be
triggered in a short time, known as “alarm-shower”. Consequently, the operators are
overloaded with regard to their immediate reactions and to finding the causes of the
faulty behavior.

Therefore advanced methods of supervision, fault detection and fault diagnosis
are required which satisfy the following requirements:

(i) early detection of small faults with abrupt or incipient time behavior
(ii) diagnosis of faults in the processes or process parts and their manipulating de-
vices (actuators) and measurement equipment (Sensors)
(iii) detection of faults in closed loops
(iv) supervision of processes in transient states.

The goal for the early fault detection and diagnosis is to have enough time for
counteractions such as other operations, reconfiguration, planned maintenance or re-
pair.
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Figure 2.4 shows a general scheme that illustrates how, in addition to the classical
monitoring and automatic protection, these goals can be reached by automatic means.
The intention is to generate more information about the process by using all available
measurements and to relate them in the form of mathematical process models. If not
only output signals Y () are measured but also the corresponding input signals U(z),
some accessible state variables x(¢) and maybe disturbance signals, then changes of
the static and dynamic behavior of the processes by the faults can be used as impor-
tant information sources. Moreover, also changes of output signals AY(#) which are
not caused by faults but by input signals AU(¢) or measurable disturbances are auto-
matically taken into account and therefore make the observed comparison variables
more sensible to faults. This means that the effects on the outputs Y(¢) by either
normal disturbances or faults are automatically separated.

hazard- faults symptoms  features
operator classes super-
Q lo| decision |\ | fault = fault = fault = feature - Vi'stil'(l)?’ .
h M| making [ |evaluation diagnosis detection generation glilagns;lis
super-
visory
protection protectionf level
| | S
| ; .
stop | signal -
. 1 ! moni
: operation | A alam evaluation toring
| |
2| N change | I U
- F fault
: "| operation | & auits measure- | control
| I w1 v I ments +
I J| recon- dblw. U]‘ —>n L /U, Y] process
| Y| figuration y_—"h levels
| I
| - | Lb—myo———— [ D A
t N mainte- |- — - — — & R
| I nance T process
|
|
| control
I repair ::#:::::::'l
! |
_—— e e e e e — — ——

~ actions (fault management)

Fig. 2.4. General scheme of advanced supervision methods with fault management (supervisory
loop)

The general scheme in Figure 2.4 shows at the third level the following tasks:

3. Supervision with fault diagnosis

(a) feature generation by, e.g. special signal processing, state estimation, identifica-
tion and parameter estimation, parity relations or performance measures
(b) fault detection and generation of symptoms
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(c) fault diagnosis by using analytical and also heuristic symptoms and their rela-
tions to faults, e.g. by classification methods or reasoning methods via fault-
symptom trees. The goal is to determine the kind, size and location of the fault

(d) fault evaluation with regard to classify the faults into different hazard classes

(e) decision on actions dependent on the hazard class and possible degree of danger.
This may be done either automatically or by the operator. Some examples for
hazard classes are given in [2.37], Chapter 2.

Based on the gained in-depth information about the condition of the process, fur-
ther tasks are necessary in order to improve the reliability or safety:

4. Supervision actions and fault management: Depending on the hazard classes of
the diagnosed fault(s) the following actions can be taken:

(a) safe operation, e.g. shut down if there is an imminent danger for the process or
the environment

(b) reliable operation, e.g. by hindering a further fault expansion through changes
of operation state, e.g. operation with lower load, speed, pressure, temperature

(c) reconfiguration, e.g. by using other sensors, actuators or redundant (standby)
components to keep the process in operation and under control with a “reconfig-
ured” structure

(d) inspection to perform a detailed diagnosis by additional measures at the compo-
nent

(e) maintenance, e.g. instantaneously or by the next opportunity to tune process
parameters or exchange worn parts

(f) repair, e.g. instantaneously to remove a fault or failure or at the next opportunity
(overhaul or revision).

These actions are also called fault management or process-oriented asset ma-
nagement and may incorporate several intermediate actions in the case of redundant
systems if the process is in a dangerous state, e.g. for aircraft, power plants, chemical
plants or automatic guided vehicles.

Hence, the advanced methods of supervision and following actions are means to
improve both the reliability and the safety of technical systems. Of course, these im-
provements by better information processing and computational intelligence have to
be accompanied on the process side by further improving the reliability of all hard-
ware components, by, e.g. proper materials, stress and overall design. Some further
interesting developments are:

e maintenance on demand (dependent on process condition)
e tele-diagnosis with modern communication
e 100% quality control of products.

As especially maintenance costs resemble in most cases a high percentage (e.g.
< 20%) of overall operating costs, the advanced supervision and diagnosis may help
to reduce maintenance effort and costs and improve the life time of the processes.
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The general scheme in Figure 2.4 shows that there exists a feedback system from
faults, signals, features, symptoms, decisions over various actions to compensate
for faults. Therefore, this can be called supervisory loop or fault management loop.
However, different to feedback control the signals or states are not all in continuous
action. Some parts of information processing like signal evaluation, feature genera-
tion and symptom generation may operate continuously, but fault diagnosis, decision
making and actions act as discrete events in the case of fault appearance. Hence, the
supervisory loop is a hybrid continuous and discrete event system.

The known literature on the state of the art of supervision and fault management
is mostly related to special processes and distributed in many journals, conference
proceedings and books. Some examples are:

e machines: [2.3], [2.19], [2.20], [2.45], [2.60]

e clectrical motors: [2.9], [2.24], [2.17], [2.31], [2.67]
e pumps: [2.7], [2.17], [2.21], [2.31], [2.49], [2.64]

e steam turbines: [2.57]

e manufacturing: [2.13], [2.56], [2.65]

e bearings and machinery: [2.8], [2.45], [2.61], [2.68]
e aircraft: [2.47], [2.48], [2.51]

e automotive systems: [2.33], [2.34], [2.44], [2.54]

e chemical processes: [2.23], [2.55].

2.2 Terminology

2.2.1 Faults, failures, malfunctions

As the treated field from faults and failures through reliability, safety and fault-
tolerant systems is distributed over many different technological areas, the termi-
nology used is not unique. Various efforts have been made to come to a standardiza-
tion, for example, the RAM (reliability, availability and maintainability) dictionary,
[2.50], in contributions [2.27] and several German standards as DIN and VDI/VDE-
Richtlinien (guidelines). The IFAC-Technical Committee SAFEPROCESS has made
an effort to come to accepted definitions, [2.38], see also Appendix 13. A survey of
related standardization literature is given in the bibliography of Appendix 13. The
following sections describe the terminology used in [2.37] and in this book, taking
into account the mentioned literature.

Fault:

“A fault is an unpermitted deviation of at least one characteristic property (feature)
of the system from the acceptable, usual standard condition.”

Remarks:

e afaultis a state within the system



18

2 Supervision, fault-detection and diagnosis methods

e the unpermitted deviation is the difference between the fault value and the vio-
lated threshold of a tolerance zone for its usual value

e a fault is an abnormal condition that may cause a reduction in, or loss of, the
capability of a functional unit to perform a required function [2.26]

e there exist many different types of faults, e.g. design fault, manufacturing fault,
assembling fault, normal operation fault (e.g. wear), wrong operation fault (e.g.
overload), maintenance fault, hardware fault, software fault, operator’s fault.
(Some of these faults are also called errors, especially if directly caused by hu-
mans)

a fault in the system is independent of whether the system is in operation or not
a fault may not effect the correct functioning of a system (like a small rent in an
axle)

a fault may initiate a failure or a malfunction

frequently, faults are difficult to detect, especially if they are small or hidden
faults may develop abruptly (stepwise) or incipiently (driftwise).

Failure:

“A failure is a permanent interruption of a system’s ability to perform a required
function under specified operating conditions.”

Remarks:

a failure is the termination of the ability of a functional unit to perform a required
function, [2.26]
a failure is an event
a failure results from one or more faults
different types of failures can be distinguished:
— number of failures: single, multiple
— predictability:
random failure (unpredictable, e.g. statistically independent from opera-
tion time or other failures)
deterministic failure (predictable for certain conditions)
systematic failure or causal failure (dependent on known conditions)
usually a failure arises after the start of the operation or by increasingly stressing
the system.

Malfunction:

“A malfunction is an intermittent irregularity in the fulfillment of a system’s desired
function.”

Remarks:

a malfunction is a temporary interruption of a system’s function
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a malfunction is an event

a malfunction results from one or more faults

usually a malfunction arises after the start of the operation or by increasingly
stressing the system.

Figure 2.5 shows the relation of faults, failures and malfunctions. The fault may
develop abruptly, like a step function, or incipiently, like a drift-like function. The
corresponding feature of the system related to the fault is assumed to be proportional
to the fault development. After exceeding the tolerance of normal values, the feature
indicates a fault at time 7. Dependent on its size, a failure or a malfunction of the
system follows at time 7.

function A
feature 4 driftwise 1
faulty
feature 0 >
t t
Y Sl 7 - : 2
. stepw1se‘ failure
— b
normal
feature feature function A
fault 1
0 >
t2 t
> mal-
function

Fig. 2.5. Development of the events “failure” or “malfunction” from a fault which causes a
stepwise or driftwise change of a feature

2.2.2 Reliability, availability, safety
With regard to the overall functioning of elements, components, processes and sys-

tems the terms reliability, availability and safety play an important role. These terms
are considered in more detail in Chapters 3 and 4 of [2.37].

Reliability:

“Ability of a system to perform a required function under stated conditions, within a
given scope, during a given period of time.”

Remarks:

e short version: ability to perform a required function for a certain period of time
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e reliability is quality that lasts over time
the reliability can be affected by malfunctions and failures
a measure for reliability is the mean time to failure MTTF = 1/A, where A is the
rate of failures per time unit.

Safety:

“Ability of a system not to cause danger to persons or equipment or the environment.”

Remarks:

e short version: ability not to cause danger
safety is concerned with the dangerous effects of faults, failures and malfunctions
e safety can usually be seen as a status, where the risk is not larger than a specified
risk limit (risk threshold).

The measures to improve the reliability are oriented towards avoiding faults, fail-
ures and malfunctions. Measures for improving safety aim to avoid dangerous effects
of failures and malfunctions. An improvement of the reliability generally improves
also safety. However, an improvement of safety can result in a deterioration of the
reliability if, e.g. the number of components increases. Note that safety and secu-
rity have similar meanings. Safety usually deals with life, equipment or environment,
whereas security deals with privacy, property, community or state.

Availability:

“Probability that a system or equipment will operate satisfactorily and effectively at
any period of time.”

Remarks:

availability is of major importance for the user of a system
availability takes into account that failures and malfunctions happen and need
some time for repair

e ameasure for availability is 4 =
to repair

e to reach a high availability MTTF must be large in comparison to MTTR. This
can be reached by:

MTTF

MTTFIMTTR where MTTR is the mean time

— large operation time MTTF
— perfection: highly reliable components
— tolerance: tolerable faults through redundant structure
— small repair time MTTR
— fast and reliable fault diagnosis
— fast and reliable removal of faults (maintenance repair)
e fault detection and fault diagnosis can improve the availability by early fault
detection in combination with maintenance on demand (larger MTTF) and by
fast and reliable diagnosis (smaller MTTR).
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Dependability:

The term dependability seems not to be clearly defined. Therefore different meanings
are cited:

(1) “A form of availability that has the property of always being available when
required (and not at any time). It is the degree to which a system is operable and
capable of performing its required function at any randomly chosen time during
its specific operating time, provided that the system is available at the start of the
period.” This definition excludes non-operation related influences, [2.50]

(i) “Dependability is a property of a system that justifies placing one’s reliance on
it. It covers reliability, availability, safety, maintainability and other issues of
importance in critical systems,” [2.58].

The [2.26] standard on safety-related systems does not define dependability, only
safety integrity.

Integrity:
According to [2.58], the term integrity was earlier defined as:

“The integrity of a system is the ability to detect faults in its own operation and
to inform a human operator.”

Over the years the meaning was broadened and associated with critical systems.
Integrity is frequently used as a synonym for dependability. According to [2.26] it is
defined as:

“Safety integrity is the probability of a safety-related system satisfactorily per-
forming the required safety functions under all the stated conditions within a period
of time.”

Some other expressions like accident, hazard, and risk are defined in [2.37],
Chapter 4.

2.2.3 Fault tolerance and redundancy

After applying reliability and safety analysis for the improvement of the design, test-
ing of the product and also corresponding quality control methods during manu-
facturing, the appearance of certain faults and failures cannot be avoided totally.
Therefore, these unavoidable faults should be tolerated by additional design efforts.
Hence, high-integrity systems must have the capability fault tolerance. This means
that faults are compensated in such a way that they do not lead to system failures.
After the application of principles to improve the perfection of the components the
remaining obvious way to reach this goal is to implement redundancy. This means
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Fig. 2.6. Basic scheme of a fault-tolerant system with parallel function modules as redundance

that in addition to the considered module one or more modules exist as back-up
modules, usually in a parallel configuration, see Figure 2.6.

The function modules can be hardware components or software, either identi-
cal or diverse. Different arrangements of fault-tolerant systems exist with static or
dynamic redundancy, cold or hot standby. In general, the function modules are su-
pervised with fault-detection capability followed by a reconfiguration mechanism to
switch off failed modules and to switch on spare modules (dynamic redundancy).
The modules are, e.g. actuators, sensors, computers, motors or pumps. For electronic
hardware simpler schemes exist with n» > 3 modules and majority voters to build up,
e.g. 2-out-of-3 systems (static redundancy). These redundant systems are treated in
Part IV.

2.3 Knowledge-based fault detection and diagnosis

As fault detection and fault diagnosis are fundamental for advanced methods of su-
pervision and fault management, these tasks will be considered briefly. Fault de-
tection and diagnosis, in general, are based on measured variables by instruments
and observed variables and states by human operators. The automatic processing
of measured variables for fault detection requires analytical process knowledge and
the evaluation of observed variables requires human expert knowledge which is
called heuristic knowledge. Therefore fault detection and diagnosis can be consid-
ered within a knowledge-based approach, [2.53], [2.59]. Figure 2.7 shows an overall
scheme, [2.30], [2.32].

2.3.1 Analytic symptom generation

The analytical knowledge about the process is used to produce quantifiable, analyti-
cal information. To do this, data processing based on measured process variables has
to be performed to generate first the characteristic values by
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Fig. 2.7. Overall scheme of knowledge-based fault detection and diagnosis

e limit value checking of direct, measurable signals. The characteristic values are
the violated signal tolerances

e signal analysis of directly measurable signals by the use of signal models like cor-
relation functions, frequency spectra, autoregressive moving average (ARMA) or
the characteristic values, e.g. variances, amplitudes, frequencies or model param-
eters

e process analysis by using mathematical process models together with parame-
ter estimation, state estimation and parity equation methods. The characteristic
values are parameters, state variables or residuals.

In some cases, special features can then be extracted from these characteristic
values, e.g. physically defined process coefficients, or special filtered or transformed
residuals. These features are then compared with the normal features of the non-
faulty process. For this, methods of change detection and classification are applied.
The resulting changes (discrepancies) in the mentioned directly measured signals,
signal models or process models are considered as analytic symptoms.

Figure 2.8 gives a survey of analytical fault-detection methods. These methods
are treated in detail in [2.37] and summarized in the following sections.

2.3.2 Heuristic symptom generation

In addition to the symptom generation using quantifiable information, heuristic
symptoms can be produced by using qualitative information from human opera-
tors. Through human observation and inspection, heuristic characteristic values in the
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Fig. 2.8. Survey of analytical fault-detection methods

form of special noises, colors, smells, vibration, wear and tear, etc., are obtained. The
process history expressed through performed maintenance, repairs, former faults,
life-time and load measures, constitutes a further source of heuristic information.
Statistical data (e.g. MTTF, fault probabilities) achieved from experience with the
same or similar processes can be added. In this way heuristic symptoms are gener-
ated, which can be represented as linguistic variables (e.g. small, medium, large) or
as vague numbers (e.g. around a certain value).

2.3.3 Fault diagnosis

The task of fault diagnosis consists in determining the type, size and location of the
most possible fault, as well as its time of detection.

Fault-diagnosis procedures use the analytic and heuristic symptoms. Therefore
they should be presented in an unified form like confidence numbers, membership
functions of fuzzy sets or probability density functions after a statistical evalua-
tion over some time. Then either classification methods can be applied, if a learned
pattern-based procedure is preferred, to determine the faults from symptom patterns
or clusters. If, however, more information of fault-symptom relations, e.g. in the form
of logic fault-symptom trees or if-then rules are known, inference methods (reasoning
methods) with forward and backward chaining can be applied.

Figure 2.9 gives a survey of these methods. See also Section 2.6.

2.4 Signal-based fault-detection methods

Fault detection based on single signal measurements is in simple cases performed
with limit checking or trend checking, or, in more complex cases, by operating with
special signal models, extraction of special signal features and change-detection
methods, see Figures 2.8 and 2.10. Corresponding methods are treated in [2.37],
Chapters 7 and 8. In the following only a brief description is given.
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Fig. 2.9. Survey of fault-diagnosis methods

2.4.1 Limit checking of absolute values

Generally, two limit values, called thresholds, are preset, a maximal value Y, and
a minimal value Y,;,;,. A normal state is when

Yimin < Y(t) < Yimax 2.4.1)

which means that the process is in normal situation if the monitored variable stays
within a certain tolerance zone. The exceedance of one of the thresholds then indi-
cates a fault somewhere in the process, compare Figure 2.10. This simple method
is applied in almost all process automation systems. Examples are the oil pressure
(lower limit) or the coolant water (higher limit) of combustion engines, the pressure
of the circulation fluid in refrigerators (lower limit) or the control error of a con-
trol loop. The thresholds are mostly selected based on experience and represent a
compromise. On one hand false alarms through normal fluctuations of the variable
should be avoided; on the other, faulty deviations should be detected early. Therefore
a trade-off between too narrow and too wide thresholds exists.

2.4.2 Trend checking

A further simple possibility is to calculate the first derivative Y = dY(r)/dt, the
trend of the monitored variable and to check if

Ymin < Y (1) < Yax (2.4.2)

If relatively small thresholds are selected, an alarm can be obtained earlier than for
limit checking of the absolute value, see Figure 2.10b). Trend checking is, for exam-
ple, applied for oil pressures and vibrations of oil bearings of turbines or for wear
measures of machines.

Limit checking of absolute values and trends can also be combined, see [2.37].
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2.4.3 Change detection with binary thresholds

The monitored variables are usually stochastic variables Y;(¢) with a certain proba-
bility density function p(Y;), mean value and variance

wi= Ei(0}: 67 = E{G(0) - uil’) (2.43)
as nominal values for the non-faulty process. Changes are then expressed by
AY; = E{Y;(t) — i} and Ao? = E {[oi(t) . 5,-]2} (2.4.4)

for t > tp, where t is the time of fault occurrence, which is unknown.

If the mean and standard deviations before the change caused by a fault are de-
scribed by 1o and o and after the change has appeared by ; and oy, the change-
detection problem is depicted by Figure 2.11, assuming a normal probability distribu-
tion of the variable Y (¢). Then the following cases of changes can be distinguished:

(i) the mean changes (11 = o+ Ap; standard deviation o7 = 09 remains constant
(ii) the mean does not change jt; = [o; standard deviation changes 0y = 09 + Ao
(iii) both, mean and standard deviation change.

As an example, case (i) is considered. If the probability densities do not signifi-
cantly overlap, one can use a fixed threshold.

A Y01 = Kk 0o (2.4.5)

with, e.g. k > 2, to detect the change just by observing the average (Y, ¢). In select-
ing the threshold, a comparison has to be made between the detection of relatively
small changes and false alarms.
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Fig. 2.11. Normal probability density functions of the observed variable Y for the nominal state
(index 0) and changed (faulty) state (index 1)

However, the detection problem becomes more involved if the change of the
mean

AM = 1 — Mo (246)

is small compared to the standard deviation, say k < 1. Then statistical tests have to
be applied.

The detection of changes of the random variable Y (k) can be performed off-line
or on-line in real time. For off-line change detection within a sample length N it has
to be determined when at some unknown time 7 a change in Y (k) occurred from Y,
to Y;. This is only possible after storing all data. For fault detection in real time the
on-line change detection is of more interest. Here at every time k it has to be decided
if a change from Y, to Y; has happened. This means that especially sequential or
recursive tests are of interest for fault detection. The first case is easier to decide,
because more measurements are available.

Corresponding change-detection methods, taking into account the statistics of the
observation, estimation methods, and statistical tests are described in [2.37].

2.4.4 Adaptive thresholds

Process-model-based fault-detection methods described in the next section use pro-
cess models which do not fully agree with real processes due to model uncertainties.
Thus, the generated residuals deviate from zero even without faults. These deviations
frequently depend on the amplitude and frequencies of the input excitation. There-
fore the residuals may contain a static part which is proportional to the input U (%)
and a dynamic part dependent, e.g. on U(t). To cope with this problem, [2.25] has
introduced an adaptive threshold which uses a first-order high-pass filter (HPF) for
enlarging the threshold, Figure 2.12. A proportional enlargement may be added by
a constant ¢;, [2.15]. A low-pass filter (LPF) is used to smooth the thresholds. The
time constants 77 and 73 are selected according to the dominating time constant
of the process. T,/ T depends on the model uncertainty of the dynamics. Adaptive
thresholds were also proposed by [2.5], [2.12].
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Fig. 2.12. Generation of an adaptive threshold dependent on process input excitation. The
constant threshold is thconst = ¢1

2.4.5 Plausibility checks

A rough supervision of measured variables is sometimes performed by checking the
plausibility of its indicated values. This means that the measurements are evaluated
with regard to credible, convincing values and their compatibility among each other.
Therefore, a single measurement is examined to find whether the sign is correct and
the value is within certain limits. This is also a limit check, however, with usually
wide tolerances. If several measurements are available for the same process then the
measurements can be related to each other with regard to their normal ranges by
using logic rules, like

IF [Yimin < Y1(t) < Yimax] THEN [Yapmin < Y2(t) < Yamax] (2.4.7)

For example, one expects for a circulation pump with rotating speed » and pressure

P
IF [1000 rpm < n < 3000 rpm] THEN [3 bar < p < 8 bar]

The plausibility check can also be made dependent on the operating condition, like
IF [Operating condition 1] THEN [Y3min < Y3(2) < Yamax] (2.4.8)

One example is the oil pressure p,;; of a combustion engine with speed 7 and cooling
water temperature Ypyo():

IF [n < 1500rpm] AND [dyyp( < 50°C] THEN [3bar < p,;; < Sbar] (2.4.9)

Hence, plausibility checks may be formulated by using rules with binary logic con-
nections like AND, OR. These rules and ranges of the measurements allow a rough
description of the expected behavior of the process under normal conditions. If these
rules are not satisfied either the process or the measurements are faulty. Then, one
needs further testing to localize the fault and its cause.

These plausibility checks presuppose the ranges of measured process variables
under certain operating conditions and represent rough process models. If the ranges
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of the variables are increasingly made smaller, many rules would be required to de-
scribe the process behavior. Then, it is better to use mathematical process models
in the form of equations to detect abnormalities. Therefore, plausibility tests can be
seen as a first step towards model-based fault-detection methods.

2.4.6 Signal-analysis methods

Many measured signals of processes show oscillations that are either of harmonic
or stochastic nature, or both. If changes of these signals are related to faults in the
actuators, the process and sensors, signal-model-based fault-detection methods can
be applied. Especially for machine vibration, the measurement of position, speed or
acceleration allows one to detect, for example, imbalance or bearing faults (turbo ma-
chines), knocking (gasoline engines) and chattering (metal grinding machines). But
also signals from many other sensors, like electrical current, position, speed, force,
flow and pressure, frequently contain oscillations with a variety of higher frequencies
than the process dynamics.

The task of fault detection by the analysis of signal models is summarized in Fig-
ure 2.13. By assuming special mathematical models for the measured signal, suitable
features are calculated, for example, amplitudes, phases, spectrum frequencies and
correlation functions for a certain frequency band width @i < @ < ©Wpex of
the signal. A comparison with the observed features for normal behavior provides
changes of the features which then are considered as analytical symptoms.

faults

I B T
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iva signal-model-based
signal fault detection
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I g --Yy, Syy » Ry, features

normal change
behavior detection
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Fig. 2.13. Scheme for the fault detection with signal models

The signal models can be divided into nonparametric models, like frequency
spectra or correlation functions, or parametric models, like amplitudes for distinct
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frequencies or ARMA-type models. Signal-analysis methods exist for harmonic os-
cillations, stochastic signals and non-stationary signals, compare the scheme of Fig-
ure 2.14.

For the analysis of stationary periodic signals band pass filtering or Fourier anal-
ysis can be used. Non-stationary periodic signals may be analyzed with, e.g. wavelet
transforms. The analysis of stochastic signals is frequently performed by correlation
functions, spectrum analysis and signal parameter estimation for ARMA-models.
These methods are treated in [2.37], where also many other references are given.

signal model-based
fault detection

periodic stochastic non-stationary
signals signals signals

bandpass || Fourier ||parametric||correlation|| spectrum || ARMA |{short-time || y,yelet

: B spectral R . parameter || Fourier .
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Fig. 2.14. Survey of signal-analysis methods for signal-model-based fault detection

2.5 Process-model-based fault-detection methods?

Different approaches for fault detection using mathematical models have been de-
veloped in the last few decades (see, e.g. [2.66], [2.22], [2.28], [2.39], [2.32], [2.18],
[2.11], [2.4], [2.52]). The task consists of the detection of faults in the processes, ac-
tuators and sensors by using the dependencies between different measurable signals.
These dependencies are expressed by mathematical process models. Figure 2.15
shows the basic structure of model-based fault detection. Based on measured input
signals U and output signals Y, the detection methods generate residuals r, parame-
ter estimates © or state estimates X, which are called features. By comparison with
the normal features (nominal values), changes of features are detected, leading to
analytical symptoms s.

For the application of model-based fault-detection methods, the process configu-
rations according to Figure 2.16 have to be distinguished. With regard to the inherent
dependencies used for fault detection, and the possibilities for distinguishing be-
tween different faults, the situation improves greatly from case a) to b) or ¢) or d), by
the availability of some more measurements.

2 This chapter follows [2.36]
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Fig. 2.15. General scheme of process-model-based fault detection and diagnosis
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Fig. 2.16. Process configuration for model-based fault detection: a) SISO (single-input single-
output); b) SISO with intermediate measurements; ¢) SIMO (single-input multi-output); d)
MIMO (multi-input multi-output)
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2.5.1 Process models and fault modeling

A fault is defined as an unpermitted deviation of at least one characteristic property
of a variable from an acceptable behavior. Therefore, the fault is a state that may
lead to a malfunction or failure of the system. The time dependency of faults can be
distinguished, see Figure 2.17, as abrupt fault (stepwise), incipient fault (drift-like),
or intermittent fault. With regard to the process models, the faults can be further
classified. According to Figure 2.18 additive faults influence a variable Y by an
addition of the fault f, and multiplicative faults by the product of another variable
U with f. Additive faults appear, e.g., as offsets of sensors, whereas multiplicative
faults are parameter changes within a process.

fault 5 change of
feature f=AF
—

Process

S a b,\’ A C
I A
//
7
< -
' t t

Fig. 2.17. Time-dependency of faults: a) abrupt; b) incipient; c) intermittent

l f=Aa

f
—> a |—
Y, Y=Yt/ U Y=(a+Aa )U(?)
=aU+
(@) (b) e

Fig. 2.18. Basic models of faults: a) additive fault; b) multiplicative faults

Now lumped-parameter processes are considered, which operate in open loop.
The static behavior (steady states) is frequently expressed by a nonlinear character-
istic as shown in Table 2.1. Changes of parameters f; can be obtained by parameter
estimation with, e.g., methods of least squares, based on measurements of different
input output pairs [Y;, U;]. This method is applicable for, e.g. valves, pumps, drives,
and engines.

More information on the process can usually be obtained with dynamic process
models. Table 2.2 shows the basic input/output models in the form of a differential
equation or a state-space model as vector differential equation. Similar representa-
tions hold for nonlinear processes and for multi-input multi-output processes, also in
discrete time.
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Table 2.1. Fault detection of a nonlinear static process via parameter estimation for steady
states

f ¢AB,- f

RAE=qRY!

Measured signals: U(?), Y(?)
Basic equation:
Y= Byt B U+BU” ot B U > Y =y @
T T 2
O3 = (BB B] W5 =[1UU .. U]
Additive faults: f;, input fault; f, output fault

Multiplicative faults: AP, parameter faults

Table 2.2. Linear dynamic process models and fault modeling

Input/output model State-space model
Aa;  Ab
T A
u B(s y
al—r G = 503 »l—r

Measured signals:

W(t) = Y() = Yy u(t) = U(t) — U,
Basic equations:

() + aly(])(l) +..t any(”)(t) ;((t) = A x(¢) + bu(t)
— bou(t) + b0+ b,u™ (1) | YO = x(0)

YO =y'(1)®

! 0 0 1
®T_ [ a]‘(;; an bO"‘(nb)m] A = 0 1 *al
v=[2®..>"0 1 0

u(®) ... u™ (9]

Additive faults: /, input or state-variable fault
J, input fault; f output fault 7., output fault

Multiplicative faults:
Aa;, Ab, parameter faults AA, Ab, Ac parameter faults
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2.5.2 Fault detection with parameter estimation

Process-model-based methods require the knowledge of a usually dynamic process
model in the form of a mathematical structure and parameters. For linear processes in
continuous time the models can be impulse responses (weighting functions), differ-
ential equations of frequency responses. Corresponding models for discrete-time (af-
ter sampling) are impulse responses, difference equations or z-transfer functions. For
fault detection in general, differential equations or difference equations are primarily
suitable. In most practical cases the process parameters are partially not known or not
known at all. Then, they can be determined with parameter estimation methods by
measuring input and output signals if the basic model structure is known. Table 2.3
shows two approaches by minimization of the equation error and the output error.
The first one is linear in the parameters and allows therefore direct estimation of the
parameters (least-squares estimates) in non-recursive or recursive form. The second
one needs numerical optimization methods and therefore iterative procedures, but
may be more precise under the influence of process disturbances. The symptoms are
deviations of the process parameters A®. As the process parameters @ = f(p)
depend on physically defined process coefficients p (like stiffness, damping coef-
ficients, resistance), determination of changes Ap allows usually a deeper insight
and makes fault diagnosis easier, [2.29]. Parameter estimation methods operate with
adaptive process models, where only the model structure is known. They usually
need a dynamic process input excitation and are especially suitable for the detection
of multiplicative faults.

Table 2.3. Fault detection with parameter estimation methods for dynamic processes

Minimization of equation error Minimization of output error
u fgs; ¥ u B(s) y
) 1
A(s) I L €

~ _ >
B(s) |—>Iﬂ ﬁs) | B(s)

~ /N
b| a

0
PARAM. [
ESTIM. [~
. 2
Loss function: V=13 e (k) V=1 e (k)
Method: ® nonlinear
® non-recursive parameter optimization

A YIS D
O=[YY¥Y]| Yy

'A recursiv/f\:

O(k+1)=0(k) +y(k)e(k+ 1)

® recursive form

JAN _ A aV
O(v+1)=0(v)+ F(V)% )

Symptoms: ® model parameters A@(j) = @)(j) -0,

® process coefficients 6 :‘f-1[®] Ap(j) = f)(]') - Py
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2.5.3 Fault detection with state observers and state estimation

If the process parameters are known, either state observers or output observers can
be applied, Table 2.4. Fault modeling is then performed with additive faults f7, at the
input (additive actuator or process faults) and fjs at the output (sensor offset faults).

a) State observers

The classical state observer can be applied if the faults can be modeled as state-
variable changes Ax; e.g., for leaks. Special design of the matrix W allows one to
generate structured residuals. In the case of multi-output processes special arrange-
ments of observers were proposed:

Dedicated observers for multi-output processes

e Observer, excited by one output: One observer is driven by one sensor output.
The other outputs y are reconstructed and compared with measured outputs y.
This allows the detection of single sensor faults, [2.6]

e Bank of observers, excited by all outputs: Several state observers are designed
for a definite fault signal and detected by a hypothesis test, [2.66]

e Bank of observers, excited by single outputs: Several observers for single sen-
sor outputs are used. The estimated outputs y are compared with the measured
outputs y. This allows the detection of multiple sensor faults, [2.6] (dedicated
observer scheme)

e Bank of observers, excited by all outputs except one: As before, but each observer
is excited by all outputs except one sensor output which is supervised, [2.10].

Fault-detection filters (fault-sensitive filters) for multi-output processes

The feedback H of the state observer is chosen so that particular fault signals fr.(¢)
change in a definite direction and fault signals fas(7) in a definite plane, [2.2] and
[2.43].

b) Output observers

Another possibility is the use of output observers (or unknown input observers) if
the reconstruction of the state variables x(¢) is not of interest. A linear transforma-
tion then leads to new state variables & (7). The residuals r(¢) can be designed such
that they are independent of the unknown inputs v(¢), and of the state by special
determination of the matrices Cg and T,. The residuals then depend only on the ad-
ditive faults f7 () and fps(z). However, all process model matrices must be known
precisely. Hence, the observer-based fault-detection methods operate with a fixed
parameter model and correct the state variables by the feedback of output errors. A
comparison with the parity equation approach shows similarities.
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Table 2.4. Fault detection with observers for dynamic processes

State observer | Output observer

Process model:
(1) = A x(t) + Bu(t) + Fv() + L£(2)
y(®) = C x() + N n(f) + M f,(?)

v(?), n(?): disturbance signals; f,, f,;: additive fault signals

u x=Ax+Bu y u x=Ax+Bu y
y=Cx

y=Cx

.
A

Observer equations: &) = A, E(t) + B, u(?) + H, y(9)
X(f)= AX(t) + Bu(?) + He(t) n(0)=C. k0

e(n) = y() - Cx(0) & (t) =T, x(¢): transformation
Residuals: E(n = E(t) - T, X(2)

o AX(?) = x(1) — x,(¢) r(?) = C.&(1) — T,Mf,, ()

o e(?) — independent of x(7), u(?), v(7)
. r(t)': W e(?) — dependent on f,(2), f,(7)
Special observers: Design equations:

— fault-sensitive filters

(H such that r(7) defin. direct.) TA-AT=HC

. B.=TB
— dedicated observers TV = 01
(for different sensor outputs) C.T, - T12C -0

c) State estimation

Whereas state observers are designed for deterministic initial states x(0) and inputs u
and no disturbances, state estimators are optimized filters for stochastic initial states,
stochastic state disturbances v at the input and stochastic disturbances n at the output
with known covariances. In the case of continuous-time signals the Kalman—-Bucy
filter results and for discrete-time signals the Kalman filter. Table 2.5 shows the signal
flow and basic equations for the mostly used Kalman filter with discrete-time signals,
see also [2.37], and the cited references.

The application of the Kalman filter is similar to that of state observers and should
only be applied if considerable stochastic disturbances act on the input and/or the out-
put signals. However, the covariance matrices of both disturbances must be known
for determining the filter gain K. This needs in many cases some trials to find appro-
priate values.
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Table 2.5. Fault detection with state estimation and discrete-time signals (Kalman filter)

n(k)

_________________ | |_______________|
U1 R(kk-1) SR
2 :
1
I

L L e LT !
/ VR(k+1]k) X(kk) \

prediction correction

State estimation (Kalman filter)

Process models:

x(k+ 1) = Ax(k) + B u(k) + V v(k)

y(k) = C x(k) + n(k)

v(k), n(k): stochastic disturbances with known covariance
matrices M and N

State estimation equations:

o prediction: X(k + 1)k) = A X(klk) + B u(k)

e correction : X(kk) = X(klk-1) + K[y(k) — CX(klk —1)]

o filter gain: K =P~CT[C P~CT+ N]!

e error covariance matrix Riccati equation:

P (k+ 1) = APTk) AT— AP (k) C'[CP(k) C™+ NT'CP(kfA + VM V!

Residuals: Ax(k + 1|k)
Ay(k) = e (k)

2.5.4 Fault detection with parity equations

A straightforward model-based method of fault detection is to take a fixed model
G s and run it parallel to the process, thereby forming an output error, see Table 2.6:

r'(s) =[Gp(s) — G ()] u(s) 2.5.1)

If G,(s) = Gar(s), the output error for additive input and output faults becomes,
Table 2.2:
r'(s) = Gp(s) fuls) + fy(s) (2.5.2)

Another possibility is to generate an equation error (polynominal error) or an input
error as in Table 2.7, [2.18].

In all cases, the residuals only depend on the additive input faults f,(¢) and
output faults f)(¢). The same procedure can be applied for multivariable processes
by using a state-space model, see Table 2.7.



38 2 Supervision, fault-detection and diagnosis methods

Table 2.6. Fault detection with different forms of parity equations for linear input/output models

Output error Equation error Input error
u B(s) y u B(s) v u B(s) y
() ? R A(s) o 1 LA®
By(s) ' : ) Ay(s)
A4) B |0 Ao B,6)
r

Parity equations:

P(s) = 3(5) 1) uls)

PO =y (0)0,,+ ¥, ()0,
- ‘VhT(t)®Mh

1(s) = Ay(s) ¥(s) = By, u(s)

r(t) = \Var(t) B, - \VbT@Mb

() = uts) () 69

() =V, (0, y, (19,,

B, (s)=by+ bis +..+ b, 5"
4=l +as+t.ta,s"
0, =[1aa,..a,

\V:T — [yy(l)y(Z)m y(n)]

@), =[byb, ... bu]

('3;” =[1a..a,]
v =[u Wi u™)

T 1,2

v, =[yy"y2 ™

n 1
®M§:b—0[ 1b,by... b,

T
w; =[uuPu® ... u(m)]

The derivatives of the signals can be obtained by state-variable filters, [2.24].
Corresponding equations exist for discrete time and are easier to implement for the
state-space model. The residuals shown in Table 2.6 and 2.7 left are direct residu-
als. If the parity equations are formulated for more than one input and one output,
it becomes possible to generate structured residuals such that faults do not influence
all residuals. This improves the isolability of faults, [2.18]. For example, the com-
ponents of matrix W for the state-space model, Table 2.7 right, are selected such
that, e.g., one measured variable has no impact on a specific residual. Parity equa-
tions are suitable for the detection of additive faults. They are simpler to design and
to implement than output observer-based approaches and lead approximately to the
same results. A comparison of fault detection with observers, Kalman filter and par-
ity equations is given in [2.37], Section 11.4.

2.5.5 Direct reconstruction of non-measurable variables

State observers and Kalman filters reconstruct non-measurable variables contained in
the state-vector x(¢) and parameter-estimation methods reconstruct non-measurable
parameters © from measured input signals u(¢) and output signals y(¢). However,
process models or parts of it can also be directly used to calculate non-measurable
variables from measured variables, for example by using algebraic relationships. A
first example is the calculation of the torque M of a DC motor from the current /
by using M (t) = WI(¢), where W is the flux linkage. A second example is the re-
construction of the volume flow rate V of a centrifugal pump transporting a liquid
through a pipe from the rotor angular speed w by V(t) = k() for steady-state
operation, [2.67]. This kind of reconstruction via algebraic relations holds especially
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Table 2.7. Fault detection with parity equations for dynamic processes

Input/output model, equation

State space model

u

error
+
B(s) [0 40) |
r

Parity equations:
7 (s) = A, [s)¥(s) — B, (s)u(s)
r@)=y,00,,- v, (00,

Y, () =TX(0)+Q U,

WY, () =WTx (1) + WQ UL
WT=0
r(6)=W(Y)-QUL)

B,(s)=b,+bs +..+b,s"
Afs)=1+as+.+tas"
®,, =[byb,... b,]

Du=[uu”..u"]=0U,

Dy=[yy".y"I'=Y,
T=[CCACA..T

39

0, =[1aa,.a, 0 0 0..
T [uu®u®.. u® CB 0 0
v - ] Q=|c4B CB 0

v =" "] M

for transformers and converters whose behavior is expressed with the power covari-
ables effort e(¢) and flow f(¢), [2.35].

2.6 Fault-diagnosis methods

The task of fault diagnosis consists of the determination of the type of fault with as
many details as possible such as the fault size, location and time of detection. The
diagnostic procedure is based on the observed analytical and heuristic symptoms and
the heuristic knowledge of the process, see the schemes in Figures 2.7, 2.9 and 2.15.
The inputs to a knowledge-based fault-diagnosis system are all available symptoms
as facts and the fault-relevant knowledge about the process, mostly in heuristic form.
The symptoms may be presented just as binary values [0, 1] or, e.g., fuzzy sets to take
gradual sizes into account.

2.6.1 Classification methods

If no further knowledge is available for the relations between features and faults
classification or pattern recognition methods can be used, Table 2.8. Here, reference
vectors S, are determined for the normal behavior. Then the corresponding input
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vectors S of the symptoms are determined experimentally for certain faults F; ap-
plying the fault-detection methods. The relationship between F and S is therefore
learned (or trained) experimentally and stored, forming an explicit knowledge base.
By comparison of the observed S with the normal reference S,,, faults F can be con-
cluded.

Table 2.8. Methods of fault diagnosis

Classification methods Inference methods
REFERENCE-
TS, I
S F S F
INFERENCE-
—| CLASSIFICATION—> —N STRATEGY —>

Without a-priori knowledge on With a-priori knowledge on

symptom causalities symptom causalities
Mapping: Causal network:
S F
| ey | O =
& @
g 2L (HE
S, £
Fault-symptom tree:

<]

& A} A

$'=[5,5,..5,1

¥ =[F.,F,..F, @ [IE,
Classification: Rules:
— statistical If <S8, AS,>Then<E, >
— geometrical Diagnostic reasoning:
— neural nets — Boolean logic: facts binary
— fuzzy clusters — Approximative reasoning:
— Probabilistic facts:
probability densities
— Fuzzy facts:
fuzzy sets

One distinguishes between statistical or geometrical classification methods, with
or without certain probability functions, [2.63]. A further possibility is the use of
neural networks because of their ability to approximate nonlinear relations and to
determine flexible decision regions for F in continuous or discrete form, [2.46]. By
fuzzy clustering the use of fuzzy separation areas is possible.
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2.6.2 Inference methods

For some technical processes, the basic relationships between faults and symptoms
are at least partially known. Then this a-priori knowledge can be represented in
causal relations: fault — events — symptoms. Table 2.8 shows a simple causal net-
work, with the nodes as states and edges as relations. The establishment of these
causalities follows the fault-tree analysis (FTA), proceeding from faults through in-
termediate events to symptoms (the physical causalities) or the event-tree analysis
(ETA), proceeding from the symptoms to the faults (the diagnostic forward-chaining
causalities). To perform a diagnosis, this qualitative knowledge can now be expressed
in the form of rules: IF < condition > THEN < conclusion >. The condition part
(premise) contains facts in the form of symptoms S; as inputs, and the conclusion
part includes events £y and faults F; as a logical cause of the facts. If several symp-
toms indicate an event or fault, the facts are associated by AND and OR connectives,
leading to rules in the form

IF <S8; AND S, > THEN < E;| >
IF < E; OR E, >THEN < F;>.

For the establishment of this heuristic knowledge several approaches exist, see
[2.14], [2.62]. In the classical fault-tree analysis the symptoms and events are con-
sidered as binary variables, and the condition part of the rules can be calculated by
Boolean equations for parallel-serial connection, see, e.g., [2.1], [2.13]. However,
this procedure has not proved to be successful because of the continuous and gradual
nature of faults and symptoms. For the diagnosis of technical processes approximate
reasoning is more appropriate. A recent survey and learning methods for rule-based
diagnosis is given in [2.16] and [2.15].

2.7 Fault detection and diagnosis in closed loop

The main goals for using automatic control loops are precise following of reference
variables (setpoints), a faster response than in open loop, compensation of all kind of
external disturbances on the controlled variable, stabilization of unstable processes,
reduction of the influence of process parameter changes with regard to the static and
dynamic behavior, partial compensation of actuator and process nonlinearities, and,
of course, replacement of manual control by humans. The performance of a SISO
control loop with regard to the control error (deviation)

e(k) =wk)—yk) (2.7.1)
i.e. the deviation of the controlled variable y(k) from the reference variable w(k)
depends on many facts, compare Figure 2.19, like:

e external disturbance w(k), uy(k), v; (k)
e structure and parameters of the controller G, and controller faults f,
o changes of the structure and parameters of the process G, and process faults f),



42 2 Supervision, fault-detection and diagnosis methods

e changes and faults of actuator G, and f,
e faults f in the sensor Gy and measurement noise 7.

==l
éfp n,(k) éfs

éfc Ue éfa Uy ng
hol G —>£—> G —»&»G Yu ol G —>£—<»y

z c a pu s

controller actuator process sensor

Fig. 2.19. Control loop with variables and fault influences

y controlled variable w reference variable

up manipulated variable e control deviation

v; process disturbances ng measurement noise

Uy process input disturbances Je.a, p,s faults of the controller,
np sum of process disturbances actuator, process and
Vp process output to be controlled sensor

Hence, many changes and faults influence the performance of closed loops. Usu-
ally, only the control deviation e and the control variable y are monitored.

Small faults in the actuator and process, be they additive or multiplicative, will
usually be compensated by the feedback controller (with integral action) and they
will not be detectable by considering e (k) and y(k) only, as long as the control de-
viation turns back to approximately zero. Also small sensor offset faults will not be
detected. The controller will just make the wrong sensor signal equal to the refer-
ence variable. Only by a redundant sensor or other redundant information for the
controlled variable, can the offset fault usually be detected.

As shown in [2.37], Chapter 12, several larger faults have a similar effect on the
considered changes of closed-loop behavior such that it is not easy to differentiate
them. In addition, some of the behavior is also observed after external disturbances
under normal operation.

A first possibility for fault detection in closed loops is to analyze measurable
signals like the controlled variable y(¢), the manipulated variable u(k), the reference
variable w(k) and the control deviation e(k). This is also known as performance
monitoring of closed loops, see, e.g. [2.37], Chapter 12. For example, the variances
of these variables, steady-state deviations, large overshoots or frequency spectra can
be monitored. However, it is very difficult to find the reasons for observed changes.

Process-model-based detection methods allow a deeper insight, as they relate
the manipulated variable u (k) to the controlled variable y(k). The application of
parameter estimation in closed loops requires consideration of the identifiability
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conditions. If no external measurable perturbations can be used, because the closed
loop operates with constant reference variable w(k) = const and only compensates
for disturbances, special higher-order controller structures are required, [2.40]. With
measurable external perturbations, as for servo systems with continuously chang-
ing reference variable, parameter estimation methods can be directly applied. Also
parity equations for the process are directly applicable if the (fixed) process model
agrees well with the real process. Especially by combining several detection meth-
ods a large portion of faults in the components of a closed loop (actuators, process,
sensor, controller) can be detected and isolated [2.37].

2.8 Data flow structure for supervision (condition monitoring)

For larger plants the computer software systems written for supervision or condi-
tion monitoring and diagnosis of machines and other processes should have an open
standardized software architecture to ease the exchange of data. This has to be seen
in the efforts to integrate the components and processes with regard to a plant as-
set management. Therefore, international standards are prepared, like ISO 13374 on
“condition monitoring and diagnostics of machines,” [2.41] with regard to data pro-
cessing, communication, and presentation.

An open condition monitoring software architecture then consists of a standard-
ized structure for data processing with an information model, a data model and a data
library. The information model (data flow scheme) describes the primary data objects
with their properties (attributes) in the form of a scheme which is independent of the
physical data. The information model can, e.g. be implemented with the Unified
Modeling Language (UML), containing standardized class diagrams for information
modeling.

The data model is based on the information model and provides the exact rep-
resentation of data elements. Here, the integration of many sources of machinery
or process information takes place, like process site, asset nameplate data for rated
quantities, measurement locations, signal processing methods, alarms, date and time.
An Extensible Markup Language (XML) is a recommended definition language.

A reference data library then stores the data from the data model, using database-
unique entries. This library specifies all code tables, asset types, event codes, health
codes, failure codes, root cause codes and engineering unit codes.

The software structure for data processing is recommended to follow Fig-
ure 2.20. The data acquisition digitizes, e.g. analog sensor signals and manual inputs
and delivers digitized data with time stamps and data quality (good, bad, unknown).
The digital data are then processed in the data manipulation block providing specific
features with time stamp and data quality. The signal processing consists of algorith-
mic computations, filtering, windowing, spectral analysis and feature extraction.

A state detection block then categorizes the features with regard to normal or
abnormal, exceeding of limits, severity of threshold boundary deviation, degree of
abnormality and statistical analysis. The health assessment determines the current
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state of health and potential failures with associated diagnosis, calculates the current
risk priority number and generates recommendations.

The prognostic assessment projects the future health state with prognostic mod-
els, future operational usage, failure rates, probability measures and explanations.

Finally, the advisory generation integrates all information and provides optimal
recommended actions and alternatives, maintenance, modification of operations, ca-
pability forecast, strategic recommendations.

All the blocks have a time stamp and need multiple interactions, require con-
figuration information and the access to external information sources with previous
maintenance, historic operational data and should be accessible from displays for
deeper analysis.

sensor

mputs data data state health prognostic advisory actional
manual acquisition manipulation| detection assessment assessment generation information
mnputs digitized signal state current future health  optimal
data processing, indicators, health grade, grade, actions,
timestamp,... features change diagnosed remaining maintenance,
data quality detection, faults, life, change of
alarms risk priority, explanations ~ operation,
statistics recommen- capability
dations forecast

Fig. 2.20. Data processing functionality, scheme for condition monitoring and diagnosis, [2.42]

Concluding remarks

The summary of some basic fault-detection and diagnosis methods presented in this
chapter was limited to linear processes mainly. Some of the methods can also be
directly applied to nonlinear processes, e.g., signal analysis, parity equations and
parameter estimations. However, all the methods have to be adapted to the real pro-
cesses. In this sense the basic methods should be considered as “tools”, which have
to be combined properly in order to meet the practical requirements for real faults
of real processes. The development of fault detection and diagnosis methods is rec-
ommended to follow the schedule depicted in Figure 2.21. First, the requirements of
the final results should be stated, where especially a list of all faults to be detected
is defined and fault-symptom trees are sketched, supported by an FMEA. A process
analysis has to follow, stating the available measurements and operating conditions.
Then, possible fault-detection methods can be selected. Simulations with process and
signal models allow first tests. Important are, of course, experiments with the real
process, real-time computing and handling of real measured data. The results give
hints for adjustments and improvements of detection methods in the sense of feed-
back and iterative scaling. A final realization of software and computer hardware
usually requires practical tests with similar or other processes, solving of robustness
issues and field tests.
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Fig. 2.21. Development stages for fault detection and diagnosis

Most of the described fault-detection and diagnosis methods, see [2.37], were de-

veloped theoretically, investigated by simulations and then tested experimentally on
real processes, either in laboratories on test rigs or with pilot processes and different
machinery as described in the following chapters. In some cases the faults are added
artificially, like for sensor offsets, but in many cases real faults are introduced, if the
faults did not damage the processes.
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Fault diagnosis of electrical drives

Electrical drives are basic components in a multitude of devices, processes, machin-
ery and vehicles, and in the large areas of mechanical power and process engineering,
manufacturing, transportation and precision mechanical devices. Their power ranges
from a few mW to hundreds MW.

The most important types of electrical motors can be divided into:

(i) DC motors

e series-wound motors
e shunt-wound motors
e permanent-field motors

(i) Three-phase AC motors
e induction motors (asynchronous motors)
e synchronous motors

(iii) Single-phase AC motors
e commutator motors (universal motors)
e squirrel-cage motors.

Table 3.1 gives an overview of some basic types, illustrating torque characteris-
tics and corresponding control inputs. As static and dynamic models of the various
electrical motors are required for model-based fault detection, the reader is referred
to well-known basic books on electrical drives such as [3.3], [3.13], [3.18], [3.19],
[3.20].

In the following, some case studies are described for DC motors with brushes and
for AC motors. Further types of electrical motors will be considered in Chapter 4 for
electrical actuators.

3.1 Direct-current motor (DC)

3.1.1 Structure and models of a DC motor

A permanently excited DC motor with a rated power of P = 550 W at rated speed
n = 2500 rpm is considered, [3.6]. This DC motor has a two-pair brush commuta-

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators, 49
Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,
DOI 10.1007/978-3-642-12767-0_3, © Springer-Verlag Berlin Heidelberg 2011
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tion, two pole pairs, and an analog tachometer for speed measurement; it operates
against a hysteresis brake as load, see Figure 3.1. The measured signals are the ar-
mature voltage U 4, the armature current / 4 and the speed w. A servo amplifier with
pulse-width-modulated armature voltage as output and speed and armature current
as feedback allows a cascaded speed control system. The three measured signals
first pass analog anti-aliasing filters and are processed by a digital signal processor
(TXP 32 CP, 32-bit fpt, 50 MHz) and an Intel Pentium host PC. Also the hysteresis
brake is controlled by a pulse-width servo amplifier. Usually such DC motors can be
described by linear dynamic models.

hysteresis
break

personal computer with
digital signal processor

i >

——]

B % servo amplifier
£ > T

e LS

DC motor

servor amp. tacho

[
L

anti-
aliasing- Il Il Il

filter

(b) 7
¥

Fig. 3.1. DC motor test bench with hysteresis brake: a) test bench; b) scheme of equipment

However, experiments have shown that this model with constant parameters does
not match the process in the whole operational range. Therefore, two nonlinearities
are included so that the model fits the process better. The resulting first-order differ-
ential equations are:
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Lala(ty=—=Rqls(t)—V o(t)— Kglo@)| Ls(t) + U(1) (3.1.1)
J & =W I4(t) — Mp o(t) — Mpg sign (w(t)) — ML(t) (3.1.2)

Figure 3.2 depicts the resulting signal flow diagram. The term K g|w(¢)|1 4(t) com-
pensates for the voltage drop at the brushes in combination with a pulse-width-
modulated power supply. The friction is included by a viscous- and a dry-friction
term Mgy and M pgsign(w), see also [3.9]. The parameters are identified by least-
squares estimation in the continuous-time domain, [3.6]. Table 3.2 gives the nominal
values. Most of them (R4, WV, K, M1, MFo) influence the process gain, and the
other two (L 4, J) the time constants. The signals UA’f, 1 4 and w are measured with
a sampling frequency of 5 kHz, and state-variable filtered by a fourth-order low-pass
filter with Butterworth characteristic and a cut-off frequency of 250 Hz.

Table 3.2. Data for the DC motor

armature resistance ||R 4 = 1.52 Q
armature inductance||L 4 = 6.82- 1073 Q s
magnetic flux U =033 Vs
voltage drop factor |[Kp =221-1073 V s/A
inertia constant J=192-10"3 kg m?
viscous friction Mgy =0.36-1073 Nm s
dry friction Mpy =0.11 Nm
L
My
<] <
£
U 1 1, My ®
T LsL LY g

s

E

K S| lﬁ
A

A

Y

A

Fig. 3.2. Signal flow diagram of the considered DC motor

3.1.2 Fault detection with parity equations

For the detection and isolation of sensor (output) and actuator (input) faults a set
of structured parity equations with state-space models according to Section 2.5 is
applied.



3.1 Direct-current motor 53

As the differential equations (3.1.1) and (3.1.2) are nonlinear, the design pro-
cedure for a linear parity space cannot be applied directly. But defining U} —
Kplw(t)|1 4 as voltage input Uy and as load input M = MFpgsignw leads to a
linear description. The linear state-space representation then becomes

. I'A:|_ —f—A—Li:||:IA:| [LL 0}[&}
x=|"1|= 4 +| L4

[‘” 7 —ﬁ @ 0 -7 ] LM (3.1.3)
(147 _[10
Y=o | |o1|*

A corresponding signal flow diagram is depicted in Figure 3.2.

An observability test reveals that both outputs (/4 and w) can also observe each
other. This is a precondition for a parity space of full order (here: 2). Then, W, see
Table 2.4 and [3.10] Equation (10.52), is chosen such that a set of structured resid-
uals is obtained, where residual r; (¢) is independent of M (¢), r2(¢) of U4(2), r3(2)
of w(t) and r4(t) of I 4(t), see also [3.6], [3.16], [3.4]:

Ry VvV Ly0 O 0
-V Mg 0 J O

W= « 0 B 0JLy 0 (3.1.4)
0 a 0B o JLy
with @ = W2 + Ry Mpy;
B=L4gMp +J Ry.
The residuals, using three measured signals, then follow as:
ri(t) = La La(t) + Ra La(t) + ¥ o(t) — Ua(t)
ra(t) = J o) =W I4(1) + Mpy (1) + ML(1)
r3(t) =J Lqa14(t) +(Lg Mpi+J Ry) 14(1) (.15)

+ (W2 + RAMF)La(t) — T Ua(t) — Mp1 Ug(t) — ¥ ML (1)
ra(t) = J Lg &)+ (La Mp1+J Ry) 0t) + (V2 + R4 MFp) (1)
W U4()+Lg Mp(t)+ Rqg Mp(2)

The same residual equations can be also obtained via transfer functions as described
in Example 10.3 in [3.10]. If an additive fault of the measured signals and of M7,
occurs, all residuals except the decoupled one are deflected. The scheme of the struc-
tured residuals is not touched by the compensation for the nonlinear voltage drop of
the brushes, as its magnitude is small enough. Two parameters R 4 and M F;, how-
ever, depend on the present motor temperature. The behavior of R 4 and its effect on
residual ry is depicted in Figure 3.3. Therefore, the use of adaptive parity equations
improves the residual performance, see [3.6] and [3.10].

The residuals are now examined with regard to their sensitivity to additive and
parametric faults. As ry and r, comprise all parameters and all signals, it is sufficient
to consider only these two, although r3 or r4 can also be taken. From (3.1.5) it yields
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Fig. 3.3. Influence of the motor temperature on resistance R 4 and residual r{

r(t) = A Ly iA_(z) +ARLT4(1)+ AW ()
FLaAT4(0)+R4AA T+ T Aw()—AUqg@)
) =4+AJ o) — AV I 0)+ A Mp; ()
+J Aa@) =W AT40t)+ Mpy Aw@)+ A Mp(r)

(3.1.6)

In the presence of residual noise, e.g. of r; with a magnitude of about 1V and an
armature current of 3 A, a resistance change must be at least 0.3 2 in order to deflect
the residual significantly. Therefore, the two linear parameters R4 and Mp; are
selected to be tracked according to a single parameter estimation together with parity
equations, as described in [3.10], Section 10.5. The forgetting factor is chosen as
A =10.99.

3.1.3 Fault detection with parameter estimation

The parameter estimation is based on the two differential equations (3.1.1) and
(3.1.2) in the simplified form

T4(t) = =6y 14(1) — 0> (1) + 63 U4(t) (3.1.7)
(1) = 04 14(t) — s w(t) — Og M1 (1) (3.1.8)

with the process coefficients

é1 1 éz é4 1 95
93 93 93 06 96 06

Applying the recursive parameter estimation method DSFI (discrete square-root fil-
tering in information form), [3.11], with forgetting factor A = 0.99 yields the pa-
rameters éi by using three measured signals. Then all process coefficients can be
calculated with (3.1.9). Experimental results with idle running (M7, = 0) resulted
in standard deviations of the process coefficients in the range of 2% < 0gp < 6.5%,
[3.6].
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3.1.4 Experimental results for fault detection (SELECT)

Based on many test runs, five different faults are now selected to show the detection
of additive and multiplicative faults with parity equations and recursive parameter
estimation, [3.5]. The time histories depict the arising faults at # = 0.5s. The faults
are step changes and were artificially produced. Figure 3.4 shows the parameter esti-
mates and the residuals of parity equations. The residuals are normalized by division
through their thresholds. Therefore, exceeding of 1 or —1 indicates the detection of
a fault. In the cases a) to d) and f) the DC motor is excited by a pseudo random bi-
nary signal (PRBS) of the armature voltage U 4 which is a requirement for dynamic
parameter estimation, as shown in Figure 3.4f). In case e) the input is constant. The
results can be summarized as:

a) A sensor-gain fault of the voltage sensor U,4 leads as expected to a change of
residual 1 (and 3, 4) but not of residual 2, which is independent of U,4. The
parameter estimates show (incorrect) changes for R 4, L 4 and W, because the
gain of the voltage sensor is not modeled

b) An offset fault in the speed sensor w leads to a change of the residuals r4, rq
and r,, but r3 remains uneffected, because it is independent of @. The parameter
estimate of W shows an (incorrect) change

¢) A multiplicative change of the armature resistance R 4 yields a corresponding
change of the parameter estimate R 4. However, the residuals increase their vari-
ance drastically and exceed their thresholds .

d) A change of the ratio of inertia is correctly given by the parameter estimate J.
But all residuals, except 71, exceed their thresholds by increasing their variance

e) The same fault in R4 as in ¢) is introduced, but the input U4 is kept constant.
The parameter estimate R 4 does not converge to a constant value and the parity
equation residuals r; and r4 change their mean, however, with large variance

f) A brush fault leads to an increase of R4 and L 4 but not of W. The residuals
show an increase of the variance.

Table 3.3 summarizes the effects of some investigated faults on the parameter
estimates and parity residuals.
These investigations have shown:

1) Additive faults like the offsets of sensors are well detected by the parity equa-
tions. They react fast and do not need an input excitation for a part of the faults.
However, they have a relatively large variance, especially if the model parame-
ters do not fit well to the process

2) Multiplicative faults are well detected by parameter estimation, also for small
faults. Because of the inherent regression method the reactions are slower but
smoothed. But they require an input excitation for dynamic process models.

Therefore, it is recommended to combine both methods, as shown in [3.10], Sec-
tion 14.3. The parity equations are used to detect changes somewhere in the process
and if the fault detection result is unclear a parameter estimation is started, eventu-
ally by a dynamic test signal for some seconds. If the motor operates dynamically
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Fig. 3.4. Time histories of signals, residuals of parity equations and parameter estimation at

fault occurrence

— parameter estimates: R 4 resistance, L 4 inductivity, W flux linkage, J 4 moment of iner-
tia

— parity equations: ry, ¥y, 73, ¥4
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Table 3.3. Fault-symptom table for the fault detection of a DC motor with dynamic input exci-
tation U 4(¢) in the form of a PRBS. + positive deflection; ++ strong positive deflection; 0 no

deflection; — negative deflection; — — strong negative deflection; 4 increased variance
symptoms
faults parameter estimation |parity equations
RA[LA[‘I’[ J [MFI l‘][l‘z[l’}[ ra
armature ARy |++| 0 ]0] O 0 [£|0]|£] %
resistance
brush fault ++| 4+ (0] O 0 |£]|0[|£| =+
parametric change of AJ 010 |0|++] O |O|£|£| £
faults inertia
change of AMpgi| O |0 |0] O |4+4+|0|£|£| £
friction
voltage sensor ||AU 4 + | £ || 0 0 [—|0]—] —
gain fault
additive faults |speed sensor Aw 0101|—0 0 [+|+]0] +
offset fault
current sensor ||A1 + | £ (£ 0 0O [+|—|+] O

offset fault

anyhow (as for servo systems and actuators) then the parameter estimation can be
applied continuously, but with a supervision scheme, see [3.11].

[3.6] has shown that a considerable improvement can be obtained by continu-
ously estimating the armature resistance with a single parameter estimation using
parity equations in order to reach the temperature dependent resistance parameters,
[3.7]. Furthermore, adaptive thresholds are recommended, to compensate for model
uncertainties, see Section 2.4.4.

3.1.5 Experimental results for fault diagnosis with a learning fault-symptom tree

The model-based fault-detection system with parity equations and parameter estima-
tion is now the basis for a fault-diagnosis procedure. As described in Section 2.6 the
method for fault diagnosis can be divided in classification and inferencing. A first
simple classification is the use of fault-symptom tables and pattern recognition as in
Table 3.3. Also decision trees belong to the class of classification methods. However,
a combination with a neuro-fuzzy structure gives them a learning behavior of fuzzy
if-then rules with AND operators, forming an adaptive inference method, called SE-
LECT, [3.4]. This is applied in the following to the DC motor test bench.

a) The symptoms used

To diagnose the faults, altogether 22 symptoms are created:

e Windowed sums of the absolute values of the three measured signals U;;, I4,0
e Mean values and standard deviations of four residuals: 71, ...,7s and 6,1, ..., 04
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e Eight parameter estimates. Symptoms are the deviations of the current values —
results of the estimation — from the nominal ones. They are normalized to the

. . . R —Roes
nominal values. For the rotor resistance R 4 thisis A R 41 = (A'"I‘é:‘—““").
Jhom.

The index 1 denotes that the estimation was carried out using the first parity
equation. Similarly, A R 44, AL 41, AL g4, AJy, AJ3, A MFi5,and A MFp;3
are computed

e Additionally, two symptoms judge the quality of the estimation. They describe
the variance of an estimated parameter during a recursive estimation. This vari-
ance can give a good indication whether the structure of the estimation equation
is valid. A structural change of the system will result in a bad estimation result
where the recursively estimated parameters fluctuate significantly. Two parame-
ter estimations were chosen: W and M . Their estimation variances are denoted

by Oess.,w and Oesr MF1-

The symptoms serve to differentiate between 14 fault situations that can artificially
be introduced on the test rig.

The DC motor diagnosis was performed by learning a SELECT tree from exper-
imentally gained fault data. For the fault cases, typically 10-50 test-cycle measure-
ments for a parameter estimation were performed. The residuals were computed from
the test runs. That way, each test run results in one data point in the symptom space.
The membership functions were created with the degressive fuzzy-c-means method.
To utilize a maximum of transparency and create a highly interpretable system, prior
knowledge was used to structure the diagnosis system.

b) Incorporation of structural knowledge

In most applications, a certain amount of knowledge about the symptom behavior is
present. Even if exact values for thresholds etc. are not known, there usually is some
insight into the process like physical understanding of similar faults or similar effects
of faults on certain symptoms. For the DC motor, this could be as simple as to use
the windowed sums of the signals in order to to detect a broken sensor cable. This
information is quite obvious, but its benefits are sometimes neglected, if a diagnosis
system is designed with the aim to be solely learned from measured data. Hence, the
task could be simpler if the designer used this information from the beginning.

Furthermore, the selection of the symptoms for the diagnosis becomes a matter
of robustness. Some symptoms are affected by faults for which they are not an appro-
priate indicator. In an experimental environment, it is virtually impossible to gather
enough measurements to adequately reflect every influence. Especially changes in
the environmental conditions and long-term changes due to wear are hardly captured
in a limited time frame. This leads to diagnosis systems that work well under the
experimental conditions but fail otherwise. The diagnosis of a fault should therefore
be based on the appropriate subset of all available symptoms. Only the relevant ones
should be selected.

Often, different faults can be categorized into larger groups if their effects on
the process are similar. It is then advantageous to find a classification system for
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the larger groups first and later separate within them. This leads to the concept of a
hierarchical diagnosis system.

Overall, it is proposed to use prior knowledge to structure the diagnosis system.
The designer builds groups of faults and identifies the corresponding relevant symp-
toms to first differentiate between and later within them. The exact decisions can be
found automatically if enough measured data is available.

If the set of all different fault situations F; is denoted by

F={F1,F,...F} (3.1.10)
and the available symptoms given by
S ={s51,52,...5} 3.1.11)
one can form meta-classes C;, i = 1...m with
F=C UC U...UZCpn (3.1.12)

In the DC motor diagnosis, for instance, such a meta-class is given by all faults on
the mechanics of the motor. Such a hierarchy based on meta-classes requires at least
g = m + r decisions d;j, j = 1...q assumed that no C; is a single-element set.
Each d; is based on a subset Sy; € S. The SELECT approach will then produce a
system with p parameters where p is given by

q
p = card (Sq) (3.1.13)

Jj=1

which is typically much less than a parallel network structure would result in (cardi-
nalities are the number of relevant sets). The usually larger number of parameters in
parallel network configurations can lead to slower convergence and ill-conditioned
optimization problems.

In addition to the structural knowledge, one can incorporate more detailed knowl-
edge into the individual rules if desired.

c) Results with SELECT method

A total of 14 different fault situations are applied on the DC motor test bench:

Change of rotor inductance or resistance Fr 4, Fr 4

Broken rotor wiring (Fy)

Failure of one the four brushes (F)

Increased friction in the bearings (Fr)

Offset on voltage, current or speed sensor signal (Fo,u4, F0,14. Fo,0)

Gain change of voltage, current or speed sensor signal (Fg,u4, FG,14, FG.0)
Complete voltage, current or speed sensor failure (Fy g, Fra, Fp).
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Repeated experiments with different faults were performed using a test cycle. The
symptoms described in a) were computed for each of the experiments. Overall, the
training set for the approach consisted of data from 140 experiments.

Figure 3.5 shows the resulting structure for the DC motor diagnosis. Details have
been omitted to visualize the concept only. Each block comprises a meta-class C; of
faults. Every branching of the tree is connected to a decision d; learned with the SE-
LECT approach, i.e. it contains a fuzzy rule. In each meta-class, a classification tree
decides which individual fault has occurred based on a subset S; of the symptoms.

fault
symptom IF .. average speed very small OR
behavior average current very small OR
average voltage very small
THEN sensor failure

ELSE no sensor failure

T~

sensor failure no sensor failure

IF ... IF ...

THEN voltage sensor fault THEN mechanical fault

ELSEIF .... ELSE electrical fault
mechanical fault electrical fault
IF ... IF ...
THEN friction fault THEN ...

V fault | ELSEIF..

Fig. 3.5. Hierarchical fault-diagnosis system. Each block comprises a fuzzy classification tree

The hierarchical decision tree proved to be highly suitable for the diagnosis. It
achieved a 98% classification rate in a cross-validation scheme.

The groups of faults have been selected following basic understanding of the DC
motor supervision concept. Firstly, the three total sensor breakdowns are different
from other faults due to their strong effects on all symptoms. They form the first
meta-class C; and can be easily differentiated by the three windowed sums of the
signals. These three symptoms accordingly form the set S;.

Since the motor can be understood as a combination of an electrical and a me-
chanical component, faults on these two parts were again treated separately, creating
two more meta-classes, C» and C3. Accordingly, the appropriate subsets of symp-
toms S, and Sz for the diagnosis were selected. Basically, S, and S3 consist of
the residuals and parameter deviations connected to the corresponding meta-class.
The diagnosis of electrical faults, for instance, is not based on parameter estimates
of the mechanical parameters. Although some electrical faults may have an influ-
ence on the estimates of the mechanical parameters, this influence should not be
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used as the estimates are misleading and not reliable. Hence, S, does not contain
AJz, AJ3, AMFIZ or AMF13.

To give an example of the SELECT approach, the rules for the distinction of the
electrical faults are given below:

IF 7y is small AND AL 44 is strongly negative THEN Fault Fr 4

ELSE IF 7y is small AND 6,4 is medium THEN Fault Fg 4

ELSE IF 7; is small AND 06,4 is large THEN Fault F'p

ELSE IF 7, is not small THEN Fault Fy 74 (3.1.14)
ELSE IF 7; is small THEN Fault Fg 14

ELSE IF 7; is large AND 0., w is not small THEN Fault Fy 14

ELSE Fault FG,UA

The relevance indices of the rule premises are not listed here. They also play a role
for the exact decision boundaries.

Nevertheless, it is possible to analyze and understand parts of these rules. Clearly,
the rules reveal the discriminatory power of the first residual, since it was used very
often. Other rule premises are also understandable. The change of the rotor induc-
tance is indicated by a strongly negative estimation of this change magnitude. Com-
pare this rule to Figure 3.6a). It shows the values A L 44 for the electrical faults from
the training set. Clearly, the fault Fr 4 makes a distinct difference. Hence, it makes
sense to use AL 44 to distinguish the fault from the others. The corresponding mem-
bership functions are shown in Figure 3.6b). It must be noted that the experimental
setup allowed only a fixed deviation of the inductance by —-50% as a fault. That can be
seen in the estimation result. If, however, also positive changes are to be diagnosed,
one is able to enhance the rule manually. For instance, one could use

IF r; is small AND AL 44 is not small THEN Fault Fy 4 (3.1.15)

The corresponding membership functions for AL 44 would also have to be adapted
accordingly to allow processing of positive values of AL 44.

Another interesting observation is the use of 0. w in the sixth rule of (3.1.14) to
distinguish offset from gain faults of the voltage sensor. This can be explained by the
fact that an offset term in the estimation equation given by an offset fault will change
the structure of the estimation equation, while a gain will only effect parameters.
Hence, the normal estimation equation will still be valid in the case of gain faults,
but indicate a problem by a large o, w for offset faults.

The system performed well on new experiments, showing the increased robust-
ness through the incorporation of very simple knowledge. Additionally, the system
has a higher degree of transparency facilitating an adaptation to other motors. The
diagnostic rules can be extracted and are largely understandable.

d) Relation to fault trees

The resulting hierarchical classifier can also be interpreted as a set of fuzzy fault
trees. If one reverses the order of the structure and traces the decisions leading to a
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fault situation
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Fig. 3.6. Estimated rotor inductance computed from the fourth parity residual. Apparently, most
faults influence the result, however, the faulty inductance can most easily be detected due to
its strong influence: a) estimation results; b) resulting membership functions

particular fault back through the tree, it is possible to explicitly draw a fault tree for
each individual fault. Figure 3.7 shows one fault situation (increased friction in the
motor) as an example. The intermediate steps like “mechanical fault” from Figure 3.7
become events of the fault tree.

A fault (friction parameter

increased)

friction fault

mechanical fault

friction parameter
increased

[A]

events

second parity | | fourth parity standard i
residual not residual not deviation third no sensor failure
large changed residual small /\

symptom
behavior

|~

not

average speed

small

average current
not small

average voltage
not small

Fig. 3.7. Fault tree for one particular fault extracted from the diagnostic tree in Figure 3.5

Similar fault trees can be constructed for the other faults. This requires one to

analyze the rule tree and explicitly draw the trees. The resulting set of trees is a
relatively redundant representation of the fault-symptom relation because the same
events are used in multiple trees. They are nevertheless very intuitive and serve to
understand and visualize the functionality of the diagnostic system.
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e) Computational demands

The most time-critical computation of the presented supervision concept is the
computation of the continuous-time residuals. They require the evaluation of state-
variable filters that are difficult to implement in fixed-point arithmetic. If the compu-
tational resources are limited, also a discrete-time form of the residuals is possible.
This has, for instance, been implemented by [3.17].

The diagnosis, on the other hand, only needs to be evaluated if the fault-detection
thresholds are violated. It is not time critical and can, for instance, be computed
as a background job in the motor controller. Similarly, floating-point computations
such as for the computation of the exponential function in the SELECT neuron can
always be implemented on a lower-precision fixed-point controller, for instance, by
using lookup tables. If the computational time is not critical, one can also implement
floating-point arithmetic on fixed-point controllers. Since the time needed for the
diagnosis is small compared with the time that typically is needed for personnel to
reach a faulty device, it is obvious that the computational demand should not really be
an issue. Safety-critical measures can be taken as soon as the thresholds are violated
even before the diagnosis is started.

3.1.6 Conclusions

The detailed theoretical and experimental investigations with the permanently ex-
cited DC motor in idle running or with load have demonstrated that it is possible to
detect 14 different faults by measurement of only three signals and combination of
the parity equation and parameter estimation approach. Additive faults, like offsets of
sensors, are easily detectable by parity equations in normal operation without extra
input excitation signals. Multiplicative faults, like parameter deviations of the motor
are better detected by parameter estimation, but require appropriate input excitation
signals, at least for short times. The described methods can be transformed to other
types of DC motors, depending on their construction, and also to single-phase AC
motors. Further, by applying the self-learning neuro-fuzzy system SELECT all faults
could be diagnosed with a 98% correct classification rate. A selection of faults, es-
pecially in the mechanical parts can also be detected by applying only signal models
for current structure-borne vibrations, [3.2].

3.2 Alternating-current motor (AC)

Alternating-current motors in the form of induction or asynchronous motors consist
usually of three windings placed in stator slots that are interconnected with the indi-
vidual phases of a three-phase voltage supply system either in delta- or Y-connection,
see Figure 3.8a). A rotating magnetic field is generated where angular velocity de-
pends on the power supply frequency f and on the number of pole pairs p within the
stator. Depending on different rotor constructions, induction motors and synchronous
motors can be distinguished. In the following, induction motors with a squirrel-cage
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rotor are considered. This type has a simple construction, is very robust, and is also
cheap and needs less maintenance. The speed can be controlled by a field-oriented
approach with variable frequency and amplitude generated by a voltage-source DC-
link converter. Statistics on failure rates of AC motor show that about 50% are due to
bearings, short cuts in stator windings count with 16% and broken rotor bars about
5%, [3.21], see also [3.2]. A model-based procedure for fault diagnosis of AC drives
will be treated in the following, developed by [3.22].

Fig. 3.8. Schematic configuration of the stator and rotor for AC motors: a) three-phase repre-
sentation with one pole pair (p = 1) per phase; b) two-phase equivalent circuit

3.2.1 Structure and models of induction motors (asynchronous motors)
a) Electrical subsystem

Detailed models of induction motors are derived e.g., in [3.8], [3.13], [3.14]. For
each rotor and stator winding the voltage and current equations are established, re-
sulting in six coupled differential equations for a three-phase induction motor. How-
ever, by transforming the three-phase system (Ug,, Usp, Usc) into a two-phase sys-
tem (Usq. Usg) via the Clarke—Park transforms a considerable simplification can be
reached, Figure 3.8b). If the rotor flux is taken as the reference coordinate system the
two-phase system is represented by (Usgq, Usq), [3.8], [3.22]. Then two equations
result for the rotor flux Wz, and electrical motor torque M,;:

YRa Lg

d
Tr (1) + Wga(t) = MIgy(t) with Tp = — 3.2.1)
dt Rp

3 M
My (1) = EPL_R‘IJRd(t)ISq(t) (3.2.2)
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The flux linkage Wg,; depends on Ig, and the torque M,; on Igg, i.e. from each
component of the stator current vector. This is the basis for the field-oriented control
shown in Figure 3.9. It consists of two cascaded control loops for the flux and the
speed, with the two current components as sub (minor) control variables.
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Fig. 3.9. Field-oriented control structure for induction motors

The dynamic behaviors of the electrical induction motor subsystems are

Usa

Usq

o

M? dlsg RrM
= Rs+RR—2 Isqg+oLs —oLswglsy — 5 Weps (3.2.3)
L% dt L%
M? dlsq M
= Rs+RR—2 Isq +0oLs +oLswglsg + —wrVpga (3.2.4)
LR dt Ly
M?
=1- (3.2.5)
LsLp

Herewith, the electrical rotor speed is wg = pw;,, where wy, is the mechanical rotor
speed and the speed of the flux is wx with regard to the stator reference coordinate
system.
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b) Mechanical subsystem

The dynamic behavior of the mechanical part is obtained by establishing the angular
momentum balance:

dwy, (1
J%() = Mo (1) — My(t) — ML (D) (3.2.6)
J ratio of inertia of motor and load

My friction torque
My load torque
o,  mechanical rotor speed

The friction torque usually consists of a Coulomb term and a viscous term:
Mg = Myposignwp(t) + Myiwm 3.2.7)

The load torque depends on the connecting power consuming machine, like a pump
or machine tool, and can frequently be approximated by a polynomial:

My = Mo+ Mpiom + Mo}, (3.2.8)

c) Thermal subsystem

Within the stator and rotor several power losses Prs and Py g arise which lead to a
heating of the induction motor parts. The main heat sources are ohmic losses and iron
losses, which can further be split up into hysteresis and eddy current losses. With the
stator and rotor heat capacity

Cs = mgcsp

Cr = mpgcRp

where m is the respective mass and ¢ p the specific heat value, two first-order differ-
ential equations result for the stator temperature s () and rotor temperature g (¢).
With further simplifications about the heat transfer through the air gap and air cooling
a second-order model results for the stator temperature:

(bsis + bso) Prs(s) + broPrs(s)
ars? +ays + ao

Adg(s) = (3.2.9)

See [3.22], [3.24].

3.2.2 Signal-based fault detection of the power electronics

Power-grid-fed converters for the supply of variable-speed AC motors frequently
consist of a line-side AC-DC converter (rectifier), which rectifies the alternating grid
voltage, and a motor-side three-phase DC—-AC converter (inverter) that generates the
three-phase system with variable frequency and amplitude, see Figure 3.10.
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Fig. 3.10. Voltage source DC-link converter scheme for feeding AC motors

In the following it is shown how faults in these power electronics can be detected
with signal-based methods. Measured variables are the intermediate voltage Uy, the
phase currents /g1, Is2, Is3, which are identical the Is,, Isp, I s of Figure 3.8.
For the phase voltages Us1, Us2, Us3 only the setpoints of the PWM converter are
available.

a) AC-DC converter (rectifier)

Up to now, in series-produced inverters only a restricted number of diagnosis func-
tions is implemented. The supervision functionality comprises mainly the monitor-
ing of motor currents and the DC-link voltage as well as plausibility checks of motor
parameters.

The most important faults in rectifiers are the line disconnection of one phase
and faulty diodes. Among highly resistive diodes, which cannot conduct the current
anymore, defective diodes also occur which have lost blocking capability in the in-
verse direction. This inevitably effects a phase short circuit which triggers the line
fuse. However, if the fuse connected to the faulty rectifier-bridge blows, the fault is
equivalent to a disconnected (open) phase. The case of highly resistive diodes is a
mixture between normality and phase disconnection, as the fault has an impact only
within the half period, while the faulty diode should have carried the current. The
circuit diagram of the rectifier under consideration is depicted in Figure 3.11.

The faults discussed above affect high diode currents, as e.g. in the case of a
disconnected phase the power has to be supplied by the remaining two phases. Al-
though the faults do not directly lead to failure, the overloading of the remaining
diodes makes an early failure most probable, [3.12], [3.23].

Significant impacts of the faults are to be observed in the run of the DC-link
voltage Uy. As depicted in Figure 3.12 the signal shows significantly higher ripples
in the presence of faults.

An easy and robust way for rectifier fault detection is the evaluation of the sig-
nal’s variance

rya = var {U;}. (3.2.10)

As expected, the variance increases in the case of faults from the corresponding val-
ues within the healthy state. As the variance depends crucially on the load current
I 44 it is computed for normal state in dependence on the load current, see Fig-
ure 3.13.
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In order to achieve high reliability, the measured variance curve of faulty diodes
is selected as the threshold. The actually measured curve exceeds the theoretical
one due to noise effects and peaks arisen by the interconnected DC—AC converter.
By this way faulty diodes can be detected by limit checking of the variance of the

intermediate voltage.
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Fig. 3.11. Circuit diagram of a voltage source DC-link converter
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b) DC-AC converter (inverter)

Figure 3.14 shows a scheme of a considered PWM inverter. Inverter faults and also
stator winding faults generate characteristic harmonics of the stator current vector.
The stator current

2 . .
Is() = 5 (L5100 + Is2(0e 7% + Isa(0e ™) (3.2.11)
is transformed into an orthonormal «- and B-component coordinate system

Is(t) = Isq(t) + i Isp(t) = Iso(t)e’®® (3.2.12)

In the fault-free case the trajectory of the current vector forms a circle, which deforms
to an ellipse in the case of a stator winding fault, see Figure 3.15a) and to other
trajectories for inverter faults and current sensor faults, Figure 3.15b)-d). In the case
of these faults the spectrum of the current vector contains a positive and negative
frequency, [3.22], [3.23].

Is(t) = [g1e'@stH0) 4 [o ol(Costto-1) (3.2.13)

where wg is the stator angular frequency.

IhD A LD (LD

1

J(T,D, /N ﬁ%@ﬁ 1D

Fig. 3.14. PWM inverter for DC-AC converter

The vector trajectory Is_; is also circular, but with smaller radius and opposite
direction in the case of an ellipse. By monitoring /s and /g_; obtained through a
Fourier series analysis it is possible to detect the mentioned faults, [3.23]. This can
be applied to AC motors with constant grid frequency fg5. However, in the case of
a field-oriented control with variable frequency fg the current vector is influenced
by control dynamics. Because also the stator voltage Ug(¢) as output of the current
controllers, see Figure 3.9, shows corresponding frequencies, at least for high speeds
of the motor the Fourier analysis can be performed with Ug (¢). Therefore

ru—1(t) = |Us—1 (1) (3.2.14)

is taken as the fault feature for a stationary speed. However, a speed-dependent
threshold is required, which has to be determined experimentally. An additional fea-
ture is the DC value
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‘ISB“ fault-free

(b)

(c) (d

Fig. 3.15. Stator current vector trajectories: a) stator winding fault, b) inverter IGBT (Insulated
Gate Bipolar Transistor) fault, c) phase 2 disconnection, d) current sensor fault

rvor: = |Uson:| (3.2.15)

for detecting offsets in the voltage vector Ug.

As in the case of a disconnected phase or a defective IGBT valve the three cur-
rents become different, the effective values of the three currents I5;(¢) are calculated
by taking the squares / ;i (z) with subsequent low-pass filtering. Then mutual residu-
als are formed:

r2(t) = I§‘1(t) - Ig‘z([)
ra3(t) = I3,(t) — I3,(0) (3.2.16)
"31(1) = I§‘3(l) - ]él(t)

In order to include all measured currents the current sum is used as a further residual:
rso = [Iso| = [Is1(t) + Is2(1) + Is3(21)] (3.2.17)

which is usually zero in a fault-free situation.

Finally, Table 3.4 shows the fault-symptom relations for different faults. All con-
sidered faults can be isolated. In general, these results indicate a strong isolability.
Only within the groups of open phases, defective valve and ground cuts is there a
weak isolability.
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Table 3.4. Fault-symptom table for the PWM converter and stator windings

Symptoms

Faults Irial]lr2sl]lrsil[ru—il[lrvom 1] sol
open phase 1 ++| 0 |++| ++ 0 0
open phase 2 ++|++| 0 | ++ 0 0
open phase 3 0 |++|++]| ++ 0 0
defective valve 1 ++| + |++| + ++ 0
defective valve 2 ++|++| + + ++ 0
defective valve 3 + |++|++| + +4+ 0
stator winding shortcut ||~ 0|~ 0|~ 0| 4+ 0 0
offset fault sensor 1 or 2|~ 0|~ 0|~ 0| 0 + +/++
gain fault sensor 1 or2 ||~ 0|~ 0|~ 0| + 0 +/++
faulty current sensor 0 0 0 0 0 +/++
ground cut phase 1 +4+| + |+ ++ 0 +/++
ground cut phase 2 ++|++| + | ++ 0 +/++
ground cut phase 3 + |++|++] ++ 0 +/++

3.2.3 Model-based fault detection of the AC motor

It is assumed that the following measurements and calculated variables are available:

Usgq, Usq voltages of the g- and d-systems

Isq, Isq currents of the g- and d-systems

wg = wg supply angular frequency of the PWM inverter (flux speed)
wpg rotor angular frequency.

In order to apply parity equations for the fault detection of the AC motor, nonlinear
dynamic models are required, which are obtained by nonlinear process identification
methods, [3.24].

The AC motor is the type VEM K21R90S (Normmotor) with four poles and rated
values 400V, 2.62 A, 1.1 kW, 1420 rpm (50 Hz), see [3.22].

a) Electrical part

As a basis for obtaining dynamic models (3.2.3) and (3.2.4) are used for the d- and
q-subsystems. It has to be taken into account that phase voltages are not exactly
known. For the practical experiments the d-current control stays closed, whereas the
g-current control is opened in order to introduce an excitation signal Ugy, see Fig-
ure 3.9. Therefore the rotor flux reference value W gy, stays constant. Discretizing
(3.2.4) with the discrete time k = t/ Ty, where T} is sampling time, leads to

Isq(k) = ©1Usq(k)+Or0k (k) I54(k)+O30p(k)Vra+Osls4(k—1) (3.2.18)

where ®; are parameters, which depend on physical parameters. The product wg (k)
Ig,4(k) can be neglected and Wg,; = const. The parameters ®; further depend on
the operating point through wg and Ig,. Therefore a local linear model is defined:
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Isq(k) = wi@Usq(k) + w2@or(k) + ws@Isgk —1) (3219
The operating-point dependence is expressed by the weighting vector
2’ = [wx (k) Isq(k —1)] (3.2.20)

Hence, this is a semi-physical model because the structure stems from physical-based
modeling. The weighting parameters w; (z) are estimated with the LOLIMOT iden-
tification method, [3.15], see also [3.9]. This can be considered as a special neu-
ral network, where direct least-squares parameter estimation is applied, leading to a
neuro-fuzzy model.

However, the parameters depend also on the temperature of the AC motor. There-
fore the stator temperature g is measured and two correction factors k;(9s) and
k> (¥s) are introduced in (3.2.19):

Isq(k) = wi(@)ki(V5)Usq (k) +w2(2)k2(Ds)wr (k) +w3(2) [sq(k —1) (3.2.21)

These correction factors are estimated and k(9 5) is approximated by a second-order
polynomial and k, (9s) with a linear dependence.

The dynamic behavior of the AC motor was identified by excitation of Ugy,
with an APRBS, an amplitude-modulated PRBS, and sampling time 7y = 1.5ms
(667 Hz). The obtained generalization results in Figure 3.16 show a very good agree-
ment with six local models and two correction characteristics for stator temperatures
s € [25°C, 60°C].

In a similar way the d-system can be identified. (3.2.3) and experimental trials
lead to

Usa (k) = wo(z) + w1 (2)wk (k) + w2 (2)Is4(k) (3.222)

As Igg is constant, its derivative is zero. Therefore the d-model is static. The tem-
perature dependence is again considered by correction factors. Figure 3.17 shows
relatively good results with a model having six local linear models and 18 correction
characteristics.

These nonlinear precise models can now be used to apply parity equations for
fault detection. The following output residuals and their variances are formed, com-
pare Figure 3.18:

rg = Isq — Isq (3.2.23)
ra = Usqg — Usq (3.2.24)

furthermore ry,, 123, 131 and | Iso| form the phase currents, (3.2.16) and (3.2.17). As
the models are more precise in the case of stationary behavior, an adaptive threshold
is used for dynamic states in dependence on the current /g4, which is proportional
to the torque-generating dynamics. Table 3.5 presents the fault-symptom relation for
different faults. The AC motor faults stator winding defect, broken rotor bar, and
rotor eccentricity are strongly isolated and can therefore be diagnosed. However,
broken rotor bar and broken end ring are only weakly isolated and cannot be clearly
separated. For the other faults the same results are obtained as in Table 3.4 for the
PWM converter.
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Fig. 3.16. Generalization data for LOLIMOT identification of the g-system: a) Input: Ug,
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Table 3.5. Fault-symptom table for the AC motor

Symptoms

Faults [rgrpl]var {rg}[Irarpl[var {ra}[Iri2l[lr23l]Ir311] [Zsol
open phase 1 — | ++ | ++ | ++ |[++| 0 [++]| O
open phase 2 — | ++ |+ [ ++ [+H[+H] O 0
open phase 3 —— ++ ++ ++ 0 |[++|++ 0
defective valve 1 - + ++ ++ [++| + [++ 0
defective valve 2 - + ++ +4+ |++[++] 0 0
defective valve 3 — + ++ ++ + [++[++ 0
stator winding shortcut — 0 + + ~0(~0|~0 0
broken rotor bar ++ + + ++ 0 0 0 0
broken end ring + + + + 0 0 0 0
rotor eccentricity + 0 0 0 0 0 0 0
gain fault sensor 1 or2 || —/+ 0 0 0 0 0 0 |[+/++
offset sensor fault 1 or 2|| + 0 0 0 0 0 0 [+/++
fault current sensor 0 0 0 0 0 0 0 |[+/++
ground cut phase 1 — + + + |+ [F+H [+ ++
ground cut phase 2 - + + + +4+ ||+ |+
ground cut phase 3 — | + + + |+ [+
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b) Mechanical subsystem

The dynamic behavior of the rotor speed wg(?) follows from (3.2.6). Faults in the
mechanical part express themselves especially in the friction parameters M ro and
M 1 and eventually in the ratio of inertia J. However, these parameters also depend
on the connected load like general drive-trains with or without gears and power-
consuming machines like machine tools or pumps. Therefore this dynamics equa-
tion depends on the load and corresponding available measurements, see e.g. [3.9].
The electrical torque M,; can be determined with (3.2.1) and (3.2.2) using the cur-
rent /g4 and Ig, of the d- and g-systems, which are known within a field-oriented
controller, and the mechanical rotor speed w,,. Figure 3.19 summarizes the resulting
signal flow and computations. Some electrical parameters or groups of parameters
can then be estimated. As the mechanical subsystem is slower than the electrical
subsystem, a larger sampling time can be chosen, e.g. 7o = 10 ms (100 Hz).
An application with a circular pump is reported in Section 6.1.

gy, Isq 1 Yra M
s Q L~ T

dq

A
BK : < WOx Op D

Fig. 3.19. Calculation of the electrical torque M,; based on measurements of /g4, I, and
Wm

c¢) Thermal subsystem

The thermal state of the AC motor is indicated by the temperature of the rotor and the
stator. Overheating arises because of defective cooling, high friction and overload.
The generated stator heat power due to ohmic losses is

3
PLs = 3Rs (1§d 4 ng) (3.2.25)

and the rotor losses. If the rotor power losses are neglected, only one part of the trans-
fer function of (3.2.9) has to be considered. The corresponding z-transfer function

_ AOs(z)  Piz 4 Baz?
T Prs(z)  14aiz! +apz?

G(2) (3.2.26)
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possesses two poles which belong to a large time constant 77 &~ 17 min and a small
one 7> A~ 2min, which were determined by parameter estimation (sampling time
To = 305s). Then an output residual as the difference of the measured and estimated
stator temperature

re = s — s (3.2.27)

can be formed. In the case of dynamic operations parameter estimation can be ap-
plied. Especially the time constant 77 then indicates faults of the thermal system.

Figure 3.20 shows the increase of the stator temperature for a defective fan wheel
and Table 3.6 the estimates of the time constants. For cooling faults or overload the
stator temperature increases considerably, indicated by a larger gain of (3.2.26). Also
the large time constant 77 shows a strong increase. The small constant 75 remains
approximately constant.

100 : . : : :
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0 QO ﬂ
40| rg[°C]
o g T A threshold ¢ [min]

0 20 40 60 80 100 120

Fig. 3.20. Stator temperature ¥g and temperature residual ry in the case of a defective fan
wheel. 94(Pr g, t) is the model output for normal behavior

Table 3.6. Parameter estimates of the thermal subsystem for different cooling defects

time constants ||fault-free|defective fan|covered cooling|covered motor
wheel slots
T1 [min] 16.6 69.3 31.2 36.1
T5 [min] 1.99 1.86 1.82 1.72

d) AC motor at standstill

Some faults in induction motors do not immediately effect a complete failure of
the drive. Thus, e.g. in the case of broken rotor bars further operation possible in
principle. In consideration of the higher currents in the adjacent bars and the resulting
mechanical stresses due to thermal overload and unbalance, further rotor or end-ring
breakage may occur [3.21].
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Hence, the monitoring of these faults does not have to be performed permanently.
Basically, it is sufficient to supervise the induction motor after certain periods of time.

In order to select an adequate operating point for the test of the electrical sub-
system some basic considerations are necessary. Usually the motor shaft is linked
to a specific load (e.g. centrifugal pump) and any operating point with motor speeds
different from zero affects the load. If the monitoring approach must not influence
the load facility and the disconnection of the load for this purpose is undesirable,
the only possible solution is to perform the supervision cycle at standstill. The back-
ground is that the feeding voltage of the induction machine can be generated by the
inverter in a manner that the motor does not produce any torque. Furthermore, the
motor speed is not required and does not have to be measured.

For the test signal different selections can be made to cover a certain frequency
range. On the one hand sinusoidal input signals can be chosen. With the help of the
measured output currents the impedance is determined for several frequency points
by employing frequency-response methods. Subsequently, the physical parameters
(rotor/stator resistances/inductances, mutual inductance) are estimated by means of
least-squares parameter estimation methods. On the other hand, the process can also
be excited by PRBS (pseudo-random binary signals). Here, the physical parameters
are determined by estimating a dynamic continuous single input/output model with
non-recursive least-squares parameter-estimation methods, see Figure 3.21, [3.1].

The parameters are estimated for d