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Preface

With increasing demands for efficiency and product quality and progressing integra-

tion of automatic control systems in high-cost and safety-critical processes, the field

of supervision (or monitoring), fault detection and fault diagnosis plays an important

role. The classical method of supervision is to check the limits of single variables

and alarming of operators. However, this can be improved significantly by taking

into account the information hidden in all measurements and by automatic actions to

keep the systems in operation.

During the last few decades theoretical and experimental research has shown

new ways to detect and diagnose faults. One distinguishes fault detection to recog-

nize that a fault happened, and fault diagnosis to find the cause and location of the

fault. Advanced methods of fault detection are based on mathematical signal and

process models and on methods of system theory and process modeling to generate

fault symptoms. Fault-diagnosis methods use causal fault–symptom relationships by

applying methods from statistical decision, artificial intelligence and soft comput-

ing. Therefore, efficient supervision, fault detection and diagnosis is a challenging

field encompassing physical-oriented system theory, experiments and computations.

The considered subjects are also known as condition monitoring, fault detection and

isolation (FDI) or fault detection and diagnosis (FDD).

A further important field is fault management or asset management. This means

to avoid shutdowns by early fault detection and actions like process condition-based

maintenance or repair. If sudden faults, failures or malfunctions cannot be avoided,

fault-tolerant systems are required. Through methods of fault detection and recon-

figuration of redundant components, breakdown, and in the case of safety-critical

processes, accidents, may be avoided.

As the successor to the book Fault-Diagnosis Systems – An Introduction from

Fault Detection to Fault Tolerance this book describes applications of fault detection

and diagnosis to different kinds of technical processes and products.

The development of fault-detection and fault-diagnosis methods was paralleled

by experimental investigations with several technical processes at the Institute of

Automatic Control of the Darmstadt University of Technology from about 1975 and

frequently in cooperation with industrial partners. In this way the theoretically de-
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veloped methods could be tested on real processes and the experimental results gave

hints for improvements and further ideas. Therefore, this book contains the main

results of 20 different processes, ranging from electrical drives and different actua-

tors, through machine tools, pumps and pipelines, to heat exchangers. (Theoretical

and practical results for combustion engines are published in another book Engine

Control and Diagnosis.)

The book is an introduction to the application of fault diagnosis and fault toler-

ance in the areas of electrical engineering, mechanical and chemical engineering and

computer science. It is addressed to students and practicing engineers in research

and development, design and manufacturing. Preconditions are basic undergraduate

courses in system theory, automatic control, and mechanical and/or electrical engi-

neering.

The author is grateful to his research associates, who have performed many

theoretical and practical research projects on the subject of this book since 1975,

among them H. Siebert, L. Billmann, G. Geiger, W. Goedecke, S. Nold, U. Raab,

B. Freyermuth, St. Leonhardt, R. Deibert, T. Höfling, T. Pfeufer, M. Ayoubi, P. Ballé,

D. Füssel, O. Moseler, A. Wolfram, M. Münchhof, F. Haus and M. Beck.

Finally, I especially would like to thank Brigitte Hoppe for the laborious and pre-

cise text setting, including the figures and tables in camera-ready form and Springer-

Verlag for the excellent cooperation.

Darmstadt, September, 2010

Rolf Isermann
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Supervision, fault-detection and diagnosis methods – a

short introduction 1

The supervision of technical processes and the quality control of products is aimed

at showing the present state (condition monitoring), indicating undesired or unper-

mitted states, and taking appropriate actions to avoid damage or accidents. The de-

viations from normal process behavior result from faults and errors, which can be

attributed to many causes. They may result sooner or later in malfunctions or failures

if no counteractions are taken. One reason for supervision and quality control is to

avoid these malfunctions or failures.

The basic tasks of supervision, fault detection and fault management were al-

ready described in detail in a previous volume, [2.37]. Therefore, only some impor-

tant issues and some basic methods of fault detection and diagnosis which will be

used in this book are repeated in this chapter. The condensed presentation of the

methods is limited to linear processes. However, these methods can be expanded to

nonlinear processes as shown in the previous volume and in many of the following

application examples.

2.1 Basic tasks of supervision

A process or a product P which operates in open loop is considered, Figure 2.1a).

U.t/ and Y .t/ are input and output signals, respectively. A fault can now appear due

to external or internal causes. Examples for external causes are environmental in-

fluences like humidity, dust, chemicals, electromagnetic radiation, high temperature,

leading, e.g. to corrosion or pollution. Examples for internal causes are missing lubri-

cation and therefore higher friction or wear, overheating, leaks, and shortcuts. These

faults F.t/ firstly affect internal process parameters ‚ by �‚.t/ like changes of

resistance, capacitance or stiffness and/or internal state variables x.t/ by �x.t/ like

changes of mass flows, currents or temperatures, which are frequently not measur-

able. According to the dynamic process transfer behavior, these faults F.t/ influence

1 This chapter is a shortened version of Chapter 2 in [2.37]

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  11 

DOI 10.1007/978-3-642-12767-0_2, © Springer-Verlag Berlin Heidelberg 2011 

Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,



12

the measurable output Y .t/ by a change �Y .t/. However, it has to be taken into ac-

count that also natural process disturbances and noise N.t/ and also changes of the

manipulated variable U.t/ influence the output Y .t/.

external
faultsinternal

faults

P

F

X X+D

Y+ YD

Fe

iF

U

N

+D

P

F

X X+D

Fe

iF

U
C

eW Y+ YD
N

(a) (b)

QQ +DQQ

-

Fig. 2.1. Scheme of a process or product P influenced by faults F: a) process in open loop; b)

process in closed loop

For a process operating in open loop a remaining fault f .t/ generally results

in a permanent offset of �Y .t/, as shown in Figure 2.2a). In the case of a closed

loop, 2.1b), the behavior is different, Figure 2.2b). Depending on the time history of

parameter changes �‚.t/ or state-variable changes �x.t/ the output shows only a

somewhat shorter and vanishing small deviation �Y .t/ if a controller with integral

behavior (e.g. a PI-controller) is used. But then the manipulated variable shows a

permanent offset �U.t/ for proportionally acting processes. If only the output Y .t/

is supervised, the fault may not be detected because of the small and short deviation,

furthermore corrupted by noise. The reason is that a closed loop is not only able

to compensate for disturbances N.t/ but also to compensate for parameter changes

�‚.t/ and state changes�x.t/ with regard to the control variable Y .t/. This means

that faults F.t/ may be compensated by the closed loop. Only if the fault grows in

size and causes the manipulated variable to reach a restriction value (saturation) may

a permanent deviation�Y arise. Hence, for processes in closed loop U.t/ should be

monitored, as well as Y .t/, which is frequently not realized. Mostly, only Y .t/ and

the control deviation e.t/ are supervised.

The supervision of technical processes in normal operation or the quality con-

trol of products in manufacturing is usually performed by limit checking or threshold

checking of some few measurable output variables Y .t/, like pressures, forces, liquid

levels, temperatures, speeds, and oscillations. This means one checks if the quantities

are within a tolerance zone Ymin < Y .t/ < Ymax . If the tolerance zone is exceeded,

an alarm is raised. Hence, the first task in supervision is, Figure 2.3:

1. Monitoring: Measurable variables are checked with regard to tolerances, and

alarms are generated for the operator. After an alarm is triggered the operator then

2 Supervision, fault-detection and diagnosis methods
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Fig. 2.2. Time behavior of a parameter change �‚ and measurable signals Y .t/ and U.t/

after appearance of fault f : a) open loop; b) closed loop

has to take appropriate counteractions.

However, if exceeding a threshold implies a dangerous process state, the coun-

teraction should be generated automatically. This is a second task of supervision,

Figure 2.3:

2. Automatic protection: In the case of a dangerous process state, the monitoring

function automatically initiates an appropriate counteraction. Usually, the process is

then commanded to a fail-safe state, which is frequently an emergency shutdown.

Some examples are shown in [2.37], Chapter 2.

These classical methods of monitoring and automatic protection are suitable for

the overall supervision of the processes. To set the tolerances, compromises have to

be made between the detection size for abnormal deviations and unmeasurable or

wrong alarms because of normal fluctuations of the variables. Most frequently, limit

checking with fixed thresholds is applied which works well if the process stays in

a steady state or if the monitored variable does not depend on the operating point.

However, the situation becomes more involved if the monitored variable changes

dynamically with other operating points, e.g. forces in rolling mills or machine tools

or pressures and temperatures in chemical batch processes.

The advantage of the classical limit-value-based supervision method is their sim-

plicity and reliability for steady-state situations. However, it is only possible to react

after a relatively large change of a process feature, i.e. after a large sudden fault or
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Fig. 2.3. Monitoring and automatic protection

a long-lasting gradually increasing fault. In addition, an in-depth fault diagnosis is

usually not possible based on the threshold violation of one or a few variables.

To improve the supervision of technical processes or to improve the quality con-

trol of manufactured products a first step could be to implement additional sensors

which are related to expected faults and to implement the operator’s know-how in

computers. However, the use of additional sensors, cables, transmitters, and plugs

for getting better information on special faults does not only increase the costs but

at the same time deteriorates the overall reliability because the probability of faults

increases with more elements. Also the direct software implementation of operator

knowledge is a demanding task and does not lead much further without physically

based process models.

For large-scale processes with many monitored and limit-checked values, there

is another problem: after a severe process fault or failure several alarms may be

triggered in a short time, known as “alarm-shower”. Consequently, the operators are

overloaded with regard to their immediate reactions and to finding the causes of the

faulty behavior.

Therefore advanced methods of supervision, fault detection and fault diagnosis

are required which satisfy the following requirements:

(i) early detection of small faults with abrupt or incipient time behavior

(ii) diagnosis of faults in the processes or process parts and their manipulating de-

vices (actuators) and measurement equipment (sensors)

(iii) detection of faults in closed loops

(iv) supervision of processes in transient states.

The goal for the early fault detection and diagnosis is to have enough time for

counteractions such as other operations, reconfiguration, planned maintenance or re-

pair.

2 Supervision, fault-detection and diagnosis methods
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Figure 2.4 shows a general scheme that illustrates how, in addition to the classical

monitoring and automatic protection, these goals can be reached by automatic means.

The intention is to generate more information about the process by using all available

measurements and to relate them in the form of mathematical process models. If not

only output signals Y.t/ are measured but also the corresponding input signals U.t/,

some accessible state variables x.t/ and maybe disturbance signals, then changes of

the static and dynamic behavior of the processes by the faults can be used as impor-

tant information sources. Moreover, also changes of output signals �Y.t/ which are

not caused by faults but by input signals�U.t/ or measurable disturbances are auto-

matically taken into account and therefore make the observed comparison variables

more sensible to faults. This means that the effects on the outputs Y.t/ by either

normal disturbances or faults are automatically separated.
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Fig. 2.4. General scheme of advanced supervision methods with fault management (supervisory

loop)

The general scheme in Figure 2.4 shows at the third level the following tasks:

3. Supervision with fault diagnosis

(a) feature generation by, e.g. special signal processing, state estimation, identifica-

tion and parameter estimation, parity relations or performance measures

(b) fault detection and generation of symptoms
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(c) fault diagnosis by using analytical and also heuristic symptoms and their rela-

tions to faults, e.g. by classification methods or reasoning methods via fault-

symptom trees. The goal is to determine the kind, size and location of the fault

(d) fault evaluation with regard to classify the faults into different hazard classes

(e) decision on actions dependent on the hazard class and possible degree of danger.

This may be done either automatically or by the operator. Some examples for

hazard classes are given in [2.37], Chapter 2.

Based on the gained in-depth information about the condition of the process, fur-

ther tasks are necessary in order to improve the reliability or safety:

4. Supervision actions and fault management: Depending on the hazard classes of

the diagnosed fault(s) the following actions can be taken:

(a) safe operation, e.g. shut down if there is an imminent danger for the process or

the environment

(b) reliable operation, e.g. by hindering a further fault expansion through changes

of operation state, e.g. operation with lower load, speed, pressure, temperature

(c) reconfiguration, e.g. by using other sensors, actuators or redundant (standby)

components to keep the process in operation and under control with a “reconfig-

ured” structure

(d) inspection to perform a detailed diagnosis by additional measures at the compo-

nent

(e) maintenance, e.g. instantaneously or by the next opportunity to tune process

parameters or exchange worn parts

(f) repair, e.g. instantaneously to remove a fault or failure or at the next opportunity

(overhaul or revision).

These actions are also called fault management or process-oriented asset ma-

nagement and may incorporate several intermediate actions in the case of redundant

systems if the process is in a dangerous state, e.g. for aircraft, power plants, chemical

plants or automatic guided vehicles.

Hence, the advanced methods of supervision and following actions are means to

improve both the reliability and the safety of technical systems. Of course, these im-

provements by better information processing and computational intelligence have to

be accompanied on the process side by further improving the reliability of all hard-

ware components, by, e.g. proper materials, stress and overall design. Some further

interesting developments are:

� maintenance on demand (dependent on process condition)

� tele-diagnosis with modern communication

� 100% quality control of products.

As especially maintenance costs resemble in most cases a high percentage (e.g.

� 20%) of overall operating costs, the advanced supervision and diagnosis may help

to reduce maintenance effort and costs and improve the life time of the processes.

2 Supervision, fault-detection and diagnosis methods
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The general scheme in Figure 2.4 shows that there exists a feedback system from

faults, signals, features, symptoms, decisions over various actions to compensate

for faults. Therefore, this can be called supervisory loop or fault management loop.

However, different to feedback control the signals or states are not all in continuous

action. Some parts of information processing like signal evaluation, feature genera-

tion and symptom generation may operate continuously, but fault diagnosis, decision

making and actions act as discrete events in the case of fault appearance. Hence, the

supervisory loop is a hybrid continuous and discrete event system.

The known literature on the state of the art of supervision and fault management

is mostly related to special processes and distributed in many journals, conference

proceedings and books. Some examples are:

� machines: [2.3], [2.19], [2.20], [2.45], [2.60]

� electrical motors: [2.9], [2.24], [2.17], [2.31], [2.67]

� pumps: [2.7], [2.17], [2.21], [2.31], [2.49], [2.64]

� steam turbines: [2.57]

� manufacturing: [2.13], [2.56], [2.65]

� bearings and machinery: [2.8], [2.45], [2.61], [2.68]

� aircraft: [2.47], [2.48], [2.51]

� automotive systems: [2.33], [2.34], [2.44], [2.54]

� chemical processes: [2.23], [2.55].

2.2 Terminology

2.2.1 Faults, failures, malfunctions

As the treated field from faults and failures through reliability, safety and fault-

tolerant systems is distributed over many different technological areas, the termi-

nology used is not unique. Various efforts have been made to come to a standardiza-

tion, for example, the RAM (reliability, availability and maintainability) dictionary,

[2.50], in contributions [2.27] and several German standards as DIN and VDI/VDE-

Richtlinien (guidelines). The IFAC-Technical Committee SAFEPROCESS has made

an effort to come to accepted definitions, [2.38], see also Appendix 13. A survey of

related standardization literature is given in the bibliography of Appendix 13. The

following sections describe the terminology used in [2.37] and in this book, taking

into account the mentioned literature.

Fault:

“A fault is an unpermitted deviation of at least one characteristic property (feature)

of the system from the acceptable, usual standard condition.”

Remarks:

� a fault is a state within the system
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� the unpermitted deviation is the difference between the fault value and the vio-

lated threshold of a tolerance zone for its usual value

� a fault is an abnormal condition that may cause a reduction in, or loss of, the

capability of a functional unit to perform a required function [2.26]

� there exist many different types of faults, e.g. design fault, manufacturing fault,

assembling fault, normal operation fault (e.g. wear), wrong operation fault (e.g.

overload), maintenance fault, hardware fault, software fault, operator’s fault.

(Some of these faults are also called errors, especially if directly caused by hu-

mans)

� a fault in the system is independent of whether the system is in operation or not

� a fault may not effect the correct functioning of a system (like a small rent in an

axle)

� a fault may initiate a failure or a malfunction

� frequently, faults are difficult to detect, especially if they are small or hidden

� faults may develop abruptly (stepwise) or incipiently (driftwise).

Failure:

“A failure is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.”

Remarks:

� a failure is the termination of the ability of a functional unit to perform a required

function, [2.26]

� a failure is an event

� a failure results from one or more faults

� different types of failures can be distinguished:

– number of failures: single, multiple

– predictability:

� random failure (unpredictable, e.g. statistically independent from opera-

tion time or other failures)

� deterministic failure (predictable for certain conditions)

� systematic failure or causal failure (dependent on known conditions)

� usually a failure arises after the start of the operation or by increasingly stressing

the system.

Malfunction:

“A malfunction is an intermittent irregularity in the fulfillment of a system’s desired

function.”

Remarks:

� a malfunction is a temporary interruption of a system’s function

2 Supervision, fault-detection and diagnosis methods
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� a malfunction is an event

� a malfunction results from one or more faults

� usually a malfunction arises after the start of the operation or by increasingly

stressing the system.

Figure 2.5 shows the relation of faults, failures and malfunctions. The fault may

develop abruptly, like a step function, or incipiently, like a drift-like function. The

corresponding feature of the system related to the fault is assumed to be proportional

to the fault development. After exceeding the tolerance of normal values, the feature

indicates a fault at time t1. Dependent on its size, a failure or a malfunction of the

system follows at time t2.
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Fig. 2.5. Development of the events “failure” or “malfunction” from a fault which causes a

stepwise or driftwise change of a feature

2.2.2 Reliability, availability, safety

With regard to the overall functioning of elements, components, processes and sys-

tems the terms reliability, availability and safety play an important role. These terms

are considered in more detail in Chapters 3 and 4 of [2.37].

Reliability:

“Ability of a system to perform a required function under stated conditions, within a

given scope, during a given period of time.”

Remarks:

� short version: ability to perform a required function for a certain period of time
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� reliability is quality that lasts over time

� the reliability can be affected by malfunctions and failures

� a measure for reliability is the mean time to failure MTTF D 1=�, where � is the

rate of failures per time unit.

Safety:

“Ability of a system not to cause danger to persons or equipment or the environment.”

Remarks:

� short version: ability not to cause danger

� safety is concerned with the dangerous effects of faults, failures and malfunctions

� safety can usually be seen as a status, where the risk is not larger than a specified

risk limit (risk threshold).

The measures to improve the reliability are oriented towards avoiding faults, fail-

ures and malfunctions. Measures for improving safety aim to avoid dangerous effects

of failures and malfunctions. An improvement of the reliability generally improves

also safety. However, an improvement of safety can result in a deterioration of the

reliability if, e.g. the number of components increases. Note that safety and secu-

rity have similar meanings. Safety usually deals with life, equipment or environment,

whereas security deals with privacy, property, community or state.

Availability:

“Probability that a system or equipment will operate satisfactorily and effectively at

any period of time.”

Remarks:

� availability is of major importance for the user of a system

� availability takes into account that failures and malfunctions happen and need

some time for repair

� a measure for availability is A D MT TF
MT TFCMT TR

where MTTR is the mean time

to repair

� to reach a high availability MTTF must be large in comparison to MTTR. This

can be reached by:

– large operation time MTTF

! perfection: highly reliable components

! tolerance: tolerable faults through redundant structure

– small repair time MTTR

! fast and reliable fault diagnosis

! fast and reliable removal of faults (maintenance repair)

� fault detection and fault diagnosis can improve the availability by early fault

detection in combination with maintenance on demand (larger MTTF) and by

fast and reliable diagnosis (smaller MTTR).

2 Supervision, fault-detection and diagnosis methods
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Dependability:

The term dependability seems not to be clearly defined. Therefore different meanings

are cited:

(i) “A form of availability that has the property of always being available when

required (and not at any time). It is the degree to which a system is operable and

capable of performing its required function at any randomly chosen time during

its specific operating time, provided that the system is available at the start of the

period.” This definition excludes non-operation related influences, [2.50]

(ii) “Dependability is a property of a system that justifies placing one’s reliance on

it. It covers reliability, availability, safety, maintainability and other issues of

importance in critical systems,” [2.58].

The [2.26] standard on safety-related systems does not define dependability, only

safety integrity.

Integrity:

According to [2.58], the term integrity was earlier defined as:

“The integrity of a system is the ability to detect faults in its own operation and

to inform a human operator.”

Over the years the meaning was broadened and associated with critical systems.

Integrity is frequently used as a synonym for dependability. According to [2.26] it is

defined as:

“Safety integrity is the probability of a safety-related system satisfactorily per-

forming the required safety functions under all the stated conditions within a period

of time.”

Some other expressions like accident, hazard, and risk are defined in [2.37],

Chapter 4.

2.2.3 Fault tolerance and redundancy

After applying reliability and safety analysis for the improvement of the design, test-

ing of the product and also corresponding quality control methods during manu-

facturing, the appearance of certain faults and failures cannot be avoided totally.

Therefore, these unavoidable faults should be tolerated by additional design efforts.

Hence, high-integrity systems must have the capability fault tolerance. This means

that faults are compensated in such a way that they do not lead to system failures.

After the application of principles to improve the perfection of the components the

remaining obvious way to reach this goal is to implement redundancy. This means
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that in addition to the considered module one or more modules exist as back-up

modules, usually in a parallel configuration, see Figure 2.6.

The function modules can be hardware components or software, either identi-

cal or diverse. Different arrangements of fault-tolerant systems exist with static or

dynamic redundancy, cold or hot standby. In general, the function modules are su-

pervised with fault-detection capability followed by a reconfiguration mechanism to

switch off failed modules and to switch on spare modules (dynamic redundancy).

The modules are, e.g. actuators, sensors, computers, motors or pumps. For electronic

hardware simpler schemes exist with n � 3 modules and majority voters to build up,

e.g. 2-out-of-3 systems (static redundancy). These redundant systems are treated in

Part IV.

2.3 Knowledge-based fault detection and diagnosis

As fault detection and fault diagnosis are fundamental for advanced methods of su-

pervision and fault management, these tasks will be considered briefly. Fault de-

tection and diagnosis, in general, are based on measured variables by instruments

and observed variables and states by human operators. The automatic processing

of measured variables for fault detection requires analytical process knowledge and

the evaluation of observed variables requires human expert knowledge which is

called heuristic knowledge. Therefore fault detection and diagnosis can be consid-

ered within a knowledge-based approach, [2.53], [2.59]. Figure 2.7 shows an overall

scheme, [2.30], [2.32].

2.3.1 Analytic symptom generation

The analytical knowledge about the process is used to produce quantifiable, analyti-

cal information. To do this, data processing based on measured process variables has

to be performed to generate first the characteristic values by

2 Supervision, fault-detection and diagnosis methods
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Fig. 2.7. Overall scheme of knowledge-based fault detection and diagnosis

� limit value checking of direct, measurable signals. The characteristic values are

the violated signal tolerances

� signal analysis of directly measurable signals by the use of signal models like cor-

relation functions, frequency spectra, autoregressive moving average (ARMA) or

the characteristic values, e.g. variances, amplitudes, frequencies or model param-

eters

� process analysis by using mathematical process models together with parame-

ter estimation, state estimation and parity equation methods. The characteristic

values are parameters, state variables or residuals.

In some cases, special features can then be extracted from these characteristic

values, e.g. physically defined process coefficients, or special filtered or transformed

residuals. These features are then compared with the normal features of the non-

faulty process. For this, methods of change detection and classification are applied.

The resulting changes (discrepancies) in the mentioned directly measured signals,

signal models or process models are considered as analytic symptoms.

Figure 2.8 gives a survey of analytical fault-detection methods. These methods

are treated in detail in [2.37] and summarized in the following sections.

2.3.2 Heuristic symptom generation

In addition to the symptom generation using quantifiable information, heuristic

symptoms can be produced by using qualitative information from human opera-

tors. Through human observation and inspection, heuristic characteristic values in the
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form of special noises, colors, smells, vibration, wear and tear, etc., are obtained. The

process history expressed through performed maintenance, repairs, former faults,

life-time and load measures, constitutes a further source of heuristic information.

Statistical data (e.g. MTTF, fault probabilities) achieved from experience with the

same or similar processes can be added. In this way heuristic symptoms are gener-

ated, which can be represented as linguistic variables (e.g. small, medium, large) or

as vague numbers (e.g. around a certain value).

2.3.3 Fault diagnosis

The task of fault diagnosis consists in determining the type, size and location of the

most possible fault, as well as its time of detection.

Fault-diagnosis procedures use the analytic and heuristic symptoms. Therefore

they should be presented in an unified form like confidence numbers, membership

functions of fuzzy sets or probability density functions after a statistical evalua-

tion over some time. Then either classification methods can be applied, if a learned

pattern-based procedure is preferred, to determine the faults from symptom patterns

or clusters. If, however, more information of fault-symptom relations, e.g. in the form

of logic fault-symptom trees or if-then rules are known, inference methods (reasoning

methods) with forward and backward chaining can be applied.

Figure 2.9 gives a survey of these methods. See also Section 2.6.

2.4 Signal-based fault-detection methods

Fault detection based on single signal measurements is in simple cases performed

with limit checking or trend checking, or, in more complex cases, by operating with

special signal models, extraction of special signal features and change-detection

methods, see Figures 2.8 and 2.10. Corresponding methods are treated in [2.37],

Chapters 7 and 8. In the following only a brief description is given.

2 Supervision, fault-detection and diagnosis methods
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2.4.1 Limit checking of absolute values

Generally, two limit values, called thresholds, are preset, a maximal value Ymax and

a minimal value Ymin. A normal state is when

Ymin < Y .t/ < Ymax (2.4.1)

which means that the process is in normal situation if the monitored variable stays

within a certain tolerance zone. The exceedance of one of the thresholds then indi-

cates a fault somewhere in the process, compare Figure 2.10. This simple method

is applied in almost all process automation systems. Examples are the oil pressure

(lower limit) or the coolant water (higher limit) of combustion engines, the pressure

of the circulation fluid in refrigerators (lower limit) or the control error of a con-

trol loop. The thresholds are mostly selected based on experience and represent a

compromise. On one hand false alarms through normal fluctuations of the variable

should be avoided; on the other, faulty deviations should be detected early. Therefore

a trade-off between too narrow and too wide thresholds exists.

2.4.2 Trend checking

A further simple possibility is to calculate the first derivative PY D dY .t/=dt , the

trend of the monitored variable and to check if

PYmin < PY .t/ < PYmax (2.4.2)

If relatively small thresholds are selected, an alarm can be obtained earlier than for

limit checking of the absolute value, see Figure 2.10b). Trend checking is, for exam-

ple, applied for oil pressures and vibrations of oil bearings of turbines or for wear

measures of machines.

Limit checking of absolute values and trends can also be combined, see [2.37].
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2.4.3 Change detection with binary thresholds

The monitored variables are usually stochastic variables Yi.t/ with a certain proba-

bility density function p.Yi/, mean value and variance

�i D E fYi.t/g I N�2
i D E

n
ŒYi.t/ � �i �

2
o

(2.4.3)

as nominal values for the non-faulty process. Changes are then expressed by

�Yi D E fYi.t/ � �ig and ��2 D E
n
Œ�i.t/ � N�i �

2
o

(2.4.4)

for t > tF , where tF is the time of fault occurrence, which is unknown.

If the mean and standard deviations before the change caused by a fault are de-

scribed by �0 and �0 and after the change has appeared by �1 and �1, the change-

detection problem is depicted by Figure 2.11, assuming a normal probability distribu-

tion of the variable Y .t/. Then the following cases of changes can be distinguished:

(i) the mean changes �1 D �0 C��; standard deviation �1 D �0 remains constant

(ii) the mean does not change �1 D �0; standard deviation changes �1 D �0 C��

(iii) both, mean and standard deviation change.

As an example, case (i) is considered. If the probability densities do not signifi-

cantly overlap, one can use a fixed threshold.

� Ytol D � �0 (2.4.5)

with, e.g. � � 2, to detect the change just by observing the average �.Y; t/. In select-

ing the threshold, a comparison has to be made between the detection of relatively

small changes and false alarms.

2 Supervision, fault-detection and diagnosis methods
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Fig. 2.11. Normal probability density functions of the observed variable Y for the nominal state

(index 0) and changed (faulty) state (index 1)

However, the detection problem becomes more involved if the change of the

mean

�� D �1 � �0 (2.4.6)

is small compared to the standard deviation, say � � 1. Then statistical tests have to

be applied.

The detection of changes of the random variable Y .k/ can be performed off-line

or on-line in real time. For off-line change detection within a sample length N it has

to be determined when at some unknown time tF a change in Y .k/ occurred from Y0

to Y1. This is only possible after storing all data. For fault detection in real time the

on-line change detection is of more interest. Here at every time k it has to be decided

if a change from Y0 to Y1 has happened. This means that especially sequential or

recursive tests are of interest for fault detection. The first case is easier to decide,

because more measurements are available.

Corresponding change-detection methods, taking into account the statistics of the

observation, estimation methods, and statistical tests are described in [2.37].

2.4.4 Adaptive thresholds

Process-model-based fault-detection methods described in the next section use pro-

cess models which do not fully agree with real processes due to model uncertainties.

Thus, the generated residuals deviate from zero even without faults. These deviations

frequently depend on the amplitude and frequencies of the input excitation. There-

fore the residuals may contain a static part which is proportional to the input U.t/

and a dynamic part dependent, e.g. on PU .t/. To cope with this problem, [2.25] has

introduced an adaptive threshold which uses a first-order high-pass filter (HPF) for

enlarging the threshold, Figure 2.12. A proportional enlargement may be added by

a constant c2, [2.15]. A low-pass filter (LPF) is used to smooth the thresholds. The

time constants T1 and T3 are selected according to the dominating time constant

of the process. T2=T1 depends on the model uncertainty of the dynamics. Adaptive

thresholds were also proposed by [2.5], [2.12].
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2.4.5 Plausibility checks

A rough supervision of measured variables is sometimes performed by checking the

plausibility of its indicated values. This means that the measurements are evaluated

with regard to credible, convincing values and their compatibility among each other.

Therefore, a single measurement is examined to find whether the sign is correct and

the value is within certain limits. This is also a limit check, however, with usually

wide tolerances. If several measurements are available for the same process then the

measurements can be related to each other with regard to their normal ranges by

using logic rules, like

IF ŒY1min < Y1.t/ < Y1max � THEN ŒY2min < Y2.t/ < Y2max � (2.4.7)

For example, one expects for a circulation pump with rotating speed n and pressure

p

IF Œ1000 rpm < n < 3000 rpm� THEN Œ3 bar < p < 8 bar�

The plausibility check can also be made dependent on the operating condition, like

IF ŒOperating condition 1� THEN ŒY3min < Y3.t/ < Y3max � (2.4.8)

One example is the oil pressure poil of a combustion engine with speed n and cooling

water temperature #H20:

IF Œn < 1500 rpm � AND
�
#H20 < 50ıC

�
THEN Œ3 bar < poil < 5 bar � (2.4.9)

Hence, plausibility checks may be formulated by using rules with binary logic con-

nections like AND, OR. These rules and ranges of the measurements allow a rough

description of the expected behavior of the process under normal conditions. If these

rules are not satisfied either the process or the measurements are faulty. Then, one

needs further testing to localize the fault and its cause.

These plausibility checks presuppose the ranges of measured process variables

under certain operating conditions and represent rough process models. If the ranges

2 Supervision, fault-detection and diagnosis methods
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of the variables are increasingly made smaller, many rules would be required to de-

scribe the process behavior. Then, it is better to use mathematical process models

in the form of equations to detect abnormalities. Therefore, plausibility tests can be

seen as a first step towards model-based fault-detection methods.

2.4.6 Signal-analysis methods

Many measured signals of processes show oscillations that are either of harmonic

or stochastic nature, or both. If changes of these signals are related to faults in the

actuators, the process and sensors, signal-model-based fault-detection methods can

be applied. Especially for machine vibration, the measurement of position, speed or

acceleration allows one to detect, for example, imbalance or bearing faults (turbo ma-

chines), knocking (gasoline engines) and chattering (metal grinding machines). But

also signals from many other sensors, like electrical current, position, speed, force,

flow and pressure, frequently contain oscillations with a variety of higher frequencies

than the process dynamics.

The task of fault detection by the analysis of signal models is summarized in Fig-

ure 2.13. By assuming special mathematical models for the measured signal, suitable

features are calculated, for example, amplitudes, phases, spectrum frequencies and

correlation functions for a certain frequency band width !min � ! � !max of

the signal. A comparison with the observed features for normal behavior provides

changes of the features which then are considered as analytical symptoms.
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U

s

Y

N

feature
generation

change
detection
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behavior

analytical symptoms

yy0Y    S      R,       ,yy features

signal-model-based
fault detection

Fig. 2.13. Scheme for the fault detection with signal models

The signal models can be divided into nonparametric models, like frequency

spectra or correlation functions, or parametric models, like amplitudes for distinct
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frequencies or ARMA-type models. Signal-analysis methods exist for harmonic os-

cillations, stochastic signals and non-stationary signals, compare the scheme of Fig-

ure 2.14.

For the analysis of stationary periodic signals band pass filtering or Fourier anal-

ysis can be used. Non-stationary periodic signals may be analyzed with, e.g. wavelet

transforms. The analysis of stochastic signals is frequently performed by correlation

functions, spectrum analysis and signal parameter estimation for ARMA-models.

These methods are treated in [2.37], where also many other references are given.

spectrum
analysis

bandpass
filtering

parametric
spectral

estimation

correlation
analysis

signal model-based
fault detection

non-stationary
signals

periodic
signals

stochastic
signals

wavelet
analysis

ARMA
parameter
estimation

short-time
Fourier
analysis

Fourier
analysis

Fig. 2.14. Survey of signal-analysis methods for signal-model-based fault detection

2.5 Process-model-based fault-detection methods2

Different approaches for fault detection using mathematical models have been de-

veloped in the last few decades (see, e.g. [2.66], [2.22], [2.28], [2.39], [2.32], [2.18],

[2.11], [2.4], [2.52]). The task consists of the detection of faults in the processes, ac-

tuators and sensors by using the dependencies between different measurable signals.

These dependencies are expressed by mathematical process models. Figure 2.15

shows the basic structure of model-based fault detection. Based on measured input

signals U and output signals Y, the detection methods generate residuals r, parame-

ter estimates O‚ or state estimates Ox, which are called features. By comparison with

the normal features (nominal values), changes of features are detected, leading to

analytical symptoms s.

For the application of model-based fault-detection methods, the process configu-

rations according to Figure 2.16 have to be distinguished. With regard to the inherent

dependencies used for fault detection, and the possibilities for distinguishing be-

tween different faults, the situation improves greatly from case a) to b) or c) or d), by

the availability of some more measurements.

2 This chapter follows [2.36]
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2.5.1 Process models and fault modeling

A fault is defined as an unpermitted deviation of at least one characteristic property

of a variable from an acceptable behavior. Therefore, the fault is a state that may

lead to a malfunction or failure of the system. The time dependency of faults can be

distinguished, see Figure 2.17, as abrupt fault (stepwise), incipient fault (drift-like),

or intermittent fault. With regard to the process models, the faults can be further

classified. According to Figure 2.18 additive faults influence a variable Y by an

addition of the fault f , and multiplicative faults by the product of another variable

U with f . Additive faults appear, e.g., as offsets of sensors, whereas multiplicative

faults are parameter changes within a process.
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change of
feature =f FD

fault
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cf

Fig. 2.17. Time-dependency of faults: a) abrupt; b) incipient; c) intermittent
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Fig. 2.18. Basic models of faults: a) additive fault; b) multiplicative faults

Now lumped-parameter processes are considered, which operate in open loop.

The static behavior (steady states) is frequently expressed by a nonlinear character-

istic as shown in Table 2.1. Changes of parameters ˇi can be obtained by parameter

estimation with, e.g., methods of least squares, based on measurements of different

input output pairs ŒYj ;Uj �. This method is applicable for, e.g. valves, pumps, drives,

and engines.

More information on the process can usually be obtained with dynamic process

models. Table 2.2 shows the basic input/output models in the form of a differential

equation or a state-space model as vector differential equation. Similar representa-

tions hold for nonlinear processes and for multi-input multi-output processes, also in

discrete time.

2 Supervision, fault-detection and diagnosis methods
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Table 2.1. Fault detection of a nonlinear static process via parameter estimation for steady

states

Multiplicative faults: parameter faultsDbi
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2.5.2 Fault detection with parameter estimation

Process-model-based methods require the knowledge of a usually dynamic process

model in the form of a mathematical structure and parameters. For linear processes in

continuous time the models can be impulse responses (weighting functions), differ-

ential equations of frequency responses. Corresponding models for discrete-time (af-

ter sampling) are impulse responses, difference equations or z-transfer functions. For

fault detection in general, differential equations or difference equations are primarily

suitable. In most practical cases the process parameters are partially not known or not

known at all. Then, they can be determined with parameter estimation methods by

measuring input and output signals if the basic model structure is known. Table 2.3

shows two approaches by minimization of the equation error and the output error.

The first one is linear in the parameters and allows therefore direct estimation of the

parameters (least-squares estimates) in non-recursive or recursive form. The second

one needs numerical optimization methods and therefore iterative procedures, but

may be more precise under the influence of process disturbances. The symptoms are

deviations of the process parameters �‚. As the process parameters ‚ D f .p/

depend on physically defined process coefficients p (like stiffness, damping coef-

ficients, resistance), determination of changes �p allows usually a deeper insight

and makes fault diagnosis easier, [2.29]. Parameter estimation methods operate with

adaptive process models, where only the model structure is known. They usually

need a dynamic process input excitation and are especially suitable for the detection

of multiplicative faults.

Table 2.3. Fault detection with parameter estimation methods for dynamic processes

Minimization of equation error Minimization of output error
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2.5.3 Fault detection with state observers and state estimation

If the process parameters are known, either state observers or output observers can

be applied, Table 2.4. Fault modeling is then performed with additive faults fL at the

input (additive actuator or process faults) and fM at the output (sensor offset faults).

a) State observers

The classical state observer can be applied if the faults can be modeled as state-

variable changes �xi e.g., for leaks. Special design of the matrix W allows one to

generate structured residuals. In the case of multi-output processes special arrange-

ments of observers were proposed:

Dedicated observers for multi-output processes

� Observer, excited by one output: One observer is driven by one sensor output.

The other outputs y are reconstructed and compared with measured outputs y.

This allows the detection of single sensor faults, [2.6]

� Bank of observers, excited by all outputs: Several state observers are designed

for a definite fault signal and detected by a hypothesis test, [2.66]

� Bank of observers, excited by single outputs: Several observers for single sen-

sor outputs are used. The estimated outputs y are compared with the measured

outputs y. This allows the detection of multiple sensor faults, [2.6] (dedicated

observer scheme)

� Bank of observers, excited by all outputs except one: As before, but each observer

is excited by all outputs except one sensor output which is supervised, [2.10].

Fault-detection filters (fault-sensitive filters) for multi-output processes

The feedback H of the state observer is chosen so that particular fault signals fL.t/

change in a definite direction and fault signals fM .t/ in a definite plane, [2.2] and

[2.43].

b) Output observers

Another possibility is the use of output observers (or unknown input observers) if

the reconstruction of the state variables x.t/ is not of interest. A linear transforma-

tion then leads to new state variables �.t/. The residuals r.t/ can be designed such

that they are independent of the unknown inputs v.t/, and of the state by special

determination of the matrices C� and T2. The residuals then depend only on the ad-

ditive faults fL.t/ and fM .t/. However, all process model matrices must be known

precisely. Hence, the observer-based fault-detection methods operate with a fixed

parameter model and correct the state variables by the feedback of output errors. A

comparison with the parity equation approach shows similarities.
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Table 2.4. Fault detection with observers for dynamic processes
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c) State estimation

Whereas state observers are designed for deterministic initial states x.0/ and inputs u

and no disturbances, state estimators are optimized filters for stochastic initial states,

stochastic state disturbances v at the input and stochastic disturbances n at the output

with known covariances. In the case of continuous-time signals the Kalman–Bucy

filter results and for discrete-time signals the Kalman filter. Table 2.5 shows the signal

flow and basic equations for the mostly used Kalman filter with discrete-time signals,

see also [2.37], and the cited references.

The application of the Kalman filter is similar to that of state observers and should

only be applied if considerable stochastic disturbances act on the input and/or the out-

put signals. However, the covariance matrices of both disturbances must be known

for determining the filter gain NK. This needs in many cases some trials to find appro-

priate values.

2 Supervision, fault-detection and diagnosis methods
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Table 2.5. Fault detection with state estimation and discrete-time signals (Kalman filter)

State estimation (Kalman filter)
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2.5.4 Fault detection with parity equations

A straightforward model-based method of fault detection is to take a fixed model

GM and run it parallel to the process, thereby forming an output error, see Table 2.6:

r 0.s/ D ŒGp.s/ � GM .s/� u.s/ (2.5.1)

If Gp.s/ D GM .s/, the output error for additive input and output faults becomes,

Table 2.2:

r 0.s/ D Gp.s/ fu.s/C fy.s/ (2.5.2)

Another possibility is to generate an equation error (polynominal error) or an input

error as in Table 2.7, [2.18].

In all cases, the residuals only depend on the additive input faults fu.t/ and

output faults fy.t/. The same procedure can be applied for multivariable processes

by using a state-space model, see Table 2.7.
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Table 2.6. Fault detection with different forms of parity equations for linear input/output models
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The derivatives of the signals can be obtained by state-variable filters, [2.24].

Corresponding equations exist for discrete time and are easier to implement for the

state-space model. The residuals shown in Table 2.6 and 2.7 left are direct residu-

als. If the parity equations are formulated for more than one input and one output,

it becomes possible to generate structured residuals such that faults do not influence

all residuals. This improves the isolability of faults, [2.18]. For example, the com-

ponents of matrix W for the state-space model, Table 2.7 right, are selected such

that, e.g., one measured variable has no impact on a specific residual. Parity equa-

tions are suitable for the detection of additive faults. They are simpler to design and

to implement than output observer-based approaches and lead approximately to the

same results. A comparison of fault detection with observers, Kalman filter and par-

ity equations is given in [2.37], Section 11.4.

2.5.5 Direct reconstruction of non-measurable variables

State observers and Kalman filters reconstruct non-measurable variables contained in

the state-vector x.t/ and parameter-estimation methods reconstruct non-measurable

parameters ‚ from measured input signals u.t/ and output signals y.t/. However,

process models or parts of it can also be directly used to calculate non-measurable

variables from measured variables, for example by using algebraic relationships. A

first example is the calculation of the torque M of a DC motor from the current I

by using M.t/ D ‰I.t/, where ‰ is the flux linkage. A second example is the re-

construction of the volume flow rate PV of a centrifugal pump transporting a liquid

through a pipe from the rotor angular speed ! by PV .t/ D �!.t/ for steady-state

operation, [2.67]. This kind of reconstruction via algebraic relations holds especially

2 Supervision, fault-detection and diagnosis methods
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Table 2.7. Fault detection with parity equations for dynamic processes
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for transformers and converters whose behavior is expressed with the power covari-

ables effort e.t/ and flow f .t/, [2.35].

2.6 Fault-diagnosis methods

The task of fault diagnosis consists of the determination of the type of fault with as

many details as possible such as the fault size, location and time of detection. The

diagnostic procedure is based on the observed analytical and heuristic symptoms and

the heuristic knowledge of the process, see the schemes in Figures 2.7, 2.9 and 2.15.

The inputs to a knowledge-based fault-diagnosis system are all available symptoms

as facts and the fault-relevant knowledge about the process, mostly in heuristic form.

The symptoms may be presented just as binary values Œ0; 1� or, e.g., fuzzy sets to take

gradual sizes into account.

2.6.1 Classification methods

If no further knowledge is available for the relations between features and faults

classification or pattern recognition methods can be used, Table 2.8. Here, reference

vectors Sn are determined for the normal behavior. Then the corresponding input
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vectors S of the symptoms are determined experimentally for certain faults Fj ap-

plying the fault-detection methods. The relationship between F and S is therefore

learned (or trained) experimentally and stored, forming an explicit knowledge base.

By comparison of the observed S with the normal reference Sn, faults F can be con-

cluded.

Table 2.8. Methods of fault diagnosis

CLASSIFICATION

REFERENCE-
PATTERN

S S
Sn

F F

Classification methods Inference methods

Without a-priori knowledge on
symptom causalities
Mapping:

With a-priori knowledge on
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–
–
–
–
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One distinguishes between statistical or geometrical classification methods, with

or without certain probability functions, [2.63]. A further possibility is the use of

neural networks because of their ability to approximate nonlinear relations and to

determine flexible decision regions for F in continuous or discrete form, [2.46]. By

fuzzy clustering the use of fuzzy separation areas is possible.
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2.6.2 Inference methods

For some technical processes, the basic relationships between faults and symptoms

are at least partially known. Then this a-priori knowledge can be represented in

causal relations: fault ! events ! symptoms. Table 2.8 shows a simple causal net-

work, with the nodes as states and edges as relations. The establishment of these

causalities follows the fault-tree analysis (FTA), proceeding from faults through in-

termediate events to symptoms (the physical causalities) or the event-tree analysis

(ETA), proceeding from the symptoms to the faults (the diagnostic forward-chaining

causalities). To perform a diagnosis, this qualitative knowledge can now be expressed

in the form of rules: IF < condition > THEN < conclusion >. The condition part

(premise) contains facts in the form of symptoms Si as inputs, and the conclusion

part includes events Ek and faults Fj as a logical cause of the facts. If several symp-

toms indicate an event or fault, the facts are associated by AND and OR connectives,

leading to rules in the form

IF < S1 AND S2 > THEN < E1 >

IF < E1 OR E2 > THEN < F1 > :

For the establishment of this heuristic knowledge several approaches exist, see

[2.14], [2.62]. In the classical fault-tree analysis the symptoms and events are con-

sidered as binary variables, and the condition part of the rules can be calculated by

Boolean equations for parallel–serial connection, see, e.g., [2.1], [2.13]. However,

this procedure has not proved to be successful because of the continuous and gradual

nature of faults and symptoms. For the diagnosis of technical processes approximate

reasoning is more appropriate. A recent survey and learning methods for rule-based

diagnosis is given in [2.16] and [2.15].

2.7 Fault detection and diagnosis in closed loop

The main goals for using automatic control loops are precise following of reference

variables (setpoints), a faster response than in open loop, compensation of all kind of

external disturbances on the controlled variable, stabilization of unstable processes,

reduction of the influence of process parameter changes with regard to the static and

dynamic behavior, partial compensation of actuator and process nonlinearities, and,

of course, replacement of manual control by humans. The performance of a SISO

control loop with regard to the control error (deviation)

e.k/ D w.k/ � y.k/ (2.7.1)

i.e. the deviation of the controlled variable y.k/ from the reference variable w.k/

depends on many facts, compare Figure 2.19, like:

� external disturbance w.k/;uv.k/; vi.k/

� structure and parameters of the controller Gc and controller faults fc

� changes of the structure and parameters of the process Gp and process faults fp
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� changes and faults of actuator Ga and fa

� faults fs in the sensor Gs and measurement noise ns .
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Fig. 2.19. Control loop with variables and fault influences

y controlled variable w reference variable

up manipulated variable e control deviation

vi process disturbances ns measurement noise

uv process input disturbances fc;a;p;s faults of the controller,

np sum of process disturbances actuator, process and

yp process output to be controlled sensor

Hence, many changes and faults influence the performance of closed loops. Usu-

ally, only the control deviation e and the control variable y are monitored.

Small faults in the actuator and process, be they additive or multiplicative, will

usually be compensated by the feedback controller (with integral action) and they

will not be detectable by considering e.k/ and y.k/ only, as long as the control de-

viation turns back to approximately zero. Also small sensor offset faults will not be

detected. The controller will just make the wrong sensor signal equal to the refer-

ence variable. Only by a redundant sensor or other redundant information for the

controlled variable, can the offset fault usually be detected.

As shown in [2.37], Chapter 12, several larger faults have a similar effect on the

considered changes of closed-loop behavior such that it is not easy to differentiate

them. In addition, some of the behavior is also observed after external disturbances

under normal operation.

A first possibility for fault detection in closed loops is to analyze measurable

signals like the controlled variable y.t/, the manipulated variable u.k/, the reference

variable w.k/ and the control deviation e.k/. This is also known as performance

monitoring of closed loops, see, e.g. [2.37], Chapter 12. For example, the variances

of these variables, steady-state deviations, large overshoots or frequency spectra can

be monitored. However, it is very difficult to find the reasons for observed changes.

Process-model-based detection methods allow a deeper insight, as they relate

the manipulated variable u.k/ to the controlled variable y.k/. The application of

parameter estimation in closed loops requires consideration of the identifiability

2 Supervision, fault-detection and diagnosis methods
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conditions. If no external measurable perturbations can be used, because the closed

loop operates with constant reference variable w.k/ D const and only compensates

for disturbances, special higher-order controller structures are required, [2.40]. With

measurable external perturbations, as for servo systems with continuously chang-

ing reference variable, parameter estimation methods can be directly applied. Also

parity equations for the process are directly applicable if the (fixed) process model

agrees well with the real process. Especially by combining several detection meth-

ods a large portion of faults in the components of a closed loop (actuators, process,

sensor, controller) can be detected and isolated [2.37].

2.8 Data flow structure for supervision (condition monitoring)

For larger plants the computer software systems written for supervision or condi-

tion monitoring and diagnosis of machines and other processes should have an open

standardized software architecture to ease the exchange of data. This has to be seen

in the efforts to integrate the components and processes with regard to a plant as-

set management. Therefore, international standards are prepared, like ISO 13374 on

“condition monitoring and diagnostics of machines,” [2.41] with regard to data pro-

cessing, communication, and presentation.

An open condition monitoring software architecture then consists of a standard-

ized structure for data processing with an information model, a data model and a data

library. The information model (data flow scheme) describes the primary data objects

with their properties (attributes) in the form of a scheme which is independent of the

physical data. The information model can, e.g. be implemented with the Unified

Modeling Language (UML), containing standardized class diagrams for information

modeling.

The data model is based on the information model and provides the exact rep-

resentation of data elements. Here, the integration of many sources of machinery

or process information takes place, like process site, asset nameplate data for rated

quantities, measurement locations, signal processing methods, alarms, date and time.

An Extensible Markup Language (XML) is a recommended definition language.

A reference data library then stores the data from the data model, using database-

unique entries. This library specifies all code tables, asset types, event codes, health

codes, failure codes, root cause codes and engineering unit codes.

The software structure for data processing is recommended to follow Fig-

ure 2.20. The data acquisition digitizes, e.g. analog sensor signals and manual inputs

and delivers digitized data with time stamps and data quality (good, bad, unknown).

The digital data are then processed in the data manipulation block providing specific

features with time stamp and data quality. The signal processing consists of algorith-

mic computations, filtering, windowing, spectral analysis and feature extraction.

A state detection block then categorizes the features with regard to normal or

abnormal, exceeding of limits, severity of threshold boundary deviation, degree of

abnormality and statistical analysis. The health assessment determines the current
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state of health and potential failures with associated diagnosis, calculates the current

risk priority number and generates recommendations.

The prognostic assessment projects the future health state with prognostic mod-

els, future operational usage, failure rates, probability measures and explanations.

Finally, the advisory generation integrates all information and provides optimal

recommended actions and alternatives, maintenance, modification of operations, ca-

pability forecast, strategic recommendations.

All the blocks have a time stamp and need multiple interactions, require con-

figuration information and the access to external information sources with previous

maintenance, historic operational data and should be accessible from displays for

deeper analysis.
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prognostic
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inputs

manual
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digitized
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data quality

signal
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recommen-
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future health
grade,
remaining
life,
explanations

optimal
actions,
maintenance,
change of
operation,
capability
forecast

actional

information

Fig. 2.20. Data processing functionality, scheme for condition monitoring and diagnosis, [2.42]

Concluding remarks

The summary of some basic fault-detection and diagnosis methods presented in this

chapter was limited to linear processes mainly. Some of the methods can also be

directly applied to nonlinear processes, e.g., signal analysis, parity equations and

parameter estimations. However, all the methods have to be adapted to the real pro-

cesses. In this sense the basic methods should be considered as “tools”, which have

to be combined properly in order to meet the practical requirements for real faults

of real processes. The development of fault detection and diagnosis methods is rec-

ommended to follow the schedule depicted in Figure 2.21. First, the requirements of

the final results should be stated, where especially a list of all faults to be detected

is defined and fault-symptom trees are sketched, supported by an FMEA. A process

analysis has to follow, stating the available measurements and operating conditions.

Then, possible fault-detection methods can be selected. Simulations with process and

signal models allow first tests. Important are, of course, experiments with the real

process, real-time computing and handling of real measured data. The results give

hints for adjustments and improvements of detection methods in the sense of feed-

back and iterative scaling. A final realization of software and computer hardware

usually requires practical tests with similar or other processes, solving of robustness

issues and field tests.
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Fig. 2.21. Development stages for fault detection and diagnosis

Most of the described fault-detection and diagnosis methods, see [2.37], were de-

veloped theoretically, investigated by simulations and then tested experimentally on

real processes, either in laboratories on test rigs or with pilot processes and different

machinery as described in the following chapters. In some cases the faults are added

artificially, like for sensor offsets, but in many cases real faults are introduced, if the

faults did not damage the processes.
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Fault diagnosis of electrical drives

Electrical drives are basic components in a multitude of devices, processes, machin-

ery and vehicles, and in the large areas of mechanical power and process engineering,

manufacturing, transportation and precision mechanical devices. Their power ranges

from a few mW to hundreds MW.

The most important types of electrical motors can be divided into:

(i) DC motors

� series-wound motors

� shunt-wound motors

� permanent-field motors

(ii) Three-phase AC motors

� induction motors (asynchronous motors)

� synchronous motors

(iii) Single-phase AC motors

� commutator motors (universal motors)

� squirrel-cage motors.

Table 3.1 gives an overview of some basic types, illustrating torque characteris-

tics and corresponding control inputs. As static and dynamic models of the various

electrical motors are required for model-based fault detection, the reader is referred

to well-known basic books on electrical drives such as [3.3], [3.13], [3.18], [3.19],

[3.20].

In the following, some case studies are described for DC motors with brushes and

for AC motors. Further types of electrical motors will be considered in Chapter 4 for

electrical actuators.

3.1 Direct-current motor (DC)

3.1.1 Structure and models of a DC motor

A permanently excited DC motor with a rated power of P D 550 W at rated speed

n D 2500 rpm is considered, [3.6]. This DC motor has a two-pair brush commuta-

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  49 
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tion, two pole pairs, and an analog tachometer for speed measurement; it operates

against a hysteresis brake as load, see Figure 3.1. The measured signals are the ar-

mature voltage UA, the armature current IA and the speed !. A servo amplifier with

pulse-width-modulated armature voltage as output and speed and armature current

as feedback allows a cascaded speed control system. The three measured signals

first pass analog anti-aliasing filters and are processed by a digital signal processor

(TXP 32 CP, 32-bit fpt, 50 MHz) and an Intel Pentium host PC. Also the hysteresis

brake is controlled by a pulse-width servo amplifier. Usually such DC motors can be

described by linear dynamic models.

D

A

D

A

D

A

IAUA T

personal computer with
digital signal processor

hysteresis
break

DC motor

servo amplifier

servor amp.

anti-
aliasing-
filter

tacho

D

A

D

A

(a)

(b)

Fig. 3.1. DC motor test bench with hysteresis brake: a) test bench; b) scheme of equipment

However, experiments have shown that this model with constant parameters does

not match the process in the whole operational range. Therefore, two nonlinearities

are included so that the model fits the process better. The resulting first-order differ-

ential equations are:
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LA
PIA.t/ D �RA IA.t/ �‰ !.t/ � KBj!.t/j IA.t/C U �

A.t/ (3.1.1)

J P! D ‰ IA.t/ � MF1 !.t/ � MF0 sign .!.t// � ML.t/ (3.1.2)

Figure 3.2 depicts the resulting signal flow diagram. The term KBj!.t/jIA.t/ com-

pensates for the voltage drop at the brushes in combination with a pulse-width-

modulated power supply. The friction is included by a viscous- and a dry-friction

term MF1! and MF0sign.!/, see also [3.9]. The parameters are identified by least-

squares estimation in the continuous-time domain, [3.6]. Table 3.2 gives the nominal

values. Most of them (RA; ‰;KB;MF1;MF0) influence the process gain, and the

other two (LA;J ) the time constants. The signals U �
A, IA and ! are measured with

a sampling frequency of 5 kHz, and state-variable filtered by a fourth-order low-pass

filter with Butterworth characteristic and a cut-off frequency of 250 Hz.

Table 3.2. Data for the DC motor

armature resistance RA D 1:52 �

armature inductance LA D 6:82 � 10�3 � s

magnetic flux ‰ D 0:33 V s

voltage drop factor KB D 2:21 � 10�3 V s / A

inertia constant J D 1:92 � 10�3 kg m2

viscous friction MF1 D 0:36 � 10�3 Nm s

dry friction MF0 D 0:11 Nm

M

U

M

A

L

A

A

*

*

Y

Y
w1

sL
1

s J

B

R

K

IA
M

M

L

F1

F0

Fig. 3.2. Signal flow diagram of the considered DC motor

3.1.2 Fault detection with parity equations

For the detection and isolation of sensor (output) and actuator (input) faults a set

of structured parity equations with state-space models according to Section 2.5 is

applied.
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As the differential equations (3.1.1) and (3.1.2) are nonlinear, the design pro-

cedure for a linear parity space cannot be applied directly. But defining U �
A �

KBj!.t/jIA as voltage input UA and as load input ML D MF0 sign! leads to a

linear description. The linear state-space representation then becomes

Px D
� PIA

P!

�
D
"

� RA

LA
� ‰

LA
‰
J

� MF

J

# �
IA

!

�
C
"

1
LA

0

0 � 1
J

# �
UA

ML

�

y D
�

IA

!

�
D
�

1 0

0 1

�
x

(3.1.3)

A corresponding signal flow diagram is depicted in Figure 3.2.

An observability test reveals that both outputs (IA and !) can also observe each

other. This is a precondition for a parity space of full order (here: 2). Then, W, see

Table 2.4 and [3.10] Equation (10.52), is chosen such that a set of structured resid-

uals is obtained, where residual r1.t/ is independent of ML.t/; r2.t/ of UA.t/; r3.t/

of !.t/ and r4.t/ of IA.t/, see also [3.6], [3.16], [3.4]:

W D

2
664

RA ‰ LA 0 0 0

�‰ MF1 0 J 0

˛ 0 ˇ 0 JLA 0

0 ˛ 0 ˇ o JLA

3
775 (3.1.4)

with ˛ D ‰2 C RA MF1;

ˇ D LA MF1 C J RA.

The residuals, using three measured signals, then follow as:

r1.t/ D LA
PIA.t/C RA IA.t/C‰ !.t/ � UA.t/

r2.t/ D J P!.t/ �‰ IA.t/C MF1 !.t/C ML.t/

r3.t/ D J LA
RIA.t/C .LA MF1 C J RA/ PIA.t/

C.‰2 C RAMF1/IA.t/ � J PUA.t/ � MF1 UA.t/ �‰ ML.t/

r4.t/ D J LA R!.t/C .LA MF1 C J RA/ P!.t/C .‰2 C RA MF1/ !.t/

�‰ UA.t/C LA
PML.t/C RA ML.t/

(3.1.5)

The same residual equations can be also obtained via transfer functions as described

in Example 10.3 in [3.10]. If an additive fault of the measured signals and of ML

occurs, all residuals except the decoupled one are deflected. The scheme of the struc-

tured residuals is not touched by the compensation for the nonlinear voltage drop of

the brushes, as its magnitude is small enough. Two parameters RA and MF1, how-

ever, depend on the present motor temperature. The behavior of RA and its effect on

residual r1 is depicted in Figure 3.3. Therefore, the use of adaptive parity equations

improves the residual performance, see [3.6] and [3.10].

The residuals are now examined with regard to their sensitivity to additive and

parametric faults. As r1 and r2 comprise all parameters and all signals, it is sufficient

to consider only these two, although r3 or r4 can also be taken. From (3.1.5) it yields
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Fig. 3.3. Influence of the motor temperature on resistance RA and residual r1

r1.t/ D � LA
PIA.t/C� RA IA.t/C� ‰ !.t/

CLA � PIA.t/C RA � IA.t/C‰ � !.t/ �� UA.t/

r2.t/ D C� J P!.t/ �� ‰ IA.t/C� MF1 !.t/

CJ � P!.t/ �‰ � IA.t/C MF1 � !.t/C� ML.t/

(3.1.6)

In the presence of residual noise, e.g. of r1 with a magnitude of about 1 V and an

armature current of 3 A, a resistance change must be at least 0.3� in order to deflect

the residual significantly. Therefore, the two linear parameters RA and MF1 are

selected to be tracked according to a single parameter estimation together with parity

equations, as described in [3.10], Section 10.5. The forgetting factor is chosen as

� D 0:99.

3.1.3 Fault detection with parameter estimation

The parameter estimation is based on the two differential equations (3.1.1) and

(3.1.2) in the simplified form

PIA.t/ D � O�1 IA.t/ � O�2 !.t/C O�3 UA.t/ (3.1.7)

P!.t/ D O�4 IA.t/ � O�5 !.t/ � O�6 ML.t/ (3.1.8)

with the process coefficients

RA D
O�1

O�3

I LA D 1

O�3

I ‰ D
O�2

O�3

and ‰ D
O�4

O�6

I J D 1

O�6

I MF1 D
O�5

O�6

(3.1.9)

Applying the recursive parameter estimation method DSFI (discrete square-root fil-

tering in information form), [3.11], with forgetting factor � D 0:99 yields the pa-

rameters O�i by using three measured signals. Then all process coefficients can be

calculated with (3.1.9). Experimental results with idle running (ML D 0) resulted

in standard deviations of the process coefficients in the range of 2% < �� < 6:5%,

[3.6].
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3.1.4 Experimental results for fault detection (SELECT)

Based on many test runs, five different faults are now selected to show the detection

of additive and multiplicative faults with parity equations and recursive parameter

estimation, [3.5]. The time histories depict the arising faults at t D 0:5 s. The faults

are step changes and were artificially produced. Figure 3.4 shows the parameter esti-

mates and the residuals of parity equations. The residuals are normalized by division

through their thresholds. Therefore, exceeding of 1 or �1 indicates the detection of

a fault. In the cases a) to d) and f) the DC motor is excited by a pseudo random bi-

nary signal (PRBS) of the armature voltage UA which is a requirement for dynamic

parameter estimation, as shown in Figure 3.4f). In case e) the input is constant. The

results can be summarized as:

a) A sensor-gain fault of the voltage sensor UA leads as expected to a change of

residual 1 (and 3, 4) but not of residual 2, which is independent of UA. The

parameter estimates show (incorrect) changes for RA, LA and ‰, because the

gain of the voltage sensor is not modeled

b) An offset fault in the speed sensor ! leads to a change of the residuals r4, r1

and r2, but r3 remains uneffected, because it is independent of !. The parameter

estimate of ‰ shows an (incorrect) change

c) A multiplicative change of the armature resistance RA yields a corresponding

change of the parameter estimate ORA. However, the residuals increase their vari-

ance drastically and exceed their thresholds

d) A change of the ratio of inertia is correctly given by the parameter estimate OJ .

But all residuals, except r1, exceed their thresholds by increasing their variance

e) The same fault in RA as in c) is introduced, but the input UA is kept constant.

The parameter estimate ORA does not converge to a constant value and the parity

equation residuals r1 and r4 change their mean, however, with large variance

f) A brush fault leads to an increase of RA and LA but not of ‰. The residuals

show an increase of the variance.

Table 3.3 summarizes the effects of some investigated faults on the parameter

estimates and parity residuals.

These investigations have shown:

1) Additive faults like the offsets of sensors are well detected by the parity equa-

tions. They react fast and do not need an input excitation for a part of the faults.

However, they have a relatively large variance, especially if the model parame-

ters do not fit well to the process

2) Multiplicative faults are well detected by parameter estimation, also for small

faults. Because of the inherent regression method the reactions are slower but

smoothed. But they require an input excitation for dynamic process models.

Therefore, it is recommended to combine both methods, as shown in [3.10], Sec-

tion 14.3. The parity equations are used to detect changes somewhere in the process

and if the fault detection result is unclear a parameter estimation is started, eventu-

ally by a dynamic test signal for some seconds. If the motor operates dynamically
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Fig. 3.4. Time histories of signals, residuals of parity equations and parameter estimation at

fault occurrence

– parameter estimates: RA resistance, LA inductivity, ‰ flux linkage, JA moment of iner-

tia

– parity equations: r1; r2; r3; r4
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Table 3.3. Fault-symptom table for the fault detection of a DC motor with dynamic input exci-

tation UA.t/ in the form of a PRBS. C positive deflection; CC strong positive deflection; 0 no

deflection; � negative deflection; � � strong negative deflection; ˙ increased variance

symptoms

faults parameter estimation parity equations

RA LA ‰ J MF1 r1 r2 r3 r4

armature

resistance

�RA CC 0 0 0 0 ˙ 0 ˙ ˙

brush fault CC C 0 0 0 ˙ 0 ˙ ˙
parametric

faults

change of

inertia

�J 0 0 0 CC 0 0 ˙ ˙ ˙

change of

friction

�MF1 0 0 0 0 CC 0 ˙ ˙ ˙

voltage sensor

gain fault

�UA ˙ ˙ ˙ 0 0 � 0 � �

additive faults speed sensor

offset fault

�! 0 0 � 0 0 + + 0 +

current sensor

offset fault

�I ˙ ˙ ˙ 0 0 + � + 0

anyhow (as for servo systems and actuators) then the parameter estimation can be

applied continuously, but with a supervision scheme, see [3.11].

[3.6] has shown that a considerable improvement can be obtained by continu-

ously estimating the armature resistance with a single parameter estimation using

parity equations in order to reach the temperature dependent resistance parameters,

[3.7]. Furthermore, adaptive thresholds are recommended, to compensate for model

uncertainties, see Section 2.4.4.

3.1.5 Experimental results for fault diagnosis with a learning fault-symptom tree

The model-based fault-detection system with parity equations and parameter estima-

tion is now the basis for a fault-diagnosis procedure. As described in Section 2.6 the

method for fault diagnosis can be divided in classification and inferencing. A first

simple classification is the use of fault-symptom tables and pattern recognition as in

Table 3.3. Also decision trees belong to the class of classification methods. However,

a combination with a neuro-fuzzy structure gives them a learning behavior of fuzzy

if-then rules with AND operators, forming an adaptive inference method, called SE-

LECT, [3.4]. This is applied in the following to the DC motor test bench.

a) The symptoms used

To diagnose the faults, altogether 22 symptoms are created:

� Windowed sums of the absolute values of the three measured signals U �
A
; IA; !

� Mean values and standard deviations of four residuals: Nr1; : : : ; Nr4 and N�r1; : : : ; N�r4
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� Eight parameter estimates. Symptoms are the deviations of the current values –

results of the estimation – from the nominal ones. They are normalized to the

nominal values. For the rotor resistance RA this is �RA1 D .RA;nom:�RA;est:/

RA;nom:
.

The index 1 denotes that the estimation was carried out using the first parity

equation. Similarly, �RA4; �LA1; �LA4; �J2; �J3; �MF12, and �MF13

are computed

� Additionally, two symptoms judge the quality of the estimation. They describe

the variance of an estimated parameter during a recursive estimation. This vari-

ance can give a good indication whether the structure of the estimation equation

is valid. A structural change of the system will result in a bad estimation result

where the recursively estimated parameters fluctuate significantly. Two parame-

ter estimations were chosen:‰ and MF1. Their estimation variances are denoted

by �est:;‰ and �est:;MF1.

The symptoms serve to differentiate between 14 fault situations that can artificially

be introduced on the test rig.

The DC motor diagnosis was performed by learning a SELECT tree from exper-

imentally gained fault data. For the fault cases, typically 10–50 test-cycle measure-

ments for a parameter estimation were performed. The residuals were computed from

the test runs. That way, each test run results in one data point in the symptom space.

The membership functions were created with the degressive fuzzy-c-means method.

To utilize a maximum of transparency and create a highly interpretable system, prior

knowledge was used to structure the diagnosis system.

b) Incorporation of structural knowledge

In most applications, a certain amount of knowledge about the symptom behavior is

present. Even if exact values for thresholds etc. are not known, there usually is some

insight into the process like physical understanding of similar faults or similar effects

of faults on certain symptoms. For the DC motor, this could be as simple as to use

the windowed sums of the signals in order to to detect a broken sensor cable. This

information is quite obvious, but its benefits are sometimes neglected, if a diagnosis

system is designed with the aim to be solely learned from measured data. Hence, the

task could be simpler if the designer used this information from the beginning.

Furthermore, the selection of the symptoms for the diagnosis becomes a matter

of robustness. Some symptoms are affected by faults for which they are not an appro-

priate indicator. In an experimental environment, it is virtually impossible to gather

enough measurements to adequately reflect every influence. Especially changes in

the environmental conditions and long-term changes due to wear are hardly captured

in a limited time frame. This leads to diagnosis systems that work well under the

experimental conditions but fail otherwise. The diagnosis of a fault should therefore

be based on the appropriate subset of all available symptoms. Only the relevant ones

should be selected.

Often, different faults can be categorized into larger groups if their effects on

the process are similar. It is then advantageous to find a classification system for
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the larger groups first and later separate within them. This leads to the concept of a

hierarchical diagnosis system.

Overall, it is proposed to use prior knowledge to structure the diagnosis system.

The designer builds groups of faults and identifies the corresponding relevant symp-

toms to first differentiate between and later within them. The exact decisions can be

found automatically if enough measured data is available.

If the set of all different fault situations Fi is denoted by

F D fF1;F2; : : :Fr g (3.1.10)

and the available symptoms given by

S D fs1; s2; : : : st g (3.1.11)

one can form meta-classes Ci , i D 1 : : :m with

F D C1 [ C2 [ : : : [ Cm (3.1.12)

In the DC motor diagnosis, for instance, such a meta-class is given by all faults on

the mechanics of the motor. Such a hierarchy based on meta-classes requires at least

q D m C r decisions dj ; j D 1 : : : q assumed that no Ci is a single-element set.

Each dj is based on a subset Sdj 2 S. The SELECT approach will then produce a

system with p parameters where p is given by

p D
qX

jD1

card .Sdj / (3.1.13)

which is typically much less than a parallel network structure would result in (cardi-

nalities are the number of relevant sets). The usually larger number of parameters in

parallel network configurations can lead to slower convergence and ill-conditioned

optimization problems.

In addition to the structural knowledge, one can incorporate more detailed knowl-

edge into the individual rules if desired.

c) Results with SELECT method

A total of 14 different fault situations are applied on the DC motor test bench:

� Change of rotor inductance or resistance FRA;FLA

� Broken rotor wiring .FW /

� Failure of one the four brushes .FB/

� Increased friction in the bearings .FF /

� Offset on voltage, current or speed sensor signal .FO;UA;FO;IA;FO;!/

� Gain change of voltage, current or speed sensor signal .FG;UA;FG;IA;FG;!/

� Complete voltage, current or speed sensor failure .FUA;FIA;F!/.
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Repeated experiments with different faults were performed using a test cycle. The

symptoms described in a) were computed for each of the experiments. Overall, the

training set for the approach consisted of data from 140 experiments.

Figure 3.5 shows the resulting structure for the DC motor diagnosis. Details have

been omitted to visualize the concept only. Each block comprises a meta-class C1 of

faults. Every branching of the tree is connected to a decision dj learned with the SE-

LECT approach, i.e. it contains a fuzzy rule. In each meta-class, a classification tree

decides which individual fault has occurred based on a subset Si of the symptoms.

sensor failure

electrical faultmechanical fault

no sensor failure

fault
symptom
behavior

fault

IF ...
THEN
ELSE IF ...

friction fault
IF ...
THEN ...

IF ...
THEN voltage sensor fault
ELSE IF ....

IF ...
THEN
ELSE

mechanical fault
electrical fault

IF ...       average speed very small OR
average current very small OR
average voltage very small
THEN s

ELSE
ensor failure

no sensor failure

Fig. 3.5. Hierarchical fault-diagnosis system. Each block comprises a fuzzy classification tree

The hierarchical decision tree proved to be highly suitable for the diagnosis. It

achieved a 98% classification rate in a cross-validation scheme.

The groups of faults have been selected following basic understanding of the DC

motor supervision concept. Firstly, the three total sensor breakdowns are different

from other faults due to their strong effects on all symptoms. They form the first

meta-class C1 and can be easily differentiated by the three windowed sums of the

signals. These three symptoms accordingly form the set S1.

Since the motor can be understood as a combination of an electrical and a me-

chanical component, faults on these two parts were again treated separately, creating

two more meta-classes, C2 and C3. Accordingly, the appropriate subsets of symp-

toms S2 and S3 for the diagnosis were selected. Basically, S2 and S3 consist of

the residuals and parameter deviations connected to the corresponding meta-class.

The diagnosis of electrical faults, for instance, is not based on parameter estimates

of the mechanical parameters. Although some electrical faults may have an influ-

ence on the estimates of the mechanical parameters, this influence should not be
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used as the estimates are misleading and not reliable. Hence, S2 does not contain

�J2; �J3; �MF12 or �MF13.

To give an example of the SELECT approach, the rules for the distinction of the

electrical faults are given below:

IF Nr1 is small AND �LA4 is strongly negative THEN Fault FLA

ELSE IF Nr1 is small AND N�r4 is medium THEN Fault FRA

ELSE IF Nr1 is small AND N�r4 is large THEN Fault FB

ELSE IF Nr2 is not small THEN Fault F0;IA

ELSE IF Nr1 is small THEN Fault FG;IA

ELSE IF Nr1 is large AND �est:;‰ is not small THEN Fault F0;UA

ELSE Fault FG;UA

(3.1.14)

The relevance indices of the rule premises are not listed here. They also play a role

for the exact decision boundaries.

Nevertheless, it is possible to analyze and understand parts of these rules. Clearly,

the rules reveal the discriminatory power of the first residual, since it was used very

often. Other rule premises are also understandable. The change of the rotor induc-

tance is indicated by a strongly negative estimation of this change magnitude. Com-

pare this rule to Figure 3.6a). It shows the values�LA4 for the electrical faults from

the training set. Clearly, the fault FLA makes a distinct difference. Hence, it makes

sense to use�LA4 to distinguish the fault from the others. The corresponding mem-

bership functions are shown in Figure 3.6b). It must be noted that the experimental

setup allowed only a fixed deviation of the inductance by –50% as a fault. That can be

seen in the estimation result. If, however, also positive changes are to be diagnosed,

one is able to enhance the rule manually. For instance, one could use

IF Nr1 is small AND �LA4 is not small THEN Fault FLA (3.1.15)

The corresponding membership functions for �LA4 would also have to be adapted

accordingly to allow processing of positive values of �LA4.

Another interesting observation is the use of �est:;‰ in the sixth rule of (3.1.14) to

distinguish offset from gain faults of the voltage sensor. This can be explained by the

fact that an offset term in the estimation equation given by an offset fault will change

the structure of the estimation equation, while a gain will only effect parameters.

Hence, the normal estimation equation will still be valid in the case of gain faults,

but indicate a problem by a large �est:;‰ for offset faults.

The system performed well on new experiments, showing the increased robust-

ness through the incorporation of very simple knowledge. Additionally, the system

has a higher degree of transparency facilitating an adaptation to other motors. The

diagnostic rules can be extracted and are largely understandable.

d) Relation to fault trees

The resulting hierarchical classifier can also be interpreted as a set of fuzzy fault

trees. If one reverses the order of the structure and traces the decisions leading to a
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Fig. 3.6. Estimated rotor inductance computed from the fourth parity residual. Apparently, most

faults influence the result, however, the faulty inductance can most easily be detected due to

its strong influence: a) estimation results; b) resulting membership functions

particular fault back through the tree, it is possible to explicitly draw a fault tree for

each individual fault. Figure 3.7 shows one fault situation (increased friction in the

motor) as an example. The intermediate steps like “mechanical fault” from Figure 3.7

become events of the fault tree.

symptom
behavior

events

fault (friction parameter
increased)

friction parameter
increased

Second Parity
Residual Not

Large

fourth parity
residual not

changed

second parity
residual not

large

standard
deviation third
residual small

average speed
not small

average current
not small

average voltage
not small

mechanical fault

friction fault

no sensor failure

Fig. 3.7. Fault tree for one particular fault extracted from the diagnostic tree in Figure 3.5

Similar fault trees can be constructed for the other faults. This requires one to

analyze the rule tree and explicitly draw the trees. The resulting set of trees is a

relatively redundant representation of the fault-symptom relation because the same

events are used in multiple trees. They are nevertheless very intuitive and serve to

understand and visualize the functionality of the diagnostic system.
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e) Computational demands

The most time-critical computation of the presented supervision concept is the

computation of the continuous-time residuals. They require the evaluation of state-

variable filters that are difficult to implement in fixed-point arithmetic. If the compu-

tational resources are limited, also a discrete-time form of the residuals is possible.

This has, for instance, been implemented by [3.17].

The diagnosis, on the other hand, only needs to be evaluated if the fault-detection

thresholds are violated. It is not time critical and can, for instance, be computed

as a background job in the motor controller. Similarly, floating-point computations

such as for the computation of the exponential function in the SELECT neuron can

always be implemented on a lower-precision fixed-point controller, for instance, by

using lookup tables. If the computational time is not critical, one can also implement

floating-point arithmetic on fixed-point controllers. Since the time needed for the

diagnosis is small compared with the time that typically is needed for personnel to

reach a faulty device, it is obvious that the computational demand should not really be

an issue. Safety-critical measures can be taken as soon as the thresholds are violated

even before the diagnosis is started.

3.1.6 Conclusions

The detailed theoretical and experimental investigations with the permanently ex-

cited DC motor in idle running or with load have demonstrated that it is possible to

detect 14 different faults by measurement of only three signals and combination of

the parity equation and parameter estimation approach. Additive faults, like offsets of

sensors, are easily detectable by parity equations in normal operation without extra

input excitation signals. Multiplicative faults, like parameter deviations of the motor

are better detected by parameter estimation, but require appropriate input excitation

signals, at least for short times. The described methods can be transformed to other

types of DC motors, depending on their construction, and also to single-phase AC

motors. Further, by applying the self-learning neuro-fuzzy system SELECT all faults

could be diagnosed with a 98% correct classification rate. A selection of faults, es-

pecially in the mechanical parts can also be detected by applying only signal models

for current structure-borne vibrations, [3.2].

3.2 Alternating-current motor (AC)

Alternating-current motors in the form of induction or asynchronous motors consist

usually of three windings placed in stator slots that are interconnected with the indi-

vidual phases of a three-phase voltage supply system either in delta- or Y-connection,

see Figure 3.8a). A rotating magnetic field is generated where angular velocity de-

pends on the power supply frequency f and on the number of pole pairs p within the

stator. Depending on different rotor constructions, induction motors and synchronous

motors can be distinguished. In the following, induction motors with a squirrel-cage
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rotor are considered. This type has a simple construction, is very robust, and is also

cheap and needs less maintenance. The speed can be controlled by a field-oriented

approach with variable frequency and amplitude generated by a voltage-source DC-

link converter. Statistics on failure rates of AC motor show that about 50% are due to

bearings, short cuts in stator windings count with 16% and broken rotor bars about

5%, [3.21], see also [3.2]. A model-based procedure for fault diagnosis of AC drives

will be treated in the following, developed by [3.22].
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Fig. 3.8. Schematic configuration of the stator and rotor for AC motors: a) three-phase repre-

sentation with one pole pair .p D 1/ per phase; b) two-phase equivalent circuit

3.2.1 Structure and models of induction motors (asynchronous motors)

a) Electrical subsystem

Detailed models of induction motors are derived e.g., in [3.8], [3.13], [3.14]. For

each rotor and stator winding the voltage and current equations are established, re-

sulting in six coupled differential equations for a three-phase induction motor. How-

ever, by transforming the three-phase system .USa;USb;USc/ into a two-phase sys-

tem .US˛;USˇ/ via the Clarke–Park transforms a considerable simplification can be

reached, Figure 3.8b). If the rotor flux is taken as the reference coordinate system the

two-phase system is represented by .USq;USd /, [3.8], [3.22]. Then two equations

result for the rotor flux ‰Rd and electrical motor torque Mel :

TR

d‰Rd

dt
.t/C‰Rd .t/ D MISd .t/ with TR D LR

RR

(3.2.1)

Mel .t/ D 3

2
p

M

LR

‰Rd .t/ISq.t/ (3.2.2)
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LR rotor self-inductance

RR rotor resistance

RS stator resistance

LS stator self-inductance

M mutual inductance between stator and rotor

I D ISd C iISq stator current vector

p number of pole pairs

‰Rd rotor flux

The flux linkage ‰Rd depends on ISd and the torque Mel on ISq , i.e. from each

component of the stator current vector. This is the basis for the field-oriented control

shown in Figure 3.9. It consists of two cascaded control loops for the flux and the

speed, with the two current components as sub (minor) control variables.

flux
controller

speed
controller

d-current
controller

q-current
controller

d,q

a,b,c

modu-
lator
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Fig. 3.9. Field-oriented control structure for induction motors

The dynamic behaviors of the electrical induction motor subsystems are

USd D
 

RS C RR

M 2

L2
R

!
ISd C �LS

dISd

dt
� �LS!K ISq � RRM

L2
R

‰Rd (3.2.3)

USq D
 

RS C RR

M 2

L2
R

!
ISq C �LS

dISq

dt
C �LS!K ISd C M

LR

!R‰Rd (3.2.4)

� D 1 � M 2

LS LR

(3.2.5)

Herewith, the electrical rotor speed is !R D p!m, where !m is the mechanical rotor

speed and the speed of the flux is !K with regard to the stator reference coordinate

system.
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b) Mechanical subsystem

The dynamic behavior of the mechanical part is obtained by establishing the angular

momentum balance:

J
d!m.t/

dt
D Mel .t/ � Mf .t/ � ML.t/ (3.2.6)

J ratio of inertia of motor and load

Mf friction torque

ML load torque

!m mechanical rotor speed

The friction torque usually consists of a Coulomb term and a viscous term:

Mf D Mf 0 sign!m.t/C Mf 1!m (3.2.7)

The load torque depends on the connecting power consuming machine, like a pump

or machine tool, and can frequently be approximated by a polynomial:

ML D ML0 C ML1!m C ML2!
2
m (3.2.8)

c) Thermal subsystem

Within the stator and rotor several power losses PLS and PLR arise which lead to a

heating of the induction motor parts. The main heat sources are ohmic losses and iron

losses, which can further be split up into hysteresis and eddy current losses. With the

stator and rotor heat capacity

CS D mS cSp

CR D mRcRp

where m is the respective mass and cP the specific heat value, two first-order differ-

ential equations result for the stator temperature #S .t/ and rotor temperature #R.t/.

With further simplifications about the heat transfer through the air gap and air cooling

a second-order model results for the stator temperature:

�#S .s/ D .bS1s C bS0/PLS .s/C bR0PRS .s/

a2s2 C a1s C a0

(3.2.9)

See [3.22], [3.24].

3.2.2 Signal-based fault detection of the power electronics

Power-grid-fed converters for the supply of variable-speed AC motors frequently

consist of a line-side AC–DC converter (rectifier), which rectifies the alternating grid

voltage, and a motor-side three-phase DC–AC converter (inverter) that generates the

three-phase system with variable frequency and amplitude, see Figure 3.10.
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Ud M

AC-DC DC-AC

rectifier converter

Fig. 3.10. Voltage source DC-link converter scheme for feeding AC motors

In the following it is shown how faults in these power electronics can be detected

with signal-based methods. Measured variables are the intermediate voltage Ud , the

phase currents IS1, IS2, IS3, which are identical the ISa, ISb , ISc of Figure 3.8.

For the phase voltages US1, US2, US3 only the setpoints of the PWM converter are

available.

a) AC–DC converter (rectifier)

Up to now, in series-produced inverters only a restricted number of diagnosis func-

tions is implemented. The supervision functionality comprises mainly the monitor-

ing of motor currents and the DC-link voltage as well as plausibility checks of motor

parameters.

The most important faults in rectifiers are the line disconnection of one phase

and faulty diodes. Among highly resistive diodes, which cannot conduct the current

anymore, defective diodes also occur which have lost blocking capability in the in-

verse direction. This inevitably effects a phase short circuit which triggers the line

fuse. However, if the fuse connected to the faulty rectifier-bridge blows, the fault is

equivalent to a disconnected (open) phase. The case of highly resistive diodes is a

mixture between normality and phase disconnection, as the fault has an impact only

within the half period, while the faulty diode should have carried the current. The

circuit diagram of the rectifier under consideration is depicted in Figure 3.11.

The faults discussed above affect high diode currents, as e.g. in the case of a

disconnected phase the power has to be supplied by the remaining two phases. Al-

though the faults do not directly lead to failure, the overloading of the remaining

diodes makes an early failure most probable, [3.12], [3.23].

Significant impacts of the faults are to be observed in the run of the DC-link

voltage Ud . As depicted in Figure 3.12 the signal shows significantly higher ripples

in the presence of faults.

An easy and robust way for rectifier fault detection is the evaluation of the sig-

nal´s variance

rUd D var fUd g : (3.2.10)

As expected, the variance increases in the case of faults from the corresponding val-

ues within the healthy state. As the variance depends crucially on the load current

ILoad it is computed for normal state in dependence on the load current, see Fig-

ure 3.13.
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In order to achieve high reliability, the measured variance curve of faulty diodes

is selected as the threshold. The actually measured curve exceeds the theoretical

one due to noise effects and peaks arisen by the interconnected DC–AC converter.

By this way faulty diodes can be detected by limit checking of the variance of the

intermediate voltage.
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Fig. 3.11. Circuit diagram of a voltage source DC-link converter
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b) DC–AC converter (inverter)

Figure 3.14 shows a scheme of a considered PWM inverter. Inverter faults and also

stator winding faults generate characteristic harmonics of the stator current vector.

The stator current

IS .t/ D 2

3

�
IS1.t/C IS2.t/e

�i 2�
3 C IS3.t/e

�i 4�
3

�
(3.2.11)

is transformed into an orthonormal ˛- and ˇ-component coordinate system

IS .t/ D IS˛.t/C iISˇ.t/ D IS0.t/e
i'.t/ (3.2.12)

In the fault-free case the trajectory of the current vector forms a circle, which deforms

to an ellipse in the case of a stator winding fault, see Figure 3.15a) and to other

trajectories for inverter faults and current sensor faults, Figure 3.15b)-d). In the case

of these faults the spectrum of the current vector contains a positive and negative

frequency, [3.22], [3.23].

IS .t/ D NIS1ei.!S tC'1/ C NIS�1ei.�!S tC'�1/ (3.2.13)

where !S is the stator angular frequency.
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Fig. 3.14. PWM inverter for DC–AC converter

The vector trajectory IS�1 is also circular, but with smaller radius and opposite

direction in the case of an ellipse. By monitoring IS1 and IS�1 obtained through a

Fourier series analysis it is possible to detect the mentioned faults, [3.23]. This can

be applied to AC motors with constant grid frequency fS . However, in the case of

a field-oriented control with variable frequency fS the current vector is influenced

by control dynamics. Because also the stator voltage US .t/ as output of the current

controllers, see Figure 3.9, shows corresponding frequencies, at least for high speeds

of the motor the Fourier analysis can be performed with US .t/. Therefore

rU �1.t/ D j NUS�1.t/j (3.2.14)

is taken as the fault feature for a stationary speed. However, a speed-dependent

threshold is required, which has to be determined experimentally. An additional fea-

ture is the DC value
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Fig. 3.15. Stator current vector trajectories: a) stator winding fault, b) inverter IGBT (Insulated

Gate Bipolar Transistor) fault, c) phase 2 disconnection, d) current sensor fault

rU 0H z D j NUSOH zj (3.2.15)

for detecting offsets in the voltage vector US .

As in the case of a disconnected phase or a defective IGBT valve the three cur-

rents become different, the effective values of the three currents ISi.t/ are calculated

by taking the squares I2
Si.t/ with subsequent low-pass filtering. Then mutual residu-

als are formed:

r12.t/ D I2
S1.t/ � I2

S2.t/

r23.t/ D I2
S2.t/ � I2

S3.t/

r31.t/ D I2
S3.t/ � I2

S1.t/

(3.2.16)

In order to include all measured currents the current sum is used as a further residual:

rS0 D jIS0j D jIS1.t/C IS2.t/C IS3.t/j (3.2.17)

which is usually zero in a fault-free situation.

Finally, Table 3.4 shows the fault-symptom relations for different faults. All con-

sidered faults can be isolated. In general, these results indicate a strong isolability.

Only within the groups of open phases, defective valve and ground cuts is there a

weak isolability.
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Table 3.4. Fault-symptom table for the PWM converter and stator windings

Symptoms

Faults jr12j jr23j jr31j jrU �1j jrUOH z j jIS0j
open phase 1 CC 0 CC CC 0 0

open phase 2 CC CC 0 CC 0 0

open phase 3 0 CC CC CC 0 0

defective valve 1 CC C CC C CC 0

defective valve 2 CC CC C C CC 0

defective valve 3 C CC CC C CC 0

stator winding shortcut � 0 � 0 � 0 C 0 0

offset fault sensor 1 or 2 � 0 � 0 � 0 0 C C=C C
gain fault sensor 1 or 2 � 0 � 0 � 0 C 0 C=C C
faulty current sensor 0 0 0 0 0 C=C C
ground cut phase 1 CC C CC CC 0 C=C C
ground cut phase 2 CC CC C CC 0 C=C C
ground cut phase 3 C CC CC CC 0 C=C C

3.2.3 Model-based fault detection of the AC motor

It is assumed that the following measurements and calculated variables are available:

� USq , USd voltages of the q- and d -systems

� ISq , ISd currents of the q- and d -systems

� !K D !S supply angular frequency of the PWM inverter (flux speed)

� !R rotor angular frequency.

In order to apply parity equations for the fault detection of the AC motor, nonlinear

dynamic models are required, which are obtained by nonlinear process identification

methods, [3.24].

The AC motor is the type VEM K21R90S (Normmotor) with four poles and rated

values 400 V, 2.62 A, 1.1 kW, 1420 rpm (50 Hz), see [3.22].

a) Electrical part

As a basis for obtaining dynamic models (3.2.3) and (3.2.4) are used for the d - and

q-subsystems. It has to be taken into account that phase voltages are not exactly

known. For the practical experiments the d -current control stays closed, whereas the

q-current control is opened in order to introduce an excitation signal USq , see Fig-

ure 3.9. Therefore the rotor flux reference value ‰Rdref stays constant. Discretizing

(3.2.4) with the discrete time k D t=T0, where T0 is sampling time, leads to

ISq.k/ D ‚1USq.k/C‚2!K .k/ISd .k/C‚3!R.k/‰Rd C‚4ISq.k�1/ (3.2.18)

where‚i are parameters, which depend on physical parameters. The product !K .k/

ISd .k/ can be neglected and ‰Rd D const. The parameters ‚i further depend on

the operating point through !K and ISq . Therefore a local linear model is defined:
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ISq.k/ D w1.z/USq.k/C w2.z/!R.k/C w3.z/ISq.k � 1/ (3.2.19)

The operating-point dependence is expressed by the weighting vector

zT D
�
!K .k/ISq.k � 1/

�
(3.2.20)

Hence, this is a semi-physical model because the structure stems from physical-based

modeling. The weighting parameters wi.z/ are estimated with the LOLIMOT iden-

tification method, [3.15], see also [3.9]. This can be considered as a special neu-

ral network, where direct least-squares parameter estimation is applied, leading to a

neuro-fuzzy model.

However, the parameters depend also on the temperature of the AC motor. There-

fore the stator temperature #S is measured and two correction factors k1.#S / and

k2.#S / are introduced in (3.2.19):

ISq.k/ D w1.z/k1.#S /USq.k/Cw2.z/k2.#S /!R.k/Cw3.z/ISq.k �1/ (3.2.21)

These correction factors are estimated and k1.#S / is approximated by a second-order

polynomial and k2.#S / with a linear dependence.

The dynamic behavior of the AC motor was identified by excitation of USq

with an APRBS, an amplitude-modulated PRBS, and sampling time T0 D 1:5 ms

(667 Hz). The obtained generalization results in Figure 3.16 show a very good agree-

ment with six local models and two correction characteristics for stator temperatures

#S 2 Œ25ıC; 60ıC�.

In a similar way the d -system can be identified. (3.2.3) and experimental trials

lead to

USd .k/ D w0.z/C w1.z/!K .k/C w2.z/ISq.k/ (3.2.22)

As ISd is constant, its derivative is zero. Therefore the d -model is static. The tem-

perature dependence is again considered by correction factors. Figure 3.17 shows

relatively good results with a model having six local linear models and 18 correction

characteristics.

These nonlinear precise models can now be used to apply parity equations for

fault detection. The following output residuals and their variances are formed, com-

pare Figure 3.18:

rq D ISq � OISq (3.2.23)

rd D USd � OUSd (3.2.24)

furthermore r12, r23, r31 and jIS0j form the phase currents, (3.2.16) and (3.2.17). As

the models are more precise in the case of stationary behavior, an adaptive threshold

is used for dynamic states in dependence on the current ISq , which is proportional

to the torque-generating dynamics. Table 3.5 presents the fault-symptom relation for

different faults. The AC motor faults stator winding defect, broken rotor bar, and

rotor eccentricity are strongly isolated and can therefore be diagnosed. However,

broken rotor bar and broken end ring are only weakly isolated and cannot be clearly

separated. For the other faults the same results are obtained as in Table 3.4 for the

PWM converter.
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Table 3.5. Fault-symptom table for the AC motor

Symptoms

Faults jrqLP j var frqg jrdLP j var frd g jr12j jr23j jr31j jIS0j
open phase 1 �� CC CC CC CC 0 CC 0

open phase 2 �� CC CC CC CC CC 0 0

open phase 3 �� CC CC CC 0 CC CC 0

defective valve 1 � C CC CC CC C CC 0

defective valve 2 � C CC CC CC CC 0 0

defective valve 3 � C CC CC C CC CC 0

stator winding shortcut �� 0 C C � 0 � 0 � 0 0

broken rotor bar CC C C CC 0 0 0 0

broken end ring C C C C 0 0 0 0

rotor eccentricity C 0 0 0 0 0 0 0

gain fault sensor 1 or 2 �=C 0 0 0 0 0 0 C=C C
offset sensor fault 1 or 2 C 0 0 0 0 0 0 C=C C
fault current sensor 0 0 0 0 0 0 0 C=C C
ground cut phase 1 �� C C C CC C CC C=C C
ground cut phase 2 �� C C C CC CC C C=C C
ground cut phase 3 �� C C C C CC CC C=C C
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b) Mechanical subsystem

The dynamic behavior of the rotor speed !R.t/ follows from (3.2.6). Faults in the

mechanical part express themselves especially in the friction parameters Mf 0 and

Mf 1 and eventually in the ratio of inertia J . However, these parameters also depend

on the connected load like general drive-trains with or without gears and power-

consuming machines like machine tools or pumps. Therefore this dynamics equa-

tion depends on the load and corresponding available measurements, see e.g. [3.9].

The electrical torque Mel can be determined with (3.2.1) and (3.2.2) using the cur-

rent ISd and ISq of the d - and q-systems, which are known within a field-oriented

controller, and the mechanical rotor speed !m. Figure 3.19 summarizes the resulting

signal flow and computations. Some electrical parameters or groups of parameters

can then be estimated. As the mechanical subsystem is slower than the electrical

subsystem, a larger sampling time can be chosen, e.g. T0 D 10 ms (100 Hz).

An application with a circular pump is reported in Section 6.1.
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c) Thermal subsystem

The thermal state of the AC motor is indicated by the temperature of the rotor and the

stator. Overheating arises because of defective cooling, high friction and overload.

The generated stator heat power due to ohmic losses is

PLS D 3

2
RS

�
I2

Sd C I2
Sq

�
(3.2.25)

and the rotor losses. If the rotor power losses are neglected, only one part of the trans-

fer function of (3.2.9) has to be considered. The corresponding z-transfer function

G.z/ D �#S .z/

PLS .z/
D ˇ1z�1 C ˇ2z�2

1 C ˛1z�1 C ˛2z�2
(3.2.26)
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possesses two poles which belong to a large time constant T1 � 17 min and a small

one T2 � 2 min, which were determined by parameter estimation (sampling time

T0 D 30 s). Then an output residual as the difference of the measured and estimated

stator temperature

r# D #S � O#S (3.2.27)

can be formed. In the case of dynamic operations parameter estimation can be ap-

plied. Especially the time constant OT1 then indicates faults of the thermal system.

Figure 3.20 shows the increase of the stator temperature for a defective fan wheel

and Table 3.6 the estimates of the time constants. For cooling faults or overload the

stator temperature increases considerably, indicated by a larger gain of (3.2.26). Also

the large time constant T1 shows a strong increase. The small constant T2 remains

approximately constant.

J [°C]s

Js

J
0

Js
^

100

50

0

40

0
0 4020 60 80 100 120

r [°C]J
threshold t [min]

Fig. 3.20. Stator temperature #S and temperature residual r# in the case of a defective fan

wheel. O#s.PLS ; t/ is the model output for normal behavior

Table 3.6. Parameter estimates of the thermal subsystem for different cooling defects

time constants fault-free defective fan covered cooling covered motor

wheel slots

OT1 [min] 16:6 69:3 31:2 36:1
OT2 [min] 1:99 1:86 1:82 1:72

d) AC motor at standstill

Some faults in induction motors do not immediately effect a complete failure of

the drive. Thus, e.g. in the case of broken rotor bars further operation possible in

principle. In consideration of the higher currents in the adjacent bars and the resulting

mechanical stresses due to thermal overload and unbalance, further rotor or end-ring

breakage may occur [3.21].
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Hence, the monitoring of these faults does not have to be performed permanently.

Basically, it is sufficient to supervise the induction motor after certain periods of time.

In order to select an adequate operating point for the test of the electrical sub-

system some basic considerations are necessary. Usually the motor shaft is linked

to a specific load (e.g. centrifugal pump) and any operating point with motor speeds

different from zero affects the load. If the monitoring approach must not influence

the load facility and the disconnection of the load for this purpose is undesirable,

the only possible solution is to perform the supervision cycle at standstill. The back-

ground is that the feeding voltage of the induction machine can be generated by the

inverter in a manner that the motor does not produce any torque. Furthermore, the

motor speed is not required and does not have to be measured.

For the test signal different selections can be made to cover a certain frequency

range. On the one hand sinusoidal input signals can be chosen. With the help of the

measured output currents the impedance is determined for several frequency points

by employing frequency-response methods. Subsequently, the physical parameters

(rotor/stator resistances/inductances, mutual inductance) are estimated by means of

least-squares parameter estimation methods. On the other hand, the process can also

be excited by PRBS (pseudo-random binary signals). Here, the physical parameters

are determined by estimating a dynamic continuous single input/output model with

non-recursive least-squares parameter-estimation methods, see Figure 3.21, [3.1].

The parameters are estimated for different excitation axes and in the presence

of specific faults characteristic curves are obtained. Both described approaches have

been implemented and tested and similar estimation results have been obtained. The

results achieved with the frequency-response approach are more precise. On the

other hand, the second approach is approximately ten times as fast as the frequency-

response technique.

In the stationary case the AC motor can be considered as a transformer, [3.22].

The transfer function then results as

GSd .s/ D ISd .s/

USd .s/
D 1

RS

1 C TRs

1 C .TR C TS /s C TRTS�s2
(3.2.28)

with TS D LS=RS and TR D LR=RR . This leads to the differential equation

RISd .t/ D b0USd .t/C b1
PUSd .t/ � a0ISd .t/ � a1

PISd .t/ (3.2.29)

with

b0 D 1

�TS TRRS

b1 D 1

�TS RS

a0 D 1

TS TR�
a1 D TS C TR

TS TR�

With the help of parameter estimation and state-variable filters for determining the

derivatives it is then possible to estimate ORS , OLS , ORR and OM and to detect faults like

a broken bar, broken end ring and eccentricity. Figure 3.21 shows the measurement

configuration and Figure 3.22 depicts the increased rotor resistance in dependence

on the excitation axis for a broken bar. More details are given in [3.22].
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3.2.4 Conclusions

Figure 3.23 gives an overall scheme of the signal- and process-model-based fault de-

tection and diagnosis of a speed-controlled AC drive. The investigations have shown

that with the support of physical modeling it is possible to detect several different

faults in the rectifier, the PWM inverter, the AC-motor stator and rotor, and the mo-

tor mechanics. The use of nonlinear output parity equations is especially attractive

for the electrical subsystems. However, it required relatively precise process models.

These models can be obtained with a multi-model approach by applying local linear

models and the LOLIMOT nonlinear parameter estimation. For the fault detection

of the motor mechanics linear parameter estimation is preferable and includes also

process parameters from the load machinery. The model-based fault-diagnosis ap-

proach requires only four sensors and some variables which are available within the

field-oriented control, determines up to 14 symptoms and can diagnose about 10 dif-

ferent faults. The described fault-detection methods can be directly transferred to

synchronous motors.



4

Fault diagnosis of electrical actuators

Actuators usually transform low-powered manipulated variables (e.g. analog volt-

ages 0��10 V, applied DC currents 0��20 mA or 4��20 mA, pneumatic pressures

0:2 � �1 bar, or hydraulic pressures 0 � �150 bar) into process input variables of a

much higher power level. Frequently the process input variable is a flow of energy

or matter, or a force or torque. The power needed for actuating is provided by an

auxiliary energy supply, which feeds the power amplifier for the actuator. The auxil-

iary energy can be electrical, pneumatic or hydraulic. In many cases the actuators are

composed of a signal transformer, an actuator drive, an actuator transformer (gear,

spindle) and an actuating device or valve, compare Figure 4.1 and [4.7]. Actuators

can operate in open loop or closed loop (e.g. position or flow-control). A survey of

basic structures of actuators, different types, characteristics and mathematical mod-

els is given in [4.4].

Actuators play an important role in any manually or automatically controlled

system. In the following sections the fault detection of electrical and fluidic actuators

is considered.

4.1 Electromagnetic actuator

Electromagnets play an important role as actuators in many technical processes.

Therefore their supervision and fault detection is of primary interest. One distin-

guishes switching magnets and proportional magnets. The switching magnets have

the task to switch, e.g. a valve from one end position to the other end position. There-

fore, only switching and reaching of the end positions are of interest. Proportional

magnets have to hold any position between the two end positions. They act usually

against a spring, compare Figure 4.2. Because of the required precise positioning

they should have a linear characteristic between the input voltage U and the mag-

netic force F and small electrical and mechanical (frictional) hysteresis. Usually, the

proportional actuator is operating in a closed loop for position control, where the

controlled variable is the measured position of the armature or another output vari-

able like pressure. To design the force characteristic F.z/ independently of the air

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  81 

DOI 10.1007/978-3-642-12767-0_4, © Springer-Verlag Berlin Heidelberg 2011 

Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,
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Fig. 4.1. Basic structures of actuators: a) open-loop controlled actuator; b) closed-loop con-

trolled actuator

gap the magnetic yoke is frequently designed conically around the operating point

of the armature, [4.4], [4.8], see Figure 4.2. The nonlinear force–position character-

istic of a switching magnet, which has no constant characteristic F.z/, can also be

linearized by a nonlinear compensation as shown in Figure 4.3.

ZI

U

position sensor coil spring armature

Fig. 4.2. Scheme of the investigated low-cost DC solenoid drive
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Fig. 4.3. General structure of a series correction (compensation) for nonlinear process statics

4.1.1 Position control

As an example a simple solenoid designed as in Figure 4.2 is considered with the

following data, [4.16]:

armature length 125 mm

armature diameter 25 mm

coil length 60 mm

coil resistance R D 22:4�

inductivity L.Z D 0/mm = 0.87 H

L.Z D 25/mm = 1.18 H

voltage U D 24 V (DC)

spring constant cF D 1620 N/m

position sensor inductivity, accuracy 0.5%

measurement range: 40 mm

time constant: 2.5 ms

An appropriate function for describing the nonlinear force–current characteristic,

[4.8], see Figure 4.4, is the polynominal approximation

F.I;Z/ D I

2X

iD0

Ki

.Z0 � Z/i
with Z0 D 26 mm (4.1.1)

The resulting statics of the linearized actuator are shown in Figure 4.5 where a typical

hysteresis characteristic becomes obvious. Its gradient represents the local gain KP

of the actuator, which can after linearization be assumed constant. The position-

dependent width of the hysteresis characteristic is a measure for frictional forces and

magnetic hysteresis.

In addition to the compensation of the nonlinear force characteristic an adap-

tive friction compensation can be applied, based on the parameter estimation of the

Coulomb-friction coefficient, as shown in [4.4], [4.6] and [4.16].

The linearized system including the compensation of the nonlinear force–position

characteristic can now be described by two equations. For the inner current circuit

TI
PI.t/C I.t/ D KI U.t/ (4.1.2)

holds approximately and for the mechanical subsystem with �Z D z

mRz.t/C d Pz.t/C cz.t/ D KMagI.t/ � FC sign .Pz/C FL.t/ (4.1.3)
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sated) solenoid drive (1 V , 2.5 mm)
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The I/O behavior of the actuator can be modeled as a third-order system. The un-

known parameters are obtained during a pre-identification phase, exciting the actu-

ator with a special input signal with sampling time T0 D 2:5 ms. Taking the effect

of Coulomb friction into account, the output error parameter estimation leads to the

following direction-dependent transfer functions:

GC.s/ D z.s/

U.s/
D 382:4

.s C 116:4/
�
s2 C 40:4 s C 3329:4

�e0:0025 s (4.1.4)

G�.s/ D z.s/

U.s/
D 220:0

.s C 47:9/
�
s2 C 47:9 s C 3444:5

�e0:0025 s (4.1.5)

The index C=� denotes the direction of the armature motion and the additional dead-

time describes the effect of asynchronous PWM generation.

Figure 4.6 shows the obtained control performance using a numerical optimized

position controller

Gq

�
q�1

�
D �U.k/

r.k/
D 2:231 � 4:204q�1 C 2:000 q�2

�
1 � q�1

� �
1 � 0:616q�1

� (4.1.6)

proportional-integral derivative (PID) type with first-order lag, T0 D 2:5 ms where

q�1 is a shift operator for one sampling time u.k/q�1 D u.k � 1/. Although there is

a change in the actuator´s dynamic behavior, the controller designed for the slower

negative motion (worst case) is robust enough for positive motions. The dynamic

features are suitable and stability is obtained even in the positioning range 17 mm

< Z < 25 mm, which is unstable with linear control and uncompensated actuator

characteristic.

4.1.2 Fault detection with parameter estimation

The electromagnetic actuator is now considered for the linearized operation range

0 � 25 mm. From the equations for the current circuit (4.1.2) and the mechanical

subsystem (4.1.3) a third-order differential equation follows:

z.3/.t/C a�
2 Rz.t/C a�

1 Pz.t/C a�
0z.t/ D b�

0�U.t/C c�
0 .t/ (4.1.7)

The parameters of the continuous-time representation

‚T .t/ D Œa�
2a�

1a�
0b�

0 c�
0 � (4.1.8)

depend thereby on the physical process coefficients

pT D ŒT1;D; !0;KP ; c
�
0 � (4.1.9)

with, for example, [4.4],

D D d

2
p

mc
; !0 D

r
c

m
(4.1.10)
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Fig. 4.6. Closed-loop position control of the solenoid with correction of the nonlinear actuator

characteristic, but without friction compensation, T0 D 2:5 ms. U1; after compensation of the

nonlinearity, Figure 4.3

These process coefficients can be expressed in terms of the parameter estimates ‚.

Hence, after estimation of the model parameters‚ by measuring the voltage U and

the position Z all process coefficients p can be calculated, [4.16].

In the following some experimental results are shown for artificially generated

actuator faults:

F1: too large of the spring pre-tension

F2: decrease of the spring constant (by break or aging, change from c = 1650 to 1200

N m�1)

F3: increase of friction (increase of surface roughness and jamming)

F4: fault in the current circuit (weak controller gain).

The parameters were estimated by output error minimization using specific ex-

citation signals. Sampling time was T0 D 0:2 ms. Figure 4.7 and Table 4.1 show

the results for different faults. Based on the deviations (symptoms) all faults can be

identified. This can be performed by a pattern recognition or a systematic treatment

of fault-symptom trees. In all cases different patterns of coefficient changes result.

This enables a unique diagnosis of the four faults based on parameter estimation.



4.2 Electrical automotive throttle valve actuator 87

number of evaluations

normal
condition

co
ef

fi
ci

en
ts

,
K

c
P

0
co

ef
fi

ci
en

ts
,
T

w
0

I

co
ef

fi
ci

en
t

D

F1 F2 F3 F4

time constant T [ms]

natural frequency [Hz]w
0

^

damping D
^

^
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Table 4.1. Changes of process coefficients for an electromagnet depending on different faults

static coefficients dynamic coefficients

Fault type KPC c0C !0C DC T1

F1 0 �� 0 0 0

F2 CC �� � C 0

F3 � C 0 CC 0

F4 0 0 0 C CC

4.2 Electrical automotive throttle valve actuator

Since about 1990, electrically driven throttle valves became a standard component

for gasoline engines. They control the air mass flow through the intake manifold to

the cylinders. The electrical throttles are manipulated by the accelerator-pedal sen-

sors via an electronic control unit and additional control inputs from idle-speed con-

trol, traction control and cruise control. In many vehicles it is the first drive-by-wire

component, replacing the former mechanical linkage, [4.17]. Because the electrical

throttles are safety-related components, reliability and safety are of high importance.

In the following a fault detection and diagnosis method and the corresponding equip-
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ment is described which was developed for the computer-based testing of electrical

throttle components for quality control. The methods can also be applied onboard.

4.2.1 Structure and models of the actuator

Figure 4.8 shows a cross-sectional view of the actuator. A permanently excited DC

motor with brush commutation drives the throttle through a two-stage gear in the

opening or closing direction. It operates against the main helic spring. A second

spring works in the closing region in the opposite direction, in order to open the

throttle in the case of voltage loss into a limp-home position (a mechanical redun-

dancy). The motor is manipulated by a pulse-width-modulated (PWM) armature

voltage UA.�12 to C 12 V). The measured variables are the armature voltage UA,

the armature current IA and the angular throttle position 'K .0 to 90ı/. This throttle

position is measured by two redundant wiper-potentiometers operating in two differ-

ent directions. Some technical data are given in Table 4.2. The position controller was

a model-based sliding-mode controller or PID controller with time lag and sampling

time T0 D 1:5 ms, [4.14], [4.15].

spring

throttle valve

gear

potentiometer electrical
connector

measured
variables

manipulated
variables
(armature voltage)

commutator permanently excited
DC motor

U
I

j

A
A

K

Fig. 4.8. Scheme of the electrical throttle

Theoretical modeling of the throttle valve leads to the following basic equations,

compare (3.1.1), (3.1.2) and [4.4]:

Electrical part,

UA.t/ D RAIA.t/C‰!A.t/C c0e (4.2.1)

Mel .t/ D ‰IA.t/ (4.2.2)

Mechanical part (related to motor axle),

�J P!k D Mel .t/ � Mmech.t/ (4.2.3)

Mmech.t/ D 1

�
.cS1'k.t/C MS0 C MF / .'k > 'k0/ (4.2.4)

MF .t/ D MF0 sign!k.t/C MF1!k.t/ (4.2.5)

The signals used are:
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RA armature resistance

‰ magnetic flux linkage

� gear ratio (� D 16:42)

J moment of inertia of the motor

MF0 Coulomb-friction torque

MF1 viscous-friction torque

cS1 spring constant

MS0 spring pre-tension

!k D P'k throttle angular speed

!A motor angular speed. !A D �!k

Table 4.2. Technical data of the electromagnetic throttle actuator (Bosch, DV-E4). Permanently

excited DC motor with brushes. 1 pole pair, 12 commutation segments, 2 ball bearings; 12 V,

1.4 A, reversion current: 7.5 A; throttle diameter: 70 mm, needle bearings

Parameter Reference value

armature resistance RA Œ�� 1:2

inductance LA [� H] 600

magnetic flux linkage ‰ [Nm/A] 0:029

moment of inertia of the motor J [kg m2/rad] 0:0000092

spring constant cS1 [Nm/ı] 0:002 � 0:0021

spring pre-tension MS0 [Nm] 0:29 ˙ 0:03

Coulomb-friction torque MF0 [Nm] ca. 0:18

gear ratio � [-] 43/12*55/12 = 16.42

Compare the general equations for a DC motor in Section 3.1 and Figure 4.9. The

armature inductance can be neglected, because the electrical time constant Tel D
LA=RA � 1 ms is much smaller than the mechanical dynamics. The constant c0e

takes additive faults into account.

Dependent on the input excitation either the Coulomb friction or the viscous

friction turned out to be dominant. Figure 4.10 depicts the principle of the applied

fault detection and diagnosis.

4.2.2 Input test cycle for quality control

In order to achieve optimal diagnostic results, the test cycle is composed of different

phases, which each phase is designed to get a deep insight into a specific subsystem

or technical component of the whole throttle valve actuator, see Figure 4.11.

At the beginning of the test (phases 1��4) the throttle valve actuator is controlled

in an open loop by directly manipulating the armature voltage of the DC motor. In

this first step, an open circuit, a short circuit or a sneak path between the electrical

lines of the actuator are detected. Furthermore, offset faults in the measured signals

armature voltage UA, armature current IA and throttle position 'K are detected.
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After this first stage the diagnosis proceeds in the closed-loop mode (phases 5 and

6). Now the manipulated variable of the diagnostic algorithm is given by the throttle

position setpoint. This stage consists of two phases. In the first one, the whole range

of operation is covered by a triangular setpoint. Herewith the redundantly measured

position signals are checked for plausibility, and an insight into the mechanics of the

actuator is gained by the estimation of some parameters of the mechanical subsystem.

In phase 6, the test object is excited with a high dynamic signal in order to achieve

a large variation of the speed of the DC motor. Then the parameters of the electri-

cal subsystem of the motor are determined by continuous-time parameter-estimation

algorithms. Furthermore, dynamic deviations from the nominal process behavior are

detected with a parity equation using the model obtained from parameter estimation.
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Fig. 4.11. Test cycle for the automatic fault diagnosis of the throttle valve

4.2.3 Fault detection with parameter estimation

a) Parameter estimation for the dynamic behavior

The parameter estimation is carried out with recursive least-squares estimation in the

form of discrete square-root filtering (DSFI), see e.g. [4.4]. The basic model equation

is

y.t/ D  T .t/ O� C e.t/ (4.2.6)

and the data vector and the parameter estimation for the electrical part are

y.t/ D UA.t/ (4.2.7)

 T .t/ D ŒIA.t/ �!k.t/1� (4.2.8)

O�T D Œ O‚1
O‚2

O‚3� (4.2.9)
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and for the mechanical part

y.t/ D P!k.t/ (4.2.10)

 T .t/ D ŒIA.t/ 'k.t/ !k.t/1� (4.2.11)

O�T D Œ O‚4
O‚5

O‚6
O‚7� (4.2.12)

Because of a fast input excitation the Coulomb-friction term is neglected and only

the viscous-friction parameter MF1 is estimated under the condition that j!k j >
1:5 rad/s.

The relation between the physical process coefficients and the parameter esti-

mates are

O‚1 D RAI O‚2 D ‰I O‚3 D c0e

O‚4 D ‰

�J
I O‚5 D � cS1

�2J
I O‚6 D �MF1

�2J
I O‚7 D �MS0

�2J

(4.2.13)

As the gear ratio � is known, the ratio of inertia follows from

J D
O‚2

� O‚4

(4.2.14)

All other process coefficients can be directly determined from the parameter esti-

mates O‚i .

For the parameter estimation the actuator operates in closed loop and the setpoint

is changed with a PRBS between 10 and 70 deg. The derivatives !k D P'k and P!k D
R'k are determined by a state-variable filter with sampling time TOSVF D 2 ms. The

sampling time for the parameter estimation is T0 D 6 ms. The resulting parameter

estimates converge fast and the largest equation error is � 5% or � 3:5 deg for the

electrical part and � 7 � �12% for the mechanical part, [4.14]. Table 4.3 shows the

deviations of the seven parameter estimates after introducing 14 different faults in

several throttle actuators. All faults lead to different patterns, except F11 and F1, F2,

which are not isolable.

b) Parameter estimation for the static behavior

In order to obtain more precise information on the mechanical part and especially

the friction phenomena only the static behavior is considered for slow continuous

input change according to a triangular upward and downward motion (phase 5 in

Figure 4.10). Setting P!k D 0 and neglecting the viscous friction (4.2.1) to (4.2.5)

leads with t D kT0 to

IA.t/ D 1

�‰
.cS1'k.k/C MS0 C MF0 sign!k.k//

D ‰T .k/‚

Because of the direction-dependent Coulomb friction for the opening and closing

two estimations are made:
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Table 4.3. Process parameter deviations for different actuator faults: 0: no significant change;

C: increase; �: decrease

Features

parameter estimates

Faults RA ‰ c0e J cS1 MF1 MS0

F1 increase spring pre-tension 0 0 0 0 0 0 C
F2 decrease spring pre-tension 0 0 0 0 0 0 �
F3 commutator shortcut � � 0 C C C 0

F4 armature winding shortcut 0 � 0 C C C 0

F5 armature winding break C � 0 0 C C C
F6 additional serial resistance C 0 0 0 0 0 0

F7 additional parallel resistance � � 0 0 C C 0

F8 increased gear friction 0 0 0 C C C 0

F9 offset fault UA 0 0 C=� 0 0 0 0

F10 offset fault IA 0 0 �=C 0 0 0 C=�
F11 offset fault 'K 0 0 0 0 0 0 �=C
F12 scale fault UA C=� C=� C=� C=� C=� C=� C=�
F13 scale fault IA �=C 0 0 C=� C=� C=� C=�
F14 scale fault 'K 0 �=C 0 �=C �=C �=C �=C

‰T
1 .k/ D Œ'C

k
.k/ 1� ‰T

2 .k/ D Œ'�
k .k/ 1�

O‚C
.k/ D Œ O‚1

O‚2� O‚�
.k/ D Œ O‚3

O‚4�

with

O‚1 D cS1

�‰
O‚2 D MS0 C MF0

�‰

O‚3 D cS1

�‰
O‚4 D MS0 � MF0

�‰

The magnetic flux linkage ‰ is known from (4.2.13). The physical process parame-

ters then result as

cS1 D �‰
O‚1 C O‚3

2

MS0 D �‰
O‚2 C O‚4

2

MF0 D �‰
O‚2 � O‚4

2

The parameter estimation is performed with recursive DSFI and T0 D 6 ms for each

motion. Figure 4.12 shows the results for a fault-free case. The spring pre-tension

MS0 leads to a positive offset of the linear spring characteristic and the dry friction

shifts the friction characteristic by M C
F0 and M �

F0 such that a hysteresis characteristic

results. A comparison with the electrical torque M 0
el

D �‰IA related to the throttle

axle indicates a good agreement with the estimated hysteresis characteristic. Changes
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of the spring constant cause a change of the slope cS1 and changes of the friction or

the pre-tension lead to shifts of the characteristics. (The oscillations of the calculated

electrical torque are due to the closed-loop behavior in connection with adhesive

friction or stick–slip effects, which are not modeled. The range around the point of

returns, where adhesion works, is omitted in the parameter estimation for simplifying

reasons).
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Fig. 4.12. Estimated static behavior of the throttle actuator (fault-free case)

4.2.4 Fault detection with parity equation

The application of several parity equations with structured residuals according to

Section 3.1.2 was not successful, because the residuals have shown too much vari-

ance due to the difficulties in modeling the dynamic behavior of the mechanical

system. This was especially due to the various kinds of dry and viscous friction and

stick–slip effects of the motor brushes, the two-stage gear and pre-tensioned spring.

Therefore only one parity equation is used for the electrical part. (4.2.1) leads to the

voltage residual

r.t/ D UA.t/ � RAIA.t/ �‰�!k.t/ (4.2.15)

The residual is calculated in continuous time. !k.t/ D P'k.t/ is determined by a

state-variable filter (SVF). Because the SVF has to be applied to all measurements,

all signals are low-pass filtered with an SVF with equal parameters. Simulations

indicate that the residual shows a short burst for a sudden position sensor offset

and an increase of the variance after changing the resistance RA or the gain of the

position sensor, after about 200 ms, [4.14].

However, the parameters RA and ‰ change with temperature. The ranges are

for �40 to C 120ıC, RA D 1:0 : : : 1:81� (rated value 1.3 �) and ‰ D
0:0314 : : : 0:0224 Vs (rated value 0:028 Vs). This means that these parameters should
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be taken from parameter estimation. An alternative is to apply adaptive parity equa-

tions, e.g. described in [4.3], [4.5] and [4.14]. The armature resistance changes follow

from

� ORA D
PN

iD0 �
j IA.k � i/r.k � i/

PN
iD0 �

j IA.k � i/IA.k � i/

where � � 1 is a forgetting factor. ORA is updated after a threshold �RAth is ex-

ceeded. As there exists a linear relationship between ‰.#/ and RA.#/ under the

influence of the temperature #;‰.RA/ can be stored in a look-up table.

The theoretical and experimental investigations have shown that a detailed fault

detection is especially possible with parameter-estimation methods. The parameter

estimation of the static behavior gives best results for the mechanical part. Parameter

estimation for the dynamic behavior allows one to detect faults in the mechanical

part as well as the electrical part. Parity equations were only successful for the elec-

trical part in combination with parameter estimation. The application of the parity

equation for online real-time detection of position sensor faults and reconfiguration

of the position control is described in [4.14]. Table 4.4 summarizes the conditions

and applicability for the application of the fault-detection methods.

Table 4.4. Conditions and applicability for the application of fault-detection methods of the

throttle actuator

Data Parameter estimation Parity Application

evaluation dynamic static equation

online dynamic not suitable with parameter onboard

real-time excitation estimation

offline dynamic rampwise with parameter quality

excitation test signals estimation control

4.2.5 Fault diagnosis

The experiments with the test cycle for quality control allows one to generate 30

different symptoms mainly by parameter estimation. In order to perform a fault di-

agnosis the observed symptoms can either be compared with a fault-symptom table,

Table 4.3, or systematically evaluated with a fuzzy-logic diagnosis system, as de-

scribed in [4.5]. The basis consists of fuzzy IF-THEN rules like

IF fs1 is A11 AND s2 is A21g THEN ff is F1g

Some examples are given in Figure 4.13. The membership functions of the attributes

(symptoms) have simple shapes like triangles, trapezoids or ramps. Fuzzy-logic op-

erators for the premise are min/max compositions. As it is sufficient to have one rule

for each fault and to represent the faults as singletons fj 2 0 : : : 1, the degree of

the fulfillment of the premise gives directly the degree of the conclusion, such that
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more complicated evaluations of aggregation and defuzzification are avoided, see

Figure 4.14. The diagnosis system was tested with different actuators and allowed to

diagnose 38 different implemented faults (by measurement of only three signals).

In addition a learning neuro-fuzzy system SARAH (system for adaptive rule ac-

quisition with Hebbian learning) [4.1] was applied with a classification rate close to

100% for 22 rules.
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4.2.6 Fault-diagnosis equipment

The developed test equipment consists as depicted in Figure 4.15 of a personal com-

puter Pentium PC, 75 MHz), three boards for the real-time data processing (digital

signal-processing (DSP) board dSpace DS 1003-192 with TMS 320C40 processor,

50 MHz, A/D-board with 32 channels, 16 bit, digital-I/O-board dSpace DS 4001, 32

TTL I/O, 5 timers 16 bit, 5 MHz) and the actuator interface (PWM power amplifier

with MOSFET bridge, current limiter, signal conditioning for the three measure-

ments UA, IA and 'k and analog antialiasing low-pass filters).

The DSP board performs the real-time tasks for the control, the fault detection

and diagnosis algorithms of the actuator. The algorithms are programmed with the

language C. The operator interface is realized with the PC and the graphical user

surface under Microsoft Windows. with the tool Testpoint 2.0 (Capital Equipment).

The user can select automatic or manual test cycles and different displays and oscil-

loscope functions. Figure 4.16 shows an example. More details are given in [4.14]

and [4.15].

The development of this diagnosis system was supported financially by the Ger-

man Ministry of Education and Research (BMFT, 13 MV 01080) and managed

by Forschungsvereinigung für Verbrennungskraftmaschinen (FVV), Frankfurt with

project No. 540.
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Fig. 4.15. Test equipment for the development of the throttle actuator fault diagnosis
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Fig. 4.16. Graphical user interface for the control and visualization of diagnosis tests

4.2.7 Conclusions

The developed fault detection and diagnosis methods for the throttle actuator can be

applied as follows:

� quality control during manufacturing (e.g. end-of-line test) with special test cy-

cles or for problematic returned actuators (offline data processing)

� function test and troubleshooting in service stations with built-in actuator (offline

data processing)

� onboard fault detection during normal operation (online)

� onboard fault detection and control reconfiguration with redundant position sen-

sors (fault tolerance).

For a comprehensive fault detection and diagnosis of the electrical and mechanical

part mainly symptom generation with parameter estimation is suitable. Parity equa-

tions could only be applied for the electrical part.

4.3 Brushless DC motor and aircraft cabin pressure valve

4.3.1 Structure and models

The air pressure control in passenger aircraft is manipulated by DC motor driven

outflow valves. The design of the outflow valve is made fault tolerant by two brush-

less DC motors which operate over the gear to a lever mechanism moving the flap,

Figure 4.17.

The two DC motors form a duplex system with dynamic redundancy and cold

standby, Figure 4.18. Therefore, a fault detection for both DC motors is required to

switch from the possibly faulty one to the standby motor.
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In the following it is shown how the fault detection was realized by combining

parameter estimation and parity equations with implementation on a low-cost micro-

controller, [4.9], [4.10], [4.11], [4.12].
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Fig. 4.17. Actuator servo-drive for cabin pressure control
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Fig. 4.18. Redundant DC motor drive system for the outflow valve

Figure 4.19 depicts the structure of the electronic commuted DC motor. The sta-

tor possesses three coils which are Y-connected and driven by a PWM (pulse-width

modulation) inverter. The rotor has four permanent magnets. The position of the
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rotor magnets is measured by three Hall sensors mounted on the stator. These de-

termine the switching sequence of six MOSFET transistors of the PWM inverter.

This switching scheme is implemented in a separated programmable logic array. The

PWM inverter obtains a fixed voltage UB and the resulting current IB from the DC

power supply and generates square wave voltages through the commutation logic via

the six transistors to the three coils (phases).

The advantage of the electronic commutation is that no brushes exist, which are

subject to wear and are a source of electromagnetic disturbances. Therefore, the relia-

bility is relatively high. Possible faults in the brushless DC motor may originate from

hall sensors, commutation circuits and transistors (overheating), stator coil windings,

mechanical defects of bearings and magnets (eccentricity, striping), and electromag-

netic disturbances. Usually, only measured signals for the supply voltage UB , the

input current IB of the six-phase full bridge circuit and the angular rotor speed ! are

available.
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Fig. 4.19. Scheme of the brushless electronic commutated DC motor

A detailed model of the brushless DC motor for all three phases is given in [4.4]

and [4.10]. It could be shown that for the case of fault detection averaged values (by

low-pass filter) of the voltage U.t/ and the current I.t/ to the stator coils can be

assumed. This leads to the voltage equation of the electrical subsystem

U.t/ � kE!r .t/ D RI.t/ (4.3.1)
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with R the overall resistance and kE the magnetic flux linkage. The generated rotor

torque is proportional to the effective magnetic flux linkage kT < kE .

Mr .t/ D kT I.t/ (4.3.2)

(In ideal cases kE D kT .) The mechanical part is then described by

Jr P!r .t/ D kT I.t/ � Mf .t/ � ML.t/ (4.3.3)

with the ratio of inertia Jr , and the Coulomb friction torque

Mf .t/ D cf sign!r .t/ (4.3.4)

and the load torque ML.t/. The gear ratio � relates the motor shaft position 'r to the

flap position 'g

'g D 'r=� (4.3.5)

with � D 2500. The load torque of the flap is a normal function of the position 'g

ML D csf .'g/ (4.3.6)

and is approximately known around the steady-state operation point. (For the exper-

iments the flap was replaced by a lever with a spring.)

4.3.2 Fault detection with parameter estimation

For fault detection the following measurements are available: U.t/, I.t/, !r .t/,

'g.t/. Using the notation

y.t/ D  T .t/� (4.3.7)

two equations were used for parameter estimation:

� electrical subsystem,

y.t/ D U.t/; ‰T .t/ D ŒI.t/ !r .t/�I �T D ŒR kE � (4.3.8)

� mechanical subsystem,

y.t/ D kT I.t/ � csf .'g.t/ � Jr P!r .t//

‰T .t/ D Œ sign!r .t/�I �T D Œcf � .Jr known/
(4.3.9)

Hence, three parameters OR, OkE and Ocf are estimated. Various parameter estimation

methods were applied like: RLS (recursive least squares), DSFI (discrete square-root

filtering), FSDFI (fast DSFI), NLMS (normalized least mean squares) and compared

with regard to computational effort in floating-point and integer word realization and

estimation performance. The floating-point implementation is standard for, e.g. 16-

bit signal processors and in this case RLS, DSFI or FDFSI can be used. However,

integer word implementation is (still) required if reliable and certified low-cost mi-

crocontrollers like the 16-bit Siemens C 167 have to be used. Then only NLMS is

feasible, [4.9].
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4.3.3 Fault detection with parity equations

The parity equations are obtained from the basic two equations (4.3.1) and (4.3.3)

by assuming known parameters (obtained from parameter estimation)

r1.t/ D U.t/ � RI.t/ � kE!r .t/ (4.3.10)

r2.t/ D kT I.t/ � Jr P!r .t/ � cf sign!r .t/ � csf .'g/ (4.3.11)

r3.t/ D U.t/ � R

kT

.Jr P!r .t/C csf .'g/C cf sign!r .t/C kE!r.t// (4.3.12)

r4.t/ D 'g.t/ � 'r .t/=� (4.3.13)

Each of the residuals is decoupled from one measured signal. r1 is independent from

'g, r2 from U , r3 from I , r4 from all but 'r . ('r is assumed to be correct. It can di-

rectly be supervised by a logic evaluation within the motor electronics.) Figure 4.20

shows measured signals, parameter estimates and residuals for five different imple-

mented faults.

The actuator was operating in closed loop with slow triangle changes of the refer-

ence variable (setpoint). The fault-detection methods, including state-variable filters

(SVF) were implemented on a digital signal processor TI TMS 320 C40 with signal

sampling period T0 D 1 ms. The results for fault detection are summarized in Ta-

ble 4.5. The sign and size of changes for the parameter estimates with FDSFI clearly

allow one to identify the parametric faults and for the parity residuals the respec-

tive additive (offset) sensor faults. But there are also cross-couplings: for parametric

faults some residuals show changes and for sensor-additive faults some parameter

estimates change (except for 'g), which can all be interpreted by the equations used.

According to [4.2] the symptom pattern is weakly isolating as a parametric fault of

R and an additive fault in U differ only in one symptom. However, all faults can

be isolated. Including the standard deviation of the symptoms isolability can be im-

proved, [4.9]. By processing eight symptoms with a rule-based fuzzy-logic diagnosis

system, finally 10 different faults could be diagnosed, [4.9], [4.13].

Table 4.5. Parameter deviations and parity equation residuals for different actuator faults (0 no

significant change; C increase; CC large increase; � decrease; �� large decrease)

Parameter Residual parity

estimates equations

Faults OR OkE Ocf r1 r2 r3 r4

increasing R C 0 0 C 0 C 0

increasing cf 0 0 CC 0 �� CC 0

offset U C C 0 CC 0 CC 0

offset 'g 0 0 0 0 0 0 0

offset Ib CC � �� CC CC 0 0

Because the position sensors of the rotor 'r and the shaft 'g yield redundant

information, sensor fault detection for 'g was used to reconfigure the closed loop
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after failure of 'g by using 'r as the control variable, [4.9]. The described combined

fault-detection methodology needs about 8 ms calculation time on a 16-bit micro-

controller. Therefore, online implementation in a smart actuator is possible by only

measuring four easy accessible variables U , I and !r and 'g.

4.3.4 Conclusions

The fault-diagnosis approach of this actuator has shown that the brushless DC motor

can be modeled as for DC motors with brushes. Parameter estimation is primarily

suitable to detect parametric faults, and parity equations to detect additive faults. If

the input signal U stays approximately constant, only parity equations should be

applied, which then may indicate faults. Then for isolating or diagnosing the faults a

test signal on U can be applied for short time to gain deeper information. Hence, by

applying both parameter estimation and parity equations a good fault coverage can

be obtained.
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Fault diagnosis of fluidic actuators

Fluidic actuators are characterized by their rugged design and high power-to-weight

ratio. They enable one to generate linear motions easily and directly by employ-

ing hydraulic cylinders and diaphragm drives. They also dissipate energy only if

in dynamic operation and during holding phases generate high reaction forces with

little energy consumption. Characteristics and mathematical models are treated, e.g.

in [5.9], [5.13], [5.14], [5.20] and [5.21]. Methods for fault detection of two basic ac-

tuator principles, a hydraulic servo cylinder and a pneumatic diaphragm flow valve

are considered in the sequel.

5.1 Hydraulic servo axis1

Fault detection of hydraulic systems is classically mainly based on the supervision

of directly measurable quantities, e.g. differential pressure across a filter element to

detect clogging or the monitoring of hydraulic fluid for debris, [5.29]. In order to

gain insight into the process, additional special sensors can be provided. However,

they increase cost and are themselves susceptible to faults. An overview of advanced

methods including oil condition monitoring is given by [5.21].

[5.12] developed fault-detection methods for a linear hydraulic servo-axis based

on frequency response measurements as well as by the application of the extended

Kalman filter (EKF). Application of parameter estimation is reported by [5.26].

Based on a linearized valve flow curve, [5.18] also utilized the EKF to extract phys-

ical quantities (Coulomb friction, the amount of throttling by the compensation con-

duits and pressure-induced forces) from the system behavior of a fault-tolerant pro-

portional valve, see also [5.1]. [5.27] investigated the transfer of fault-detection meth-

ods to a microcontroller. Physical quantities from the process such as the coefficient

of internal leakage or the degree of control edge erosion were estimated by means

of an EKF. Experimental results are shown for linear models and for constant fluid

temperature. The fault-detection methods that include the EKF typically employ the

1 Worked out by Marco Münchhof.

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  105

DOI 10.1007/978-3-642-12767-0_5, © Springer-Verlag Berlin Heidelberg 2011 

Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,
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valve spool displacement sensor, chamber pressure sensors and the piston displace-

ment sensor as well as information about the supply pressure. However, a precise

description of hydraulic systems requires nonlinear models, see also [5.14].

The following section describes the methods and experimental results for a rel-

atively comprehensive fault detection and diagnosis procedure and use of standard

sensors.

5.1.1 Hydraulic servo axis structure

Figure 5.1 shows a scheme of a typical hydraulic linear actuator with power supply.

The hydraulic power supply consists of an oil tank and electrically driven piston

pump connected to a proportional-acting electro-hydraulic servovalve or spool valve.

This servo-valve is position controlled. Depending on its position, the cylinder moves

with a corresponding direction and speed. A return valve avoids backflow and a

pressure-relief valve acts as a safeguard against excessive pressures. A hydraulic

accumulator damps the pressure oscillations from the piston pump. A view of the

testrig used for the experiments is shown in Figure 5.2.

The pressure supply consists of a swash plate pump, a proportional valve, and

a differential cylinder with integrated displacement sensor. The control scheme and

the measurements used are depicted in Figure 5.3. The position of the piston (travel

way) is the main control variable. Its position controller is a digital controller which

has been programmed as a simple P-controller and acts on the reference variable of

the proportional valve position controller.

Standard measurements are the pump pressure pP , the valve spool position yV

and the piston position y. The chamber pressure pA and pB are additionally used

for the experiments, but are in general optional for servo axes.

5.1.2 Faults of hydraulic servo axes

A list of typical faults for hydraulic servo axes is given in Table 5.1. The hydraulic

fluid may contain gas enclosures, such as undissolved air, vapor and foam. Undis-

solved air is typically the result of insufficient bleeding, which is one of the most

common faults during commissioning of hydraulic systems. Vapor enclosures can be

the result of inadequate operating conditions. Foam results if the hydraulic storage

tank is designed in an inappropriate way. The proportional valve may show grooving

and erosion. Grooving stems from splinters being caught between the valve spool

and the housing. Upon moving of the valve spool, these splinters start to grind them-

selves into the valve spool. Erosion of the control edges can be caused by cavitation

and jet erosion. The latter is caused by small particles being suspended in the hy-

draulic fluid. The hydraulic cylinder may suffer from leakages and gas enclosures.

The two cylinder chambers are separated by the piston and by sealing. This sealing

may wear out over time and allows more and more fluid to leak from the higher pres-

surized to the lower pressurized chamber (internal leakages). Similarly, oil can leak

from the sealing between the pushrod and the cylinder housing.
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Fig. 5.1. Scheme of a hydraulic servo axis with power supply: a) schematic, b) energy flow

scheme, c) two-port representation. 1 power electronics, 2 AC motor, 3 axial piston pump, 4

accumulator, 5 check valve, 6 proportional valve, 7 cylinder

Furthermore, the sensors mounted at the hydraulic servo axis may be faulty. Sen-

sor faults can have manifold reasons and are typically not characterized in detail.

Rather, they are classified by their effect on the sensor signal as additive and multi-

plicative sensor faults and total loss of the measurement.

It is difficult to obtain failure rates of hydraulic systems, because they are usually

not published. An exemption is the area of aircraft, [5.20], according to refurbish-

ments for airlines. The component statistics are divided into lap assemblies, valve

assembly, cylinders, mechanical defects, power control unit and others. Tables 5.2

and 5.3 show the obtained failure rates based on about 3000 parts, see also Fig-

ures 5.4 and 5.5.
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Fig. 5.2. The total testrig (top); the linear servo axis in detail (bottom)

Table 5.1. Typical faults of hydraulic components

Subsystem Fault

Hydraulic fluid Gas enclosures

Proportional valve Grooving

Erosion of control edges

Increased friction

Change of or wrong fit

Break of winding

Cylinder Internal leakages

External leakages

Gas enclosures

Increased friction

Slack between cylinder and external load

Connection lines Leakage

Accumulator Loss of charge pressure
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Fig. 5.3. Control scheme and measurement of the servo axis; pP pump pressure, pA pressure

chamber A, pB pressure chamber B, yV valve spool position, y piston position, Tp oil tem-

perature before spool valve, pScom pressure setpoint and PVScom volume flow rate setpoint for

integrated pump controller

Table 5.2. Failure rates of servo-hydraulic components (approx. 3000 parts), [5.20]

Lap failures Spool ass’y Valve ass’y Cylinder Mechanics Power control unit Other

% 32 19 16 14 3 14
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Table 5.3. Failure rates of laps, valves and cylinder, [5.20] (estimates based on long-term

experience)

Lap failures Erosion Damage due to debris External leakage Other

% 65 20 10 5

Valve failures Internal leakage Improper function External leakage Other

% 35 35 15 15

Cylinder failures External leakage Internal leakage Broken or cracked Other

% 58 14 14 14

About 50% of returned components are caused by faults in the lap and valve

assembly. Therefore hydraulic valves are the most susceptible components, [5.20].

Most faults in the lap assembly, consisting of a slide and a sleeve are due to erosion

or damage because of debris. Faults in the valve assembly are mainly internal and

external leaks or unspecifically, improper function. The cylinders are not so often

faulty as the valves. The main reasons are external and internal leakages (seals) or

breaks and cracks, mainly caused by wear.

erosion, 65 %

damage due to
containment, 20 %

external leakage, 10 %

other, 5 %

Debris

Debris

Fig. 5.4. Possible faults in proportional valves

Figure 5.6 depicts the measurements used and different steps to the fault diagno-

sis of a hydraulic servo axis as developed by [5.20].
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Fig. 5.5. Possible faults in hydraulic cylinders

5.1.3 Models of spool valve and cylinder

a) Component specific models

Inside the valve, the fluid flows through the valve orifices. The control edges are

shaped such that a turbulent flow evolves, which in general should not be temper-

ature dependent. However, measurements at the testbed have shown a temperature

dependency which can most likely be attributed to changes in the fluid density �.

The flow over a control edge (see Figure 5.7b) is given as

PV D ˛D.yV /A.yV /

s
2

�.p;T /

p
j�p.t/j sign�p.t/ (5.1.1)

where all temperature and displacement dependent terms have been collected into

the term bV, thus

PV .�p;T;yV / D bV.yV ;T /
p

j�p.t/j sign�p.t/ (5.1.2)

with

bV.yV ;T / D ˛D.yV /A.yV /

s
2

�.p;T /
(5.1.3)

b) Cylinder model

Based on the mass balance, the pressure buildup in the hydraulic chambers (here

chamber A, see Figure 5.7a) is governed by

.VoA C AA y.t//
1

E.pA;T /
PpA C AA Py.t/ D

�
PVA.t/ � PVAB.t/

�
(5.1.4)



112 5 Fault diagnosis of fluidic actuators

where E is the bulk modulus. The term VoA denotes the oil flow from the valve.

Other volume flows present in hydraulic cylinders are the leakage flows. Two leakage

flows can be differentiated in a double-acting cylinder, one between chamber A and

B and one between chamber B and the surroundings. These two flows are modeled

as laminar flows, thus, e.g. for the flow between chambers A and B,

PVAB.pA;pB;T / D GAB.T / .pA.t/ � pB.t// (5.1.5)

control

Process model

Feature Extraction

Features

Change detection

Fault diagnosis

Fault management

Faults detected

Faults diagnosed

Recovery action

Normal process
behavior

Implemented
in software

r t( ) e t( ) y (t) y t( )

p p p T(t),     (t),     (t), (t)
P

V

A B P

Fig. 5.6. Scheme of fault detection and diagnosis

c) Combined model and choice of model output

These component models, (5.1.2), (5.1.4), and (5.1.5) can now be combined into one

differential equation:

.VoA C AAy.t//
1

NE.T /
PpA.t/CAA Py.t/ D PVA.pA;pP ;T;yV /�GAB.T / .pA.t/ � pB.t//

(5.1.6)

with the flow from the valve to the cylinder chamber A being given as

PVA.pA;pP ;T;yV / D
�

bV2.yV ;T /
p

jpP .t/ � pA.t/j sign .pP .t/ � pA.t// for yV > 0

bV1.yV ;T /
p

jpA.t/j sign .pA.t// for yV < 0
(5.1.7)

As a simplification, the pressure dependence of the bulk modulus has been neglected

and an average bulk modulus is assumed. Furthermore, the pressure at port T (tank)
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Fig. 5.7. Scheme of hydraulic cylinder (a) and valve orifice (b)

is set to zero. The differential equation (5.1.6) contains two derivatives with respect

to time: The derivative of the chamber pressure pA.t/ and the derivative of the piston

displacement y.t/. So far, in [5.12], [5.18], [5.27], (5.1.6) was integrated in variable

pA.t/ with respect to time, resulting in the ordinary differential equation (ODE)

PpA.t/ D
NE.T /

�
PVA.pA;pP ;T;yV / � GAB.T / .pA.t/ � pB.t// � AA Py.t/

�

VoA C AAy.t/
(5.1.8)

(5.1.6) can also be integrated with respect to the piston displacement, yielding the

ODE

Py.t/ D 1

AA

�
PVA.pA;pP ;T;yV / � .VoA C AAy.t//

1

NE.T /
PpA.t/

�
(5.1.9)

As shown in [5.20], (5.1.8) is very sensitive to measurement noise and shows a lot

of oscillatory behavior. Therefore (5.1.9) is used as a basis for the formulation of a

parity equation, since even this white-box model, based exclusively on physical laws

and parameterized with values taken from data sheets, already shows a very good

model fidelity. Based on an investigation of different sample times, experiments have

shown that the model can be calculated with a sample time of T0 D 2 ms.
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c) Parameterization of valve curve

At the testbed, a proportional valve 4WREE with a V1 spool shows a nonlinear re-

lation between the valve spool position and the resulting valve opening, as can be

seen in Figure 5.8. This is typical for many proportional-acting direct-driven valves,

since the special shaping of the flow characteristics helps in achieving better con-

trol performance. A linear approximation of valve flow characteristics can hardly

capture such a nonlinear behavior, as was shown in [5.20]. Therefore, a polynomial

approximation of the coefficient of valve flow is used as

PVA.pA; pP ; T; yV / D

8
ˆ̂<
ˆ̂:

Pl
iDk

�
b1i.T /yV .t/

i
�p

jpP .t/ � pA.t/j sign .pP .t/ � pA.t//

for yV � 0Pl
iDk

�
b2i.T /yV .t/

i
�p

jpA.t/j sign .pA.t//

for yV < 0
(5.1.10)

A very good approximation has been found for k D 0 and l D 4, as can be seen

in Figure 5.8. An alternative is the set of k D 1 and l D 3, which limits the com-

putational impact even more at the price of a slight increase in model fidelity. The

resulting model fidelity is illustrated in Figure 5.9. This model was parameterized

with a dataset recorded at a fluid temperature of 20ı C.
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Fig. 5.8. Polynomial approximation of valve flow characteristics

d) Temperature dependency

As was witnessed in Figure 5.8, the characteristics of the valve flow change with

temperature. Experiments by [5.20] have shown that in a range from TP1 D 20ı C

to TP2 D 40ı C, the model parameters change almost linearly with temperature.

Hence, a linear approximation is applied for a temperature adaptation of the model,
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bij .TP / D bij .TP2/ � bij .TP1/

TP2 � TP1

.TP � TP1/C bij .TP1/ (5.1.11)

where the model parameters have been determined a priori for the temperatures

TP1 D 20ı C and TP2 D 40ı C. With these suggested improvements, the model

yields a fidelity that is suitable for detection of tiny faults in online fault detection

and also for analytical redundancy at changing fluid temperatures. It is obvious that

such a precise model can also be used as a “model sensor” in the case of a sensor

fault in y.

5.1.4 Fault detection and diagnosis of valve and cylinder

Based on the described models, a fault detection and diagnosis system has been de-

rived as shown in Figure 5.10. The model for valve and cylinder can be extended in

a straightforward way to chamber B.

a) Parity equations

By using various subsets of sensors mounted at the testbed, a total of six parity

equations can be formulated,

r1.t/ D y.t/ � Oy1.pP;pA;pB;TP;yV/ (5.1.12)

r2.t/ D y.t/ � Oy2.pS;pA;pB;TP;yV/ (5.1.13)

r3.t/ D y.t/ � Oy3.pP;pA;pB;TP;yV/ (5.1.14)

r4.t/ D y.t/ � Oy4.pS;pA;pB;TP;yV/ (5.1.15)

r5.t/ D y.t/ � Oy5. PV ;pA;pB;TP;yV/ (5.1.16)

r6.t/ D y.t/ � Oy6.pA;pB;TP;yV/ (5.1.17)
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where r1.t/ and r3.t/ are formulated based on the mass balance of chamber A and

r2.t/ as well as r4.t/ are based on the mass balance for chamber B. Residual r5.t/ is

the only residual driven by a flow meter which is not a standard sensor. Taking into

account the large costs of a flow meter and its limited performance, it is not advisable

to use it for fault detection and diagnosis. Figure 5.11a) shows the behavior of the

residual r1.t/ in the fault-free case and Figure 5.11b) illustrates the reaction of the

residual to control edge erosion for a family of experiments. The influence of sensor

faults is shown in Figure 5.12, where the valve spool displacement sensor signal has

an offset of �yV D 0:002 m.

b) Parameter Estimation

The precise models can also be used as a basis for an LS parameter estimation ap-

proach, which extracts the coefficients of valve flow, the bulk modulus and the co-

efficient of laminar leakage flow from a set of measurements. Since parameter es-

timation is based on sampled signals, the time t will now be expressed as integer

multiples k of a fixed sampling time T0. Based on the model (5.1.9) and (5.1.10)

derived in the previous sections, a parameter estimation problem can be formulated.

This parameter estimation problem will be split up into the data matrix where

kT0 is abbreviated by k

E‰T D

0
BBBBBBBBBBBBBBBBB@

p
jpP.k/ � pA.k/jsign .pP.k/ � pA.k// � .yV.k/ � 0/ : : :

yV.k/
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k// � .yV.k/ � 0/ : : :
:::

yV.k/
4
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k// � .yV.k/ � 0/ : : :p
jpA.k/jsign .pA.t// � .yV.k/ < 0/ : : :

yV.k/
p

jpA.k/jsign .pA.k// � .yV.k/ < 0/ : : :
:::

yV.k/
4
p

jpA.k/jsign.pA.k// � .yV.k/ < 0/ : : :

.pA.k/ � pB.k// : : :

AA y.k/ PpA.k/ : : :

1
CCCCCCCCCCCCCCCCCA

(5.1.18)

where .yV.k/ � 0/ is one if the condition is met and zero otherwise. The output

vector is written as

EyT D .AA Py.k/; : : :/ (5.1.19)

The solution of
OE� D

�
E‰T E‰

��1 E‰T Ey (5.1.20)

supplies estimates for the parameter vector E� given as
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Fig. 5.11. Residual 1 for (a) fault-free case and (b) control edge erosion for several experiments
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Fig. 5.12. Residual 1 for sensor offset in valve spool displacement �yV D 0:002 m

O� D

0
BBBBBBBBBBBBBBBBBBB@

Ob10.TP/
Ob11.TP/
:::

Ob14.TP/
Ob20.TP/
Ob21.TP/
:::

Ob24.TP/
OGAB.TP/

1
ONE.TP/

1
CCCCCCCCCCCCCCCCCCCA

(5.1.21)

This parameter vector contains twelve parameters which may change with fluid tem-

perature TP . Although such a parameter estimation problem can easily be solved on

modern computers, it will only be used for offline identification.
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For online identification the parameter estimation problem is split into two parts

since only specific combinations of flow paths can be active at any given time. Two

independent parameter estimation problems for yV.k/ � 0 and yV.k/ < 0 are for-

mulated to constrain the number of parameters to be estimated in each iteration.

Since the valve spool displacement can only be positive or negative at any instant in

time, the parameter estimation problem can be simplified.

For yV.k/ � 0, (5.1.9) can be written as

b10.TP/
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k//

C b11.TP/yV.k/
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k//

C : : :C b14.TP/yV.k/
4
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k//

� GAB.TP/ .pA.k/ � pB.k// � .V0A C AAy.k//

NE.TP/
PpA.k/ D AA Py.k/

(5.1.22)

Then a parameter estimation problem can be set up with the data matrix

‰T D

0
BBBBBBB@

p
jpP.k/ � pA.k/jsign .pP.k/ � pA.k// : : :

yV.k/
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k// : : :
:::

yV.k/
4
p

jpP.k/ � pA.k/jsign .pP.k/ � pA.k// : : :

.pA.k/ � pB.k// : : :

AA y.k/ PpA.k/ : : :

1
CCCCCCCA

(5.1.23)

and the output vector

yT D .AA Py.0/;AA Py.1/; : : : ;AA Py.k/; : : : ;AA Py..N � 1/// (5.1.24)

The solution of

O� D
�
‰T‰

��1

‰T y (5.1.25)

supplies estimates for the parameter vector E� given as

O� D

0
BBBBBBBBB@

Ob10.TP/
Ob11.TP/
:::

Ob14.TP/
OGC

AB.TP/
1

ONE
C
A .TP/

1
CCCCCCCCCA

(5.1.26)

where the superscript C denotes the estimates of the leakage coefficient that has been

derived for a positive spool displacement. For yV.k/ < 0, a second, similar param-

eter estimation problem can be programmed. Then a parameter estimation problem

can be set up with the data matrix



120 5 Fault diagnosis of fluidic actuators

‰T D

0
BBBBBBB@

p
pA.k/ : : :

yV.k/
p

pA.k/ : : :
:::

yV.k/
4
p

pA.k/ : : :

.pA.k/ � pB.k// : : :

AA y.k/ PpA.k/ : : :

1
CCCCCCCA

(5.1.27)

The output vector

yT D .AA Py.0/;AA Py.1/; : : : ;AA Py.k/; : : : ;AA Py..N � 1/// (5.1.28)

This second parameter estimation problem yields estimates E� for

O� D

0
BBBBBBBBB@

Ob20.TP/
Ob21.TP/
:::

Ob4.TP/
OG�

AB.TP/
1

ONE�
A .TP/

1
CCCCCCCCCA

(5.1.29)
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Fig. 5.13. Parameter estimation for a) fault-free case and b) control edge erosion

Figure 5.13 shows results of the parameter estimation for the fault-free case and

for the case of control edge erosion. It can be seen from the diagrams that the param-

eter estimation reacts very sensitively to faults being present in the system.

As a way to compare the performance of different proposed fault-detection and

diagnosis algorithms, the smallest reliably detectable sensor fault and the smallest

reliably diagnosable sensor fault can be determined. For this purpose, the faults can

easily be injected by post-processing of the measurements with varied fault size.

These quantities have been determined for all sensors and are listed in Table 5.4.
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Table 5.4. Smallest reliable detectable and diagnosable sensor faults

Sensor fault size pA pB pP y yV

Minimum detectable 1:2 bar 0:4 bar 1:2 bar 3 mm 0:2%

Minimum diagnosable 3:7 bar 1:5 bar 3:0 bar 9 mm 0:4%

5.1.5 Conclusions

A precise modeling of the flow and cylinder is crucial for obtaining a sensitive model-

based fault detection and diagnosis system. In order to increase the model fidelity,

the differential equation is solved for the piston displacement instead of the chamber

pressure. Furthermore, the valve characteristics should be approximated by a poly-

nomial, which allows one to supervise proportional valves with an almost arbitrary

geometry of the control edges. Finally, the temperature influence has to be taken into

account in modeling, since even a small change of �T D 10ı C causes changes in

the plant behavior precluding the detection of small faults. The use of parity equa-

tions for fault detection and diagnosis enables one to implement these algorithms

on microcontrollers currently employed in hydraulic controls. The derived model

can also serve as a fault-tolerant “model sensor” in the case of a loss of the piston

displacement sensor.

By the aid of parameter-estimation methods, the fault diagnosis can be deepened.

The parameter-estimation-based fault detection and diagnosis is very sensitive to

process faults, but less for sensor faults if not specifically modeled for parameter

estimation. Changes in the valve flow can be attributed precisely to erosion in one

or more of the four control edges and valve spool grooving. By the estimation of the

bulk moduli of the two chambers and the coefficient of internal leakage flow, it is in

theory possible to detect gas enclosures (lowering the bulk modulus) and increased

internal leakage (increasing the coefficient of internal leakage flow). Since the bulk

modulus is estimated separately for chamber A and B, it is possible to pinpoint gas

enclosures down to one of the two cylinder chambers. See Table 5.5 for a list of

detectable and diagnosable faults depending on the sensor configuration.

These detailed investigations have shown that the detection of faults can be ob-

tained with parity equations in realtime. In some cases this allows also fault diag-

nosis. After detection of the faults, a parameter estimation can be started in order to

obtain additional symptoms which then allow one to diagnose most of the considered

fault types.

5.2 Pneumatic actuators

Pneumatic actuators exploit the physical characteristics of compressed air. The high

compressibility of air along with the capability of storing a larger amount of energy

and the low viscosity of the transmission medium permit the design of efficient and

fast drives. Offering a rugged and simple design (only one supply line necessary),

these pneumatic drives are well suited for applications where typical forces of a few
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Table 5.5. Detectable and diagnosable faults in dependence on the sensors used. Faults in

parentheses are difficult to identify yet not completely impossible (depends on the individual

setup)

Sensor usage

Fault detectable yV ;y pS ;yV ;y pS ; PVS ;yV ;y pS ;pA;pB ;yV ;y pS ; PVS ;pA;

pB ;yV ;y

Load must be constant x x x

Total breakdown x x x x x

Pressure discharge valve x x

Supply-line congestion x x x x x

Return-line congestion x x x x x

Eroded control edge (x) (x) x x

Valve spool grooving (x) (x) x x

Gas enclosure (x) (x) x x

Internal leakage (x) (x) x x

Sensor faults x x x x x

Sensor usage

Fault diagnosable yV ;y pS ;yV ;y pS ; PVS ;yV ;y pS ;pA;pB ;yV ;y pS ; PVS ;pA;

pB ;yV ;y

Load must be constant x x x

Total breakdown x x x x x

Pressure discharge valve x x

Supply-line congestion (x) (x) x x

Return-line congestion (x) (x) x x

Eroded control edge (x) (x) x x

Valve spool grooving (x) (x) x x

Gas enclosure (x) (x) x x

Internal leakage (x) (x) x x

Sensor faults x x x x x

N to some kN must be supplied. They can move at relatively high velocities and

over long ranges. Besides these features, they are characterized by very safe opera-

tion even under extreme ambient conditions (temperature resistance, contamination

resistance, overload capability, explosion-proof construction and fail-safe position

through spring return). The pneumatic system is immune to interference caused by

electric and magnetic fields, as well as radiation.

Pneumatic actuating devices can grossly be divided into pneumatic cylinders or

diaphragms generating a translatory motion, and air motors generating a rotary mo-

tion. For more details see [5.2] and [5.8].

5.2.1 Pneumatic-actuator construction

Pneumatic actuators basically consist of an airflow valve and an actuating device,

which transforms the pneumatic energy into mechanical energy. Figure 5.14 shows a

scheme with an electrically controlled valve. The valve is connected to the pneumatic
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pressure line which is supplied by an air compressor and manipulates the pressurized

air flow to the actuating device.
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Fig. 5.14. Pneumatic actuator for linear motion with power supply: a) schematic; b) energy flow

scheme; c) two-port representation. 1: AC motor, 2: air compressor, 3: pressure-relief valve, 4:

air filter with water trap, 5: air storage (accumulator), 6: 4/3 proportional valve, electrical

solenoid actuation, spring return, 7: double-rod cylinder; 8: diaphragm drive with spring return

The valves are either proportional-acting valves or switching valves. Proportional-

acting valves allow a continuous manipulation of the airflow. They are manipulated

either electrically by two solenoids as shown in Figure 5.14, or pneumatically with

one air flow modulator and return spring, as depicted in Figure 5.15. Switching valves

are electromagnetic devices and operate with pulse-width modulation (PWM) at high

frequencies in order to generate a certain actuator position through the low-pass be-

havior of the cylinder diaphragm.

Pneumatic flow valves have in principle a design as shown in Figure 5.15. The

pneumatic subsystem comprises a chamber sealed by a diaphragm that is acting on

the valve stem. At the tip of the valve stem, a body (plug) is mounted which in con-

junction with its counterpart, the valve seat, controls the hydraulic flow. Depending

on the precision accuracy and the kind of fluid, different geometries are used. For

very precise control tasks of small flows and large flows, usually needle-shaped bod-

ies are used, whereas disk- or ball-shaped bodies are commonly chosen for fully



124 5 Fault diagnosis of fluidic actuators

opening and closing valves. The stem passes through a gland (e.g., stuffing box) in

order to seal the hydraulic system. Figure 5.15 shows a position controller (posi-

tioner), frequently mounted directly on the valve.

It varies the displacement of the valve stem in accordance with an external refer-

ence value. By means of a nozzle-flapper arrangement, the control error between the

valve stem position and its reference value is sensed and the pressure supplied to the

diaphragm chamber varied accordingly. Since the nozzle-flapper arrangement would

not be able to supply a sufficient air flow, an air amplifier is connected in between the

nozzle-flapper arrangement and the working chamber, allowing delivering or venting

air flow.

These pneumatic flow control valves are produced in several different construc-

tions. The valve bodies are, e.g. globe valves for straight pipelines with one or two

plug stem guides, three-way valves or angle valves. The plug stem is usually sealed

by a stuffing box (packing) or by metal bellows. The packing may consist of spring-

loaded V-rings made of PTFE (polytetrafluorethylen), carbon, silk or graphite, de-

pending on the liquid, steam, pressures and temperatures. The plug and seat are made

of stainless steel and with or without stellite hard facing. Their design determines the

kV coefficient and the valve characteristic as well as the seat leakage. The normal-

ized flow coefficient kV according to DIN EN 60534 is defined for the flow of water

as

kV D
s
�

�0

�p0

�p
PV (5.2.1)

with the standardized values �0 D 1000 kg/m3, �p0 D 0:98 bar and water with

dynamic viscosity of � D 1 mPa s.

kVS corresponds to the rated full travel of z D 100%. The valve characteristic

determines the dependence between the normalized flow kV in dependence on the

travel z. It can be ordered with a linear or equal percentage (nonlinear) characteristic.

Figure 5.16 depicts a signal flow scheme for a pneumatic control valve with the

position controller GC 1 and the medium flow controller GC 2. The position controller

is, as shown in Figure 5.15, traditionally a pneumatic proportional-acting controller,

which manipulates the diaphragm chamber pressure p1. Then the position z of the

valve is measured mechanically and acts via a lever system on the amplifier. As it

is not available as electrical signal it cannot be used for fault detection. If the flow

controller GC 2 is also pneumatic, the only electrical signals may be the output PV of

the flow rate transmitter and the setpoint W2.

If, however, an electronic flow controller is used, the following signals may be

available PV , W2, W1, U1 and z.

5.2.2 Faults of pneumatic valves

Faults of pneumatic valves may arise in the air supply, air supply line, piston or

diaphragm actuators, valve stem sealing and plug–seat combination. Table 5.6 lists

some typical faults.



5.2 Pneumatic actuators 125
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Fig. 5.15. Cross-sectional view of a pneumatic valve with an electro-pneumatic position con-
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Fig. 5.16. Pneumatic flow valve with position and flow controller. p1: diaphragm chamber

pressure, ps : supply air pressure; z: stem position; PV flow rate; 1: amplifier (e.g., nozzle-

flapper), 2: position controller; 3: flow rate controller

The possibilities of early fault detection depend strongly on the available electri-

cal signals. If a pneumatic position controller is attached, the only electrical signals

may come from a superimposed electronic controller, like a flow valve controller in

the form of the flow rate PV , its reference value W2 and the reference value W1 for

the positioner, compare Figure 5.16. Because the pneumatic position controller com-

pensates some faults, only a few faults are detectable, see Table 5.6. If an additional

electrical signal is added, like the chamber pressure p1 the fault coverage improves.

The situation improves further if the position controller is electronic, because then

the manipulated variable U1 and the valve position z are available, Table 5.6.

5.2.3 Models of pneumatic valves

To derive mathematical models of pneumatic valves, the same equation as for pneu-

matic cylinders, [5.9], can be used, if AD is the area of the diaphragm and z the

position of the valve stem. However, in contrast to pneumatic cylinders there exists
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Table 5.6. Typical faults of pneumatic flow valves and fault-detection coverage in dependence

on instrumentation. �: yes, 0: no

electronic flow controller

pneumatic positioner electronic positioner

valve available measurements

part faults W1, W2, PV p1 W1, U1, W2, z, PV
pneumatic F1 reduced supply

part pressure 0 � �
F2 leakage in line

to chamber 0 � �
mechanical F3 increased friction

part of plug stem 0 � �
F4 increased valve cross-

section area � � �
F5 offset position

sensor � � �
flow sensor F6 offset flow sensor � � �

only one chamber if the other is open to the atmosphere. The dry and viscous fric-

tion of the stuffing box and the plug stem guidance have a significant effect, see also

[5.6], [5.17], [5.22]. [5.13] and [5.23] have shown how the (changing) friction can

be identified and compensated by a model-based adaptive control algorithm.

The mass balance of the pneumatic part, the air chamber is

Pm1.t/ D d

dt
.V1.t/�1.t// D PV1.t/�1.t/C V1.t/ P�1.t/

D AD�1.t/Pz.t/C .V0 C ADz.t// P�1.t/

(5.2.2)

where V0 is the vented chamber volume (p1 D 0).

Using the gas equation � D p=RT yields

Pp1.t/C AD

V0 C ADz.t/
Pz.t/p1.t/ D RT1

V0 C ADz.t/
Pm1.t/ (5.2.3)

Hence, the parameters of this first-order differential equation for the chamber pres-

sure are time-variant and depend on the motion and the position of the diaphragm.

The dynamics of the mechanical part of the valve, the diaphragm, the valve stem

and the plug are governed by the balance of forces:

mv Rz.t/C dv Pz.t/C csz.t/C fc sign Pz.t/ D ADp1.t/ � Fext .z/ (5.2.4)

where mv is the mass of the stem and connected parts, cs the spring constant, dv and

fc the coefficients of the viscous and dry friction of the stuffing box and guidance

and Fext the external forces, mainly the force through the flowing fluid, which is

proportional to the pressure drop �p across the valve plug. The equation of the

mechanical part is nonlinear because of the mostly considerable dry friction and the

position-dependent plug force.
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Both (5.2.3) and (5.2.4) lead to the signal flow diagram in Figure 5.17. The valve

characteristic for the position follows from (5.2.4) with d=dt � 0:

z D 1

cS

.ADp1 � Fext .z/ � fc sign Pz/ (5.2.5)
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Fig. 5.17. Signal flow diagram of a pneumatic flow valve. Pm1: air mass flow into the diaphragm

chamber

Neglecting the plug forces, the position z is linearly dependent on the chamber

pressure, but with a direction-dependent dry-friction term, which results in a hystere-

sis curve. However, as measurements also show, this characteristic can be approxi-

mated by

z D z0 � C1pp1 C fC � D z00� � C1pp1 for Pz < 0 (5.2.6)

z D z0 � C1pp1 � fC C D z00C � C1pp1 for Pz > 0 (5.2.7)

with

z00� D z0 C fC �I z00C D z0 � fC C (5.2.8)

This simplified valve characteristic holds at least piecewise over the whole travel

way, as was shown by [5.6].

If the chamber pressure p1 is not available as an electrical signal, then the ma-

nipulated variable U1 of the position controller can be used as input of the valve. For

a digital position controller this is for example the current output of an i/p-converter.

The valve characteristics is then described by

z D z00� � C1U U1 for Pz < 0 (5.2.9)

z D z00C � C1U U1 for Pz > 0 (5.2.10)

Instead of U1 also the reference value zref of the position controller can be taken.

Some references on the fault detection of pneumatic actuators are [5.11], [5.15],

[5.16], [5.19], [5.24], [5.25]. The detection of stiction in treated in [5.5].
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The following sections describe the results of some theoretical and experimental

studies on the fault diagnosis of pneumatic valves for the case of pneumatic and

electronic position controllers and different sensor usage and are based on [5.3],

[5.6] and [5.7].

5.2.4 Fault detection with valve characteristics

The following experimental investigations are performed for a pneumatic valve with

a pneumatic position controller and superimposed digital PI flowrate controller, see

Figures 5.18 and 5.19. The flow rate control system is part of an industrial-scale

thermal plant. First, the valve characteristics are considered for closed position loop

and open flow control loop. Figure 5.20 depicts some characteristics for increased

friction due to a too strongly tightened stuffing box. The characteristic z.zref / does

not indicate significant differences because the position controller compensates the

influence of higher friction to a certain degree. However, p1.zref / and z.p1/ show a

significantly increased hysteresis behavior. The estimated dry friction is 2 to 3 times

larger than the viscous friction and depends on the position z, [5.6].

Table 5.7 gives the influences of the considered faults on several characteristic

curves, where approximate linear relations are assumed, as (5.2.5) to (5.2.9), and,

e.g. �z00 are offset changes and �C1 are gain changes.

Fig. 5.18. Investigated electro-pneumatic valve (Honeywell type 2000, KVS D 25 m3/h)
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Fig. 5.19. Signal flow of the flow control loop with pneumatic valve and pneumatic position
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Fig. 5.20. Measured valve characteristic for normal and increased friction of the stuffing box

(fault F2), [5.6]: a) z D zref , closed position loop; b) p1.zref /; c) z.p1/; d) friction forces

Table 5.7. Fault-symptom table of valve characteristics for closed position and flow control loop

z.p1/ z.zref / p1.zref / PV .U1/

faults �z00 �C1p z00 �C1u �p10 �C1Up � PV00 �C1V

F1 supply-line leak 0 0 0 0 � 0 � �
F2 increased friction C or � 0 0 0 C or � 0 C or � 0

F3 valve plug erosion 0 0 0 0 0 0 C 0

F4 position sensor error .C/ C 0 � 0 0 0 � 0

F5 increased pipe resistance 0 0 0 0 0 0 � �
F6 flow sensor offset .C/ 0 0 0 0 0 0 C 0
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The different valve faults result in parallel shifts and/or slope (gain) changes

of the characteristics. While z.zref / does not allow one to detect small faults the

chamber pressure z.p1/ and p1.zref / are better suited to detecting some faults. The

flow rate characteristic PV .U1/ is influenced by all considered faults. However, the

observed deviations depend also on changes in the connected plant. Hence, use of the

chamber pressure p1 and the flow rate PV improve the possibilities for fault detection

considerably.

For the identification of the characteristic curves either direction-dependent poly-

nomials like

Y .z/ D a0 C a1z C a2z2 C a3z3 (5.2.11)

as for the hydraulic spool valve, Section 5.1, are recommended or local linear mod-

els, based on the LOLIMOT approach. Steady-state measurement can be gathered

online during normal operations, if the plant operates with different flow rates. Al-

ternatively, the valve characteristics can be determined by special test runs.

5.2.5 Fault detection of flow valves with pneumatic position controller

a) Measurement of fluid flow rate and reference value of position controller

If pneumatic valves have an electro-pneumatic transmitter to generate the pneumatic

reference signals for the position controller and no electrical valve position signal

z is available the behavior of the valve can only be observed through the resulting

electrical signal from a flow or pressure measurement downstream in the plant. This

case will be considered in the sequel first, because it is typical for chemical plants.

The task is to detect and diagnose faults in the pneumatic flow valve through

measurements of the reference signal W1 D zref of the closed pneumatic position

control loop, the controlled variable PV and its reference value W2 D PVref of the

superimposed flow control loop. Hence, methods for fault detection in closed loops

are required. As shown in [5.10] different fault-detection methods have to be prop-

erly combined, e.g. features of closed-loop behavior, parameter estimation and parity

equations. Parity equations for the controlled process can for linear closed loops be

applied as in open loop.

For fault detection it is feasible to obtain the valve characteristic PV D f .z/ or
PV D f .p1/ which are nonlinear. As, however, z and p1 are not measurable in this

case the input–output behavior between the reference value zref and the resulting

volume flow rate PV
PV D f .zref / (5.2.12)

has to be used, which includes the behavior of the position control loop, see Figure

5.18, [5.4], [5.7]. Also this relation shows nonlinear behavior with dynamic and static

characteristics depending on the operating point. Furthermore, the dynamics depend

on the direction of the valve position changes (opening or closing).

This can be seen in Figure 5.21a) where the step response at distinct operating

points is displayed. Note the different gain and time constants and the dead time of

approximately 1 s. This open-loop behavior of the plant clearly indicates the strong
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nonlinearities hindering the use of a normal linear model. The behavior of the valve

operated in closed-loop control is shown in Figure 5.21b). The PI-controlled process

shows fast behavior for valve opening (with spring force) and is significantly slower

during valve closing (with pneumatic pressure force). Investigations yielded that a

simplified linear first-order approximation of (5.2.12) for the closed-loop behavior

around a constant local setpoint is sufficient. Therefore, local linear models can be

used with operating-point- and direction-dependent parameters.
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Fig. 5.21. Step responses of the pneumatic valve: a) open loop; b) closed loop

� Fault detection and diagnosis with local linear models

As the valve shows nonlinear behavior it will be identified by using local linear

models:

z.k/ D w0 C w1x1.k/C : : : wnxn.k/ (5.2.13)

where xi.k/ are different input signals and

wj D
MX

iD1

wi�i.x/ (5.2.14)

operating-point-dependent parameters, see [5.4], [5.9] and [5.28], with �i.x/

membership functions depending on the input x. This leads to a structure of the

local linear process model shown in Figure 5.22.

The symptoms are based on the comparison of features from the process with

nominal ones from the model. For this purpose, a simulation with the model in

closed-loop control (MCL) can be run in parallel with the process in closed-

loop (PCL) using the same reference signal W1 D zref . Figure 5.23 depicts this

approach and the symptom generation. In this combination, three categories of

symptoms can be distinguished, [5.7].

� Parity equation residual

The residual-based symptoms can be derived in both closed-loop and open-loop

operation, and normally do not require any additional process excitation. The
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simplest residual is the output error between model and valve, within a time

window of appropriate length l ,

Sr D 1

l

lX

iD1

jOz1.k � 1/ � z.k � 1/j; (5.2.15)

refer to Figure 5.23.
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Fig. 5.22. Structure of the local linear model

� Closed-loop performance-based symptoms

The performance of a control loop in constant operation regions and during set-

point changes also characterizes the process since its performance will degrade

should the system behavior change. Hence, symptoms can be derived by defining

different control performance indices (CPI). One possibility is to rate the differ-

ence between the reference signal W .k/ and the controlled variable y.k/:

SCPI D ICPI � OICPI

D 1

l

lX

iD1

.W .k � 1/ � z.k � i//2

� 1

l

lX

iD1

.W .k � 1/ � Oz2.k � i//2

(5.2.16)
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Fig. 5.23. Symptom generation using the process model

For constant reference values the symptom SCPI depends not only on the control

performance but also on disturbances and noise effects. Hence, to obtain signifi-

cant symptoms, these noise effects must be relatively small.

To rate the control performance during setpoint changes SCPI has to be di-

vided by the setpoint difference, to make the symptoms comparable. Another

possibility is the use of the time interval needed to enter a predefined region

around the reference signal. In the following, this region is defined by 2% of

the new setpoint. The symptom of the closed-loop behavior is named ST 98 D
OT98model � T98process .

� Valve-parameter-based symptoms

The third class of symptoms is derived from the parameters defining the process

behavior. A common way is to identify a linear model in a small region around

the actual setpoint. This requires sufficient process excitation which is often not

fulfilled during normal operation. In order to meet this requirement, excitation

signals can be added to the manipulated signal u, which leads to a temporary

degraded control performance but enables a parameter estimation. The nominal

values can be derived from the model of the fault-free process. Important features

are the time constant T , gain K and offset O computed from the parameters of

the discrete-time model of the valve. This yields the symptoms, [5.7]

ST D
OT

Tdyn:lin:

SK D
OK

Kdyn:lin:

SO D OO � Odyn:lin:

(5.2.17)
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These parameters can also be extracted from local linear models of the closed-

loop behavior with zref as input and z as output, [5.3].

The next step is the determination of fault symptom relationships. This can be

solved by prior knowledge and physical considerations or from experiments.

� Fault diagnosis

The evaluation of the fault symptom patterns is performed using a generated

fuzzy classification tree, using the self-learning classification tree (SELECT)

method, [5.7], [5.10]. Its advantages for the classification of fault symptoms

are the transparency of the resulting classifier, the simple integration of a pri-

ori knowledge as fuzzy rules and the intuitive concept.

The approach is divided into five phases:

1) Building appropriate fuzzy membership functions (MSF) and removal of ir-

relevant symptoms

2) Selecting a rule for the easiest separable fault

3) Removal of measurements of this fault from the data set

4) Back to Step 2 until all faults are considered, thereby creating a tree structure

5) Fine tuning of relevance weights by constrained optimization.

� Experimental results

As approximation of (5.2.12) a discrete-time neuro-fuzzy model with 12 local

models has been identified. The sample time is T0 D 0:1 s. Each local model is

a first-order transfer function with a dead time of Td D 1 s or d D Td=T0 D 10.

The LPV (linear parameter variable) model structure is

PV .k/ D w0 C w1zref .k � 1 � d/C w2
PV .k � 1/ (5.2.18)

where the parameters depend on the reference signal and the direction of the

valve motion:

wi D f .zref .k � d/; sign .zref .k � d/// (5.2.19)

The task is to detect and diagnose faults in closed-loop operation of the flow

circuit. The investigated faults are:

F1: Leak in the pneumatic pipe between position controller and membrane cham-

ber.

F2: Increased friction of the valve (stuffing box).

F3: Erosion of the valve plug (simulated by a bypass).

F4: Fault in the valve position controller.

F5: Increased flow resistance of the pipe system (partial clocking).

F6: Fault in PV sensor ( PVsensor D 1:1 PVnormal ).

The generation of the symptom ST , SK , SO requires sufficient process excitation

for online valve estimation of the linear parameter model in the actual setpoint.

In typical applications this is often not fulfilled, due to constant setpoints and

the slow dynamics of the position control. In order to estimate the parameters

from (5.2.18), an additional input excitation is required. In this approach, two

small steps of 10 s duration are added to zref as can be seen in Figure 5.24. It



5.2 Pneumatic actuators 135

shows the reference small signal and the control performance degradation of the

flow through the valve. Herewith, the average flow is kept constant. The faults

effect the symptoms in different ways. The influence of selected faults on three

symptoms is depicted in Figure 5.25.

Using all six symptoms, a classification using the SELECT method was per-

formed. The total training data consisted of 60 measurements for each of the

six faults. For learning and validation, a three-fold cross-validation scheme was

employed. However, there exists some overlap of some of the fault classes as de-

picted in Figure 5.25. A classification rate of 100% cannot therefore be expected.

Additionally, it was not possible to train only one diagnostic tree for the complete

range of operation. Some of the symptoms show distinct differences in their be-

havior for small and large flow rates. Therefore, two trees were learned, one for

high flow rates (above 50% of zref ) and one for lower flow rates. Here, only re-

sults of the higher flow rates are presented. The results for flow rates below 50%

are similar.
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Fig. 5.24. Step responses of the flow control loop with additional test signals of the position

reference value for process excitation

Table 5.8 displays the fuzzy relationships between the faults and symptoms as

they were extracted from the classification tree. It can be seen that symptoms SK

and SO are more included for the classification than symptom ST for instance.

This indicates their relevance for the distinction of the faults. Table 5.8 also ranks

the faults according to the difficulty of separation. Clearly, the erosion and leak in

the supply air pipe system seem to be difficult to classify, whereas flow resistance

and controller faults can be found more easily. The achieved classification rate

was 81% when all six faults were considered. A diagnosis without the erosion

fault resulted in a classification rate of 84%. With less stringent requirements for

the diagnosis even higher values are possible. Additionally, the diagnosis sys-

tem also produces membership values for the faults which were not detected

thereby giving an indicator for alternative possible fault causes. For more details

see [5.4].
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Fig. 5.25. Reduced symptom space for some faults

Table 5.8. Fuzzy symptoms at the nodes – AND relations of the classification tree

faults SK Sr SO ST ST 98 SCPI

F5 increased pipe resistance not large large changed

F4 position sensor error changed unchanged changed

F2 increased friction large unchanged unchanged

F6 flow sensor offset large small unchanged

F3 valve plug erosion not small unchanged

F1 supply leak changed

Hence, by identifying local linear direction-dependent valve models and genera-

tion of symptoms from output parity equations, valve model parameters and position

control performance it is possible to detect and diagnose at least six typical faults of

pneumatic valves and its flow control. The required measured signals are the fluid

flow rate PV , its reference value PVref and the position reference value Zref of the

valve. Electrical signals of the valve position z and the diaphragm pressure p1 were

not used. Therefore, this fault-diagnosis procedure is suitable for flow control with

pneumatic valves and pneumatic position controllers, frequently used in chemical

plants. However, the identified dynamic models for the flow rate depend on the con-

nected plant and may be influenced by changes of its parameters or structure. The

local linear models can be tuned during a setup phase at commissioning by a test run

of the flow control.

b) Measurement of valve position and chamber pressure

For the same pneumatic flow valve as described in the last section now only the

valve position z and its reference value Zref is used, [5.3]. Local linear models with

z-transfer function

G1.z/ D z.z/

zref .z/
D b0 C b1z�1 C b2z�4 C b3z�7

1 C a1z�1 C a2z�2 C a3z�3
C c0 (5.2.20)
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are identified with linear parameter variable models. Ten models were used with ad-

ditional input by the first derivative of zref .z/, in order to take direction-dependent

behavior into account. Based on this model for the position control loop and excita-

tion by reference step inputs the following characteristic features were extracted: gain

SK , dominant time constant ST and DC-parameter (offset) SO as given in (5.2.17),

and output residual Sr as (5.2.15). The resulting fault-symptom table is shown in

Table 5.9. Because of the different patterns the investigated faults except F3 can be

isolated and therefore diagnosed. However, the symptom generation depends on the

operation point of the valve. For example, plug erosion (larger cross-sectional area

between plug and seat) can be better detected for more closed valve position and

increased pipe resistance for more open valve position.

Hence, the measurement of the valve position and the position controller refer-

ence value allows to diagnose several faults by nonlinear model-based fault detection

with parameter estimation and external stepwise excitation of the position controller

setpoint.

Table 5.9. Fault-symptom table of the valve position control loop with parameter estimation

symptoms

closed-loop closed-loop offset output

faults gain time constant parameter residual

SK ST SO Sr

F1 supply leak � 0 0 C
F2 increased friction (stuffing box) 0 C� CC ��
F3 valve plug erosion C � �� C
F4 position sensor error �� �� CC CC
F5 increased pipe resistance CC CC �� �
F6 flow sensor offset 0 C� 0 0�

c) Additional measurement of chamber pressure and pressure drop

Now, a case is considered where no external input is required. If in addition to the

measured signals z, zref , PV , PVref also the diaphragm pressure p1 and pressure drop

�p over the valve and available parity equations are established. They use difference

equation models with z-transfer functions

G1.z/ D z.z/

zref .z/
I G2.z/ D

PV .z/
z.z/

I G3.z/ D
PV .z/

zref .z/

G4.z/ D p1.z/

zref .z/
I G5.z/ D �p.z/

z.z/

(5.2.21)

which are identified for normal status with six to ten local linear models of order

n D 1 : : : 3, [5.3]. Based on these fixed multi-models the following residuals of

parity equations are calculated:
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r1.k/ D z.k/ � G1 � zref .k/

r2.k/ D PVref .k/ � G2 � z.k/

r3.k/ D PVref .k/ � G3 � zref .k/

r4.k/ D p1.k/ � G4 � zref .k/

r5.k/ D �p.k/ � G5 � z.k/

(5.2.22)

The resulting deflection of these residuals for implemented faults during normal op-

eration is stated in Table 5.10. Except F2 and F4 the remaining four faults can be

isolated.

Hence, the additional measurements allow one to use more parity equations and

do not require permanent parameter estimation and extra excitation, as in the last

section. However, the dynamic models used should be adapted to eventually changed

plant behavior after certain time intervals.

Table 5.10 shows that if only measurements of z, zref and p1 are available two

residuals r1 and r4 can be used. Then fault F5 and two groups of faults can be de-

tected, F1 or F5 and F2 or F4.

Further methods and experimental results for the fault diagnosis of pneumatic

valves were investigated by [5.6]. Through measuring zref , z, PV and p1, the actu-

ating pressure in the diaphragm chamber, a combination of parameter estimation for

linear models and closed-loop characteristics allowed to diagnose several faults.

Table 5.10. Fault-symptom table of the valve with parity equations and additional measure-

ments. 1: residual deflected, 0: no change

symptoms

faults r1 r2 r3 r4 r5

F1 supply leak 1 0 0 0 0

F2 increased friction (stuffing box) 1 1 1 1 1

F3 valve plug erosion 0 1 1 0 0

F4 position sensor error 1 0 1 0 1

F5 increased pipe resistance 1 1 1 0 1

F6 flow sensor offset 1 1 1 1 1

5.2.6 Fault detection of flow valves with electronic position controller

The use of digital position controllers instead of pneumatic ones allows the access

to electrical signals of the position reference variable W1 D zref , the valve stem

position z and a signal of the manipulated variable U , compare Figure 5.16. As

indicated in Tables 5.6 and 5.7 this enables a good coverage for the detection of

faults in the pneumatic and mechanical parts of the valve. As then an input and an

output variable of the valve is available, model-based fault-detection methods can be

applied, as shown for the hydraulic servo axis, Section 5.1 and in [5.6].
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However, the manipulating pressure p1 acting on the diaphragm after the air

amplifier is usually not measured but only an electrical signal, generating the input

pressure to the amplifier. This value is for example available from the i/p converter

of the position controller where i is an applied standard DC current of 4 � 20 mA

and is a measure of the manipulated variable U1 of the position controller.

In [5.15], [5.16] it was described how a digital position controller provides ad-

ditional information about its own condition as well about the pneumatic valve. The

positioner is still realized as an analog PD-controller with analog position signal and

analog manipulated variable for an i/p converter, but obtains its reference value from

a microprocessor. Standard diagnosis functions then give information on the device

status (e.g. run time, configuration data, exceeded limits) and on the operation (zero

point, hardware faults, data faults). An extended diagnosis allows the evaluation of

the measurements. Histograms give statistics on the position operating area and di-

agrams between the valve position and the manipulation DC current i . This gives

hints to leakages, changed spring forces, supply pressure and backward forces from

the flow medium. Through the application of small changes of the reference vari-

able W1 and observation of the stem position, increased friction of the plug stem

can be detected. However, a detailed fault diagnosis seems not to be possible. For an

improvement further sensors (pressures, structure-borne noise) are proposed.

A digital position controller and a valve stem potentiometer [5.11] are used to

train a multi-layer neural network that learns the relationships between seven char-

acteristic figures of position step responses, like dead time, rise times, overshoot and

steady-state error for three faults, incorrect supply pressure, vent blockage of one

diaphragm chamber and diaphragm leakage. The valve is taken offline (no process

flow) and step responses are only measured in one direction, avoiding effects of hys-

teresis and dead band. The three faults could be detected and isolated, but other faults

like valve stem friction are not covered.

5.2.7 Conclusions

The different approaches for fault detection and diagnosis of pneumatic valves have

shown that the fault detection and diagnosis coverage depends strongly on the instru-

mentation of the valve. It could be shown that for a pneumatic position controller

with the position setpoint as the only available electrical signal, the superimposed

(cascaded) electronic flow control gives access to the flow rate and its setpoint and

therefore allows one to diagnose several valve and also flow control faults. If addi-

tional measurements are available, such as valve position or chamber pressure the

identification of static characteristics or the use of nonlinear discrete-time (local lin-

ear) models for the closed loop allow one a more detailed fault detection of the valve

and its control. In the last case parameter estimation and setpoint changes such as

excitation or parity equations in normal operation can be applied.

If digital position controllers are implemented, then usually the valve stem po-

sition and the controller output can be used. Model-based fault-detection methods

based on static characteristics, parity equations and parameter estimation then allow

a specific valve fault diagnosis, in addition to the conventional approaches, like limit
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checking of supply air pressure, histograms of valve position, observation of limit

switches, etc.



Part III

Machines and Plants



6

Fault diagnosis of pumps

Pumps are basic components in most technical processes, like in power and chemical

industries, mineral and mining, manufacturing, heating, air conditioning and cooling

of engines. They are mostly driven by electrical motors or by combustion engines

and consume a high percentage of electrical energy. One distinguishes mainly cen-

trifugal pumps for high deliveries with lower pressures and hydrostatic or positive

displacement (reciprocating) pumps for high pressures and small deliveries. They

transport pure liquids, or mixtures of liquids and solids and herewith increase the

pressure to compensate, e.g. for resistance losses or enabling thermodynamic cycles.

In the past, circular pumps were mostly driven with constant speed and the flow

rate of liquids was manipulated by valves with corresponding throttling losses. Due

to the availability of cheaper speed-controlled induction motors also circular pumps

with lower power are now used for controlling the flow rate in order to save energy.

The overall reliability and safety of many plants depends on the health of pumps.

Therefore, the supervision and fault diagnosis of pumps is of relatively high impor-

tance. In this chapter the results of several case studies will be treated for centrifugal

pumps and reciprocating pumps.

6.1 Centrifugal pumps

6.1.1 State of the art in pump supervision and fault detection

Damage to centrifugal pumps occurs either in the hydraulic parts or the mechanical

parts. An inquiry by the German Fachgemeinschaft Pumpen, VDMA [6.29], mainly

among chemical industry and water treatment plants has shown the following result:

59% of pumps operate continuously, 19% daily and 22% for a short time. Inspec-

tion intervals are three months on average. Unplanned repairs because of defects

happened within a mean of nine months.

Table 6.1 shows the faulty components as causes of damages to centrifugal

pumps.
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The most frequent faulty components are therefore the sliding ring seals and the

ball bearings, see Figure 6.1. Causes for faults which lead at least to interruptions of

operation or maintenance are shown in Table 6.2. Cavitation, dry run, increased wear

and deposits are especially important for fault detection.

Table 6.1. Faulty components as cause for damages to centrifugal pumps, [6.29]

Faulty components Reported frequency Faulty component Reported frequency

Œ%� Œ%�

sliding ring seal 31 sliding bearings 8

rolling bearing 22 clutch 4

leakage 10 split pipe 3

driving motor 10 casing 3

rotor 9

Table 6.2. Malfunctions of centrifugal pumps and their explanation

Faults Explanation and consequences

cavitation development of vapor bubbles inside the fluid if static pressure

falls below vapor pressure. Bubbles collapse abruptly leading

to damage at the blade wheels and generate crackling sound

gas in fluid A pressure drop leads to appearance of solved gas in the

transported liquid. A separation of gas and liquid and lower

head may result

dry run missing liquid leads to lack of cooling and overheating of

bearing. Important for starting phase

wear erosion: mechanical damage to walls because of hard particles

or cavitation

corrosion: by aggressive fluids

bearings: mechanical damage through fatigue and metal friction,

generation of pittings and rents

plugging of relief bore holes: leads to overloading of axial

bearings and their damage

plugging of sliding ring seals: leads to higher friction and smaller

efficiency

increase of split seals: leads to less efficiency

deposits deposits of organic material or through chemical reactions

at the rotor entrance or outlet lead to less efficiency, higher

temperatures until total breakdown of pumping

oscillations unbalance of the rotor through damage or deposits

at the rotor, damage to the bearings

The supervision of pumps depends very much on the applied instrumentation. If

for example only the outlet pressure is measured for a centrifugal pump with con-

stant known speed only large deviations to the normal operation pressure give hints
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Fig. 6.1. Sectional drawing of a typical centrifugal pump (KSB Etanorm)

that somewhere large faults or failure happened. The addition of volume flow rate

measurement improves the situation, as then changes of the head characteristic can

be observed, however, without the possibility of fault diagnosis. The measurement

of the inlet pressure allows one to observe the NPSH (net positive suction head) with

regard to cavitation. All these simple supervision methods generally do not allow an

early detection of small faults and do not give information on the causes of faults

(diagnosis).

The supervision of well-instrumented pumps is usually based on the measure-

ment of inlet and outlet pressure or the head only, the flow rate, speed and tempera-

ture of bearing casing and limit checking of these values. For example, if the outlet

pressure or flow rate are too low (or too high) compared to the normal or rated val-

ues, this may be the result of gas enclosures, dry run, large deposits, strong deposits

or bearing or motor defects. These large deviations from normal operation are eas-

ily observable by the exceeding of adjusted thresholds. But a fault diagnosis and an

early fault detection is in general not possible with this checking of limits.

Various research efforts have given an insight into the pump behavior under the

influence of faults. The application of vibration sensors and analysis of structure-

borne noise is investigated, e.g. by [6.18], [6.10], [6.25], [6.20], [6.17]. The methods

require special sensors and pump-specific and signal-specific evaluation methods and

allow one to detect vibration-related faults under certain operating conditions, see the

discussion in Section 6.1.5.

The simultaneous evaluation of several measurements and development of model-

based fault-detection methods was performed by [6.6] (pump with variable speed

and parameter estimation), [6.22] (pump with constant speed and parameter esti-
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mation), [6.5] and [6.30] (pumps with different power and combination of parity

equations and parameter estimation). These research projects are the basis for the

following sections. Further publications on model-based approaches are [6.8] con-

firming parameter-estimation-based approaches, and [6.1] applying a state observer

and parameter estimation.

6.1.2 Models of centrifugal pumps and pipe systems

a) Pump

The torque M applied to the rotor of a radial centrifugal pump leads to a rotational

speed ! and transmits a momentum increase of the liquid from the rotor inlet with

smaller radius r1 to the rotor outlet with larger radius r2 by guiding the liquid through

blade-bounded channels. The theoretical required torque follows from an angular-

momentum balance equation, known as Euler’s turbine equation. This leads to the

theoretical pump head

Hth D hth1!
2 � hth2! PV (6.1.1)

where the delivery head is defined as

H D p2 � p1

�g
D �p

�g
(6.1.2)

with p1 the pressure at the inlet and p2 at the outlet. PV is the volume flow rate.

Taking into account a finite number of blades, blade and tube friction losses,

impact losses due to nontangential flow at the blade entrance, the basic equation for

the delivery head of the pump becomes, [6.2], [6.5], [6.26]:

H D hnn!
2 � hnv! PV � hvv

PV 2 (6.1.3)

The coefficients hi are determined by the basic equations and contain empirically

determined parameters.

The corresponding power transmitted to the fluid is

P D �gH PV D M! (6.1.4)

The theoretical pump torque then results with (6.1.2) and (6.1.1):

Mth D �g
PV
!

Hth D �g
�
hth1! PV � hth2

PV 2
�

(6.1.5)

Including the flow losses, (6.1.3) has to be inserted in (6.1.4), resulting in the real

torque:

MP D �g

 
hnn! PV � hnv

PV 2 � hvv

PV 3

!

!
(6.1.6)

The mechanical part of the pump is modeled by the rotational impulse balance
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JP

d!.t/

dt
D Mmot .t/ � MP .t/ � Mf .t/ (6.1.7)

where JP is the ratio of inertia of motor and pump and Mf is the friction torque,

consisting of Coulomb friction Mf 0 and viscous friction Mf 1!:

Mf .t/ D Mf 0 sign!.t/C Mf 1!.t/ (6.1.8)

Figure 6.2 shows the resulting characteristics of the delivery head H and the torque

M of a centrifugal pump.
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Fig. 6.2. Measured characteristics of a centrifugal pump (nN D 2900 rpm)

b) Pipe system

The pump is now assumed to transport a fluid in a pipe system from a lower to an

upper storage tank, Figure 6.3. Based on the momentum balance equation of the pipe

one can state for turbulent flow

H.t/ D aF

d PV .t/
dt

C hrr
PV 2.t/C Hstat (6.1.9)

where hrr is a resistance coefficient of the pipe, taking into account pipe parts, pipe

elbows and throttle valves, aF D l=gA with l the pipe length and A the pipe cross-

sectional area, and Hstat is the height of the storage over the pump (resp. lower

storage height), which means that the static pressure is

pstat D �g Hstat (6.1.10)

Assuming that (6.1.9) can be linearized for small deviations around the steady-state

volume flow
NPV and p1 D const: leads to a first-order differential equation

TF

d� PV .t/
dt

C� PV .t/ D KF�p2.t/ (6.1.11)

with gain and time constant
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KF D �p2

� PV
D 1

2�ghrr
NPV

(6.1.12)

TF D ˛F

2hrr
NPV

D l

2gAhrr
NPV

(6.1.13)

Hence, the time constant of the fluid increases with larger pipe length l and smaller

volume flow PV .

Hk

pDw

c m

M
p

V
R stat

Fig. 6.3. Scheme of a circular pump with electrical drive, pipe system and storage. Open circuit

c) Pump and closed pipe circuit system

If the pump transports the fluid through a closed pipe circuit system with constant

resistance parameters, as shown in Figure 6.4, the steady-state behavior follows from

(6.1.3) and (6.1.9) with d PV =dt D 0 and Hstat D 0:

.hrr C hvv/ PV 2 C hnv! PV � hnn!
2 D 0 (6.1.14)

The solution of this quadratic equation yields

PV D �! (6.1.15)

with

� D 1

2.hrr C hvv/

�
�hnv C .�/

q
h2

nv C 4hnn.hrr C hvv/

�
(6.1.16)

If the resistance parameters in the pipe are constant (i.e. no valve position changes)

the volume flow is proportional to the speed of the pump.

Because of the nonlinear pump torque the speed dynamics (6.1.7) are also non-

linear. However, for small deviations �! around a steady state N! the equation can

be linearized. In the case of a closed pipe circuit (6.1.15) holds and the pump torque

(6.1.6) reduces to
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MP D �g�
�
hnn � hnv� � hvv�

2
�
!2

D km!
2

(6.1.17)

Then (6.1.7) changes to

JP

d!.t/

dt
D Mmot .t/ � km!

2.t/ � Mf 0 sign!.t/ � Mf 1!.t/ (6.1.18)

Linearizing yields the first-order differential equation

TP

d!

dt
C�!.t/ D KP�Mmot .t/ (6.1.19)

with the gain

KP D �!

�Mmot

D 1

2km N! C Mf 1

(6.1.20)

and the time constant

TP D JP

2km N! C Mf 1

(6.1.21)

The time constant of the motor and pump gets small for small ratio of inertia JP and

large speed and has to be compared to the fluid time constant TF due to (6.1.13).

Figure 6.5 shows a signal flow diagram for the linearized pump–pipe system, taking

into account (6.1.11) and (6.1.19). Hence, a second-order dynamic system results,

according to the momentum stored by the pump-motor rotor and the fluid mass in

the pipe.

6.1.3 Fault detection with parameter estimation

Model-based fault detection with parameter estimation is described first for the static

behavior and then for the dynamic behavior of a centrifugal pump. Figure 6.4 shows

the scheme of the investigated pump and the pipe circuit.

a) Constant speed operation and shut-off

In many cases an AC motor without speed control is used as a pump drive. [6.22],

[6.23] investigated two possibilities. By changing the position of a valve in the pip-

ing system the plant characteristic changes and therefore the operating point of the

pump, which is determined by the intersection between pump and plant character-

istic. Thus, the parameters of the static head-flow curve H. PV ; !/ can be identified.

Except for the small changes due to the slip-torque characteristic of the AC motor,

the pump speed remains constant. A second possibility consists in the evaluation of

the dynamic pump behavior at shut-off. Thereby, the pump is shut off while oper-

ating at a normal flow or at zero flow. Both cases were examined. The following

signals were measured: U , AC motor voltage; PV , volume flow; I , AC motor current,

H , pump head; !, speed.
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Fig. 6.4. Scheme of the speed-controlled DC motor and centrifugal pump. Closed circuit.

Motor: Pmax D 4 kW; nmax D 3000 rpm; pump: H D 39 m; PVmax D 160 m3=h;

nmax D 2600 rpm. An AC motor was used for steady-state operation and a DC motor for

dynamic operation
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Fig. 6.5. Signal flow for the linearized behavior of a pump–pipe system in a closed circuit

around the steady state
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Identifying the static pump characteristic by variation of the valve position, speed

and flow are no longer proportional to each other. Therefore, the complete centrifugal

pump model has to be used. For the head characteristic it holds that

H D hnn!
2 � hnv! PV � hvv

PV 2 (6.1.22)

and for the torque

MP D �g

 
hnn! PV � hnv

PV 2 � hvv

PV 3

!

!
(6.1.23)

Experiments have shown, [6.22], [6.24], that the torque for the investigated pump

can be better approximated by

MP D k0! PV � k1
PV 2 C k2!

2 (6.1.24)

By changing the valve position with constant motor speed the head H , the motor

torque M and the volume flow PV are varied along the characteristic curves. Least-

squares parameter estimation is then based on

H D ‰T‚H (6.1.25)

MP D ‰T‚M (6.1.26)

with the data vector

‰T D
h
!2 ! PV PV 2

i
(6.1.27)

and the parameter vector

‚T
H D Œhnn � hnv � hvv � (6.1.28)

‚T
M D Œk2 k0 � k1� : (6.1.29)

The experiments were performed for a volume flow range of 0 � �150% relative to

the rated flow. However, a range of 60 � �150% is sufficient for fault detection.

The shut-off experiments leads to a jump of the driving torque to zero. If it is

assumed that the pump speed and the flow are proportional to each other because the

flow resistance remains constant, the terms ! PV and PV 2 can be replaced by !2, see

(6.1.15) and (6.1.17). This yields with (6.1.7), neglecting the friction terms,

Mmot .t/ D JP d!=dt C km!
2 (6.1.30)

Note that both parameters JP and km can be identified, although M.t/ is zero except

for t � 0. The reason is that for identification the values M.t/ and !.t/ are not

used directly but are first sent through a (low-pass) state-variable filter in order to

obtain the derivative d!=dt . Therefore, the filtered value of M.t/ is not a jump to

zero but a slow transition to zero which provides sufficient excitation for parameter

identification. The term km!
2 represents the load at shut-off. Generally, an increase

of load means a decrease of the shut-off period.
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The centrifugal pump model was now used for incipient fault detection. The idea

was to identify the slowly proceeding deterioration of the pump state due to abrasive

wear, erosion and cavitation by identifying the parameters of the pump model. Sev-

eral faults were built into the pump to test the reaction of the fault-detection method:

1) Wear at the clearance gap. The clearance gap ring is one of the most frequently

changed spare parts of a centrifugal pump. A widening of the clearance gap

increases the leakage flow from impeller outer diameter to suction side and sig-

nificantly reduces pump efficiency, especially with pumps of low specific speed.

However, the degree of wear depends very much on the operating conditions

of the pump, especially the quality of the fluid medium (concentration of salt,

sand, ashes, etc.) and the operating point (pump delivery flow, available net pres-

sure suction head (NPSH)). Thus, no universal recommendation can be given

for when to change the clearance ring. Several experiments with different rings

were carried out. The effect of an increased clearance gap is a leftward shift of

the characteristic curves which can be seen in Figure 6.6. Furthermore, the disk

friction increases for single-stage pumps, because the clearance gap flow enters

the back part of the impeller with a peripheral velocity, which gets faster as the

flow passes from the outer diameter to the inner diameter. The shut-off period be-

comes smaller (especially with shut-off at zero flow), because the flow through

the clearance represents an additional load, see Figures 6.7 and 6.8. Thus, the

symptoms for clearance gap wear are, see Table 6.3, a reduction of hnn and an

increase of hvv , k2 and km.

2) Wear at impeller outlet. Experiments with different impeller faults were per-

formed, out of which the wear at the impeller outlet is further discussed here.

Abrasive wear can lead to erosion at the pressure side of the blades. This has

a similar effect as a sharpening of the blades: The decrease of blade width at

the outlet has a positive effect on the flow conditions and thus first increases the

head of the pump. Therefore, an increased pump head is not always a sign of an

improved pump state. The effect on the parameters is mainly an increase in hnn,

hnv and k2.

3) Deposits at impeller inlet. These can severely hamper the operation of a pump

and in extreme cases can lead to total pump failure. In many cases these deposits

consist of organic waste but there may also occur a slow sedimentation by chem-

ical reactions, especially if the pump has a standstill. Therefore, an identification

of this fault is interesting for the periodic check of standby pumps, especially in

chemical industry. A partial obstruction of the pump inlet manifests itself mainly

at nominal load or overload as can be seen in Figure 6.9. During the experiments

there were first a few threads fastened at the entrance of the blades and then a

lot of threads. In both cases, a determined deviation of the pump‘s characteristic

curve could be observed. There was a pronounced increase of the parameter hvv

and a decrease of hnn.

Statistical evaluation of the resulting parameter behavior was done to distinguish

between normal random parameter variations and significant variations in the case

of a fault. Table 6.3 summarized the results of some experiments. It can be seen that
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Table 6.3. Symptoms from parameter estimation of static characteristics and shut-off dynamics

Static head Static torque Shut-off

characteristic characteristic dynamics

Fault hnn hnv hvv k0 k1 k2 JP km

wear at clearance gap �� � CC 0 C CC 0 CC
small deposits at

impeller outlet
� 0 CC C C 0 0 0

deposits at impeller

inlet
� CC CC 0 0 C 0 0

abrasive wear at impeller

outlet
C C 0 0 0 C 0 0

broken blade C 0 � 0 � C C C
caviation at impeller

inlet
� � 0 0 0 � 0 C

the main hydraulic damage due to abrasive wear and erosion can clearly be detected.

If the size of the symptoms are taken into account the faults can be isolated. Some

more practical results for pump diagnosis are given in [6.24]. These investigations

have shown that a constant speed pump can be diagnosed by parameter estimation

of characteristics with changing valve position and by shut-off experiments. As ero-

sion damage is of a slowly proceeding nature which usually does not change the

pump operation significantly, model-based pump diagnosis with parameter estima-

tion provides an effective method for the implementation of a predictive maintenance

schedule.

The application of parameter estimation for the fault detection of centrifugal

pumps was also investigated in [6.8]. By using the basic static pump equation (6.1.3)

three parameters were estimated for different positions of a flow valve. Remain-

ing small errors in the resulting delivery head are then approximated with a multi-

layer perceptron neuronal net. Deviations of the measured head �H.n; PV ;T / D
Hmeas �Hmod are then used to estimate deviation parameters� O‚. The deviations of

these three parameters of (6.1.28) then allow one to distinguish between rotor faults
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like deposits, broken blade, cavitation erosion and clearance gap wear. The influence

of the fluid temperature on the model accuracy is observable for 20ıC � Tf l � 80ıC

and is, however, negligible for the final fault classification. Hence, similar results

were obtained as described above.

b) Dynamic operation for stepwise speed changes

The centrifugal pump is now driven by a speed-controlled DC motor and pumps

water through a closed pipe circuit, see Figure 6.4. Both, the DC motor and the

pump are now considered as a unit, [6.6].

The measured signals are: U2, armature voltage; I2, armature current; PV , volume

flow rate; !, angular velocity; H , pump total head.

The basic equations after some simplifying assumptions are:

a) armature circuit

L2

dI2.t/

dt
D �R2I2.t/ �‰!.t/C U2.t/ (6.1.31)

b) mechanics of motor and pump

JP

d!

dt
D ‰I2.t/ � Mf 0 � �ghth1!.t/ PV .t/ (6.1.32)

c) hydraulics of the pump, [6.26]

H.t/ D hnn!
2.t/ � hnv!.t/ PV .t/ � hvv

PV 2.t/ D h0
nn

PV 2.t/ (6.1.33)

In this case all three terms can again be lumped together, as PV is proportional to !,

see (6.1.15).

d) hydraulics of the pipe

aF

d PV .t/
dt

D �hrr
PV 2.t/C H.t/ (6.1.34)

The overall model is basically nonlinear but linear in the parameters to be estimated.

Therefore least-squares parameter estimation can be applied in its direct, explicit

form described in Section 2.5.2. The models contain nine process coefficients:

pT D
�
L2;R2; ‰;JP ;Mf 0; hth1; h

0
nn; aF ; hrr

�
: (6.1.35)

For the parameter estimation the equations are brought into the form

yj .t/ D ‰T
j .t/

O‚j ; j D 1; 2; 3; 4 (6.1.36)

where
y1.t/ D dI2.t/=dt y2.t/ D d!.t/=dt

y3.t/ D H.t/ y4.t/ D d PV .t/=dt

�
(6.1.37)
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The model parameters

O‚T D
h

O‚T

1 ;
O‚T

2 ;
O‚T

3 ;
O‚T

4

i
(6.1.38)

were estimated by the least-squares method in the form of discrete square-root filter-

ing (DSFI). Based on the model parameter estimates O‚ all nine process coefficients

of p could be calculated uniquely.

The DC motor is controlled by an AC/DC converter with cascade control of the

speed and the armature current as auxiliary control variable. The manipulated vari-

able is the armature current U2. A microcomputer DEC-LSI 11/23 was connected

online to the process. For the experiments the reference value W .t/ of the speed

control has been changed stepwise with a magnitude of 750 rpm every 2 min. The

operating point was n D 1000 rpm, H D 5:4 m and PV D 6:48 m3/h. The signals

were sampled with sampling time T0 D 5 ms and 20 ms over a period of 2.5 and

10 s, so that 500 samplings were obtained. These measurements were stored in the

core memory before estimation. Hence, one set of parameters and process coeffi-

cients was obtained every 120 s. For the training phase 50 coefficient sets were used.

Table 6.4 gives an overview of significant changes of process coefficients for 19 dif-

ferent artificially generated faults. A selection of experiments will now be considered

in more detail.

1) Fault A5: Disturbance of the air cooling of the DC motor, Figure 6.10

A stepwise reduction (20%, 50%, 75%, 100%) of the air flow (e.g. due to plug-

ging by dirt) leads to a temperature change of the whole motor and therefore to

an increase of the resistance in the armature circuit and excitation circuit. There-

fore, R2 increases and the magnetic flux linkage‰ decreases. This is an example

where the coefficients move in opposite directions.

2) Fault P3: Increase of slot clearance of the centrifugal pump, Figure 6.11

An increase of the slot clearance between the pump wheel and the pump case

increases the internal losses. Therefore, hth1 increases and h0
nn decreases.

3) Fault F1a: Cavitation in the centrifugal pump, Figure 6.12

A small cavitation and gas bubble generation in the pump by lowering the en-

trance pressure is indicated by an increasing coefficient aF , which is propor-

tional to the time constant of the pipe system, see (6.1.13).

These experiments have demonstrated that in all cases, where a significant

change of process coefficients could be expected the fault could be detected. Based

on the patterns given in Table 6.4 most of the faults can be isolated. At least motor

faults are clearly isolable from pump faults.

6.1.4 Fault detection with nonlinear parity equations and parameter estimation

In order to develop an online fault detection and diagnosis method for a centrifugal

pump–pipe–tank system over a large operating range, a plant according to Figures

6.13 and 6.14 is considered. The pump is driven by an inverter-fed, speed-variable

induction (squirrel-cage) motor which is speed-controlled by a field-oriented con-

troller. The stator current vector Is D Is˛ C iIsˇ is measured and transformed in the
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Table 6.4. Detected symptoms for the DC motor and centrifugal pump based on parameter

estimation for stepwise speed changes. C: positive change, �: negative change, 0: no change

Symptom

Fault L2 R2 ‰ JP Mf 0 hth1 h0
nn aF hrr

A1: exc. resistance increase 0 0 � 0 0 0 0 0 0

A2: armature resistance increase 0 C � 0 0 0 0 0 0

A3: affected brushes � C � 0 0 0 0 0 0

A4: new brushes 0 0 0 0 0 0 0 0 0

A5: insufficient cooling 0 C � 0 0 0 0 0 0

A6: cold drive 0 0 C � 0 0 0 0 0

K1: shaft displacement 0 0 0 � 0 0 0 0 0

P1a: bearing without grease 0 0 0 0 � 0 0 0 0

P1b: bearing with dirt 0 0 0 C C C 0 0 0

P2: side thrust compensation defective 0 0 0 0 0 0 0 0 0

P3: splitting clearance increase 0 0 0 0 0 C � 0 0

P4: affected impeller 0 0 0 � 0 C � 0 0

P5a: pump casing defective I 0 0 0 0 C 0 0 0 0

P5b: pump casing defective II 0 0 0 0 � C 0 C 0

F1a: little cavitation 0 0 0 0 0 0 0 C 0

F1b: medium cavitation 0 0 0 0 0 C � C �
F2: insufficient venting 0 0 0 0 0 C � � �
F3: fluid temperature increase 0 0 0 0 0 0 � 0 �
F4: valve position increase 0 0 0 0 0 C 0 0 C

reference frame defined by the rotor flux Is D Isd C iIsq which is obtained by using

an adequate model, see Section 3.2.

The motor torque can then be determined by

Mmot D kT‰RIsq (6.1.39)

where kT is known from the motor data sheet.

Further measurements are:

p1 pump pressure inlet

p2 pump pressure outlet

! pump speed
PV volume flow.

Figure 6.15 shows the overall configuration of the investigated pump–pipe system.

The mathematical models of the pump used have to be adapted to the pump–pipe

system, [6.5], [6.30]. Based on the theoretically derived equations from Section 6.1.2

the following models are used here:
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H.t/ D hnn!
2.t/ � hnv!.t/ PV .t/ � hvv

PV 2.t/ (6.1.40)

H.t/ D p2.t/ � p1.t/

�g
D �p.t/

�g
(6.1.41)

H.t/ D aF d PV .t/=dt C hrr
PV 2.t/ (6.1.42)

Jp P!.t/ D Mmot .t/ � Mth.t/ � Mf .t/ (6.1.43)

Mth.t/ D Mth1!.t/ PV .t/ � Mth2
PV 2.t/ (6.1.44)

Mf .t/ D Mf 0 sign !.t/C Mf 1!.t/ (6.1.45)

A comparison of these theoretically derived equations has shown that because of

(6.1.11), neglect of the viscous friction in (6.1.32) and (6.1.8), the following simpli-

fied relations can be used, [6.30]:

�p.t/ D Qhnn!
2.t/ � Qh!!.t/ (6.1.46)

JP P!.t/ D Mmot .t/ � Mf 0.t/ � M2!
2.t/ (6.1.47)

These models agree also with a larger pump–pipe system, [6.5]. Figure 6.16 shows

the resulting signal flow diagram.

a) Measurement of I; !;�p; PV

Based on these models and after discretizing, the following residuals can be obtained,

compare Figure 6.17 and [6.30], [6.32]:

Static pump model (6.1.46):

r1.k/ D �p.k/ � w1!
2.k/C w2!.k/ (6.1.48)

Dynamic pipe model (6.1.42):

r2.k/ D PV .k/ � w3 � w4

p
� Op.k/ � w5

PV .k � 1/ (6.1.49)

Dynamic pump–pipe model (6.1.42), (6.1.46)

r3.k/ D PV .k/ � w3 � w4

p
� Op.k/ � w5

PV .k � 1/ (6.1.50)

� Op.k/ D w1!
2.k/ � w2!.k/ (6.1.51)

Dynamic inverse pump model (6.1.48)

r4.k/ D Mmot .k/ � w6 � w7!.k/ � w8!.k � 1/ � w9!
2.k/ � w10Mel .k � 1/

(6.1.52)

The residuals r1.k//, r2.k/ and r3.k/ are output residuals which follow by compar-

ing the measured�p.k/ and PV .k/with the corresponding model outputs, see Figure

6.17. However, r4.k/ is an input residual, because Mmot .k/ is compared with the

output of an inverse pump model. r2.k/ and r3.k/ include flow sensor dynamics of

first order. The sampling time is T0 D 10 ms.
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The parameters w1; : : : ; w10 follow directly from known physical data described

in the equations above or are estimated, e.g. with methods of least squares based

on measurements of Isq.t/, !.t/, �p.t/ and PV .t/. However, the parameters wi de-

pend, especially for low speed at the operating point. Therefore, for each residual a

multi-model approach is used. It has turned out that it is sufficient to consider the

parameters dependent on the angular speed only.

The pump system was excited by changing the speed according to an amplitude-

modulated PRBS over the whole operating range, and with the local linear model

network LOLIMOT the parameters wi.!/; i D 1; : : : ; 10 were determined using

three local models each, see [6.15]. Figure 6.18 shows a comparison of measured

and reconstructed values with the models. Hence, a very good agreement can be

stated.
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Fig. 6.17. Residual generation with parity equations for the pump–pipe system

The following faults were introduced into the pump–pipe system:

� Offset sensor faults !; PV ;p1;p2

� Increased resistance by piecewise closing of a valve after the pump

� Cavitation by piecewise closing of a valve before the pump

� Increased bearing friction by removing grease and introducing iron deposits

� Impeller defect by closing one channel between two vanes with silicon

� Sealing-gap losses by opening a bypass valve

� Leakage between pump and flow measurement.

Table 6.5 shows the resulting symptoms. The residuals of the parity equations can be

obtained without input excitation, i.e. in steady-state operation. The resulting resid-

uals indicate that the sensor offset faults, sealing-gap losses and increased bearing

friction are strongly isolable. However, increased flow resistance, cavitation and im-

peller defect are either only weakly or not isolable. This means that all the faults

are detectable but some of them cannot be differentiated. As in the case of dynamic

excitation the nonlinear models are very precise, passing deviations of the residuals

result. In order to avoid over-large thresholds, adaptive thresholds are used. In addi-

tion to a constant value, the thresholds depend on a high-pass-filtered value of the

speed !, which increases the threshold in the case of a speed change, [6.30], [6.31].



164 6 Fault diagnosis of pumps

0 20 40 60 80 100 120
0

1000

2000 n [rpmin]


t [sec]


0

0.4

0.8

1.2

-0.06

0

0.06

t [sec]

0 60 80 100 120

 
 p [bar]


  
 [bar]


 
 p


 
 p

̂

0

20

40

60

80

-3

0

3

t [sec]

0 20 40 60 80 100 120

  
 [dm
3
/min]



̂

V [dm
3
/
min]

.
 .


V


.

V


0

1

2

3

4

0

0.3

-0.3

t [sec]

0 20 40 60 80 100 120

M

el


 [Nm]


  
 [Nm]


M

el


M

el



̂

(a)


(b)


(c)


(d)


Fig. 6.18. Measured signals of the pump–pipe system, LOLIMOT model outputs and their

differences: a) angular speed; b) delivery pressure difference; c) flow rate; d) torque of AC

motor

20 40



6.1 Centrifugal pumps 165

A dynamic excitation with a test PRBS for the speed also allows one to estimate

the parameters of the models (6.1.42), (6.1.46) and (6.1.47) with a recursive least-

squares method as described in Section 2.5, see also [6.13], Section 2.5. The changes

of these physically defined parameters are given in Table 6.5 and show that now all

faults are isolable and can therefore be diagnosed by combining the two methods.

b) Measurement of I; !

If the delivery pressure �p and the flow rate PV are not measurable, the residual r4

can be calculated based on measured speed ! and motor current Isq . This allows one

to detect a sensor fault in ! and some pump faults. Additional parameter estimation

enables one to determine parameter deviations of JP , Mf 0 and M2 with (6.1.47)

and to isolate some more pump faults.

Similar results as described above have been obtained by [6.5] for a larger pump

with P D 3:3 kW and PVmax D 150 m3/h and a larger pipe circulation system with

two heat exchangers. Two different flow meters could be used. This allowed the

generation of six residuals and four parameter estimates. Together with two variances

of residuals, altogether 13 symptoms could be obtained, which enabled the diagnosis

of 11 different faults of sensors, pump and pipe system.

These symptoms were then used to train 20 fuzzy rules with the SELECT proce-

dure described in [6.15], Section 17.3.5, yielding a 100% classification accuracy.

Table 6.6 enables one to see which faults are only detectable or also diagnosable

with combined parity equations and parameter estimation. A minimal measurement

of the torque M D f .I/ and speed ! allows one to detect some few faults but not to

diagnose them. By adding a sensor for p1 and p2, or for �p, many more faults can

be detected and diagnosed. The additional implementation of a flow rate sensor has

little influence on the number of detectable faults, but allows one to diagnose many

more faults. This shows that model-based detection of faults is possible with three to

four sensors, but that the fault diagnosis is improved considerably by one additional

sensor (here the flow rate).

6.1.5 Fault detection with vibration sensors

Rotating machinery such as centrifugal and reciprocating pumps generates certain

oscillations. In the case of centrifugal pumps these oscillations are generated by the

rotating shafts, blades of the rotors, ball bearings, unbalance and fluid oscillations

through turbulence and vortex or cavitation. The arising frequencies therefore depend

on the rotational speed, flow rate and special fluid-phenomena.

Therefore is is obvious to detect changes, malfunctions and faults through vibra-

tion and oscillation measurements, especially also as some faults can be detected by

the human ear. The available sensors are, e.g. oscillation velocity sensors with a low-

frequency suspended seismic mass and inductively generated voltage or oscillation

accelerometers with a high-frequency suspended seismic mass or with piezoelectri-

cal sensors possessing small mass and large spring stiffness.
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Table 6.6. Detectable and diagnosable faults in dependence on the sensors used. Assumed is a

modern frequency converter that is able to reconstruct the motor torque M without additional

sensors. Omitted are faults at the frequency converter itself and other electric faults in the

motor. Faults in parentheses are difficult to identify yet not completely impossible (depends on

the individual setup), [6.5].

Sensor usage

Fault detectable M M; ! M; !;p2 M; !;p1;p2 M; !;p1;p2; PV
Total breakdown x x x x x

Defective blade wheel (x) x x x

Incr. shaft or motor friction x x x

Sensor fault ! x x x x

Sensor fault PV x

Sensor fault p1;p2 p2 x x

Decreased flow resistance (x) (x) x x

Increased flow resistance (x) (x) x x

Cavitation through (x) (x) x x

pressure reduction

Insufficient de-ventilation p2 x x

of sensors p1;p2

Insufficient de-ventilation x

of sensor PV
Sensor usage

Fault diagnosable M M; ! M; !;p2 M; !;p1;p2 M; !;p1;p2; PV
Total breakdown x x x x

Defective blade wheel x x x

Incr. shaft or motor friction x x x

Sensor fault ! x

Sensor fault PV
Sensor fault p1;p2 x

Decreased flow resistance x

Increased flow resistance x

Cavitation through x

pressure reduction

Insufficient de-ventilation p2 x x

of sensors p1;p2

Insufficient de-ventilation x

of sensor PV
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During the last two decades several investigations were reported for fault detec-

tion with vibration sensors.

The application of four piezoelectric acceleration sensors in combination with

two pressure and one motor current phase Hall sensor for fault detection was inves-

tigated in [6.20]. Sampling frequency was 125 kHz over a time interval of 1.4 s or

70 pump rotations with constant speed (3000 rpm). The evaluation of the structure-

borne noise was made in the spectral ranges 5–10 kHz, 10–15 kHz and 15–20 kHz.

The passing of the rotor blades results in a basic frequency in the pressure spectra

and is influenced by faults like cavitation and broken blades. Several pump faults

could be differentiated with classification methods and each one acceleration sensor

for the pressure and for the pump casing together with the motor phase current seem

to be sufficient.

[6.17] investigated pressure and casing fluctuations by using signal analysis to-

gether with neuro-fuzzy methods. Fourier analysis of two orthogonal vibration sen-

sors to detect axle motions relative to sliding bearings indicated unbalance, blocking

and wear.

A series of publications on the analysis of structure-borne noise with different

kinds of acceleration sensors at pump casings or integrated in the containment shell

of magnet coupling pumps are [6.16], [6.10], [6.19], [6.12], [6.9], [6.25]. They show

the application of different signal-analysis methods, the generation of features and

computerized learning methods. Several faults could be detected and classified for

a definite pump speed. However, the application for variable-speed pumps and the

transferability to other pump sizes and pump types seem not to be directly possible.

Also finding the best locations for positioning the accelerometers is important.

[6.11] reports on the frequency analysis of pressure and flow rate and shows how

the frequency spectra are changed by damage to the impeller, cavitation, two-phase

flow and restrictions.

A high-frequency analysis of the motor current allows one to gain information

on stochastic and periodic disturbances of the torque, see also Section 3.2.2. An ap-

plication for underwater well pumps has shown that the current frequency spectrum

between 5 and 100 Hz allows one to detect increased bearing gap, recirculation ef-

fects at low volume flows and congestions, [6.21].

The advantage of the vibration sensors is that they can be applied easily at the

pump casing, if an appropriate position has been found. However, the vibrations gen-

erated by the rotor and by the flowing medium are proportional to the square of the

speed and the flow rate. Therefore the amplitudes of the signals are relatively small

for lower speeds and part load and tend not to give useful signals. In addition, the

analysis of the signals with FFT, parametric ARMA models or wavelets needs high-

frequency sampling and computing power. It is further subject to noise and vibrations

from other plant equipment. Vibration analysis of pumps is in principle limited to the

detection of faults which generate oscillations through the rotation, flow and special

fluid phenomena, like cavitation. Because many other faults cannot be detected, it

should be combined with other detection methods, if other measurements such as

�p, !, M , PV are available. If, however, the pumps are not well instrumented and

run with constant speed, vibration analysis is a first choice.
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6.1.6 Conclusions

The described methods for the model-based fault detection and diagnosis of cen-

trifugal pumps are based on standard measurements such as voltage, current and

angular speed of the electrical drive and inlet and outlet pressure or difference pres-

sure (head) and volume or mass flow rate of the fluid. It has been shown that fault

detection as well as fault diagnosis is improved considerably by using the physical

relations between the measured variables in the form of process models and that an

in-depth diagnosis is increasingly possible the more sensors are available. A consid-

erable advantage of the described process-model-based fault-detection methods is

that they apply physically derived pump models. Therefore they are applicable to a

wide range of operating points and they are directly transferable to other centrifugal

pumps. Further their symptoms are usually well interpretable and understandable.

The applicability of the different methods depends on the kind of operation, as

summarized in Table 6.7. If the pump is operating for long time periods in one steady

state, i.e. with constant speed and flow, then mainly parity equations with various

residuals of input and output variables, as shown in Figure 6.17 and Table 6.5 can be

used. The number of diagnosable faults increases with the number of applied sensors,

Table 6.6. The situation improves if the pump is operating at different steady states,

i.e. speed and volume change from time to time. Then physical- and/or experimental-

based algebraic equations for the pump characteristics can be taken for steady-state

parameter estimation of some coefficients which express fluid dynamic phenomena

and different losses. The changes of these coefficients can be traced back to different

pump faults, see Figures 6.6 and 6.12 and Table 6.3, and allow one to diagnose some

faults because of different influences on the coefficients (signs and sizes). The sign of

the changes may depend on the pump type and operating point, [6.22]. The structure

of the algebraic characteristic equations is in principle based on theoretical pump

models, however may need some simplification or adaption for the individual pump

and pipe system, also depending on operation in an open or closed fluid flow circuit.

If the pump is driven continuously or from time to time in dynamic (transient)

states by fast changes of the electrical motor speed or the fluid flow by valves, then

dynamic pump and pipe equations can used for parameter estimation, as depicted

in Figures 6.10 to 6.12 and Table 6.4. Additionally, parity equations can be applied,

resulting in some residuals. Table 6.5 shows that the combination of these two fault-

detection methods allows one to generate a large number of symptoms and to differ-

entiate between several sensors and pump faults.

A further possibility for fault detection is to observe the speed behavior of the

pump after shut-off of the electrical drive. Figure 6.7 and Table 6.3 show that some

pump faults can be detected. However, this depends on the size of the connected pipe

system. It may increase the number of generated symptoms, especially for short pipe

lengths.

Note that all the model-based methods allow one to detect faults in the motor

as well as in the connected pipeline in addition to those in the pump. The described

model-based methods of fault diagnosis can be supplemented by signal-analysis-
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Table 6.7. Application of model-based fault-detection methods in dependence on operation

conditions and on data evaluation

Static behavior Dynamic behavior

model type nonlinear nonlinear nonlinear nonlinear

characteristics characteristics dynamic dynamic

(steady-state) (steady-state) model model

detection parameter parity parameter parity

methods estimation equations estimation equations

operation one

conditions steady state
� p � �

different

steady states

p p � �
dynamic

excitation
� � p p

shut-off � � p p
kind of data offline

p p p p
evaluation online

(real time)
� p p p

based methods, as e.g. measurement of casing accelerations or structure-borne noise

to detect cavitation or an unbalanced rotor as described in Section 6.1.5.

The different methods have different properties with regard to the kind of data

evaluation, Table 6.7. The parity equation can primarily be used online in real time

and give therefore, as signal model-based methods, an immediate information after a

fault occurrence. Parameter estimation of the steady-state characteristics can only be

applied after gathering all data (batch processing). However, parameter estimation

for dynamic operation can be realized online in real time with recursive algorithms.

A feasible application for the fault detection of pumps is to apply parity equa-

tions online and in realtime, which does not require a higher computational expense.

This can be supplemented by a vibration sensor at the pump casing, but means an

additional sensor. If the residuals indicate larger deviations a special dynamic exci-

tation signal (e.g. APRBS) of the speed can be applied for a short time to gain better

information on the fault type by dynamic parameter estimation.

6.2 Reciprocating pumps

Reciprocating pumps are used for pumping of various faults, especially within the

chemical and pharmaceutical industries. They are also called oscillating positive dis-

placement pumps and are primarily applied for high pressure differences and small to

medium flow rates. The pressure can go up to 3000 bar and the volume flow ranges

from 0:1 ml/h to 1000 m3/h. The rated power can reach 1 MW. The piston or di-

aphragm motion principle also allows one to meter the flow precisely. If oscillating

diaphragms are used, aggressive and toxic media can be pumped and metered. As
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these pumps frequently have central functions in plants their availability is impor-

tant, [6.3], [6.27].

6.2.1 Structure of a diaphragm pump

Figure 6.19 shows a scheme of a reciprocating pump. The speed-controlled AC motor

is connected to a gear with a crankshaft to generate an oscillating linear motion for a

piston in the pump head. This piston moves oil forth and back and therefore generates

a displacement of the diaphragm. During the suction phase the spring-loaded inlet

valve opens and the outlet valve closes and during the pressure phase they operate

oppositely.

Because of the high load for high pressure these pumps may show up a number of

faults with increasing operating time. Examples are leakages of the valves, resulting

in back flow and lower efficiency, gas enclosures, cavitation in the suction part or

faults in the gear and bearings.

For supervision usually only the pressure after the pressure valve or in the oil

section is measured and the current of the electrical motor and limit checking is

applied. In the following it is shown how a process model and signal-model-based

approach allows one to detect small faults and achieve a deeper fault diagnosis, [6.7].

pd
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motor
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Fig. 6.19. Scheme of a reciprocating diaphragm pump with measured variables
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6.2.2 Models of a diaphragm pump

The reciprocating function of the considered pump consists of four phases: pressure

build-up, discharge, pressure release, suction. Figure 6.20 shows the pressure be-

havior dependent on the piston displacement, the so-called indicator diagram. The

pressure in dependence on the volume follows for a compressible fluid:

dp D �dV

V
(6.2.1)

where E is the bulk modulus or compressibility module. This module depends on the

pressure p, the temperature T and gas contents � D Vair=Vf luid and is depicted

in Figure 6.21. For modeling the pressure one needs a compressibility module E for

the pumped fluid and the oil in the hydraulic section. The pressure pa in the working

(pumping) space and the hydraulic space ph can be assumed as identical:

pa.t/ D ph.t/ (6.2.2)

The volume behavior follows:

V .t/ D V0 � Aphp.t/ (6.2.3)

where V0 is the total volume of the working and hydraulic space, Ap the piston area

and hp is the piston displacement. Integrating (6.2.1) yields for the build-up phase

pa.t/ � p0 D
Z t

0

E0.pa; �/

V0 � Aphp.�/
Apvp.�/d� (6.2.4)

p0 is the initial pressure for t D 0 and vp.t/ is the piston speed. For E0 an analytical

expression can be used, [6.7].

Corresponding models ban be given for the discharge stroke taking into account

pressure drops at the valves and the pipes and the adiabatic behavior of the pulsation

damper, the pressure release and suction stroke. Hence, four models result, which

describe the normal behavior of the pump pressure, Figure 6.22. The unknown pa-

rameters for all phases are estimated with hill-climbing methods using measured

variables of the considered pump. Then the resulting models show a relative good

agreement with measurements, [6.7].

6.2.3 Fault detection and fault diagnosis of the hydraulic pump

a) Pressure signal

Some faults change the pressure behavior pa.hp/. For example, gas enclosure lead to

a retarded pressure increase and a leakage in the pressure valve to an advanced pres-

sure increase. Therefore the differences between different crankshaft angles for the

pa.�/ signal for the normal and the observed behavior lead to four symptoms and the

integration of the output pressure and measured pressure to three other symptoms,
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Fig. 6.21. Compressibility module in dependence on pressure and gas contents for hydraulic oil

Figure 6.23. The last symptoms integrate the pressure difference over the crank an-

gle, resulting in deviation areas. This means that the difference between the pump

model and the real behavior are generated, in the sense of parity equations, but spe-

cial features are calculated which reflect faults.

For experimental testing of the fault-detection method a pump test bench was in-

stalled, Figure 6.24, where the variables indicated in Figure 6.19 could be measured.

b) Acceleration signal

Additional information can be gained by an accelerometer at the pump head, see

Figure 6.19. Especially for leaks at the pressure and the suction valve structure-borne

noise can be observed in special time windows. Therefore the variance of the sampled

accelerometer signal a.t/ is calculated:



174 6 Fault diagnosis of pumps

piston position ( )h tk
crank angle ( )f t

p
re

ss
u

re
[s

]
p a

switch

models

pressure
build up

1.

discharge
stroke

2.

pressure
release

3.

suction
stroke

4.

pa,1

pa,2

pa,3

pa,4

time [s]t

papressure

1

2

3

4

Fig. 6.22. Models for the outlet pressure

�2
a D 1

N � 1

NX

kD1

Œa.k/ � Na�2 (6.2.5)

with sampling time T0 D t=k D 1 ms. Then two symptoms result for the discharge

and suction phase:

S10 D �2
a;disch.a/ � �2

ref;disch.a/

S11 D �2
a;suc.a/ � �2

ref;suc.a/
(6.2.6)

The increasing noise results from the fluid pressed through the leakages of the valves

under high pressure differences leading to strong flow noise and to cavitation if pres-

sure falls under vapor pressure, see Figure 6.25. The evaluation of the accelerometer

signal is performed only for time windows of the discharge and suction phase, as

shown in Figures 6.25 and 6.26.

Figure 6.27 depicts the overall scheme for the fault detection with 11 symp-

toms. The resulting signs and sizes of the symptoms for different faults are presented

in Table 6.8. They show different patterns for the investigated hydraulic faults and

therefore allow a clear distinction and indication of the fault sizes. The final fault

diagnosis was implemented with fuzzy if-then rules, [6.7]. The smallest faults which

could be detected correspond to a decrease of the volumetric efficiency of the pump

of about 2%. Also some multiple faults can be detected.
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Table 6.8. Fault-symptom table for different faults and fault sizes

Crank angle Pressure Pressure Structure-

symptoms symptoms increase borne noise

symptoms symptoms

small - - 0 0 + 0 0 0 0 0 0

Gas in fluid medium – – 0 0 ++ 0 0 0 0 0 0

large — — 0 0 +++ 0 0 0 0 0 0

small - - 0 0 + 0 + 0 0 0 0

Throttle & cavitation medium – – 0 0 ++ 0 ++ 0 0 0 0

large — — 0 0 +++ 0 ++ 0 0 0 0

small 0 0 0 0 0 0 + 0 0 0 ++

Leakage pressure valve medium 0 + 0 - - - 0 - + 0 +++

large – ++ 0 – – – 0 ++ ++ 0 +++

small 0 0 0 0 0 0 + 0 0 ++ 0

Leakage suction valve medium 0 - 0 + + + 0 + - +++ 0

large 0 – ++ ++ ++ ++ 0 ++ ++ +++ 0

structure-

pressure signal borne noise

6.2.4 Fault detection of the pump drive

To detect faults in the drive chain of the pump the following measured signals can be

used: the effective phase current IS of the AC motor, the angle velocity !rot of the

AC motor, the piston displacement hp and the pump pressure pa. The torque balance

at the motor shaft is

J P!rot .t/ D Mel .t/ � Mpump.t/ � Mf .t/ (6.2.7)

where J is the ratio of inertia, Mel the motor torque, Mpump the pump torque and

MR the friction torque of the bearings, gear and crankshaft. The torque Mel of the

electrical motor can be calculated from simplified equations and the measured effec-

tive value of the phase current Is.t/, see, e.g. [6.4], [6.28], [6.14]. The friction torque

is assumed as

Mf .t/ D Mc.t/C cv!rot .t/ (6.2.8)

consisting of a Coulomb-friction coefficient Mc and viscous-friction coefficient cv .

The load torque resulting from the pump is

Mpump.t/ D Mhyd .t/C Mf ric.t/C Mmass.t/ (6.2.9)

with
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Mhyd D 1

!0
rot

Ap
Php.pa � patm/

Mf ric D 1

!0
rot

.Fp C cp;v
Phk/ Phk

Mmass D 1

!0
rot

mk
Rhk

Phk

!0
rot D !rot= i .i D gear ratio/

Mostly Mmass � Mhyd and can therefore be neglected. Based on these models a

residual for the drive chain friction can be calculated:

rf .t/ D Mf .t/ � Mf;ref .t/

D Mf .t/ � Mc.t/ � cv!rot .t/
(6.2.10)

where the observed friction torque follows from (6.2.9), Figure 6.28. If this residual

passes a certain threshold an increased friction is observed, e.g. generated by faults

in the bearings, gear or crankshaft. Figure 6.29 indicates how the residual changes

after increasing the friction torque. Experiments have shown that faults which change

the torque by about 10% can be detected with the presented model-based approach,

[6.7].

pump motor

motor
model

pump
model

motor
current

models

hk pa wrot ISc ISbISa

ISa

ISb
ISc

1
i

pa

hk

w'rot

IS

Mpump

Mel

-
- Mfric - rfric

wrot J wrot

Fig. 6.28. Signal flow for the model-based fault detection of the drive train

6.2.5 Conclusions

An overall scheme of the model-based fault detection and diagnosis of the investi-

gated reciprocating pump in depicted in Figure 6.27. It could be demonstrated with
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Fig. 6.29. Measured motor current Is , calculated motor torque Mel and pump torque Mpump

and friction residual rf for an increase of friction at t D 7 s

the experiments at the test bench that special features calculated from the pump pres-

sure behavior and residuals of the structure-borne noise allow a detailed diagnosis

of small faults within the hydraulic part. In addition by measuring the current and

speed of the electrical motor faults in the mechanical part leading to an increased

friction can be detected using the “drive-as-sensor principle”. Thus, a combination

of process-model and signal-model methods could be successfully applied to this

pump type.
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Leak detection of pipelines

The leak detection of pipelines is a basic task for any pipeline operation. Pipelines

consist usually of different sections with a length of 30–100 km and a pump or a

compressor at its inlet and a tank or storage at the outlet, Figure 7.1. The available

measurements are mostly pressure p0 and pl , mass flow Pm0 and Pml and temperature

T0 and Tl at inlet and outlet of the pipeline or a pipeline section. In some cases the

sections are separated by a sliding valve with additional pressure measurements. The

measured signals are transmitted to a control station by cables, optic fibres or wire-

less communication, sometimes as redundant lines. With regard to the leak detection

and leak localization several cases have to be taken into account:

(i) medium: liquid – gas – multiple phases

(ii) operation: standstill – stationary – non-stationary

(iii) size of leak: small – medium – large

(iv) timely development of leak: abrupt (cracking of welding seam), slowly (hole

corrosion) or already existing

(v) leak monitoring: continuously – in time intervals – on request.

M M
p

0
p

lm
0

m
l

p
in

p
ex

Fig. 7.1. Usual instrumentation of a pipeline or pipeline section. p pressure, Pm mass flow

7.1 State of the art in pipeline supervision

The following ways are possible to detect leaks during operation:

� Pressure probe: A pressurized pipeline section is closed by sliding valves and

the time-dependent pressure development is observed. This is a very sensitive

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  

DOI 10.1007/978-3-642-12767-0_7, © Springer-Verlag Berlin Heidelberg 2011 
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method, but it requires a standstill of pumping and leak localization is not possi-

ble.

� Mass balance: Taking the difference of input and output mass flow

PmL.t/ D Pm0.t/ � Pml .t/ (7.1.1)

allows one to detect leaks in liquid pipelines of about PmL.t/ � 2% and in gas

pipelines � 10%. Due to inherent dynamics, noise effects and measurement de-

fects no smaller leaks can usually be detected and their localization is not possi-

ble.

� Pressure wave detection: Using highly sensitive and fast pressure sensors shock

waves can be detected after larger, abrupt leaks in liquid pipelines. Based on the

known speed of sound of about 800–1500 m/s, localization is possible with an

accuracy of about 100 m, [7.9].

� Ultrasonic noise: The sound of a leak is especially transmitted through the pipe

wall and can be measured by microphones at various locations along the pipeline.

Time shifts of the signals then allow one to estimate the leak location approxi-

mately.

� Liquid-sensitive cables: If the pipeline is equipped with liquid-sensitive cables at

the bottom, the resistance of the cables is changed in the case of a leak, what can

be used for leak detection and localization by analyzing a network consisting of

different serially connected resistances.

� Process-model-based methods: The stationary and dynamic behavior of the pres-

sures and mass flow rates are described by a mathematical pipeline model and are

compared with measured variables. Thus, residuals are generated and parameters

are estimated to allow leak detection and localization as well for liquids as for

gases. This will be considered in the sequel. These methods were first published

by [7.8], [7.7] and [7.3].

7.2 Models of pipelines

A simplified scheme of a pipeline according to Figure 7.2 is considered. The physical

data are:

z length coordinate

l length of the pipeline

dF inner diameter of the pipe

AF D �d2
F=4 cross-sectional area of the pipe

H.z/ height profile of the pipeline

p.z; t/ fluid pressure

�.z; t/ fluid density

T .z; t/ fluid absolute temperature

w.z; t/ fluid velocity

m fluid mass

Pm.z; t/ fluid mass flow rate
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PmL leak mass flow rate

R gas constant

cF D
p

p=� speed of sound

� friction coefficient

�f fluid viscosity
PV volume flow rate

p
in

dz

z = 0 z

p
ex

z l=

Fig. 7.2. Simplified scheme of a pipeline (H D const.)

For a pipe element of length dz the mass balance equation becomes

@m

@t
D AF�w � AF

�
w C @w

@z
dz

��
�C @�

@z
dz

�
(7.2.1)

and with

Pm D AF�w (7.2.2)

and neglect of small terms
@

@z
.�w/C @�

@t
D 0 (7.2.3)

The momentum balance is

@

@t
.AF�wdz/ DAF

�
p C �w2

2

�
� AF

�
p C @p

@z
dz C �w2

2

C @

@z

.�w2/

2
dz

�
� AF F � AF Y

(7.2.4)

or
@

@t
.�w/C @

@z

�
p C �w2

2

�
D �F � Y (7.2.5)

The friction force related to AF is

F D @pF

@z
D �

�

2dF

wjwj (7.2.6)

where � is the friction coefficient. It depends on the Reynolds number

Re D dFw

�f

(7.2.7)
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Usually laminar flow can be assumed for Re < 2320 with

� D 64

Re
(7.2.8)

and turbulent flow for Re > 2320 with

� D 0:3164

Re0:25
(7.2.9)

The static pressure term becomes

Y D �g
dH

dz
D �g sin˛ (7.2.10)

if ˛ is the angle of ascent.

If an isothermic flow with temperature T0 can be assumed the gas state equation

is

p
1

�
D Z.p;T0/RT0 D c2

F .p/ (7.2.11)

where cF .p/ is the isothermic speed of sound. Then after the introduction of the

variables Pm.z; t/ and p.z; t/ the two balance equations become

AF

@

@t

 
1

c2
F .p/

p

!
C @ Pm
@z

D 0 (7.2.12)

1

AF

@ Pm
@t

C @

@z

 
p C Pm2c2

F
.p/

2A2
F p

!
D 1

AF

@ Pm
@t

C
 

1 � Pm2c2
F

2A2
F

p2

!
@p

@z
C Pmc2

F@ Pm
A2

F
p@z

D �F � Y

(7.2.13)

F D �

2dF

c2
F
.p/

A2
F p

Pmj Pmj

Y D gp

c2
F
.p/

dH

dz

This pipeline model can now be simplified by assuming:

(i) the isothermic speed of sound is constant within a pipeline section j W cF .p/ D
cFj

(ii) the fluid flow velocity wF is small in comparison to the speed of sound cF , so

that

w2
F � c2

F

i:e:
Pm2c2

F

A2
F p2

D w2
F

c2
F

� 0
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(iii) for slow dynamic changes and long pipelines the term

Pmc2
F

A2
F

p

@ Pm
@z

� 0

can be neglected.

Then, the simplified “long-pipeline model” results in the assumption @H=@z D 0:

k1

@p

@t
C @ Pm
@z

D 0 (7.2.14)

k2

@ Pm
@t

C @p

@z
D �k3 Pm j Pmj

p
(7.2.15)

which is a hyperbolic partial differential equation system, with the coefficients

k1 D AF

c2
Fj

k2 D 1

AF

k3 D �

2dF

c2
Fj

A2
F

(7.2.16)

For the solution of the partial differential equation system the pipeline is subdivided

(discretized) into sections j , Figure 7.3, so that

@pj

@t
D g1j

�
PmjC1 � Pmj�1

�
j D 1; 3; : : : ; l � 1

@ Pmj

@t
D g2

�
pjC1 � pj�1

�
C g3.j�1/ Pmj j Pmj j j D 2; 4; : : : ; l � 2

@ Pm0

@t
D g20 .p1 � p0/C g30 Pm0j Pm0j

@ Pm1

@t
D g21 .pl � pl�1/C g31 Pml j Pml j .l D even/

(7.2.17)

with

g1j D � 1
k1�z

g20 D � 2
k2�z

g2 D � 1
k2�z

g21 D � 2
k2�z

g3.j�1/ D � k3j

pj �1
g30 D � k3

p0

�z D 2L
l

g31 D � k3

pl�1

(7.2.18)

The boundary conditions are given by the valve equations

Pm0 D kv0

s�
�00

p00

�0

�p
Œ.pin � p0/� D cv0

p
.pin � p0/

Pml D kvl

s�
�00

p00

�l

�p
Œ.pl � pex/� D cvl

p
.pl � pex/

(7.2.19)
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with �00 and p00 as reference values of water and kv as the kv-values of a valve.

(7.2.17) can now be expressed as a nonlinear state-variable representation

p
0

p
1

p
3

p
5

p
l-3

p
l-1

p
l

m0 m2 m4 ml-2 ml

Fig. 7.3. Subdivision of the pipeline into sections

Px.t/ D A.x/x.t/C Bup.t/

y.t/ D Cx.t/
(7.2.20)

with

xT D
�

Pm0 Pm2 : : : Pml

:::p1p3 : : :pl�1

�

uT
p D Œp0pl � yT D Œ Pm0ml �

A D

2
66666666664

g30j Pm0j 0 : : : 0 g20 0 : : : 0

0 g31j Pm2j : : : 0 �g2 g2 0
:::

:::
:::

:::
:::

:::

�g11 g11 : : : 0 0 : : : 0

0 �g13 g13 0 0 : : : 0
:::

:::
:::

:::

0 : : : �g1.l�1/ g1.l�1/ 0 : : : 0

3
77777777775

B D

2
66666666664

�g20 0

0 0
:::

:::

0 g21

0 0
:::

:::

0 0

3
77777777775

C D
�

1 0 : : : 0 0 : : : 0

1 0 : : : 0 0 : : : 0

�

(7.2.21)

The considered equations can also be used for compressible liquids. Then in (7.2.13)

the coefficient Pmj Pmj becomes

k3

p
D �

2dF A2
F

c2
Fj

pj

D �

2dF A2
F

�j (7.2.22)

and therefore g3.j�1/ becomes a constant for each section j .

If a small leak flow d PmL� occurs at section j D �, see Figure 7.4, this can be

modeled by introducing it into the mass balance equation (7.2.3):
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@

@z
.�w/� C @��

@t
C 1

AF

@ PmL�

@z
D 0 (7.2.23)

Then (7.2.14) changes to

k1

@p�

@t
C @ Pm
@z

C @ PmL�

@z
D 0 (7.2.24)

and (7.2.17) to
@p�

@t
D g1�

�
Pm�C1 � Pm��1

�
C g1� PmL� (7.2.25)

p
0 1 3 l-3 l-1 p

l

m0 2
mLx l-2 mlx

Fig. 7.4. Leak flow PmL� at section �

7.3 Model-based leak detection

Based on the mathematical pipeline model, leak-detection methods are considered

for liquids and gases, non-stationary or slow dynamic operation with small changes

of the variables and small leaks which may appear abruptly or slowly, and for con-

tinuous monitoring.

For small changes and the mass flow rate Pm in the positive z-direction, the mo-

mentum balance equation of (7.2.17) can be linearized:

@ Pmj

@t
D g2.�pjC1 ��pj�1/C 2g0

3.j�1/� Pmj (7.3.1)

where all coefficients are taken for the steady-state values Npj and NPmj . Further the

linearized valve equations (7.2.19) are introduced in the form

�p0 D c0
v0
� Pm0 C�pin

�pl D c0
vl
� Pml C�pex

�
(7.3.2)

Then a linear state representation

Px.t/ D Ax.t/C Bu.t/

y.t/ D Cx.t/
(7.3.3)

results with
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xT .t/ D
�
� Pm0� Pm2 : : : � Pml

:::�p1�p3 : : : �pl�1

�

uT D Œ�pin�pex �

yT D Œ� Pm0� Pml �

9
>>=
>>;

(7.3.4)

However, for most of the gas pipelines the nonlinear (7.2.20) must be used. This re-

sults from their big storage capacities and the time-dependent consumption. There-

fore, gas pipelines rarely come to a steady state.

7.3.1 Leak detection with state observers

It is assumed that a small leak flow ı PmL occurs at section j D � . The effect of the

leak can be modeled by introducing this leak mass flow rate into the mass balance

of this section, see (7.2.23) leading to (7.2.25). This changes the linearized state

equation (7.3.3) to

Px.t/ D Ax.t/C Lv.t/C Bu.t/ (7.3.5)

with the leak flow vector

vT .t/ D
�
0 0 : : : Pml� : : : 0 0 : : : 0

�
(7.3.6)

and the leak influence matrix

L D

2
666666664

0 : : : 0 0 : : : 0
:::

:::
:::

:::

0 : : : 0 0 : : : 0

0 g11 : : : 0 0 : : : 0
::: g1�

:::
:::

:::

0 : : : g1.m�1/ 0 : : : 0

3
777777775

(7.3.7)

Hence, a leak flow appears as a disturbance or unknown input variable of the state

variables x.t/, Figure 7.5.
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u
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x y
ò

Fig. 7.5. A leak appears as disturbance v.t/

The leak monitoring task now consists in the detection of an appearing leakage,

its localization OzL along the pipeline and the estimation of its size PmL. In most cases
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only measurements Pm0.t/, p0.t/ and Pml .t/, pl .t/ at the inlet and the exit of the

pipeline are available.

The results of simulations for a gasoline and an ethylene-gas pipeline assuming

different locations of a suddenly appearing leak of 5% of the mass flow rate are

shown in [7.11]. If the leak location is approximately in the middle of the pipeline the

flows Pm0.t/ and Pml .t/ change with about the same settling times and reach their new

steady states after about 4 min for the gasoline pipeline and 2 h for the gas pipeline.

If the leak is closer to one end, the time responses and the magnitudes of the flow

changes become rather different. Now various approaches for leak monitoring are

shown.

a) State observer as fault-sensitive filter

For the detection of the leak a state observer

OPx.t/ D A Ox.t/C Bu.t/C H Œy.t/ � C Ox.t/� (7.3.8)

can be designed to reconstruct the states and to calculate the residuals

Qy.t/ D y.t/ � C Ox.t/ (7.3.9)

thereby it is assumed that all parameters of the pipeline system are known.

In the first adjustment phase, the filter gain H can be large so that a fast adjust-

ment occurs. For leak detection the gain H is lowered. Then if a leak PmL� occurs

suddenly the residuals Qy show a deviation C� Pm0.t/ and �� Pml .t/, i.e. the residuals

change in predetermined directions that can be used for the fault detection.

One drawback of this method is that the filter tries to adapt to the leak-disturbed

process after a while so that the information on the leak vanishes with time.

b) State observer with fault model

Another method consists of reconstructing the leak flow vector �.t/ by modeling the

fault influence in the filter, see Figure 7.6. The influence of a suddenly (stepwise)

appearing leak is modeled by

P� D �.t/ (7.3.10)

with initial value �.0/ D 1 and P�.t/ D 0 for t > 0 so that the observer is able to

reconstruct a remaining leak vector

O� D H�

Z t

t1

Qy.t 0/dt 0 (7.3.11)

If the observer converges in the right way the estimated leak vector contains the size

as well as the section number � where the leak occurred. To extract this information

under noisy conditions a bank of filters could be used, assuming different locations.
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Fig. 7.6. A leak appears as disturbance v.t/

A simulation with multiple model hypothesis probability testing for an oil

pipeline of 30 km length, using parallel Kalman filters, is described by [7.6]. A leak

of 1% of the total flow was detected after about 160 s.

Another reference on a fault-sensitive state-variable detector is [7.5]. Here, a sim-

ulation study on the detection of diverted or stolen nuclear material (corresponding

to a leak) in a plutonium concentrator by using statistical decision methods for the

residuals of an extended Kalman filter is shown. Relatively large computation time

and storage was required.

In order to estimate the leak location for a pipeline of 100 km length with an

accuracy of about ˙1 km at least 50 sections have to be modeled so that a high

system order results which may cause computational problems. Additionally, several

process parameters are not known precisely enough, i.e. the friction coefficients, and

also several temperature effects, so that the models have to be updated by parameter

estimation methods, [7.4].

Therefore, a simpler method was developed for liquid pipelines, taking into ac-

count several practical requirements and special cases of pipeline operation.

7.3.2 Leak detection with mass balance and correlation analysis for liquid

pipelines

It is assumed that a liquid pipeline operates in a stationary steady state and that only

the mass flow rates at the inlet Pm0.k/ and the exit Pml .k/ can be measured, where k

is the discrete time.

The simplest method of leakage monitoring is then by stating a static balance

equation

PmL.k/ D Pm0.k/ � Pml .k/ (7.3.12)
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and by triggering an alarm if the leak flow PmL exceeds a certain limit. However, this

pure balancing method is not suitable for the detection of smaller leaks, because of

the noise signals, drifting measurements and the dynamic changes of both flows.

An improvement of this method is obtained by determining the low-frequency

components of the flows by discrete-time low-pass filtering:

Pm�
j .k/ D �m Pm�

j .k � 1/C .1 � �m/ Pm�
j .k/ .j D 0; l/ (7.3.13)

Pm�
0
.k/ and Pm�

l
.k/ are then reference values, which may be different because of cal-

ibration errors of the sensors. They also change slowly due to temperature and vis-

cosity changes in the case of constant pumping. A leak is then obtained by

� Pm0.k/ D Pm0.k/ � Pm�
0.k/

� Pml .k/ D Pml .k/ � Pm�
l .k/

Pm0
L.k/ D � Pm0.k/ �� Pml .k/

(7.3.14)

or by further low-pass filtering:

Pm00
L.k/ D �L Pm0

L.k � 1/ � .1 � �L/ Pm0
L.k/ (7.3.15)

where �L < �m is required in order to be able to detect suddenly appearing leaks. If

Pm00
L
.k/ exceeds a certain threshold

Pm00
L.k/ > PmLth

a leak alarm is given.

By the described low-pass filtering, noise effects and slow drift effects can be

partly eliminated, but changes of the flows according to the inherent fluid dynam-

ics cause the adjustment of relatively large thresholds PmLth in order to avoid too

frequent false alarms.

This is one of the reasons to cross-correlate the differences:

RMM .�/ D 1

N

NX

kD1

� Pm0.k � �/� Pml .k/ (7.3.16)

see [7.8], [7.12]. This cross-correlation function reacts sensitively even to small

leaks, reduces noise effects and models inherent dynamic relationships between the

flow changes. For further noise reduction the correlation function is averaged with

respect to

R† D 1

2P C 1

PX

�D�P

RMM .�/ (7.3.17)

After a leak has occurred the fault symptom consists of changes in the predetermined

directions C� Pm0 and �� Pml , such that the products become negative and R† de-

creases, see Figure 7.7. An alarm is given, if

R† < R†" (7.3.18)
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The cross-correlation function is calculated recursively with forgetting memory:

RMM .�; k/ D �RMM .�; k � 1/C .1 � �/ Œ� Pm0.k � �/� Pml .k/� (7.3.19)

where 0:9 < � < 1. Larger values of � result in improved smoothing and thus reduce

the noise, but lead in turn to a delayed alarm.

t = -20

t = -20

t = 20

t = 20

R (t)
MM

t t= - 40 sL

t t= - 20 sL

t t= L

t t= + 20 sL

t t= + 40 sL

t t= + 60 sL

t t= + 80 sL

Fig. 7.7. Cross-correlation function RMM .�/ of the measured inlet and outlet flows after

appearance of a leak after tL. The CCF shifts to negative values because statistically more

negative than positive products appear

After the leak has been detected the leak location and the size of the leak mass

flow rate have to be estimated. Assuming stationary operating conditions and mea-

surements of the pressures p0 and pl at the inlet and outlet it follows for the pressure

gradient before the leak, compare Figure 7.8,

@p

@z
D pz D p0 � pl

l
D Pm2

p0 � pl

(7.3.20)

and after the leak for the upstream gradient

pL
zI D Pm2

0

p0 � pL

(7.3.21)

and downstream

pL
zII D Pm2

l

pL � pl

(7.3.22)
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where the (unknown) pressure at the leak location zL is

pL D p0 � pL
zI zL D pl C pL

zII .L � zL/ (7.3.23)

This leads to

0 z
L z

p

p
0

p
l

without leak

with
leak

Fig. 7.8. Pressure profile in a horizontal pipeline before and after occurrence of a leak

zL D pl � p0 C pL
zII l

pL
zII

� pL
zI

D l
pL

zII � pL
z

pL
zII

� pL
zI

(7.3.24)

Introducing small changes of the gradients after a leak

�pzI D pL
zI � pz

�pzII D pL
zII

� pz

�
(7.3.25)

yields for the leak location

zL D l
�pL

zII

�pL
zII ��pL

zI

(7.3.26)

In order to filter disturbances the upstream and downstream pressure gradients are

estimated by recursive averaging:

pzj .k/ D �ppzj .k � 1/C .1 � �p/
Pm2

j .k/

p0.k/ � pl .k/
.j D I; II/ (7.3.27)

Then reference mass flows are determined

Pm�2
j .k/ D pzj .k/Œp0.k/ � pl .k/� .j D I; II/ (7.3.28)

As soon as a leakage alarm is triggered the pressure gradients pzj .k/ are no longer

calculated but fixed and the mass flow differences

�m2
j .k/ D Pm2

j .k/ � Pm�2
j .k/ .j D I; II/ (7.3.29)

are determined and averaged:
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�m2
j .k/ D 1

N

NX

kD1

�m2
j .k/ .j D I; II/ (7.3.30)

In stationary operation (7.2.15) reduces to

@p

@z
D �kF Pm2

kF D �

2dF A2
F
�

D �c2
F .p/

2dF A2
F

p

(7.3.31)

Therefore (7.3.21) and (7.3.22) can be expressed by

�pL
zI D pL

zI � pz D kF . Pm0 C� Pm0/
2

�pL
zII

D pL
zII

� pz D kF . Pml C� Pml /
2

�
(7.3.32)

Neglecting small terms � Pm2, setting Pm0 D Pml and inserting in (7.3.26) yields for

the leak location

OzL D l
1

1 � � Pm0

� Pml

(7.3.33)

which allows one to calculate the leak location only from mass flow rate changes

determined by (7.3.30). An alternative with autocorrelation functions

Rm0m0
.�/ D 1

N

NX

kD1

� Pm0.k � �/� Pm0.k/

Rml ml
.�/ D 1

N

NX

kD1

� Pml .k � �/� Pml .k/

is

OzL D l
1

1 � RP
m0

RP
ml

(7.3.34)

with autocorrelation function averages like (7.3.17).

After the appearance of a leak mass flow rate it holds that

PmL D
�

Pm0 C� Pm0

�
�
�

Pml C� Pml

�
D � Pm0 �� Pml (7.3.35)

Hence, it is � Pm0 > 0 and � Pml < 0 and the ratio zL= l in (7.3.34) becomes

zL= l < 1

The leak mass flow rate can be calculated with (7.3.35).
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7.3.3 Leak detection for gas pipelines

a) Gas pipeline models

Different to liquid pipelines the state equation cannot be linearized for gas pipelines,

because the fluid is compressible and the parameters become dependent on the

pipeline section j . Beginning with the “long pipeline model” (7.2.14) and (7.2.15),

the basic mass balance and momentum balance equation becomes

AF

c2
F

@p

@t
C @ Pm
@z

D 0 (7.3.36)

1

AF

@ Pm
@t

C @p

@z
D � �c2

F

2dF A2
F

Pmj Pmj
p

� g sin˛

c2
F

p

D �F � Y

(7.3.37)

These equations are identical with (7.2.14), (7.2.15) but contain the static pressure

dependent on the angle ˛ of the height profile gradient.

If the frequently made assumption that the speed of sound cF is constant is not

acceptable, one can approximate the dependence by a linear relation, [7.2]:

cF .p/ D cF C @cF

@p
.p � p/ (7.3.38)

with @cF=@p D const. Then for the mass balance equation it follows that

@

@t

 
p

c2
F
.p/

!
D 1

c2
F

�
1 � 2p

cF

@cF

@p

�
D 1

c2
F

ˇ

and therefore with the correction factor ˇ D const.

ˇ
AF

c2
F

@p

@t
C @ Pm
@z

D 0 (7.3.39)

For the momentum balance equation (7.3.37) just cF .p/ from (7.3.38) has to be

inserted. Then the following equation system results:

"
ˇAF

c2
p

0

0 1
AF

# �
@p
@t
@ Pm
@t

�
C
�

0 1

1 0

� �
@p
@z
@ Pm
@z

�
D
"

0

� �j Pmj Pmc2
F

.p/

2dF A2
F

p
� pg sin ˛

c2
F

.p/

#
(7.3.40)

This equation system is now solved numerically for time intervals t D k�t and N

pipeline sections:

�z D l

N
(7.3.41)

as shown in Figure 7.9. As an approximation for the derivatives a centered difference

scheme is introduced, [7.2], [7.4]:
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@x

@t

ˇ̌
ˇ̌
z;k

D 3xkC1
z � 4xk

z C xk�1
z

2�t

@x

@z

ˇ̌
ˇ̌
z;k

D
xkC1

zC1 � xkC1
z�1 C xk

zC1 � xk
z�1

4�z

(7.3.42)

Then the following equation system results:

p

0 l
m

1
p

2
m

3

4 l-1

l-1l-3

m m m

p p

Fig. 7.9. Discretization of the pipeline for numerical simulation

AxkC1 D f
�

xk ; xk�1
�

C s
�
pkC1

0
;pkC1

N

�
(7.3.43)

with the state vector

xk D
h

Pmk
0 ; Pmk

2 ; : : : ; Pmk
l ;p

k
1 ;p

k
3 ; : : : ;p

k
l�1

iT

(7.3.44)

As the system matrix is constant, the linear equation system (7.3.43) is solved by the

following state equation for the simulation of the pipeline variables:

xkC1 D A�1
h
f.xk ; xk�1/C s.pkC1

0 ;pkC1
N /

i

and output equation for the flows

ykC1 D
� PmkC1

0

PmkC1
l

�
D Œ1; 0; : : : ; 1; 0; : : : ; 0� xkC1 (7.3.45)

This solution needs only a small computational effort by multiplying the inverse ma-

trix with a vector including a nonlinear function of the two last states, the friction

coefficient, the height correction and the two input pressure signals p0 and pN . The

output signals Pm0 and PmN are elements of the state vector. Tests with more com-

plex solution methods (nonlinear, but large computational effort) gave rather similar

results for the considered application. For more details see [7.2].

b) Leak detection with state reconstruction and correlation functions

It is assumed that a small leak flow rate PmL occurs at location zL. This effect is

taken into account by introducing this loss in the mass balance for the influenced

section. Therefore an enlarged pipeline model results with the leak influence vector

I , dependent on the leak location:
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xkC1 D A�1
h
f
�

xk ; xk�1
�

C s
�
pkC1

0 ;pkC1
N

�i
C I PmL (7.3.46)

In order to detect leaks also for wide ranges of operating conditions nonlinear

pipeline models have to be used. This leads to nonlinear state observers. An addi-

tional requirement is that the information on the leak should not vanish with time.

For the pipeline model (7.3.45) most of the coefficients are known with good accu-

racy, except the friction coefficient � which may also change with time. Therefore,

this coefficient will be estimated (online) by the least-squares method. This leads to

an adaptive (nonlinear) state observer. An advantage of this approach is furthermore

that the estimated friction coefficient does not change the steady-state solution of the

mass balance in (7.3.37) so that leak effects will not be compensated by the observer.

Figure 7.10 shows the resulting leak supervision structure including the pipeline

observer and the leak detection monitor, where both differences x and y act as resid-

uals.

state reconstruction

leak detection

m0 ml
p

0
p
l

Dml
Dm0

m0
^ m^ l

leak location
leak size

Fig. 7.10. Leak detection for gas pipelines with state reconstruction

The corresponding equations are:

� pipeline:

xkC1 D A�1
h
f
�

xk ; xk�1; �; h
�

C s
�
pkC1

0 ;pkC1
l

�i
C l PmL

ykC1 D Œ1; 0; : : : ; 1; 0; : : : ; 0� xkC1
(7.3.47)

� observer:

OxkC1 D A�1
h
f
�

Oxk
; Oxk�1

�;h
�

C s
�
pkC1

0 ;pkC1
l

�i

OykC1 D Œ1; 0; : : : ; 1; 0; : : : ; 0� OxkC1
(7.3.48)

� residuals:

ek D yk � Oyk D
"

Pmk
0 � OPmk

0

Pmk
l

� OPmk
l

#
D
�
� Pmk

0

� Pmk
l

�
(7.3.49)
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To show the effects of a suddenly appearing leak, a gas pipeline was simulated with

PmL D 0:35 kg s�1 and zL=LR D 0:5. More data are given in Section 7.4.2.

The mass flow rates � Pm0 at the beginning and � Pml at the end of the pipeline

change in predetermined directions depending on the leak flow rate and the leak

location, see Figure 7.11.
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Fig. 7.11. Changes of the gas mass flow rate after a leak: a) at the beginning; b) at the end of

a pipeline. Simulation for zL= l D 0:5 with PmL D 0:35 kg s�1 (8%)

A sensitive decision algorithm for “leak” or “no leak” is the cross-correlation

function, compare (7.3.16),

RMM .�/ D E f� Pm0.k � �/� Pml .k/g (7.3.50)

which results (theoretically) in

RMM .�/ D
�

0 no leak

�f . PmL; zL/ with leak
(7.3.51)

which means it changes in a predetermined direction. The computation is realized by

a recursive filter of first order as (7.3.19).

To reduce noise effects the alarm criterion is taken as the sum over several time

shifts � :

R† D 1

2M C 1

MX

�D�M

RMM .�/ (7.3.52)

This cross-correlation sum reacts sensitively even to small leaks. An alarm is given

when the sum crosses a predefined alarm threshold.

After a leak is detected, the parameter estimation of � is frozen and the estimation

of the leak location starts. Introducing the auto-correlation sums as for (7.3.34), the

leak location is, according to (7.3.34), estimated by

OzL.k/ D l

1 � R†m0

R†ml

(7.3.53)
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where lR is the length of the pipeline, [7.12]. The leak flow rate is estimated by the

dynamic balance equation

PmL.k/ D � Pmk
0 �� Pmk

l (7.3.54)

compare (7.3.35).

Tests will be described which are based on measured signals of a gas pipeline.

In order to simulate leaks, the observer is enlarged by the leak influence vector I

with a negative leak flow rate. This realization (also useful for self-test) respects

the dynamics of the leak influence and is a good approximation for a real suddenly

appearing leak in the pipeline according to the resulting residual, [7.1].

The ethylene pipeline is 150 km long with a diameter of 0.26 m and a varying

speed of sound (depending on the pressure). The four measured signals . Pm0;p0;

Pml ;pl / were sampled every 3 minutes. The observer uses a time interval of 30 s,

so that the measured signals have to be interpolated. With the section length inter-

val of about 9.4 km the system order is 17. Furthermore, an approximation of the

geographic height profile is included, see Figure 7.12.

450

300

150

0

H [m]

0 150 z [km]

Fig. 7.12. Approximation of the geographic height profile of an ethylene pipeline

The decision algorithm is modified, substituting� Pm0.k/ and� PmN .k/ in (7.3.19)

and (7.3.50) by

� Pm0
0.k/ D � Pm0.k/ � E f� Pml .k/g

� Pm0
l .k/ D � Pml .k/ � E f� Pm0.k/g

(7.3.55)

This yields a better sensitivity and is independent of the leak location.

Figure 7.13 shows the measured input and output pressure of the described

pipeline during a test period of 65 h.

As illustrated in Figures 7.14a) and 7.14b), the pipeline observer describes the

dynamic behavior of the pipeline quite well, so that a sensitive leak detection is

possible. Results from several leak simulations with different leak ratios (leak ratio

given relative to a mean flow rate) are given in Figure 7.15. Figure 7.16 shows an

example of the leak location estimation for a leak ratio of 5%.

Furthermore, the time for computation (less than 2 s for a PDP11/34) is rather

small in comparison to the sampling time of 3 min.
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Fig. 7.16. Development of the leak location detector for a leak of 5%

7.4 Experimental results

7.4.1 Gasoline pipeline

The mass-balanced leak detection method with correlation analysis described in

Section 7.3.2 was experimentally tested on a gasoline pipeline of l = 48 km and

dF D 273 mm. Figure 7.17 shows the course of the pipeline considering the height

above sea level as well as the location of pumps. The two main pumps are driven by

400 kW asynchronous machines, which may be operated individually or together. At

full power about 330 m3 h�1 are delivered at an initial pressure of pin D 69 bar. This

pressure is measured after the pumps, but before the entrance valve. The line has a

21.1 27.3 35.8 43.9 46.7
P

V ~~ V

P1 P2

10 20 50 z/km

15
40

65

H/m

Fig. 7.17. Scheme of the gasoline pipeline with topographic profile and measurements

wall thickness of 8 mm. Intermediate depots are located at 21.1, 27.3, 35.8, 43.9 and

46.7 km.

The volume flows are measured by means of measuring orifices and Barton cells,

and pressures with Barton cells (accuracy about 0.1%). The volume flow PVl at the

end of the line is transmitted by a telemetric device, i.e. deviations from the operating

point – about 1/10 of the total measuring range (0–400 m3 h�1) – are encoded into
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an 8-bit word. This corresponds to a resolution of 0.16 m3 h�1 or 0.05% with respect

to 330 m3 h�1.

Since the pressure at the end of the line was almost constantly equal to atmo-

spheric pressure, recording and processing of the measurement variable pl was ne-

glected. Thus only both volumetric flows PV0 and PVl , as well as the pressure at the

beginning of the pipeline pin, were used for leakage monitoring. For further details

on the pipeline and the equipment see [7.13].

An Intel MDS800 microcomputer development system was used to carry out the

online experiments. An 8-bit microcomputer with the 8080 A central processor was

used. The system is extended to 48 k of RAM.

A program package – 16 kbytes of program memory – for leakage monitoring

was implemented on the microcomputer system in the ASM 80 assembler language.

A series of experiments for leakage detection were carried out on the pipeline,

where leaks could be generated artificially at the branches to the intermediate depots.

The following values were assumed for the constants:

�m D 0:0075

� D 0:99

R†th D �0:5Œm3=h�2

P D 20

Figure 7.18 shows one of the experiments carried out. The values of the signals

pin, PV0 and PVl collected by the microcomputer were recorded. The sum of cross-

correlation functions R† for the indication of a leakage is shown. The leak was

generated at t D tL. The leakage location and leakage flow calculation after detection

of the leak is also shown.

For the experiment shown – leakage location at 35.8 km and mean leakage rate

of 0.19% which is about 0.2 l/s – the alarm trigger level was exceeded 98 s after

occurrence of the leak. The leak location was estimated with an error of about ˙0.7%

or ˙500 m at time 90 s after the alarm.

Since the characteristic variable R† in all cases with leaks significantly exceeded

its standard deviation during regular operation without a leak, it may be assumed

that even smaller leaks than those in the experiments carried out can be detected and

localized.

A comparison with low-pass-filtered mass balance with the same measured data

has shown that the thresholds must be considerably wider (about 3 to 4 times). More

details are given in [7.11].

7.4.2 Gas pipeline

As it is very difficult to generate real leaks in gas pipelines (large volume, no avail-

able storage, loss of valuable products, environmental problem) only simulated leaks,

but with measured pipeline measurements are shown. The leak is introduced via the

leak influence vector l of (7.3.46) abruptly, to simulate a suddenly appearing leak
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(e.g. crack of welding seam). The pipeline transports ethylene, is l=150 km long

with inner diameter lF D 0:26 m. The sampling time of the four measured signals

Pm0;p0; Pml ;pl is T0 = 3 min. For the simulated state reconstruction the length of

each section is 9.4 km, such that 17 sections result. The sampling time for the model

is T0;m D 30 s. Therefore measured signals are interpolated. The height profile is

shown in Figure 7.12 and measured pressure signals over 65 h in Figure 7.13. The

speed of sound was assumed as dependent on the pressure and is about 260 m/s. The

computation time for the leak detection algorithms is around 1 s.

The agreement of measured reconstructed flow rates is relatively good, Fig-

ure 7.14, compared to the resolution of the telemetry system and noise effects. The

time history of the cross-correlation function (7.3.17), Figure 7.15 indicates that

leaks of � 2% can be detected and that detection time is the smaller the larger the

leak. The detection time for a leak of 2% is about 10 h and for 5% about 3.5 h. The

leak location estimation reacts relatively fast. A first estimation is for a 5% leak avail-

able after about 2 h and after 15 h the location is met relatively precisely. Also leak

size estimation needs about 15 h with an accuracy of about 8%, Figure 7.16. These

results are significantly better than detection by mass flow balance, where only leaks

larger than about 10% can be detected.

7.4.3 Conclusions

Simulations, measurements and leak experiments have shown that the early detec-

tion and localization of small leaks in liquid and gas pipelines can be considerably

improved by model-based methods. The leak-detection methods are based on math-

ematical dynamic models, nonlinear adaptive state reconstruction and a correlation

detection technique. The measured signals are one flow rate and one pressure at each

end of a pipeline. As the required computational effort is relatively small, micro-

computers or personal computers can be used.

Commercialized versions of the described methods and further adaptation to spe-

cial liquid pipelines with applications to several pipelines in Germany, Austria and

Russia are reported in [7.10].
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Fault diagnosis of industrial robots

This chapter describes firstly how analytical symptoms can be obtained by the esti-

mation of physical defined parameters for the six axes of a multi-axis industrial robot.

Then it is shown how the analytic symptom knowledge is added by heuristic symp-

toms observed by the maintenance personnel as described in Section 2.3 and Figure

2.7 and how a fault diagnosis can be performed with both the analytic and heuristic

symptom information by using fuzzy-logic inferencing. As industrial robots (IR) are

usually servo systems with point-to-point movements or trajectory following they

have sufficient dynamic excitation and therefore parameter estimation can be prefer-

ably applied for fault detection.

8.1 Structure of a six-axis robot

The application of a knowledge-based fault-diagnosis strategy is described for an

industrial robot of type Jungheinrich R106, see Figure 8.1. The device consists of

six revolving joints actuated by DC servomotors of high dynamic performance. The

following considerations concentrate on the investigation of the mechanical subsys-

tem of the different axes because a strong demand for preventive maintenance and

incipient fault diagnosis exists for this part of the robot, [8.1], [8.2], [8.5].

The mechanical drive chains of the axes consist of different standard machinery

elements (gears, bearings, toothed belts, shafts, etc.), transferring torque from the

motor to the moved (actuated) arm as shown in Figure 8.2.

The control of each axis is performed by a cascaded control with an inner speed

control of the DC motor and an outer position control of the axis joint. Figure 8.3

depicts the signal flow. The measured variables for the fault detection are:

' joint position

! motor speed

IA armature current of DC motor

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  

DOI 10.1007/978-3-642-12767-0_8, © Springer-Verlag Berlin Heidelberg 2011 
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8.2 Model of a robot axis and parameter estimation

Assuming the arms as rigid bodies each joint can be modeled by stating a torque

balance related to the joint axis

Mel .t/=�i D JL.'0;mL/ R'.t/CM 0
F0 sign P'.t/CM 0

F1 P'.t/CM 0
G.mL; '0/ (8.2.1)

where

Mel D ‰AIA electrical torque at motor output axle

‰A armature flux linkage

IA armature current

� total gear ratio '='m
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Fig. 8.3. Block diagram of the model of an industrial robot drive unit with conventional cascaded
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JL moment of inertia of the arm (position and load dependent)

M 0
F0 Coulomb-friction torque on joint side

M 0
F1 viscous-friction torque on joint side

M 0
G

gravitational torque on joint side

mL mass of load at end effector

' arm position

'0 arm base position

! D P'=� motor angular speed

The gravitation torque is modeled by

MG.mL; '0/ D M 0
G0 cos' (8.2.2)

and may be dependent on a kinematic gravitational torque compensation device, e.g.

a pneumatic cylinder. The couplings between the axes can be neglected if the move-

ments are not very fast.

‰A is known from the motor´s data sheet. Discretizing the continuous-time

model (8.2.1) with k D t=T0, T0 sampling time, and relating the parameters to

the motor side by multiplying by � leads to

Mel .k/ D J.'0;mL/ P!.k/CMF0 sign!.k/CMF1!.k/CMG0 cos'.k/ (8.2.3)

(1=� is for axes 1–6: 197, 197, 131, 185, 222, 194)

Then this equation results in vector notation:

Mel .k/ D  T .k/ O‚.k/C e.k/

 T .k/ D Œ P!.k/; sign!.k/; !.k/ cos '.k/�

O‚ D
h

OJ ; OMF0; OMF1; OMG0

i (8.2.4)

and is used for recursive parameter estimation in continuous time, see [8.3], with



208 8 Fault diagnosis of industrial robots

P!.k/ D d!.t/

dt

ˇ̌
ˇ̌
k

D !.k/ � !.k � 1/

T0

where T0 is a small sampling time and e.k/ an equation error. Note that here the esti-

mated process parameters are identical to the physically defined process coefficients.

8.3 Analytic and heuristic diagnosis knowledge

As discussed in Section 2.3, see Figure 2.7, the overall diagnosis of many technical

processes is based on analytic and heuristic information on the process state. The ex-

ample of the industrial robot is now used to show how the results of both information

sources can be implemented and how conclusions for a final diagnosis can be drawn,

[8.1]. The diagnosis procedure follows Chapters 15, 16 and 17 of [8.4].

8.3.1 Symptom representation

The fault diagnosis is based on symptoms available from different sources. The fol-

lowing categories are defined.

a) Analytical symptoms

An analytically determined set of symptoms Sa is stored in a specific predefined area

in process computer memory. This “symptom buffer” is arranged as follows:

< record SYMPTOMS Sia of >

(1) Number of robot axes the symptom is related to

(2) Symptom name expressed as a symbolic string

(3) Numerical mean value of symptom (coefficient)

(4) Numerical nominal value of symptom (coefficient)

(5) Physical unit of symptom (coefficient)

(6) Calculated confidence number �.Sia/

(7) Time of symptom entry into buffer

(8) Explanatory text concerning the specific symptom.

At the time of diagnosis (specific time intervals or upon operator´s request) these

analytically calculated symptoms (represented by deviations of process coefficients

from their nominal values) are stored in this buffer. It therefore acts as an interface

between the analytical and the heuristic part of the knowledge-based robot fault-

diagnosis system.

b) Heuristic symptoms

The second class of symptoms is represented by a set of heuristic symptoms Sb ,

neither directly measurable nor analytically computable, e.g. empirical knowledge

of the maintenance personnel operating on the manufacturing floor. These symptoms

have to be provided in an interactive dialogue with the diagnosis system.
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c) Process history and fault statistics

A third category of facts, frequently available in the industrial environment, depends

on the general status of the diagnosed industrial robot. For consistency reasons con-

cerning the arrangement of the knowledge base, these facts are treated in the same

way as the symptoms. Corresponding data from mass storage files can be treated

as symptoms belonging to class a), while specific heuristic knowledge according to

maintenance details is considered part of class b).

8.3.2 Diagnosis knowledge representation

As a suitable tool for the systematic treatment of heuristic knowledge (especially in

the diagnostic domain) inference methods can be applied in order to set up logical

interactions between observed symptoms (effects) and unknown faults (causes) and

to structure the knowledge in a problem-adapted manner. A single rule is described

by the expression

IF < condition > THEN < conclusion > (8.3.1)

where the condition part contains facts (symptoms) as inputs being associated by

boolean AND and OR connectives. The conclusion part represents a so-called

“event” as a logical cause of these facts. Chaining of the rules now establishes the

causal dependencies of symptoms and faults (considered as “basic events” in a hier-

archical manner). Thus intermediate events Ek ; k D 1; :::; j are introduced. This

natural procedure results in the establishment of a fault-symptom tree (“directed

graphic”) structuring the rules hierarchically, relating symptoms to events and faults

by a systematic approach, see Section 2.6.2 and [8.4], Chapter 17.

A systematic treatment of analytical and heuristic symptoms requires a unified

symptom representation. As described in [8.4], Chapter 15, this can be based on

confidence numbers 0 � c.Si/ � 1 for the symptoms Si or on membership functions

0 � �.Si/ � 1 in the frame of fuzzy logic.

The diagnostic reasoning with inference methods is usually based on forward

and backward chaining. By using forward chaining for a rule like (8.3.1) the facts

are matched with the premise and the conclusion is drawn based on the logical con-

sequence (modus ponens). The condition part (premise) contains facts in the form of

symptoms Si as inputs, and the conclusion part includes events Ek and faults Fj as

a logical cause of the facts. If several symptoms indicate an event or fault, the facts

are associated by AND and OR connectives, leading to rules like

IF < S1 AND S2 > THEN < E1 > (8.3.2)

IF < E1 OR E2 > THEN < F1 > (8.3.3)

As the symptoms usually have to be considered as uncertain facts the approximate

reasoning with fuzzy logic is an appropriate way of treating the causalities in a sys-

temic and unified way.



210 8 Fault diagnosis of industrial robots

Therefore the facts are assigned to fuzzy sets with membership functions �.Sia

and �.Sih/. The approximate reasoning with fuzzy logic and a simplified version

with singletons as outputs is described in [8.4], Chapter 17.

The conditional part of the IF-THEN rules can be evaluated by the max-min

composition to obtain the most possible fault:

Fuzzy AND W �.�/ D min Œ�.�1/; : : : ; �.��/� (8.3.4)

Fuzzy OR W �.�/ D max Œ�.�1/; : : : ; �.��/� (8.3.5)

An alternative is the prod-sum operation. The NOT operation follows:

NOT W �.�/ D 1 � �.�/ (8.3.6)

The strategy of backward chaining assumes the conclusion as known and searches

for the relevant premises (modus tollens). This is especially of interest if the symp-

toms are not complete. The concluded events and faults are then displayed to the

operator after forward chaining with all known symptoms. However, this requires an

interactive dialogue with the operator.

8.3.3 Faults, heuristic symptoms and events of the robot

The analytical and heuristic symptoms are now considered for the investigated indus-

trial robot. According to maintenance manuals and discussions with IR-manufacturers

the following list of possible faults in the mechanical components of robot drives re-

sults:

F1 Loosened bracing screw of spur gearing

F2 Significant wear in axis drive mechanics

F3 Bracing in the drive chain too high

F4 Overheating of motor-gear unit

F5 Overload of axis drive by payload or tool

F6 Defect in electromagnetic brake (incomplete release)

The parameter estimation yields the following analytical symptoms:

S1a Decrease of JL

S2a Increase of JL

S3a Decrease of MF0

S4a Increase of MF0

S5a Decrease of MF1

S6a Increase of MF1

From many experimental investigations with the robot, data from the manufacturer

and knowledge of the specific device, the following non-measurable heuristic symp-

toms result, including specific symbolic names:

S1h Characteristic acoustic noise I present ! char noise I

S2h Characteristic acoustic noise II present ! char noise II
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S3h Obvious inaccuracies in positioning ! inacc pos

S4h Manual test: movement of axis sluggish ! test move

S5h Assumption: backlash in drive chain ! backl assum

It is assumed that the following facts are available from process history and fault

statistics:

S1 Last maintenance: short/long time ago ! last maint

S2 Number of operating hours: low/high ! operat hours

S3 Mechanical collision (possibly) occurred ! mech coll

Figure 8.4 outlines an extract of the implemented knowledge base in the form of

multilevel fault-symptom trees according to the specific faults F1, F2 and F3 indicat-

ing causal relationships. Intermediate steps of diagnosis are included in the directed

graphs by events representing effects of different faults.

E1 Bracing in drive chain actually too low ! brace low

E2 Significant decrease of friction in drive chain ! fric decr

E3 Sluggish mechanical movement in axis ! slugg mov

E4 Significant increase in friction of drive chain ! fric incr

E5 Increase of backlash in drive chain ! b lash incr

E6 Limit cycles of specific axis ! limit cycles

s1 s3

s3a s5a s4h s5h

s1h s3h

< << E1

< << E2 <

E5

< << E6

<

F1

brace_low

(E1)m
m(S1) m(S3)

loosened_gear

(F1)m

fric_decr

(E2)m

m(S3a) m(S5a) m(S4h)
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(F3)m
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(E4)m

s4a s2a

m(S4a) m(S2a)

m(S2h) m(S4h)

Fig. 8.4. Extract of the analytical and heuristic knowledge base (fault-symptom trees) of the

industrial robot diagnosis system for one axis ( NS means <NOT S >)

8.4 Experimental results

The fault-diagnosis procedure will now be shown exemplarily for basic axis 1 in

the case of faults F1, F2 and F3. Defects F1 and F3 can originate, e.g. from erro-
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neous assembly/maintenance or from mechanical collision (short or medium oper-

ating hours). F2 is mainly the result of wear in the drive mechanics (long operating

hours).

8.4.1 Fault diagnosis with analytical knowledge

Figure 8.5 illustrates the typical behavior of the measured signals in the case of point-

to-point movement of basic axis 1. The end effector did not carry any extra load.

The sampling interval T0 D 5 ms is identical to that of the position controller for

embedding the diagnosis software into the robot control system. Analog low-pass

filtering is realized at a cut-off frequency fc D 40 Hz. Digital filtering to generate

the derivative P! is performed at fc D 20 Hz.

For parameter estimation the DSFI procedure (discrete square-root filtering in

information form) is applied because of its good numerical properties. The forgetting

factor � is set to 0:99. Figure 8.6 shows the parameter estimates after starting the

estimation procedure. They converge within one movement cycle to constant values.

Now process coefficient information is written into a symptom buffer at fixed

time intervals or on request. Nominal values are supposed to be known from the

prior training.
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Fig. 8.5. Time history of measurements of basic axis 1 in the case of a periodic point-to-point

movement

A membership function for positive and negative changes of the symptoms is

introduced:

�i.Si/ D 1

.bi � ai/
.Si � ai/ (8.4.1)

such that

�i.Si/ D 0 for Si < ai < no significant increase >

�i.Si/ 2 Œ0; 1� for ai < Si < bi < significant increase of size �i >

�i.Si/ D 1 for Si � bi < significant increase >
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Fig. 8.6. Parameter estimates with the signals of Figure 8.5

Herewith ai and bi are lower and upper bounds (thresholds) which are selected based

on statistics of the features (process parameters) like the standard deviations �si , e.g.

ai D �1�si , with, e.g. �1 D 2 or 3 and bi D �2�si , with, e.g. � D 5. Symptoms with

different signs are treated as separate symptoms.

Now the introduction of different faults into the robot axis 1 is considered. After

storing parameter set no. 60 fault F1 was intentionally introduced by loosening the

bracing screw between the mechanical components ”spur gear” and ”ring gear” as

indicated in Figure 8.7. This fault was removed after recording parameter set no. 120.

Sixty steps later fault F3 was introduced by intentionally tightening the previously

loosened bracing screw. Figure 8.8 shows the behavior of estimates of the friction

coefficients and the corresponding membership functions.

Various investigations have shown that changes in the mechanical states of the

different axes can be detected at an early stage by this model-based approach without

adding new sensors. An overview of the obtained results is given in Table 8.1, indi-

cating the coefficient deviations in the case of different faults, valid for each of the

robot´s axes. This table shows that a certain amount of diagnosis can be directly per-

formed by pattern recognition. Nevertheless, it will be illustrated how the heuristic

approach will improve the depth and reliability of diagnosis.

8.4.2 Fault diagnosis with analytical and heuristic knowledge

To illustrate the use of the heuristic part of fault diagnosis it is assumed that the symp-

tom buffers for the analytic symptoms indicates �.S3a/ D 1 and �.S5a/ D 0:2, i.e.

a significant decrease of dry friction and a weak decrease of viscous friction which

can be caused by a large overload or by a fault during last maintenance. According

to the fault-symptom tree in Figure 8.4 one obtains with the additional membership

functions

�. NS5a/ D 1 � 0:2 D 0:8I �.SS4h/ D 0I �.E5/ D 0
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Fig. 8.7. Gearing scheme of axis 1, indicating fault location in the case of faults F1 and F2
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Fig. 8.8. Behavior of the friction coefficient estimates and the corresponding membership func-

tions in the case of faults F1 and F3

Table 8.1. Process coefficient deviation caused by different mechanical faults in the drive chains

of the investigated industrial robot. C=CC increase of coefficient: weak/strong; �=�� decrease

of coefficient: weak/strong; 0 coefficient scarcely influenced

�j

Fj � OJ .E0;mL/ � OMF0 � OMF1 � OMG0

F1 0 �� � 0

F2 0 �� � 0

F3 0 CC C 0

F4 0 � �� 0

F5 CC C 0 CC
F6 C C CC 0
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by applying fuzzy logic with min operator for AND connections and max operator

for OR connections

�.E2/ D 0:8I �.E1/ D 0:8I �.E3/ D 0

The last maintenance was just recently:�.S1/ D 0:2 or �. NS1/ D 1�0:2 D 0:8. Fur-

ther�.S3/ D 0:7 (collision probably occurred) and�.S2/ D 0:5 (medium operating

hours) leads to

�.F1/ D 0:7I �.F2/ D 0:2I �.F3/ D 0

The accumulation of the fault membership functions then leads to the conclusion that

the fault F1 arose, a loosened bracing screw of the spur gearing.

This example shows that a fuzzy-logic diagnosis procedure allows one to inte-

grate analytic and heuristic knowledge in a transparent way.

8.5 Conclusions

If the axes of industrial robots perform dynamic motions, parameter estimation of

a second-order differential equation leads to several features which can be com-

pared to the normal behavior for a certain motion and effector load. Based on the

determined symptoms several faults in the mechanics can be diagnosed. Combining

this analytical knowledge with heuristic knowledge from maintenance personnel via

membership functions allows one to confirm the analytical obtained results and to

expand the diagnosis procedure.
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Fault diagnosis of machine tools

The efficiency of manufacturing systems depends to a high degree on the reliability

and availability of metal-cutting machine tools. Therefore, the detection and diag-

nosis of incipient and abrupt faults is of high importance. Statistics with regard to

failure causes show for computer-numerical-control (CNC) drilling machines that

tool faults constitute 27%, CNC faults 16%, mechanical faults 5%, electrical faults

4% and others, like organizational faults 34% and lack of orders 14%, [9.10], [9.40].

Hence, tool wear, breakage and collision contribute considerably to machine tool

failures. Failure statistics for turning machine tools and machinery centers around

1993 showed that CNC and electrical failures constitute about 8%, and failures in

the mechanical parts, like tool carriers 25%, workpiece handling 16%. These num-

bers underline the importance of automatic supervision or condition monitoring of

machine tools. It is not only the breakdown of the manufacturing process that counts,

but also damaged workpieces and tools.

In the following it is shown how model-based concepts allow one to detect and

diagnose faults by using mainly standard sensor equipment or by adding additional

sensors which can easily be implemented. The case studies consider main drives,

feed drives, drilling, milling and grinding.

9.1 Structures of machine tools

In the following, machine tools are considered which operate with shape transforma-

tion processes removing metal from a workpiece to produce a mechanical product.

The metal-removing processes include operations such as turning, drilling, milling

and grinding. Machine tools can be divided into conventional machine tools, produc-

tion machine tools and CNC-machining centers, [9.39]. Conventional machine tools

are designed to perform one or several operations. They are used for general purpose

machining of small lots of parts and are typically found in machine shops. Produc-

tion machine tools are developed for high-volume manufacturing systems to perform

one or a sequence of operations repetitively. They are usually numerically controlled

and often connected to automatic material handling systems. CNC-machine centers
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are highly automated machine tools that produce a variety of more complex parts.

They have different cutting tools e.g. in a tool holder and are capable to change cut-

ting tools and to operate with simultaneous motions of different axes. Because of

their flexibility they are economical for medium production volumes.

The basic construction of a machine tool consists of the stationary and moving

mechanical structure, the drives and automatic control. The mechanical structure is

typically based on stationary bodies, like bed, column, bridge and gear box housing,

and on moving bodies, such as tables, slides and guideways, spindles, gears, bearings

and carriages. These parts have to possess high mechanical rigidity, thermal stability

and good vibration damping, in order to minimize static and dynamic deformations.

The drives consist of spindles and feed drives, see Figure 9.1. A spindle drive

provides the required torque and speed to a rotating spindle shaft carrying the cut-

ting tool with a clamping device. Box spindles are driven externally by an electric

motor, belt drives, clutch and gears. If the electric motor is integrated into the spindle

housing as a direct drive this is called a motorized spindle.

The relative motion between the tool and the workpiece is achieved by moving

the table or carriage, spindle or column separately or together by feed or axis drives.

These feed drives consist of a drive motor and a mechanical transmission. In the case

of a driven table, this table is connected generally to a nut and a lead screw. The

screw is driven either directly or via a gear system or belt drive.

The motor can be electric, hydraulic or pneumatic. Mostly AC or DC rotary mo-

tors are used or electric linear motors.

Automated machine tools require an automatic CNC control unit where accord-

ing to software programs the whole machine tool is digitally controlled. This in-

cludes, e.g. the speed control of the spindles with speed sensors, the position and

speed control of the feed drives, with position sensors coordinating all setpoints such

that certain surface conditions and geometries are generated, and interpolation pro-

grams for contour generation, monitoring and supervision functions.

Machine tools for cutting tasks like drilling, turning, milling or grinding consist

usually of a main drive (spindle) and one or several feed drives. In the case of drilling

or milling the drill or cutter is turned by a main drive and the workpiece is held in

a chuck on a table and moved with a feed drive. For turning the workpiece rotates

by the main drive and the turning tool moves with usually two feed drives. Grinding

machines are characterized by a main drive for the grinding wheel moved with a feed

drive and either chucked or rotating workpieces.

For further details on machine tool structures and technologies see, e.g. [9.2],

[9.5], [9.7], [9.39], [9.52], Vol. 1.

A signal flow of the main and feed drive of a drilling or milling machine tool

is depicted in Figure 9.2. The speed of the feed-drive motor influences the force

from the moving workpiece to the rotating tool, and vice versa, the speed of the

main drive influences the force acting on the workpiece. Hence, changes in the cut-

ting process or in the drive train (motor, gear, spindle) are reflected in changes of

the electrical current and speed of the driving motors. These relations can be used

for model-based fault-detection methods. Therefore, the following sections describe
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mathematical models of the main drive and the feed drive, before special cutting

machine tools are considered.
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Fig. 9.2. Two-port representation of the signal flow of the main drive and one feed drive of a

drilling or milling machine tool

9.2 Status of machine tools supervision

The automated workpiece processing through turning, drilling, milling and grinding

requires that the cutting process operates according to the program of a numerical

control (NC) unit and, after machining, satisfies the quality criteria. However, due to
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the intensive interaction of the cutting tool and the workpiece deviations, faults and

failures occur. Phenomena which influence the quality of the workpiece are chatter,

tool wear, burr, heat generation and kind of chip formation and their transport. Exam-

ples of drastic events are tool breakage, workpiece slipping or collisions. Therefore,

the continuous monitoring and fault diagnosis is of upmost importance for CNC ma-

chine tools.

A comprehensive survey of the technology and supervision of machine tools is

given in [9.52], Vols 1 and 3. Condition monitoring and control as a special topic is

treated in [9.48].

The cutting forces resulting from the contact between the tool and the workpiece

depend on several variables like the depth of cut, the feed, the workpiece material and

several empirical parameters, see Sections 9.4, 9.5 and 9.6. They directly inform on

abnormal behavior. Therefore, the measurement of the cutting forces in one, two or

three directions would allow a direct fault-detection method. However, they require

force measurements at the workpiece clamping or the tool holding with, e.g. force

cells based on strain gauges or piezoelectric stacks, are not only expensive but also

weaken the stiffness. Though applied in laboratory machines they have not found

application in practice. Then, indirect detection methods remain, based on easier

applicable sensors, like main or feed drive current, accelerometers and sensors for

vibration analysis, structure-borne noise, and acoustic emission.

Current measurement of the electrical motor drives is used as a standard way of

limit checking to avoid overload of the motors and the machine and to protect against

drastic failures in the workpiece/tool area.

There exist many publications on research results with these kinds of indirect

fault detection, see, e.g. [9.52], Vol. 3 and a recent compilation in [9.47].

One general problem of these indirect methods is that they do not provide precise

and robust information, also because they usually cannot be placed at the point of

interest, [9.45]. Sometimes they allow a good indication of specific faults, but the

coverage of other faults is not enough.

Examples of research in using ultrasound sensors (20–20,000 kHz) are [9.31].

The acoustic emission sensor is attached to the tool of the workpiece for precision-

scale grinding.

The simultaneous use of several sensors, such as force, torque, vibration and

spindle motor current for turning and drilling was reported in [9.8]. Extracted fea-

tures from mean, variance and power spectrum were fused using principal compo-

nent analysis and then treated in a fuzzy neural network, resulting in 80–95% success

rate for the two cases investigated. A lot of research was performed on monitor-

ing and fault diagnosis of bearings, and rotating machinery, see, e.g. [9.9], [9.11],

[9.18], [9.24], [9.30], [9.33], [9.54], [9.55]. One example for rolling bearings in ro-

tating machinery is the investigations in [9.30]. A comparison is given for position

measurements of shaft eccentricity, acceleration and vibration sensors.

Usually rolling bearings produce vibrations due to varying compliance and im-

perfections of manufacturing and assembly, such as surface roughness, waviness,

misaligned races and size-varying rolling elements. This holds even for new bear-

ings and usually increases after the first defects start locally (cracks, pits, spalls).
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The range of observed frequencies are for vibrations: 1 Hz to 25 kHz, ultrasonic

noise: 20 kHz to 100 kHz, acoustic emission (surface waves): 100 kHz to 1 MHz plus

shock pulses. For vibrations > 1 kHz acceleration measurement is best suited, e.g.

by piezoelectric sensors. However, their placement is critical. Basic deterministic

bearing frequencies can be calculated, depending on the location of the defect, ge-

ometry and speeds, but do not coincide with measured ones due to slippage and

loading. In addition, interactions with other machine frequencies result in amplitude

and frequency-modulated frequency bands, making analysis difficult. The analysis

of the vibration signals is performed either in the time or frequency domain or both.

A further problem is the influence of loading, because increasing load may decrease

the vibration, and load is usually not known. Under ideal conditions prognostics of

the expected lifetime seem to be possible after incipient bearing faults occur.

However, a general problem of bearing monitoring with vibration sensing is

that frequently different bearings are assembled within rotating machinery, and

also vibrations from other machine parts are generated (meshing gears, crankshafts,

camshafts, chains, belts, etc.). Hence, a multitude of peaks in vibration spectra re-

sult, which are not easy to analyze and to trace back to their causes. If the resulting

frequency peaks cannot be explained theoretically, there is still a chance to use vibra-

tion analysis experimentally, e.g. by introducing certain faults or failures artificially

and training of feature extraction methods like neural nets. This is, for example used

in testing combustion engines during assembling, [9.22].

Further research results for the fault detection of cutting processes are reported

in [9.1], [9.4], [9.29], [9.38], [9.41], [9.43], [9.51].

A summary of research results and standard condition monitoring systems for

machine tools is given in [9.52], Vol. 3. For turning and milling the cutting force

shows only a small dependency on the wear. The passive cutting force seems to

be more suitable. Therefore, the effective power calculated from the main drive is

not sensitive enough for wear detection. Similar results are reported for drilling, but

only with large drilling diameters. Structure-borne noise shows usually a broad and

varying frequency spectrum. It is more effective for break detection than for tool

wear. However, structure-borne noise is standard for grinding machines in detecting

the grinding begin and supervising the trimming process.

This discussion shows that additional sensors for direct fault detection like force

measurement are hardly used in practice, also because of high costs, changes of

stiffness and wiring problems. Structure-borne noise may only be used in cases

with a clear indication of faults. The following chapters are therefore dedicated to

process-model-based indirect detection and diagnosis methods which use already

implemented sensors or additional low-cost sensors.

9.3 Main drive

9.3.1 Two-mass model

As an example for a main drive the machine center of Figure 9.3 is considered

(MAHO MC5). A speed-controlled DC motor drives a belt, a gear and tool spindle,
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carrying a cutter or drill. Hence, a multi-mass–spring–damper system results with 6

masses. In the following, small deviations of the variables are considered such that

linear models can be assumed. The dynamic behavior of the DC motor is modeled

by

LA
PIA.t/ D �RAIA.t/ �‰!1.t/C UA.t/ (9.3.1)

J1 P!1.t/ D �‰IA.t/ � M1.t/ (9.3.2)

with

LA armature inductance UA armature voltage

RA armature resistance IA armature current

‰ magnetic flux linkage !1 D P' motor speed

J1 moment of inertia M1 load torque

5

1 4 2

3

Fig. 9.3. Main drive of a machine center (MAHO MC5). 1 DC motor, 2 belt drive, 3 axle, 4

gear, 5 tool spindle

An analysis of the eigenfrequencies of the main drive shows, [9.13], [9.50], that

the motor is able to excite frequencies in open loop f < 80 Hz and in closed loop

f < 300 Hz. The eigenfrequency of the belt drive is 123 Hz and those of shaft, gear

and spindle 706, 412 and 1335 Hz. Hence, the dynamic behavior of the main drive

is dominated by the motor and the belt drive and can therefore be modeled by a

two-mass system with moments of inertia J1 (motor plus belt-driving pulley) and

J2 (belt driven pulley, shaft, gear, spindle). The mechanical part of the main drive is

then described by a linear state-space model

Px.t/ D Ax.t/C bu.t/C Fz.t/ (9.3.3)

with
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xT .t/ D ŒIA.t/; '1.t/; P'1.t/; '5.t/; P'5.t/� (9.3.4)

u.t/ D UA.t/ (9.3.5)

zT .t/ D ŒM6.t/;MF .t/� (9.3.6)

M6 W load torque; MF W Coulomb-friction torque.

9.3.2 Parameter estimation

The parameters of the main drive can of course be determined from construction

data. However, if not all parameters can be determined or if fault detection in normal

operation, the estimation of the parameters from measured signals is desired.

To estimate the parameters of the main drive in idle running .M6 D 0/ based on

measurements of accessible signals UA.t/, IA.t/, !1.t/ and spindle speed !5.t/ the

following equations are used:

UA.t/ D ‚1!1.t/C‚2IA.t/C‚3
PIA.t/

‚1IA.t/ � MF .t/ D ‚4 P!1.t/C‚5 P!5.t/

!5.t/ D ‚6 P!1.t/C‚7!1.t/ �‚8 P!5.t/ �‚9 R!5.t/

(9.3.7)

with

‚1 D ‰ ‚2 D R ‚3 D LA

‚4 D J1 ‚5 D iJ2 ‚6 D di=c

‚7 D i ‚8 D d=c ‚9 D J2i2=c

(9.3.8)

The armature flux linkage is first estimated by the first equation in (9.3.7) (or known

from the data sheet). Then all process coefficients can be determined:

i D ‚7 .gear ratio/ c D ‚5‚7=‚9

J1 D ‚4 .motor/ d D ‚5‚7‚8=‚9

J2 D ‚5=‚7 .spindle/

(9.3.9)

The derivatives of first and second-order for continuous-time parameter estimation

were determined with state variable filters designed as Butterworth filters of 6th or-

der with corner frequencies of 79.6 Hz and 47.8 Hz. The solution of the incremental

rotation sensors was increased to 4096 slots for the spindle and 1024 slots for the

motor. Sampling time was T0 D 0:5 ms. The results with the parameter estimation

method DSFI (discrete square-root filtering information form, see [9.13], [9.18]) for

step functions of the speed are shown in Figures 9.4 to 9.7.

The motor coefficients on the motor side ‰, RA and LA converge very fast,

within about 2 s, the mechanical coefficients J1, J2, MF , c and d a bit slower within

about 5 s. After about 15 s all eight process coefficients converge to steady-state val-

ues and agree relatively well with theoretical determined values, [9.49].
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9.3.3 Fault detection with parameter estimation

To investigate the applicability of parameter estimation for the fault detection of the

main spindle set-point changes with the speed control were made in idle running.

Based on 60 data sets the standard deviations of the parameter estimates were be-

tween 0.01 and 10%. The resulting changes of the parameters are shown in Table 9.1

for the most relevant parameters J2, MF and c. F1 is not a real fault, but shows the

sensitivity of the detection system and may serve to supervise the normal status. The

belt defects are clearly detected and diagnosable, [9.49].
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Table 9.1. Fault-symptom table for fault detection of the main drive with parameter estimation

for speed setpoint changes in idle running. C;CC: small, large increase; �;��: small, large

decrease; 0: no significant change

J2 MF c

F1 cutter D D 120 mm CC C �
F2 increased belt tension 0 C CC
F3 belt with half width 0 � ��

9.4 Feed drives

9.4.1 Two- and three-mass model

For cutting and other machine tools, feed drives are used to move the machine ta-

ble with high precision. The feed drives, usually controlled by a digital control unit

yield the feed motion per turn for the cutting process. In the case of, e.g., milling

the machine table carries the workpiece and in the case of turning, the cutting tool.

For the design of precise position and trajectory control and for model-based fault

detection accurate dynamic models of the feed drives are required. As an example

the x-feed drive as shown in Figure 9.8 is considered, which moves the workpiece in

a horizontal direction, see [9.28].

snychronous
motor control
with current
controller

speed
controller

position
controller

jMx

jMxref
xTxref Ixref

IU

U V W

IV IW

xTx

.

.

synchro-
nous
servomotor

belt drive

friction clutch

ball and screw
spindle drive machine table

workpiece

linear sensortacho-
generator

Fig. 9.8. Scheme of the x-feed drive control
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The servomotor of the feed drive is a synchronous motor with constant excitation.

After making some simplifying assumptions and use of a PI current controller the

electrically generated torque Me1x can be described by a first-order lag

T1Mx
PMe1x.t/C Me1x.t/ D ‰xIx ref .t/ (9.4.1)

where T1Mx is the closed-loop time constant, [9.17]. The mechanical part of the feed

drive motor yields

JMx R'Mx.t/ D Me1x.t/ � MMf .t/ (9.4.2)

with

JMx moment of motor inertia

'Mx motor angle

MMf motor friction

The mechanical part of the feed drive can be described as a system of coupled mass–

spring systems. The feed drive consists of a motor shaft connected to a belt drive.

The belt drive moves the feed screw by a friction clutch. The feed screw converts the

rotational motion into a translational one and moves the machine table sitting on the

feed screw nut. It consists of the belt drive with the rotational mass JMx of the motor

with first pulley, the rotational mass of the second pulley and ball-and-screw spindle

JGx and the translational mass mT x of the spindle drive screw and the machine table.

Then a three-mass oscillator results as shown in Figure 9.9a). It is now assumed that

the moment of inertia JGx of the pulley and spindle can be neglected because of the

dominating masses of the motor and the table multiplied by the belt gear ratio ix .

This leads to the two-mass oscillator system shown in Figure 9.9b).

Fx

xTxjMx jGx FfxMMfx

cGx

dGx

hx
mTx

Me x1

ctRx

dtRx

ixJMx JGx

Fx

xTxjMx FfxMMfx

cx

dx

hx
mTx

Me xl

ixJg  x2

(a)

(b)

belt drive feed
screw

table

Fig. 9.9. Model structure of the mechanical part of the feed drive: (a) three-mass system; (b)

two-mass system
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Applying Newton´s second law or stating the force balance equation for the spin-

dle, feed screw and table leads to

mT x RxT x.t/ D cx .ixhx'Mx.t/ � xT x.t//Cdx .ixhx P'Mx.t/ � PxT x.t//�Ff x.t/�Fx.t/

(9.4.3)

with

mT x table mass

xT x table position

'T x angular position of ball screw drive (drive side)

hx lead of ball screw drive .h D xT x='T x/

cx overall stiffness (belt drive, spindle, screw)

dx overall damping coefficient

Fx feed force in x-direction

Ff x friction at slideways and ball screw

ix D 'Gx='Mx gear ratio of belt drive

The friction force is modeled with viscous and dry friction:

Ff x.t/ D fv Px.t/C fc sign Px.t/ (9.4.4)

The measured variables are the speed P'Mx of the servomotor and the position xT x of

the machine table by a linear incremental sensor with high resolution (500 slots/turn).

To achieve high accuracy of the table position and fast dynamics the feed drive is

controlled by a cascade control system with the motor speed controller as slave and

the position controller as master, see Figure 9.10.

position
controller

speed
controller

Ixref
jMxref

Mx
Fx

jMx xTx
xTxref jMx xTx

. .

synchronous
motor control
with current
controller

mechanical
transmission

system

.

Fig. 9.10. Cascade control system for the position control

The reference value of the position xT xref is calculated in the numerical control

(NC) unit. The position controller is programmed as a proportional-acting controller:

GPx.s/ D P'Mxref .s/

xT xref .s/ � xT x.s/
D KPx (9.4.5)

The underlying speed controller is realized analogously as a PI-controller with time

lag

Gnx.s/ D Ixref .s/

P'Mxref .s/ � P'Mx.s/
D Knx

�
1 C 1

TInxs

��
1

1 C T1nxs

�
(9.4.6)
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Based on the model structure of Figure 9.9b) a state representation can be derived

with the state vector of 7th order:

xT D Œx1n;x2n; Ix ; 'Mx ; P'Mx ;xT x ; PxT x � (9.4.7)

x1n and x2n are state variables of the speed controller. For further details see [9.28].

9.4.2 Identification of a feed drive

As several parameters of the feed-drive system cannot be determined precisely from

data sheets, they were estimated based on measurements of the frequency response:

G Px.i!/ D PxT x.i!/

P'Mxref .i!/

with opened position control, but closed speed control, assuming the gear ratios ix
and hx as known. For the experiments sinusoidal changes of the reference input of

the speed controller were applied, with an added linear drift in order to avoid the

nonlinearities of the dry frictions. As the parameter estimation method for the three-

mass model Figure 9.9a) a numerical optimization method for the model output error

was used (simplex algorithm). Figure 9.11 shows a comparison of the frequency

response of the directly measured model with that of the parameter-estimated model

of 9th order, given the linear model structure with three masses. The agreement is

relatively good for f � 120 Hz. Figure 9.12 shows the directly measured friction

characteristics of the servomotor and the machine table. Finally an overall model as

shown in Figure 9.13 was obtained. It was successfully applied for the reconstruction

of the dynamic cutting forces of a milling process by measuring the positions 'Gx

of the pulley and xT x of the table and used for model-based fault detection of the

milling tool, as described in Section 9.5.

9.4.3 Fault detection of a feed drive test rig

In order to investigate the fault detection with parameter estimation and artificially

produced hard faults a special test rig was built, [9.12], [9.44]. Figure 9.14 depicts a

schematic. A DC motor with 1.8 kW power drives a thread rolling drive via a toothed

belt. The table with mass m D 150 kg is carried on slideways, where the friction can

be changed by straining screws. The belt tension can be changed through tension

screws by changing the distance between the shafts of the belt pulleys. Measured

variables are the armature voltage UA, the armature current IA and speed !1 of

the DC motor in closed speed control configuration. A one-mass model for the me-

chanical part turned out to be sufficient to estimate relevant process parameters. The

models used are

‰A!1.t/ D �LA
PIA.t/ � RAIA.t/C UA.t/ (9.4.8)

‰AIA.t/ D J P!1.t/C MF1!1.t/C MF0 sign!1.t/ (9.4.9)
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J is the overall moment of inertia including motor, spindle and table. Corresponding

parameters for parameter estimation are

‚T
1 D Œa11; a10; b10� D ŒLA=‰A;RA=‰A; 1=‰A�

‚T
2 D Œa21; a20; a200� D ŒJ=‰A;MF1=‰A;MF0=‰A�

(9.4.10)

Based on the parameter estimates the following six process coefficients can be deter-

mined:

RA D a10=b10 J D a21=b10

LA D a11=b10 MF1 D a20=b10

‰A D 1=b10 MF0 D a200=b10

(9.4.11)

Figure 9.15 shows measured signals for a sinusoidal change of the reference value of

the speed controller with amplitude 1000 rpm (peak-to-peak) and angular frequency

!r D 3:1242 rad/s after analog antialiasing filtering with a Butterworth filter of

8th order with corner frequency fc D 50 Hz. Sampling time was T0 D 6 ms. For

continuous-time parameter estimation the 1st derivative P!m.t/ was determined with

a digital Butterworth state-variable filter of 4th order. The least-squares parameter es-

timates show a fast convergence for the motor parameters, Figure 9.16. Figure 9.17

depicts the motor parameter estimates during an increasing load through the strain-

ing screws. RA and‰A show significant changes, in dependence on the motor casing

temperature, but less for LA.

With increasing straining screw torques at the slideways the parameter estimates

of the mechanical part show, that the dry-friction coefficient increases, but not the

viscous-friction coefficient, Figure 9.18. However, both friction coefficients increase

with increasing belt tension, Figure 9.19. Table 9.2 summarizes the changes of the

parameter estimates for the faults. Hence, different patterns of deviations can be

observed for the investigated faults and thus these faults can uniquely be diagnosed,

[9.12].

Table 9.2. Fault-symptom table for different faults of the feed drive test rig. C;CC: small, large

increase; �;��: small, large decrease; 0: no significant change

parameter estimates RA LA ‰A J MF0 MF1

F1 heating of motor CC C �� 0 0 0

F2 defective commutator C 0 � 0 0 0

F3 missing lubrication

slideways
0 0 0 0 CC �

F4 large straining

at slideways
0 0 0 0 CC 0

F5 too large belt tension 0 0 0 � CC CC
F6 defective belt 0 0 0 0 �� CC
F7 overload on table C 0 � C CC C

It is especially noted that the fault detection of both the electrical motor and

the connected machinery is based on easily measurable signals of the motor only. By
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Fig. 9.14. Scheme of a feed drive test rig

5

10

15

0

-5

--10
543210

time [s]

m
ea

su
re

d
 s

ig
n

al
s 

in
 [

V
]

armature voltage

armature current

motor speed

U

I
A

A

M

(t)

(t)

(t)w

UA (t)

wM (t)

(t)IA

Fig. 9.15. Measured signals of the feed drive test rig. UA: armature voltage, IA: armature

current, !m: motor speed (all signals in [V])

applying mathematical models of the motor and the mechanics, parameter-estimation

methods allow one to use the “motor-as-sensor-principle,” proposed in [9.14].

If the rotational positions '1 of the motor and '2 of the spindle pulley are mea-

sured additionally, then based on their difference �' D '1 � '2 the stiffness c and

damping d of the belt can be estimated. This allows one to isolate the causes of belt

drive faults like wrong pre-tension or belt defects better from other faults of the feed

drive, [9.12],

Another possibility is to analyze the frequency spectrum of the speed of the

driven pulley, because the transverse and longitudinal oscillations change with belt

tension and belt defects, [9.32].



234 9 Fault diagnosis of machine tools

RA

3

2

1

40

30

20

10

0
6543210

re
si

st
an

ce
[

],
 f

lu
x
 l

in
k
ag

e
R

A
W

Y
A

[V
s]

time [s]t

ar
m

at
u
re

 i
n
d
u
ct

iv
it

y
[m

H
]

L
A

0

estimated motor parameters

at (t)~ 25.0°CJM

^

LA
^YA

^

Fig. 9.16. Parameter estimates of the DC motor

30 %

20 %

10 %

0 %

-10 %

-20 %
1501251007550250

ch
an

g
es

 o
f 

p
ar

am
et

er
 e

st
im

at
es

in
 %

D

motor temperature
~25.0°C

set of parameters

DRA [%]

DLA [%]

DYA [%]

~34.6°C ~45.4°C ~52.4°C ~57°C ~61.2°C

Fig. 9.17. Parameter estimates under the influence of motor temperature

9.5 Drilling machines

Drilling machines exist in a large variety of types, e.g. as stand-alone machines, in

machine tool centers or as multi drilling heads in transfer lines. In the following the

process of drilling is considered for a standard drilling process.

9.5.1 Models of the drilling process

For the development of model-based fault detection of drilling the machining center

of Figure 9.3 is used. The drill is held by the main drive axis and moved with its

z-feed drive against the workpiece, see Figure 9.1.
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a) Static model

Drilling is a form of metal cutting with a circular motion. The tool works with a

feed motion in direction of the rotation axis. The cutting forces on each edge can be

decomposed into longitudinal and radial direction, see Figure 9.20. The longitudinal

forces result in a feed force for which approximately holds, see [9.37]

Ff D Af kf (9.5.1)

with Af cutting face, kf specific feed force.

The specific feed force kf depends on material type, feed velocity and in par-

ticular on tool wear. These influences are taken into account by adding correcting

factors to the basic specific feed force kf 1:1:
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kf D kf 1:1kwkr h�m (9.5.2)

with kf 1:1 specific feed force related to a basic face and

kw influence of tool wear

h depth of cut

m influence of material type

kr all other influences.

The factor kf describes the influences of the material type, of the feed velocity and

of the tool angle �, see Figure 9.20. The cutting face Af is

Af D dBh (9.5.3)

with dB tool diameter.

ê

fz

dB

fz

ê
h

b

lB

Fig. 9.20. Cutting geometry of the twist drill

Therefore the feed force Ff yields

Ff D kf 1:1kwkr dB Œfz sin ��1�m (9.5.4)

with fz D Pf �=! feed per tooth and

Pf feed velocity

! angular velocity of the drill

and in a simplified form

Ff D ˛ Pf (9.5.5)

where ˛ is a function of the feed velocity Pf and the influence of tool wear modeled

by kw .

Tool wear is caused by friction in the contact area between cutting edges and

workpiece due to mechanical and thermal stresses. Tool wear is a collective descrip-

tion and depends on, [9.26]:
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� edge fractures and deformations of the cutting edges

� adhesion

� diffusion

� oxidation.

Generally, the mentioned effects determine the behavior of friction as a whole and

cannot be separated by force measurements.

b) Dynamic model

During initial drilling also a dynamic model can be derived between feed rate Pf
as input and feed force Ff as output taking into account elasticity and damping of

workpiece and drill, see [9.34],

T1f
PFf .t/C Ff .t/ D Kf

Pf .t/ (9.5.6)

with

Kf D ˛

T1f D ˛

cf

C �f
(9.5.7)

where cf is the stiffness of the workpiece–drill pair and �f � lB=3 Pf .

9.5.2 Fault detection of drilling

a) Wear detection

Experiments on a machining center with measured feed force Ff have shown that

both parameters Kf and T1f increase with increasing wear of the drill edges, [9.35],

[9.51].

In order to save the feed force measurement the current I of the feed motors is

used. For DC motors, universal motors and permanently excited synchronous motors

it holds for the torque that

Mmot D ‰Imot

With the relation between the powers

P D Mmot!mot D Ff
Pf � (9.5.8)

where � is an efficiency coefficient and � D !mot= Pf a gear ratio, the feed force can

be replaced by

Ff D kmImot

km D ‰�=�
(9.5.9)

leading to a first-order model
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Imot .s/

Pf .s/
D km

1 C T1f s
(9.5.10)

Based on experiments with the machining center Figure 9.21 depicts the develop-

ment of least-squares parameter estimates Okm and OT1f in dependence on the number

of drills. Both parameters increase slightly until drill no. 212. The cutting edges of

the drill were then artificially worn. Then a drastic increase especially of the gain Okm

is observed. Hence, wear of drills can be detected by monitoring the current of the

feed motor in dependence on the feed rate. Because the time constant T1f is small,

just low-pass filtering of the Imot .k/ and Pf .k/ and division to determine km is also

sufficient for wear detection.
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Fig. 9.21. Estimated gain Okm and time constant OT1f between current and feed rate in depen-

dence on number of drills. Cutting speed vc D 18:5 m/min; fz D 0:042 mm; drill: dB D 5 mm,

HSS, St37; sampling frequency f0 D 5 kHz

b) Breakage detection

Investigations on drill breakage have shown that the feed rate Pf changes earlier than

the angular velocity !mot of the feed drive motor. Two residuals are calculated:

r Pf
.k/ D Pf .k/ � OPf .k/ (9.5.11)

r!.k/ D !mot .k/ � O!.k/ (9.5.12)

where
OPf and O! are reconstructed by state observers with second-order models of

the feed drive, with the current I.t/ of the feed drive as input. These observers can

be considered as a dedicated observer scheme because different outputs drive the

observers, which estimate the other process outputs, a principle for sensor fault de-

tection, [9.6]. If then suddenly r Pf
passes a threshold earlier than r! , a drill breakage

is indicated. Experiments with a 5 mm twist drill (n D 1600 rpm, Pf D 150 mm/min),

sampling rate T0 D 0:4 ms have demonstrated that the detection time is about 15 ms,

corresponding to 0.4 turns of the drill between breakage and detection, [9.16].
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9.6 Milling machine

9.6.1 Models for the milling process

The considered machine tool is a machining center as shown in Figure 9.1 and Figure

9.3. The corresponding signal flow diagram is depicted in Figure 9.2 and the control

system of the x-feed drive in Figure 9.8.

The most frequent faults in milling are wear and breakage of the inserts. Another

fault is insert displacement which can, e.g., result from improper adjustment of the

milling tool, see Figure 9.22.

insert
worn

insert
broken

insert o.k.

milling
tool

work-
piece

insert
displaced

Fig. 9.22. Faults of a milling tool

Detection of faults in the milling process can be performed directly or indirectly.

Direct methods usually imply great technical effort because special measurement

equipment has to be applied to observe the cutter. Indirect methods are based on

more-easily measurable signals which are influenced by faults. Because faults in

milling have strong effects on the cutting forces most of the known indirect fault-

detection methods use force sensors (dynamometers), see e.g. [9.3], [9.41], [9.42].

However, such force sensors are more suited to laboratory environment than to pro-

duction machines because of their high costs and the mostly difficult mounting inside

of the work cell. Besides direct force measurement also drive signals which are re-

lated to the forces can be used, see, e.g. [9.1], [9.15], [9.19], [9.38]. [9.1] and [9.38]

show that the feed drive motor current can be used as remote force sensor to monitor

milling respectively turning operations. But because of the damping of the drive train

the use of current is only possible for lower-frequency parts of the force.

Faults in milling are usually detected if particular features generated from the

measured signals cross predefined thresholds. Determination of these thresholds can

lead to problems, especially if the cutting conditions are changed frequently. The

reason is that most of the features are not only influenced by the faults, but also

by changing operating parameters like spindle speed, feed per tooth, depth of cut,

type of cutter, workpiece material etc. Hence, in order to avoid wrong decisions the

thresholds have to be adapted if one of the cutting conditions is changed by the
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operator. Further, most of the fault-detection methods have in common that they can

only detect single types of faults, e.g., only wear or only breakage.

Therefore a model-based fault-detection method is described which is usable for

distinct faults and independent of cutting conditions and direct force measurement.

To obtain these properties, the proposed method uses analytical models of the feed

drive and the milling process. The overall structure is given in Figure 9.23.

The next section describes the application of parameter estimation with three axis

force measurements at the workpiece table to validate the models and to understand

fault effects. Then the force measurement is replaced by only position measurements

of the feed drive, following [9.27], [9.28]. Finally, fault detection with parity equa-

tions is applied.

force
calculation

feature
generation classification

forces

drive
signals

diagnosis

fea-
tures

drive-
model

milling
model

fault
model

process knowledge

Fig. 9.23. Signal flow for the fault diagnosis of a milling machine

a) Feed drive model

During milling in the x-feed direction the feed force Fx causes an elastic deforma-

tion of the x-feed drive ball screw and an acceleration of the table. As a basis for the

force calculation a simplified linear mass–damper–spring model of the ball screw

drive is used, see Figure 9.24.

Taking into account a friction force in the guideway and spindle elasticity the

force balance of the table leads to

Fxc D c .h'x � x/C d .h P'x � Px/ � m Rx � Ff (9.6.1)

with

Fxc [N] calculated feed force (in x-direction)

'x [rad] angular position of ball screw drive (drive side)

x [m] table position

c [N/m] spring constant of ball screw

d [Ns/m] damping constant of ball screw

m [kg] table mass

Ff [N] guideway friction

h [m] lead of ball screw drive .h D 0:01=2�m/
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Fig. 9.24. Model of the ball screw spindle drive

To obtain the parameters c, d and m as well as the friction characteristics least-

squares parameter estimation is used by minimizing the loss function V with N

samples of the calculated force Fxc and the measured force Fx :

V D
NX

kD1

.Fxc.k/ � Fx.k//
2 (9.6.2)

For identification of this model a direct force measurement is necessary. However,

this procedure has to be performed only once, respectively in large time intervals to

consider changes during the machine tool life cycle, e.g., aging.

To test the identification, measurements on the machining center were performed.

For feed force measurement a Kistler force sensor (dynamometer) 9255A was used.

The table position x could be obtained by a linear position encoder with 2000

pulses/mm, implemented for position control. To measure the angular screw drive

position 'x a Heidenhain encoder with 20,000 pulses/rev was mounted. Four milling

operations with different cutting states were performed in order to excite the table:

M1: one insert broken

M2: one insert displaced

M3: all inserts totally worn

M4: all inserts new

The first three measurements were composed to one data set and used for identifica-

tion. It turned out that exact modeling of friction Ff is crucial. The best results could

be obtained by modeling Ff as the sum of a Coulomb term Ff Coul and linear term

proportional to the table position Ffpos:

Ff D Ff Coul sign Px C Ffposx (9.6.3)

The second term Ffpos is necessary to consider position-dependent friction effects

which can, e.g., result from different states of wear on the guideway. The strong
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influence of friction was already reported by [9.1] and [9.38] where current signals

for force calculation were used.

To illustrate the performance of force calculation the data set used for identifica-

tion and the forces calculated with the estimated parameters are given in Figure 9.25.

Obviously, the correspondence is very good and the different cutting states can be

well distinguished. Of course, the force calculation described above is valid only for

the investigated feed drive.
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Fig. 9.25. Identification results for the feed drive

b) Cutting-force model

The tangential cutting force Fti of an active cutting edge can according to [9.46] and

[9.23], [9.25], be calculated by, compare Figure 9.26,
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Fti D kt aph
1�mt

i (9.6.4)
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Fig. 9.26. Forces on a milling tool with orthogonal cutting inserts

For a milling cutter edge it yields for the cut thickness

hi D fz sin'i (9.6.5)

and therefore

Fti D kt ap .fz sin'i/
1�mt (9.6.6)

with

kt [N/mm2] specific cutting force

ap [mm] depth of cut

hi [mm] local cut thickness

mt specific constant

fz [mm] feed per tooth

'i [deg] angular position of tooth i

z number of teeth (inserts)

The specific cutting force kt depends on workpiece type, tool geometry, cutting speed

and tool wear. These influences are taken into account with correcting factors

kt D kt1:1kwkr (9.6.7)

with

kt1:1 specific cutting force related to a basic face

kw influence of tool wear

hr other influences

The cutting radial force Fri acting on tooth i at cutter rotation angle 'i is

Fri D �Fci (9.6.8)
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In the fixed reference frame of the machine tool the cutting forces from one tooth i

become

Fxi D Fti cos'i C Fri sin'i

Fyi D Fti sin'i � Fri cos'i

(9.6.9)

The superposition of all cutting edges results in

Ft D
zX

iD1

ı.'i/Fti (9.6.10)

with

ı.'i/ D
�

1 for '1 � 'i � '2

0 otherwise

'1 entry angle of workpiece

'2 exit angle of workpiece

The resulting torque by the tool is

Mt D Fcr (9.6.11)

with r effective cutter radius.

To evaluate the effect of faults the force equations for the faultless case are ex-

tended with correcting factors for each insert:

Ftim.k/ D CtiFti.k/ D Cti

n
aP kt1:1.fz sign .'i.k///

1�mt

o
(9.6.12)

Frim.k/ D CriFri.k/Cri

n
aP kr1:1.fz sign .'i.k///

1�mr

o
(9.6.13)

Faim.k/ D CaiFai.k/Cai

n
aP ka1:1.fz sign .'i.k///

1�ma

o
(9.6.14)

with

Cti ;Cri ;Cai correcting quantities of the tangential, radial and axial

force components

Fti ;Fri ;Fai [N] tangential, radial and axial cutting-force components in

faultless case

Ftim;Frim;Faim [N] modeled force components in tangential, radial and

axial direction

kt1:1; kr1:1; ka1:1 [N/mm2] specific force constants

mt ;mr ;ma [ ] specific constants

Varying cutting conditions like depth of cut, feed per tooth and specific force pa-

rameters are included in the model and therefore do not influence parameters which

model faults. The correcting factors depend therefore only on the process state, not

on the cutting conditions. If the cutting process is free of faults, all correcting quan-

tities are 1. Otherwise they differ from 1.
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Finally the force in x-direction follows as

Fxm D
zX

iD1

Ftim.k/ cos'i.k/C
zX

iD1

Frim.k/ sin'i.k/ (9.6.15)

where z is the number of inserts.

9.6.2 Fault detection of the cutter

a) Fault detection with force measurement

The insert forces Fim.k/ are related to the measurable feed forces FDi.k/ by

2
4

Fxm.t/

Fym.k/

Fzm.k/

3
5 D

2
4

cos'i.k/ sin'i.k/ 0

� sin'i.k/ cos'i.k/ 0

0 0 1

3
5
2
4

Ftim.'i.k//

Frim.'i.k//

Faim.'i.k//

3
5

FDi D T.'i.k// Fim.k/

(9.6.16)

where T is a transformation matrix depending on the angular position 'i.k/ of the

insert i .

For all inserts i D 1 : : : z it holds with (9.6.4) that

FDi.k/ D ŒT.'1.k//F1m.k/C � � � C T.'z.k//Fzm.k/�

2
6666666664

Ct1

Cr1

Ca1

:::

Ctz

Crz

Caz

3
7777777775

ym.k/ D  T .k/�

(9.6.17)

To estimate the unknown parameters � the output ym.k/ is replaced by the measured

feed forces

y.k/ D F.k/ D

2
4

Fx.k/

Fy.k/

Fz.k/

3
5 (9.6.18)

and an equation error e.k/ is introduced, yielding

y.k/ D  T .k/� C e.k/ (9.6.19)

Now, k D 1 : : :N measurements are made .N � 3 z/ resulting in an equation

system

y D ‰.N /� C e (9.6.20)

Minimizing the loss function
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V D eT e (9.6.21)

leads to the least-squares estimate

O� D
h
‰T‰

i�1

‰T y (9.6.22)

With this parameter estimation the correction factors Ct , Cr and Ca for each insert i

are estimated by measurement of the feed drive forces Fx.k/, Fy.k/ and Fz.k/.

Table 9.3 shows experimental results with different faults. All faults could be

detected and diagnosed, because the correcting factors increase for wear and insert

displacement with different size and for breakage the factors become < 1, see Sec-

tion c).

Table 9.3. Estimated correcting factors with direct measurement of feed drive forces

correcting factors

Cti Cri Cai

(1) fault free 1 ˙ 0:15 1 ˙ 0:15 1 ˙ 0:2

(2) wear > 1:5 > 1:7 > 2

(3) breakage � 0 � 0 � 0

(4) insert displacement > 1:3 > 1:2 > 1:5

b) Fault detection with position measurements

The parameter estimation of the correction parameters Ci of (9.6.4) by measuring

the table forces in all directions x, y and z has shown that the tangential and radial

correcting parameters Cti and Cri can be estimated by using only the feed force Fx .

In order to save an extra force measurement this feed force is now reconstructed by

the feed drive model (9.6.1) and measurement of:

x table position

'x angular ball screw drive position on drive side

's angular main spindle position (to know 'i/

resulting in Fxc.k/. Then the insert forces Ftim.k/ and Frim.k/ are calculated with

(9.6.12), (9.6.13) and measurement of 's , but with the correction parameters as un-

known s. (9.6.15) yields the milling model output Fxm.k/. Then a force error

e.k/ D Fxc.k/ � Fxm.k/ (9.6.23)

is used for least-squares parameter estimation of the correcting parameters OCti and
OCri for each insert i D 1; : : : ; z, see Figure 9.27.

To test this procedure a large number of measurements was made on the machin-

ing center with a rectangular workpiece and the cutting conditions as in Table 9.4.
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Fig. 9.27. Scheme for the parameter estimation of the milling forces through measurement of

the feed drive angle 'x on drive side and table position x

Table 9.4. Cutting conditions

workpiece steel ST 37

cutter type Widax M20

number of inserts 4

type of inserts Widia TTM

tool radius 25 mm

milling type end milling

depth of cut 1 mm

feed per tooth 0:04 � 0:4 rpm

spindle speed 625 � 1625 rpm

Feed per tooth and spindle speed were varied in the given range. During the

measurement the faults were artificially generated. Even combinations of different

faults were applied to the same milling tool, e.g. breakage of one insert and wear on

the remaining inserts. Figure 9.28 depicts calculated and modeled forces calculated

with the estimated correcting quantities. The effects of a breakage of insert 4 over

three revolutions of the milling tool shows that a characteristic course can be seen.

In the angular area of the broken insert the force is very small. Because of the higher

load the force effecting the following insert is too high.
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The modeled feed force Fxm corresponds quite well with both the measured feed

force Fx and the calculated feed force Fxc , see [9.28]. This can also be deduced from

the similarity of the estimated correcting parameters.

Correcting parameters Correcting parameters

estimated with Fxc estimated with Fx

Ct1 D 1:58 Ct1 D 1:58

Cr1 D 1:31 Cr1 D 1:49

Ct2 D 0:93 Ct2 D 1:08

Cr2 D 1:31 Cr2 D 1:27

Ct3 D 0:97 Ct3 D 1:17

Cr3 D 0:86 Cr3 D 0:93

Ct4 D 0:43 Ct4 D 0:06

Cr4 D 0:03 Cr4 D �0:08

As expected, the correcting quantities of the inserts which are not influenced by the

broken insert 4, i.e. inserts 2 and 3, are close to 1. The values of insert 4 are close to

0. Those of the next insert 1 are significantly higher than 1.

c) Fault diagnosis by classification

The resulting pattern of the estimated parameters can be used for fault detection. A

classifier was developed with the task of distinguishing the following states:

(i) normal cutting

(ii) wear

(iii) breakage

(iv) radial insert displacement.
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The classifier used consists of three parts, see Figure 9.29. In part 1 the correction

parameter of the radial force Cri , is evaluated. As the identification results have

shown, Cri remains comparatively uninfluenced in cases of breakage and insert dis-

placement. Instead, Cri is strongly dependent on tool wear. As long as wear does

not cause breakages at the edges, there is no influence on the forces of the following

insert. Therefore, wear can be detected by regarding only the corrective parameter of

the particular insert. Due to the nature of wear, it is difficult to define a sharp thresh-

old between “new” and “worn.” Therefore, a fuzzy threshold is used to consider

states between the two extremes.

classifier

part 1
(fuzzy
threshold)

part 3
(final
decision
on fault)

part 2
(neural
network)

insert :
normal
broken
worn
displaced
non classifiable

i

insert :
normal
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non classifiable

i

insert :
broken
displaced
non classifiable

i

C

C

i= z1...

ri

ti

ti+1

t1

C i<z( )

C i z( = )

Fig. 9.29. Classification scheme for the estimated correcting parameters

If the previous insert is severely displaced or broken, Cri can no longer be utilized

to judge wear, and the output of part 1 is “non-classifiable.”

In part 2 the correction parameter of the tangential force component Cti is evalu-

ated. As the identification results have shown, insert displacement and breakage lead

to typical patterns of subsequent values of Cti , see Figure 9.30.

In order to detect both faults, a neural network classifier is applied. Here, a mul-

tilayer perceptron (MLP) network with two inputs and two outputs is used, Fig-

ure 9.31. As inputs the tangential force correction parameter Cti of the insert and of

the following insert CtiC1, are used. One of the binary outputs is activated in the case

of insert displacement. The other output is activated in the case of insert breakage. In

cases of no displacement and no breakage, the result in part 2 is “non-classifiable.”

In part 3 the results of part 1 and part 2 are combined. A final diagnosis is pro-

duced by determining which of both results is dominant. If, for example, the out-

put of the fuzzy threshold is “wear” and the output of the neural network is “non-

classifiable” the final diagnosis in part 3 is “wear.” The classification can at least

diagnose one single fault and can give hints for two simultaneously appearing faults.

Extensive measurements with steel and aluminum as workpieces resulted in the

classification results given in Table 9.5. Hence, the best overall results were obtained

with the measurement of all three forces, good results with measurement of the feed
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Fig. 9.31. Classification of tangential force correction parameters with a neural network to

detect insert breakage and displacement

force and still good results with the model-based reconstructed feed force through

feed drive position measurements.

Table 9.5. Diagnosis results for single inserts with parameter estimation of the correction pa-

rameters

milling tool percentage of correct classification [%]

status direct measurement of direct measurement of reconstruction of

Fx , Fy , Fz Fx force Fxc

(1) fault free 100 100 100

(2) wear 100 100 79

(3) breakage 89 100 89

(2) wear 100 67 67
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d) Fault detection with parity equations

To result in a simpler fault detection as with parameter estimation the application

of parity equations is considered. To save the expensive measurement of forces the

angular ball screw position 'x and the table position x are used to reconstruct the

feed force Fxc.k/ with (9.6.1) and (9.6.3), which changes with faults. This force is

compared with the expected force for normal operation by applying (9.6.15) leading

to the force residual

rF .k/ D �Fx.k/ D Fxc.k/ � Fxm.k/ (9.6.24)

The calculation of Fxm.k/ now contains no adaptation to the cutting conditions. The

evaluation of the residuals is limited to a certain tool angle '1 < 'i.k/ < '2, where

only one insert is in operation and to avoid large deviations during entrance and exit

of the tool. As the maximal residuals are relatively large during normal operation

(about 30% of maximal feed force) the thresholds have to be set to relatively large

values, or adaptive thresholds, e.g. jrF j > �jFxmj, � D 0:7, have to be used.

Experiments have shown that this parity approach is able to detect broken inserts

but not worn or displaced inserts.

The advantage of the parity equation approach is the smaller computational ef-

fort and the possibility of real-time application for small sampling time. The fault

detection with parameter estimation allows a considerable larger fault detection and

diagnosis performance. It is, however, computationally much more demanding. The

described investigations were made with nonrecursive least-squares estimation and

with a sampling time T0 D 0:4 ms and a calculation time of 6.3 s. Therefore, it was

not realtime, but timely enough for required actions after a fault was detected.

Additional investigations were made with structure-borne noise sensors mounted

on the workpiece holder. The structure-borne noise was band-pass-filtered in ranges

of 0–8 Hz, 8–16 Hz, 24–34 Hz and 34–50 Hz. The noise generated by the four inserts

shows already in normal state much more deviation between each feed force mea-

surement. Broken or displaced inserts could be detected in middle-frequency bands.

However, wear could only be detected for small wear, not for larger wear. Hence, bro-

ken or displaced inserts are distinguishable, but displaced and worn inserts cannot be

separated. As the structure-borne noise depends much on the individual cutting con-

ditions and the wear status, and in addition the measurement location, it seems not

to be a reliable source for fault detection of the milling cutting process. Much more

details and comparisons are given in [9.27].

9.7 Grinding machines

As grinding of workpieces is one of the last processes in high-precision manufactur-

ing of mechanical products the supervision and fault diagnosis of grinding machines

is also advantageous for quality control. For example, tool wear and chatter oscil-

lations have to be supervised. In the following a grinding machine for cylindrical

surface grinding is considered as one example of different grinding processes, fol-

lowing [9.20] and [9.21].
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9.7.1 Grinding-process models

Figure 9.32 shows a scheme of the considered grinding machine. The x-axis feed

drive moves the rotating grinding wheel (peripheral speed vs � 45 m/s) with a

feed motion xF .t/ of the feed drive against the rotating workpiece (peripheral speed

vw � 0:7 m/s). The resulting cutting normal force FN .t/ causes a material removal

xw.t/. Three mass–spring–damper systems can be distinguished, the feed support

system with the feed drive motor, the grinding wheel and the cylindrical workpiece

with its suspension. For the grinding process the behavior within the contact zone is

influenced by the stiffness cx of the feed support, cs of the grinding wheel and cw of

the workpiece. These stiffnesses are lumped together resulting in the overall contact

stiffness

cc D 1

1=cx C 1=cw C 1=cs

(9.7.1)

The normal cutting force FN .t/ depends on the removal of workpiece material xw.t/

and the grinding conditions.

grinding wheel

feed support

motor
-axisx

grinding machine

F

F

c  ,d

n

x

x

n

c , d

s s

s

T

N

w

F

x x

w w

w

c , d

Fig. 9.32. Scheme of the cylindrical surface grinding machine

Based on [9.53] and [9.26] a simplified linear force equation can be assumed:

FN .t/ D ˛

Tw

aw.t/

aw.t/ D xw.t/ � xw.t � Tw/

(9.7.2)

where aw.t/ is the depth of a cut for one workpiece revolution Tw with Tw D 1=nw ,

nw the workpiece speed and ˛ a grinding-force coefficient. According to [9.36] it

holds for the cutting-force coefficient that

˛ D bK

�
vw

vs

�2"1�1

D1�"1 (9.7.3)



9.7 Grinding machines 253

with b width of the grinding zone, K a gain factor, D the grinding wheel diameter

and 0:5 � "1 � 1. The normal cutting force depends on the other side on the elastic

deflection xc in the contact area, which results from the feed position xF , the removal

xw of the workpiece material and radial disturbances �rs of the grinding wheel and

�rw of the workpiece surface. This leads to the force balance equation

FN .t/ D cc ŒxF .t/ � xw.t/C�rs.t/C�rw.t/�

D ccxc.t/
(9.7.4)

Transforming (9.7.4) and (9.7.2) into the Laplace domain and eliminating xw.s/

yields after back-transformation into the time domain

FN .t/ D a1FN .t � Tw/C b1 ŒxF .t/ � xF .t � Tw/� (9.7.5)

with

a1 D ˛

˛ C Twcc

I b1 D ˛cc

˛ C Twcc

(9.7.6)

Hence, for a step input of the feed position the normal force FN .t/ vanishes for

t ! 1 and in the case for a continuous depth increase aw.t/ the normal cutting

force remains constant. The transfer function following (9.7.5) is

GFx D FN .s/

xF .s/
D b1

�
1 � e�Tws

�

1 � a1e�Tws
(9.7.7)

The dead-time term can be replaced by the Padé approximation of first order:

e�Tws D 1 � T w
2

s

1 C T w
2

s
(9.7.8)

This leads to

GFx D FN .s/

xF .s/
�

b1

1�a1
Tws

1 C Tw

2
1Ca1

1�a1
s

(9.7.9)

and with (9.7.6)

GFx.s/ D FN .s/

xF .s/
� KDs

1 C T1s
(9.7.10)

KD D ˛ T1 D
�
˛

cc

C Tw

2

�
(9.7.11)

Usually, the cutting force FN .t/ cannot be measured. Therefore, the current Is.t/

of the main spindle motor is used which can be assumed to be proportional to the

torque, respectively to the grinding force, [9.20]:

FN D kI Is (9.7.12)

Then
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GFI .s/ D Is.s/

xF .s/
D

˛
kI

s

1 C T1s
(9.7.13)

or in the time domain

Is.t/ D �T1
PIs.t/C Ks PxF .t/ (9.7.14)

with Ks D ˛=kI .

9.7.2 Fault detection with parameter estimation

Experiments were performed with a Schaudt T3U grinding machine for a cylindrical

workpiece. Figure 9.33 shows the measured signals during a three-phase grinding cy-

cle with roughing, finishing and fine-finishing. The assumed process model is based

on (9.7.14) with sampling time T0:

y.k/ D  T .k/ O‚ (9.7.15)

the output signal

y.k/ D Is.k/ (9.7.16)

the measurement vector

 T .k/ D
h
� PIs.k/ PxF .t/

i
(9.7.17)

and the parameter vector

‚T D
�
a0

1 b0
1

�
D ŒT1 Ks � (9.7.18)

By using least-squares parameter estimation and state-variable filters for determining

the derivatives the gain OKs and time constant OT1 can be estimated.

Based on these parameter estimates the cutting-force coefficient and the contact

stiffness follows from (9.7.14) and (9.7.11):

˛

kI

D
OKs

Tw

Occ

kI

D
OKs

kI

�
OT1 � Tw

2

�
(9.7.19)

Figure 9.34 presents the two parameter estimates for a grinding process with increas-

ing number of workpieces. The cutting-force coefficient increases significantly and

also somewhat weaker the contact stiffness. This is due to the wear of the grind-

ing wheel because of blunt edges. In this case the grinding wheel should have been

trimmed after the third working piece. These and other experiments have demon-

strated that tool wear, wrong tools, missing cooling lubrication or trimming condi-

tions can be detected with this parameter estimation approach, see [9.20].
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9.7.3 Fault detection with signal-analysis methods

To detect chattering of the grinding process a signal analysis of the grinding force

or, if easier available, the main spindle motor current can be used. The signal anal-

ysis can be performed by FFT. However, to detect a limited number of frequencies

a signal parameter estimation based on parametric signal models of ARMA type

was applied in the form of the maximum entropy spectral estimation, described in

[9.18], Chapter 8.1.6 and in [9.20]. Table 9.6 shows the estimated frequencies and

amplitudes for a sampling rate of 250 Hz.

Table 9.6. Estimated frequencies and amplitudes of the main spindle current Is with parameter

ARMA signal models

frequency number 1 2 3 4 5 6 7 8

frequency fi [Hz] 12.0 24.1 38.1 44.5 57.5 54.5 45.7 37.7

amplitude [A] 0.77 0.70 0.65 0.70 0.05 0.04 0.03 0.16

belt drive main main

main spindle spindle spindle

motor

Frequencies 1 and 2 are oscillations of the main spindle drive and the belt drive.

f3 is the rotating frequency of the main spindle and indicates chatter. f4 is due to the

main spindle motor which is related to the grinding wheel rotation by i D nM=ns D
1:17. The other frequencies do not contain important process information.

Figure 9.35 depicts the amplitudes of the main spindle frequency f3 for increas-

ing number of workpieces. The first three grinding cycles have too large an amplitude

and are due to wrong trimming because of roundness errors of the grinding wheel

and the workpiece. Then the process stabilizes to normal conditions (self-trimming

effect) and increases for the last cycles with beginning of chattering.

Summarizing, a grinding process can be supervised with detailed indication of

faults by model-based evaluation of feed position and main spindle current and

frequency analysis of the main spindle current. With additional sensors, like for

structure-borne noise, more information can be obtained [9.52].

9.8 Conclusions

The described results of several research projects for drilling, milling and grinding

machine tools have demonstrated that model-based fault-detection methods in the

form of parity equations and parameter estimation allow the fault diagnosis of cutting

processes and machine tool parts. Especially, the feed drives and their position and

current signal enable one to estimate forces of the cutting process or of the friction

of movable parts, like slideways and ball screws. This holds also for the signals of

the main drives. Hence, the application of a process-model-based “drive-as-sensor
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Fig. 9.35. Amplitude of the grinding wheel frequency f3 for increasing number of workpieces.

Sampling frequency f0 D 100 Hz

principle” for the driven mechanical parts allows one to use already-existing mea-

sured variables and to avoid additional force or torque sensors which are not only

too expensive, but also introduce elasticity and reduce the reliability.

Signal-model-based evaluation of, e.g. motor currents is feasible if faults show

up in a change of the oscillating behavior, like chattering. However, structure-borne

noise has not generally allowed direct fault diagnosis because of too many overlap-

ping noise sources in machine tools. However, it is used in grinding machines for

detection of grinding commencement.
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Fault detection of heat exchangers

Heat exchangers transfer heat between two or more media. They exist in a large vari-

ety of types in the chemical and power industries, in buildings and vehicles. Typical

faults in these heat exchangers are leaks, e.g. by corrosion and the contamination

by dirt and dissolved or suspended matter. The growth of deposits is called fouling

and leads to a reduction of heat transfer. Therefore heat exchangers are usually de-

signed with excess heat transfer surfaces of about 35% average, [10.16]. This excess

design increases costs, space and weight. Remedies against fouling are chemical or

mechanical mitigation techniques like filtration, additives, higher velocities, lower

surface temperatures, polished surfaces. However, fouling cannot usually be avoided

completely and therefore periodic cleaning will still be necessary. For more details

see, e.g. [10.19], part Oc 1 and [10.17]. The detection of leaks in heat exchangers

may be based on mass balances and methods described in Chapter 7. Fouling in-

creases mainly the heat transfer coefficients, respectively the heat transfer resistance

and to a minor extent the flow resistance of the media. The following sections de-

scribe some methods to detect changes of the heat transfer and some experimental

results for steam-heated tubular heat exchangers with linear and parameter variable

models.

10.1 Heat exchangers and their models

10.1.1 Heat exchanger types

Heat exchangers are typical apparatuses in the fields of power and chemical engi-

neering, heating, cooling, refrigeration and air conditioning, and are part of all kinds

of machines and engines. Their task is to transport heat between two or more media,

e.g. liquids or gases. A large variety of types exist to meet the specific requirements

with regard to temperatures, pressures, phase changes, corrosion, efficiency, weight,

space and connections. Frequently used types are:

� tubular heat exchangers

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  

DOI 10.1007/978-3-642-12767-0_10, © Springer-Verlag Berlin Heidelberg 2011 
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Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,
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� plate heat exchangers

see Figures 10.1 and 10.2.

J1om11

J1im11

J2om21J2im21

Fig. 10.1. Tubular heat exchanger [10.19]

m1

m2

Fig. 10.2. Plate heat exchanger [10.19]

With regard to the flow direction one distinguishes counter flow, parallel flow

and cross-flow. The fluids are liquids, gases or steam resulting in two media with the

combinations:

� liquid–liquid

� gas–liquid

� liquid–steam (condenser, evaporator)

� gas–steam.

A type of heat exchanger widely used in the chemical process industries is that of

the shell-and-tube arrangement, Figure 10.1. One fluid flows inside the tubes, while

the other fluid flows through the shell over the outside of the tubes. To force the
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outer fluid to flow across the tubes, baffles may be placed in the shell to enforce the

heat transfer. The ends of the heat exchangers are called heads. According to their

arrangement one or more tube passes are utilized.

Another type is plate heat exchangers, Figure 10.2. They consist of several metal

sheets with special profiles, holes and seals. They are pressed to each other by press

screws and allow a large heat transfer flow.

Cross-flow heat exchangers as in Figure 10.3, are commonly used in gas heating

or cooling, like in air-conditioning units or for engine cooling of automobiles. The

flow outside across the tubes is partially mixed or, if fins separate the tube bundles

into passes, is unmixed.

m1

m2

m1

(a) (b) m2

Fig. 10.3. Air–liquid cross-flow heat exchanger: a) with winding tubes; b) with parallel tubes

Within this chapter the following special symbols are used:

A area

cp specific heat capacity at constant pressure

d diameter

l length of tubes

k overall heat transfer coefficient

Pm mass flow rate

Pq specific heat flow Pq D PQ=A
PQ heat flow

r vaporization heat, residual

s tube wall thickness, Laplace variable s D � C i!

v velocity

z tube length coordinate

˛ heat transfer coefficient

# temperature (instead of T : time constant)

� density
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� thermal conductivity

Subscripts:

1 primary side of heat exchanger

2 secondary side of heat exchanger

w wall

s steam

i inlet

o outlet

A bar like Pm means steady state.

10.1.2 Heat exchanger models for stationary behavior

Heat-exchanging fluids are usually separated by a wall. If the heat transfer is through

convection the stationary specific heat flow is, compare Figure 10.4,

Pq1w D
PQ1w

A1w

D ˛1 .#F1 � #w1/ (10.1.1)

with A1w the surface area and ˛1 the heat transfer coefficient. Similarly it holds for

the other side of the wall that

Pq2w D
PQ2w

A2w

D ˛2 .#w2 � #F2/ (10.1.2)

The conductive heat transfer through the wall is (Fourier’s law)

Pqw D
PQw

Aw

D �

s
.#w1 � #w2/ (10.1.3)

with � the thermal conductivity coefficient and s the wall thickness. In the stationary

case all heat flows are identical:

Pq1w D Pq2w D Pqw

The overall heat transfer then follows if A1w D A2w D Aw as

Pq12 D
PQ12

Aw

D k .#F1 � #F2/ (10.1.4)

with the overall heat transfer coefficient

k D 1
1

˛1w
C s

�
C 1

˛2w

(10.1.5)
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Hence, the smallest value of ˛1w or ˛2w dominates the overall heat transfer.

The heat transfer through a tubular heat exchanger with mass flows Pm1 and Pm2

and specific heat capacity cp1 and cp2 is defined as

PQ12 D k Aw �#m (10.1.6)

where #m is the average temperature difference

�#m D �#la ��#sm

ln .�#la=�#sm/
� 1

2
.�#la C�#sm/ (10.1.7)

and �#la and �#sm the larger and smaller temperature difference according to Fig-

ure 10.5.

s

Jw

JF2

Jw1

Jw2

JF1

Fig. 10.4. Heat transfer through a wall

The temperature profiles in the longitudinal direction show an exponential course.

It holds for example under ideal conditions for counter flow:

#22 D #11 �
1 � Pm1cp1

Pm2cp2

1 � Pm1cp1

Pm2cp2
exp

h�
1

Pm2cp2
� 1

Pm1cp1

�
kA
i .#11 � #21/ (10.1.8)

and for parallel flow:

#22 D #11 �
1 � exp

h�
1

Pm2cp2
� 1

Pm1cp1

�
kA
i

1 � Pm1cp1

Pm2cp2
exp

h�
1

Pm2cp2
� 1

Pm1cp1

�
kA
i .#11 � #21/ (10.1.9)

For details see, e.g. [10.7], [10.8], [10.18].



264 10 Fault detection of heat exchangers

A(b)A(a)

J22

J12

J22

m2

J21

DJ
la

J21

J11J11

m1

m2

m1

J21

J12

J12

DJsm

J11

J22

J11

J21

DJsm

DJ
la

J22

J12

Fig. 10.5. Temperature profiles in tubular (double-pipe) heat exchangers: a) counter flow; b)

parallel flow

10.1.3 Dynamic models of heated tubes

Heated tubes are basic components of many heat exchanger types. Therefore mod-

eling the dynamic behavior of a heated tube serves as a basic element to derive and

understand the temperature dynamics of heat exchangers. In many cases it is of inter-

est how the output temperature #1o.t/ depends dynamically on the input temperature

#1i.t/, the velocity v1.t/ and the specific heat flow Pq2w.t/, see Figure 10.6. The de-

scription below follows [10.1], [10.9], [10.11], [10.18]:

z l

dz

q2w

J1o

v1

J1i

Fig. 10.6. Scheme of a heated tube

a) Heated tube with distributed parameters

It is assumed that the geometric dimensions and the specific heat flow Pq2w.z/ are

constant along the length coordinate z and that a turbulent flow holds internally, and

that there is an ideal mixture perpendicular to the z-axis.
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q2w

q1w

d2

d1

dz

m1

Jw

J1

J2

Fig. 10.7. Tube element

As the tube is a distributed parameter system where the fluid temperature #1.z; t/

depends on the location z and the time t an infinitesimally small element is consid-

ered, see Figure 10.7. It consists of two heat stores, the inner fluid and the tube wall.

Therefore two balance equations are stated:

� enthalpy balance equation for the flowing fluid:

Dh1.z; t/

Dt
D 1

A1�1

@ PQ1w

@z
I d PQ1w D Pq1w�d1dz (10.1.10)

@h1.z; t/

@t
C v1.t/

@h1.z; t/

@z
D �d1

A1�1

Pq1w.z; t/ (10.1.11)

� heat balance of the tube wall element:

Pq2w � d2 dz � Pq1w � d1 dz D Aw �w cw

@#w

@t
(10.1.12)

where Aw D �
�
d2

2 � d2
1

�
is the cross-section area of the tube wall.

After assuming small changes of the temperature �#.t/ and other variables and

introducing the heat transfer equations

Pq1w D ˛1w.#w � #1/ (10.1.13)

Pq2w D ˛2w.#2 � #w/ (10.1.14)

with Nusselt’s law for the heat transfer coefficient

˛1w D ˛1w

�
v1

v1

�m

�˛1w D ˛1w m
�v1

v1

(10.1.15)

(m D 0:8 for turbulent flow, v means steady-state value) and for the enthalpy

�h1 D cp1 �#1 (10.1.16)
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it follows:

@#1.z; t/

@t
C v1

@#1.z; t/

@z
D 1

TF

.�#w.z; t/ ��#1.z; t//

� 1

TF

�
#w � #1

�
.m � 1/

�v1

v1

(10.1.17)

@#w.z; t/

@t
D 1

˛2w Tw2

� Pq2w.t/ � 1

Tw2

�#w.z; t/

C 1

Tw1

.�#1.z; t/ ��#w.z; t//

� 1

Tw1

m
�
#w � #1

� �v1.t/

v1

(10.1.18)

Herewith three parameters are defined:

TF D d1 �1 cp1

4 ˛1w

(fluid time constant) (10.1.19)

Tw1 D Aw �w cw

� d1 ˛1w

(inner tube wall time constant) (10.1.20)

Tw2 D Aw �w cw

� d2 ˛2w

(external tube wall time constant) (10.1.21)

(10.1.17) and (10.1.18) are now first Laplace transformed with regard to the time t

into the s-domain and then with regard to the location z in the �-domain. Laplace

backtransformation from the �-domain into the z-domain with setting of �#1.z D
0; s/ D �#1i.s/; �#1i.z D l; s/ D �#1o.s/ and elimination of the tube wall

temperature leads to the following three transfer functions, [10.9]:

G#.s/ D �#1o.s/

�#1i.s/
D e�Tt s e

��F
Tw1sC�

Tw1sC�C1 (10.1.22)

Gq.s/ D �#1o.s/

� Pq2w.s/

D

�
#w � #1

�
d2

Pq2wd1

1=�

Tw2 TF s2 C
�
TF

1C�
�

C Tw2

�
s C 1

.1 � G#.s//

(10.1.23)

Gv D �#1o.s/

�v1.s/

D �

�
#w � #1

�

v1

1
�

C .1 � m/.1 C Tw1s/

Tw2 TF s2 C
�
TF

1C�
�

C Tw2

�
s C 1

.1 � G#.s//

(10.1.24)

Three new parameters are:



10.1 Heat exchangers and their models 267

�F D 4 ˛1w l

d1 �1 cp1 v1

(fluid parameter) (10.1.25)

� D ˛2w d2

˛1w d1

(convective heating parameter) (10.1.26)

Tt D l=v (dead time) (10.1.27)

and additionally from (10.1.20):

Tw1 D
�
d2

2 � d2
1

�
�w cw

4 ˛1w d1

(inner tubewall time constant) (10.1.28)
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Fig. 10.8. Transient functions for G# .s/ with �F as parameter (heating through radiation,

� D 0) and assuming Tt D 0, [10.18]

The parameters �1 and � define the form of the resulting frequency response loci

or the transient functions and Tw1 and Tw2 the frequency or time scale. Figures 10.8

and 10.9 show the corresponding transient functions and frequency response loci.

The temperature behavior is for small �1 (e.g. short tube length), approximately a

step plus a first-order lag, and tends to a higher-order lag behavior for large �1 (large

tube length). Both the heating/temperature and the velocity/temperature behavior

show approximately a second-order lag behavior, however, with opposite sign, see

also Figure 10.10. Table 10.1 shows typical ranges of the characteristic parameters

for heat exchangers.

b) Simplified models of heated tubes

Approximation of the transcendental transfer functions with rational transfer func-

tion and time delay allows simpler expressions, as was shown in [10.1], [10.9],

[10.15]:
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Fig. 10.10. Signal flow diagram of a heated tube for small changes of variables
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Table 10.1. Characteristic parameters of heated tubes, [10.9]

primary liquid gases, steam

flow 1 0:1 < �F < 20 0:1 < �F < 20

(inner tube) 0:2 < Tw1=TF < 0:7 20 < Tw1=TF < 100

secondary gas gas, steam

flow 2 0 < � < 0:2 0 < � < 1

(outer tube) (water/air heater) (steam superheater)

liquid, condensing steam liquid

0:5 < � < 3 0:5 < � < 10

(steam/water heat exchanger)

eG#.s/ D �#1o.s/

�#1i.s/
D
�

a C b

1 C Tb s

�n

e�Tt s (10.1.29)

a D e���F

b D e���F
�

1C� � a

Tb D ��F

.1 C �/2
a C b

b
Tw1

n D �1

��F

with ��1 � 1:5; n D 1; 2; 3; : : :

This means that (10.1.22) was approximated for small��F by rational transfer func-

tions. For larger �F they are connected in series. The other two transfer functions

result in

eGq.s/ D �#1o.s/

� Pq2w.s/
D Gq.0/

.1 C T1s/ .1 C T2s/
(10.1.30)

T1 D 1

�
.1 �  / Tw1

T2 D 1

�
Tw1

eGv.s/ D �#1o.s/

�v1.s/
D Gv.0/

.1 C T1s/

(
1
�

1 C T2s
C .1 � m/

)
(10.1.31)

The gains are

G#.0/ D  D e��1
�

1C� (if cp1i D cp1o)

Gq.0/ D #w � #1

Pq2w

d2

d1

1

�
.1 �  /

Gv.0/ D �#w � #1

v1

�
1

�
C 1 � m

�
.1 �  /
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These approximations hold for liquid flows in the inner tube with (0:2 < Tw1=TF <

0:7) and liquids and condensing steam for the secondary flow (0:5 < � < 3). For

other parameter combinations see [10.9]. For simplified dynamic models of cross

flow heat exchangers see [10.14].

The output temperature is usually measured by a temperature sensor, e.g. a resis-

tance thermometer or a thermocouple. Therefore the transfer functions for the outlet

temperature of the heated tube have to be multiplied by the transfer function:

Gts D �#1s.s/

�#1o.s/
D Kts

1 C Ttss
(10.1.32)

Tts D dts�tscts

4˛1ts

(10.1.33)

with dts diameter, �ts density, cts specific heat coefficient, ˛1ts heat transfer coef-

ficient of the sensor. The sensor dynamics may have a significant influence on the

overall dynamic behavior.

10.2 Fault detection for static behavior

10.2.1 Static models of heat exchangers

A general heat exchanger according to Figure 10.11 is considered with primary fluid

1 and secondary fluid 2, both of which are in a stationary operation state. It is as-

sumed that the following variables are measurable:

Pm1, Pm2 mass flows

#1i ; #2i input temperatures

#1o, #2o output temperatures

A heat balance then leads to

PQ1 D Pm1 cp1

�
#1i � #1o

�
D Pm2 cp2

�
#2o � #2i

�
� PQl (10.2.1)

where PQl is the heat flow loss to the environment and cp is the specific heat at

constant pressure. The overall heat transfer coefficient of a heat exchanger is, see

(10.1.6)

kHE D
PQ1

A �#m

�
W

m2 K

�
(10.2.2)

where A is the exchange surface area and �#m the mean temperature difference.

�#m depends on the direction of liquid flows, e.g. either parallel, reverse or cross-

flow, and is e.g. for reverse flow, compare (10.1.7) and Figure 10.5,

�# la D #1i � #2o I �#sm D #1o � #2i

�#m D �# la ��#sm

ln
�
�# la=�#sm

� (10.2.3)
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The overall heat transfer coefficient of a thin tube wall is according to (10.1.5)

k D 1
1

˛1
C s

�
C 1

˛2

�
W

m2 K

�
(10.2.4)

where ˛ are the heat transfer coefficients, � the thermal conductivity coefficient and

s the wall thickness.

J2i

J2o

J1i

J1o

m2

m1

Fig. 10.11. General scheme of a heat exchanger

10.2.2 Fault-detection methods

a) Parity equation

The simplest method for an overall fault detection is to calculate a residual of the

heat balance (10.2.1)

r.k/ D Pm1.k/
�
#1i.k/ � #1o.k/

�
� Pm2.k/

�
#2o.k/ � #2i.k/

�
(10.2.5)

where measurements are made at different discrete times k D t=T0 under steady-

state conditions. The residual corresponds then to the heat loss

r.k/ D PQl .k/=cp (10.2.6)

This residual will change in the case of faults like defective insulation, any faults of

the six sensors, leaks in flow 1 or flow 2.

However, these faults are not isolable. Also contamination on one or two sides is

not directly detected, as long as the heat balance is satisfied ( PQl may change a bit).

A further disadvantage is the requirement for six sensors. In special cases one sensor

can be saved, e.g. if #1o D #2i can be assumed.
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b) Characteristic quantity

Another overall feature is the mean heat transfer coefficient (10.2.2)

kHE.k/ D
PQ.k/

A �#m.k/
D 1

A �#m.k/
Pm1.k/ cp1

�
#1i.k/ � #1o.k/

�

(10.2.7)

Comparing this quantity with a nominal value

�kHE.k/ D kHE.k/ � kHEnom (10.2.8)

indicates faults in the insulation, leaks at both sides, contamination on both sides,

faults of three sensors.

However, also these faults are not isolable. The number of sensors is still high:

one mass flow and four temperature sensors.

c) Parameter estimation

As contamination (fouling) within and outside of the tubes increases the heat transfer

coefficients it would be advantageous to estimate these parameters directly. However,

they are hidden in the overall transfer coefficient (10.2.4).

The heat transfer coefficients depend on the mass flow rate according to Nusselt’s

law:

˛1 D c˛1 Pmˇ1
˛2 D c˛2 Pmˇ2

(10.2.9)

If for example in a shell-tube heat exchanger or cross-flow heat exchanger flow 1

streams through tube 1 with turbulent flow it holds that ˇ1 � 0:8, and if flow 2

streams perpendicularly through a bundle of tubes it is ˇ2 � 0:6. Then ˛1 and ˛2

depend differently on the mass flows. Using (10.2.4) and writing it in the form

1

˛1

C s

�
C 1

˛2

D 1

k
(10.2.10)

leads to

1

c˛1

Pmˇ1

1 C 1

c˛2

Pmˇ2

2 D 1

k
� s

�
D y

˛1 Pmˇ1

1 C ˛2 Pmˇ2

2 D 1

k
� s

�
D y (10.2.11)

Now it is assumed that k D kHE is known by applying (10.2.2) where the heat flow
PQ1 follows from (10.2.1) by measurement of Pm1, #1i and #1o and �#m follows

from (10.2.3) by additional measurements of #2o and #2i . Also s and � are known

from construction data. (10.2.11) can be written as
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y D  T ‚ (10.2.12)

with

 T D
h

Pmˇ1

1 Pmˇ2

2

i

‚T D Œa1 a2�

The parameters a1 and a2 can be estimated by using the least-squares parameter

estimation method. Introducing the equation error e.k/ in (10.2.11) yields

y.k/ D  T .k/ ‚ C e.k/ (10.2.13)

The minimization of the sum of squared errors leads to the least-squares estimate

‚.N / D
h
‰T ‰

i�1

‰T y (10.2.14)

where ‰ contains different mass flow measurements Pm1.k/ and Pm2.k/ in a steady

state. However, a good condition of the equation system can only be expected for

wide ranges of Pm1 and Pm2 measurements.

The estimated parameters Oa1 and Oa2 in O‚ allow the calculation of Oc˛1 and Oc˛2,

see (10.2.9). Decreasing values

� Oc˛i D Oc˛i � c˛nom i D 1:2 (10.2.15)

then enable one to detect contamination of the heat transfer surfaces under the condi-

tion that sensor faults can be excluded, because they influence kHE . The parameter

estimation is also possible if only one of the mass flows is changed. However, this

method requires that four temperatures and two mass flows have to be measured.

d) Required instrumentation

The different possibilities for fault detection of heat exchangers with static models

have shown that two mass flow sensors and four temperature sensors are required.

If the considered heat exchanger is an important process part in the plant, then this

instrumentation is usually available. However, if this sensor equipment is not com-

pletely implemented at the heat exchanger, one has to use other sensors within the

plant. Flow rates may be measured at other positions or may be calculated based on

mass flow balances. A further alternative is a model-based reconstruction of the flow

rate with:

i) pump-drive-unit model: The flow rate is calculated based on measurements of

current, speed and/or pressure difference, see Section 6.1.2

ii) valve model: The flow rate is calculated from measurement of valve position

(resp. effective opening area) and pressure difference across the valve, see Sec-

tion 5.2.
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Frequently the fluid outlet temperature of one fluid, e.g. #1o, is controlled by a

feedback controller manipulating either its inlet temperature #2i or the mass flow

rate Pm2 of the other fluid or its inlet temperature #2i , compare Figure 10.11. Then

the position U of the actuator can be used as an approximation of the corresponding

manipulated variable. If U leaves a normal operating range, or if it reaches the actu-

ation limit and a permanent offset of the control deviation arises, the heat transfer in

the heat exchanger may be faulty, if other faults (sensors, actuators) can be excluded,

compare [10.12], Chapter 12.

In the case of steam-heated heat exchangers with saturated steam one tempera-

ture sensor may be saved, because the transferred heat flow is

PQ1 D Pm1 r.#1i/

where r is the specific vaporization heat. #1o has not to be measured if the condensate

valve functions properly, avoiding condensate storage in the heat exchanger. The

measurement of #1i may be replaced by a pressure measurement p1i .

10.3 Fault detection for a steam/water heat exchanger with dynamic

models and parameter estimation

An industrial-size steam-heated heat exchanger, see Figure 10.12, is considered

which is part of a pilot plant, [10.6], [10.13]. This plant consists of an electric-

powered steam generator, a steam/condensate circulation (circuit 1), a water circula-

tion (circuit 2) and a cross-flow heat exchanger to transport the heat from water to

air. As inputs and outputs of the considered heat exchanger the following variables

are measured:

Pms mass flow of the steam

Pm1 mass flow of the liquid fluid (water)

#1i inlet temperature of the liquid fluid

#1o outlet temperature of the liquid fluid

The fluid outlet temperature #1o is considered as an output variable, the other three

measured variables as input variables.

10.3.1 Fault detection with linear dynamic models and parameter estimation

To model the dynamic behavior, the heat exchanger is subdivided into the tubular

section, the water head, a transport delay and the temperature sensor, see [10.10]. The

dynamic equations for a heated tube are obtained from section 10.1.3b). In addition,

balance equations are stated for the steam space and the shell tube. Then the equation

system is linearized around the operating point. For the steam flow as input one

obtains for example the approximate transfer function

eGs#.s/ D �#1o.s/

� Pms.s/
D Ks

.1 C T1ss/.1 C T2ss/
e�Ttss (10.3.1)
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Fig. 10.12. Tubular heat exchanger and measured variables

with

Ks D r

Pm1c1

I T1s D 1

v1

�
1 C Aw�wcw

A1�1c1

�

T2s D Aw�wcw

˛w1U1

1h
1 C Aw�wcw

A1�1c1

i

9
>>>=
>>>;

(10.3.2)

The various symbols are:

A cross-sectional area

c specific heat capacity

m, Pm mass, mass flow rate

r evaporation heat

U periphery of one tube

v velocity in the tube

˛ heat transfer coefficient

# temperature

� density

Subscripts:

1 fluid (water)

s steam

w wall

i inlet

o outlet
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In this case three parameter estimates compare to 10 process coefficients. Therefore

it is not possible to determine all process coefficients uniquely. By assuming some

of the process coefficients to be known, however, the following process coefficients

and process coefficient combinations can be determined:

˛w1 D A1�1c1

T2sU1

�
1 � 1

T1sv1

�

Aw�wcw D T1s Pm1c1 � A1�1c1

r D Ks Pm1c1

9
>>>=
>>>;

(10.3.3)

The three parameters OKs , OT1s and OT2s are determined by experiments based on

transient function measurements of the fluid outlet temperature #1o due to changes

of the input variables #1i , PmS and Pm1 in the direction of decreasing temperature #So.

The operating point was

Pm1 D 3000 kg/hI PmS D 50 kg/hI #1i D 60ı CI#1o � 70ı C

As the sampling time T0 D 500 ms was selected. The time period of one experiment

was 360 s, so that 720 samples were taken. For the parameter estimation the method

of total least squares in a recursive form was applied by using a digital state-variable

filter for the determination of the derivatives. The determination of the normal state

(training phase) was based on 60 transients for each transfer function. The 30 tran-

sients were carried out for each transfer function and for each of four artificially

generated faults:

F1: air (inert gas) in the steam space

F2: open condensate valve

F3: closed condensate valve

F4: plugged tube

(Altogether 540 experiments were carried out, lasting about 150 operation hours.)

Figure 10.13 shows (a) one measured transient function and (b) the correspond-

ing time history of the parameter estimates. A good convergence of the parameter

estimates was obtained in all cases. A verification of the measured and the calcu-

lated transient functions shows a very good agreement. In Table 10.2 the parameter

estimates are given for eGs# . Table 10.3 indicates that for each of the four faults dif-

ferent changes in the parameter estimates are obtained. Corresponding results were

obtained for changes in the fluid inlet temperature eG## , and changes in fluid flow
eG1# .

Based on the parameter estimates OKs , OT1s , OT2s the obtainable process coeffi-

cients due to (10.3.3) can also be calculated. However, in this case the changes in the

calculated process coefficients can only partially be explained by the physical effects

of the faults. One reason is that the investigated faults are not directly mapped by the

obtainable process coefficients. In addition, the calculated process coefficients are

obviously rather sensitive to changes in the process parameter estimates and to the
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Fig. 10.13. Results for a change in the steam flow � Pms : a) Measured transient functions for a

steam flow change; b) Parameter estimates from transient function

Table 10.2. Parameter estimates for steam flow changes

mean
fault

standard deviation
OKs [Kh/kg] OT1s [s] OT2s [s]

� 0.1708 12.38 7.21
none

� 0.0032 1.63 1.07

� 0.1896 7.26 7.26
F1

� 0.0072 0.73 0.73

� 0.1268 7.26 7.26
F2

� 0.0037 0.35 0.35

� 0.1899 13.89 3.81
F3

� 0.0042 0.82 0.44

� 0.1689 13.65 6.01
F4

� 0.0032 1.50 0.81
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Table 10.3. Changes of the parameter estimates (symptoms) of Table 10.2 for QGS# .s/. C,

CC small, large increase, �, �� small, large decrease, 0 no change

fault OKs
OT1s

OT2s

F1 � �� 0

F2 �� �� C
F3 C C ��
F4 0 C �

values of the coefficients which have to be assumed as known. This is a known fact

for processes with heat transfer. Therefore it is recommended that the fault detection

for this type of process, which is a higher-order distributed parameter system and is

approximated by lower-order lumped models, be based on the model parameter esti-

mates such as gain and time constants. This means that a detailed theoretical model-

ing is not necessary. The case study has shown that the considered four faults could

be detected by using patterns of changes according to Table 10.3. They are strongly

isolable. This holds for all three transfer functions, [10.6]. Hence it is sufficient to

use only one transfer function. The most significant differences were obtained for

steam flow changes, eGs# . The use of static models only allows the recognition of

changes from the normal state. Hence, a detailed fault detection and diagnosis is in

this case only possible by applying dynamic models, compare [10.17]. The required

measurements are two mass flows, two temperatures and one (steam) pressure.

10.3.2 Fault detection with parameter variable local linear dynamic models

As the behavior of heat exchangers depends strongly on the flow-rates the static and

dynamic behavior is nonlinear for changing flow-rates. In order to develop fault-

detection methods which are applicable over a large operating range local linear

neuronal net models of the type LOLIMOT were used to describe first the nominal

behavior. This was applied to the steam/water heat exchanger used also for Section

10.3.1, [10.2], [10.5]. By using the LOLIMOT identification method dynamic mod-

els of the water outlet temperature #1o in dependence on the water volume flow
PV1, steam mass flow Pms and inlet temperature #1i were determined by simultaneous

wide-range excitation of the two flows with amplitude-modulated PRBS, [10.4]. This

resulted in 10 local linear models in dependence on the water flow. Using a sample

time of T0 D 1 s a second-order dynamic model was sufficient:

#1o.k/ D �a1.z/#1o.k � 1/ � a2.z/#1o.k � 2/

C b11.z/ Pms.k � 1/C b12.z/ Pms.k � 2/

C b21.z/ PV1.k � 1/C b31.z/#1i.k � 1/C c0.z/

(10.3.4)

where the parameters depend on the operating point z D PV1 (volume flow rate)
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a�. PV1/ D
10X

jD1

a�ˆj . PV /I b��. PV1/ D
10X

jD1

b��. PV /

c0. PV1/ D
10X

jD1

c0ˆj . PV /
(10.3.5)

where ˆj is the weighting function within LOLIMOT.

Figure 10.14 shows the resulting stationary outlet temperature in dependence

on the two flows. The identified models then allow one to extract three gains and

one dominant time constant, partially depicted in Figure 10.15. The operating-point

dependence is especially strong for low water flow rates. Static gains and the time

constant change with about a factor of four.
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Fig. 10.14. Heat exchanger water outlet temperature static map in dependence on water and

steam flow

Based on the local linear models several features can be extracted for fault detec-

tion:

K Pv1
static gain for � PV1

K Pms
static gain for � Pms

K#1
static gain for �#1i

T1o time constant

c0 static offset

r#1
.k/ D #1o.k/ � #1onom.k/ output residual

the following faults were then inserted:
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Fig. 10.15. Static gains and time constant for the water outlet temperature in dependence on

the water flow rate

F1: leak in the heat exchanger (by opening a bypass)

F2: condensate valve stuck open

F3: condensate valve stuck closed

F4: leak in the vacuum pump (too little pump delivery)

F5: inert gas (air) in the steam space

F6: gain fault in sensor #1i

F7: gain fault in sensor PV1

F8: gain fault in sensor #1o

F9: gain fault in sensor Pms

(gain faults: factor 1.2)

For the experiments without and with inserted faults the process was excited by

changing the inputs PV1, Pms and #1i with a PRBS around the operating points with

water volume flows PV1 D 4; 8 and 13 m3/h. The parameters were then estimated

with recursive least-squares estimation (RLS) and forgetting memory by applying

the same second-order models as (10.3.4), [10.3]. Table 10.4 depicts the resulting

changes of the parameter estimates and one parity equation between the LOLIMOT

model for the nominal values and the RLS model for the faults.
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Except for faults F3 and F4, which have the same physical effect on the conden-

sate level in the heat exchanger, all faults show different patterns and are therefore

isolable. As all considered faults lead to a deviation of the residual r#1
, this can

be used for fault detection in normal operation, once the model (10.3.4) is identi-

fied. Then dynamic excitation of the three considered inputs PV1, Pms and #1i can be

started, e.g. one after another, to obtain parameter estimates in order to diagnose the

faults, according to the symptoms given in Table 10.4. The fault detection can be fur-

ther improved by adaptive thresholds and fuzzy-logic-based fault diagnosis, [10.3].

In this case two flow rates and two temperatures were required as measurements,

assuming a constant steam pressure.

Table 10.4. Fault-symptom table for the steam/water heat exchanger. C increased; � de-

creased; 0 no effect (for sensor faults increased gains are considered)

symptoms

parity

faults
parameter estimation

equation

K PV1
K Pms

K#1
T1o c0 r#1

F1 leak � C � C C C
F2 cond. valve stuck open C 0 0 � 0 C
F3 cond. valve stuck closed C � C � C C
F4 leak vacc. pump C � C � C C
F5 inert gas C � C � 0 �
F6 sensor #1i 0 0 � 0 0 �
F7 sensor PV1 � C 0 C 0 C
F8 sensor #1o C C C 0 0 �
F9 sensor Pms 0 C 0 0 0 �

10.4 Conclusions

Fault detection by applying static models for heat exchangers with two different

fluids is based on heat balance equations and requires therefore one or two flow rate

sensors and four temperature sensors as the examples in Section 10.2.2 have shown.

These models then usually do not allow a detailed fault detection because of the

overall balance or the restricted possibility to extract only a characteristic quantity

where several parameters are lumped together.

Fault detection is improved if dynamic models are used, because then more pa-

rameters can be estimated which change differently under the influence of faults

and therefore improve the isolability. This holds especially if several variables, like

two fluids and two temperatures can be dynamically changed, as Section 10.3.2 has

shown. Also fewer sensors may be used as with overall static models.
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Fault-tolerant Systems
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Fault-tolerant systems – a short introduction

The improvement of reliability can be increased by two different approaches, perfect-

ness or tolerance, [11.4]. Perfectness refers to the idea of avoiding faults and failures

by means of an improved mechanical or electrical design. This includes the con-

tinued technical advancement of all components that increase the operational life.

During operation the intactness of the component must be maintained by regular

maintenance and replacement of wearing parts. Methods that facilitate fault detec-

tion at an early stage allows one to replace the regular maintenance schedule with a

maintenance-on-demand scheme.

Tolerance describes the notion of trying to contain the consequences of faults and

failures such that the components remain functional. This can be reached by the prin-

ciple of fault tolerance. Herewith, faults are compensated in such a way that they do

not lead to system failures. The most obvious way to reach this goal is redundancy in

components, units or subsystems called modules. However, the overall systems then

become more complex and costly. In the following, various types of fault-tolerant

methods are reviewed briefly, for more details see [11.3] and [11.8].

Fault-tolerance methods generally use redundancy. This means that in addition

to the considered module, one or more modules are connected, usually in parallel.

These redundant modules are either identical or diverse. Such redundant schemes

can be designed for hardware, software, information processing, and mechanical and

electrical components like sensors, actuators, microcomputers, buses, power sup-

plies, etc.

11.1 Basic redundant structures

There exist mainly two basic approaches for fault tolerance: static redundancy and

dynamic redundancy. The corresponding configurations are first considered for elec-

tronic hardware and then for other components. Figure 11.1a) shows a scheme for

static redundancy. It uses three or more parallel modules that have the same input

signal and are all active. Their outputs are connected to a voter, which compares

these signals and decides by majority which signal value is the correct one. If a triple

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  
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modular-redundant system is applied, and the fault in one of the modules generates a

wrong output, this faulty module is masked (i.e. not taken into account) by the two-

out-of-three voting. Hence, a single faulty module is tolerated without any effort for

specific fault detection and n redundant modules can tolerate .n�1/=2 faults (n odd).

To improve the fault tolerance also the voter can be made redundant, [11.8].

Disadvantages of static redundancy are high costs, more power consumption and

extra weight. Furthermore, it cannot tolerate common-mode faults, which appear in

all modules because of common fault sources.

Dynamic redundancy needs fewer modules at the cost of more information pro-

cessing. A minimal configuration consists of two modules, Figure 11.1b) and c).

One module is usually in operation and, if it fails, the standby or back-up unit takes

over. This requires fault detection to observe if the operating modules become faulty.

Simple fault-detection methods only use the output signal for, e.g. consistency check-

ing (range of the signal), comparison with redundant modules or use of information

redundancy in computers like parity checking or watchdog timers. After fault de-

tection, it is the task of the reconfiguration to switch to the standby module and to

remove the faulty one.

(b)

(c)

modules

fault
detection

recon-
figuration

1
x

2

modules

fault
detection

recon-
figuration

1
x

2

modules

voter

1

x

x

xx
2

3

n
(a)

i

i

i o

o

o

Fig. 11.1. Fault-tolerant schemes: a) static redundancy: multiple-redundant modules with ma-

jority voting and fault masking, m out of n systems (all modules are active); b) dynamic re-

dundancy: standby module that is continuously active, “hot standby”; c) dynamic redundancy:

standby module that is inactive, “cold standby”

In the arrangement of Figure 11.1b), the standby module is continuously oper-

ating, called hot standby. Then, the transfer time is small at the cost of operational

aging (wear-out) of the standby module.
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Dynamic redundancy where the standby module is not in operation and does not

wear is shown in Figure 11.1c) and is called cold standby. This arrangement needs

two more switches at the input and more transfer time due to a start-up procedure.

For both schemes, the performance of the fault detection is essential.

Dynamic redundancy can be extended to two and more standby modules, thus

tolerating two or more faults. Combinations of static and dynamic redundancy lead

to hybrid redundant schemes to avoid the disadvantages of both types on cost of

higher complexity, [11.8].

Table 11.1 gives a brief summary of static and dynamic redundancy as applicable

to electronic hardware, software, mechanical and electrical systems and mechatronic

systems. More details are described in [11.3], [11.5], [11.8].

11.2 Degradation steps

Mainly because of costs, space and weight, a suitable compromise between the de-

gree of fault tolerance and the number of redundant modules has to be found. In

contrast to fly-by-wire systems, only one or two failures can be tolerated for haz-

ardous cases, for industrial and traffic systems, mainly because a safe state can be

reached easier and faster. This means that not all components need very stringent

fault-tolerance requirements. The following steps of degradation are distinguished:

� fail-operational (FO): one failure is tolerated, i.e. the module stays operational

after one failure. This is required if no safe state exists immediately after the

component fails

� fail-safe (FS): after one (or several) failure(s), the module directly possesses a

safe state (passive fail-safe, without external power) or is brought to a safe state

by a special action (active fail-safe, with external power)

� fail-silent (FSIL): after one (or several) failure(s), the module is quiet externally,

i.e. stays passive by switching off and therefore does not influence other compo-

nents incorrectly

� fail (F): permanent interruption of the module’s ability to perform a required

function.

For, e.g. vehicles, it is proposed to subdivide FO into “long time” and “short

time,” in order to reach a safe state dependent on the kind of failure. Considering

these degradation steps for various components, one has to check first if a safe state

exists. For automobiles, (usually) a safe state is standstill (or low speed) at a non-

hazardous place. For components of automobiles, a fail-safe status is (usually) a me-

chanical back-up (i.e. a mechanical or hydraulic linkage) for direct manipulation by

the driver. Passive fail-safe is then reached, e.g. after failure of electronics if the ve-

hicle comes to a stop independently of the electronics, e.g. by a closing spring in the

throttle or by actions of the driver via mechanical backup. However, if no mechanical

back-up exists after failure of electronics, only an action by other electronics (switch

to a still operating module) can bring the vehicle (in motion) to a safe state, i.e. to

reach a stop through active fail-safe. This requires the availability of electrical power.
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Generally, a graceful degradation is envisaged, where less critical functions are

dropped to maintain the more critical functions available, using priorities, [11.2].

Table 11.2 shows degradation steps to fail-operational (FO) and fail (F) for different

redundant structures of electronic hardware. As the fail-safe status depends on the

considered system and the kind of components, it is not considered here.

Table 11.2. Fail behavior of electronic hardware for different redundant structures. FO: fail-

operational; F: fail; FS: fail-safe not considered

Static redundancy Dynamic redundancy

Structure Number of

elements

Tolerated

faults

Fail

behavior

Tolerated

failures

Fail

behavior

Discrepancy

detection

Duplex 2 0 F 0 F 2 comparators

1 FO-F fault detection

Triplex 3 1 FO-F 2 FO-FO-F fault detection

Quadruplex 4 1 FO-F 3 FO-FO-FO-F fault detection

Duo-duplex 4 1 FO-F – – –

For flight-control computers, usually a triplex structure with dynamic redundancy

(hot standby) is used, which leads to FO-FO-FS, such that two failures are tolerated

and a third one allows the pilot to operate manually, [11.1], [11.6], [11.7]. If the

fault tolerance system has to cover only one fault to stay fail-operational (FO-F), a

triplex system with static redundancy or a duplex system with dynamic redundancy

is appropriate. If fail-safe can be reached after one failure (FS), a duplex system with

two comparators is sufficient. However, if one fault has to be tolerated to continue

fail-operational and after a next fault it is possible to switch to a fail-safe (FO-FS),

either a triplex system with static redundancy or a duo-duplex system may be used,

see [11.7]. The duo-duplex system has the advantages of simpler failure detection

and modularity.



12

Examples of fault-tolerant systems

High-integrity systems require a comprehensive overall fault tolerance by fault-

tolerant components and an automatic fault management system. This means first

the design and realization of redundant components which have the lowest reliabil-

ity and are safety relevant. In automatically controlled systems there are, for example

sensors, actuators, computers, communication (bus) systems, control and operational

software and process parts, like electrical drives, tube lines, pumps or heat exchang-

ers. Components with multiple redundancy are known for aircraft, space, train and

nuclear power systems. Other technical processes with redundancy are for, example

lifts (multiple ropes and brakes) or multiple pumps for steam boilers, see [12.2].

Some already-produced fault-tolerant systems and some prototype realizations

are presented in this chapter. The next section begins with a general description of a

fault-tolerant control system. This is followed by examples for fault-tolerant electri-

cal drives, actuators and sensors, compare [12.40].

12.1 A fault-tolerant control system

This section describes the tasks of a fault-tolerant control system with automatic fault

management taking components of control systems into account. It consists of fault-

tolerant actuators, sensors and controllers and is represented in Figure 12.1. This

scheme is considered first, because sophisticated fault-tolerant systems frequently

operate automatically, either in open or closed loop. The considered fault-tolerant

system may consist of:

(i) Fault-tolerant actuators:

� redundant identical or diverse actuators

� actuators with inherent fault tolerance

� actuator reconfiguration module.

(ii) Fault-tolerant sensors:

� redundant identical or diverse sensors

� sensors with inherent fault tolerance
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� virtual sensors based on analytical redundancy

� sensor reconfiguration module.

(iii) Active fault-tolerant controllers:

� redundant identical or diverse controller hardware

� redundant diverse controller software

� different controller structure and parameters

– pre-designed for a priori-known faults

– redesigned or adaptive after fault detection.

(iv) Fault-detection module:

� normal closed-loop operating signals are used to detect and isolate faults in

the components (parity equations, observers, parameter estimation)

� test signals are introduced either periodically or on request to improve fault

detection and, if required, fault diagnosis (“active fault detection”)

� indication of the degree of impairment and degree of safety criticality.

(v) Fault-management module:

� decisions based on fault detection with an indication of the degree of impair-

ment and effect on safety of the components

� reconfiguration strategies with

– hard or soft reconfiguration

– change of operating conditions (setpoints, process performance)

– closed-loop or open-loop (feedforward) operation.

The scheme in Figure 12.1 is an example with two manipulated and two con-

trolled variables. If the normal actuator 1 fails, e.g. by getting stuck, actuator 2

replaces its functions. This can be a second actuator of the same type or another

actuator with a similar manipulation effect on the control variable. For example, cer-

tain additional control surfaces for aircraft can be used as other, redundant actuators,

e.g. ailerons or rudders.

In the case that the fault-detection system detects that sensor 1 has a fault or even

fails totally a second sensor of the same type is switched or some analytical redun-

dancy with other sensors is used to generate a virtual sensor output 2. (Examples

are the electrical throttle with a double potentiometer, [12.19] or the model-based

calculation of the yaw rate of automobiles from the lateral acceleration and wheel

speed sensors, [12.20] or a horizontal and vertical gyro for the bank angle of aircraft,

[12.44].)

Depending on the reconfigured actuators or sensors, the controller structure

and/or controller parameters of the fault-tolerant controller have also to be recon-

figured.

The structure of Figure 12.1 also holds for faults in the process itself. If actuator

2 or sensor 2 can be used to maintain the operation, the reconfiguration just selects

the actuator–sensor configuration, adjusts the controller 2 and the reference variable

w2 accordingly. An example is a fluid 1 / fluid 2 heat exchanger: The outlet temper-

ature of fluid 1 can be manipulated by changing the flow of fluid 2 instead of the

temperature of fluid 2, if the plant allows.
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The controller structure and parameters have to be adapted to the new process

behavior. If the transfer behavior of the reconfigured actuator–process–sensor system

is known in advance, preprogrammed controllers have just to be switched. If the

behavior is not known, self-tuning or adaptive control algorithms could be used.

However, this adaptation must be supervised and properly excited with perturbation

signals, see [12.21], which can be a problem, if a very fast recovery is required.

The task of the fault-detection module is to detect faults in all components, like

actuators, sensors, controllers and the process as early as possible. A diagnostic capa-

bility is not necessarily required, because it is mostly enough information for the re-

configuration to know if the actuator or sensor has failed, independent of the causes.

It should be mentioned that in the case of closed-loop control fault detection must

be made under closed-loop conditions with all the problems discussed in [12.19],

Chapter 12. Because of the danger of a reconfigured replacement controller not func-

tioning as expected with a replacement sensor, it is sometimes better not to recon-

figure an alternative closed-loop control, but to apply a feedforward control without

an output sensor substitute. This may result in a loss of control performance, but in-

stability is avoided. This is, for example, used in engine control. In the case that the

oxygen sensor (�-sensor) fails, a stoichiometric air/fuel ratio is maintained, based on

air-flow measurement and the setpoint of injected fuel mass.

Faults in the controller hardware or software can be detected as described in

[12.19], Chapter 12. Then new controllers as described above are applied or feedfor-

ward control is used.

In the following sections some examples for fault-tolerant drives, actuators and

sensors are described, which are partially based on [12.40].

The discussion on automatic fault management shows that there are many differ-

ent possibilities. Therefore it is difficult to treat applicable methods generally and it

is recommended to consider concrete cases.

An experimental investigation of fault detection in closed loop and reconfigura-

tion to a redundant sensor is shown for the electrical throttle valve actuator in [12.45]

and [12.22].

12.2 Fault-tolerant electrical drives

Fault statistics of AC motors indicate that about 51% are due to bearing faults, 16%

to stator windings, 16% to external equipment, 5% to bar and ring ruptures, 2%

to shaft and couplings, and 10% to others, [12.19], [12.51], [12.53]. The faults are

mostly caused by overload, overheating and missing lubrication. With regard to the

58% mechanical and also> 16% electrical faults a redundant, second motor is a first

choice. Stator winding faults can be made fault tolerant by multi-phase designs. Both

cases will be considered.

12.2.1 A fault-tolerant duplex AC motor

The construction of a redundant electromotor drive with two motors can be arranged

either as a parallel or a serial structure, Figure 12.2. For a basic investigation two
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standard inductance motors are used in a laboratory set-up, which are coupled by

electro-mechanical clutches and drive a synchronous generator as a load. The parallel

structure uses two belt-gears and two clutches, see Figure 12.3, whereas the serial

structure only needs one clutch, [12.48]. The parallel structure allows one to switch

off one faulty motor totally. A belt drive was chosen to ease a flexible laboratory

arrangement. It could also be a toothed gear with two input shafts and one output

shaft. The price for the parallel configuration is one gear and two clutches, which

of course deteriorate the reliability. The serial structure is much simpler. If motor

2 is used the active drive, motor 1 and clutch can be cold standby and do not wear.

However, redundance of motor 1 is only possible for electrical faults of motor 2 and

not for breakdown because of mechanical faults (bearings, ruptures). Use of motor

1 as the active drive requires that motor 2 turns (without torque generation) and

thus the mechanics are not completely cold standby, but only the electrical part. But

motor 1 can be switched off totally, also in the case of a mechanical breakdown.

Both configurations allow one to compensate one fault in one of the motors: F0-F. A

special solution for a parallel configuration results if the two motors are coupled with

a differential gear, [12.54]. However, this scheme needs two brakes, see also [12.38].

drive 1
asynchr.
1.1 kW

drive 2
asynchr.
1.1 kW

load
synchr.
1.5 kW

i

drive 1
asynchr.
1.1 kW

drive 2
asynchr.
1.1 kW

load
synchr.
1.5 kW

(a) (b)

Fig. 12.2. Redundant AC-motor drive: a) parallel structure (2 electro-mechanical clutches, 1

gear); b) serial structure (1 electro-mechanical clutch)

The reconfiguration after fault detection will now be shown for the parallel struc-

ture. It is assumed that the active motor 1 is, after the detection of a fault, switched

off and the cold-standby motor 2 is switched on, compare Figure 12.3. Herewith,

clutch 1 has to be opened, clutch 2 closed and motor 2 started. The goal of this re-

configuration is to avoid a larger torque and speed reduction of the driven load. As

the kind of reconfiguration depends on the detected fault, the single faults are given

a fault measure

Ftot D
nX

iD0

.giFi/ I Fi 2 Œ0; 1�I gi 2 f0; 1g (12.2.1)

For Ftot < 1 a soft-clutch switching and for Ftot � 1 a hard-clutch switching is

triggered.
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a) Soft switching over: slow reconfiguration

If for a small fault it is still possible to operate motor 1, the switching over is per-

formed softly. The stationary motor 2 is accelerated to the reference speed of motor

1. Then the opened clutch is closed stepwise at time t1 by the PWM-command input

UK�2.t/ until a touch point. UK�2.t/ then increases rampwise during t2 � t1 D 0:5 s

until t2, see Figure 12.4. The clutch of the faulty motor is opened at t2 with UK�1.t/

in the opposite way and the motor is switched off. Figure 12.5 shows during an ac-

celeration phase that a fault is detected at t D 0:2 s. The soft switching over is started

and hardly any change of the load speed can be observed.

0

1

0
time [s]t

1

U t( )
K-1

t1 t2 t3

U t( )
K-2

Fig. 12.4. Soft-clutch switching over

b) Hard switching over: fast reconfiguration

A severe fault, like in the power electronics, resulting in a large fault measure Ftot

requires a fast reconfiguration. Then, also the electromagnetic clutches have to react

fast. Therefore they are overexcited, resulting in a reduction of closing time from

TK�norm D 130 ms to TK D 32 ms. After fault detection at time t1 the second

motor is immediately started and accelerated to the reference speed. Based on the

clutch time TK and the acceleration P!2 a lead speed difference

�!l .t/ D TK P!2.t/ (12.2.2)

is calculated. Then, the second clutch is closed hardly at time t2 if the clutch closing

algorithm

UK�2.t/ D 1

2
C 1

2
sgn Œ!2.t/C�!l .t/ � !load .t/�

UK�2.t/ 2 f0; 1g
(12.2.3)
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Fig. 12.5. Course of load speed for soft switching over at t1 D 0:2 s

reaches the value 1 and the defective motor is switched off at t3, see Figure 12.6.

Figure 12.7 shows that with this reconfiguration only a small speed reduction arises.

If the clutches would immediately be switched over, the speed reduction would be

much larger, as also to be seen in Figure 12.7.

0

1

0

1

U t( )
K-1

U t( )
K-2

time [s]t
t1 t2 t3

Fig. 12.6. Hard-clutch switching over

12.2.2 Fault-tolerant frequency converter

The power electronics for frequency-controlled AC drives have usually one inverter

leg per motor phase. Upon the loss of one leg, the three-phase motor becomes single-

phased and cannot generate a rotating magnetic field any longer. This is rather crit-
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Fig. 12.7. Course of load speed for hard switching over at t1 D 0:2 s with and without clutch-

control algorithm (12.2.3)

ical, because according to [12.24], the most common power inverter fault is in fact

the loss of one leg, i.e. at least one permanently open switch. To overcome this fault

situation, one can control each phase separately with a full H-bridge. If each phase

of the motor is connected to a full H-bridge, the three-phase motor, upon the loss

of one inverter leg or phase, can be operated as a two-phase motor and can still

produce a rotating magnetic field. The major disadvantage is the fact that for sep-

arate H-bridges, each winding needs two wires to establish the connection to the

power converter, making the wiring more expensive, especially for machines which

are placed far away from the power electronics. Upon the loss of a phase, the volt-

age of the DC link must be increased to maintain the power rating, [12.28]. In order

to be able to increase the DC-link voltage, the rectifier part of Figure 12.8 must be

retrofitted with active switches instead of the passive switches, i.e. diodes. Further-

more, during normal operation, the voltage level provided by the power grid is not

fully utilized, thus performance is degraded. The combination of a standard three-

phase PMSM (permanent-magnet synchronous motor) with an inverter with full H-

bridges has been presented in [12.15], [12.26], [12.29].

The system is now also FO-FSIL with respect to inverter or motor phase faults.

Upon the first fault at a motor phase or inverter leg, the motor becomes two-phased.

Upon the second loss, all phases are disconnected and the motor is at least not gen-

erating any torque due to induced currents, so it is fail-silent with respect to impair-

ments of the load. There is also a degradation step: Upon the loss of one phase, the

torque produced becomes unevenly distributed along the circumference of the stator.

An overview of many other fault-tolerant frequency inverter topologies is presented

in [12.38].
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12.2.3 Multi-phase motors

An alternative to using full H-bridges is to design so called multi-phase motors,

that have more than three phases. Although the first designs date back to the late

1960s, [12.28], they have only recently been in the focus of research, as they are

well suited for applications in the area of ship, locomotive, and electric/hybrid ve-

hicle propulsion, see, e.g. [12.28], and the more electric aircraft, [12.13], [12.49],

an initiative gathering momentum in the late 1990s with the aim to control aircraft

subsystems with electrically actuated drives in place of mechanical, hydraulic or

pneumatic means.

One reason for the introduction of multi-phase motors in applications demanding

the highest power is that semiconductors are not yet capable of switching the high

currents that traditional three-phase motors would need to satisfy such high power

demands. By increasing the number of phases, the power-per-switch can be limited

to values that can be borne by the semiconductors. Also, multi-phase machines can

easily sustain phase losses. Upon the loss of one phase, an n-phase motor becomes an

.n � 1/ phase motor (n � 4) and hence shows a smaller loss in the power-rating and

the uniformity of the circumferential torque distribution as the number of phases n

increases. Note that the stator windings now have no common starprint. Furthermore,

multi-phase motors show improvements in the noise characteristics and their torque

production can easily be enhanced by the injection of higher-frequency harmonics.

The design of a four-phase fault-tolerant PMSM aircraft actuator is shown in

[12.1]. A five-phase permanent magnet motor has been realized by [12.5] and has

been investigated experimentally for post-fault operation. Depending on the number

of windings, the topology of the windings and the allowable loss in torque, the system

can sustain one or more faults, that means the system is at least FO-FSIL with respect

to phase faults.

12.3 Fault-tolerant actuators

Actuators generally consist of different parts: input transformer, actuation converter,

actuation transformer and actuation element (e.g. a set of DC amplifier, DC motor,

gear and valve), as shown in Figure 12.9a). The actuation converter converts one

form of energy (e.g. electrical or pneumatic) into another form (e.g. mechanical or

hydraulic). Available measurements are frequently the input signal Ui , the manipu-

lated variable U1 and an intermediate signal U3.

Fault-tolerant actuators can be designed by using multiple complete actuators

in parallel, either with static redundancy or dynamic redundancy with cold or hot

standby (Figure 11.1). One example of static redundancy is hydraulic actuators for

fly-by-wire aircraft where at least two independent actuators operate with two inde-

pendent hydraulic energy circuits.

Another possibility is to limit the redundancy to parts of the actuator that have

the lowest reliability. Figure 12.9b) shows a scheme where the actuation converter

(motor) is split into separate parallel parts. Examples with static redundancy are two
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servo-valves for hydraulic actuators, [12.4], [12.3] [12.43] or multiple windings of

an electrical motor (including power electronics), [12.25], see also [12.19]. Within

electromotor-driven throttles for SI engines, only the slider is doubled to make the

potentiometer position sensor static-redundant, see [12.18].

U U

(a)

(b)

signal
transformer
(amplifier)

actuation
converter
(motor)

actuation
transformer

(gear)

actuation
element
(valve)

motor 1

motor 2

sensor

U3

3 o

o

sensor

Uo

3

3

U2

2

U1

1

Ui

i

sensor

U

UU U

U

U

sensor

Uo

Fig. 12.9. Fault-tolerant actuator: a) common actuator; b) actuator with duplex drive

One example for dynamic redundancy with cold standby is the cabin pressure

flap actuator in aircraft, where two independent DC motors exist and act on one

planetary gear, [12.33], see [12.19].

As cost and weight generally are higher than for sensors, actuators with fail-

operational duplex configuration are to be preferred. Then, either static-redundant

structures, where both parts operate continuously, Figure 11.1a), or dynamic redun-

dant structures with hot standby, Figure 11.1b), or cold standby, Figure 11.1c), can

be chosen. For dynamic redundancy fault-detection methods of the actuator parts are

required, [12.47]. One goal should always be that the faulty part of the actuator fails

silently, i.e. has no influence on the redundant parts.

12.3.1 Fault-tolerant hydraulic actuators

Research into fault-tolerant hydraulic systems has been sparked mainly by aeronau-

tical applications, since hydraulic actuators are used in many actuation tasks in air-

craft. They will also prevail for the control of primary flight control surfaces in the

future. However, the secondary flight control surfaces might be replaced by electro-

hydraulic actuators, [12.9], [12.10], [12.13], [12.23], [12.49], [12.52].

In [12.13], electro-hydraulic and electro-mechanical actuation are compared with

respect to their advantages and disadvantages for aeronautical use. Here, the electro-
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hydraulic actuator (EHA) is recommended due to fact that the reliability of EHA

components has been studied well and that both hot-standby and cold-standby config-

urations have been developed and validated. The major disadvantages are the main-

tenance necessary for hydraulic components and, in the case of distributed pressure

supplies, the cost and weight. The negative effects of a distributed pressure supply

can however obviously be reduced by the use of central (regulated) pressure supplies.

Yet, central pressure supplies do also exhibit severe disadvantages: The infrastruc-

ture (i.e. the piping) is heavy and inflexible and in the case of leakages corrosive

fluids might spill, see [12.49].

On the contrary, the electro-mechanical actuator (EMA) can be mainly seen as a

stand-by actuator as in aeronautical applications. This actuation principle is currently

limited to the actuation of secondary flight surfaces. Here, the significant mainte-

nance cost reduction due to the reduction of wearing parts, such as seals, are very

favorable, [12.6], [12.14]. The electro-mechanical drive is heavily impaired by the

fact that a linear motion can in most cases only be generated by a matching gear, thus

fostering flutter concerns due to the free-play of the mechanical transmission and the

jam susceptibility. Upon shorts, there is also always the risk of fire, see [12.49].

a) Fault-tolerant dual valve and dual piston

Figure 12.10 shows the electro-hydraulic rudder actuator of the Eurofighter, see, e.g.

[12.11], [12.27]. The actuator consists of a proportional-acting valve, which is driven

by four separate solenoid units. Each one is supplied by its own power electronics.

All solenoids are acting on the same valve spool. Two control edges each supply one

cylinder chamber with hydraulic fluid. The cylinder has four chambers with identical

active piston areas. As can be seen from the block diagram in Figure 12.10d), the

valve spool and the piston rod are the most critical components. If the valve spool or

the piston rod jams, the system cannot operate any longer. Furthermore, upon a jam

of the valve spool, the piston rod (and the attached control surface) may run away.

The system can sustain leakages and/or pressure losses in one of the two hydraulic

circuits. It can also sustain internal leakages in one of the two hydraulic circuits

without losing the characteristic stiffness of hydraulic systems. As long as neither

the valve spool nor the piston rod are affected, the system is FO-F.

b) Fault-tolerant single piston with double valve

A different prototypical realization of a hydraulic actuator is shown in Figure 12.11.

Here, only the valve has been doubled since it has been found by a detailed statisti-

cal analysis of maintenance records that the valve alone makes up roughly 51% of

all faults at hydraulic servo axes, [12.36], [12.41]. As can be seen from the block

diagram in Figure 12.11d), valve spool faults are now less critical as there are two

independent valve spools in this design. Upon the jam of one valve spool, the other

valve can take over the volume flow. Furthermore, the cylinder must no longer have

equal active piston areas, which means that a differential cylinder can be used instead

of a double-rod cylinder. This reduces the necessary installation space. Furthermore,
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the entire servo axis is built from standard components, i.e. no design and construc-

tion of new, specialized components are necessary. Besides actuator fault tolerance,

also sensor fault tolerance by means of analytical redundancy has been implemented.

It is possible to operate the hydraulic servo axis in closed-loop position control even

after the loss of the position sensor, see [12.37].

This setup can tolerate all valve faults. Even if one valve spool is blocked in a

partly open position, the other valve can still be used in many situations to compen-

sate this parasitic volume flow, [12.4], [12.3]. As the cylinder causes only 16% of

all faults at hydraulic servo axes, it can be regarded as rather reliable. Furthermore,

internal leakages only affect the stability and the stiffness of the drive, but do not

endanger the further operation. As long as the piston rod is not affected and the spare

valve is able to conduct any remaining parasitic flow of the faulty valve, the system

is FO-F.

c) Fault-tolerant dual valve and pump

Another design with a dual-tandem ram, that is typical for aeronautical applications

(see, e.g. [12.31], [12.42]), is shown in Figure 12.12. This figure shows an actuation

system for the F/A-18 horizontal stabilizer, which is a secondary control surface. In

this example, the hydraulic cylinder is doubled and directly supplied with hydraulic

fluid by two fixed-displacement pumps that are driven by two brushless DC motors.

Bypass valves allow the piston to move even if the motor axle, respectively pump

jams. The big advantage of this setup is that in the case of removal of the component,

no hydraulic connections must be loosened. Furthermore, in the case of a leakage of

the hydraulic piping/components, only the hydraulic oil of the component specific

hydraulic circuit will spill, leaving all other hydraulic circuits of the plane unaffected.

Provided that the valves are still functional and can disconnect the piston chambers

from the pump, the system is FO-FSIL.

Many other architectures for EHAs in aeronautical applications have been as-

sessed in [12.50]. The big lead in X-by-wire functionalities and the accompanying

use of fault-tolerant mechatronic components in aeronautical applications is typical

and can be explained easily: Fly-by-wire functionalities for airplanes could be in-

troduced with little increase in risk as control surfaces by themselves are redundant.

Almost all maneuvers can be realized by different combinations of control surfaces.

12.3.2 Fault-tolerant DC actuator

Figure 12.13 gives an example of a fault-tolerant electro-mechanic component from

the civilian aviation, see [12.33], [12.34]. It shows a cabin outflow valve, which is

used to control the air pressure inside the fuselage. At the front of passenger planes,

bleed air from the engines is injected into the cabin and at the rear, cabin outflow

valves control the discharge of the pressurized air from the fuselage to the surround-

ing atmosphere.

There are typically two, four, or even more cabin outflow valves. Each valve has

the same design as depicted in Figure 12.13: Two brushless DC motors with separate
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Fig. 12.12. Fault-tolerant electro-hydraulic servo axis: a) system; b) schematic; c) energy flow

scheme; d) block diagram, (redundancy by multiple onboard computers is not shown) [12.31]
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power electronics act on a common gear. Both power electronics are connected to

different buses. The switch-over from one actuator to the other is initiated automati-

cally. Both brushless DC motors operate in closed-loop cabin pressure control.

Fault detection, diagnosis and management is assigned to the pilot. Upon the loss

of a brushless DC motor, the pilot can initiate a switch-over from the defect to the

intact component. When both brushless DC motors fail, the cabin pressure control

is then completely assigned to the pilot, who operates the valve directly via a third

classical DC motor.

In this example, only the electronics and the electro-mechanical converter are

made redundant, because the failure rate of electronic and electro-mechanical con-

verters is much larger than that of mechanical parts. As part of the research project

[12.32], [12.33], [12.35], fault detection and diagnosis methods have been devel-

oped, which allow one to detect and diagnose the following faults: Over-temperature,

shorted winding, increased friction, offset faults of all sensors, stuck-at faults of the

(binary) hall sensors. The system presents a setup with cold standby, as only one

component is active at any time. It is FO-FO-F, i.e. fail operational after the first

fault, also fail operational after the second fault and finally fails after the third fault

at the electric drives.

12.4 Fault-tolerant sensors

12.4.1 Hardware sensor redundancy

Sensor systems with static redundancy are realized, for example, with a triplex sys-

tem and a voter, Figure 12.14a). A configuration with dynamic redundancy needs at

least two sensors and fault detection for each sensor, Figure 12.15b). Usually, only

hot standby is feasible. Another less powerful possibility is plausibility checks for

two sensors, also by using signal models (e.g. variance) to select the more plausible

one, Figure 12.15c).

The fault detection can be performed by self-tests, e.g. by applying a known

measurement value to the sensor. Another way uses self-validating sensors, [12.8],

[12.17], where the sensor, transducer and a microprocessor form an integrated, de-

centralized unit with self-diagnostic capability. The self-diagnosis takes place within

the sensor or transducer and uses several internal measurements, see also [12.30].

The output consists of the sensor’s best estimate of the measurement and a validity

status, like good, suspect, impaired, bad and critical.

12.4.2 Analytical sensor redundancy

As a simple example, a process with one input and one main output y1 and an auxil-

iary output y2 is considered, see Figure 12.15a). Assuming the process input signal u

is not available but two output signals y1 and y2, which both depend on u, one of the

signals, e.g. Oy1 can be reconstructed and used as a redundant signal if process models

GM1 and GM2 are known and considerable disturbances do not appear (ideal cases).
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Fig. 12.14. Fault-tolerant sensors with hardware redundancy: a) triplex system with static

redundancy and hot standby; b) duplex system with dynamic redundancy, hot standby; c) duplex

system with dynamic redundancy, hot standby and plausibility checks

For a process with only one output sensor y1 and one input sensor u, the output

Oy1 can be reconstructed if the process model GM1 is known, Figure 12.15b). In both

cases, the relationship between the signals of the process are used and expressed in

the form of analytical models.

To obtain one usable fault-tolerant measurement value y1F T , at least three differ-

ent values for y, e.g. the measured one and two reconstructed ones, must be available.

This can be obtained by combining the schemes of Figure 12.15a) and b) as shown

in Figure 12.16a). A sensor fault y1 is then detected and masked by a majority voter

and either Oy1 or Oy1u is used as a replacement depending on a further decision. (Also,

single sensor faults in y2 or u are tolerated with this scheme.)

One example for this combined analytical redundancy is the yaw rate sensor for

the ESP (electronic stability program) of vehicles, where additionally the steering

wheel angle as input can be used to reconstruct the yaw rate through a vehicle model

as in Figure 12.15b), and the lateral acceleration and the wheel speed difference of

the right and left wheel (no slip) are used to reconstruct the yaw rate according to

Figure 12.16a).

A more general sensor fault-tolerant system can be designed if two output sensors

and one input sensor yield measurements of the same quality. Then, three residuals

can be generated and by a decision logic, fault-tolerant outputs can be obtained in

the case of single faults of any of the three sensors. This is described in [12.19],

Chapter 19. The residuals are generated based on parity equations. In this case, state

observers can also be used for residual generation, compare, e.g. the dedicated ob-
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redundancy by process models (basic schemes): a) two measured outputs, no measured input;

b) one measured input and one measured output. Gi W Gi.s/ transfer functions.

servers by [12.7]. (Note that all schemes assume ideal cases. For the realizibility,

constraints and additional filters have to be considered.)

If possible, a faulty sensor should be fail-silent, i.e. should be switched off. How-

ever, this needs additional switches that lower the reliability. For both hardware and

analytical sensor redundancy without fault detection for individual sensors, at least

three measurements must be available to make one sensor fail-operational. How-

ever, if the sensor (system) has in-built fault detection (integrated self-test or self-

validating), two measurements are enough and a scheme like Figure 12.14b) can be

applied. (This means that by methods of fault detection, one element can be saved).

Examples of fault-tolerant sensor systems are described in the following.

12.4.3 Steering angle sensor

A first considered realization of a fault-tolerant sensor is the steering angle sensor,

see Figure 12.17, [12.12], [12.46]. Information about the steering angle is required

for many driver assistance systems, such as the electronic stability control and lane

departure warning. Therefore, the reliable measurement of the steering angle is im-

portant for the correct action of vehicle control systems.

The basis of the sensor are two GMR (giant magneto resistance) measuring

bridges. The axle of the steering wheel is equipped with a gear wheel which drives

two pinions. Each pinion turns a permanent magnet whose position is then sensed

by one of the two GMR sensors. Each sensor can measure a displacement in the in-

terval �90ıto90ı with a resolution of 0:1ı. The two sensors use the Nonius/Vernier
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principle to be able to measure the absolute position precisely up to ˙720ı. Once

the absolute position has been established (e.g. after the start of the engine), the in-

formation provided by only one of the two sensors is sufficient to determine relative

changes in the position. The evaluation of the sensors along with fault detection is

integrated into two separate micro-controllers, which supervise each other. During

normal operation, the master is connected to the bus and the slave is only employed

the monitor the master. Upon a fault, the master switches off and the slave is con-

nected to the bus, which is symbolized by the switch. The system is FO-FSIL as it

can sustain one fault at a sensor or micro-controller without major impairments, only

the accuracy of the position reading becomes a bit less accurate. Upon a loss of the

second GMR, the sensor module cannot work any longer and switches itself silent.
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Fig. 12.17. Fault-tolerant steering angle sensor: a) system; b) schematic and block diagram,

[12.46]

12.4.4 Fault-tolerant flow sensor

Figure 12.18 presents a fault-tolerant flow sensor, which employs two diverse mea-

suring principles for the measurement of the flow. First, the flow velocity of the fluid

is determined by a vortex generator. The vortex generator is used to generate eddies

in its wash. The vortex shedding leads to vertices, which in turn cause pressure pul-

sations with a frequency that is proportional to the volume flow rate. The pulsations

are either sensed by a pressure sensor or by a force transducer that is connected to

the vortex generator. The second measuring principle is based on a differential pres-

sure measurement: The pressure drop between the unconstricted and the constricted

part of the pipe is a measure for the fluid velocity, according to Bernoulli’s law. The

idea behind the fault-tolerant flow rate sensor is that the differential pressure sen-

sor can also be used to detect the higher-frequency pressure pulsations induced by

the vertices in the wake of the damming body as they only act on one of the two

pressure-sensing lines.

The signal provided by the differential pressure sensor is therefore subject to low-

pass filtering in order to determine the average differential pressure between the un-

constricted point in the wake of the vortex generator and the point in the constricted

area with the Ventouris jet. The signal is at the same time supplied to a high-pass

filter which allows one to separate the high-frequency pressure oscillations that are

induced by the vertices. A subsequent Fourier transform allows one to determine the

frequency of the vortex formation. An integrated fault-detection algorithm allows

to detect faults and attribute them to one of the two measuring principles, thereby

allowing a consolidation of the measurements, [12.39]. The two diverse measuring

principles have different accuracies in different areas of the measuring interval. Thus,

upon the loss of one sensing principle, the sensor accuracy may drop. The most criti-

cal part is the differential pressure sensor. If this sensor fails, the entire sensor module

will be out of operation. Therefore, the system is only FO-FSIL with respect to the

sensing principles and, e.g. the metering channels.
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Fig. 12.18. Fault-tolerant flow rate sensor: a) system; b) schematic and block diagram, [12.39]

12.4.5 Electronic throttle

Another example for a fault-tolerant design is the fault-tolerant electronic throttle,

see Figure 12.19. The electric motor, a classical DC motor with brushes, may be

monitored using model-based methods. The physical model of the motor along with

the mechanics also allows one to monitor the two potentiometers and enables the

system to decide which of the two potentiometer readings may be faulty, see Section

4.2. Using dynamic redundancy concepts, the system is thus capable of withstanding

one sensor fault despite the use of only two instead of three sensors, as would have

been necessary in the case of static redundancy, see [12.45]. Figure 12.20 depicts

the redundancy concept and Figure 12.21 shows a reconfiguration of a stuck fault of

a potentiometer in closed loop, [12.18], [12.45]. The system is active fail-safe (FS)

with respect to motor faults. Return springs center the throttle valve in a slightly open

position upon a loss of the motor torque (limp-home position). With respect to sensor

faults, the system is FO-FS. It can sustain one sensor fault. After the second sensor

fault, the system is switched off and the return springs once again bring the throttle

into the slightly open position.

12.4.6 Virtual drive dynamic sensors by model based analytical redundancy

Figure 12.22 shows a fault-tolerance approach at the system level, not the component

level. Here, the signals from different sensors are brought together, with the aim of

providing consolidated measurements to the drive dynamics controllers. The overall

design can also be applied to the development of fault-tolerant information platforms

for other applications.
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First, the signals are preprocessed, then quantities which cannot be measured

or which can only be sensed with expensive or complicated equipment are recon-

structed. The reconstruction is based on drive dynamic models of different complex-

ity and employs observes, Kalman filters, parameter estimation algorithms, and local

linear neural nets. The fault detection and diagnosis is another important block as all

sensors are supervised to identify faulty sensors, which are then masked and replaced

by estimated quantities in the block on fault-tolerance methods. Finally, the informa-

tion platform provides the extracted information to the drive dynamics controllers.

These controllers can now not only control directly measurable quantities, but can

also control other, reconstructed and more informative quantities, see [12.16]. The

drive-dynamics information platform is is at least FO-FSIL, but in many cases can

sustain more than one sensor fault.



318 12 Examples of fault-tolerant systems

p
re

p
ro

-
ce

ss
in

g

ca
lc

u
la

ti
o

n
 o

f
n

o
n

-m
ea

su
ra

b
le

q
u

an
ti

ti
es

fa
u

lt
 d

et
ec

ti
o

n
an

d
 d

ia
g

n
o

si
s

fa
u

lt
-t

o
le

ra
n

ce
m

et
h

o
d

s

ca
lc

u
la

ti
o

n
o

f 
n

o
n

-
m

ea
su

ra
b

le
q

u
an

ti
ti

es

in
fo

rm
at

io
n

re
tr

ie
v

al

d
H

v
f d f y f y f j f c f w

y
C

al
c

y
M

es
s

f
y

F
T

y F
T

x F
T

v F
T

m j b m g c

y y j x w
j

se
n

so
r

si
g

n
al

s
fi

lt
er

ed
m

ea
su

re
m

en
t

ca
lc

u
la

te
d

q
u

an
ti

ti
es

^
^ ^ ^ ^

^ ^ ^ ^ ^ ^

y
M

es
s

y
C

al
c

Y
M

es
s y
M

es
s

^

se
n

so
r 

fa
u

lt
s

co
n

tr
o

ll
ed

q
u

an
ti

ti
es

to vehicle dynamics    control systems

low-pass filter
transformations

K
al

m
an

 f
il

te
r

n
eu

ra
l 

n
et

s
n

o
n

li
n

ea
r 

o
b

-
se

rv
er

s
p

ar
am

et
er

 e
st

i-
m

at
io

n
g

eo
m

et
ri

c 
eq

u
a-

ti
o

n
s

p
ar

it
y

 e
q

u
at

io
n

la
te

ra
l/

ro
ll

p
ar

am
et

er
 e

st
im

.
la

te
ra

l
p

ar
am

et
er

 e
st

im
.

ro
ll

p
ar

it
y

 e
q

u
at

io
n

s 
&

p
ar

am
et

er
 e

st
.

lo
n

g
it

u
d

in
al

fu
zz

y
-d

ia
g

n
o

si
s

ex
te

n
d

ed
 K

al
m

an
B

u
cy

 f
il

te
r 

tw
o

-
tr

ac
k

 m
o

d
el

K
al

m
an

 f
il

te
r

si
n

g
le

-t
ra

ck
m

o
d

el
re

co
n

fi
g

u
ra

ti
o

n

k
in

em
at

ic
 m

o
d

el
si

n
g

le
-t

ra
ck

tw
o

-t
ra

ck
an

al
y

ti
ca

l 
m

o
d

el
s

ro
ll

, 
lo

n
g

it
u

d
.

n
eu

ra
l 

n
et

s

p
ar

it
y

 e
q

u
at

io
n

s
p

ar
am

et
er

 e
st

im
.

o
b

se
rv

er
s

K
al

m
an

 f
il

te
r

ad
ap

ti
v

e 
th

re
sh

o
ld

s
fu

zz
y

 l
o

g
ic

^

F
ig

.
1
2
.2

2
.
V
ir
tu

a
l
d
ri
ve

d
yn

a
m

ic
s

se
n
so

r
sy

st
e
m

,
[1

2
.1

6
].

A
fa

u
lt
-t

o
le

ra
n
t
se

n
so

r
p
la

tf
o
rm

w
it
h

a
n
a
ly

ti
c
a
l
re

d
u
n
d
a
n
c
y

fo
r
ya

w
ra

te
P  ,

la
te

ra
l
a
c
c
e
le

ra
ti
o
n

Ry,
lo

n
g
it
u
d
in

a
l
a
c
c
e
le

ra
ti
o
n

Rx,
o
ve

r
g
ro

u
n
d

ve
lo

c
it
y
v



Part V

Appendix



13

Terminology in fault detection and diagnosis

The following definitions are the result of a coordinated action within the IFAC Tech-

nical Committee SAFEPROCESS, published in [13.3]. Some basic definitions can

also be found in [13.1], [13.4] and in German standards like DIN and VDI/VDE-

Richtlinien, see references at the end of this section and [13.2].

(i) States and signals

Fault: Unpermitted deviation of at least one characteristic prop-

erty of the system

Failure: Permanent interruption of a systems ability to perform a

required function under specified operating conditions

Malfunction: Intermittent irregularity in fulfilment of a systems desired

function

Error: Deviation between a computed value (of an output vari-

able) and the true, specified or theoretically correct value

Disturbance: An unknown (and uncontrolled) input acting on a system

Perturbation: An input acting on a system which results in a temporary

departure from a steady state

Residual: Fault indicator, based on deviations between measure-

ments and model-equation-based calculations

Symptom: Change of an observable quantity from normal behavior.

(ii) Functions

Fault detection: Determination of faults present in a system and time of de-

tection

Fault isolation: Determination of kind, location and time of detection of a

fault by evaluating symptoms. Follows fault detection

Fault identifica-

tion:

Determination of the size and time-variant behavior of a

fault. Follows fault isolation

R. Isermann, Fault-Diagnosis Applications, Model-Based Condition Monitoring: Actuators,  

DOI 10.1007/978-3-642-12767-0_13, © Springer-Verlag Berlin Heidelberg 2011 
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Fault diagnosis: Determination of kind, size, location and time of detection

of a fault by evaluating symptoms. Follows fault detection.

Includes fault detection, isolation and identification

Monitoring: A continuous real-time task of determining the possible

conditions of a physical system, recognizing and indicat-

ing anomalies of the behavior

Supervision: Monitoring a physical system and taking appropriate ac-

tions to maintain the operation in the case of faults

Protection: Means by which a potentially dangerous behavior of the

system is suppressed if possible, or means by which the

consequences of a dangerous behavior are avoided.

(iii) Models

Quantitative

model:

Use of static and dynamic relations among system variables

and parameters in order to describe a system’s behavior in

quantitative mathematical terms

Qualitative

model:

Use of static and dynamic relations among system variables

and parameters in order to describe system’s behavior in

qualitative terms such as causalities or if-then rules

Diagnostic

model:

A set of static or dynamic relations which link specific in-

put variables – the symptoms – to specific output variables

– the faults

Analytical

redundancy:

Use of two, not necessarily identical ways to determine a

quantity where one way uses a mathematical process model

in analytical form.

(iv) System properties

Reliability Ability of a system to perform a required function un-

der stated conditions, within a given scope, during a given

period of time. Measure: MTTF = mean time to failure.

MTTF = 1=� � is rate of failure (e.g. failures per hour)

Safety: Ability of a system not to cause danger to persons or equip-

ment or the environment

Availability: Probability that a system or equipment will operate satis-

factorily and effectively at any point in time. Measure:

A D MTTF
MTTFCMTTR

MTTR mean time to repair

MTTR D 1=�I� W rate of repair
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References on terminology

DIN 25424 Fehlerbaumanalyse (fault tree analysis). Beuth Verlag, Berlin, 1990.
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Concluding remarks

Based on the fault-detection and fault-diagnosis methods treated in the book Fault-

Diagnosis Systems (2006), Springer-Verlag, this book has shown how the different

methods can be applied to the various technical processes. The selection of differ-

ent technical processes shows by the use of process-model-based and signal-model-

based methods how several analytical symptoms can be generated to detect a larger

number of faults, especially in an earlier fault-development phase and to diagnose

the faults.

Process-model-based fault detection can be realized with the aid of process

models and several measurements. The application of process-model-based fault-

detection methods requires that at least one input and one corresponding output

signal can be measured. The additional measurement of signals in the signal flow

between the input and output signals may support the fault-detection capability. The

process models used have to be relatively precise. Herewith it is recommended that

the model structure is obtained from a physical/theoretical modeling approach and

that the parameters of the used process model are estimated by experiments with

parameter estimation methods. Linear dynamic models can be used quite often, es-

pecially for stationary operating states. The kind of nonlinear models results mostly

from theoretical modeling based on balance equations, constitutive equations and

phenomenological laws.

For processes in stationary operation around a fixed operating point especially

parity equations can be successfully applied. Examples are components of indus-

trial plants like pumps, heat exchangers, and pipelines. In the case of nonstationary,

dynamic operation parameter-estimation methods allow the detection and the differ-

entiation of a larger number of faults, also if only a few measurable signals are avail-

able. This holds, for example for drives, actuators, robots, pumps, machine tools,

heat exchangers and vehicles. In combination with parity equations several symp-

toms can be generated which enable a detailed fault diagnosis. Parameter estimation

requires in general an appropriate excitation of an input signal, either from normal

operation or artificially introduced. Parity equations or state observers can also be

applied if the input signals do not change.
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DOI 10.1007/978-3-642-12767-0, © Springer-Verlag Berlin Heidelberg 2011 

325

Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems,



326 Concluding remarks

Fault-detection methods based on signal models may be based on periodical or

stochastic measured signals. It is then possible to analyze single sensor outputs.

Processes with periodic operation cycles are for example oscillating reciprocating

pumps, combustion engines and some machine tools. Then, periodical signal models

can be applied. Changes induced through faults can be detected by the estimation of

amplitudes, phases and frequencies with the methods of Fourier or wavelet analy-

sis or by band-pass filters. If only a few unknown frequencies have to be estimated

an ARMA signal parameter estimation can be used. A combination of signal-model

analysis with process-model-based methods, e.g. parity equations for mean value

process models increases the number of symptoms and therefore the fault coverage

like for combustion engines or for reciprocating pumps.

Dynamic state-space observers could be successfully applied for the leak de-

tection of gas pipelines as the leaks appear as state-variable changes of a pipeline

section. However, if state variables are not changed directly by faults, e.g. by pa-

rameter changes, then state-space observers are usually not suitable. Fault-sensitive

observers, dedicated observers or output observers and corresponding Kalman fil-

ters which are specially designed for fault detection assume generally multi-variable

process models. They often yield about the same results as the simpler parity equa-

tions. Linear and nonlinear state space observers are, however, very well suited to

determine non-measurable values as the slip angle for vehicles or stresses and tem-

peratures in mechanical components.

A special problem is the fault detection in and for closed loops as they com-

pensate small faults of actuators, sensors and processes. Therefore, they are difficult

to detect. Only larger faults change the control performance significantly. However,

similar changes of the control behavior arise for larger disturbances or for not well-

tuned controllers. Then a combination of several detection methods is required.

The table on the next page gives a summary of the application of model-based

fault-detection methods for the processes treated in this book. It depicts the kind

of operation, the measured variables, applied linear or nonlinear process models,

the kind of identification, the use of the different fault-detection methods, and the

number of detected faults.

A fault diagnosis requires in general the generation of several significant symp-

toms. In this book mostly fault-symptom tables have been used as a common easy

to interpret representation. A differentiation (isolation) of special faults is then pos-

sible if the signs and the values of the symptoms are significantly different. Then

in many cases a simple pattern recognition is sufficient to be used for classification.

For a systematic treatment of fault-symptom trees with a following up of different

decisions the approximative reasoning with if-then-rules by fuzzy logic is a feasible

way and was especially successful. The application of this inference-based method

was described for some processes.

In the case of electrical driven drive trains directly measurable variables of elec-

trical motors like voltage, current and speed can be used for the fault detection of the

electrical motor and additionally also for the connected mechanical parts like gears

and any machinery. This can be called “drive-as-sensor principle” and was demon-

strated, e.g. for electrical actuators, pumps and machine tools.
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328 Concluding remarks

The last chapters of this book have shown that another way to cope with appear-

ing faults is the design of fault-tolerant systems, for example for drives, actuators and

sensors or certain process components. This requires generally a redundancy and a

possibility to reconfigure the system after the fault detection of a component.

More results for the fault diagnosis of internal combustion engines and automo-

biles will be published in separate books.
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5.3 Ballé, P. Modellbasierte Fehlererkennung für nichtlineare Prozesse mit linear-

parameterveränderlichen Modellen. Fortschr.-Ber. VDI Reihe 8, 960. VDI Ver-

lag, Düsseldorf, 2002.
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6.19 Kollmar, D. Störungsfrüherkennung an Kreiselpumpen mit Verfahren des

maschinellen Lernens. Doctoral thesis. Technische Universität, Kaiserslautern,

2002.

6.20 Michaelsen, A. Untersuchung zur automatischen Diagnose von Kreiselpumpen

mit Verfahren der Signalanalyse und Mustererkennung. Shaker, Doctoral the-

sis. TU Hamburg, Harburg. Aachen, 1999.

6.21 Müller-Petersen, R., Kenull, T., and Kosyna, G. Störungsfrüherkennung an
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nung bei Pumpen. VDMA, Frankfurt, 1995.

6.30 Wolfram, A. Komponentenbasierte Fehlerdiagnose industrieller An-

lagen am Beispiel frequenzumrichtergespeister Asynchronmaschinen und

Kreiselpumpen. Fortschr.-Ber. VDI Reihe 8, 967. VDI Verlag, Düsseldorf,

2002.

6.31 Wolfram, A., Füssel, D., Brune, T., and Isermann, R. Component-based multi-

model approach for fault detection and diagnosis of a centrifugal pump. In

Proc. American Control Conference (ACC), Arlington, VA, USA, 2001.

6.32 Wolfram, A. and Isermann, R. Component-based tele-diagnosis approach to

a textile machine. In Proc. 1st IFAC Conference on Telematic Application,

Weingarten, Germany, 2001.



340 References

Chapter 7

7.1 Billmann, L. A method for leak detection and localization in gaspipelines.

In Conference on Applied Control and Identification, Copenhagen, Denmark,

1983.
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