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Foreword 

The area of aggregation operations is one of the most promising off-springs of 

fuzzy sets theory. Before Zadeh introduced fuzzy set connectives in 1965, there 

was a wide gap between logic and decision sciences.  On the one hand, multiple-

valued logics proposed many-valued extensions of the conjunctions and 

disjunctions for which the triangular norms and conorms today provide a natural 

setting. On the other hand, in decision sciences, the prototypical operation turned 

out to be the weighted average, whether for decision under uncertainty (the 

expected utility) or for multi-criteria decision-making, or yet in voting theory (the 

majority voting).  

However, the setting of fuzzy sets theory, and soon after, the emergence of so-

called fuzzy measures and integrals by Sugeno in 1974 led to the breaking of those 

borders. It was clear that while the triangular norms and co-norms, respectively, 

stood below the minimum and above the maximum, and the arithmetic means 

stood in-between. This led to the study of the family of averaging operations. All 

logical connectives could be viewed as aggregation operations of some sort, and 

the arithmetic mean could be viewed as an alternative set-theoretic operation. The 

Sugeno integral appeared as a natural ordinal family of weighted averaging 

operations based on the minimum and maximum. Another crucial step was the 

importance given to the notion of generalized quantifiers by Zadeh at the turn of 

the eighties, followed by several researchers including Ronald Yager. In 

multicriteria decision-making, it is natural to try and construct aggregation 

schemes computing to what extent most criteria are satisfied. This was achieved 

for additive aggregations by the introduction of the ordered weighted average 

(OWA) by Ronald Yager in 1988: instead of weighting criteria, the basic idea was 

to put weights on components of rating vectors after a preliminary ranking of the 

individual ratings. In this way it was possible to give importance weights to the 

fact of having prescribed numbers of criteria to be fulfilled. The other crucial 

contribution of Yager was to connect these weights (that sum up to 1 like for the 

usual averages) to fuzzy quantifiers like most, few, etc. This connective is a 

symmetric generalization of the arithmetic mean, the minimum and the maximum 

in the fuzzy set theory.  

One important reason for the subsequent success of the ordered weighted 

averages (OWAs) is that scholar soon realised that they were nothing but the 

symmetric Choquet integrals. The emergence of Choquet integrals as a key 

aggregation operation in decision theory took place in the 1980's. Choquet had 

generalised the Lebesgue integral to non-additive set-functions in the 1950's for 

the purpose of modeling electric phenomena.  He called a ``capacity" a monotone 
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set-function employed by Sugeno later on, and independently named fuzzy 

measure. Ulrich Hoehle reintroduced the Choquet integral in 1982 in the 

mathematical framework of generalized probabilities (such as the Dempster-

Shafer belief functions and possibility theory). Quite independently at the same 

time, David Schmeidler proposed a generalized framework for decision theory 

that could accommodate the Ellsberg paradox. Such paradoxes whereby people 

were repeatedly and consistently shown to violate the Savage Sure Thing 

Principle, a cornerstone of decision theory, justifying the systematic use of 

expected utility, had been extensively discussed in the seventies. What Schmeidler 

did was to reinvent the Choquet integral based on relaxed Savage axioms, 

especially that of the co-monotonioc additivity. This discovery led to numerous 

new axiomatic systems for decision criteria generalizing the expected utility akin 

to the Choquet integral. The OWA aggregation operator can be viewed as a 

discrete Choquet integral where values assigned to sets by the fuzzy measure 

involved depend only on the cardinality of these sets (these values depict a fuzzy 

quantifier).  

Since then, the OWA operations have been the topic of active research, partly 

because of their intuitive meaning as a quantified aggregation, partly because of 

their computational simplicity (contrary to the Choquet Integrals, the specification 

of an OWA is of linear complexity).   

There had been a first edited volume dedicated to OWA operations in the late 

1990's and this new volume is a welcome addition that enables the reader to figure 

out where we stand and where we go on this topic. It shows that there is a small 

but active community of researchers that continue to dig the foundations of this 

aggregation operation, propose suitable extensions, explain how to derive the 

weights from data and linguistic information, and situate its role in the framework 

of social choice and group decision-making. The second part of the volume 

demonstrates a variety of possible applications in information fusion, image 

processing environmental engineering and the Web. 

The editor sshould be congratulated for putting together such a collection of 

papers that gently introduces readers to the topic of the OWA operations while 

providing a survey of the latest developments as well as a collection of inspiring 

applications. 

 

 

Toulouse, October 2010 Didier Dubois 

Directeur de Recherche au CNRS  

IRIT, CNRS and University of Toulouse 

 

 

      

         



 

Preface 

This volume is meant to present the state of the art of new developments, and 

some interesting and relevant applications of the OWA (ordered weighted 

averaging) operators. The OWA operators were introduced in the early 1980s by 

R.R. Yager as a conceptually simple, yet extremely powerful general aggregation 

operator. By an ingenious idea of first rearranging the weights from the highest to 

the lowest, and then using those rearranged weights in the well known weighted 

averaging scheme, a whole range of aggregation behaviors had been possible 

trough a proper selection of the weights (to be then rearranged, of course): from 

the pessimistic, safety first type minimum to the optimistic maximum, through all 

intermediate values including the mean value, and a linguistic quantifier driven 

aggregation exemplified by the aggregation of “most” values. 

That generality of the OWA operators, combined with their intuitive appeal and 

conceptual similarity, have triggered much research both in the foundations and 

extensions of the OWA operators, and their relations to some other concepts like 

ordered statistics, and in their applications to a wide variety of problems in which 

the availability of tools for various aggregation operators is of a paramount 

importance. A notable example is here real life decision making in which a 

multitude of criteria, attributes, decision makers, decision making stages, etc. calls 

for an appropriate aggregation of pieces of evidence related to all those 

satisfactions of individual criteria, individual testimonies, results of particular 

stages, etc. The OWA operators have provided novel aggregation tools, and have 

opened new vistas and perspectives for the related fields of research and 

applications.  

The papers included in Part I: Methods are concerned with more general issues 

related to the OWA operators. First, some extensions of the basic concept of the 

OWA operator are discussed, and the problem of how to properly select the 

weights of the OWA operators are dealt with. In the last papers of this section, 

first, the use of the OWA operators as an aggregation tools for an uniform 

representation of choice functions in group decision making and voting is 

presented. Then, the use of the linguistic OWA operators is shown to deal with the 

consensus reaching problem in group decision making under linguistic 

information (opinions of the individuals) when the linguistic term set is 

unbalanced. 

M. Grabisch (“OWA Operators and Nonadditive Integrals”)  gives a survey on 

the relations between nonadditive integrals (the Choquet integral and the Sugeno 

integral) and the OWA operator and some of its relevant variants. The author then 

discusses some important behavioral indices for the OWA operator, notably the 
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orness, veto and favor indices. Finally, the author propose the use of p-symmetric 

capacities for a natural generalization of the OWA operator. 

V. Torra (“The WOWA Operator: A Review”) is concerned with the WOWA  

(Weighted OWA) operator which was proposed as a generalization of both the 

OWA operator and the weighted mean. Formally, the WOWA is an aggregation 

operator that permits the aggregation of a set of numerical data with respect to two 

weighting vectors: one corresponding to that of the weighted mean and the other 

corresponding to the OWA. Some main definitions, issues and properties of the 

WOWA are discussed. 

G. Beliakov and S. James (“Induced Ordered Weighted Averaging Operators”) 

present the induced ordered weighted averaging operator (IOWA).  Rather than 

reordering the input vector by the size of its arguments, the IOWA uses an 

auxiliary variable called the inducing vector, thus generalizing the standard OWA.  

The aggregation via the Induced OWA and its generalizations provide a useful 

framework for the modeling of  many types of aggregation, including the nearest-

neighbor rules. The authors introduce the IOWA and discuss many of its 

properties in relation to the associated inducing variable.  They present then some 

of the generalizations discussed in the literature, as well as some important 

potential applications for aggregation where the ordering of the input vector is 

induced. 

X. Liu (“A review of the OWA determination methods: classification and some 

extensions”) discuss the problem of the determination of the appropriate OWA 

operators which is an important prerequisite for all applications of the OWA 

operators. The author gives a summary on the OWA determination methods with 

respect to the following classification: the optimization criteria methods, the 

sample learning methods, the function based methods, the argument dependent 

methods, and the preference methods. Some relationships between the methods in 

the same type and relationships between different types are provided. A uniform 

framework to view those OWA determination methods is discussed. Some 

extensions, problems and future research directions are outlined. 

Sh.-M. Zhou, F. Chiclana, R.I. John, J.M. Garibaldi (“Fuzzification of the 

OWA operators for aggregating uncertain information with uncertain weights”) 

generalize the source Yager’s OWA operator and describe two novel uncertain 

OWA-type operators, namely the type-1 OWA operator and type-2 OWA 

operator. The type-1 OWA operator is meant to aggregate the type-1 fuzzy sets 

and  the type-2 OWA operator is meant to aggregate the type-2 fuzzy sets. 

Therefore, the two new operators are capable of aggregating uncertain opinions or 

preferences with uncertain weights in decision making problems in soft settings. 

The authors indicate that not only the original Yager’s OWA operator but also 

some existing operators of fuzzy sets, including the join and meet of the type-1 

fuzzy sets, are special cases of the type-1 OWA operators. Then, the authors 

suggest new concepts of joinness and meetness of the type-1 OWA operators 

which can be considered as the extensions of the concepts of orness and andness 

in Yager’s OWA operator, respectively. An attempt to alleviate the computational 

overhead involved in aggregating general type-2 fuzzy sets using the type-2 OWA 
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is undertaken by using, an interval type-2 fuzzy sets oriented OWA operator. 

Examples are provided to illustrate the proposed tools. 

G. Pasi and R.R. Yager (“A majority guided aggregation in group decision ma 

king”) discuss the problem of majority modelling in the context of group (multi-

expert) decision making, to the aim of defining a decision strategy which takes 

into account the individual opinions of the decision makers. The key concept of 

majority is concerned with the fact that what is often needed is an overall opinion 

which synthesizes the opinions of a majority of the experts. The reduction of the 

individual experts’ opinions into a representative value (called the majority 

opinion) is usually performed through an aggregation process. The authors 

describe two distinct approaches to the definition and computation of a majority 

opinion within the fuzzy set theory, where majority can be expressed by a 

linguistic quantifier (such as most). First, they consider the case when the 

linguistic quantifiers are associated with aggregation operators, and a majority 

opinion is computed by aggregating the individual opinions. The Induced Ordered 

Weighted Averaging operators (IOWA) are used with a modified definition of 

their weighting vector. We then consider a second case where the concept of 

majority is modelled as a vague concept. Based on this interpretation, a 

formalization of a fuzzy majority opinion as a fuzzy subset is described.  

J.L. García-Lapresta, B. Llamazares and T. Peña (“Generating OWA Weights 

from Individual Assessments”) propose a method for generating the OWA 

weighting vectors from the individual assessments on a set of alternatives in such 

a way that these weights minimize the disagreement among individual 

assessments and the outcome provided by the OWA operator. For measuring that 

disagreement the authors aggregate distances between the individual and 

collective assessments by using a metric and an aggregation function. The 

Manhattan metric, the Chebyshev metric, and the arithmetic mean and maximum 

as the aggregation functions are employed. It is proven that the medians and the 

mid-range are the solutions for some cases considered. When a general solution is 

not available, the authors provide some mathematical programs for numerically 

solving the problem. 

J. Kacprzyk, H. Nurmi and S. Zadrożny (“The role of the OWA operators as a 

unification tool for the representation of collective choice sets”) consider various 

group decision making and voting procedures presented in the perspective of two 

kinds of aggregation of partial scores related to the individuals’ (group’s) 

testimonies with respect to alternatives and individuals. The authors show that the 

ordered weighthed averaging  (OWA) operators can be viewed as a unique 

aggregation tool that – via the change of the order of aggregation, type of 

aggregation, etc. – can be used for a uniform and elegant formalization of basic 

group decision making, social choice and voting rules under fuzzy and nonfuzzy 

preference relations and fuzzy and nonfuzzy majority. 

E. Herrera-Viedma,  F.J. Cabrerizo, I.J. Pérez,  M.J. Cobo, S. Alonso and F. 

Herrera (“Applying linguistic OWA operators in consensus models under 

unbalanced linguistic information”) consider consensus reaching models in group 

decision making guided by different consensus measures which usually are 

obtained by aggregating similarities between the individuals’ opinions. Most 
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group decision making problem formulations based on linguistic approaches use 

symmetrically and uniformly distributed linguistic term sets to represent the 

opinions. However, there exist problems in which assessments need to be 

represented by unbalanced linguistic term sets, i.e., using term sets which are not 

uniformly and symmetrically distributed. The authors present different Linguistic 

OWA Operators (LOWAs) to compute the consensus measures in consensus 

models with unbalanced fuzzy linguistic information. 

The papers in Part II: Applications show some more relevant applications of the 

OWA operators, mostly means, as powerful yet general aggregation operators. 

The applications concern many different application areas exemplified by 

environmental modeling, social networks, image analysis, financial decision 

making and water resource management.  

G. Bordogna, M. Boschetti, A. Brivio, P. Carrara, M. Pagani and D. Stroppiana 

(“Fusion strategies based on the OWA operator in environmental applications” 

consider the modeling of ill-known environmental phenomena which is often done 

by means of multisource spatial data fusion. Generally, the fusion strategies have 

to cope with various kinds of uncertainty, related to the ill-defined knowledge of 

the phenomenon, a lack of classified data, different degrees of trust of the 

information sources, imprecision of the observed variables, etc. The authors 

discuss the advantages of modeling multisource spatial data fusion in the 

environmental field based on the OWA operator, and then overview two 

applications. The first application is aimed at defining an environmental indicator 

of anomaly at a continental scale based on a fusion of partial hints of the pieces of 

evidence of anomaly. The second application computes seismic hazard maps 

based on a consensual fusion strategy defined by an extended OWA operator that 

accounts for data imprecision, and the reliability of data sources. In particular, the 

proposed fusion function models consensual dynamics and is parameterized so as 

to consider a varying spatial neighborhood of the data to be fused. 

J.M. Merigó and M. Casanovas (“Decision making with Dempster-Shafer 

theory using fuzzy induced aggregation operators”) develop a new approach to  

decision making with the Dempster-Shafer theory of evidence when the available 

information is uncertain and can be assessed with fuzzy numbers. In this approach 

it is possible to represent the problem without losing relevant information so that 

the decision maker knows exactly which are the different alternatives and their 

consequences. To achieve this, the authors suggest the use of different types of 

fuzzy induced aggregation operators to be able to aggregate information 

considering all the different scenarios that could happen in the analysis. As a 

result, new types of fuzzy induced aggregation operators are obtained such as the 

belief structure – fuzzy induced ordered weighted averaging (BS-FIOWA) and the 

belief structure – fuzzy induced hybrid averaging (BS-FIHA) operator. Their main 

properties are discussed. Then, the approach is generalized by using the fuzzy 

induced generalized aggregation operators. An application of the new approach in 

a financial decision making problem on selection of financial strategies is 

presented. 

 



Preface XI

 

H. Bustince, D. Paternain, B. De Baets, T. Calvo, J. Fodor, R. Mesiar, J. 

Montero and A. Pradera (“Two methods for image compression/reconstruction 

using OWA operators”) address the problem of image compression by means of 

two alternative algorithms. In the first algorithm, the authors associate to each 

image an interval-valued fuzzy relation, and build an image which is n times 

smaller than the original one by using the two-dimensional OWA operators. The 

experimental results show that, in this case, the best results are obtained with the 

ME-OWA operators. In the second part of the work, the authors describe a 

reduction algorithm that replaces the image by several eigen fuzzy sets associated 

with it, and obtain these eigen fuzzy sets by means of an equation that relates the 

OWA operators used and the relation (image) considered. Finally, a reconstruction 

method is proposed based on an algorithm which minimizes a cost function built 

by means of two-dimensional OWA operators. 

M. Brunelli, M. Fedrizzi, M. Fedrizzi (“OWA-based fuzzy m-ary 

adjacency relations in social network analysis”) propose an approach to Social 

Network Analysis (SNA) based on fuzzy m-ary adjacency relations. In particular, 

the authors show that the dimensionality of the analysis can naturally be increased 

and interesting results can be derived. The fuzzy m-ary adjacency relations can be 

computed starting from the fuzzy binary relations and introducing OWA-based 

aggregations. The behavioral assumptions derived from the measure and the 

examination of individual propensity to connect with others suggest that the OWA 

operators can be considered to be particularly suitable for characterizing such 

relationships. 

M. Zarghami and F. Szidarovszky (“Soft computing in water resources 

management by using OWA operator”) introduce a new method to obtain the 

order weights of the OWA operator. The new method is based on the combination 

of fuzzy quantifiers and neat OWA operators. The fuzzy quantifiers are applied 

for soft computing in the modeling of the social preferences (an optimism degree 

of the decision maker, DM) while using the neat operators, the ordering of the 

inputs is not needed resulting in a better computation efficiency. The authors 

discuss one of the frequently-used ways to control water shortages is inter-basin 

water transfer (IBWT). Efficient decision making in this case is however a real 

challenge for the water authorities as these decisions should include multiple 

criteria, model uncertainty, and also a optimistic/pessimistic view (attitude) of the 

decision makers. The authors illustrate the theoretical results obtained by ranking 

four IBWT projects for the Zayanderud basin, Iran. The results demonstrate that 

by using the new method, more sensitive decisions can be obtained to deal with 

limited water resources, and also that this new method is more appropriate than 

other traditional MCDM methods in systems engineering since it takes the 

optimism/pessimism attitude into account in a quantifiable way. The comparison 

of the computational results with the current state of the projects shows an 

optimistic attitude of the real decision makers. The authors present a sensitivity 

analysis of how the rankings of the water projects depend on the optimism degree. 

Q. Ji, P. Haase and G. Qi (“Combination of similarity measures in ontology 

matching using the OWA operator”) provide a novel solution for ontology 

matching by using the ordered weighted average (OWA) operator to aggregate 
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multiple values obtained from different similarity measures. They have 

implemented the solution in the ontology matching system FOAM. Using the 

similarity measures in FOAM, the authors analyze how to choose different OWA 

operators and compare their results with others. 

We wish to thank all the contributors for their excellent work. All the 

contributions were anonymously peer reviewed by at least two reviewers, and we 

also wish to express our thanks to them. We hope that the volume will be 

interesting and useful to the entire intelligent systems research community, as well 

as other communities in which people may find the presented tools and techniques 

useful to formulate and solve their specific problems. 

We also wish to thank Dr. Tom Ditzinger and Ms. Heather King from Springer 

for their multifaceted support and encouragement. 
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José Luis Garćıa-Lapresta, Bonifacio Llamazares, Teresa Peña

The Role of the OWA Operators as a Unification Tool for
the Representation of Collective Choice Sets . . . . . . . . . . . . . . . . . 149
Janusz Kacprzyk, Hannu Nurmi, S�lawomir Zadrożny
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OWA Operators and Nonadditive
Integrals

Michel Grabisch

Abstract. We give a survey on the relations between nonadditive integrals
(Choquet integral, Sugeno integral) and the OWA operator and its variants.
We give also some behavioral indices for the OWA operator, as orness, veto
and favor indices, etc. Finally, we propose the use of p-symmetric capacities
for a natural generalization of the OWA operator.

1 Introduction

This paper offers a survey on the relations between the OWA operators (its
classical definition and its variants) and the so-called fuzzy integrals (or more
exactly nonadditive integrals).

Although the fact that the original OWA operator was a particular case of
Choquet integral was discovered, with some surprise, only several years after
its birth in 19881, their close relation appears rather obviously if one considers
that both operators are linear up to a rearrangement of the arguments in
increasing order. Later variants of the original definition, since still based on
some rearrangement of the arguments, remain closely related to nonadditive
integrals.

One may then consider that, since all OWA operators are more or less
nonadditive integrals, these operators are no longer useful and there is no
need to consider them any more. On the contrary, they provided useful and
meaningful families of operators among the vast and unexplored realm of
aggregation operators based on nonnaditive integrals (we refer the reader
to some chapters of the recent monograph [10] for a detailed account of this

MichelGrabisch
Centre d’Economie de la Sorbonne, Université Paris I
106-112, Bd de l’Hôpital, 75013 Paris, France
e-mail: michel.grabisch@univ-paris1.fr
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question). In this respect, OWA operators provide aggregation operators with
a clear interpretation. Moreover, by some crossfertilization process, many
indices defined for nonadditive integrals can be applied to OWA operators to
bring new insights into their behavioral properties.

Our survey will try to emphasize these issues. Due to size limitation, results
are given without proofs. The reader is referred to the bibliography for more
details.

2 Capacities and Nonadditive Integrals

Let us denote by N := {1, . . . , n} the index set of arguments to be aggre-
gated (scores, utilities, etc.). For simplicity we consider here that scores to
be aggregated lie in [0, 1]. Hence, all integrals will be defined for functions
f : N → [0, 1], thus assimilated to vectors in [0, 1]n.

In the whole paper, we use ∧,∨ for min and max.

Definition 1. A capacity [2] or fuzzy measure [20] on N is a mapping µ :
2N → [0, 1] satisfying

(i) µ(∅) = 0, µ(N) = 1 (normalization)
(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity).

Definition 2. A capacity µ on N is symmetric if for all A, B ∈ 2N such that
|A| = |B|, we have µ(A) = µ(B).

Definition 3. Let µ be a capacity on N . The dual (or conjugate) capacity
µ is a capacity on N defined by

µ(A) = 1 − µ(A), ∀A ⊆ N

where A := N \ A.

Definition 4. Let µ be a capacity on N . The Möbius transform [18] of µ is
a mapping mµ : 2N → R defined by, for any A ⊆ N :

mµ(A) :=
∑

B⊆A

(−1)|A\B|µ(B).

If there is no fear of ambiguity, we drop the superscript µ in mµ. Given mµ,
it is possible to recover µ by the inverse transform (called Zeta transform):

µ(A) =
∑

B⊆A

mµ(B)

for any A ⊆ N .

Another interesting transform is the interaction transform [8, 9].
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Definition 5. Let µ be a capacity on N . The interaction transform of µ is
a mapping Iµ : 2N → R defined by, for any A ⊆ N :

Iµ(A) :=
∑

B⊂N\A

(n − b − a)!b!

(n − a + 1)!

∑

K⊂A

(−1)a−kv(K ∪ B),

with a, b, k the cardinalities of A, B, K respectively.

For the following definition and for the rest of the paper we introduce
the following notation: for any function f : N → [0, 1], we denote f(i) by
fi for all i ∈ N , thus assimilating f to a vector in [0, 1]n. Moreover, f(i)

indicates the ith smallest value of f , that is, (·) indicates a permutation on
N (nonnecessarily unique) such that

f(1) ≤ f(2) ≤ · · · ≤ f(n).

Definition 6. Let µ be a capacity on N and f ∈ [0, 1]n.

(i) The Choquet integral [2] of f w.r.t. µ is defined by

(C)

∫
f dµ :=

n∑

i=1

(f(i) − f(i−1))µ(Ai)

(ii) The Sugeno integral [20] of f w.r.t. µ is defined by

(S)

∫
f dµ :=

n∨

i=1

(f(i) ∧ µ(Ai)).

In the above expressions, Ai := {(i), . . . , (n)}, and f(0) := 0.

The Choquet integral can be equivalently written as follows:

(C)

∫
f dµ =

n∑

i=1

f(i)(µ(Ai) − µ(Ai+1)) (1)

with An+1 := ∅. As we work on finite spaces and consider nonadditive inte-
grals as aggregation operators, we prefer to use the notation Cµ(f) instead of
(C)

∫
f dµ, and Sµ(f) instead of (S)

∫
f dµ.
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3 Aggregation Operators and Main Classes of OWA

Operators

As we work on [0, 1] only and with a fixed arity, the definition of an aggre-
gation operator can be simplified as follows: a mapping A : [0, 1]n → [0, 1] is
an aggregation operator (of n arguments) if it satisfies:

(i) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1
(ii) A is nondecreasing with respect to each argument.

(for recent monographs on aggregation operators, see [1, 10]) The above de-
fined Choquet and Sugeno integrals are aggregation operators.

Definition 7. An aggregation operator A on [0, 1]n is symmetric if for any
permutation σ on N and each (x1, . . . , xn) ∈ [0, 1]n, it holds

A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)).

Definition 8. Let A be an aggregation operator on [0, 1]n. Then the dual

aggregation operator Ad is defined by:

Ad(x1, . . . , xn) = 1 − A(1 − x1, . . . , 1 − xn), ∀(x1, . . . , xn) ∈ [0, 1]n.

Proposition 1. The Choquet integral w.r.t. a capacity µ is symmetric if and
only if µ is symmetric. The same holds for the Sugeno integral.

Definition 9. Let (w1, . . . , wn) ∈ [0, 1]n such that
∑n

i=1 wi = 1 (additive
weight vector). The ordered weighted average (OWA) [22] is an aggregation
operator defined by, for all (x1, . . . , xn) ∈ [0, 1]n:

OWAw(x1, . . . , xn) :=
n∑

i=1

wix(i)

(recall that (·) means x(1) ≤ · · · ≤ x(n)).

Obviously, the OWA operator is symmetric.

Definition 10. Let (w1, . . . , wn) ∈ [0, 1]n such that
∨n

i=1 wi = 1 (maxitive

weight vector). Then, for any (x1, . . . , xn) ∈ [0, 1]n

(i) The ordered weighted maximum [3] is an aggregation operator defined by

OWMaxw(x1, . . . , xn) :=

n∨

i=1

(wi ∧ x(i)),

with w1 ≥ w2 ≥ · · · ≥ wn.
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(ii) The ordered weighted minimum [3] is an aggregation operator defined by

OWMinw(x1, . . . , xn) :=

n∧

i=1

((1 − wi) ∨ x(i)),

with w1 ≤ w2 ≤ · · · ≤ wn.

In the case of the ordered weighted maximum, since

n∨

i=1

(wi ∧ x(i)) =

n∨

i=1

(( n∨

k=i

wk

)
∧ x(i)

)

the assumption w1 ≥ w2 ≥ · · · ≥ wn is not necessary, however it is useful
in the next proposition. The same remark applies to the ordered weighted
minimum.

Proposition 2. Let µ be a capacity. The following holds.

(i) Cµ = OWAw if and only if µ is symmetric, with wi = µ(Cn−i+1) −
µ(Cn−i), i = 2, . . . , n, and w1 = 1 −

∑n
i=2 wi, where Ci is any subset of

X with |Ci| = i (equivalently, µ(A) =
∑i−1

j=0 wn−j , ∀A, |A| = i).
(ii) Sµ = OWMaxw if and only if µ is a symmetric capacity such that µ(A) =

wn−|A|+1, for any A ⊆ N , A �= ∅.
(iii) Sµ = OWMinw if and only if µ is a symmetric capacity such that µ(A) =

1 − wn−|A|, for any A � N .

Results (ii) and (iii) clearly show that the class of OWMinw and OWMaxw

coincide.
A weighted (hence nonsymmetric) version of OWA has been proposed by

Torra [21].

Definition 11. Let (w1, . . . , wn) ∈ [0, 1]n and (p1, . . . , pn) ∈ [0, 1]n be
two additive weight vectors (i.e.,

∑n
i=1 wi =

∑n
i=1 pi = 1. Then for any

(x1, . . . , xn) ∈ [0, 1]n, the weighted OWA operator is defined by

WOWAw,p(x1, . . . , xn) :=

n∑

i=1

uix(i),

where the weights u1, . . . , un are defined by

ui = g
( ∑

j∈Ai

pj

)
− g

( ∑

j∈Ai+1

pj

)
,

where Ai := {(i), . . . , (n)} as before, and g : [0, 1] → [0, 1] is a nondecreasing
function such that
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• g(0) := 0, g( i
n
) :=

∑n
j=n−i+1 wj (hence g(1) = 1);

• g is linear if the points ( i
n
,
∑n

j=n−i+1 wj) lie on a straight line.

Note that the second condition happens if and only if wi = 1/n for all i. This
entails that in this case, the weighted arithmetic mean with weight vector
(p1, . . . , pn) is recovered. If pi = 1/n for i = 1, . . . , n, then the usual OWA
operator with weight vector (w1, . . . , wn) is recovered.

This complicated definition hides in fact a Choquet integral w.r.t. a dis-
torted probability. Consider g : [0, 1] → [0, 1] a nondecreasing function such
that g(0) = 0 and g(1) = 1, and a probability measure P defined on (N, 2N),
with density pi = P ({i}), i = 1, . . . , n. Let us consider the distorted probabil-

ity µ := g ◦ P , i.e.,

µ(A) = g(
∑

i∈A

pi).

By the properties of g, clearly µ is a capacity on N . Using (1), the Choquet
integral of any x ∈ [0, 1]n w.r.t. µ reads:

Cg◦P (f) = x(1)(g(p1 + · · · pn) − g(p2 + · · · + pn)) + · · ·

· · · + x(n−1)(g(pn−1 + pn) − g(pn)) + x(n)g(pn) =

= WOWAw,p(x1, . . . , xn). (2)

Note that the function g is however slightly restricted in the definition of
WOWAw.p, hence the equivalence between the weighted OWA operators and
the Choquet integral w.r.t. a distorded probability is not exact (the latter is
more general).

4 Mathematical and Behavioral Properties of the

OWA Operator

In the following, we restrict to the classical OWA operator. We begin by a
result showing that the class of OWA operator is closed under duality.

Proposition 3. [7] Let OWAw be an OWA operator with weight vector
(w1, . . . , wn), with associated capacity µ. Then the dual capacity µ corre-
sponds also to an OWA operator OWAw′ , with weight vector w′ =(wn, . . . , wn),
i.e., the OWA operator with the reversed weight vector. Moreover, for every
(x1, . . . , xn) ∈ [0, 1]n

OWAwn,...,w1(x1, . . . , xn) = 1 − OWAw1,...,wn
(1 − x1, . . . , 1 − xn),

i.e., it is the dual aggregation operator of OWAw.

We turn now to the Möbius and interaction representations of OWA
operators.
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Proposition 4. [7] Let OWAw be an OWA operator with weight vector
(w1, . . . , wn), and let µ be the associated capacity. Then its Möbius and
interaction representations are given by:

mµ(A) =

|A|∑

i=1

(−1)|A|−iwn−i+1

(
|A| − 1

i − 1

)
, (3)

Iµ(A) =
1

n − |A| + 1

|A|−2∑

j=0

(−1)j

(
|A| − 2

j

)
[wj+1 − wn−|A|+j+2], (4)

for all A ⊂ N .

The interaction transform provides two meaningful indices describing the
behavior of any aggregation function based on capacities. The first one is the
Shapley value [19], obtained when A is a singleton:

φi(µ) := Iµ({i}) =
∑

B⊆N\i

b!(n − b − 1)!

n!
(µ(B ∪ i) − µ(B)), ∀i ∈ N.

The Shapley value φi(µ) expresses the relative importance of dimension (let
us call it criterion in this section) i in the aggregation. We find for the operator
OWAw that

φi(µw) =
1

n
, ∀i ∈ N

where µw is the capacity corresponding to OWAw. This result is immediate
from the fact that µw is a symmetric capacity, and the Shapley value is
constant for any symmetric capacity.

The second index provided by Iµ is the interaction index of Murofushi and
Soneda [15] (also proposed by Owen as the covalue of µ [17]), obtained when
A is a pair:

Iij(µ) :=I
µ({i, j}) =

∑

B⊆N\{i,j}

b!(n −b −2)!

(n −1)!
(µ(B∪{i, j})−µ(B∪i)−µ(B∪j)+µ(B)).

The interaction index describes the contribution to the overall score when
two criteria i, j are both satisfied compared to the individual contribution of
criteria i and j. We distinguish three cases [5]:

• positive interaction: in average, the simultaneous satisfaction of criteria i
and j is more rewarding (for the overall score) than the sum of separate
satisfactions of i and j. Criteria are said to be complementary in this case:
the aggregation for i and j is of conjunctive type.

• negative interaction: in average, the sum of separate satisfactions of i and
j is more rewarding than the simultaneous satisfaction of i and j. Criteria
are said to be substitutive: the aggregation for i and j is of disjunctive
nature.
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• null interaction: in average, the sum of separate satisfactions of i and j
equals the simultaneous satisfaction of i and j. Criteria are said to be
independent : the aggregation for i and j is of additive nature.

The interaction index for the operator OWAw with weight vector (w1, . . . , wn)
is:

Iij(µw) =
w1 − wn

n − 1
, i, j = 1, . . . , n, i �= j.

Hence, as for the Shapley value, the interaction index is constant, and its value
depends only on extreme weights w1, wn. If w1 > wn, then the interation is
positive (the OWA operator is more of the min type), and if w1 < wn, the
interaction is negative (the OWA is more of the max type).

The Shapley value and the interaction index provide two useful ways to de-
scribe the behavior of aggregation functions. In the rest of this paragraph, we
present other indices describing behavior (see [10, Ch. 10] for a full descrip-
tion). The minimum operator is denoted by Min, and the maximum operator
by Max.

Definition 12. [4] Let A be an aggregation function. The orness value of A

is defined by:

orness(A) :=
A − Min

Max − Min
= −

1

n − 1
+

n + 1

n − 1
A,

where, letting x := (x1, . . . , xn),

A :=

∫

[0,1]n
A(x)dx

is the mean value of A, and similarly for Min and Max.

It is shown in [11] that if A is the Choquet integral, then

orness(Cµ) =
∑

K⊆N
0<|K|<n

1

(n − 1)
(

n
|K|

) µ(K)

=
∑

K⊆N

n − |K|

(n − 1)(|K| + 1)
mµ(K).

Applying this to the OWA operator yields

orness(OWAw) =
1

n − 1

n∑

i=1

(i − 1)wi.

Next we introduce the veto and favor indices. The origin of these in-
dices goes back to the idea of veto criterion and favor criterion proposed
by the author [6]. A criterion i is a veto for the aggregation operator A
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if A(x1, . . . , xn) ≤ xi for all (x1, . . . , xn) ∈ [0, 1]n. Similarly i is a favor if
A(x1, . . . , xn) ≥ xi for all (x1, . . . , xn) ∈ [0, 1]n. These condition being rarely
satisfied (note that they are satisfied for min and max: every criterion is a
veto for min, and a favor for max), Marichal proposed the concept of veto and
favor indices, describing how close to a pure veto or favor effect is a criterion
[11, 12].

Definition 13. Let A be an aggregation operator. The veto and favor indices
of a criterion j w.r.t. A are defined by:

veto(A, j) :=
Max(0jx−j) − A(0jx−j)

Max(0jx−j) − Min(0jx−j)
= 1 −

n

n − 1
A(0jx−j),

favor(A, j) :=
A(1jx−j) − Min(1jx−j)

Max(1jx−j) − Min(1jx−j)
=

n

n − 1
A(1jx−j) −

1

n − 1
.

The notation A(0jx−j) stands for the average of A(x) for all vector x ∈ [0, 1]n

whose jth component is 0 (and similarly for the others).

It is shown in [11, 12] that if A is the Choquet integral, then

veto(Cµ, j) = 1 −
∑

K⊆N\{j}

1

(n − 1)
(
n−1
|K|

) µ(K)

favor(Cµ, j) =
∑

K⊆N\{j}

1

(n − 1)
(
n−1
|K|

) µ(K ∪ {j}) −
1

n − 1

and

1

n

n∑

i=1

veto(Cµ, j) = andness(Cµ),

1

n

n∑

i=1

favor(Cµ, j) = orness(Cµ).

The following proposition shows that it is only necessary to consider one of
the two indices.

Proposition 5. For any aggregation operator A and criterion j ∈ N , it holds

(i) veto(Ad, j) = favor(A, j) and favor(Ad, j) = veto(A, j).

(ii) veto(A, j) + favor(A, j) = 1 +
nφj(A)−1

n−1 .

Applying this to the OWA operator yields

favor(OWAw, j) =
1

n − 1

n∑

i=1

(i − 1)wi = orness(OWAw).
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A related notion, although orthogonal in some sense, is the notion of
k-conjunctivity and k-disjunctivity [12]. An aggregation operator A is k-
conjunctive (respectively, k-disjunctive) for some k ∈ {1, . . . , n} if
A(x1, . . . , xn) ≤ x(k) (respectively, A(x1, . . . , xn) ≥ x(n−k+1)). Note that
OWA operators such that wi = 1 for some i ∈ N are both (n − i + 1)-
disjunctive and i-conjunctive.

As for veto and favor, it is more interesting to introduce indices to measure
to which degree an aggregation operator is close to k-disjunctiveness or k-
conjunctiveness.

Definition 14. Let A be an aggregation operator and k be an integer, 1 ≤
k < n. The k-conjunctiveness and k-disjunctiveness indices of A are defined
by:

conjk(A) :=
n − k + 1

n − k

1(
n
k

)
∑

K⊆N
|K|=k

A(0Kx−K),

disjk(A) :=
n − k + 1

n − k

1(
n
k

)
∑

K⊆N
|K|=k

A(1Kx−K) −
1

n − k
.

Similarly to Definition 13, A(0Kx−K) stands for the average of A(x) for all
vectors x ∈ [0, 1] whose all components in K are 0.

Considering the Choquet integral, we have the following result [12]:

Proposition 6. For any capacity µ on N and 1 ≤ k < n, we have

conjk(Cµ) = 1 −
1

n − k

n−k∑

j=0

1(
n
j

)
∑

J⊆N
|J|=j

µ(J)

disjk(Cµ) =
1

n − k

n∑

j=k

1(
n
j

)
∑

J⊆N
|J|=j

µ(J) −
1

n − k
.

5 A Generalization of OWA: The p-Symmetric

Choquet Integral

Proposition 2 shows the equivalence of the OWA operator with symmetric
Choquet integrals, themselves being bijectively related to symmetric capac-
ities. Hence, the idea of total symmetry in the weights is the basis of the
OWA operator. The weighted OWA operator presented in Definition 11 is
an attempt to escape total symmetry by introducing weights invidually on
criteria. The weighted OWA operator can then be considered as the crossover
of the original OWA operator and the good old weighted arithmetic mean.
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Perhaps a generalization closer to the spirit of OWA would be to keep this
idea of symmetry while just weakening it gradually. We think that this idea is
well captured by the concept of p-symmetric capacities, proposed by Miranda
and Grabisch [14, 13]. The basic concept for defining p-symmetric capacities
is the one of subset of indifference.

Definition 15. Given a subset A of N , we say that A is a subset of indif-

ference for a capacity µ over N if ∀B1, B2 ⊆ A, |B1| = |B2|, and ∀C ⊆ N \A,
we have

µ(B1 ∪ C) = µ(B2 ∪ C).

In words, inside a subset of indifference A, all is symmetric in the usual
sense. It follows that for a symmetric capacity, any subset is a subset of indif-
ference. However, observe that if A is a subset of indifference, then any subset
of A is also a subset of indifference. Therefore, only the maximal subsets of
indifference matter. On the other hand, observe that trivially any singleton
is a subset of indifference for any capacity. From these two observations, it
follows that for any capacity, the universe N can be partitioned into maximal
subsets of indifference, say B1, . . . , Bp. This partition {B1, . . . , Bp} is called
the basis of µ, and leads to the following definition.

Definition 16. A capacity µ on N is said to be p-symmetric if its basis has
p blocks (subsets).

Clearly, a capacity which is symmetric in the usual sense is 1-symmetric,
and its basis is {N}. A capacity which has no symmetry property is n-
symmetric, and its basis is {{1}, . . . , {n}}.

The number of coefficients which are necessary to define a p-symmetric
capacity depends on the basis. Specifically, if the basis is {B1, . . . , Bp}, then
we need (|B1| + 1) × · · · × (|Bp| + 1) − 2 coefficients.

The “p-symmetric OWA” would be then the Choquet integral w.r.t. a
p-symmetric capacity. Its expression is given by the following proposition.

Proposition 7. Let µ be a p-symmetric capacity on N with basis {B1, . . . , Bp}.
Then, for all x = (x1, . . . , xn) ∈ [0, 1]n, the Choquet integral w.r.t. µ is given
by

Cµ(x) =

p∑

i=1

Cµ|Bi
(x|Bi

) +
∑

B �⊆Bj ,∀j

mµ(B)
∧

i∈B

xi,

where µ|Bi
is the restriction of µ to Bi, i.e.,

µ|Bi
(C) := µ(C), ∀C ⊆ Bi,

and x|Bi
is the restriction of x to Bi.

(Note: the above expression is slightly simpler than the one given in [14]).
An important observation is that for i = 1, . . . , p, µ|Bi

is a symmetric non-
normalized capacity on Bi, therefore Cµ|Bi

is a classical OWA operator on

Bi, with nonnegative weights wi1 , . . . , wi|Bi |
satisfying

∑|Bi|
j=1 wij

= µ(Bi).
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The WOWA Operator: A Review

Vicenç Torra

Abstract. The WOWA operator (Weighted OWA) was proposed as a generalization

of both the OWA and the Weighted mean. Formally, it is an aggregation operator

that permits the aggregation of a set of numerical data with respect to two weighting

vectors: one corresponding to the one of the weighted mean and the other corre-

sponding to the one of the OWA. In this chapter we review this operator as well as

some of its main results.

1 Introduction

Aggregation operators [20, 21] permit us to combine data provided from several

sources and return a single datum that is of better quality and, therefore, gives more

accurate information. Several aggregation operators have been defined in the litera-

ture. Differences in the operators are based on the differences between the data, and

the properties of these data.

A common classification of the operators is related to the nature of the data.

In this way, we can distinguish between numerical data, categorical data, and

also between data in other terms as e.g. partitions, (fuzzy) clusters, dendrograms,

sequences.

In this chapter we will review some results about the WOWA operator. This op-

erator, introduced in [13] and [14], was defined for numerical data.

From a practical point of view, this operator was defined to encompass in a single

operator the advantages of the weighted mean and of the OWA operator. Informally,

the weighted mean permits us to weight the information sources, and the OWA

permits us to represent a compensation degree, or, alternatively, to give importance

to the data according to their values.
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From a mathematical point of view, the operator is a generalization of both the

weighted mean and the OWA. That is, particular parametrizations of the opera-

tor lead to either the weighted mean or the OWA. In addition, it has also been

proven [15] that the operator is a particular case of the Choquet integral [4].

In this paper we review some of the main results on this operator. In Section 2 we

review the WOWA operator as well as other aggregation operators that are related

to the WOWA. In Section 3 we discuss some generalizations of the operator. In

Section 4 we review some learning approaches for the parameters of this operator.

2 The WOWA Operator and Other Aggregation Operators

Aggregation operators are functions that combine N different data into a single da-

tum. We use C from C onsensus or C ombination to represent them. Then, in general,

it is assumed that the aggregation of a1, . . . ,aN in a given domain D is C (a1, . . . ,aN),
also in this domain D. That is, C : DN → D.

In some cases it is useful to represent in an explicit way where the data come

from. That is, which is the information source that has supplied each data. We will

use X = {x1, . . . ,xN} to represent the set of information sources. Then, we will use f

to represent the relationship between xi and the supplied value ai. That is, f (xi) = ai

represents that xi supplies ai. Using this notation, we have that the aggregation of

the data supplied by the information sources in X is C ( f (x1), . . . , f (xN)), or, with

an abuse of notation, C ( f ).
There exist a few different definitions on what an aggregation function is. In

general it is usual to require monotonicity and unanimity or idempotency (for at

least a few elements in the domain). We consider aggregation operators as functions

C satisfying:

• Unanimity or idempotency: C (a, . . . ,a) = a for all a in D

• Monotonicity: C (a1, . . . ,aN) ≥ C (a′1, . . . ,a
′
N) when ai ≥ a′i

Some require unanimity only in the boundaries of D. In particular, if D = [0,1],
unanimity is only required for 0 and 1. So, C (0, . . . ,0) = 0 and C (1, . . . ,1) = 1. This

is the case of [2]. In this case, t-norms and t-conorms are aggregation functions. In

this case, the term mean operators is used to name functions that satisfy unanimity

for all a in D.

In addition, in some circumstances the symmetry condition is also required to

aggregation operators. This property, which is formalized below, implies that there

is no distinguished data.

• Symmetry: For any permutation π on {1, . . . ,N} it holds that

C (a1, . . . ,aN) = C (aπ(1), . . . ,aπ(N))
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2.1 Arithmetic Mean, Weighted Mean and OWA Operator

The arithmetic mean, the weighted mean and the OWA operator are some of the

most well known aggregation operators. Both the weighted mean and the OWA

combine a set of data with respect to a weighting vector. The arithmetic mean does

not include any parameter.

The weighting vector in the weighted mean permits us to take into account some

a prior knowledge, following artificial intelligence jargon. about the information

sources. We give below the definitions of the weighting vector, the arithmetic mean

and the OWA operator.

Definition 1. Let A = (a1, . . . ,aN) be N data in R. Then, we define a weighting

vector, the arithmetic mean (AM : RN → R) of A, and the weighted mean (WM) of

A with respect to a weighting vector as follows:

• A vector v = (v1 . . .vN) is a weighting vector of dimension N if and only if vi ∈
[0,1] and ∑i vi = 1.

• AM is an arithmetic mean, if AM(a1, ...,aN) = (1/N)∑N
i=1 ai.

• WM is the weighted mean with respect to a weighting vector p,

if WMp(a1, ...,aN) = ∑N
i=1 piai.

The OWA (Ordered Weighting Averaging) operator has a definition similar to the

one of the weighted mean. It is as follows:

Definition 2. [22, 23] Let w be a weighting vector of dimension N; then, a mapping

OWA: RN → R is an Ordered Weighting Averaging (OWA) operator of dimension

N if

OWAw(a1, ...,aN) =
N

∑
i=1

wiaσ(i),

where {σ(1), ...,σ(N)} is a permutation of {1, ...,N} such that aσ(i−1) ≥ aσ(i) for

all i = {2, ...,N} (i.e., aσ(i) is the ith largest element in the collection a1, ...,aN).

The weighted mean and the OWA operator are similar operators as both are a

linear combination of the values with respect to the weights. Nevertheless, the or-

dering step that takes place in the OWA operator makes a fundamental difference.

This difference makes different the interpretation of the weights in both operators.

In the weighted mean, the weight is attached to the information source. Due to

this, weights correspond to the importance of the information sources. E.g., when

the data correspond to sensors, the weight might correspond to the reliability of the

corresponding sensor; and when the data correspond to the evaluation of some crite-

ria (or experts) in a multicriteria decision making problem, the weights correspond

to the importance of the criteria (or of the experts).

In contrast, in the OWA operator, the weight is attached to the data, with respect

to its relative position. Due to this, weights permit us to give more importance to e.g.

low values, central values or high values. For example, we can give more importance

to small distances (e.g., if we want to avoid a collision of a robot, is more importance

a nearer object than a farther one), or permit some compensation (e.g., if a bad
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evaluation of a criteria can be compensated with a good one – or in the extreme

case, if a single good criteria can override all the others).

The degree of compensation in the OWA operator is measured with the orness

degree. This is a measure that evaluates in what extent the outcome of the aggrega-

tion is near to the maximum of the data being aggregated. The larger the outcome,

the larger the orness and the larger the compensation. Note that the maximum com-

pensation corresponds to assigning the largest value to the output of the function.

The orness is formally defined below and, in fact, the definition is valid for all ag-

gregation operators C and for all parameterizations P. It results that for some of the

operators, the orness does not depend on the particular parameterization selected,

while for others the orness depends on the particular parameterization used. The

weighted mean is an example of the former (i.e., the orness of the weighted mean is

independent of the parameter used), and the OWA is an example of the latter (i.e.,

different parameters give different orness for the OWA).

Definition 3. Let C be an aggregation operator with parameters P; then, the orness

of CP is defined by

orness(CP) :=
AV (CP)−AV(min)

AV (max)−AV(min)
. (1)

The orness of the aggregation operators reviewed above is as follows:

• orness (AM) = 1/2

• orness(WMp) = 1/2

• orness(OWAw) = 1
N−1 ∑N

i=1(N − i)wi

From the orness of the OWA we can infer that its maximum orness is 1 when w1 = 1

and wi = 0 for all i �= 1 (note that in this case the OWA corresponds to the maxi-

mum), and that the minimum ornes is 0 when wN = 1 and wi = 0 for all i �= N (note

that in this case the OWA corresponds to the minimum).

2.2 The WOWA Operator

Due to the fact that in some applications it is of interest to assign weight to infor-

mation sources and also to the compensation degree (or the relative importance of

values), a generalization of both weighted mean and OWA was proposed. This gen-

eralization is the WOWA operator. WOWA operator stands for Weighted Ordered

Weighted Averaging operator. Formally, it is also a linear combination of values

a1, . . . ,aN with respect to weights. Nevertheless, these weights are computed taking

into account two weighting vectors. One of the weighting vectors has the interpre-

tation of the ones in the weighted mean, and the other has the interpretation of the

ones in the OWA. We use here p to represent the weights with the interpretation

used in the weighted mean, and w to represent the weights with the interpretation

used in the OWA. Note that although we use here different letters w and p, both

weighting vectors have the same mathematical properties.
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Definition 4. [13, 14] Let p and w be two weighting vectors of dimension N; then,

a mapping WOWA: RN → R is a Weighted Ordered Weighted Averaging (WOWA)

operator of dimension N if

WOWAp,w(a1, ...,aN) =
N

∑
i=1

ωiaσ(i),

where σ is defined as in the case of OWA (i.e., aσ(i) is the ith largest element in the

collection a1, ...,aN), and the weight ωi is defined as

ωi = w∗(∑
j≤i

pσ( j))−w∗(∑
j<i

pσ( j)),

with w∗ being a nondecreasing function that interpolates the points

{(i/N,∑
j≤i

w j)}i=1,...,N ∪{(0,0)}.

The function w∗ is required to be a straight line when the points can be interpolated

in this way.

As stated above, this definition uses an interpolation method to build a function

from the points in the set {(i/N,∑ j≤i w j)}i=1,...,N ∪{(0,0)}. The original definition

used the interpolation method described in [17]. Other interpolations approaches

have been used as e.g. linear interpolation. A discussion on the effects of different

interpolation methods is given in [19].

For details on the WOWA operator, and about the meaning of the function

see [20, 21].

Some extensions have been defined for this operator. One of them, the Linguis-

tic WOWA (L-WOWA) operator [14], was given to deal with categorical data. L-

WOWA operator can be seen as an extension of the L-OWA, in the same way that

the WOWA operator is an extension of the OWA operator.

2.3 The Choquet Integral

The Choquet integral is an operator that generalizes the WOWA operator, as proven

in [15]. As the WOWA generalizes the arithmetic mean, the weighted mean and the

OWA, it can be said that all these functions belong to the same family of operators.

The basis of this integral, in comparison with the other mentioned operators, is

that now the weights (or importances) are not of a single information source but to

a set of them. While in the weighted mean, we have pi as the weight of information

source xi, we can not consider the weight of e.g. the set {x1,x4}. Formally, in the

weighted mean we have weights p : X → [0,1] such that ∑xi∈X p(xi) = 1, and we use

the notation pi = p(xi). Thus, pi = p(xi) is the importance of information source xi.

In contrast, in the case of the Choquet integral we use functions µ over subsets

of X . Then, µ(ψ) for ψ ⊆ X is the importance of the elements in ψ taken together.
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As in the case of the weighting vectors, µ(ψ) ∈ [0,1]. These functions are known

as fuzzy measures, and we review them below.

Definition 5. A fuzzy measure µ on a set X is a set function µ : ℘(X) → [0,1]
satisfying the following axioms:

(i) µ( /0) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)

That is, µ are set functions that satisfy monotonicity. Monotonicity means that the

larger the set, the larger the measure, or, equivalently, the larger the set of criteria,

the larger their importance. In addition, the maximum importance (equal to 1) is

achieved for the whole set of criteria, and the minimum importance (equal to 0) is

achived for the empty set.

Choquet integrals permit to aggregate values taking into account the importance

expressed in the measures. The aggregation corresponds to the integral of a function

with respect to the measure. The function corresponds to the data to be aggregated

as expressed above with the expression C( f ).

Definition 6. [4] Let µ be a fuzzy measure on X ; then, the Choquet integral of a

function f : X → R+ with respect to the fuzzy measure µ is defined by

(C)
∫

f dµ =
N

∑
i=1

[ f (xs(i))− f (xs(i−1))]µ(As(i)), (2)

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤
·· · ≤ f (xs(N)) ≤ 1, and where f (xs(0)) = 0 and As(i) = {xs(i), . . . ,xs(N)}.

When no confusion exists, we can use CIµ(a1, . . . ,aN) = (C)
∫

f dµ , where,

f (xi) = ai, as before. There are alternative expressions for the Choquet integral that

are equivalent to the one given above. The next proposition presents one of them.

Proposition 1. Let µ be a fuzzy measure on X; then, the Choquet integral of a func-

tion f : X → R
+ with respect to µ can be expressed as

(C)

∫

f dµ =
N

∑
i=1

f (xσ(i))[µ(Aσ(i))− µ(Aσ(i−1))], (3)

where {σ(1), . . . ,σ(N)} is a permutation of {1, . . . ,N} such that f (xσ(1))≥ f (xσ(2))≥ ·· · ≥

f (xσ(N)), where Aσ(k) = {xσ( j)| j ≤ k} (or, equivalently, Aσ(k) = {xσ(1), . . . ,xσ(k)} when k ≥

1 and Aσ(0) = /0).

As stated above, the WOWA operator is a particular case of the Choquet integral.

In particular, a WOWA operator corresponds to a Choquet integral with respect to a

distorted probability. Distorted probabilities are a particular type of fuzzy measure.

All Choquet integral with respect to this type of fuzzy measures are equivalent to a

WOWA operator, and all WOWA operators with weights p and w are equivalent to

a Choquet integral with respect to the distorted probability constructed from p and
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the function w∗ constructed using the interpolation method in the definition of the

WOWA (Definition 4).

In the next two definitions, we review the definition of a distorted probability.

Definition 7. Let P : 2X → [0,1] be a probability distribution. Then, we say that a

function f is strictly increasing with respect to P if and only if

P(A) > P(B) implies f (P(A)) > f (P(B))

At this point it is relevant to state that as we suppose that X is a finite set, when

there is no restriction on the function f , a strictly increasing function f with respect

to P can be regarded as a strictly increasing function on [0,1]. Note that with respect

to increasingness only the points in {P(A)|A ∈ 2X} are essential, the others are not

considered by f (P(A)).

Definition 8. [1, 3] Let µ be a fuzzy measure. We say that µ is a distorted proba-

bility if there exists a probability distribution P and a strictly increasing function f

with respect to P such that µ = f ◦P.

3 Generalizations of the WOWA Operator

In a recent paper [11], we introduced an extension of distorted probabilities. This

was motivated by the fact that distorted probabilities is only a small fraction [7, 11]

of all possible fuzzy measures. m-dimensional distorted probabilities permits us,

with an appropriate value m, to represent all fuzzy measures.

These measures, together with m-symmetric ones, permit us to naturally extend

WOWA and OWA operators into m-dimensional WOWA and m-dimensional OWA.

The m-dimensional ones with m = |X | are equivalent to a Choquet integral with an

unconstrained fuzzy measure. That is, a Choquet integral with an arbitrary fuzzy

measure. Definitions and results are reviewed in this section.

3.1 m-Dimensional Distorted Probabilities

We start defining m-dimensional distorted probabilities, and then review two basic

properties.

Definition 9. [11] Let {X1,X2, · · · ,Xm} be a partition of X ; then, we say that µ is an

at most m-dimensional distorted probability if there exists a function f on Rm and

probabilities Pi on (Xi,2
Xi) such that:

µ(A) = f (P1(A∩X1),P2(A∩X2), · · · ,Pm(A∩Xm)) (4)

where f on R
m is strictly increasing with respect to each variable.

We say that an at most m-dimensional distorted probability µ is an m-dimensional

distorted probability if µ is not an at most (m−1)-dimensional.
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The fact that all fuzzy measures can be represented as m-dimensional dis-

torted probabilities follows from the next proposition, that is trivial from the above

definition.

Proposition 2. [11] Every fuzzy measure is an at most m-dimensional distorted

probability with m = |X |.

Note that for n = |X |, we are considering the following partition of X : {X1 =
{x1}, . . . ,Xn = {xn}}. So, f (a1, . . . ,an) = µ(A) when ai = 1 if and only if xi ∈ A.

To complete the properties of these fuzzy measures, we have the following propo-

sition that states that m-dimensional distorted probabilities define a family of mea-

sures with increasing complexity with respect to m. This means that increasing the

value of m, the number of measures being representable increases. The following

proposition establishes this property.

Proposition 3. [11] Let Mk be the set of all fuzzy measures that are k-dimensional

distorted probabilities and let M0 be the empty set. Then Mk−1 ⊂ Mk for all k =
1,2, . . . , |X |.

3.2 m-Symmetric Fuzzy Measures

Symmetric fuzzy measures are those measures where the measure of a set depends

only on the number of elements in the set. That is, µ(A) = f (|A|) for a function f

(| · | stands for the cardinality of a set). It has been proven that an OWA operator

corresponds to a Choquet integral with respect to the following symmetric fuzzy

measure: µ(A) = ∑
|A|
i=1 wi.

The concept of symmetric fuzzy measure has been extended to m-symmetric

fuzzy measures [9, 8]. The definition is based on the set of indifference. Such set

is defined by elements that do not affect the value of the measure. That is, the ele-

ments of a set are indistinguishable with respect to the fuzzy measure.

Definition 10. [9, 8] Given a subset A of X , we say that A is a set of indifference if

and only if:

∀B1,B2 ⊆ A, |B1| = |B2|,

∀C ⊆ X \A µ(B1 ∪C) = µ(B2 ∪C)

In the case of m = 2, we have the following definition. Below is the general one.

Definition 11. [9, 8] Given a fuzzy measure µ , we say that µ is an at most 2-

symmetric fuzzy measure if and only if there exists a partition of the universal set

{X1,X2}, with X1,X2 �= /0 such that both X1 and X2 are sets of indifference. An at

most 2-symmetric fuzzy measure is 2-symmetric if X is not a set of indifference.

Definition 12. [9, 8] Given a fuzzy measure µ , we say that µ is an at most m-

symmetric fuzzy measure if and only if there exists a partition of the universal set

{X1, . . . ,Xm}, with X1, . . . ,Xm �= /0 such that X1, . . .Xm are sets of indifference.
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It is clear from this definition that all fuzzy measures are m-symmetric for a large

enough value m. This is stated in the next proposition.

Proposition 4. Every fuzzy measure µ is an at most n-symmetric fuzzy measure for

n = |X |.

Definition 13. [9, 8] Given two partitions {X1, . . . ,Xp} and {Y1, . . . ,Yr} on the finite

universal set X , we say that {X1, . . . ,Xp} is coarser than {Y1, . . . ,Yr} if the following

holds:

∀Xi∃Yj such that Yj ⊆ Xi

Definition 14. [9, 8] Given a fuzzy measure µ , we say that µ is m-symmetric if

and only if the coarsest partition of the universal set in sets of indifference contains

m non empty sets. That is, the coarsest partition is of the form: {X1, . . . ,Xm}, with

Xi �= /0 for all i ∈ {1, . . . ,m}.

It is known that symmetric fuzzy measures are a particular case of distorted prob-

abilities. This is in relation to the fact that OWA operators are a particular case of

WOWA operators. This relationship can also be established between m-symmetric

fuzzy measures and m-dimensional distorted probabilities.

Proposition 5. [10] Let µ be an m-symmetric fuzzy measure with respect to the

partition {X1, . . . ,Xm}. Then, µ is an m-dimensional distorted probability.

The reversal of this proposition is not true, as it is the case for 1-dimensional ones,

where the OWA and the WOWA are also not equivalent. The next proposition char-

acterizes one case in which m-dimensional distorted probabilities are m-symmetric

fuzzy measures.

Proposition 6. [10] Let µ be an m-dimensional distorted probability. If, pi(x j) =
pi(xk) for all x j,xk ∈ Xi and for all i = 1, . . . ,m, then µ is an m-symmetric fuzzy

measure.

3.3 m-Dimensional OWA and m-Dimensional WOWA

The definition of m-dimensional operators relies on the well known fact that OWA

operators are equivalent to Choquet integrals with respect to symmetric fuzzy mea-

sures. On the basis of this fact, m-symmetric fuzzy measures permit us to define the

corresponding generalization of the OWA operator. This is defined below.

Definition 15. [10] The m-dimensional OWA is defined as the Choquet integral

with respect to an m-symmetric fuzzy measure.

In a similar way, WOWA operators are equivalent to Choquet integrals with respect

to distorted probabilities [15]. Therefore, a Choquet integral with an m-dimensional

probability can be seen as a generalization of the WOWA operator. We give this

definition below.
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Table 1 Data for learning

uc1
uc2

. . . ucN RC uC

a1
1 a1

2 . . . a1
N p1 b1

a2
1 a2

2 . . . a2
N p2 b2

...
...

...
...

...

aM
1 aM

2 . . . aM
N pM bM

Definition 16. [10] The m-dimensional WOWA is defined as the Choquet integral

with respect to an m-dimensional distorted probability.

Definitions 15 and 16 permits us to establish the following result that is a corollary

of Proposition 5.

Corollary 1. [10] An m-dimensional OWA is a particular case of an m-dimensional

WOWA. In other words, a Choquet integral with respect to an m-symmetric fuzzy

measure is a particular case of a Choquet integral with respect to an m-dimensional

distorted probability.

Thus, the same relationship that holds for OWA and WOWA, also holds for m-

dimensional OWA and m-dimensional WOWA.

4 Learning Parameters for the WOWA Operator

Learning parameters for the WOWA operator corresponds to the process of deter-

mining its weighting vectors p and w. This problem was considered in [18] under

a supervised environment. That is, it is assumed that we have a set of examples for

which both the input data and the output data are known. Table 1 represents this

situation. Under this assumption, we select the weights p and w that minimize the

difference between the expected output and the real output.

Assuming that the difference between the expected outcome and the actual out-

come is computed using the Euclidean distance, the problem can be formalized as

follows.

Minimize DWOWA(p = (p1, . . . , pN),w = (w1, . . . ,wN)) =

∑M
j=1(∑

N
i=1 WOWAp,w(a j

1, . . . ,a
j
N)−b j)2

Sub ject to

∑N
i=1 pi = 1

∑N
i=1 wi = 1

pi ≥ 0

wi ≥ 0

(5)

To solve this problem, [18] used an hybrid approach that bootstrapped from the

optimal solution obtained for the weighted mean and the OWA operator (follow-

ing [16]), and then applied the gradient descent as proposed in [5, 6]. This hybrid
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approach is needed because the optimization problem in the case of the WOWA is

not quadratic and there is no easy way to compute its optimal solution.

These results assume that data is complete, that is, there is no missing data. In

the case of such data, we developed an approach based on genetic algorithms. Our

approach, as well as some experiments, is reported in [12].

Finally, we have also considered the process of learning m-dimensional distorted

probabilities. An approach for this type of problems is described in [11].

5 Summary

In this chapter we have described our main results about the WOWA operator, and

some of its extensions. In particular, we have described m-dimensional WOWA op-

erators. In addition, we have presented a short overview about the process of learn-

ing the weights of this operator. [20, 21] presents more details and some examples.
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Induced Ordered Weighted Averaging

Operators

Gleb Beliakov and Simon James

1 Introduction

Since the introduction of the ordered weighted averaging operator [18], the OWA

has received great attention with applications in fields including decision making,

recommender systems [8, 21], classification [10] and data mining [16] among oth-

ers. The most important step in the calculation of the OWA is the permutation of the

input vector according to the size of its arguments. In some applications, it makes

sense that the inputs be reordered by values different to those used in calculation.

For instance, if we have a number of mobile sensor readings, we may wish to allo-

cate more importance to the reading taken from the sensor closest to us at a given

point in time, rather than the largest reading.

The idea of using an auxiliary variable to re-order the inputs had its first incep-

tion in the image compression work of Mitchell and Estrakh [12] and a follow-up

application which sorted the inputs by fuzzy ranks [13]. In these applications, the

arguments were sorted by a function of their values rather than the values them-

selves. Yager and Filev then formally defined the Induced OWA (IOWA) in [24],

denoting the auxiliary variable associated with each input as an inducing variable.

The properties of the IOWA were also investigated.

In this chapter, the induced OWA as well of some of its applications will be pre-

sented. In Section 2, the necessary definitions and background will be provided,

leading to an overview of the Induced OWA, its properties and generalizations, in

Section 3. Section 4 focuses on the inducing variable, and how certain choices may

be appropriate in varying applications. A case-study of the induced aggregation

framework and its use with fuzzy integrals to enhance nearest-neighbor approxi-

mation is given in Section 5, before we summarize in Section 6.

Gleb Beliakov · Simon James

School of Information Technology, Deakin University

221 Burwood Hwy, Burwood 3125, Australia

e-mail: gleb@deakin.edu.au,sjames@deakin.edu.au

R.R. Yager et al. (Eds.): Recent Developments in the OWA Operators, STUDFUZZ 265, pp. 29–47.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

gleb@deakin.edu.au, sjames@deakin.edu.au


30 G. Beliakov and S. James

2 Preliminaries

Although the OWA is studied in a number of topic fields, it is considered here within

the framework of aggregation functions. Recent books concerning aggregation func-

tions include [2, 7, 17]. The following definitions will be useful.

Definition 1. A function f : [0,1]n → [0,1] is called an aggregation function if

it is monotone non-decreasing in each variable and satisfies f (0,0, . . . ,0) = 0,

f (1,1, . . . ,1) = 1.

Aggregation functions are classed depending on their behavior with respect to

the inputs.

Definition 2. An aggregation function f is averaging if for every x = (x1, . . . ,xn) it

is bounded by

min(x1, . . . ,xn) ≤ f (x1, . . . ,xn) ≤ max(x1, . . . ,xn).

Definition 3. A vector w = (w1, . . . ,wn) is called a weighting vector if wi ∈ [0,1]

and
n

∑
i=1

wi = 1.

For weighted means, the weight wi is some representation of the importance of

the input xi. The ordered weighted averaging function assigns its weights based on

the magnitude of the inputs.

Definition 4. Given a weighting vector w, the Ordered Weighted Averaging (OWA)

function is

OWAw(x1, . . . ,xn) =
n

∑
i=1

wixσ(i), (1)

where the σ(.) notation1 denotes the components of x being arranged in non-

increasing order xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n).

The OWA is capable of expressing a number of order statistics such as the max-

imum function where w = (1,0, ...,0) and the minimum for w = (0, ...,0,1). It is

also convenient for expressing the median wk = 1, for n = 2k + 1 (n is odd) or

wk = wk+1 = 0.5 for n = 2k (n is even) and wi = 0 otherwise. Interestingly, it

was found that the OWA operator is generalized by the Choquet integral, which

is defined with respect to a fuzzy measure. The Choquet integral also requires a re-

ordering step for its calculation, although generally the definition is provided with

the inputs in non-decreasing order (whereas for OWA, inputs are ordered in non-

increasing order). We provide the definitions for discrete fuzzy measures and the

discrete Choquet integral below.

1 It is often sufficient to simply write x(i), however here since we consider alternative order-

ings we will distinguish between non-increasing σ(.), non-decreasing τ(.), and variable

induced non-increasing η(.) and non-decreasing θ (.).
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Definition 5. Let N = {1,2, . . . ,n}. A discrete fuzzy measure is a set function2

v : 2N → [0,1] which is monotonic (i.e. v(A ) ≤ v(B) whenever A ⊂ B) and

satisfies v( /0) = 0 and v(N ) = 1.

Definition 6. The discrete Choquet integral with respect to a fuzzy measure v is

given by

Cv(x) =
n

∑
i=1

xτ(i)[v({ j|x j ≥ xτ(i)})− v({ j|x j ≥ xτ(i+1)})], (2)

where τ(.) denotes a non-decreasing permutation of the input vector x such that

xτ(1) ≤ ... ≤ xτ(n) and xτ(n+1) = ∞ by convention.

A fuzzy measure is called additive if

v(A ∪B) = v(A )+ v(B)

for any A ,B ⊂ N ,A ∩B = /0.

The discrete Choquet integral with respect to an additive fuzzy measure is a

weighted arithmetic mean.

A symmetric fuzzy measure satisfies

|A | = |B| ⇒ v(A ) = v(B).

The discrete Choquet integral with respect to a symmetric fuzzy measure is an OWA

function. The values of v(A ) are related to the weights of an OWA function by

v(A) =
|A |

∑
i=1

wi.

A related function to the Choquet integral is the Sugeno integral, which simi-

larly, is defined with respect to a fuzzy measure. Sugeno integrals are often used

for ordinal data as they are able to operate on finite ordinal scales that aren’t nec-

essarily numeric. The values of the fuzzy measure v must be commensurable with

the input vales, i.e. if the inputs can only take the values {very small,small,mid −
sized, large,very large}, then the values of the fuzzy measure must also be defined

with these terms.

Definition 7. The Sugeno integral with respect to a fuzzy measure v is given by

Sv(x) = max
i=1,...,n

min{xτ(i),v(Hi)}, (3)

where τ(.) denotes a non-decreasing permutation of the input vector, xτ(1) ≤ ... ≤
xτ(n)) and Hi = {(i), . . . ,(n)}.

2 A set function is a function whose domain consists of all possible subsets of N . For

example, for n = 3, a set function is specified by 23 = 8 values at v( /0), v({1}), v({2}),
v({3}), v({1,2}), v({1,3}), v({2,3}), v({1,2,3}).
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3 Induced OWA

With the reordering step, the OWA is no longer a standard linear combination of

weighted inputs, but rather a piecewise linear function, with its behavior differing

on different parts of the domain. The induced OWA provides a more general frame-

work for this reordering process. An inducing variable can be defined, on either

numerical or ordinal spaces, which then dictates the order by which the arguments

are permuted. After providing the definition, some important properties and gener-

alizations are discussed.

3.1 Definition

The definition of IOWA is presented here as given by Yager and Filev in [24], in

particular, their convention for ties is used.

Definition 8. Given a weighting vector w and an inducing variable z the Induced

Ordered Weighted Averaging (IOWA) function is

IOWAw(〈x1,z1〉, . . . ,〈xn,zn〉) =
n

∑
i=1

wixη(i), (4)

where the η(.) notation denotes the inputs 〈xi,zi〉 reordered such that zη(1) ≥ zη(2) ≥
. . . ≥ zη(n) and the convention that if q of the zη(i) are tied,

i.e. zη(i) = zη(i+1) = . . . = zη(i+q−1),

xη(i) =
1

q

η(i+q−1)

∑
j=η(i)

x j, (5)

An inducing variable can be based on any notion that associates a variable with each

input xi. Where xi provides information to be aggregated, zi provides some informa-

tion about xi, e.g. the importance, distance from the source, time displacement of

the reading etc. The input pairs 〈xi,zi〉 may be two independent features of the same

input, or can be related by some function, i.e. zi = fi(xi). It is conventional for in-

ducing variables used with the IOWA to permute z in non-increasing order, while

with fuzzy integrals the permutation will usually be non-decreasing. It is usually

easy to reverse the permutation by using the reciprocal or negative of all zi.

Example 1. For the weighting vector w = (0.6,0.3,0.1), and the input 〈x,z〉=
(〈0.2,3〉,〈0.7,2〉,〈0.05,8〉), the aggregated value for the induced OWA is

IOWAw(〈x,z〉) = 0.6(0.05)+ 0.3(0.2)+ 0.1(0.7)= 0.16 .
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Example 2. For the weighting vector w = (0.4,0.3,0.2,0.1), and the input

〈x,z〉 = (〈0.8,0.5〉,〈0.2,0.5〉,〈0.9,0.2〉,〈0.9,0.7〉), the aggregated value for

the induced OWA is

IOWAw(〈x,z〉) = 0.4(0.9)+ 0.3( 0.8+0.2
2

)+ 0.2( 0.8+0.2
2

)+ 0.1(0.9) = 0.7 .

3.2 Properties

One immediately notices the similarity between the IOWA in Eq. (4) and the OWA

defined in Eq. (1). With the exception of ties, the value obtained from an IOWA

will be the same as that obtained from an OWA whose weights are permuted in a

different order.

Proposition 1. Given an inducing variable z where zi = z j ⇔ i = j and a fixed input

vector x,

IOWAw(〈x,z〉) = OWAu(x),

where uπ(i) = uπ(1), ...,uπ(n) = w, and π(i) is some permutation of the values in the

weighting vector u.

Although the properties and behavior of the IOWA will be largely dependent on the

inducing variable z, in most cases it will exhibit the properties which have shown

to hold for the standard OWA, namely monotonicity, idempotency and symmetry.

There are, however, certain choices for z such that symmetry and even monotonicity

may be violated. We will discuss these properties with respect to the input vector x.

Monotonicity: For a fixed vector z, it will hold that

x ≤ y ⇒ IOWAw(〈x,z〉) ≤ IOWAw(〈y,z〉).

All values of the weighting vector w satisfy wi ≥ 0, hence an increase to any of

the xi cannot decrease the overall output. If we have wi > 0,∀i, the IOWA will be

strictly monotone-increasing.

Remark 1. In some situations, however, the inducing variable z may change

when x changes. As an example, suppose we have input pairs 〈xi,zi〉i=1,...,3 ob-

tained from 3 observation stations. The zi is the reliability of the reading xi, based

partially on the value of x as well as external information. We want to aggregate

the xi, giving preference to the most reliable readings. We hence use an IOWA

which orders the observations from most to least reliable in accordance with the

values zi, and define a weighting vector with decreasing weights. For a given

reading, the input vector has an induced order of z2 ≥ z1 ≥ z3, so the value x2 is

allocated the largest weight w1. Now suppose the value of x2 increases to a value
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that is unusual at Station 2 and is hence less reliable. The value of z2 decreases

and the induced order is now z1 ≥ z2 ≥ z3. This results in a smaller weight being

given to the input x2 and monotonicity is violated.3

Averaging / Idempotency: The positive and normalized (i.e. ∑n
i=1 wi = 1) values

of the weighting vector w ensure that the IOWA function will be both averaging

and idempotent, i.e.,

min(x) ≤ IOWAw(〈x,z〉) ≤ max(x),

IOWAw(〈t,z1〉,〈t,z2〉, ...,〈t,zn〉) = t.

Remark 2. In the study of aggregation functions, averaging behavior and idem-

potency are usually considered to be equivalent. Averaging behavior necessarily

implies idempotency, however the property of idempotency is not sufficient for

averaging behavior without monotonicity. As discussed previously in Remark 1,

an IOWA-type function may not necessarily be monotone, however this does not

cause either of these properties to be lost.

Symmetry: With respect to the input pairs 〈x,z〉, the initial indexing is unimpor-

tant, e.g. for n = 2,

IOWAw(〈x1,z1〉,〈x2,z2〉) = IOWAw(〈x2,z2〉,〈x1,z1〉).

With respect to the input vector x, however, certain choices of z may result in loss

of the symmetry property. For instance, the zi may be constant or a function that

is somewhat dependant on the initial indexing, e.g. zi = f (i). As will be shown

below, inducing variables that give a fixed calculation order result in weighted

arithmetic means. If such instances arise in practice, it may make more sense to

perceive the problem in terms of arithmetic means with a particular weight asso-

ciated to each input, rather than defining a so-called inducing variable.

Homogeneity and Shift-Invariance: Standard OWA functions are both homo-

geneous and shift-invariant4, i.e.

λ [OWAw(x)] = OWAw(λ x),∀λ ∈ [0,1] (homogeneity),

OWAw(x)+ λ = OWAw(x1 + λ , ...,xn + λ ),∀λ ∈ [−1,1] (shift-invariance).

For the induced OWA, this will once again be somewhat dependent on the choice

of inducing variable. The zi may be specifically associated with each xi, but

needn’t be a function of the actual values, i.e. xi = x j does not necessarily imply

3 The mean of Bajraktarevic [9], is another mean where the weights may vary depending on

the value of xi. It also fails the monotonicity condition, and is only considered an aggrega-

tion function for special cases.
4 These properties of the OWA makes it easy to consider input vectors using an alternative

scale to the unit interval. In these cases, λ takes values accordingly.
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zi = z j. Given any input pair 〈xi,zi〉, let zi+λ be the value associated with the input

xi + λ and zλ i be the value associated with the input λ xi.

The induced OWA will be shift-invariant if:

zi < z j ⇐⇒ zi+λ < z j+λ ,∀i, j.

The induced OWA will be homogeneous if:

zi < z j ⇐⇒ zλ i < zλ j,∀i, j(λ > 0).

In other words, provided λ does not change the relative ordering, IOWA will be

stable for translations and homogenous. It should be noted that equalities also

need to be preserved, i.e. zi = z j ⇔ zλ i = zλ j (for homogeneity), which is im-

plied by the above equivalence relations.

Duality: As with the standard OWA, the dual of an IOWA can be defined as the

IOWA with respect to the reverse weighting vector, wd = (wn,wn−1, ...,w1). It is

also possible to define the dual function of an IOWA by the inducing variable zd

which induces the reverse ordering to z.

Special Cases: The IOWA generalizes many important aggregation functions.

We provide some of its special cases here (for generalizations of the Induced

OWA, see Section 3.3).

Standard OWA: The Induced OWA includes the standard OWA as a special

case whenever the ordering of the inducing variable corresponds exactly with the

order of the input variable, e.g. zi = xi. Clearly, the special cases of the OWA: the

minimum, maximum and median, can be obtained through this choice and the

appropriate selection of the weighting vector w;

Reverse OWA: The reverse OWA is a function which orders the inputs in non-

decreasing order x(1) ≤ ... ≤ x(n). The inducing variable z can hence be chosen

such that this order is achieved, e.g. zi = 1− xi;

Weighted Arithmetic Mean: Any selection of z that maintains the order of the

input components zi when arranged in non-increasing order, e.g. zi = n + 1− i

will result in the weighted arithmetic mean ∑n
i=1 wixi.

3.3 Induced Generalized OWA

Weighted quasi-arithmetic means are defined with the help of generating functions

g : [0,1] → [−∞,∞] and generalize the weighted arithmetic mean. Many impor-

tant families of means, including geometric, harmonic and power means have been

found to correspond to special cases of the quasi-arithmetic mean. Similarly, the



36 G. Beliakov and S. James

generalized OWA function was introduced to generalize the piecewise-linear OWA

function. We give the definition here.

Definition 9. Let g : [0,1] → [−∞,∞] be a continuous strictly monotone function

and let w be a weighting vector. The function

GenOWAw,g(x) = g−1

(

n

∑
i=1

wig(xσ(i))

)

(6)

is called a generalized OWA (also known as ordered weighted quasi-arithmetic mean

[3]). As for OWA, xσ(i) denotes the i-th largest value of x.

Following from this, Chiclana et al. introduced the natural extension of the IOWA

to the IOWG [4]. Of course, this corresponds to a special case of the Induced gen-

eralized OWA.

Definition 10. Given a weighting vector w, an inducing variable z and a continuous

strictly monotone function g : [0,1] → [−∞,∞], the Induced Generalized OWA (I-

GenOWA) function is

I-GenOWAw,g(〈x,z〉) = g−1

(

n

∑
i=1

wig(xη(i))

)

(7)

As for IOWA, η(.) notation denotes the inputs 〈x1,z1〉 reordered such that zη(1) ≥
zη(2) ≥ . . . ≥ zη(n) and Eq. (5) is employed for ties.

The induced generalized OWA was studied in [11]. With the I- GenOWA func-

tion, we can essentially use any quasi-arithmetic mean with respect to an order-

inducing variable. Special cases of quasi-arithmetic mean include power means and

harmonic means, however we will provide only the case for the geometric mean,

since many studies (e.g. [4])have investigated its use and properties.

Definition 11. For a given weighting vector w and an inducing variable z, the IOWG

function is

IOWGw(〈x,z〉) =
n

∏
i=1

x
wi

η(i)
. (8)

where η(.) notation denotes the inputs 〈x1,z1〉 reordered such that zη(1) ≥ zη(2) ≥
. . . ≥ zη(n). The same convention (Eq. (5)) is employed for ties as with IOWA and

I- GenOWA.

3.4 Induced Fuzzy Integrals

It is well known that the OWA function is generalized by the Choquet integral, which

also has a reordering step in its calculation. In [19], Yager made extensions to the

induced Sugeno integral and in [22], the induced Choquet integral was presented.
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Definition 12. The induced Choquet integral with respect to a fuzzy measure v and

an order inducing variable z is given by

ICv(〈x,z〉) =
n

∑
i=1

xθ(i)[v({ j|z j ≥ zθ(i)})− v({ j|z j ≥ zθ(i+1)})], (9)

where the θ (.) notation denotes the inputs 〈x1,z1〉 reordered such that zθ(1) ≤ zθ(2) ≤
. . . ≤ zθ(n) and zθ(n+1) = ∞ by convention.

The same convention can be used for ties, and note again that the calculation

of the Choquet integral is usually performed by firstly arranging the arguments in

non-decreasing order - in this case with respect to the inducing variable z.

As the Choquet integral generalizes the OWA, motivation for extensions to the

induced Choquet integral occur naturally in application. The fuzzy measure used in

calculation still plays the same role, giving a weight to each coalition and allowing

for interaction. Consider the final component in calculation of the standard Cho-

quet integral, xτ(n)v( j|x j = xτ(n)). The highest input is multiplied by the value of

its corresponding singleton. This means that if v( j) is high, a high score for x j will

be sufficient for an overall large score. In the case of the induced Choquet integral,

however, this final term will be xθ(n)v( j|z j = zθ(n)). If v( j) is high in this instance,

a high score for z j results in the output being heavily influenced by the input x j,

whether it is small or large, i.e. f (〈x,z〉) ≈ x j. Such examples arise naturally in

nearest-neighbor rules as we will discuss later.

The Sugeno integral is similar to the Choquet integral, in that it is defined by a

fuzzy measure v and is calculated with a reordering of the input vector. The Sugeno

integral is based on operations of min and max and hence is capable of handling

non-numerical inputs, provided they are taken from a finite ordinal scale.

Definition 13. The induced Sugeno integral with respect to a fuzzy measure v and

an inducing variable z is given by

ISv(〈x,z〉) = max
i=1,...,n

min{xθ(i),v(Hi,z)}, (10)

where the θ (.) notation denotes the inputs 〈x1,z1〉 reordered such that zθ(1) ≤ zθ(2) ≤
. . . ≤ zθ(n), with Hi,z = {θ (i),θ (i + 1), . . . ,θ (n)}. If q of the zi are tied, i.e. zθ(i) =
zθ(i+1) = ... = zθ(i+q−1),

x j ≤ xk ⇒ zθ( j) ≤ zθ(k)∀ j,k = θ (i), ...,θ (i+ q−1).

Note here that a different convention is employed for ties, namely that if the inducing

variables are tied, the arguments within ties are reordered according to the relative

values of xi.

It might be noted that the circumstances under which an induced OWA could

be applied may also allow for the application of the induced Choquet integral. The

induced Sugeno integral, however, may be applied to situations which are quite
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different, where the semantics of an OWA function might not make sense. In par-

ticular, Sugeno integrals are capable of operating on values expressed linguistically

e.g. {very good,good, f air, poor,very poor}. This is one reason why ties are dealt

with differently, since with linguistic variables it might not make sense to take the

average. The induced Sugeno integral has a tighter bound than that expressed by the

averaging property. Yager noted in [19] that the bounds on ISv are

min{x} ≤ ISv(〈x,z〉) ≤ xθ(n).

In other words, the Sugeno integral is bounded from above by the input associated

with the largest inducing variable input zθ(n), as well as from below by the minimum

argument value of x.

4 Choices for the Inducing Variable

The process by which the arguments are reordered is clearly of fundamental concern

when considering induced aggregation functions. The choice for the inducing vari-

able z will clearly depend on the situation to be modeled. In many cases, we may

wish to give weight to observations that are more similar or “closer” to an object of

interest x̄, so we will let zi represent some function of distance, i.e. zi = f (|xi − x̄i|).
In other cases, the zi may be some representation of the reliability of the value xi. If

the zi are constant, this essentially models a weighted arithmetic mean, however in

many cases the accuracy of an observation may fluctuate. We consider some typical

examples where induced aggregation functions can be useful, with particular focus

on the choice of z.

4.1 Standard Auxiliary Ordering

The inducing variable may simply be an attribute associated with the input x that

is not considered in the actual aggregation process, but is informative about the

object itself. For instance, consider the peer-review process for some journal and

conference papers. Each reviewer allocates a score to each criterion, e.g. originality,

relevance etc. Sometimes the reviewer also provides his/her evaluation of their own

familiarity with the topic, e.g. very familiar, only marginally familiar etc. This last

input, of course is not taken into account when aggregating the scores for submis-

sion, however could be taken into account in the weight allocation process. To give

an overall score for each criterion, we can then use an IOWA where xi is the score

allocated by the i-th reviewer, zi is the familiarity of the reviewer with the topic and

w is a weighting vector with non-increasing weights such that the heavier weight is

given to experts with more expertise on the given paper.

This allocation of weighting is different to providing the expert herself a weight

based on her expertise, as the variability of z suggests that this may fluctuate de-

pending on the paper she is marking.
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Example 3. An editor for a journal considers two papers which have been

evaluated by the same three reviewers.

paper 1 paper 2

score expertise score expertise

(x) (z) (x) (z)

reviewer 1 70 8 92 4

reviewer 2 85 7 62 8

reviewer 3 76 4 86 5

Using the weighting vector w = (0.5,0.3,0.2), the score for the first paper is

IOWAw(〈x,z〉) = 0.5(70)+ 0.3(85)+ 0.2(76)= 75.7 .

The score for the second paper is

IOWAw(〈x,z〉) = 0.5(62)+ 0.3(86)+ 0.2(92)= 75.2 .

4.2 Nearest-Neighbor Rules

Nearest-neighbor methods and their variants have been popularly applied to clas-

sification and function approximation problems. The underlying assumption is that

objects described similarly by their features will belong to the same class or have the

same function output. For instance, consider a classification problem that requires

an object x̄ = (x1,x2, ...,xp) to be assigned to a class Y1 or Y2. Given a number of

training data D = {(x1,y1), . . . ,(xK ,yK)}, we can identify the object x j most similar

to x̄ and allocate the same label. Extensions can be made such that the class labels

of a number of the objects in D are aggregated to determine the class of x̄. Induced

aggregation functions can be used to model this situation, with the weights and in-

ducing variable often reflecting the similarity of each of the training data. Of course,

the way similarity is calculated becomes very important.

The nearest-neighbor approach can also be used for function approximation. Sup-

pose xi ∈ [0,1]p and yi ∈ [0,1]. We assume the training data are generated by some

function f (xi)+ εi = yi where εi are random errors, and then approximate yx̄ by ag-

gregating the yi of the most similar xi. The induced OWA and induced aggregation

functions in general can be used in this context, where the input vector comprises

the yi values taken from D and z represents a similarity or distance function. For

example, a standard representation of the nearest-neighbor model is,

yx̄ = IOWAw(〈y,z〉) =
K

∑
i=1

wiyη(i),
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with w = (1,0, ...,0), and zi = 1
||xi−x̄|| , the reciprocal of Euclidean distance between

x̄ and xi associated with yi.

A function which approximates yx̄ based on the k nearest-neighbors (known

as the kNN method) could be calculated using the same function, with wi =
1
k
, i = 1, ...,k,wi = 0 otherwise. One can also consider weighted versions where the

weights gradually decay, i.e. w1 ≥ w2 ≥ ... ≥ wK , e.g. wi =
2(k+1−i)

k(k+1) .

There exist alternative choices for the distance function, in particular, there are

many suitable metrics depending on the spatial distribution of the data. Yager has

studied the use of IOWA for modeling these situations in [19, 20, 22, 23] as well as

in [24] with Filev.

Time-series smoothing can also be handled within the framework of induced

aggregation operators. It is similar to a nearest-neighbor problem with a single-

dimension variable, t. In time-series smoothing, we want to estimate or smooth

the value yt̄ at a point in time t̄ based on the values yi obtained at previous times

ti. Induced OWA operators allow a simple framework for modeling this smooth-

ing process. For instance, the 3-day simple moving average on a data set D =
{〈t1,y1〉, . . . ,〈tn,yn〉} can be modeled by IOWAw(t̄), with w = ( 1

3
, 1

3
, 1

3
,0,0, ...,0),

zi = 1
t̄−ti

.

4.3 Best-Yesterday Models

Extrapolation problems involve predicting future values based on previous observa-

tions. Weather prediction is an important example. In [24], Yager and Filev present

the best-yesterday model for predicting stock market prices based on the opinions of

multiple experts. We could aggregate their scores using a weighted mean, allocating

a weight to the experts who seem more reliable, however an alternative is to use an

IOWA operator, inducing the input vector based on the most accurate predictions

from previous days. We consider an adapted example from [24] here.

Example 4. We have four experts who, daily, predict the next day’s opening

share price of the FUZ Company. Our data then consists of the predictions

each day for each expert i = 1, ...,4, xi(t) and the actual stock price of the

FUZ Company each day y(t). Our aggregated prediction could be the value

obtained from the induced OWA

IOWAw(t) =
4

∑
i=1

wixη(i)(t),

where zi = −|xi(t −1)− y(t−1)| and the weights wi are non-increasing. This

allocates more importance to the expert whose predictions were closest to the

actual price yesterday.
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Of course, we could order our experts by their accuracy for the past 2, 3, etc.,

days, or determine the weights using optimization techniques. In the Yager and Filev

example, for instance, the fitted weighting vector was w = (0.2,0.12,0.08,0.6) i.e.,

the best fitting weighted model gave more influence to the expert who was furthest

from the mark the previous day.

4.4 Aggregation of Complex Objects

In [22], Yager presents an interesting application of induced aggregation functions:

that of aggregating complex objects whose ordering is not easily defined. For in-

stance, suppose we have a number of matrices M1, ...,Mn and we want some repre-

sentative output Agg(M1, ...,Mn) = A. Many basic aggregation functions and their

extensions to matrix operations exist, e.g. the arithmetic mean, weighted arithmetic

mean, however it would make no sense to apply a standard OWA in this case as no

order as such exists among the Mi. In some situations, an OWA-type aggregation

may be desired. We provide again another of Yager’s examples.

Suppose we have a number of matrices Mi, each of which represents an expert’s

estimation of a probability distribution. We can measure the certainty of the expert’s

estimate with measures such as entropy, and induce the ordering from this mea-

sure. This allows us to then define a non-increasing weighting vector so that experts

whose estimates are more certain can be given more importance. We note that in this

example, the inducing variable z is some function of the values themselves, rather

than an auxiliary input.

4.5 Group Decision Making

IOWA operators can be useful in group decision making (GDM) problems for mod-

eling concepts such as consensus. In [5], the use of different inducing variables was

considered for group decisions based on pair-wise preference matrices modeling

multiple alternatives. The usual approach to varying weights is to have these re-

flect the importance of each expert. In the context of preference matrices, however

it might also make sense to allocate importance to each input based on the consis-

tency of each expert, inferred from how well their preferences satisfy transitivity etc.

Another of the inducing variables presented took into account the overall preference

for a particular alternative expressed by each expert.

The standard OWA is able to model majority concepts such as “most” or “80%”

using weighting vectors based on linguistic quantifiers. In [15], it was proposed

that consensus might be better achieved with inducing variables reflecting the

support for each individual score. Consider the evaluations of 5 experts, x =
(0.3,0.1,0.7,0.9,0.8). It makes sense that the score given by expert 5 is more rep-

resentative of the group than say, expert 2. The support for evaluation xi from x j can

be modeled simply using:
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Sup(xi,x j) =

{

1, if |xi − x j| < α;

0, otherwise,

where α is a desired threshold. The inducing variable based on support can then be

given by,

zi =
n

∑
j=1, j �=i

Sup(xi,x j).

In turn, weighting vectors with non-increasing weights can be specified such that

experts with more support are allocated higher importance.

4.6 Multiple Inducing Variables

In [14], a generalization to multiple inducing variables was considered. Suppose we

have N priorities and each of the inputs xi are associated with N ratings or degrees of

satisfaction with respect to these priorities. In this context, the order can be induced

by some aggregation of these N scores, and a single inducing variable z∗ can be

considered as the vector of aggregated results.

Example 5. We want to measure the pollution levels at a beach, and we have

multiple mobile sensors that report to a central computer for analysis. The

reliability of the sensor readings depends somewhat on the time since they

were transmitted, as well as the distance traveled in transmission and the local

conditions as they were sent - for instance, varying water pressure, presence

of animals etc. We hence decide to aggregate the pollution levels with an

IOWAw(〈x,z∗〉) where z∗i = f (zi1,zi2,zi3) is the aggregated inducing input

associated with each pollution level input xi.

In kNN classification and approximation methods, the distance between data

points can be considered within this framework, where each dimension constitutes

a separate inducing variable. It is noted in [14] that individual attributes may not be

commensurable, in which cases the usual conceptions of distance cannot be used.

The inducing variable could then be a weighted function of the distances in each

dimension.

5 Case Study: Induced Choquet Integral for Function

Approximation

In [1], the induced Choquet integral was used to enhance the performance of

kNN-approximation. In nearest-neighbor approximation, the function values of the

“closest” training data (usually calculated in some norm) are used to predict the

value of an unknown datum. The implementation is quite simple, and with enough
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training data can obtain reasonable accuracy. One problem, however (particularly

with sparse training data) is that neighbors may be skewed or correlated, contribut-

ing redundant information. Consider the data presented in Fig. 1(a). All the nearest

neighbors happen to be on one side of the point in question, whereas there are plenty

of neighbors on the other side whose votes are not counted. In Fig. 1(b), we see that

when predicting local weather, we should take into account where the predictions

are coming from as well as how far away. In these situations it is desirable to include

information provided by the neighbors which are close to the point in question but

also distributed all around it.

(a) (b)

Fig. 1 (a) An example (from the area of remote sensing, the data are taken by an airplane fly-

ing over a region in two directions) illustrating the inadequacy of the kNN method. The value

at x is determined exclusively by the data represented by filled circles, i.e. is extrapolated

and not interpolated. (b) An example where data from nearest neighbors may be correlated.

Cities that are close in proximity are likely to have similar weather, e.g. when predicting the

weather for Clunes, we want to take into account the fact that Avoca and Maryborough are

quite close together.

When considering kNN-approximation as modeled by the induced OWA, the

weights wi, ...,wk represent the relative importance of the observation (xη(i),yη(i))
when we are aggregating. For standard kNN, these weights are equal, however de-

creasing weighting vectors can be used to reflect how close the data point xη(i) is to

the point x̄ in question. The main idea of the approach proposed in [1] is to replace

the induced OWA with the induced Choquet integral so that the relative positioning

of the data can be taken into account, not just the distance to the point in question.

Given a set of K training data, D = {(xi,yi)}, i = 1, . . . ,K, and an inducing

vector given by zi = 1
||xi−x̄|| , an unknown data point x̄ is assigned the value yx̄ =

ICv(〈y1,z1〉, ...,〈yk,zk〉). The aim is to define a fuzzy measure, which reflects the

importance of each of the k-nearest neighbors based on their proximity to x̄ as well

as taking into account the degree to which they contribute redundant or complemen-

tary information. We approximate the importance of each of the k-nearest-neighbors
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by way of the Shapley value, which measures the average contribution of each of

the inputs.

Definition 14. Let v be a fuzzy measure. The Shapley index for every i ∈ N is

φ(i) = ∑
A ⊆N \{i}

(n−|A |−1)!|A |!

n!
[v(A ∪{i})− v(A )].

The Shapley value is the vector φ(v) = (φ(1), . . . ,φ(n)). It satisfies ∑n
i=1 φ(i) = 1.

In turn, the interaction index for pairs, which verifies Ii j < 0 as soon as i, j are

positively correlated (negative synergy) and Ii j > 0 for negatively correlated inputs

(positive synergy), can be used to model redundancies in the data, for example,

when two of the data are in the same position.

Definition 15. Let v be a fuzzy measure. The interaction index for every pair i, j ∈
N is

Ii j = ∑
A ⊆N \{i, j}

(n−|A |−2)!|A |!

(n−1)!

(

∑
B⊆{i, j}

(−1)|B|v(A ∪B)

)

(11)

Each of the φ(i) are calculated based on normalizing the vector of recipro-

cal Euclidean distances, while the interaction indices Ii j are approximated accord-

ing to the angle, αi j between the vectors xi − x̄ and x j − x̄. This is done using

Ii j = max{cos(αi j),0}, where the cosine can be calculated using the standard scalar

product and Euclidean distance operations. From these values alone, a unique 2-

additive measure v (possibly non monotonic) [6] can be defined. In order to ensure

monotonicity, the actual values φ(i) and Ii j used for the aggregation process are

chosen using optimization methods which minimize the residuals between the val-

ues determined from distance and angle calculations, and those which satisfy the

properties of a monotonic fuzzy measure. See Fig. 2-4 for graphical comparisons of

IOWA-based kNN approximation and IC-based kNN approximation. The test data

Fig. 2 Interpolation by IOWA-based kNN method (left) with k=3 (the best k for this data

set) and IC-based kNN method (right) with k = 15 for the 1-dimensional data, test function

f1(x) = max(x sin(πx),x2).
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Fig. 3 The test function (left) and IOWA-based kNN method for k = 5. With standard kNN

methods, accuracy is sensitive to the choice of k, increasing k does not always yield better

results.

Fig. 4 Interpolation of 2D-data by the IOWA-based kNN method (left) and IC-based method

(right) with k=50. The training data is structured similar to Fig. 1(a) and tested against the

function in Fig. 3.

points are interpolated. The method was found to significantly reduce the root mean

squared error (RMSE) for 1-, 2- and 3-dimensional test examples.

6 Summary

This chapter has presented the induced ordered weighted averaging function and

many of its generalizations. This type of aggregation provides a framework that is

useful for modeling various situations, which can benefit from the existing research

concerning the OWA and similar aggregation functions. An important issue, central
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to the development of induced-order aggregation methods, is how best to choose

the inducing variable. It seems that this line of research, in conjunction with the

identification of weights, may yield valuable results for future applications.
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A Review of the OWA Determination Methods:

Classification and Some Extensions⋆

Xinwang Liu

Abstract. The OWA operator determination is an important prerequisite step for

OWA operator applications. With the application of OWA operator in various

areas, the OWA operator determination becomes an active topic in recent

years. Based on recent developments, the paper give a summary on the OWA

determination methods in classification way: the optimization criteria methods, the

sample learning methods, the function based methods, the argument dependent

methods and the preference methods. Some relationships between the methods

in the same kind and the relationships between different kinds are provided. An

uniform framework to connect these OWA determination methods together is also

attempted. Some extensions, problems and future research directions are given with

discussions.

Keywords: OWA operator, determination methods, optimization methods.

1 Introduction

The ordered weighted averaging (OWA) operator, which was introduced by Yager

[68], has attracted much interest among researchers. It provides a general class

of parameterized aggregation operators that include the min, max, average. The

OWA operators have been used in a wide range of applications in the fields such

as multicriteria and group decision making [2, 3, 16, 17, 24, 25, 27, 61], database

query management and data mining [26, 52, 56, 57, 75, 84, 85], forecasting [80],
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data smoothing and data mining [56, 80], approximate reasoning [15], approximate

reasoning, fuzzy system and control [32, 76, 83] and so on. The use of OWA

operator is generally composed of the following three steps [65]:

1. Reorder the input arguments in descending order.

2. Determine the weights associated with the OWA operator by using a proper

method.

3. Utilize the OWA weights to aggregate these reordered arguments.

It is clear that the actual type of aggregation performed by an OWA operator depends

upon the form of the weight vector [14, 19–22, 71, 72, 74]. The weight vector

determination is usually a prerequisite step in many OWA related applications,

and it has become an active topic in recent years [1, 31, 36, 60, 65]. One of

the appealing points of OWA operators is the concept of orness [68]. The orness

measure can establish how “orlike” an operator is, which can be interpreted as the

mode of decision making by conferring the semantic meaning to the weights used

in the aggregation process [20, 22, 74, 76, 77]. A commonly used method for the

OWA operator determination is to obtain the desired OWA operator under a given

level of orness [19–22, 36, 46, 81], which is usually formulated as a constrained

optimization problem. The objective to be optimized can be the (Shannon) entropy

[19, 21, 36, 46], the variance [22, 31], the maximum dispersion [7, 60], the

(generalized) Rényi entropy [41], the total square deviation or the Chi-square [59]

or even the preemptive goal programming [5, 61]. O’Hagan [46] suggested the

problem of constraint nonlinear programming with a maximum entropy procedure,

and the solution is called a MEOWA (Maximum Entropy OWA) operator. Filev

and Yager [19] further proposed a method to generate the MEOWA operator by

an immediate parameter. Fullér and Majlender [21] transformed the maximum

entropy model into a polynomial equation, which can be solved analytically. Liu

and Chen [36] proposed general forms of the MEOWA operator with a parametric

geometric approach, and discussed its aggregation properties. Besides the maximum

entropy OWA operator, Fullér and Majlender [22] gives the minimal variability

OWA operator problem in quadratic programming, and proposed an analytical

method for solving it. Liu [31] gave this OWA operator generating method with

the equidifferent OWA operator, which is an extension of [22]. A closely related

work was done by Wang and Parkan [60]. They proposed a linear programming

model with a minimax disparity approach to obtain the OWA operator under the

desired orness level. Liu [33] proved the solution equivalence of the minimum

variance problem and the minimax disparity problem. Amin and Emrouznejad [7]

extended the minimax disparity approach. Majlender [41] proposed a maximum

Rényi entropy OWA operator problem with an exponential objective function, which

can include the maximum entropy and the minimum variance problem as special

cases, and an analytical solution was proposed. Wang, Luo and Liu [58] proposed

least squares deviation and Chi-square models to produce the OWA operator weights

with a given orness degree. Recently, Liu [34] gave a more general form of OWA

operator determination methods with a convex objective function, which can include

the maximum entropy and minimum variance problems as special cases. Some
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properties were discussed and the solution equivalence to the minimax problem

was also proved. From [34], we can see that the adjacent relationships of OWA

operator elements can be changed by selecting different objective functions, and

some function forms were proposed. The summarizations of some OWA operator

determination methods were also given in [37, 65].

In spite of the optimization methods, generating OWA operator from empirical

data is another classical technique for aggregation operator determination. From

the point of view of applications, a particular operator has to be chosen to model

correctly a particular situation [11]. This can be done by fitting an operator from

a given class or family to some sort of empirical data: either observed or desired

output of the system. It is also an active topic in recent years [9, 10, 20, 82]. This

is also a commonly used technique for other aggregation operators [10, 54–56].

For a given empirical data set, the OWA operator determination can be formulated

as an least square problem or some other criteria [9, 10]. Some OWA operator

determination methods from examples are summarized by Beliakov, Pradera and

Calvo recently [12].

Another important closely related topic is the OWA aggregation with Regular

Increasing Monotone (RIM) quantifier, which was also proposed by Yager [70],

various OWA operator weight series was proposed [69]. Based on the quantifier

guided OWA aggregation method, Liu [30, 32] further analyzed the relationship

between the OWA operator and the RIM quantifier with the generating function

technique. The maximum entropy RIM quantifier and minimum variance RIM

quantifier were proposed, and some properties of them were discussed [30, 35].

Xu [65] introduced a procedure for generating the symmetric OWA operator based

on normal distribution. Yager [78] proposed a general form of symmetric OWA

operator as the centered OWA operator with an additional monotonic condition.

Sadiq and Tesfamariam [51] extended the OWA generating method from Gaussian

distribution to the non-symmetric one with some ordinary probability density

functions. Recently, Yager [79] proposed the OWA operator determination methods

with the stress function method. An important advantage of the stress function based

OWA determination method is that it can stress the places where the significant

values of the OWA weighting vector to be generated. Some typical stress function

shapes were discussed. These can be classified to the function based OWA operator

determination methods.

In the above three kinds of OWA operator determination methods, a common

feature is that the OWA weight elements and the aggregated elements are treated in

a separate way. The weights obtained with these methods are used to aggregate

the input data. However, the characteristics of the input data is not considered

in the OWA determination. Next, we will give two other kinds of input related

OWA operator determination methods: The argument dependent methods and the

preference relation methods.

In [69, 81], Yager and Filev proposed the argument dependent method to

generating OWA operator weights with power function of the input data. It is called

BADD (BAsic Defuzzification Distribution) OWA operator. Unlike the ordinary

OWA operator, the aggregated elements is neat that the input elements do not
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have to be ordered. It was used to aggregate the linguistic labels represented by

partially ordered fuzzy numbers in fuzzy group decision making problems [43, 44].

In [38], Liu and Lou extended it to the weighted function average operator, which

was called the Additive Neat OWA (ANOWA) operator. An orness measure for the

weighted function average operator is proposed. Xu [64] proposed dependent OWA

operator that can relieve the influence of unfair arguments on the aggregated results.

Similarly, Wu, Liang and Huang [62] proposed an argument dependent approach

based on normal distribution, which assigns very low weights to these false or

biased opinions to relieve the influence of the unfair arguments. Peláez and Doña

[47] proposed a majority additive-ordered weighting averaging operator based on

the majority process. Boongoen and Shen [13] propose a cluster based argument

dependent OWA operator called Clus-DOWA, which applies distributed structure of

data or data clusters to determine its weight vector.

The preference based OWA determination methods utilize the preference

information as inputs, that the preference relations between alternatives can be

revealed. With these preference relation, the model to determine the most suitable

OWA operator to these preference relations can be constructed. The preference

based OWA operator methods can be seen as an extension of the empirical data,

where the empirical data is replaced by the preference matrix of the experts. There

is not systematic methods to obtain the OWA operator from the preference relation.

Ahn [2] present a method for determining the OWA weights, when the preferences

of some subset of alternatives over other subset of alternatives are specified in a

holistic manner across all the criteria. Emrouznejad [18] proposed MP-OWA (The

most preferred OWA) operator, where the preferences of alternatives across all the

criteria are considered and based on the most popular criteria for all alternatives.

Comparing these OWA determination methods, they are proposed at different

time, based on different ideas and also develops in different extent. Some

methods and models are relatively mature, which are studied comprehensively

and profoundly with some systematic results, such as the optimization based

determination methods. While some others is just at their very beginning, there is

neither clear ideas nor specific methods to deal with them, such as the preference

based OWA determination methods. Some others are developed in the stage

between these two extremes, such as the sample learning methods and the argument

dependent methods.

Next, we will give a review on the existing OWA determination methods

for different classification in a sequential way. Some connections between these

methods and between different methods classes are proposed. Some extensions of

these methods are provided, especially about the optimization methods. Some future

problems and possible research directions are also pointed in a personal view. It

should also be noted that, despite these OWA determination methods are reviewed

in a classification way, there is not clear cut edges among different classes. Some

other criteria and classification methods may also exist with different points of view.
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2 The Classified Summarization of OWA Determination

Methods

2.1 Preliminaries

An OWA operator of dimension n is a mapping FW : Rn → R that has an associated

weighting vector W= (w1, w2, . . . , wn) having the properties

w1 + w2 + · · · + wn = 1; 0 � wi � 1, i = 1, 2, . . . , n

and such that

FW (X) = FW (x1, x2, . . . , xn) =

n∑

j=1

wjyj (1)

with yj being the jth largest of the xi.

The degree of “orness” associated with this operator is defined as:

orness(W ) =

n∑

j=1

n − j

n − 1
wj (2)

The max, min and average correspond to W ∗, W∗ and WA respectively, where

W ∗ = (1, 0, . . . , 0), W∗ = (0, 0, . . . , 1) and WA =
(

1
n , 1

n , . . . , 1
n

)
, that is

FW∗
(X) = min

1�i�n
{xi}, FW∗(X) = max

1�i�n
{xi} and FWA

(X) = 1
n

∑n
i=1 xi =

A(X). Obviously, orness(W ∗) = 1, orness(W∗) = 0 and orness(WA) = 1
2 .

From (2), some properties about OWA operator are listed in the following.

Proposition 1. 0 � orness(W ) � 1.

Proposition 2. [69, p.127] For OWA operator weighting vector W =

(w1, w2, . . . , wn), orness(W ) = α, then for the reverse order of W , W̃ =

(wn, wn−1, . . . , w1), orness(W̃ ) = 1 − α.

Proposition 3. If X = (x1, x2, . . . , xn) is evenly distributed on [0, 1], that is xi =
n−i
n−1 , then FW (X) = orness(W ).

2.2 The Optimization Based Method

The optimization method is a commonly used technique for OWA determination.

From the definition of OWA operator, the elements should be none negative and

should sum to a unit, that is wi � 0 and
∑n

i=1 wi = 1. But this condition is

not sufficiently to determine the OWA elements. An given orness level of OWA

operator can be assigned. However, the OWA operator with given orness level still

can not be uniquely determined unless in the two dimensional case. A commonly

used technique is to let the OWA operator to satisfy an additional optimization

criterion.
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The maximum entropy OWA determination under given orness level can be

formulated as follows [19, 46]:

max −
n∑

i=1

wi lnwi

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1 .

wi � 0 , i = 1 , 2 , . . . , n.

(3)

Various methods for its optimal solutions were discussed [19, 21, 36]. The optimal

solutions has geometric form with wi+1
wi

= q that can be expressed as[36]:

wi =
qi−1

∑n−1
j=0 qj

(4)

where q is the root solution of (5).

(n − 1)αqn−1 +
n∑

i=2

((n − 1)α − i + 1) qn−i = 0 (5)

Remark 1. With the logarithmic function in the objective function of (3), we must

have wi > 0(i = 1, 2, . . . , n). Furthermore, the two special cases α = 0 and α = 1,

which correspond to the unique OWA weight vectors W∗ and W ∗ with zero value

elements respectively, also can not be included in the problem.

Another kind of OWA operator determination method is the minimum variance

problem for the OWA operator which was proposed by Fullér and Majlender [22]:

min D2(W ) =
1

n

n∑

i=1

w2
i − 1

n2

s. t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(6)

Ahn and Park [4] also call it the least square OWA operator when the objective

function is replaced with
∑n

i=1

(
wi − 1

n

)
=
∑n

i=1 w2
i − 2

n + 1
n2 , but the same

optimal solution keeps the same.
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Liu [31] proved that the optimal solution of (6) is in equidifferent form and can

be obtained in with the following algorithm:

Algorithm (1)

Step 1: Determine m with (7).

m =

⎧
⎪⎨
⎪⎩

[3α(n − 1) + 2] if 0 < α < 1
3 ;

n if 1
3 � α � 2

3 ,

[3n − 3α(n − 1) − 1] if 2
3 < α < 1.

(7)

Step 2: Determine d with (8).

d =

⎧
⎪⎨
⎪⎩

6(2α−2nα+m−1)
m(m2−1) if 0 < α < 1

3 ,
6(1−2α)
n(n+1) if 1

3 � α �
2
3 ,

6(2α−2nα+2n−m−1)
m(m2−1) if 2

3 < α < 1.

(8)

Step 3: Determine W = (w1, w2, . . . , wn) with (9).

Case 1: 0 < α < 1
3

, wi =

{
0, if 1 � i � n − m,
−dm2+dm+2

2m
+(i − n +m − 1)d, if n − m +1 � i � n.

Case 2: 1
3

� α �
2
3

, wi =−dn2+dn+2
2n

+(i − 1)d, i =1, 2, . . . , n.

Case 3: 2
3

< α < 1, wi =

{
−dm2+dm+2

2m
+(i − 1)d, if 1 � i � m,

0, if n − m +1 � i � n.

(9)

Liu [31, 36] gave the parametric forms of these two kinds of problems

by replacing the constraint of a fixed orness level with a general constraint
n∑

i=1

wixi = c.

A parameterized extension of these two kinds of problems is the OWA

determination method with maximum Rényi entropy [41]:

min H(W ) =
1

1 − r
log2

n∑

i=1

wr
i

s. t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(10)

The maximum entropy problem (3) and the minimum variance problem (6)

correspond to the special cases of (10) with r = 0 and r = 2 respectively.
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Liu [34] proposed a general model to obtain the desired OWA operator under a

given orness level:

min VOWA =

n∑

i=1

F(wi)

s. t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1,

wi � 0 i = 1, 2, . . . , n.

(11)

where F (x) is a strictly convex function on [0, 1], and it is at least second order

differentiable.

Problems (3) and (6) become special cases of (11) with F (x) = x lnx, F (x) =
x2 respectively. And (10) also becomes the special case of (11) with F (x) = xr.

It should be noted that the maximum entropy problem (3) is a maximum problem

with an additional negative sign in the objective function.

The optimal solution of (11) is unique, and it can be expressed as W =
(w1, w2, . . . , wn) that [34]:

wi =

{
g( n−i

n−1λ1 + λ2) if i ∈ T

0 otherwise
(12)

where λ1, λ2 are determined by

⎧
⎪⎨
⎪⎩

∑
i∈T

n−i
n−1g

(
n−i
n−1λ1 + λ2

)
= α

∑
i∈T

g
(

n−i
n−1λ1 + λ2

)
= 1

(13)

and T = {i|1 � i � n, g
(

n−i
n−1λ1 + λ2

)
> 0} with g(x) = (F ′)−1(x).

As F (x) is convex, the monotonic increasing function g(x) = (F ′)−1(x) can be

used to determine the relationship of the nonzero OWA operator elements, where the

nonzero elements become an equidifferent series with function transformation g(x).
Regarding all the entropy function (3), the variance function (6) and the Rényi

entropy (10) can be seen as the dispersion indexes of the weight element distribution,

and the convex objective function of (11) can be seen as a general dispersion index.

The meaning of the OWA operator solution of this problem is to try to minimize

the general dispersion index means to distribute the weight elements as evenly as

possible.

Besides the dispersion measure with a separate function of the weight elements,

Yager [69] also used a measure of entropy 1− max
i�i�n

wi as an alternative form of the

maximum entropy problem:
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min max
i�i�n

wi

s. t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1,

wi � 0 i = 1, 2, . . . , n.

(14)

Recently, Wu et al. [63] proposed the linear programming model for minimizing the

distance its vector from the vector of maximal entropy:

minimize

n∑

i=1

∣∣∣∣wi −
1

n

∣∣∣∣

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(15)

A closely related OWA operator determination method with the optimization criteria

is the minimax form in the objective function. The first minimax problem for OWA

operator, called minimax disparity problem, was proposed by Wang and Parkan

[60]. The objective is to minimize the maximum disparity, where the disparities

between two adjacent weights are made as small as possible:

minimize

{
max

1�i�n−1
|wi − wi+1|

}

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(16)

The solution equivalence to the minimum variance problem (6) of Fullér and

Majlender [22] was verified theoretically by Liu [33] with the dual theory of linear

programming.

In [34], such conclusions are extended. The minimax problem corresponding to

the maximum entropy problem (3) and the general optimization problem (11) can

also be proposed in a similar way as (17) and (18).
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min

{
max

1�i�n−1
|ln(wi) − ln(wi+1)|

}

s. t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1.

(17)

min

{
max

1�i�n−1
|F ′(wi) − F ′(wi+1)|

}

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(18)

Both (3) and (17), (11) and (18) have the same optimal solution. Furthermore,

(16) and (17) can be seen as the special case of (18) with F (x) = x2 and

F (x) = x ln(x). The general minimax problem for OWA operators tries to obtain

the desired OWA weight vector under given orness level to minimize the maximum

difference between the adjacent elements after a monotonic function transformation.

Comparing the objective functions of the original optimization problem (11) and

that of the minimax problem (18), the former minimizes the sum of F (wi) and the

latter tries to minimize the maximum differences between the adjacent F ′(wi)s.

Contrary to the OWA determination methods with given orness value, Marchant

[42] proposed the problems of the OWA operator determination to maximize the

orness level with a fixed variance or entropy value. The analytical methods for these

two problems are proposed with the Lagrange multiplier method.

The maximizing orness problem with a fixed entropy value for the OWA operator

and the maximizing orness problem with a fixed variance value are shown in (19)

and (20) respectively.

max

n∑

i=1

n − i

n − 1
wi

s.t. −
n∑

i=1

wi lnwi = β, 0 < β � ln(n)

n∑

i=1

wi = 1.

(19)
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max

n∑

i=1

n − i

n − 1
wi

s. t.
1

n

n∑

i=1

w2
i − 1

n2
= δ, 0 � δ �

n − 1

n2

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(20)

As shown in [36] and [31], the optimal solution of the maximum entropy problem

(3) can be expressed with geometrical form and the optimal solution minimum

variance problem (6) can be expressed with equidifferent form. Liu [29] further

shows that the optimal solutions of their maximizing orness problems (19) and (19)

also have the geometrical form or equidifferent form as (3) and (6). Furthermore,

with a given entropy value or variance value, there are usually two geometric or

equidifferent OWA operators with orness value of α and 1 − α respectively. They

are the optimal solutions of maximum problems (19), (20) (The optimal solutions

are the OWA operator with oress level max{α, 1−α}) and minimum problems (21),

(22) (The optimal solutions are the OWA operator with oress level min{α, 1 − α})

respectively.

min

n∑

i=1

n − i

n − 1
wi

s.t. −
n∑

i=1

wi lnwi = β, 0 < β � ln(n)

n∑

i=1

wi = 1.

(21)

min

n∑

i=1

n − i

n − 1
wi

s. t.
1

n

n∑

i=1

w2
i − 1

n2
= δ, 0 � δ �

n − 1

n2

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(22)

These OWA operator are also the optimal solutions of (3) and (6) with orness level

α respectively.
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For the minimax disparity problem, Amin and Emrouznejad [7] also (16) give a

more general case that

minimize

{
max
i�=j

|wi − wj |
}

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(23)

Amin [6] further discussed some its properties in an analytical way, but the

analytical solution is still not expressed in a specific formula.

Recently, Wang, Luo and Liu [59] proposed the least squares deviation and

chi-square χ2 model as

minimize

n−1∑

i=1

(wi − wj)
2

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(24)

minimize

n−1∑

i=1

(
wi

wi+1
+

wi+1

wi
− 2

)2

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 < α < 1

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(25)

Unlike the maximum entropy problem (3) or minimum variance problem (6)

and their extension (11) or variance (16)-(22), in which the analytical solutions

can be obtained, and the properties be observed in a very clear way. Despite

some interesting properties both proved theoretically and observed from numerical

examples, the analytical solutions of (23)-(93) are still not obtained in general way,

that some profound properties can not be further analyzed or discussed.
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In spite of the published results of OWA determination methods with

optimization criteria, a moro general model than (11) can be proposed [28].

From (12), we can see the nonzero OWA element wi is a linear function of n−i
n−1

with additional transformation g(x). As g(x) is monotonically increasing, we can

only obtain the OWA operator with increasing or decreasing distributed elements

(which means w1 � w2 � · · · � wn if λ1 � 0 or w1 � w2 � · · · � wn if

λ1 � 0). However, other forms of the OWA operator are also needed in applications.

A commonly used one is the symmetric OWA operator with wi = wn+1−i [17, 65,

73, 78]. These OWA operators are usually non-monotonic and can not be obtained

just by setting an expression in the objective function of (11). Here, we will extend

(11) to a more general form (26) in the constraints, by which we can get more

flexible OWA operator distribution as its optimal solution.

min VOWA =

n∑

i=1

F (wi)

s. t.

n∑

i=1

wi = 1

n∑

i=1

h

(
n − i

n − 1

)
wi = α

wi � 0.

(26)

where F (x) is a strictly convex function in [0, 1] and it is at least two order

differentiable. h(x) is nonnegative and continuous on [0, 1].
If h(x) = x, (26) becomes the OWA determination model under a given orness

level (11). To keep the feasible domain nonempty, the feasible value of α may be not

limited in [0, 1] as the orness level be. The lower and upper bounds of the feasible α
in (26) can be determined by the solutions of the following problems:

min(max) α =

n∑

i=1

h

(
n − i

n − 1

)
wi

s. t.

n∑

i=1

wi = 1

0 � wi � 1.

(27)

In some cases, such as when h(x) is monotonically increasing, the lower and upper

bounds of α can be the minimum and maximum values of h(x) on [0, 1] respectively.
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The optimal solution of (26) is unique, and it can be expressed as W =
(w1, w2, . . . , wn) such that

wi =

{
g
(
h
(

n−i
n−1

)
λ1 + λ2

)
if i ∈ T

0 otherwise
(28)

where λ1, λ2 are determined by

⎧
⎪⎨
⎪⎩

∑
i∈T

h
(

n−i
n−1

)
g
(
h
(

n−i
n−1

)
λ1 + λ2

)
= α

∑
i∈T

g
(
h
(

n−i
n−1

)
λ1 + λ2

)
= 1

(29)

and T = {i|1 � i � n, g
(
h
(

n−i
n−1

)
λ1 + λ2

)
> 0} with g(x) = (F ′)−1(x).

Besides the special case that (26) becomes (11) when h(x) = x, if we let (28)

in the optimal solution of (26) with g(x) = x, the adjacent weights relationships

should be determined by the shape of h(x), with (F ′)−1(x) = g(x), F (x) = 1
2x2,

(26) becomes:

min VOWA =
1

2

n∑

i=1

w2
i

s. t.

n∑

i=1

wi = 1

n∑

i=1

h

(
n − i

n − 1

)
wi = α

wi � 0.

(30)

The unique optimal solution of (30) is

wi =

{
h
(

n−i
n−1

)
λ1 + λ2 if i ∈ T

0 otherwise
(31)

where λ1, λ2 are determined by

⎧
⎪⎨
⎪⎩

∑
i∈T

h
(

n−i
n−1

)(
h
(

n−i
n−1

)
λ1 + λ2

)
= α

∑
i∈T

(
h
(

n−i
n−1

)
λ1 + λ2

)
= 1

(32)

and T = {i|1 � i � n, h
(

n−i
n−1

)
λ1 + λ2 > 0}.
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The optimal solution of (30) with (31) and (32) can also be expressed as

wi =

{
h
(

n−i
n−1

)
λ1 + λ2 if h

(
n−i
n−1

)
λ1 + λ2 � 0

0 otherwise
(33)

where λ1, λ2 are determined by

{∑n
i=1 h

(
n−i
n−1

)
wi = α

∑n
i=1 wi = 1

(34)

By selecting the shape of h(x) and the parameter α, we can obtain different OWA

operator weight series corresponding with h(x). Similar to the relationship between

(11) and (18), there is also a minimax problems for (26) and (30). The optimal

solution of (30) with (33) and (34) can be connected with the stress function method

[79], which will be discussed in the function based methods.

2.3 The Sample Learning Method

Empirical fit is a very useful tool for aggregation operator determination because it

has a direct quantitative interpretation. In most cases, the problem of choosing the

operator is translated into some sort of regression problem such as least squares fit.

We usually requires an aggregation operator with certain properties to some sort of

empirical data. The data can be collected in an experiment, by questioning experts

in the field or by conducting a mental experiment [9–12, 56].

Consider the problem of fitting an OWA operator to empirical data of the form:

{(x1k, x2k, · · · , xnk), dk}, k = 1, 2, . . . , K (35)

There are K observations, and every observation has n observed arguments

(x1k, x2k, · · · , xnk) and the observed aggregated value dk. Our goal is to find

an OWA operator weighting vector W = (w1, w2, . . . , wn)T to satisfy these

observations and sum unit condition. For simplification, we will assume that the

input arguments have been ordered, that is x1k � x2k � · · · � xnk.

A very special case is that when K = 1, we only have one sample data pair. It

is obvious that the OWA operator can not be completely determined. This can be

solved with an additional criteria where the sample data becomes the constraint in

the optimization problem.
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Yager [70] proposed a model to maximize the orness level under an aggregation

observation that
∑n

i=1 wixi = d. The problem can be formulated as

maximize

n∑

i=1

n − i

n − 1
wi

s.t.

n∑

i=1

wixi = d

n∑

i=1

wi = 1,

wi � 0, i = 1, 2, . . . , n.

(36)

Liu [31, 36] also proposed parameterized extensions of the maximum entropy

problem (19) and minimum variance problem (6) where the orness level constraint is

replaced with a aggregation data example {(x1, x2, · · · , xn), d}. For (19), we have

max −
n∑

i=1

wi lnwi

s.t.

n∑

i=1

wixi = d

n∑

i=1

wi = 1.

wi � 0 i = 1, 2, . . . , n.

(37)

The objective function can be replaced any other objective function in the

optimization models that

min VOWA =

n∑

i=1

F (wi)

s. t.

n∑

i=1

wixi = d,

n∑

i=1

wi = 1,

wi � 0 i = 1, 2, . . . , n.

(38)

It is natural that we will assume
∑n

i=1 wixi = c and
∑n

i=1 wi = 1 should be

independent.

In most cases, there are usually more than one observation data sets, the problem

of choice of the OWA operator is translated into some sort of regression problem
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such as least squares fit. A commonly used technique is the least square method [11].

The goal is to find an OWA operator W , so that the generated operator approximates

the data in the least squares sense:

min

K∑

k=1

(
FW (xk

1 , xk
2 , . . . , xk

n) − dk
)2

s.t.

n∑

i=1

wi = 1,

wi � 0 i = 1, 2, . . . , n.

(39)

As Beliakov [9] pointed out, because of the constraints in (39), its solution is not as

simple as that of the traditional linear regression problem.

Filev and Yager [20] propose a nonlinear change of variables to transform the

domain of w from the unit simplex to unrestricted domain.

wi =
eλi

∑n
j=1 eλj

(40)

Then, an iterative procedure is developed to minimize the transformed (no longer

quadratic) error function.

Beliakov [9] proposed another two alternatives for the solution of (39). One

is to use the penalty function approach and add appropriate penalty for violating

the restrictions to the expression in (39), which is subsequently minimized using

standard descent algorithms. The other is to solve the restricted linear least squares

problem directly, taking advantage of the linearity of (39) and the constraints,

where the problem is formulated as linear nonnegative least squares problem with

equality constraints. It shows that the third method performs better than the other

two mentioned approaches in respect to speed and the quality of the solution, such

as to avoid the local minimizers and handle high dimensional size problems. Similar

approaches relying on quadratic programming was also proposed [8, 10, 11, 54, 56].

And they are shown to be numerically efficient ad stable with respect to rank

deficiency [12]. Beliakov also develops a software package AOTool, which can be

freely downloaded from http://www.deakin.edu.au/ gleb/aotool.html.

As an extension of the OWA determination method of singular data example with

additional criteria. Liu, Yang and Fang [39] discussed the relationships between the

optimization method and the sample learning method in a more systematic way.

If we regard the first constraint of (38) as an example of aggregated data set

X = (1, 1, . . . , 1) and its aggregation value 1. A more general problem of the OWA

determination method from small size examples can be proposed in the following.

For K � n − 1, there are usually infinity solutions for these linear equations

of wi, even the nonnegative constraints of wi are considered. The OWA operator

weight elements can not completely determined. A reasonable consideration is to

make the OWA operator weights satisfy some criterion. This becomes the general

OWA operator determination method (41).

http://www.deakin.edu.au/~gleb/aotool.html
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min

n∑

i=1

F (wi)

n∑

i=1

wix
k
i = dk, k = 1, 2 . . . , K

n∑

i=1

wi = 1,

wi � 0 i = 1, 2, . . . , n.

(41)

where F is a strictly convex function on [0, 1], and it is at least two order

differentiable.

Problem (41) includes some typical optimization method based OWA operator

determination methods as special cases. The analytical solution was also proposed

[39].

For problem (41), if the feasible domain is nonempty, then it has an unique

optimal solution, and it can be expressed as W = (w1, w2, . . . , wn) that

wi =

{
(F ′)−1 (ri) if (F ′)−1 (ri) > 0

0 otherwise
(42)

where ri = −∑K
i=1 xk

i λk − λK+1 and λi(i = 1, , 2, . . . , K + 1) are determined by

{∑n
i=1 wix

k
i − dk = 0 k = 1, 2, . . . , K∑n

i=1 wi − 1 = 0
(43)

If the number of examples is more than n− 1, problem (41) usually has no feasible

solution. A commonly used technique is the least square method as (39). The

minimum least square criterion can be adopted for (43), that is (42) and (43) can

be transformed as

min

K∑

k=1

(
n∑

i=1

wix
k
i − dk

)2

s. t.

n∑

i=1

wi − 1 = 0

(44)

where

wi =

{
g (ri) if (F ′)−1 (ri) > 0

0 otherwise

and ri = −∑K
k=1 λkxk

i − λK+1, g(x) = (F ′)−1(x) is a monotone increasing

function.
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Consider an special example of g(x) = ex, as ex is always positive, then (44)

and (42) becomes

min

K∑

k=1

(
n∑

i=1

wix
k
i − dk

)2

s. t.

n∑

i=1

wi − 1 = 0

(45)

where wi, i = 1, 2, . . . , n have the form as

wi = e−
∑K

k=1
λix

k
i −λK+1 (46)

For the sack of easy manipulation, we can let λ′
i = −

∑K
k=1 xk

i λk − λK+1 then

wi = eλ′

i , with
∑n

i=1 wi − 1 = 0, wi can be expressed as

wi =
eλ′

i

∑n
j=1 eλ′

j

(47)

This is just the OWA operator determination method from observations that was

proposed by Filev and Yager [20]. That is the method of [20] becomes a special

case of (44) with g(x) = ex.

The OWA operator weight elements wi in (44) is determined by the parameter

λk, k = 1, 2, . . . , K + 1. After a transformation of λk to ri with

ri = −
K∑

k=1

xk
i λk − λK+1

As the observation examples are independent, so transformation matrix has the rank

of n, the problem of determine wi from (44) with parameter λk, k = 1, 2, . . . , K+1
changes into the problem with parameter ri, i = 1, 2 . . . , n, that

min
K∑

k=1

(
n∑

i=1

wix
k
i − dk

)2

s. t.

n∑

i=1

wi − 1 = 0

(48)

where

wi =

{
(F ′)−1 (ri) if (F ′)−1 (ri) > 0

0 otherwise
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As F (x) is a convex function, (F ′)−1 is strictly increasing, if (F ′)−1 can have the

domain [0, 1], (48) can further be transformed in a very simple way:

min

K∑

k=1

(
n∑

i=1

wix
k
i − dk

)2

s. t.

n∑

i=1

wi − 1 = 0,

wi � 0 i = 1, 2, . . . , n.

(49)

This is just the ordinary least square OWA determination method. This means

that when the number of observation examples is larger than the OWA operator

dimension, or the feasible domain of wi to satisfy these observation examples is

empty, the criteria imposed on the form of OWA weights will take no effect.

In fact, Problem (41) can also be extended as a bi-level optimization problem

min

n∑

i=1

F (wi)

min

K∑

k=1

(
n∑

i=1

wix
k
i − dk

)2

n∑

i=1

wi = 1

wi � 0, i = 1, 2, . . . , n.

(50)

When K < n, the lower level problem usually have infinite solutions that can

make the objective function of the lower level
∑K

k=1

(∑n
i=1 wix

k
i − bk

)2
reaches

its lower bound 0. The upper level objective function
n∑

i=1

F (wi) can be further be

optimized within the optimal solutions of the lower level. The problem becomes the

extended optimization model. However, if the number of observation examples is

equal or more than n, the lower problem usually has an unique optimal solution,

it is natural that the upper level objective will can take no influence on the OWA

weight determination. The problem becomes the ordinary least square method.

2.4 The Function Based Methods

In [70], Yager proposed a method for obtaining the OWA weighting vectors via

fuzzy linguistic quantifiers, especially the Regular Increasing Monotone (RIM)

quantifier, which can provide information aggregation procedures guided by

verbally expressed concepts and a dimension independent description of the desired

aggregation.
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Definition 1. [70] A fuzzy subset Qof the real line is called a Regular Increasing

Monotone(RIM) quantifier if Q(0) = 0, Q(1) = 1, and Q(x) � Q(y) if x > y.

Examples of this kind of quantifier are all, most, many, there exists [70].

With a RIM quantifier Q, the OWA weighting vector can be obtained as [70]:

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
(51)

The quantifier guided aggregation with OWA operator is

FQ(X) = FW (X) =

n∑

i=1

(
Q

(
i

n

)
− Q

(
i − 1

n

))
xi (52)

With (51), the OWA operator and the corresponding RIM quantifier can be seen as

the same aggregation operator in discrete and continuous cases respectively. With

the generation of RIM quantifier [35] or the stress function [79], the properties

and their generating methods of the OWA operator and the RIM quantifier can be

corresponded each other [32, 34, 37, 76]. If we have known the solutions or the

properties of one of them, the solution and the properties of the other form can also

be anticipated, and vice versa.

In [69], Yager proposed various forms of OWA weighting vectors and the

corresponding RIM quantifiers with piecewise linear membership functions. They

include the Slide OWA (S-OWA), Step OWA and Window OWA operator and RIM

quantifier forms. Here, the parameterized families of these RIM quantifiers are

given.

The slide RIM quantifier corresponds to the Slide OWA(S-OWA) operator [69,

81]. A slide RIM quantifier can be defined as:

Q(x) =

⎧
⎪⎨
⎪⎩

0 if x = 0,

α + (1 − α − β)x if 0 < x < 1,

1 if x = 1.

(53)

where α + β � 1.

orness(Q) =
1

2
(1 + α − β) (54)

When α = 0, this becomes the andlike S-OWA quantifier, and when β = 0, this

becomes the orlike S-OWA quantifier, which was discussed in [69, p.134-136].

The corresponding OWA operator W = (w1, w2, . . . , wn) in the discrete case is

wi =

⎧
⎪⎨
⎪⎩

1
n (1 − α − β) + α if i = 1,
1
n (1 − α − β) if i = 2, . . . , n − 1,
1
n (1 − α − β) + β if i = n.

(55)

orness(W ) =
1

2
(1 + α − β) (56)
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From (55), α, β can be seen as the parameters of rotation transformation.

A step RIM quantifier is a generator of the step OWA operator [69, p.136].

Q(x) =

{
0 if 0 � x � γ,

1 if γ < x � 1.
(57)

orness(Q) = 1 − γ (58)

The step RIM quantifier can be interpreted as “at least γ percent” and the orness of

the OWA operator maybe discontinuous.

The corresponding step OWA operator W = (w1, w2, . . . , wn) is

wi =

{
1 if i = k,

0 if i �= k.
(59)

orness(W ) =
n − k

n − 1
(60)

Obviously, a consistent RIM quantifier family can be obtained just by shifting γ on

[0, 1].
A window RIM quantifier corresponds to the window OWA operator [69, p.137],

which disregards the top and bottom scoring elements.

Q(x) =

⎧
⎪⎨
⎪⎩

0 if 0 � x � α,
x−α

β if α < x � α + β,

1 if α + β < x � 1.

(61)

where α + β � 1.

orness(Q) = 1 − α − 1

2
β (62)

The corresponding step OWA operator W = (w1, w2, . . . , wn) is

wi =

⎧
⎪⎨
⎪⎩

0 if i < k,
1
m if k � i < k + m,

0 if i � k + m.

(63)

orness(W ) =
1

n − 1

(
n − k − 1

2
(m − 1)

)
(64)

The orness(W ) is also discontinuous on [0, 1].
Yager [78] extended this method to get the symmetrical OWA operator called

centered OWA operator in any shape with the centering function.

wi =

∫ j−1

n

j−1

n

f (x) dx
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Where f(x) is a centering function that f(x) � 0, f(x) = f(1 − x), f(x) is

increasing on [0, 0.5] and
∫ 1

0 f(x)dx = 1. Various center function shapes and their

corresponding OWA operators are illustrated.

Xu [65] proposed a method to generate OWA operator weights from the normal

distribution

f(x) =
1

δ
√

2π
e−

( x−µ) 2

2δ2 (65)

that

wi =
e−(i−µn)2/2/δ2

n

∑n
j=1 e−(j−µn)2/2/δ2

n

(66)

where µn = 1+n
2 and δn =

√
1
n

∑n
i=1(i − µn)2.

Both the centered OWA operator of Yager [78] and the OWA operator generated

from normal distribution of Xu [65] are symmetrical that wi = wn−i+1.

Sadiq and Tesfamariam [51] also extended the method of Xu [65] to the non

symmetric ones. A fractile index is introduced to locate the maximum value weight

element with µn = λ(1 + n), λ ∈ [0, 1] can be referred to as fractile or quantile

representing the location of the maximum weight, which is assigned to the median

ordinal position of the OWA operator. If λ < 0.5, a positively( skewed distribution

can be generated, and if λ > 0.5, a negatively skewed distribution (leaning towards

right) can be generated. In spite of the normal distribution, this method can also be

extended to other distribution functions such as the inverse normal distribution and

exponential distribution function.

Recently, Yager also [79] proposed the function based OWA operator aggregation

from another view, the stress function method. An important advantage of the stress

function method is that it allows the user very easily characterize the nature of the

resulting OWA aggregation operator, which is accomplished by stressing the places

where they want the significant values of the OWA weighting vector to be generated.

For example, the stress function tries to generate wj with F (j/n)−F ((j−1)/n)
in an approximate way, where F ′(x) = h(x) is the stress function. The basic form

of this method is

wj =
h
(

j
n

)
∑n

j=1 h
(

j
n

) (67)

A general form of (67) is that

wj =
h (ξj)∑n

j=1 h (ξj)
(68)

where xj ∈
[

j−1
n , j

n

]
.

If ξj = j
n then (68) becomes (67). Other typical alternatives for ξj selection are

that ξj = j−1
n or ξj = j−0.5

n [79].
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The following two methods can be regarded using the function of the weight

element rather than a external analytical function for every weight elements. Filev

and Yager [20] proposed a exponential smoothing method for OWA determination

that

w1 = θ, w2 = θ(1 − θ), . . . , wn−1 = θ(1 − θ)n−1, wn = (1 − θ)n−1

or

w1 = θn−1, w2 = (1 − θ)θn−2, . . . , wn−1 = θ(1 − θ), wn = 1 − θ

When n is fixed, with different θ we can get the corresponding exponential OWA

operator weights. θ can be seen as a parameter associated with the orness level.

Ahn [1] proposed a method of obtaining OWA operator with any orness level with

the fact the some special forms of rank based weights can be result the constant level

of orness. Such as For W = (w1, w2, . . . , wn),

1. If w
(1)
i = 1

n

∑n
j=i

i
j , then orness(W (1)) = 3

4

2. If w
(2)
i = 1

n

∑n
j=i

i
n−j+1 , then orness(W (2)) = 1

4 .

3. If w
(3)
i = 1

n

∑n
j=1

n−i+1
n−j+1 , then orness(W (3)) = 2

3 .

4. If w
(4)
i = 1

n

∑n
j=1

i
n−j+1 , then orness(W (3)) = 1

3 .

For any two OWA operator W 1, and W 2 with constant level of ornress k1, k2, where

k1 �= k2, Lets us assume k1 � k2, then for any orness level k ∈ [k1, k2], we can get

an OWA operator W = βW 1 + (1 − β)W 2 with constant level of orness k, where

β is the solution of βk1 + (1 − β)k2 = k.

Next, we will discuss the relationship between the general optimization model

(30) and the stress function method (67). (67) can be seen as the solution of the

following problem.

wj = λ1h

(
j

n

)
(69)

with
∑n

i=1 wi = 1.

A variation of (67) is to let ξj = j−1
n−1 in (68), so that :

wj =
h
(

j−1
n−1

)

∑n
j=1 h

(
j−1
n−1

) (70)

(70) can be seen as the solution of the following problem:

wj = λ1h

(
j − 1

n − 1

)
(71)

with
∑n

i=1 wi = 1.

On the other hand, the optimal solution of (30) is (33). From (33), we can see that

wi can be completely determined by the shape of h(x). To make wi be distributed
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in the shape of h(x), it is obvious that we should have T = {i|1 � i � n}, we will

have

wi = h

(
i − 1

n − 1

)
λ1 + λ2 (72)

where λ1, λ2 is determined by

⎧
⎨
⎩

∑n
i=1 h

(
i−1
n−1

)(
h
(

i−1
n−1

)
λ1 + λ2

)
= α

∑n
i=1 h

(
i−1
n−1

)
λ1 + nλ2 = 1

(73)

To make wi in the shape of h(x), we also should have λ1 � 0.

Next, we will determine the bound of α to make wi in the shape of h(x). As

λ1 � 0, λ1 monotonically increases with α [28], so the lower bound of α, αL

corresponds to λ1 = 0, where the optimal solution is always WA = ( 1
n , 1

n , . . . , 1
n ).

In this case

αL =

n∑

i=1

h

(
i − 1

n − 1

)
1

n
(74)

Then, we will try to find the upper bound value of α that can keep the optimal

solution distributed in h(x). As wi = h
(

i−1
n−1

)
λ1 + λ2(λ1 � 0), so

min
1�i�n

{wi} = min
1�i�n

{
h

(
i − 1

n − 1

)
λ1 + λ2

}

= min
1�i�n

{
h

(
i − 1

n − 1

)}
λ1 + λ2

(75)

Let min
1�i�n

{wi} = 0, we can find the corresponding value of λ1 and λ2 for the upper

bound of α with

αU =

n∑

i=1

h

(
i − 1

n − 1

)(
h

(
i − 1

n − 1

)
λ1 + λ2

)
(76)

where λ1, λ2 is determined by

⎧
⎨
⎩

min
1�i�n

{
h
(

i−1
n−1

)}
λ1 + λ2 = 0

∑n
i=1 h

(
i−1
n−1

)
λ1 + λ2 = 1

(77)

Thus, for any α ∈ [αL, αU ], we can always find an OWA operator with the optimal

solution of (30). (30) becomes (78) with an additional limitation on α.
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min VOWA =
1

2

n∑

i=1

w2
i

s. t.

n∑

i=1

wi = 1,

n∑

i=1

h

(
i − 1

n − 1

)
wi = α, α ∈ [αL, αU ]

wi � 0 i = 1, 2, . . . , n.

(78)

The optimal solution of (78) can be expressed as

wi = h

(
i − 1

n − 1

)
λ1 + λ2 (79)

where λ1, λ2 is determined by

⎧
⎨
⎩

∑n
i=1 h

(
i−1
n−1

)(
h
(

i−1
n−1

)
λ1 + λ2

)
= α

∑n
i=1 h

(
i−1
n−1

)
λ1 + nλ2 = 1

(80)

As the interval [αL, αU ] is dependent on h(x). For easy comparison, we can select

α = (1 − t)αL + tαU , where t ∈ [0, 1]. t can be regard the parameter to control

the distribution shape of the OWA operator between the average operator and the

maximum curvature degree as h(x).
It can be seen that (71) is a special case of (72) with λ2 = 0. Comparing with

(67) and (72), we can see that (67) obtains the OWA operator weight element wj

as the interpolation points of λ1h(x) for xj = j
n with constraint

∑n
j=1 wj = 1.

While (72) obtains the OWA operator weight element wj with the interpolation

points of λ1h(x) + λ2 as xj = λ1h( j−1
n−1 ) + λ2 with constraint

∑n
j=1 wj = 1 and∑n

j=1 h( j−1
n−1 )wj = α. In he former case, the interpolation points are distributed on[

1
n , 1

]
. In the latter case, the interpolation points are distributed on [0, 1], which can

take into consideration the shape of h(x) close to 0.

Another difference between (67) and (72) is that (67) only obtains OWA operator

in the shape of h(x) with scale parameter λ1 as (69). However, h(x) in (72) changes

with both scale parameter λ1 and vertical shift parameter λ2. This makes the OWA

operator solution always include the average operator as a special case with λ1 = 0.

So (72) can be seen as an extension of (67) with the optimization method.

From (78), for any nonnegative function h(x) ∈ [0, 1], we can always get an

OWA operator that make it in the shape of h(x). If h(x) is selected as the normal

distribution as (65) with µ = 0, then we can get the symmetrical OWA operator

weights similar to that of Xu [65]. Similar results to that of Yager [78] or Sadiq and

Tesfamariam [51] can also be obtained if h(x) is set to the corresponding centered

function or the probability function respectively, and the distribution of the weight

elements can be anticipated in an intuitive way. Another difference of between (78)

and the other mentioned function based OWA determination methods is that in spite
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of using h(x) to control the distribution of the OWA operator solution, we can

also set α with different value that make the OWA operator solution with different

curvature extent from the ordinary arithmetic average operator.

2.5 Argument Dependent Methods

In all of the proceeding we have assumed that the weights were fixed given constant

values. The derived weights are associated with particular ordered positions of the

aggregated arguments but have no connection with the aggregated arguments. In

this section we shall generalize the concept of OWA aggregation by allowing the

weights to be a function of the aggregated arguments.

Let (x1, x2, . . . , xn) be the aggregated arguments set, and yj be the jth largest

element of the collection aggregated elements.

The first family of the argument dependent determination weights was proposed

by Yager [69, 81].

wi =
yα

i∑n
i=1 yα

i

That

F (x1, x2, . . . , xn) =

∑n
i=1 yα+1

i∑n
i=1 yα

i

=

∑n
i=1 xα+1

i∑n
i=1 xα

i

Yager [69] call it neat as the aggregated value is independent of the ordering. This

operator is called BADD (BAsic Defuzzification Distribution) OWA operator.

With different α ∈ (−∞, +∞), we can make the aggregation value range among

minimum, arithmetic average and maximum.

Xu [64] proposed the dependent OWA (DOWA) operator. Let µ = 1
n

∑n
i=1 xi be

the average value of this argument set. The similarity between any argument xj and

the average value µ can be calculated as follows:

s(xj , µ) = 1 − |xj − µ|∑n
i=1 |xi − µ|

From this, a weight vector W = (w1, w2, . . . , , wn) can be generated by applying

the following:

wj =
s(yj , µ)∑n
i=1 s(yi, µ)

j = 1, 2, . . . , n

that

DOWA(x1, x2, . . . , , xn) =

n∑

i=1

wixi

As an extension of the OWA determination method with normal distribution of [65],

Wu, Liang and Huang [62] proposed an argument dependent approach based on

normal distribution, which assigns very low weights to these false or biased opinions

and can relieve the influence of the unfair arguments.
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wj =
e−(yj−µ)2/2δ2

∑n
i=1 e−(yi−µ)2/2δ2

where µ = 1
n

∑n
i=1 yj , and δ =

√
1
n

∑n
i=1(yj − µ)2.

Peláez and Doña [47] proposed a majority additive-ordered weighting averaging

(MA-OWA) operator with based on the majority process, which use the cardinality

of the elements to calculate the corresponding weights:

FMA = (x1, x2, . . . , xn) =

n∑

j=1

wjyj =

n∑

j=1

fj(y1, y2, . . . , yn)yj

where wj ∈ [0, 1] and
∑n

j=1 wj = 1.

wj = fj(y1, y2, . . . , yn) =
1

n∏
k=gj

hk(y1, y2, . . . , yn)

where gj where gj is a function that indicate when the yj element is used in the

aggregation process. The hk is a function that indicates the number of elements

in each step in the aggregation process. It can also be extended to the quantified

majority OWA operator called QM-OWA operator [48].

The weights of the MA-OWA operator are calculated as follows [49].
Let δi be the cardinality for the element i with δi > 0, then

wi=fi(y1, . . . , yn)=
γ

δmin
i

θδmax
·θδmax −1

···θδmin +1
·θδmin

+
γ

δmin +1

i

θδmax
·θδmax −1

···θδmin +1

+···+
γ

δmax
i

θδmax

where

γk
i =

{
1 if δi � k,

0 otherwise.

and

θi =

{
(number of item with cardinality � i) + 1 if i �= δmin,

number of item with cardinality � i otherwise.

Boongoen and Shen [13] propose a cluster based argument dependent OWA

operator called Clus-DOWA, which applies distributed structure of data or data

clusters to determine its weight vector.

With the clustering algorithm to a set of values (x1, x2, . . . , , xn), the reliability

of each value ri can be directly estimated from the distance to its nearest cluster di

recorded during the clustering process.

rj = 1 − dj∑n
i=1 di
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thus

wj =
rj∑n
i=1 ri

and

Clus − DOWA(x1, x2, . . . , xn) =

n∑

i=1

wixi

It is obvious that for these argument dependent weight determination methods,

the aggregation property is determined by the weight generating function wj =
fj(y1, y2, . . . , yn), and the orness value of such argument dependent weights is

variant for the same wj . To solve such in consistent, Liu and Lou [38] give a general

form of the additive argument dependent OWA (ADOWA) operator with

wj =
f(xj)∑n
i=1 f(xi)

That

ADOWA(x1, x2, . . . , , xn) =

∑n
i=1 xif(xj)∑n

i=1 f(xi)
(81)

which can include the BADD OWA operator as a special case with f(x) = xr.

An alternative orness measure for such argument dependent weights and their

determination methods were proposed.

orness(f) =

∫ b

a (x − a)f(x)dx

(b − a)
∫ b

a
f(x)dx

(82)

Two function determination methods with the maximum entropy and minimum

variance principle were proposed respectively. For example, the function f(x)
determination with maximum entropy principle can be formulated as

max −
∫ b

a

f(x) ln f(x)dx

s.t.

∫ b

a

(1 − x)f(x)dx = α, 0 < α < 1

∫ 1

0

f(x)dx = 1.

(83)

The optimal solution is an exponential function:

f(x) =
λeλx

eλ − 1
(84)

where λ is the root of the equation eλ−λ−1
λ(eλ−1)

= α.
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And for the function f(x) determination with minimum variance principle, we

have

min D2(f(x)) =
1

b − a

∫ b

a

f2(x)dx − 1

(b − a)2

s. t.

∫ b

a

xf(x)dx = a + (b − a)α, 0 < α < 1

∫ b

a

f(x) = 1, f(x) � 0.

(85)

we can get the optimal solution in the following three cases:

1. If α ∈ (0, 1
3 ], then

f(x) =

{
6α(b−a)−2(x−a)

9α2(b−a)2 , if a � x < a + 3α(b − a),

0, if a + 3α(b − a) � x � b.
(86)

2. If α ∈ (1
3 , 2

3 ], then

f(x) =
(12α − 6)(x − a) + (4 − 6α)(b − a)

(b − a)2
, a � x � b. (87)

3. If α ∈ (2
3 , 1), then

f(x) =

{
0, if a � x < a + 3

(
α − 2

3

)
(b − a),

2(x−a)−(6α−4)(b−a)
9(1−α)2(b−a)2 , if a + 3

(
α − 2

3

)
(b − a) � x � b.

(88)

Like the case of f(x) = xr , the ADOWA (81) with (84) can also range minimum,

arithmetic average and maximum. Some properties of it are discussed [38].

It can be seen that the ADOWA maximum entropy problem (83) and the

minimum variance problem (85) and their optimal solutions are very similar to that

of the OWA operator cases with (3) and (6).

2.6 The Preference Methods

Besides the OWA operator determination purely consider the property OWA

operator itself, the OWA determination can also be connected with the preference

information in decision making. The preference based OWA determination methods

utilize the preference information as inputs, that the preference relations between

alternatives can be revealed. With these preference relation, the model to determine

the most suitable OWA operator to these preference relations can be constructed.

Despite the differences on the problems formulation on the first sight, the preference

relation method can also be seen as a special form of the sample learning method

where the sample data are provided as the preference matrix of the decision maker.
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Ahn [2] proposed a OWA determination method from preference relations. The

method tries to estimate the OWA weights in the direction of minimizing deviations

implied by the preference relations, thus as consistent as possible with a priori

preference relations.

For a decision matrix

C1 C2 · · · Cn

A1

A2

...

Am

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

Where the set A = {A1, A2, . . . , , Am} corresponds to a set of alternatives and the

set C = {C1, C2, . . . , , Cn} corresponds to the set of multiple criteria considered.

aij , i = 1, . . . , m, j = 1, . . . , n indicates a consequence (or outcome, payoff,

value, etc.) for selecting alternative Ai when the state of nature is Cj . The set

of OWA operator W = (w1, w2, . . . , wn) can be determined by considering the

decision-makers holistic judgments between alternatives. If the decision maker

indicates that alternative Ai is preferred to alternative Aj , then we should have

n∑

k=1

(bik − bjk)wk > 0

In which bik and bjk are the reordered arguments of the arguments ai1, . . . , ain

and aj1, . . . , , ajn respectively. Let Θ ∈ A × A denote the set of ordered pairs

(i, j) where i designates a preferred alternative from a paired comparison involving

i and j.

Thus, the goal of analysis is to determine the solution W ∗ for which the

conditions such as (bik − bjk)wk � ε for every a priori ordered pair (i, j) ∈ Θ are

violated as minimally as possible in which ε is a small arbitrary. With the auxiliary

variables δij in
∑n

k=1(bik−bjk)wk +δijε > 0 for every ordered pair (i, j) ∈ Θ and

minimize the sum of auxiliary variables in the objective as shown in the following

min
∑

(i,j)∈Θ

δij

s.t.

n∑

k=1

(bik − bjk)wk + δij � ε,

wk � 0,
n∑

k=1

wi = 1,

wk, δij � 0 for all (i, j) ∈ Θ, ε > 0, k = 1, 2, . . . , n.

(89)
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As remarked by Ahn [2], the objective function of (90) can also be replaced by

the criteria in the optimization model such the entropy, the variance, the minimax

disparity, or some other forms of entropy. If the maximum entropy is adopted, then

the problem should be

max −
n∑

k=1

wk ln(wk)

s.t.

n∑

k=1

(bik − bjk)wk + δij � ε,

wk � 0,
n∑

k=1

wi = 1,

wk, δij � 0 for all(i, j) ∈ Θ, ε > 0, k = 1, 2, . . . , n.

(90)

Emrouznejad [18] proposed an OWA determination method by taking account of

the preference information to the alternatives of the decision maker. The method is

first to obtain an preference matrix from a give scale set S = {s1, s2, . . . , sr} that

s1 < s2 < . . . , sr. Then for each criteria, the number of each scale that is given by

alternatives are counted. The most popular scale for each criteria can be obtained.

Then the OWA operator according to this most popular scale vector can be obtained,

which is called MP-OWA (Most Preferred Ordered Weighted Averaging).

Let Sij ∈ S be scale value of alternative Ai(i = 1, 2 . . . , n) for criteria Cj(j =
1, 2 . . . , m). Then for each criteria, the number of each scale for all the alternatives

can be summarized. Let Nkj be the number of scale sk is given to criteria Cj by all

alternatives.

A vector in which its elements are the most popular scale for each criteria can be

constructed

V =[V1, V2, . . . , Vm]

=[ max
1�k�r

{Nk1}, max
1�k�r

{Nk2}, . . . , max
1�k�r

{Nkm}]

The operator MP-OWA (Most Preferred Ordered Weighted Averaging) can be

obtained with

W = (w1, w2, . . . , wm) =

(
V1∑
k Vk

,
V2∑
k Vk

, . . . ,
Vm∑
k Vk

)

Renaud, Levrat and Fonteix [50] proposed an OWA weights determination by

parametric identification method. The aggregation n data is the product evaluation
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according an unique scale. The weights are not fixed by criterion but according

to utility level. First, a learning sample is ranked by the decision-maker. Then, this

ranked sample is used in order to determine the weights by parametric identification.

A hypothesis of equipartition of the scores of each sample is used.

Llamazares [40] proposed determining OWA operator weights regarding the

class of majority rule when individuals do not grade their preferences between

the alternatives. Since the same majority rule can be generalized through a wide

variety of OWA operators, a procedure to determine the best-suited OWA operators

in order to extend simple, Pareto, and absolute special majorities were suggested.

The best-suited OWA operators such as the arithmetic mean, the median, and the

average of the jth and the (m + 1 − j)th order statistics were obtained.

Wang and Parkan [61] proposed a preemptive goal programming method

to determine the OWA operator weights, which combines the ordinary OWA

determination method with that of the group decision making:

min P1

m∑

i=1

hk(ε+
k + ε−k ) + P2δ

s.t.

n∑

i=1

n − i

n − 1
wi − ε+

k + ε−k = αk, 0 < αk < 1

wi − wi+1 − δ � 0,

wi − wi+1 + δ � 0,
n∑

i=1

wi = 1,

wi, ε
+
k , ε−k � 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(91)

Where hk k = 1, . . . , , m, are the relative importance weights of experts, satisfying∑m
j=1 hk = 1. It can also be extended to the maximum entropy and minimum

variance approaches such that

min P1

m∑

i=1

hk(ε+
k + ε−k ) + P2

n∑

i=1

wi lnwi

s.t.

n∑

i=1

n − i

n − 1
wi − ε+

k + ε−k = αk, 0 < αk < 1

n∑

i=1

wi = 1,

wi, ε
+
k , ε−k � 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(92)
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min P1

m∑

i=1

hk(ε+
k + ε−k ) + P2

n∑

i=1

w2
i

s.t.

n∑

i=1

n − i

n − 1
wi − ε+

k + ε−k = αk, 0 < αk < 1

n∑

i=1

wi = 1,

wi, ε
+
k , ε−k � 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(93)

Amin [5] shows that the two stage goal programming model (91) can be integrated

together that

min

m∑

i=1

hk(ε+
k + ε−k )

s.t.

n∑

i=1

n − i

n − 1
wi − ε+

k + ε−k = αk, 0 < αk < 1

wi − wi+1 − δ � 0,

wi − wi+1 + δ � 0,
n∑

i=1

wi = 1,

wi, ε
+
k , ε−k � 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(94)

Xu and Da [67] considered the situation where the weight information is available

partially and suggested an approach to deal with it. The known weight information

can be a constraint set H such as

1. A weak ranking: {wi � wj}.

2. A strick ranking: {wi − wj � αi}.

3. A rank with multiples: {wi � αiwj}.

4. An interval form: {αi � wi � αi + εi}.

5. An rank of difference: {wi − wj � wk − wl, for j �= k �= l}.
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Such weight information can be added into the optimization problem’s constraints

such as:

max −
n∑

i=1

wi lnwi

s.t.

n∑

i=1

n − i

n − 1
wi = α, 0 � α � 1

n∑

i=1

wi = 1,

W ∈ H,

wi � 0, i = 1, 2, . . . , n.

(95)

With the donations of (35), a sample learning model can also be proposed that [65]:

min J =

K∑

k=1

(e+
k + e−k )

s.t.

n∑

i=1

wix
k
i − dk − ε+

k + ε−k = 0,

wi ∈ H,
n∑

i=1

wi = 1,

wi, e
+
k , e−k � 0, i = 1, 2, . . . , n, k = 1, 2, . . . , K.

(96)

3 Comparison and Discussions

From the summarization of theses OWA operator determination methods, we can

observed that:

1. The methods are proposed from different point of views, and there are some

connections between them. I can be seen that the optimization method are

mainly proposed in a theoretical way. However, the preference method closely

connected to the real application problem. The objective function criteria

are usually assigned in a general way. They are not connected to a specific

decision problem and also there is no necessary to make the data follow these

criteria. Some criteria even do not have concrete explanations of them. But the

preference method is associated with the application data directly. Either the

preference data or the OWA determination process have a specific meaning to a

certain kind of decision problem. The other difference is that the optimization

method have a very good mathematical structure and can even be solved
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analytically, both the solution forms and solution properties can be discussed

in a comprehensive way. There is also a problem structure and solution process

for the optimization problems. Whereas the condition in the preference method

is almost completely different. The data structure of the preference information

can not be processed in the ordinary way. And the methods to deal with the

preference information are also often based on some intuition ideas and there is

not a uniform framework for them.

2. The developments of different kinds methods are unbalanced. Such unbalance

includes both the different methods of the same class and also the methods in

different classes. For example, in the optimization based methods, the extension

of the maximum entropy OWA problem attracts many attention from the very

beginning both in theory and applications. It is an very active in recent years.

Several extension forms are provided. It can be extended to other methods and

some other methods can be also be merged into it, such as the RIM quantifier

determination, and the stress function method. But the developments are very

unbalanced. We have the analytical solutions from the basic form (3) to a very

general form (26), some of its properties can be clarified, and verify that the

corresponding minimax problem also have the same optimal solution. However,

we can not find the optimal solution of the minimax problem in an independent

way. And for a variant of the basic form (16) and (24), we have not find their

optimal solution and property discussion in publications. And even more, we

can prove (24) also have some basic interesting properties as (3) and (85),

we can even observe that the optimal solution behaves in the interpolation

points of a piecewise three order polynomial function, but can not expressed

it in an analytical way and further discuss its properties. Another example

is that some optimization based OWA determination model have a relative

comprehensive framework and theory of their properties, and also widely used

in many applications. But the preference methods only have a few attempts with

intuitive observations and ideas.

3. Despite the variety of these OWA determination methods, their problem

background and problem formulation, their mathematical forms and their

computing process, there are still many connections among these methods,

either in theoretical or application points of view. It maybe difficult to build

a uniform framework for these OWA operator methods, but we still can make

some connections between them, that we can have a clear image of them and

find other interesting topics for the future research.

4. The ideas and methods of these OWA determination methods are interactive and

merged each other. For example, the optimization techniques are commonly

used in many OWA determination methods, such as the sample learning

methods and the preference methods. More specifically, the maximum entropy

OWA determination problem have various extensions either in discrete

or continuous forms. This makes some difficulties to classify these OWA

determination methods. Another fact is that the ideas and methods of OWA
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operator can also influence the research of the problems on other fields. For

example, the RIM quantifier is primarily to determine the OWA operator

weights from the linguistic quantifiers. However, from the quantifier guided

OWA aggregation methods. It can be observed that the RIM quantifier can

be regarded as the continuous case of the OWA operator. We can find the

corresponding RIM solutions in the OWA research results. This promoted the

research on the determination of RIM quantifier, which is an important topic in

computing with words theory [37].

5. Despite the property discussions on some of these OWA determination methods

are not included, and the relationship between the OWA operator and the

RIM quantifier are also not discussed, there are also various extensions of

the basic numerical form of this paper, such as the weighted OWA operator

[32, 53], the geometric OWA operator [23, 66], the induced OWA operator

[45, 82], the linguistic OWA operator [24] and many other forms. The research

on the determination method of this basic form should also be useful for the

determination of these extension or compound forms. So that the OWA operator

weights and the corresponding weights determination can only be justified by

the reasonability and connections to the real application problems.

4 Conclusions

The paper give a summary on the OWA determination methods in a classification

way. It includes the optimization based methods, the sample learning methods,

the function based methods, the argument dependent methods and the preference

methods. Some connections between these methods are proposed and some

extensions are also provided. A uniform framework for these OWA determination

methods are also attempted to make.

Here, we mainly concern the OWA determination methods in the crisp numerical

form. An important reason for the popular research about OWA operator is its ability

to model some problems in a very simple and flexible way. We may encounter

many different problems, which have various structures and different requirements.

The listed OWA operator determination methods are proposed from different point

of view. Some methods can be proposed in theoretical way, but some others are

practical oriented. Furthermore, some methods are not completely understand either

in theoretical or practical view, and even some are only existed in isolated way

with intuitive ideas. Furthermore, we also do not have some principles on the OWA

operator determination method selection in the face of practical problems, such as

in what case does the maximum entropy or minimum variance criteria in OWA

determination should be adopted? and which one? These are all problems deserve

for further research in the crisp numerical OWA operator, even we disregard its

various extension forms.
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plied in various domains. Yager’s traditional OWA operator focuses exclusively on

the aggregation of crisp numbers with crisp weights. However, uncertainty prevails

in almost every process of real world decision making, and so there is a need to find

OWA mechanisms to aggregate uncertain information. In this chapter, we gener-
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to aggregate type-1 fuzzy sets, whilst the type-2 OWA operator is able to aggregate

type-2 fuzzy sets. Therefore, the two new operators are capable of aggregating un-
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1 Introduction

The aggregation operation is not only one of the most important steps in dealing

with multi-expert decision making (i.e. group decision making), multi-criteria de-

cision making and multi-expert multi-criteria decision making [1, 2, 3], but also

necessary in many other application domains, such as database integration and

knowledge discovery [4, 5], information fusion [6], etc. The objective of aggre-

gation is to combine individual experts’ preferences or criteria into an overall one in

a proper way so that the final result of aggregation takes into account in a given fash-

ion all the individual contributions [2]. Currently, at least 90 different families of ag-

gregation operators have been studied [1, 2, 3, 7, 13, 8, 9]. Among these aggregation

operators, the Ordered Weighted Averaging (OWA) operator proposed by Yager [1]

is arguably the most widely used. However, the majority of the existing aggregation

operators, including the OWA operator, focus on aggregating crisp numbers. But

uncertainty prevails in almost every aspect of real world decision applications. For

example, in practice, human experts perceive the distance, size, weight, likelihood,

and other characteristics of physical and mental objects in a very natural way via

linguistic terms, such as “very long”,“big”, “very heavy”, “good” etc., when they

cannot provide exact numbers for expressing vague and imprecise opinions [25].

These uncertain opinions are widely characterised by type-1 fuzzy sets or type-2

fuzzy sets, where type-1 fuzzy sets are the traditional fuzzy sets proposed by Zadeh

in 1965 [24], while type-2 fuzzy sets were proposed by Zadeh later in 1975 [25].

Hence, the problem arises as to how to effectively aggregate uncertain judgments

for decision makers.

In order to tackle this issue, Zhou et al. have proposed a so-called type-1 OWA

operator to aggregate uncertain information with uncertain weights via the OWA

mechanism [26], where the aggregated uncertain objects and weights are modelled

as type-1 fuzzy sets. Furthermore, type-2 linguistic quantifiers were suggested to

induce linguistic weights for type-1 OWA operators. Other researchers have also

proposed methods to aggregate uncertain objects or linguistic terms from different

perspectives [12, 14, 15, 16, 17, 18, 19]. Among the exisiting uncertain aggrega-

tion operators, those in [17, 18, 19] are probably the most closely related to the

efforts on type-1 OWA operators. Mitchell and Schaefer also applied Zadeh’s Ex-

tension Principle to fuzzifying Yager OWA operator, but Mitchell and Schaefer’s

approach focused on ordering fuzzy sets during aggregation. It is known that real

numbers can produce incontrovertible ordering, but there does not exist a standard

ordering method which is able to yield consistent results for ordering fuzzy sets.

Different methods for ordering fuzzy sets may lead to different aggregation results

if the fuzzified OWA operators are dependent on the ordering of fuzzy sets. The

proposed approach to type-1 OWA aggregation [26] is still based on ordering crisp

values and so avoids ordering fuzzy sets.

Due to certain equivalence between OWA operators and Choquet integrals, fuzzi-

fied Choquet integrals would lead to the same mechanisms as the type-1 OWA oper-

ators. But the existing approaches [18, 19] only considered the cases of aggregating

fuzzy sets with crisp weights, while the type-1 OWA operator aggregates fuzzy sets
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with fuzzy set weights. Another widely investigated fuzzified aggregation operator,

the fuzzy weighted averaging operators [10, 11, 21], can also be used to aggregate

fuzzy sets with fuzzy set weights. As Yager’s OWA operator is a nonlinear aggrega-

tion operator, it is significantly different from the fuzzy weighted average operator

(which is linear).

In this chapter, we extend the orness and andness of OWA operators, and pro-

pose the joinness and meetness of type-1 OWA operators. The joinness and meet-

ness of type-1 OWA operators are type-1 fuzzy sets that indicate the linguistic

expressions of the degree of compensation included in the uncertain aggregation

process. We further show that some existing operators of fuzzy sets, including the

well known join and meet operators of type-1 fuzzy sets, are special cases of type-1

OWA operators.

An alternative way of modelling uncertainty is via type-2 fuzzy sets [20]. Type-2

fuzzy sets offer the ability to model higher levels of uncertainty than type-1 fuzzy

sets. In this chapter, we further extend Yager’s OWA operator to the case of aggregat-

ing type-2 fuzzy sets, and proposed the named type-2 OWA operators. A procedure

to perform type-2 OWA operations on interval type-2 fuzzy sets is also described.

The organisation of this chapter is as follows. Section 2 briefly reviews the

type-1 OWA operator, then propose the definitions of the joinness and meetness of

type-1 OWA operator. Some special cases of type-1 OWA operators are presented in

Section 3. Section 4 defines type-2 OWA operators and provides examples of

their use. Finally, Section 5 concludes this chapter with a brief summary of the

contribution.

2 Type-1 OWA for Aggregating Type-1 Fuzzy Sets

2.1 Definition of Type-1 OWA Operator

The departure point for suggesting type-1 OWA operators is to aggregate the lin-

guistic variables (modelled as type-1 fuzzy sets) used to express human opinions

or preferences in soft decision making. Let F(X) be the set of type-1 fuzzy sets

defined on the domain of discourse X . Based on Zadeh’s Extension Principle, we

extend Yager’s OWA operator by defining the type-1 OWA operator which aims at

the aggregation of type-1 fuzzy sets [26].

Definition 1: Given n linguistic weights {Wi}
n
i=1 in the form of type-1 fuzzy sets

defined on the domain of discourse U ⊆ [0, 1], a type-1 OWA operator is a mapping

Φ,

Φ : F(X)×·· ·×F(X) −→ F(X)
(A1, · · · ,An) �→ G

(1)
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µG(y) = sup
n

∑
k=1

w̄iaσ(i) = y

wi ∈U,ai ∈ X

(
µW1

(w1)∗ · · · ∗µWn(wn)∗ µA1
(a1)∗ · · ·∗µAn(an)

)
(2)

that is associated with the {Wi}
n
i=1 to aggregate the type-1 fuzzy sets {Ai}

n
i=1, in

which ∗ is a t-norm operator, w̄i = wi/
n

∑
i=1

wi, and σ : { 1, · · · ,n }→ { 1, · · · ,n } is a

permutation function such that aσ(i) ≥ aσ(i+1), ∀ i = 1, · · · ,n−1, i.e., aσ(i) is the ith

largest element in the set {a1, · · · ,an}.

From the above definition, it can be seen that the aggregating result

Φ(A1, · · · ,An) = G ∈ F(X) is a type-1 fuzzy set defined on X .

However, given the linguistic weights {Wi}
n
i=1 ⊂ F(U) and aggregated objects

n type-1 fuzzy sets {Ai}
n
i=1 ⊂ F(X), one can not directly perform the type-1

OWA aggregation on {Ai}
n
i=1 using the equation (2) due to the so-called over-

partition of input space [26], i.e., given the discretised domains of X and U :

X̂ = {x̂1, · · · , x̂p} and Û = {û1, · · · , ûk}, the ∑n
k=1 w̄iaσ(i) with all the combinations

of (w1, · · · ,wn,a1, · · · ,an) may produce another partition of X , where wi ∈ Û ,ai ∈
X̂ , i = 1, · · · ,n, i.e.,

X =
{

x̄ j

}
=

{
n

∑
k=1

w̄iaσ(i)

∣∣∣wi ∈ Û ,ai ∈ X̂ , i = 1, · · · ,n

}
(3)

The problem is that X̂ �= X , i.e., the two discretised versions of X may be different,

and cardinality of the set X is greater than that of X̂ :
∣∣X

∣∣ ≥
∣∣X̂

∣∣. In other words,

there are many points in the X that lie between the neighouring points in the X̂ . X is

referred to as over-partition of input space given the used X̂ . The consequence is that

the fuzzy set, G, generated on the X according to the Extension Principle is likely

to be unreadable, because for some data points that are in the X but not in the X̂ ,

their membership grades may not be consistent with the membership grades of the

corresponding nearest points in the X̂ . In [26], a procedure for correctly performing

type-1 OWA operation under over-partition has been proposed. This procedure is

described as follows.

Step 1: Initialisation

• Given the linguistic weights {Wi}
n
i=1 ⊆ F(U) for aggregating the objects

{Ai}
n
i=1 ⊆ F(X);

• Given the discretised domains of linguistic weights, Û , and that of aggregated

objects, X̂ .

• Let the initial G =
(
X , µG

)
, where X = {0}, and the µG(x̄) = 0.

Step 2: Induce the initial result G

• Select w1 ∈ Û , · · · ,wn ∈ Û , a1 ∈ X̂ , · · · ,an ∈ X̂ :

• Normalise (w1, · · · ,wn) as w̄i = wi/
n

∑
i=1

wi
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• Perform Yager’s OWA operation: ȳ = φw̄1,··· ,w̄n(a1, · · · ,an)
• Calculate µ0:

µ0 = µW1
(w1) ∗ · · · ∗ µWn(wn) ∗ µA1

(a1) ∗ · · · ∗ µAn(an)

• If there exists yk ∈X : ȳ = yk, then update the potential membership grade µG(yk):

µG(yk) ← max
(
µG(yk),µ0

)

Otherwise, ȳ is added to X , and the µG(ȳ) � µ0.

• Go to Step 2-1, and continue until all the weight vectors and aggregating points

are selected.

Step 3: Induce the fuzzy set G on the X̂ :

µG(x̂) = sup
x̄ j∈Θx̂

(
µG(x̄ j)

)

In the following, let us give an example of aggregating two type-1 fuzzy sets by

type-1 OWA operator given the linguistic weights.

Example 1. Supposing the domains U = {0.1,0.8} and X = {1.0,2.0,3.0}. Let the

given linguistic weights on U be

W1 =

(
ui

µW1
(ui)

)

ui∈U

=

(
0.1 0.8
0.2 1.0

)
; W2 =

(
0.1 0.8
1.0 0.2

)

and the aggregated objects on X be

A1 =

(
1.0 2.0 3.0
0.4 0.6 1.0

)
; A2 =

(
1.0 2.0 3.0
0.6 1.0 0.4

)

According to the described procedure (the t-norm ⋆ = product is used in the

following):

• Calculate the G on the over-partition X as follows,

G =

(
1.00 1.11 1.22 1.50 1.89 2.00 2.11 2.50 2.78 2.89 3.00

0.24 0.02 0.02 0.08 0.4 0.6 0.04 0.2 0.6 1.0 0.4

)

• The aggregating result obtained by the type-1 OWA is a type-1 fuzzy set

induced as,

G =

(
1.0 2.0 3.0
0.4 1.0 0.4

)

2.2 Joinness of Type-1 OWA Operator

Given two type-1 fuzzy sets A and B, their meet (A⊓B) and join (A⊔B) are defined

as follows [23, 25]:
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µA⊓ B(z) = sup
x ∧ y = z

x ∈ DA, y ∈ DB

µA(x)∗ µB(y) (4)

µA⊔B(z) = sup
x∨ y = z

x ∈ DA, y ∈ DB

µA(x)∗ µB(y) (5)

where DA,DB ⊆ X represent the domains of A and B respectively; ∗ is a t-norm

operator; ∧ represents the minimum operation; and ∨ represents the maximum

operation.

Interestingly, a type-1 OWA operator can be used to perform the join and meet

operations by selecting appropriate linguistic weights in the forms of type-1 fuzzy

sets. In the following, we define the degree of joinness and the degree of meetness

associated with the linguistic weights of a type-1 OWA operator to characterise the

degrees to which the aggregation is like the join and meet operation respectively.

Definition 2: Given a type-1 OWA operator with n linguistic weights {Wi}
n
i=1 in the

form of type-1 fuzzy sets on U ⊆ [0, 1], its joinness is defined as follows,

µ joinness(v) = sup

1

(n−1)
n

∑
i=1

wi

n

∑
i=1

(n− i)wi = v

wi ∈U

µW1
(w1)∗ · · · ∗µWn(wn) (6)

while its meetness is defined as follows,

µmeetness(v) = sup

1− 1

(n−1)
n

∑
i=1

wi

n

∑
i=1

(n− i)wi = v

wi ∈U

µW1
(w1)∗ · · · ∗µWn(wn) (7)

where ∗ is a t-norm operator.

The joinness and meetness of type-1 OWA operators can be considered as the

extensions of orness and andness of Yager’s OWA operator [1] respectively. The

joinness and meetness are type-1 fuzzy sets that indicate the linguistic expressions

of the degrees of compensations induced in their aggregations.

3 Special Cases of Type-1 OWA Operators

Interestingly, some existing aggregation operators can be implemented via type-1

OWA mechanism, as they are the special cases of type-1 OWA operators.
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3.1 Yager’s OWA Operator

Naturally, Yager’s OWA operator is a special case of the proposed type-1 OWA

operator: when the linguistic weights {Wi}
n
i=1 and the aggregated objects {Ai}

n
i=1

are singleton type-1 fuzzy sets, the type-1 OWA operator reduces to Yager’s OWA

operator.

3.2 Join and Join-Like Operators

The following theorem indicates that the join operator (5) of type-1 fuzzy sets [23,

25] can be obtained via a special case of type-1 OWA operator.

Theorem 1. If the linguistic weights of a type-1 OWA operator are the singleton

weights as: W1 = 1̇;Wi = 0̇ (i �= 1), i.e.,

µW1
(w) =

{
1 w = 1

0 otherwise
(8)

µWi
(w) =

{
1 w = 0

0 otherwise
(i �= 1) (9)

then for any aggregated objects {Ai}
n
i=1,

Φ(A1,A2, · · · ,An) = A1 ⊔A2 ⊔·· ·⊔An (10)

Proof: In this special type-1 OWA operator, we can only consider the special weight

vector ŵ defined as ŵ1 = 1, ŵ2 = 0, · · · , ŵn = 0 applying to the aggregation process.

For all w1, · · · ,wn ∈U,a1, · · · ,an ∈X , if the weight vector w = (w1,w2, · · · ,wn) �= ŵ,

then µW1
(w1)∗· · ·∗µWn(wn) = 0, so µW1

(w1)∗· · ·∗µWn(wn)∗µA1
(a1)∗· · ·∗µAn(an)=

0, which indicates that the aggregating point ā ≡
n

∑
i=1

w̄iaσ(i) does not lie in the sup-

port set of the final aggregating type-1 fuzzy set.

For ŵ, µW1
(ŵ1)∗ · · · ∗µWn(ŵn) = 1 leading to µW1

(ŵ1)∗ · · · ∗µWn(ŵn)∗ µA1
(a1)∗

· · · ∗µAn(an) = µA1
(a1)∗ · · · ∗µAn(an), while, the aggregating point ā ≡

n

∑
i=1

w̄iaσ(i) =

aσ(1) = max(a1, · · · ,an), hence Φ(A1,A2, · · · ,An) = A1 ⊔A2 ⊔·· ·⊔An. �

The joinness and meetness of this particular type-1 OWA operator, Φ, are joinness

({Wi}
n
i=1) = 1̇ and meetness({Wi}

n
i=1) = 0̇, which further confirm that this partic-

ular type-1 OWA operator is the join operator of type-1 fuzzy sets. Figure 1 shows

three type-1 fuzzy sets and their aggregation result by this particular case of type-1

OWA operator.

Furthermore, join-like type-1 OWA operators can be obtained by selecting ap-

propriate linguistic weights. For example, if the first linguistic weight approaches

to 1̇, and other linguistic weights approach to 0̇ as depicted in Figure 2a and Fig-

ure 2b, then the type-1 OWA operator shows a join-like type behaviour. Indeed, the
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(b) Aggregation result

Fig. 1 Aggregation of type-1 OWA operator as join
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(b) Wi (i �= 1)

Fig. 2 Linguistic weights for a join-like operator

joinness of this type-1 OWA operator is illustrated in Figure 3a, which shows that

the aggregation by this operator is very much like a join operation. Figure 3b delin-

eates the aggregation results of three type-1 fuzzy sets by this operator, which shows

its join-like behaviour.

3.3 Meet and Meet-Like Operators

The following theorem indicates that the meet operation (4) of type-1 fuzzy sets

[23, 25] can also be obtained via a special case of type-1 OWA operation.

Theorem 2. If the linguistic weights of type-1 OWA operator are the singleton

weights as: Wi = 0̇ (i �= n); Wn = 1̇, then for any aggregated objects {Ai}
n
i=1,

Φ(A1,A2, · · · ,An) = A1 ⊓A2 ⊓·· ·⊓An (11)
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Fig. 3 (a)-Joinness of the join-like type-1 OWA operator with linguistic weights given in

Figure 2; (b)-Aggregation result by this type-1 OWA operator– solid lines: fuzzy sets to be

aggregated; dashed line: aggregation result

Proof: Similar to the Proof of Theorem 2. �

The joinness and meetness of this particular type-1 OWA operator, Φ, are joinness

({Wi}
n
i=1) = 0̇ and meetness({Wi}

n
i=1) = 1̇, which further confirm that this particular

type-1 OWA operator is the meet operator of type-1 fuzzy sets. Figure 4 depicts the

aggregation result of three type-1 fuzzy sets by this operator.
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(a) Type-1 fuzzy sets to be ag-

gregated
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(b) Aggregation result

Fig. 4 Aggregation of type-1 OWA operator as meet

Moreover, meet-like operation can be achieved by type-1 OWA operator via se-

lecting appropriate linguistic weights. For example, as depicted in Figure 5a and

Figure 5b, the last linguistic weight is close to 1̇, and other linguistic weights close

to 0̇. Figure 5c depicts the aggregation result of three type-1 fuzzy sets by this oper-

ator, which shows its meet-like behaviour.
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(a) Wi (i �= n)
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(b) Wn
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(c) Aggregation result

Fig. 5 (a) and (b)- Linguistic weights for a meet-like operator; (c)-Solid lines represent ag-

gregated fuzzy sets, dashed line represents aggregation result.

3.4 Mean and Mean-Like Operators

It is known that Yager’s OWA operator reduces to the mean averaging operation

when its associated weights are all equal to 1/n. In type-1 OWA operation, when

the linguistic weights are all chosen to be the singleton type-1 fuzzy sets ˙1/n,

then the associated type-1 OWA operator becomes the extended mean operation on

type-1 fuzzy sets, i.e.,

µΦ(A1,··· ,An)(y) = sup

1
n

n

∑
i=1

ai = y

ai ∈ X

µA1
(a1)∗ · · ·∗µAn(an) (12)

For instance, three identical weights in the form of singleton type-1 fuzzy sets as

depicted in Figure 6a are used to aggregate type-1 fuzzy sets. Figure 6b depicts the

aggregation result of three type-1 fuzzy sets by this operator, and Figure 6c shows

the joinness of this OWA operator: joinness({Wi}
n
i=1) = meetness({Wi}

n
i=1) = ˙0.5,

which indicate that the obtained type-1 OWA operator neither has the tendency to

the join operation nor the meet operation.
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Fig. 6 Mean operator: (a)-Three same singleton fuzzy sets as linguistic weights: Wi =
˙1/3 (i = 1,2,3); (b)-solid lines represent fuzzy sets to be aggregated, dashed line represents

aggregation result; (c)- joinness of mean operator.

Mean-like type-1 OWA operators can be obtained by selecting the linguis-

tic weights appropriately. For example, Figure 7a shows three identical linguistic

weights in the forms of triangular type-1 fuzzy numbers whose cores locate at 1/3

as follows,

µWi
(u) = max{0,min{3u,2−3u}} (13)

The type-1 OWA operator with these three linguistic weights behaves as the mean-

like operation on type-1 fuzzy sets, which is corroborated by its joinness as illus-

trated in Figure 7c. Its joinness clearly indicates that this mean-like type-1 OWA

operator neither has the tendency to the join operation nor the meet operation. The

result of aggregating three type-1 fuzzy sets by this mean-like OWA operator is

shown in Figure 7b.
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Fig. 7 Mean like operator: (a)-three same type-1 fuzzy sets as linguistic weights

with cores locating at 1/3: Wi(i = 1,2,3); (b)- solid lines represent aggregated

fuzzy sets, dashed line represents aggregation result; (c)- joinness of this mean like

operator.

4 Type-2 OWA Operators for Aggregating Type-2 Fuzzy Sets

In the above sections, we have discussed the type-1 OWA operators and some related

issues. In this section, we define a termed type-2 OWA operator to aggregate type-2

fuzzy sets via an OWA mechanism.

4.1 Definition

Let F̃(X) =
{

Ã
∣∣Ã is type-2 fuzzy set on X

}
. Based on Zadeh’s Extension Principle,

in the following we extend Yager’s OWA operator and define the type-2 OWA oper-

ator for aggregating type-2 fuzzy sets.

Definition 3: Given n linguistic weights
{

W̃i

}n

i=1
in the form of type-2 fuzzy sets

defined on the domain of discourse U = [0, 1], a type-2 OWA operator is a mapping

Φ̃,
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Φ̃ : F̃(X) × ·· · × F̃(X) → F̃(X)(
Ã1, · · · , Ãn

)
�→ G̃

that is associated with

{
W̃i

}n

i=1
to aggregate the type-2 fuzzy sets

{
Ãi

}n

i=1
⊂ F̃(X).

Each slice of the aggregating result, G̃, is defined as

Gx = ⊔
n

∑
i=1

w̄iaσ(i) = x

wi ∈U,ai ∈ X

W1, w1
⊗·· ·⊗Wn, wn ⊗A1, a1

⊗·· ·⊗An, an (14)

in which Wi, wi

∆
= µ

W̃i
(wi, ·) and Ai, ai

∆
= µ

Ãi
(ai, ·) are type-1 fuzzy sets, w̄i = wi/

n

∑
i=1

wi;

σ : { 1, · · · ,n }→{ 1, · · · ,n } is a permutation function such that aσ(i) ≥ aσ(i+1), ∀ i =
1, · · · ,n−1, i.e., aσ(i) is the ith largest element in the set {a1, · · · ,an}; ⊔ is the join

operator defined in (5), whereas ⊗ is a t-norm operator that applies to type-1 fuzzy

sets, for example, Ai, ai
and A j, a j

, as follows:

µAi, ai
⊗A j, a j

(r) = sup

s⊗ t = r

s ∈ Jai
,t ∈ Ja j

µ
Ãi

(ai,s)∗ µ
Ã j

(a j,t) (15)

where ∗ is a t-norm operator for crisp numbers and can be different from ⊗. Similar

operations are performed on Wi, wi
⊗Wj, w j

and Wi, wi
⊗A j, a j

.

It can be seen that the aggregation result of type-2 fuzzy sets by the type-2 OWA

(14), G̃ = Φ̃
(

Ã1, · · · , Ãn

)
, is a type-2 fuzzy set. However, type-2 OWA operations on

general type-2 fuzzy sets are computationally intensive. Fortunately, if the linguistic

weights and aggregated objects are interval type-2 fuzzy sets (IT2FSs) , type-2 OWA

operations can be greatly simplified.

It can be proved that if the linguistic weights
{

W̃i

}n

i=1
and aggregated objects

{
Ãi

}n

i=1
are IT2FSs, then the type-2 OWA aggregating result G̃ = Φ̃

(
Ã1, · · · , Ãn

)

is an IT2FS. So in the IT2FS-oriented type-2 OWA aggregation we only need to

calculate the the footprint of uncertainty (FOU) of Φ
(

Ã1, · · · , Ãn

)
, i.e. FOU(G̃) =

∪
x∈X

Jx. Hence given a point x, we need to calculate the primary membership grade

Jx of G̃.

It can be seen from (15) that for the IT2FSs Ãi and Ã j, the domain of Ai, ai
⊗A j, a j

is

Jaia j
= Ja

i
⊗ Ja

j

∆
=

{
s⊗ t

∣∣∣ s ∈ Ja
i
,t ∈ Ja

j

}
(16)
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then, for the IT2FSs W̃1, · · · , W̃n, Ã1, · · · Ãn, the domain of W1, w1
⊗ · · · ⊗ Wn, wn ⊗

A1, a1
⊗ · · · ⊗ An, an is

Jw1···wna1···an = Jw
1
⊗ · · · ⊗ Jwn

⊗ Ja
1
⊗ · · · ⊗ Jan

(17)

Then we have:

Jx = ∨
n

∑
i=1

w̄iaσ(i) = x

wi ∈U,ai ∈ X

Jw1···wna1···an (18)

which is called IT2FS-oriented type-2 OWA operator.

Without loss of generality, for aggregating interval type-2 fuzzy sets, let Jwi
=[

gl
i,wi

, gr
i,wi

]
, Jai

=
[
gl

i,ai
, gr

i,ai

]
, and Jw1···wna1···an =

[
Jl

w1···wna1···an
, Jr

w1···wna1···an

]
.

Then for t-norm operator ⊗ = min or product [22],

Jl
w1···wna1···an

= gl
1,w1

⊗·· ·⊗gl
n,wn

⊗gl
1,a1

⊗·· ·⊗gl
n,an

(19)

Jr
w1···wna1···an

= gr
1,w1

⊗·· ·⊗gr
n,wn

⊗gr
1,a1

⊗·· ·⊗gr
n,an

(20)

That is to say, the left and right end points of the interval Jw1···wna1···an only depends

on the left and right end points of the aggregated intervals separately. In fact, the left

and right end points of the maximum of intervals also only depend on the left and

right end points of the individual intervals, i.e., [bl
1, br

1]∨·· ·∨ [bl
n, br

n] = [∨bl
i, ∨br

i ].
Hence, we can calculate the left end point and right end point of Jx = [Jl

x, Jr
x ] as

follows respectively,

Jl
x = ∨

n

∑
i=1

w̄iaσ(i) = x

wi ∈U,ai ∈ X

Jl
w1···wna1···an

(21)

and

Jr
x = ∨

n

∑
i=1

w̄iaσ(i) = x

wi ∈U,ai ∈ X

Jr
w1···wna1···an

(22)

4.2 A Procedure for Performing IT2FSs-Oriented Type-2 OWA

Operations

Given the linguistic weights
{

W̃i

}n

i=1
⊂ F̃(U), as usual, the domains of X and U

need to be discretised during calculation in order for the associated IT2FSs-oriented

type-2 OWA operator to aggregate IT2FSs
{

Ãi

}n

i=1
⊂ F̃(X) on a computer. Let the
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discretised domains be X̂ = {x̂1, · · · , x̂p} and Û = {û1, · · · , ûk}, which are partitions

of the spaces X and U respectively. We have noticed that the type-2 OWA operations

in terms of (21) and (22) suffer from the over-partition problem as the type-1 OWA

operator does due to another partitioning of X produced by ∑n
k=1 w̄iaσ(i) with all

the combinations (w1, · · · ,wn,a1, · · · ,an) of weighting points in Û and aggregating

points in X̂ , i.e,

X =
{

x̄ j

}
=

{
n

∑
k=1

w̄iaσ(i)

∣∣∣wi ∈ Û ,ai ∈ X̂ , i = 1, · · · ,n

}
(23)

For example, Figure 8a illustrates one set with poor understandability generated

by an IT2FSs-oriented type-2 OWA operator on the X , the over-partition version

of discretised X . The following procedure is proposed to perform IT2FSs-oriented

type-2 OWA operation while resolving the over-partition problem.

Step 1: Initialisation

1. Given the linguistic weights
{

W̃i

}n

i=1
⊆ F̃(U) in the form of IT2FSs for aggre-

gating IT2FS objects
{

Ãi

}n

i=1
⊆ F̃(X).

2. Given the discretised domains of linguistic weights, Û , and that of aggregated

objects, X̂ .

3. Let the initial G =
(
X ,µG

)
, where X = /0,Jl

0 = 0,Jr
0 = 0.

Step 2: Calculate G.

1. Select w1 ∈ Û , · · · ,wn ∈ Û , a1 ∈ X̂ , · · · ,an ∈ X̂ ,

2. Normalise (w1, · · · ,wn) as w̄i = wi/
n

∑
i=1

wi

3. Perform Yager’s OWA operation:

ȳ = φw̄1,··· ,w̄n(a1, · · · ,an)

4. Calculate Jl
w1···wna1···an

and Jr
w1···wna1···an

:

Jl
w1···wna1···an

= gl
1,w1

⊗·· ·⊗gl
n,wn

⊗gl
1,a1

⊗·· ·⊗gl
n,an

Jr
w1···wna1···an

= gr
1,w1

⊗·· ·⊗gr
n,wn

⊗gr
1,a1

⊗·· ·⊗gr
n,an

5. If there exists x̄ ∈ X : x̄ = ȳ, then update the potential primary membership grade

Jx̄:

Jl
x̄ ← max

(
Jl

x̄,J
l
w1···wna1···an

)

and

Jr
x̄ ← max

(
Jr

x̄ ,J
r
w1···wna1···an

)

Otherwise, ȳ is added to X , and the primary membership grade at ȳ: Jȳ
∆
=

Jw1···wna1···an .
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6. Go to Step 2-1, and continue until all the weight vectors and aggregating points

are selected.

Step 3: Induce the IT2FS G on X̂ :

Jl
x̂ = ∨

x̄ j∈Θx̂

Jl
x̂ j

and

Jr
x̂ = ∨

x̄ j∈Θx̂

Jr
x̂ j
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Fig. 8 (a)-A set generated on the over-partition version of discretised X ; (b)-The associated

set generated on the discretised X .

Figure 8b illustrates the result generated on the discretised X of the over-partition

in Figure 8a.

Example 2. Three linguistic weights W̃1,W̃2, and W̃3 in the form of IT2FSs as shown

in Figure 9 are used to define a type-2 OWA operator with min t-norm, Φ
W̃1W̃2W̃3

.

This IT2FSs-oriented type-2 OWA operator is then used to aggregate three interval

type-2 fuzzy sets as depicted in Figure 10a, while the Figure 10b shows the corre-

sponding aggregation result.

Example 3. In this example, the three same linguistic weights with different order

as shown in Figure 11a are used to define a type-2 OWA operator with min t-norm,

Φ
W̃1W̃2W̃3

. This IT2FSs-oriented type-2 OWA operator is also used to aggregate three

interval type-2 fuzzy sets as depicted in Figure 10a, while the Figure 11b shows the

corresponding aggregation result.

It can be seen from Examples 2 and 3 that the aggregation results obtained via

type-2 OWA operators are consistent with the compensative property of Yager’s

OWA operator [1]: Yager’s OWA operators can vary from the “min” (i.e, most-left

aggregated object on the domain X) to “max” (i.e, most-right aggregated object on

the domain X) aggregation.
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Fig. 9 Three linguistic weights defining a type-2 OWA operator
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Fig. 10 (a)-Three interval type-2 fuzzy sets to be aggregated by type-2 OWA operators; (b)-

Aggregating result by the type-2 OWA operator with linguistic weights in Figure 9
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Fig. 11 (a)-Three linguistic weights defining a type-2 OWA operator; (b)-Aggregating result

by the type-2 OWA operator with linguistic weights in Figure 11a
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5 Conclusion

The type-1 OWA operator is capable of aggregating type-1 fuzzy sets by taking into

account the whole membership function of the sets in the aggregation process. In

this chapter, some special cases of type-1 OWA operators are addressed, the joinness

and the meetness of type-1 OWA operators are proposed as a way of linguistically

expressing the degrees of the aggregation being like a join operation and meet op-

eration respectively. Moreover, the type-2 OWA operators are defined to aggregate

uncertain information modelled by type-2 fuzzy sets via OWA mechanism.

Some interesting new issues arise including the possibility of applying the type-

1 OWAs to merge similar fuzzy sets for improving fuzzy model interpretabil-

ity/transparency and parsimony [27, 28, 29]. etc. In particular, the type-1 OWA

aggregation operators may have great potential in being applied to multi-expert de-

cision making and multi-criteria decision making.
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Abstract. This chapter is about majority modelling in the context of group (multi-
expert) decision making, to the aim of defining a decision strategy which takes 
into account the individual opinions of the decision makers. The concept of 
majority plays in this context a key role: what is often needed is an overall opinion 
which synthesizes the opinions of the majority of the experts. The reduction of the 
individual experts’ opinions into a representative value (which we call the 
majority opinion) is usually performed through an aggregation process. In this 
chapter we describe two distinct approaches to the definition and consequent 
computation of a majority opinion within fuzzy set theory, where majority can be 
expressed by a linguistic quantifier (such as most). We first consider the case 
where linguistic quantifiers are associated with aggregation operators; in this case 
a majority opinion is computed by aggregating the individual opinions. To model 
this semantics of linguistic quantifiers the Induced Ordered Weighted Averaging 
operators (IOWA) are used with a modified definition of their weighting vector. 
We then consider a second case where the concept of majority is modelled as a 
vague concept. Based on this interpretation a formalization of a fuzzy majority 
opinion as a fuzzy subset is described.  

1   Introduction 

In group decision making (multi-expert decision making) a set of experts are 

involved in a decision process concerning the evaluation of a set of alternatives. 
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The first step of this decision process is constituted by the individual evaluations 

of the decision makers (experts): each expert rates each alternative on the basis of 

an adopted evaluation scheme [4]. At the end of this step each alternative has an 

associated performance judgment (evaluation or opinion) on a predefined scale 

(either numeric or linguistic). The second step of a multi-expert decision process 

consists in determining for each alternative a consensual judgment, which 

synthesizes the experts’ individual opinions. The consensual judgment is 

representative of a collective evaluation and is usually computed by means of an 

aggregation of the individual experts’ opinions. Usually also a consensus degree is 

computed for each alternative, based on a comparaison of the decision makers’ 

opinions. In the case of unanimous consensus, the evaluation process ends with 

the selection of the best alternative(s). As in real situations humans rarely come to 

an unanimous agreement, in the literature some fuzzy approaches to evaluate a 

majority guided aggregation have been proposed. In these approaches full 

consensus (degree=1) is not necessarily the result of unanimous agreement, but it 

can be obtained even in case of agreement among a majority of the decision 

makers [2,6,7,8,9].  

This chapter considers the problem of constructing a majority opinion, intended 

as the collective evaluation of a majority of the experts involved in the decision 

problem. A majority opinion is then intended as the consensual judgment of a 

given alternative by a majority of the decision makers who have similar opinions. 

Formally we consider n agents who have expressed individual judgments 

(opinions) on an alternative. In this chapter we only consider the case of a single 

alternative, because in the case of multiple alternatives the process of construction 

of a majority opinion can be independently applied to each alternative. So we have 

n judgments (opinions) a1, …, an which have to be reduced to an overall majority 

opinion (related to the considered alternative). 

In fuzzy approaches to multi-agent decision making the concept of majority is 

usually modeled by means of linguistic quantifiers such as at least 80% and most. 

In this context linguistic quantifiers are used to indicate a fusion strategy to guide 

the process of aggregating the experts’ opinions. In fuzzy set theory a linguistic 

quantifier is formally defined as a fuzzy subset of a numeric domain (either non 

negative real numbers or the unit interval), the membership function of which 

describes the compatibility of a given absolute or percentage quantity to the 

concept expressed by the linguistic quantifier. The notion of quantifier guided 

aggregation has been formally defined by means of Ordered Weighted Averaging 

operators [18,22] and by means of the concept of fuzzy integrals [5]. In this 

chapter we consider only the use of OWA operators in group decision making. An 

example of linguistic expression which employs a quantifier guided aggregation is 

the following: Q experts are satisfied by solution a, where Q denotes a linguistic 

quantifier, for example most, which expresses a majority. To evaluate the 

satisfaction of this proposition the experts’ opinions are aggregated by the OWA 

aggregation operator which captures the semantics of the concept expressed by the 

quantifier Q. To associate a linguistic quantifier Q with an OWA aggregation 

operator, an approach was suggested in [21,22] which makes use of the definition 

of the linguistic quantifier Q as a fuzzy subset.  
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In this chapter two distinct approaches to the definition of a majority opinion in 

the context of multi-experts decision making are described. These approaches 

were introduced in [13]. 

In the first approach an Induced Ordered Weighted Averaging (IOWA) 

operator is used to obtain a scalar value for a majority opinion. The second 

approach is based upon the calculation of the concept of the majority opinion as an 

imprecise value. Under this second interpretation we propose a formalization of 

the idea of a fuzzy majority as a fuzzy subset. As we shall see this approach 

provides in addition to a value for a majority opinion an indication of the strength 

of that value as the majority opinion.  

The main goal of both approaches is to obtain a value which can truly be 

considered as the opinion of a majority of the experts, that is, a value that is 

similar for any large group of people. Both methods require we have both 

information about the similarity between the experts’ opinions, and some 

information about what quantity constitutes the idea of a majority. 

The chapter is structured as follows: in section 2 the problem of the definition 

of aggregation operators with a semantics of majority is presented, in section 3 the 

first approach to construct Induced Ordered Weighted Averaging operators for 

linguistic quantifiers with a semantics of majority is explained. In sections 4, 5 

and 6 a formal definition of the  concept of fuzzy majority opinion is described. 

2   The Semantics of OWA Operators in an Aggregation Guided 

by “Majority” Linguistic Quantifiers 

To model the majority concept we consider monotonic non decreasing linguistic 

quantifiers, such as most and at least 80%. In particular we are interested in the 

use of such linguistic quantifiers in guiding an aggregation process aimed at 

computing the “majority opinion” related to a given alternative. The majority 

opinion is a value which synthesizes the majority of values to be aggregated in a 

multi-expert decision process. As explained in [18] OWA operators can be 

constructed based on the fuzzy definition of a linguistic quantifier; by applying 

this procedure, in the literature related to fuzzy group decision making the concept 

of majority has been usually modelled. However in this section we will show that 

by applying this procedure the resulting aggregated value may not be 

representative of the majority of values. In section 3 we will then introduce a new 

approach, based on the use of IOWA operators, which better captures an opinion 

shared by a majority of the experts involved in the decision process. 

Objectively, the OWA operator is an aggregation operator taking a collection of 

argument values and returning a single value. The weights of the OWA weighting 

vector determine the behaviour of the aggregation operator. These weights have 

the effect of emphasizing or demphasizing different components in the 

aggregation. Subjectively, there are a number of different semantics that can be 

associated with an OWA operator and which determine strategies of construction 

of its weighting vector. 
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One semantics that can be associated with the OWA operators is as a  

generalization of the idea of an averaging or summarizing operator. Here for 

example wi = 1/n for all i gives us the simple average. 

Another semantics that has been associated with the OWA is a generalization 

of the logical quantifiers there exists and for all. The weighting vector  with w1=1 

and wj=0 for j≠i corresponds to the quantifier “there exists” and the one with wn=1 

and wj=0 for j≠n corresponds to the quantifiers “for all”. In this framework the 

arguments are seen as truth values or degrees of satisfaction.  

If Q is a quantifier then the OWA aggregation provides a value which can  be 

seen as the truth or fulfilment value of the statement "Q the elements being 

aggregated are satisfied”. As outlined in [18], the weights of the weighting vector 

of an OWA operator are interpreted as the increase in satisfaction in having i+1 

criteria “fully” satisfied with respect to having “fully” satisfied i criteria. It is this 

semantics that has been most often used in applications of OWA operators to 

multi-criteria and multi-expert decision making. We try to clarify with an 

example. Let us suppose we define the weighting vector of the aggregation 

operator associated with the linguistic quantifier at least 80%, in the case in which 

we have to aggregate 5 values. Let us suppose that the 5 values to be aggregated 

are the evaluations scores of 5 experts related to a given alternative. A crisp 

definition of this aggregation operator can be: Wat least 80% = [0 0 0 1 0] as full 

satisfaction can be achieved if the 80% of the experts have judged the alternative 

in a positive way (non null evaluation) . Let us suppose that the evaluations scores 

to be aggregated are [1 1 1 0.1 0]. By applying the at least 80% aggregation 

operator to these values we obtain the aggregated value 0.1. However, we would 

obtain the same overall score when aggregating the values [0.1 0.1 0.1 0.1 0]. 

These results highlight the fact that the linguistic quantifier is intended to guide 

the aggregation with a semantics like “It is true that at least 80% of the criteria are 

fully satisfied”. In both previous examples, the aggregated value corresponds to 

the 4
th

 decreasing value, which corresponds to the evaluation of the 80% of the 

values, independently on the degrees of satisfaction of the previous values, which 

are greater than or equal to the fourth value. So in this case there is no 

compensantion between the values to be aggregated. 

The semantics of the aggregation guided by the quantifier at least 80% 

modeled with the previous definition of the weighting vector is then not aimed at 

producing a synthesis of the most similar values in the quantity specified by the 

quantifier. This latter semantics can be particularly useful in the context of group 

decision making. While with the original semantics of the weighting vector of an 

OWA operator the aggregated value is like a degree of satisfaction (truth) of the 

proposition “Q of the values are fully satisfied”, an operator with the semantics of 

calculating a majority opinion should produce a value  which is representative of 

the 80% of the most similar values. In the first example above this 

“representative” value could be around the value 0.70, because the 80% of the 

most similar values is around this value. In the second example the aggregated 

value should truly be 0.1. In other words what we want to obtain is an aggregation 

of the most similar opinions held by a quantity of decision makers specified by the 

linguistic quantifier Q. This situation appears to bring us closer in spirit to 
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interpretation of the OWA operator as averaging operator of a specified quantity 

rather then as a generalized quantifier. In fact what we want is an average of 

"most of the similar values". 

We now present an example which better shows the two distinct semantics of a 

quantifier guided aggregation; in this example we define the weighting vector of 

an OWA operator associated with the linguistic quantifier most. A simple 

interpretation of this linguistic quantifier can be that I desire that at least 70% of 

the criteria are satisfied (in other words at least 70% of the values to be aggregated 

have to be greater than 0). This quantifier has an and-like semantics. If we 

consider 6 elements to be aggregated a possible weighting vector associated with 

most can be [0 0 0 0.7 0.2 0.1], which means that the concept of majority 

corresponds to having at least 4 elements satisfied. Let us now suppose to have the 

following values to be aggregated: (1 1 1 0.5 0 0). The result of the aggregation 

under the previous weighting vector produces the value 0.35; this aggregated 

value does not characterize the value of the majority of the most similar values, 

which is intuitively a value closer to 1. As outlined before the main reason for this 

result is that the OWA aggregation produces a value which reflects the satisfaction 

of the proposition “most of the criteria have to be satisfied” instead of “the 

satisfaction value of most of the criteria”. 

It is important to notice that the semantics of the linguistic quantifier is strongly 

affected by the non-linear component of the aggregation operator (i.e. by the way 

in which the arguments are reordered). In the example before with the usual 

construction of the weighting vector the obtained low aggregated value is due to 

the fact  that the values to be aggregated are in decreasing order.  

This kind of semantics does not naturally model the meaning of the concept of 

majority as typically used in group decision making applications. When we use 

linguistic quantifiers to express our intent in aggregating the opinions of the group 

of decision makers, the implicit aim in stating most is to remind the fact that we 

want an evaluation that correspond to a majority of the experts holding a similar 

opinion, where by majority we intend most. This means that we need an 

aggregation operator that takes an average like aggregation of a majority of values 

that are similar. To this aim what should be effectively aggregated are the most 

similar values. The concept of similarity plays here a crucial role. In the next 

section the approach which has been defined in [13] to model this aggregation 

behaviour is explained. 

3   Using IOWA Operators to Compute a Majority Opinion 

To produce an aggregation with a majority semantics, in [13] we have proposed to 

use the IOWA operators with an inducing ordering variable which is based on a 

proximity metric over the elements to be aggregated. The basic idea is that the 

most similar values must have close positions in the induced ordering in order to 

appropriately be aggregated. We also suggested a new strategy for constructing 

the weighting vector so as to better model the new “majority-based” semantics of 

the aggregation.  
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Before introducing the new method, in subsection 3.1 below the definition of 

IOWA operators is synthesized.  In subsection 3.2 the new quantifier guided 

aggregation procedure is explained. 

3.1   Induced Ordered Weighted Averaging Operators 

In [23] Yager and Filev introduced an extension of the OWA called the Induced 

Ordered Weighted Averaging (IOWA) Operators. Here we have a collection of 

values (a1, …, an) to be aggregated, and an associate weighting vector W. 

However, associated with each of the argument values, the aj, is another value vj 

called the order inducing value. Let v-index be an ordering function such that v-

index(i) is the index of the i
th

 largest vi. Using the induced OWA we calculate: 

I-F(a1, …, an) = )(

n

1i

w iindexvi a −

=

∑  

Here then while we are still aggregating the aj values our ordering is done with 

respect to the vj value.  Here then we have pairs (aj,vj), aj being the argument value 

and vj being the order inducing value. If W is a vector of weights and BV is a 

vector whose values are the argument values ordered by the order inducing values: 

I-F(a1,a2, ...,an) = W
T
BV. 

As a simple example consider the case when we want to aggregate the following 

four pairs (aj,vj): (0.7,0.4), (0.9,0.3), (0.2,1) and (0.6,0.7). In this case the inducing 

values are v1=0.4, v2=0.3, v3=1, and v4=0.7, which are ordered 1>0.7>0.4>0.3; 

hence v-index is such that v-index(1)=3, v-index(2)=4, v-index(3)=1, v-

index(4)=2. 

If our weighting vector has the following values: w1=0.1, w2=0.2, w3=0.3, 

w4=0.4, we obtain the following aggregated value: 

I-F(a1,a2,a3,a4) = (0.1)(0.2)+(0.2)(0.6)+(0.3)(0.7)+(0.4)(0.9)= 0.71. 

3.2   Computation of a Majority Opinion in Group Decision 

Making 

What we want is to aggregate a set of n values expressing the evaluations of a 

given alternative by n experts in order to produce a value which synthesizes the 

opinion of the majority of the experts. To this aim our intent is to take the most 

similar values in the quantity specified by the quantifier and apply to them an 

averaging operator. What we need is a computation of the similarities between the 

opinion values. The values of the inducing variable of the IOWA operator are 

obtained by means of a function of the similarities between pairs of the opinion 

values. We define such a function using a Support function, as defined in [24]. A 

support function Sup is a binary function which computes a value Sup(a,b) which 
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expresses the support from b for a; the more similar, close are two values the more 

they support each other. A simple example of support function is the following: 

sup(ai, aj) = 1 if |ai-aj| < α            

      0 otherwise 
(1) 

If we consider a set of values to be aggregated, and we want to order them in 

increasing order of support we compute for each value the sum of its support 

values with respect to all the others values to be aggregated. Then for each 

expert’s opinion we sum all the supports it has in order to obtain its overall 

support. These overall supports for an expert’s opinion are used as the values of 

the order inducing variable. 

Concerning the alpha value, its setting is fundamental in the aggregation 

behaviour, as it determines the  maximum  admissible "distance" among two 

values (to be aggregated) in order to consider them "similar".This value roughly 

determines the number of groups of similar values among those to be aggregated. 

Its setting strongly depends on the granularity and semantics of the values to be 

aggregated. Let us  clarify by an example. Let us suppose to express opinions (i.e. 

the values to be aggregated) in the range [0,1] (notice that this is not mandatory). 

Let us also suppose that the various experts may express opinions on a scale 1 to 

ten; for example professors' marks evaluating a student's examination may be  

expressed in tenth. By representing these marks in the interval [0,1] we obtain ten 

possible evaluations values: 0.1, 0.2, 0.3 ..... 1 (this means that values, say 0.45, 

0.52 will never be used to score a student's examination). In this setting, when two 

values among the above ten can be considered similar? In other words, when 

professors have the feeling to evaluate a given student in a similar way? A 

possible (reasonable) choice is to set to 0.1 the maximum admissible distance 

value between two values, in order to consider them similar. This means that two 

distinct evaluations (still in tenth) equal to 8 and 9 can be considered similar, 

while 8 and 10 can not (of course we could be more tolerant by setting, say, the 

alpha value to 0.2). Now let us consider another possible reference set for 

expressing evaluation scores. In this context we are admitted to evaluate an 

examination by just four scores: 1, 2, 3, 4. If we express these values in the [0,1] 

interval we obtian four possible evalution scores, i.e. 0.25, 0.5, 0.75 and 1. It is 

evident that in this last case the granulaity of possible evaluation judgments is 

lower that the one of the first example (four possible evaluation score against ten). 

An appropriate alpha value in this case cannot be lower than 0.25. So a possible 

way to select the alpha value is to reason about granularity of opinion's 

evaluations, and about the admissible absolute distance between the two values in 

order to consider them "similar". 

We now present an example of an application of a support function with α=0.4. 

Let us suppose we have the following values to aggregate:  

 

a1= 0.9 a2= 0.7 a3 = 0.6 a4 = 0.1 a5 = 0 
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On the basis of the previous Support function, we compute the values of the 

supports for each pairs of values: 

Sup(a1,a2)=1 Sup(a1,a3)=1 Sup(a1,a4)=0 Sup(a1,a5)=0 

Sup(a2,a1)=1 Sup(a2,a3)=1 Sup(a2,a4)=0 Sup(a2,a5)=0 

Sup(a3,a1)=1 Sup(a3,a2)=1 Sup(a3,a4)=0 Sup(a3,a5)=0 

Sup(a4,a1)=0 Sup(a4,a2)=0 Sup(a4,a3)=0 Sup(a4,a5)=1 

Sup(a5,a1)=0 Sup(a5,a2)=0 Sup(a5,a3)=0 Sup(a5,a4)=1 

The overall support for each ai is obtained by adding the support values for ai; we 

denote this value by si: 

s1=2    s2=2    s3=2    s4=1    s5=1 

We can see that we have two main “clusters” of similar values. In fact the use of 

the adopted support function  induces a clustering of the arguments which can be 

controlled by the choice of the threshold parameter α in function (1). In the 

example we obtain two clusters with some ties of the overall support values. If we 

want to “solve” the ties we can impose a “stricter” condition by setting α=0.3; in 

this way we obtain: 

s1=1    s2=2    s3=1    s4=1    s5=1 

This result, combined with the previous one allows to order the elements to be 

aggregated in the following increasing order of similarity: 

induced similarity order:  I = [0 0.1 0.6 0.9 0.7] 

So we see that the use of an appropriate Support function allows us to induce an 

ordering based on proximity. 
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Let us suppose that we want now to obtain a majority-based aggregation of the 

previous values. The selected IOWA operator should then correspond to the 

linguistic quantifier most. We first consider the definition of most proposed in 

Figure 1; in this case the linguistic quantifier is defined by means of a non-

decreasing function. Starting from this definition we construct the weighting 

vector of 5 elements (as 5 are the elements of the example above); it is W = [0 0 

0.4 0.4 0.2]. Let us notice that the fifth element of this vector is smaller than the 

fourth element. By aggregating the vector I above we obtain: I * W = 0.76. We 

note that this value is a much better representative of the majority of the values to 

be aggregated, than the value which we would obtain with the usual OWA 

operator associated with most (with the elements in decreasing order of their 

value): B = [0.9 0.7 0.6 0.1 0], and B*W = 0.28.  

However, as outlined before, what can be noticed in the considered W vector is 

that the last weight (on the right hand side of the vector W) is smaller than the 

previous value; this is coherent with the interpretation of the weights as increase in 

satisfaction in having i+1 with respect to having i criteria satisfied. However, in an 

aggregation with the semantics of majority what would be expected is that the 

weights of the weighting vector are non decreasing; in fact as in the induced order 

of the arguments the top value is the most “supported” one from the all the other 

values (the most representative) it should be more emphasized than the others, or 

at least not less emphasized. For this reason, and in order to obtain a value which 

better represents a majority of the aggregated elements, we propose a new strategy 

for the construction of the weighting vector. This strategy has the aim of 

emphasizing in the aggregation the most supported values; in other words the 

values which appear on the right hand side of the vector of values to be aggregated 

have more influence in the aggregation. In the following we suggest a procedure 

for the construction of the weighting vector which produces a weighting vector 

with non decreasing weights. First let us consider the overall support (similarity) 

values computed for the n values to be aggregated: s
1
, s

2
, …, s

n
. In order to 

compute the non decreasing weights of the weighting vector, we first define the 

values t
1
, t

2
, …, t

n 
based on a modification of the s

1
, s

2
, …, s

n
 values: t

i 
= s

i 
+ 1. In 

this way the similarity of the value a
i
 with itself (similarity value equal to 1) is also 

included in the definition of the overall support for a
i
. The t

i 
values are in 

increasing order, that is t
1
 is the smallest value among the t

i
. 

On the basis of the t
j
 values, the weights of the weighting vector are computed 

as follows: 

wi = Q(t
1
/n)/∑i=1..nQ(t

i
/n) 

The value Q(t
1
/n) denotes the degree to which a given member of the considered 

set of values represents the majority. 

Based on this formula we define the weighting vector of the OWA operator 

associated with the quantifier most presented in Figure 1; if we want to aggregate 

five elements we obtain: W1=[0 0 0.333 0.333 0.333].  

Let us now aggregate with this weighting vector the induced ordered elements 

in the example illustrated before I = [0 0.1 0.6 0.9 0.7]; we obtain W1*I = 0.733.  
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Although this value is smaller than the value obtained with the weighting 

vector W above, it is closer to 0.7 that is the most representative value among the 

values to be aggregated. 

Let us now aggregate the six elements a
1
=1, a

2
=1, a

3
=1 a

4
=0.5, a

5
=0, a

6
=0. First 

of all we have to induce their similarity based ordering. We perform this step by 

adopting the simple support function defined above. If we set a value α = 0.4 we 

obtain s
1
 = 2, s

2
 = 2, s

3
 = 2, s

4
 = 0, s

5 
= 1, s

6 
= 1. As it can be noticed, in this case the 

fact that 0.5 has an overall support equal to 0 is due to the fact that it is a value 

equidistant from both 0 and 1, which are the other values to be aggregated. With 

this choice of the parameter α, the induced ordering of the values is then I = [0.5 0 

0 1 1 1]. We now compute the weights of the weighting vector of six elements, 

based on the computation procedure shown above: W1 = [0 0 0 0.33 0.33 0.33]. 

Let us now aggregate the vector I: W1*I = 0.33 + 0.33 + 0.33 = 1. In this case if 

we aggregate the vector I with the weighting vector W shown in Table 1 we obtain 

the lower aggregated value 0.82, which could be considered as worst reflecting the 

majority of the considered elements. We finally notice that the result 0.35 

produced by the classical definition of the OWA operator (based on the definition 

of the linguistic quantifier most presented in Figure 1) applied to the same values 

[1 1 1 0.5 0 0] is very far from an interpretation based on a the majority–oriented 

aggregation. 

4   The Concept of Fuzzy Majority Opinion 

In the previous section the approach proposed in [13] to compute a value (called 

the majority opinion) synthesizing the majority of a collection of values has been 

described . In the following an approach based upon the idea of a fuzzy majority 

opinion (also proposed in [13]) is presented. Under this interpretation the majority 

opinion is no longer represented as a value, but as a fuzzy subset. As we shall see 

this provides in addition to a value for the majority opinion also an indication of 

the strength of that value as a representative of the majority opinion. 

In the following we shall let A = {a1 , ..., an } be a set of values which constitute 

the opinions of a group of people. The definition of a fuzzy majority opinion 

requires that we have information about the similarity between the values 

provided. It requires also some information about what quantity constitutes the 

idea of a majority. We assume the availability of a relation on the space from 

which the values to be aggregated are drawn indicating how similar two values 

are. In particular we assume a relationship Sim on the domain of A such that for 

any ai and aj Sim[ai, aj]∈[0,1 ] and that Sim satisfies the properties Sim(ai, ai) = 1 

and Sim(ai, aj) = Sim(ai, ai). We note that the relationship Sim is not a formal 

similarity relationship as introduced by Zadeh [25], it lacks transitivity, but a 

proximity relationship [11]. However for linguistic and intuitive convenience we 

shall refer to Sim(x,y) as indicating the degree of similarity between x and y. 

Another tool we need is a formal definition of the quantity we consider to 

constitute a majority. The concept of a majority is user and context dependent 

idea, however there are certain features common to any definition. We assume a 
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user provided definition of a majority in terms of a fuzzy subset Q on the unit 

interval. In particular Q: [0,1] → [0,1] such that Q(0) = 0, Q(1) = 1 and Q(x) ≥ 

Q(y) if x >y. The monotonicity of Q implies that if Q(y) = 1 then for all x > y we 

have Q(x) = 1. We shall call the point x*, the smallest value for which Q(x) = 1, 

the Point of Realization, POR. 

The concept of majority always has some POR, typically POR < 1. As we shall 

subsequently see often it will be useful to have definitions of Q that are strictly 

monotonic, if x > y then Q(x) > Q(y). This strict monotonicity requires Q(x) <  1 if 

x < 1 and hence POR = 1. This type of strictly monotonic definition of Q allows 

us to always be able to distinguish between sets of different cardinalities. One 

solution to this conflict between desiring strict monotonicity and POR>0 is to use 

a concept of “effective point of realization” EPOR. The quantifier displayed below 

illustrates this idea. 

 

Fig. 2 Implementing an EPOR 

Here we allow our definition to be such that x* is our EPOR and we consider 

0.99 to effectively denote complete satisfaction. However for x from x* to 1 we 

use a straight line such that Q(x) = 
*

)(.

x

x

−

−
−

1

110
1 . Based on these ideas we 

introduce a concept of a majority opinion that will as a fuzzy subset that can be 

interpreted as a possibility distribution on the numeric majority opinions [3]. 

Let E be a crisp subset of A; the first step is determine the degree to which this 

is a subset holding a majority opinion. A subset E holds a majority opinion if all 

the elements in E are similar, and the cardinality of E satisfies our idea of being a 

majority of elements from A. We shall refer to a subset of values holding a 

majority opinion, as a gang. Thus a gang is a subset of E that contains a majority 

of elements having similar values. Let Majop(E) indicate the degree to which the 

elements in E, constitute a majority opinion, and are a majority of elements from 

A with similar values. We define  

Majop(E) = Q(
n

E
) ∧ )]a ,[Sim(aMin ji

Ea,a
ji
∈
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For simplicity we shall denote Sim(E) = )]a ,[Sim(aMin ji
Ea,a

ji
∈

 and hence 

Majop(E) = Q(
n

E
) ∧ Sim(E) 

We now express the opinion of the elements in E as 

Op(E) = Ave(E) = 
E

a
Ea

i

i

∑
∈

 

It is the average value of the elements in E. 

Using both concepts Op(E) and Majop(E) we can define a fuzzy subset F 

indicating the majority opinion of the set of elements in A  

F = Majority Opinion = ∪
AE

Op(E)

Majop(E)

⊆ ⎭⎬
⎫

⎩⎨
⎧

 

So for each subset E , the value Majop(E) indicates the degree to which the 

quantity OP(E) represents a majority opinion.  

With F the fuzzy subset corresponding to the fuzzy majority opinion we see the 

MaxE[Majop(E)], the maximal membership grade in F, indicates the degree to 

which there exists a majority opinion.  

Here we shall provide an example to illustrate the construction of a fuzzy 

majority opinion. 

Example: We assume that our values are drawn from a scale of 0 to 10. We 

assume the following simple similarity relation: 

                            Sim(x, y) = 1                   if |x - y| ≤ 2 

                 Sim(x, y) = 
2

1
(4 - x)                     if 2 ≤ |x - y| ≤ 4 

                             Sim(x, y) = 0                if |x - y| > 4 

We assume the situation in which our concept majority, Q, is defined as shown in 

figure 3. 

 

 

 

 

 

 

 

 

1 

0.4 0.6  
Fig. 3 Definition of the quantity majority 
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Thus 

Q(x) = 0   if x ≤ 0.4 

Q(x) = 5(x - 0.4)  0.4 < x ≤ 0.6 

Q(x) = 1   x ≥ 0.6 
 

I. Let us consider the case where A = {1, 4, 5, 5, 6, 9}. Since n = 6 we have 2
6
 

possible subsets. However any subset having 2 or less elements has Q(
6

E ) = 0. In 

addition any subset having elements with a distance between any two of its 

members of four or more has Sim(E) = 0. Thus the following are the only subsets 

for which Majop(E) ≠ 0 

    E1 = {4, 5, 5, 6} 

E2 = {4, 5, 5} 

E3 = {4, 5, 6} 

E4 = {5, 5, 6} 

 
E AVE(E) Q(E/N) Sim(E) Majop(E) 

E1 5 1 1 1 

E2 4.7 0.5 1 0.5 

E3 5 0.5 1 0.5 

E4 5.3 0.5 1 0.5 

 
Thus in this case our fuzzy majority F is F = (

4.7

0.5 ,
5

1 ,
5.3

0.5 ) , which we can see can 

be expressed as around 5. In fact, in describing the subset F use can be made of 

the connection between fuzzy subsets and natural languages to allow, if possible, 

the expression of F as a linguistic term.  

 

 

II. Let us consider the case where A ={1, 1, 4.5, 6.5, 10, 10} 

Here again if we eliminate subsets with two or less elements and those which 

have elements at a distance of four from each other we only two subsets: 

 

E1 = {1, 1, 4.5} 

    E2 = {6.5, 10, 10} 

In this 

 

E AVE(E) Q(E/N) Sim(E) Majop(E) 

E1 2.16 0.5 0.25 0.25 

E2 8.833 0.5 0.25 0.25 

 

 



124 G. Pasi and R.R. Yager

 

In this case we get as our majority opinion F = {
2.16

0.25
,
8.833

0.25
}. Here we see 

very little support for any fuzzy majority opinion. As matter of fact MaxxF(x) = 

0.25, there is no gang, no subset of A constituting a majority of people with 

similar opinions. 

We note that at a formal level F is a fuzzy subset of the real line such that 

F(r) = )ESim(
n

E
(Q(Max

rs.t.Ave(E)A  E all
∧

=∈
)  

5   The Uniqueness of the Majority Opinion 

With the use of the fuzzy majority we get a fuzzy subset F where for each value 

Op(E) we have Majop(E) indicating the extent to which Op(E) can be considered 

as a majority opinion. As we noted MaxE[Majop(E)] indicates the degree to which 

there exists at least one value that can be  considered as a majority opinion. The 

possibility exists that there exists multiple majority opinions. 

In the following we present a measure called the clarity or uniqueness of the 

majority opinion, aimed at calculating the degree to which there seems to be some 

unique value that is a majority opinion; this unique value can be a cluster of 

similar values. 

In the following the subset F corresponding to the majority opinion is 

represented as consisting of a collection of pairs, (ui, ri) where ui = Majop(E) and ri 

= Op(E). We shall refer to ui as the strength of the pair and ri as the value of the 

pair. Since F is obtained by using subsets where Majop(E) > 0 here we assume ui 

> 0. We let q denote the number of pairs. 

As a first step in the computation of this uniqueness measure, the pairs (ui, ri) are 

ordered by these ui values in descending order. Tied values can be arbitrarily 

adjudicated. Using this ordering, let index(j) be the index of the jth largest of the ui. 

Thus (uindex(j), rindex(j)) is the pair having the jth largest degree of membership in F. 

Using this we now introduce the idea of Unique(F) as the degree to which F has 

a unique majority opinion. This concept is closely related to the idea of specificity 

introduced by Yager in [17,20]. We recall specificity tries to measure the degree 

to which a fuzzy subset has one and only element. We also recall that specificity 

can be denied if a subset has too many members or no members, a low value for 

largest membership grade. A feature distinguishing the proposed measure of 

uniqueness from that of specificity relates to the assumption of an underling 

similarity relationship in the case of uniqueness. Essentially here we want to 

consider two members of F that are similar as corresponding to element when 

calculating the degree of uniqueness. We note that in [19] Yager looked at closely 

related issues in investigating measures of specificity in the face of similarity 

relations. We now turn to the formal definition of Unique(F). We first introduce a 

related concept called OverShadowed which we denote OS. We define OS as a 

mapping on the ordered pairs {1, 2,...,q} into the unit interval such that 
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   OS(1) = 0 

OS(j) = Max i = 1 to j-1[(Sim(rindex(j), rindex(i))) ∧ (1 - OS(i))]  for j= 2 to q 

We see that OS(j) essentially measures the degree to which rindex(j), the value 

corresponding to the element with j largest membership grade in F, is similar to 

some other value which has a higher membership grade in F and which has not 

been overshadowed. Using this we express our measure of uniqueness. 

Unique(F) = uindex(1) - Maxj = 2 to q [uindex(j) ∧ (1 - OS(j))] 

Let us apply this concept to our preceding example. 

 

Example:  

Case I: Here A = {1, 4, 5, 5, 6, 9} and we got F = (
4.7

0.5
,

5

1
.

5.3

0.5
). From this we get 

three pairs <(0.5, 4.7), (1,5), (0.5, 5.3)>. Using this we get 

 
J uindex(j) rindex(j) OS(j) 1 - OS(j) uindex(1) ∧ (1- OS(rj)) 

1 1 5 0 1 0 

2 0.5 5.3 1 0 0 

3 0.5 4.7 1 0 0 

 
Thus in this case we get Unique(F) = 1. There is one unique majority opinion 

 

Case II: Here A = {1,1, 4.5, 4.5} and we got F = (
2.10

0.25 ,
8.833

0.25 ). From this we get 

two pairs <(0.25, 2.16), (0.25, 8.833)>. Using this we get 

 
j uindex(j) rindex(j) OS(j) 1 - OS(j) uindex(1) ∧ (1- OS(rj)) 

1 0.25 2.16 - - - 

2 0.25 8.833 0 1 0.25 

 
Thus here Unique(F) = 0.25 - 0.25 = 0. Here we see that it doesn’t exist any 

clear majority opinion. 

We note that Unique(F) ≤ uindex(1) thus if the strongest element in F is small then 

Unique(F) will be small, we will have no unique majority opinion. On the other 

hand if uindex(1) is large this doesn’t assure us a unique majority opinion as we may 

have multiple diverse majority opinions.  

As previously defined Unique(F) indicates the degree to which F contains a 

single gang, a single majority opinion. In particular the measure Unique(F) does 

provide much understanding in the situation when it exists, was this caused by 

having no majority opinion or by having multiple majority opinions. We introduce 

a related concept which helps provide some understanding. Let us first define gj 

for j = 1 to q such that 
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                                        g1 = uindex(1) 

gj = uindex(j) ∧ (1 - OS(j)) for j > 1 

 
We now define hi as the ith largest of gj. We can now use hi to indicate the degree 

to which there exists at least i distinct majority opinions. Since g1 ≥ gj for all j, 

then h1 = g1 and hence g1 is the degree to which there exists at least one majority 

opinion. 

In some sense our idea of fuzzy majority is related to, although more general 

than, the concept of the mode of the set of observations A. We recall the mode 

indicates the value in A occurring the most times. Let us see these relationship 

here between F and the mode. Instead of considering one value we consider 

collections of similar values. Furthermore we assign a degree of modeness of one 

to the subset with the most equal elements. With F we use the concept Q to 

determine how satisfactory is a subset of a given cardinality. 

The relationship Sim indicates our idea of what scores are considered as 

compatible. Let us look at some special cases of Sim. First consider the case of a 

strong condition for compatibility here Sim(x, x) = 1 and Sim(x, y) = 0 for x ≠ y. 

In this case Sim(E) = 0 except in the case in which all elements are the same, in 

which case Sim(E) = 1. Furthermore if all elements in E are equal to a then Op(E) 

= a. In this case of similarity the fuzzy majority opinion takes a very interesting 

form. Let A = {a1 , ..., an} be our data and let D = {d1 ,...,dt} be the set of distinct 

values in A, here of course t ≤ n. Furthermore let nj be the number of elements in 

A having the value dj . Using this we get 

}
d

u
{}

d

)
n

n
Q(

{F
t

1j j

j
t

1j j

j

∪∪
==

==  

Here we clearly see the connection with the mode. Furthermore since Q is 

monotonic no element in A will have a higher membership grade in F then the one 

with the biggest count in A. Actually we can formally obtain the mode by a using 

a special definition for Q. In the preceding we defined Q as a pointwise function 

of its argument, Q(x) just depends upon x. Here we must define Q not in a 

pointwise fashion. In particular we define  }
d

N),Q(n
{F

t

1j j

j∪
=

=    thus uj =  

Q(nj, N). Here N = {nj, j = 1 to t}, it is the set of all arguments. We now define 

Q(nj, N) as follows 

 

If nj ≥ Max(N) then Q(nj, N) = 1 

If nj < Max(N) then Q(nj, N) = 0 

 

Using this definition for Q and the preceding definition for Sim we get F = Mode. 
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Let us now consider the other extreme for Sim where we assume all the values 

are compatible, Sim(x, y) = 1. In this case Sim(E) = 1 for all E. In this case 

Majop(E) = )
n

E
Q( . Thus 

}
Ave(E)

)
n

E
Q(

{F

AE

∪
⊂

= . 

In this case since Sim(x, y) = 1 for all x and y, then Sim(Ave(E1), Ave(E2)) = 1 for 

all E1 and E2. 

Further since )
n

A
Q( =1 then we easily show OS(j) = 1 for all j > 1. Thus in 

this case 

Unique(F) = uindex(1) - Max j = 2 to q [uindex(j) ∧ (1 - OS(j))] = uindex(1) = 1 

Thus in this case there appears one unique majority opinion, Ave(A) the 

average of the observations. 

We further note that if we define F where we define Q using the rule base 

above, F(E) = Q(|E|, N) where N = {|B| for B ⊆ A} = {k = 1 to |A|} then 

}
Ave(E)

) ,EQ(
{F

AE

∪
⊂

=
N . In this case with Sim(x, y) = 1 we get F is the average,  

F = Ave(E). 

6   Ordinal Environment  

In the preceding sections we considered the situation in which the values to be 

aggregated were assumed to be numbers. In [13] the problem has been also 

considered of calculating the majority opinion in the case in which the individual 

opinions are assumed only to have an ordered nature. We let S = {s1 , s2,..., sm} be 

an ordinal scale such that si> sj if i > j. We assume that the opinions to be 

aggregated A = {a1, a2, ....., an} are drawn from S. A prototypical situation of this 

kind is the case in which opinions are expressed using linguistic terms such as 

good, very good, perfect. 

In order to develop a method for obtaining a majority opinion we need to 

provide some information about our idea of what is a majority as well as 

information about the similarity of the objects in S. We need an ordinal scale for 

expressing this information; while this scale can be the scale S we need not require 

it be the same scale. An ordinal scale T = (t1 , t2,..., tp} is assumed with ti > tj if i > 

j; the assumption that T is not necessarily the same as S is less restrictive than 

assuming them to be the same. A negation can be provided on this scale as Neg(tj) 

= tp + 1- j. It must be pointed out that the assumption that this is an ordinal scale  
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does not preclude us from using a numeric scale such as the unit interval. It must 

be also pointed out that while the information about the definition of similarity 

and the concept of majority do not have to be on the same scale as the opinions 

being aggregated the information about the definition of similarity and the concept 

of majority do have to be on the same scale. 

Here then we assume the availability of a relationship Sim on S such for any si, 

sj ∈ S we have Sim(si, sj) ∈ T. Here we assume that Sim(si, sj) = Sim(sj, si) and 

Sim(sj, sj) = tp. In addition we assume the availability of a definition of majority, Q 

such that Q:[0,1] → T where Q(0) = t1, Q(1) = tp and Q(x) ≥ Q(y) if x>y. Using 

these tools a concept of a majority opinion as a fuzzy subset has been defined in a 

manner analogous to the preceding. Here again the majority opinion is defined as 

a fuzzy subset F such that 

}
Op(E)

Majop(E)
{F

AE

∪
⊆

=  

Again for any subset E of A we define 

Majop(E) = Q(
n

E
) ∧ Sim(E) 

Where Sim(E) = )]a ,[Sim(aMin ji
Ea,a

ji
∈

.  Here Majop determines the degree to 

which the subset E constitutes a majority of values that are compatible, similar. Since 

the elements of E are chosen from an ordinal scale S we can indicate 

[ ]i
Ea

* aMaxE
i
∈

=  and  [ ]i
Ea

* aMinE
i
∈

= . Since Sim(E) is the minimum similarity 

between any two elements in E, it is the similarity between the two most distant 

elements in E with respect to the scale S. From this we see that Sim(E) = Sim(E* , E*). 

The term Op(E) is the aggregated opinion of the elements in the subset E. In the 

preceding we used the average of the elements in E for OP(E), however here the 

ordered nature of the elements precludes our using this operation. In this case to 

calculate the aggregated opinion of the elements E, the median of E is used, thus 

Op(E) = Med(E). We recall that the median of E is obtained by ordering the 

elements in E and then taking the middle element. Without loss of generality 

assume the ordered elements in E are b1≥b2≥b|E|. If E is odd then we can obtain the 

middle element, Med(E) = 

2

1Eb + . If |E| is even then the Med(E) is not unique, it 

is between 

2

Eb  and 
1

2

Eb
+

. One protocol is to take one of these values as the 

median. For example we can take the bigger thus if |E| is even Med(E) = 
1

2

Eb
+

. 
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Using the median we get as our majority opinion the fuzzy subset 

}
Med(E)

Majop(E)
{F

AE

∪
⊆

=  

We shall now turn to some pragmatic issues related to this ordinal environment. 

First we note that occurrence of a scale S on which we obtain the individual 

opinions is generally a natural phenomenon and is not difficult to formulate. It is 

assumed often of a linguistic nature and as noted it may involve terms like very 

poor, good, very good. The requirement that the measure of similarity between the 

observed elements and the definition of the concept Q be on the same scale is 

required because of the need to perform the operator) Q(
n

E
) ∧ Sim(E). 

This requirement can be somewhat relaxed in a pragmatic spirit. In particular if 

in determining Sim(E) we can be satisfied in only establishing whether the 

elements in E are compatible with each other or not we greatly reduce the 

information required with respect to the similarity. That is here we need only 

assign a value 1 or 0 (True or False) to Sim(E). Furthermore since Sim(E) = 

Sim(E* , E*) all we need to determine is if the boundary elements in E are 

compatible or not. At a formal level the use of this binary type of measurement of 

similarity can be seen as defining the relationship Sim on a sub scale of T, the 

subset scale being {t1, tp}. In particular if the elements in E are compatible Sim(E) 

= tp and if they are not compatible Sim(E) = t1. Thus in the case in which Sim(E) = 

tp we get Majop(E) = Q(
n

E
) and if elements in E are not compatible, Sim(E) = t1 

then Majop(E) = t1. It will be convenient to refer to these special elements in T as 

0 and 1. 

Using this more simplified measurement of the similarity we get 

}
Med(E)

Majop(E)
{F

ptSim(E)

∪
=

=  

Let us look more carefully at the collection of subsets of A with compatible 

elements, those with Sim(E) = tp. We first note that if E ⊆ E’ then if the elements 

in E are not compatible then those in E’ are not compatible. On the other hand if 

the elements in E’ are compatible then all those in E are compatible. 

We now consider the idea of maximal compatibility set in this environment. 

Without loss of generality, assume the elements in A have been indexed such that 

a1 ≤ a2 ≤.. ai ≤ aj….≤ an if i < j. Let us start with a1 and find the largest aj such that 

Sim(a1 , aj) = tp = 1 it is the farthest element in A still compatible with a1. Let us 

denote E1 = {aj such that j ≥1 and Sim(a1, aj) =1} all the elements in E1 are 

compatible and all the subsets of E1 are made of compatible elements. More 

generally for any ai ∈ A let us denote Ei = {aj | j≥i, Sim(aj, ai) =1}. 
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Consider a compatible set Ei and let G and H be any subsets of Ei then since all 

elements in G and H are compatible and since Med(G)∈G and Med(H )∈H then 

Sim(Med(G), Med(H)) = 1. In particular Sim(Med(G), Med(Ei) = 1. Thus the 

similarity between the compatible set Ei and any of its subset in one. 

Let us denote CA as the collection of compatible subsets of A. We see that 

∪
n

1i

E
A

i2C

=

=  

It is the union of the power sets of all of the Ei. We can further refine this 

definition. For any compatibility set Ei let us denote ei* as the maximal element, it 

is the element farthest from ai, the seed of Ei. Let Ei and Ej be two compatible sets 

where j > i, aj > ai. We first note that ej* ≥ ei* that is the largest element in Ej must 

be at least as large as ei*. Further we note that if ej* = ei* then Ej ⊆ Ei. We shall 

call Ei a maximal compatible set if ej* > ei* for all i < j. 

We shall denote the collection of indices corresponding to maximal some sets 

as E. We see that we can express ∪
E∈

=

i

E
A

i2C . 

Thus using this binary similarity relationship we have obtained 

}
Med(E)

n

E
Q(

{F

ACE

∪
⊂

=

)
where ∪

E∈

=

i

E
A

i2C and E is the collection of maximal 

compatible sets. 

Let us now consider the definition of Q. First we recall that Q is monotonic. We 

can consider Q to be of the form shown as figure 4. 

 

1 

k1 k2  

Fig. 4 Basic form for Q 

Thus there is some quantity of elements k1 below which the degree of majority 

is zero and some quantity of elements k2 for which we assume complete concept 

of majority. Using this we easily define Q in a natural manner  
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Q(|E|) = 0   |E| = k1 

Q(|E|) = 

12

1

kk

kE

−

−
 k1<|E|<k2 

Q(|E|) = 1   |E| ≥ k2 

 

Furthermore we note that if B ⊂ Ei then Q(|B|) ≤ Q(|Ei|) this implies that for any 

maximal compatible set Q(|Ei| is at least as large as Q(|B|) for its subsets. 

Furthermore since if B ⊂ Ei then Sim(Med(Ei), Med(B)) = 1 we can effectively 

represent the majority opinion as 

}
)Med(E

Q(E
{F

i i

i∪
E

)

∈

=  

Thus all we need do is to find all the maximal compatibility sets, the degree to 

which each constitutes a majority of elements and obtain their respective medians. 

7   Conclusions  

In this chapter a research work has been reported, which proposed a new modeling 

of majority opinion in the context of group decision making [13]. The proposed 

method relies on the use of IOWA. The motivation of this work is based on the 

fact that one of the main problems related to group decision making is to 

synthesize an overall opinion shared by the majority of the experts. This requires 

an aggregation of the individual opinions into an overall value reflecting the 

concept of majority. Within fuzzy set theory the concept of majority has been 

modeled by means of fuzzy quantifiers defined as fuzzy subsets of the unit 

interval. In this chapter two possible definitions of a majority opinion related to a 

linguistic quantifier over a considered set of values have been presented. The first 

proposal is aimed at constructing an aggregation operator the semantics of which 

reflects the concept of majority. The operator described in this chapter when 

applied to aggregate a considered set of values (opinions) produces an aggregated 

value which is representative of the majority of the values to be aggregated (called 

the majority opinion). A modeling of the concept of majority opinion as a fuzzy 

subset has also been described in this chapter. Connected with this latter 

formalization is the concept of uniqueness of majority opinion. 
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Generating OWA Weights from Individual

Assessments

José Luis Garcı́a-Lapresta, Bonifacio Llamazares, and Teresa Peña

Abstract. In this contribution we propose a method for generating OWA weight-

ing vectors from the individual assessments on a set of alternatives in such a way

that these weights minimize the disagreement among individual assessments and

the outcome provided by the OWA operator. For measuring that disagreement we

have aggregated distances between individual and collective assessments by using

a metric and an aggregation function. We have paid attention to Manhattan and

Chebyshev metrics and arithmetic mean and maximum as aggregation functions.

In this setting, we have proven that medians and the mid-range are the solutions

for some cases. When a general solution is not available, we have provided some

mathematical programs for solving the problem.

1 Introduction

In 1988 Yager [10] introduced OWA operators as a tool for aggregating numerical

values in multi-criteria decision making. An OWA operator is similar to a weighted

mean, but with the values of the variables previously ordered in a decreasing way.

Thus, contrary to the weighted means, the weights are not associated with concrete

variables and, therefore, they are anonymous. Moreover, they satisfy other interest-

ing properties, such as monotonicity, unanimity, continuity and compensativeness,

i.e., the value of an OWA operator is always located between the minimum and the

maximum values of the variables.

Initially, the weights of an OWA operator may be fixed taking into account the

importance we want to give to the assessments. So, the outcome of an OWA operator

may be the maximum, the minimum, the average or a median of the individual

assessments, among a large number of possibilities.
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It is important to note that the determination of the weights of OWA operators

is a relevant issue since the origins of the theory of OWA operators. In this way,

Yager [10] proposes to use linguistic quantifiers for generating the OWA weights;

O’Hagan [7] generates the OWA weights by maximizing their entropy whenever a

degree of orness has been fixed; Filev and Yager [4] consider an exponential smooth-

ing approach for generating the OWA weights. After these seminal papers, a large

variety of techniques have been proposed in the literature (see, for instance, Wang

and Parkan [8] and Xu [9]).

In our proposal, we do not fix the OWA weighting vector, but we generate an

OWA operator for each profile of individual assessments, just one that minimizes the

disagreement (or equivalently, maximizes the consensus) in the group with respect

to the outcome provided by the OWA operator. More concretely, once the agents

opinions are known, we first calculate the distances among individual assessments

on the alternatives and the collective assessments generated by an arbitrary OWA

operator. Secondly, we use an aggregation function for obtaining a representative

measure of disagreement from the individual assessments to the collective one. By

solving a mathematical program, we obtain the weighting vector(s) that maximize(s)

the consensus among individual and collective opinions.

Within the general framework we have chosen the arithmetic mean and the max-

imum as aggregation functions. Thus the general mathematical programs falls into

the minisum and the minimax procedures, respectively (see, for instance, Brams,

Kilgour and Sanver [2]).

The paper is organized as follows. Section 2 is devoted to introduce notation and

some basic notions. Section 3 contains our proposal for generating an OWA oper-

ator for each profile of individual assessments and some results for the minisum

and minimax procedures with two specific metrics (Manhattan and Chebyshev).

Section 4 includes an illustrative example. Finally, Section 5 contains some con-

cluding remarks.

2 Preliminaries

An aggregation function is a continuous mapping A : [0,1]m −→ [0,1] that satisfies

the following conditions:

1. Monotonicity: A(x1, . . . ,xm) ≤ A(y1, . . . ,ym) for all (x1, . . . ,xm),(y1, . . . ,ym) ∈
[0,1]m such that xi ≤ yi for every i ∈ {i, . . . ,m}.

2. Unanimity (or idempotency): A(x, . . . ,x) = x for every x ∈ [0,1].

It is easy to see that every aggregation function is compensative, i.e.,

min{x1, . . . ,xm} ≤ A(x1, . . . ,xm) ≤ max{x1, . . . ,xm},

for every (x1, . . . ,xm) ∈ [0,1]m.

On aggregation functions, see Fodor and Roubens [5], Grabisch, Orlovski and

Yager [6], Calvo, Kolesárova, Komornı́ková and Mesiar [3] and Beliakov, Pradera

and Calvo [1], among others.
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2.1 OWA Operators

OWA operators are anonymous aggregation functions that are defined by weighting

vectors in the following way.

Given a weighting vector w = (w1, . . . ,wm) ∈ [0,1]m such that ∑m
i=1 wi = 1, the

OWA operator associated with w is the mapping Fw : [0,1]m −→ [0,1] defined by

Fw(x1, . . . ,xm) =
m

∑
i=1

wi · yi

where yi is the i-th greatest number of {x1, . . . ,xm}.

The set of weighting vectors will be denoted by

W =

{
w ∈ [0,1]m

∣∣∣
m

∑
i=1

wi = 1

}
.

In some cases it is interesting to consider OWA operators associated with weighting

vectors satisfying specific requirements. Some of the most used in the literature are

the following:

1. Weighting vectors with a fixed orness (or attitudinal character) α ∈ (0,1) (see

Yager [10]):

W
1

α =

{
w ∈ W

∣∣∣
1

m−1

m

∑
i=1

(m− i)wi = α

}
.

2. Symmetric weights:

W
2 =

{
w ∈ W | wi = wm+1−i ∀i ∈

{
1, . . . ,

[
m
2

]}}
.

3. Centered weights (after Yager [11]):

W
3 =

{
w ∈ W

2 | w1 ≤ w2 ≤ ·· · ≤ w[m+1
2 ]

}
.

4. Trimmed weights:

W
4

1 = {w ∈ W | w1 = wm = 0} .

W
4

2 = {w ∈ W | w1 = w2 = wm−1 = wm = 0} .

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

W
4

[m−1
2 ]

=
{

w ∈ W | w1 = · · · = w[ m−1
2 ] = w[m

2 ]+2
= · · · = wm = 0

}
.

It is worth noting that W 3 ⊆ W 2 ⊆ W 1
0.5 ⊆ W and W 4

[m−1
2 ]

⊆ ·· · ⊆ W 4
2 ⊆ W 4

1 .
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Some well-known aggregation functions are specific cases of OWA operators.

For instance:

1. The maximum, given by the weighting vector (1,0, . . . ,0).
2. The minimum, given by the weighting vector (0, . . . ,0,1).

3. The arithmetic mean, given by the weighting vector
(

1
m
, . . . , 1

m

)
.

4. The mid-range, given by the weighting vector ŵ = (0.5,0, . . . ,0,0.5).
5. Medians, given by the following weighting vectors w̃:

a. If m is odd

w̃i =

{
1, if i = m+1

2
,

0, otherwise.

b. If m is even

w̃i =

⎧
⎪⎨
⎪⎩

θ , if i = m
2
,

1−θ , if i = m
2

+ 1,

0, otherwise,

for some θ ∈ [0,1].

Notice that w̃ ∈ W 4

[m−1
2 ]

.

2.2 Collective Assessments

Consider a set of agents (experts or voters) V = {1, . . . ,m} (m ≥ 2) who show their

opinions on a set of alternatives A = {a1, . . . ,an} (n ≥ 2) through numbers in the

interval [0,1].
A profile is a m×n matrix

P =

⎛
⎜⎜⎜⎜⎝

a1
1 · · · a1

j · · · a1
n

· · · · · · · · · · · · · · ·
ai

1 · · · ai
j · · · ai

n

· · · · · · · · · · · · · · ·
am

1 · · · am
j · · · am

n

⎞
⎟⎟⎟⎟⎠

where ai
j ∈ [0,1] is the assessment that agent i assigns to alternative a j. The set of

profiles is denoted by P .

In order to aggregate individual assessments, we consider an OWA operator Fw
associated with a weighting vector w ∈ W ∗, where W ∗ may be W or any of the

subsets of weighting vectors mentioned in the previous subsection. Taking into ac-

count the j-th column of P, (a1
j , . . . ,a

m
j ), that includes individual opinions on the

alternative a j, we generate the collective assessment on that alternative through Fw

v j(w) = Fw
(
a1

j , . . . ,a
m
j

)
.
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With v(w) = (v1(w), . . . ,vn(w)) we denote the vector that contains the collective

assessments on the alternatives of A generated by the OWA operator Fw. On the

other hand, the i-th row of P includes the assessments of individual i ∈ {1, . . . ,m}
on the alternatives of A and will be denoted by ai =

(
ai

1, . . . ,a
i
n

)
.

3 A Model for Generating OWA Weights

In our proposal, we do not fix the OWA weighting vector, but we generate an OWA

operator for each profile of individual assessments, just one that maximizes the con-

sensus (or, equivalently, minimizes the disagreement) in the group with respect to

the outcome provided by the OWA operator. For this, it is necessary to fix two in-

gredients:

• A metric d :�n ×�n −→�.

• An aggregation function A : [0,1]m −→ [0,1].

By means of the metric d, we calculate the distances among individual assessments

on the alternatives and the collective assessments generated by an OWA operator

associated with a weighting vector belonging to W ∗. On the other hand, we use an

aggregation function for obtaining a representative measure of disagreement from

the individual assessments to the collective one. Thus, given a profile P ∈ P , we

propose to find weighting vector(s) w∈W ∗ being solution(s) of the following math-

ematical program:

min A
(

d(a1,v(w)), . . . ,d(am,v(w))
)

s. t. : w ∈ W ∗
(1)

Notice that from continuity of A and compactness of W ∗, the existence of solution(s)

in (1) is always guaranteed.

Among the large variety of metrics and aggregation functions that we may use

in (1), we present with more detail those cases where Manhattan and Chebyshev

metrics are used, and the aggregation functions are the arithmetic mean and the

maximum.

The Manhattan metric is defined by

d1

(
(x1, . . . ,xn),(y1, . . . ,yn)

)
=

n

∑
i=1

|xi − yi|.

The Chebyshev metric is defined by

d∞

(
(x1, . . . ,xn),(y1, . . . ,yn)

)
= max{|x1 − y1|, . . . , |xn − yn|}.
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3.1 Minisum Outcomes

If we consider the arithmetic mean as aggregation function, then (1) is equivalent

to find the weighting vectors that minimize the sum of distances between the indi-

vidual assessments and the collective assessments generated by the OWA operator

associated with those weighting vectors. In other words, (1) becomes

min
m

∑
i=1

d
✙

(ai
1, . . . ,a

i
n),(v1(w), . . . ,vn(w))

✚

s. t. : w ∈ W ∗

(2)

1. If we use the Manhattan metric, then (2) is transformed in the following mathe-

matical program:

min
m

∑
i=1

✙

|ai
1 − v1(w)|+ · · ·+ |ai

n − vn(w)|
✚

s. t. : w ∈ W ∗

(3)

2. If we use the Chebyshev metric, then (2) is now transformed in the following

mathematical program:

min
m

∑
i=1

max
{
|ai

1 − v1(w)|, . . . , |ai
n − vn(w)|

}

s. t. : w ∈ W ∗

(4)

In the first case, i.e., in Problem (3), it is possible to give the analytical solution

of the problem when W ∗ = W .

Proposition 1. For W ∗ = W , the solutions of Problem (3) are the medians.

Proof. Taking into account W ∗ = W in Problem (3), we obtain the following math-

ematical program:

min
w∈W

m

∑
i=1

n

∑
j=1

|ai
j − v j(w)| = min

w∈W

n

∑
j=1

m

∑
i=1

|ai
j − v j(w)|. (5)

Moreover, the following inequality is satisfied:

min
w∈W

n

∑
j=1

m

∑
i=1

|ai
j − v j(w)| ≥

n

∑
j=1

min
w∈W

m

∑
i=1

|ai
j − v j(w)|.

On the other hand, it is known that given x1, . . . ,xm ∈�, medians are the solutions

of the following problem:

min
x∈�

m

∑
i=1

|xi − x|.
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Therefore, they are also the solution of

min
w∈W

m

∑
i=1

|ai
j − v j(w)|

for every j ∈ {1, . . . ,n}. Consequently,

n

∑
j=1

min
w∈W

m

∑
i=1

|ai
j − v j(w)| = min

w∈W

n

∑
j=1

m

∑
i=1

|ai
j − v j(w)|

and medians are the solutions of Problem (5). ⊓⊔

Since medians belong to W 4
i , i ∈

{
1, . . . ,

[
m−1

2

]}
, they are also the solutions of

Problem (3) when W ∗ = W 4
i . Moreover, the median for θ = 0.5 also belongs to

W 2 and W 3. Therefore, the solution of Problem (3) when W ∗ = W 2 or W ∗ = W 3

is the median with θ = 0.5.

In relation to W 1
α , we are going to calculate the orness of medians. We distinguish

two cases:

1. If m is odd:

orness(w̃) =
1

m−1

m

∑
i=1

(m− i)w̃i =
1

m−1

m−1

2
= 0.5.

2. If m is even:

orness(w̃) =
1

m−1

m

∑
i=1

(m− i)w̃i =
1

m−1

(m

2
θ +

(m

2
−1

)
(1−θ )

)

=
1

m−1

(m

2
−1 + θ

)
.

In the first case, if α = 0.5, then the median belongs to W 1
0.5 and is the solution of

Problem (3) when W ∗ = W 1
0.5.

In the second case, the minimum and the maximum orness are reached when

θ = 0 and θ = 1, respectively. Therefore, if m is even, then

m−2

2(m−1)
≤ orness(w̃) ≤

m

2(m−1)
.

Consequently, for these values of α , the median, with θ = (m−1)α +1− m
2

, belongs

to W 1
α and is the solution of Problem (3) when W ∗ = W 1

α .

When m is odd and α �= 0.5 or when m is even and α /∈
[

m−2
2(m−1) ,

m
2(m−1)

]
, it is

possible to find a numerical solution of Problem (3). For this, we can replace this

problem by the following equivalent smooth linear problem that uses some auxiliary

variables:
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min
m

∑
i=1

(λ i
1 + · · ·+ λ i

n)

s.t. : −λ
i
1 ≤ v1(w)−ai

1 ≤ λ i
1, i = 1, . . . ,m

. . . . . . . . . . . . . . . . . . . . . . . .

−λ
i
n ≤ vn(w)−ai

n ≤ λ i
n, i = 1, . . . ,m

λ i
j ≥ 0, i = 1, . . . ,m, j = 1, . . . ,n

w ∈ W 1
α

(6)

In a similar way, when Problem (4) is considered, i.e., when the Chebyshev met-

ric is used, the solution of the problem can be obtained by solving the following

equivalent smooth linear problem that uses some auxiliary variables:

min λ1 + · · ·+ λm

s.t. : −λ1 ≤ v j(w)−a1
j ≤ λ1, j = 1, . . . ,n

. . . . . . . . . . . . . . . . . . . . . . . .

−λm ≤ v j(w)−am
j ≤ λm, j = 1, . . . ,n

λi ≥ 0, i = 1, . . . ,m

w ∈ W ∗

(7)

3.2 Minimax Outcomes

We now consider the maximum as aggregation function. In this case, (1) is equiv-

alent to find the weighting vectors that minimize the maximum distance between

the individual assessments and the collective assessments generated by the OWA

operator associated with those weighting vectors. In other words, (1) becomes

min max
i=1,...,m

{
d
(
(ai

1, . . . ,a
i
n),(v1(w), . . . ,vn(w))

)}

s. t. : w ∈ W ∗
(8)

1. If we use the Manhattan metric, then (8) is transformed in the following mathe-

matical program:

min max
i=1,...,m

{
|ai

1 − v1(w)|+ · · ·+ |ai
n − vn(w)|

}

s. t. : w ∈ W ∗
(9)

2. If we use the Chebyshev metric, then (8) is transformed in the following mathe-

matical program:



Generating OWA Weights from Individual Assessments 143

min max
i=1,...,m

max
{
|ai

1 − v1(w)|, . . . , |ai
n − vn(w)|

}

s. t. : w ∈ W ∗
(10)

Problem (9) is equivalent to solve the following smooth linear problem that uses

some auxiliary variables:

min δ

s.t. : λ i
1 + · · ·+ λ i

n ≤ δ , i = 1, . . . ,m

−λ
i
1 ≤ v1(w)−ai

1 ≤ λ i
1, i = 1, . . . ,m

. . . . . . . . . . . . . . . . . . . . . . . .

−λ
i
n ≤ vn(w)−ai

n ≤ λ i
n, i = 1, . . . ,m

λ i
j ≥ 0, i = 1, . . . ,m, j = 1, . . . ,n

w ∈ W ∗

(11)

In the following proposition, we show that the solution of Problem (10) is the

average between the maximum and the minimum, i.e., the mid-range, whenever

W ∗ = W .

Proposition 2. For W ∗ = W , the solution of Problem (10) is the mid-range.

Proof. When W ∗ = W in Problem (10), we obtain the following mathematical

program:

min
w∈W

max
i=1,...,m

max
j=1,...,n

{
|ai

j − v j(w)|
}

= min
w∈W

max
j=1,...,n

max
i=1,...,m

{
|ai

j − v j(w)|
}
. (12)

Moreover, the following inequality is satisfied:

min
w∈W

max
j=1,...,n

max
i=1,...,m

{
|ai

j − v j(w)|
}
≥ max

j=1,...,n
min
w∈W

max
i=1,...,m

{
|ai

j − v j(w)|
}

.

On the other hand, it is clear that for every j ∈ {1, . . . ,n}, the weighting vector ŵ is

the solution of the following problem:

min
w∈W

max
i=1,...,m

{
|ai

j − v j(w)|
}

.

Therefore,

max
j=1,...,n

min
w∈W

max
i=1,...,m

{
|ai

j − v j(w)|
}

= min
w∈W

max
j=1,...,n

max
i=1,...,m

{
|ai

j − v j(w)|
}

and ŵ is also the solution of Problem (12). ⊓⊔

Since ŵ belongs to W 1
0.5 and W 2, it is also the solution of Problem (10) for W ∗ =

W 1
0.5 and W ∗ = W 2. On the other hand, when W ∗ is any of the remaining subsets,
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the solution of Problem (10) can be obtained by solving the following equivalent

linear problem:

min δ

s.t. : −δ ≤ v1(w)−ai
1 ≤ δ , i = 1, . . . ,m,

. . . . . . . . . . . . . . . . . . . . . . . .

−δ ≤ vn(w)−ai
n ≤ δ , i = 1, . . . ,m,

w ∈ W ∗

(13)

4 An Illustrative Example

In this section we provide an example to show the solutions obtained when the previ-

ous models are used. Suppose that the opinions of four experts on three alternatives

are given by the following matrix:

P =

⎛
⎜⎜⎝

0.7 0.6 0.1
0 0.5 0.8
0.6 0.1 1

0.6 0.7 0

⎞
⎟⎟⎠

From the individuals’ preferences shown in this matrix, the collective assessment

on each alternative generated by an OWA operator is given by

v1(w) = 0.7w1 + 0.6w2 + 0.6w3,
v2(w) = 0.7w1 + 0.6w2 + 0.5w3 + 0.1w4,
v3(w) = w1 + 0.8w2 + 0.1w3.

Next, using the models proposed in the previous section, we seek the weighting

vector (belonging to some of the weighting vector sets given in Subsection 2.1) that

minimizes the disagreement among individual assessments on the alternatives and

the collective assessments. It is worth noting that when the set of weighting vector

is W 1
α , we show the solutions for α = 0.75, α = 0.5 and α = 0.25. On the other

hand, when the analytical solution is unknown, we have used LINGO software to

solve the corresponding linear programming problems.

4.1 Minisum Outcomes

When the arithmetic mean and the Manhattan metric are used, the solutions obtained

are shown in Table 1. It is worth noting that we have solved Problem (6) to obtain

the solution when the set of weighting vectors is W 1
0.75 or W 1

0.25. For the remaining

sets of weighting vectors, the solution is already known (see Subsection 3.1).
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Table 1 Solutions for the arithmetic mean and the Manhattan metric

w1 w2 w3 w4

W 0 θ 1−θ 0

W 1
0.75 0.5 0.3334 0.0833 0.0833

W 1
0.5 0 0.5 0.5 0

W 1
0.25 0 0 0.75 0.25

W 2 0 0.5 0.5 0

W 3 0 0.5 0.5 0

W 4
1 0 θ 1−θ 0

When the arithmetic mean and the Chebyshev metric are used, the solutions can

be obtained solving Problem (7) for the different sets of weighting vectors consid-

ered in this contribution. Table 2 summarizes these solutions.

Table 2 Solutions for the arithmetic mean and the Chebyshev metric

w1 w2 w3 w4

W 0.4706 0 0 0.5294

W 1
0.75 0.75 0 0 0.25

W 1
0.5 0.5 0 0 0.5

W 1
0.25 0 0.375 0 0.625

W 2 0.5 0 0 0.5

W 3 0.25 0.25 0.25 0.25

W 4
1 0 0.1429 0.8571 0

4.2 Minimax Outcomes

When the arithmetic mean and the Manhattan metric are used, the solutions can be

obtained by solving Problem (11) for the different sets of weighting vectors consid-

ered in this contribution. These solutions are given in Table 3.

When the Manhattan metric is replaced by the Chebyshev metric, the solution is

known if the set of weighting vector is W , W 1
0.5 or W 2. In other cases, the solutions

can be obtained by solving Problem (13). Table 4 shows these solutions.
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Table 3 Solutions for the maximum and the Manhattan metric

w1 w2 w3 w4

W 0.6667 0 0.2222 0.1111

W 1
0.75 0.673 0 0.2307 0.0963

W 1
0.5 0 0.7222 0.0556 0.2222

W 1
0.25 0 0.375 0 0.625

W 2 0 0.5 0.5 0

W 3 0 0.5 0.5 0

W 4
1 0 0.8334 0.1666 0

Table 4 Solutions for the maximum and the Chebyshev metric

w1 w2 w3 w4

W 0.5 0 0 0.5

W 1
0.75 0.625 0 0.375 0

W 1
0.5 0.5 0 0 0.5

W 1
0.25 0 0.375 0 0.625

W 2 0.5 0 0 0.5

W 3 0.25 0.25 0.25 0.25

W 4
1 0 0.7143 0.2857 0

5 Concluding Remarks

In this contribution we have proposed a general method for generating weighting

vectors of OWA operators from the individual assessments in such a way that the

obtained OWA operator maximizes the consensus among the agents. This endoge-

nous procedure is based on a metric and an aggregation function that provide a

measure of the disagreement among the agents with respect to the outcome provided

by the OWA operator in each case. We have paid special attention to Manhattan and

Chebyshev metrics and the arithmetic mean and maximum as aggregation functions.

In these cases, the outcomes may be obtained by solving some mathematical linear

programs. Moreover, in some specific situations we have obtained that medians and

mid-range are the solutions of the problems.

It is worth noting that the solutions obtained in the above mentioned models

might not be unique. Even more, depending the weighting vector we choose, the

outcomes provided by the corresponding OWA operator could be different. In this

way, it would be necessary to provide an appropriate procedure for choosing a single

weighting vector among the set of multiple solutions.
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The Role of the OWA Operators as a 

Unification Tool for the Representation of 

Collective Choice Sets 

Janusz Kacprzyk, Hannu Nurmi, and Sławomir Zadrożny* 

Abstract. We consider various group decision making and voting procedures 
presented in the perspective of two kinds of aggregation of partial scores related to 
the individuals’ (group’s) testimonies with respect to alternatives and individuals. 
We show that the ordered weighthed averaging (OWA) operators can be viewed 
as a unique aggregation tool that – via the change of the order of aggregation, type 
of aggregation, etc. – can be used for a uniform and elegant formalization of basic 
group decision making, social choice and voting rules under fuzzy and nonfuzzy 
preference relations and fuzzy and nonfuzzy majority. 

1   Introduction 

The purpose of this paper is to briefly point out the power of the ordered weighted 
averaging (OWA) operators in some bacic issues related to the use of fuzzy logic 
in broadly perceived group/collective decision making and social choice. This 
paper is implied by two areas of research that resulted, first, in some position 
papers on the use of fuzzy sets in political science by Nurmi and Kacprzyk 
[40,41], some relevant papers on the use of fuzzy sets in social and political 
sciences (cf. Ragin [45]), and a series of papers by Kacprzyk and Zadrożny 
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[26,27,28,29] in which some general “protoforms” of group choice functions have 
been proposed via the OWA operators. In this paper, we will make an attempt at a 
new exposition, more explicitly political science oriented. In particular, we will try 
to follow the voting scienario - cf. Nurmi [36]. 

Voting systems play an important role in political science, and since there are 
obviously many elements and aspects of voting that are inherently imprecise, then 
it has been natural to try to use fuzzy sets therein. A natural starting point has been 
the use of fuzzy preference relations, cf. Blin and Whinston [7]. The earlier 
contributions assume as the point of departure a collective fuzzy preference 
relation over candidates, alternatives, options, … and look for plausible solution 
sets exemplified by various consensus winners (cf. Nurmi [35], Kacprzyk 
[20,23,24]). Another direction has been to assume that we just have individual 
fuzzy preference relations and try to use just them (without or maybe with an 
aggregation into a collective fuzzy preference relation); various derivations of the 
core, minimax set, least vulnerable set, etc. have been proposed (cf. Nurmi [35], 
Kacprzyk [20,23,24]). In this paper we will consider both the above general 
philosophies. 

The study of voting procedures is an extremely relevant problem, both from the 
point of view of theory and practice (cf. DeGrazia [9], Fiorina and Plott [10], 
Nurmi [36]). One can say that the theoretical background is provided by social 
choice theory (cf. Schwartz [49], Sen [50]), and also in this area fuzzy sets have 
been applied (cf. Nurmi, Fedrizzi and Kacprzyk [37). 

The general setting considered here is as follows. We have a non-fuzzy set S = 
{s1,...,sM}  of decision alternatives (candidates, policies, options, ….). Then the 
fuzzy binary relation R over S is given by a membership function μR: S2 → [0,1]. 
For S of a sufficiently small cardinality, R can be represented as a M × M matrix 
such that its entry rij∈[0,1] denotes the degree (intensity) in which R holds 
between the si and sj.  

In the context considered R is meant as a fuzzy preference relation. Basically, 
since the first works on fuzzy preference relations (cf. Blin [6], Blin and Whinston 
[7], Bouyssou [8], Orlovsky [42]), rij= 1 was meant as a definite preference of si 
over sj, rij = 0 – as a definite preference of xj over xi, and rij= 0.5 – as an 
indifference between the two alternatives. 

Notice that by R we mean now a social (group) preference relation that may be 
obtained in various ways, notably by some aggregation of individual fuzzy 
preference relations (cf. Billot [5], Blin and Whinston [7]). This view of R as a 
fuzzy social preference relation will be assumed here. 

Now, if we have R, a fuzzy social preference relation, we wish to use it to find 
plausible - fuzzy or non-fuzzy - choice sets (solutions). Among many solution 
concepts presented in the literature (cf. Kacprzyk and Nurmi[25]), one can 
mention: 

 
• the set of α-consensus winners: 
 

Sα = {xi: rij ≥ α, for all xj ∈ X}, 
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• the set of minimax consensus winners 
 

SM = {xi: ri = r'}, where ri = minj rij and r' = maxm rm 
 
which is always nonempty, and is a straightforward generalization of Kramer's 
minimax set (cf. Kramer [33]).  
 
• the set of α-Copeland winners 
 

SC = {xi: s
c

i = maxj s
c

j} 
 

where s
c

i = card{xj ׀ rij ≥α}, and for α = 0.5 we obtain a refinement of the classic 
Copeland rule. 
 
If we take as the point of departure the set of individual fuzzy preference relations, 
we can proceed in a similar way and obtain, for instance: 
 
• the fuzzy α-core 
 
Xα = {xj: such that for all xi ∈ X, rij ≤ α for at least z individuals} 

 
and for α=0.5 and z corresponding to a simple majority, this reduces to the core.  
 
Similar extensions can be defined for other standard solution concepts (cf. Nurmi 
[35]).  

The same applies to the extensions of tournament solutions (cf. Nurmi and 
Kacprzyk [38]). Since tournaments are complete and asymmetric relations, a 
natural way of constructing a tournament is to conduct pairwise comparisons of 
decision alternatives using the majority rule. 

Two important solution concepts in non-fuzzy tournament literature are the 
uncovered set and the Banks set (cf. Banks [3], Nurmi [35]). An alternative si 
covers another alternative sj if the former defeats (is more preferred) the latter and, 
moreover, defeats all those alternatives that sj defeats. A covered alternative will 
inevitably lose a pairwise majority voting procedure regardless of the order in 
which the alternatives are brought to pairwise comparisons. Thus, given a profile 
of individual preferences, an obvious solution concept is the set of uncovered 
alternatives. However, this set may be too large and among various refinements 
suggested, the Banks set is relevant. To define the Banks set one begins with an 
alternative, s1, and finds out whether another alternative exists that defeats it. If 
there is no, we finish and assume that s1 is the end point of the Banks chain which 
begins at s1. If, on the other hand, another alternative that defeats s1,, si, is found, 
we look for an alternative that defeats both s1 and si. If none exists, then xi is the 
end point of the Banks chain beginning at x1. Otherwise, one looks for an 
alternative defeating all the preceding ones, and the procedure continues until we 
eventually find no alternative that defeats all the preceding ones in the chain. We 
obviously reach an end point of the chain beginning at x1. Starting from each 
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alternative one necessarily ends up with a chain with an end point. One alternative 
may, however, give rise to several Banks chains. The Banks set consists of the end 
points of all Banks chains in the tournament. The main significance of the Banks 
set is that it coincides with all strategic voting outcomes in binary voting agendas. 

Fuzzy analogues of the uncovered set and the Banks set are studied in Nurmi 
and Kacprzyk [39]. In fact, two covering relations, strong and weak, can be 
defined, and the set of weakly uncovered alternatives is always a subset of the 
strongly uncovered ones. Moreover, it can be shown that the set of Copeland 
winners is necessarily within the set of strongly uncovered alternatives but it is not 
necessary that the Copeland winners are weakly uncovered ones (cf. Nurmi [35]). 

As we can see, there has been much research effort to find reasonable choice 
rules. The main strategy is to introduce more information about individual 
preferences than is usually the case in the social choice theory. Now, we will 
elaborate on this issue by assuming various fuzzy elements of the models, notably 
the fuzzy majority and fuzzy preference relations.  

2   Group Decisions under fuzzy Preferences and a Fuzzy 

Majority 

Suppose that we have a set of M ≥ 2 options, and a set of N ≥ 2 individuals 
(experts) },,{ 1 NeeE …= . An individual fuzzy preference relation in S×S of 

individual ek ∈ E assigns a value from [0,1] (we do not consider more flexible 
types in which the value for [0,1] is replaced by, for instance, a linguistic value). 

Two lines of reasoning may be followed here to find solutions (cf. Kacprzyk 
[20,21,22,23,24]): 

 
- a direct approach {R1, ..., RN} → solution 
  (1) 
- an indirect approach {R1, ..., RN}→ R → solution 
 

that is, in the first case we determine a solution just on the basis of individual fuzzy 
preference relations, and in the second case we form first a social fuzzy preference 
relation R which is then used to find a solution. 

Another basic element underlying group decision making is the concept of a 
majority, i.e. a solution is to be an option (or options) best acceptable by (at least!) 
some number of the individuals. Some negative result in group decision making are 
closely related to a (too) strict representation of majority, and a natural attempt is to 
somehow make that strict concept of majority closer to its real human perception 
by making it more vague (cf. Intrilligator [17,18], Judin [19], Nurmi [35]). 

A natural manifestations of such a ``soft'' majority are the so-called linguistic 
quantifiers as, e.g., most, almost all, much more than a half, etc. that can be dealt 
with using fuzzy-logic-based calculi of linguistically quantified statements as 
proposed by Zadeh [58], and – what is more relevant here – by Yager's [54]  
[cf. Yager and Kacprzyk [57]] ordered weighted averaging (OWA) operators. 
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These calculi have been applied by the authors to introduce that new concept of 
a fuzzy majority (represented by a fuzzy linguistic quantifier) into group decision 
making and consensus formation models (cf. Kacprzyk [20-24];  Kacprzyk and 
Nurmi [25]; Nurmi and Kacprzyk [38], etc.). See also  Kacprzyk, Zadrożny, 
Fedrizzi and Nurmi [30] for a comprehensive review. 

The group decision making boils down to an aggregation process, because 
individual testimonies are aggregated. On the other hand, it is a choice process, 
because some options should be chosen.  

We will present some unified, joint view of that aggregation and choice process 
showing that by the OWA operators we can derive a general expression for a 
multitude of individual and collective choice functions under fuzzy preferences 
and a fuzzy majority. We will extend our previous papers Kacprzyk and Zadrożny 
[Błąd! Nie zdefiniowano zakładki.,26,2627], use more general analyses from 
Nurmi and Kacprzyk [39,40], and some solutions given in Zadrożny [60] and 
Zadrożny and Kacprzyk [62]. 

As mentioned earlier, we assume that the set of options is },...,{ 1 MssS = , and 
the set of individuals (experts) is },,{ 1 NeeE …= . An individual ek presents his or 
her preference relation represented for convenience as a matrix: 

kjissr jiR
k

ij k
,,)],,([][ ∀= µ  (2)

Under a simple assumption (fuzzy tournament), jissss ijRjiR ≠∀=+ ,1),( ),( µµ ; 

cf. Nurmi and Kacprzyk [38], a plausible interpretation may be: 

⎪⎪
⎪
⎩

⎪⎪
⎪
⎨

⎧

∈

∈

=

ij

ji

jiR

ss

d

c

ss

ss

over   of preference definite0

extent some  topreference)5.0,0(

ceindifferen5.0

extent some  topreference)1,5.0(

over   of preference definite1

),(  µ  (3)

One can also use some weaker definitions, like weak preference relations, and also 
a so-called preference structure (cf. Fodor and Roubens [12]) but we will not deal 
with this issue. 

We will consider both the general forms of fuzzy preference relations and their 
special cases such as fuzzy tournaments (3) and crisp linear orderings, i.e. crisp 
relations R defined on SS ×  and possessing the properties of: 

• reflexivity:  ∀si∈S  R(si,si) 
• anti-symmetry: ∀si,sj∈S  R(si,sj) ∧ R(sj,si) → si = sj 
• transitivity: ∀si,sj,sk∈S  R(si,sj) ∧ R(sj,sk) → R(si,sk) 

The latter are considered in many classical voting/choice rules. We will show that 
our general scheme of group choice covers many of these rules when applied to 
crisp linear orderings. 
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2.1   Fuzzy Majority and the OWA Operators 

Fuzzy majority constitutes a natural generalization of the concept of majority in 
the case of a fuzzy setting. A fuzzy majority was introduced into group decision 
making under fuzziness by Kacprzyk [21 ], and then considerably extended in the 
works of Fedrizzi, Herrera, Herrera-Viedma, Kacprzyk, Nurmi, Verdegay, 
Zadrożny, etc. (see, e.g., a review by Kacprzyk and Nurmi [25] or Kacprzyk, 
Zadrożny, Fedrizzi and Nurmi [30], see also Pasi and Yager [44]. It is basically 
equated with a fuzzy linguistic quantifier exemplified by most, almost all, etc. 

The essence of fuzzy linguistic quantifiers boils down to the looking for truth of 
a proposition: 

 
"Most objects posses a certain property" 

 
that may be formally expressed as follows: 

)(Q xP
Xx∈

 (4)

where Q denotes a fuzzy linguistic quantifier (in this case "most"), { }mxxX …,1=  

is a set of objects, )(⋅P  corresponds to a fuzzy property; )())((truth iPi xxP µ= . 

Zadeh’s [58] calculus of linguistically quantified propositions deals with a 
linguistic quantifier represented as a fuzzy set F([0,1])∈Q , where F(A) denotes 

the family of all fuzzy sets on A. For instance, Q ("most") may be defined by: 

⎪⎩
⎪⎨
⎧

≤

≥

=

3.0for   0

 8.0<<3.0for  6.0-2

8.0for   1

)(

y

yy

y

yQµ  (5)

The truth of  (4) is determined as: 

)/)(())(Q(truth
1

mxXP i

m

i
PQ ∑

=

= µµ  (6)

where m=card(X). 
The linguistic operator may be treated as a flexible aggregation operator 

situated somewhere between the AND and OR which in fuzzy logic are usually 
interpreted as the min and max, respectively.  

Another approach to the modeling of fuzzy linguistic quantifiers (and flexible 
aggregation), pursued here, is by using Yager's OWA (ordered weighted 
averaging) operators [54] (see also Yager and Kacprzyk’s [57] volume). An 
interesting and powerful tool may here also be the OWmin and/or OWmax 
operators, the Sugeno and Choquet integrals, etc. Moreover, a different view of 
fuzzy quantifiers and their related calculi due to Gloeckner [13] may be employed. 
These tools will not be used here. 
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An OWA operator O of dimension n may be briefly described as follows: 
 

 ℜ→ℜnO :  

 1],1,0[],,,[
1

1 =∈= ∑
=

n

i
iin wwwwW …

 

ij

n

j
jjn ajbbwaaO   theoflargest th - is ,),,(

1
1 ∑

=

=…  (7)

Here, ai are values to be aggregated and W is a vector of weights defining the 
operator. Depending on W, the aggregation schemes as the minimum and 
maximum, median or average can be obtained. In the context of fuzzy 
(multivalued) logic, the classical general ( ∀ ) and existential ( ∃ ) quantifiers may 
be interpreted as the min and max, respectively. We denote: 
 

                                          ∀O : ]1,0,,0[ …=→∀ W   

                                           ∃O : ]0,,0,1[ …=→∃ W                                        (8) 

 
The following weight vectors define other OWA operators that are useful for our 
purposes: 

 

AO :  average     ]/1,,/1[ nnW …=  

mostO : most                                                                                                       (9) 

majO :classical crisp majority 1]0,,0,1,0,,0[ 2/)1(1)2/( == ++ nn worwW ……  

 
The AO  yields the usual arithmetic mean but when applied to arguments from 

{0,1}, it may be regarded as counting the number of 1's in the argument. The 
result of aggregation using AO  is also proportional to the sum of its arguments. 

This will be useful for our purposes. 
The OWA operators possess the following properties relevant for our 

considerations: 
 

• neutrality: O(a1,…,an) = O(ai1,…,ain) for all (a1,…,an) ∈ Rn, 
• monotonicity: ai < bi ⇒ O(a1,…,ai,…,an) ≤ O(a1,…,bi,…,an), 
• idempotence: O(a,a,…,a) = a,  
• compensativeness: mini ai ≤·O(a1,…,an)·≤ maxi ai, 

 
Many extensions of the original concept of an OWA operator have been proposed, 
and some are discussed in this volume. We will not deal with them as the purpose 
of our paper is more basic and conceptual. 



156 J. Kacprzyk, H. Nurmi, and S. Zadrożny
 

2.2   Individual Choice under Fuzzy Preferences 

The very purpose of the group decision process is ultimately to make a plausible 
or rational choice according to some rule. Such rules are called choice rules 

(functions) in general, and are defined as 

SXXXXRXC ⊆∀⊆= ,),( 00  (10)

i.e. for each X, it produces its subset meant as the choice set of the best options in 
X with respect to Ri (cf. Aizerman and Aleskerov [1], Arrow [2]).  

Particular choice functions refer to some rationality concepts exemplified by a 
classic concept of a choice function based on greatestness,[50] i.e.: 

}:{),(1 ji

ss

Xs
i RssXsRXC

ji

j

≠
∈
∀∈=  

(11)

Hence, the set of chosen (preferred) options, C1(X,R), consists of options greater 
than all other options in X, in the sense of R. The set of the greatest elements may 
however easily be empty. Thus, often a similar notion of non-dominance is 
employed implying the following definition of the choice function: 

)}(:{),(2 ij

ss

Xs
i RssXsRXC

ji

j

≠
∈
∃¬∈=  

(12)

and if R is anti-symmetric and complete,  C1 and C2 are identical.  
Among some other perspectives one can mention Aizerman and Aleskerov’s 

[1] view of those choice functions as integrals (cf. Schwartz [49] and Kitainik 
[32]), and the so-called GETCHA and GOCHA [49] concepts, that form 
generalizations of C1 and C2, respectively. They always produce a non-empty 
choice set. 

In the setting of fuzzy preference relations (3), Nurmi [35] defnes the consensus 

winner and α-consensus winner choice sets as follows, respectively: 
 

}5.0:{),(3 >∀∈=
≠

ij
ji

i rXsRXC and }5.0:{),(4 >≥∀∈=
≠

αij
ji

i rXsRXC .  

 
where rij = μR(si,sj), cf. Section 2.  

These choice functions are a proper generalization of (11): if }1,0{∈ijr , then it 

is identical with (11) and, moreover, even for ]1,0[∈ijr  the choice set is either of 

a single-element or empty.  
Nurmi [35] introduces also a counterpart of (12), the minimax consensus 

winner: 

}maxminarg:{),(5 kj
kj

i risRXC ==  (13)

Notice that these choice functions produce crisp choice sets. 



The Role of the OWA Operators as a Unification Tool  157
 

In order to obtain non-empty choice sets for a wider class of fuzzy preference 
relations, Kacprzyk [21, 22,24,] introduced the concept of a Q-consensus winner 
defined, informally, as follows: 

)}(:{),(6 α>∈=
≠

ij
ji

i rQXsRXC  
(14)

where Q is a linguistic quantifiers in the sense of Zadeh [58]. The idea is to use a 
quantifier referring to the concept of a fuzzy majority, thus to choose options that 
are preferred over, e.g., most of the other options.  

Some other approaches, also intended for other types of fuzzy preference 
relations, include the work of Świtalski [52], Ovchinnikov [43], Roubens [47], 
Kitainik [32], Barrett et al. [4], and others [5,8,42]. 

Barrett et al.’s [4] paper is relevant here as they noticed that most of the known 
individual choice functions assess the membership of si in the choice set via an 
aggregation of the preferences of all other options against si,i.e.: 

jiijiRXC rs ≠= }{AGG)(),(µ  (15)

or 

jijiiRXC rs ≠= }{AGG)(),(µ  (16)

where the left hand side denotes the membership degree of a given option in the 
(fuzzy) choice set and AGG denotes some aggregation operator.  

We will consider now some definitions of individual choice functions by using 
the OWA operator. Obviously, C1 defined by (11) may be expressed as follows: 

),()(
1 jiiC ssROs ∀=µ  (17)

Assuming the traditional definition of neg(x) = 1-x, C2 may be expressed as: 
),(1)(

2 ijiC ssROs ∃−=µ .  

The C5 (13) may be expressed as, using the defuzzification via the minimum: 

),()(
7 ijiC ssROs ∃=µ  (18)

We obtain therefore a general scheme for individual choice functions ICR: 

µICR(si) = O(a1,…,aM) (19)

aj = μR(si,sj)     or (20)

aj = μR(sj,si) (21)

Various choice rules can be obtained by the selection of the OWA operator O in 
(19), the use of (20) or (21), the defuzzification via the maximum or minimum, 
etc. 
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3   Collective Choice under Fuzzy Preferences 

A collective choice rule describes how to determine a set of preferred options 
starting from the set of individual preference relations, that is using the direct 
approach:  

N
NRR 2},,{ 1 →…  

For our next discussion it is only important that the individual preferences should 
somehow be aggregated so as to produce a set of options satisfying preferences of 
all involved parties according to some rationality principles, and not if we use the 
direct or indirect approach. 

One of the most popular rules of aggregation is the simple majority rule (known 
also as the Condorcet rule) – cf. Nurmi [36] or Risse [46], which may be described 
as: 

)},(:{Card

)},(:{Card),(

ijk

jikji

ssRk

ssRkssR ≥⇔
 (22)

)},(:{0 ji
ji

i ssRSsS
≠
∀∈=  (23)

where Card{A} denotes cardinality of the set A and S0 is the set of collectively 
preferred options.  

As its counterpart in the fuzzy case Nurmi [35] proposed: 

threshold})s,s(R:k)s,s(R jikji ≥>⇔ αCard{  (24)

S0 = )},(:{ ij
j

i ssRSs ∃¬∈  (25)

which means that a more flexible concept of majority used is still crisp.  
Later, Kacprzyk [21,22,23] interpreted rule (22) – (23) employing the concept 

of a fuzzy majority equated with a linguistic quantifier and introduced a Q-core 
that may be informally stated in a slightly modified version, as the Q1/Q2-core 
(cf. Zadrozny [61]) as: 

2,1 QQCC : Set of options, which are for most (Q2) of individuals "better" than 

most (Q1) of the rest of options from the set S. 

                                
)(2,1 SFCC QQ ∈  

),(21)(
2,1 jik

Xxs
iCC ssRQQs

kj

QQ
∈

=µ  
(26)

where F(S) denotes a family of all fuzzy sets on S. Then, using Zadeh's fuzzy 
linguistic quantifiers, we obtain: 
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)()(
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1
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1
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k
ij

j
i

hs

h
M

hr
N

h

QQ
µµ

µ

=

−
== ∑∑

≠
==  (27)

Where: j
ih is the degree to which, according to all individuals, option si is better 

than option sj; hi is the degree to which, according to all individuals, si is better 

than most (Q1) other options; )(1 iQ hµ is the degree (sought) to which, in the 

opinion of most (Q2) individuals, si is better than most (Q1) other options. Thus, 

the membership function degree for option si in the choice set 2,1 QQCC  equals the 

truth value given by (26). 
Formula (26) serves as a prototype for our generic collective choice rule to be 

proposed in the next section. The aggregation scheme implied by (26) is based on: 
first, by using various linguistic quantifiers we obtain different collective choice 
rules; second, by changing the order of aggregation we can obtain another family 
of collective choice rules, including some other well-known rules; third, by 
replacing the original Zadeh linguistic quantifiers with the OWA operators we 
obtain a more flexible aggregation scheme.  

This implies the transformation of (26) into: 

),(),(21 jik
k
most

j
mostjik

Xxs

ssRssRQQ OO
kj

→
∈

 

with j and k indexing the set of options and individuals, respectively.  

Thus, O
j
most  ( O

k
most ) denotes an OWA operator guided aggregation over all 

options (individuals) with the underlying weight vector indicated by the lower 
index, here most.  

Now, the proposed generic collective choice rule (CCR) may be expressed as: 

),()( 21 qpkiCCR ssRs OO=µ  (28)

This generic scheme has a number of “degrees of freedom”: 
 

1. the upper indexes of the OWA operators, i.e., if we first aggregate over  
     individuals and then over options or in the reverse order, 
2.  the weights vectors of both OWA operators, 
3.  whether (p, q) corresponds to (i, j) or to (j, i) 
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This leads to the four types of collective choice rules: 

Type I                         
),()( 21 jik

jk
iCCR ssRs OO=µ  

Type II                        ),()( 21 jik
kj

iCCR ssRs OO=µ  

Type III
                      

),()( 21 ijk
jk

iCCR ssRs OO=µ  

Type IV                      
),()( 21 ijk

kj
iCCR ssRs OO=µ  

The rules of type III and IV should be properly understood: they identify the fuzzy 
sets of options that are collectively rejected by the group.  

Clearly, to identify relations with classical rules (or concepts), an appropriate 
defuzzification should be employed, notably via the max or min operation: 

• for type I and II rules choose an is  such that             )(maxarg jCCR
j

si µ=  

• for type III and IV rules choose an is  such that         )(minarg jCCR
j

si µ=  

Now we can show some well-known choice rules covered by our generic scheme 
using some specific OWAs, i.e. their correcponding weight vectors. 

First, for the rules that are both of type I and type II: 
 

1. ∀∀OO the “consensus solution”                                                                      (29) 

 
An option is a member of this collective choice set to a degree to which it 
dominates all options according to the preferences of all individuals. 

 
2. avgavgOO   the Borda rule                                                                               (30) 

 
In the collective choice rule proposed by Borda for crisp orderings (called the 
Borda count) (see, e.g., [9]) an option gets M-1, M-2, M-3, …, 0 points for being 
first, second, third,…, last, respectively, in an individual ordering (M is the 
number of options under consideration, as previously). The points assigned to an 
option in particular orderings are then summed up which yields the Borda count of 
the option. The alternative with the largest Borda count is declared the winner. 

The following rule may be classified as type III or IV: 
 

3. ∃∃ OO - the minimax degree set (Nurmi) [35]                                                (31) 

 
This choice rule introduced by Nurmi is an extension of his minimax consensus 
winner defined by (13), and it contains such options that are least dominated when 
confronted with all other options according to preferences of all individuals.  

Some examples of type I rules are: 

4. jk
avg OO ∀    - the plurality voting                                                                      (32) 
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An option is here chosen if it appears as the first in the largest number of 

individual crisp linear orderings. In (32) jO∀  requires that an option dominates all 

other options and O
k
avg ”counts” for how many individuals it occurs. Thus, for 

crisp linear orderings ),,1( k
iMrk

irO
j …∀  returns 1 if si is the first in the ordering of 

individual k and 0 otherwise. Then, O
k
avg  gives the number of 1’s obtained by 

),,1( k
iMrk

irO
j …∀  for the particular individuals k, divided by N – the total number 

of individuals. 
 

5. jk
majOO ∀    - the qualified plurality voting                                                        (33) 

 
This extends the above “regular” plurality voting so that an option is chosen if and 
only if an it is first in the orderings of a qualified majority of individuals.  

 

6. j
maj

k
avgOO   - an  approval voting-like rule                                                      (34) 

 
Now, each individual chooses as many options as he or she likes, and then each 
option is ranked according to the number of individuals who have chosen it. The 
(34) is equivalent to the approval voting in the sense that the individual 

preferences are crisp linear orderings and j
majO  models the choice of an 

individual if he or she has to choose a subset of preferred options – as required by 
the classical approval voting procedure. 

 

7. j
maj

kOO∀   - the “consensus+approval voting” rule                                          (35) 

 
This collective choice rule does not have a classic counterpart. It may be viewed 
as a stronger version of approval voting because it includes an option only if it 
belongs to the sets of options chosen by all individuals. 

Some examples of type II rules are: 
 

8. k
maj

jOO∀    - the simple majority (Condorcet)                                                  (36) 

 
This rule yields the same result for crisp linear orderings as the classic Condorcet 
(majority) rule chooses such an option that dominates all other options in the 
majority of linear orderings expressed by particular individuals.  

 

9. kjOO ∃∀    - the Pareto optimal options                                                              (37) 
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An option si is undominated in the Pareto sense if no option sj exists such that 
R

k(sj,si) for all k and P
k(sj,si) for at least one k; with P denoting the strict 

preference. For the linear orderings, the combination of the OWA operators 

kjOO ∃∀  produces exactly the same result: for each option sj there must be an 

individual k such si precedes sj. in her or his ordering. 
 

10. k
maj

j
avgOO   - the Copeland rule                                                                     (38) 

 
The Copeland choice set (see also Introduction) consists of those options that 
dominate the largest number of other ones in the majority of linear orderings of 
the individuals. This is a weaker variation of the Condorcet choice rule giving 
higher chances for a resulting non-empty choice set. In order to cover it with our 
generic scheme we replace O∀ in (36) with Oavg in (38). Here again Oavg makes it 
possible to “count” the number of options that are dominated by si in the linear 
orderings of the majority of individuals. 

An example of a type III rule is: 
 

11. j
avg

k
mostOO   -  Kacprzyk’s Q-minimax set [21,24]                                        (39) 

 
Kacprzyk’s Q-minimax set consists of these options which are dominated by the 
smallest number of other options in the preferences of most of individuals, and 
this is exactly what (39) stands for. 

And finally, some examples of type IV rules are: 
 

12. k
avg

jOO∃   - the Kramer’s minimax set  [35]                                                  (40) 

 
Kramer's minimax set (see also Introduction) consists of those options which, 
when confronted with their toughest competitors, fare best, i.e. are dominated by 
them in the smallest number of linear orderings of the individuals. To determine 

the membership of option si, 
k
avgO  counts in how many orderings option sj 

precedes option si and jO∃  returns the highest of this numbers.  

 

13. k
maj

jOO∀   - the Condorcet loser                                                                     (41) 

 
The Condorcet loser is an option that is dominated by all other options in the 
majority of individual linear orderings, and (41) properly represents this concept 
for linear orderings.  

Thus, the generic scheme proposed covers some classical rules, especially well-
known in the context of voting (cf. Miller [34]. Nurmi [36], Saari [48]). Some of 
the recovered rules are not collective choice rules sensu stricto. For crisp 
preferences (usually linear orderings), the rules proposed yield the identical results 
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as the classic rules. Moreover, these rules are readily applicable to any other forms 
of preference relations, notably fuzzy preference relations. Clearly, some of the 
rules proposed concern rejection of options, and not acceptance as traditionally 
assumed. 

More information on the choice rules presented above as well as their 
properties can be found in Kacprzyk and Zadrożny [29] and Zadrożny [61], while 
to a more foundational analysis of voting, we refer the reader to Miller [34], 
Nurmi [36], Saari [48], etc.. A more comprehensive discussion from the 
perspective of political science can be found in Nurmi and Kacprzyk [40,41]. 

4   Concluding Remarks 

We have presented the OWA operators as a unique aggregation tool that via the 
change of the order of aggregation, type of aggregation, etc. can be used for a 
uniform and elegant formalization of basic group decision making, social choice 
and voting rules under fuzzy and nonfuzzy preference relations and majority. 

Acknowledgments. Support from the Ministry of Science and Higher Education under 
Grant N N519 404734 is gratefully acknowledged. 
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Applying Linguistic OWA Operators in

Consensus Models under Unbalanced Linguistic
Information

E. Herrera-Viedma, F.J. Cabrerizo, I.J. Pérez and M.J. Cobo,

S. Alonso, and F. Herrera

Abstract. In Group Decision Making (GDM) the automatic consensus models are

guided by different consensus measures which usually are obtained by aggregating

similarities observed among experts’ opinions. Most GDM problems based on lin-

guistic approaches use symmetrically and uniformly distributed linguistic term sets

to express experts’ opinions. However, there exist problems whose assessments need

to be represented by means of unbalanced linguistic term sets, i.e., using term sets

which are not uniformly and symmetrically distributed. The aim of this paper is to

present different Linguistic OWA Operators to compute the consensus measures in

consensus models for GDM problems with unbalanced fuzzy linguistic information.

1 Introduction

In a classical Group Decision Making (GDM) situation there is a problem to solve, a

solution set of possible alternatives, and a group of two or more experts, who express

their opinions about this solution set of alternatives. These problems consists of

multiple individuals interacting to reach a decision. Each expert may have unique
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motivations or goals and may approach the decision process from a different angle,

but have a common interest in reaching eventual agreement on selecting the “best”

option(s) [5, 14, 40].

Usually, many problems present quantitative aspects which can be assessed by

means of precise numerical values [6, 27, 26, 37]. However, some problems present

also qualitative aspects that are complex to assess by means of precise and exact

values. In these cases, the fuzzy linguistic approach [15, 31, 46, 47, 53, 54, 55] can

be used to obtain a better solution. This is the case, for instance, when experts try

to evaluate the “comfort” of a car, where linguistic terms like “good”, “fair”, “poor”

are used [38]. Many of these problems use linguistic variables assessed in linguistic

term sets whose terms are uniformly and symmetrically distributed, i.e., assuming

the same discrimination levels on both sides of mid linguistic term (see Fig. 1).

However, there exist problems that need to assess their variables with linguistic

term sets that are not uniformly and symmetrically distributed [17, 30]. This type of

linguistic term sets are called unbalanced linguistic term sets (see Fig. 2).

Fig. 1 Example of a linguistic term set of 9 labels

Fig. 2 Example of an unbalanced linguistic term set of 8 labels

To solve GDM problems, the experts are faced by applying two processes before

obtaining a final solution [18, 22, 28, 36, 37]: the consensus process and the se-

lection process (see Fig. 3). The former consists in obtaining the maximum degree

of consensus or agreement between the set of experts on the solution set of alterna-

tives. Normally, the consensus process is guided by a human figure called moderator

[18, 22, 36], who is a person that does not participate in the discussion but moni-

tors the agreement in each moment of the consensus process and is in charge of

supervising and addressing the consensus process toward success, i.e., to achieve

the maximum possible agreement and to reduce the number of experts outside of

the consensus in each new consensus round. The latter refers to obtaining the so-

lution set of alternatives from the opinions on the alternatives given by the experts.

It involves two different steps [23, 41]: aggregation of individual opinions and ex-

ploitation of the collective opinion. Clearly, it is preferable that the set of experts

achieves a great agreement among their opinions before applying the selection pro-

cess and, therefore, in this paper we focus on the consensus process.
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Fig. 3 Resolution process of a GDM problem

A consensus process is defined as a dynamic and iterative group discussion pro-

cess, coordinated by a moderator helping experts bring their opinions closer. The

moderator uses a consensus measure to assess the consensus level existing among

experts. If the consensus level is lower than a specified threshold, the moderator

would urge experts to discuss their opinions further in an effort to bring them closer.

On the contrary, when the consensus level is higher than the threshold, the modera-

tor would apply the selection process in order to obtain the final consensus solution

to the GDM problem.

In such a framework, we find different aspects to solve:

1. An important question is how to substitute the actions of the moderator in the

group discussion process in order to automatically model the whole consensus

process. Some automatic consensus approaches have been proposed in [4, 26,

28, 31, 39].

2. Most of these consensus models use only consensus measures to control and

guide the consensus process. However, if a consensus process is seen as a type of

persuasion model [12], other criteria could be used to guide consensus reaching

processes as, for example, the cooperation or consistency criterion. Some fuzzy

consensus approaches based on both consistency and consensus measures can be

found in [11, 13, 21, 26].

3. On the other hand, a natural question in the consensus process is how to mea-

sure the closeness among experts’ opinions in order to obtain the consensus
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measure. To do so, different approaches have been proposed. For instance, sev-

eral authors have introduced hard consensus measures varying between 0 (no

consensus or partial consensus) and 1 (full consensus o complete agreement)

[1, 2, 43, 44]. However, consensus as a full and unanimous agreement is far from

being achieved in real situations, and even if it is, in such a situation, the con-

sensus reaching process could be unacceptably costly. So, in practice, a more

realistic approach is to use softer consensus measures [33, 34, 35], which as-

sess the consensus degree in a more flexible way, and therefore reflect the large

spectrum of possible partial agreements, and guide the consensus process un-

til widespread agreement (not always full) is achieved among experts. The soft

consensus measures are based on the concept of coincidence [22], measured by

means of similarity criteria defined among experts’ opinions.

4. Sometimes, we find problems when it is not possible to compute directly the

similarity among opinions because experts provide incomplete preferences [27],

or use different elements of preference representation [6], or different expression

domains of preferences as multi-granular fuzzy linguistic contexts [25] or un-

balanced fuzzy linguistic contexts [17, 30]. In [28, 31, 26], we have presented

consensus models dealing with different elements of preference representation,

multi-granular linguistic preferences and incomplete preferences, respectively,

and, in this paper, we focus on consensus models under unbalanced fuzzy lin-

guistic preferences.

5. Other aspect to study is how to obtain the consensus measures from closeness

values measured among experts’ opinions. Usually, this is done by aggregating

those closeness values by means of adequate aggregation operators. The OWA

type operators [48] are very useful to develop such aggregations because they al-

lows us to include different semantics in the aggregation process, as for example,

the concept of fuzzy majority [32] or consistency semantics [9].

The aim of this paper is to present some Linguistic OWA operators to compute con-

sensus measures in GDM problems under unbalanced linguistic preferences. As in

[18, 21], we assume a consensus model which is guided by two types of consensus

measures, consensus degrees and proximity measures. We present two LOWA op-

erators to compute those consensus measures in an unbalanced linguistic context:

an unbalanced LOWA operator guided by the concept of fuzzy majority to compete

the consensus degrees and an unbalanced Induced LOWA operator guided by the

consistency semantics to compute the proximity measures.

In order to do this, the paper is structured as follows. In Section 2, we present

some preliminaries. In Section 3 we define a methodology to manage unbalanced

fuzzy linguistic information together with the unbalanced LOWA operators. Sec-

tion 4 presents the application of those unbalanced LOWA operators in a consensus

model for GDM problems with unbalanced fuzzy linguistic preferences. Finally,

some concluding remarks are pointed out in Section 5.
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2 Preliminaries

In this section, we make a review of the 2-tuple fuzzy linguistic representation

model[24] and the concept of hierarchical linguistic contexts[25] which are used

to define the methodology to manage unbalanced fuzzy linguistic information.

2.1 The 2-Tuple Fuzzy Linguistic Representation Model

The 2-tuple fuzzy linguistic representation model was introduced in [24] to carry out

processes of computing with words in a precise way when the linguistic term sets

are symmetrically and uniformly distributed and to improve several aspects of the

ordinal fuzzy linguistic approach [15, 19, 20]. This model is based on the concept of

symbolic translation and represents the linguistic information by means of a pair of

values, (s,α), where s is a linguistic label and α is a numerical value that represents

the value of the symbolic translation.

Definition 1. [24]Let β ∈ [0,g] be the result of an aggregation of the indexes of

a set of labels assessed in a linguistic term set S = {s0,s1, . . . ,sg−1,sg}, where g

stands for cardinality of S, i.e., the result of a symbolic aggregation operation. Let

i = round(β ) and α = β − i be two values, such that, i ∈ [0,g] and α ∈ [−0.5,0.5),
then α is called a symbolic translation.

This model defines a set of transformation functions to manage the linguistic

information expressed by linguistic 2–tuples.

Definition 2. Let S be a linguistic term set and β ∈ [0,g] a value supporting the result

of a symbolic aggregation operation, then the 2–tuple that expresses the equivalent

information to β is obtained with the following function:

∆ : [0,g]−→ S× [−0.5,0.5)
∆(β ) = (si,α)
i = round(β )
α = β − i

(1)

where “round” is the usual round operation, si has the closest index label to β and

α is the value of the symbolic translation.

Proposition 1. Let S = {s0, . . . ,sg} be a linguistic term set and (si,α) be a linguistic

2-tuple. There is always a function ∆−1, such that, from a 2-tuple value it returns its

equivalent numerical value β ∈ [0,g]⊂ R:

∆−1 : S× [−0.5,0.5)−→ [0,g]
∆−1(si,α) = i+ α = β

(2)

Remark 1. We should point out that a linguistic term can be seen as a linguistic

2–tuple by adding to it the value 0 as symbolic translation, si ∈ S =⇒ (si,0).
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The 2-tuples linguistic computational model presents different techniques to

manage the linguistic information [24]:

1. A 2-tuple comparison operator: The comparison of linguistic information rep-

resented by 2-tuples is carried out according to an ordinary lexicographic order.

Let (sk,α1) and (sl ,α2) be two 2-tuples, with each one representing a counting

of information:

a. if k < l then (sk,α1) is smaller than (sl,α2).
b. if k = l then

i. if α1 = α2 then (sk,α1), (sl ,α2) represent the same information.

ii. if α1 < α2 then (sk,α1) is smaller than (sl ,α2).
iii. if α1 > α2 then (sk,α1) is bigger than (sl ,α2).

2. A 2-tuple negation operator: It is defined as

Neg(si,α) = ∆(g−∆−1(si,α)). (3)

3. 2-tuple aggregation operators: Using the function ∆ and ∆−1 any aggregation

operator can be easily extended for dealing with linguistic 2-tuples, such as the

Linguistic OWA operator [20], the weighted average operator, the OWA operator,

etc., (see [24]).

2.2 Hierarchical Linguistic Contexts

In [25] the hierarchical linguistic contexts were introduced to improve the precision

of processes of computing with words in multi-granular linguistic contexts [31]. In

this work, we use them to manage the unbalanced fuzzy linguistic information.

A Linguistic Hierarchy is a set of levels, where each level represents a linguistic

term set with different granularity from the remaining levels of the hierarchy. Each

level is denoted as l(t,n(t)), where t is a number indicating the level of the hierarchy,

and n(t) is the cardinality of the linguistic term set of t. Moreover, we assume lev-

els containing linguistic terms whose membership functions are triangular-shaped,

uniformly and symmetrically distributed in [0,1], and linguistic term sets having an

odd value of granularity where the central label represents the value of indifference.

A graphical example of a linguistic hierarchy is shown in Fig. 4.

The levels belonging to a linguistic hierarchy are ordered according to their gran-

ularity, i.e., for two consecutive levels t and t + 1, n(t + 1) > n(t). Hence, the level

t + 1 could be considered as a refinement of the previous level t. Then, a linguistic

hierarchy LH can be defined as the union of all levels t:

LH =
⋃

t

l(t,n(t)). (4)

Given a LH, we denote as Sn(t) the linguistic term set of LH corresponding

to the level t of LH characterized by a granularity of uncertainty n(t): Sn(t) =
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Fig. 4 Linguistic hierarchy of 3, 5 and 9 labels

{s
n(t)
0 , . . . ,s

n(t)
n(t)−1

}. Furthermore, the linguistic term set of the level t + 1 is obtained

from its predecessor as:

l(t,n(t)) → l(t + 1,2 ·n(t)−1). (5)

Transformation functions between labels from different levels to make processes of

computing with words in multigranular linguistic information contexts without loss

of information were defined in [25].

Definition 3. [25] Let LH =
⋃

t l(t,n(t)) be a linguistic hierarchy whose linguistic

term sets are denoted as Sn(t) = {s
n(t)
0 , . . . ,s

n(t)
n(t)−1

}, and let us consider the 2-tuple

fuzzy linguistic representation. The transformation function from a linguistic label

in level t to a label in level t ′ is defined as TF t
t′

: l(t,n(t)) −→ l(t ′,n(t ′)) such that

T F t
t′(s

n(t)
i ,αn(t)) = ∆t′

(
∆−1

t (s
n(t)
i ,αn(t)) · (n(t ′)−1)

n(t)−1

)
. (6)
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3 A Model to Manage Unbalanced Fuzzy Linguistic

Information

Following those results presented in [17, 30], a model to manage unbalanced fuzzy

linguistic term sets based on the linguistic 2-tuple model is presented. It carries out

computational operations of unbalanced fuzzy linguistic information using the 2-

tuple computational model and different levels of a LH. This model presents two

components:

• A representation model of unbalanced fuzzy linguistic information.

• A computational model of unbalanced fuzzy linguistic information.

3.1 An Unbalanced Fuzzy Linguistic Representation Model

The procedure to represent unbalanced fuzzy linguistic information defined in [30]

works as follows:

1. Find a level t− of LH to represent the subset of linguistic terms SL
un on the left of

the mid linguistic term of unbalanced fuzzy linguistic term set Sun. This level of

LH should support the distribution of the labels of SL
un on the discourse universe.

2. Find a level t+ of LH to represent the subset of linguistic terms SR
un on the right

of the mid linguistic term of Sun.
3. Represent the mid term of Sun using the mid terms of the levels t− and t+.

The problem appears when there does not exist a level t− or t+ in LH to represent

SL
un or SR

un, respectively. Then, we propose to overcome this problem by applying

the following algorithm, which is defined assuming that there does not exist t−, as

it happens with the unbalanced fuzzy linguistic term set given in Fig. 2:

1. Represent SL
un:

a. Identify the mid term of SL
un, called SL

mid . To do so, we have to observe the

distribution of the labels of SL
un on the discourse universe.

b. Find a level t−2 of the left sets of LHL to represent the left term subset of SL
un,

where LHL represents the left part of LH.

c. Find a level t+2 of the right sets of LHL to represent the right term subset of

SL
un.

d. Represent the mid term SL
mid using the levels t−2 and t+2 .

2. Find a level t+ of LH to represent the subset of linguistic terms SR
un.

3. Represent the mid term of Sun using the levels t+ and t+2 .

For example, applying this algorithm, the representation of the unbalanced fuzzy

linguistic term set Sun = {N,VL,L,M,H,QH,V H,T} shown in Fig. 2 with the lin-

guistic hierarchy LH shown in Fig. 4 would be as it is shown in Fig. 5. In this

example,
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Fig. 5 Representation for an unbalanced term set of 8 labels

• SL
un = {N,VL,L},

• SL
mid = L,

• LHL = {s
n(1)
0 }

⋃
{s

n(2)
0 ,s

n(2)
1 }

⋃
{s

n(3)
0 ,s

n(3)
1 ,s

n(3)
2 ,s

n(3)
3 }.

Thus, we have that t−2 = 3, t+2 = 2, the mid label SL
mid = L (due to its position on the

discourse universe) is represented using both levels, 3 and 2, and the mid term of

Sun is represented using the levels 2 and 3.

3.2 An Unbalanced Fuzzy Linguistic Computational Model:

Some Unbalanced Linguistic OWA Operators

In any fuzzy linguistic approach we need to define a computational model to man-

age and aggregate linguistic information. As in [24] we have to define three types of

computation operators to deal with unbalanced fuzzy linguistic information: com-

parison operators, negation operator and aggregation operators. In an unbalanced

linguistic context, previously to carry out any computation task of unbalanced fuzzy
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linguistic information we have to choose a level t ′ ∈ {t−,t−2 , t+, t+2 }, such that

n(t ′) = max{n(t−),n(t−2 ),n(t+),n(t+2 )}:

1. An unbalanced linguistic comparison operator: The comparison of linguis-

tic information represented by two unbalanced linguistic 2-tuples (s
n(t)
k ,α1),

t ∈ {t−, t−2 , t+,t+2 }, and (s
n(t)
l ,α2), t ∈ {t−, t−2 , t+,t+2 } is similar to the usual com-

parison of two 2-tuples but acting on the values T F t
t′
(s

n(t)
k ,α1) = (s

n(t′)
v ,β1) and

TF t
t′
(s

n(t)
l ,α2) = (s

n(t′)
w ,β2). Then, we have:

a. if v < w then (s
n(t′)
v ,β1) is smaller than (s

n(t′)
w ,β2).

b. if v = w then

i. if β1 = β2 then (s
n(t′)
v ,β1), (s

n(t′)
w ,β2) represent the same information.

ii. if β1 < β2 then (s
n(t′)
v ,β1) is smaller than (s

n(t′)
w ,β2).

iii. if β1 > β2 then (s
n(t′)
v ,β1) is bigger than (s

n(t′)
w ,β2).

2. An unbalanced linguistic 2-tuple negation operator. Let (s
n(t)
k ,α),

t ∈ {t−,t−2 ,t+, t+2 } be an unbalanced linguistic 2-tuple, then:

NEG(s
n(t)
k ,α) = Neg(TF t

t′′(s
n(t)
k ,α)), (7)

where t �= t ′′, t ′′ ∈ {t−,t−2 ,t+,t+2 }.

3. An unbalanced linguistic aggregation operator. As aforementioned, in order to

deal with unbalanced fuzzy linguistic information we have to represent it in a LH.

Hence, any unbalanced linguistic aggregation operator must aggregate unbal-

anced fuzzy linguistic information by means of its representation in a LH. We use

the aggregation processes designed in the 2-tuple computational model but acting

on the unbalanced linguistic values transformed by means of TF t
t′

. Then, once a

result is obtained, it is transformed to the correspondent level t ∈ {t−, t−2 ,t+,t+2 }

by means of T F t′

t for expressing the result in the unbalanced linguistic term set

Sun. In such a way, we define the following unbalanced linguistic OWA operators:

the LOWAun operator which is an extension of the Linguistic Ordered Weighted

Averaging operator proposed in [20] and the ILOWAun operator which is a lin-

guistic extension of the Induced OWA operators [9, 50, 51, 52].

• Definition 4. Let {(a1,α1), . . . ,(am,αm)} be a set of unbalanced linguistic as-

sessments to aggregate, then the LOWAun operator φun is defined as:

φun{(a1,α1), . . . ,(am,αm)} = W ·BT = Cm
un{wk,bk, k = 1, . . . ,m} =

w1 ⊗b1 ⊕ (1−w1)⊗Cm−1
un {βh,bh, h = 2, . . . ,m}

where bi = (ai,αi) ∈ (Sn(t) × [−0.5,0.5)), W = [w1, . . . ,wm], is a weighting

vector, such that, wi ∈ [0,1] and ∑i wi = 1, βh = wh

∑m
2 wk

, h = {2,3 . . . ,m}, and

B is the associated ordered unbalanced 2-tuple vector. Each element bi ∈ B is

the i-th largest unbalanced 2-tuple in the collection {(a1,α1), . . . ,(am,αm)},
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and Cm
un is the convex combination operator of m unbalanced 2-tuples. If

w j = 1 and wi = 0 with i �= j, ∀i, j the convex combination is defined as:

Cm
un{wi,bi, i = 1, . . . ,m} = b j. And if m = 2 then it is defined as:

C2
un{wl,bl, l = 1,2} = w1 ⊗b j ⊕ (1−w1)⊗bi = T F t′

t (s
n(t′)
k ,α)

where (s
n(t′)
k ,α) = ∆(λ ) and λ = ∆−1(T Ft

t′
(bi)) + w1 · (∆

−1(T F t
t′
(b j)) −

∆−1(T F t
t′
(bi))), b j,bi ∈ (Sn(t)× [−0.5,0.5)), (b j ≥ bi), λ ∈ [0,n(t ′)−1], t ∈

{t−,t−2 , t+,t+2 }.

In[48] it was defined an expression to obtain W by means of a fuzzy lin-

guistic non-decreasing quantifier Q [56]:

wi = Q(i/m)−Q((i−1)/m), i = {1,2, . . . ,m}. (8)

In such a way, it is possible to incorporate in the aggregation process the

semantics of the fuzzy majority [32] represented by the quantifier. When the

LOWAun operator uses a quantifier Q then it is called φQ
un.

• Definition 5. Let {(a1,α1), . . . ,(am,αm)} and (u1, . . . ,um) ui ∈ R be a set of

unbalanced linguistic assessments to aggregate and the set of values used to

induce the ordering of the unbalanced linguistic assessments, respectively.

Then, an ILOWAun operator Φun is defined as:

Φun(〈u1, p1〉, . . . ,〈um, pm〉) = T F t′

t (
m

∑
i=1

wi ·∆
−1(T F t

t′ pσ(i))), (9)

being pi = (ai,αi) and σ a permutation of {1, . . . ,m} such that uσ(i) ≥ uσ(i+1),

∀i = 1, . . . ,m−1, i.e., 〈uσ(i), pσ(i)〉 is the pair with uσ(i) the i-th highest value

in the set {u1, . . . ,um}.

In the above definition, the reordering of the set of values to be aggregated,

{p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . ,un} as-

sociated with them, which is based upon their magnitude. Due to this use of

the set of values {u1, . . . ,un}, Yager and Filev called them the values of an or-

der inducing variable[9, 50, 51, 52]. A natural question in the definition of the

unbalanced ILOWA operator is how to obtain the associated weighting vector.

Following Yager’s ideas on quantifier guided aggregation [49], we could com-

pute the weighting vector of an IOWA operator using a linguistic quantifier Q

[56] as:

wi = Q

(
∑i

k=1 uσ(k)

T

)
−Q

(
∑i−1

k=1 uσ(k)

T

)
, (10)

being T = ∑n
k=1 uk and σ the permutation used to produce the ordering of the

values to be aggregated.
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4 A Consensus Model for GDM Problems Based on

Unbalanced Linguistic OWA Operators

In this section, we present a consensus model defined for GDM problems with un-

balanced fuzzy linguistic preference relations providing support to the experts to

reach consensus during the process of making a decision. This consensus model

presents the following main characteristics:

1. It is designed to guide the consensus process of unbalanced fuzzy linguistic GDM

problems.

2. It is based on two consensus criteria: consensus degrees and proximity measures.

The first ones are used to measure the agreement amongst all the experts, while

the second ones are used to learn how close the collective and individual expert’s

preference are. Both consensus criteria are calculated at three different levels:

pair of alternatives, alternatives and relation.

3. It uses unbalanced linguistic OWA operators to compute the above consensus

criteria.

4. A feedback mechanism is defined using the above consensus criteria. It substi-

tutes the moderator’s actions, avoiding the possible subjectivity that he/she can

introduce, and gives advice to the experts to find out the changes they need

to make in their opinions in order to obtain the highest degree of consensus

possible.

This consensus model presents three phases:

1. Computing consensus degrees.

2. Controlling the consensus state.

3. Feedback mechanism.

In the following subsections, we describe them in detail.

4.1 Computing Consensus Degrees

A GDM problem based on preference relations is classically defined as a decision

situation where there are a set of experts, E = {e1, . . . ,em} (m ≥ 2), and a finite

set of alternatives, X = {x1, . . . ,xn} (n ≥ 2), and each expert ei provides his/her

preferences about X by means of a preference relation, Pei
⊂ X ×X , where the value

µPei
(x j,xk) = p

jk
i is interpreted as the preference degree of the alternative x j over xk

for ei. In this paper, we deal with unbalanced fuzzy linguistic preference relations,

i.e., Pei
= (p

jk
i ) ∈ Sun, and therefore, p

jk
i represents the preference of alternative x j

over alternative xk for the expert ei assessed on an unbalanced fuzzy linguistic term

set Sun.

Then, consensus degrees are used to measure the current level of consensus in

the decision process. As aforementioned, they are given at three different levels:

pairs of alternatives, alternatives and relations. To calculate them, some similarity

or coincidence function are required to obtain the level of agreement amongst all
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the experts [18, 22, 31]. Moreover, these similarity functions detect how far each

individual expert is from the rest. In such a way, the computation of the consensus

degrees is carried out as follows:

1. For each pair of experts (ei,e j) (i = 1, . . . ,m−1, j = i+1, . . . ,m), an unbalanced

linguistic similarity matrix, SMi j = (smlk
i j ), smlk

i j ∈ (Sn(t)× [−0.5,0.5)), is defined

as

smlk
i j = NEG(T F t′

t (∆(|∆−1(T F t
t′(plk

i ))−∆−1(T Ft
t′(plk

j ))|))). (11)

being plk
i = (s

n(t)
v ,α1), t ∈ {t−,t−2 , t+,t+2 }, plk

j = (s
n(t)
w ,α2), t ∈ {t−,t−2 , t+,t+2 },

and t ′ ∈ {t−, t−2 ,t+,t+2 }.

2. An unbalanced linguistic consensus matrix, CM = (cmlk), is calculated by ag-

gregating all the similarity matrices using the LOWAun operator φQ
un as the aggre-

gation function:

cmlk = φQ
un(smlk

i j , i = 1, . . . ,m−1, j = i+ 1, . . . ,m). (12)

3. Once the consensus matrix, CM, is computed, we proceed to calculate the con-

sensus degrees at the three different levels:

a. Level 1. Unbalanced linguistic consensus degree on pairs of alternatives. The

consensus degree on a pair of alternatives (xl,xk), called cplk, is defined to

measure the consensus degree amongst all the experts on that pair of alter-

natives. The closer
∆−1(cplk)

n(t)−1
to 1, the greater the agreement amongst all the

experts on the pair of alternatives (xl,xk). Thus, this measure is used to iden-

tify those pairs of alternatives with a poor level of consensus and it coincides

is with the element (l,k) of the consensus matrix CM:

cplk = cmlk; ∀ l,k = {1,2, . . . ,n}∧ l �= k. (13)

b. Level 2. Unbalanced linguistic consensus degree on alternatives. The consen-

sus degree on an alternative xl , called cal , is defined to measure the consensus

degree amongst all the experts on that alternative:

cal = φQ
un(cpl1, . . . ,cpln). (14)

c. Level 3. Unbalanced linguistic consensus degree on the relation. The con-

sensus degree on the relation, called cr, is defined to measure the global con-

sensus degree amongst all the experts’ opinions and is used by the consensus

model to control the consensus situation. It is calculated as:

cr = φQ
un(ca1, . . . ,can). (15)
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4.2 Controlling the Consensus State

The consensus state control process involves deciding if the feedback mechanism

should be applied to provide advice to the experts or if the consensus process should

be finished. To do so, a minimum consensus threshold, γ ∈ [0,1], is fixed before

applying the consensus model. When the consensus measure, cr, satisfies the mini-

mum consensus threshold, γ , the consensus model finishes and the selection process

is applied to obtain the solution. Additionally, the consensus model should avoid sit-

uations in which the global consensus measure may not converge to the minimum

consensus threshold. To do that, a maximum number of rounds MaxRounds should

be fixed and compared to the current number of round of the consensus model Num-

Round.

Then, the operation of the consensus state control process is as follows: Firstly,

the global consensus measure, cr, is checked against the minimum consensus thresh-

old, γ . If
∆−1(cr)
n(t)−1

> γ , the consensus process finishes and the selection process is

applied. Otherwise, it will check if the maximum number of rounds, MaxRounds,

has been reached. If so, it finishes and the selection process is applied too, and if

not, it activates the feedback mechanism.

4.3 Feedback Mechanism

If the global consensus measure is lower than the minimum consensus threshold

then the experts’ opinions must be modified. The goal of the feedback mechanism

is to provide recommendations to support the experts in changing their opinions.

The feedback mechanism uses proximity measures to identify those experts furthest

away from the collective opinion. In the following, both the computation of the

proximity measures and the production of advice are explained in detail.

4.3.1 Computation of Proximity Measures

These measures evaluate the agreement between the individual experts’ opinions

and the group opinion. To compute them for each expert, we need to obtain the

collective unbalanced fuzzy linguistic preference relation, Pec = (plk
c ), which sum-

marizes preferences given by all the experts. We compute it by means of the ag-

gregation of the set of individual unbalanced fuzzy linguistic preference relations

{Pe1
, . . . ,Pem} using an IOWAun operator, ΦQ

un, which allows to obtain each collec-

tive preference degree pc
ik according to the most consensual individual preference

degrees using the consensus scores of each expert eh for each pair of alternatives xi

and xk

{z1
ik,z

2
ik, . . . ,z

m
ik}

zh
ik =

∑n
l=h+1(∆

−1(smhl
ik )/(n(t)−1))+ ∑h−1

l=1 (∆−1(smlh
ik )/(n(t)−1))

n−1
. (16)
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as the values of the order inducing variable, i.e.,

pc
ik = ΦQ

un(〈 z1
ik, p̄1

ik〉, . . . ,〈z
m
ik, p̄m

ik〉) = T F t′

t (∆(
m

∑
h=1

wh ·∆
−1(T Ft

t′(p̄
σ(h)
ik )))), (17)

where

• σ is a permutation of {1, . . . ,m} such that z
σ(h)
ik ≥ z

σ(h+1)
ik , ∀h = 1, . . . ,m−1, i.e.,

〈z
σ(h)
ik , p̄

σ(h)
ik 〉 is the pair of the linguistic unbalanced 2-tuples with z

σ(h)
ik the h-th

highest consensus score in the set {z1
ik . . . ,zm

ik};

• the weighting vector is computed according to the following expression:

wh = Q

(
∑h

j=1 z
σ( j)
ik

T

)
−Q

⎛
⎝∑h−1

j=1 z
σ( j)
ik

T

⎞
⎠ , (18)

with T = ∑m
j=1 z

j

ik and Q a fuzzy linguistic quantifier.

Once Pec is obtained, we can compute the proximity measures carrying out the fol-

lowing two steps:

1. For each expert, ei, a proximity matrix, PMi = (pmlk
i ), is obtained where

pmlk
i = NEG(T F t′

t (∆(
∣∣∣∆−1(T F t

t′(plk
i ))−∆−1(T F t

t′(plk
c ))

∣∣∣))). (19)

being plk
i = (s

n(t)
v ,α1), t ∈ {t−,t−2 , t+,t+2 }, plk

c = (s
n(t)
w ,α2), t ∈ {t−,t−2 , t+,t+2 },

and t ′ ∈ {t−, t−2 ,t+,t+2 }.

2. Computation of proximity measures at three different levels:

a. Level 1. Unbalanced linguistic proximity measure on pairs of alternatives.

The proximity measure of an expert ei on a pair of alternatives (xl,xk) to the

group’s one, called pplk
i , is expressed by the element (l,k) of the proximity

matrix PMi:

pplk
i = pmlk

i ; ∀ l,k = 1, . . . ,n∧ l �= k. (20)

b. Level 2. Unbalanced linguistic proximity measure on alternatives. The prox-

imity measure of an expert ei on an alternative xl to the group’s one, called

pal
i , is calculated as follows:

pal
i = φQ

un(ppl1
i , . . . , ppln

i ). (21)

c. Level 3. Unbalanced linguistic proximity measure on the relation. The prox-

imity measure of an expert ei on his/her unbalanced fuzzy linguistic prefer-

ence relation to the group’s one, called pri, is calculated as the average of all

proximity measures on the alternatives:

pri = φQ
un(pa1

i , . . . , pan
i ). (22)
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Then, we can use them to provide advice to the experts to change their opinions and

to find out which direction that change has to follow in order to obtain the highest

degree of consensus possible.

4.3.2 Production of Advice

The production of advice to achieve a solution with the highest degree of consensus

possible is carried out in two steps: Identification rules and Direction rules.

1. Identification rules (IR). We must identify the experts, alternatives and pairs of

alternatives that are contributing less to reach a high degree of consensus and,

therefore, should participate in the change process.

a. Identification rule of experts (IR.1). It identifies the set of experts that should

receive advice on how to change some of their preference values. This set of

experts, called EXPCH, that should change their opinions are those whose

proximity measure on the relation, pri, is lower than the minimum consensus

threshold γ . Therefore, the identification rule of experts, IR.1, is the following:

EXPCH = {i | (
∆−1(pri)

n(t)−1
) < γ} (23)

b. Identification rule of alternatives (IR.2). It identifies the alternatives whose

associated assessments should be taken into account by the above experts in

the change process of their preferences. This set of alternatives is denoted as

ALTi. The identification rule of alternatives, IR.2, is the following:

ALTi = {xl ∈ X | (
∆−1(cal)

n(t)−1
) < γ ∧ ei ∈ EXPCH} (24)

c. Identification rule of pairs of alternatives (IR.3). It identifies the particular

pairs of alternatives (xl ,xk) whose respective associated assessments plk
i the

expert ei should change. This set of pairs of alternatives is denoted as PALTi.

The identification rule of pairs of alternatives, IR.3, is the following:

PALTi = {(xl,xk) | xl ∈ ALT ∧ ei ∈ EXPCH ∧ (
∆−1(pplk

i )

n(t)−1
) < γ} (25)

2. Direction rules (DR). We must find out the direction of the change to be recom-

mended in each case, i.e., the direction of change to be applied to the preference

assessment plk
i , with (xl ,xk) ∈ PALTi. To do this, we define the following two

direction rules.

a. DR.1. If plk
i > plk

c , the expert ei should decrease the assessment associated to

the pair of alternatives (xl ,xk), i.e., plk
i .

b. DR.2. If plk
i < plk

c , the expert ei should increase the assessment associated to

the pair of alternatives (xl ,xk), i.e., plk
i .
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Remark 2. These direction rules will not be produced when a decrease or in-

crease are suggested to an assessment represented by the first or last label of the

unbalanced linguistic term set, respectively.

5 Concluding Remarks

In this paper we have presented an application of LOWA operators in a consensus

model for GDM problems with unbalanced fuzzy linguistic preference relations.

We have defined two unbalanced LOWA operators to aggregate unbalanced linguis-

tic information to compute the consensus criteria in order to guide the consensus

process. In such a way we can incorporate different semantics in computation of the

consensus criteria, as the concept of fuzzy majority or consensus semantics.
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Abstract. Ill-known environmental phenomena are often modeled by means of 
multisource spatial data fusion. Generally, these fusion strategies have to cope with 
distinct kinds of uncertainty, related to the ill-defined knowledge of the phenome-
non, the lack of classified data, the distinct trust of the information sources, the im-
precision of the observed variables. In this chapter we discuss the advantage of 
modeling multisource spatial data fusion in the environmental field based on the 
OWA operator, and overview two applications. The first application is aimed at de-
fining an environmental indicator of anomaly at continental scale based on a fusion 
of partial hints of evidence of anomaly. The second application computes seismic 
hazard maps based on a consensual fusion strategy defined by an extended OWA 
operator that accounts for data imprecision, and reliability of the data sources. In 
particular, the proposed fusion function models a consensual dynamics and is pa-
rameterized so as to consider a varying spatial neighborhood of the data to fuse.  

1   Introduction  

The modeling of ill-known environmental phenomena, when training data are  
unavailable, is often based on the accumulation of hints of evidence, i.e., contrib-
uting factors [24]. To this aim multisource spatial data fusion strategies offer an 
intuitive paradigm to compute maps of global evidence of the hazard or of the sus-
ceptibility of a location to the modeled phenomenon. Spatial data fusion consists 
of a data integration process that combines spatial data from multiple sources to 
generate spatial data of “higher quality”, carrying information not available from 
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any individual source [10][37]. “Higher quality” can be intended a better descrip-
tion of a spatial feature, or a better signal, or even the opportunity to take a better 
decision. This last interpretation is the one that we model in this chapter.  

We consider the fusion of spatial data that are independently produced by both 
software models and human experts, hereafter named sources.  

Current GISs are inadequate to support the experts in modeling multisource 
spatial data fusion affected by uncertainty because flexible decision strategies can 
hardly be defined by using the available aggregation operators [7][21][27]. The 
fusion operations that GISs offer are generally based on Boolean logic, basically 
maps overlay and weighted linear combination [24]. Further, these systems do not 
represent and manage the imprecision and uncertainty of the data, allowing to as-
sociate only precise values with each spatial unit. These are some of the motiva-
tions for developing software applications allowing users/experts to define and 
then execute their personalized flexible fusion strategy on geographic data, possi-
bly affected by imperfection [4][2][11][24][36]. In this context, the implementa-
tion of multisource fusion strategies based on the OWA operator had drawn great 
success [3][24][9][18][25]. OWA operators have been indicated as appropriate 
tools for spatial data fusion since they are a family of mean-like operators that al-
low realizing distinct fusion strategies [24][29][42]. These approaches are appeal-
ing since they can be defined to model a variety of real situations in a flexible way 
[6][9][18]. 

The definition of a spatial data fusion strategy first requires to represent the in-
put data in a common space, and then to define the way in which these data must 
be combined to generate the output. The first step is necessary when the input data 
are heterogeneous, as in the case of multisource data, and characterized by either 
different spatial and temporal resolutions, measurement errors, range of values, or 
distinct reliability of their sources [36]. These are all causes of imprecision and 
uncertainty that must be appropriately dealt with when fusing spatial information. 
The second step represents the core of the process, that is, the stage where we syn-
thesize the spatial information available in order to generate spatial data of higher 
semantic level. Of particular importance within this context are soft fusion strate-
gies defined by linguistic quantifiers [39][43] associated with the concept of fuzzy 
majority [19] and implemented by an OWA operator [40][41]. Furthermore, there 
are situations in which the fusion has the objective of synthesizing the results in-
dependently produced by the sources, i.e., the experts or the models, by also tak-
ing into account their agreements, i.e., the data values variability within a local or 
global spatial neighborhood, so as to reduce possible semantic errors. In this case, 
the fusion operator is a context dependent operator according to the classification 
given in [2]. Moreover, it can be necessary to take into account the sources trust 
scores, that is, their reliability or presumed credit. These characteristics are very 
important in the geographic context where information may come from distinct 
sources with very distinct reliability and acquisition characteristics.  

In this chapter we first discuss the problem of modeling environmental phe-
nomena within distinct computational frameworks. Then we illustrate the applica-
tion of OWA for modeling environmental indicators at continental scale. Finally, 
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we introduce the consensual OWA and its application to produce seismic hazard 
maps. The conclusions summarize the main contents of the chapter. 

2   Modeling Environmental Phenomena 

Environmental phenomena present considerable difficulties for modelers mainly 
due to the poor knowledge of the subsystems and interrelationships, the difficul-
ties of carrying out experiments, the inability to accurately measure the internal 
system variables and to perturb the system to observe the effects. For these rea-
sons, indicators can be defined, that take Boolean or gradual values in a range, to 
help conveying information on the state of the phenomenon by reducing a large 
quantity of data to its simplest form [34][22]. 

The choice of a mathematical framework for formalizing a model of an environ-
mental phenomenon strongly depends on the quantity, quality, and type of data 
available, on the type of knowledge of the phenomenon, and the type of process one 
wants to define, i.e., a transparent (white box) or opaque (black box) modelling.   

First of all let us consider the availability of data from which to derive an indi-
cator: they can be either statistically meaningful, providing good quantity of high 
quality classified data for training and testing purposes or not. This aspect basi-
cally determines the method to choose.  

Secondly, data can be characterized by distinct quality, defined in terms of both 
reliability or trust or credibility of the sources of the data and embedded imperfec-
tion of the data [4].  

Finally, at high level, the data can be of three distinct types: numeric, ordinal, 
nominal or categorical.  

On the other side, the knowledge of the causes or factors and processes influ-
encing or determining the phenomenon can be ill-defined at distinct levels: there 
are situations in which heuristic vague rules in the form “if condition and condi-

tion …and condition then conclusion” determining the occurrence or hint of the 
phenomenon can be specified so that the interrelationships between factors are 
qualitatively made explicit, and situations in which the knowledge of the phe-
nomenon or of the hints carrying to the phenomenon is solely based on the rein-
forcement of evidence carried by distinct data. The worst situation is when the 
knowledge is completely missing: in this case the phenomenon can be forecasted 
provided that large quantity of high quality classified data are available.  

The mathematical framework for formalizing the process of integration of mul-
tisource spatial data can be based on either a black box or a white box paradigm, 
according to the fact that it provides an implicit or explicit model of the phenome-
non. Neural network approaches falls into the first type while exploratory data 
analysis, data mining and integration techniques are of second type since they al-
low to explicit association rules between data values. A rich survey on multicrite-
ria integration approaches can be found in [2][36][24].  

Probability theory is the most commonly adopted mathematical framework 
where, often, input data are combined by applying Bayesian rules [20][17]. The 
main drawback of this approach is that source data are considered independent, an 
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assumption that is rarely true in the analysis of environmental variables. It also 
models a very strict integration where all factors must contribute to some degree. 

The Dempster-Shafer theory of evidence [12] [31] constrains the data integra-
tion based on the Dempster-Shafer rule, that generates errors when the degree of 
conflict among the single sources of evidence that support each of the considered 
hypotheses becomes relevant [1]. Moreover, this approach is too rigid to model 
phenomena flexibly and in a robust way so as to be able to generate hazard or sus-
ceptivity maps even when some sources of evidence are missing and the integra-
tion criterion is ill-defined. 

Neural networks are a black box paradigm for modeling complex processes 
such as those involved in pattern recognition [38]. Their applicability is limited 
both by the kind of data that can be managed, numeric type data, and even more 
importantly, by the need for large, high quality classified data sets to train the 
network which are scarce in many real applications, and are certainly lacking in 
many situations of environmental field.  

CART techniques [5] are an alternative white box paradigm. They are based on 
the automatic construction from data analysis of decision trees encoding a distri-
bution of the dependent variable  in terms of the predictors (factors). They show 
several advantages since they provide a simple and easily understandable interpre-
tation; they deal with any type of data, do not need to normalize data, and are ro-
bust and perform well. Nevertheless, they need classified data, and often generate 
complex and artificial models due to the Boolean logic they apply. In fact, the 
splitting of the tree’s branches is performed based on the satisfaction of Boolean 
selection criteria, and do not provide any means to compensate among partial sat-
isfactions of the criteria.  

Fuzzy set theory makes it possible to define white box paradigms by flexibly 
modeling the expert ill-defined knowledge of the integration strategy by means of 
fuzzy aggregation operators: these operators can be defined with a severe, com-
promise, or indulgent behavior, corresponding with the modeling of a risk taken, a 
risk trade-off, or a risk adverse decision attitude respectively [29][27][42]. These 
approaches do not need statistically meaningful data since they do not make se-
vere assumption on data distributions, nor need classified data.  

For these reasons fuzzy approaches are appealing in many real cases 
[32][33][35]. Furthermore, the advantage of a white paradigm, once it has been 
validated, is also to enrich the knowledge on the causes of a phenomenon, and 
then to allow for a virtuous feedback.  

3   Modeling an Environmental Anomaly Indicator by the OWA  

Problem Statement 

This section summarises the application of the OWA operator to fuse multisource 
spatial data for defining an environmental Anomaly Indicator (AI) at large scale 
[8][34].  
 



Fusion Strategies Based on the OWA Operator in Environmental Applications 193
 

Monitoring environmental systems at continental scale involves the analysis of 
complex, multi-disciplinary and large-scale phenomena. Indicators are often used 
in these cases. However, the definition of an indicator relies on the possibility of 
describing the system under analysis either through a model or the establishment 
of a quantitative linkage with a process or response variable of interest. 

The task of formalising an environmental model becomes harder over large ar-
eas (i.e. the continent or the globe) where no agreement has been reached on the 
dynamics of the phenomena involved. Moreover, the increasing availability of 
global datasets, mainly with the contribution of Earth Observations (EOs), poses 
the problem of their aggregation in synthetic indicators that picture, in a simplified 
but broader way, the state of the environment. 

Only a few experiments have been published on the application of fuzzy set  
approaches for the integration of different kinds of observations and the results ob-
tained in the development of environmental indicators still rely on expert knowl-
edge in order to derive the membership functions [3][26][30]. However, this 
seems to be feasible only at local and regional scales: at the continental scale, ex-
pertise formalisation becomes controversial thus requiring more robust approaches 
to knowledge representation. 

The objective of a research carried out in the framework of the Observatory for 
Land cover and Forest change (OLF) of the GeoLand Project (EU 6th Framework 
Program) was to formalise a synthetic indicator for assessing environmental status 
at continental scale, reducing the need of disputed models that formalise interrela-
tionships among factors influential on the status of the environment and in condi-
tion of no reference information. The study proposed a fuzzy Anomaly Indicator 
(AI), designed for periodical assessment of the vegetation component of the  
environment, that is based on a simplified model (reinforcement of evidence) ex-
ploiting time series of EO data rather than on the formalisation of complex and 
debatable models. Flexibility characterises the system at different levels: 

 
• First, the contribution of factors are quantified in an automated way, although 

manual customization is possible when more knowledge is available.  
• Second, the expert can choose the fusion strategy by defining the semantics of 

the fuzzy majority used for evaluating the AI, and by exploiting OWA opera-
tors to implement the correspondent fusion function [40].  

• Finally, the system can cope with missing data, because the formalisation of 
the fusion strategy is done through a relative linguistic quantifier, so that the 
AI can be computed even when a subset of the contributing factors is avail-
able; redundancy is useful when some factors are missing. 

Workflow to Build the Anomaly Indicator  

Fig. 1 shows the work flow of the computation of the AI. The input spatial data 
are in raster format with a common spatial resolution and geo-reference system.  
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The AI is built by aggregating the evidence of anomaly represented by scores 
that are computed as degrees of satisfaction of soft constraints; these soft con-
straints ( in Fig 1 named factor score membership functions ) are defined for a set 
of contributing factors that are deemed to be influential on the status of the 
environment.  

The AI is therefore computed pixel by pixel through the aggregation of N factor 
scores (pk, with k = 1,. . .,N) eventually weighted based on their relative impor-
tance degrees (ik, with k = 1,. . .,N) that reflect the significance of the contributing 
factors in determining the AI.  

The definition of the k-th contributing factor value is derived as the difference 
(hereafter named Δk) between the current observation of the k-th variable and 
LTAk , that is the long-term average of the k-th variable (Fig. 1, Step 1). 

 

Fig. 1 Flow chart: the steps of the procedure designed to compute the AI 

The factor scores, that is the contributions of each factor values Δk to the anom-
aly evaluation, are constrained through factor score membership functions. These 
functions are formalised, for each factor, from the statistical analysis of the Δk his-
torical time series over homogeneous areas identified based on a land cover map 
(Fig. 1, Step 2). This step relies on stratification, based on the land cover spatial 
distribution, for identifying areas where ecological conditions can be assumed 
homogeneous and any deviation from LTAk can be ascribed to actual changes of 
the land cover conditions. A membership function is derived from the frequency 
histogram of the factor’s Δk for each homogeneous area, thus assuring also a sta-
tistically reliable cardinality (all pixels from a land cover class are exploited to 
build a single membership function). Fig. 2 shows an example for a single factor  
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Fig. 2 One factor score membership function. The continuous line identifies the anomaly 
derived from the frequency histogram of the Δk time series (circle markers) fitted by a 
Gaussian curve (dashed line) for one homogeneous area and one 10-day period. 

 
and land cover class. The shape of the function depends on the frequency distribu-
tion of the Δk values, for a given period, within the homogeneous area; areas sub-
ject to a high variability in both time and space are characterised by wider curves. 
A wider curve implies more tolerance, i.e. low scores are assigned also to greater 
deviations from the most frequent values. Expert knowledge, if available, could be 
used for the definition of shape of the membership functions associated with the 
soft constraints. However, although intuitive at first, such a customization would 
require the identification of the factor’s contribution to environmental conditions 
and this is unlikely to be consistent over a continent and throughout the ecosys-
tems. This type of customization would be feasible and more suitable for local 
studies. 

The factor scores pk (real number in the range [0,1]), are derived by computing 
the degrees of satisfaction of the membership functions (Fig. 1, Step 3) and they 
are aggregated using an OWA operator (Fig. 1, Step 4) by taking into account (if it 
exists) the importance ik of k-th factor. In the proposed approach the OWA im-
plements a soft linguistic quantifier such as “most of”, “at least two”, etc. By vary-
ing the quantifier, the OWA aggregation changes as well.  

All the methodological steps summarised above are applied to grid spatial data 
and the AI computation is performed pixel by pixel with a 10-day time step, thus 
providing periodic output maps.  

Evaluating an Environmental Anomaly Indicator in Africa  

The approach described above has been applied to obtain monthly AI maps of Af-
rica for the period 1996–2002. The AI was built by using vegetation phenology 
(start of greenness, season length, and season peak) and rainfall estimates as con-
tributing factors. 

 



196 G. Bordogna et al.
 

 

Fig. 3 Examples of soft constraints to evaluate the factor scores. The membership functions 
are presented only for the four land cover classes shown on the left. The histogram of the Δk 
values for the range 1–10 April in the considered years, derived from the analysis of the 
historical dataset, is shown by the circle markers, the fitting Gaussian function by the grey 
continuous line and the membership function by the black continuous line. 

Figure 3 illustrates the membership functions produced in the case study for the 
different factors in some land cover classes. A narrow function implies that even a 
small departure from the LTAk can be labelled as highly anomalous. On the con-
trary, wide functions imply that the class is characterised by high variability that 
could be due to the frequent occurrence of disturbance. In the cropland areas (last 
row in the figure) a longer season is likely to have a greater impact (more anoma-
lous) compared to closed forest where on average the season is longer. Note that 
fitting accuracy varies with both the land cover class and the contributing factor. 
Fitting accuracy was quantified using the root mean squared error (RMSE) com-
puted for each 10-day period and vegetation class. 

The AI maps (Figure 4) were produced by averaging to monthly values 10-day 
factor score maps of each contributing factor and then by aggregating them. Due 
to the absence of an expert who could formalise a widely accepted model of factor 
influence on the AI at the continental scale, in a first test a neutral operator OWAŴ 
was chosen corresponding to the arithmetic average. The average RMSE values 
were used to evaluate the importance degrees Î to be associated with the factors in 
their aggregation. Then the importance value was assigned based on the accuracy 
of the interpolation of the histograms: the factor that is characterised by the least 
accurate interpolation is assigned a lower importance in order to reduce its influ-
ence in the AI computation. This way the importance of the factor accounts for the 
reliability of the data from which the factor was derived. This step was deemed 
necessary to avoid high anomaly scores of a single factor. 

The resulting AI maps show that, in the period 1996–2002, the most anomalous 
areas of the continent were Southern Africa, the Horn of Africa and the sub-
Saharan regions. The temporal profiles extracted over a set of five regions of 
interest in these key areas pointed out that significant anomalies occurred in 1997–
1998 and 2000–2001 when the indicator is characterised by particularly high 
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Fig. 4 Maps of Anomaly Indicator (AI) showing inter-annual variation for October during 
the seven years period 1996 - 2002. 

 
 

values (AI > 0.8). Climatologists identified the same regions as the most sensitive 
to El Niño Southern Oscillation effects over the continent. 

To test the flexibility and robustness of the approach, experiments were carried 
out to analyse the effects of both distinct fusion strategies on the AI, and missing 
data by excluding one of the input factors [8]. In the first experiment, all the four 
contributing factors were considered, but they were aggregated by OWA operators 
implementing three distinct strategies (representing cautious, neutral and alarming 
attitudes). Not surprisingly, when aggregating the factors with an alarmist fusion 
the AI values are generally higher than by the neutral attitude, and they are always 
higher than those by the cautious fusion. More interesting was to analyse the  
correlation between distinct contributing factors and the AI values. The cautious 
fusion criterion produced an AI trend that was deeply influenced by ‘peak of 
greenness’, due to the high level of importance of this factor, derived automati-
cally. It is interesting to observe that high anomalous values (> 0.8) were indicated 
by all approaches for the year 1998, supporting the results of the first test (see also 
the maps of figure 4), and showing that anomalous conditions were experienced in 
that period, whatever the fusion attitude. The comparison of the AI maps that were 
generated by applying distinct soft fusion strategies was useful to identify areas 
with stable AI values, thus reinforcing the accumulation of evidence approach. 

In the second experiment the factor ‘peak of greenness’ was excluded and the 
remaining factors were aggregated with a neutral attitude. No modification of the 
score functions was necessary, and the importance degrees were automatically re-
normalised by the system. Also in this case the system was able to produce an AI 
with a trend similar to the neutral output obtained by aggregating four factors. 
Moreover, it was still able to highlight the strong anomaly that occurred in 1998. 
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In conclusion, the approach proved to be flexible, robust with respect to missing 
data, open to the interaction with the analyst; it does not rely on disputed models, 
and it can be operationally implemented. It is based on the concept of the rein-
forcement of evidence to highlight areas where anomalies occur and can therefore 
help the analyst identify areas for further investigation with higher resolution data, 
ground field campaigns and/or more locally available models or expert knowledge. 

4   Consensual Fusion of Imprecise Spatial Data by a 

Generalized OWA  

Problem Statement 

This section summarizes the definition of a flexible consensual fusion function 
based on a generalization of the OWA operator and its application for the compu-
tation of seismic hazard maps.  

We have several decision maps, represented by grids of pixels, possibly with 
imprecise or fuzzy values, generated by n competitive models, software tools, or 
human experts (the sources), each one characterized by a distinct trust score (rep-
resenting its reliability, presumed credit), and we want to fuse their possibly con-
tradictory values so as to achieve a more robust consensual decision map.  

We consider n grids with the same spatial reference and resolution. In the fol-
lowing we indicate with v1,…vn the n values in the pixel with same coordinates in 
the n grids. 

We assume that v1…,vn have the same basic domain, that can be either numeric 
discrete, numeric continuous, or ordinal. Further, each value vi can be an imprecise 
value, i.e., an interval on the basic domain, or a fuzzy value, i.e., a convex possi-
bility distribution. This is a very common situation of environmental data, that are 
affected by measurement or systematic errors.  

We want to model the following fusion criteria:  
 
• the greater the trust score of the source, the more the respective data must de-

termine the consensual result;  
• the greater the spatial agreement of a source within a specified neighborhood 

of each pixel with the other sources,  the more the source contributes to de-
termine the consensual result; 

• the consensual result must be affected at most by a maximum uncertainty 
level specified by the decision maker; 

• the fusion strategy should not be rigid and fixed once for all, but flexibly tun-
able depending on the needs of the application so as to model decision atti-
tudes with distinct trade-offs between risk-taken and risk-adverse.  

 
We represent the fusion strategy by modeling a decision attitude as a quantified-
guided function by a monotone non decreasing linguistic quantifier Q defined by a 
fuzzy set  µQ:[0,1]å[0,1] specified by a triple (a,b,c) with a,b∈[0,1] and c>0 with 

the meaning depicted in Figure 5 [43] [42]. 
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Fig. 5 Membership function of a relative monotone non decreasing linguistic quantifier 
specifying a fusion strategy 

Q=all means that the pixel values in the consensual map must reflect the com-
mon decision of all the sources. In the case in which the values in the input maps 
are proportional to an alarm or anomaly condition, by specifying all one wants to 
model a risk-taken map: all the experts/models must agree on the need to issue the 
alarm on a given position of the map or to point at the anomaly in order to set an 
alarm in the consensual map for that position. Q=at least 1 means that the pixel 
values in the consensual map must reflect the highest value. In the case in which 
the value is proportional to an alarm or anomaly, by selecting at least 1 one mod-
els a risk-adverse map: one chooses the most alarming model. This can be useful 
in making precautionary decisions. Q=most means that the consensual map must 
reflect the shared decision of a fuzzy majority; this models a trade-off decision at-
titude between the two extreme cases. 

Definition of the Generalized OWA Operator  

The generalized OWAQ operator of dimension n and weighting vector WQ,  

with ∑i=1,...nwi=1, aggregates n imprecise values [v1,m,v1,M], …, [vn,m,vn,M], 

v1,m,...v1,M…,vn,m,..vn,M ∈ D (D is a continuous domain) and vn,m ≤ vn,M, and com-

putes an imprecise value [c1,m,c1,M] of D. This operator is defined as follows:  

OWAQ : R(D)nå R(D) 

where R(D) is the set of all intervals on D and: 

[c1,m,c1,M] =OWAQ([v1,m,v1,M ],...,[vn,m,vn,M ]) 

OWAQ([v1,m,v1,M ],...,[vn,m,vn,M ])=∑ i =1,...n wi*[gi,m , gi,M ]                  (1) 
 
in which [gi,m, gi,M] is the i-th largest interval of the [v1,m,v1,M],..., [vn,m,vn,M] such 
that: 
 
Order:   [a1,a2] > [b1, b2] if   (a1+a2) >(b1+b2) ∨  

((a1+a2)=(b1+b2) ∧(b2- b1)≥ (a2- a1)) 
[a1,a2] < [b1, b2]   otherwise 
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Addition:   [a1, a2] + [b1, b2] = [a1+b1, a2+b2] 
Product:  [a1, a2] * [b1, b2] = [a1* b1, a2* b2] 
 
The weighting vector WQ of the OWAQ operator is derived as for the classic OWA 
operator starting from the definition of µQ [39]. 
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where ej is the importance degree ij associated with the j-th largest value to aggre-
gate. This way wk, i.e., the increment in satisfaction in having k non-null values 
with respect to k-1 increases with ek. The values with no importance play no role.  

When all values to be aggregated are precise, the OWAQ reduces to the usual 
OWAQ definition [40]. If the values to fuse are defined on a discrete domain D we 
have to apply a further rounding function to the result of OWAQ([v1,m,v1,M 
],...,[vn,m,vn,M ]) so as to yield an interval [c1,m,c1,M] defined on the same discrete 
domain D. In the case in which the data to fuse are ordinal values, several propos-
als have been defined in the literature for the definition of the fusion operation 
[14][16]. Finally, in the case in which the values to fuse are fuzzy values, repre-
sented by convex possibility distributions µv, we apply the OWAQ operator to their 
u−cut(µv)={xµv(x)> u}, where u is the maximum uncertainty level (specified by 

the decision maker) that can be tolerated in the consensual result. In fact, if we ap-
ply an u−cut to a possibility distribution representing some real variable we can 

say that the values in the u−cut are affected by at most an uncertainty degree equal 

to u, i.e., we cannot be completely sure that the real value of the variable is in the 

set u−cut, unless u=0. Thus, if we apply the fusion to the u−cut affected by an un-

certainty u we obtain a fused imprecise value affected at most by the same uncer-

tainty degree.   

Definition of the Consensual Fusion by the Generalized OWA 

Operator 

The consensual fusion function associated with a quantifier Q and aggregating 
possibly imprecise values, i.e., the intervals [v1,m,v1,M ],...,[vn,m,vn,M ] on a real do-
main D, is defined by the generalized OWAQ operator, defined in formula (1) as 
an extension of the standard OWA operator [40].  

The values to aggregate [v1,m,v1,M ],...,[vn,m,vn,M ] belong to the pixels in the n 
maps (n number of sources) with same x and y coordinates. We indicate by p the 
common position of the n pixels values to aggregate within the n maps. They are 
weighted by importance degrees i1(p),…, in(p) ∈[0,1] that can vary depending on 
the location of the pixel p in the n maps. These importance degrees are computed 
by taking into account both the trust scores of the sources, that we represent by 
values tk∈[0,1] with k=1,…,n, and the agreements of the sources themselves 
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within a varying neighborhood Cp of the pixels located in p. The agreement is de-
fined by means of either a compatibility measure or a distance measure: 
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in which (x,y) are the coordinates of the pixels within an neighborhood Cp of loca-
tion p, Cpis the number of pixels in Cp, and f can be chosen as either a compati-
bility measure between values vi, and vj [42] or the complement of a normalized 

distance measure [13]. The values in a map are important if they belong to a 

trusted map or, if they are in agreement with the correspondent values in the other 

maps. The parameters α and β control the relative influence of the trust of a map, 
and of the agreement degree. For example, by choosing β=1 and α=0, the influ-
ence of the values in the fusion strategy will be totally dependent on their agree-
ment values. Notice that the agreement degree Agreement(i,Cp) of a source i with 

the other n-1 sources is computed with respect to all the values of the pixels in the 

areas Cp centered in p. If Cp. consists of a single pixel p the agreement is defined 

locally and does not depend on larger areas of the maps. If Cp. covers the whole 

maps then the agreement between the sources is global. This introduces further 

flexibility in the model since it allows considering data variability locally or glob-

ally. The function f determines the choice for a strong or a weak agreement. By 

choosing a compatibility function we require a strong agreement among the values 

since two imprecise values having no overlapping are considered as totally dis-

agreeing. By choosing the complement of a normalized distance we are more tol-

erant of the differences among the values. 

Consensual Fusion to Model Seismic Hazard   

As a first example of application of the consensual fusion strategy we discuss the 
generation of a consensual seismic hazard map based on the fusion of six maps 
produced independently by applying distinct input models. The six hazard maps 
are referred to the same area (Calabria region, Southern Italy) and each one is as-
sociated with a trust score (in this case a ground motion value g, which is a posi-
tive real number). In the classical approach the fused map is generated as the 
weighted average of the maps, where weights are generally assigned by an expert 
[28].  
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In figure 6 we have depicted the six maps of ground motions independently 
computed by the six input models. The grey level represents the difference be-
tween the ground motion values of the first map (high on the left) produced by the 
first model with respect to the others. It can be noticed that the models mostly dis-
agree in their estimation of the ground motion values in the central area of the 
maps. 

The proposed consensual fusion function defined in (1) is applied to generate the 
consensual ground motion map relative to a specified fuzzy majority of the trusted 
models. We applied our approach by modeling two distinct fusion strategies: a risk-
taken fusion defined by the quantifier most (a=0.6, b=0.9, c=1 – See Figure 5) and 
a risk-adverse fusion defined by the quantifier some (a=0.0, b=0.3, c=1).  

We take into account the imprecision of the models in generating their ground 
motion maps by representing the pixel values through fuzzy numbers (gm, g, gM) in 
which g is the ground motion value computed by the model in the current pixel, 
and gm,<g< gM are defined to capture the approximations applied by the models.  
The imprecise values of ground motion to fuse by applying definition (8) are de-
rived as 0-cuts of the fuzzy numbers of ground motion, i.e., 0-cut((gm, g, gM))= 
[gm, gM]. This way we require maximum certainty on the fused result. 

In computing the importance of a value from a source we considered a local 
definition of the agreement among the models according to formula (3): this way 
the agreement of a model with the others is computed independently for each pixel 
of the fused map.  

 

 

Fig. 6 Ground motion maps computed by the six models: the trust score is indicated below 
each map. The grey level represents the difference of the ground motion value with respect 
to the upper left map. 
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(a)          (b) 

Fig. 7 Seismic hazard maps obtained using the proposed consensual fusion model: the grey 
level represents the difference with respect to the map produced with the classic weighted 
average. (a) fusion based on most (a=0.6, b=0.9, c=1); (b) fusion based on  some (a=0.0, 
b=0.3, c=1) 

Figure 7.a and 7.b depict the maps obtained by the difference of the two con-
sensual fusion strategies specified by most and some with respect to the classic 
weighted mean. It can be observed that the most precautionary strategy corre-
sponding with some in figure 7.b produces as expected higher ground motion val-
ues than the weighted mean while the opposite occurs for the most risk-taken 
strategy specified by most depicted in figure 7.a.  

 

Fig. 8 Map of the differences between the ground motion maps obtained by the consensual 
fusion based on average (a=0.0, b=1.0, c=1.0) and the classic weighted mean  

To show the influence of the consensual dynamics on the results we show in 
Figure 8 the map obtained by the difference of the classic weighted mean map and 
the consensual map corresponding with the quantifier average (a=0,b=1,c=1) that 
models an average (arithmetic mean) of all the models. It can be observed that the 
effect of the consensual dynamics is more evident in the central region of the map 
where there is the lowest agreement among the original maps in figure 6. Specifi-
cally, in this area only two out of the six models determine high ground motion 
values, while the other four models agree for lower values. The consensual ground 
motion values in this area are then in accordance with the majority of the models, 
i.e., the ground motion values are lower with respect to those produced by the 
classic approach. 
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(a)                                                                                         (b) 

Fig. 9 The (a) panel shows the isoprobable response spectra with 10% probability of ex-
ceedance in 50 years—5% damping, computed for the test-site, while the (b) panel reports 
the isoprobable spectra with 2% probability of exceedance in 50 years—5% damping, for 
the same site. 

 

 
(a)                                                                                         (b) 

Fig. 10  The left (a) panel shows single iso-probable spectra (10% probability of ex-
ceedance in 50 years—5% damping) computed for the test-site using different fusion 
strategies: classic approach based on mean and median estimates, mean of the highest (at 
least a few, close to OR fusion) and lowest values (almost all, close to AND fusion), and 
consensual mean fusion. The right (b) panel show single isoprobable spectra (5% probabil-
ity of exceedance in 50 years—5% damping) computed for the test-site using mean, median 
and consensual mean fusions. 
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A second experiment based on the application of the proposed consensual fu-
sion was for the estimation of consensual iso-probable response spectra in seismic 
hazard analysis [23]. 

To this purpose, we performed a Probabilistic Seismic Hazard Aalalysis for a 
village placed along the Po river (Northern Italy). The classic analysis followed 
the structure of the logic-tree defined for the computation of the seismic hazard of 
the Italian national territory [15]. Figure 9 shows the 20 isoprobable spectra (5% 
damping) characterized by an exceedance probability in 50 years of 10% and 2%, 
respectively obtained with the classic approach. 

Successively we applied the aggregation of these isoprobable spectra by first 
using the OWA aggregation operator without consensus, with several attitudinal 
vectors, i.e., linguistic quantifiers, that correspond to the classical statistical opera-
tors mean and median, and to the max and min aggregations. 

Besides this experiment we applied the consensual fusion with the same attitu-
dinal vectors, mean and median, by considering the consensus among the iso-
probable spectra. In this respect we considered a local agreement (i.e. an interval 
of periods). The trust weights have been set as the product of the weights on each 
path of the logic tree from the root to the leaves in the classic approach. The fused 
spectra are shown in figure 10. The examples we show highlight some interesting 
aspects especially in the case of the 2475yr RP (see Figure 9(b)). In this situation 
the consensual mean fusion gives sensibly different results with respect to the ones 
obtained with a classical mean estimate. 

5   Conclusions 

In this chapter we analyzed the problems involved in modeling environmental ill-
known phenomena. We discussed how multisource data fusion can be exploited to 
compute environmental indicators of occurrence of such phenomena. To this end 
the OWA operator is useful to define flexible fusion strategies. A generalization of 
the OWA to aggregate imprecise values, that often characterize observations of 
variables, has been introduced, and further its application to define a consensual 
fusion function has been formalized. Finally, two applications of the OWA opera-
tor and of its generalization have been described.   
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Decision Making with Dempster-Shafer 

Theory Using Fuzzy Induced Aggregation 

Operators 

José M. Merigó and Montserrat Casanovas
*
 

Abstract. We develop a new approach for decision making with Dempster-Shafer 
theory of evidence where the available information is uncertain and it can be as-
sessed with fuzzy numbers. With this approach, we are able to represent the prob-
lem without losing relevant information, so the decision maker knows exactly 
which are the different alternatives and their consequences. For doing so, we  
suggest the use of different types of fuzzy induced aggregation operators in the 
problem. Then, we can aggregate the information considering all the different sce-
narios that could happen in the analysis. As a result, we get new types of fuzzy in-
duced aggregation operators such as the belief structure – fuzzy induced ordered 
weighted averaging (BS-FIOWA) and the belief structure – fuzzy induced hybrid 
averaging (BS-FIHA) operator. We study some of their main properties. We  
further generalize this approach by using fuzzy induced generalized aggregation 
operators. We also develop an application of the new approach in a financial deci-
sion making problem about selection of financial strategies. 

1   Introduction 

The Dempster-Shafer (D-S) theory of evidence (Dempster, 1967; Shafer, 1976) 

provides a unifying framework for representing uncertainty because it includes the 

situations of risk and ignorance as special cases. Since its appearance, it has been 

studied in a wide range of situations (Le et al., 2007; Reformat and Yager, 2008; 

Srivastava and Mock, 2002; Yager et al., 1994; Yager and Liu, 2008). 

Usually, when using the D-S theory it is assumed that the available information 

are exact numbers (Engemann et al., 1996; Merigó and Casanovas, 2008; 2009a; 
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Yager, 1992; 2004a). However, this may not be the real situation found in the de-

cision making problem because often, the available information is vague or impre-

cise and it is not possible to analyze it with exact numbers. Then, a better ap-

proach may be the use of fuzzy numbers (FNs) because it considers the best and 

worst possible scenarios and a lot of other ones that could occur. Note that this 

problem has already been studied by Casanovas and Merigó (2007) by using fuzzy 

OWA operators. When using FNs, we will follow the ideas of (Chang and Zadeh, 

1972; Zadeh, 1975; Dubois and Prade, 1980; Kaufmann and Gupta, 1985). Note 

that the OWA operator (Yager, 1988) is an aggregation operator that provides a 

parameterized family of aggregation operators between the maximum and the 

minimum. For further research on the OWA operator, see for example (Beliakov 

et al., 2007; Calvo et al., 2002; Chiclana et al., 2007; Merigó, 2008; Torra and Na-

rukawa, 2007; Wang, 2008; Yager, 1993; 1996; 2003; 2007; 2008; Yager and 

Filev, 1999; Yager and Kacprzyk, 1997; Zarghami et al., 2008). 

Going a step further, the aim of this paper is to suggest the use of different 

types of fuzzy induced aggregation operators for aggregating the information in 

decision making with D-S theory. The reason for using various types of aggrega-

tion operators is that we want to show that the fuzzy decision making problem 

with D-S theory can be modeled in different ways depending on the interests of 

the decision maker. We will use the fuzzy induced ordered weighed averaging 

(FIOWA) operator (Chen and Chen, 2003) and the fuzzy induced hybrid averag-

ing (FIHA) operator because they provide a parameterized family of aggregation 

operators that include the fuzzy maximum, the fuzzy minimum, the fuzzy average 

(FA), the fuzzy weighted average (FWA) and the fuzzy OWA (FOWA), among 

others. Then, we will get new aggregation operators that we will call the belief 

structure - FIOWA (BS-FIOWA) and the belief structure - FIHA (BS-FIHA) op-

erator. We will study some of their main properties and we will develop different 

families of FIOWA and FIHA operators that could be used in the analysis such as 

the step-FIOWA, the olympic-FIOWA, the centered-FIOWA, the S-FIOWA, etc.  

We will further generalize this approach by using generalized aggregation op-

erators such as the generalized OWA (GOWA) and the Quasi-OWA operator (Be-

liakov, 2005; Fodor et al., 1995; Karayiannis, 2000; Yager, 2004b). In this paper 

we will focus on the use of the order inducing variables. Therefore, we will follow 

the induced generalized OWA (IGOWA) and the Quasi-IOWA operator devel-

oped by Merigó and Gil-Lafuente (2009a). By using FNs, we will use the fuzzy 

generalized OWA (FGOWA) (Merigó and Casanovas, 2007), the fuzzy induced 

generalized OWA (FIGOWA) (Merigó and Gil-Lafuente, 2009b), the fuzzy in-

duced generalized hybrid averaging (FIGHA) (Merigó and Casanovas, 2009b) and 

its corresponding quasi-arithmetic versions.   

We also study the applicability of this new approach developing an application 

of this new model in a business decision making problem about selection of finan-

cial strategies. We see that depending on the particular type of aggregation opera-

tor used, the results may lead to different decisions. 

In order to do so, the remainder of the paper is organized as follows. In Section 

2, we briefly describe some basic concepts such as the FNs, the FIOWA and the 

FIHA operator. Section 3 briefly comments the main concepts of the D-S theory. 
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In Section 4 and 5, we present the new approach about using fuzzy induced aggre-

gation operators in decision making with D-S theory. Finally, in Section 6 we de-

velop an application of the new approach in a decision making problem. In this 

case, we consider a problem about selection of financial strategies.  

2   Preliminaries 

In this Section, we briefly review some basic concepts about the FNs, the FIOWA, 

the FIHA, the FIGOWA, the Quasi-FIOWA, the FIGHA and the Quasi-FIGHA 

operators. 

2.1   Fuzzy Numbers 

The FN was introduced by (Chang and Zadeh, 1972; Zadeh, 1975). Since then, it 

has been studied and applied by a lot of authors such as (Dubois and Prade, 1980; 

Kaufmann and Gupta, 1985).  

A FN is a fuzzy subset (Zadeh, 1965) of a universe of discourse that is both 

convex and normal (Kaufmann and Gupta, 1985). Note that the FN may be con-

sidered as a generalization of the interval number (Moore, 1966) although it is not 

strictly the same because the interval numbers may have different meanings.  

In the literature, we find a wide range of FNs (Dubois and Prade, 1980; Kauf-

mann and Gupta, 1985). For example, a trapezoidal FN (TpFN) A of a universe of 

discourse R can be characterized by a trapezoidal membership function ),( aaA =  

such that   

).()(

),()(
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aaaa

aaaa

−−=

−+=

αα

αα
 (1) 

where α ∈ [0, 1] and parameterized by (a1, a2, a3, a4) where a1 ≤ a2 ≤ a3 ≤ a4, are 

real values. Note that if a1 = a2 = a3 = a4, then, the FN is a crisp value and if a2 = 

a3, the FN is represented by a triangular FN (TFN). Note that the TFN can be pa-

rameterized by (a1, a2, a4). 

In the following, we are going to review the FN arithmetic operations as fol-

lows. Let A and B be two TFN, where A = (a1, a2, a3) and B = (b1, b2, b3). Then: 

 
1) A + B = (a1 + b1, a2 + b2, a3 + b3) 

2) A − B = (a1 − b3, a2 − b2, a3 − b1) 

3) A × k = (k × a1, k × a2, k × a3); for k > 0. 

 

Note that other operations could be studied but in this paper we will focus on these 

ones. 
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2.2   The Fuzzy Induced OWA Operator 

The FIOWA (or FN-IOWA) operator was introduced by S.J. Chen and S.M. Chen 

(2003). It is an extension of the OWA operator (Calvo et al., 2002; Yager, 1988; 

1993; 1996; 2007; Yager and Kacprzyk, 1997) that uses uncertain information 

represented by FNs for the situations where it is not possible to use the classical 

numbers. Moreover, it also uses a reordering process different from the values of 

the arguments. In this case, the reordering step is based on order inducing vari-

ables. It can be defined as follows. 

 

Definition 1. Let Ψ be the set of FN. A FIOWA operator of dimension n is a map-

ping FIOWA: Ψn
 → Ψ that has an associated weighting vector W of dimension n 

such that wj ∈ [0, 1] and ∑ ==
n
j jw

1
1 , then:  

FIOWA (〈u1,ã1〉, …, 〈un,ãn〉) = ∑
=

n

j
jjbw

1

 (2) 

where bj is the ãi value of the FIOWA pair 〈ui, ãi〉 having the jth largest ui, ui is the 

order inducing variable and ãi is the argument variable represented in the form of 

a FN.  

Note that from a generalized perspective of the reordering step it is possible to 

distinguish between descending (DFIOWA) and ascending (AFIOWA) orders. 

Note also that this operator provides a parameterized family of aggregation opera-

tors that includes the fuzzy maximum, the fuzzy minimum and the fuzzy average 

(FA), among others. For more information, see (Merigó, 2008). 

When using order inducing variables, it is not necessary to establish a criterion 

for ranking FNs because the reordering process is carried out according to the or-

der inducing variables. However, in the final results, sometimes it is necessary to 

rank FNs. Among the different methods existing in the literature for ranking FNs, 

we recommend the use of the methods commented by Merigó (2008) such as the 

use of the value found in the highest membership level (α = 1) and if it is an inter-

val, the average of the interval. 

2.3   The Fuzzy Induced Hybrid Averaging Operator 

The fuzzy induced hybrid averaging (FIHA) operator is an extension of the HA 

operator (Xu and Da, 2003; Xu, 2006) that uses uncertain information represented 

in the form of FNs and order inducing variables in the reordering of the argu-

ments. It uses in the same formulation the fuzzy weighted average (FWA) and the 

FIOWA operator. Then, with this operator we can represent the subjective prob-

ability and the attitudinal character of a decision maker in the same problem. It 

can be defined as follows.  
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Definition 2. Let Ψ be the set of FN. A FIHA operator of dimension n is a map-

ping FIHA: Ψn
 → Ψ that has an associated weighting vector W of dimension n 

such that wj ∈ [0, 1] and ∑ ==
n
j jw

1
1 , then:  

FIHA (〈u1,ã1〉, …, 〈un,ãn〉) = ∑
=

n

j
jj bw

1

 (3) 

where bj is the âi (âi = nωiãi, i = 1,2,…,n) value of the FIHA pair 〈ui,ãi〉 having the 

jth largest ui, ui is the order inducing variable, ω = (ω1, ω2, …, ωn)
T
 is the weight-

ing vector of the ãi, with ωi ∈ [0, 1] and the sum of the weights is 1, and the ãi are 

FNs.  

From a generalized perspective of the reordering step we can distinguish be-

tween the descending FIHA (DFIHA) and the ascending FIHA (AFIHA) operators.  

The FIHA operator is monotonic and idempotent. It is not bounded by the 

maximum and the minimum because we may find some situations where the 

aggregation gives higher and lower results than the maximum and the minimum, 

respectively.  

Different families of FIHA operators are found by using a different manifesta-

tion of the weighting vector such as the FA, the FWA, the FOWA, the FIOWA, 

the step-FIHA, the olympic-FIHA, the median-FIHA, the window-FIHA, the S-

FIHA, the centered-FIHA, etc. 

2.4   The Fuzzy Induced Generalized OWA Operator 

The fuzzy induced generalized OWA (FIGOWA) operator (Merigó and Gil-

Lafuente, 2009b) is an extension of the GOWA operator that uses uncertain  

information in the aggregation represented in the form of FNs. Thus, it is able to 

include a wide range of particular cases in its formulation. The reason for using 

this operator is that sometimes, the uncertain factors that affect our decisions are 

not clearly known and in order to assess the problem we need to use FNs. This op-

erator also uses a reordering process based on order inducing variables in order to 

assess complex reordering processes. It can be defined as follows.  

 

Definition 3. Let Ψ be the set of FNs. A FIGOWA operator of dimension n is a 

mapping FIGOWA: Ψn
 → Ψ that has an associated weighting vector W of dimen-

sion n such that wj ∈ [0, 1] and ∑ ==
n
j jw1 1, then:  

FIGOWA (〈u1,ã1〉, 〈u2,ã2〉…,〈un,ãn〉) = 

λ
λ

/1

1
⎟⎟⎠
⎞

⎜⎜⎝
⎛ ∑

=

n

j
jjbw  (4) 

where bj is the ãi value of the FIGOWA pair 〈ui,ãi〉 having the jth largest ui, ui is 

the order inducing variable, ãi is the argument variable represented in the form of 

FN and λ is a parameter such that λ ∈ (−∞, ∞). 
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The FIGOWA can be further generalized by using quasi-arithmetic means. The 

result is the Quasi-FIOWA operator. It can be defined as follows. 

 

Definition 4. Let Ψ be the set of FNs. A Quasi-FIOWA operator of dimension n is 

a mapping f: Ψn
 → Ψ that has an associated weighting vector W of dimension n 

such that wj ∈ [0, 1] and ∑ ==
n
j jw1 1, then:  

f(〈u1,ã1〉, 〈u2,ã2〉…,〈un,ãn〉) = ⎟⎟⎠
⎞

⎜⎜⎝
⎛ ∑

=

−
n

j
jj bgwg

1

1
)(  (5) 

where bj is the ãi value of the Quasi-FIOWA pair 〈ui,ãi〉 having the jth largest ui, ui 

is the order inducing variable, ãi is the argument variable represented in the form 

of FN and g(b) is a strictly continuous monotone function.  

As we can see, when g(b) = b
λ
, we get the FIGOWA operator. Note that it is 

also possible to distinguish between descending (Quasi-DFIOWA) and ascending 

(Quasi-AFIOWA) orders.  

Note that different types of FNs could be used in the aggregation of the 

FIGOWA and the Quasi-FIOWA such as TFNs, TpFNs, L-R FNs, interval-valued 

FNs, intuitionistic FNs and more complex structures.  

Moreover, both the FIGOWA and the Quasi-FIOWA includes a wide range of 

particular cases such as the FIOWA operator, the fuzzy induced ordered weighted 

geometric averaging (FIOWGA) operator, the fuzzy induced ordered weighted 

quadratic averaging (FIOWQA) operator and the fuzzy induced ordered weighted 

harmonic averaging (FIOWHA) operator. 

2.5   Fuzzy Induced Generalized Hybrid Averaging Operator 

The FIGHA operator (Merigó and Casanovas, 2009b) is a unified aggregation 

model between the FIGOWA operator and the fuzzy weighted generalized mean 

for situations where we want to deal with more complex reordering processes in 

the aggregation of the FNs. It uses order-inducing variables in the reordering of 

the FNs and it includes the fuzzy generalized hybrid averaging (FGHA) operator 

as a particular case. It can be defined as follows. 

 

Definition 5. Let Ψ  be the set of FNs. A FIGHA operator of dimension n is a 

mapping FIGHA: Ψn → Ψ that has an associated weighting vector W of dimen-

sion n with ∑ ==
n
j jw1 1  and wj ∈ [0, 1], such that: 

FIGHA (〈u1,ã1〉, 〈u2,ã2〉…, 〈un,ãn〉) =  

λ
λ

/1

1
⎟⎟⎠
⎞

⎜⎜⎝
⎛ ∑

=

n

j
jjbw  (6) 

where bj is the âi value (âi = nωiãi, i = 1,2,…,n) of the IOWA pair 〈ui, ãi〉 having 

the jth largest ui, ui is the order inducing variable, ω = (ω1, ω2, …, ωn)
T
 is the 
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weighting vector of the ãi, with ωi ∈ [0, 1] and the sum of the weights is 1, the ãi 

are FNs, and λ is a parameter such that λ ∈ (−∞, ∞). 

The FIGHA can be further generalized by using quasi-arithmetic means, ob-

taining the Quasi-FIHA operator. This operator is defined as follow. 

 

Definition 6. Let Ψ be the set of FN. A Quasi-FIHA operator of dimension n is a 

mapping QFIHA: Ψn
 → Ψ that has an associated weighting vector W of dimen-

sion n such that ∑ ==
n
j jw1 1  and wj ∈ [0, 1], then: 

Quasi-FIHA (〈u1,ã1〉, 〈u2,ã2〉…, 〈un,ãn〉) = ⎟⎟⎠
⎞

⎜⎜⎝
⎛ ∑

=

−
n

j
jj bgwg

1

1
)(  (7) 

where bj is the âi value (âi = nωiãi, i = 1,2,…,n) of the IOWA pair 〈ui, ãi〉 having 

the jth largest ui, ui is the order inducing variable, ω = (ω1, ω2, …, ωn)
T
 is the 

weighting vector of the ãi, with ωi ∈ [0, 1] and the sum of the weights is 1, the ãi 

are FNs, and g(b) is a strictly continuous monotonic function.  

Note that in this case we can also use a wide range of FNs in the aggregation 

process and they include a wide range of particular cases such as the FIHA, the 

fuzzy induced hybrid geometric averaging (FIHGA), the fuzzy induced hybrid 

quadratic averaging (FIHQA) and the fuzzy induced hybrid harmonic averaging 

(FIHHA) operator. 

3   The Dempster-Shafer Theory of Evidence 

The D-S theory provides a unifying framework for representing uncertainty as it 

can include the situations of risk and ignorance as special cases. Note that the case 

of certainty is also included as it can be seen as a particular case of risk and 

ignorance. 

 

Definition 7. A D-S belief structure defined on a space X consists of a collection 

of n nonnull subsets of X, Bj for j = 1,…,n, called focal elements and a mapping m, 

called the basic probability assignment, defined as, m: 2
X
 → [0, 1] such that:  

 

(1) m(Bj) ∈ [0, 1]. 

(2) )(
1∑ =

n
j jBm = 1.                                               (8) 

(3) m(A) = 0, ∀ A ≠ Bj.. 

 

As said before, the cases of risk and ignorance are included as special cases of be-

lief structure in the D-S framework. For the case of risk, a belief structure is called 

Bayesian belief structure if it consists of n focal elements such that Bj = {xj}, 

where each focal element is a singleton. Then, we can see that we are in a situation 

of decision making under risk environment as m(Bj) = Pj = Prob {xj}.  
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The case of ignorance is found when the belief structure consists in only one 

focal element B, where m(B) essentially is the decision making under ignorance 

environment as this focal element comprises all the states of nature. Thus, 

m(B) = 1. Other special cases of belief structures such as the consonant belief 

structure or the simple support function are studied in (Shafer, 1976). Note that 

two important evidential functions associated with these belief structures are the 

measures of plausibility and belief (Shafer, 1976). 

Two important evidential functions associated with these belief structures are 

the measures of plausibility and belief. In the following, we provide a definition of 

these two measures as developed by Shafer
3
. 

 

Definition 8. The plausibility measure Pl is defined as, Pl: 2
X
 → [0, 1] such that: 

Pl(A) = )(∑
∅≠jBA

jBm
∩

 
(9) 

Definition 9. The belief measure Bel is defined as Bel: 2
X
 → [0, 1] such that:  

Bel(A) = ∑
⊆ AB

j

j

Bm )(  
(10) 

Bel(A) represents the exact support to A and Pl(A) represents the possible support 

to A. With these two measures we can form the interval of support to A as 

[Bel(A),Pl(A)]. This interval can be seen as the lower and upper bounds of the 

probability to which A is supported such that Bel(A) ≤ Prob(A) ≤ Pl(A). From this 

we see that Pl(A) ≥ Bel(A) for all A. Another interesting feature about these two 

measures is that they are connected by Bel(A) = 1 – Pl(Ā) or Pl(A) = 1 – Bel(Ā), 

where Ā is the complement of A. 

4   Fuzzy Induced Aggregation Operators in D-S Theory 

In this Section, we describe the process to follow when using fuzzy induced  

aggregation operators in decision making with D-S theory. We divide it in three 

subsections. In the first one, we comment the decision process. In the second one, 

we analyze the aggregation used in the problem. And in the third one, we study  

different types of fuzzy induced aggregation operators that could be used in the  

aggregation. 

4.1   Decision Making Approach 

A new method for decision making with D-S theory is possible by using FN aggre-

gation operators in the problem. This problem has been studied in (Merigó and 

Casanovas, 2007). Going a step further, we see that it is possible to use fuzzy in-

duced aggregation operators such as the FIOWA and the FIHA operator. Note it is 

also possible to consider other cases such as the use of different types of fuzzy in-

duced generalized means and fuzzy induced quasi-arithmetic means. The motivation 
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for using FNs appears because sometimes, the available information is not clear and 

it is necessary to assess it with another approach such as the use of FNs. Although 

the information is uncertain and it is difficult to take decisions with it, at least we can 

represent the best and worst possible scenarios and the possibility that the internal 

values of the fuzzy interval will occur. The decision process can be summarized as 

follows.  

Assume we have a decision problem in which we have a collection of alterna-

tives {A1, …, Aq} with states of nature {S1, …, Sn}. ãih is the uncertain payoff, 

given in the form of FNs, to the decision maker if he selects alternative Ai and the 

state of nature is Sh. The knowledge of the state of nature is captured in terms of a 

belief structure m with focal elements B1, …, Br and associated with each of these 

focal elements is a weight m(Bk). The objective of the problem is to select the al-

ternative which gives the best result to the decision maker. In order to do so, we 

should follow the following steps:  

 

Step 1: Calculate the uncertain payoff matrix. 

Step 2: Calculate the belief function m about the states of nature.  

Step 3: Calculate the attitudinal character (or degree of orness) of the decision 

maker α(W) (Yager, 1988).  

Step 4: Calculate the collection of weights, w, to be used in the FIOWA aggre-

gation for each different cardinality of focal elements. Note that it is possible to 

use different methods depending on the interests of the decision maker (Merigó, 

2008; Merigó and Casanovas, 2009a; Merigó and Gil-Lafuente, 2009a; Xu, 2005; 

Yager, 1988; 1993; 1996; 2003; 2007).  

Step 5: Determine the uncertain payoff collection, Mik, if we select alternative 

Ai and the focal element Bk occurs, for all the values of i and k. Hence Mik = {aih | 

Sh ∈ Bk}.  

Step 6: Calculate the fuzzy induced aggregated payoff, Vik = FIOWA (Mik), us-

ing Eq. (2), for all the values of i and k.  

Step 7: For each alternative, calculate the generalized expected value, Ci, 

where:  

 

∑=
=

r

r
kiki BmVC

1

)(                                                  (11) 

 

Step 8: Select the alternative with the largest Ci as the optimal. 

From a generalized perspective of the reordering step, it is possible to distin-

guish between ascending and descending orders in the FIOWA aggregation.  

The procedure to follow if we use the AIOWA operator in the aggregation step 

is the same than the procedure used for the FIOWA or DFIOWA operator with the 

following differences. 

In Step 3, when calculating the inducing variables we should consider that in 

these cases, the lowest inducing variable is the first result in the reordering of the 

arguments.  
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In Step 4, when calculating the collection of weights, we should consider that 

the reordering will now be different so that we might associate each weight cor-

rectly with its corresponding position. 

In Step 6, when calculating the aggregated payoff, we should use Vik = 

AIOWA(Mik), for all the values of i and k. 

4.2   Using FIOWA Operators in Belief Structures 

Analyzing the aggregation in Steps 6 and 7 of the previous subsection, it is possi-

ble to formulate in one equation the whole aggregation process. We will call this 

process the belief structure – FIOWA (BS-FIOWA) aggregation. It can be defined 

as follows.  

 

Definition 10. A BS-FIOWA operator is defined by  

∑ ∑=
= =

r

k

q

j
jjki

k

k
kk

bwBmC
1 1

)(  (12) 

where wj
k
 is the weighting vector of the kth focal element such that 1

1
=∑ =

n
j jk

w  

and wj
k
 ∈ [0, 1], bj

k
 is the jkth largest of the ãi

k
 and the ãi

k
 are FNs, and m(Bk) is 

the basic probability assignment.  

Note that qk refers to the cardinality of each focal element and r is the total 

number of focal elements.  

The BS-FIOWA operator is monotonic, commutative, bounded and idempotent. 

We can prove these properties with the following theorems. 

 

Theorem 1 (Commutativity). Assume f is the BS-FIOWA operator, then 

 

)~,,...,~,()~,,...,~,(
***

1
*
111 1111

〉〈〉〈=〉〈〉〈
rrrr qqqq auaufauauf                   (13) 

 

where )~,,...,~,(
***

1
*
1 11

〉〈〉〈
rr qq auau  is any permutation of )~,,...,~,(

11 11 〉〈〉〈
rr qq auau  

for each focal element k. 

 

Theorem 2 (Monotonicity). Assume f is the BS-FIOWA operator, if 
*~~
kk ii aa ≥  for 

all i, then, 

 

)~,,...,~,()~,,...,~,(
***

1
*
111 1111

〉〈〉〈≥〉〈〉〈
rrrr qqqq auaufauauf                 (14) 

 

Theorem 3 (Boundedness). Assume f is the BS-FIOWA operator, then 

 

}~max{)~,,...,~,(}~min{
11 11 iqqi aauaufa

rr
≤〉〈〉〈≤                         (15) 
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Theorem 4 (Idempotency). Assume f is the BS-FIOWA operator, if aa
ki

~~ =  for 

all i ∈ N, then 

aauauf
rr qq

~)~,,...,~,(
11 11 =〉〈〉〈  (16) 

From a generalized perspective of the reordering step, it is possible to distinguish 

between descending and ascending orders by using wj = w*n−j+1, where wj is the jth 

weight of the DFIOWA and w*n−j+1 the jth weight of the AFIOWA operator. 

Then, we obtain the BS-DFIOWA and the BS-AFIOWA operators. 

4.3   Families of BS-FIOWA Operators 

By choosing a different manifestation in the weighting vector of the FIOWA op-

erator, we are able to develop different families of FIOWA and BS-FIOWA op-

erators. As it can be seen in Definition 10, each focal element uses a different 

weighting vector in the aggregation step with the FIOWA operator. Therefore, the 

analysis needs to be done individually.  

 

Remark 1. For example, it is possible to obtain the fuzzy maximum, the fuzzy 

minimum, the FA, the FWA and the FOWA operator.  

 

• The fuzzy maximum is obtained if wp = 1 and wj = 0, for all j ≠ p, and 

up = Max{ãi}.  

• The fuzzy minimum is obtained if wp = 1 and wj = 0, for all j ≠ p, and 

up = Min{ãi}.  

• The FA is found when wj = 1/n, for all ãi.  

• The FWA is obtained if ui > ui+1, for all i. 

• The FOWA operator is obtained if the ordered position of ui is the same 

than the ordered position of bj such that bj is the jth largest of ãi.  

  

Other families of FIOWA operators could be used in the BS-FIOWA operator 

such as the step-FIOWA, the S-FIOWA, the olympic-FIOWA, the window-

FIOWA and the centered-FIOWA operator, among others. Note that we find in the 

literature a wide range of methods for determining OWA weights that could be 

applied for the FIOWA. But in this subsection, we simply give a general overview 

commenting some basic cases that are applicable in the FIOWA operator. For 

more information on these families, see (Merigó, 2008). 

 

Remark 2. The step-FIOWA operator is found when wk = 1 and wj = 0, for all j ≠ 

k. Note that the median-FIOWA can be seen as a particular case of this situation 

when the number of arguments is odd. 

 

Remark 3. The olympic-FIOWA operator is found if w1 = wn = 0, and for all oth-

ers wj = 1/(n − 2). Note that the window-FIOWA operator can be seen as a gener-

alization of this case. 
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Remark 4. A further interesting family is the S-FIOWA operator. In this case, we 

can distinguish between three types: the “orlike”, the “andlike”, and the “general-

ized” S-FIOWA operator. The generalized S-FIOWA operator is obtained when 

w1 = (1/n)(1 − (α + β)) + α, wn = (1/n)(1 − (α + β)) + β, and wj = (1/n)(1 − (α + 

β)) for all j = 2 to n − 1 where α, β ∈ [0, 1] and α + β ≤ 1. Note that if α = 0, we 

get the andlike S-FIOWA and if β = 0, the orlike S-FIOWA. Also note that if α + 

β = 1, we get the fuzzy induced Hurwicz criteria. 

 

Remark 5. The centered-FIOWA operator is found if the aggregation is symmet-

ric, strongly decaying and inclusive. It is symmetric if wj = wj+n−1. It is strongly 

decaying when i < j ≤ (n + 1)/2, then wi < wj and when i > j ≥ (n + 1)/2 then wi < 

wj. It is inclusive if wj > 0. Note that it is possible to consider different particular 

situations of this operator by softening the second condition with wi ≤ wj instead of 

wi < wj and by removing the third condition. 

 

Remark 6. Finally, if we assume that all the focal elements use the same weight-

ing vector, then, we can refer to these families as the BS-fuzzy maximum, the  

BS-fuzzy minimum, the BS-FA, the BS-FWA, the BS-S-FIOWA, the BS-

olympic-FIOWA, the BS-window-FIOWA, the BS-centered-FIOWA, etc. 

5   Fuzzy Induced Hybrid Averaging Operators in D-S Theory 

In some situations, the decision maker could prefer to use another type of fuzzy 

aggregation operator such as the FIHA operator. The main advantage of this op-

erator is that it uses the characteristics of the FWA and the FIOWA in the same 

aggregation. Then, if we introduce this operator in decision making with D-S the-

ory, we are able to develop a unifying framework that includes in the same formu-

lation probabilities, FWAs and FIOWAs.  

In order to use this type of aggregation in D-S framework we should consider 

that now in Step 3, when calculating the collection of weights to be used in the ag-

gregation, we are using two weighting vectors because we are mixing in the same 

problem the FWA and the FIOWA.  

In Step 5, when calculating the fuzzy aggregated payoff, we should use the 

FIHA operator instead of the FIOWA operator by using Eq. (3). 

In this case, it is also possible to formulate in one equation the whole aggrega-

tion process. We will call it the BS-FIHA operator.  

 

Definition 11. A BS-FIHA operator is defined by 

∑ ∑=
= =

r

k

q

j
jjki

k

k
kk

bwBmC
1 1

)(                                           (17) 

where wj
k
 is the weighting vector of the kth focal element such that 1

1
=∑ =

n
j jk

w  

and wj
k
 ∈ [0, 1], bj

k
 is the âi

k
 (âi

k
 = nωiãi

k
, i = 1,2,…,n) value of the BS-FIHA pair 
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〈ui
k
,ãi

k
〉 having the jkth largest ui

k
, ui

k
 is the order inducing variable, ω = (ω1, ω2, 

…, ωn)
T
 is the weighting vector of the ãi

k
, with ωi ∈ [0, 1] and the sum of the 

weights is 1, and the ãi
k
 are FNs, and m(Bk) is the basic probability assignment.  

As we can see, the focal weights are aggregating the results obtained by using 

the FIHA operator. Note that if ωi = 1/n for all i, then, Eq. (17) is transformed in 

Eq. (12). 

In this case, we could also study different properties and particular cases of the 

BS-FIHA operator, such as the distinction between descending (BS-DFIHA) and 

ascending (BS-AFIHA) orders. 

When aggregating the collection of fuzzy payoffs of each focal element, it is 

also possible to consider a wide range of families of FIHA operators. For example, 

we could mention the fuzzy hybrid maximum, the fuzzy hybrid minimum, the FA, 

the FWA, the FOWA and the FIOWA operator. These operators are obtained in a 

similar way as explained in subsection 4.3 excepting for the FWA and the 

FIOWA. Note that the FWA is found when wj = 1/n, for all j, and the FIOWA op-

erator when ωi = 1/n, for all i, respectively. 

Other families of FIHA operators that could be used are the step-FIHA opera-

tor, the window-FIHA, the olympic-FIHA, the S-FIHA, the median-FIHA, etc. 

Note that these families follow a similar methodology as it has been explained for 

the FIOWA operator.  

Finally, if we use the same family of FIHA operator for all the focal elements, 

then, we can refer to the aggregation as the BS-fuzzy hybrid maximum, the BS-

fuzzy hybrid minimum, the Hurwicz BS-fuzzy hybrid criteria, the BS-step-FIHA, 

the BS-olympic-FIHA, the BS-S-FIHA, the BS-centered-FIHA, etc. 

6   Fuzzy Induced Generalized Aggregation Operators in D-S 

Theory of Evidence 

A more general formulation of the previous methods can be developed by using 

generalized aggregation operators. In this case, this would mean that we use the 

FIGOWA, the Quasi-FIOWA, the FIHA and the Quasi-FIHA operator. If we in-

troduce these fuzzy induced generalized aggregation operators in the decision 

making process with Dempster-Shafer belief structure, we have to make the fol-

lowing changes to the previous procedures explained in Section 4 and 5. 

In Step 3, when calculating the collection of weights to be used in the aggrega-

tion, we have to adapt the problem of calculating the OWA weights to the particu-

lar type of aggregation operator that we are using.  

In Step 5, when calculating the fuzzy aggregated payoff, we should use the 

FIGOWA, th Quasi-FIOWA, the FIGHA and the Quasi-FIHA operator by using 

Eq. (4), Eq. (5), Eq. (6) and Eq (7), respectively. 

In this case, it is also possible to formulate in one equation the whole aggrega-

tion process. We will call it the BS-FIGOWA, the BS-Quasi-FIOWA, the BS-

FIGHA and the BS-Quasi-FIHA operator.  
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Definition 12. A BS-FIGOWA operator is defined by  

 

∑ ⎟⎟⎠
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                                     (18) 

 

where wj
k
 is the weighting vector of the kth focal element such that 1

1
=∑ =

n
j jk

w  

and wj
k
 ∈ [0, 1], bj

k
 is the jkth largest of the ãi

k
 and the ãi

k
 are FNs, and m(Bk) is 

the basic probability assignment and λ is a parameter such that λ ∈ (−∞, ∞). 

 

Definition 13. A BS-FIGHA operator is defined by 
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where wj
k
 is the weighting vector of the kth focal element such that 1

1
=∑ =

n
j jk

w  

and wj
k
 ∈ [0, 1], bj

k
 is the âi

k
 (âi

k
 = nωiãi

k
, i = 1,2,…,n) value of the BS-FIGHA 

pair 〈ui
k
,ãi

k
〉 having the jkth largest ui

k
, ui

k
 is the order inducing variable, ω = (ω1, 

ω2, …, ωn)
T
 is the weighting vector of the ãi

k
, with ωi ∈ [0, 1] and the sum of the 

weights is 1, and the ãi
k
 are FNs, and m(Bk) is the basic probability assignment 

and λ is a parameter such that λ ∈ (−∞, ∞). 

Note that the BS-Quasi-FIOWA and the BS-Quasi-FIHA operator have the 

same definition with the only difference that now we replace the parameter λ by a 

strictly continuous monotonic function g(b). 

In this case, we could study a wide range of particular cases that are formed as 

particular cases of the FIGOWA, the Quasi-FIOWA, the FIGHA and the Quasi-

FIHA operators. Specially, it is worth noting the BS-FIOWGA, the BS-FIOWQA, 

the BS-FIOWHA, the BS-FIHGA, the BS-FIHQA and the BS-FIHHA operators. 

7   Application in Financial Decision Making 

In the following, we are going to develop an application of the new approach in a 

decision making problem. We will analyze a problem about selection of financial 

strategies where an enterprise is looking for its optimal financial strategy the next 

year. Note that other decision making applications could be developed such as the 

selection of financial products, the selection of human resources, etc. 

We will develop the analysis considering a wide range of particular cases of 

fuzzy induced aggregation operators such as the FA, the FWA, the FOWA, the 

FIOWA and the FIHA operator.  
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Assume an enterprise is planning its financial strategy for the next year and 

they consider 5 possible financial strategies to follow. 

 

• A1 = Invest in the Asian market. 

• A2 = Invest in the South American market. 

• A3 = Invest in the African market. 

• A4 = Invest in all the three continents. 

• A5 = Do not develop any investment. 

 

In order to evaluate these financial strategies, the group of experts considers that 

the key factor is the economic situation of the company for the next year. After 

careful analysis, the experts have considered five possible situations that could 

happen in the future: S1 = Very bad, S2 = Bad, S3 = Regular, S4 = Good, S5 = Very 

good. 

Depending on the uncertain situations that could happen in the future, the ex-

perts establish the payoff matrix. As the future states of nature are very imprecise, 

the experts cannot determine exact numbers in the payoff matrix. Instead, they use 

FNs to calculate the future benefits of the enterprise depending on the state of na-

ture that happens in the future and the financial strategy selected. The results are 

shown in Table 1. 

Table 1 Fuzzy payoff matrix 

 S1 S2 S3 S4 S5 

A1 (50,60,70) (30,40,50) (30,40,50) (60,70,80) (40,50,60) 

A2 (10,20,30) (20,30,40) (50,60,70) (50,60,70) (80,90,100) 

A3 (30,40,50) (50,60,70) (40,50,60) (40,50,60) (40,50,60) 

A4 (60,70,80) (40,50,60) (30,40,50) (30,40,50) (30,40,50) 

 

 

After careful analysis of the information, the experts have obtained some prob-

abilistic information about which state of nature will happen in the future. This 

information is represented by the following belief structure about the states of 

nature. 

 

Focal element 

B1 = {S1, S2, S3} = 0.3 

B2 = {S3, S4, S5} = 0.3 

B3 = {S2, S3, S4, S5} = 0.4 

 

The attitudinal character of the enterprise is very complex because it involves the 

opinion of different members of the board of directors. Therefore, the experts use 

order inducing variables for analyzing the attitudinal character of the enterprise. 

The results are shown in Table 2. 
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Table 2 Inducing variables 

 S1 S2 S3 S4 S5 

A1 7 6 4 9 2 

A2 1 5 7 9 3 

A3 4 3 8 6 5 

A4 2 5 6 7 8 

 

The experts establish the following weighting vectors for both the FWA and the 

FIOWA. 

Weighting vector 

W = (0.3, 0.3, 0.4) 

W = (0.2, 0.2, 0.3, 0.3) 

W = (0.1, 0.2, 0.2, 0.2, 0.3) 

With this information, we can obtain the fuzzy aggregated payoffs. The results 

are shown in Table 3. 

Table 3 Fuzzy aggregated results 

 FA FWA FOWA FIOWA FIHA 

V11 (36.6,46.6,56.6) (36,46,56) (36,46,56) (36,46,56) (28.5,37,45.5) 

V12 (43.3,53.3,63.3) (43,53,63) (42,52,62) (43,53,63) (51,63,75) 

V13 (40,50,60) (42,52,62) (38,48,58) (39,49,59) (45,56.5,68) 

V21 (26.6,36.6,46.6) (29,39,49) (25,35,45) (25,35,45) (23,31,39) 

V22 (60,70,80) (62,72,82) (59,69,79) (62,72,82) (78,90,102) 

V23 (50,60,70) (53,63,73) (47,57,67) (50,60,70) (62,73.5,85) 

V31 (40,50,60) (40,50,60) (39,49,59) (41,51,61) (36.5,45,53.5) 

V32 (40,50,60) (40,50,60) (40,50,60) (40,50,60) (48,60,72) 

V33 (42.5,52.5,62.5) (42,52,62) (42,52,62) (43,53,63) (49,60.5,72) 

V41 (43.3,53.3,63.3) (42,52,62) (42,52,62) (45,55,65) (33,41,49) 

V42 (30,40,50) (30,40,50) (30,40,50) (30,40,50) (34.5,46,57.5) 

V43 (32.5,42.5,52.5) (32,42,52) (32,42,52) (33,43,53) (36,47,58) 

 

 

Once we have the aggregated results, we have to calculate the fuzzy general-

ized expected value. The results are shown in Table 4. 

Table 4 Fuzzy generalized expected value 

 FA FWA FOWA FIOWA FIHA 

A1 (40,50,60) (40.5,50.5,60.5) (38.6,48.6,58.6) (39.3,49.3,59.3) (41.8,52.6,63.3) 

A2 (46,56,66) (48.5,58.5,68.5) (44,54,64) (46.1,56.1,66.1) (55.1,65.7,76.3) 

A3 (41,51,61) (40.8,50.8,60.8) (40.5,50.5,60.5) (41.5,51.5,61.5) (44.9,55.7,66.4) 

A4 (35,45,55) (34.4,44.4,54.4) (34.4,44.4,54.4) (35.7,45.7,55.7) (34.6,44.9,55.1) 
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As we can see, depending on the fuzzy aggregation operator used, the results 

and decisions may be different. Note that in this case, our optimal choice is the 

same for all the aggregation operators but in other situations we may find different 

decisions between each aggregation operator.  

A further interesting issue is to establish an ordering of the financial strategies. 

Note that this is very useful when the decision maker wants to consider more than 

one alternative. The results are shown in Table 5. 

Table 5 Ordering of the financial strategies 

 Ordering 

FA A2⎬A3⎬A1⎬A4 

FWA A2⎬A3⎬A1⎬A4 

FOWA A2⎬A3⎬A1⎬A4 

FIOWA A2⎬A3⎬A1⎬A4 

FIHA A2⎬A3⎬A1⎬A4 

 

 

As we can see, depending on the aggregation operator used, the ordering of the 

financial strategies may be different. Note that in this example the results are clear 

being A2 the optimal choice. 

8   Conclusions 

We have studied the D-S theory of evidence in decision making with uncertain in-

formation represented in the form of FNs. With this approach, we have been able 

to assess the information in a more complete way because in this model we con-

sider the different scenarios that could happen in the problem. For doing so, we 

have used different types of fuzzy induced aggregation operators in the decision 

process such as the FIOWA and the FIHA operators. Then, we have obtained new 

aggregation operators: the BS-FIOWA and the BS-FIHA operator. We have stud-

ied some of their main properties and different particular cases.  

We have further generalized this approach by using generalized aggregation 

operators that use generalized and quasi-arithmetic means. We have used the 

FIGOWA, the Quasi-FIOWA, the FIGHA and the Quasi-FIHA operators obtain-

ing the BS-FIGOWA, the BS-Quasi-FIOWA, the BS-FIGHA and the BS-Quasi-

FIHA operators, respectively. 

We have also developed an application of the new approach in a business deci-

sion making problem about selection of financial strategies. We have seen the use-

fulness of this approach about using probabilities, FWAs and FIOWAs in the 

same problem. We have also seen that depending on the fuzzy induced aggrega-

tion operator used the results may lead to different decisions. 

In our future research, we expect to develop further extensions to this approach 

by adding new characteristics in the problem such as the use of more complete ag-

gregation operators such as the ones explained by Merigó (2008) and applying it 

to other decision making problems. 
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one, by using two-dimensional OWA operators. The experimental results show that,

in this case, best results are obtained with ME-OWA operators. In the second part

of the work, we describe a reduction algorithm that replaces the image by several

eigen fuzzy sets associated with it. We obtain these eigen fuzzy sets by means of

an equation that relates the OWA operators we use and the relation (image) we

consider. Finally, we present a reconstruction method based on an algorithm which

minimizes a cost function, with this cost function built by means of two-dimensional

OWA operators.

1 Introduction

The goal of algorithms of compression in image processing is to reduce the size of

the considered images with a loss of information as small as possible (see [13]).

In the literature, there exist (see [16, 17, 18]) different techniques to compress and

reconstruct images. In [3, 4, 9, 12], it is proved that Fuzzy Sets Theory provides a

good tool for image processing. Besides, OWA operators were introduced by Yager

in 1988 as an aggregation technique (see [23, 24]). Moreover, in 1983 Atanassov

presented a class of operators that associate with each interval a point inside it (see

[2]). We will see that under appropriate conditions, we can build two-dimensional

OWA operators from Atanassov’s operators (see [6]). Such two-dimensional OWA

operators should play, as claimed out in [7], a key role in order to build up families of

OWA operators that allow an operational and consistent reckoning [8, 1] of arbitrary

number of information units, a problem indeed related to the structural issue in

aggregation recently stressed in [14].

In this chapter we present two methods for image compression. They have in

common the following: They use two-dimensional OWA operators (constructed from

Atanassov’s operators) and interval-valued fuzzy sets (IVFSs) (see [5, 11, 19]). Nev-

ertheless, there are big differences between both methods, as, for instance:

A) In the first algorithm we go from an image of dimension N ×M to another n

times smaller.

B) In the second algorithm, which is a generalization of the algorithm proposed by

Nobuhara et al. in [17], we go from an image to a set of eigen fuzzy sets associated

with it.

To know if an image compression method is good, we must reconstruct the image

and compare it to the original one. In this chapter we propose two methods of re-

construction. The first one consists of surrounding each pixel with a set of pixels

of the same intensity; the second method is a generalization of the one in [16, 17],

and it is characterized by the use of two-dimensional OWA operators and of the

gradient algorithm to minimize an appropriate cost function. We will see that, due

to the nature of our compressions, the method proposed in item A) provides better

reconstructions than those obtained by means of B).

We have organized this work in the following way: In Section 2 we start

with some preliminary definitions which are necessary for this chapter. Next, in
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Section 3, we show the relation between OWA and Atanassov’s operators. In

Section 4 we present our first method of compression, which is based on IVFS.

In Section 5 we consider a second algorithm of compression, based on eigen fuzzy

sets. We compare results by reconstructing the images, and we conclude with a final

comments section.

2 Preliminary Definitions

Let X = {0,1, . . . ,N − 1} and Y = {0,1, . . . ,M − 1} be two finite, non empty ref-

erential sets . We will denote by FS(X) the set of all fuzzy sets defined over the

referential X .

Definition 1. A fuzzy relation R over the referential X ×Y is a fuzzy set given by

R = {(x,y),µR(x,y) = R(x,y))|(x,y) ∈ X ×Y},

where FR(X ×Y ) denotes the set of all fuzzy relations defined on X ×Y .

For us, an image Q of N ×M pixels is going to be a fuzzy relation R of N ×M

elements. Each element of the relation has as membership value the normal-

ized intensity of the corresponding pixel. We normalize by dividing the value of

the intensity of each pixel by L − 1 (with L the number of gray levels starting

from 0).

We will denote by L([0,1]) the set of all closed subintervals of the unit interval

[0,1], that is,

L([0,1]) = {x = [x,x]|(x,x) ∈ [0,1]2 and x ≤ x}. (1)

L([0,1]) is a partially ordered set with respect to the order relationship ≤L defined

in the following way: given x,y ∈ L([0,1])

x ≤L y if and only if x ≤ y and x ≤ y. (2)

With this order relationship, (L([0,1]),≤L) is a complete lattice (see [5, 10]), where

the smallest element is 0L = [0,0] and the largest is 1L = [1,1].

Definition 2. An interval-valued fuzzy set (IVFS) A on the universe U �= /0 is a

mapping A : U → L([0,1]).

For us A(u) = [A(u),A(u)] ∈ L([0,1]) will be the membership degree of u ∈U , with

A(u), A(u) ∈ [0,1] denoting the lower bound and the upper bound respectively of

the membership associated to u.
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In 1983, Atanassov proposed the following operator:

Definition 3. Let α ∈ [0,1]. The operator Kα : L([0,1]) → [0,1] is defined as a con-

vex combination of the bounds of its argument by

Kα (x) = x + α(x− x)

for all x ∈ L([0,1]).

Clearly, the following properties hold:

1. K0(x) = x for all x ∈ L([0,1]),
2. K1(x) = x for all x ∈ L([0,1]),
3. Kα(x) = Kα ([K0(x),K1(x)]) = K0(x)+ α(K1(x)−K0(x)) for all x ∈ L([0,1]).

Observe that, if we denote by K the system of operators (Kα)α∈[0,1], then K can be

regarded as an operator on [0,1]×L([0,1]). In [5, 6] a generalization of this operator

is proposed.

3 Kα and OWA Operators

3.1 Relation between Atanassov’s Operators and OWA Operators

Let us remind here that Yager ([21]) defined OWA operators in the following way.

Definition 4. A mapping F : [0,1]n → [0,1] is called an OWA operator of dimension

n if there exists a weighting vector W , W = (w1,w2, . . . ,wn) ∈ [0,1]n with ∑i wi = 1

and such that

F(a1,a2, . . . ,an) =
n

∑
j=1

w jb j

with b j the j-th largest of the ai.

If we reduce ourselves to consider two-dimensional OWA operators using as

weighting vector W = (α,1−α), we can think of applying these operators to the

bounds of an interval. In this case, the numerical result of the action of the OWA

operator over the bounds of an interval and the numerical result of the Kα operator

acting over that interval are the same. Nevertheless, these two operators are very

different conceptually. Whereas Kα operators act over intervals defined in L([0,1]),
the domain of two-dimensional OWA operators is [0,1]× [0,1]. For this reason, to

relate both concepts, OWA operators of dimension two require a reordering opera-

tion, ensuring that the two points they are acting over are actually the bounds of an

interval in L([0,1]). This is given by the following theorem.

We define (see [6]) a new operator Kα by composing the Kα operator with the

map

i : [0,1]2 → L([0,1])
(x,y) → [min(x,y),max(x,y)]

(3)
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Theorem 1. 1. Let α ∈ [0,1] and Kα = Kα ◦ i where Kα is the operator given in

Definition 3. Then, if F is the OWA operator (of dimension 2) defined by the

weighting vector W = (α,1−α), we have that

Kα(x,y) = F(x,y) for all x,y ∈ [0,1].
2. Let F be an OWA operator (of dimension 2) with weighting vector W = (w1,w2).

Then for any (x,y) ∈ [0,1]2 we have that

F(x,y) = Kα(x,y), with α = w1.

From now on in this chapter, we will take: Kα = Kα ◦ i.

3.2 Calculation of the Coefficient α by Means of Families of

OWA Operators

Now, we study how to calculate the α coefficient using different families of OWA

operators, ME-OWA and BADD-OWA operators.

First of all, we recall the definition of orness of an OWA operator ([23]).

Definition 5. Let F be an OWA operator and W its weighting vector. The orness

measure is defined as

orness(F) =
1

(n−1)

n

∑
i=1

(n− i)wi.

Proposition 1. orness(Kα) = α

Definition 6. F is called a ME-OWA operator if F is an OWA operator such that

given a desired value of orness β , it maximizes the entropy. In particular we solve

the following problem:

Max −∑n
i=1 wilnwi

subject to β = 1
(n−1) ∑n

i=1(n− i)wi

where ∑n
i=1 wi = 1, wi ∈ [0,1].

Proposition 2. The operator Kα is a ME-OWA for all α ∈ [0,1], with

orness(Kα) = α .

Definition 7. F is called a BADD-OWA operator if F is an OWA operator where

wi =
b

β
i

∑n
j=1 b

β
j

with β ≥ 0 and being bi as in Definition 4.
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Proposition 3. Let β ≥ 0. If we take

α =
(K1(x,y))

β

(K0(x,y))β +(K1(x,y))β

with x,y ∈ [0,1], then Kα is a BADD-OWA operator.

4 First Algorithm for Compression and Reconstruction

The algorithm that we propose consists of two steps:

1. Associate with each image of size N ×M an interval-valued fuzzy set of N
n
× M

n

elements, with n = 2,3, · · · , n ≤ N and n ≤ M in case N and M are multiples of

n. If this is not the case, we will eliminate as many rows and/or columns as it is

necessary to have that n exactly divides N and M.

2. Build an image of dimension N
n
× M

n
such that the intensity of each pixel is ob-

tained by applying the two-dimensional OWA operator we are considering to the

interval that represents the membership of that pixel to the IVFS we have built

in the previous step, obviously multiplied by L− 1 (with L the number of gray

levels in the image).

In the following subsections we detail in a very precise way this compression al-

gorithm, as well as a reconstruction algorithm and the corresponding experimental

results. All along the paper we are going to use as test images : Lena and Camera

(see Figure 1).

Fig. 1 Original Lena and Camera images
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4.1 Specification of the First Algorithm of Compression

We consider an image (relation) Q of dimension N ×M. The intensity or gray level

of the pixel (or the membership of each element of the relation) located in (i, j) is

denoted by qi j, with 0 ≤ qi j ≤ 1 and i = 1, . . . ,N and j = 1, . . . ,M.

1. Divide the image Q in blocks of size n× n. If M or N are not multiple of n, we

delete the minimum number of rows/columns in the boundary of the image until

the new size of the image satisfies the property.

2. Associate each block with an interval in the following way: the lower bound of

the interval is given by the minimum of the intensities in the block and the upper

bound by the maximum.

3. Use Propositions 1,2 and 3 to calculate the parameter α for the operator Kα .

4. Associate with each interval the number obtained after applying the operator Kα .

Example: Let Q be an image of dimension 6×6 and let n = 3

⎛
⎜⎜⎜⎜⎜⎜⎝

q1,1 q1,2 q1,3 q1,4 q1,5 q1,6

q2,1 q2,2 q2,3 q2,4 q2,5 q2,6

q3,1 q3,2 q3,3 q3,4 q3,5 q3,6

q4,1 q4,2 q4,3 q4,4 q4,5 q4,6

q5,1 q5,2 q5,3 q5,4 q5,5 q5,6

q6,1 q6,2 q6,3 q6,4 q6,5 q6,6

⎞
⎟⎟⎟⎟⎟⎟⎠

Then, the interval-valued fuzzy set associated to Q will be formed by 4 elements:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎣

∧

i=1,2,3
j=1,2,3

qi, j

∨

i=1,2,3
j=1,2,3

qi, j

⎤
⎦

⎡
⎣

∧

i=1,2,3
j=4,5,6

qi, j

∨

i=1,2,3
j=4,5,6

qi, j

⎤
⎦

⎡
⎣

∧

i=4,5,6
j=1,2,3

qi, j

∨

i=4,5,6
j=1,2,3

qi, j

⎤
⎦

⎡
⎣

∧

i=4,5,6
j=4,5,6

qi, j

∨

i=4,5,6
j=4,5,6

qi, j

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remark: Symbols ∧ and ∨ stand for minimum and maximum respectively. We take

α ∈ [0,1] and Kα([x,x]) = αx +(1−α)x. Then we have:

(L−1)

⎛
⎜⎜⎜⎜⎜⎜⎝

α(
∨

i=1,2,3
j=1,2,3

qi, j)+(1−α)(
∧

i=1,2,3
j=1,2,3

qi, j) α(
∨

i=1,2,3
j=4,5,6

qi, j)+(1−α)(
∧

i=1,2,3
j=4,5,6

qi, j)

α(
∨

i=4,5,6
j=1,2,3

qi, j)+(1−α)(
∧

i=4,5,6
j=1,2,3

qi, j) α(
∨

i=4,5,6
j=4,5,6

qi, j)+(1−α)(
∧

i=4,5,6
j=4,5,6

qi, j)

⎞
⎟⎟⎟⎟⎟⎟⎠
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Once the interval-valued fuzzy set associated to the image has been obtained,

we build a fuzzy set. Applying the operator Kα to each interval we get the reduced

image of size 2×2.

Next we show two methods for calculating the value of the α coefficient follow-

ing the theoretical developments in Subsection 3.2.

4.1.1 Compression with Constant α

The aim of this subsection is to apply the algorithm that we have developed in the

previous section using a constant parameter α for the whole image. To calculate that

fixed value we use ME-OWA operators.

As we have seen in Proposition 2, the construction of an ME-OWA operator

is straight. We are going to consider only the following cases: α = 0, α = 0.5 and

α = 1. The motivations for these choices are the following: With α = 0, we associate

the lower bound of the interval to each block, with α = 0.5, we take the mean point

of the interval and finally, with α = 1, we associate the upper bound of the interval.

α = 0 α = 0.5 α = 1

Fig. 2 Compression of Lena and Camera images with ME-OWA operators and compression

block size n = 2 and n = 3
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Obviously, the higher the value of α , the higher the membership degree and there-

fore the intensity of each pixel. The image is darker with α = 0 than with α = 0.5,

which is also darker than with α = 1.

4.1.2 Compression with Variable α

In this subsection, we develop the previous algorithm by taking for each block a

different value of α . We do the calculation of the values of α using BADD-OWA

operators. Hence, we calculate the value of α in terms of the bounds of the interval

we are considering.

As we see in Definition 7, to construct a BADD-OWA operator it is necessary

to select a value of β ≥ 0. We know that if we take β = 0, then we get α = 0.5,

already studied in Subsection 4.1.1. In other case, if we take β = 1, the value of α
is calculated as follows:

α =
x

x + x

being [x,x] ∈ L([0,1]) the interval representing each block. We also know that α ≥
0.5, and if we increase the value of β , α → 1. That is, the result tends to the upper

bound of the interval. For this reason, with a high value of β , we get reduced images

similar as the images analyzed in third column of Figure 2.

4.2 First Algorithm of Reconstruction

The algorithm that we propose is the following:

1. Create a a block of size n× n for each pixel of the compressed image, centered

on the considered pixel.

2. Copy the value of the central pixel for each of the elements of the n×n block we

have constructed around it.

With this construction, we get an image of the same size of the original, so we can

compare them. To evaluate the quality of the reconstructed image we are going to

use the Mean Squared Error (MSE); that is,

MSE(Q,Q′) =
1

MN

M

∑
i=1

N

∑
j=1

(qi j −q′i j)
2 (4)

with qi j the intensity of pixel (i, j) in the original image and q′i j the intensity of the

same pixel in the reconstructed image.

4.3 First Experimental Results

In this section we show the results that we obtain when we apply the compres-

sion/reconstruction algorithms that we have studied in Subsections 4.1 and 4.2.
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In the first two rows of Figure 2 we show the result of the algorithm of com-

pression when we apply it to images in Figure 1, taking n = 2 and α constant, in

the following way: α = 0 for the first column, α = 0.5 for the second column and

α = 1 for the third column. In the last two rows of Figure 2 we show the result of

the algorithm when we take n = 3.

In Figures 4 and 5 we show the results of reconstructing the images in Figure 2

using in all of the cases the algorithm developed in Subsection 4.2.

In Table 1 we study the MSE of the reconstructions with respect to the original

image for some values of α (constant for the whole image once it has been chosen)

and different sizes of the compression blocks. Notice that, in order to analyze in a

more detailed way the error in our method, we have extended the experiment and

considered more than three values of α and n, as it is clear from the Tables.

From the analysis of Table 1, we deduce experimentally the following:

1. We obtain the smallest error when α = 0.5.

2. Error increases as α goes to zero or one.

3. In all of the cases, we obtain the maximum error for α = 1.

Clearly, taking into account the nature of our algorithm, error increases if the win-

dow size n becomes bigger.

In the first two rows of Figure 3 we show the result of applying the algo-

rithm of compression to images of Figure 1 taking n = 2 and α variable in terms

of the parameter β associated with the BADD-OWA operator. We have taken

β = 1,10,20,100 for the first, second, third and last column, respectively. In the

last two rows of Figure 3 we show the result with n = 3.

In Figures 6,7,8 and 9 we present the results of reconstructing the images of

Figure 3 using in all of the cases the algorithm we have described in Subsection 4.2.

In Table 2 we show in a detailed way the MSE for Lena and Camera images, vary-

ing the parameter β of the BADD-OWA operator and the size of the compression

block.

Table 1 Error in the reconstruction of Lena (left) and Camera (right) images using the first

algorithm of compression and ME-OWA operators

n = 2 n = 3 n = 4 n = 5

α = 0 284.15 655.38 1012.35 1414.89

α = 0.25 156.42 338.2 504.14 699.13

α = 0.375 125.88 262.75 389.36 531.46

α = 0.5 116.81 242.71 364.85 490.61

α = 0.625 129.21 278.11 430.6 576.56

α = 0.75 163.1 368.92 586.61 789.32

α = 1 295.29 716.83 1169.4 1595.65

n = 2 n = 3 n = 4 n = 5

α = 0 452.08 947.14 1379.99 1723.91

α = 0.25 254.87 507.65 720.08 893.78

α = 0.375 207.99 408.26 576.36 720.23

α = 0.5 194.41 389.11 553.2 707.7

α = 0.625 214.14 450.21 650.62 856.19

α = 0.75 267.18 591.55 868.61 1165.65

α = 1 473.17 1114.94 1666.29 2267.65
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β = 1 β = 10 β = 20 β = 100

Fig. 3 Compression of Lena and Camera images with BADD-OWA operators and compres-

sion block size n = 2 and n = 3

Table 2 Error in the reconstruction of Lena (left) and Camera (right) images using the first

algorithm of compression and BADD-OWA operators

n = 2 n = 3 n = 4 n = 5

β = 1 164.27 424.05 736.22 1044.08

β = 10 281.73 699.23 1150.36 1575.22

β = 20 290.23 711.01 1163.52 1589.69

β = 100 295.07 716.56 1169.33 1595.22

n = 2 n = 3 n = 4 n = 5

β = 1 302.96 771.07 1211.37 1693.29

β = 10 457.74 1097.41 1648.69 2249.31

β = 20 468.23 1109.37 1660.32 2261.06

β = 100 472.75 1114.56 1665.99 2267.43

From the analysis of Table 2 we deduce experimentally the following:

1. We obtain the smallest error if we take β = 1.

2. Error increases if β increases.

From the comparison of Tables 1 and 2 we deduce that we achieve the best results

taking α constant and equal to 0.5.
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(a) Reconstruction n = 2,α = 0 (a) Reconstruction n = 2,α = 0.5

(c) Reconstructionn n = 2,α = 1 (d) Reconstruction n = 3,α = 0

(e) Reconstruction n = 3,α = 0.5 (f) Reconstruction n = 3,α = 1

Fig. 4 Reconstructions of Lena image using the first algorithm of compression and ME-OWA

operators



Two Methods for Image Compression/Reconstruction Using OWA Operators 241

(a) Reconstruction n = 2,α = 0 (a) Reconstruction n = 2,α = 0.5

(c) Reconstruction n = 2,α = 1 (d) Reconstruction n = 3,α = 0

(e) Reconstruction n = 3,α = 0.5 (f) Reconstruction n = 3,α = 1

Fig. 5 Reconstructions of Camera image using the first algorithm of compression and ME-

OWA operators
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(a) Reconstruction n = 2,β = 1 (b) Reconstruction n = 2,β = 10

(a) Reconstruction n = 2,β = 20 (b) Reconstruction n = 2,β = 100

Fig. 6 Reconstructions of Lena image using the first algorithm of compression and BADD-

OWA operators. Compression block size n = 2.

5 Eigen Fuzzy Sets and Compression/Reconstruction of Images

In [17], Nobuhara et al. use the concept of eigen fuzzy set associated with a fuzzy

relation R to formulate two algorithms: one for image compression and another for

image reconstruction. In the compression algorithm the original image is replaced

by a set of eigen fuzzy sets of it (see [20, 21]). In the following, we recall the

concepts of greatest and smallest eigen fuzzy set associated with a fuzzy relation

R. Actually, Nobuhara et al. present two algorithms of compression: one using the

smallest and the greatest eigen fuzzy sets, and the other using a family of eigen

fuzzy sets obtained as convex linear combination of the smallest and the greatest

eigen fuzzy sets. We will see that the latter algorithm can be generalized by means

of Theorem 1; that is, using operators Kα = Kα ◦ i.
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(a) Reconstruction n = 3,β = 1 (b) Reconstruction n = 3,β = 10

(a) Reconstruction n = 3,β = 20 (b) Reconstruction n = 3,β = 100

Fig. 7 Reconstructions of Lena image using the first algorithm of compression and BADD-

OWA operators. Compression block size n = 3.

Definition 8. Let R ∈ FR(X ×X) be a fuzzy relation over X ×X ; and let A ∈ FS(X)
be a fuzzy set. A is an eigen fuzzy set-(max−min) associated with R if A satisfies:

A◦R = A (5)

where

A◦R(x′) =
∨

x∈X

A(x)∧R(x,x′) for all x′ ∈ X (6)

In [17], it can be found an iterative algorithm to find a solution of Equation (5),

and it is proved that the eigen fuzzy set-(max−min) obtained is the biggest of the

eigen fuzzy sets associated with R verifying Equation (5) using (6). This eigen fuzzy

set-(max−min) is denoted AG.
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(a) Reconstruction n = 2,β = 1 (b) Reconstruction n = 2,β = 10

(a) Reconstruction n = 2,β = 20 (b) Reconstruction n = 2,β = 100

Fig. 8 Reconstructions of Camera image using the first algorithm of compression and

BADD-OWA operators. Compression block size n = 2.

Definition 9. Let R ∈ FR(X ×X) be a fuzzy relation over X ×X ; and let A ∈ FS(X)
be a fuzzy set. A is an eigen fuzzy set-(min−max) associated with R if A satisfies:

A•R = A (7)

where

A•R(x′) =
∧

x∈X

A(x)∨R(x,x′) ∀x′ ∈ X (8)

In [17], it can also be found an iterative algorithm to find a solution of Equation

(7) and it is proved that the eigen fuzzy set-(min−max) obtained is the smallest of

the eigen fuzzy sets associated with R verifying Equation (7) using (8). This eigen

fuzzy set is denoted AS.
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(a) Reconstruction n = 3,β = 1 (b) Reconstruction n = 3,β = 10

(a) Reconstruction n = 3,β = 20 (b) Reconstructionn n = 3,β = 100

Fig. 9 Reconstructions of Camera image using the first algorithm of compression and

BADD-OWA operators. Compression block size n = 3.

Proposition 4. Let R ∈ FR(X × X) and let AS,AG ∈ FS(X) be the smallest and

greatest of the eigen fuzzy sets associated with R, respectively. Then, the set

A(xi) = [AS(xi),AG(xi)]

is an IVFS on the referential X.

Proof: Direct. �.

Proposition 4 allows us to associate to each square relation R over X×X , and, hence,

to each square image, an interval-valued fuzzy set build using the eigen fuzzy sets

AS and AG. If the original image is not squared, we must supress the appropriate

number of rows and/or columns to get a squared one.

From the IVFS built as stated and the operator Kα we can construct a family of

fuzzy sets associated with the relation R in the following way:
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Kα(x) = αAG(x)+ (1−α)AS(x) with α ∈ [0,1] and for all x ∈ X (9)

Basically, the algorithm of Nobuhara et al. starts from a fixed fuzzy set (the seed)

and proceeds iteratively to create a convergent sequence of fuzzy sets. We should

remark that if we use the fuzzy sets generated by means of 9 as seed to generate

eigen fuzzy sets associated to R in the algorithm proposed by Nobuhara et al., it

may happen that:

Kα(A) = A0 Kα (A) = A0

A0 ◦R = A1 A0 •R = A1

A1 ◦R = A2 A1 •R = A2

· · · · · ·

are not convergent sequences, and, therefore, we can not actually generate eigen

fuzzy sets. This fact has led us to obtain eigen fuzzy sets by means of operators Kλ .

We will see later that these operators give raise to convergent sequences.

In fact, in [17] Nobuhara et al. propose three different algorithms for compres-

sion. In the first one, they exclusively use AS, in the second one, AG, and in the third

one, both of them. They show experimentally that the best results are obtained when

the two eigen fuzzy sets are used. For this reason, the authors claim that results im-

prove when the number of eigen fuzzy sets increases. In particular, this led them

to propose a new algorithm using P eigen fuzzy sets. In this chapter, we present a

generalization of this algorithm.

Take R ∈ FR(X ×X) and A ∈ FS(X). It is easy to verify that A◦R and A•R are

not comparable; that is, in general, we can not assert which of the two compositions

is greater. This observation has led us to study equations of the type

λ (∨(A◦R,A•R))+ (1−λ )(∧(A◦R,A•R))= A with λ ∈ [0,1] , (10)

instead of the equations considered by Nobuhara et al. in [17], that is, λ (A ◦R)+
(1−λ )(A•R) = A. We must stress that we can write Equation (10) using Theorem

1 as follows:

Kλ (A◦R,A•R) = A

We will prove that for any given λ ∈ [0,1] and any R ∈ FR(X ×X) there exists at

least a fixed point, that is, there exists at least one fuzzy set A ∈ FS(X) satisfying

Equation (10).

Lemma 1. Let A,B ∈ FS(X) such that A ≤ B. Then, for all λ ∈ [0,1] and for all

R ∈ FR(X ×X) the following inequality holds:

Kλ (A◦R,A•R)≤ Kλ (B◦R,B•R)

Proof: Clearly, A ◦R(x′) =
∨

x∈X A(x)∧R(x,x′) ≤
∨

x∈X B(x)∧R(x,x′) = B ◦R(x′)
and A •R(x′) =

∧
x∈X A(x)∨R(x,x′) ≤

∧
x∈X B(x)∨R(x,x′) = B •R(x′). Bearing in

mind that ∧, ∨ and Kλ (x,y) = λ x + (1− λ )y are increasing functions, the result

follows. �
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Theorem 2. Let λ ∈ [0,1]. Then, for any relation R ∈ FR(X ×X) there exists at

least one A ∈ FS(X) such that:

Kλ (A◦R,A•R) = A

Proof: We need to find a fixed point of:

FR : FS(X)−→ FS(X)

FR(A) = Kλ (A◦R,A•R)

Clearly, FR is continuous, since it is a composition of continuous mappings. To get

the result, it is enough to find an iterated, convergent sequence, that is, a convergent

sequence {An} ⊂ FS(X) such that

An+1 = FR(An) = Kλ (An ◦R,An •R) ,

since, by continuity, if A∞ = limn→∞ An, then A∞ = limn→∞ An+1 = limn→∞ FR(An) =
FR(A∞).

Let A0 = {(x,0)|x ∈ X}. Take

A1 = Kλ (A0 ◦R,A0 •R) ≥ A0

A2 = Kλ (A1 ◦R,A1 •R) ≥ Kλ (A0 ◦R,A0 •R) = A1 .

By induction, An+1 ≥ An, so the sequence is increasing. Moreover, An ≤ {(x,1)
|x ∈ X} for all n ≥ 0, so the sequence is also bounded. These two facts imply that

the sequence is convergent and the proof is complete. �

5.1 Second Algorithm of Compression

The compression algorithm that we propose is based on replacing the relation (im-

age) by P vectors (fuzzy sets) satisfying 10.

For a given relation R:

1.- Fix the number P of vectors;

2.- FOR i:=1 to P DO

Fix λi ∈ [0,1];
Take the set Ai

0(x) = 0 for all x ∈ X ;

Build Ai
1(x) = Kλi

((Ai
0 ◦R)(x),(Ai

0 •R)(x)) for all x ∈ X ;

Iterate until Ai
n+1(x) = Kλi

((Ai
n ◦R)(x),(Ai

n •R)(x)) = Ai
n(x) for all

x ∈ X ;

ENDFOR;

Note that this compression is stronger than the one provided by our first algorithm.

This is due to the fact that we are keeping a set of vectors instead of a smaller image;

that is, we are keeping less information. Regarding the algorithm itself, observe that



248 H. Bustince et al.

the choice of both P and λi are completely arbitrary, depending only on the needs of

the user.

In Figure 10 we show the vector that results of applying our second algorithm of

compression to Lena image with P = 4 eigen fuzzy sets and λ = 0, 1
3
, 2

3
,1. In the

horizontal axis we represent the components of the vector, whereas in the vertical

axis we represent the intensity of each of the components.

Fig. 10 Compression of Lena with 4 eigen fuzzy sets

5.2 Second Algorithm of Reconstruction

The algorithm that we propose is an optimization algorithm minimizing an appro-

priate cost function.

1. Let λi ∈ [0,1], with i = 1, · · · ,P, and the corresponding Ai ∈ FS(X) such that:

Kλi
(Ai ◦R,Ai •R) = Ai .

Observe that we are considering a family of fuzzy sets obtained by means of the

second algorithm of compression.

2. Take a random fuzzy relation R̃ ∈ FR(X ×X).
3. Build the cost function:

Q(R̃) =
P

∑
i=1

∑
x∈X

{Ai(x)−Kλi
((Ai ◦ R̃)(x),(Ai • R̃)(x)))}2 (11)

4. Build in an iterative way the final relation, using the gradient algorithm as in

[18, 16].
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As the gradient algorithm is iterative, we denote by ”iter” the iteration step. The

gradient optimization method is given by:

R̃(iter+1)(l′,x′) = R̃(iter)(l′,x′)−α
∂Q(iter)

∂ R̃(iter)(l′,x′)
(12)

where:

R̃(iter) is the fuzzy relation that results after iter iterations

Q(iter) = Q(R̃(iter))
α = is a learning parameter (∈ (0,+∞)) fixed beforehand (see [17])

The derivative is calculated as follows.

∂Q(iter)

∂ R̃(iter)(l′,x′)
= −2

P

∑
n=1

(An(x
′)−Kλn

(An ◦ R̃(iter),An • R̃(iter))) · (Z1 + Z2)

where Z1 is given by

Z1 =λnϕ(An ◦ R̃(iter)(x′),An • R̃(iter)(x′))+ (1−λn)ψ(An ◦ R̃(iter)(x′),An • R̃(iter)(x′))

·ϕ(An(l
′)∧ R̃(iter)(l′,x′),

∨

y∈X\{l′}

An(y)∧ R̃(iter)(y,x′))ψ(An(l
′), R̃(iter)(l′,x′))

and Z2 by

Z2 =λnψ(An ◦ R̃(iter)(x′),An • R̃(iter)(x′))+ (1−λn)ϕ(An ◦ R̃(iter)(x′),An • R̃(iter)(x′))

·ψ(An(l
′)∨ R̃(iter)(l′,x′),

∧

y∈X\{l′}

An(y)∨ R̃(iter)(y,x′))ϕ(An(l
′), R̃(iter)(l′,x′))

with

ϕ(x,y) =

{
1 if x > y

0 otherwise
and ψ(x,y) =

{
1 if x < y

0 otherwise

These minimization processes are performed until the inequality Q(iter+1) −
Q(iter) < ε is satisfied, where ε is a fixed threshold.

5.3 Experimental Results for the Second Compression and

Reconstruction Algorithms

In this subsection we show the results of the application of the second algorithm of

compression and the second algorithm of reconstruction using eigen fuzzy sets.

We show in Table 3 the mean reconstruction error over a set of 5000 images of

size 10× 10. The first column corresponds to 2500 blocks of size 10× 10 which
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Table 3 Mean error in the reconstruction of test images by means of eigen fuzzy sets

Real Random

GEFS 13.7818 16.6867

SEFS+GEFS 13.7617 16.6867

SEFS+A1/3+A2/3+GEFS 13.729 16.6402

have been obtained from real images. In the second column, we have generated

the 2500 test images randomly. We have compressed the image by calculating the

greatest eigen fuzzy set (first row), the greatest and the smallest eigen fuzzy set

(second row) and four eigen fuzzy sets obtained with the algorithm developed in

Subsection 5.1 (third row), with P = 4 and A1/3, A2/3 denoting the fuzzy sets which

results from the algorithm taking λ = 1/3 and λ = 2/3, respectively.

In Table 3 we observe that the error in reconstructions decreases when the number

of eigen fuzzy sets we are using in the compression increases. This fact can be

visually corroborated in Figure 11. We have made the experiment with the image

of Lena and taking P = 2,8,16 eigen fuzzy sets. We must remark that the main

drawback of this algorithm is its poor time performance.

In Table 4 we show the mean error in image reconstruction when we use the

algorithm proposed in [17] (first row) and when we use our second algorithm of

reconstruction (second row). We have made the test with random images of sizes

3× 3, 4× 4 and 5× 5. We have chosen 3 eigen fuzzy sets with λ = {0, 1
2
,1} for

the 3×3 images; 4 eigen fuzzy sets with λ = {0, 1
3
, 2

3
,1} for the 4×4 images, and

5 eigen fuzzy sets with λ = {0, 1
4
, 2

4
, 3

4
,1} for the 5× 5 images. Results are very

similar for both algorithms, although in some cases, as those of 4 × 4 and 5× 5

images, the results of our algorithm are slightly better.

Table 4 Comparison mean error in the original algorithm and in our second algorithm of

reconstruction

3×3 4×4 5×5

Algorithm proposed in [12] 1.4839 2.6271 4.2188

Second algorithm of reconstruction 1.4991 2.6131 4.1981

6 Final Comments

The possibility of building two-dimensional OWA operators using Atanassov’s op-

erators (Section 3) has allowed us to develop an algorithm of image reduction (first

algorithm of compression), and later, an algorithm of image reconstruction (first al-

gorithm of reconstruction). Moreover, we have experimentally showed that, if we
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Reconstruction with P = 2 Eigen Fuzzy Sets Reconstruction with P = 8 Eigen Fuzzy Sets

Reconstruction with P = 16 Eigen Fuzzy Sets

Fig. 11 Reconstruction of the image of Lena

reconstruct the images reduced with the first algorithm of compression, then we ob-

tain the best results when we take ME-OWA operators with α = 0.5 and constant

for the whole image. Another experimentally established fact is that the time com-

plexity of both the algorithm of compression and the algorithm of reconstruction is

very low. That is, they are very efficient from the point of view of the time that they

require to be run.

The concept of eigen fuzzy set has allowed us to replace an image by a set of

vectors. Furthermore, the expression in Theorem 1, Kα = Kα ◦ i has enabled us to

calculate new eigen fuzzy sets that have been later used in our second algorithm of

reconstruction. The algorithms that use eigen fuzzy sets provide worse results than

those algorithms that do not use them, since the latter do not use random relations

for reconstruction and keep more information than the former. The main disadvan-

tage of the methods of reconstruction based on eigen fuzzy sets and the gradient

algorithm lays on the high time expenses.
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Nevertheless, it is extremely relevant to stress how our two approaches assume

a global view of the image, so its structural information is someway taken into ac-

count, as claimed in [14]. Not taking into account information of surrounding pixels

suggests that we are assuming independency between pixels, and in this context,

a comparison of the quality of results limited to the direct analysis of mean error

values can lead to seriously wrong conclusions, as dramatically shown in [15].

As future research lines, a comparison of our algorithms with other algorithms

that can be found in the literature is necessary. Moreover, we would also like to spec-

ify in which cases our algorithms improves the results on the algorithm of Nobuhara

et al, and why this improvement takes place. Finally, an interesting point is to reduce

the temporal waste of the algorithms.
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Abstract. In this paper we propose an approach to Social Network Analysis (SNA)

based on fuzzy m-ary adjacency relations. In particular, we show that the dimen-

sion of the analysis can naturally be increased starting from the traditional two–

dimensional case and interesting results can be derived. Therefore, fuzzy m-ary

adjacency relations can be computed starting from fuzzy binary relations and in-

troducing OWA-based aggregations. The behavioral assumptions derived from the

measure and the exam of individual propensity to connect with other suggest that

OWA operators can be considered particularly appealing tools in characterizing such

relations.

1 Introduction

Social Network Analysis (SNA) is a relatively new and still developing subject that

focuses on the study of social relations [30, 35] as a branch of the broader disci-

pline named network analysis [26] whose main object is studying the relationships

between objects belonging to one or more universal sets. SNA focuses its atten-

tion on social objects and has principally concerned with the structure and effects of

relations between people, groups or organizations, rather than on individual psycho-

logical attributes. Nevertheless, as pointed out in [31], psychological attributes and

behavioral issues are likely to influence the dynamics of networks of individuals.
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For instance, the role of individual differences in shaping organizational networks

has been examined from several points of view [3], compelling as well the study of

how similarity in personal relationships and social context affect each other [23].

For better understanding of roles played by actors in social networks the so called

centrality indices have been introduced, accordingly a member is viewed as central

whenever she or he has a high number of connections with a high number of dif-

ferent co-members [2, 4, 7, 15]. Since paths play a central role in the functioning

of most of the networks, it is not surprising that a relevant number of centrality

measures quantify importance with respect to the sharing of paths in the network.

Betweenness centrality, as a measure of how many geodesic paths cross a given ver-

tex, is one of the most popular and was introduced [14] to quantify the control of

a given actor over the flow of information in the network. Therefore, this measure

can be used to provide an ordering of the vertices in terms of their individual impor-

tance, but it does not provide any description of the way in which subsets of vertices

influence the network as a whole. As pointed out in [21], vertex betweenness cen-

trality can be naturally extended to sets of vertices either defining the betweenness

of a set in terms of geodesic paths that pass through at least one of the vertices in

the set, or in terms of geodesic paths that pass through all vertices in the set.

Everett and Borgatti [12] introduced the first type of extension and called it group

betweenness centrality, the second type was introduced in [21] showing that the

two notions are intimately related. The relationship between the two approaches

has been mathematically characterized showing how the betweenness of a group

of an arbitrary number of vertices can be bounded above and below by quantities

involving only the betweenness of the individual vertices and the co-betweenness of

pairs of these vertices. In this way a direct insight into the composition of subgroups

of vertices is provided and it can be used in evaluating the robustness of potential

coalitions and the deploying of consensual dynamics.

One of the most commonly used tool for representing social relationship among

a set of actors in a network is the adjacency matrix representing a binary relation.

The first limitation of binary relations is that they can be used only for representing

pairwise adjacency, the second one is that the dichotomy is not suitable for shaping

the strength of the adjacency relationship involving several social and individual

attributes. One way to overcome the first limitation was introduced in [6] and it

was based on the concept of multirelational systems [28]. The generalization of

the definition of relation through the introduction of fuzziness opens the way to

the extension of Social Network Analysis to contexts in which the network could

be represented using fuzzy graphs [24], taking care of the vagueness influencing the

relationships among the actors involved in the social dynamics and of the qualitative

nature of the actors’ attributes as well.

Fuzzy approaches to SNA provided so far are actually very few. In [25] a tech-

nique to model multi-modal social networks as fuzzy social networks is proposed.

The technique is based on k-modal fuzzy graphs determined using the union oper-

ation on fuzzy graphs and a new operator called consolidation operator. The notion

of regular equivalence [5] was generalized in [13] introducing the notion of reg-

ular similarity, represented by a fuzzy binary relation that describes the degree of
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similarity between actors in the social network. In [10] the problem of partitioning

the nodes of a social network in overlapping groups allowing for multiple member-

ships and varied levels of membership was solved introducing the so called fuzzy

groups. In [34], starting from the introduction of the natural connection between

graph theory and granular computing, human-focused concepts associated with so-

cial networks are formalized using set-based relational network theory and fuzzy

sets. A softening of the concept of node importance (centrality of a node) is pro-

vided, considering the number of close connections. Kokabu et al. [20] proposed a

model for evaluating reciprocity of networks represented by means of fuzzy binary

relations. In literature, it was also proposed [8] to use fuzzy relations for defining

a characterization for fuzzy m-ary relations and therefore expand the dimension of

the analysis for m > 2.

The approach proposed in this paper takes advantage of the ability of fuzzy re-

lations [19, 36, 37] to model uncertainty permeating the relationships between the

actors in the network, and of the OWA operators [32, 33] to move continuously

from non-compensatory to full-compensatory situation and characterizing therefore

the attitude of the actors to connect each other. The paper is outlined as follows. In

section 2 we offer a presentation of SNA and adjacency matrix, which is the main

tool to perform the analysis. In the same section we show that adjacency relations

can be valued (cardinal) relations and that fuzzy adjacency relations are simply a

special case of valued relations. Having presented that, in section 3 fuzzy m-ary

adjacency relations are defined and a method based on aggregating functions for es-

timating them is presented. We claim, in section 4, that OWA operators satisfy some

reasonable properties and that they can be employed as suitable aggregating func-

tions to increase the dimension of the analysis. In section 5 we discuss an example

and, finally, in section 6, we present our conclusions.

2 Crisp, Valued and Fuzzy Adjacency Relations in SNA

As already mentioned, SNA is the branch of network analysis devoted to study-

ing and representing relationships between ‘social’ objects. To formalize, SNA

mainly explores relationships between objects belonging to an universal set X =
{x1, . . . ,xn} and in order to achieve its aim, some mathematical properties of re-

lations are utilized. More specifically, a binary relation on a single set, which is

the most popular kind of relation used in the SNA, is a relation A ⊆ X ×X , whose

characteristic function µA : X ×X → {0,1} is defined as

µA(xi,x j) =

{

1, if xi is related to x j

0, if xi is not related to x j

By definition [19], adjacency relations satisfy properties of reflexivity,

µA(xi,xi) = 1, and symmetry, µA(xi,x j) = µA(x j,xi). Note that no transitivity con-

dition is required to hold. Moreover, if ai j := µA(xi,x j) and X is reasonably not too

large, then an adjacency matrix A = (ai j)n×n is a convenient way of representing a

relation.
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Some scholars in the field claim that A has its strong point in being a good syn-

thesis of all the pairwise relations between elements of X . In contrast, according

to some others, A is too poor of information, i.e. it does not contain information

about the degree to which the relations between two elements hold. Therefore it

may happen that it treats in the same way very different cases, without discriminat-

ing among situations where intensities of relationship may be very different. Indeed,

many examples may be brought in order to support the latter point of view.

Some methods have already been proposed in order to overcome the problem

related with the lack of information about the intensity of relationship between ele-

ments of a pair. For instance, a discrete scale can be adopted and a value be assigned

to each entry ai j to denote the intensity of relation between xi and x j. This approach,

based on valued adjacency relations, is the most widely used in order to overcome

the problem of unvalued relations.

Here, we want to propose an alternate approach based on fuzzy sets theory [36]

in order to obtain a fuzzy adjacency relation. A binary fuzzy relation on a single set,

R2 ⊆ X ×X , is defined through the following membership function

µR2 : X ×X → [0,1] (1)

and also in this case, putting ri j := µR2(xi,x j), a fuzzy relation can be conveniently
represented by a matrix R = (ri j)n×n where the value of each entry is the degree to
which the relation between xi and x j holds. In other words, the value of µR2(xi,x j)
is the answer to the question: ‘how strong is the relationship between xi and x j?’.
Therefore, in the context of SNA

µR2(xi,x j) =

⎧

⎨

⎩

1, if xi has the strongest possible degree of relationship with x j

γ ∈]0,1[ if xi is, to some extent, related to x j

0, if xi is not related with x j

Fuzzy adjacency relations, as well as crisp adjacency relations, are here assumed

to be reflexive and symmetric. It is useful to spend some words about symmetry. A

fuzzy binary relation is symmetric if and only if

µR2(xi,x j) = µR2(x j,xi) i, j = 1, . . . ,n. (2)

Although the assumption of symmetry is a simplification, it is of great help for the

model because, due to it, such relations can be represented by means of undirected

graphs and problems related with the so-called combinatorial explosion are partially

avoided. Furthermore, in many real-world cases, symmetry is spontaneously satis-

fied by the nature of the relationship.

At this point we remind that:

• A fuzzy relation contains more information than a crisp one and the former can

overcome some drawbacks of the latter. See for example [19], where fuzzy adja-

cency relations are called fuzzy compatibility or proximity relations

• We can shift from the fuzzy approach to the crisp one thanks to the α-cuts. An

α-cut is a crisp relation defined by
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µA(xi,x j) =

{

1, if µR2(xi,x j) ≥ α

0, if µR2(xi,x j) < α .

For instance, given

R =

⎛

⎜

⎜

⎝

1 0.7 0.3 0.7
0.7 1 0.1 0.8
0.3 0.1 1 0.2
0.7 0.8 0.2 1

⎞

⎟

⎟

⎠

, (3)

its α-cut with α = 0.5 is

A =

⎛

⎜

⎜

⎝

1 1 0 1

1 1 0 1

0 0 1 0

1 1 0 1

⎞

⎟

⎟

⎠

(4)

• Applying fuzzy relations to SNA, we can extend most of the techniques em-

ployed for analyzing crisp adjacency matrices. A significant example, which will

be used later on in this discussion, is the normalized index of local centrality, that

is

C(xi) =
1

n−1

n

∑
j=1
j �=i

ri j . (5)

If ci := C(xi) and c = (c1, . . . ,cn), then we can refer to R in (3) and find that

c = ( 17
30

, 3
5
, 7

20
, 185

300
). This result is more informative than the same index computed

on A in (4), i.e. c = ( 2
3
, 2

3
,0, 2

3
)

• It is possible to exploit already known indices for fuzzy sets as, for instance,

a measure of fuzziness [11] which would estimate how much information we

would have lost if we had used crisp relations instead of fuzzy ones

• Exploiting a fuzzy adjacency relation solves all the borderline cases, i.e. all the

cases where it is difficult to establish whether xi and x j are related or not. To tell

the truth, this property is, to some extent, shared with valued adjacency relations.

However, a fuzzy relation is much easier to be interpreted from a logical point of

view

Let’s note that the whole issue can be addressed thanks to graph theory. In this case

there are n nodes x1,x2, . . . ,xn and
n(n−1)

2 edges connecting them. Hence, nodes are

nothing else but elements of the universe set X , weights of edges are µR2(xi,x j) and

the graph is G = 〈X ,R〉. Therefore, the problem can also be addressed in a graphical

way with µR2(xi,x j) representing the ”thickness” of the edge between xi and x j.

One might wonder how it would be possible to define a fuzzy adjacency matrix

starting from real-world information. In all those cases where it is difficult to define

it directly we can derive it from valued adjacency matrices, e.g. some evidence under

the form of numerical data about the relationships is available. Let us assume that a

valued adjacency matrix, V = (vi j)n×n, exists with vi j ∈R≥. If it is possible to define

a maximal level for the valued graph, say v∗, such that it represents the maximum

possible value of relationship, then, with v∗ playing the role of the upper bound for
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entries vi j, we can rescale each vi j into a ri j thanks to a suitable mapping ri j = h(vi j),
h : [0,v∗] → [0,1].

3 Fuzzy m-ary Adjacency Relations and the Degree of Social

Relationship

In this section we propose an extension of the analysis involving m-dimensional

relations with 2 ≤ m ≤ n. If we do so, then each element of the m-ary relation is the

degree of social relationship among the m elements contained in the m-tuple which

is taken into account. Analogously to the binary case, it is straightforward to define

a fuzzy m-ary relation.

Definition 1. A fuzzy m-ary relation Rm on a single set X is a fuzzy subset of Xm

defined by means of the membership function

µRm : Xm → [0,1] (6)

Then, for p1, . . . , pm ∈ {1, . . . ,n}, the membership function characterizing fuzzy

m-ary relations is the following

µRm(xp1
, . . . ,xpm

) =

⎧

⎨

⎩

1, if xp1
, . . . ,xpm

are definitely related

γ ∈]0,1[ if xp1
, . . . ,xpm

are, to some extent, related

0, if xp1
, . . . ,xpm

are definitely not related

The logic underlying the membership function remains substantially

unchanged and therefore properties of reflexivity and symmetry are extended to the

m-dimensional case in the following way. A fuzzy m-ary relation is reflexive if and

only if

µRm(xi,xi, . . . ,xi) = 1, i = 1, . . . ,n .

A fuzzy m-ary relation is symmetric if and only if for any p1, p2, . . . , pm ∈
{1, . . . ,n} it is

µRm(xp1
, . . . ,xpm

) = µRm(xq1
, . . . ,xqm

)

where (xq1
,xq2

, . . . ,xqm
) is any permutation of (xp1

,xp2
, . . . ,xpm

).
A fuzzy m-ary relation satisfying the reflexivity and simmetry properties is called

a fuzzy m-ary adjacency relation. At this point, having defined fuzzy m-ary adja-

cency relations, it is the case to highlight the difference between an element of a

fuzzy m-ary adjacency relation and a clique [22, 29, 35]. Namely, a clique of a

graph is a maximum complete subgraph whereas, if we deal with m-ary relations

and the contrary is not made explicit, the value µRm(xp1
, . . . ,xpm

) simply states, by

means of the bounded unipolar scale [0,1], the degree to which the relation holds,

without taking into account any maximality condition.

However, problems arise when we try to elicit Rm in a direct way, as it is certainly

not a trivial operation, especially when m is large enough. As we have seen in the

previous section, in social network analysis adjacency relations in the form R2 ⊆
X×X are often used and therefore degrees of relationship over pairs are known. That
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is why we propose an effective way to elicit Rm using the information embedded

in the fuzzy binary adjacency relation on the same universal set X . We propose

to recursively calculate the degree of relationship over m–tuples by means of the

degree of relationship over pairs using aggregation functions ρ3, . . . ,ρm satisfying

a fixed set of assumptions, as described in the next section. More precisely, from

a given fuzzy binary adjacency relation R2 we calculate the corresponding fuzzy

3–ary adjacency relation R3, then from R3 we calculate R4, and so on. In general, to

estimate µRm(xp1, . . . ,xpm
) we construct it recursively in the following way

µRk
(xp1

, . . . ,xpk
) = ρk(µRk−1

(xp1, . . . ,xpk−1), . . . ,µRk−1
(xp2, . . . ,xpk

)), (7)

for k = 3, . . . ,m. The k arguments of the function ρk themselves are functions of

k−1 variables. For example, the first argument of the function ρk in (7) is

µRk−1
(xp1, . . . ,xpk−1) = ρk−1(µRk−2

(xp1, . . . ,xpk−2), . . . ,µRk−2
(xp2, . . . ,xpk−1)) .

Note that to calculate µRk
(xp1, . . . ,xpk

) in (7) we need to aggregate precisely k values

of µRk−1
(·). Since we assume that the symmetric property holds, the order of the

arguments in µRm(xp1, . . . ,xpm
) is not relevant and we can assume, without loss of

generality, xp1 ≤ ·· · ≤ xpm
. Therefore, a fuzzy m–ary adjacency relation on a set

X requires
(

n+m−1
m

)
relationship values to be completely defined, i.e. the number of

combinations with repetition of size m from a set of n elements.

The most important case for applications is that of considering µRm(xp1, . . . ,xpm
)

with all different arguments, i.e. allowing no repetition. This corresponds to take

into account only groups of distinct social objects and in the following we will

focus on this case. Under this assumption, a fuzzy m–ary adjacency relation on a set

X requires only
(

n
m

)
relationship values to be completely defined.

Let us introduce the notation which will be used hereafter.

Definition 2. Given a finite non empty set X = {x1, . . . ,xn}, we denote by Fm(X)
the family of subsets of X containing m elements,

Fm(X) = {A ⊆ X ; |A| = m} (8)

Example 1. Given X = {x1,x2,x3,x4}, it is

F1(X) = {{x1},{x2},{x3},{x4}}

F2(X) = {{x1,x2},{x1,x3},{x1,x4},{x2,x3},{x2,x4},{x3,x4}}

F3(X) = {{x1,x2,x3},{x1,x2,x4},{x1,x3,x4},{x2,x3,x4}}

F4(X) = {x1,x2,x3,x4}.

In general, with |X | = n and m ≤ n, the cardinality of Fm(X) is

|Fm(X)| =

(
n

m

)
.



262 M. Brunelli, M. Fedrizzi, and M. Fedrizzi

It turns out that in order to calculate the degree of relationship among the m distinct

objects of a set {xp1
, . . . ,xpm} ⊆ X , we need to calculate first the degrees of relation-

ship over all its subsets with cardinality greater than one and less than m. The total

number of these subsets is

(

m

2

)

+ · · ·+

(

m

m−1

)

= 2m −m−2 . (9)

Let us now draw our attention again to the problem of aggregating relationship

values in order to construct higher dimensional relations. The choice of aggregation

functions ρ3,ρ4, . . . ,ρm plays clearly a crucial role in determining the fuzzy m–ary

adjacency relation µRm . In the following section, therefore, we will focus on the

suitable properties we require for these functions.

4 Some Properties of the OWA-Based Aggregating Function

This section is devoted to present and justify the assumptions that we make regard-

ing ρ3, . . . ,ρm. First of all, as we already said, we require ρ3, . . . ,ρm to be ‘aggrega-

tion functions’. We recall the corresponding definition [1].

Definition 3 (Aggregation function). An aggregation function is a function of

m > 1 arguments that maps the (m-dimensional) unit cube onto the unit interval,

f : [0,1]m → [0,1], with the properties

• f (0, . . . ,0) = 0 and f (1, . . . ,1) = 1

• a ≤ b implies f (a) ≤ f (b) for all a,b ∈ [0,1]m (monotonicity)

Moreover, we are going to propose some other properties which, in our opinion,

should be satisfied by every ρm, m = 3, . . . ,n.

1. idempotency ρm(a, . . . ,a) = a. Therefore, if the objects of some set are pairwise

related with degree a, then we assume that the intensity of relation computed on

the tuple containing those objects has value a as well.

2. commutativity, ρm(a1, . . . ,am) = ρm(aq1, . . . ,aqm
) where (q1, . . . ,qm) is any per-

mutation of the indices. This property is required to hold because fuzzy adjacency

relations are symmetrically defined for all m = 2, . . . ,n .

3. strict monotonicity: ρm(a1, . . . ,am) > ρm(b1, . . . ,bm) if ai ≥ bi ∀i and there exists

at least one j such that a j > b j. Strict monotonicity is asked to hold in order to

overcome some evaluation problems which would arise if we used non-strictly

monotonically increasing functions as, for instance, the geometric mean g(·). To

give an example, substituting g to ρm we would have g(1, . . . ,1,0) = g(0, . . . ,0),
which is not a desirable result from the social analysis point of view

4. continuity. This is essentially a technical assumption.

These four assumptions lead us to choose within a restricted class of averaging

operators. Namely, ρm should be an aggregating function respecting properties 1–4.

It is easy to check that the geometric mean, as mentioned above, is excluded because
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it is not strictly monotone. The weighted arithmetic mean is also excluded because

it is not commutative.

Conversely, provided that 0 < wi < 1, any OWA operator [32, 33] satisfies the

listed properties [9]. Choosing between OWA operators would be anything but ar-

bitrary as an index of orness is associated to each OWA and several approaches has

been developed to find an OWA operator with a given level of orness and optimiz-

ing some other properties as, for instance, entropy and variance. Moreover, OWA

operators cover a range of some well known aggregating functions, as they can be

meant as trade offs between the min and the max operators.

Hence, in our case, as we use OWA operators, they should be defined such that

wi ∈]0,1[ so that they are strictly monotonically increasing functions in all the terms.

Let us therefore give the following modified definition of OWA.

Definition 4 (Strictly monotone OWA operator). A strictly monotone OWA op-

erator of dimension m is a mapping F : Rm → R, that has an associated weighting

vector w = (w1, . . . ,wm) such that 0 < wi < 1 and

m

∑
i=1

wi = 1

Furthermore

F(a1, . . . ,am) = w1b1 + · · ·+ wmbm =
m

∑
j=1

w jb j

where b j is the j-th largest element of the bag A = 〈a1, . . . ,am〉.

5 Example

A number of examples explaining the utility of m-ary relations can be brought. Let

us, for example, consider the following fuzzy binary adjacency relation

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0.8 0.8 0.6 0.2 0.4 0.3
0.8 1 0.9 0.2 0.1 0.3 0.3
0.8 0.9 1 0.3 0.2 0.3 0.3
0.6 0.2 0.3 1 0.7 0.7 0.4
0.2 0.1 0.2 0.7 1 0.9 0.7
0.4 0.3 0.3 0.7 0.9 1 0.5
0.3 0.3 0.3 0.4 0.7 0.5 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

which we can suppose be representing of fuzzy adjacency relations between de-

cision makers. Although we bring an example, it is easy to imagine several other

possible applications indeed. Following our proposal, it is possible to estimate a

ternary fuzzy adjacency relation simply by applying function ρ3 according to (7).

Let us further assume that, hereafter, function ρm is univocally determined as an
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OWA operator of dimension m with maximal entropy and orness(w) = 0.4, which,

in the special case with m = 3, is w ≃ (0.238371,0.323257,0.438371). Thus, the

result, would be

µR3(x1,x2,x3) = ρ3(µR2(x1,x2),µR2(x1,x3),µR2(x2,x3)) ≃ 0.823837

µR3(x1,x2,x4) = ρ3(µR2(x1,x2),µR2(x1,x4),µR2(x2,x4)) ≃ 0.472326

... =
...

µR3(x4,x6,x7) = ρ3(µR2(x4,x6),µR2(x4,x7),µR2(x6,x7)) ≃ 0.503837

µR3(x5,x6,x7) = ρ3(µR2(x5,x6),µR2(x5,x7),µR2(x6,x7)) ≃ 0.66

It could be particularly interesting to pick the element of Fm(X) such that the value

of its membership function is maximal,

max{µRm(xp1
,xp2

, . . . ,xpm
)| p1, . . . , pm ∈ {1, . . . ,n}, p1 < p2 < · · · < pm} , (11)

In our case the maximum value of membership function is 0.823837 and it is

achieved by the triplet (x1,x2,x3).
A rather special case is that involving the m⋆-ary relation where m⋆ is defined as

the integer part of n/2 + 1, more formally m⋆ = ⌊n/2 + 1⌋, because the associated

subset of X would be a minimum winning coalition. In our case m⋆ = 4 and w =
(0.167087,0.213266,0.272208,0.34744) with

µR4(x1,x2,x3,x4) = ρ4(µR3(x1,x2,x3), . . . ,µR3(x2,x3,x4)) ≃ 0.514996

µR4(x1,x2,x3,x5) = ρ4(µR3(x1,x2,x4), . . . ,µR3(x2,x3,x5)) ≃ 0.402686

... =
...

µR4(x3,x5,x6,x7) = ρ4(µR3(x3,x5,x6), . . . ,µR3(x5,x6,x7)) ≃ 0.41189

µR4(x4,x5,x6,x7) = ρ4(µR3(x4,x5,x6), . . . ,µR3(x5,x6,x7)) ≃ 0.595482

with the maximum being 0.595482, achieved by (x4,x5,x6,x7).
This latter proposal can be refined if we assume that every element xi ∈ X has

a specific weight ωi denoting its relative importance. Let us consider the weight

vector

ω = (ω1, . . . ,ωn) s.t.
n

∑
i=1

ωi = 1 ,ωi ≥ 0 ∀i. (12)

Then, we can perform an analysis similar to that described above by assuming that

parameter m is free, not necessarily equal to m⋆, and by requiring that the sum of

the weights associated to the considered m elements is equal or greater than a given

majority threshold 0 < t ≤ 1. In light of these observations, the optimization problem

is
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max{µRm(xp1
, . . . ,xpm

) | p1, . . . , pm ∈ {1, . . . ,n}, p1 < · · · < pm,
m

∑
i=1

ωpi
> t, m = 2, . . . ,n−1} .

(13)

Some comments on (13) could be useful to better understand the involved optimiza-

tion. In (13) we are still interested in the strongest coalition, but the constraint of

having a fixed number of elements is replaced by a constraint on a majority thresh-

old t to be satisfied by the sum of the weights of the coalition’s elements. That is,

coalitions with different number m of elements are taken into account, provided that

they fulfil threshold t. Note that large values of µRm can be easily achieved if the

number m of elements is small, while the constraint ∑m
i=1 ωpi

> t is satisfied by the

coalitions with a sufficiently large number of strong elements. Therefore, the opti-

mal solution of (13) arises by taking into account the two conflicting criteria: power

of the coalition and degree of relationship among the coalition’s elements. We stress

again that the number m of the coalition’s elements is optimally determined only

after having solved (13).

Although the example proposed here is not based on a real world case, the prob-

lem solved in (13) could be applied to economics and political sciences. In fact, it

is possible to see vector ω as a collection of weights for political parties. At this

point, if we are able to establish some distance measures between any two parties

(i.e. a relationship degree), then we can apply (13) and find the strongest winning

coalition.

Note that vector ω defining the relative importance of each xi ∈ X must not be

confused with vector w of an OWA operator, which is used in this paper to assign

weights to degrees of relationships among elements in X.

Another problem that can be addressed is that of maximizing the number m

of elements in a subset satisfying a fixed majority threshold. Namely, let us fix

a threshold δ ∈ [0,1] such that µRm(xp1,xp2, . . . ,xpm
) > δ and leave the dimen-

sion m of our analysis free. In this way, progressively increasing m and calculating

µRm(xp1,xp2, . . . ,xpm
) at every stage, we can detect the largest B ⊆ X such that

µRm(B) > δ . Let m̂ denote this maximal cardinality,

m̂ = max{m| µRm(B) > δ , m = |B|, B ⊆ X} . (14)

It may occur that set B is not unique, since there exist ν different subsets B j, j =
1, . . . ,ν satisfying inequality µRm(B j) > δ with the same maximal cardinality m̂. In

this case, it is possible to define a winner as the subset Bi with the strongest degree

of relationship, µRm(Bi)≥ µRm(B j), j = 1, . . . ,ν . If again the solution is not unique,

the multiple solutions are considered equivalent for our analysis.

The very last observation concerns the dimension of the analysis. If m = n, then

the degree to which this particular relation holds is a measure of how strong the rela-

tion among all the xi ∈ X is. It can be interpreted as the degree of social relationship

computed on the entire network.
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6 Conclusions

We provided a new approach to the analysis of social networks based on m–ary

fuzzy adjacency relations and OWA operators. Our aim was to show that from the

combined use of these two mathematical tools, the vagueness pervading the rela-

tionships between the actors involved in the social network and their attitude to

connect each other can be represented more effectively. Through the introduction of

the strictly monotone OWA operator, we provided a representation of fuzzy m-ary

adjacency relations using the information embedded in the fuzzy binary relations

defined on the same universal set. Hopefully, starting from the results of this paper,

it will be possible to provide further representations of the interactions character-

izing the dynamics of social networks involving linguistically based evaluations as

well.
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21. Kolaczyk, E.D., Chua, D.B., Barthélemy, M.: Group betweenness and co-betweenness:

Inter-related notions of coalition centrality. Soc.Networks 31, 190–203 (2009)

22. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychome-

trika 14, 95–116 (1949)

23. Mollenhorst, G., Voelker, B., Flap, H.: Social contexts and personal relationships: The

effect of meeting opportunities on similarity for relationships of different strength. Soc.

Networks 30, 60–69 (2008)

24. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs. Physica-Verlag, New

York (2000)

25. Nair, P.S., Sarasamma, S.T.: Data mining through fuzzy social network analysis. In: Proc.

Of the 26th International Conference of North American Fuzzy Information Processing

Society, San Diego, California, pp. 251–255 (2007)

26. Newman, M., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of Networks.

Princeton University Press, Princeton (2006)

27. O’Hagan, M.: Aggregating template or rule antecedents in real-time expert systems with

fuzzy set logic. In: Proc. 22nd Annual IEEE Asilomar Conf. on Signals, Systems, Com-

puters, pp. 681–689 (1988)

28. Pattison, P.E.: The analysis of semigroups of multirelational systems. J. of Math.

Psych. 25, 87–118 (1982)

29. Peay, E.R.: Hierarchical Clique Structures. Sociometry 37, 54–65 (1974)

30. Scott, J.: Social Network Analysis. A Handbook. Sage, London (2000)

31. Todderdell, P., Holman, D., Hukin, A.: Social networks: Measuring and examining in-

dividual differences in propensity to connect with others. Soc. Networks 30, 283–296

(2008)

32. Yager, R.R.: Ordered weighted averaging operators in multicriteria decision making.

IEEE T. Syst. Man Cy. 18, 183–190 (1988)

33. Yager, R.R., Kacprzyk, J.: The ordered weighted averaging operators: Theory and appli-

cation. Kluwer Academic Publisher, Boston (1997)

34. Yager, R.R.: Intelligent Social Network Analysis Using Granular Computing. Int. J. of

Intell. Syst. 23, 1197–1220 (2008)

35. Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applications. Cam-

bridge University Press, Cambridge (1994)

36. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

37. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate

Reasoning I–II–III, Informa. Sciences, 8, 199–249, 301–357, 9, 43–80 (1975)



R.R. Yager et al. (Eds.): Recent Developments in the OWA Operators, STUDFUZZ 265, pp. 269–279. 

springerlink.com                                                                  © Springer-Verlag Berlin Heidelberg 2011 

Soft Computing in Water Resources 

Management by Using OWA Operator 

Mahdi Zarghami
*
 and Ferenc Szidarovszky

* 

Abstract. The Ordered Weighted Averaging (OWA) operator is an efficient multi 
criteria decision making (MCDM) method. This study introduces a new method to 
obtain the order weights of this operator. The new method is based on the 
combination of fuzzy quantifiers and neat OWA operators. Fuzzy quantifiers are 
applied for soft computing in modeling the social preferences (optimism degree of 
the decision maker, DM). In using neat operators, the ordering of the inputs is not 
needed resulting in better computation efficiency. 

One of the frequently-used ways to control water shortages is inter-basin water 
transfer (IBWT). Efficient decision making on this subject is however a real 
challenge for the water institutions. These decisions should include multiple 
criteria, model uncertainty, and also the optimistic/pessimistic view of the decision 
makers. The theoretical results are illustrated by ranking four IBWT projects for 
the Zayanderud basin, Iran. The results demonstrate that by using the new method, 
more sensitive decisions can be obtained to deal with limited water resources. 

The results of this study also show that this new method is more appropriate 
than the other traditional MCDM methods in systems engineering since it takes 
the optimism/pessimism nature of the DM into account in a quantifiable way. The 
comparison of the computational results with the current state of the projects 
shows the optimistic character of the DM. A sensitivity analysis illustrates how 
the rankings of the water projects depend on the optimism degree of the DMs. 

                                                           
Mahdi Zarghami 

Faculty of Civil Engineering, University of Tabriz, Tabriz, I.R. Iran, 

e-mail: zarghaami@gmail.com 

Ferenc Szidarovszky 

Systems and Industrial Engineering Department, University of Arizona, 

Tucson, AZ, USA 

e-mail: szidar@sie.arizona.edu 

* Corresponding author. 



270 M. Zarghami and F. Szidarovszky

 

1   Introduction 

The increasing demand for water and the relative absence of new and less 

expensive resources are major challenges and should be considered in formulating 

the water resources management problems. These problems should include the 

social, economic, and environmental issues. In addition, there are many sources of 

uncertainty which makes the efficient decision making a complex problem. 

Since the original work of Yager (1988) the OWA operator is used in many 

fields including water resources management problems. Table 1 summarizes the 

most important application being developed in this decade.  

This chapter introduces a new version of OWA, which will be then applied to 

solve a practical problem of selecting the most appropriate water resources 

project. This new method will be then applied for a project selection problem. The 

study is organized as follows. 

Table 1 Some applications of OWA in water resources management 

Authors Applications 

Despic and Simonovic (2000) 
Comparing the OWA with three other methods to select flood 

control measures in Manitoba, Canada 

Yalcin and Akyurek (2004) Mapping flood vulnerability in a basin in Turkey 

McPhee and Yeh (2004) 
Applying OWA in a multi-objective study to choose scenarios 

in aquifer management 

Mysiak et al (2005) 
A decision tool in the MULINO decision support system 

(DSS) for integrated water resources management 

Makropoulos and Butler (2006) 

Extending the OWA by applying it in GIS to produce 

prioritization maps for pipe replacement in a water 

distribution network   

Fu et al. (2006) 
Aggregating the possible climate change scenarios based on 

their probabilities by using the OWA approach 

Malczewski (2006) 

Using OWA with geographic information system (GIS) for 

multi-criteria evaluation for land-use suitability analysis in 

Canada 

Zarghami et al. (2008) 
Using the OWA operator in group decision making in a 

conflict among stakeholders in a watershed  

Averna Valente and Vettorazzi 

(2008) 

Integrating OWA with GIS to define the priority areas for 

forest conservation in a Brazilian river basin in order to 

increase the regional biodiversity 

Stroppiana et al (2009) 

To aggregate the anomaly scores of a set of contributing 

factors extracted from the analysis of historical time series, 

mostly of Earth observations data 
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The next section introduces the new method, called the Revised OWA. Then 

the multi-criteria case study of selecting IBWT projects will be described. The 

IBWT projects will be compared in the next section by using the new method. The 

last section concludes the chapter. 

2   OWA Operator 

Assume that the number of decision alternatives is m which are evaluated by n 

criteria. Let aij denote the evaluation of alternative i with respect to criterion j, 

then the overall goodness of this alternative can be characterized by the evaluation 

vector Xi=(ai1, ai2, …, ain). The comparison of these decision alternatives is based 

on a combined goodness measures. OWA can be used to aggregate the evaluations 

of each alternative with respect to the criteria. An n-dimensional OWA operator 

assigns a combined goodness measure  

   
1 2 1 1 2 2

1

( , , ..., ) ... ,
n

i i i in j ij i i n in

j

F a a a w b w b w b w b
=

= = + + +∑                    (1) 

for each alternative i where IIF
n U:  with ]1,0[=I , bij is the jth largest 

element in the set of 1 2{ , , ..., }
i i in

a a a  and ).....,,2,1( njw j = are the order 

weights such that 0≥jw  and 1
1

=∑
=

n

j

jw . That is, the OWA operator is a convex 

linear combination of the bij values. Notice that the components of the input vector 

have been ordered before multiplying them by the order weights. The OWA 

method has a large variety by the different selections of the order weights. Order 

weights depend on the optimism degree (well known as Orness degree) of the 

decision maker (DM). The greater the weights at the beginning of the vector are, 

the higher is the optimism degree. Yager (1988) defined the optimism degree θ as 

   .)(
1

1

1

∑
=

−
−

=

n

j

jwjn
n

θ                                   (2)  

Xu (2005) gives a general overview of the different methods for determining the 

order weights. In the next section, we will introduce the new method, called the 

Revised OWA. 

3   Revised OWA Operator 

In common language we use many linguistic terms such as most, few, many, and 

about half. Zadeh (1983) recommended the modeling of these linguistic 

quantifiers by using fuzzy sets. In this chapter these linguistic inputs are modeled 

by Regular Increasing Monotonic (RIM) quantifiers. A RIM quantifier, Q, 
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characterizes aggregation imperatives, in which higher satisfaction is obtained by 

including more objects. This quantifier has the following properties: 

1)1(,0)0(],1,0[)( === QQQR   and )()( 21 rQrQ ≥ if 21 rr ≥ .   (3) 

Yager (1988)
 
suggested obtaining the weights of an n-dimensional OWA operator 

as 

....,,2,1),
1

()( nj
n

j
Q

n

j
Qw j =

−
−=                            (4) 

Notice first that the derivative of the fuzzy quantifier Q is as follows: 

.
)()(

lim
0→ r

rrQrQ

dr

dQ

r ∆

∆−−
=

∆

                                (5) 

In the special case when n is large we may select nr /1=∆ , and so 

.
/1

)/1()(

n
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dQ −−
≈

                                       (6) 

Yager (1993) evaluated the value of drdQ /  at njr /=  by using equation (4) as 

n

w
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so 

                          .
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n
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=

≈                                        (7) 

These weights depend on only the order of the criteria. More sensitive weight 

selection can be obtained if the weights also depend on the evaluations of the 

criteria. So instead of using equation (7), we propose the following weight 

selection:  

j

j

brdr

dQ

n
w

−=

=

1

1                                          (8) 

where nbbb ≥≥≥ ...21 . The reason of using the term (1-bj) instead of bj is due to 

the opposite ordering of the criteria in equation (7) in comparison to the ordering 

of the bj values in the case of RIM quantifiers. These values however do not 

satisfy the necessary conditions of OWA weights since their sum usually differs 

from unity. After normalizing the wj values in equation (8), the final weights are 

obtained as follows: 
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This method of weight selection is entitled Revised OWA (Zarghami and 

Szidarovszky, 2009), since it is based on the exact derivatives of the quantifier. 

The weights obtained by equation (9) satisfy all necessary conditions of the OWA 

weights. The Revised OWA operator with these weights and with any fuzzy 

quantifier is a neat operator since the combined goodness measure, Fi is 

independent of the ordering of the inputs: 
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An additional advantage of using neat OWA operators in comparison to the initial 

OWA is that in this case more attention is given to the circumstance of the 

problem (e.g. to the evaluation values bij).  It is however a weakness of Revised 

OWA that the weights have to be calculated separately for each alternative. 

4   IBWT Projects for Central Iran 

The increasing water demand has caused an alarming decrease in the annual per 

capita water resources in Iran which is an arid country. The uneven distribution of 

the water resources across the country and the fast growth of the population and  

 

 

Fig. 1 IBWT projects positions to the Zayanderud basin 
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their water demands have led to the present water shortages in the major parts of 

the country, especially in the Central zone and in the Southeastern regions. The 

country is divided into six main hydrological basins as shown in Figure 1. The 

annual per capita water resources potentials (cubic meters) in the main basins are 

given in Figure 2 for the year 2000.  

2-Uremia lake; 

1730

4-Central; 1190

1-Caspian sea; 

2265

6-Sarakhs; 870

3-Persian 

Gulf&Oman 

sea; 4545

5-Hamoun; 1465

 

Fig. 2 Water resources potentials (m^3) per capita (year 2000) in the main basins of Iran 

According to Figure 2, basin 3 (Persian Gulf and Oman Sea) has the highest 

amount of water resources (~4545 cubic meter/capita/year) while the neighboring 

basin 4 (Central) has only a quarter of that amount (~1190 cubic 

meter/capita/year), so it is facing a high degree of water shortage. The socio-

economic life of the people in the Central basin can be significantly improved by 

water transfer from the neighboring basin, Large Karun, which is located in the 

Southwest corner of the country. It is the most important basin in Iran with respect 

to water potentials and the possibility of further water resources development. Part 

of its water potential is utilized inside the basin and transferred to other basins. 

The remaining water amount, around 20 to 25 billion cubic meters per year, is 

spilled and lost through outflow into the Persian Gulf. A part of the domestic and 

industrial wastewater returns to the ground water aquifers or to surface drainages. 

The assessment of the overall water quality of the system (Large Karun) shows 

that the IBWT projects from the upstream will worsen the water quality in the 

downstream. Due to the high potential of growth in the Karun basin, there are 

various concerns about water transfers to other basins, which generates conflicts 

among the stakeholders. Therefore it is essential to evaluate carefully any possible 

IBWT project from Large Karun before implementation.  

In this study we focus on the IBWT projects to the Zayanderud basin. It is 

located West of the Central basin as shown in Figure 1. It has a population around 
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four millions and in recent years, this basin is developed very extensively. In order 

to meet the increasing water demand in this basin, four IBWT alternative projects 

(Alt1: Gukan, Alt2: Cheshmelangan, Alt3: Kuhrang-III, and Alt4: Behestabad) 

have been developed to transfer water from the Large Karun River. These projects 

transfer water to the Zayanderud River, which passes through Isfahan, an 

important and historical city of the country. The city attracts more than one 

million domestic and foreign tourists every year. 

The Isfahan Regional Water Company as DM wants to compare these IBWT 

projects. Before evaluating these projects, it is necessary to construct a general 

hierarchy of the criteria. In the first step, major watershed's plans of twenty 

countries were examined. Based on the state-of-the-art reviews and the national 

acts of Iran, a hierarchy of the criteria was then introduced (Zarghami et al 2007). 

In this case study, only seven criteria were selected from the hierarchy, since 

some of them were irrelevant to the IBWT projects and also there was a lack of 

reliable data to evaluate the projects with respect to some others. The final seven 

criteria and the corresponding evaluation data are presented in Table 2. They were 

obtained by using a group of experts from the DM's company. The uncertainty of 

the data is taken into account by using linguistic variables, the followings were 

used: Very Low (VL), Low (L), Slightly Low (SL), Medium (M), Slightly High 

(SH), High (H), and Very High (VH). 

Table 2. Evaluation matrix of the IBWT projects (adopted from Zarghami et al, 2007) 

Criteria
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Weights of  criteria 

SL

(Negative)
MHL

VH

(Negative)
MVH

Alternatives 

L1.5HSH0.05.0SHAlt1

M1.4VHM0.00.0VHAlt2

SL1.1VHH200.03.0VHAlt3

SH1.6HVH4000.04.0VHAlt4

 

5   Applying Revised OWA in Soft Ranking of the Alternatives 

We can now determine the combined goodness measures of four IBWT projects 

by using the Revised OWA. The calculation procedure is as follows: 
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Step 1.  At the beginning, consider the projects which are evaluated by using 

linguistic variables. The linguistic data were modeled by crisp numbers according 

to the uniform scale of {0.05, 0.20, 0.35, 0.50, 0.68, 0.80, 0.95} corresponding to 

the set {VL, L, SL, M, SH, H, VH}. Other scales could also be introduced based 

on non-uniform distributions.  

 

Step 2.  These evaluation numbers were then normalized into the unit interval [0, 

1] as: 
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Step 3.  In applying the original version of OWA, the criteria weights are 

considered to be equal, however in this case, they were different as it is shown in 

the first row of Table 2. These weights were multiplied by the normalized 

evaluations of the alternatives.     

 
Step 4. The order weights were determined by using equation (9). Table 3 shows 

the results for Alt1.  

Table 3 The OWA weights for Alt1 by using different quantifiers 

Fuzzy Quantifiers

All Most Many Half Some Few 

At least 

one 

Relevant optimism degree

0.001 0.091 0.333 0.500 0.667 0.909 0.999

w1
0.000 0.071 0.199 0.143 0.095 0.056 0.047

w2 0.000 0.012 0.162 0.143 0.105 0.067 0.058

w3 0.000 0.000 0.100 0.143 0.134 0.104 0.094

w4 1.000 0.910 0.264 0.143 0.083 0.043 0.036

w5 0.000 0.000 0.015 0.143 0.344 0.562 0.615

w6 0.000 0.007 0.153 0.143 0.109 0.071 0.062

w7 0.000 0.000 0.107 0.143 0.130 0.098 0.088
 

 

 

Step 5.  The combined goodness measures have been then calculated by using 

equation (10). The results are shown in Figure 3.  
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Fig. 3 The combined goodness measures of the IBWT projects 

According to Figure 3, Alt2 is the most preferred project when the DM is 

optimistic (based on the quantifiers At least, Few and Some). Alt1 is however the 

most preferred project if the DM is neutral (by the quantifier half) or pessimistic 

(by the quantifiers Many, Most and All).  

The corresponding ranks of the alternatives are shown in Table 4. The last row 

'current state of project' reflects the previous decisions of the DM in which Alt2 is 

in operation (rank 1), Alt3 is under construction (rank 2), Alt1 is in the final study 

(rank 3) and Alt4 is under investigation (rank 4). 

The most and the least preferred projects, according to the row 'current state of 

project', are the same as in the columns of some, few and at least which represent 

the optimistic view of the DM. Therefore, we can conclude that the DM was 

optimistic about the IBWT projects. Water managers are usually not risk-taking 

individuals. However in this case, the DM is water recipient and not water  

 
Table 4 Ranking of the IBWT projects 

At least A2 A1 A3 A4

Few A2 A1 A3 A4

Some A2 A1 A3 A4

Half A1 A2 A4 A3

Many A1 A4 A3 A2

Most A1 A3 A2 A4

Using Fuzzy quantifiers

All A1 A2 A3 A4

Current State of the projects A2 A3 A2 A4
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supplier. He/she wants to bring as much water as possible to the Zayanderud 

basin, which explains the optimistic view.  

However, the optimism degree of the DM is also subject to the national and 

local policies. If the DM felt to be pessimistic due to the risky conditions, the Alt1 

project would have been the most preferred project. The ranks of the other projects 

also depend on the optimism degree. As an illustration, a sensitivity analysis was 

performed on the ranks of the alternatives due to changes of the optimism degree. 

The interval [0.01, 0.99] was selected with the increment of 0.03 and the entire 

procedure was repeated for all particular values of the optimism degree. Figures 4, 

as part of the results, illustrates how the most preferred alternative would change 

by the dynamic feature of the optimism degree. 

 

Fig. 4 Most preferred alternatives with different optimism degrees 

According to results, the ranks of the projects are robust in the entire optimistic 

section (θ > 0.5). However, in the pessimistic section their dependence on the 

optimism degree is not monotonic. Therefore, the precise knowledge of the 

optimism degree of the DM in the pessimistic region (θ < 0.5) is very important 

for securing the safe and satisfactory decision. 

6   Conclusions 

The Revised OWA operator was introduced and applied successfully in the soft 

ranking of the IBWT projects for Zayanderud, Iran. The results of this case study 

show that this new method is more appropriate than the other traditional MADM 

methods since it reflects the optimism/pessimism nature of the DM by using a 

quantifiable method. The comparison of the obtained results with the current state 

of the projects shows the optimistic character of the DM.  

Revised OWA benefits from fuzzy quantifiers to achieve a better 

characterization of the DM's satisfaction. It is therefore a context based model in 

which the ordering of the initial inputs is not required, so it is a neat operator. This 

new method therefore offers a more efficient way of computing the OWA 

weights. A sensitivity analysis illustrated the dependence of the rankings on the 

optimism degree of the DM. 
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Combination of Similarity Measures in Ontology

Matching Using the OWA Operator

Qiu Ji, Peter Haase, and Guilin Qi

Abstract. In this paper, we provide a novel solution for ontology matching by using

the ordered weighted average (OWA) operator to aggregate multiple values obtained

from different similarity measures. We have implemented the solution in the ontol-

ogy matching system FOAM. Using the similarity measures in FOAM, we analyze

the way to choose different OWA operators and compare our system with others.

1 Introduction

Ontology matching aims at identifying correspondences between the elements in

multiple ontologies. Ontology matching has many application areas, such as data

integration, data merging, and semantic search across heterogeneous data sources.

So far, quite a number of ontology matching systems have been proposed. Good

surveys of different approaches to the matching problem are provided in [9, 10].

It has been accepted that combining the values obtained by multiple similarity

measures is a promising technique to obtain more accurate matching results than

just using one similarity measure at a time. Usually, a simple weighted average is

used as the aggregation operator where the weights can be obtained manually or

by machine learning techniques. Obviously, it is difficult for a person to manually

assign the weights to the similarity measures by experience. For the way based on

machine learning techniques, rich data sets are needed to train the algorithms for

obtaining useful weights.

To alleviate this problem, we investigate the use of the Ordered Weighted Average

(OWA) [16] to aggregate the values obtained by individual similarity measures. It is

noted that, a weight used by the OWA operator is associated not with a specific sim-

ilarity measure, but instead with a specific ordered position. We have implemented
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our solution in the ontology matching system FOAM1. There are two main reasons

for integrating the OWA operator into FOAM:

1. FOAM provides many similarity measures according to various features of

OWL2 ontologies such as the feature of domain or range for an property.

2. The OWA operator is a powerful operator to aggregate multiple values, and there

are many kinds of approaches to obtain OWA weights [5, 15, 6]. Particularly,

the linguistic OWA operator [16] provides semantic explanations which can be

understood by users easily.

This paper is organized as follows: In Section 2, we discuss the related work on

the aggregation of the similarity measures in various ontology matching systems. In

Section 3 we describe the background of the FOAM system and the OWA operator,

and then we discuss the integration of the OWA operator into FOAM and the result-

ing problems. We evaluate the OWA operator as an aggregation operator in FOAM

in Section 4. Finally, in Section 5 we conclude this paper and give an outlook to the

future work.

2 Related Work

So far, various ontology matching systems have been developed by many re-

searchers (see good surveys [9, 10]). They consider various kinds of information

provided in the ontologies. To aggregate the values obtained by multiple individual

similarity measures, many aggregation operators have been proposed. In the fol-

lowing we discuss those ontology matching systems which are most related to our

work.

COMA [1] exploits Max, Min, Average and Weighted strategies for the aggrega-

tion operation. Where, the Weighted strategy computes a weighted sum of similarity

values for the individual similarity measures which assigns relative weight to each

similarity measure. Average is a special case of Weighted which considers each sim-

ilarity measure equally important and returns the average similarity value over all

similarity measures. Max and Min are two extreme cases which return the highest

and lowest similarity value of any similarity measure respectively.

The study in paper [4] also adopts Weighted strategy to aggregate the similarity

values obtained by all the features (i.e. similarity measures) that make the definition

of an entity in an OWL-Lite ontology. The weight here is linked to entire descriptive

aspects instead of particular similarity measures.

CMC [13] combines similarity values using weighted average based on credi-

bility prediction. It needs to predict the accuracy of each similarity measure on the

current matching task first by a manual rule or a machine learning method. Accord-

ingly, different credibilities for the similarity measures are assigned. That is, for each

similarity measure two matrices including the similarity matrix and the credibility

matrix are provided. For each pair of entities to be compared, the credibilities in the

1 http://ontoware.org/projects/map
2 http://www.w3.org/TR/owl-features/
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credibility matrices are used as weights to aggregate the similarity values obtained

by different similarity measures into a combined one.

In the original version of FOAM, which implements the algorithms described in

[2], both the manual way to assign weights and the automatic way to learn how to

combine the similarity values are provided.

To sum up, Weighted is the most popular aggregation operator to combine multi-

ple similarity values. The weight here is assigned to a particular similarity measure

and can be obtained manually or by machine learning techniques. When it is not

necessary or it is difficult to obtain weights for the similarity measures, only Max,

Min and Average can be used. However, since each similarity measure performs

differently under different conditions, these operators may be not enough to show

various performance for complex situations.

In our previous work [8], the linguistic OWA operators are introduced to aggre-

gate multiple similarity values for ontology matching. But there is no details about

1. How the performance of OWA operator behaves with more similarity measures

and complex ontologies.

2. How to choose different aggregation operators for different purposes.

3. How the performance of the system compares with other ontology matching

systems.

In this paper, we provide a new solution for ontology matching by integrating OWA

operator into the FOAM system. Based on this solution, the questions above can be

answered accordingly.

3 The OWA Operator for Ontology Matching

In this section, we first introduce some basic notions in ontology matching to be used

throughout the paper. Then we will describe a specific ontology matching system

FOAM in which we will integrate the OWA operator for similarity integration. After

that, the OWA operator is introduced. Finally, the integration of the OWA operator

into FOAM will be presented.

3.1 Basic Notions in Ontology Matching

We introduce here some basic notions given in [3], which will be used later in

this paper. We assume the readers are familiar with ontologies, especially OWL

ontologies.

Let O1 and O2 be two ontologies and Q be a function that defines sets of mappable

elements Q(O1) and Q(O2). We call a 4-tuple < e,e′,r,α > as a correspondence

between O1 and O2 if

• e ∈ Q(O1) and e′ ∈ Q(O2);
• r is a semantic relation which can be one of the semantic relations from the set

{≡,⊑,⊒};
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• α is a confidence value (i.e. similarity value) from a suitable structure < D,≤>.

Usually, we adopt D = [0.0,1.0]

A mapping between O1 and O2 consists of a set of correspondences between the

pairs of entities which belong to Q(O1) and Q(O2) respectively.

3.2 Ontology Matching in FOAM

The FOAM system is based on a generic process for ontology matching, as de-

scribed in [2]. Other ontology matching approaches can be described in terms of

this process as well. Here, we only describe briefly the process to the extent that

is necessary to understand how the role of similarity aggregation works within this

process. Figure 1 illustrates the six main steps of the generic process.

Input:

Input for the process are two or more ontologies, which need to be matched with

one another. Additionally, it is often possible to enter pre-known (manual) corre-

spondences. They can help to improve the search for other correspondences.

1. Feature Engineering:

The role of feature engineering is to select relevant features of the ontology to de-

scribe a specific ontology entity, based on which the similarity with other entities

will later be assessed. For instance, the matching process may only rely on a subset

of OWL primitives. For each feature, a specific similarity value based on a corre-

sponding similarity measure will be assigned.

2. Search Step Selection:

The derivation of the correspondences takes place in a search space of candidate cor-

respondences. This step may choose to compute the similarity of certain candidate

entity pairs and to ignore others in order to prune the search space [2].

3. Similarity Computation:

For a given description of two entities in a candidate correspondence, this step com-

putes the similarity value of the entities using the selected features.

Search Step
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Similarity

Assessment

Similarity

Aggregation

Iteration

2 3 4

6
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Engineering

Inter-

pretation

1 5Input Output
Search Step
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Similarity
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6
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Engineering

Inter-
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1 5InputInput OutputOutput

Fig. 1 Ontology matching process in FOAM
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4. Similarity Aggregation:

In general, there may be several similarity values for a candidate pair of entities, e.g.,

one for the similarity of their labels and one for the similarity of their relationships

(i.e. properties) to other entities. These different similarity values for one candidate

pair have to be aggregated into a single aggregated similarity value. Often – as in the

original FOAM system – a weighted average is used for the aggregation of similarity

values.

5. Interpretation:

The interpretation finally uses individual or aggregated similarity values to derive

correspondences between entities. A common approach is to use thresholds [1]: If

the similarity value of two entities exceeds the threshold, the entities are mapped

and they are considered as a correct correspondence.

6. Iteration:

The similarity of one entity pair influences the similarity of neighboring entity pairs.

For example, if the individuals are equal, this affects the similarity of the concepts

(i.e. the types of those individuals) and vice versa. Therefore, the matching process

is repeated until no new correspondences are proposed or a fixed number (for our

test, the maximal iteration is set 3) of iteration is reached.

Output:

The output is a representation of mapping including those correct correspondences

(the correctness of a correspondence is determined in step 5) and possibly with

additional confidence values (i.e. similarity values) based on the similarity of the

entities.

3.3 The Ordered Weighted Average Operator

The ordered weighted averaging (OWA) operator is introduced in [16] to aggregate

information. It has been used in a wide range of application areas, such as neural

networks and fuzzy logic controllers.

Assume we are given a set of arguments V1 = (a1,a2, ...,an), ai ∈ [0,1], 1 ≤
i ≤ n, and the weights for OWA operator W = (w1, ...,wn). After reordering the

elements in V1 in descending order, we mark it as V2 = (b1,b2, ...,bn), where b j is

the jth highest value in V1. An OWA operator is a mapping function F from In to I,

I = [0,1]:

F(a1,a2, ...,an) = ∑n
i=1 wibi

= w1b1 + w2b2 + ...+ wnbn

where wi ∈ [0,1] and ∑n
i=1 wi = 1.
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Note that a weight wi is not associated with a particular argument ai, but with a

particular ordered position i of the arguments. That is wi is the weight associated

with the ith largest argument whichever component it is [16].

Obviously, determining the OWA weights wi, 1 ≤ i ≤ n is a critical task. So far,

quite a few approaches have been proposed. We adopt the linguistic quantifiers de-

veloped by Yager [16], since these quantifiers have semantics which can be accepted

easily for users. They are defined as:

wi = Q(i/n)−Q((i−1)/n), i = 1,2, ...,n (1)

where Q is a nondecreasing proportional fuzzy linguistic quantifier and is defined

as the following:

Q(r) =







0, if r < a;

(r−a)/(b−a), if a ≤ r ≤ b;

1, if r > b,

(2)

where 0≤ a,b,r ≤ 1, a and b are the predefined thresholds. Obviously, the operators

such as Max, Min and Average are three special cases of the OWA operator.

For some special linguistic operators like at least half which are used in the

paper, we introduce their semantic interpretations within the application area of on-

tology matching to facilitate users to choose different operators for different tasks

or purposes.

Assume there are n similarity measures m1, m2, ..., mn. Each similarity measure

can be regarded as a criteria, so the aggregation process is to form an overall decision

by considering multiple criteria. For an entity pair (x,y), where x belongs to a source

ontology and y belongs to a target ontology, mi(x,y) indicates the degree to which

the entity pair (x,y) satisfies the criteria or similarity measure mi. Actually, mi(x,y)
is the similarity value between x and y obtained by similarity measure mi, where

i= 1, 2, ..., n.

1. Max: Max(x,y) = Max{m1(x,y), m2(x,y),...,mn(x,y)}, where Max means that

(x,y) satisfies at least one of the similarity measures, i.e., it satisfies m1 or m2

or... or mn.

2. Min: Min(x,y) = Min{m1(x,y), m2(x,y), ..., mn(x,y)}. Min means that (x,y) sat-

isfies all the similarity measures, that is to say, we are essentially requiring to

satisfy m1 and m2 and... and mn.

3. Average: Average means identity, which regards all similarity values equally.

4. At least half: This operator satisfies at least half similarity measures. Actually,

it only considers the first half of similarity values after re-ordering them in the

descending order.

5. Most: Most means most of the similarity measures is satisfied. Usually, this oper-

ator ignores some higher and lower similarity values, that is to give small weights

on them, while paying more attention to the values in the middle of the input ar-

guments after re-ordering them in the descending order.
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6. As many as possible: It satisfies as many as possible similarity measures and is

opposite to at least half. The second half of values after reordering is considered.

So after an aggregation operation, the result obtained by at least half is always

no less than that by as many as possible.

3.4 Integration of OWA into FOAM

In FOAM, originally a weighted average is used for the similarity aggregation step,

which gives more importance to the similarity measure based on the labels of the

entities to be compared. If there is no label available, the performance of ontology

matching will become worse.

In our work, we use an OWA operator to combine similarity values obtained

from multiple similarity measures. Obviously, the main advantage of our method is

that weights are not fixed to these similarity measures, but assigned to the positions

of these similarity values in a descending order. In this way, each similarity mea-

sure is treated equally. The second advantage is that, although the OWA weights

can be obtained manually or by machine learning techniques, there are quite a few

straightforward methods without data sets for training and too much preliminary

knowledge. What the users need to do is to take several entity pairs to be compared

as samples and observe the similarity values obtained by the similarity measures for

each entity pair, or they can simply choose different linguistic OWA operators by

their semantic interpretations.

To choose OWA operators by observation, we assume there are n individual sim-

ilarity measures for a category of entities, which can be concept category, datatype

property category, object property category or individual category. If most individ-

ual similarity measures could return m (0 ≤ m ≤ n) similarity values simi above

zero, where 0 ≤ i ≤ m, and 0 < simi ≤ 1, then it is better to choose an OWA opera-

tor which can give more importance to most of the m highest values or all of them,

while assigning lower or zero to other n−m values. For the similarity measures we

used in this paper, no more than half of the similarity measures return some simi-

larity values above zero in most cases. Based on our experience, higher values are

more reliable, but one should not rely on just one highest value. So it would be better

to use at least half which only considers the half higher values, but not to use Max

considering only one extreme value for each aggregation.

4 Evaluation and Discussion

4.1 Data Sets

We use the benchmarks which are provided by the OAEI campaign in 20083. The

test case of benchmarks includes 110 ontologies in OWL excluding ontology 102

as the corresponding reference mapping is empty. Ontology 101 is regarded as the

3 http://oaei.ontologymatching.org/2008/

http://oaei.ontologymatching.org/2008/
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reference ontology, i.e., each ontology in the benchmarks, including ontology 101,

will be matched against ontology 101. The benchmarks are divided into three groups

marked as 1xx (ontology 101-104), 2xx (ontology 201-266) and 3xx (ontology 301-

304). More details can be found on the website of OAEI 2008.

The goal of the benchmark series is to identify the areas in which each match-

ing algorithm is strong and weak. In our experiment, the mappings are computed

automatically without the participation of users. We also obey the rules to obtain

mappings to compare with other systems in OAEI 2008. For example, for all tests

based on our matching system we use the same parameters such as the threshold to

determine the mapped entity pairs and maximal number of iterations in the matching

process.

4.2 Evaluation Criteria

In order to compare the performance of different matching algorithms or systems,

several evaluation criteria are used to give different views of the results. Except

the standard measures such as precision, recall and f-measure, the harmonic mean

measure is also used to compare our results with those provided by other ontology

matching systems in OAEI 2008.

For the measures below, i indicates the ith test. |Ri| refers to the number of cor-

respondences in a reference mapping or golden standard which is manually created.

|Pi| is the number of all correspondences found automatically by the matching sys-

tem. |Ii| is the number of correct correspondences found by the matching system

for test i, where the correct correspondences mean those correspondences found by

a matching system are also in the reference mapping.

1. Precision (p):

pi = |Ii|/|Pi|. It reflects the ratio of the correct correspondences among all corre-

spondences discovered by the matching system.

2. Recall (r):

ri = |Ii|/|Ri| specifies the ratio of correct correspondences found by the matching

system in comparison with total number of correspondences in the golden standard.

3. F-Measure (f):

fi = 2 ∗ pi ∗ ri/(pi + ri), which estimates the reliability of the match predictions [1].

4. Harmonic mean (H):

Harmonic mean2 is an aggregation of standard measures such as precision and re-

call. Specifically, harmonic mean of precision, recall and F-Measure is defined re-

spectively as followings:
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H(p) = ∑n
i=1 |Ii| / ∑n

i=1 |Pi|
H(r) = ∑n

i=1 |Ii| / ∑n
i=1 |Ri|

H( f ) = 2 ∗H(p)∗H(r) / (H(p)+ H(r))

Here, n is the number of the considered tests.

4.3 Similarity Measures

For our experiments, we used more than 20 similarity measures which are defined

according to various characteristics of an OWL ontology. Usually, the entities in an

ontology consist of the concepts, properties (which includes object properties and

datatype properties) and individuals. Based on the classification of the entities, the

similarity measures we used can be divided into the following categories:

• String-based similarity measures: This category computes the similarity between

two entities using edit distance4 technique by considering the string of a label or

local name of a URI from an entity as the sequences of letters in an alphabet.

• Concept-based similarity measures: Such kind of measures regard the two con-

cepts as similar if their super concepts, sub concepts, related properties or asso-

ciated individuals are similar.

• Property-based similarity measures: Two properties will be similar if their super

properties, sub properties, domains or ranges are similar.

• Individual-based similarity measures: Two individuals will be considered as sim-

ilar if their type (i.e. the concept(s) that an individual belong to) or relevant prop-

erties are similar.

Here, we roughly described the similarity measures we used for our tests. More

details can be found in the class of “ManualRuleSimple” in FOAM API which is

open source.

4.4 Results and Discussion

We evaluate our algorithm from the following aspects. First of all, we evaluate the

performance of various OWA operators based on the same similarity measures. Then

we compare the OWA operator with weighted average operator. Finally, we compare

our system using OWA operator with other systems.

4.4.1 The Performance of OWA Operators

In the first part of the evaluation, we compare the performance of the FOAM system

when applying different OWA operators for the similarity aggregation.

4 The edit distance between two strings is given by the minimum number of operations

needed to transform one string into the other, where an operation is an insertion, deletion,

or substitution of a single character.
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Figure 2 shows the harmonic means (over the entire data set of benchmarks in

OAEI 2008) of the precision, recall and f-measure for the different operators intro-

duced in Section 3.

For these OWA operators, they assign the importance to different positions of

the values to be aggregated in the descending order. For example, max considers

the maximal value and As many as possible considers half of the smallest values.

The first observation is that using max operator shows a poor performance, as this

operator assigns all the weights to only one similarity value. The As many as pos-

sible operator assigns most weights to the similarity measures with lower similarity

values and exhibits a very high precision, as it will return a match if half of the sim-

ilarity measures with the smallest similarity values indicate a match. Obviously, this

selectivity results in a low recall. We observe an increasing performance in terms

of f-measure for the operators from max, As many as possible, most, average, to at

least half. The best results in terms of f-measure are obtained for the at least half

operator that assigns the weights to half of similarity values which are the highest

ones.

However, it is worth noting that for different matching tasks, different operators

may be appropriate. For example, if a high precision is required, an operator that

assigns higher weights to the lower similarity values may be adequate, e.g. as many

as possible. In any case, this selection can be performed easily based on the intuitive

meaning of the lexical OWA operators, without any knowledge about the specific

similarity measures.
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Fig. 2 The performance of different OWA combination methods
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4.4.2 Comparison between OWA Operator and Weighted Average

In the second part of the evaluation, we compare the performance of the FOAM

system by applying the OWA operator at least half with that applying the regu-

lar aggregation operator weighted average which was previously implemented in

FOAM. Again, the comparison has been done based on exactly the same similarity

measures.

In Figure 3, we only show the f-measure for ontologies from 248 to 304. For

these ontologies, it is much harder and more challenging to find the correct corre-

spondences than others in that these ontologies have quite different structure or lack

annotation information like labels or comments comparing with the reference on-

tology 101. The number from 0 to 71 in X-axis indicates the ontology pair between

the reference one 101 and an ontology from 248 to 304. For each correspondence

between an ontology pair, one element is in the reference ontology 101, and another

one is in the test ontology from 248 to 304. Two curves indicate the f-measure which

are calculated by the at least half OWA operator and weighted average respectively.

We observe that in most cases, at least half outperforms weighted average. This

is because ontologies from 248 to 266 derive from ontology 101 by changing the

name of entities with different conventions, suppressing the comments, suppressing

or flattening or expanding the concept hierarchy, and so on. For ontologies from

301 to 304, they are real-life ontologies which are created independently of the ref-

erence ontology 101. In such cases, some similarity measures will become useless

if the corresponding features are not available. The weighted average is not flexible

enough to deal with such cases since it gives weights to each similarity measure

independent of the performance of the similarity measures. On the other hand, at
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least half does not rely on particular similarity measures. Instead, it will assign the

weights to that half of the similarity measures that perform best. On average, we

observed an increase for the f-measure from 0.76 for the weighted average to 0.845

for the at least half OWA operator.

The benefits of using OWA aggregation operators are actually twofold: We do not

need to assign weights to the individual similarity measures thus do not require any

background knowledge about the similarity measures. At the same time we observe

an improved performance.

4.4.3 Comparison with Other Ontology Matching Systems

Although the FOAM system did not participate in the official evaluation contest

of OAEI in 2008, we give our results to compare with other systems which have

participated, based on the same benchmarks as other systems and using the same

evaluation measures. Since many systems attended the contest, we compare against

the top eight systems.

Table 1 The comparison between FOAM (WA and OWA) and the top eight matching systems

based on the benchmarks in OAEI 2008.

System H(p) H(r) H( f )

aflood 0.97 0.71 0.820

aroma 0.95 0.70 0.806

ASMOV 0.95 0.86 0.903

CIDER 0.97 0.62 0.756

DSSim 0.97 0.67 0.793

Lily 0.97 0.88 0.923

RiMOM 0.96 0.84 0.896

SAMBO 0.99 0.58 0.731

FOAM-WA 0.95 0.63 0.760

FOAM-OWA 0.95 0.76 0.845

In Table 1, we show the harmonic means of precision and recall and f-measure to

give an overview of the results. From the results shown in this table, we see that the

matching systems ASMOV [7], Lily [14]and RiMOM [17] are the top three systems

with respect to the harmonic mean of f-measure. For the three systems, the harmonic

mean of f-measure achieves about 0.9 which are much better than all the others. Al-

though the FOAM system – with either weighted average or OWA operator – can

not beat with the top three systems, still it provides competitive performance. Es-

pecially when using the OWA aggregation operator, the FOAM system outperforms

all the other systems except the top three ones.

Now we analyze why our system is outperformed by the top three systems. The

main reason is that, we just use some simple and straight similarity measures and we

are lacking of some heuristic algorithms to adapt the input parameters at runtime.
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Take RiMOM system as an example. A key step of strategy selection is used. That

is, if two ontologies have high label similarity, then the matching process will rely

more on linguistic based strategies; while if the two ontologies have high structural

similarity, they will employ similarity-propagation based strategies on them [11].

So RiMOM can perform better by using the flexible strategy selection.

Although FOAM-OWA is outperformed by ASMOV, Lily and RiROM, there is

no big difference between ours and others. For example, the maximal difference

between ours and the top system Lily is 0.078 regarding H( f ). Besides, we still have

quite a lot space to improve the performance of our system because of the flexibility

of OWA operators and the support from the existing and ongoing theoretical and

practical study of OWA operators. Furthermore, ours outperforms other systems

except the top three systems. From Table 1, it can be seen that it is worth to integrate

OWA operator into FOAM as the harmonic mean of recall has been improved a lot

(i.e. from 0.63 to 0.76) when the same harmonic mean of precision (i.e. 0.95) is

reached, comparing with FOAM-WA.

5 Conclusion and Future Work

It has been proved that, in most cases, combining the results of multiple similarity

measures is a promising technique to get better results than just using one similarity

measure at a time [1, 4, 2, 13]. In this paper, we integrated OWA aggregation oper-

ator into FOAM to provide a novel and promising solution for ontology matching.

We summarize the answers for those questions given in Section 2.

1. Test with more similarity measures and complex ontologies. By testing more

than 20 similarity measures and 110 ontology pairs, we can see that At least

half operator outperforms other normal aggregation operators like average and

weighted average in most cases.

2. Choose different aggregation operators. Generally, there are two ways to

choose aggregation operators. One is according to their semantics explained in

Section 3.4. Another way is according to various tasks which has been analyzed

in our experiments in Section 4.4.1. For example, if a high precision is required,

an operator that assigns higher weights to the lower similarity values may be

adequate like as many as possible.

3. Compare with other matching systems. Although FOAM-OWA is outper-

formed by the top three systems ASMOV, Lily and RiROM, there is no big

difference (e.g. the maximal difference is 0.078 regarding the harmonic mean

of f-measure). As for the flexibility of OWA operators, there is still room for

improving the performance of our system. Furthermore, our system outperforms

others except the top three ones. We have shown that it is worth to integrate OWA

operator into FOAM as the harmonic mean of recall has been improved when the

same harmonic mean of precision is reached comparing with the previous version

of FOAM (i.e. OWA-WA).
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In the future work, we will extend our current work along two directions. One

is the integration of machine learning techniques to obtain OWA weights when rich

data sets related to the test ontologies are available. Another direction is combin-

ing OWA weights with the weights associated to the similarity measures using the

techniques of the weighted OWA operator [12] when the similarity measures have

different importance.
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