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Preface

What is information? What is its role in biology? Late in this “Information
Technology” era, one would think that we knew the answers to these issues. But,
in fact, we do not. This book, edited by Samuli Niiranen and Andre Ribeiro, is
a fine effort to explore these issues.

For readers not familiar with the debate, I will outline the two main theories
of information and briefly discuss them.

In 1948 Claude Shannon invented his information theory. Shannon was con-
cerned about sending signals down a telephone channel subject to noise. He
rightly realized that for this engineering problem, the “meaning” of the infor-
mation sent down the channel was irrelevant.

Shannon’s first idea was that the simplest “unit” of information was a “yes”
versus “no” choice, which could be encoded by a 1 or 0 symbol. Then a message
sent down a channel would be some string of 1 and 0 symbols.

Brilliantly, Shannon sought to define the amount of information in such bi-
nary symbol strings. To do so, he imagined a source that emitted symbol strings.
To explain this idea, imagine that each symbol string is length N. Then the
“source” might contain many copies of one symbols string, called a “message”,
and few copies of other symbol strings. Shannon wanted an additive measure of
information. He invented a mathematical formula to accomplish this. He con-
sidered the number of copies of each message, message “i”, divided by the total
number of messages in the source, say M, to define the probability Pi, that the
source would “emit” that message, then made an additive theory of the amount
of information in the source by taking the logarithm of Pi to a logarithmic base
that he chose to be base 2. Then he calculated the average value of Log Pi for
all messages in the source, and made this a positive number: - sum PiLogPi.

An amusing and perhaps true story is that Shannon asked von Neumann, the
famous mathematician, what to call his measure of the information in the Source.
“Call it entropy”, goes the story, “No one knows what entropy is”. Whether true
of false as a story, this mathematical expression is called the “Entropy of the
information source”.

Shannon’s mathematical expression is essentially the same as Boltzmann’s
expression in statistical mechanics for the entropy of a physical system.

Then Shannon imagined his 1 and 0 binary symbols, now called “bits”, being
sent down an information channel. But the channel might be noisy. He then
invented the idea of an error correcting code. The simplest is this: encode each
binary symbol, or bit, as a triplet of identical bits, so the symbol string 1011
becomes 111000111111. Then his idea was that a “decoder” at the far end of the
channel could decode this encoded message and error correct by what is called
“the majority rule”. If the decoder received the symbol string 101000111110 it
would examine each triplet and guess that the first triplet 101 was really 111
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and that noise had degraded, or flipped the middle 1 to 0. These ideas led to the
generation of wonderful error correcting codes and Shannon’s theorems about
the carrying capacity of his channel in the face of noise.

But I ask you to notice three things about Shannon’s theory. First, by de-
sign, it has no “semantics”. We have no idea or definition of what the 1 and 0
symbols “mean”. This issue was irrelevant to his engineering problem. Second,
Shannon assumes that the “decoder” can have indefinite computational power.
It can decode any arbitrary encoding. This assumption is entirely unrealistic.
In this book, primary examples of information processing systems are cells and
genetic regulatory networks. Such causal systems have no decoder of indefinite
computational power. This renders Shannon’s Channel theorems questionable
or moot. For the deeper question is, how causal systems can coordinate their
behaviors when no parts of any of the systems have indefinite computational
power. This book seeks answers to this fundamental question.

Third, Shannon supplies a measure of how much information the source has,
his Source entropy. But Shannon never tells us what information “is”. To this
day, computer scientists give a diversity of answers to this puzzling question. I
will suggest my own try below. This suggestion is implicit in the work described
in this book.

The second theory of information we have is due to Kolmogorov. He defined
the information content of a symbol string, say a binary symbol string, as the
length of the shortest computer program on a universal computer that could
produce the symbol string. Thus, consider the symbol string (1111111111). The
shortest program for this is: “Print 1 ten times”. Now consider (10101010101).
The shortest program is: Print “10 five times”. Notice that this measure takes
advantage of the redundancy in the symbol string. Kolmogorov realized and
proved that for a completely random symbol string, the shortest program would
need to be proportional to the length of the random symbol string. This idea has
led to brilliant work. For example, consider a random symbol string length N.
Concatenate it with itself to create a symbol string length 2N. Now “compress”
the 2N string to get rid of all redundancy. An ideal compressor will yield a
compressed symbol string length N. But now take two different random symbol
strings length N. Concatenate them and try to compress them. You cannot
compress the two strings to a length less than 2N. So the extent to which you
can compress two symbol strings is a measure of how similar they are. Indeed it is
a measure of the mutual information between the strings. Conversely, the extent
to which the two strings cannot be compressed is a measure of how different
they are. This can be used to construct a universal measure of the “distance”
between symbol strings, the “normalized compression distance” (NCD). This
NCD is now being put to interesting use.

Notice about Kolmogorov’s measure that he does not tell us what information
“is”.

The fact that neither Shannon nor Kolmogorov tell us what information
“is”, has left us with the impression that information somehow floats free, some
abstract something and we do not know what it is.
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This book concerns information either in cells or language. I want to close
this prologue with my own try at deepening the idea of what information “is”.
It is concurrent with the contents of this book, as I’ll sketch below.

In What is Life, published in 1943, Schrödinger brilliantly guesses that the
gene, estimated to have only a few hundred atoms, must be a “solid” held to-
gether via quantum mechanical chemical bonds, the true source of order in or-
ganisms, instead of the familiar classical statistical mechanics of ink diffusing in
a petri plate. Then he says, of the gene, “It will not be a regular crystal, they are
dull. It will be an aperiodic crystal containing a microcode for the organism.”
This is all Schrödinger tells us. He does not elaborate on what he means.

I’m going to give my own interpretation. I begin with physical work. Work
is defined as “force acting through a distance”, for example, a hockey stick
accelerating a hockey puck. But P. W. Atkins in his book on the Second Law
says “Work is a thing. It is the constrained release of energy into a few degrees of
freedom.” For example, consider a cylinder and piston with the hot working gas
in the head of the cylinder. The random motions of the hot gas exert pressure
on the piston which moves in translational motion down the piston in the first
part of the power stroke of a heat engine.

This is precisely the release of energy into a few degrees of freedom, the
translational motion of the piston down the cylinder. Thus work is done.

But what are the constraints? The cylinder, the piston, the location of the
piston inside the cylinder and, of course, the working gas constrained to the head
of the cylinder.

Now the physicist will put in these constraints as fixed and moving boundary
conditions.

But how did these constraints come to exist in the universe? Well, it took
work to construct the cylinder and piston and locate the piston and gas inside
the cylinder. So we come to something not in the physics books: It (typically)
takes work to construct Constraints on the release of energy into a few degrees
of freedom that constitutes Work. No work, no constraints. No constraints, no
work. We lack a theory of this. Hints of it are in this book as I’ll note below.

Now back to my interpretation of what Schrödinger was getting at. I think
the aperiodic crystal, for example the DNA molecule with its arbitrary sequence
of bases, contains myriad broken symmetries that are the microconstraints that
allows energy to be released on constrained ways and constitute a myriad of
diverse work processes.

I want to suggest that this yields the start of an embodied sense of informa-
tion. Here, the meaning of information is the work process that is enabled. A
measure of how much will require a measure of how organized this work process
is, and how diverse the set of work processes are. I think these measures can be
constructed.

These suggestions tie to this book. In D. Cloud’s initial chapter, he rightly
notes that in cells, information involves ignoring details of molecular motions and
features and the cell treating a DNA sequence as “the same sequence” despite
how it wiggles in water. Cloud’s insight is an example of throwing away some
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aspects of the detailed molecular behavior and the cell’s use of an equilvelence
class of detailed configurations of the DNA encoding an RNA to transcribe the
same RNA. In a way that is not quite clear yet, Cloud’s “ignoring” creates an
equivelence class of detailed sequence configurations that together constitute the
constraints on the RNA polymerase to transcribe the gene into RNA. This allows
the specific work of transcription to happen.

Now in much of the book, dynamical models of gene regulation and genetic
regulatory networks are discussed. Work is not at the heart of these discussions,
but is implicit in them. This is true because transcription and translation, as
noted above, is the constrained release of energy into a few degrees of freedom,
and the genetic regulatory network’s dynamics is the further constrained release
of energy into few degrees of freedom. Thus all the discussions in this book about
network dynamics links causal networks implicitly with work processes that are
the constrained release of energy. I suspect that this gets at what information in
cells “is”.

In the final chapter, S. Niiranen discusses language. But here too in a still
poorly articulated way, constraints are hiding. Consider the child game of hop-
scotch. There are lines of chalk on the sidewalk and the rules of hopscotch that
jointly are enabling constraints that organize the activities of children around
the world to play hopscotch. No constraints, no organized activities. Language
has its constraints in its syntax, let alone its semantic meanings which, I believe
require conscious experiences and an analysis of reference.

This is a fine book. In examining cell dynamical systems and genetic regula-
tory networks that are models of causal classical physical systems that embody
the constrained release of energy, and an analysis of language, the book moves us
toward what will someday become a much richer understanding of information
and its role in the unfolding complexity of the universe.

November 25, 2010 Stuart A. Kauffman
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Introduction

Samuli Niiranen and Andre Ribeiro

Computational Systems Biology Research Group, Department of Signal Processing,
Tampere University of Technology, Tampere, Finland

Abstract. Information propagation and processing pervades biological
systems. While it is known that there is information processing and prop-
agation at the various levels of detail, such as within gene regulatory
networks, within chemical pathways in cells, between cells in a tissue,
and between organisms of a population, how this occurs and how in-
formation is processed in living systems is still poorly understood. For
example, it is not yet entirely understood how gene networks process
the information contained in changes in the temporal level of an mRNA
so as to distinguish a stochastic fluctuation from a message containing
valuable information regarding another genes state. In recent decades,
information theoretical methods and other tools, originally developed in
the context of engineering and natural sciences, have been applied to
study various aspects of diverse biological processes and systems. This
book includes chapters on how the processing of information in biolog-
ical processes is currently understood in various topics, ranging from
information processing and propagation in gene regulatory networks to
information processing in biological olfaction and natural language. We
aim at presenting an overview on the state-of-art on how information
processing relates to biological systems and the opinion of current lead-
ers in the field on future directions of research.

1 Information in Biology

Biological systems are constantly engaged in activities that can be perceived
in terms of information processing or informational representation. Some obvi-
ous examples are perception, cognition, and language use. During the last few
decades, informational concepts have been applied to a wide range of biological
processes. [1]

For many working in biology, the most basic processes of biological systems
should now be understood in terms of the expression of information, the exe-
cution of programs, as well as the interpretation of codes [1]. Thus, concepts
from information theory have been applied to the study of biological processes.
However, a major problem exists. In the definition of information proposed by
Claude Shannon [2], there is no context, that is, information is not quantifi-
able as a context dependent quantity, while in biological systems information
is always context dependent. Great care is thus necessary when applying the
concepts from information theory into biological settings.

S. Niiranen, A. Ribeiro (Eds.): Information Process. & Biological Sys., ISRL 11, pp. 1–7.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 S. Niiranen and A. Ribeiro

The use of concepts from information theory has acquired a prominent role
in various fields in biology, particularly in genetics, developmental biology and
evolutionary theory, the latter ones especially where they border on genetics.
One distinctive use of informational concepts has been in describing the rela-
tions between genes and the various cellular structures and processes that genes’
activity are known to affect. For many geneticists, the causal role of genes should
be grounded in them carrying information via the products of their expression
to other genes, not only to other genes, but to everywhere in the cell. [3]

The concept of ”gene” is, in modern theories, crucial to both explain organ-
isms’ functioning and the inter-generational inheritance of characteristics, where
it is seen as the ”information carrier”.

Currently these two explanatory roles are anchored in a set of well-established
facts about the role of DNA and RNA on protein synthesis in cells, summarized
in the familiar chart representing the ”genetic code”, mapping DNA base triplets
to amino acids. However, the use of informational concepts in biology pre-dates
even a rudimentary understanding of these mechanisms [4]. Importantly, contem-
porary applications of informational concepts extend far beyond this relatively
straightforward case of specification of protein molecules by DNA. These include
[1]:

1. The description of phenotypic traits of organisms, including complex behav-
ioral traits, as specified or coded by information contained in genes or in the
brain.

2. The description of various causal processes within cells, and possibly of the
whole-organism developmental sequence, in terms of a program stored in
genes.

3. Treatment of the transmission of genes, and sometimes other inherited struc-
tures, as an inter-generational propagation of information.

4. Treatment of genes themselves, in the context of evolutionary theory, in some
sense as constituted of information.

Traditionally, information and concepts from information theory are interpreted
within a biological setting as follows: informational connections between events
or variables involve nothing but ordinary correlations, possibly related to un-
derlying physical causation. In this sense, a signal carries information about
a source if we can predict the state of the source from the signal. This view
of information is derived directly from Claude Shannon’s work [2], where he
proposed the use of the concept of information to quantify facts about contin-
gency and correlation, initially for use in digital communication technology. This
information-theoretical approach has been applied in biology as part of the at-
tempt to use computational data analysis tools on biological problems as we will
see in this book. Biologists use this sense of information in a description of gene
action or other processes of biological systems, in an attempt to adopt a quanti-
tative framework for describing ordinary correlations or causal connections [1].
Note that, in this perspective, biological processes are not being explained in
terms of the use or manipulation of information.
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A currently contentious question is whether biology needs another, richer con-
cept of information in addition to ”causal” Shannon information. Information
in this sense is sometimes referred to as ”semantic” or ”intentional” informa-
tion. A simple example how the problematic regarding the use of the concept of
information as proposed by Shannon in a biological setting goes as follows: in
order to quantify the amount of information contained in a message, one needs
to know the entire state space of possibilities, so as to compute the probability
of occurrence of the content received in the message. Unfortunately, in most re-
alistic scenarios, such state space is unknown or even transcomputational, thus
the probability value is unknown. One possibility is that prior knowledge de-
rived from previous similar occurrences is used to set a value to the probability
of the present message, but even this is somewhat problematic regarding how
such quantification is actually accomplished. For these reasons, exact quantifica-
tion of information content in biological contexts has so far been restricted to a
very restricted set of biological problems, usually when it is possible to define a
simplified model of the system under study. Here, we present a number of these
studies, some of which deal with information as an explicit variable, others fo-
cusing on the study of the dynamics of systems where information propagation
plays a major role.

This book includes chapters both on how the processing of information in bi-
ological processes is currently understood from low-level cellular and tissue-level
processes to the high-level functions of cognition and language acquisition. We
aim at presenting an overview on the state-of-art on how information processing
relates to biological systems and to present the opinion of current leaders in the
field on future directions of research.

2 Chapters Included in This Book

The remainder of the book consists of ten chapters and a preface by Stuart. A.
Kauffman.

In Chapter 1, Dr. D. Cloud discusses biological information in the context
of natural selection. D. Cloud discusses the concept of biological information
and its relation with the concept of complexity. Relevantly, Cloud distinguishes
between complexity of natural processes and complexity of biological systems.

It is proposed that biological information in cells is a set of simplifying con-
ventions used to coordinate the division of labor. It is also discussed why natural
selection might produce such systems of conventions. A simple formal model of
the relationship between natural selection, complexity and information is pro-
posed and then its applicability in the context of adaptive landscapes is explored.

An interesting question is raised and discussed, regarding how evolution may
lead to the emergence of complexity.

In the following chapter, Prof. C. Jacob and colleagues present us both a
review of previous results, as well as recent ones, of a long ongoing work towards
developing swarm-based models and simulations of biological systems. Here, they
mostly focus of models for immunobiology.
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Jacob and colleagues explain how swarm intelligence techniques can used to
explore key aspects of the human immune system. They present us three models
and the results of their virtual simulations. In these models, Immune system
cells and related entities (viruses, bacteria, cytokines) are represented as virtual
agents inside 3-dimensional, decentralized compartments that represent primary
and secondary lymphoid organs as well as vascular and lymphatic vessels.

Using these models it is shown how targeted responses of the immune system
emerge as by-products of the collective interactions between the agents and the
environment. In particular, they show simulation results for clonal selection in
combination with primary and secondary collective responses after viral infec-
tion. They model, simulate, and visualize key response patterns due to bacterial
infections. Finally, they consider the complement system. In the end, they discuss
how in-silico experiments are essential for developing hierarchical whole-body
simulations of the immune system, both for educational and research purposes.

In Chapter 3, Prof. F. Biddle and B. Eales discuss their latest findings on
the process of learning and memory, as well as on the limits of learning. A
detailed description is made on the research of the genetics of learning and
memory in hand preference of laboratory mice. The research laid out focuses on
better understanding of how mice acquire a bias in paw preference, how it varies
between different mice genotypes, and whether hand preference is a constitutive
or an adaptive behavior.

Relevantly, they describe a new model able to explain the nature, as well as
predict, the dynamics of the acquisition of bias in paw preference, both at the
individual level, as well as at the population level, representative of the genotype.

It is reported how patterns of paw-preference scores of inbred mouse strains
contain more information than what can be inferred from means and variances
of the quantitative behavioral scores. From these, it is explained how qualita-
tive differences in the dynamic patterns of paw preference revealed the learning
and memory process in the mouse behavior and how the process is genetically
regulated.

In Chapter 4, D. Charlebois and colleagues report recent results of their stud-
ies of noisy in gene expression and the processing and propagation of noisy signals
within gene regulatory networks.

This chapter deals with an issue that gain much interest recently and that has
been recognized of great important for the understanding of the dynamics of bi-
ological systems. Namely, a number of evidences have been found that stochastic
mechanisms play a key role in the dynamics of biological systems. One such sys-
tem is the genetic network. In gene networks, molecular-level fluctuations play
a significant role. For example, they are a source of phenotypic diversity been
individuals from a monoclonal population subject to the same environment. The
degree of variability is highly influential on the population-level fitness.

In this chapter is also analyzed how cells receive noisy signals from the en-
vironments, detect and do their transduction with stochastic biochemistry. It is
shown how mechanisms, such as cascades and feedback loops, permit the cell to
manipulate noisy signals and maintain signal fidelity. Finally, from a biochemical
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implementation of Bayes’s rule, it is shown how genetic networks can act as infer-
ence modules, inferring from intracellular conditions the likely state of the extra-
cellular environment.

In the following Chapter 5, Zanudo and colleagues present a study of the
dynamics of more abstract models of gene regulatory networks, namely Boolean
Threshold networks. The Boolean network models have provide much insight
into how gene regulatory networks dynamics is likely to dependent, on the large
scale level, on features such as their topological and logical properties.

It is described how Boolean threshold networks have been useful tools to model
the dynamics of genetic regulatory networks, including their applicability into
accurately describe the cell cycles of S. cerevisiae and S. pombe. The dynamics
of these models of gene networks is explored as a function of their mean con-
nectivity, fraction of repression and activation interactions between genes and
transcription factors, and various threshold values in the interactions between
genes. One interesting aspect explored is how the value of threshold affects the
dynamical regime of the network and the structure of its attractor landscape.

In Chapter 6, J. Kesseli and colleagues present a study on the ability of large
scale gene regulatory networks models to exhibit complex behavioral patterns, as
an emergent property of their ability to propagate information between the ele-
ments of the network. The stability and adaptability of gene networks in variable
environments is investigated. Special emphasis is given to the role of information
processing within the network as the source of the diverse, yet specific responses
of the network. Such emergent macroscopic behaviors are governed by the in-
teractions between the elements, thus, it is explored how the topology of the
interactions determines the global dynamics of the system.

Unlike the traditional approaches, which define statistics regarding the struc-
ture or dynamics of complex systems, the authors propose a new approach de-
rived from information theory so as to establish a unified framework to examine
the structure and dynamics of complex systems of interacting elements.

In Chapter 7, F. Emmert-Streib discusses various local network-based mea-
sures in order to assess the performance of inference algorithms for estimating
regulatory networks. These statistical measures represent domain specific knowl-
edge and are for this reason better adapted to problems that are directly involv-
ing networks compared to other measures frequently used in this context like
the F-score. He is discusses three such measures with special focus on the infer-
ence of regulatory networks from expression data. However, due to the fact that
currently there is a vast interest in network-based approaches in systems biology
the presented measures may be also of interest for the analysis of a different type
of large-scale genomics data.

In Chapter 8, A. Ribeiro and J. Lloyd-Price investigate the information prop-
agation within models of determinist and stochastic gene regulatory networks. It
is known that cell types must be very restricted subsets of the possible states of a
genetic network. As cells stably remain in such subsets of states, these are likely
the dynamical attractors of the GRN. These attractors differ in which genes are
active and in the amount of information propagating within the network.
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From this perspective, the authors investigate what topologies maximize both
the amount of information propagation between genes within noisy attractors, as
well as the diversity of values of information propagation in each noisy attractor.

Measuring information propagation between genes by mutual information,
we study in finite-sized Random Boolean Networks and in Delayed Stochastic
gene networks how the dynamical regime of the network affects information
propagation, quantified by pairwise mutual information between the temporal
levels of genes’ expression. It is shown how both the mean and the variance of
values of mutual information in attractors depend on the dynamical regime of
the network, and it is also investigated how the noise in the dynamics affects the
propagation of information within the network.

It is argued that selection favors near-critical gene networks as these maximize
mean and diversity of information propagation, and are most robust to noise.
Phenotypic variation is critical since it is a necessary condition for evolution to
occur. This principle is likely to apply not only to variability between organisms
within a species, but also to the variability between cell types within an organism
and the variability between cells within a cell type. Assuming that the fitness of
gene networks depends on the ability to propagate information reliably between
the genes, and that the fitness of organisms depends on cell-to-cell phenotypic
diversity, the authors discuss whether near critical genetic networks are naturally
favored.

In Chapter 9, S. Niiranen and colleagues first overview the state of art when
it comes to the foundations of natural language and how it relates to the forms
of communication used by other animals. Much work has been put into devel-
oping theories which would explain the structure of language and how it relates
to the information processing capabilities of the human mind. Our ability to
use natural language to communicate and co-operate with others is one of the
defining characteristics of human intelligence. Second, they present a hierarchy
of generic information processing systems and situate natural language in that
hierarchy. Based on this they arrive at viewing, on a philosophical level, human
language faculty as an embodied information processing system in the tradition
of the embodied theory of mind.

3 Conclusion

In order to survive, organisms constantly survey their environment, being en-
gaged in activities that can be perceived in terms of information processing or
informational representation. From the simplest tasks, such as finding food, or
avoiding a toxic substance so as to detect changes, information processing is
essential for placing in practice any survival strategy. Thus, it is likely that bio-
logical systems for detection, managing and processing of information have been
under constant selective pressure. How information is managed and processed
by living organisms is still, to a great extent, a mystery. At best, we understand
the functioning of some of the mechanisms responsible for the collection of infor-
mation, and, at the lowest level, on how simple bits of information are processed
and stored.
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Within this book are described some of the biological systems and processes
whose mechanisms of information processing and managing we best understand.

The goal of this book is to present an overview on the state-of-art on mecha-
nisms of information processing in biological systems and to present the opinion
of current leaders in the field on future directions of research. The primary au-
dience of this book includes researchers and graduate students in computational
biology, computer science, cognitive science, systems biology, life sciences in gen-
eral, and medicine.
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Abstract. What is ’biological information’? And how is it related to
‘complexity’? Is the ‘complexity’ of a cell the same thing as the ’com-
plexity’ of a hurricane, or are there two kinds of complexity in nature,
only one of which involves the transmission of ’information’? An account
of biological information as a set of simplifying conventions used to co-
ordinate the division of labor within cells is offered, and the question
of why natural selection might tend to produce such systems of con-
ventions is considered. The somewhat paradoxical role of mutations as
occasionally-informative noise is considered, and a very simple formal
model of the relationship between natural selection, complexity and in-
formation is developed and discussed in relation to adaptive landscapes.
The question of whether we should expect evolution to slow down or
speed up as the things that are evolving get more complicated is raised
and dealt with. Finally, an epistemological moral is drawn, and briefly
applied to the case of cancer.

In some ways, a cell is like a large, noisy, neural net.[1,2] Molecules, or segments
of molecules genes, transcription factors, and the rest of the cell’s regulatory
apparatus act as nodes in the network. Interactions between molecules can
be thought of as connections between the nodes. The propensity of a pair of
molecules to interact can be identified with the weight of a connection. The
pattern of response of a gene to the binding of a transcription factor seems
analogous to the response function of a node. Either thing could in principle be
modeled, somewhat imperfectly, with a huge, interconnected system of stochastic
differential equations.

This mathematician’s way of looking at cells a direct intellectual descendant
of Stuart Kauffman’s original ’random Boolean network’ model of gene regula-
tion [3] makes them seem rather like complex analog computers. And yet many
biologists including Kauffman himself are skeptical of this further step. Are
cells really just ’processing information’? Are computers really a good model for
cells? Isn’t life something rather different from computation? When we make this
sort of idealized mathematical model, aren’t we greatly oversimplifying what is,
in reality, a very complex physical system? Is the information, as opposed to the
molecules we mentally associate it with, really there at all?

On the other hand, though, if we can’t legitimately talk about biological infor-
mation, what sort of information is there left for us to talk about? We ourselves
are living things, and all our information-processing devices are arguably just
parts of our own extended phenotype. If we decide that it’s meaningless or su-
perfluous to speak of genomes as ’encoding information’, or of gene-regulatory
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networks as ’processing information’, then shouldn’t the same arguments apply
to neurons, and systems of neurons, and therefore to human thoughts, speech,
and symbolic communication? Or is this taking skepticism too far, does this kind
of biochemical nominalism throw the baby out with the bath water?

Some of these questions sound like philosophical ones. Perhaps that means
that it’s a waste of time to even think about them, but there really might be
some utility in an attempt to at least state the obvious, to say what everyone
already more or less knows, by now, about the nature of biological information.
If this turns out to be easy to do, then we’ll know that our ideas on the subject
are in perfectly good order, and we can go back to doing science untroubled by
any murky philosophical concerns. If it turns out to be difficult, we might end
up having to do some thinking about philosophical problems, whether we want
to or not. This seems like an elementary precaution, one that could hardly do
us any harm.

1 A Criterion

Where do we start? If we want to know when it’s legitimate to speak of encoded
information in describing an event in nature, presumably we need to provide an
account of what distinguishes cases in which it is legitimate to speak in that
way from cases in which it is not. So one thing we are probably looking for is
a criterion or rule that will allow us to decide which category a particular case
belongs to.

A chromosome and a hurricane are both very complex things. But we tend to
want to say that a DNA molecule encodes information in its sequence. On the
other hand, we don’t exactly ever want to say that a hurricane encodes much of
anything. It’s just a storm, it’s random. Is there a principled distinction here, or
merely an anthropomorphic habit of thought with respect to one sort of object
but not the other?

There actually does seem to be a real difference behind this distinction. The
information-encoding sequence of a DNA molecule, as opposed to the exact
physical state of its constituent atoms at a particular instant, has a physically
meaningful existence to the extent that the other machinery of the cell, RNA
polymerases and transcription factors and things like that, would behave in the
same way if presented with another molecule having that same sequence but
whose individual atoms were in a slightly different exact physical state.

We can think of the sequence space associated with a biological macromolecule
as a partition of the space of its exact physical states. Each sequence is associ-
ated with a very large number of slightly different exact physical states, all of
which would be interpreted by the cell’s machinery as representing the same se-
quence. It’s meaningful to speak of this partition as something that really exists
in nature because natural selection has optimized cells to act as if it does. Of
course, if we had an omniscient, god’s-eye view of the cell, we could still ignore
the existence of genomic sequences as such and do a brute-force, atom-by-atom
predictive calculation of its trajectory through state space, just as we could with
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the hurricane, but that’s not what the cell itself is set up to do, that’s not how
it regulates itself. It uses much coarser categories.

Within certain limits, DNA molecules having the same sequence will be tran-
scribed into RNA molecules having the same sequence, regardless of the exact
physical state the parent DNA molecule is in. Of course, if it is folded in the
wrong way, or methylated, or otherwise distorted or modified beyond those lim-
its, a molecule may evoke a different response, but as long as it is within them,
the same sequence will get the same transcription. Thus, it is the sequence of the
parent molecule, and only the sequence of the parent molecule (not its various
other physical features) that constrains the gross physical state of the daughter
molecule. In that sense, it really is physically meaningful all by itself, because
the rest of the machinery of the cell is optimized to treat genes with the same
sequence as if they are the same thing. There just isn’t anything like that going
on in a hurricane, even though a cell and a hurricane are both ’complex systems’.

2 Two Types of Complexity

This certainly seems like an important difference. We can’t really have much
hope of answering our opening questions about how we should think of cells
until we can explain it. Perhaps both things are complex systems, but, on an
informal level, we habitually treat cells as being complex in a rather different
way from hurricanes. For one thing, we never speak of optimization when talking
about something like a hurricane. Optimization only comes in to a discussion
when it somehow involves natural selection, not something that hurricanes are
usually thought of as being subject to. Are there, then, two entirely different
kinds of ’complexity’ in nature, one naturally selected kind that involves ’infor-
mation’ and optimization, and another, non-self-replicating kind that involves
neither? Why are they usually considered one phenomenon? Do we designate
two entirely different things with one English word, ’complexity’, or are the
differences between the two types inessential?

Well, what could we actually mean by the word ’complexity’, in the case of
the hurricane? The general idea seems to be that because it’s so big and contains
so many different molecules moving in so many different directions at so many
different speeds, it has quite a few degrees of freedom, that there are rather
a lot of different physical states the system could be in. Turbulent flows can
vastly magnify the effects of events that initially involve only a few molecules;
so any and all of these degrees of freedom could affect the gross behavior of
the system over time with indifferent probability. Predictions of the detailed
behavior of the system far in the future will be inexact unless they are all taken
into consideration. The absolute complexity of a hurricane might perhaps be
equated with the volume of its statistical-mechanical phase space, a space with
six dimensions for each molecule in the storm (three for position, and three for
momentum along each of the three spatial axes) in which any instantaneous
state of the whole system can be represented as a single point.
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If that’s what we mean by the word, though, we seem to have a bit of a
problem. By that measure, any reasonably large collection of atoms is extremely
complex, and cells are no more complex than drops of water of similar size.
Both things are made of atoms, in approximately equal numbers, so the phase
space for each should have a similar number of dimensions. A similar number
of dimensions implies a roughly similar volume. Actually, though, we usually
seem to want to treat cells as containing another layer of complexity beyond
this obvious physical one, as being complex in a way that mere drops of water
are not, as somehow having additional features. These additional features are
precisely the kinds of things that seem to differentiate ’complex’ entities like cells
from ’complex’ entities like hurricanes, so apparently it would be easier to keep
our philosophical story straight if we were in a position to maintain that they
actually exist in some physical way.

3 Simple and Complex Simplifications

The idea that these additional informational features must have some sort of gen-
uine physical existence isn’t exactly wrong, but we’re going to have to adjust it a
bit to make it coherent. From a physical point of view, all these ’additional’ details
cells supposedly have, though they’re very complex as far as we’re concerned, are
actually the details of a set of ways in which they are simpler than oily drops of
water. It’s just that they’re simpler in a very complicated way, unlike ice crystals,
which are simpler than drops of liquid water in a very simple and uniform way. In
both cases the actual physical entropy of the ordered object is lower than it would
be if its constituent small molecules were all scrambled up and broken apart into a
randomized liquid. Biological order, like classical crystalline order, is a simplifica-
tion and regularization of a complex, irregular molecular chaos, one achieved, in
the biological case, at the expense of creating even more disorder elsewhere. Rep-
etition for example, the same kinds of amino acids and nucleotides repeatedly
appearing everywhere in the cell and physical confinement (to compartments, or
within the structures of macromolecules) are both conditions that, all other things
being equal, decrease entropy. What increases, during evolution, is the complex-
ity of the physical simplifications life imposes on itself and the world around it,
not absolute physical complexity per se.

This rather obvious fact should help us make some sense of the idea, mentioned
above, that biological information exists just when physically slightly different
molecules with the same sequence are treated by the cell as being the same thing.
To the extent that the machinery of a cell indifferently treats two different RNA
molecules with the same sequence as if they were identical, it interacts with itself
in a way that involves simplifying reality, throwing away some of the available
details, responding in almost exactly the same way to many slightly different
states of affairs. This is a necessary part of the process by which life continu-
ally re-imposes its own relative simplicity on the complex world around it. It’s
an energetically expensive imposition of sameness, an endothermic filtering-out
of perturbations and suppression of irregularities. Some theoretical biologists call
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this general sort of process ’canalization’, [4] though that term normally has a
much narrower meaning.

Life responds to the members of the collection of possible states of affairs in
the world in a way that is much simpler than that collection. In this sense, ’infor-
mation’, in a cell, isn’t something that is added to the bare physical particulars
of its constituent molecules, it’s those bare particulars themselves with some-
thing expensively and repeatedly subtracted from them, a sort of topological
invariant that can be conserved through all distortions and translations pre-
cisely because it is not very dependent on exact details. Biological information
is filtered complexity, complexity that becomes information when some of its
features are systematically and routinely discarded or suppressed as noise, when
it is consistently responded to, by the cell’s own machinery, in a way that only
depends on some selected subset of its features.

(We might wonder, then, whether the idea of transmission over a noisy chan-

nel, so central to mathematical information theory, should really also be central
to our theory of ’biological information’, when filtration might seem like a better
description of what’s going on. Here, however, we may actually have succeeded
in making a distinction without a real difference behind it, because the filtration
of information is just the systematic ignoring or removal of noise, and that’s
what’s required in transmission over a noisy channel as well. In the first few
steps of visual perception, the conversion of light impinging on the eye to ac-
tion potentials in neurons, the chaos of the external world is filtered down and
transformed into a stereotyped, coded signal but this is also what a ribosome
gets, via an mRNA, from the complex chaos of an actual, physical chromosome,
a stereotyped, coded signal. There is no deep conceptual difference between the
transmission of information over a noisy channel and its filtration.)

4 Codes as Conventions

The privileged subset of a complex molecule’s features that matters typically
consists of ones which have conventional mechanical relationships to other collec-
tions of features, elsewhere in the cell’s machinery. A tRNA encodes a convention
that relates a selected subset of the features of any mRNA to a selected subset
of the features of some amino acid. In this way a codon ’represents’ a particular
type of amino acid. Only that type of amino acid will be allowed to randomly
bounce into a situation where it will form a peptide bond with a growing protein
chain, if that codon is currently the one being translated by the ribosome that is
making the protein. The tRNA seems to encode a ’meaning’. Should this bother
us, philosophically, in any way?

Yes and no. It shouldn’t actually surprise us, but it should make us cautious.
An analogy with a meaning in a human language does exist, but it’s not a precise
one. In this sort of discussion, we can’t just pretend it isn’t there, but on the
other hand it can easily become misleading if we don’t pay careful attention to
the differences. That means that we need to dwell on it here, to make sure we
understand its subtle pitfalls.
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What, in general, is a ’meaning’? The philosopher David Lewis argued per-
suasively that we can often think of meanings, even in human languages, as
conventions for solving what the game theorist Thomas Schelling dubbed ’co-
ordination problems’.[5,6] Lewis argued that they can be thought of as public
agreements committing us all, for the sake of convenience, to treat x’s as valid
proxies for y’s under some circumstances, to treat the word ’cow’ as a valid proxy
for a cow, allowing us to collectively and individually reap the gains available
from better coordination of our joint activities. Better-informed dairy farmers,
who can speak to each other concerning cows and their affairs, mean that there is
more butter for everyone than there would be if we couldn’t discuss such things,
and it is the traditional semantic convention that makes the noise a proxy for
the animal that puts some of that butter on the table. tRNA molecules seem
to function as ’traditional’ semantic conventions in more or less this sense, since
they facilitate the widespread use of particular codons as proxies for particular
amino acids.

5 Selection, Coordination and Conventions

Why should natural selection, as a mechanism, tend to produce this sort of com-
plex and rather artificial-seeming convention? What’s already been said about
Lewis’s theory of meanings as conventions suggests a very general answer to
the question. Somehow, to persist, grow, and reproduce, life must need to solve
a lot of coordination problems, in a way not equally necessary to crystals and
storms. But why is life, in particular, so beset with this kind of problem? Why
don’t crystals or hurricanes face a similar need for coordination across time and
space, how is it that they can they grow and persist without transmitting coded
information from point to point and time to time if cells can’t?

That’s a big question, but to make any progress in clarifying the analogies and
dis-analogies between cells and computers, we must have an answer to it. To get
one, we’re going to have to back up a bit. Though it may seem like a digression,
before we can really think clearly about how natural selection produces biological
information and the conventional codes that carry it, we must first think a bit
about the character of natural selection itself, as a process, and what sort of
things it actually acts on.

Continual selective change in gene frequencies has to go on in a population
over long periods of time for very much evolution by natural selection to occur.
This can only really happen in a population that has both heritable variation
and Malthusian dynamics. We tend to focus on heritable variation as the really
essential thing about life. This way of thinking won’t help us with our present
inquiry, however, because the way inheritance works in actual modern organisms
is already completely dependent on the existence of an elaborate form of encoded
information. If we want to understand why living things create and process
something recognizable to us as encoded information in the first place, we have
to think carefully, instead, about the other side of Darwin’s great idea, about
the Malthusian dynamics of biological populations, and where those dynamics
come from.
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John Maynard Smith and Eörs Szathmáry have pointed out [7] that one fea-
ture of the molecular tool-kit on which life as we know it is based that seems to
be essential is the fact that the basic building blocks amino and nucleic acids
can be put together into an infinite variety of different shapes. This makes them
a bit like a Lego kit, a set of standardized blocks with conventional shapes and
affinities which allow them, collectively, to be assembled compactly into almost
any form at all. On a molecular scale, ’almost any form at all’ means about the
same thing as ’catalyzing any reaction at all’. Because macromolecules made
out of the same basic constituents can catalyze an enormous variety of different
reactions, a self-replacing collection of such macro-molecules can divide the la-
bor of self-replacement up into an arbitrarily large number of distinct reactive
tasks, each of which will be performed far more efficiently, by the specialized
catalyst that has evolved to take care of that aspect of the overall task, than
any competing abiotic reaction.

In contrast, there’s really only one kind of hurricane. The raw ingredients for
a hurricane can only go together in one general way. The spiral can be larger or
smaller, and can differ in various other insignificant ways, but the possibilities
are very limited. A similar thing could be said of classical crystals at a given
temperature and pressure, there tends to be only one form the crystalline lattice
can take. Complex organic molecules are a much more promising substrate for
evolution from this point of view, since a few types of small molecules can be
assembled into an infinite variety of large ones.

Geometrically, this difference between classical crystals and large organic
molecules might have something to do with the fact that carbon atoms are
effectively tetrahedral, and therefore don’t pack into three-dimensional space in
any compact, periodic way unless the bond angles are distorted as they are in
diamond. This fundamental geometric frustration, a three-dimensional analog of
the five-fold symmetries that frustrate periodic tilings with Penrose tiles, is an
intuitively appealing candidate for the role of culprit in life’s complexity. Be that
as it may, for our present purposes, it’s enough to just register that the difference
exists. This whole process of endlessly dividing up the self-replicative task faced
by cells sounds very similar to something that Darwin talked about in the chap-
ter on ’divergence of character’ in Origin of Species.[8] There he describes the
evolution of both ecosystems and systems of organs as an endless process of effi-
ciency increasing through an ever-finer division of labor, which allows narrower
and narrower tasks to be performed by more and more specialized structures.
His arguments work just as well on the bio-molecular scale, inside of cells, as
they did on the scale of whole ecosystems. The virtue of a flexible, Lego-like kit
of tools which can evolve and conserve designs of arbitrary complexity is that it
allows this division of self-replicative labor to go to its logical extreme.

The open-ended character of this project, its ability to accommodate contin-
gencies with contingency plans and make lemons into lemonade, has made life
a robust and common kind of self-organizing system, able to grow and persist
in a wide variety of environments and survive a wide range of perturbations.
The other kind of ’complex’ (i.e., only slightly simplified) dissipative system in
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nature, hurricanes and crystals and things like that, depends on exactly the right
conditions to grow, and will immediately begin to shrink if the environment de-
viates from those perfect conditions, but life can evolve to fit itself to almost any
conditions it encounters. The difference is basically that between a toolkit that
can only do one thing and a toolkit that can do anything, that can do many
things, that can do several different interacting things at once, or several things
one after the other.

Darwin’s idea of an evolved, flexible division of labor is useful in a modern
context because it lets us more precisely characterize the difference between the
sort of self-replication a living thing engages in and the kind of ’self-replication’
we see in crystallization, where the cellular structure of the crystalline lattice can
create copies of itself very rapidly under just the right conditions. The molecules
that make up biological systems replicate themselves by processes that are much
more circuitous than those involved in the growth of crystals.

Circuitousness and a fine-grained division of labor are actually more or less
the same thing. A division of synthetic labor means things are produced in many
small steps, which is to say circuitously. Because catalysts can very efficiently
accelerate many very specific reactions, this form of self-replication both is more
powerful and more flexible than crystallization, better at grabbing atoms away
from other competing geochemical processes under a wide variety of circum-
stances. It is this superior efficiency that makes it possible for living things to
quickly fill an empty environment to the point of saturation. Thus, it is the flexi-
bility of the underlying toolkit that ultimately explains the Malthusian dynamics
of biological populations.

This circuitousness creates scope for alternate ways of doing things, and the
possibility of selection between accidental variations. The more steps there are
to a process, the more different ways there are to change a few of those steps,
and the more different ways there are to change it, the more likely it becomes
that one of those changes will improve its efficiency. Circuitousness also creates
a need for coordination across time and space. Things must be done over here in
time to get them ready for their role in a process going on over there, and if that
process stops for any reason, they may have to stop as well. It is to these sorts
of facts that the existence of anything recognizable as biological information
must ultimately be attributed. The continual flow of information carried to the
genome of a cell by transcription factors causes mRNA’s to be produced when
and where they are needed, and to stop being produced when they are no longer
necessary. Circuitous self-replicators that have coordinated their activities most
efficiently in time and space have had the most descendants, and in this way a
whole genomic apparatus for coordinating and conserving circuitous patterns of
molecular self-replication has evolved.

6 Mutations as Informative Noise

The division of the labor required for efficient homeostasis and self-replication
requires coordination in the face of perturbation, and this requires the filtering
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out of noise. If cells were little robots made by tiny gnomes, our analysis could
stop here. But life as we know it is the product of evolution. It would be a
mistake to end our discussion of the relationship between noise and information
in living things without considering the rather central case of mutations, a form
of ’noise’ which also seems to be the ultimate source of the genome’s ’signal’.
How can these two faces of the phenomenon be reconciled?

The existence of all the elaborate genome-repair adaptations found in modern
cells shows that from one point of view that of individual cells mutations really
are just noise, to be suppressed and filtered out if possible, like any other random
noise. Of course, the cell does not actually have a ’point of view’. We should have
said ’what typically maximizes the individual cell’s fitness is the filtering out of
as many mutations as possible.’ Still, the fact that it has a fitness to maximize
in the first place puts a cell much closer to having what we might normally
think of as a ’point of view’ than the other ’player’ in the mutation/biological
information game, Nature, in her role of selector of the fit and unfit.

We’re sometimes tempted to personify this actor, too, at least on an uncon-
scious level. Even Darwin used to talk this way occasionally, mostly for the
deliberate Epicurean purpose of shocking us into seeing how different ’Nature
the selector’ really is from a mere person. Before he settled on the term ’natural
selection’, though, he considered the possibility of speaking, instead, in terms of
’the war of Nature’. (’Survival of the fittest’ would then presumably have be-
come something like ’continual repopulation by the victors’, which at least has
the virtue of descriptive accuracy.)

’Selection’ may sound vaguely like a kind of information processing, but ’war’
really does not. In fact, one of the most interesting things about natural selection
is just exactly how unlike any normal form of ’information processing’ it is. Still,
somehow, out of this inchoate struggle a coded message eventually emerges. Our
analysis of ’biological information’ will be incomplete unless it includes some
non-anthropomorphic explanation of how this magic trick works.

7 Serial Syntax Meets Holistic Semantics

Much of the way we habitually think about information and information pro-
cessing comes from the fact that we ourselves are living things, and as such, are
not infinitely capable. We have to break computational tasks down into pieces,
and deal with one piece at a time. Bandwidth is a real constraint in the in-
formational dealings of mere creatures, and everything they do is arranged to
get around that fact. It takes us time to read a book, just as it takes an RNA
polymerase time to produce an error-free transcript of a gene. There are many
small steps involved. Whenever we want to do anything complicated, we have
to do it in small chunks. Messages must be arranged in a sequential way, one
simple piece after another, so that that they can be transmitted and decoded a
little bit at a time.

When we think about computational problems, we of course assume that it
will take a certain amount of time or space to solve a problem of a given com-
plexity, and we are very interested in classifying such problems with respect to
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this kind of difficulty. But nature, as selector, does not have to respect these
classifications, because it is not an information-processing device solving prob-
lems of limited complexity sequentially in stages. The ’war of Nature’ happens
in the real world, so the whole idea of bandwidth is irrelevant. A predator may
kill its prey in an arbitrarily complicated way. This doesn’t make it any harder,
or any more time consuming, for the prey to die. The prey doesn’t have to use
any computational resources, or do any work, to be affected by the predator’s
arbitrarily complex strategy, and the event doesn’t have to take any particular
amount of time. Indirect ecological interactions acorns from masting oaks feed-
ing mice who bring ticks with Lyme disease to deer of arbitrary complexity can
also affect fitness in serious ways. There is no increase in computational cost
associated with passing through more complex versions of this sort of filter.

Using terms like ’select’ and ’evaluate’ conveys a somewhat misleading im-
pression of the way natural selection works. Natural selection is not a cognitive
or computational process at all. We face a temptation to imagine it as having
some of the limitations of such a process, but it does not. Evolution has not
made cells what they are today by breaking them down into pieces and evaluat-
ing or dealing with the pieces separately, one a time. Recombination does break
repeatedly genomes down into pieces of variable size, but ’evaluation’ selection
itself mostly happens to entire cells and organisms, and to genes in the context
of whole cells and organisms, embedded in whole, particular possible worlds.
It takes a whole organism, in all its complexity, in a whole complex world, to
live, or die, or raise a litter of kittens. (Will the rains fail this year?) Genghis
Khan has a large number of descendants today because of who he was in all
his individual complexity, and what 13th century Central Asia was like. His Y
chromosome might not have done as well in modern Chicago.

Natural selection is not the kind of mechanism that evaluates things a lit-
tle bit at a time, it is the sort of mechanism that evaluates them all at once.
The information in cells is processed serially, but it is first produced by natural
selection as a gestalt, a single tangled-up whole. (It normally takes many selec-
tion events to bring a gene to fixation in a population, but each of those events
involves a whole individual’s complex struggle to get through a whole life in a
whole world with a whole genome, so this does not mean that the process has
somehow been ’broken down into smaller pieces’ in the relevant sense.)

Whether or not a mutation is new biological information or just more noise
isn’t even something that can generally be discovered just by inspecting the
organism in which it occurs. What is adaptive depends on the environment
that an organism finds itself in; the same alteration to the same genome can
be fatal or providential depending on external circumstances. The parts of the
genome coding for Darwinian preadaptations are noise until the environment
changes in a way that makes them useful, at which point they become signal.
This determination may depend on any feature of the environment, even one
as tiny as a virus. Its full complexity is constantly available as a filter to turn
mutational noise into biological information, and neither of these categories is
particularly meaningful in the absence of that full complexity.
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Biological information only counts as biological information when considered
as part of an entire detailed world. This makes it look, to a philosopher, some-
thing like ’truth’, a property sentences only have at particular possible worlds.
Because we process the syntactic aspects of language serially, and because com-
puters can be built that do the same thing in the same way, we can easily forget
that semantic interpretations are holistic in character, in that they require whole
worlds or collections of worlds in the background for sentences to be true or false
at. But in logic as we now understand it, there is no just such thing as a semantic
interpretation without a ’model’ standing behind it. Sentences are only true or
false in the context of whole worlds or whole theories, and similarly biological
information is only really distinct from meaningless noise in the context of a
particular environment in all its fine grainy detail, down to the last pathogen.

8 An Oracle for Solving Decision Problems

Is there a more formal way of thinking of the process of natural selection? If we
did want to try to describe it in the language of information processing, how
would we do it? We can actually do it fairly well with a model of computation
that is ridiculously strong, one usually considered too strong to represent any
actual information-processing system, a model which tends to be presented as a
limiting case showing what could happen if certain necessary assumptions were
relaxed. From a formal point of view, natural selection is something like an oracle
for solving a set of decision problems.

A decision problem is any logical problem that can be posed in a form that
admits a yes-or-no answer. An example is Goldbach’s conjecture, the assertion
that every even number greater than two is the sum of two primes. The conjecture
is either true, or false; which it is is a decision problem. An organism either
contributes its genes to the next generation or it doesn’t which makes fitness a
yes-or-no proposition, or anyway lets us treat it that way as a first approximation.

An oracle is an imaginary computational device that, presented with a puta-
tive answer to any computational problem, can infallibly evaluate it as correct
or incorrect in a single computational step. An oracle that could infallibly tell
whether a yes-or-no answer to any decision problem was the correct one could
resolve thorny mathematical questions like Goldbach’s Conjecture in no time at
all. We would just guess ’yes, every even number greater than two is the sum of
two primes’, and the oracle would tell us if we were right or wrong. Of course,
we still wouldn’t know why we were right, but evolution doesn’t explain itself
either. We have to reverse-engineer our way to the whys of things, as we would
if an oracle told us that Goldbach’s Conjecture was certainly true. We can think
of the organism as the putative answer to the problem of how to deal with its
environment, and successful reproduction as an evaluation as correct. There is
no minimum number of steps this process must involve, and no dependence of
the time required on the complexity of the decision problem being solved, so
only an oracle will do as a formal model.
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9 Oracles and Adaptive Landscapes

To tease out the full implications of this simple way of conceiving of natural
selection, we need to think about a problem that came up in the 1960’s about
a particular type of evolution. At that time, some doubt was expressed that
anything as complicated as a protein molecule could possibly have evolved in
the amount of time available.

With twenty possible amino acids at each locus, a relatively modest chain
of 100 amino acids has about 10130 possible sequences. Since the universe is
only about 1018 seconds old, it seems as if an unreasonably large number of
sequences would have to be tried out each second to find a particular sequence
with a particular function in the amount of time available.

John Maynard Smith demonstrated, however, that this supposed difficulty
is more imaginary than real. [9] He did it by making an analogy with a simple
word game. Suppose we’re playing a game in which we start with some four-letter
English word Maynard Smith illustrated his argument by starting with ’word’
itself. The objective is to transform that word into some other actual English
word through a chain of intermediates that are themselves all valid words. His
example was ’word wore gore gone gene’, but of course there are plenty of
other examples we could give, one being ’love lave have hate’.

There are 26 letters in the alphabet, so the space of four letter English words
contains 264 or 456,976 points. However, no point is more than four changed
letters away from any other. Whether or not it is possible to get from point a
to point b in this space in a given amount of time is not a matter of how many
points there are in the space in total, it is a matter of whether or not there is
a valid bridge between the two words. Whether the space as a whole is easy to
get around in depends on whether there is a percolating network of such bridges
all through the space, which will take you from almost any point to almost any
other in a few steps. There may be other valid destinations also reachable from
the starting point by chains of valid intermediates, and there may be dead ends,
and detours, all of which complicates the statistics a bit, but there is certainly
never going to be any need to try out half a million words just to get from one
point to another.

Why is the problem so much simpler than it initially seemed? It’s easy to
mistake this for a counting argument of some kind, to suppose that the person
who was raising difficulties about the time it would take to search these sorts of
combinatoric spaces was simply making a mistake about the numbers. But that
isn’t really what’s going on here at all. What makes the word game easier than
it otherwise might be is the fact that we all speak English, and therefore are
able to instantly recognize that some of the four-letter combinations adjacent to
a given word are themselves valid English words, while others are not. We aren’t
really blundering through the space at random. Each successive step involves
a process in which we evaluate the available candidates to determine whether
they are actually words. So the evolving word has to pass repeatedly through
the filter of our brain, and pass a test for validity on the basis of knowledge
stored there. Paths that terminate in dead ends don’t get searched any further.
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We don’t need to sample every point in the space, we just need to search down
a tree.

Here, our knowledge of what counts as a valid English word is playing the
same role that the environment plays in the process of natural selection. Both
act as filters, weeding out unsuitable candidates. The word itself doesn’t do any
’information processing’ in this process. It is subjected to the decisions of an
external oracle, which gives a yes-or-no answer to the question of whether or not
a proposed next step is actually a meaningful English word in its own right. It is
in this sense that this sort of process can be thought of as the solving of a series
of decision problems by an oracle. Similarly, the evolving protein itself doesn’t
need to ’know’ whether an adjacent sequence represents an adaptive variant of
the original design, or what it might be useful for. The environment will supply
that information instantaneously and for free, by either killing a mutant cell or
letting it prosper.

To appreciate the enormous creative power of natural selection, we really only
need to ask one further question. What happens to the process of evolution, in
this sort of combinatoric space, if the evolving objects get more complicated?

An obvious and intuitive way to extend the analogy would be to move from
thinking about the space of four letter English words to the space of eight letter
English words. As the examples of the reachability of ’love’ from ’hate’ and of
’gene’ from ’word’ illustrate, it is relatively easy to get from word to word in the
space of four-letter words through a continuous chain of viable intermediates.
However, there are also isolated islands like ALSO and ALTO, a pair of words
that is not connected to any other word. Do these sorts of isolated islands become
more or less common as the number of letters in each word goes up?

Take any eight-letter word say, CONSISTS or CONTRARY. Does it have
a meaningful single-mutation neighbor? Typically, no. It is usually impossible
to move from eight-letter English word to eight-letter English word through a
continuous chain of valid intermediates. So it might easily seem to us as if this
sort of evolution ought to get more difficult, ought to slow down, as the evolving
objects get more complicated. But this is precisely where the analogy between
natural selection and any kind of cognition breaks down most badly.

The greater difficulty in navigating through the space of eight-letter words
is not a consequence of some innate topological property of high-dimensional
spaces. It is a consequence of the limits of the human mind, and the consequent
simplicity of human languages. Natural human languages have, at most, on the
order of 105 words. The space of eight-letter sequences contains on the order of
1010 sequences. Naturally, since less than 1/105 of the sequences in the space are
meaningful words, and since each word only has 208 neighbors, most meaningful
eight-letter English words will not have even a single meaningful neighbor. But
the evolution of proteins is completely different. Nature just doesn’t face this
sort of cognitive limitation. It’s not as if she can only remember the designs of
a few thousand proteins. She doesn’t remember things at all, that’s not how
this particular oracle does its magic. Anything that actually happens to work
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in competition, that in some way, however improbable-seeming, leads to the
production of adult offspring, simply works.

In the absence of human cognitive limitations, what actually happens to this
sort of space as it acquires more dimensions? There is no a priori reason why
viable protein designs must be vastly more sparsely distributed in a space of
longer sequences than they are in a space of shorter ones. The change in their
density depends on things like the degree of modularity in the molecule’s design,
and the commonness of neutral mutations. Suppose, as a limiting case, that there
is a constant, unvarying probability per locus, p, that some mutation at that
locus leads to an adjacent sequence which is as adaptive as or more adaptive
than the original sequence. As the length of the evolving sequence increases,
there are more loci on it. All other things being equal, the probability that some

one of these loci can be mutated in some adaptive way should go up as the
number of loci increases. Call the length of the evolving protein, the number of
loci, therefore the dimensionality of the sequence space, L. The probability that
there is some adjacent sequence that can be moved to without loss of fitness
is then just Lp. This quantity goes up linearly with the length of the evolving
chain. At some point, it reaches 1.

As it becomes more likely that, for any given sequence in the space, some one

of the adjacent sequences is as fit or fitter, it also becomes much more likely
that the space as a whole is permeated by a percolating network of adjacent
sequences each of which is just as fit as its neighbor. Thus, as the length of the
evolving chain goes up, the space becomes easier and easier to get around in, not
harder, as intuitions derived from the way we humans filter information might
suggest.

On the basis of this model, it seems possible to argue that there may actually
be a minimum complexity below which things cannot evolve efficiently. There
may be countervailing effects that in fact cause p to fall in most cases as L goes
up, but if the decline is less than proportional to the increase in L, percolation
still becomes more probable as L goes up. No doubt some times it is, and some
times it isn’t; the sorts of evolved complexity we actually see in the world around
us should be biased in favor of those cases in which p declines at a less than
proportional rate.

How fast p declines with rising L depends on the precise characteristics of
the thing that is evolving. If mutations typically have very small effects on phe-
notype, p should be fairly large no matter how complex the evolving object is.
Modular designs limit the extent to which p depends on L. The modularity of
life on a molecular scale may have more to do with limiting the decline of p than
anything else. Neutral percolation can continue to be easy no matter what L is,
if the evolving molecules are set up in a way that means that many mutations
have no great effect on fitness. None of this seems to put a dent in the counter-
intuitive conclusion that evolution should actually often get easier, not harder,
as the evolving object becomes more complicated. Adding degrees of freedom
makes discrete combinatoric spaces more densely interconnected, not less, so in
the absence of human cognitive limitations or other countervailing effects, free
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evolutionary percolation should become more and more likely as the evolving
entities get more complex.

This conclusion, while it seems to be inescapably implied by Maynard Smith’s
model, may strike some readers as repugnant to common sense. Perhaps it is,
but on the other hand, it does seem to fit fairly well with the facts. As far as we
can tell, the evolution of life on Earth is not particularly slowing down as the
evolving organisms and ecosystems get more complicated. There has been rather
a lot of complex evolution since the Precambrian, or in other words during the
last ten percent of life’s history on earth. Things seem to have moved much more
slowly when the evolving organisms were simpler. The time needed to evolve a
human’s brain from a lemur’s was actually much shorter than the time needed
to evolve a lemur’s brain from that of a fish.

A case could even be made that evolution has speeded up significantly as
the evolving organisms have become more complex. An awful lot has happened
to life since the relatively recent event of the rise of the flowering plants. The
whole evolutionary history of the apes and hominids has occurred in the last few
percent of the Earth’s history. The apparent implications of Maynard Smith’s
model and the data from the fossil record are actually in complete agreement.
What the model seems to predict is what we actually observe. It’s common
sense, derived from our own human experience of designing things using our
own limited cognitive capabilities, that makes the oracular power of the selecting
environment, its ability to turn any problem no matter how complex into a
decision problem which it can solve in no time at all, seem so unlikely.

Things get harder and harder for us to redesign as they get more complicated,
because we’re a little stupid. But there’s no upper limit on the complexity of the
systems natural selection can optimize, and no necessary dearth of extremely
complex structures and ways of doing things in nature’s infinite library of ran-
dom designs. Complexity, as Kauffman first pointed out many years ago, [10]
is available to nature for free. All the information represented by the human
genome was obtained ’for free’ from an oracle but actually using it, and sending
it from place to place in the cell, is energetically very expensive.

10 An Epistemological Moral

What use is it to know all this? Does all this philosophical reflection, all of this
very explicit and careful restating of the obvious, actually help us in any way in,
say, understanding cancer? In fact, there’s an epistemological moral here for the
sciences of complexity in general, one that is in fact particularly salient to the
way we think about cancer. The moral of the story is that biological complexity
is not at all simple, that it’s actually really, really complicated.

The way we’ve done physics, since the time of Descartes and Newton, is
by assuming that behind the apparent complexity of nature, there’s actually a
deep simplicity, that if we can read a set of rules off of the behavior of some
physical system we’re likely to have found a complete specification of its nature
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that is much simpler than the system seemed at first. We might think of this
approach, which has worked so remarkably well in physics, as reflecting a sort of
unconscious commitment to Platonism on the part of physicists, since the essence
of Platonism is the idea that the apparent variety, changeability, and complexity
of the world we experience is just the result of varying combinations of much
simpler and more fundamental base-level entities which can not be perceived
with the senses. On the basis of this commitment, we really have been able to
discover very simple rules we call them ’fundamental physical laws of nature’
which can be stated, in their entirety, in mathematical language, and which
actually do completely determine the character of the systems they govern. One
electron can be treated, by us, as being pretty much the same as another because
they really are all pretty much exactly the same and will both behave in exactly
the same way in exactly the same situation. The most accurate description of
nature and the simplest one often coincide in physics.

Because so much of the apparent complexity of nature has revealed itself to be
the product of these sorts of simple physical laws, we now have the expectation,
as scientists, that behind complexity in general there is always an underlying
simplicity, and that once the symbolically-expressible rules governing a system
are read off of its behavior, we will know all about it. To think this way about
cells, however, is to make too much of the analogy between the sort of rules
that ’govern’ the behavior of electrons and the sort of rules that ’govern’ the
expression of a gene.

Behind the apparent complexity of the electron’s behavior is a simple set of
rules. Once we have them, we know all about it. The expression of a certain
gene may also seem complex, and yet we may discover that it, too, seems to
follow certain simple rules. But, though it may well be true that behind the ap-
parent complexity of the gene’s behavior there is some set of simple underlying
regularities, it’s also certainly going to be true that behind these apparently sim-
ple underlying regularities there is actually even more physical complexity lying
in wait. The simple conventional rules that govern the behavior of biologically
meaningful categories of molecules in cells are not the ultimate physical ’founda-
tions’ on which the cell’s dynamics are based, they are the complex biomechanical
consequences of everything else going on in the cell.

The idea that a certain sequence is reliably transcribed in a certain way can
only be pushed so far; at some point, physical differences in the molecule whose
sequence it is say, its folding state start to matter, and a qualification must
be added to the rule. But that qualification will not be a simple one; it must
consist of an account of all the various things that can physically happen in the
cell when the molecule is in all the various abnormal states that are physically
possible for it. This is why the cellular mechanics of cancer are so difficult to pin
down; once the cell’s machinery is no longer functioning in the usual way, there
are an unimaginably vast number of other things it could be doing. As it turns
out, lots and lots of them are ways of being cancer.

In this huge wonderland, anything at all about the cell’s state could end up
mattering in almost any way. We are outside the narrow conventions of the
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normal human cell in cancer, and the volume of parameter space that lies avail-
able for exploitation just outside those boundaries is huge. We immediately get
lost in these vast new spaces, but the oracle of natural selection already ’knows’
all the paths through their complexities without actually needing to know any-
thing at all. Since natural selection acts on the whole phenotype of the cell all at
once, there is no particular reason why the adaptive effects of a genomic abnor-
mality should be simple enough for us to easily understand. Every kind of cancer
is its own vast universe of complexity, and each and every single tumor may end
up being incomprehensibly complex. There is no upper bound on the complexity
of the new adaptations that can be picked out and amplified by this ignorant
but unerring process, because there are no cognitive limitations to create such a
bound.

Probably the most surprising thing about metastasis is that it can evolve
at all, that such a high fraction of the cancers that naturally occur in human
beings are able to develop elaborate adaptations for spreading through the body
and thriving in new locations over periods of a few months or years. Of course,
already having a full human genome, cancer cells have a big head start on the
project of evolving new adaptations for thriving inside the human body. But
what must make the evolution of metastasis possible is the overlay of a huge
percolating network of equally viable, perhaps only neutrally different cellular
phenotypes on human genome space. As creatures, with limited capacity for
processing information, we seem to vastly underestimate the density of new,
workable complex designs in the realm of unrealized forms, supposing that there
are only a few, and fewer, proportionally, as complexity increases.

(In a habit that goes back millennia, we suppose that the things that are must
be some reasonably large fraction of the things that could be, though in fact
they are a vanishingly small and rapidly shrinking sub-set. Evolution explores
a combinatoric space that gets easier to move around in in a way that depends
more or less linearly on its dimensionality, while the number of points in that
same space increases exponentially with its dimensionality, so an evolving life-
form, as it becomes more complex, moves more and more freely through a vaster
and vaster set of possibilities, exploring smaller and smaller fractions of them at
greater and greater speeds.)

Because of this inappropriate, lingering Platonic assumption (in most kinds
of Platonism, the Platonic forms are supposed to be fewer than the things in the
world, though in Parmenides Plato admits that this supposition is problematic)
we look for simple explanations of the adaptive effects of abnormalities, and
we tend to think there must only be a few kinds of colon or lung cancer. But
this is an illegitimate transfer of the sort of intuition we derive from our own
experiences with things like eight-letter English words whose profusion is limited
by our stupidity onto a universe that is not stupid (or clever) at all.

The rules we can deduce about how a cell will respond to a particular pertur-
bation will only be simple if we are willing to allow a multitude of un-described
possible exceptions. Any attempt to describe all of the possible exceptions to
such a rule would involve describing all of a cell’s possible physical states in exact
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detail. Then we would be no better off than we are in dealing with a hurricane.
Exact prediction of future events is only possible when the simplifying conven-
tions work as they’re supposed to. The rules that govern cells are only simple
when they are imperfectly stated; anything simple we say about them is only
a sort of executive summary, an approximate characterization of what’s ’usual’
for a system whose real behavior can become arbitrarily different in particular
cases. No matter what things are like in physics, the simplest description of a
system and the most accurate one do not ever coincide in biology. A fully accu-
rate description of a biological system is a description of that system in all its
unique complexity. (Of course, such a description is impossible but that just
means biologists will never run out of things to do.)

This makes many of the regularities we discover in the living world very
different from the sorts of laws studied by physicists, and the kind of knowledge
we can have about living things very different from the kind of knowledge we
can have of the fundamental physical laws. Those things are actual necessities of
nature, descriptions of universal mechanisms that couldn’t possibly work in any
other way. The regularities we observe in cells really are just local conventions,
which serve to allow coordination between large numbers of molecules, when
they actually obtain, which is not all the time, or in all cells. In death, all these
regularities decay and disappear. As far as we know, there is never any such
breakdown of the rules governing electrons.

So a large, noisy neural net might in fact be a useful model of information
processing in cells, but only if we keep in mind the caveat that the system will
act like one all the time except when it doesn’t, when the underlying mechanical
properties of the components come to matter in ways a neural net model doesn’t
reflect. It’s very optimistic to suppose that we can ever arrive at a detailed
simulation or model of cellular function that also covers all abnormal cases, that
accurately predicts the system’s response to any perturbation, because anything
at all can matter in an abnormal case, and the suppression of idiosyncratic detail
is the essence of simulation. The only fully accurate model of a cell as information
processor is the cell itself in all its complexity, in its natural environment, where
anything at all can happen, and information as such does not really exist.
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Abstract. In this contribution, we present a computer model of in-
formation processing within a highly distributed biological system of
the human body, which is orchestrated over multiple scales of time and
space: the immune system. We consider the human body and its envi-
ronment as a well-orchestrated system of interacting swarms: swarms of
cells, swarms of messenger molecules, swarms of bacteria, and swarms of
viruses. Utilizing swarm intelligence techniques, we present three virtual
simulations and experiments to explore key aspects of the human im-
mune system. Immune system cells and related entities (viruses, bacteria,
cytokines) are represented as virtual agents inside 3-dimensional, decen-
tralized compartments that represent primary and secondary lymphoid
organs as well as vascular and lymphatic vessels. Specific immune sys-
tem responses emerge as by-products from collective interactions among
the involved simulated ‘agents’ and their environment. We demonstrate
simulation results for clonal selection in combination with primary and
secondary collective responses after viral infection. We also model, sim-
ulate, and visualize key response patterns encountered during bacterial
infection. As a third model we consider the complement system, for which
we present initial simulation results. We consider these in-silico exper-
iments and their associated modeling environments as an essential step
towards hierarchical whole-body simulations of the immune system, both
for educational and research purposes.

1 In Perspective: Modeling with Bio-agents

Major advances in systems biology will increasingly be enabled by the utiliza-
tion of computers as an integral research tool, leading to new interdisciplinary
fields within bioinformatics, computational biology, and biological computing.
Innovations in agent-based modelling, computer graphics and specialized visual-
ization technology, such as the CAVE c©Automated Virtual Environment, provide
biologists with unprecedented tools for research in virtual laboratories [9,20,38].

Still, current models of cellular and biomolecular systems have major
shortcomings regarding their usability for biological and medical research. Most

S. Niiranen, A. Ribeiro (Eds.): Information Process. & Biological Sys., ISRL 11, pp. 29–64.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



30 C. Jacob et al.

models do not explicitly take into account that the measurable and observ-
able dynamics of cellular/biomolecular systems result from the interaction of
a (usually large) number of ‘agents’. In the case of the immune system, such
agents could be cytokines, antibodies, lymphocites, or macrophages. With our
agent-based models [27,50], simulations and visualizations we introduce swarm
intelligence algorithms [6,11] into biomolecular and cellular systems. We develop
highly visual, adaptive and user-friendly innovative research tools. Our hope is
that these agent models will gain broader acceptance within the biological and
life sciences research community — complementing most of the current, more
abstract and computationally more challenging1 mathematical and computa-
tional models [43,7]. We propose a model of the human immune system, as a
highly sophisticated network of orchestrated interactions, based on relatively
simple rules for each type of immune system agent. Giving these agents the
freedom to interact within a confined, 3-dimensional space results in emergent
behaviour patterns that resemble the cascades and feedback loops of immune
system reactions.

With the examples presented here, we hope to demonstrate that computer-
based tools and virtual simulations are changing the way of biological research.
Immunology is no exception here. Nowadays, computers are becoming more and
more capable of running large-scale models of complex biological systems. Re-
cent advancements in grid computing technologies make high-performance com-
puter resources readily accessible to almost everybody [40]. Consequently, even
highly sophisticated — and to a large extent still poorly understood — processes,
such as the inner workings of immune system defense mechanisms, can now
be tackled by agent-based models in combination with interactive visualization
components. These agent models serve as an essential complement to modeling
approaches that are traditionally more abstract and purely mathematical [43,7].
Making simulation tools (almost) seamless to use for researchers and introducing
such tools into classrooms in bioinformatics, systems biology, biological sciences,
health sciences and medicine greatly increases the understanding of how useful
computer-based simulations can be. Such models help to explore and facilitate
answers to research questions and, as a side effect, one gains an appreciation of
emergent effects resulting from orchestrated interactions of ‘bio-agents’.

In this contribution, we present three examples of our swarm-based simu-
lations, which, we think, fulfill these criteria. With these demonstrations, we
have implemented an interactive virtual laboratory for exploring the interplay
of human immune system agents and their resulting overall response patterns.
The remainder of this chapter is organized as follows. In Section 2 we intro-
duce the immune system from a biological perspective as a highly distributed
architecture of networked structures and associated bio-agents. In Section 3
we give an overview of related simulation and modeling approaches regarding

1 For example, many differential equation models of biological systems, such as gene
regulatory networks, are very sensitive to initial conditions, result in a large number
of equations, and usually require control parameters that have no direct correspon-
dence to measurable quantities within biological systems [7].
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immune system processes. In section 4, we discuss a first version of our agent-
or swarm-based implementation of the immune system, highlighting the mod-
elled processes and structures. Section 5 gives a step-by-step description of both
simulated humoral and cell-mediated immunity in response to a viral antigen.
Memory response, which we analyze in more detail in Section 6, shows the va-
lidity of this first model showing reactions to a second exposure to a virus. In
Section 7 we reflect on this first agent-based model, discussing its validity, ad-
vantages and short-comings. In the context of a second, and expanded model,
we give an information and biological perspective of the decentralized immune
defenses in Section 8. The key design aspects and main results of our simulation
system — now with an expanded model — are described in Section 9. Here,
we discuss a second set of simulation experiments for clonal selection after pri-
mary and secondary exposure to viral infections. As an extension to this second
model, we show simulations of immune system reactions to bacterial infection. A
review of lessons learnt from this expanded model is presented in Section 10. In
Section 11 we investigate a swarm model of the complement system, which, from
an evolutionary perspective, displays the most ancient form of immunity. The
complement system also represents a bridge to adaptive immunity. In Section 12,
we conclude this contribution with a summary of our work and suggestions for
the necessary next steps towards an encompassing simulation environment to
study, investigate, and explore immune system processes.

2 The Immune System: A Biological Perspective

The human body must defend itself against a myriad of intruders. These in-
truders include potentially dangerous viruses, bacteria, and other pathogens it
encounters in the air and in food and water. Our body also has to deal with ab-
normal cells that are capable of developing into cancer cells. In reaction to these
potential threats to the body’s survival, Nature has evolved two cooperative
defense systems:

– Nonspecific Defense: The nonspecific defense mechanism does not dis-
tinguish one infectious agent from another. This nonspecific system includes
two lines of defense which an invader encounters in sequence. The first line
of defense is external and is comprised of epithelial tissues that cover and
line our bodies (e.g., skin and mucous membranes) and their respective se-
cretions. The second line of nonspecific defense is internal and is triggered by
chemical signals. Antimicrobial proteins and phagocytic cells act as effector
molecules that indiscriminately attack any invader penetrating the body’s
outer barrier. Inflammation is a symptom which results from deployment of
this second line of defense.

– Specific Defense: The specific defense mechanism is better known as the
immune system (IS), and is the key subject of our simulations. The immune
system represents the body’s third line of defense against intruders and comes
into play simultaneously with the second line of nonspecific defenses. Defense
mechanisms from the immune system respond specifically to a particular
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Fig. 1. The immune system as an anatomical and physiological network within the
human body: (a) Full-body view with lymphatic system, circulatory system, skele-
tal system, spleen, thymus, and lymph nodes; (b) close-up view of the circula-
tory and lymphatic system; (c) illustrating lymph nodes and blood vessels in the
right neck area. These anatomical models are rendered using Lindsay Presenter
(http://lindsayvirtualhuman.org).

type of invader. For example, an immune response includes the production
of antibodies as specific defensive proteins. Such as response also involves the
participation of white blood cell derivatives (lymphocytes). While invaders
are attacked by the inflammatory response through antimicrobial agents,
and phagocytes, they inevitably come into contact with cells of the immune
system. These IS cells, in turn, mount defenses against specific invaders by
developing a particular response against each type of foreign substance, such
as microbes, toxins, or transplanted tissue.

2.1 Humoral and Cell-Mediated Immunity

The immune system mounts two different types of responses to antigens: a hu-
moral response and a cell-mediated response (Fig. 2). Humoral immunity results
in the production of antibodies through plasma cells. The antibodies circulate
as soluble proteins in blood plasma and lymph. The circulating antibodies of
the humoral response defend mainly against toxins, free bacteria, and viruses
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Fig. 2. Schematic summary of immune system agents and their interactions in response
to a first and second antigen exposure. The humoral and cell-mediated immunity inter-
action networks are shown on the left and right, respectively. Both immune responses
are mostly mediated and regulated by macrophages and helper T cells (reproduced
from [23]).

present in body fluids. Cell-mediated immunity depends upon the direct action
of certain types of lymphocytes rather than antibodies. In contrast, lymphocytes
of the cell-mediated response are active against bacteria and viruses inside the
host’s cells. Cell-mediated immunity is also involved in attacks on transplanted
tissue and cancer cells, both of which are perceived as foreign.

2.2 Cells of the Immune System

There are two main classes of white blood cells (lymphocytes), which are key
players in the adaptive immune system response processes: B cells are involved in
the humoral immune response; T cells are involved in the cell-mediated immune
response. Lymphocytes, like all blood cells, originate from pluripotent stem cells
in the bone marrow. Initially, all lymphocytes are alike, but eventually they
differentiate into T or B cells. Lymphocytes that mature in the bone marrow
become B cells, while those that migrate to the thymus develop into T cells.
Mature B and T cells are concentrated in the lymph nodes, spleen and other
lymphatic organs. It is within these specialized organs, that act as concentrating
hubs, where the lymphocytes are most likely to encounter antigens.
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Both B and T cells are equipped with antigen receptors on their plasma
membranes. When an antigen binds to a receptor on the surface of a lymphocyte,
the lymphocyte is considered activated and begins to divide and differentiate.
This gives rise to effector cells, those cells that actually defend the body in
an immune response. With respect to the humoral response, B cells activated
by antigen binding give rise to plasma cells that secrete antibodies. Antibodies
are very specific and help to eliminate a particular antigen (Fig. 2, left side).
Cell-mediated responses, on the other hand, involve cytotoxic T cells (killer T
cells) and helper T cells. Cytotoxic T cells kill infected cells and cancer cells.
Helper T cells secrete protein factors (cytokines), which are regulatory molecules
that affect neighbouring cells. More specifically, cytokines — through helper T
cells — regulate the reproduction and actions of both B and T cells. Therefore,
cytokines play a pivotal role in both humoral and cell-mediated responses. Our
first immune system model, presented in Section 4, incorporates most of these
antibody-antigen and cell-cell interactions.

2.3 Antigen-Antibody Interaction

Antigens, such as viruses and bacteria, are mostly composed of proteins or large
polysaccharides. These molecules are often part of the outer components of the
coating of viruses, and the capsules and cell walls of bacteria. Generally, antibod-
ies do not recognize an antigen as a whole molecule. Rather, antibodies identify a
localized region on the surface of an antigen, called an antigenic determinant or
epitope. A single antigen may have several effective epitopes, thereby potentially
stimulating several different B cells to make distinct antibodies against these.

Usually, an antibody is not able to destroy an antigen directly. Rather,
antibodies bind to antigens forming an antigen-antibody complex. This antigen-
antibody complex provides the basis for several effector mechanisms. Neutraliza-

tion is the most common and simplest form of inactivation, because the antibody
blocks viral binding sites. The antibody will neutralize a virus by attaching to
exactly those sites that the virus requires to bind to its host cell. Eventually,
phagocytic cells destroy the antigen-antibody complex. This effector mechanism
is part of our first simulation (Section 4).2

One of the most important effector mechanisms of the humoral responses is
the activation of the complement system by antigen-antibody complexes. The
complement system is a group of proteins that acts cooperatively with elements
of the nonspecific and specific defense systems. Antibodies often combine with
complement proteins, activating the complement proteins to produce lesions in
the antigenic membrane, thereby causing lysis and hence death of the bacterial
cell. Opsonization is a variation on this scheme, whereby complement proteins or
antibodies attach to foreign cells and stimulate phagocytes to ingest those cells.

2 Another effector mechanism is the agglutination or clumping of antigenic bacteria by
antibodies. The clumps are easier for phagocytic cells to engulf than single bacteria.
A similar mechanism is precipitation of soluble antigens through the cross-linking of
numerous antigens to form immobile precipitates that are captured by phagocytes.
This aspect is not considered in the IS models presented here.
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Cooperation between antibodies and complement proteins with phagocytes, op-
sonization, and activation of the complement system is simulated in our first IS
model (Section 4). We also introduce a more detailed model of the complement
system in Section 11.

Another important cooperative process as part of the immune system’s defense
mechanisms involves macrophages. Macrophages do not specifically target an
antigen, but are directly involved in the humoral process, which produces the
antibodies that will act upon a specific antigen. A macrophage that has engulfed
an antigen is termed an antigen-presenting cell (APC). As an APC it presents
parts of the antigen to a helper T cell. This activates the helper T cell, which,
in turn, causes B cells to be alerted by cytokines and consequently divide and
differentiate. As a result, clones of memory B cells, plasma B cells, and secreted
antibodies will be produced (Fig. 2, bottom left). These aspects are also part of
our first IS model (Section 4).

3 Computational Models of the Immune System

The immune system (IS) has been studied from a modeling perspective for a long
time. Early, more general approaches looked at the immune system in the context
of adaptive and learning systems [16,3], with some connections to early artifi-
cial intelligence approaches [42]. Purely mathematical models, mainly based on
differential equations, try to capture the overall behaviour patterns and changes
of concentrations during immune system responses [43,7,19,4,48]. An algebraic
model of B and T cell interactions provides a formal basis to describe binding and
mutual recognition. Such algebraic models can serve as a powerful mathematical
basis for further computational models, similar to formalisms for artificial neural
networks [47].

Spatial aspects of immune system simulations were introduced through agent-
based computational approaches in the form of cellular automata [13]. The in-
fluence of different affinities among interacting functional units, which leads to
self-organizing properties, was recognized in the context of clonal selection and
studied through computational models [14,2]. These models have been expanded
into larger and more general simulation environments to capture various aspects
of the human immune system [28,41]. There is also a large number of modeling
approaches to immune system-related processes, such as for HIV/AIDS [17]. An
excellent overview of these modeling strategies can be found in [18].

Most current methods consider immune response processes as emergent
phenomena in complex adaptive systems [48]. Here, agent-based models play an
increasingly prominent role [27,50]. This is particularly obvious in the broader
application domain of bio-molecular and chemical interaction models [39]. We
see the most promising potential in agent models that incorporate swarm intelli-

gence techniques [6,10]. Swarm-based models result in more accurate and realistic
models, in particular when spatial aspects play a key role in defining patterns of
interaction, as is the case for the human immune system. Agent-based swarmmod-
els also enhance our understanding of emergent properties and help to shed some
light on the inner workings of complexity as displayed by the immune system.



36 C. Jacob et al.

Biological systems inherently operate in a 3-dimensional world. Therefore, we fo-
cus our efforts on building swarm-based, 3-D simulations of biological systems.
These systems exhibit a high degree of self-organization, triggered by relatively
simple interactions among a large number of agents of different types. The immune
system is just one example that allows for this middle-out modeling approach.3

Other agent-basedmodels include the study of chemotaxis within a colony of evolv-
ing bacteria [20,38], the simulation of transcription, translation, and gene regula-
tory processes within the lactose operon [8,22], as well as studies of affinity and
cooperation among gene regulatory agents for the λswitch in E. coli [21].

4 A Biomolecular Swarm Model: First Attempt

Our computer implementation4 of the immune system and its visualization in-
corporates a swarm-based approach with a 3D visualization (Fig. 3a), where we
use modeling techniques similar to our other agent-based simulations of bacte-
rial chemotaxis, the lambda switch, and the lactose operon [22,20,38,9]. Each
individual element in the IS simulation is represented as an independent agent
governed by (usually simple) rules of interaction. While executing specific ac-
tions, when colliding with or getting close to other agents, the dynamic ele-
ments in the system move randomly in continuous, 3-dimensional space. This

(a) (b)

Fig. 3. Interaction space for immune system agents: (a) All interactions between im-
mune system agents are simulated in a confined 3-dimensional space. (b) Actions for
each agent are triggered either by direct collision among agents or by the agent concen-
trations within an agent’s spherical neighbourhood space. Lines illustrate which cells
are considered neighbours with respect to the highlighted cell.

3 The term middle-out modeling was first coined by Sydney Brenner and recently re-
iterated by Denis Noble [35], where middle-out modeling provides a promising com-
promise and, in fact, effective connection between high-level top-down models and
lower-level bottom-up modeling.

4 We used the BREVE physics-based, multi-agent simulation engine [46].
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Tissue cell Apoptotic cell Viruses Antibody

B cell Plasma B cell T cell Killer T cell Macrophage

Fig. 4. The immune system agents as simulated in 3D space. The shapes have been
designed to resemble typical renderings from immunology textbooks. This makes it
easier to track and identify these agents in visualizations.

is different from other IS simulation counterparts, such as the discrete, 2D cel-
lular automaton-based versions of IMMSIM [28,12]. As illustrated in Figure 4,
we represent immune system agents as spherical elements of different shapes,
sizes and colours. Each agent keeps track of other agents in the vicinity of its
neighbourhood space, which is defined as a sphere with a specific radius. Each
agent’s next-action step is triggered depending on the types and numbers of
agents within this local interaction space (Fig. 3b).

Confining all IS agents within a volume does, of course, not take into ac-
count that the actual immune system is spread out through a complicated

Fig. 5. Simplified rules governing the behaviours of macrophages and B cells as exam-
ples of immune system agents.
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network within the human body, including tonsils, spleen, lymph nodes, and bone
marrow (Fig. 1). Neither do we currently—for the sake of keeping our model
computationally manageable—incorporate the exchange of particles between the
lymphatic vessels, blood capillaries, intestinal fluids, and tissue cells. However,
we will discuss an expanded version of this model in Section 9.

Each agent follows a set of rules that define its actions within the system. As
an example, we show the (much simplified) behaviours of macrophages and B
cells in Figure 5. The simulation system provides each agent with basic services,
such as the ability to move, rotate, and determine the presence and position
of other agents. A scheduler implements time slicing by invoking each agent’s
Iterate method, which executes a specific, context-dependent action. These
actions are based on the agent’s current state and the state of other agents in
its vicinity. Consequently, our simulated agents work in a decentralized fashion
with no central control unit to govern the interactions among the agents.

5 Immune Response after Exposure to a Viral Antigen

We will now describe the evolution of our simulated immune response after
the system is exposed to a viral antigen. Figure 6 illustrates key stages dur-
ing the simulation. The simulation starts with 80 tissue cells, 14 killer T cells, 6
macrophages, 10 helper T cells, and a naive B cell. In order to trigger the immune
system responses, five viruses are introduced into the simulation space (Fig. 6b).
The viruses start infecting tissue cells, which turn red and signal their state of
infection by going from light to dark red (Fig. 6c). The viruses replicate inside
the infected cells, which eventually lyse and release new copies of the viruses,
which, in turn, infect more and more of the tissue cells (Fig. 6d). The increasing
concentration of viral antigens and infected tissue cells triggers the reproduction
of macrophages, which consequently stimulate helper T cells to divide faster
(Fig. 6e; also compare Fig. 2). The higher concentration of helper T cells stim-
ulates more B cells and cytotoxic T cells to become active (Fig. 6f). Whenever
active B cells collide with a viral antigen, they produce plasma and memory B
cells and release antibodies (Fig. 6g). Viruses that collide with antibodies are
opsonized by forming antigen-antibody complexes (white; Fig. 6h), which labels
viruses for elimination by macrophages and prevents them from infecting tissue
cells. Eventually, all viruses and infected cells have been eliminated (Fig. 7a),
with a large number of helper and cytotoxic T cells, macrophages, and antibodies
remaining. As all IS agents are assigned a specific lifetime, the immune system
will eventually restore to its initial state, but now with a reservoir of antibod-
ies, which are prepared to fight a second exposure to the now ‘memorized’ viral
antigen (Fig. 7b).

The described interactions among the immune system agents are summa-
rized in Figure 10a, which shows the number of viruses and antibodies as they
evolve during the simulated humoral and cell-mediated immune response. This
graph is the standard way of characterizing specificity and memory in adaptive
immunity [15,45,37,1]. After the first antigen exposure the viruses are starting to
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(a) t = 1.2 (b) t = 2.8

(c) t = 3.1 (d) t = 3.6

(e) t = 5.7 (f) t = 5.8

Fig. 6. Simulated immune system response after first exposure to a viral antigen.
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(a) t = 8.6 (b) t = 11.4

(c) t = 13.0 (d) t = 22.0

(e) t = 23.0 (f) t = 24.0

Fig. 7. Simulated immune system response after first exposure to a viral antigen
(continued from Fig. 6).
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(a) t = 10.5 (b) t = 10.5

(c) t = 10.6 (d) t = 10.7

(e) t = 10.8 (f) t = 11.1

Fig. 8. A more detailed look at antibodies: Release of antibodies after collision of an
activated Plasma B cell with a viral antigen. These are additional snapshots from a
different viewing angle of the simulation stages shown in Figure 7(a) and (b).
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(a) t = 24 (b) t = 29

(c) t = 31 (d) t = 32

(e) t = 37 (f) t = 50

Fig. 9. Faster and more intense response after second exposure to viral antigens (con-
tinued from Fig. 7f). (a) Five viruses are inserted into the system, continuing from Step
136 after the first exposure (Fig. 7). (b) The production of antibodies now starts earlier.
(c) More antibodies are released compared to the first exposure and more macrophages
proliferate. (d,e) A larger number of cytotoxic T cells is produced. (f) The system falls
back into a resting state, now with a 10- to 12-fold higher level of antibodies (compare
Fig. 10) and newly formed memory B cells.
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Fig. 10. Immunological Memory: The graph shows the simulated humoral immunity
response reflected in the number of viruses and antibodies after a first and second
exposure to a viral antigen. (a) During the viral antigen exposure the virus is starting
to get eliminated around iteration time = 70, and has vanished from the system at
time = 90. The number of antibodies decreases between time step 70 and 125 due to
the forming of antigen-antibody complexes, which are then eliminated by macrophages.
A small amount of antibodies (10) remains in the system. (b) After a second exposure
to the viral antigen at t = 145, the antibody production is increased in less than 50
time steps. Consequently, the virus is eliminated more quickly. About 13 times more
antibodies (130) remain in the system after this second exposure (reproduced from
[23]).

get eliminated around iteration time= 50, and have vanished from the system
at time= 100. The number of antibodies decreases between time step 50 and
100 due to the forming of antigen-antibody complexes, which are eliminated by
macrophages. Infected tissue cells are lysed by cytotoxic T cells, which delete
all cell-internal viruses. After all viruses have been fought off, a small amount of
antibodies remains in the system, which will help to trigger a more intense and
faster immune response after a second exposure to the same antigen, which is
described in the following section.



44 C. Jacob et al.

6 Immune System Response after Second Exposure to

Antigen

The selective proliferation of lymphocytes to form clones of effector cells upon
first exposure to an antigen constitutes the primary immune response. There is
a lag period between initial exposure to an antigen and maximum production
of effector cells. During this time, the lymphocytes selected by the antigen are
differentiating into effector T cells and antibody-producing plasma cells. If the
body is exposed to the same antigen at some later time, the response is faster
and more prolonged than during the primary response. This phenomenon is
called the secondary immune response, which we will demonstrate through our
simulated immune system model (Fig. 10b).

The immune system’s ability to recognize a previously encountered antigen is
called immunological memory. This ability is contingent upon long-lived memory
cells. These cells are produced along with the relatively short-lived effector cells
of the primary immune response. During the primary response, these memory
cells are not active. They do, however, survive for long periods of time and pro-
liferate rapidly when exposed to the same antigen again. The secondary immune
response gives rise to a new clone of memory cells as well as to new effector cells.

Figure 9 shows a continuation of the immune response simulation of Figure 7.
We introduce five copies of the same virus the system encountered previously.
We keep track of all viruses inserted into the system and can thus reinsert any
previous virus, for which antibodies have been formed. Each virus, which is in-
troduced into the system, receives a random signature s∈ [0,10]. Once memory
B cells collide with a virus, they produce antibodies with the same signature,
so that those antibodies will only respond to this specific virus. After a second
exposure to the same viral antigen, the highest concentration of antibodies is
increasing (Fig. 10). Consequently, the virus is eliminated much faster, as more
antigen-antibody complexes are formed, which get eliminated quickly by the also
increased number of macrophages. Additionally, an increased number of helper
and killer T cells contributes to a more effective removal of infected cells (Fig. 9).
Not even half the number of viruses can now proliferate through the system, com-
pared to the virus count during the first exposure. After the complete elimination
of all viruses, ten to fifteen times more antibodies remain in the system after the
second exposure. This demonstrates that our agent-based model—through emer-
gent behaviour resulting from agent-specific, local interaction rules—is capable
of simulating key aspects of both humoral and cell-mediated immune responses.

7 Lessons Learnt from Model One

We think that a decentralized swarm approach to modelling the immune system
closely approximates the way in which biologists view and think about living
systems. Although our simulations have so far only been tested for a relatively
small number of interacting agents, the system is currently being expanded to
handle a much larger number of immune system agents and other biomolecular
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entities (such as cytokines), thus getting closer to more accurate simulations
of massively-parallel interaction processes among cells that involve hundreds of
thousands of particles.

A swarm-based approach affords a measure of modularity, as agents can be
added and removed from the system. In addition, completely new agents can be
introduced into the simulation. This allows for further aspects of the immune
system to be modelled, such as effects of immunization through antibiotics or
studies of proviruses (HIV), which are invisible to other IS agents.

8 Decentralized Information Processing

One aspect that makes the human immune system particularly interesting—
but more challenging from a modeling perspective—is its vastly decentralized
arrangement. Tissue and organs of the lymphatic system are widely spread
throughout the body, which provides good coverage against any infectious agents
that might enter the body at almost any location. Even the two key players
responsible for specific immunity originate from different locations within the
body: T cells come from the thymus, whereas B cells are made in the bone
marrow. The lymphocytes then travel through the blood stream to secondary
lymphoid organs: the lymph nodes, spleen, and tonsils. Within these organs, B
and T cells are rather tightly packed, but can still move around freely, which
makes them easier to model as agents interacting in a 3-D simulation space.

Lymph nodes can then be considered the primary locations of interactions
among T cells, activated by antigen presenting cells. T cells, in turn, activate
B cells, which evolve into memory B cells and antibody-producing plasma B
cells. Both types of activated lymphocytes will subsequently enter the lymphatic
system, from where they eventually return to the blood stream. This enables
the immune system to spread its activated agents widely throughout the body.
Finally, the lymphocytes return to other lymph nodes, where they can recruit
further agents or trigger subsequent responses. Hence, B and T cells as well
as other immune system agents (antibodies, cytokines, dendritic cells, antigen
presenting cells, etc.) are in a constant flow between different locations within
the human body [36].

9 Simulating Decentralized Immune Responses

Our overall goal is to build a whole body simulation of the immune system
(Fig. 11). This, of course, does not only require a large amount of computing
resources, but also requires a modular and hierarchical design of the simulation
framework. Modelers – i.e., immunologists as well as researchers and students
in health sciences – should be able to look at the simulated immune system at
different levels of detail. A whole body simulation will not be as fine grained
as when looking at the interactions within a lymph node or at the intersection
between the lymphatic and vascular system. In our current implementation we
have incorporated three distinct, but interconnected sites within the human body
that are related to the immune system:
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– Lymph Nodes: Within a lymph node section we incorporate adaptive im-
mune system processes during clonal selection, in response to viral antigens
entering the lymph node. Different types of B cell strands can be defined.
In case of a high degree of matching with an antigen, rapid proliferation is
triggered.

– Tissue: Within a small section of tissue we model the immune system pro-
cesses during primary and secondary response reactions among viruses (with
their associated antigen components), tissue cells, dendritic cells, helper T
and killer T cells, memory and plasma B cells (with their associated anti-
bodies), and macrophages.

Fig. 11. The decentralized defenses of immunity. Three compartmental modules, that
exhibit distinct but interconnected functionalities within the human immune system,
are implemented in our immune system simulations: tissue, blood vessels, and lymph
nodes.
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– Blood Vessel-Tissue Interfaces: At the interface between blood vessels
and tissue, we simulate red blood cells moving within a section of a blood
vessel, lined with endothelial cells, which can produce selectin and intercel-
lular adhesion molecules (ICAMs). This causes neutrophils to start rolling
along the vessel wall and exit the blood stream into the tissue area. Any bac-
terium within the tissue is subsequently attacked by a neutrophil. During
ingestion of a bacterium by a macrophage, tumor necrosis factor (TNF) is
secreted and the bacterium releases lipopolysaccharides (LPS) from its sur-
face. In turn, TNF triggers selectin production in endothelial cells, whereas
LPS induces endothelial cells to produce ICAM.

The following sections explain our model in more detail with respect to clonal
selection as well as primary and secondary responses within a lymph node area
and a tissue region (Section 9.1). The IS processes triggered during a bacterial
infection within the interface area between a blood vessel and tissue is described
in Section 9.2.

9.1 Simulated Viral Infection

Figure 12 gives an overview of the immune system agents and their interaction
patterns in our model. Each agent is represented by a specific, 3-dimensional
shape, which are also used in the (optional) visual representation of the agents
during a simulation experiment. We demonstrate one experiment to show a typ-
ical simulation sequence.

Clonal Selection within a Lymph Node: In this experiment, we first focus
our attention on a selected lymph node in order to observe the IS agent reactions
after a virus enters the lymph node area (cf. Fig. 11). Initially, 50 B cells as well
as 20 helper-T cells of 8 different types (signatures) are present. Figure 13f shows
that there is a fairly even initial distribution of the different strands of B and T
cells. Around time step t = 14.6, dendritic cells enter the lymph node and present
a single type of viral antigen (Fig. 13b), which stimulates a nearby helper-T cell
and causes a matching B cell (following the Celada-Seiden affinity model [13])
to replicate. Soon after (t = 57.1), a significantly larger population of matching
B cells proliferates the lymph node area (Fig. 13c), where B cells have already
started to emit antibodies. In Fig. 13f the concentration of these fast proliferating
B cells is represented by the green plot. At time point t = 225.0, memory B cells
of the matching strand have become more common. Around t = 256.4, the same
virus is introduced into the lymph node again. Now it is mainly the memory B
cells that trigger the secondary response and replication of plasma B cells, which
secrete antibodies (compare the increase of the matching B cell concentration
(green) towards the last third of the graph in Fig. 13f).

Primary and Secondary Response in Tissue: At the same time, while the
simulation of the interactions within the lymph node are running, a concurrent,
second simulation models the response processes in a selected tissue area (cf.
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Fig. 12. Interactions of immune system agents triggered by viral infection: A virus is
usually identified by its antigens, which alert both dendritic cells and macrophages to
ingest the viruses. Both actions lead to recruitment of further IS cells. Dendritic cells
recruit B cells, which – in particular when activated by helper-T cells – replicate as
memory B cells or proliferate into plasma B cells, which in turn release antibodies to
opsonize the virus. On the other hand, macrophages with an engulfed virus stimulate
an increase in the proliferation of both helper and killer T cells, which are the key
players in cell-mediated immunity and destroy virus-infected tissue cells to prevent
any further spreading of the virus (reproduced from [25]).

Fig. 11). Circulation of IS agents is implemented by a communication chan-
nel between lymph node and tissue areas. Within the tissue simulation space
(Fig. 14a), we start with 10 dendritic cells, 5 killer-T cells, 5 helper-T cells, 5
macrophages, 60 tissue cells and 5 copies of the same virus introduced into the
lymph node as described above. In Fig. 14b a cell has been infected by the virus
and antibodies (from the lymph node) start entering the tissue area. Figure 14c
shows a close-up of the important agents: one virus is visible inside an infected
cell, another virus has docked onto the surface of a tissue cell and is about to
enter it. A third virus has already been opsonized by an attached antibody. Now
macrophages will start to engulf opsonized viruses and more macrophages are
recruited in large numbers (Fig. 14d). This triggers an analogous spike in the
number of killer-T and helper-T cells (compare Fig. 15). The increase in killer-T



Swarm-Based Simulations for Immunobiology 49

(a) t = 3.2 (b) t= 14.6

(c) t = 57.1 (d) t = 225.0
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Fig. 13. Interactions in a Lymph Node after a viral infection: (a)-(e) Screen captures
(with time point labels) of the graphical simulation interface during clonal selection
and primary and secondary response to a virus. The virtual cameras are pointed at
a lymph node, in which 8 different strands of B cells are present. (f) The change
in concentration of all B cells (brown filled plot) and per strand. The virus that most
closely matches one of the B cell strands triggers its increased proliferation (green filled
plot). The concentrations of all other strands remain low (line plots at the bottom).
This figure is reproduced from [25]
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(a) t = 4.4 (b) t= 25.1

(c) t = 40.4 (d) t = 73.6

(e) t = 225.0 (f) t = 268.8

Fig. 14. Interactions in a Tissue Area after a viral infection: Screen captures of
the graphical simulation interface during clonal selection and primary and secondary
response after viral infection. The virtual cameras are pointed at a tissue region close
to a blood vessel (reproduced from [25]).
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Fig. 15. Evolution of IS agent concentrations during the primary and secondary re-
sponses in a tissue area (reproduced from [25]).

cells makes it more likely for these cells to collide with an infected tissue cell and
initiate its apoptosis.

After about 120 time steps, the infection has been fought off, with no more
viruses or antigens remaining in the system (Fig. 15). The concentrations of
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T cells and macrophages return to their initial levels. At t = 150.0, the same
virus is reinserted into the system. Memory B cells inside the lymph node create
an influx of plasma B cells almost immediately. As a result, the infection is
stopped within a much shorter time interval, due to the increased amount of
antibodies. Cell-mediated immunity reactions do start faster as well, but are not
as intense as during the first response, since the infection is eliminated more
quickly. Consequently, T cells and macrophage concentrations can remain at a
lower level.

9.2 Simulated Bacterial Infection

In addition to viral infection, we now look more closely at a simulation of in-
fections caused by bacteria and how the immune system tries to keep bacterial
infections in check. Bacteria multiply within the tissue. Their waste products,
produced from a large concentration of bacteria, can be damaging to the hu-
man body. Therefore it is important that the immune system kills off bacterial
invaders before a critical concentration is reached.

The following experiment demonstrates immune system response processes
during bacterial infection. The key players and their interactions are outlined in
Fig. 16. As this involves not only bacteria and macrophages but also neutrophils
that enter tissue from the vascular system, the simulation space comprises a
segment of a blood vessel (Fig. 17). The tissue-vessel interface area is initialized
with tissue cells, B cells, helper-T cells, macrophages, and a number of bacteria
acting as infectors. The blood vessel, lined with endothelial cells, contains red
blood cells and neutrophils.

Bacteria

Hunting 
Neutrophil

Macrophage

LPS

TNF

releases
on death

Endothelial
Cell

collides with

collides with

kills

kills

ICAM
Endothelial

Cell

Selectin
Endothelial

Cell

Sliding 
Neutrophil

Neutrophil

and becomes

and becomes

activates

activates

exits blood stream and becomes

becomes

Fig. 16. Bacterial Infection: A summary of the interaction network between bacteria,
macrophages, neutrophils, and endothelial cells that line the blood vessel (reproduced
from [25]).
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(a) t = 14.0 (b) t = 17.6

(c) t = 37.2 (d) t = 71.7

Fig. 17. Fighting Bacterial Infection: (a) macrophages attacking bacteria, (b) en-
dothelial cells, neutrophils and red blood cells inside the blood vessel, (c) neutrophils
(blue) on their hunt for bacteria, (d) all bacteria have been eliminated (reproduced
from [25]).

Macrophages that engulf bacteria release TNF (tumor necrosis factor), while
lipopolysaccharides (LPS), which are major structural components of Gram-
negative bacterial cell walls, are released into the tissue area (Fig. 17a). Once
endothelial cells get in contact with TNS or LPS, they release selectin or inter-
cellular adhesion molecules (ICAMs), respectively (Fig. 17b). When a neutrophil
collides with an endothelial cell that produces selectin, it will start to roll along
the interior surface of the blood vessel. A neutrophil rolling along an ICAM-
producing endothelial cell will exit the blood stream and head into the tissue
area. Once in the tissue area, neutrophils—together with macrophages— act as
complementary hunters of bacteria (Fig. 17c). Notice the high number of ac-
tivated endothelial cells in the blood vessel wall. A bacterium colliding with a
neutrophil is engulfed and consumed, while LPS and TNF are again released
into the system. Finally, all bacteria have been eliminated and the number of
activated endothelial cells is reduced (Fig. 17d). Neutrophils will soon disappear
since the system has recovered from the bacterial infection.
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10 Lessons Learnt from Model Two

Our simulation environment is currently used as a teaching tool in biology, med-
ical, and computer science undergraduate and graduate classes. Due to its visual
interface and the ability to specify many simulation control parameters through
configuration files, it serves both as an educational device and as an exploration
tool for researchers in the life sciences. Students seem to gain a more ‘memorable’
understanding of different aspects of immune system processes. Although visual-
izations can also be misleading, they usually help in grasping essential concepts,
in particular in the case of an orchestrated system of a multitude of agents, such
as the immune system. From our experience, the visualization component is im-
portant for a proper understanding of emergent processes that result from the
interplay of a relatively large number of agents of different types with simple but
specific local interaction rules. Gaining an understanding and ‘intuition’ about
emergent properties as in the immune system plays a key role in building today’s
biologically accurate computer simulations.

Of course, our current version does not even come close to the actual numbers
of interacting IS agents (e.g., billions of B cells within a small lymph node sec-
tion). However, according to our experience, key effects within an agent-based
interaction system can already be observed with much smaller numbers. Usually,
only a ‘critical mass’ is needed. This is certainly an area that requires further
investigation. Using evolutionary computation techniques, we also explore the
effects of different control parameter settings, as well as how changes in the set
of agent interaction rules influence the overall system behaviour [30,32]. Further-
more, being able to easily change agent interaction rules and agent types makes
models of complex adaptive systems useful for large-scale scientific exploration
[24,31].

11 A Swarm Model of the Complement System

The complement system is one of the most ancient forms of immunity. Nearly 700
million years old, it predates the emergence of antibodies by about 250 million
years, long before the evolution of adaptive immunity [44]. In its current evo-
lution, it serves an important role in innate immunity. The complement system
also forms a bridge to adaptive immunity [26] through interactions with anti-
bodies and various anaphylotoxin messenger peptides that alert other branches
of immunity into action. Without a healthy and functioning complement system,
an organism’s survival is severely compromised [49,5].

The human complement system can be subdivided into three different path-
ways: Classical, Alternative and Lectin (Fig. 18). All three pathways converge
on a common point at C3b, which is nearly the endpoint of the Early Comple-

ment period [29]. As the Lectin pathway operates similar to the Classic pathway,
we only consider the Classical and Alternative pathways in our model discussed
here.
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Fig. 18. The complement system is conceptually subdivided into three pathways.

The Classical pathway begins with antigen-antibody complexes forming on
the surface of a pathogen, such as a bacterium. C1 protein binds with these
antibodies and causes the activation of serine proteases in the head. These can
then convert C4 to C4b (and C4a). C4b then binds to the pathogen surface and
facilitates the binding and conversion of C2 to C2b (and C2a). The combination
of C4b:C2b results in a C3-Convertase, which can convert C3 into C3b (and C3a).
A free C3b can also associate with the C3-Convertase to give C3b:C4b:C2, which
is a C3/C5 Convertase.

The Alternative pathway is unique in that it does not require any antibody in-
teraction to target a pathogen. Bio-agents of the Alternative pathway accomplish
this indirectly in two different ways. First, B-Protein can bind to already bound
C3b. Once activated by D-Protein, C3b can generate a C3-Convertase. Similar to
the Classic pathway, the incorporation of another C3b, to give C3b:C3b:B(activ),
results in a C3/C5 Convertase. The second way the Alternative pathway can
interact with a pathogen is by a fluidphase C3 Convertase. As it turns out,
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(a) (b)

Fig. 19. (a) The basic pathogen agent environment. (b) An example of all the agents
displayed in the system while a simulation is running.

approximately 0.5 percent of serum C3 has undergone hydrolysis into C3(H2O).
This allows B-Protein to associate with it, which is then activated by D-Protein;
the result is a fluid-phase C3 Convertase. The feedback with the generation of
C3b of the Alternative pathway contributes positively to an amplification effect
on the Classic pathway. Indeed, the Alternative pathway is considered to be a
type of amplification pathway [26].

11.1 A Swarm Model of the Early Complement

The experimental environment5 consists of a square box and a single pathogen
in the centre. The remainder of the agents in the system interact in the region
between the pathogen and the barrier walls (Fig. 19). The size of the box and
the pathogen radius are easily accessed variables in the model. This Swarm uses
a modified interaction model of the complement system as the bases of the agent
interaction rules (Fig. 20). It should be noted that the model does not create or
track C4a, C2a, C3a or C5a in the simulation. However, the amount of C4b, C2b,
C3b and C5b can give an indication of the numbers of a-peptides generated in the
system. Since regulatory proteins are not yet included in the model, decay rates
on some of the proteins and complexes are used instead. The model generates a
reaction up to the activation of C5 to C5b (and C5a). As the formation of the
MAC complex is considered to be quite fast, a collision of C5b with the pathogen
surface is considered to indicate a MAC formation. The model can also be easily
adjusted to run one pathway at a time, or both pathways at once. At every
interval iteration, activation times for all complement proteins are recorded.
Formation of the various convertases in each pathway and the associated C3b,
C5b generation, is also recorded and can be accessed individually at anytime
during the experiment.

5 We used the BREVE physics-based, multi-agent simulation engine [46] for the im-
plementation of this model.
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Fig. 20. The interaction model for the three different Complement Pathways as used
in our model.

11.2 Results from the Complement Model

Experimental runs were performed for 8000+ iterations for both the Classi-
cal and Alternative Pathways, and each individually. All agents are regenera-
tive, which means we assume a constant concentration of complement proteins
around a single pathogen. The starting concentrations for each type of bio-
agent are shown in Fig. 21. What is first noticeable about the visual results
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Complement Protein Agent Population

Ab 20
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D 50

Pathogen 1

Fig. 21. Initial Agent Populations (1008 bio-agents in total)

(Fig. 22), is the minimal protein deposits on the pathogen surface of the Alter-
native pathway alone (Fig. 22(a),bottom). Compared to the Classic and com-
bined Classic-Alternative pathways, the Alternative pathway, by itself, invokes
a very protracted response; it would take much longer to fully tag the pathogen.
Within 8000 world time units, both the Classical and combined runs result in a
relatively thorough coating of the pathogen surface.

Examining Fig. 23, we see slightly different agent profiles for the Classic and
combined runs. These graphs show all the agent populations and their rates of
generation over time. While the rate of C3b deposited on the pathogen surface in
both cases is similar, the total number of C3b created is about 10 percent higher
than in the combined pathway. Another noticeable difference between the two
runs is in the initial pattern in C3b generation. When both pathways are run at
the same time, most of the initial C3b production comes from the Alternative
pathway components, whereas C3b from the Classical pathway does not start to
increase production until 2000 world iterations. This is in contrast to the classical
pathway, where production begins to ramp up around 1000 iterations. Overall,
both pathways for the entire production run generate about the same number
of C3b: 1862 in the Classic pathway and 1963 for both pathways. However, the
C3b production from the Classic components, when both are run at the same
time, appears to be delayed in the first quarter of the experiment — or “shifted
to the right” when the Alternative pathway agents are added.

C3b pathogen binding by the combined pathways is 5 percent greater than
the Classic pathway alone. However, the amount of C4b pathogen binding is 13
percent lower than the Classic run by itself. In both cases, the total number of
C4b bound levels off to about 220 agents for a pathogen of this size. Antibody
binding also levels off at about 55, as does C1 binding, which parallels the amount
of antibodies bound.

Looking at convertase production, in the case of the Classic pathway, 6 C3
convertases and 173 C3:C5 convertases were formed. In the run with combined
pathways, 212 C3 convertases and 187 C3:C5 convertases were created. Gener-
ally, we achieve a 10 to 12 percent increase when both pathways are run together.
In addition, both experimental runs produced approximately the same number
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(a) (b)

Fig. 22. Close-ups of the Complement System simulation: (a) The Classic and Alterna-
tive Pathways, the Classic Pathway, and the Alternative Pathway (from top to bottom;
all displayed after approximately 8000 simulation steps), (b) a section of the pathogen
surface at 3500 iterations.

of activated C5b with potential impact for the formation of the membrane attack
complex (MAC). In the Classic pathway alone, 186 Cb5 were created, with 12
potential MAC attacks. For the combined pathways, 101 C5bs were created and
11 potential MAC attacks.

11.3 Evaluation of the Complement Model

While Classic pathway proteins were calibrated to previously measured serum
levels [34], the Alternative protein concentrations still need to be adjusted. When
this is accomplished, a more valid comparison of the two pathways can be made.
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(a)

(b)

Fig. 23. Agent concentrations as monitored for a typical simulation experiment for the
(a) Classical and (b) Alternative and Classical pathways.
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It is interesting, though, that under these concentrations the Alternative path-
way mechanisms might act as a regulatory process governing the initial C3b
production in the Classical pathway. It is also noteworthy that the combination
of both pathways results in an increase in overall convertase production. For fu-
ture experiments, a range of concentrations for all the complement proteins needs
to be explored, as each individual person will have their own unique balance and
effectiveness of their complement proteome. Furthermore, binding affinities for
all the agents in the system need to be integrated into the current model. Other
possible modifications would be to include regulatory protein components of the
complement system. Rather than (as the current model does) using decay rates
on the agents, one would use the regulatory agents to self-regulate the reaction
processes.

12 Conclusions

Currently, we only have incorporated some of the earlier and basic theories of
how immune system processes might work. Now that we are getting closer to
implementing a flexible and powerful simulation infrastructure for biological sys-
tems, calibrating and validating our models as well as including more of the re-
cently proposed immune system models [33] is one of our next objectives. We are
also expanding our simulations to demonstrate why the generation of effective
vaccines is difficult and how spontaneous auto-immunity emerges.

In this contribution, we have tried to give an example of information pro-
cessing of a highly distributed biological system within the human body: the
immune system. In the case of the immune system, information is processed
across different time scales—from microseconds for a protein-molecule interac-
tion to days for an immune response to fully unfold. Information processing is
also distributed spatially—from the bone marrow, to the spleen and thymus, to
lymph nodes, and the lymphatic system, which is tightly interconnected with
the blood circulatory system. Hence, the immune system constitutes a prime
example of a parallel and highly distributed network of (sub-)systems. Infor-
mation is carried, memorized and processed in the form of physical shapes, for
example, when antigen presenting cells trigger antibody production after suc-
cessful pattern matching. Memorization of viral signatures through memory B
cells is another information processing and storage task that the immune system
performs. From a modeling perspective, highly distributed, hierarchical, and net-
worked biological systems provide a rich basis for exploring the effective use of
distributed, artificial information processing systems (e.g., computer networks,
grid computing, multi-core systems). Studying biological information processing
also inspires new methodologies for our future computational engines, with the
hope to improve their robustness and flexibility through adaptation, learning
and evolution.

Up-to-date details about our latest immune system models and other agent-
based simulation examples, which are investigated in our Evolutionary & Swarm

Design Laboratory can be found at: http://www.swarm-design.org
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Abstract. Biological limits of learning are the cto our understanding
of learning and memory. We are conducting a detailed investigation of
structure and function of gene regulatory networks in a biological system
of learning and memory. We use a simple system of hand reaching in
laboratory mice and assess the regulation of the limit of hand preference
learning. In this chapter, we describe hand-reaching behavior of mice
and the discovery that it is a complex adaptive behavior in which future
preference is genotypically dependent on past experience. We define the
key elements that led to the collaborative development of a stochastic
agent-based model. Simulation with the model mimics hand-reaching
behavior and successfully predicts dynamics and kinetics of the learning
and memory process in different genotypes of mice. Therefore, a mouse
receives information from the act of reaching and uses it to inform the
choice of the next hand reach; the model shows the structure of the
behavior and the biological limits of hand preference learning hiding
behind the genes. We use three different mouse strains as prototypes
to illustrate the constructive path that predicts the adaptive behavioral
phenotype from specified genotype. We believe that promises made by
the power of genetic analysis will be kept by the discovery that simplicity
resides in gene regulatory networks that give rise to learning and memory
in adaptive behaviors.

“The ’structural’ concept of gene action accounts for the multiplicity
and for the phylogenetic stability of macromolecular structure. It does
not account for biochemical coordination and ignores the problem of
emergence and functioning of differentiated cellular populations” [1].

1 Introduction

Asymmetry of human hand preference continues to attract creative speculation
about its biological cause and the evolutionary significance of its phenotypic di-
versity. However, research on laterality of our handedness has mostly added to
a rich mythology about the behavior, including its unavoidable association with
asymmetry of brain development and function [2,3,4,5,6]. Family analysis and
twin studies in different populations continue to support a heritable influence
on asymmetry of hand preference [7] and the role of genes remains central to
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speculation about its biological cause and evolutionary significance [8,9]. The
concern is that relevant genes are not yet known, despite our ability to sequence
and analyze the genome [10]. It may be that analysis of hand preference has been
trying to detect genetic effects one gene at a time, similar to what is done in some
experimental model systems with directed mutation and gene knock-out tech-
nology [11]; if many genes influence the behavior, but they have complex effect
and only a small effect size, they may be virtually impossible to detect one gene
at a time. Therefore, we suggest that genetic research on human hand preference
may be trying to attach the wrong model of its behavior to the genome. Biology
of hand preference may be at the same impasse in the analysis of genes and
behavior that Jacob and Monod [1] identified 50 years ago for molecular biology
where the structural concept of gene action accounted for ”multiplicity ... and
stability of macromolecular structure”, but the concept of genes did not reveal
”biochemical coordination” and it ignored ”emergence and functioning of differ-
entiated cellular populations.” Biochemical coordination and the emergence and
functioning of differentiated cellular populations were only understood when the
science of metabolism was separated from the science of code and control.

We work on the genetic analysis of mouse models of complex traits of mam-
malian development. We believe that genetically regulated experimental models
can provide a rigorous framework to objectively assess and understand com-
plex traits of human development. Laboratory mice have an extensive array of
different, genetically uniform and well-characterized inbred strains and mutant-
carrying stocks [12] and a systematic analysis of the wide range of diversity in
this genetic resource can reveal the biologically possible range of phenotypic di-
versity in complex traits of mice [13,14]. An inbred strain of laboratory mice
provides the key element of reproducible experiments within a set of genetically
identical individuals and the collection of inbred strains provides the ability to
compare the experiments between genetically different individuals. Furthermore,
mice have asymmetry in their paw preference in single-paw reaching tasks and we
demonstrated that right- and left-paw preference is a complex adaptive behavior
that reflects a dynamic biological system of learning and memory[15,16,17,18].
Research on the structural elements of this mouse behavior provides a practical
experimental paradigm to investigate the biology of an adaptive behavior and
the evolutionary significance of its heritable variation. The mouse behavior is
giving some insight into human hand-preference behavior.

In this review, we describe the paw preference of mice and briefly summa-
rize early investigation of its phenotypic diversity among different mouse strains
[19,20]. Discovery of the system of learning and memory in the mouse behav-
ior was an unexpected surprise [15]. Initial structural analysis of the system
[16] led to an agent-based stochastic model that replicates the complexity in
the behavior [17]. Simulations with the model reproduced the dynamic varia-
tion in paw-preference learning of different mouse strains at both the individ-
ual and population levels and they predicted the limits of learning. The model
confirmed that paw preference is an adaptive behavior. New discoveries with
the mouse model suggest new experiments to assess the biological significance of
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diversity in paw-preference behavior and the rationale for these new experiments
derives from the hypothesis that the behavior is the expression of a genetically
regulated, learning and memory process [18].

Our new experiments assess the biological information in paw-preference be-
havior. They show that an individual mouse receives information from each
paw reach, uses it to influence the choice of the next reach and, hence, estab-
lishes a reliable paw preference. We describe some of the experiments that are in
progress because they define critical genetic questions that may form a founda-
tion for practical investigations about the evolutionary significance of the mouse
behavior. The experiments confirm new predictions from our hypothesis that the
mouse behavior is a genetically regulated process of learning and memory and
they provide a realistic framework to objectively assess human hand preference.

Geneticists have two distinctive uses for the word gene [21]. One is a unit of
inheritance or code that allows a trait to be reliably transmitted to the next gen-
eration (either the two daughter cells of a parent cell or the offspring of specific
individuals); the other is a unit of control that specifies molecular elements that
function and interact in the cell or individual. Therefore, if heritable differences
influence paw preference of individual mice, the question is what is transmitted
from generation to generation so that parents, offspring, grand offspring, etc.,
have a predicted paw preference? What do genes do so that an individual ex-
presses the predicted preference and will the ’study of genes’ tell us anything about
the behavior? We suggest that, in order to answer these questions, the science of
paw-preference behavior must be separated form the science of code and control
because mice reach and express a reliable paw preference, genes dont. Therefore,
we ask what is the paw-preference behavior that is hiding behind the genes?

2 Mouse Paw Preference

2.1 Paw Preference Phenotypes Are Characteristic Behavior
Patterns

After a brief fasting from food, mice will reach to retrieve food from a tube in
a small testing chamber (Fig. 1). When the food tube is centered in the face of
the test chamber, it is defined as an unbiased or U-world and a mouse is free to
reach with its right and left fore paw. When previously untested mice are allowed
a set number of paw reaches in the U-world, they will express a reliable ratio
of right and left paw reaches. The right-paw entry or RPE score quantifies the
direction of paw preference and it is the number of reaches made with the right
paw in a specified number of reaches [19]. For example, if mice are allowed 50
paw reaches, the RPE score will have a numerical value from 0 to 50. Extensive
surveys showed that most inbred strains have equal numbers of right and left-paw
mice in a U-world [19,22,23,24,25,26]. Figure 2 illustrates the characteristic and
reliable patterns of U-world RPE scores from four genetically different mouse
strains. The individual mice of an inbred strain are genetically identical because
inbreeding, usually by sister brother matings, within the strain for hundreds of
generations has eliminated genetic variation by chance segregation.
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Fig. 1. Mouse reaching for food with right forepaw in unbiased U-world [24]. In U-
world, food tube is centered in face of test chamber; in biased R-world or L-world,
food tube is directly next to the respective right or left side from the perspective of the
mouse. (Reproduced with permission from NRC Research Press. (c) 2008 NRC Canada
or its licensors.)

Fig. 2. Diversity in dynamic patterns of paw preference in the U-world from C57BL/6J,
CDS/Lay, SWV, and DBA/2J mouse strains [41]. Sample size is 150 mice with equal
number of females and males from each strain. Previously untested mice were allowed
50 paw reaches to retrieve food from the food tube; number of right-paw reaches (RPE
score) is the measure of direction of paw preference; the 51 RPE scores (0 50 reaches
with the right paw) are binned in 17 equal sized classes of 3. (Reproduced with per-
mission from NRC Research Press. (c) 2008 NRC Canada or its licensors.)



Biological Limits of Hand Preference Learning Hiding Behind the Genes 69

The characteristic pattern of U-world RPE scores is the heritable property
of a specific strain since it is impossible to select a right or left direction of
paw preference within an existing inbred strain [20]. Genetic differences between
mouse strains must give rise to the reliable patterns of RPE scores (Fig. 2) and
those heritable differences must cause a difference in degree of lateralization of
the preferred paw of individual mice rather than a difference in the right or left
direction of their preferred paw. Selective breeding studies with hybrid mice,
derived from matings between different inbred strains, confirmed that degree of
lateralization of the preferred paw is the heritable mouse trait [27,28]. The genes
and their function remain unknown in the sense of code and control. They are
assumed to be complex.

2.2 Paw Preference and Other Developmental Traits

If a behavioral trait is complex, more than one gene may be involved and the
functional interactions among genes may also be complex. Therefore, alternate
methods of analysis, such as potential brain or neural correlates of the behavior,
might provide insights to the behavior rather than a direct attempt to identify
and isolate genes [29]. Many associations have been identified between different
developmental traits and differences in lateralization of mouse paw preference.
The associations have added layers of complexity without detecting the biological
cause of the diversity in the behavior. For example, there may be a dependence
of the behavior on size (including absence) of the corpus callosum (a major
inter-cerebral hemispheric neuronal fiber tract) in some strains but not in others
[26,30,31,32]. Similarly, there may be a relation of lateralization to large differ-
ences between strains in the size of the hippocampal neuronal projections [33].
Variations in different measures of immune reactivity have an association with
the behavior in some but not other strains [34,35,36,27].

2.3 Genes and Degree of Lateralization of the Preferred Paw

The patterns of paw preference scores from the U-world tests of different inbred
strains (Fig. 2) suggested that the heritable trait is the degree of lateralization
of the preferred paw, without regard to its left or right direction [19,20]. In
Figure 2, C57BL/6J is highly lateralized in preferred paw use and CDS/Lay is
weakly lateralized or ambilateral; the SWV and DBA/2J strains are intermediate
in degree lateralization. Since 50 paw reaches were used, one measure of degree
of lateralization of the preferred paw was simply to fold the RPE distribution
at the midpoint of 25 and redefine the score as a preferred paw entry (PPE) for
each mouse. Using degree of lateralization as the measure of paw preference, both
highly lateralized and weakly lateralized true breeding lines were rapidly selected
from a genetically heterogeneous hybrid stock of mice that was constructed from
the matings of eight different mouse strains [27,28]. The recovery of true breeding
alternate phenotypes in selected generations was the genetic evidence that degree
of lateralization is a heritable trait, but it did not identify number and function
of the responsible genes. A quantitative trait locus (QTL) breeding analysis,
using two mouse strains that differed significantly in degree of lateralization of
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their preferred paw, detected positive association with marker genes on mouse
chromosome 4 [38]; however, no genetic test of transmission has confirmed that
chromosome 4 genes can predict differences in degree of lateralization. Also, we
applied a QTL analysis to the difference in degree of lateralization between the
C57BL/6J and CDS/Lay strains (see Fig. 2) and failed to detect any evidence
for segregation of genetic heterogeneity in the trait [15]. Therefore, we looked in
other ways at the patterns of paw preference behavior.

2.4 Biased Test Chambers Demonstrate Learning and Memory

In the unbiased U-world (Fig. 1), the mouse is allowed to choose to reach with
its right- or left-paw. Instead, we used an alternate testing chamber, previously
developed by Collins [39], in which the food tube is placed flush to the right
side (R-world) or left side (L-world) from the perspective of the mouse. It is pre-
sumably more difficult for a mouse to reach in a biased test world with the paw
that is opposite to the world bias and we found greater phenotypic variation in
biased test worlds than was visible in the U-world [15,40,41]. Previously untested
C57BL/6J mice expressed dramatically different patterns of paw preference in
the biased test chambers when compared to the behavior of previously untested
CDS/Lay mice (Fig. 3). There is gene-environment interaction between the av-
erage RPE score and the direction of the test chamber (Fig. 4); C57BL/6J mice
are more left handed on average than CDS/Lay mice in a L-world, but CDS/Lay
mice are more left handed than C57BL/6J mice in a R-world. The direction of
paw preference changed in response to the direction of the biased world and the

Fig. 3. Dynamic patterns of right-paw entry (RPE) scores from previously untested
C57BL/6J and CDS/Lay mice in biased L-world and R-world compared with patterns
in unbiased U-world [15]. Sample size is 150 mice and equal number of females and males
from each strain. RPE scores are binned as in Fig. 2. (Reproduced with permission from
NRC Research Press. (c)2008 NRC Canada or its licensors.)
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Fig. 4. Gene - environment interaction in direction of paw preference expressed by
previously untested C57BL/6J and CDS/Lay mice in response to direction of test
world [15]. Mean (average) RPE and 985% confidence limits are from Fig. 3. Average
direction of C57BL/6J is more left-handed than CDS/Lay in a L-world, but it is more
right-handed than CDS/Lay in a R-world. (Modified and reproduced with permission
from NRC Research Press. (c) 2008 NRC Canada or its licensors.)

relative order of the difference in direction between the strains changed in the
oppositely biased worlds. More importantly, the directions of paw preference of
the tested mice did not return to their expected baselines when the mice were
reassessed one-week later in the oppositely biased test worlds. Therefore, the
experience of reaching for food had conditioned the behavior and the mice had
learned a preference in the context of their first biased-world test.

2.5 Kinetics Uncovered Four Elements of Paw Preference Learning
and Memory

A detailed kinetic analysis revealed four key elements that involve time in the
learning and memory process of paw preference behavior [16]. The analysis was
done by training C57BL/6J mice in a L-world and then assessing their paw
preference in a R-world. Selected measures of the learning process were compared
between other strains and hybrids and the highlights are noted here.

Memory of 50 training reaches in a L-world was consolidated over time after
training (Fig. 5). When independent groups of mice were retested in the R-world,
direction of paw preference changed from being right-pawed in a R-world to being
left-pawed in response to elapsed time after L-world training. Kinetic analysis
demonstrated that contextual memory of L-world training would asymptotically
reach a maximum, but half the estimated amount was achieved in 1.4 days.
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Fig. 5. Consolidation of paw preference memory in C57BL/6J mice with time after
training in L-world with 50 reaches [16]. Direction of hand preference (RPE) is mea-
sured in opposite R-world at different times after L-world training. (A) RPE in R-world
becomes more left-handed with time after training. (B) Relative amount of change in
preference asymptotically approaches a maximum. (C) Half-maximum consolidation is
estimated from inverse of slope of linear transformation; time to achieve half-maximum
consolidation is estimated from intercept with x-axis. (Reproduced with permission
from NRC Research Press. (c)2008 NRC Canada or its licensors.)

Fig. 6. Kinetics of memory acquisition in response to training reaches in C57BL/6J
[16]. One week after different numbers of training reaches in L-world, the mice were
allowed 50 reaches in the R-world. (A) Hand preference in R-world becomes more left-
handed in response to more L-world training reaches. (B) Relative direction of prefer-
ence asymptotically approaches a maximum. (C) Half-maximum capacity of memory is
estimated from inverse of slope of linear transformation; ability or number of training
reaches to achieve the half-maximum capacity if estimated from intercept with x-axis.
(Reproduced with permission from NRC Research Press. (c)2008 NRC Canada or its
licensors.)

Administration of the protein-synthesis inhibitor, anisomycin, immediately after
training blocked the consolidation of the contextual memory of paw preference
training in a dose-response manner. This implied that gene activity and new
protein synthesis are necessary for this learning and memory process.
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If memory of training required time to consolidate, the memory of the L-
world training also decayed over time. Decay of memory was exponential and
the remaining memory was lost at a constant rate with an estimated half-life
of 6.4 weeks. Those results prompted us to remark that the interpretation the
paw preference behavior is critically dependent on prior experience of the mice.
For example, if 6.4 weeks is the half-life of the memory of 50 training reaches,
approximately 32 weeks (or 5 half-lives) would have to elapse in order to lose
greater than 95.

The speed of learning or rate of learning in response to different numbers
of training reaches was estimated by training independent groups of C57BL/6J
mice. Again, the mice were training in the L-world and they were retested one-
week later in the R-world (Fig. 6). The direction of paw preference in the R-world
changed from being right-pawed to being left-pawed in response to the L-world
training reaches and it asymptotically approached a point where more training
had no further effect. C57BL/6J mice achieved their estimated half-maximum
capacity to learn a direction of preference with only 10.4 L-world training reaches
(Fig. 6) and this was significantly faster than other strains and hybrids that were
tested [16].

3 Stochastic Agent-Based Model of Mouse Paw

Preference

Paw preference of mice is clearly an adaptive behavior that depends on genotype
and environment and prior experience. At the population level, paw preference
is a probabilistic behavior and genetically identical mice exhibit individual-to-
individual diversity in their paw preference when they are subjected to identical
experimental tests (Fig. 2). Different strains of mice have characteristically dif-
ferent distributions of behavioral response. Measurements of gene expression and
different biochemical processes in other contexts have demonstrated that the dy-
namics in biological systems is stochastic [42,43] and different vital processes can
have a probabilistic nature [44,45]. Noise in gene expression generates phenotypic
variability [46]. Therefore, critical information about regulatory mechanisms of
mouse paw preference behavior may be contained in the reliable but noisy pat-
terns of paw preference. To test this possibility, a stochastic agent-based model
was developed to reproduce paw preference behavior at the individual and pop-
ulation levels [17]. If the model were successful in predicting the behavior, it
would be useful to relate the noisy paw preference phenotype to the determinis-
tic genotype of different mouse strains.

3.1 Stochastic Model Mimics Mouse Paw Preference

A surprisingly simple, stochastic agent-based model was constructed to mimic
the paw reaching events of single mice [17]. At each consecutive time interval in
the model, the right or left paw reach of a model mouse is assessed for a match to
the right or left paw that the mouse ought to use to reach for food in a test-world
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Fig. 7. Numerically simulated model mice match genetic diversity in dynamic patterns
of U-world hand preference of experimental mice [17]. Naive mice were allowed 50
reaches and RPE scores are binned in 10 bins as a percent of the population. (A)
Simulated CDS/Lay model mice with a training rate of 25 memory units matched the
pattern of RPE from experimental mice. (B) Simulated DBA/2J mice with a training
rate of 60 memory units matched experimental mice. (C) Simulated C57BL/6J mice
did not match experimental with a training rate of 95 memory units, but (D) matched
experimental mice with a biased training rate of 105 left-hand memory units and 85
right-hand memory units. (Reproduced by Permission of SAGE.)

that has a probabilistically defined bias. A model mouse receives a number of
right- or left-memory units from a fixed number of memory units for the correct
matching of paw reach with test world and, in order to maintain a dynamic
equilibrium, the model loses memory at a constant rate for both a successfully
matched and an unsuccessfully matched reach. Probability of using either the
right or left paw changes during a simulation by two processes: (1) each time
a mouse reaches, it records a successful reach and increases the probability of
using that paw in the next reach; (2) the amount by which the probability varies
corresponds to how much the mouse learns from a successful reach. Training
(learning) rate is the deterministic genetic trait of each mouse strain. The model
also allowed the amount of learning with the right paw to differ from the left
paw if that bias was found to be necessary.
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The model was tuned in the U-world with different training rates. Numerical
mice were given 50 training reaches and 1000 mice were numerically simulated
and compared with 150 experimental mice from the CDS/Lay, DBA/2J and
C57BL/6J strains (Fig. 7). The simulated left-paw and right-paw training rates
of 25 memory units and 60 memory units matched the experimental results for
CDS/Lay and DBA/2J, respectively, but a left-bias of 105 left-memory units ver-
sus 85 right-memory units was necessary to match the experimental results from
C57BL/6J mice. The relationship between training rate and decay of memory
shapes the distribution of RPE paw-preference scores. Further analyses with dif-
ferent numbers of training reaches and different training rates showed that the
RPE distributions go from Gaussian-like to flat to bimodal U-shape (Fig. 7).
Simulations demonstrate that genetically identical mice give rise to a distribu-
tion of RPE scores rather than a single distinct RPE score. Therefore, RPE
scores of biological mice are the result of the stochastic nature of paw-reaching
behavior and the interactions between each mouse and its environment.

The immediate value of simulations with the agent-based model was their
demonstration of a detectable amount of paw-preference learning in all mice. Pre-
viously, we had described the paw preference in some strains, such as CDS/Lay
and DBA/2J, as a constitutive behavior because their learning rate was below a
level that we could detect by standard null hypothesis significance testing pro-
cedures [15,16,40,41]. Now, we consider simulations with the agent-based model
to be an essential tool because they provide the two crucial pieces of biological
information of (1) magnitude of the effect of interest and (2) precision of the
estimate of the magnitude of that effect [47,48]. We illustrate that fact with
estimation of the limits of learning.

3.2 Stochastic Model Predicts Limits of Learning

Different training rates allowed the stochastic model to match the U-world be-
havior of genetically different experimental mice. Validity of the model was
demonstrated when simulations matched biological observations of replicate test-
ing of mice in a U-world with a one-week interval between tests without any
further need to tune the model [17]. A more critical test of the stochastic model
is that it predicted the limits of learning in biased test worlds, again without any
need to further tune the model. Kinetic analysis had previously demonstrated a
limit of learning occurs in C57BL/6J (Fig. 6) as the change to left-hand prefer-
ence in response to L-world training approaches a saturation point, where more
training in the L-world has no measurable effect on direction of hand preference
in the R-world. In this case, decay of memory during the one-week interval plays
an important role to establish the limit. We simulated 100 independent popula-
tions of C57BL/6J model mice with the different numbers of L-world training
reaches and retested the populations with 50 reaches in the R-world (Fig. 8).
The averaged results of the model mice, along with their standard deviations,
matched the biological results almost perfectly.

Numerical simulations experimentally assessed the stochastic nature of the
agent-based model of paw preference. Once the training rate of the model was
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Fig. 8. Numerically simulated model mice match kinetics and limit of learning ability
in C57BL/6J experimental mice [17]. Numerical and experimental mice received 50
reaches in R-world one week after training with different numbers of L-world training
reaches; means and standard deviations are from 100 simulated populations. (Repro-
duced by Permission of SAGE.)

tuned for each genotype, further simulations predicted the paw-preference be-
havior in different environments. The model predicted the future behavior of
previously tested mice; hence, the dynamics of relearning must be identical to
the dynamics of first-time learning in naive mice. Since memory of prior training
also decays in a simple way, there is no detectable residual effect of training on
the dynamics of relearning paw preference the mouse does it again with the
same rate and the same limits.

3.3 Simulations Suggest New Experiments and Identify a
Short-Term Memory

Success with the agent-based model suggests new experiments to assess the
learning and memory process of paw preference behavior [18]. Several exam-
ples are briefly outlined. Mice obviously learn a direction of paw preference in
response to reaching in biased worlds where we expected that it is more difficult
to reach for food with the paw that is opposite to the direction of the bias [18].
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Nevertheless, it is not clear why a mouse should learn a preference in the un-
biased U-world where reaching with either paw provides equal reward and we
assume that it involves the same effort. Also, if a mouse learns a paw preference
in the U-world, does preference change during the training session or is it de-
tectable only between training sessions with a period for memory consolidation?
Do mice have a constitutive bias in paw preference and is it important relative
to an acquired preference?

Ability to simulate and assess the reach-to-reach behavior of model mice pro-
vides a method to evaluate the U-world behavior of individual mice with different
training rates. Model nonlearners expressed the reaching behavior and numeri-
cal measures of paw preference that we expect in individuals with random paw
choices [18]. New measures demonstrated that mice with genetically different
training rates learn a paw preference within a U-world training session as well
as between training sessions. Paw preference is probabilistic, but a positive au-
tocorrelation between paw choices made by individual mice showed that paw
preference changes gradually from reach to reach within a training session and it
is concordant between training sessions. The results also suggested that strong
biases in paw preference originate by chance from initially weak biases and in-
crease by a positive feedback mechanism during training. Therefore, individual
mice can become strongly lateralized in a left or right direction when no bias
would be evident from the population average preference score (the approximate
average RPE score is 25 for each strain in Fig. 2). Decrease in positive autocor-
relation with lag between paw choices demonstrated that a constitutive paw
preference plays only a minor role and adaptation to environmental change is
the main cause of mouse paw preference. Interestingly, positive autocorrelation
in strong learners decreases faster with increasing lag between reaches than it
does in weak learners. That observation supports the hypothesis that learning
rate and the resulting degree of learning is the deterministic genetic trait. It also
raises new questions about the elements of short-term memory that appear in
the behavior during a training session.

4 Biological Limits of Paw Preference Learning

4.1 Phenotype and Genotype Versus the Reductive - Constructive
Paradigm

Characterizing phenotypes and phenotypic alternates between individuals has
been the pathway to gene discovery for molecular biology (Fig. 9). At the level
of protein polymorphisms, the forward and reverse path from DNA (gene) to
RNA and protein is central dogma; phenotype reveals ‘code’ through classic
reductive analysis based on the gene as the unit of inheritance and the gene
product from this code provides a constructive path to phenotype, usually in
a seamless, almost one-step process. This paradigm is also the foundation for
classical positional cloning and identification of new genes in the genome. It is
based on phenotype (and phenotypic alternates) that can be mapped or associ-
ated with other genes that have been previously mapped and physically placed
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Fig. 9. Reductive and constructive directions of the phenotype genotype relationship.

on the molecular genome and, hence, those other genes serve as cumulative
markers of the ’roadmap’ of the genome. Mapped location from the study of
genetic transmission of a new trait through several generations in informative
families reduces phenotype to molecular DNA sequences (code) in the chromoso-
mal ’neighborhood’ of the marker genes. The belief is that novel variants in the
known molecular sequence of nucleotides in the genomic neighborhood will iden-
tify the new molecular genes and functions and the genomic nucleotide sequence
will construct the specific phenotypes in the reverse direction.

The reductive-constructive process has been straightforward for simple her-
itable traits with ’genotypes’ that have fully penetrant alternate phenotypes.
Classic human metabolic disorders of cystic fibrosis and phenylketonuria (PKU)
are good examples of these simple traits. Nevertheless, deeper study of complex-
ity in the phenotypic heterogeneity in the simple traits like PKU is revealing
an enormous and unexpected heterogeneity in both genetic code and functional
interactions of the code with genetic context and environmental background
[49,50]. The apparent single-gene metabolic traits focused our attention to a
deeper understanding of cellular processes, but they deflected our attention away
from the biology of the whole system of the individual that brought the origi-
nal phenotype to our attention. For classic PKU, deficiency of the enzyme and
resulting higher plasma levels of its substrate, phenylalanine, has not given any
functional understanding of the biology of the associated mental retardation. In
parallel, many common human diseases are thought to have a common genetic
cause in different populations, but the less penetrant phenotypes of the genes are
assumed to result from interactions with environment (such as age, diet, toxins,
etc.). Some examples of such diseases, again from clinical genetics, are the acute
coronary syndromes that are amenable to reductive analysis by population ge-
netic screening with genomic marker genes. They reveal a plethora of suggested
genomic coding regions, but in a constructive direction (Fig. 9), almost none of
the putative genes have predicted an acceptable degree of significant risk for dis-
ease expression through an impaired molecular function [51]. Therefore, knowing
the gene in an individual and a statistical risk of disease is not helpful to predict
that the individual will actually express the disease. Therefore, how much do we
need to know about genes is a sobering societal question because ’risk of disease’
is not a disease [52].
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Low predictability of risk from reductive-constructive studies of complex hu-
man traits emphasizes the need for new approaches in the application of ge-
netics and genomics to biological causation. What is a ’gene’ is less clear in
a functional sense if several different genomic regions in a coding sense are in-
volved and they interact in different nonlinear ways to influence the expression of
phenotype. Complex genetics shows that genetic traits are not contained in indi-
vidual genes; rather they are properties generated by dynamic networks. ’Code’
lies in the interactions among genes and gene products and an observed phe-
notype may be further contingent on nonlinear change in these interactions in
different environments. For complex human traits, ’more is different’ in the same
sense of different that was emphasized by Philip Anderson [53]. Recognition and
resolution of complexity is the challenge of complex traits.

4.2 Paw Preference Biology ‘Lives on the Line’

So far, no gene has predicted an individuals behavioral phenotype in the con-
structive direction, starting from genomic information (Fig. 9). Genomic marker
genes have been associated with hand preference behavior, but no gene has pre-
dicted the hand preference of an individual human or mouse [38,54,55]. However,
for mouse paw preference behaviour, we are near the point where we can write
the equation that specifies the behavior of a single genotype and the difference in
behavior between different genotypes. We describe this with the phrase biology
lives on the line. Paw reaching is stochastic and paw preference is an adaptive
behavior in which future behavior depends on past experience. Simulations with
agent-based models predict the behavior of individual mice; individual model
mice with a specific learning rate can be followed from reach to reach and pop-
ulations of model mice match the patterns of paw preference behavior that are
expressed by biological mice [17,18]. Therefore, if the genotype and its associated
training rate can be specified, an individuals paw preference can be probabilisti-
cally predicted and the behavior of the genotype under different environmental
conditions can be exactly specified. Knowledge of learning rate predicts geno-
typic limits of learning. Therefore, if we can write the equation that specifies the
behavior of a single genotype, we are at least at the point where we can describe
the mouse phenotype that is hiding behind the genes.

Improvement ratio (IR) and weighted improvement ratio (WIR) are measures
of adaptability of paw preference. They are population measures, but each strain
is a population of a single genotype. Mice are assessed in two U-world training
sessions, separated by a 1-week interval [17,18]. With a standard test of 50 paw
reaches in the U-world, the range of RPE scores is 0 to 50 right-paw reaches and
the midpoint is 25. An individual mouse is considered to improve its RPE score
in a second U-world test if it behaves the same as it did in the first U-world test
or it is more biased in the same left-pawed or right-pawed direction as it was
in its first U-world test. The improvement ratio (IR) is a binary measure and it
is the fraction or proportion of the population that improves its RPE score in
the second U-world training session. Since each inbred mouse strains is a single
genotype, the IR of the inbred strain is equivalent to a measure of penetrance
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of paw-preference learning phenotype in 50 paw reaches by the population of
individuals with that strains genotype. The weighted improvement ratio (WIR)
is the average amount or degree of improvement in RPE score, averaged over all
individuals that were tested whether they improved or not. WIR is a measure of
how much a genotype does improve and it is similar to a measure of expressivity
of the learning (improvement) phenotype in the individuals with that strains
genotype.

The IR and WIR measures were determined from contemporary samples of
the C57BL/6J, DBA/2J and CDS/Lay strains and compared to a sample of
simulated nonlearner model mice with a zero or null training rate. Mice were
assessed with 50 paw reaches in two training sessions in the U-world, separated
by a 1-week interval. Distributions of RPE scores from the first U-world test
with 50 reaches are shown in Figure 10 and the IR and WIR measures, derived
from the second test, are summarized in Figure 11. The relationship between IR
and WIR is intriguing because the linear trend line projects from the null model
of the nonlearner mouse through the means of the three different biological mice
and points at a perfect or constitutive behavior.

Simulation predicts the numerical values for the IR and WIR measures of paw
preference for a nonlearner mouse that reaches but cannot learn a preference
because it has a null training rate [18]. We expect that a null mutation or gene
knock out that results in a null training rate would cause a mouse to reach
randomly with its right and left paw, but the numerical value of IR and WIR
would not be zero; the RPE scores will improve by chance in the retest of some
individuals and their learning will be spurious. In contrast, a so-called perfect
mouse is not a mouse that learns in the classic sense because the paw used for
the first reach is used in all subsequent reaches and that individual would be
described as having a constitutive paw preference. The only difference among
mice with a constitutive paw preference might be whether some strains had both
right-and left-pawed mice and other constitutive strains had only right- or left-
pawed mice. We have not yet observed mice with a constitutive preference in
wide surveys of different inbred strains as well as different species of mice [26].

We have previously used the relationship between penetrance and expressivity
to assess threshold traits and right-left asymmetries of embryonic development
[56]. One example is the asymmetrical right-left malformation response of mouse
forelimbs to teratogenic insult. Change in penetrance and correlation with sever-
ity of expression of reduction deformities revealed a right to left gradient in the
response to teratogens of mouse embryos; dramatic changes in slope of the corre-
lation for the right and the left forelimbs between different mouse strains demon-
strated that the right-left gradient was different between strains and, hence, it
was an intrinsic property of the genotype rather than the forelimbs.

Simulations demonstrate that the patterns of paw preference in the U-world
(Fig. 10) are predicted by strain differences in learning rate. Because the patterns
are reliable and characteristic of the strains, we infer that differences in genes or
interacting genes cause the strain-specific training rates and stochastic variation
during reaching causes the predictable dynamic variation in the strain-specific
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Fig. 10. Dynamic variation in patterns of hand preference in experimental mice com-
pared with simulated model nonlearner and perfect learner mice. A contemporary
sample of CDS/Lay (B), DBA/2J (C) and C57BL/6J (D) was allowed 50 reaches.
Nonlearners (A) reach with right and left paw but have a null training rate of 0 mem-
ory units per successful reach; perfect learners (E) have a random first paw reach but
use that hand in all subsequent reaches.

distributions of RPE scores. The respective population parameters of IR and
WIR (Fig. 11) provide a measure of the binary proportion of individuals that
improve in their retest and the average amount of improvement that is expressed
by all the individuals that are retested. The relationship in Figure 11 among the
biological mice is exactly predicted by the training rate. Therefore, the challenge
we visualize for reductive genetics is to show how to exactly predict this training
rate from the different deterministic genotypes of different mouse strains.

Figure 11 presents a more fundamental challenge to our understanding of the
functional biology of paw preference behavior. How close can a biological mouse
get to a nonlearner or a perfect learner? What is the biology that moves the be-
havior up and down on the line between null and perfect? Can the biology ever
be found off the line? If the functional interactions of genes change the capacity
of the mouse to learn the paw preference trait, are there small molecules (drugs,
diet) that can also influence the trait? Opening the analysis to an assessment
of penetrance and expressivity in a complex trait appears to open the analysis
to an assessment of the emergent properties of the underlying elements. For the
geneticist, the challenge is to determine what can change the distinctive learn-
ing rates, for example between the mutually exclusive genotypes of CDS/Lay,
DBA/2J and C57BL/6J mice? The metaphor of biology lives on the line (Fig. 11)
sets that task in motion and, at the same time, we are beginning to see how to
construct the biology (as in Fig. 9) in order to go from a specified genotype to
a predicted phenotype.
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Fig. 11. Hand preference learning ability in mice is a genetically regulated adaptive
behavior in response to reaching. A deterministic genotype-specific learning rate per
successful hand reach predicts the diversity in the dynamic variation in RPE score
from 50 hand reaches in the U-world; hence, it predicts the linear relationship between
improvement ratio (IR) and weighted improvement ratio (WIR) from two U-world tests,
separated by a one-week interval and allowing for memory consolidation. CDS/Lay,
DBA/2J and C57BL/6J experimental mice are compared with numerically simulated
nonlearner model mice and the linear trend line predicts the perfect learner model
mice.

5 Conclusions

Noisy patterns of paw-preference scores of inbred mouse strains contain more
information than what can be inferred from summaries of means and variances
of the quantitative behavioral scores. Qualitative differences in the dynamic pat-
terns of paw preference revealed the learning and memory process in the mouse
behavior and reliability of the different patterns between different inbred mouse
strains demonstrated the process is genetically regulated. Therefore, an adap-
tive behavior that depends on an individuals past experience is hiding behind
the genes that regulate mouse paw preference. Simulations with a stochastic
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agent-based model weaned our analytical dependence off mean effects and fo-
cused our attention on the information in patterns of paw preference. The in-
herited deterministic trait is the learning rate per successful reach by which an
individual mouse acquires its paw preference. Means and variances of samples
of paw-preference scores are only approximations of the behavior and approxi-
mations obliterated the effect we are trying to study.

Individual mice receive information from the action of reaching and the re-
sulting change in their paw preference reveals a sensitive, stochastic biological
control system. Kinetic analysis uncovered four elements of the system involving
time: the time for consolidation of memory of previous training reaches, decay of
memory after training, increase in amount of memory with increase in number of
training reaches, and different amounts of memory achieved by different mouse
strains with those training reaches. Gene activity is essential for this memory
process because a protein synthesis inhibitor can block consolidation of memory
after training.

Stochastic agent-based modeling captured biologically realistic features in
paw-reaching behavior. Model mice retain information from their training and
it has a consequence on subsequent reaching events. Simulations with the model
showed how individual-to-individual biological variation arises between genet-
ically identical mice that have the same training rate. Variation in preference
scores among genetically identical individuals emerges from the stochastic na-
ture of paw reaching. A probabilistic change in paw reaching occurs from reach
to reach in an individual mouse in a training session due to the interaction be-
tween the individual and its environment as well as between consecutive training
sessions. Simulations with model mice matched the kinetics of paw-preference
learning and predicted the limits of learning for different mouse strains; at the
same time, simulations tell us there is no unaccounted factor in the model be-
cause the parameters of learning are the same in a relearning situation. Since
paw usage is a genetically regulated probabilistic choice rather than a determin-
istic preference, a mouse is able to adapt to any world bias and still maintain
an ability to detect and respond to further changes in world bias, regardless of
the amount of previous training. Some mouse strains simply adapt better than
others.

Improvement ratio (IR) and weighted improvement ratio (WIR) from two
consecutive U-world tests are new measures of paw preference behavior. They
are the respective fraction of individuals that improve their preference and the
amount of learning of the tested population. In concept, they represent the
penetrance and expressivity of the amount of learning by different genotypes of
mice. The apparent linear relationship between IR and WIR (Fig. 11) shows that
the biology of this adaptive behavior lives on the line between null and perfect,
that is between a random paw reaching with no apparent learning and a behavior
that is an inflexible constitutive paw preference. We can ask whether no learning
and constitutive preference are biologically possible and whether any genotype
of mouse is off the line. The IR and WIR relationship may be a method to
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identify interactions between different genes and environmental treatments that
qualitative alter the system of leaning and memory in this behavior.

Genetic diversity in learning rate focuses attention in the direction of the
biology and evolutionary significance of the adaptive behavior and away from
the curiosity of a right-paw and a left-paw preference. Our biological question
is whether learning rate in this behavior is the result of single genes in a de-
velopmental pathway or the emergent systems property of dynamic networks
of interacting genes. If there are interacting genes, what are they and what are
their functions? If genetic diversity is maintained in natural populations of mice,
the evolutionary question is whether training rate provides an individual with
a selective advantage or simply an unintended consequence of other regulatory
genes and functions? Therefore, learning and memory is a practical framework
to study the systems structure and genetic architecture of the mouse behavior.
Our study of the noisy behavior patterns has reinforced the statement that ’the
organism is determined neither by its genes nor by its environment nor even by
the interaction between them, but bears a significant mark of random processes’
[57].

Finally, the genetically regulated mouse model provides a model system to
interpret human hand preference behavior and to assess some of its neglected
properties, such as ”improvement” in degree of lateralization with age in children.
The mouse model strongly supports an interpretation that hand preference may
not be due to brain lateralization, but instead it reflects a positive feedback
mechanism in which hand usage simply makes that hand more preferred in future
actions [58]. We expect that deeper analysis of the mouse model will guide the
analysis of the human behavior and a critical evaluation of its mythology.
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Abstract. Over the past few years, it has been increasingly recognized
that stochastic mechanisms play a key role in the dynamics of biological
systems. Genetic networks are one example where molecular-level fluctu-
ations are of particular importance. Here stochasticity in the expression
of gene products can result in genetically identical cells displaying signif-
icant variation in biochemical or physical attributes. This variation can
influence individual and population-level fitness.

Cells also receive noisy signals from their environments, perform detec-
tion and transduction with stochastic biochemistry. Several mechanisms,
including cascades and feedback loops, allow the cell to manipulate noisy
signals and maintain signal fidelity. Furthermore through a biochemical
implementation of Bayes’s rule, it has been shown that genetic networks
can act as inference modules, inferring from intracellular conditions the
likely state of the extracellular environment.

Keywords: stochastic gene expression, fitness, genetic networks, signal
processing and propagation, Bayesian inference.

1 Introduction

Genetic networks, defined as ensembles of molecules and interactions that control
gene expression, produce and regulate cellular dynamics. At a fundamental level,
a gene is information encoded in a sequence of nucleotides. This information is
processed by the machinery of the cell to execute the instructions it contains.
Understanding the process by which this information is produced, processed,
and propagated is vital for understanding cellular behaviour.

Advancements in experimental techniques for empirically measuring gene ex-
pression in single cells, as well as in corresponding theoretical methods, have
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enabled the rigorous design and interpretation of experiments that provide in-
controvertible proof that there are important endogenous sources of stochastic-
ity (randomness) that drive biological processes [51]. For example, heterogeneity
within a population of a single cell type can be measured experimentally using
flow-cytometry analysis, a technique commonly employed for counting and ex-
amining the chemical and physical properties of cells. Specifically, one can obtain
within a few seconds a histogram of a given protein in individual cells across a
large cell population. Within the histogram, the abundance of the protein in the
cells with the lowest and highest expression level typically differs by orders of
magnitude; this spread far exceeds signal measurement noise [15].

The stochastic expression of gene products (mRNA and protein) is important
for human health and disease. Take for example the development of drug re-
sistance during chemotherapy. When the drug Imatinib is used to treat chronic
myeloid leukemia, the disease recurs with a frequency of 20-30 % [14]. Even
though numerous genetic mutations have been shown to render the drug ineffec-
tive [27,23,63], in two-thirds of cases no mutations have been found [14]. Instead,
elevated levels of survival pathway proteins in Imatinib-resistant leukaemia cell
lines were detected [37]. The rapid rate of resistance development, its dose de-
pendence and high frequency of upregulation of the correct pathways are consis-
tent with non-genetic heterogeneity, that is, variation in gene expression across
a population of genetically identical cells. This mechanism generates enduring
outlier cells with distinct phenotypes (i.e. any observable biochemical or physical
attributes), some of which may be subject to selection.

Cells sense and process information using biochemical networks of interacting
genes and proteins [29]. At a specific point of the network (input) a signal is
detected and then is propagated to modulate the activity or abundance of other
network components (output). In order to process information reliably, the cell
requires a high degree of sensitivity to the input signal but a low sensitivity to
random fluctuations in the transmitted signal. However, the signals that a cell
receives from its environment and propagates through its genetic network are
noisy [29,43]. Understanding how this noise is processed and propagated in gene
networks is crucial for understanding signal fidelity in natural networks and de-
signing noise-tolerant gene circuits [42]. For example, several network motifs al-
low for amplification or attenuation of noisy signals [4,8,18,28,38,42,44,49,52,57].
Additionally, it has been shown that genetic networks can be used by cells to infer
the likely state of their stochastic external environment from noisy intercellular
conditions [32,43].

The chapter is organized as follows: Section 2 presents the process of gene
expression, the inherent stochasticity in this process, and common measures of
noise. Some background for the deterministic and stochastic modelling and sim-
ulation of gene expression, as well as a comparison between these two methods, is
provided in Section 3. Section 4 introduces mechanisms, namely genetic cascades
and feedback loops, that enable the cell to process and propagate noisy intracel-
lular and extracellular signals. In Section 5, the relationship between noise and
fitness is explored. Specifically, the stochastic expression of stress-related genes
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and bet-hedging cell populations are discussed, and corresponding models and
simulations are presented. The final section (Section 6), illustrates how genetic
networks can infer the likely state of their extracellular environment through a
biochemical implementation of Bayes’ rule.

2 Gene Expression and Stochasticity

A gene is a specific sequence of nucleotides encoded in the DNA. Gene expres-
sion is the process by which a gene is transcribed and translated to produce
messenger RNA (mRNA) and protein, respectively. To initiate transcription, an
RNA polymerase (RNAp) must recognize and bind to the promoter region of the
gene. Promoters have regulatory sites to which transcription factors can bind to
either activate or repress gene transcription. The promoter is followed by the
coding sequence, which is transcribed by the RNAp into an mRNA molecule.
Transcription stops when the RNAp reaches a termination sequence and unbinds
from the DNA. Next, translation ensues wherein ribosomes read the mRNA se-
quence, and for each codon, a corresponding amino acid is added to a polypeptide
chain (a.k.a. a protein). After post-translational processing, the protein becomes
capable of performing its specific tasks.

A model of the process of expressing a single gene is shown in Figure 1.
Although this depiction is simple compared to the true complexity of gene ex-
pression, it captures the essential features including the synthesis of mRNA (M)
from a single gene promoter (A) (at a rate s A ), the synthesis of protein (P) from
mRNA templates (rate s P ), and the decay of mRNA and protein molecules (rates
δ M and δ P respectively). Although more complex models of gene expression have
been developed (e.g. [34,47,50,56]), the simple model depicted in Figure 1 is suf-
ficient for the purpose of this chapter.

Fig. 1. A simple model for the expression of a single gene (each step represents several
biochemical reactions). All steps are modelled as first-order reactions with the indicated
rate constants (units of inverse time) associated with these steps.

The expression of gene products is a noisy process [51,30,31,35,41]. The term
‘noise’ when used in the context of gene expression is a broad reference to the ob-
served variation in protein content among apparently identical cells exposed to
the same environment [21]. This noise can be divided up into extrinsic and in-
trinsic components. Extrinsic noise can be generally defined as fluctuations and
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variability that arise in a system due to disturbances originating from its envi-
ronment, and therefore depends on how the system of interest is defined [53]. Ex-
trinsic gene expression noise arises from several sources including: the metabolic
state of the cell, cell-cycle phase, cell age, variability in upstream signal transduc-
tion, and the external cellular environment [19,21,30,32,35,42,45,46,56,62]. Intrin-
sic expression noise refers to the multistep processes that lead to the synthesis and
degradation of mRNA and protein molecules which are inherently stochastic due
to the underlying binding events which occur as a result of the random collisions
between small numbers of molecules (e.g. the binding of transcription factors to
one or two copies of a gene) [30].

Several noise measures are used to quantify the degree of heterogeneity in
gene expression. The most common is the relative deviation from the average,
which is determined by the ratio of the standard deviation σ to the mean µ . In
this chapter, noise η refers to this ratio. Another measure of noise, known as the
‘fano factor’ (φ = σ 2 / µ ), can be used to uncover trends that might otherwise be
obscured by the characteristic 1/

√
µ scaling of the noise [30,57].

3 Modelling Gene Expression

Biological systems can be modelled at multiple scales, from detailed physical
descriptions of molecular interactions to phenomenological representations of
populations of organisms. Here we present the approximate ordinary differen-
tial equation (ODE) approach and the exact stochastic method to simulate the
phenomenological model of gene expression shown in Figure 1.

3.1 Deterministic Modelling

Traditionally, the time evolution of a chemical system is modelled as a determin-
istic process using a set of ODEs. This approach is based on the empirical law
of mass action, which provides a relation between reaction rates and molecular
concentrations [60]. Generally, the instantaneous rate of a reaction is directly
proportional to the concentration (which is in turn proportional to mass). In the
deterministic description of the model shown in Figure 1, the cellular mRNA and
protein concentrations ([M ] and [P ], respectively) are governed by the macro-
scopic rate equations

d [M ]

d t
= sA − δM [M ], (1)

d[P ]

dt
= sP [M ] − δP [P ], (2)

where the terms δM [M ] and δP [P ] are the degradation rates for mRNA and
protein, respectively; the term sp[M ] is the rate of protein synthesis, and mRNA
production occurs at a constant rate (sA) due to the presence of a single pro-
moter. The steady-state concentrations are given by
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[M s ] =
sA

δM

, (3)

[P s] =
[M ]sP

δP

=
sAsP

δMδP

, (4)

and are related to the average steady-state number of M and P (M s and P s,
respectively) by the cell volume V .

Note that the deterministic mathematical model (Eqs. (1) and (2)) was ob-
tained by treating each step as a first-order chemical reaction and applying the
law of mass action. The law of mass action was developed to describe chemi-
cal reactions under conditions where the number of each chemical species is so
large that concentrations can be approximated as continuous variables without
introducing significant error [53].

In order for the deterministic approach to provide a valid approximation of
the exact stochastic description, the system size must be large in terms of the
numbers of each species and the system volume (e.g., here large sA and V so
that the number of expressed mRNA and protein molecules is high with the ratio
sA/V remaining constant) [30]. When this condition is not satisfied, the effects
of molecular noise can be significant. The high molecular number condition is
not satisfied for gene expression, due to low copy number of genes, mRNAs, and
transcription factors within the cell [64].

When the deterministic ODEs presented in Eqs. (1) and (2) are numerically
simulated (e.g. via a variable step Runge-Kutta method), the resulting trajec-
tory can in certain parameter regimes capture the mean behavior of the cells.
They cannot, however, capture the fluctuations about the mean and therefore
the resulting probability distributions (Fig. 2). Futhermore, when reaction rates
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Fig. 2. Time series of protein number generated by deterministic and stochastic sim-
ulations (black and gray curves, respectively). The histogram in the right-hand panel
corresponds to the stochastic simulation and shows the probability that a cell will
have a given intracellular protein level. Parameters were set to (units s−1): sA = 0.02,
sP = 0.05, δM = 0.0005, and δP = 0.01.
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depend nonlinearly on randomly fluctuating components, macroscopic rate equa-
tions may be far off the mark even in their estimates of averages [40].

3.2 Stochastic Modelling

Due to the importance of noise in many biological systems, models involving
stochastic formulations of chemical kinetics are increasingly being used to simu-
late and analyze cellular control systems [26]. In many cases, obtaining analytical
solutions for these models is not feasible due to the intractability of the corre-
sponding system of nonlinear equations. Thus, Monte Carlo (MC) simulation
procedures for the number of each molecular species are commonly employed.
Among these procedures, the Gillespie stochastic simulation algorithm (SSA) is
the de-facto standard for simulating biochemical systems in situations where a
deterministic formulation may be inadequate [24,25].

In the direct method Gillespie SSA, M chemical reactions {R1, . . . , RM} char-
acterised by numerical reaction parameters c1, ..., cM among N chemical species
X1, ..., XN , are simulated one reaction event at a time. The fundamental hy-
pothesis of the stochastic formulation of chemical kinetics is that the average
probability of a given reaction i, occurring in the next infinitesimal time interval,
dt, is given by aidt. Here, ai is the reaction propensity obtained by multiplying
ci by the number of reactants (for first order reactions) or reactant combinations
(for second order and higher reactions) hi available for reaction Ri. The next
reaction to occur (index µ) and its timing τ are determined by calculating the
M reaction propensities a1, ..., aM to obtain an appropriately weighted proba-
bility for each reaction. The SSA determines when (τ = ln(1/r1)/a0) and which
(min{ µ |

∑µ
i=1 ai ≥ r2a0}) reaction will occur next, using uniformly distributed

random numbers r1 and r2, and the sum of the reaction propensities a0.
The direct method Gillespie SSA can be implemented via the following pseu-

docode [24,25]:

1: if t < tend and a0 =
∑M

i=1 ai �= 0 then
2: for i = 1, M do
3: Calculate ai and a0 =

∑i
v=1 av

4: end for
5: Generate r1 and r2

6: Determine τ and µ
7: Set t = t + τ
8: Update {Xi}
9: end if

The following reaction equations are required to stochastically simulate the
model of gene expression under consideration (Fig. 1)

A
sA−→ A + M (5)

M
sP−→ M + P (6)
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M
δ M−→ ⊘ (7)

P
δ P−→ ⊘ (8)

Eqs. (5) and (6) respectively describe the transcription and translation processes.
The degradation of M and P are accounted for by Eqs. 7 and 8, respectively.

The advantage of using a stochastic framework to simulate the present model
of gene expression can be seen in Figure 2. Specifically, the stochastic method
captures not only the mean protein concentration, but also the fluctuations in
protein abundance. These fluctuations provide the information necessary for the
histograms that describe the probability that a cell will have a given level of a
particular molecular species, and can play a significant role in cellular dynamics.

4 Processing and Propagation of Noisy Signals

The genetic program within a living cell is encoded by a complex web of biochem-
ical interactions between gene products. The proper execution of this program
depends on the propagation of signals from one gene to the next. This pro-
cess may be hindered by stochastic fluctuations arising from gene expression.
Furthermore it has been found that gene expression noise not only arises from
intrinsic fluctuations, but also from noise transmitted from the expression of up-
stream genes [42]. We now consider how noise can be processed and propagated
in genetic networks.

4.1 Cascades

A common regulatory motif, especially in development, is a transcriptional cas-
cade where each gene (Ai ) influences the expression of a subsequent gene (Ai+1)
to form a cascade (Fig. 3 Inset) [44]. Experimental studies have shown that vari-
ability can be transmitted from an upstream gene to a downstream gene, adding
substantially to the noise inherent in the downstream gene’s expression [42,49].

Using a reduced version of the model of gene expression presented in Figure 1,
where transcription and translation are combined into a single step, we model a
generic linearised genetic cascade as follows. The input signal for the cascade is
provided by A0, which itself is constitutively expressed to produce a protein P0

and described by the following reactions

A0

sP0−→ A0 + P0 (9)

P0

δP0−→ ⊘ (10)

The protein expression dynamics Pi of the subsequent genes Ai (where i ∈
{1, . . . , N}, and N is the total number of genes) in the cascade are modelled
as follows

Ai + Pi−1

sPi−→ Ai + Pi + Pi−1 (11)

Pi

δPi−→ ⊘ (12)
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The protein expression of the genes A 1− A N in the cascade are each subject to
the stochastic fluctuations in the previous gene’s expression. Therefore the noise
in protein number, for the same mean expression, increases with each subsequent
step in the cascade (Fig. 3 - includes parameters).

Fig. 3. Propagation of noise in a genetic cascade. The noise in protein number (ηP )
is plotted against the cascade stage. Parameters were set as follows (units s−1): kP0 =
kPi = 100 and dP0 = dPi = 1 and the simulation was run for 100000 s in order to
obtain accurate statistics. Inset shows a schematic of a generic linearised stochastic
cascade where each gene (Ai) influences the expression of the subsequent gene in the
cascade.

Genetic cascades can produce a wide range of dynamics in addition to those
presented in this section. For example, it has been shown that genetic cascades
can be either ‘fluctuation-unbounded’ (as in Fig. 3) or ‘fluctuation-bounded’ (i.e.
expression noise moves towards some asymptotic limit as the size of the cascade
is increased) [59]. Furthermore, longer genetic cascades can actually function to
filter out rapid fluctuations at the expense of amplifying noise in the timing of
propagated signals [59]. To perform this function, the cascade must not only
be fluctuation-bounded, but must also be intrinsically less noisy than the input
signal.

4.2 Feedback Loops

Feedback loops, in which a protein regulates its own transcription, play an impor-
tant regulatory role in many genetic networks [38,44]. Positive feedback loops
(e.g. where a protein activates its own expression) can act as noise amplifiers
[38], whereas negative feedback loops (e.g. where a protein represses its own ex-
pression) can act to suppress noise [8,18,54]. Specifically, negative feedback can
reduce the effects of noise because fluctuations above and below the mean are
pushed back towards the mean [4,8,18,52,57]. Here we provide a simple example
of relative noise amplification and attenuation in genetic feedback loops.
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Fig. 4. Stochastic simulations of negative and positive feedback networks. Protein
(P ) time series and corresponding probability histograms of negative (a,b) and positive
(c,d) auto-regulatory systems (Eqs. (13)-(16) and Eqs. (17)-(21), respectively). Note the
increase in variability about the same mean when positive auto-regulation is compared
to negative auto-regulation. Parameters are given in the text.

Again using the reduced version of the model of gene expression presented in
Section 4.1, but where the protein P represses its own formation, we obtain a
simple example of a network with negative auto-regulation [38]. The reactions
are as follows

A + P
k 1−→ AP (13)

AP
k 2−→ A + P (14)

A
sP−→ A + P (15)

P
δP−→ ⊘ (16)

Here, Eqs. (13) and (14) respectively describe the binding and unbinding of P
with a promoter A, Eq. (15) the production of P which occurs only when the pro-
moter is not bound to P , and Eq. (16) the degradation of P . The reaction param-
eters were set as follows: k1 = 4 m o l−1 h −1, k 2 = 100 h −1, sP = 150 mol−1h−1,
and δP = 1 h−1. The protein time series and corresponding probability histogram
are shown respectively in Figure 4a and 4b.

The corresponding positive auto-regulation system, where protein production
occurs at a higher rate (than basal) when P is bound to A, can be described by
the following reactions

A + P
k1−→ AP (17)

AP
k2−→ A + P (18)

A
bP−→ A + P (19)
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AP
sP−→ AP + P (20)

P
δP−→ ⊘ (21)

These equations are similar to those describing negative auto-regulation (Eqs. (13)-
(16)) except that Eq. (19) describes basal protein production (which is required
for activation) and Eq. (20) the promoter bound production of P . Here the
parameters were set to: k1 = 1 mol−1h−1, k2 = 100 h−1, bP = 3 mol−1h−1

sP = 147 mol−1h−1, and δP = 1 h−1. Note the increase in noise in the protein
time series and histogram (Fig. 4c and 4d, respectively) relative to the negative
feedback case (Fig. 4a and 4b).

It is important to note that many dynamics not discussed in the present
section can result from the manner in which a genetic network propagates and
processes signals. For example, in the presence of noise, positive feedbacks can
behave as a switch, eventually flipping the gene from an ‘off’ to an ‘on’ state
[20,44]. Furthermore, negative feedback loops can control speed of response to
intra or extra-cellular events [48] and lead to oscillations in the expression of
a gene product [7]. Feedback loops have also been shown capable of shifting
the frequency of gene expression noise such that the effect on noise behaviour
of downstream gene circuits within a cascade may be negligible, thus acting as
noise filters [54].

5 Noise and Fitness

Heterogeneity in a cell population resulting from the variation in molecular con-
tent [30,58] is probably the most apparent manifestation of stochastic gene ex-
pression. In the simplest case, the concentration of some expressed protein could
display some variability from cell to cell [19,39]. A more complex scenario in-
volves populations of identical cells splitting into two or more groups, each of
which is characterized by a distinct state of gene expression and growth rate
[58]. Here, fluctuations in gene expression can provide the cell with a mechanism
for ‘sampling’ physiologically distinct states, which may increase the probability
of survival during times of stress without the need for genetic mutation [30,58].

5.1 Stochastic Expression of Stress-Related Genes

The probabilistic features arising from gene expression noise led to the hypoth-
esis that evolution has fine-tuned noise-generating mechanisms and genetic ar-
chitectures to derive beneficial population diversity [55,61,33]. Direct evidence
that genome sequence contributes to cell-cell variability indicates that gene ex-
pression noise, like other genome-encoded traits, is inheritable and subject to
selective pressures, and therefore evolvable. Specifically, large-scale proteomic
studies in yeast have shown that genes associated with stress response pathways
have elevated levels of intrinsic noise [6,22,36]. Stress-response genes have thus
experienced positive pressure toward high population variability, presumably
because this providing a selective advantage during periods of stress.
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The increased gene expression noise exhibited by stress related genes lends
support to the hypothesis that variability in protein content among cells might
confer a selective advantage. By broadening the range of environmental stress
resistance across a population, added gene expression noise could increase the
likelihood that some cells within the population are better able to endure en-
vironmental assaults [5,12]. Experimental results providing support for this hy-
pothesis were obtained in a study by Bishop et al. [9], which demonstrated a
competitive advantage of stress-resistant yeast mutants under high stress due to
increased phenotypic heterogeneity.

Investigations on the effect of gene expression noise have been carried out in
yeast cells under acute environmental stress [10]. Both experiments and simu-
lations confirmed that increased gene expression noise can provide a significant
selective advantage at high stress levels. This was not, however, the case at low
stress levels, where the low-noise strain had higher fitness than the high-noise
strain.

In a qualitative explanation, Blake et al. [10] attribute the differential im-
pact of added noise to a change in the relative fraction of surviving cells at
different levels of stress. While a low-noise population will have a higher num-
ber of cells above the protein production threshold necessary for survival at low
stress levels (Fig. 5a), the same will be true for a high-noise population under
a high level of stress (Fig. 5b). In a quantitative model, the size of this fraction
depends on the probability distribution function associated with the spread of
protein content among individual cells. Consequently, if it is assumed that cells
are either unaffected or killed by the stress, the population fitness (reproductive
rate) and differential fitness (difference in reproductive rates between two pop-
ulations, e.g. a low and a high noise cell population) for a certain stress level
can be calculated (Fig. 5c and 5d, respectively) [21]. This provides a very simple
quantitative framework that captures the observed impact of population hetero-
geneity on population fitness following acute stress.

Theoretical Models and Simulations

The impact of acute stress on the fitness W of a cell population can be cal-
culated theoretically by evaluating the integral

W =

∫

∞

0

w (x )f (x )dx, (22)

where w(x) is the relative reproductive rate of cells expressing a stress-related
gene at a level given by x, and f(x) describes the population distribution of gene
expression when cells are exposed to stress [65]. In a study by Fraser et al. [21],
this distribution was approximated by the lognormal distribution

f(x) =
1

xβ
√

2x
exp

[

(ln(x) − α)2

2β2

]

, (23)
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Fig. 5. Modelling the effects of noise in the expression of a stress-resistant gene. (a)
Low noise is beneficial when most cells express the stress-inducing gene at levels above
a certain threshold. (b) High noise is beneficial when most cells express the stress-
inducing gene at levels below the threshold. (c) The effect of varying the stress level on
fitness for low and high noise cell populations. Stress levels where noise is beneficial and
disadvantageous are defined by positive and negative values of the differential fitness
∆W , respectively. (d) Differential fitness at varying stress levels for three populations
with elevated noise relative to a low noise (η0 = 0.1) reference population.

where α and β are defined by the average gene expression level µ and gene
expression noise η through the relationships β2 = ln(1 + η2) and α = ln(µ) −
0.5β. The distributions in Figure 5a and 5b were obtained for η = 0.4 and
η = 1.2, respectively. Moreover, the impact of acute stress was approximated
by a step function such that cells expressing a stress-resistance gene below a
certain threshold would have a reproductive rate of zero, i.e., fitness w(x) = 0
for x < st h r and are otherwise unaffected, i.e., w(x) = 1 for x ≥ st h r .

Continuing with a positive selection scheme, where cells with high expression
of a stress-resistant gene have high fitness, and cells with low expression have
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low fitness, we now compute W . Specifically, if it is assumed that the level
of stress s experienced by the population is related to the most likely level of
gene expression (i.e. the mode of the distribution in Eq. (23)), then the noise-
dependency of population fitness in Eq. (22) for a threshold model is given by
the error function (erf) describing the cumulative lognormal distribution

W (η, s) =

∫

∞

0

w(x)f(x)dx =

∫

∞

sthr

f(x)dx

=
1

2
+

1

2
erf

[
√

ln(1 + η2)

2

(

ln(sthr/s)

ln(1 + η2)
− 1

)

]

. (24)

This equation was used to calculate the fitness curves displayed in Figure 5c using
sthr = 6.91 and η = 0.1 or η = 0.4, for the low and high noise populations re-
spectively. Correspondingly, the differential fitness curves displayed in Figure 5d
were obtained by evaluating the quantity ∆W (η, s) = W (η, s)−W (η0, s), where
W (η, s) is the fitness of the population with variable high noise (η = 0.2 0.3, or
0.4) and W (η0, s) is a reference population with low noise (η0 = 0.1).

5.2 Bet-Hedging Cell Populations

Another interesting example of how noise can influence fitness involves cells that
can switch between phenotypes in a changing environment [1,58]. Under fixed
environmental conditions, the net growth rate (and therefore fitness) of the popu-
lation is maximized when all cells are of the fastest growing phenotype. However,
in a changing environment, it is thought that a statically heterogeneous popu-
lation (i.e. a population where transitions between states are not influenced by
environmental conditions) can deal with an uncertain future by hedging its bets.
Specifically, a broad distribution of phenotypes is generated in the ‘hope’ that
some of these phenotypes will remain viable after an environmental change. In
contrast, a dynamically heterogeneous population has a more reliable strategy:
individuals in such populations can sense and respond to external changes by ac-
tively switching to the fit state. If the response rate is sufficiently rapid compared
to the rate of environmental fluctuations, as is the case for many real systems,
then transitions from the fit state to the unfit state are actually detrimental.
Thus, bet-hedging is only beneficial if response rates are sufficiently low.

Acar et al. [1] experimentally investigated how stochastic switching between
phenotypes in changing environments affected growth rates in fast and slow-
switching Saccharomyces cerevisiae (budding yeast) populations. Specifically, a
strain was engineered to randomly transition between two phenotypes, ON and
OFF , characterized respectively by high or low expression of a gene encoding the
Ura3 enzyme, necessary for uracil biosynthesis. Each phenotype was designed to
have a growth advantage over the other in one of two environments. In the first
environment (E1) uracil was lacking and cells with the ON phenotype had an
advantage. In the second environment (E2), cells with the OFF phenotype had
an advantage due to the presence of a drug (5-FOA), which is converted into a
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toxin by the Ura3 enzyme. In this environment, which also contains uracil, cells
expressing Ura3 will have low viability while cells not expressing Ura3 will grow
normally.

Simulating Complex Population Dynamics

In order to simulate the scenario described above, we used a population dy-
namics algorithm [16] and a model of gene expression described by the following
biochemical reaction scheme [30]

k1

Aa c t ⇀↽ Arep

k2

(25)

Aact

sA,act−→ Aact + M (26)

Arep

sA,rep−→ Arep + M (27)

M
sP−→ M + P (28)

M
δM−→ ⊘ (29)

P
δP−→ ⊘ (30)

Eq. (25) describes the transitions to the active (upregulated level of gene expres-
sion) Aact and repressed (basal level of gene expression) Arep promoter states
with rates k1 and k2 respectively, Eqs. (26) and (27) the mRNA production from
the Aact (at a rate sA,act) and Arep (at a rate sA,rep) states respectively, Eq. (29)
the protein production from mRNA at a rate sP , and Eqs. (28) and (30) respec-
tively the mRNA (at a rate δM ) and protein (at a rate δP ) degradation. The
fitness wk of each cell k, which is here defined as a function of the environment
and cellular protein concentration [P ], was described by a Hill function

wk(E, [P ]) =

{

[P ]n

[P ]n+Kn , if E = E1,
Kn

Kn+[P ]n , if E = E2.
(31)

This equation describes partitioning of cells into fit (wk(E, P ) ≥ 0.5) and unfit
(wk(E, P ) < 0.5) phenotypes corresponding to whether or not their [P ] in a
particular environment is above or below a particular value given by the Hill
coefficient K. The volume of each cell was modelled using an exponential growth
law

Vk(tdiv) = V0 exp

[

ln(2)

(

tdiv

τ0

)]

. (32)

Here, V0 is the cell volume at the time of its birth, and τ0 = τφ/w, where τφ

is the cell division time in absence of any selective pressure. To incorporate the
effect of fitness on gene expression, the value of transcription rate parameter sA

depended on whether or not a cell was fit in either E1 or E2 (see Fig. 6 and [1]
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for parameters). Note that in this model the cells divided symmetrically when
their volume reached 2V 0.

The population distributions obtained for this model are shown in Figure 6.
Specifically, we first obtained the steady-state protein concentration distribu-
tions for cells in E 1 and E 2 (Fig. 6a and 6b, respectively). Here, the majority
of cells either fell within a distribution centered at higher value of P , charac-
terizing the ON cells, or a distribution centered at a lower value, characterizing
the OFF cells, in E1 or E2 respectively. The rest of the cells fell within the
distribution capturing the unfit subpopulation in both environments. These re-
sults were found experimentally in [1] and are expected, as higher levels of the
Ura3 enzyme are either favorable or unfavorable with respect to the fitness of
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Fig. 6. Simulations of environmental effects on phenotypic distribution. (a) Steady-
state (top and bottom figures) and time-dependent (middle figures) protein distri-
butions of cells transfered from an environment lacking uracil (E1) to an environment
containing uracil and 5-FOA (E2). (b) Steady-state (top and bottom figures) and time-
dependent (middle figures) protein distributions of cells transfered from E1 to E2. Note
that when a sufficient amount of time has elapsed after the environmental transition
from either E1 to E2 or vice versa, cells with either the OFF or ON phenotype prolif-
erate, respectively, in agreement with experimental results found in [1]. The following
parameters were used (units s−1): δM = 0.005, sP = 0.1, δP = 0.008, K = 200, n = 10.
For fit cells in E1 sA,act = 0.2 and for unfit cells sA,rep = 0.05 - vice versa in E2. Addi-
tionally τφ was set to the mean doubling time (MDT) of 1.5 hours for Saccharomyces

cerevisiae [13].
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Fig. 7. Simulations of populations of slow and fast-switching cells. (a) Growth rates of
cells after an environmental change from E2 to E1 at t = 0. (b) Growth rates of cells
after environmental change from E1 to E2 at t = 0. Note that the transient before the
steady-state region is shorter in (a) than in (b), and that fast-switching cells recover
faster from the environment change but slow-switching cells have a higher steady-state
growth, in agreement with experimental results found in [1].

the cells depending on the environment. Additionally, the time-dependent pop-
ulation distributions after the transition to E1 from E2, and vice versa, were
obtained (Fig. 6a and 6b, respectively). Here, the dynamics of the two distinct
subpopulations of cells in transition between the steady-states are visible. As
time progresses after the environmental transition, fewer and fewer of the cells
are in the unfit state (ON in Fig. 6a and OFF in Fig. 6b), as the cells in
the more fit state (OFF in Fig. 6a and ON in Fig. 6b) grow and divide at a
faster rate and therefore come to dominate the population in terms of absolute
numbers. Figure 7 shows the growth rates obtained from simulations of slow
and fast-switching cell populations, where cells were transfered from E2 to E1,
and vice versa, at t = 0. Growth rates show a transition period and a steady-
state region. In agreement with experiments (see Acar et al. [1]), fast-switching
cells were found to recover from the effect of environment change faster than
slow-switching cells but have a lower steady-state growth rate.
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6 Cellular Decision-Making in a Noisy Environment

Previous sections have described sources of noise in gene regulatory networks,
how noise can impact fitness, and how different regulatory mechanisms can ei-
ther attenuate or amplify noise. While noise is an inherent part of the stochastic
chemistry of cells, it is also an inherent part of their sensing apparatus as well as
of the signals they sense. For example, cells can respond to the concentrations
of numerous kinds of chemicals, including nutrients, toxins, signaling molecules,
as well as physical properties of the environment such as pressure and tem-
perature. A recent line of research has investigated models of how cells should
process such noisy signals, and in particular, whether human theories of optimal
signal processing might be embodied in cells–implemented chemically, as it were
[17,2,3,32]. We present a simplified version of the analysis of Libby et al. [32].
We show that it is possible, in principle, for the chemistry of gene regulation to
approximate probability-theoretic computations related to the analysis of noisy
signals. This general viewpoint provides one possible interpretation, a detailed
quantitative interpretation, for the function of real regulatory networks.

6.1 Two-Class Bayesian Discrimination Problems

The work of Libby et al. [32] used the framework of two-class Bayesian discrimi-
nation problems to interpret gene regulatory mechanisms, and the lac operon of
E. coli in particular. In these problems, we imagine that there is an unobserved
binary random variable X , whose value one wants to estimate. For example, it
may be important to an E. coli whether its immediate environment has a low
or high concentration of a particular sugar (Figure 8), in order for it to make
the right choices about expressing genes useful for the import and metabolism of
that sugar. In other cases, the relevant variable may be the presence or absence

Fig. 8. Conceptualization of an inference problem solved by a cell. (a) An E. coli cell
(oblong) in an environment low in a particular sugar (black circles). (b) The same
cell in a higher sugar environment. The amount of intracellular sugar is related, albeit
imperfectly and stochastically, to the extracellular sugar concentration. While intra-
cellular sugar directly drives the regulation of genes related to its metabolism, it is the
extracellular sugar that is of true importance to the regulatory decisions made by the
cell.
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of a toxin, a mating partner, a competitor organism, etc. Although X is not
directly observed, we assume there is another variable S which is observed, and
the value of which depends stochastically on the value of X . For example, in the
situation depicted in Figure 8, S may be the intracellular sugar concentration.
This S can be viewed as “observed by” or “known to” the cell, because this
sugar can interact directly, chemically, with the regulatory machinery of the cell
and bring about changes in cellular behavior (e.g., changing the expression of
certain genes). The exact value of S may depend on many factors—the size of
the cell, the number of permeases, and so on, but it clearly depends as well on
the extracellular environment state, X . We can imagine that there are different
probability distributions for S depending on the state X , P (S = s|X = low)
an P (S = s|X = high). The problem the cell faces, then, is to estimate the
probabilities of X = low and X = high based on the signal value S = s. This
can be done via Bayes’s rule

P (X = high|S = s) =
P (S = s|X = high)P (X = high)

P (S = s)

=
P (S = s|X = high)P (X = high)

P (S = s|X = high)P (X = high) + P (S = s|X = low)P (X = low)
.

From this formula, it is clear that the probability of X being high or low depends
not just on the value of S, via the probability distribution for S as a function of
X , but also on the terms P (X = high) and P (X = low) = 1 − P (X = high).
The are called the prior probabilities, which are one’s beliefs about X before the
signal S has been accounted for, while P (X = high|S = s) and P (X = low|S =
s) = 1 − P (X = high|S = s) are called the posterior probabilities, representing
one’s beliefs about X after the signal S has been accounted for.

6.2 A Model of Genetic Response to Intracellular Sugar

We present a simplified chemical model of gene activation that is broadly similar
to the function of the lac operon of E. coli, as well as a number of other sugar
metabolic systems. It is not intended as a description of the lac operon per se, but
rather as a generic model of negatively regulated control. We model intracellular
sugar, S, a repressor molecule R, and the promoter A of a gene whose protein
P is expressed in a correlated fashion to sugar S. In a real system, P might
actually represent a set of proteins involved in the metabolism or import of the
sugar S, but we do not model these aspects. We merely think of P as being the
response of the cell that is turned on by the presence of S.

⊘ rS(X)−→ S (33)

S
γS−→ ⊘ (34)
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r R S

S + R ⇀↽ S R
r S R

(35)

S R
γ S−→ R (36)

r AR

A + R ⇀↽ AR
rRA

(37)

A
sP−→ A + P (38)

P
δP−→ ⊘ (39)

Eq. (33) describes the process of intracellular sugar entering the system at rate
rS(X), which, because X is binary, can be one of two values—rlow when X = low
and rhigh when X = high. Sugar “decays”, whether bound to the repressor
(Eq. (36)) or not (Eq. (34)), which would realistically represent the sugar being
metabolized, or concentration decreasing via dilution. The repressor can bind
to the promoter and make it transcriptionally inactive (Eq. (37)). However, a
repressor molecule bound by sugar (Eq. 35) cannot bind the promoter. In this
way, increasing S leads to decreasing free R, and thus increasing transcriptional
activation and increasing level of P . At this qualitative level, the model behaves
as would be expected by a system that responds to the sugar S. Is a more
quantitative interpretation of the system possible? Is it possible for the system
to implement, or approximate, the Bayesian two-class computation described
above, so that the “output” of the system, the expression of the protein P , is
proportional to the posterior probability that the external environment being in
state X = high?

Fig. 9. Conditional and posterior probabilities for a problem of inferring environment
state X (low or high in sugar) based on the noisy intracellular sugar level, S. (a) The
probability distributions for S in the two environment states. (b) The posterior proba-
bility of X = high given an intracellular sugar level S, and the output of the chemical
model of gene regulation, with parameters tuned to match the posterior probability.
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6.3 Chemically Approximating Bayesian Two-Class Discrimination

Libby et al. [32] showed that a variety of different chemical regulatory models of
sugar metabolism are indeed capable of approximating the Bayesian two-class
computation. To demonstrate this using the model above, suppose that rl o w =
10 molecules per second, rhigh = 20 molecules per second, and γS = 1 s−1.
When X = low, the steady-state probability distribution for S is Poisson with
parameter λ = 10, and when X = high, it is Poisson with parameter λ = 20
(Figure 9a). Assuming that X = low and X = high are equally likely a priori,
so that P (X = low) = P (X = high) = 1

2 , then Equation 6.1 can be used to
compute the posterior probability that the environment is in a high sugar state.
The result of this computation is shown in Figure 9b.

Returning to the chemical model, let [P ]Stot denote the steady-state number
of molecules of P when the total intracellular sugar Stot = S + RS is fixed
at a certain level. That is, we remove reactions 33, 34 and 36 from the model,
and compute the (deterministic) steady-state of the system. We implemented
this steady-state computation in Matlab and used the fminsearch utility to
find reaction rate parameters for the system that minimize the squared error
function

30
∑

Stot=0

(P (X = high|Stot) − [P ]Stot)
2. (40)

As shown in Figure 9b, the parameters of the chemical model can be chosen so that
the average number of molecules of P , given intracellular sugar level Stot, closely
matches the Bayesian computation of the probability that the environment is in
the high sugar state. This demonstrates that even the simplest gene regulatory
mechanisms are capable, in principle, of approximately reproducing fairly sophis-
ticated probability-theoretic computations, and thus are capable of implementing
inferential procedures to help the cell reason about its environment.

Whether or not this is an appropriate interpretation of the behavior of real
gene regulatory systems remains to be seen. Libby et al. [32] showed that the
experimentally measured response of the lac operon to two signals, lactose con-
centration and cAMP concentration (a starvation signal), is consistent with a
solution to a two-class discrimination problem. Relatedly, Dekel et al. [17] showed
that expression of the lac operon seems to balance the metabolic benefit from the
sugar against the metabolic cost of expression. Andrews et al. [2,3] have shown
that chemotactic behavior can be interpreted through the lens of filtering and in-
formation theory. Thus, there is growing evidence that human theories of noisy
signal processing and decision making may indeed be implemented biochemi-
cally in the cell, and that these theories provide explanations for the detailed
quantitative behaviors of cellular networks.

7 Conclusion

Our understanding of the origins and consequences of stochasticity in gene ex-
pression has advanced significantly in recent years. This advancement has been
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fueled by theoretical developments enabling biological hypothesis formulation
using stochastic process and dynamical systems theory, as well as experimental
breakthroughs in measurements of gene expression at the single cell level [53].

Noise in gene expression was originally viewed as being detrimental in terms of
cellular function due to the corruption of intracellular signals negatively affect-
ing cellular regulation with possible implications for disease. However, noisy gene
expression can also be advantageous, providing the flexibility needed by cells to
adapt to stress such as a changing environment [1,21,58]. Stochasticity in gene
expression provides a mechanism for the occurrence of heterogeneous popula-
tions of genetically identical cells, in terms of phenotypic and cell-type diversity,
which can be established during cellular growth and division [14,30,51]. Further-
more, studies have suggested that intrinsic stochasticity in gene expression is an
evolvable trait [22,39].

Gene expression noise not only arises from intrinsic fluctuations, but also from
noise propagated through the network from upstream genes [42]. Several genetic
network motifs including cascades and feedback loops can act to modulate this
noise, resulting in a range of behaviour including amplification, bounded fluctu-
ations, and noise filtration [42,49,59].

Cells depend on the information they obtain from their environment to remain
viable. Yet this information, received at the cell surface, is conveyed through
gene and protein networks and is transferred via biochemical reactions that
are inherently stochastic [11,19,39,45]. Stochastic fluctuations can undermine
both signal detection and transduction. As a result, cells are confronted with
the task of predicting the state of the extracellular environment from noisy
and potentially unreliable intracellular signals. In addition to employing noise
reduction mechanisms, cells may statistically infer the state of the extracellular
environment from intracellular inputs [32,43].

The study of noise in genetic networks has provided novel insights into how
cells survive, propagate and ultimately perish in stochastic environments. This
line of research is likely to continue to prove fundamental for developments in
the fields of molecular and synthetic biology and in furthering our understanding
and treatment of human disease.
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Abstract. Boolean threshold networks have recently been proposed as
useful tools to model the dynamics of genetic regulatory networks, and
have been successfully applied to describe the cell cycles of S. cerevisiae

and S. pombe. Threshold networks assume that gene regulation processes
are additive. This, however, contrasts with the mechanism proposed by
S. Kauffman in which each of the logic functions must be carefully con-
structed to accurately take into account the combinatorial nature of gene
regulation. While Kauffman Boolean networks have been extensively
studied and proved to have the necessary properties required for model-
ing the fundamental characteristics of genetic regulatory networks, not
much is known about the essential properties of threshold networks. Here
we study the dynamical properties of these networks with different con-
nectivities, activator-repressor proportions, activator-repressor strengths
and different thresholds. Special attention is paid to the way in which
the threshold value affects the dynamical regime in which the network
operates and the structure of the attractor landscape. We find that only
for a very restricted set of parameters, these networks show dynamical
properties consistent with what is observed in biological systems. The
virtues of these properties and the possible problems related with the
restrictions are discussed and related to earlier work that uses these kind
of models.

1 Introduction

The analysis of the dynamics of genetic regulatory networks in living organisms
is a complicated task and a central challenge in current research for a complete
understanding of complex biological systems. Historically, the dynamical be-
haviour of the biochemical elements in small genetic circuits has been accurately
described using differential equations, which capture the underlying reaction-
diffusion kinetics that take place in these systems [1,2,3]. However, this approach
faces important difficulties for the modeling of large genetic networks, being the
main difficulty that these mathematical models may involve a very large amount
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of parameters. This is a serious problem both practically and theoretically. Prac-
tically since these parameters may be largely unknown for many systems, and
theoretically since such a detailed description may obscure the essential proper-
ties of the regulatory processes in the systems under consideration[4,5]. Because
of this, Boolean networks have recently been increasingly used as the best first
approach for the modeling and understanding of the essential properties of real
regulatory systems that incorporate large amounts of data [6,7].

Boolean networks have been extensively studied for decades [8], and were in-
troduced for the modeling of large regulatory systems by S. Kauffman as a first
attempt to understand the general dynamical properties of the gene regulation
and cell differentiation processes [9,10]. However, it was only recently that the
necessary information to test them on real biological genetic networks has been
available. Examples are models of the genetic network of flower development
in Arabidopsis thaliana [11,12], the regulatory network determining embryonic
segmentation in Drosophila melanogaster [13], the network controlling the differ-
entiation process in Th cells [14], the cell cycle networks of Saccharomyces cere-

visiae [15] and Saccharomyces pombe [16], among others. One of the advantages
of the Boolean approach is that it is not necessary to know the kinetic details
of the interactions (e.g. promoter affinities, degradation constants, translation
rates, etc.). Rather, only the logic of the regulatory interactions is needed, such
as the specific activatory or inhibitory nature of the genetic regulations [4,5].
By incorporating this information, available nowadays from high-throughput
experiments, into the Boolean approach, it has been possible to predict the tem-
poral sequence of gene activities as well as the stable and periodic patterns of
gene expression in wild type and in many mutants of the organisms mentioned
before.

There are, however, important differences in the way in which Boolean models
have been implemented by different groups, and it is not clear whether or not
these different implementations would yield equivalent results. The general for-
mulation of the Boolean network model is the following. We assume that the net-
work is represented by a set of N Boolean variables (or genes) { σ1, σ2, . . . , σN } ,
each of which can be in two different states σi = 1 (active) and σi = 0 (inac-
tive). The state of each gene σi is controlled by ki other genes of the network,
{ σi1 , . . . , σiki

} , which we will refer to as the regulators or the inputs of σi. The
number ki of regulators of each gene depends on the topology of the network in
such a way that the probability for a randomly selected node to have k regula-
tors is given by the probability distribution Pin(k). Once every gene has been
provided with a set of regulators, the dynamics of the network are given by the
simultaneous updating of all the gene states according to

σi(t + 1) = Fi

(
σi1(t), σi2 (t), . . . , σiki

(t)
)

, (1)

where Fi is a regulatory function, specific to the gene σi, that is constructed
according to the activatory and inhibitory nature of the regulators of σi.
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The differences in the implementation of the Boolean approach mentioned be-
fore are related to the way in which the regulatory functions F i are constructed.1

For instance, the regulatory functions used in [11,12] for the A. thaliana flower
development network were carefully constructed taking into account the current
biological knowledge about the combinatorial action of the regulators on their
target genes. This combinatorial action takes place, for instance, with dual regu-
lators whose inhibitory or activatory nature on the target gene depends upon the
presence or absence of other regulators (which may compete for the same binding
site in the promoter region) [17]. In contrasts, the regulatory functions used in
[15] and [16] for the cell cycle networks of S. cerevisiae and S. pombe are thresh-
old functions similar to the ones used in artifical neural networks [18,19]. These
two schemes, combinatorial functions vs. threshold functions, are very different
not only mathematically, but in their very nature. For the use of threshold func-
tions requires the strong assumption that the effect of activatory and inhibitory

regulations, rather than combinatorial, is simply additive.
In spite of this strong assumption, Boolean models with threshold functions

seem to predict the correct biological sequence of events in the cell cycles of
S. cerevisiae and S. pombe [15,16]. The dynamics in each of these systems ex-
hibit one big attractor that corresponds to the experimentally observed stable
state at the end of the cell cycle. This result suggests that, under certain condi-
tions, gene regulatory interactions can indeed be considered as purely additive.
In such cases, Boolean models with threshold functions are useful to describe
real genetic networks and understand their dynamical properties [20]. There-
fore, a thorough study of these kind of mathematical models is necessary. How-
ever, although Boolean networks with threshold functions have been extensively
studied in the context of spin glasses [21]-[26] and artificial neural networks
[18,19], their dynamical properties in the context of gene regulation are largely
unknown. For only the most simple cases of fixed connectivities, equal activa-
tor/repressor sterngths and proportions, and fixed threshold values have been
explored [20,27].2

In this work we investigate the generic dynamical properties of Boolean net-
works with threshold functions. Our main goal is to compare the behavior of
these threshold networks with the one that is already known for standard ran-
dom Boolean networks (also termed Kauffman networks), focusing on the prop-
erties that are relevant to gene regulation processes. To this end, we use different
connectivities, activator/repressor strengths and proportions, and threshold val-
ues. In Sec. 2 we describe the Boolean threshold network model and present

1 There is another important difference in the Boolean implementation which is not
related to the regulatory functions but that is worth mentioning, which is the syn-
chronous versus the asynchronous updating schemes. Throughout this work we will
use synchronous updating because we want to focus on the differences regarding the
construction of the regulatory functions.

2 Usually, for spin glasses and neural networks the nodes σi take the values {+1,−1}
(rather than {1, 0}). Although models using the spin-like values {+1,−1} can be
mapped onto models using {1, 0}, the mapping requires a fine tuning of the threshold
values θi.
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examples of strong deviations from the “normal” behavior observed in Kauff-
man Boolean networks. Next, in Sec. 3 we use the annealed approximation [28]
and the average influence [29] of these networks to calculate the phase diagram
for the different parameters involved. In Sec. 4 we present numerical evidence
to support the analytical results and discuss the case where anomalies between
the theoretical prediction and the numerical simulations arise. Finally, we dis-
cuss and summarize our results, highlighting their implications in terms of the
applicability of threshold networks for the modeling of gene regulation.

2 The Boolean Threshold Network Model

2.1 Definition and General Properties

In what follows we will refer to Boolean networks with threshold functions as
Boolean threshold networks (or BTN’s). Since threshold functions are a subset
of the general class B comprising all possible Boolean functions, it is clear that
BTN’s are a subset of the ensemble of random Boolean networks (RBN’s) intro-
duced by Kauffman, in which the regulatory functions Fi are randomly chosen
from B . In the context of gene regulation, the dynamics of BTN’s are given by

σi(t + 1) = Fi

(
σi1(t), . . . , σi(t), . . . , σiki

(t)
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

ki∑

j=1

ai,jσij
(t) > θi

0,

ki∑

j=1

ai.jσij
(t) < θi

σi(t),

ki∑

j=1

ai,jσij
(t) = θi,

(2)

where
{
σi1 , . . . , σiki

}
are the ki regulators of σi. The interaction strength (or

weight) ai,j takes a positive (or negative) value if σij
is an activator (or a repres-

sor) of σi, respectively.3 The activation threshold θi of σi indicates the minimum
value of the sum required for the activation of the node to take place. The dy-
namic rule given in Eq. (2) is the same as the one used in Refs. [15,16]. However,
in that work the authors considered the simple case in which ai,j = 1 for acti-
vators, ai,j = −1 for repressors, and θi = 0 for almost all the nodes except by a
few ones. Additionally, “self-degradation” was introduced to some of the nodes
just by making ai,i = −1.

The number ki of regulators for each node σi is drawn from a probability dis-

tribution Pin(k), and then these regulators
{
σi1 , . . . , σiki

}
are randomly chosen

from anywhere in the system. Each regulatory interaction strength ai,j is set ac-
tivatory with probability p and inhibitory with probability 1− p. All activatory
interactions have a value ai,j = aG, whereas the inhibitory interactions have

3 Ofcourse, ai,j = 0 if there is no interaction between σij and σi.
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a value a i,j = −a R, where a G and a R are positive integers. The ratio a G/aR

measures the relative importance of activation over repression. Thus, if aG/aR

is small, then inhibitory interactions are dominant, whereas if aG/aR is large,
then activation dominates over repression. Finally, we set a fixed value of the
activation threshold θi = θ for all nodes. We consider three cases corresponding
to three different threshold values: θ = 0.5, θ = 0 and θ = −0.5. The rationale
for this choice is two fold. First, these values suffice to illustrate the effects of
integer and non-integer thresholds on the dynamics. And second, because these
are the values that have been used in models of real genetic networks, obtaining
good agreement with experimental observations [15,16].

On thing that should be noted from Eq. (2) is the effect that the value of
the threshold θi has on the dynamics. If we consider only integer values for the
interaction strenghts ai,j , then the equality in Eq. (2) can be attained only if θi

is also an integer. In such a case, the last row on the right-hand side of Eq. (2)
implies that every node regulates itself. In other words, given the interaction
strengths ai,j and the thresholds θi, the right-hand side of Eq. (2) can be writ-
ten as a Boolean function Fi only if we assume that σi belongs to its own set
of regulators. Because of this, we have explicitely written σi(t) as one of the ar-
guments of the regulatory function Fi. This self-regulation does not necessarily
happen in Kauffman Boolean networks, and it can make a big difference with
regard to the dynamical behavior. As we will see below, the fact that integer
threshold values allow the node σi to simply stay in their previous state and
essentially freeze plays a mayor part in the dynamical behaviour of the network
and in its use for biological modeling.

Note also from Eq. (2) that all the information necessary for the network
dynamics is contained in a N -dimensional vector θ = (θ1, θ2, . . . , θN ) whose
components are the thresholds, and a N × N matrix A. This matrix is such
that [A]i,j = ai,j if σij

is a regulator of σi, and [A]i,j = 0 otherwise. This
is very different from what happens in RBN’s, where to store all the informa-
tion necessary for the network dynamics we need a N × N matrix contain-
ing the topology of the network, and a Boolean function Fi for each node σi.
Each of these functions has 2ki entrances, one for each configuration of its
ki inputs. As mentioned before, for a given set of thresholds and interaction
strengths, we can also create a Boolean function corresponding to the rule given
in Eq. (2). However, this limits the set of possible Boolean functions that can be
obtained.

2.2 The Derrida Map: Deviations from the Kauffman Behaviour

One of the most useful ways to study the general dynamics of Boolean net-
works has been in terms of the propagation of perturbations (also called damage
spreading) throughout the network. To this end, let us denote as Σt the dynami-
cal configuration of the network at time t, that is, Σt = {σ1(t), σ2(t), . . . , σN (t)}.
Let Σ0 and Σ̃0 be two slightly different intitial configurations, namely, Σ̃0 is al-
most identical to Σ0 except by a few nodes which have reversed their values (this
is the initial perturbation or the initial damage). Under the dynamics given in
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Eq. (2), each of these initial configurations will generate a trajectory throughout
time:

Σ0 → Σ1 → · · · → Σt → · · ·
Σ̃0 → Σ̃1 → · · · → Σ̃t → · · ·

These two trajectories may eventually converge (the initial perturbation dis-
appears), diverge (the initial perturbation amplifies), or remain “parallel” (the
initial perturbation neither grows nor disappears). These three different behav-
iors determine the dynamical regime in which the network operates: In the or-
dered regime the two trajectories typically converge after a transient time. In the
chaotic regime the system becomes very sensitive to small changes in the initial
condition and the two trajectories diverge from each other. The intermediate
case where, on average, perturbations retain their same size corresponds to the
so called critical regime. The critical regime has been extensively studied and
appears to be characteristic property of genetic networks [30,31,32,33,34].

We quantify the propagation of perturbations in the network in terms of the
time evolution of normalized Hamming distance h(t), which is defined as

h(t) = d
(
Σt, Σ̃t

)
=

1

N

N∑

i=1

|σi(t) − σ̃i(t)|. (3)

The assymptotic value h∞ = lim
t→∞

h(t) is the final size of the avalanche of per-

turbations and acts as the order parameter of the system: In the ordered regime
h∞ = 0, while in the chaotic regime h∞ > 0. In the critical regime lim

t→∞

h(t) = 0

only marginally, which means that it can take a long time for a small perturba-
tion to disappear.

For a given network realization, h∞ can be computed numerically in two
different ways. The first way is a direct implementation of the definition. We
start out the dynamics from two different initial conditions Σ0 and Σ̃0, and let
the system evolve for a long time tr. Then, h∞ is the Hamming distance h(tr)

between the two final configurations Σtr
and Σ̃tr

, averaged over many pairs of
initial conditions. We will denote the value of the order parameter obtained by

this method as h
(1)
∞ .

The second way to compute h∞ is by means of the so-called Derrida map
M (h) [35], which relates the size of a perturbation avalanche between two con-
secutive time steps, that is, h(t + 1) = M (h(t)). Starting from two different
initial configurations whose Hamming distance is h0, succesive iterations of this
map eventually converge to h∞. Thus, h∞ is the stable fixed point of the Der-
rida map: h∞ = M (h∞). For RBN’s, mean-field theory computations show that
M (h) is a continuous convex monotically increasing function with the properties
M(0) = 0 and M(1) < 1. For threshold networks this mapping is still continuous
and satisfies M(0) = 0 and M(1) < 1, but it is not clear whether or not it is a
monotonically increasing function. Nonetheless, for the set of parameters we use
in this work M (h) seems to satisfy all the properties predicted by the mean-field
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theory. The fulfillment of these properties is important because this guarantees
the existence of one and only one stable fixed point. In this case, the dynamical
regime in which the network operates is determined by the slope at the origin
of M (h), called the average network sensitivity S:

S =
dM(h)

dh

∣∣∣∣
h=0

. (4)

If S < 1 then h∞ = 0 and the system is in the ordered phase, whereas if S > 1
then h∞ > 0 and the system is in the chaotic regime. The critical regime is
attained for S = 1, which is the point at which the phase transition between the
ordered and chaotic regimes occur [35,36].

To compute M (h) numerically for a given network realization, we start from

two different configurations Σ0 and Σ̃0 separated by a Hamming distance h0.
Next, we evolve these two initial configurations just one time step and compute
the Hamming distance h1 between the resulting configurations Σ1 and Σ̃1. The
value M [h0] of the Derrida map at h0 is then obtained by averaging h1 over
many pairs of initial conditions whose Hamming distance is h0. By doing this
for all values of h0 ∈ (0, 1) we can construct the full curve M(h) and compute
its fixed point h∞. We will denote the value of the order parameter obtained by

this method as h
(2)
∞ .

For general RBN’s it has been shown that h
(1)
∞ and h

(2)
∞ are very close to

each other. Actually, in the thermodynamic limit N → ∞ they are the same
[35]. The reason for this is that in RBN’s the temporal correlations between two
consecutive configurations Σt and Σt+1 are inversely proportional to the num-
ber of nodes N . Therefore, for large networks with completely random Boolean
functions the mean-field conditions are satisfied and the temporal evolution is
essentially dependent on the previous time step only. However, when temporal
correlations extend over several time steps, the Derrida map does not accurately

predict the value of the order parameter. In such cases h
(1)
∞ and h

(2)
∞ can differ by

a large ammount. This non-ergodic behavior in the network dynamics has been
observed in Boolean networks in which only a small subset of the class of all
Boolean functions are used [37], such as canalyzing functions [29] and threshold
functions with equal values and proportions of activation/repression strengths
[27]. For the general case of RTN’s we also observe a large deviation from the
ergodic behavior assumed by the mean-field computation.

In Fig. 1 we plot h
(1)
∞ (diamonds) and h

(2)
∞ (circles) as functions of the network

connectivity K, for RBN’s (Fig. 1a) and RTN’s (Fig. 1a,c). We also plot the
quantity h∗

∞
predicted analytically using the annealed approximation presented

in Sec. 3, which is a generalization of the one reported in Ref. [27].4 Note from
Fig. 1a that for RBN’s the three values of h∞ are identical within numerical
accuracy, which reflects the ergodicity of the system in this case. However, for

RTN’s such ergodicity dissappears, as it is apparent from the fact that h
(1)
∞ is

4 This computation incorporates in an approximate way the temporal correlations
between succesive network states using the final number of active and inactive nodes.
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Fig. 1. The nonergodicity of the system is illustrated by plotting the order parameter
h

(1)
∞ computed directly from the definition (red diamonds), and the order parameter

h
(2)
∞ computed as the fixed point of the Derrida map (blue circles). The analytic pre-

diction h∗

∞
from the annealed computation presented in see Sec. 3 is also plotted (solid

line). Three different ensembles of networks are used: (a) Standard Kauffman networks

(RBN’s). In this case h
(1)
∞ = h

(2)
∞ = h∗

∞
, which shows that RBN’s are ergodic. (b)

Random Thresdhold Networks (RTN’s) with p = 0.5, aG = aR = 1 and θ = 0. Note

in this case that h
(1)
∞ �= h

(2)
∞ (although h

(2)
∞ = h∗

∞
), which reflects the nonergodicity of

the dynamics. Finally, (c) corresponds to RTN’s with p = 0.5, aG = 1, aR = 20 and

θ = 0. In this last case, not only is h
(1)
∞ �= h

(2)
∞ , but also the analytic prediction h∗

∞
fails

completely. In all cases, each point is the average over 100 network realizations, each
having N = 1000 nodes. For each of these networks we used 10000 pairs of random
initial conditions.

quite different from h
(2)
∞ . Fig. 1b corresponds to the case in which θ = 0 for all

nodes and the weights take the values ai,j = ±1, chosen with equal probability.
This strong deviation is surprising, especially since it happens for the simplest
case similarly to the one used in Refs. [15,16] for the modelling of the yeast
cell-cycle networks. Furthermore, departure from ergodicity is even worse for
unequal weights, as shown in Fig. 1c, where the negative weights were chosen
to be ten times stronger than the positive weights, i.e. aR = 10 and aG = 1. In

this case h
(1)
∞ does not only deviates from h

(2)
∞ , but also the analytical prediction

h∗

∞
completely fails to reproduce h

(1)
∞ . The above results indicate that some care

must be taken when choosing the parameters in RTN’s if these networks are
to be used for biological modelling. We explore this issue furtherly in the next
sections.

3 The Phase Diagram

The Derrida map M(h) can be computed analytically within the context of the
so-called annealed approximation, first introduced by Derrida and Pomeau [28].



Dynamics of Random Boolean Threshold Networks 121

This mean-field technique assumes statistical independence between the nodes
and neglects the temporal correlations developed throughout time between suc-
cesive states of the network. The annealed approximation has been successfully
used in RBN’s to obtain analytically where the phase transition occurs for differ-
ent topologies and network parameters [36,8]. However, the mean-field assump-
tions fail dramatically for RTN’s as it is illustrated in Fig. 1. In an attempt
to improve the annealed approximation, one has to incorporate into the analy-
sis the temporal correlations between succesive network states [29,37]. This has
been done for particular values of the parameters [27]. Here we present a gen-
eralization of this computation valid for different activator/repressor strengths,
ratios and thresholds.

We start the computation of M(h) by introducing the quantity I(kd), known
as the influence of kd variables. Let us consider an arbitrary network in the
ensemble of RTN’s, and pick out a node σi with ki inputs. Let Σt and Σ̃t

be two network configurations in which kd of the inputs of σi (with kd ≤ ki)
have been damaged, namely, these kd inputs have opposite values in these two
configurations.5 I(kd) is defined as the probability that this initial damage of kd

inputs propagates one time step, which means that σi will have different values
in Σt+1 and Σ̃t+1. These influences do not only depend on the ensemble of
Boolean functions used, but have also been shown to depend heavily on the bias
in the expected probability with which the system visits the different states of
its configuration space. In previous work, this bias has been expressed in terms
of the fraction b(t) of active nodes in the system [27,38,37].

By using the annealed approximation assumptions, in Appendix A we show
that the temporal evolution of b(t) is given by

b(t + 1) = B (b(t)) = p+ (b(t)) + b(t) · p0 (b(t)) , (5a)

where p+ and p0 are the probabilities that, for a given node, the sum of its inputs
is larger than or equal to the threshold θ, respectively. These probabilities can
be written as (see Appendix B)

p+ (b(t)) =

∞∑

ki=1

Pin(ki)

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=li

(
ki − i

l

)
plqki−i−l, (5b)

where li =

[
(ki − i)aG + θ

(aG + aR)

]
+ 1

p0 (b(t)) =

∞∑

ki=1

Pin(ki)

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=0

(
ki − i

l

)
plqki−i−l

× δaGl,aR(ki−i−l)+θ. (5c)

5 Given that statistical equivalence is assumed, then σi will be representative of the
entire network. Therefore, only the state of the inputs of σi is important, regardless
of the states of all the other nodes.
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Since we are interested in the asymptotic value h∞ of the order parameter, it is
necessary to compute the final number of active elements b∞ = limt→∞ b(t). This
is just the stable fixed point of the map given in Eq. (5a), namely, b∞ = B (b∞).
From the set of Eqs. (5), the value of b∞ is computed numerically for each
particular realization of parameters. Once the value of b∞ is known, it is used
to compute the influence I(kd). In Appendix C we show that I(kd) is then given
by

I(kd) =

ki∑

i=0

(
ki

i

)
piqki−i

i∑

l=0

ki−i∑

m=0

(
i

l

)(
ki − i

m

)
bl+m
∞

(1 − b∞)
ki−l−m

× I(ki, kd, i, l, m), (6)

where I(ki, kd, i, l, m) is defined as

I =

uf∑

u=u0

vf∑

v=v0

wf∑

w=w0

(
l
u

)(
m
v

)(
i−l
w

)(
ki−i−m

kd−u−v−w

)
(

ki

kd

)

× {H (aG(l − u + w) − aR(m − v + z) − θ) · [(1 − b∞)δaGl−aRm,θ

+H(aRm + θ − aGl)] + δaG(l−u+w),aR(m−v+z)+θ · [h(t)δaGl−aRm,θ

+ b∞H(aRm + θ − aGl) +(1 − b∞)H(aGl − aRm − θ)]

+ H (aR(m − v + z) + θ − aG(l − u + w)) · [b∞δaGl−aRm,θ

+H(aGl − aRm − θ)]} . (7)

where the summation is done between the limits of a multivariate hypergeometric
distribution,6 and H(x) is the Heaviside step function with H(0) = 0.

Note that the influence I(kd) already contains information about the temporal
correlations through the value of b∞. However, the above expressions are not
exact because b∞ is computed from Eqs. 5, which were formulated using the
mean-field assumptions. In spite of this approximation, it is an improvement
over the original annealed approximation which completely neglects the temporal
correlations. Once the value of I(kd) if obtained from the above equations, it is
used to obtain the Derrida map, which determines the temporal evolution of the
Hamming distance, as [29]

h(t + 1) = M (h(t)) =

∞∑

ki=1

Pin(ki)

ki∑

kd=0

I(kd)

(
ki

kd

)
[h(t)]

kd [1 − h(t)]
ki−kd . (8)

This equation tells us that the size of a perturbation avalanche after one time
step depends on the probability to find kd damaged input nodes between two
configurations Σt and Σ̃t, and on the probability I(kd) that this damage spreads
to the configurations Σt+1 and Σ̃t+1 at the next time step.

6 Specifically we have that u0 = max(0, kd + l− ki), uf = min(l, kd); v0 = max(0, kd −
u− (ki − l−m)), vf = min(l, kd − u); w0 = max(0, kd − u− v − (ki − l−m− i + l)),
wf = min(l, kd − u − v).
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3.1 Sensitivity and Influence of 0 Variables

Once b ∞ is obtained from Eq. (5a), it is possible to calculate the phase diagrams
for the different parameters involved in a network realization using Eqs. (6), (8)
and (4). There is however one last point that needs to be considered before the
computation of the sensitivity, which is that the average influence of 0 variables
I (0) is not necessarily null.

By definition, I (0) is the probability that, for a given node σn , a damage on
none of its input elements spreads to the next time step. This means that σn

will have different values in the configurations Σt+1 and Σ̃t+1 even when all

of its inputs had the same values in the previous configurations Σt and Σ̃t. In
Kauffman RBN’s this cannot happen, because the equality of the inputs of σn

in the two configurations Σt and Σ̃t guarantees that σn will have the same value
in the next configurations Σt+1 and Σ̃t+1, and therefore, in this case I(0) = 0.7.
However, for RTN’s, the last line in Eq. (2) makes it possible for σn to be different

in Σt+1 and Σ̃t+1 even when all of its inputs were the same in the previous

configurations Σt and Σ̃t. This happens when
∑

j an,jσnj
(t) = θ and σn had

different values in the configurations Σt and Σ̃t. In such a case σn will remain
different in the next configurations Σt+1 and Σ̃t+1. This can be considered as
a damage spread for zero input variables, and consequently I(0) �= 0. Note that
this happens only when the equality in the last line in Eq. (2) is satisfied, which
in turn occurs only for integer values ot θ.

Taking the above considerations into account, it is possible to write I(0) as

I(0) = p0 (b∞) h(t) with θ ∈ Z, (9)

Using the previous equation, one is finally able to get the sensitivity of the
network, defined in Eq. (4), as

S = p0 (b∞) +

∞∑

ki=1

Pin(ki) ki I(1). (10)

The derivation of the last two expressions is presented in Appendix D.
Note that I(1) also depends on ki, and that both I(1) and p0 (b∞) depend

on the parameters of the network realization p, aG, aR and θ. Interestingly, the
sensitivity S, and thus, the dynamical phase in which the system operates, only
depends on the lower influences I(0) and I(1). This means that the effect of small
changes in the two configurations Σt and Σ̃t are the ones that determine the
newtork dynamical regime. However, Σt and Σ̃t cannot be arbitrary, since they
must have a fraction of active elements close to the final one, b∞. This restriction
has profound effects on the initial apparent dynamical behavior of the network
as compared to what actually happens at the end of the dynamics, in the sense
that two trajectories that initially appear to converge may end up diverging, and
vice versa. We will discuss this problem in Sec. 4.

7 This is why in Ref. [29] the summation over kd excludes kd = 0, whereas in our
Eq. (8) the sum starts from kd = 0.
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3.2 The Phase Diagram for the Homogeneous Random Topology

Eq. (10) determines the structure of the phase diagram as a function of the
network topology (contained in Pin(k)), and the other parameters of the system.
Here we consider the homogeneous random topology Pin(k) = δK,k in which each
node has exactly K regulators randomly chosen from anywhere in the system.
In such a case, Eq. (10) establishes a relationship between the sensitivity S
and the value of the parameters K, p, aG, aR and θ. The ordered phase occurs
in those regions of the parameter space in which S < 1, whereas the chaotic
phase occurs whenever S > 1. The critical region is the one for which S = 1.
As the parameter space is 5-dimensional, an exhaustive exploration is neither
illustrative nor computationally feasible. Instead, we present the phase diagram
K vs. p for the following cases, which are representative of the general behavior
observed across the entire parameter space:

– Case 1: Activating and inhibiting interactions are of the same magnitude
(aG = 1, aR = 1);

– Case 2: Inhibiting interactions are stronger than activating ones (aG = 1,
aR = 2);

– Case 3: Activating interactions are stronger than inhibiting ones (aG = 2,
aR = 1);

– Case 4: Inhibiting interactions are always dominant (aG = 1, aR = 20);
– Case 5: Activating interactions are always dominant (aG = 20, aR = 1);

Additionally, for each of the five cases listed above we used the threshold values
θ = 0.5, θ = 0 and θ = −0.5.

The resulting phase diagrams are shown in Fig. 2. It is immediately apparent
from this figure the asymmetric structure of the phase diagram with respect to
the activator fraction (measured by p) and strength (measure by the quotient
aG/aR). In general, it appears that activators strongly push the network into
the frozen phase (in blue), while repressors move it towards the chaotic phase
(in red), but less drastically. This can be seen in the extreme cases of dominant
activators (aG = 20, aR = 1) where the chaotic region almost dissappears, while
for the opposite case of dominant repression (aG = 1, aR = −20) the frozen
region is considerably smaller than the chaotic one. Another important point to
note is the different behavior of the critical line for the three threshold values of
interes: For θ = 0.5 there are two critical values of p for each value of K, whereas
for θ = −0.5 and θ = 0 there is only one. In this sense, of all the cases shown in
Fig. 2, the phase diagrams for θ = 0.5 are the ones closer to the phase diagram
obtained for RBN’s [8].

Finally, it is important to mention that we obtain the same results reported
in Ref. [27] for the special case p = 0.5, aG = 1 and aR = 1, but only for
the threshold values θ = 0.5 and θ = −0.5. However, for θ = 0 we obtain a
completely different behavior as the one reported in Ref. [27]. Indeed, we find
that the phase transition occurs at K = 1, whereas the authors in Ref. [27]
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Fig. 2. Phase diagram p vs. K for threshold networks with different parameters, ob-
tained by numerically solivng Eq. (10). The color code represents the value of the
sensitivity S. The ordered phase (S < 1) is represented in blue while the chaotic phase
(S > 1) is represented in red. Zones near the critical region (S = 1) are white, while
the critical region itself is represented by the black line. Note the asymmetry of the
phase diagrams, especially for θ = 0 and θ = −0.5.

report that the phase transition ocurs between K = 12 and K = 13. This dis-
crepancy is due to not properly taking into account the self-regulation conveyed
in the last line of Eq. (2), which happens only for integer threshold values (see
Sec. 2.1). In the next section we present numerical results that support our
analytic approach for integer threshold values.
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4 Numerical Experiments

To test the validity of the expressions obtained in Sec. 3 we performed numerical
simulations of the network dynamics using ensembles of 100 RTN’s, with N =
1000 nodes each. We used networks with homogeneous random topologies and
varied K from K = 1 to K = 8. The other parameters p, aG , aR and θ were
chosen to represent the different behaviors depicted in the phase diagrams shown
in Fig. 2.

4.1 The Uncorrelated Sensitivity S0 and the Final Avalanche Size
h∞

To compare the analytical expressions with the results of the numerical simula-
tion we need to compute two parameters: The uncorrelated network sensitivity

S0 and the final avalanche size h
(1)
∞ . In Sec. 2.2 we describe how to compute h

(1)
∞

for a given network realization. To compute S0 let us consider two initial con-
figurations Σ0 and Σ̃0 that differ only in one element, namely, whose Hamming
distance is 1/N :

d
(
Σ0, Σ̃0

)
=

1

N
. (11)

Then, S0/N is the average Hamming distance of the two configurations at the
next time step:

S0 = N
〈
d
(
Σ1, Σ̃1

)〉
,

where the average 〈·〉 is taken over all possible pairs of initial conditions satisfying
Eq. (11). In other words, S0 is the average size of the perturbation avalanche
after one time step, given an initial perturbation of only one node. Note that
S0 is the slope at the origin of the Derrida map without taking into account
the correlations developed throughout time between network states. This is the
reason why we call S0 the “uncorrelated” sensitivity. Therefore, for large N , S0

should be the sensitivity of the network given by Eq. (10) with b∞ = b0 = 0.5,
which assumes complete independence between the network states.8

Since the uncorrelated sensitivity S0 has no dependence on the correlations
developed in time, we expect the analytic results derived in Sec. 3 to accurately
reproduce the behavior of S0. However, we do not expect this analytic compu-

tation to describe as acurately the value of h
(1)
∞ , because in this computation

the temporal correlations were approximately taken into account only through

the value of b∞, whereas the actual value of h
(1)
∞ depends on the precise way in

which the network evolves in time. This is illustrated in Figs. 3 and 4.
It can be seen in Fig. 3 that the uncorrelated sensitivity S0 computed numer-

ically (symbols) shows a remarkable agreement with the theoretical prediction

8 Since the initial configuration Σ0 in Eq. (11) is chosen randomly from all possible
configurations, the sequence of 0’s and 1’s in Σ0 can be thought of as N independent
Bernoulli trials with probability 1/2, which gives b0 = 0.5 for the expected fraction
of 1’s.
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Fig. 3. Uncorrelated sensitivity S0 for RTN’s with N = 1000 and different values of the
parameters p, aG, aR and θ. The symbols are numerical data computed using ensembles
of 100 networks. For each of these networks, S0 was averaged over 10000 pairs of initial
conditions differing in just one node. The error bars represent the standard deviation.
The solid lines correspond to the theoretical result gien in Eq. (10) with b = 0.5. Note
the excellent agreement between the theoretical prediction and the numerical data for
all the different parameters used.

(solid line) for the different combinations of parameters used. It is interesting to
note the variety of behaviours exhibitted by S0 in RTN’s, which is in marked
constrast with the linear behavior observed in standard Kauffman Nets. Indeed,
for RBN’s S0 = 2p(1 − p)K, whereas for Kauffman networks with canalyzing
functions S0 = 1/2 + (K − 1)/4 [29]. In contrast, Fig. 3 shows that for RTN’s
the dependance of S0 on K is nonlinear and can even change inflexion or de-
crease with increasing K. This general nonlinear behaviour occurs even for the
simple cases p = 0.5, aG = aR = 1, θ = 0, and θ = ±0.5, where we have (see
Appendix E for a derivation)

S0 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

K + 1

22K

(
2K

K

)
for θ = 0

K

22K

(
2K

K

)
for θ = ±0.5

(12)

in which S0 ∼
√

K for large K. The above result allows the network to ramain
close to the critical phase for a wider range of values of K than standard RBN’s.
This might be important given that there is evidence showing that real genetic
networks, in which the gene input connectivity varies considerably from one gene
to another, work near the critical phase S0 = 1 [34].

With regard to the final size of the perturbation avalanche, Fig. 4 shows the

value h
(1)
∞ computed numerically (line with symbols), and the value h∗

∞
predicted
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Fig. 4. Final size of the perturbation avalanche computed numerically (h
(1)
∞ , red cir-

cles), and analytically as the fixed point of Eq. (8) (h∗

∞
, solid black line). The numerical

data were computed for an ensemble of 100 RTN’s with N = 1000 and different values
of the parameters p, aG, aR and θ. The important point in this figure is the use of
noninteger threshold values: θ = ±0.5. For each network realization, we averaged h

(1)
∞

over 10000 pairs of random initial conditions with Hamming distance h0 = 0.1. Note
the large standard deviations in the numerical dada (error bars). Despite this enormous
variability in each network realization, the average numerical data qualitatively follow
well the theoretical prediction.

by the analytic computation of Sec. 3 (solid line). Although h
(1)
∞ and h∗

∞
are

qualitatively very similar to each other for the cases θ = ±0.5 depicted in Fig. 4,
their quantitative correspondence is not as precise as it was for S0. As it was
mentioned before, this lack of precision was expected due to the approximation
in the computation of the temporal correlations. However, for integer threshold

values h
(1)
∞ and h∗

∞
do not necessarily agree even qualitatively, as it is illustrated

in Fig. 1 for the special case θ = 0. We discuss the origing of this discrepancy
further below. In the mean time, it is important to emphasize the reason why
the Derrida map is not always useful to discriminate the dynamical regime in
which the network operates.

Fig. 6 shows the temporal evolution of the average Hamming distance h(t)
between two trajectories that started from two slightly different initial condi-
tions Σ0 and Σ̃0. (The average is taken over many pairs of initial conditions.) In
all the cases shown in this figure, h(t) decreases in the first time steps. There-
fore, according to the Derrida map, which takes into account only the first time
step, these networks should be in the ordered regime. However, after that initial
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decrease, the Hamming distance h(t) increases again reaching a value consid-
erably larger than the initial Hamming distance h(0). Thus, in the long term
the initial perturbation is amplified, which means that the dynamical regime
in which these networks operate turns out to be chaotic. It should be noted
that the behavior reported in Fig. 6 was obtained for networks with biologically
reasonable values of the parameters: aG = aR = 1, θ = 0.5, p = 0.5 and K = 3.

Fig. 5. Temporal evolution of the Hamming distance for 5 different random threshold
network realizations with N = 1000, aG = aR = 1, θ = 0.5, p = 0.5 and K = 3. Each
curve is the average over 10000 randomly chosen pairs of initial conditions separated
by a Hamming distance h0 = 0.1. Note that initially the Hamming distance decreases.
Using only the Derrida map, which takes into account only the first time step, one would
conclude that the networks operate in the ordered regime. However, the correlations
developed in time due to the network structure and the number of active nodes make
the Hamming distance rise again and approach a nonzero value, which is characteristic
of the chaotic regime.

4.2 The θ = 0 Case

We now address the anomalous case θ = 0. As we have seen in the previous
section, in this case the annealed approximation gives very accurate results for

the initial sensitivity S0 but very poor results for the final avalanche size h
(1)
∞ .

As discussed in Sec. 2, integer thresholds allow the possibility for some nodes
to become frozen whenever their input sum in Eq. (2) equals the threshold.
These frozen nodes generate explicit correlations in time, which in turn produce
a strong dependance on the history of the dynamics, and thus, on the initial

conditions. This is illustrated in Fig. 6 where the final avalance size h
(1)
∞ is

plotted against the initial perturbation size h0 = h(0) for networks with p = 0.5,
aG = aR = 1 and θ = 0. It is apparent from this figure that for K ≤ 5 the value

of h
(1)
∞ strongly depends on h0, and this dependece becomes less strong as K

increases. This is because for large values of K it is harder for the input sum to
equal the threshold.
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Fig. 6. Final size h
(1)
∞ of the perturbation avalanche as a function of the initial pertur-

bation size h0. Each point is the average over 100 random threshold network realizations
with N = 1000, aG = aR = 1, p = 0.5, θ = 0, and 1000 pairs of random initial condi-
tions for every h0 in each of these networks. Note the strong dependence of h

(1)
∞ on h0,

especially for small values of K where the temporal correlations are stronger. For large
values of K these correlations become weaker and consequently h

(1)
∞ becomes almost

independent of h0.

Another problematic consequence of using integer threshold values is the ex-
istence of an enormous number of punctual attractors, many of which differ only
in the value of just one node. This anomaly has been noted before in Ref. [27]. It
also occurs in the cell cycle models of S. cerevisiae [15] and S. pombe [16], where
many punctual attractors with small basins of attraction were found.9 Fig. 7
shows the average number of attractors as a function of the network connectiv-
ity K for θ = 0 (circles), θ = 0.5 (squares) and θ = −0.5 (triangles). In all cases
we used p = 0.5 and aG = aR = 1. Fig. 7a corresponds to large networks with
N = 1000. In this case the number of possible configurations is astronomically
huge (Ω = 21000). Therefore, an under sampling of the state space has to be
done, in which case only some attractores will be found. We sampled 5 × 104

configurations. Surprisingly, for θ = 0 almost every sampled initial configuration

ended up in a different attractor. The same happens for smaller networks with
N = 100, as it is shown in Fig. 7b. However, the same undersampling performed
in networks with non-integer threshold values (θ = ±0.5) reveals a number of
atractors which is several orders of magnitude smaller than the one obtained for
θ = 0. Finally, Fig. 7c shows similar results but for small networks with N = 15,
for which the entire state space can be probed (Ω = 215 = 32768). Note that
in this case, the average number of attractors decreases with K for θ = 0. This
behavior is marked contrast with the one observed for non-integer threshold val-
ues (and for RBN’s), where the average number of attractors grows with the
network connectivity K.

9 However, in these cell cycle models the authors deemed the attractors with small
basins of attractions as biologically irrelevant and neglected them.
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Fig. 7. Average number of attractors as a function of the network connectivity K for
RTN’s with (a) N = 100 and (b) N = 15 nodes. In each panel, we used p = 0.5,
aG = aR = 1 and θ = 0 (circles), θ = 0.5 (squares) and θ = −0.5 (triangles). For the
large networks in (a) we sample the configuration space using 50, 000 randomly chosen
initial conditions, whereas in (b) the full configuration space was probed. Both in (a)
and (b) each point is the average over ensembles of 50 networks. Note the extremely
large number of attractors obtained for θ = 0, especially for moderately small values
of K. In particular, for θ = 0 in (a) almost every sampled initial condition leads to a
different attractor.

The θ = 0 case presents “anomalous” behavior not only with regard to the
number of attractors, but also in the structure of the state space.10 Fig. 8 shows
the largest basin of attraction for three network realizations with N = 15, K = 8,
p = 0.5, aR = aG = 1, and θ = 0.5 (left part) and θ = 0 (right part). For
those parameters the networks are in the chaotic regime. It can be seen from
this figure that the structure of the largest basin of attraction for the non-integer
threshold is characterized by long transients and attractor length. This is similar
to what is obtained using RBN’s with the same p and the same K. However,
for θ = 0 the structure is quite different. Note first that all the attractors are
punctual. Although this is not the rule, it is the most probable situation for
θ = 0. Additionally, the transients are comparatively short and the whole basins
look somehow sparse as compared to the ones on the left part. The long arm-
like structures observed in the basins of attraction for θ = 0.5 reflect that the
routes to reach the attractor are concentrated in a few number of states. From a
biological point of view, these few states can be considered as the “checkpoints”
of the differentiation (or metabolic) pathway. Contrary to this, the sparseness
observed in the basins of attraction for θ = 0 indicate that the routes to reach
the attractor are much more distributed across the state space, and therefore,
the existence of “checkpoints” is harder to attain.

10 Here, by “anomalous” we mean with respect to what is observed in standard Kauff-
man networks.
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Fig. 8. Structure of the attractor landscape of RTN’s with N = 15, K = 8, p = 0.5,
aR = aG = 1, and θ = 0.5 (left) and θ = 0 (right). Each of the basins of attraction
shown is the largest one in a given network realization. Note that for θ = 0.5 the attrac-
tors have several configurations (black dots at the center of each structure), whereas
for θ = 0 all the atractors are punctual (only one dot at the center). Additionally, for
θ = 0.5 the long arm-like structures indicate the existence of long transients and a
reduced number of configurations which all the routes that go to the attractor have to
go through. Contrary to this, for θ = 0 the basins of attraction look more sparse and
with shorter transients and more distributed across the configuration space.

5 Summary and Discussion

We have investigated the dynamical properties of random threshold networks
(RTN’s), which differ from standard Kauffman networks (or random Boolean



Dynamics of Random Boolean Threshold Networks 133

networks, RBN’s) in that the regulation of the state of the nodes is done by means
of threshold functions. These networks have been used in the modeling of genetic
regulatory networks of real organisms using parameter values that seem biolo-
gially meaningful [15,16]. An important characteristic of the threshold network
model is that it assumes that gene regulation is an additive process. Namely, that
the combined effect of the regulators of a given gene on the state of that gene is
just the sum of the positive regulations minus the negative ones. Because of its
simplicity, this assumption is very tempting when constructing models of gene
regulatory networks. However, there are many examples in real systems showing
that gene regulation is combinatorial rather than additive, which means that the
effect of some regulators (i.e. whether activatory or inhibitory) depends on the
presence or absence of some other regulators.11 In several cases, these combina-
torial processes are represented by Boolean functions that cannot be obtained
from threshold functions (for instance, the XOR function), which makes the
additivity assumption mentioned above questionable.

Additionally, a deeper analysis of the dynamics of RTN’s reveals anomalies
inconsistent with the expected behavior of gene regulation models, precisely for
the “biologically meaningful” values of the parameters that have been used. Of
particular importance is the case of integer threshold values (illustrated here us-
ing θ = 0), where the networks typically have an enormous amount of attractors.
Also in this case, there is a sharp disagreement between the ensemble properties
predicted by the annealed approximation and the ones observed in the numeri-
cal simulation using concrete network realizations. It is worth emphasizing that
this disagreement happens neither for RTN’s with non-integer threshold values
nor for RBN’s. It is not surprising to find such a disagreement in specific net-
works constructed in very peculiar ways (as the ones used for the modeling of
the cell-cycles). What is surprising is that the typical members of the ensemble,
constructed in a completely random way, present such anomalies. In fact, the
cell-cycle networks in Refs. [15,16] do exhibit these anomalies, as they have a
large number of attractors. However, the authors of that work considered most of
these attractors as biologically irrelevant because of their small basins sizes, and
neglected them. Nonetheless, from an evolutionary point of view it is not clear
whether or not the size of the basin of attraction is relevant, as it is not known
whether this parameter is under selective pressure. Actually, in other studies of
gene regulatory networks of real organisms, the biologically meaningful attrac-
tors of the wild-type organism do not possess the largest basins of attraction,
but on the contrary, sometimes they have very tiny basins [12,13].

We computed analytically the phase diagram that determines in which pa-
rameter region the network has chaotic, ordered or critical dynamics. Contraty
to what happens for RBN’s, the phase diagrams obtained for RTN’s are always
asymmetric with respect to the fraction of positive regulations p. It is only for
non-integer positive thresholds (illustrated here for the case θ = 0.5), that the
phase diagram looks semi-symmetric, similar to the one obtained for RBN’s (see
Fig. 2). This may be important because in such a case there is a bigger freedom

11 An common example of this are dual regulators in E. coli [41].
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to vary p and still remain close to the critical region, especially at low newtork
connectivities as the ones reported for networks of real organisms that operate
in the critical regime (K ∼ 2, [34]). Note that the case θ = 0.5 is biologically
reasonable not only in terms of the phase diagram, but also because it corre-
sponds to a situation in which at least one positive regulator has to be active in
order to activate the target gene. Contraty to this, in the case θ = −0.5 all genes
get activated when all of its positive become innactive, which is an artifact of
the model rather than a biological observed behavior. Furthermore, the phase
transition for θ = −0.5 and p = 0.5 occurs at a network connectivity K = 4 (seel
Fig. 4), which is large compared to the one observed in real networks. Therefore,
this case with negative threshold values seems to be inadequate for the study
of the theoretical properties of gene regulatory networks. Consequently, some
of the conclusions about the evolution of RTN’s with negative thresholds might
have to be reinterpreted [43].

One important point analyzed in this work was the usefulness of the Der-
rida map to elucidate the network’s dynamical regime. As it is shown in Fig. 6,
for RTN’s the first steps in the dynamics may indicate that the network is
in the ordered regime, while in fact the long-term behavior is chaotic. This
occurs when long-term correlations are developed thoughout time, which al-
ways happens in RTN’s, especially for integer threshold values. For in such
a case, the self-regulation implied by the last line in Eq. (2) induces long-
term memory in the system. For RBN’s these long-term correlations do not
exist, and the Derrida map accurately predicts the network’s dynamical regime.
This is an important aspect that has not been properly taken into account
in current work that aims to characterize the network’s dynamical regime in
real biological networks. Therefore, a more thorough study is necessary in this
direction.

Finally, it is important to note that in this work we used the same fixed
connectivities, interaction strengths and thresholds for all genes. However, more
realistic situations would require assigning these quantities differently to the dif-
ferent genes in the network. For instance, for some genes the inhibitory reg-
ulators may be dominant, whereas for other genes the activatory regulators
would dominate. Also, genes with integer as well as non-integer threshold val-
ues can coexist in the same network. Exploration of these possibilities can
reveal dynamical behaviors more consistent with biological systems, which in
turn would help to discern the model’s characteristics relevant for biological
modeling.
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Appendix

Appendix A: Derivation of the Map b(t + 1) = B (b(t))

We first remember that b(t) represents the fraction of active nodes (σi = 1) for
a given network configuration at time t. Using the annealed approximation, the
evolution of b(t) depends only on the previous state and can thus be given by
the map B, which relates the number of active nodes after two consecutive time
steps.

To explicitly obtain B let us consider the following. Since in the annealed
approximation we assume statistical independence between the nodes, the frac-
tion of active elements b(t) can actually be considered as the probability that
an arbitrary node σi is active at time t. Therefore, b(t + 1) corresponds to the
probability that a node is active after one time step. From the dynamical equa-
tion for the nodes, Eq. (2), it is apparent that there are only 2 ways in which
this can happen: Either the sum

∑
j an,jσnj

(t) was larger than θ or it was equal
to θ. In this last case we additionally need the node itself to be active at time t
so that it is still active at time t + 1, which happens with probability b(t). If we
denote p+ (b(t)) as the probability that

∑
j an,jσnj

(t) > θ and p0 (b(t)) as the
probability that

∑
j an,jσnj

(t) = θ, then B must be the sum of the probabilities
of these two events:

b(t + 1) = B (b(t)) = p+ (b(t)) + b(t) · p0 (b(t)) , (1)

This corresponds to Eq. (5a) in the main text. The full expression for p0 and p+

are derived in the next section, Appendix B.

Appendix B: Derivation of p0 (b) and p+ (b)

To derive these expressions we use the mean-field method from Ref. [23]. Let us

denote PΣ(y) as the probability distribution function of the sum ξi =
∑ki

j=1 ai,jσij
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in Eq. (2) of a node σi with ki inputs. The probability that ξi = 0 and ξi > 0
are then given, respectively, by

p+ (b, ki) = lim
ǫ→0

∫
∞

θ+ǫ

PΣ(y) dy (1)

p0 (b, ki) = lim
ǫ→0

∫ θ+ǫ

θ−ǫ

PΣ(y) dy. (2)

The weights ai,j can be considered as random variables which take the value aG

with probability p and −aR with probability q = 1−p, as defined in Sec.2. Using
this and denoting b as the probability that a node is active, we can consider the
ξij = ai,jσij

as random variables which can take the values 0 with probability
1 − b, aG with probability bp and −aR with probability bq, that is

Pξ(x) = (1 − b)δ(x) + bp δ(x − aG) + bq δ(x + aR), (3)

Using the statistical independence assumption of the annealed approximation,
each ξij in the sum ξi =

∑ki

j=1 ξij is an independent random variable with
probability distribution Pξ(x). Because of this, ξi is the sum of ki independent
random variables, and thus PΣ(y) must be the ki-fold convolution of Pξ:

PΣ(y) = Pξ ∗ Pξ ∗ · · · ∗ Pξ(y)︸ ︷︷ ︸
ki times

. (4)

Taking the Fourier transform of the above equation we get

P̂Σ(ω) =
[
P̂ξ(ω)

]ki

, (5)

where P̂ξ = (1− b) + bpe−iωaG + bqeiωaR . Thus, PΣ(y) is obtained by taking the
inverse transform of the last equation. Using the binomial theorem twice we get

PΣ(y) =
1

2π

∫
∞

−∞

eiωy
[
P̂ ξ(ω)

]ki

dω

=
1

2π

ki∑

i=0

∫
∞

−∞

eiωy

(
ki

i

)
(1 − b)ibki−i

(
pe−iωaG + qeiωaR

)ki−i
dω

=
1

2π

ki∑

i=0

ki−i∑

l=0

(
ki

i

)(
ki − i

l

)
(1 − b)ibki−iplqki−i−l (6)

×
∫

∞

−∞

eiωye−iωaGleiωaR(ki−i−l) dω

=

ki∑

i=0

ki−i∑

l=0

(
ki

i

)(
ki − i

l

)
(1 − b)ibki−iplqki−i−lδ [aGl − aR(ki − i − l) − y]

(7)
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If we substitute this last result into Eqs. (1) and (2) we find

p+ (b, ki) = lim
ǫ→0

∫
∞

θ+ǫ

PΣ(y) dy

=

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

× lim
ǫ→0

∫
∞

θ+ǫ

{
ki−i∑

l=0

(
ki − i

l

)
plqki−i−lδ [aGl − aR(ki − i − l) − y]

}
dy

=

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=li

(
ki − i

l

)
plqki−i−l, (8)

where li =
(ki − i)aG + θ

aG + aR
+ 1

p0 (b, ki) = lim
ǫ→0

∫ θ+ǫ

θ−ǫ

PΣ(y) dy

=

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

× lim
ǫ→0

∫ θ+ǫ

θ−ǫ

{
ki−i∑

l=0

(
ki − i

l

)
plqki−i−lδ [aGl − aR(ki − i − l) − y]

}
dy

=

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=0

(
ki − i

l

)
plqki−i−lδaGl,aR(ki−i−l)+θ (9)

where in Eq. (8) the minimum value of l = li was chosen so that the argument of
the Dirac delta function is always above θ, as specified by the limit. Similarly in
Eq. (8) it is chosen so that it is exactly equal to θ. Finally, since the probability
distribution of ki is given by Pin(k) we have that

p+ (b, ki) =

∞∑

ki=1

Pin(ki) p+ (b, ki)

=

∞∑

ki=1

Pin(ki)

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=li

(
ki − i

l

)
plqki−i−l, (10)

p0 (b, ki) =

∞∑

ki=1

Pin(ki) p0 (b, ki)

=

∞∑

ki=1

Pin(ki)

ki∑

i=0

(
ki

i

)
(1 − b)ibki−i

ki−i∑

l=0

(
ki − i

l

)
plqki−i−l

× δaGl,aR(ki−i−l)+θ . (11)

which correspond, respectively, to Eqs. (5b) and (5c).
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Appendix C: Derivation of I(kd) for Boolean Threshold Networks

We first remember the definition of I(kd), the influence of kd variables. Denoting
Σt and Σ̃t as two configurations in which kd of the inputs of an arbitrary node
σi are different, I(kd) is the probability that, after a time step, the node σi in
the new configurations, Σt+1 and Σ̃t+1, are different from each other.

Consider the average over all possible active/inactive and activatory/inhibitory
configurations of the inputs of an arbitrary node σi. If the node has ki inputs,
activator probability p and a fraction of active nodes b, then this average is given
by

〈X〉IC =

ki∑

i=0

(
ki

i

)
piqki−i

i∑

l=0

ki−i∑

m=0

(
i

l

)(
ki − i

m

)
bl+m (1 − b)

ki−l−m
X. (1)

Here piqki−i (q = 1 − p) is the probability that for a given input configuration
with ki regulators there are i activatory interactions and ki − i inhibitory ones,
which can be chosen in

(
ki

i

)
possible ways. bl+m (1 − b)

ki−l−m
is the probability

that there are l active activatory inputs and m active inhibitory ones, which
can be arranged in

(
i
l

)(
ki−i

m

)
different ways. Since I(kd) is the probability for one

arbitrary node (regardless of the number of active or inactive inputs), we have
to compute the average over all possible input configurations of I(ki, kd, i, l, m),
which is the probability that a damage spreads when kd of the input elements are
damaged given that this configuration has i activatory inputs and ki−i inhibitory
ones, which in turn have l and m active/inactive input nodes, respectively.

To find I(ki, kd, i, l, m) we need to consider all possible ways in which the
damaged nodes can be arranged. There are l active activatory input nodes and
m active inhibitory ones, and thus, i−l inactive activatory elements and ki−i−m
inactive inhibitory ones. Therefore, we may have u damaged active activatory
inputs, v damaged active inhibitory ones, w damage inactive activatory ones and
z = kd−u−v−w damaged inactive ones. Since there are

(
l
u

)(
m
v

)(
i−l
w

)(
ki−i−m

kd−u−v−w

)

possible ways in which damage can be distributed, and given that there are
(

ki

kd

)

total ways in which the damaged nodes can be arranged, then the probability
for each value of u, v, w is given by a multivariate hypergeometric distribution

Pr(u, v, w) =

(
l

u

)(
m

v

)(
i − l

w

)(
ki − i − m

kd − u − v − w

)

(
ki

kd

)
u = u0, . . . , uf

v = v0, . . . , vf

w = w0, . . . , wf

, (2)

where

u0 = max(0, kd + l − ki), uf = min(l, kd)
v0 = max(0, kd − u − (ki − l − m)), vf = min(l, kd − u)
w0 = max(0, kd − u − v − (ki − l − m − i + l)), wf = min(l, kd − u − v).

(3)
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Finally, we need to consider all possible ways in which a damage can actually
make the state of σi in the damage and the undamaged configuration different at
time t + 1. From the definitions of l and m it follows that, before damage, there
are l active activatory input nodes and m active inhibitory ones. After damage,
using the definitions of u, v, w and z, there will be l − u + w active activatory
input elements and m− v + z active inhibitory ones. Using this information and
Eq. (2), it is clear that the damage can spread in 3 different ways:

i) If in the damaged configuration the sum is above the threshold (aG(l − u +
w) − aR(m − v + z) > θ), then the state of the nodes can be different if,
without the damage the sum is either below the threshold (aGl − aRm < θ)
or exactly at the threshold (aGl − aRm = θ) but with the condition that it
was inactive at the time-step before (so that they are different in the next
time step), which happens with probability 1 − b.

P1 = H (aG(l − u + w) − aR(m − v + z) − θ) · [(1 − b)δaGl−aRm,θ

+H(aRm + θ − aGl)] . (4a)

ii) The second possiblity is that in the damaged configuration the sum is just at
the threshold (aG(l− u + w)− aR(m− v + z) = θ). In that case damage can
spread if: (a) before the damage the sum is above the threshold (aGl−aRm >
θ) but only if it was inactive before (with probability 1− b); (b) if before the
damage the sum is below the threshold (aGl − aRm < θ) but only if it was
active on the step before (with probability b); and (c) if before the damage
the sum is again exactly at the threshold (aGl − aRm = θ) but only if both
configurations where damaged before (with probability h(t)).

P2 = δaG(l−u+w),aR(m−v+z)+θ [h(t)δaGl−aRm,θ + b H(aRm + θ − aGl)

+(1 − b)H(aGl − aRm − θ)] . (4b)

iii) In the third possibility the damaged configuration has its sum below the
threshold (aG(l−u+w)−aR(m−v+z) < θ) so the state of the nodes will differ
if before the damage the sum is either above the threshold (aGl− aRm > θ)
or exactly at the threshold (aGl − aRm = θ) but only if it was active at the
time-step before, which happens with probability b.

P3 = H (aR(m − v + z) + θ − aG(l − u + w)) · [b δaGl−aRm,θ

+H(aGl − aRm − θ)] . (4c)

Since all three cases can make damage spread, then the total probability for
damage spreading I is the sum of these three possiblilities: Eqs. (4a), (4b)
and (4c), averaged over all possible arrangements of damaged configurations,
Eq. (3),
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I =

u f∑

u =u 0

v f∑

v =v 0

wf∑

w=w0

Pr(u, v, w) · (P3 + P2 + P3)

=

uf∑

u=u0

vf∑

v=v0

wf∑

w=w0

(
l
u

)(
m
v

)(
i−l
w

)(
ki−i−m

kd−u−v−w

)
(

ki

kd

)

× {H (aG(l − u + w) − aR(m − v + z) − θ) · [(1 − b∞)δaGl−aRm,θ

+H(aRm + θ − aGl)] + δaG(l−u+w),aR(m−v+z)+θ · [h(t)δaGl−aRm,θ

+ b∞H(aRm + θ − aGl) +(1 − b∞)H(aGl − aRm − θ)]

+ H (aR(m − v + z) + θ − aG(l − u + w)) · [b∞δaGl−aRm,θ

+H(aGl − aRm − θ)]} . (5)

Finally, averaging this damage spread for a given input configuration I(ki, kd, i, l,
m) over all possible input configurations using Eq. (1), we get the average influ-
ence of kd variables:

I(kd) = 〈 I(ki, kd, i, l, m) 〉IC

=

ki∑

i=0

(
ki

i

)
piqki−i

i∑

l=0

ki−i∑

m=0

(
i

l

)(
ki − i

m

)
bl+m (1 − b)

ki−l−m

× I(ki, kd, i, l, m). (6)

Eqs. (5) and (6) with b = b∞ correspond to the formulas (7) and (6), respectively,
in the main text.

Appendix D: Derivation of S and I(0)

As discussed in Sec. 4.2, I(0) is the probability that, for an arbitrary node σi,
damage spreads at the next time step when none of its input elements are dif-
ferent between the two initial configurations, Σt, Σ̃t. Because of the possibility
of having this sum giving exactly the threshold value θ, I(0) is zero only for
noninteger thresholds.

The case for integer values of θ can be obtained from Eqs. (6) and (7). How-
ever, from Eq. (2) we can see that the only way for a damage to spread when
none of the input elements are different is by having

∑
j an,jσnj

(t) = θ. Thus,

I(0) must correspond to the probability p0 that the sum gives exactly the thresh-
old value, Eq. (5c). Since we need to consider the nonergodicity of the system,
we use the final fraction of activatory nodes b∞ as the value of b. Now, for dam-
age to spread not only does the sum need to be at the threshold, but also the
two nodes must be different initially, otherwise they would be the same in the
next time-step and the damage would not spread. Since h(t) can be considered
as the probability that two arbitrary nodes are different, then I(0) must be the
multiplication of both probabilities

I(0) = p0 (b∞) · h(t) with θ ∈ Z, (1)
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Taking this last result into consideration we can now calculate the sensitivity S
of RTN’s. Using (8) in (4) we get

S =

∞∑

ki=1

Pin(ki)

[
dI(0)

dh
+ ki(I

(1) − I(0))

]∣∣∣∣
h=0

. (2)

From Eq. (7) it is apparent that I(1) does not actually depend on h. This happens
because the middle term of Eq. (7), which is the only one with a h dependance,
can never be nonzero for the case of kd = 1. This is because I(1) refers to
the case where after kd changes of an arbitrary input, the summation of both
configurations is still at the threshold, which cannot happen when only 1 input
is changed. With this information and using Eq. (1) in (2) we finally find

S =

∞∑

ki=1

Pin(ki)
[
p0 (b∞) + ki

(
I(1) − I(0)

)
p0 (b∞) · h

]∣∣∣
h=0

=
∞∑

ki=1

Pin(ki)
(
p0 (b∞) + kiI

(1)
)

= p0 (b∞) +

∞∑

ki=1

Pin(ki)kiI
(1). (3)

Eqs. (1) and (3) correspond, respectively, to Eqs. (9) and (10) in the main text.

Appendix E: Derivation of S0 for p = 0.5, aG = aR = 1, θ = 0 and
θ = ±0.5

We first remember from Sec. 4.1 that S0, the uncorrelated network sensitivity,
is the average number of nodes by which two configurations differ after one time
step if they initially differed in only one element:

S0 = N
〈
d
(
Σ1, Σ̃1

)〉
, with d

(
Σ0, Σ̃0

)
=

1

N
.

Because of the thermodynamic limit assumed in the annealed approximation,
S0 should correspond to the sensitivity of the network given in Eq. (10) with
b∞ = b0 = 0.5. This last choice of b is a consequence of the initial configurations
being chosen randomly. In what follows we consider consider the case ni which
Pin(k) = δk,K with p = 0.5, aG = aR = 1, θ = 0 and θ = ±0.5.

E.1 S0 for p = 0.5, aG = aR = 1 and θ = 0 Using Eqs. (9) and (10) for
the integer threshold θ = 0, we have

S0 = p0 (b0) + KI(1). (1)

where from Eqs. (7) and (5c)
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p0 (b0) =
1

22K

K∑

i=0

(
K

i

)
2i

K−i∑

l=0

(
K − i

l

)
δl,K−i−l, (2)

I(1) =
1

22K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
I(aG = 1, aR = 1, θ = 0, b = 0.5).

(3)

For I(aG = 1, aR = 1, θ = 0, b = 0.5) we consider the following. Since we have
an integer threshold θ = 0 and we are looking for the influence of 1 variable, the
input elements of the damaged and the undamaged configurations differ only
by one node. Additionally, since the positive and negative weights have equal
strenght, the only possible way for the sum to change sign is if: (a) without
damage the node is exactly at the threshold (the Kronecker delta terms in Eqs.
4a and Eq. 4c), or (b) if after the damage it its exactly at the threshold (the first
Kronecker Delta term in Eq. 4b). Since by damaging a single node we are not
able to have the node again at the threshold because of the weights, the term
with h(t) in Eq. 4b cannot be attained. Finally, since kd = 1, the only possible
values for u, v, w and z = kd −u− v−w are 1 on one of them and 0 on the rest.
Using all this information and Eq. 5 we have

I =
1

2

uf∑

u=u0

vf∑

v=v0

wf∑

w=w0

Pr(u, v, w) {H(l − u + w − m + v − z)δl,m

+δl−u+w,m−v+z [H(m − l) + H(l − m)] + H(m − v + z − l + u − w)δl,m}

=
1

2

{[
m

K
+

i − l

K

]
δl,m + δl,m−1

[
m

K
+

i − l

K

]

+δl−1,m

[
l

K
+

K − i − m

K

]
+

[
l

K
+

K − i − m

K

]
δl,m

}

=
1

2K
[δm,l−1 (K − i + 1) + δm,l+1 (i + 1)] +

1

2
δl,m (4)

E.1.1 p0 (b0) To get the result from Eq. (2) we use the finite Laplace Trans-
form method. Let us define a generating function

g(z) =

∞∑

k=0

ck

k!
zk (5)

with

ck = 22k p0 (b∞)|K=k =

k∑

i=0

(
k

i

)
2i f(k − i), (6)

f(k − i) =

k−i∑

l=0

(
k − i

l

)
δl,k−i−l. (7)
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Using Eq. (5) and the definition of c k given in Eq. (6), we obtain

g (z ) =

∞∑

k=0

c k

k!
zk

=

∞∑

k=0

k∑

i=0

2i

i!(k − i)!
zkf(k − i).

With the change of variable u = k − i and inverting the order of summation we
get

g(z) =

∞∑

k=0

k∑

i=0

(2z)
i

i!(k − i)!
zk−if(k − i)

=
∞∑

i=0

∞∑

u=0

(2z)
i

i!u!
zuf(u)

=

[
∞∑

i=0

(2z)
i

i!

][
∞∑

u=0

zu

u!
f(u)

]
.

Substituting into this last result the value of f(u) given in Eq. (7), making the
change of variable v = u − l, and again exchanging the sums we get

g(z) = e2z

[
∞∑

u=0

u∑

l=0

zu

(u − l)!l!
δl,u−l

]

= e2z

[
∞∑

l=0

∞∑

v=0

z2l

l!l!

]

= e2zI0(2z), (8)

where I0 is the modified Bessel function of the first kind and where we used the
series representation of the exponential function and I0(z) =

∑
∞

i=0 (z/2)
2i

/(i!)2.
Using the integral representation of I0(z):

I0(z) =
1

2π

∫ π

−π

ez cos θdθ,

and the change of variable φ = 2θ in Eq. (8) we get

g(z) =
1

2π

∫ π

−π

e2z(cos θ+1)dθ

=
1

4π

∫ 2π

−2π

e4z cos2 φdφ

=
∞∑

k=0

zk

k!

[
4k

4π

∫ 2π

−2π

cos2k φ dφ

]
. (9)
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Comparing this last result with Eq. (5) and using the formula

∫ π / 2

0

cos2k φ dφ =
(2k − 1)!!

(2k)!!
=

1

22k

(
2k

k

)
,

we finally find

ck =
4k

4π

∫ 2π

−2π

cos2k φ dφ

= 4k 2

π

∫ π/2

0

cos2k φ dφ

=

(
2k

k

)
, (10)

which, using Eq. (6), gives us the first term of Eq. (1):

p0 (b0) =
1

22K

(
2K

K

)
. (11)

E.1.2 I(1) From Eqs. (3) and (4) we define

I(1) =
1

22K
(f1 + f2 + f3) , (12)

where

f1 =
1

2K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δm,l−1 (K − i + 1) , (13)

f2 =
1

2K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δm,l+1 (i + 1) , (14)

f3 =
1

2

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δm,l. (15)

To reduce these expressions we will use Vandermonde’s identity and the mean
value of the hypergeometric function

(
m + n

r

)
=

r∑

k=0

(
m

k

)(
n

r − k

)
(16)

r∑

k=0

k

(
m

k

)(
n

r − k

)
=

rm

m + n

(
m + n

r

)
. (17)
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Using these expressions in f1 with the change of variables l′ = l−1 and i′ = i−1

f1 =
1

2K

K∑

i=0

(
K

i

)
(K − i + 1)

i∑

l=0

(
i

l

)(
K − i

l − 1

)

=
1

2K

K∑

i=0

(
K

i

)
(K − i + 1)

i−1∑

l′=0

(
i

i − 1 − l′

)(
K − i

l′

)

=
1

2K

K∑

i=0

(K − i + 1)

(
K

i

)(
K

i − 1

)

=
1

2K

K−1∑

i′=0

(K − i′)

(
K

K − 1 − i′

)(
K

i′

)

=
K + 1

4K

(
2K

K − 1

)
=

1

4

(
2K

K

)
. (18)

Doing something similar for f2 with the change of variable m′ = m − 1

f2 =
1

2K

K∑

i=0

(
K

i

)
(i + 1)

K−i∑

m=0

(
i

m − 1

)(
K − i

m

)

=
1

2K

K∑

i=0

(
K

i

)
(i + 1)

K−i−1∑

m′=0

(
i

m′

)(
K − i

K − i − 1 − m′

)

=
1

2K

K∑

i=0

(i + 1)

(
K

i

)(
K

K − 1 − i

)

=
1

2K

K−1∑

i=0

(i + 1)

(
K

i

)(
K

K − 1 − i

)

=
K + 1

4K

(
2K

K − 1

)
=

1

4

(
2K

K

)
. (19)

For f3 we just need to use Eq. (16) with m = n = K

f3 =
1

2

K∑

i=0

(
K

i

) i∑

l=0

(
i

l

)(
K − i

l

)

=
1

2

K∑

i=0

(
K

i

) i∑

l=0

(
i

i − l

)(
K − i

l

)

=
1

2

K∑

i=0

(
K

i

)(
K

i

)

=
1

2

K∑

i=0

(
K

i

)(
K

K − i

)
=

1

2

(
2K

K

)
. (20)
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Using Eqs. (18), (19) and (20) in (12) we find the second part of Eq. (1):

I(1) =
1

22K

(
2K

K

)
. (21)

We finally get the first part of Eq. (12) using Eqs. (11) and (21) in Eq. (1), which
gives

S0 (p = 0.5, aG = 1, aR = 1, θ = 0) =
K + 1

22K

(
2K

K

)
. (22)

E.2 S0 for p = 0.5, aG = aR = 1 and θ = 0.5 In this case the threshold
is a noninteger value, θ = 0.5. Therefore, from Eq. (9) and (10), we have

S0 = KI(1). (23)

where from Eq. (5c)

I(1) =
1

22K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
I(aG = 1, aR = 1, θ = 0.5, b = 0.5).

(24)
In order to calculate I(aG = 1, aR = 1, θ = 0.5, b = 0.5) we consider the fol-
lowing. The noninteger threshold θ = 0.5 makes all the terms with Kronecker
deltas effectively zeros, since the exact value of the threshold cannot be attained.
Given that θ = 0.5 > 0, it also makes nodes in which the sum of the updat-
ing function equals 0,

∑
j an,jσnj

= 0, become inactive, as this sum is smaller
than the threshold. As a consequence, the only way in which the changing of
one of the inputs of a node changes the state of the target node is if either
the sum before the damage was 0 and after the damage it is above 0, or vice
versa. In addition, since kd = 1, then the only possible values for u, v, w and z =
kd−u−v−w are 1 on one of them and 0 on the rest. Using these facts and Eq (5)
we get

I =

uf∑

u=u0

vf∑

v=v0

wf∑

w=w0

Pr(u, v, w) {H(l − u + w − m + v − z − 0.5)

×H(m − l + 0.5) + H(m − v + z − l + u − w + 0.5)H(l − m − 0.5)}

=

[
m

K
+

i − l

K

]
δl,m +

[
l

K
+

K − i − m

K

]
δl,m+1

=
K − i + 1

K
δl,m+1 +

i

K
δl,m. (25)

Using this result in Eq. (24) we have

I(1) =
1

22K
(g1 + g2) , (26)
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where

g1 =
1

K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δl−1,m (K − i + 1) , (27)

g2 =
1

K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
iδl,m. (28)

From Eqs. (13) and (27) it follows that

g1 = 2f1 =
1

2

(
2K

K

)
, (29)

Thus, we only need to calculate g2. By using Vandermonde’s identity and the
mean value of the hypergeometric function, Eqs. (16) and (17), we obtain

g2 =
1

K

K∑

i=0

(
K

i

)
i

i∑

l=0

(
i

l

)(
K − i

l

)

=
1

K

K∑

i=0

(
K

i

)
i

i∑

l=0

(
i

i − l

)(
K − i

l

)

=
1

K

K∑

i=0

(
K

i

)(
K

i

)
i

=
1

K

K∑

i=0

(
K

i

)(
K

K − i

)
i =

1

K

K

2

(
2K

K

)
=

1

2

(
2K

K

)
. (30)

Using Eqs. (26), (29) and (30) in Eq. (23), we get the desired result (the θ = 0.5
case of Eq. (12)):

S0 [p = 0.5, aG = 1, aR = −1, θ = 0.5] =
K

22K

(
2K

K

)
. (31)

E.3 S0 (p = 0.5, aG = 1, aR = 1, θ = −0.5) Since, θ = −0.5, from Eqs.
(9), (10) and (5c) we get

S0 = KI(1), (32)

I(1) =
1

22K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
I(aG = 1, aR = 1, θ = −0.5, b = 0.5).

(33)
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To calculate I(aG = 1, aR = 1, θ = −0.5, b = 0.5) we look back at the derivation
of I(aG = 1, aR = 1, θ = 0, b = 0.5) in the last section (Sec. 5) and notice that
both cases are similar. The difference lies in that, in this case, the threshold
θ = −0.5 < 0. This threshold then makes the nodes in which the sum of the
updating function equals 0, (namely for which

∑
j an,jσnj

= 0), become active,
as the sum is larger than the threshold. Therefore, the only cases in which
damaging one of the inputs of a node changes the state of the target node is
if either the sum before the damage was 0 and after damage it is below 0,
or vice versa. Again, since kd = 1, the only possible values for u, v, w and
z = kd − u − v − w are 1 on one of them and 0 on the rest. Using all this in
Eq. (5) we obtain

I =

uf∑

u=u0

vf∑

v=v0

wf∑

w=w0

Pr(u, v, w) {H(l − u + w − m + v − z + 0.5)

×H(m − l − 0.5) + H(m − v + z − l + u − w − 0.5)H(l − m + 0.5)}

=

[
m

K
+

i − l

K

]
δl+1,m +

[
l

K
+

K − i − m

K

]
δl,m

=
i + 1

K
δl+1,m + δl,m − i

K
δl,m. (34)

Using this result in Eq. (24) we get

I(1) =
1

22K
(h1 + h2 − h3) , (35)

where

h1 =
1

K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δl+1,m (i + 1) , (36)

h2 =
K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
δl,m. (37)

h3 =
1

K

K∑

i=0

(
K

i

) i∑

l=0

K−i∑

m=0

(
i

l

)(
K − i

m

)
iδl,m. (38)

By comparing Eq. (14) with (36) and Eq. (28) with (38), we have

h1 = 2f2 =
1

2

(
2K

K

)
, (39)

h3 = g2 =
1

2

(
2K

K

)
. (40)
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The only term that has not been calculated yet is h2. To do this we use Vander-
monde’s identity, Eq. (16), with m = n = K

h2 =

K∑

i=0

(
K

i

) i∑

l=0

(
i

l

)(
K − i

l

)

=

K∑

i=0

(
K

i

) i∑

l=0

(
i

i − l

)(
K − i

l

)

=
K∑

i=0

(
K

i

)(
K

i

)

=

(
2K

K

)
. (41)

Finally we get the θ = −0.5 case of Eq. (12) using Eqs. (39), (40), (41) and (35)
in Eq. (32),

S0 (p = 0.5, aG = 1, aR = 1, θ = −0.5) =
K

22K

(
2K

K

)
, (42)

which is, of course, the same as the case θ = 0.5 because of the symmetry of the
weights and the probabilities.
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Abstract. Biological systems at all scales of organization display ex-
ceptional abilities to coordinate complex behaviors to balance stability
and adaptability in a variable environment and to process information
for mounting diverse, yet specific responses. Such emergent macroscopic
behaviors are governed by complex systems of interactions. Understand-
ing how the structure of such interactions determines global dynamics is
a major challenge in complex systems theory. Traditionally this problem
has been approached by defining statistics that quantify some aspect of
structure or dynamics of complex systems. Such an analysis has helped
to gain insight into the manner how particular structural properties such
as topology constrains dynamical behavior. However, a drawback of this
analysis is that established relationships between structural properties
and dynamical bahaviour are specific to the measure, and thus hold only
on this single aspect. Thus, it is difficult to establish more general princi-
ples. To overcome these limitations we propose to use information theory
to establish a unified framework through which one can begin to examine
both structure and dynamics of complex systems in a general manner.

1 Introduction

In biology it becomes quickly apparent that knowing the parts and the manner
in which they interact is often insufficient for understanding the global emergent
behavior of the system. This is of course true even of physical systems. Already
in the 19th century, it was recognized that knowing the interactions between
two bodies was not enough to understand or solve completely the dynamics of a
group of such bodies, even in the context of classical Newtonian laws of motion
and gravity [1].

It is thus a paramount challenge to understand how the structure or topol-
ogy of a complex system constrains and determines the repertoire of the global
dynamical processes available to the system. However, it is important to be able
to understand such relationships not in terms of specific physical processes or
reactions between chemical reactants, but instead in terms of entities or agents
that interact via certain rules, so that what is learned can be generalized to many
systems sharing common characteristics at different scales of organization.

In biological systems, the structure of the interactions determines emergent
dynamical behaviors and properties, such as robustness and homeostasis,
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multi-stability, adaptability, decision-making, and information processing [2,3].
However, understanding the relationships between topology and dynamics in
complex systems is a fundamental but widely unexplored problem [4,5]. Perhaps
one reason why general principles behind such relationships are still lacking is,
in part, due to the lack of sufficiently general formalisms for representing and
analyzing the information embedded in the structures and dynamics of complex
systems within a common theoretical framework that is not implicitly tied to
particular model classes or features.

Numerous relationships between specific structural and dynamical features of
networks have been investigated [2,6,7]. For example, structure can be studied by
means of various graph theoretic features of network topologies such as degree dis-
tributions [8] or modularity [9], or in terms of classes of updating rules that gen-
erate the system dynamics [10]. Aspects of dynamical behavior include transient
and steady-state dynamics as well as responses of a system to perturbations [11].

Information theory provides a common lens through which one can study both
the structure and the dynamics of complex systems within a unified framework.
Indeed, since network structures as well as their dynamic state trajectories are
objects that can be represented on a computer, the information encoded in
both can be compared and related using appropriate information theoretic tools.
Unlike Shannon’s information, which pertains to distributions of objects [12],
Kolmogorov complexity is a suitable framework for capturing the information
embedded in individual objects of finite length as well as the information shared
between objects [13].

In this chapter, we will review various measures for structure and dynamics
of complex networks. We will show how these measures can be used to quan-
tify aspects of dynamical behavior of the systems using Boolean networks as a
model system. To go beyond the summary statistics of networks, we propose to
use information theory as a unified approach to establish a link between struc-
tural properties and dynamical behavior. To this end, recent developments in
information theory are discussed and applicability of the proposed approach is
demonstrated.

The structure of this chapter is as follows. First, we present some background
on the models and methodologies that are used in this work. Then we will review
various measures for quantifying structure and dynamics of complex systems. We
will demonstrate how these measures can be used to study structure dynamics
relationships. Finally, we will use information theory to established a direct link
between structure and dynamics. Applications of recent information theoretical
tools will be demonstrated.

2 Background

2.1 Boolean Networks as Models of Complex Dynamical Systems

A Boolean network (BN) is a directed graph with N nodes. Nodes represent ele-
ments of the system and graph arcs represent interactions between the elements.
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Each node is assigned a binary output value and a Boolean function, whose
inputs are defined by the graph connections. Let si(t) ∈ {0, 1}, i = 1, . . . , N ,
where N is the number of nodes in the network, be the state of i:th node in a
Boolean network at time t. The state of this node at time t+1 is determined by
the states of nodes j1, j2, . . ., jki

at time t as

si(t + 1) = fi(sj1(t), sj2(t), . . ., sjki
(t)), (1)

where fi : {0, 1}ki → {0, 1} is a Boolean function of ki variables. A binary vector
s(t) = (s1 (t) , . . . , sN (t)) is the state of the network at time t. In a synchronous
BN all nodes are updated simultaneously as the system transitions from state
s(t) to state s(t + 1) [11].

Random Boolean networks (RBNs) are networks in which each node has ex-
actly K inputs that are selected randomly. The update rules are chosen with bias
b, such that for an update rule f E[f(x)] = b for any input x and for any x �= y
f(x) and f(y) are selected independently. In addition to this narrow sense of the
word, random Boolean networks can also be used to describe networks generated
with some other selected distribution or pattern of update rules, for example.
These assumptions of randomness permit analytical insights of the behavior of
large networks. RBNs were used as the first model of GRN [14]. Each node is
a gene, and is assigned a Boolean function from the set of possible Boolean
functions of k variables.

By running the network over several time steps starting from an initial state,
a trajectory through the network’s state space can be observed (referred to as a
“time series”). Over time, the system follows a trajectory that ends on a state
cycle attractor. In general, a RBN has many such attractors. It should be noted
that this model can directly be generalized to a larger alphabet by defining
si(t) ∈ {0, . . ., L − 1} and fi : {0, . . ., L − 1}ki → {0, . . ., L − 1}, where L is the
size of the alphabet.

Dynamical regime of Boolean networks. One important feature of RBNs
is that their dynamics can be classified as ordered, critical, or chaotic. During
the simulation of a RBN some nodes will become “frozen”, meaning that they
will no longer change their state, while other will remain dynamic, meaning that
there state will periodically change from one state to the other. The fractions of
frozen and dynamic nodes depends on the network dynamical regime.

In “ordered” RBNs, the fraction of nodes that remain dynamical after a tran-
sient period vanishes like 1/N as the system size N goes to infinity; almost all of
the nodes become “frozen” on an output value (0 or 1) that does not depend on
the initial state of the network. In this regime the system is highly stable against
transient perturbations of individual nodes, meaning that externally imposing a
change in one node state will not cause significant changes in the other nodes
states. In “chaotic” RBNs, the number of dynamical, or “unfrozen” nodes scales
like N and the system is unstable to many transient perturbations, meaning that
a perturbation will spread through many nodes.
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Here we consider ensembles of RBNs parameterized by the average indegree K
(i.e, average number of inputs to the nodes in the network), and the bias p (i.e.,
the fraction of inputs states that lead to an output with value “1”) in the choice
of Boolean rules. The indegree distribution is Poissonian with mean K and at
each node the rule is constructed by assigning the output for each possible set of
input values to be 1 with probability p, with each set treated independently. If
p = 0.5, the rule distribution is said to be unbiased. For a given bias, the critical
connectivity, Kc, is equal to [15]:

Kc = [2p(1 − p)]−1. (2)

For K < Kc the ensemble of RBNs is in the ordered regime; for K > Kc,
the chaotic regime. For K = Kc, the ensemble exhibits critical scaling of the
number of unfrozen nodes; e.g., the number of unfrozen nodes scales like N2/3.
The order-chaos transition in RBNs has been characterized by several quantities.
These will be reviewed in section 3.2.

2.2 Measures of Information

Here some fundamental results of information theory and interesting new devel-
opments are discussed. The presented results will form basic tools that allow us
to study structure and dynamics under unified framework.

There are two commonly used definitions for information, Shannon informa-
tion [16] and Kolmogorov complexity [17,18,19]. Both theories provide a measure
of information using the same unit: a bit. A natural interpretation of information
is the length of the description of an object in bits.

Information distance. In Shannon information theory the amount of infor-
mation is measured by entropy. For a discrete random event x with k possible
outcomes, the entropy H is given as

H =

k
∑

i=1

piIi = −

k
∑

i=1

pi log pi, (3)

where pi is the probability of an event xi to occur [20]. Quantity Ii = − log pi

is the information content of an event xi. Natural interpretation for entropy is
that it is the expected number of bits that are needed to encode the outcomes
of a random event x. It can be observed that entropy is maximized when the
probabilities of all events are equal, that is pi = p̂, ∀i ∈ 1, . . ., k [20].

Shannon information measures information of a distribution. Thus, it is based
on the underlying distribution of the observed random variable realizations. The
distribution can be obtained based on assumptions about the data generation
process or it can be estimated from the data. Thus, to utilize Shannon informa-
tion, the alphabet of the data source needs to be fixed and there needs to be a
model for the origin of the data.

While Shannon information has successfully been used for the analysis of
complex systems, for example by studying the mutual information in dynamics
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or the networks ability to store information [21,22], when studying structure and
dynamics of complex systems, it is not clear how to define a unified alphabet and
the underlying distribution. Thus, for these analyses the alternative definition
of information, Kolmogorov complexity, seems a more attractive option.

Unlike Shannon information, Kolmogorov complexity or algorithmic informa-
tion is not based on statistical properties, but on the information content of
the object itself [13]. Thus, Kolmogorov complexity does not consider the origin
of an object. The Kolmogorov complexity K(x) of a finite object x is defined
as the length of the shortest binary program that with no input outputs x on
a universal computer. Thus, it is the minimum amount of information that is
needed to generate x. Unfortunately, in practice this quantity is not computable
[13].

While the computation of Kolmogorov complexity is not possible, an upper
bound can be estimated using lossless compression [13]. Several real-life compres-
sion algorithms, like the Huffman [23], Lempel-Ziv [24], and arithmetic coding
[25] have proven to give useful approximations of Kolmogorov complexity in
practical applications [13].

As information is an absolute measure, related to a single object or a distri-
bution, it is not directly suitable for comparing the similarities of two objects.
Small or large information alone does not tell much about the similarity of ob-
jects. Thus, measures to jointly compare the information content of two objects
have been proposed.

Information-based similarity measures can be defined in terms of Kolmogorov
complexity. This topic has been studied in recent years with the goal of finding
an information measure than can be approximated computationally [26,27].

We denote as K(x, y) the length of the shortest binary program that outputs
x and y, and a description how to tell them apart. We can define a conditional
Kolmogorov complexity K(x|y) as the length of the shortest binary program
that with a given input y outputs x [13]. Thus, information about y, contained
in x can be defined as [27]

I(x; y) = K(y) − K(y|x). (4)

It can be shown that the relation

K(x, y) = K(x) + K(y|x) = K(y) + K(x|y) (5)

holds up to an additive precision [13]. Therefore, there exists a symmetry prop-
erty I(y; x) = I(x; y), up to an additive precision.

Kolmogorov complexity based similarity measure, or information distance,
between two objects is the shortest binary program that computes x from y, or
vice versa. Thus, information distance can be defined as [26]

dI D (x, y) = max(K(y|x), K(x|y)). (6)

This is a measure of absolute information distance between two objects. As the
size of an object has a direct impact to the Kolmogorov complexity of the object,
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we should define a normalized version of the information distance that takes the
size of an object into account. A normalized information distance can be defined
as [27]

dNID(x, y) =
max(K(x|y), K(y|x))

max(K(x), K(y))
. (7)

While normalized information distance can be motivated solely from the infor-
mation theory point of view, it has some general properties that make it inter-
esting in other ways. The normalized information distance has been shown to
incorporate all effective computable distance metrics including, for example, the
Euclidean and Hamming distances. Thus, the normalized information distance
can be argued to be a universal measure of similarity.

Normalized Compression Distance. While normalized information distance,
like Kolmogorov complexity itself, is not computable, it has been shown that this
metric can be approximated by any real-life compression algorithm that fulfills
several natural criteria of a normal compressor C, see [28] for details.

By using a compressor C instead of the Kolmogorov complexity K, we can
write Equation 7 in a computable form. After we apply Equation 5, to the the
numerator of Equation 7, the numerator can be written as [27]

max{K(x, y) − K(y), K(x, y) − K(x)}.

For compression convenience we can approximate K(x, y) by the concatenation
of these strings: K(x, y) = K(xy) = K(yx) holds upto an additive precision. Us-
ing these properties the normalized compression distance (NCD) can be defined
as

dNCD(x, y) =
C(xy) − min(C(x), C(y))

max(C(x), C(y))
. (8)

It can be shown that this approximation has the same metric properties as the
normalized information distance, up to an additive constant [27,28].

Set complexity. As discussed above, information distance captures the similar-
ity between two objects. These objects could be the structure and the dynamics
of a given network, or pairs of structures and dynamics from an ensembles of
networks. However, to gain more insight into structure dynamics relationships, a
more general measure that captures relationships between ensembles of objects
or features such as the nodes of the network would be useful. For this purpose,
a measure called set complexity was recently proposed.

Instead of just a pairwise similarities, Set complexity quantifies the informa-
tion stored in a set S of strings xi. This set can be constructed from any strings
or objects that can be represented on computer. Key property of this measure
is that it reflects the information stored in individual strings as well as the in-
formation stored in the set itself. More importantly, the measure is effective in
the sense that it has the properties: 1) a random string adds zero information
to the set, 2) Duplicated strings add little or no information to the set.



Structure-Dynamics Relationships in Biological Networks 159

Set complexity, that fulfills these conditions, is defined as

Ψ(S) =

N
∑

i=1

K(xi)Fi(S), (9)

where

Fi(S) =
2

N(N − 1)

∑

pairs i,j

dij(1 − dij) (10)

and dij is the normalized information distance between xi and xj . This satisfies
the properties defined earlier because for completely random strings 1−dij should
be zero if the strings are long enough and for identical strings dij is zero. In
addition, the measure clearly takes into account both the individual information
of the strings and their relation to each other. It has been shown earlier that just
as with NCD, this measure of set complexity can also be approximated by using
real life compression algorithms to estimate uncomputable information distance.

3 Summary Statistics for Dynamical Systems

3.1 Measures of Structural Properties

Properties of a network are related to its structure. Traditionally, networks have
been analyzed assuming that the connections between different nodes are selected
randomly [29,14,11]. Recent discoveries have shown that this assumption does
not hold for most real world networks [30,31,32,33]. Instead, several networks,
including gene regulatory networks show a scale free type of structure [31]. A
characteristic property of a scale free network is the existence of hubs, that is,
the nodes that have a very high number of connections. In a random topology
all the nodes have approximately the same number of connections.

Structure of the network can be characterized using summary statistics, that
can be computed for any given network [9,34]. To quantify the topology, most
direct measures are the in- and outdegree of the network. For a directed graph,
indegree and outdegree measure the connectedness of individual nodes. Indegree
measures the incoming edges of a node and outdegree the outgoing edges. For a
given graph G = (V, E), V is the set of nodes and E is the set of edges, applies

∑

v∈V

deg+(v) =
∑

v∈V

deg−(v) = |E|, (11)

where deg+(v) is the out and deg−(v) is the in degree of node v.
Clustering coefficient is a measure for the connectivity of a network [9]. It is

defined for a given node as the number of neighboring nodes that are connected
to each other. That is, for a set of nodes N = n1, . . ., nk we have a set of
connections (edges) E = {eij}, where i, j ∈ 1, . . ., k. Thus eij is an edge between
the nodes ni and nj . We can define a neighborhood B for the node ni as its
immediately connected neighbors Bi = {nj} : eij ∈ E. The connectivity ki of
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the node ni is the size of the neighborhood |Bi|. The clustering coefficient Ci for
the node ni is the proportion of links between the neighborhood nodes divided
by the number of links that could possibly exist. For each neighborhood the
maximum number of links is ki(ki − 1). Thus, the clustering coefficient is given
as

Ci =
|{elm}|

ki(ki − 1)
: nl, nm ∈ Bi, elm ∈ E. (12)

The clustering coefficient for the whole network is the average of the clustering
coefficients of all the nodes

Ĉi =
1

n

k
∑

i=1

Ci. (13)

Another measure of network topology is characteristic path length [9]. First, the
path length Lij , that is the minimum number of edges that are needed to get
from the node ni to the node nj , is computed. The characteristic path length L
is then Lij averaged over all pairs of nodes.

3.2 Measures of Dynamical Behavior

In this section, we present the basics of annealed approximation, a technique
utilized to characterize the dynamics of Boolean networks. This is relevant in the
context of studying structure-dynamics relationships, since it provides a simple
analysis in the case of networks with no local structure. Any effects caused by the
topology of the network, causing correlated values in the nodes of the network,
can then be seen as deviations of this baseline dynamical network characterized
by average sensitivity, presented below. We also introduce a numerical measure
that can be computed by simulating networks, and which generalizes the average
sensitivity so that it can also capture a part of the topological effects on dynamics
missed by the standard analysis of annealed approximation. In addition, we
present the concept of the frozen core, which is used to characterize the network
dynamics in an alternative way, taking more fully into account the steady state
behavior of the dynamics caused by the topology.

Standard analysis. Annealed approximation in Boolean networks was pre-
sented as a way to give an analytical derivation for the numerically observed
differences in behavior between ordered, critical and chaotic random Boolean
networks [15,35]. The approach is probabilistic: expected short-term behavior of
networks over a distribution of characteristic states is calculated and this ex-
pected value is used to predict the expected long-term behavior of a network
taken from the distribution. The distribution of characteristic states can be se-
lected or parametrized in different ways, and depending on this selection different
approximations are obtained. For the purposes of this chapter, the state of the
network will be described with two values, the state bias bt (the probability that
a node obtains value 1 at time t) and the probability that a node is perturbed,
ρt. It is, further, assumed that these two properties are independent. This holds
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in many simple cases, including when the functions of the network are selected
to have random functions with some bias p. In addition, in this particular case,
bt remains constant.

By an annealed network we mean a Boolean network in which the connec-
tions in the network are reshuffled after each update. This has the effect of,
first of all, breaking up the attractor structure. Secondly, the network nodes in
general lose their identity in the sense that two states that are identical up to
the ordering of the nodes are, in effect, the same state in an annealed network.
The quenched network, in which this annealing is not performed, can have local
topological structures that affect the network dynamics. Using annealed approx-
imation means that we take the results computed in the annealed model and
apply them to quenched random networks. For the purposes of the annealed
approximation all we have left of the topological properties is contained in the
distribution of in-degrees of the nodes in the network.

In this case, the distribution of characteristic states, i.e. states identical up
to a permutation of nodes, can successfully be parametrized by a single value
ρt. This value is the probability that an arbitrary node is perturbed at time t.
The nodes are assumed to be independent. As a result, it was found that the
parameter values at the phase transition are given by setting what is now called
the average sensitivity to one, 2Kp(1 − p) = 1. If the average sensitivity is less
than one, perturbations are predicted to die out on average and the network is
called ordered. If 2Kp(1 − p) > 1, the network is chaotic and perturbation size
will approach a non-zero fixed point.

If this case is extended to cover an arbitrary distribution F of functions in
the network the change in perturbation size ρ from time t to time t + 1 can be
described by the iterative map h1, ρt+1 = h1(ρt) where

h1(ρt) = E
f ∈F

[ 1

2Kf

∑

x∈B
Kf

∑

y∈B
Kf

f(x) ⊕ f(y)(1 − ρt)
Kf−|x⊕y|(ρt)

|x⊕y|
]

. (14)

The fixed point ρ∗, ρ∗ = h1(ρ
∗) of this mapping is used to predict the chaoticity

of the network. If the fixed point is non-zero, ρ∗ �= 0, this means that small
enough perturbations will grow on average towards the stable-state value and
the network is called chaotic. From the map, this property may be determined
by computing h′

1(0), which is, in fact, a way of computing the average sensitivity
for a general distribution of functions.

Chaotic networks correspond to the case h′
1(0) > 1. If the network has a fixed

point at the origin, ρ∗ = 0, all perturbations will eventually die out according to
this annealed approximation. If h′

1(0) < 1 the network is called ordered and as a
limiting case if h′

1(0) = 1 the network is called critical. h1 is commonly called the
Derrida map or the Derrida curve of the network, and numerical approximations
in particular can be called Derrida plots. In the special case of random Boolean
networks in the narrow sense (with random connectivity), this approximation
is sufficient for determining the chaoticity of quenched networks with selected
p and K. In the following, an alternative form of the analysis is presented that
enables the study of a wider class of Boolean networks. Similar classification
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of networks based on the fixed points of perturbation size can be made in the
following case as well.

Generalized average sensitivity. In [36] a general form describing the an-
nealed model is given in the form of four iterative maps. In this mapping, the
perturbation is parametrized with probabilities pij that describe the probabil-
ity that the state of an arbitrary node has value i without a perturbation and
value j with perturbation applied to the network. This iterative mapping is in
effect three-dimensional since the sum of pij is equal to one. The character-
istic states of the network can thus in this approximation be described with
three parameters. Different kinds of Derrida maps are explicitly derived from
this general framework in [36]. The interest in Derrida maps is justified de-
spite the three-dimensional nature of the mentioned annealed approximation,
since one-dimensional mappings are simpler to analyze in terms of their fixed
point behavior. In addition, applying the three-dimensional map to perturbation
spreading gives one-dimensional mappings in a natural way.

In addition to the Derrida maps describing perturbation propagation, an ad-
ditional iterative map called the bias map is used to describe the evolution of
the proportion of ones in the state of a network. With the help of the bias map,
versions of the Derrida map can be used to capture fixed-point behavior of the
annealed model. The bias map can be written as

g(b) = E
f∈F

[

∑

x∈B
Kf

f(x)P (x|b)
]

,

where
P (x|b) = b|x|(1 − b)Kf−|x|

is the probability for input vector x given that we know probability b for an
input to have value 1. This mapping is contained in the iterative maps for pij

and can be obtained from the update equation for p11 by setting p01 = p10 = 0.
The bias map can be iterated by

bt+1 = g(bt).

This mapping may have non-trivial fixed point solutions depending on the chosen
function distribution [37,38,39]. In [40] a definition is given for stable functions as
ones that have a bias map fixed point at zero or one. If that occurs, the network
constructed of these functions will necessarily be stable without further study of
Derrida maps being needed. In annealed models used for biological applications
we typically assume for modeling purposes that the bias will reach some fixed
point b∗ = g(b∗). If we study e.g. perturbation propagation we can then use this
fixed point of the annealed model to correspond to states on the attractor in
the quenched model. In this chapter, we quantify network dynamics in the fixed
point of the state bias.
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For a function distribution F average influence I(b) is

I(b) = E
f∈F

[ 1

Kf

Kf
∑

i=1

∑

x∈B
Kf

f(x) ⊕ f(x ⊕ ei)P (x|b)
]

.

We define average influence I of function distribution F at bias-map fixed point
b∗ as

I = I(b∗).

Average influence I can be considered as the average probability that an ar-
bitrary arc is propagating a perturbation at the fixed point state. Influence of
variable i is defined as

Ii(b) =
∑

x∈B
Kf

f(x) ⊕ f(x ⊕ ei)P (x|b).

The average sensitivity of a Boolean function is the sum of influences Ii(b). The
average sensitivity of a function distribution is given by

λ(b) = E
f∈F

[

Kf
∑

i=1

∑

x∈B
Kf

f(x) ⊕ f(x ⊕ ei)P (x|b)
]

.

By using the average sensitivity at the bias map fixed point we can define the
network’s average sensitivity as

λ = λ(b∗).

λ(1
2 ) has also been used for the purpose, but this can be misleading in cases in

which b∗ differs significantly from 1
2 [41].

λ is the average amount of nodes that are perturbed one time step after we
have flipped the value of a randomly chosen node, given that the network has
reached the bias map fixed point before the perturbation. In its asymptotical
nature lnλ can be considered to correspond to the Lyapunov exponent in the
classical theory of chaotic systems, although the analogy should not be streched
too far.

In terms of Derrida maps, we can select the characteristic states so that one
state is characterized by its bias b1 alone and the second state is characterized
by the probability ρ of any one of its bits being different from the first state. In
this case the Derrida map is derived from the general iterative maps in [36] by
setting b1 = b∗ and b2 = b∗(1 − ρ) + ρ(1 − b∗). h2(ρ) is obtained as

h2(ρ) = E
f∈F

[

∑

x∈B
Kf

∑

y∈B
Kf

f(x) ⊕ f(y)
(

(1 − b∗)(1 − ρ)
)(1−x)T (1−y)

. . .

(

b∗(1 − ρ)
)xT y(

ρ(1 − b∗)
)(1−x)T y

(b∗ρ)xT (1−y)
]

.
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This expression can be simplified as

h2(ρ) = E
f∈F

[

Kf
∑

k=1

λkρk(1 − ρ)Kf−k
]

, (15)

where
λk =

∑

x∈B
Kf

∑

y∈Pk

f(x) ⊕ f(x ⊕ y)P (x|b∗)

is the average sensitivity of function f over k variables. λk is also called the
generalized sensitivity in [42]. The slope of this Derrida curve corresponds to
our utilization of generalized sensitivity λ(b∗) above.

Since we lose information when we use one-dimensional Derrida maps instead
of the three-dimensional map from which these maps can be obtained, we should
in general use the original map to study the behavior of the system. In any case,
the annealed approximation in this form is limited in its ability to represent
information propagation in networks due to the limitation to average quantities
instead of distributions. A crude approximation of the dynamics may, however,
be obtained in this form.

Quantifying dynamics with correlations. If the network had an infinite size
and did not have local topological structure so that its dynamics can really be
accurately approximated with the annealed approximation presented above, the
states of the network would be well described with the independent node model.
In practice, finite size and topological structures cause the dynamics to deviate
from this simple baseline dynamics. In order to quantify the dynamics in this,
more realistic case, we compute parts of Derrida plots numerically over several
time steps. In the case of independent nodes, the results could be predicted by
iterating the Derrida map, with each iteration obtaining a prediction one time
step further. Difference from the numerical Derrida map over several time steps
therefore quantifies the effects of topology.

In general, we can select a few time lags m1, m2, ..., mM for which we compute
the perturbation size. Starting from networks that we run for long enough for
the initial transient to settle, we toggle a single bit in the state and follow
the trajectories of both the perturbed and the unperturbed network. After mi

timesteps we record the average number of nodes perturbed from a large number
of individual trials. This average can be denoted by λ̂(mi), and the values thus
obtained give a simple description of the network dynamics over the range of
time steps studied. These values give, in fact, estimates of the generalized average
sensitivity over mi time steps. For the purpose of illustrations in this chapter,
we select M = 1 and m1 = 5.

Frozen core. Another measure of dynamics considered in this chapter is the
size of the frozen core (see section 2.1). A frozen core arises in networks due
to, for example, constant functions, the outputs of which will always have the
same value after an update. These nodes are called frozen. Further, there are
some nodes which obtain their inputs only from frozen nodes or from nodes
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whose values always have a combination that will cause the output to obtain the
same value. These nodes, obtaining the same constant value for all the attractor
states, are included in the frozen core as well. The total size of the frozen core
is selected as a dynamical parameter we quantify from all the networks of the
chapter. For ordered networks, most of the network is frozen, whereas for chaotic
networks, the frozen core is tiny.

4 Structure-Dynamics Relationships

4.1 Relationships in Terms of Summary Statistics

Topological statistics like clustering coefficient and characteristic path length
can be used to determine the type of network and to compare different network
topologies [9]. For a network with regular wiring the clustering coefficient and
characteristic path length are both high, whereas in a random network both
statistics have a small value. Other network topologies can have a high cluster-
ing coefficient and still a low average path length. Networks with this kind of
topology are known as small world networks and they have the property that
L > Lr but C ≫ Cr, where Lr and Cr denotes the characteristic path length
and clustering coefficient of a random network, respectively. Usually this kind of
a network also has a scale free topology [9].

While these topological statistics can successfully be used to compare and
classify different types of networks, it is not obvious what measures are able the
uncover all the interesting characteristics of a network. Furthermore, measures
like the characteristic path length and clustering coefficient are most useful in
the comparison of different topologies. They are not that informative when, for
example, two scale free networks are compared. This is a problem if we want to
compare networks that have the same topological properties.

To show how different network summary statistics can be used to study
structure-dynamics relationships, we generated networks from six ensembles.
Three of the ensembles are the standard random Boolean networks with in-
degrees K = 1, K = 2 and K = 3 corresponding to ordered, critical and chaotic
dynamics, respectively. The three others are built by forming a lattice with a sim-
ilarly varying in-degree and changing 5% of the inputs but keeping the in-degree
of the nodes the same. Our test cases correspond, therefore, to a topologically
homogeneous network with no local structure and a network with a high de-
gree of regular local structure. Distributions of different structure and dynamics
parameters for these ensembles are illustrated in Figs. 1 – 4.

To understand the relationships in terms of these parameters we can link them
together using straightforward correlation analysis. Scatter plots in Figs. 5–8
show that using different measures of structure and dynamics different features
of the relationships can be seen.

These illustrations show that the view on the structure dynamics relationships
is very different depending on the parameters we look at. It is worth noting
that none of the studied pairs of parameters are able to make all the network
ensembles distinguishable from each other. In addition, while the distributions
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Fig. 1. Distributions of the clustering coefficients of networks from different ensembles.
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Fig. 2. Distributions of the average path lengths of networks from different ensembles.

of the parameters are distinct, for example in terms of their means, the variation
within the ensembles is large enough that the parameters can not tie individual
networks into ensembles unambiguously (Figures 7, 8).

For the dynamical parameters, λ(5) (a generalized measure of average sensi-
tivity over five time steps) will capture the dynamical behavior of the networks.
While this order parameter on average differs in different ensembles, it has a
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Fig. 3. Distributions of λ(5) for networks from different ensembles.
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Fig. 4. Distributions of the size of frozen core for networks from different ensembles.

large variation in individual finite size network realizations from the ensembles.
This is due to both variation between finite-size networks selected and varia-
tion in the sample paths selected for averaging. Size of the frozen component is
more constant over different networks but lacks the separation power of different
ensembles. In fact, most networks look similar in terms of this parameter.

Instead of computing individual statistics from networks, we should compare
the entire networks directly. While there are several aspects that make this
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comparison difficult, for example a difference in the number of nodes and the
degree distributions, we can do the comparison using the information theory
based approach. Thus, we can compare the networks using their information
content.

4.2 Information Theoretical Relationships

Making use of the universal information distance as approximated by the NCD,
we are able to relate the structure of a network to its dynamics without reducing
the network to an arbitrary set of features, thus allowing us to capture the infor-
mation flow through the network in an unbiased (feature-independent) manner
[43]. It also allows us to distinguish different ensembles of dynamical networks
based solely on their structure, on their dynamics, or on a combination of both.
To illustrate this, we generated six Boolean network ensembles (N = 1000) with
two different wiring topologies: random and regular, each with K = 1, 2, or 3.

The Boolean network structure is represented by defining the wiring matrix
W and the truth tables (functions) F . The wiring matrix contains N rows cor-
responding to the nodes in the network. Each row i contains the numbers of
the nodes that are connected to node i. We extend this encoding further such
that instead of using the absolute numbers for the nodes, we represent the con-
nections by distances along an arbitrary linear arrangement of the nodes. For
example, if node 20 is connected to node 8, then row 20 in W will contain a

Fig. 9. The normalized compression distance (NCD) applied to all pairs of networks.
The resulting distance matrix was then used to build a dendrogram, using the complete
linkage method. Six ensembles of random Boolean networks (K = 1, 2, 3 each with
random or regular topology; N = 1000) were used to generate 30 networks from each
ensemble.
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−12. This encoding is effective in the sense that the regularities in the network
structure are easily observable. For example, if the network is regularly wired as
in a cellular automaton, this is clearly visible in the connection matrix. Following
the matrix representation of the connections, the truth tables F of the Boolean
functions are given for each node i. The matrix F defines how the output of the
node is obtained using the inputs defined in W .

In comparing the network structures, one distinctive parameter is their size
and thus, the size of their respective compressed data structures. For example,
using our encoding for the network structure, Boolean networks with connec-
tivity K = 1, 2, and 3 could be separated from each other simply by looking
at the sizes of W and F . To verify that the proposed method is able to find
the information within the network structure and does not merely classify the
networks based on their size, we introduce fictitious inputs to make all network
representations to be of equal size. A fictitious input is one that does not affect
the output of the function. We choose the fictitious input(s) randomly to be
one of the existing connections; that is, the same connection is repeated more
than once in the network encoding. For our analyzes, fictitious inputs have been
applied such that all Boolean networks are encoded with the same size as K = 3
networks. As Figure 9 illustrates, all of the different ensembles considered are
clearly distinguishable.

To extend this analysis further, we used NCD to study the relationship be-
tween structural information and dynamical behavior within a common frame-
work. Within each of the above 6 Boolean network ensembles, we generated 150
networks and calculated the NCD between all pairs of network structures and be-
tween their associated dynamic state trajectories. In order to obtain comparable
data from the dynamics of Boolean networks (that is, state-space trajectories)
from different ensembles, we performed a burn-in of 100 time steps before col-
lecting the data. This was done in order to ensure that the network is not in
a transient state. Based on simulations, using a longer burn-in period did not
affect the results. After the burn-in, trajectories were collected for 10 consecutive
time steps, and subsequently were used to compute the NCD between pairs of
trajectories. Using longer time series did not affect the results. This process was
repeated for exactly the same networks that were used for comparing network
structures.

The relationship between structure and dynamics was visualized by plotting
the structure-based NCD versus the dynamics-based NCD for pairs of networks
within each ensemble (Figure 10). All network ensembles were clearly distin-
guishable based on their structural and dynamical information. Additionally,
the critical ensemble (K = 2, random wiring) exhibited a distribution that is
markedly more elongated along the dynamics axis as compared to the chaotic
and ordered ensembles, supporting the view that critical systems exhibit max-
imal diversity. The wide spread of points for the critical network ensemble in
Figure 10 shows that their dynamics range between those of ordered and chaotic
ensembles. Indeed, very different network structures can yield both relatively
similar and dissimilar dynamics, thereby demonstrating the dynamic diversity
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diverse dynamical behavior.

exhibited in the critical regime. Thus, the universal information distance pro-
vides clear evidence that the most complex relationships between structure and
dynamics occur in the critical regime.

4.3 Quantifying Information Propagation

Dynamical behavior of a system can be characterized using an order param-
eter as discussed in section 3.2. This analysis can directly be generalized into
more general information theoretic framework. Instead of using the Hamming
distance as the measure of similarity, we are using the normalized information
distance. In computational applications normalized compression distance can
be used as an approximation. Thus, the information-based Derrida map is ob-
tained by computing the distances between the states s

(1)(t) and s
(2)(t) using

d(t) = dNCD(s(1)(t), s(2)(t)) (Figure 11).
When compared with the traditional Derrida map for random Boolean net-

works, our information-based version has an interesting property. For a critical
network the curve stays at the diagonal for all the distances, not just close to the
origin. With the traditional approach that is based on the Hamming distance the
dynamical regime can be characterized only by using very small perturbations, as
the order parameter is defined by the slope at the origin. Our information-based
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version allows us to use perturbations of any size as the same dynamical behavior
is observed throughout the curve. This allows us to apply the information-based
order parameter directly to data, measured from real dynamical systems. For
example, when a stimulus is given to a biological system, it is usually not known
what the exact response is. Thus, our measure allows the usage of biological data
even though the size of the response, or the perturbation, is not known. This
type of analysis of information propagation is discussed in [44].

4.4 Set Complexity

Evident limitation in the presented NCD based analysis is that it inherently
considers pairs of networks or pairs of trajectories. While this can reveal inter-
esting insights, it makes interpretation of results challenging. A step towards
more general analysis would be to quantify the information content of individ-
ual networks and their dynamics. For this purpose we would need to be able
to quantify the effective information content of the network and its dynamics.
Standard measures of information, such as entropy or Kolmogorov complexity,
only quantify the randomness of the objects. For this type of application, we
would need to apply context-dependent measure for information.

A recent development in information theory is a measure called set complexity
(see Section 2.2). Here we show how this measure can be applied to quantify
information in the network structure and dynamics.
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Structure of a network can be represented in a form of adjacency graph An×n,
where n is the number of nodes in the network. We can then define a set S as
the collection of the nodes of the network S = {A1, A2, . . ., An}, where Ai =
[ai1, ai2, . . ., ain]. aij = 1 if there is a connection from node i to node j. Thus, set
S includes the rows (or columns) of the adjacency matrix as the strings. With
this definition, we can directly apply the set complexity measure (Equation 9)
to quantify the information embedded into network structure. An illustrative
example on how set complexity behaves on different topological networks is
shown in Figure 12.

Fig. 12. Information content of two graphs with N = 10. Graph (A) has a low in-
formation content: ΨA = 0.2. Graph (B), the maximally informative undirected, un-
weighted graph with N = 10, on the other hand, has a much higher information content:
ΨB = 1.9.

Dynamics can be directly be quantified by forming a set S as from the state
vectors of the network over l consequtive time steps, S = {s (t) , s (t + 1) , . . .,
s (t + l)}. To demonstrate this approach, we applied set complexity to state
trajectories generated by ensembles of random Boolean networks operating in the
ordered, chaotic, and critical regimes. Specifically, we have set the connectivity
to be k = 3 and tuned the bias p in increments of 0.01 so that the average
sensitivity, s, varies from s < 1 (ordered) to s > 1 (chaotic). For each value of s,
50 random networks (number of nodes, n = 1000) were each used to generate a
trajectory of 20 states, after an initial “burn in” of running the network 100 time
steps from a random initial state in order to allow the dynamics to stabilize (i.e.,
reach the attractors). We collected these 20 network states into a set for each
network of the ensemble and calculated set complexity for each. Figure 13 shows
the average set complexity over the 50 networks as a function of the average
network sensitivity s (plotted a function of λ = log s).

This example clear shows that set complexity can be used to extract relevant
information from network dynamics and thus can be used to quantify dynam-
ical behavior of the network. It is straightforward to link structure based and
dynamics based set complexity trough correlation analysis. Thus, we can use
set complexity to study structure dynamics relationships of individual networks
without reducing them into topological or dynamical parameters.
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Fig. 13. The average, estimated set complexity of random state trajectories as a func-
tion of the log of the average sensitivity λ, the Lyapunov exponent, generated by
networks operating in the ordered, critical, and chaotic regimes. The bars show the vari-
ability (one standard deviation) of the estimated set complexity for 50 networks [45].

5 Conclusions

In this chapter we have demonstrated how the structure dynamics relationships
of the model networks can be studied. We reviewed the most common parameters
for quantifying structure and dynamics of networks and used these to analyze
various ensembles of Boolean networks. This analysis demonstrated some major
limitations of this standard analysis.

To overcome these limitations and to make the analysis as general as possi-
ble, we proposed to use information theory, implemented in form of NCD, as a
powerful framework for extracting structure-dynamics relationships. We demon-
strated the potential of the proposed approach with multiple applications to the
analysis of structure and dynamics. It is fascinating that the analyzes presented
herein are possible using only the compressibility of a file encoding the network
or its dynamics without needing to select any particular network parameters or
features. This approach allows us to study, under a unified information theo-
retic framework, how a change in structural complexity affects the dynamical
behavior, or vice versa.

Future work should work on developing more optimal analysis techniques
that implements the information theoretical approach. For example, estimation
of NCD can be further improved by developing context dependent compres-
sion algorithms. Furthermore, analysis should be extend to real data and to real
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biological networks. Here, various statistical tests are needed to quantify how
well real data corresponds to model networks.
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Abstract. In this chapter we discuss various local network-based mea-
sures in order to assess the performance of inference algorithms for esti-
mating regulatory networks. These statistical measures represent domain
specific knowledge and are for this reason better adapted to problems
that are directly involving networks compared to other measures fre-
quently used in this context like the F-score. We are discussing three
such measures with special focus on the inference of regulatory networks
from expression data. However, due to the fact that currently there is
a vast interest in network-based approaches in systems biology the pre-
sented measures may be also of interest for the analysis of a different
type of large-scale genomics data.

1 Introduction

Understanding the dynamical behavior of molecular processes and their relation
to the biological function of cells, tissues and ultimately of an organism is the
goal of systems biology [1–4]. In contrast to molecular biology, which pursued
a gene-centric view [5], systems biology aims at studying interacting compo-
nents of molecular biological systems in order to understand the emerging phe-
notype [6, 7]. For this reason gene networks, e.g., the transcriptional regulatory,
metabolic or protein networks [8–13] are of central importance for integrating
information from various scales and variables [14–16]. Because gene networks
represent biochemical interactions among gene products and not merely associa-
tions, they form causal [17, 18] instead of association networks [19]. This impor-
tant role of gene networks explains the recent interest in estimating them from
high-throughput data. Especially for expression data from DNA microarray ex-
periments there have been many studies devoted to the estimation of regulatory
networks [20–27]. It is generally assumed that these networks are not only useful
to gain insights into normal cell physiology but also into pathological processes
[6, 28, 29].

Despite the recent excitement about the perspectives opened by estimating
regulatory networks on a genomic-scale there are considerable problems involved.

S. Niiranen, A. Ribeiro (Eds.): Information Process. & Biological Sys., ISRL 11, pp. 179–193.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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In this chapter we discuss one of these which relates to the assessment of the
inference performance of estimation methods. So far, much attention has been
devoted to the development of novel inference algorithms [30–35]. Interestingly,
much less afford has been put into the invention of new analysis methods that
consider the problem under investigation explicitly. The crucial point here is that
usually general purpose measures from statistics are employed to analyze infer-
ence methods, e.g., precision, recall or the F-score. The reason these measures
are generic is that they can be applied to any problem regardless of its nature.
At first, this may seem as advantage, however, on the other side, these measures
do not take domain knowledge into account. For example, in the context of in-
ferring regulatory networks the data are apparently not exchangeable but are
related in a structured manner. A F-score is a global measure that cannot be
directly related to structural components of a network. For this reason it seems
beneficial to devise statistical measures that are network-based.

In this chapter we review several local network-based measures recently
introduced [36, 37]. We study these measures by applying four widely used in-
ference algorithms, ARACNE [32], CLR [34], MRNET [33] and Relevance Net-
works (RN) [38], to expression data. All of these inference methods are based on
information-theoretic measures [39, 40] which makes a comparison sensible.

This chapter is organized as follows. In the next section we describe the meth-
ods used and in section 3 we present numerical results. In section 4 we provide
a discussion of local network-based measures and this chapter finishes in section
5 with conclusions.

2 Methods

The purpose of this chapter is to advocate and demonstrate the usage of local
network-based measures in assessing inference algorithms [36, 37]. Specifically,
we are focusing on the inference of regulatory networks. Commonly, network
inference algorithms have been studied and their performance evaluated using
measures like precision, recall, F-score or AUROC (area under the receiver op-
erator characteristic) [33, 41, 42]. All these measures have in common that they
assess the performance of an inference algorithm by one (scalar) value. With
other words, the quality of an inferred regulatory network is globally evalu-
ated by a value of one of the aforementioned measures. A problem with such a
global evaluation is that these measures do not provide insights into the infer-
ence performance of structural regions of networks, e.g., motifs, subnetworks or
modules, hubs or even individual edges. The reason for this shortcoming is that
these measures do not make use of the domain of the problem but are multipur-
pose measures. In order to overcome this problem local network-based measures
are suggested and their usage is demonstrated.

2.1 Definition of the Model

The local network-based measures we define in the following are based on en-
semble data and the availability of a reference network that represents the ’true’
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regulatory network [36, 37]. Here we describe the approach by using simulated
expression data and discuss extensions to microarray data in section 5.

The generation of ensemble data is visualized in Fig. 1. For a given structure of
a regulatory network G, E simulated expression data sets, D= {D1(G), . . . , DE

(G)}, are generated by using E different parameter sets. Each set of parameters
defines the dynamics of expression values mimicking the dynamics of gene regu-
lation [43, 44]. More precisely, for the following analysis we use a subnetwork of
the transcriptional regulatory network of yeast [9], G, consisting of 100 genes.
This subnetwork was randomly sampled from the entire transcriptional regu-
latory network by using SynTReN [45]. From this network, expression data in
steady-state condition are obtained by using dynamic equations with Michaelis-
Menten and Hill enzyme kinetics. These data are generated with SynTReN [45].
In total, we generate E = 300 different data sets for sample size 200 and another
E = 300 data sets for sample size 20 using the same subnetwork G of the tran-
scriptional regulatory network of yeast but with different kinetic parameters for
each data set. Biologically, the data D may correspond to a population of one
species spanning the whole dynamic range different individual organisms from
the same species can exhibit. The reason for this variability comes from the fact
that molecular systems behave unlike a clockwork utilizing parallel pathways for
inter- and intra-cell communication. Statistically, using one network structure G
underlying the ensemble data allows the statistical assessment of network com-
ponents down to the level of individual edges. If different networks, Gi �= Gj for
i �= j, would be used for different data sets Di(Gi) for i ∈ {1, . . . , E}, the identi-
fication of such network components would be no longer possible and, hence, an
averaging over different data sets would become meaningless. For example, given
two networks of the same size, there may be an edge connecting gene m and n
in the first network but no edge in the second network. This demonstrates the
problem to identify common parts in these networks. If instead of mathematical
labels, m and n, the nodes in these networks would be labeled with gene names,
this problem would become more apparent.

After having obtained an ensemble of estimated networks Ge= {Ge
i }

E
i=1 from

D = {D1(G), . . . , DE(G)} and the application of an inference algorithm we can
summarize the result in various ways. The simplest possible way is illustrated in
Fig. 2. For a given regulatory network G, we assume to be true, we can derive
two representations. One we call the TP network and another the TN network.
The TP network contains edges between two genes if these genes are directly
connected in the regulatory network, whereas in the TN network two genes are
connected if there is no direct link between these genes. Hence, the TP network
represents true positive edges, whereas the TN network represents true negative

connections. From Ge= {Ge
i}

E
i=1 one can estimate the TPR (true positive rate),

respectively, the TNR (true negative rate) of these edges, which can be seen as
the weights of edges, hence, leading to undirected but weighted networks. This
is illustrated in Fig. 2 with a simple numerical example. Based on {TPRij} and
{TNRij} one can derive various measures in order to assess the performance
of an inference algorithm. In the following we present three such measures that
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Fig. 1. Illustration of our simulation set up. One transcriptional regulatory network G
is used to generate Edifferent data sets. These data sets are obtained by a variation of
the dynamical parameters of the dynamical system used to simulate gene expression.
To each of the Edata sets an inference algorithm is appled to infer a network.

reflect a local structural component of the network. In this respect these entities
are local network-based measures. We would like to emphasize that there are
many more measures possible.

Principally, any combination of {TPRij} and {TNRij} values would result
in a valid (statistical) measure, however, we are focusing on measures that may
be especially beneficial for the analysis of regulatory networks. For this reason,
we present in the following three measures that allow a sensible biological in-
terpretation. Due to the fact that biologists are traditionally interested in the
behavior of individual genes [5], TP and TN rates of individual edges are useful
in this context. This represents also the simplest possible measure consisting of
individual values of {TPRij} and {TNRij} only.

The second measure is based on three-gene motifs. Recently, it has been rec-
ognized that motifs are important building blocks of various complex networks
including biological ones [46–51]. For this reason, biologically, it may be of inter-
est to study their inferability. We define the true reconstruction rate of a motif
by

p =
1

3

3
∑

1

TXRi. (1)
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Fig. 2. Illustration of the summary of G e = {Ge
i }

E
i=1. A true network Gcan be split

into two weighted networks, called TP and TN network. The weights of these networks
are obtained from Ge. A simple example for E= 3 illustrates the procedure.

Here TXR corresponds either to a TPR if two genes are connected or to
TNR if these genes are unconnected and the factor results form the fact that we
consider three-gene motifs only. Fig 3 illustrates all five three-gene motifs that
are possible. These motifs are directed because the transcriptional regulatory
network is a directed network. From Eqn. 1 follows for the five motifs

p[motif = 1] =
1

3

(

TPR(a → b) + TPR(b → c) + TNR(a �↔ c)
)

, (2)

p[motif = 2] =
1

3

(

TPR(a → b) + TPR(b ← c) + TNR(a �↔ c)
)

, (3)

p[motif = 3] =
1

3

(

TPR(a ← b) + TPR(b → c) + TNR(a �↔ c)
)

, (4)

p[motif = 4] =
1

3

(

TPR(a → b) + TPR(b → c) + TPR(a → c)
)

, (5)

p[motif = 5] =
1

3

(

TPR(a → b) + TPR(b → c) + TPR(a ← c)
)

. (6)
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Fig. 3. Visualization of three-gene motifs. The motifs are directed because the under-
lying transcriptional regulatory network is a directed network. For this reason, there
are only five different types of motifs consisting of three genes.

Each of these five measures represents the inferability of a certain motif type.
Principally, one could characterize every motif found in the transcriptional reg-
ulatory network in this way. However, in the following we average over motifs
of the same type found in the transcriptional regulatory network leading to the
mean true reconstruction rate p[motif] of a certain motif type. The reason why
we prefer to average over all motifs of the same type is that this leads to a consid-
erable simplification giving, e.g., just one value of p[motif = 3] for a regulatory
network instead of thousands (see results section).

Finally, the third measure we consider is related to activator and repressor
edges in the transcriptional regulatory network. Here a link between two genes
is called an activator edge if the regulatory effect between these two genes is
positive and repressor edge if this effect is negative. This leads to a classifica-
tion of all edges into two classes. Figure 4 illustrates this classification. Edges
belonging to a class are either represented as bold, full line or thin, dashed
line. From this classification according to the regulatory effect of a link between
two genes we obtain two sets of TPRs, A= {TRPij|eij is activator edge} and
R = {TRPij|eij is repressor edge}. From these two sets one can derive various
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Fig. 4. A simplified network consisting of two types of edges. One type is represented
by full, bold lines and the other type by dashed, thin lines.

measures, e.g., their mean or median value. However, in our analysis we want
to compare these sets with respect to the distribution of TPRs of activator and
repressor edges.

We demonstrate the usage of these measures by studying four different in-
ference algorithms, ARACNE, CLR, MRNET and Relevance Networks (RN).
For detailed information about these GRNI algorithms we refer the readers to
[32–34, 38, 52]. For ARACNE we set the DPI (data processing inequality [39])
tolerance parameter ǫ = 0.1, as in [53]. The MI values are estimated using non-
parametric Gaussian estimator as described in [52] and [54]. The optimal cut-off
value for each data set, Di, used to declare edges significant is obtained by
maximizing the F-score,

F (I ′0) =
2p(I ′0)r(I

′

0)

p(I ′0) + r(I ′0)
. (7)

Here the F-score, F (I ′0), precision,

p(I ′0) = TP/(TP + FP ), (8)

and recall,

r(I ′0) = TP/(TP + FN), (9)

are a function of the MI threshold I ′0 (CLR uses z scores instead [34]) and so
are the number of true positive (TP), false positive (FP) and false negative (FN)
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edges. This results in E different F-scores correspondingly E inferred networks
for the ensemble D = {D1(G), . . . , DE(G)} of a given sample size.

3 Results

In the following we demonstrate the usage and utility of the local network-based
performance measures described in the previous section [36, 37].

3.1 Activator vs. Repressor Connections

The first measure we apply allows to investigates the influence of activator (pos-
itive effect) and repressor (negative effect) edges on their inferability. In Fig. 5
we show histograms to visualize the effect of activator (red) and repressor (blue)
edges on the true positive rate (TPR) of edges for four GRNI algorithms (Top:
ARACNE (left) and CLR (right). Bottom: MRNET (left) and RN (right).). The
sample size for these data was 200.

The TPR of an edge is the number of times a specific edge is inferred correctly
divided by the total number of data sets (E). To investigate the results in Fig. 5
quantitatively we apply a two-sample Kolmogorov-Smirnov test [55, 56], to each
GRNI algorithm, testing for differences in the cumulative distribution function
(CDF) of activator and repressor edges. For sample size 200 we obtain p-values of
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Fig. 5. Histogram of true positive rates for edges in the true network. Top: ARACNE
(left) and CLR (right). Bottom: MRNET (left) and RN (right). Red indicates the
contribution from activator and blue from repressor edges. Sample size is for all figures
200. (Reproduced by permission of Oxford University Press.)
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0.0009688, 0.001554, 0.0001145, 3.432× 10−6 for ARACNE, CLR, MRNET and
RN respectively. The results suggest that, for a significance level of α = 0.01, the
edge type has a systematic effect on all four inference algorithms. Qualitatively,
this can be seen from the histograms in Figure 5 where the repressor edges have
a higher TPR, which means that they are easier to infer. We repeated the same
analysis for a sample size of 20 and obtained p-values of 0.1097, 0.00823, 0.08638,
4.726 × 10−5 for ARACNE, CLR, MRNET and RN respectively. These results
indicate that only CLR and RN are systematically affected by the edge type. In
summary, this means that not only the used inference algorithm may introduce
a bias in this context but also the sample size.

3.2 Motif Types

The next local network-based measure evaluates the inferability of basic motif
types consisting of three genes, as shown in Fig. 3. In Table 1 we present the
results for four of these network motifs for sample size 200, providing their mean
true reconstruction rate p̄ and its standard deviation σ(p̄), #m corresponds to
the number of motifs found in the network. The reason why we present only
results for four of the five possible network motifs is that the network structure
used in our analysis did not include cycles (see motif of type 5 in Fig. 3). Here
the mean true reconstruction rate is calculated according to Eqn. 2-5.

From the table we can observe that all algorithms behave similarly with re-
spect to the inferability for these network motifs, favoring motif type 1 and 3.
The mean true reconstruction rate for motif type 4 is consistently the worst
for all four methods. A general explanation for this behavior (different p̄ values
for different motif types) seems not to be straightforward. However, assuming

Table 1. Summary of motif statistics for ARACNE, CLR, MRNET and RN. (Repro-
duced by permission of Oxford University Press.)

measure/motif type 1 2 3 4

A
R

A

#m 40 171 446 10
p̄ 0.591 0.352 0.530 0.156
σ(p̄) 0.15 0.04 0.18 0.12

C
L
R

#m 40 171 446 10
p̄ 0.506 0.378 0.480 0.171
σ(p̄) 0.131 0.072 0.137 0.194

M
R

#m 40 171 446 10
p̄ 0.568 0.326 0.582 0.176
σ(p̄) 0.1576 0.0083 0.2237 0.1434

R
N

#m 40 171 446 10
p̄ 0.511 0.321 0.515 0.151
σ(p̄) 0.121 0.010 0.152 0.112

C
L
R

(
E
C

) #m 2105 321896 1315 997
p̄ 0.3625 0.3353 0.3355 0.0558
σ(p̄) 0.103 0.026 0.031 0.168
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a homogeneous TPR for an edge of 0.17 (as implied by motif type 4) and an
idealized TNR of 1.0 for a non-edge would result in, e.g., for motif type 1 or 2,
p̄ = 0.45 = (2 × 1.0 + 0.17)/3. This value would be an upper bound that can
not be exceeded because a TNR of 1.0 is the highest possible value. However, as
one can see from table 1 all p̄ values for motif type 1 and 3 are larger than 0.45.
Hence, the actual situation is more intricate implying a complex dependency
structure. For sample size 20 (not shown) we observe results that are qualita-
tively similar to the results discussed above. These results suggest that there
is no bias introduced by the inference algorithms regarding the inferability of
individual motif types (compare columns in table 1), however, each algorithm is
biased towards motif types 1 and 2 (compare rows in table 1).

3.3 Individual Edges

The third measure we investigate studies the inferability of individual edges. This
corresponds to the finest resolution a local network-based measure can assume
but it gives also the most complex information.

In order to organize the complexity arising from the amount of information
provided by the edge-specific inferability we present these results graphically. In
Fig. 6 we show a visualization of the mean TPR of edges mapped onto the true
regulatory network. These results have been obtained for CLR - corresponding
results for ARACNE, MRNET and RN can be in found in [37]. The color code
of the edges corresponds to their mean TPR. Specifically, for black edges, 1 ≥
TPR > 0.75, for blue edges, 0.75 ≥ TPR > 0.5, for green edges, 0.5 ≥ TPR >
0.25, and for red edges, 0.25 ≥ TPR ≥ 0.0. A visual inspection of these figures
suggests that there might be a systematic influence of in-hubs and leafs on the
inferability as reflected by the color of edges. Here an in-hub is defined as a gene
that has more then 3 incoming edges. We term these incoming edges as in-hub
edges. A leaf node is a terminal gene that has exactly one incoming edge. We call
this edge a leaf edge. A quantitative analysis of these observations for ARACNE,
CLR, MRNET and RN can be found in [37]. As a result we find that in general
the probability to observe blue or black leaf edges is much higher than to observe
red or green leaf edges whereas for the in-hub edges this situation is reversed.
This implies a systematic bias for all four inference algorithms.

4 Discussion

The conceptional idea that motivated the introduction of local network-based
measures is to categorize network components according to a given rule. For
example, we could categorize edges in different classes according to a graph-
theoretical description that is solely based on the network topology of the regu-
latory network. Or we could categorize edges according to their effect as defined
by the dynamical equations generating the expression data. Three examples of
such measures are discussed in this chapter but it should be clear that there
are many more measures that can be constructed based on our motivating idea.
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Fig. 6. Visualization of the results for CLR for sample size 200 inferring a subnetwork of
yeast consisting of 100 genes. The color of each edge reflects its mean TPR. Specifically,
for black edges, 1 ≥ TPR > 0.75, for blue edges, 0.75 ≥ TPR > 0.5, for green edges,
0.5 ≥ TPR > 0.25, and for red edges, 0.25 ≥ TPR ≥ 0.0. The integer numbers at the
edges correspond to the value of Ds, see [37]. (Reproduced by permission of Oxford
University Press.)

More formal details about such measures and their defining rules can be found
in [36, 37].

As the results from the previous section demonstrate, local network-based
measures provide insights into the working mechanism of an inference algorithm
beyond measures like precision or the F-score. This is no surprise because local
network-based measures are domain specific rather than applicable to any sta-
tistical problem. Their utility depends on the context and, hence, the biological
problem under investigation.

In addition to these results we think that local network-based measures can
serve another purpose. Due to the fact that our understanding of molecular
processes is very limited it is frequently difficult even to raise a hypotheses about
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the functioning of such processes. For this reason, means to generate hypotheses
are of the utmost importance in order to create testable statements. In this
respect local network-based measures may serve as exploratory analysis tools
[57, 58]. But, for these measures to be useful, one needs to study the potential
bias inference algorithms may cause carefully because otherwise an effect may be
related to the inference algorithm rather than the underlying biological process.
However, if this is addressed properly for a specific local measure of interest
novel hypothesis may be found. Examples for this approach can be found in
[36, 37] with respect to expression data from B-cells [53] but also for the design
of statistical inference algorithms themselves.

In this chapter we analyzed local network-based measures by using simu-
lated expression data. The reason for using simulated expression data instead
of data from microarray experiments is that this way we could generate large
sample sizes that are rarely available from microarray experiments. This way we
could study the working mechanisms of different inference algorithms instead of
revealing finite size effects that relate back to an insufficient amount of data.
Principally, our measures are not limited to simulated data but can also ap-
plied to biological data. However, from a technical point of view we need an
ensemble of data sets, instead of a single one. It is clear that this is a practical
problem because usually no replicated data sets are generated if the sample size
is in the hundreds, as is necessary for the inference of regulatory networks. A
potential solution to this problem could be found by generating an ensemble of
bootstrap samples from one data set [59–61]. This way one could circumvent the
demanding requirements of our local network-based measures. In the future we
will investigate this extension numerically.

5 Conclusions

With the advent of high-throughput data biology has been transformed into a
technological field within a few years. As a side effect of this development there
is a great demand for statistical and computational analysis methods that can
cope with different types of genomics data and their integration [28, 62–66].
Despite the fact that we discussed local network-based measures for expression
data, we are of the opinion that they may also be of use for other types of data,
provided these data aim for the reconstruction of gene networks of any kind.
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Abstract. Gene regulatory networks (GRNs) constantly receive, pro-
cess and send information. While stochastic in nature, GRNs respond
differently to different inputs and similarly to identical inputs. Since
cell types stably remain in restricted subsets of the possible states of
the GRN, they are likely the dynamical attractors of the GRN. These
attractors differ in which genes are active and in the amount of informa-
tion propagating within the network. Using mutual information ( I ) as a
measure of information propagation between genes in a GRN, modeled
as finite-sized Random Boolean Networks (RBN), we study how the dy-
namical regime of the GRN affects I within attractors (I A). The spectra
of I A of individual RBNs are found to be scattered and diverse, and dis-
tributions of I A of ensembles are non-trivial and change shape with mean
connectivity. Mean and diversity of I A values maximize in the chaotic
near-critical regime, whereas ordered near-critical networks are the best
at retaining the distinctiveness of each attractor’s I A with noise. The re-
sults suggest that selection likely favors near-critical GRNs as these both
maximize mean and diversity of I A, and are the most robust to noise.
We find similar I A distributions in delayed stochastic models of GRNs.
For a particular stochastic GRN, we show that both mean and variance
of I A have local maxima as its connectivity and noise levels are varied,
suggesting that the conclusions for the Boolean network models may be
generalizable to more realistic models of GRNs.

1 Introduction

Phenotypic diversity is critical for a species’ survival [1]. One source of diversity
in a monoclonal cell population is the stochasticity in gene expression [3, 17]. For
example, E. coli selects for high noise in fluctuating environments [2]. In more
complex organisms, stochasticity promotes phenotypic diversity within cells of
the same cell type [18, 37]. More phenotypic diversity makes a cell population
more likely to cope with unpredictable environmental fluctuations [2].

On the other hand, cells must behave reliably. In a pluri-cellular organism,
cells of the same type must be robust, in that they need to respond similarly to
similar external signals and behave similarly so as to reliably perform their func-
tions. Thus, it is likely that their degree of phenotypic diversity is constrained,
both within and between cell types.
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Genes are embedded in Gene Regulatory Networks (GRN) [4], which con-
strains the dynamics of their expression levels. The topology of GRNs is likely
to have evolved towards the maximization of the coordination between genes so
as to robustly orchestrate a wide spectrum of behaviors [5], while maintaining
responsiveness to environmental changes.

At the molecular dynamical level, it is unknown what a cell type is. How-
ever, even the simplest models of GRNs have a huge state space. Any given cell
type must therefore be a very restricted subset of the states possible for the
GRN. The simplest hypothesis is that cell types correspond to attractors of the
GRN [6].

The first models of GRNs were Random Boolean Networks (RBNs) [6]. RBNs
aim to capture the dynamics of GRNs arising from the interactions between
genes. Nodes represent genes and can have two states: ‘1’ if expressing and ‘0’
otherwise. Nodes interact and update their state according to Boolean functions
of the states of input genes. This model is an idealization of real GRNs and does
not account for many features, but it captures, to some extent, how the topology
constrains the dynamics of the genes’ expression levels and the propagation of
information between genes.

In its original formulation, RBNs are synchronous, deterministic systems [6].
Thus, they often have multiple attractors – state cycles into which the network
settles – that have been associated to the cell types the GRN can express [6].
This hypothesis is problematic since GRNs are noisy, and therefore do not have
deterministic attractors.

The concept of “cell type as attractor” was recently revisited and extended to
explore its applicability to more realistic models of GRNs, namely, noisy RBNs
and delayed stochastic GRNs, which account realistically for the noise at the
molecular level as well for the time that complex processes such as transcription
and translation take to occur [7].

In noisy RBNs, there is probability P of each gene “misbehaving” (to do the
opposite of what its Boolean rule dictates at that time) at each time step. These
“bit flips” perturb the network from its original trajectory, and place it in a new
region of the state space. Generally, P is assumed to be small enough such that
the system can return to a state cycle before the next perturbation occurs [7].

One way to quantify the effects of perturbations and the robustness of the
attractors to this noise is to perturb each node of the network one at a time
from every state of a given attractor [7], and observe the resulting trajectory of
the system in the state space. For most perturbations, the RBN returns to the
original attractor. However, there are usually several perturbations that cause
the RBN to settle into another attractor. Attractors for which there is at least
one perturbation that causes the system to leave the attractor were named “noisy
attractors” [7].

It was also found that, in general, single bit flip perturbations are not suffi-
cient to allow the system to go from any given attractor to every other attractor.
Instead, there are usually sets of noisy attractors that can reach each other by
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single bit flips, but cannot reach other attractors. Such sets of noisy attractors,
which the system can switch between by single bit flips, are named the “ergodic
sets” of the system (following the standard definition of ergodic set in the context
of stochastic processes). The ergodic set is such that fluctuations due to “internal
noise” (here, single bit flips in the Boolean framework and stochastic fluctuations
in the “delayed stochastic” framework) are not sufficient to make the system
leave the ergodic set [7].

In other words, an ergodic set is a set of state cycles such that there is an
undirected path between all the state cycles. A path exists between two state
cycles when the system is able to reach the other state cycle due to genes’
mistakes caused by internal noise in a state of one the state cycles.

It is noted that, in the Boolean framework, the number of ergodic sets depends
on the level of noise (probability of a bit flip) while the number of noisy attractors
does not (as these are identical to the attractors of the noiseless version of the
Boolean network).

In general, noisy RBNs possess multiple ergodic sets, each composed of one
or more “noisy attractors” [7]. Relevantly, multiple noisy attractors and ergodic
sets also exist in the more realistic models of GRNs with delayed stochastic
dynamics [7, 30].

RBNs have two distinct dynamical regimes, ordered and chaotic, separated
by a phase transition dubbed “critical” [6]. The dynamical regime of a RBN is
determined by its sensitivity, which in turn is determined by its mean connec-
tivity (mean number of connections per node) and mean pb(probability that the
output of the Boolean transfer function is ‘1’ for any set of input states) [31].

In “ordered” RBNs, the fraction of genes that remain dynamical after a tran-
sient period vanishes like 1/N as the system size N goes to infinity; almost all
nodes become “frozen” on an output value (0 or 1) independent on the initial
state of the network. In this regime, the system is strongly stable against tran-
sient perturbations of individual nodes. In “disordered” (or “chaotic”) RBNs,
the number of dynamical, or “unfrozen” nodes scales like N and the system is
unstable to many transient perturbations.

In words, this means that chaotic RBNs tend to have wildly different responses
to very similar inputs. In the biological setting, it would therefore not be ad-
vantageous for a cell to have a chaotic GRN, since in common environmental
settings, similar inputs require similar responses. On the other hand, ordered
GRNs respond identically to very distinct input signals, which in most situa-
tions would be disadvantageous as well. For that reason, near-critical GRNs are
likely to be favored. If so, the topology and logic of evolved GRNs is likely to
be constrained by its sensitivity. It is an attractive hypothesis that GRNs are
near critical, since they would display a balance between robustness to random
perturbations and flexible switching induced by targeted perturbations [7].

As stated, a typical attractor of a critical RBN is stable under most small,
transient perturbations, but a few perturbations can cause a transition to a
different attractor. This observation forms the conceptual basis for thinking of
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cell types as attractors of critical networks, since in complex organisms cells are
both homeostatic in general and capable of differentiating when specific signals
(perturbations) are delivered.

A property of networks is the propagation of information between its nodes.
Because of this, in principle, it is possible to approximate the topology of the
network from a trajectory of the network by using a measure of correlation such
as mutual information [34, 35]. The propagation of information between the
nodes in the network is related to its ability to exhibit the complex behaviors.
This ability has been assessed by several methods in RBNs, and found to be
maximum in the critical regime [9, 14, 11, 15, 16, 9].

A recent study assessed the amount of information propagated within RBNs
when in attractors by calculating the temporal pairwise mutual information from
time series of attractors (IA). To have an overall assessment of the networks’
capacity to propagate information, for each RBN, the IAwas averaged over many
attractors. It was found that the mean IAis maximized in the critical regime [5],
implying that these networks are those that best propagate information between
its nodes.

Strictly speaking, the IAbetween the time series of two nodes of a network
measures of how correlated, or coordinated in time, their behavior is. The cor-
relations arise from the propagation of information between input and outputs,
namely, of the input node’s state at one moment in time, used to determine the
output node’s state at the next moment, according to the transfer function. It
is in this sense that the IAof a network in a given attractor can be used as
a measure of the amount of information propagated between the nodes when
on that attractor. Therefore, the mean IAover many attractors has been used
as global measure of the propagation of information in the network [5]. In this
regard, critical networks were found to best propagate information between the
nodes [5].

To the extent that the evolutionary fitness of a GRN depends on its ability
to propagate information and enhance the coordination of behaviors between
all genes, and RBN models capture the essential features of the organization of
GRNs, critical networks are naturally favored. The maximization of mean IA

may therefore be a sensible proxy for maximization of fitness within an ensem-
ble of evolutionarily accessible networks, as these networks can orchestrate the
most complex, timed behaviors, possibly allowing robust performance of a wide
spectrum of tasks. If so, the maximization of pairwise mutual information within
the space of networks accessible via genome evolution may play an important
role in the natural selection of real genetic networks [5].

The specialized, fully differentiated, cell types of pluri-cellular organisms dif-
fer in which set of genes is active, cell cycle length, etc, allowing them to perform
distinct tasks. As such, they almost inevitably differ in (IA). If selection shapes
the structure and logic of GRNs regarding their ability to propagate informa-
tion, then in pluri-cellular organisms, such selection ought to act at the cell type
level. In other words, provided that noisy attractors are the possible long term
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behaviors of GRNs [7], it is likely to be selectively advantageous for each cell type
to have maximum IA, as long as they remain phenotypically (i.e, dynamically)
distinct from cells of another type.

The diversity of the IA of the various cell types is an expression the pheno-
typic diversity between and within the cell types. We hypothesize that, besides
maximizing the mean IA of all attractors, it is likely advantageous to maximize
the number of distinct behaviors or tasks that can be performed by the multitude
of cell types of an organism and by the cells of each cell type, while maintaining
the distinctiveness of different cell types. Further, since the execution of cellular
functions requires information propagation within the GRN [4], this diversity
should be measurable in the diversity of values of IA of the various attractors
of the network. For this reason, we use the variance of the values of IA of the
attractors of the GRN as a measure of the diversity of behaviors or tasks that a
GRN can perform.

So far, the distribution of IA of attractors of RBNs (or other models of GRNs)
has not been studied. We study the IA of attractors in individual RBNs and the
IA distributions of ensembles of RBNs as a function of their global topological
features, and thus the dynamical regime of the networks.

Since the dynamics of GRNs are noisy [3], it is important to evaluate the
effects of noise on the IA distributions. The strength of the molecular noise in
RNA and protein levels has been shown to differ from gene to gene [21, 13]
since it is sequence dependent, among other reasons [19]. It is therefore likely
to be evolvable [20]. If so, evolving the noise strength may be a mechanism to
evolve phenotypic diversity and thus the IA distributions. We therefore study
how introducing noise in the dynamics of RBNs affects the IA distributions in
each dynamical regime. Finally, we use a delayed stochastic GRNs [8], where the
noise in gene expression and gene-gene interactions is more realistic, and show
that the findings in RBNs have a parallel in delayed stochastic models of GRNs.

2 Methods

2.1 Boolean Networks

We generate RBN topologies imposing the number of nodes (N), the mean
number of connections per node (k), and the probability that the output of
the Boolean transfer function is ‘1’ for any set of input states (pb). RBNs with
equal k and pb are said to be of the same ensemble [12]. We generate topologies
according to the “Random 2” algorithm from [22]. We only vary k, and always
set the pb to 0.5, as this is the most common method to generate RBNs in each
of the dynamical regimes (ordered, critical, and chaotic). We model RBNs with
N = 250 as the search for attractors (described below) becomes prohibitively
expensive for larger N .

Noise in the dynamics of RBNs can be modeled in several ways. Here, we give
each node a small probability η of assuming the opposite value from what its
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Boolean rule specifies at each time step. Note that a bit flip corresponds to a
large fluctuation in the protein level of a gene, and thus it should not be a very
common event in real GRNs. Weaker fluctuations cannot be captured in this
modeling strategy but it is noted that such small fluctuations commonly do not
significantly affect the dynamics of the protein level of output genes [7].

2.2 Delayed Stochastic Models of Gene Networks

We follow the modeling strategy of delayed stochastic GRNs proposed in [8]. The
models are implemented in the simulator SGNSim [28], and their dynamics are
based on the “delayed SSA” [32], that, unlike the original Stochastic Simulation
Algorithm [33], uses a waiting list to store delayed output events, proceeding as
follows (t denotes time):

1. Set t ← 0, tstop← stop time, read initial number of molecules and reactions,
create empty waiting list L.

2. Do an SSA step for input events to get next reacting event R1 and corre-
sponding occurrence time t1.

3. If t1 + t < tmin (the least time in L), set t ← t + t1. Update number of
molecules by performing R1, adding delayed products into L as necessary.

4. If t1 + t ≥ tmin, set t ← tmin. Update number of molecules by releasing the
first element in L.

5. If t < tstop, go to step 2.

Multi-delayed reactions are represented as: A → B + C(τ1) + D(τ2). In this
reaction, B is instantaneously produced and C and D are placed on a waitlist
until they are released, after τ1 and τ2 seconds, respectively.

The modeling strategy of delayed stochastic gene networks [8] accounts for
stochastic fluctuations and, regarding gene expression, by being a multiple-time
delayed reaction, for the fact that transcription and translation are multi-step
processes that take non-negligible time to complete once initiated. This modeling
strategy was validated [26] by matching measurements of gene expression at the
single RNA and protein level [25].

The delayed stochastic GRNs simulated here consist of 18 genes. For each gene
i there is a multi-delayed, single-step, reaction for transcription and translation
(reaction 1), and for protein degradation (reaction 2) (RNA polymerase is not
explicitly modeled as they are assumed to be available in sufficient amounts). In
these reactions, Pro stands for the promoter region of a gene and Pi for protein,
while kt and kd are the stochastic rate constants of transcription initiation and
protein degradation, respectively:

Proi
kt−→Proi(τ1) + Pi(τ2) (1)

Pi
kd−→ ∅ (2)
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Each gene is assumed to have a promoter region with a transcription start
site and a transcription factor binding site. For simplicity, all interactions are
assumed to be repressive, since all genes have a basal expression level. Repression
of Proi by Pj (expressed by Proj) is modeled by reaction 3 with rate kr, while
unbinding of the repressor occurs via reaction 4 with rate ku, and its degradation
while bound via reaction 5 with rate kd (as in 2):

Proi + Pj
kr− →Proi.Pj (3)

Proi.Pj
ku− →Proi + Pj (4)

Proi.Pj
kd− →Proi (5)

Unless stated otherwise, we set kt = 0.1 s−1, kr = 100 s−1, ku= 0.01 s−1, and
kd = 0.001 s−1. Time delays are set to: τ1 = 2s and τ2 = 100s. All values are
within the range of realistic parameter values for E. coli [8, 26].

2.3 Measuring Mutual Information in Attractors

To estimate the flow of information in RBNs, in [5] I was computed from concate-
nated time series of multiple attractors. We follow a similar procedure, except
that we do not concatenate the time series so that we measure the IA of each
attractor independently. IA is calculated from the Shannon entropy of the time
series of all pairs of nodes. For node i, its time series si is a binary string con-
taining a 0 with probability pi(0) and a 1 with probability pi(1). The entropy of
si is defined as: H [si] = − pi(0) log2 pi(0) − pi(1) log2 pi(1).

Similarly, let pij(xy) be the probability that nodes i and j are respectively in
states x at time t and y at time t + 1 where x, y ∈ {0, 1}. The joint entropy of
the corresponding string of pairs sij is:

H [sij ] = −

r,s=1
∑

r,s=0

pij(rs)log2 (pij(rs)) (6)

The mutual information between two nodes is [5]:

Iij = H [si] + H [sj ] − H [sij ] (7)

Iij measures the amount of information the state of node i at time t gives about
the state of node j a moment later. The influence may be indirect through an
ancestor node. The mean I of a RBN’s time series is given by the average Iij for
all pairs.

We search for attractors by starting in a random state and updating the
state until a state repeats. This search is costly in chaotic RBNs since transients
can be very long, so we limit the search to 213 steps as in [23]. The attractors
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not found by this search are likely to not be biologically relevant, as their length
implies unrealistically long cell cycles. This search is performed starting from
5 × 104 random states to attempt to find almost all of the attractors in the
network, as shown in [23]. Finally, the IA of an attractor is calculated from the
time series that includes the first state that repeats, and all subsequent states
until the first repetition of that state (inclusively).

When the RBN’s dynamics are noisy, the attractor search cannot proceed as
described. Instead, the IA is calculated by starting from a random state, running
the network for 104 time steps (for large k, good convergence was obtained for
discarded transients of length 103, as in [5]), and then measuring I from the
following 104 states (for k = 3, the mean attractor length was found to be
∼ 103).

In delayed stochastic GRNs [8], information propagates between genes via the
proteins acting as transcription factors (TF), as in real GRNs. The information
itself is, to some extent, in the amount of the TF, which affects the propensity
with which the TF binds to the Transcription Factor Binding Site (TFBS),
subsequently altering the transcription rate of the output gene. For simplicity,
we do not model other mechanisms of expression regulation between genes, such
as protein-protein interactions [24].

To measure IA in delayed stochastic GRNs models, we proceed as follows. We
design a GRN with multiple noisy attractors [7]. The GRN is initialized without
proteins and simulated for a period of time which is long enough to reach one of
the noisy attractors. From that moment onwards, the levels of all proteins are
recorded in fixed intervals. All protein levels are then independently binarized
using k-means as in [7], and IA is computed from the binarized time series as in
noisy RBNs.

Finally, we note that here we only measure mutual information between con-
secutive time moments and not between longer time lags. This is because the
mutual information is measured only on attractors, after long transients, and
thus already accounts, to some extent, for indirect interactions in the network
[5]. Nevertheless it might be of interest in future studies to observe IA for other
time lags.

3 Results

3.1 Mutual Information Averaged over Many Attractors in
Random Boolean Networks

We first revisit previous results. As mentioned in the introduction, a recent
study assessed the information propagated within RBNs when in attractors, by
calculating their IA averaged over many attractors, for each RBN [5]. Fig. 1
shows the measured mean IA, for networks of varying mean connectivity k. It
maximizes near the critical regime. Note how the value of k for which the mean
IA maximizes approaches the critical value k = 2 as the system size grows.
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Fig. 1. IA as a function of k for several different system sizes. For these calculation,
N = 104 , with 40 runs from different initial states per network. We discarded transient
of length 104 updates for each run. (For large k, good convergence was obtained for
discarded transients of length 103 .) The sequences of states were recorded for a sample
of 10N pairs of nodes in each network. The vertical dashed line indicates the critical
value of k.

In accordance with these results, it was found that, in particular, the mutual
information between subsequent states of individual nodes is maximized in the
critical regime [10].

The value of mean connectivity for which mean IA over all attractors max-
imizes changes with N because of the effects of local structures. These effects
decrease with N , for any given k.

The local structure of a network can be characterized by the degree of cluster-
ing between the nodes [39]. The generalized clustering coefficient, Cp, accounts
for all non-treelike local structures, such as self-connections, bidirectional con-
nections, triangles, squares, etc. For a formal definition, refer to [39].

To observe how Cp affects IA, the IA was measured for RBNs with k = 2,
removing various orders of Cp, averaging over many attractors. Fig. 2 shows that
the higher the order of Cp fixed to zero, the less mean IA varies with N [39].
Importantly, the effects of local topological features are not very significant for
N > 200 [39]. For that reason, here we model networks with N = 250.
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Fig. 2. IA of RBNs computed from time series of length T = 103 . The topologies are
built such that up to various p the Cp = 0. Each data point is an average of 100
independent RBNs, varying N and with k = 2.

3.2 Random Boolean Networks

We first numerically assess the mean IA values for varying k (Fig. 3, left). The
maximization of mean IA occurs in the chaotic near-critical regime at k ≈ 2.5,
due to finite size effects (N = 250 nodes). Previous results showed that I [5],
calculated from concatenated time series of attractors, also maximizes at k ≈ 2.5,
when N = 250.

We now examine the distributions of IA for individual RBNs. The attractors
of a RBN differ in length and in the set of non-frozen nodes, among other things,
causing their IA to differ. Examples of such distributions for individual RBNs
are shown in Fig. 3 (right) for an ordered, a critical and a chaotic RBN. These
distributions are representative of the most common distributions found in each
dynamical regime. Nevertheless, it is noted that these distributions vary wildly
between RBNs with identical topological features. The peaks are at the IA val-
ues of the various attractors of the three nets studied while the peak heights
correspond to the fraction of times the search ended in an attractor with that
IA.
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Fig. 3. Left: Mean temporal mutual information within attractors, IA, as a function
of the mean connectivity, k, 103 networks per point. Right: Sample IA distributions of
individual RBNs in different dynamical regimes. Number of nodes, N , equals 250.
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Fig. 4. Left: Distributions of temporal mutual information within attractors (IA) from
ensembles of RBNs with random topology and mean connectivity, k, equal to 1, 2, 3.
N = 250, 104 networks per distribution. Right: σ(IA) as k varies, 103 networks per
point.

We generated ensembles of RBNs with varying k and plotted the overall dis-
tributions of IA of individual attractors. Fig. 4 (left) shows the distributions for
k = 1, 2, 3. The distribution significantly changes shape, although smoothly, with
k (i.e. with the dynamical regime), from exponential-like for ordered and critical,
to a bimodal distribution with a strong gaussian-like component for chaotic nets.

The gaussian-like component in chaotic RBNs is due to their lower number of
frozen nodes and corresponding increase in IA between unconnected nodes (i.e.,
spurious IA). The non-triviality of the shape of the distributions indicates that
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the characterization of IA of ensembles requires examining distributions rather
than mean values alone. As the distributions of IA vary widely between RBNs
of the same ensemble, to characterize the behavior of the RBNs of an ensemble
one needs to assess the IA of many RBNs.

We computed the standard deviation (σ(IA)) of IA distributions as a simple
means to compare the diversity of IA values of RBNs of different dynamical
regimes (Fig. 4, right). For finite sized RBNs, σ(IA) maximizes in the near-
critical, slightly chaotic regime, for the same connectivity that mean IA maxi-
mizes (k = 2.5).

We nevertheless note that, while in this case the value of σ(IA) is able to
partially capture the effects of varying the mean connectivity k (namely, the
increase in variability), because the distributions of IA change shape with k,
these need to be shown as well (Fig. 4, left), since σ(IA) alone is not sufficient
to describe the change of shape of the distribution.

A note is needed regarding the effects of finite size on the connectivity for
which both mean and diversity of IA are maximized. First, this connectivity
(k = 2.5) is the same for which I maximizes as well, in RBNs with N = 250
[5]. Since the value of k for which I maximizes approaches the critical value
(k = 2) as one increases N [5], we hypothesize this to occur also for the mean
and standard deviation of IA. This needs to be confirmed in a future work in
greater detail.

We note that we observed that both the mean and standard deviation of
IA maximized for slightly higher values of k in smaller networks (N = 150),
as I does [5] (data not shown). This suggests that increasing N will cause the
mean and diversity of IA to maximize for values of k closer to the critical value,
as I does [5]. Computational complexity limits the search for the attractors of
networks significantly larger than N = 250.

Next, we study the IA distributions of noisy RBNs. Previous studies have
shown that for low noise levels (similar to the lower noise levels tested here),
the network generally cycles ‘around’ the original attractors and rarely ‘jumps’
between attractors, thus have multiple ergodic sets [7]. We estimated that, in-
troducing in RBNs the lowest noise level tested here (η = 2 × 10−4), generally
causes the number of ergodic sets to decrease by roughly ∼ 25%, in agreement
with the findings in [7]. This can also be seen indirectly from our measurements
of IA in noisy RBNs. As weak noise is introduced, each time the system cycles
around a noisy attractor it yields a slightly different value of IA. After many
cycles (or many independent runs that lead to the same attractor), one ends up
with a distribution of IA values centered near the IA of the noiseless attractor
(Fig. 5a). If the system was jumping between attractors, one would expect the
peaks of IA to merge.

For the higher noise levels tested, the network does not remain near the
original attractors, and the IA of independent runs is always similar, result-
ing in a unimodal IA distribution. While noise decreases the correlation between
neighbors, it also temporarily unfreezes frozen nodes, leading to higher values of
spurious I.
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Fig. 5. Left: Distribution of temporal mutual information within attractors, IA, from
a single k = 2 network as noise is added to the dynamics. The noise strength, η , is set
to 0 (solid black line), 4×10−5 (diamonds), 0.001 (gray x’s), 0.002 (solid black circles).
The graph has been scaled up to show detail. The network was started from 106 initial
states for each distribution. Right: Relative change in standard deviation of IA values,
σ(IA), as a function of noise strength for RBNs with mean connectivity, k, equal to 1.5
(black line), 1.75 (black line with dots), 2 (circles), 2.25 (gray line with dots), and 2.5
(gray line). Size of the networks, N , is 250.

To exemplify how noise affects the IA distributions of individual RBNs, in Fig.
5 (left) we show the IA distribution of a critical RBN for various noise levels
from ‘low’ to ‘high’. By ‘low noise’ we imply that the number of bit flips due
to noise is small enough so that the IA values do not differ significantly from
the noiseless case, while in the ‘high noise’ scenario they do. The strength of the
noise is varied by changing the parameter η as previously described. We set the
following values of η (probability of bit flipping for each node at each time step):
0, 4 × 10−5, 0.001, and 0.002. Note that the distribution for η = 2 × 10−4 (low
noise) is nearly identical to the one for η = 0, except that it is slightly broader
around the original peaks, while for η = 0.002 (high noise) the distribution is
unimodal.

Earlier, we found that in the absence of noise, chaotic near-critical RBNs
maximize the mean and diversity of IA values. Noise, at levels at which the
original attractors are still retained, does not significantly affect the mean IA.
However, it does affect the diversity of IA values. We measured this change in
the degree of diversity of IA values for increasing noise strength by the ratio
between the standard deviation of IA between each noisy case and the noiseless

case (Γη = σ(IA(η))
σ(IA(0)) ). Results are shown in Fig. 5 (right).

In ordered (k < 2) and critical (k = 2) RBNs, as noise increases, the diversity
σ(IA) initially increases (as the peaks broaden). Beyond a certain noise level, it
starts decreasing as the behaviors within different attractors become indistinct
(merged peaks). In chaotic networks (k > 2), even a small amount of noise
decreases σ(IA) since small perturbations cause large avalanches of damage [15,
16], often causing the trajectory to leave the attractor. Ordered near-critical
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RBNs (k = 1.75) have the highest relative increase in diversity as noise increases,
and sustain this degree of diversity for very high noise levels (until the highest
noise level tested). That is, these RBNs are more robust to noise in their ability
to propagate information within the network.

It is noted that, for the highest noise levels tested, the notion of IA loses some
significance as the networks are unable to remain for a long time in any noisy
attractor. As the noise level is increased, the number of ergodic sets decreases [7].
These highest noise levels were tested to verify how this loss of distinctiveness
between ergodic sets affects IA (mean and variance). As seen, it causes both of
these quantities to decrease.

3.3 Delayed Stochastic Gene Networks

It is necessary to explore if the results in RBNs have any kind of parallel in
more realistic models of GRNs. Delayed stochastic models of gene networks
have been shown to realistically account for the noise in the chemical processes
involved in gene expression [8], as well as for the duration of complex processes
such the promoter open complex delay, which are known to affect the degree of
stochasticity of transcription [27]. Relevantly, these models of GRNs have been
shown to have noisy attractors and multiple ergodic sets [7, 30].

It is computationally prohibitive to simulate ensembles of delayed stochastic
GRNs to test whether, at the ensemble level, these models of GRNs maximize
mean IA and diversity of IA values for a given sensitivity, because the state
space of parameter values and number of parameters is too large. In addition,
the simulation of the dynamics if stochastic GRNs according to the delayed SSA
is far more computationally complex [8]. Since we do not simulate ensembles
of networks, the general conclusion that mean and variance of IA maximizes in
near-critical networks is not warranted for delayed stochastic GRNs.

However, it is possible to test whether the mean and diversity of IA values
of the noisy attractors from specific delayed stochastic GRNs [7] also vary with
connectivity and noise strength as they do in RBNs ensembles. It is also possible
to verify if there are values of noise and connectivity for which mean and diversity
of IA maximize for, in one case, a given mean connectivity, and in another, for
a certain range of stochastic fluctuations in RNA and protein levels for specific
GRNs.

If such local maxima of IA exist for a specific network when its connectivity
and noise are varied, then these global parameters should be subject to selec-
tion, as in RBN ensembles, since they affect information propagation within the
network as well as the diversity of levels of propagation that delayed stochastic
GRNs can realize when it is on its various noisy attractors.

The concept of topology and logic in delayed stochastic GRNs is more com-
plex, as these features are determined by several parameters such as production
and degradation rates of proteins and RNAs, binding and unbinding rate con-
stants between TFBSs and TFs, etc. Here we opted to vary the noise strength in
the GRN by varying the propensity of the interactions between TFs and TFBSs,
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Fig. 6. Topology of effective connections of 5 stochastic GRNs with 18 genes and
different number of connections. Net A connections are represented by the black lines,
B are black and light gray lines, C are all solid lines, whereas D are all but the light
gray dashed lines. Net E are all lines present.

while connectivity is varied by changing the number of TFs that, on average,
can bind to each promoter region.

We implement delayed stochastic GRNs using reactions 1 to 5. The topology
of five GRNs are depicted in Fig. 6, which differ in the number of connections.
For clarity, only ‘effective connections’ are represented in the topologies. That
is, only when a change in a protein level affects a target gene’s expression level is
that interaction depicted. Therefore, we expect that in the stochastic framework,
IA should maximize at approximately half the mean ‘effective connectivity’ for
which it maximizes in the Boolean framework (in the Boolean framework, RBNs
with k = 2 and pb = 0.5 have a sensitivity of 1). Therefore, the mean connectivity
in the stochastic framework is here denoted by “keff”, as all connections are
effective.

GRN ‘A’ has 9 effective connections, ‘B’ has 12, ‘C’ has 18, ‘D’ has 22 and,
‘E’ has 27. For these networks, keff is, respectively, equal to 0.5, 0.75, 1.0, 1.25,
and 1.5, since N = 18 in the 5 networks. In the Boolean framework, these values
would correspond, respectively, to mean k equal to 1.0, 1.5, 2.0, 2.5, and 3.0.

All the GRNs depicted in Fig. 6 have multiple noisy attractors [7]. These
are mostly determined by the toggle switches (sets of two mutually repressing
genes), each of which is a bistable circuit [29, 7]. Each switch has at any moment a
probability of switching from one noisy attractor to the other that depends on the
degree of fluctuations and mean protein levels of each gene [29]. The differences
in the topologies A to E causes them to differ in number of noisy attractors. For
example, network C has two bistable switches formed by the pairs of genes 1
and 2, and 5 and 6. After a transient, the expression levels of this set of genes
can be in one of four “states”, determining the noisy attractor [7]. Altering the
topology of the switches alters the number of possible noisy attractors.
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By inspection of the topology of these networks, and given previous studies of
the dynamics of delayed stochastic toggle switches and repressilators (negative
feedback loops with odd number of genes) [26, 29], it is possible to observe that
the number of noisy attractors in each of the networks is less than 10, since
the expression level of most other genes is determined by the ‘noisy attractor’
in which each of the switches is in. From our simulations, we observed that in
all networks, all of its noisy attractors can be reached by initializing the system
without any proteins (and all noisy attractors are equally likely), thus we opted
to set this initial state in all simulations.

For each network, their noisy attractors differ in IA, as some of the genes have
different expression dynamics in different attractors. For example, in network C,
when gene 5 is ‘on’ (‘high’ expression level) and gene 6 is ‘off’ (‘low’ expression
level), the 5-gene repressilator (genes 7 to 11) will not oscillate periodically, while
the 3-gene repressilator (genes 12 to 14) will.

We first tested the effects of varying the mean connectivity (keff ). We simu-
lated networks A to E, each 103 times, initialized with no proteins. Simulation
time is 105 s, sampled every 103 s. We discard an initial transient of 104 s. In all
networks kr = 100s−1.

Mean IA values for GRNs A to E are show in Fig. 7(left). As seen, IA changes
significantly with keff , maximizing for keff = 1. It is thus possible to conclude
that by varying the mean connectivity one can vary IA of delayed stochastic
GRNs and that there are values of connectivity that locally maximize mean
IA. The values of σ(IA) for varying keff are shown in Fig. 7(right). As seen,
σ(IA) varies significantly with the mean effective connectivity, and there is a
local maximum (for a slightly higher value of keff than for which the mean IA

maximizes).
We now test how the noise strength in the protein levels affects the distribution

of IA values in delayed stochastic GRNs. For this, we simulate networks with the
same topology as network C (Fig. 6) but different values of kr, which partially
determines the strength of the noise in protein levels (other parameters could
have been varied as well, such as the degradation rate of the proteins and/or
RNA molecules). We therefore simulated 103 networks for each value of kr, with
the same protocol as in Fig. 7. The distributions of IA when kr = 0.02, 0.2 and
100s−1 are shown in Fig. 8, which is the stochastic equivalent of Fig. 5 (left).
These distributions change shape with decreasing kr (increasing noise), from
bimodal to unimodal. Since the dynamics are stochastic, the IA when on a noisy
attractor varies between simulations. Thus, each noisy attractor is characterized
by an interval of IA values around a mean value (similar to noisy RBNs).

The similarity of the effects of varying the noise strength in this stochastic
GRN and in the noisy RBNs is noticeable. In both cases, as the internal noise
increases, the distribution of IA values tends to change from multi-modal to
uni-modal. That is, the noisy attractors lose their distinctiveness in IA values
as a consequence of their loss of ‘stability’ (the time that the GRN remains on
a noisy attractor before ‘jumping’ into another noisy attractor diminishes with
noise strength).
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formation within attractors (IA) of five delayed stochastic gene networks, differing in
mean effective connectivity, keff , (topologies A to E).
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Fig. 8. Distribution of mean temporal mutual information within attractors, (IA), in
three delayed stochastic gene networks with topology C and different values for the
rate of transcription repression, kr.

As a consequence of this change in the shape of the distribution of IA values,
σ(IA) will vary significantly. σ(IA) is plotted in Fig. 9 for varying kr between
10−2 and 106. It increases as kr varies from 0.01 to ≈ 0.1s−1, and decreases
for further increases of kr. In this regard, the σ(IA) of network C changes in a
similar fasion to noisy RBNs, in that it maximizes for a given noise level. This is
explained as follows. For very small kr, repression is absent and thus each protein
level only depends on rate of transcription kt (reaction 1) and degradation kd



212 A.S. Ribeiro and J. Lloyd-Price

0.01 1 10 1000 100000
4

6

8

10

12

14
x 10

−3
σ

(I
A
)

k
r

Fig. 9. Standard deviation of pairwise mutual information within attractors (σ(IA))
in delayed stochastic GRNs with the topology of network C, differing in the rate of
repression, kr, and therefore in strength of the noise in protein levels.

(reaction 2), and will fluctuate around a mean value. The network will therefore
not have much diversity in the values of IA between independent simulations. On
the other hand, very high kr causes TFs and TFBSs to be too tightly bound,
hampering dynamical changes. For example, the repressilator did not exhibit
periodic dynamics within the simulation time. In this regime, IA decreases with
increasing kr.

From these results, we find that these particular delayed stochastic GRNs,
which differ in noise and connectivity, have different mean and variance of IA.
Both quantities were found to have local maxima.

The effects of varying keff are similar to what was observed in noiseless RBNs
when varying the mean connectivity k. σ(IA) first increases with keff , then de-
creases for further increases, maximizing for a sensitivity around 1. The difference
with regard to RBNs is that the mean connectivity for which σ(IA) maximizes is
likely to depend on the value of kr, among other parameters. However, we note
that a parallel exists in RBNs in that the mean connectivity for which σ(IA)
maximizes also varies, in that it depends on the pb of the boolean functions in
the RBN.
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The effects of varying kr (as a means to vary noise) on σ(IA) are also similar
to the effects that varying the strength of the noise in noisy RBNs has on σ(IA).
Namely, σ(IA) varies significantly with noise and there is a local maximum.

Even though we found a local maximum of IA for a sensitivity of 1 when
varying keff , one cannot, from these results, state that near-critical delayed
stochastic GRNs maximize mean and variance of IA of its noisy attractors. In
fact, the concept of criticality has not yet been established for these models.
Here, we extend this concept by adapting a common test for criticality in Boolean
networks to delayed stochastic GRNs.

Specifically, one can do a perturbation analysis [15] as follows. A node’s state
is perturbed (in this case, change the protein level from ‘low’ to ‘high’, or vice
versa) and then the trajectories of perturbed and non-perturbed networks are
compared to quantify how many genes had their expression level affected after
a certain time interval. A network is then defined to be critical if the number of
perturbed genes is, on average, equal to 1.

We performed this test in networks A to E. After a transient of 105 s, we
randomly chose one protein and altered its level. We then compared the levels
of all proteins of the perturbed and non perturbed networks after an additional
5000 s. This was done 100 times per network, from which the mean number of
perturbed genes was computed. From these tests, we verified that network C,
with keff = 1, had the sensitivity closest to 1. From this, of these particular
networks, the one that maximizes mean and variance of IA is the one that is
closest to being critical.

As mentioned, this result cannot be generalized to any ensemble of delayed
stochastic GRNs, as the number of distinct parameters that can be used to
vary connectivity, strength of connections, etc, is very large. Nevertheless, if
the amount and diversity of information propagated between genes in various
noisy attractors can be altered by changing the connectivity and noise in protein
levels via the number of TFBS and their binding affinities (both of which are
sequence dependent), then one can conclude that selection may in fact act upon
the topology and logic of real GRNs so as to maximize these quantities. It is
however not possible to conclude that there are are values of connectivity or
noise strength that would maximize IA and σ(IA) for an entire ensemble of
stochastic GRNs. It also not possible to conclude from our results whether this
maximization would occur in the near-critical regime for a given ensemble of
stochastic GRNs.

4 Conclusions

By calculating IA within individual attractors, we studied the distribution of IA

for ensembles of noiseless and noisy RBNs, as well as for a particular delayed
stochastic GRN model as we varied noise and mean connectivity.

Regarding the ensembles of RBNs, we showed that in finite sized, noiseless
RBNs, chaotic near-critical RBNs maximize the mean and diversity of IA values
of its attractors. Testing various levels of noise in the dynamics of noisy RBNs,
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we found that ordered near-critical RBNs best sustain the diversity of IA in the
face of internal noise in the dynamics of the RBNs.

Since the need to maximize mean and diversity of IA favors networks in the
chaotic near-critical regime, and the effects of internal noise on information prop-
agation throughout the network are best coped with by ordered near-critical nets,
we suggest that if these capacities are subject to selection, then they should cause
GRNs to evolve structures which are dynamically between the chaotic near-
critical and the ordered near-critical regimes. The precise dynamical regime of
specific GRNs (ordered near-critical, critical, or chaotic near-critical) is likely to
vary slightly from one organism to the next, depending on a multitude of factors,
ranging from environmental to particular features of each GRN, such as its local
topological features, etc.

Several features in RBNs are not realistic. For example, a central clock deter-
mines when genes’ ‘states’ are updated [3]. Amongst the most detailed models
of GRNs are the delayed stochastic models [8, 28], which account realistically
for molecular kinetics as well as the time that complex processes such as tran-
scription and translation take to occur, once initiated.

These delayed stochastic GRNs were found to have noisy attractors [7]. We
used these models, to the extent that is currently computationally feasible, to
partially verify the results obtained in RBNs. When measuring the IA of the
noisy attractors of the delayed stochastic GRNs, we found similar distributions
of IA to those observed in individual noisy RBNs. We also found dependency
of mean IA on the networks connectivity. Further, the dependence of σ(IA) on
the noise strength and connectivity was also found, being similar to what was
observed in RBNs.

It is sensible, as GRNs are parallel processing information systems, that their
structure has evolved towards maximizing information propagation between its
elements. Even delayed stochastic networks are found to preferentially remain
in very confined regions of the state space, named “noisy attractors” [7], similar
to what is observed in real cells [38]. These noisy attractors differ significantly
on which genes and particular pathways in the GRN are active [38] and likely
correspond to the various cell types in pluri-cellular organisms, each of which
performs specialized tasks, and is phenotypically distinct of all others. If GRNs
evolve towards maximizing the mean IA of their attractors, then near-critical
networks are favored.

In addition, complex organisms have evolved specialized cell types, to perform
a wide range of tasks. We hypothesize that phenotypic diversity within cells of
same type is maximized in pluri-cellular organisms, provided that cells of each
type do not lose their phenotypic distinctiveness.

A GRN with multiple phenotypically distinct noisy attractors, where the phe-
notypic diversity within each noisy attractors is at maximum, will inevitably
have a higher variance of IA values than both a GRN with less noisy attractors
and than a GRN with less diversity within each attractor, provided distinctive-
ness between noisy attractors. If so, our results suggest that near critical GRNs
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are favored, in that they maximize the variance of IA without loss of cell type
distinctiveness.

We do not imply that GRNs have purposely been selected to have a high
diversity of IA values, as it may have occurred for mean IA. Instead, we suggest
that the high variance of IA values should emerge from the selection for high
phenotypic diversity within and between specialized cell types.

Our findings at the level of ensembles of networks rely on the constraints in
the dynamics of the networks of Boolean modeling strategy. However, it noted
that GRNs of real organisms are known to possess the necessary mechanisms, on
an evolutionary scale, by which they can regulate both the diversity between cell
types as well as the diversity between cells of the same type. Namely, phenotypic
distinctiveness between cells of different types depends on which genes and ge-
netic pathways within the GRN are made active in each cell type. The number of
distinct cell types is determined by the evolved differentiation pathways, which
are known to be both externally driven as well as noise-driven [18]. Finally, cells
of the same type can regulate the phenotypic diversity among them by regu-
lating the degree of stochasticity of the genes active in that cell type [36, 37].
Provided these mechanisms, we suggest that both mean and variance of IA may
be subject to natural selection.

Phenotypic variation is critical since it is a necessary condition for evolution
to occur [1]. This principle is likely to apply not only to the variability between
organisms within a species, but also to the variability between cell types within
an organism, and even the variability between cells within a cell type.

If the fitness of GRNs depends on the ability to propagate information reli-
ably between the genes, and if the fitness of organisms depends on cell-to-cell
phenotypic diversity both within and between cell types, our results suggest
that near-critical GRNs are naturally favored within typical ensembles of GRNs’
topologies.

A final note is necessary regarding the use of ensembles to study GRNs.
Namely, the topology of real GRNs is not random, as these have evolved special-
ized topologies over millions of years. In that sense they may not be part of any
ensemble. Besides, critical networks are not necessarily the best at propagating
information of all possible topologies. Our results only show that they are best, in
general, in comparison with ensembles of ordered and chaotic random networks.
What appears certain is that real GRNs are highly efficient in propagating in-
formation between its elements, as cells are capable of accurately carrying out
complex, temporally ordered and constrained processes, in a repeatable fashion.

For the above reasons, rather than evolving to be critical, we find it more
plausible that GRNs have been selected to be reliable parallel information pro-
cessing systems, and that selection occurs at the level of each cell type realized
by the GRN. If so, we hypothesize that GRNs may have evolved to be critical,
at least at the level of small gene clusters within the GRN, especially if these
clusters receive and process information from external signals, since chaotic gene
clusters would produce unreliable responses and ordered ones would be unable
to respond differently to different inputs.
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Abstract. Our ability to use natural language to communicate and co-
operate with others is one of the defining characteristics of human intel-
ligence. Much work has been put into developing theories which would
explain the structure of language and how it relates to the information
processing capabilities of the human mind. In this chapter we philosoph-
ically discuss natural language faculty as a being a mechanism conveying
embodied information and natural language as such information.

1 Introduction

What is common to humans, ants, bees, birds and even bacteria? They all com-
municate or, in other words, exchange information with each other. Apart from
bacteria, all these life forms are capable of symbolic communication. For exam-
ple, bees communicate with each other to convey the direction and distance of
a nutrition source via an intricate dance. Singing birds also learn regular tweets
and other vocalized sounds [1] to indicate territorial boundaries and to attract
mates. Animal communication serves the evolutionary purpose of facilitating
the coordination of co-operation among groups of animals sharing the same
form of communication, the same language. Thus, it usually involves things in
the immediate local environment and other practical matters helping an animal
to survive. Warning shrieks, territorial behavior, pack pecking order announce-
ments, threats and expressions related to mating and nutrition are all examples
of such communication.

Can these forms of animal communication be called language? Usually, the
word language is reserved for the various human languages. The defining charac-
teristics of a language are the symbolic nature of its expressions, the connection
between a symbol and its intent, and a grammar which makes language a fun-
damentally open system of communication.

More specifically, Noam Chomsky, one of the pioneers of formal linguistics,
and colleagues [2] have argued that human language faculty is unique in its capa-
bility to process hierarchically structured sequences of communication. Hauser
et al [3] have shown that while non-human primates can learn and process se-
quences determined by local transition probabilities, they are unable to do so for
more complex hierarchical structures with recursive embeddings. One way [4] to
illustrate the distinction between these two sequence types is to look at them as
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being generated by two different formal grammar types: Finite-State Grammars
(FSG) and Phrase Structure Grammars (PSG). The former is fully determined
by local transitional probabilities between a finite number of items while the
latter enables the generation of phrase structures via recursive rules. As shown
in Fig. 1, an FSG is able to generate sequences such as ABAB or ABABAB with
a two letter alphabet of A and B while a PSG can generate sequences like AABB
where the [AB] part is embedded as in A[AB]B.

Fig. 1. Structure of an FSG grammar and a PSG grammar[4]

In fact, it has been experimentally verified [4] that different areas of the human
brain process sequences generated with a PSG than with an FSG. The brain
regions for recursive processing are also phylogenetically younger which supports
the idea that such capability is a late evolutionary feature possibly existing
only in the human central nervous system. However, some scholars, e.g. Steven
Pinker [5], consider the ability to process recursive structures as only one of many
crucial aspects of human language faculty differentiating it from those of animals.
Further undermining the argument, a songbird species, the European starling,
has been reported to accurately recognize acoustic patterns with recursive and
hierarchical structures [6]. Still, it is clear that human natural language is by
far the most complex and diverse of the forms of communication employed by
any animal. The exact features, and their evolutionary history, which distinguish
human languages from the forms of communication used by animals is an open
research question.

In addition to recursion, other proposed unique features of human intelligence
related to our language faculty include [7]:

1. voluntary control of the voice, face and hands
2. ability to imitate observed motor action
3. human-like teaching where the teacher observes the novice

All human languages share many structural properties of which recursive struc-
ture is just one, albeit very general and universal, example. A key challenge of
cognitive science and linguistics is to give an explanation for the structure of lan-
guage. Figure 2 illustrates a model for the structure of language arising from the
interaction of three complex adaptive systems: learning, evolution and culture.
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Fig. 2. The structure of language arising from the interaction of three complex adaptive
systems[8]

Our biological endowment, our genes, provides us with the basic learning
mechanisms to acquire language. This machinery is the mechanism through
which language is transmitted culturally over time in human populations. More-
over, this process of cultural transmission leads to a set of language universals
constrained also by our innate linguistic predispositions. Finally, the structural
characteristics emerging from this process will affect the fitness of individuals
using these languages leading in turn to the evolution of language learners, clos-
ing the loop of three interacting systems. The key thing to note here is the
interplay between genetic predispositions, cultural transmission and biological
evolution.[8]

Figure 3 illustrates the link between genetic predispositions and language
structure. Genes provide the basis for mechanisms for learning and processing
language. They determine our innate predispositions in the context of language
acquisition. A predisposition is a property of an individual, but the final structure
of natural language emerges from interactions in a population of individuals over
time. Thus, cultural transmission bridges the link between predispositions and
universals. While genes code the predispositions, biological fitness is partially
governed by the extended phonotype (i.e., language structure).

A key question here is how strong the innate constraints on language learning
are. Kirby et al. [8] argue that cultural transmission can magnify weak pre-
dispositions into strong linguistic universals undermining the hypothesis which
assumes strong innate constraints.

Fig. 3. The connection between biological predispositions and language structure[8]
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In summa, human language faculty is a part of the biological information
processing system known as the human cognitive system. It serves a key function
as its system of symbolic communication. The extent to which and how human
language differs from animal systems of communication remains an open research
question. In any case, our language faculty arises from the interactions of three
complex systems (learning, evolution and culture). Again, the extent to which
each of these systems constrains the structure of human language is a matter
subject to continuing debate.

We will next look a hierarchy of generic information processing systems and
see how living beings with language faculty are situated in this context.

2 A Hierarchy of Information Processing Systems

Thinking about how artificial systems and living organisms relate to their envi-
ronment and process information we can differentiate five distinct classes. The
key separating characteristics are the level of adaptability to changes in opera-
tion environments and the level of autonomy the system exhibits.

2.1 Context-Free Closed System

In the first class, a context-free closed system, all inputs of the system are equal in
the sense that the different input states carry no meaning on how the inputs are
processed by the system. An example of such a system is one providing lossless
compression of the input using the Lempel-Ziv algorithm. Such lossless compres-
sion functions by searching repeated symbol sequences in the system input and by
replacing these with references to a single instance of the repeated sequence.

2.2 Context-Sensitive Closed System

The second class, a context-sensitive closed system, has as one input a static,
context-specific model that contains information on how the other inputs are
processed by the system. An example of a system in this class is a lossy audio
compression system. Such a system can provide increased compression efficiency
over lossless compression by omitting signal components not meaningfully audi-
ble to the human hearing system. In other words, the way in which the signal is
compressed is sensitive to the static characteristics of the operation environment.

2.3 Open System with Feedback

In the third class, an open system with feedback, a relation exists between system
output states and its input states. In such a feedback control system, the system
partially captures the dynamic characteristics of the operation environment as
input states are coupled to output states. An example of such a system is a
temperature controller. This type of system is able to adapt to diverse changes
in the operation environment (e.g., the temperate controller is able to maintain a
constant temperature in an apartment when the outdoors temperature changes
or someone leaves a window open). In contrast to the context-sensitive closed
system, the system is able to monitor changes in the operation environment and
adapt to them.
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2.4 Open System with Feedback and Energy Management

The fourth class, an open system with feedback and autonomous energy manage-
ment, extends the previous class by including autonomous energy management
as one parameter in feedback control. In other words, not only are the input and
output states coupled but the system has finite resources to carry out its oper-
ation of mapping input states to output states. The relation of different inputs
and outputs states to internal energy consumption creates additional informa-
tion. An example of such as system is an autonomous robot.

2.5 Open System with Feedback, Energy Management and
Reproduction

The fifth system class, an open system with feedback, autonomous energy man-
agement and reproduction, further extends the previous class by being repro-
ductive. As such, these systems are subject to competition and natural selection
in an environment with limited resources which the systems utilize to operate
and reproduce. The systems adapt to specific environments through successive
reproductive generations as guided by exhibited fitness related to survival and
successful reproduction. This selective process creates new information preserved
by the accumulation of fitness-enhancing functionality over system generations.

Living organisms belong to this general class of systems and exhibit adap-
tation to the environment not just through genotypic differentiation over gen-
erations but also through learning supported by intra-species communication
during their lifetimes. More specifically, living organisms are able to adapt to
novel changes in the environment as their genetic endowment provides for behav-
ioral degrees of freedom. As discussed in the introduction, a key component of
this adaptive endowment is the use of natural language as a communication tool.
In vernacular use of language, natural language usually refers only to the vari-
ous human languages. However, the means of communication utilized by other
species share many characteristics with human language. Audible cues are used
by wolf packs to guide the path of the lead wolf in a hunting situation and we
are all familiar with the warning shrieks animals use to warn others about the
presence of a predator. The common thread in language is that it is used to coor-
dinate the co-operation of individuals usually belonging to a single species, or in
the case of humans, a single language group. Of course, human language is much
more complex than the languages used by animals by including such elements
as compositionality, recursion and abstraction as discussed in the introduction.
Still, it is fundamentally a tool to facilitate human co-operation.

Looking further at the general characteristics of human language, it includes
redundant information for error correction purposes as it is communicated over
a noisy channel. A typical syntactic feature serving such a redundancy function
is agreement. For example, in English there is an agreement between the gram-
matical person of the verb and the grammatical number of the subject. This is
morphologically evident in the singular third person where the verb is usually
inflected with the suffix -s (’I see’, ’You see’, ’He see-s’). It is easy to imagine
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why human language developed such redundant features. The environment in
which a hunting party has to co-operate is sure not to be free of noise. To put
things simply, a hunter listening to his colleague can gain additional information
on whether the other party is communicating something about a third person
through verbal agreement even if he doesnt capture the full signal (’ plans to
go in towards that that tree’ vs. ’ plan to go in towards that tree’).

Claude Shannons seminal mathematical theory of communication formalizes
the problem of transmission of information over a noisy channel in the context of
digital data communication. However, as noted by Shannon, information theory
does not deal with the semantic aspects of communication [9]. Redundancy in
natural language cannot be separated from semantics, i.e. features which con-
tribute most to the successful transport of critical meaning, in the context of typ-
ical human co-operation, are often those made redundant. The aforementioned
person-number agreement is an example of semantically motivated redundancy
in natural language. Also, communicating people often add redundancy to those
parts of the message with most pragmatic significance in that specific situation
of co-operation.

In general, it can be argued that information theoretical or other formal meth-
ods are inadequate for the study of natural language. If understood in the context
of a closed system, natural language is not formally computable. Looking back at
the presented hierarchy of information processing systems, this should not come
as a surprise. Human language is adaptation for communication and information
management in a fundamentally open system, our daily environment. However,
although we claim that language is not algorithmic, it is also evident that it
has structure. In contrast to formal languages, the structure of natural language
is non-propositional in the sense that it does not make formal assertions about
the world or convey truth values in the context of a specific utterance. It does
exhibit a non-propositional structure mirroring our environment and us. Natural
language can be said to be fundamentally embodied in both these contexts.

3 Natural Language and Embodiment

3.1 Embodied Cognition

The school of cognitive science which states the characteristics of the human
mind are primarily determined by the form of the human body is entitled em-
bodied cognition. This embodied mind thesis stands in opposition to other theo-
ries of the mind, namely those considering the mind an algorithmic information
processing system such as cognitivism and computationalism.

Margaret Wilson has presented a list of six views which characterize embodied
cognition [10]:

1. Cognition is situated. Cognitive activity happens in the context of a real-
world environment and inherently involves perception and action. One ex-
ample of this is moving around a room while trying to decide where the
furniture should go at the same time. Another example of situated cognition
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is day-dreaming. One is in a situation, but not in the situation or ’present’.
During day-dreaming you may be doing something, but your mind or your
thoughts are somewhere else.

2. Cognition is time-pressured. Cognition should be understood in terms of how
it functions under the pressure of real-time interaction with the environment.
When one is under pressure to make a decision, the choice made emerges
from the confluence of pressures that one is under while in their absence a
decision may be completely different. Since there was pressure, the result
was the decision you made.

3. Off-loading cognitive work onto the environment. Due to limits of our
information-processing abilities, we exploit the environment to reduce our
cognitive workload. We make the environment hold or sometimes even ma-
nipulate information for us, and we harvest that information only on a need-
to-know basis. This is evident in the fact that people use calendars, PDAs
and other means to help them with everyday functions. We write things
down so that we can use it when we need it instead of taking the time to
memorize it.

4. The environment is part of the cognitive system. The flow of information
between the mind and the world is so dense and continuous that the mind
alone is not a meaningful unit of analysis. This means that the production of
cognitive activity is not internal to the mind, but rather is a mixture of the
mind and the environmental situation that we are in. Thinking and decision
making are impacted by the environmental situations we operate in and is
thus contextual.

5. Cognition is for action. The fundamental function of the mind is to guide
action and perception as well as memory must be understood in terms of
their contribution to situation-appropriate behavior. This claim has to do
with the visual and memory perception of the human mind. Our vision is
encoded into our minds as a what and where concept alluding to the structure
and placement of an object. Our perception of what we see comes from our
experience and exposure of it. Memory in this case does not necessarily mean
memorizing something as such. Rather remembering a relevant point of view
instead of as it really was in an objective sense.

6. Off-line cognition is body-based. Even when disconnected from the envi-
ronment, the activity of the mind is grounded in mechanisms that evolved
for interaction with the environment: sensory processing and motor control.
This is best shown with infants or toddlers. Children use skills they were
born with, such as sucking, touching, and listening, to learn more about the
environment. The skills are broken down into five sensorimotor functions:

(a) Mental imagery means visualizing something based on your perception
of it.

(b) Working memory short-term memory
(c) Episodic memory long-term memory
(d) Implicit memory means by which we learn certain skills until they be-

come automatic for us.
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(e) Reasoning and problem-solving having a mental model of something
will increase the number of problem-solving approaches.

3.2 Cognitive Linguistics

Building on this philosophical foundation, George Lakoff and colleagues have
studied embodied cognition in the context of linguistics. They argue [11] that
the embodiment hypothesis of embodied cognition entails that our conceptual

Fig. 4. Containment image schema (applied to the English word ’out’)[13]
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structure and linguistic structures are formed and shaped by the characteris-
tics of our perceptual structures. As evidence, they cite research on embodi-
ment effects from mental rotation and mental imagery, image schemas, gesture,
sign language, color terms, and conceptual metaphors among other examples.
Succinctly, cognitive linguistics [12] says that language is both embodied and
situated in a specific environment.

As an example of such linguistic structuring, figure 4 shows how the contain-
ment image schema can be applied to the English word out in three different
ways reflecting the various spatial senses of the word.

First, in the most prototypical case, ’out’ is utilized where a clearly defined
trajector (TR) leaves a landmark bounded spatially (LM), a clearly defined
container: ”Scott got out of the train” (top of figure 4). Second, ’out can also be
used to indicate situations where the trajector is a mass spreading out, expanding
the area of the containing landmark: ”He poured out the beads” (middle of figure
4). Third, ’out’ can also be utilized to describe motion of a trajector along a
linear path where the containing landmark is not specified but implied: ”The
ship started out for Southampton” (bottom of figure 4). Most importantly, the
natively spatial image schemas are used metaphorically to lend logic to non-
spatial situations. For example, the in the sentence ”George finally came out of
his depression” a spatial containment schema is projected metaphorically onto
emotional life.

Expanding on this, cognitive linguists argue that an embodied philosophy of
mind would show the laws of thought to be metaphorical in general, not logical.
Truth would be a metaphorical construction, not an attribute of objective reality.
That is, it would not rely on any foundation ontology as might be sought in the
physical sciences or religion, but would likely flow from metaphors drawn from
our experience of having a body. Thus, they depart from the tradition of truth-
conditional semantics, but rather view meaning in terms of conceptualization.
Meaning is viewed in terms of mental spaces instead of in terms of models of the
world.

3.3 Language as Embodied Information

Based on the discussion both in chapter 2 and in preceding parts of this chapter
we hypothesize that natural language faculty can be thought of as a being a
mechanism for conveying embodied information and that language itself, both
its generic structural features and specific utterances, is such information. What
do we mean by embodied information? The defining characteristics of this ab-
stract concept are that it is contextual by definition and meaningful in practice.
Batesons [14] definition of information as a difference that makes a difference
is a related concept. In other words, it is the kind of information a system in
the aforementioned fifth system class (an open system with feedback, energy
management and reproduction) processes when it operates towards fulfilling
its goals. The use of natural language by humans is contextual and pragmat-
ically meaningful. Furthermore, as proposed by cognitive linguistics, the struc-
ture of language is fundamentally grounded on the characteristics (enabling and
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constraining in terms of survival and reproduction) of the environment we op-
erate in. Embodied information processing is further discussed in context of
language in [15].

4 Conclusion

In this chapter we first overviewed the state of art when it comes to the foun-
dations of natural language and how it relates to the forms of communication
used by other animals. Much work has been put into developing theories which
would explain the structure of language and how it relates to the information
processing capabilities of the human mind. Second, we presented a hierarchy of
generic information processing systems and situated natural language in that
hierarchy. Based on this we arrived at viewing, on a philosophical level, human
language faculty as an embodied information processing system in the tradition
of the embodied theory of mind.
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