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Preface

Electronic System Level Design, or ESL Design, is generally understood as the set

of tools, methodologies and design techniques applied to modern electronic sys-

tems design, from high-end chips and systems, to embedded devices, to integrated

hardware and software systems. Given the complexity of current systems, advanced

tools and methodologies have become absolutely essential to achieve the necessary

productivity, quality, cost and performance expected in a design process. One of

the important tenets in ESL Design is the need for early design analysis. This is

done mainly through high-level modeling and simulation, performance and power

analysis and functional verification, before committing the design to lower-levels of

abstraction aimed at synthesis and optimization. This is especially true for complex

systems involving different types of components such as processors, custom blocks

and software. In fact, it may be totally impractical to simulate such systems at a low-

level of representation such as register-transfer level, due to extremely long simula-

tion times. High-level models are simpler to write, understand, optimize and debug

than lower-level models, and they can simulate significantly faster. The more the de-

sign can be refined, optimized and verified at a high-level of abstraction, the higher

the overall design productivity, the better the quality and consequently the lower the

cost of the final result. However, high-level models and development environments

are not without their own difficulties. It is not simple to write a high-level model

at the appropriate abstraction level which will result in the best trade-off between

architectural details and simulation speed. For this end, researchers have formalized

different abstraction levels at different levels of architectural and timing accuracy.

Depending on what types of design analysis need to be done, one abstraction level

may be more suitable than another. This adds to the modeling complexity, and in the

worst case, if multiple models need to be developed, it may start reducing the pro-

ductivity advantage of a high-level modeling methodology. A high-level modeling

and simulation framework is a complex software engineering challenge. Different

types of models, such as a processor model, custom blocks and application software,

need to be compiled, linked, executed and debugged together. This goes far beyond

the correct individual modeling of a block using a high-level language. A successful

high-level design methodology depends heavily on how well automated this frame-

work is. SystemC is a system-level specification and design language (based on C++

v



vi Preface

classes) that has been widely adopted for high-levels of abstraction modeling. Sys-

temC also emergence of transaction-level models (TLM) as an abstraction layer and

modeling style capable of fully separating the computation part from the commu-

nication part of a model. Despite the widespread acceptance and use of SystemC

and TLM, it is still very complex to create models which achieve a perfect balance

between the required architectural detail for the desired types of analysis and simula-

tion speed. This book addresses the very issues raised above. It presents a high-level

design methodology, support tools and framework capable of full system modeling

and design exploration, including components such as processors, custom blocks

and application software. One of the main contributions of the book is the detailed

description of ArchC. ArchC is an architectural description language (ADL) which

allows designers to model instruction-set architectures and automatically map them

into SystemC simulatable descriptions. ArchC is an ADL capable of detailed mod-

eling of instructions and supporting processor architectures. Since ArchC generates

an executable SystemC model, it can be fully integrated with other SystemC mod-

els using transaction-level interfaces, which allows the specification, modeling and

simulation of complete systems. The book also explains in detail how the overall

software environment works, including how the models are compiled, linked, ex-

ecuted together and debugged as a platform. Detailed examples using single and

dual core platforms, coupled with custom accelerators and running real life applica-

tions are presented. Power modeling is also addressed in this book. Authors describe

an interesting extension to SystemC called PowerSC, which allows switching and

power information to be gathered and computed during and integrated with the func-

tional simulation. Important to readers should the fact that the platform presented

is Open-Source and available for download, whereas comparable systems available

today are proprietary. This will certainly help researchers and developers alike to

jumpstart their modeling efforts by using a readily available platform and develop-

ment tools. Readers interested in a good overview of ESL methodologies as well

as those interested in practical implementation details of architectural-description

languages, platform modeling and support tools will be well served by this book.

Visiting Professor Reinaldo A. Bergamaschi

Odysci, Brazil/USA

University of Campinas, Campinas, Brazil
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Part I

System Design Representation



Chapter 1

Electronic System Level Design

Luiz Santos, Sandro Rigo, Rodolfo Azevedo, and Guido Araujo

1.1 The ESL Concept

Systems-on-chip (SoCs) became a reality in the mid-nineties, as a result of the long

evolution of VLSI technology and the sheer growth of integrated circuit complexity.

As it happens each time electronic design complexity impairs the expected time-to-

market, the quest for higher productivity involves a combination of the following

key notions:

Abstraction At design entry, the level of representation is raised to cope with

the increased design complexity. As a consequence, the design flow goes

through several levels and styles of representation. Hardware design representa-

tion has been raised through physical, circuit, gate, register-transfer, and func-

tional/behavioral levels.

Reuse Pre-designed components are assembled within a new design. Reuse goes

hand-in-hand with design paradigms, such as cell-based, IP-based, and platform-

based.
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4 L. Santos et al.

Automation To overcome the error-prone and time-consuming nature of manual

refinement, designers rely on Electronic Design Automation (EDA) tools. To

refine the design representation from higher to lower abstraction levels, (layout,

logic, register transfer, and behavioral) synthesis tools can be used. To check

for equivalent functionality across successive levels of representation, a solid

infrastructure of automatic verification tools is available.

Exploration The analysis of alternative design solutions with respect to area, per-

formance and power at a given abstraction level reduces the probability that,

after refinement through lower levels, the design might turn out not to meet the

specified requirements, leading to redesign.

Although integrated circuit design has already witnessed abstraction level raising

from the circuit level to the gate level and then to the Register-Transfer Level (RTL),

the so-called SoC Revolution [10] required a broader paradigm shift. Since the in-

tegrated circuit became an integrated system, the new abstraction should harmonize

the representation of both hardware and software. Abstraction offers system-level

design representations, such as executable hardware-software especifications [2],

transaction-level modeling (TLM) [4] and UML modeling. The platform-based de-

sign paradigm [14] guides reuse from the perspective of a reference system archi-

tecture. Automation asks for software-toolkit generation [9], such as retargetable

compilers and binary utilities (since the software embedded in the system may be

run on possibly distinct multiple target processors). Exploration addresses the joint-

evaluation of hardware and software components.

This leads to the concept of Electronic System Level (ESL) [1], a generic term for

a set of abstractions (possibly at distinct levels), which are adequate for the design

representation of SoCs. It complies with the need for hardware and software co-

design, while building upon legacy hardware design representation.

1.2 Requirements of an ESL Representation

A representation suitable for ESL design should provide a unique representation of

the platform architecture, capture parameters handled by hardware-dependent soft-

ware, allow advance performance and power evaluation on the target platform, rely

on encapsulation of processor models and non-programmable components, support

platform debugging, and enable virtual prototyping. Let us consider each of such

aspects individually:

Uniqueness of representation Actual hardware-software co-design should rely on

a unique abstraction of the hardware platform so that changes performed by

either the hardware design or the software development teams could be agreed

upon a same reference. It should also play the role of golden reference model

for the hardware verification team.

Hardware-dependent software The representation must provide a programmer’s

view of the platform that not only captures the Instruction-Set Architecture (ISA)
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of each processor, but also includes bit-accurate descriptions of I/O device reg-

isters, memory maps for all devices with configurable registers and memory lay-

out for data, application code, and initialization routines. This allows the early

development of hardware-dependent software, such as drivers and boot code,

enabling actual hardware-software co-design.

Advance performance evaluation Although it is possible to obtain a rough perfor-

mance estimate by running the application software on a stand-alone instruction-

set simulator, a much more accurate performance evaluation is obtained when

not only the processors, but all the other platform components are captured in

the design representation.

Advance power evaluation In spite of the fact that power estimation is much more

accurate at lower design levels, the ability to assess power earlier in the de-

sign flow helps in the identification of power bottlenecks, thereby allowing low-

power design from the very beginning.

Encapsulation of processor models Since processors are the most complex sys-

tem components, the expected ESL productivity gain would be seriously im-

paired if processor models had to be developed from scratch. Therefore, the rep-

resentation should encapsulate either reused processor models extracted from a

library or automatically generated processor models.

Encapsulation of non-programmable components From the perspective of hard-

ware-dependent software development, the behavior of a component is what

matters, regardless of how it will be implemented later, as far as a bit-accurate

view of its I/O registers is available. Therefore, the representation should allow

the functional modeling of hardware components.

Platform debugging The software to be embedded into the system could be run

on the host workstation and conventional debuggers could be used to pinpoint

application code bugs. Besides, code inspection could be improved by porting a

debugger so that it could run on an instruction-set simulator of a target processor

of a platform. Although yet useful, this conventional approach is clearly limited

to uncovering software bugs. Therefore, to expose architecture design bugs, the

representation should support component I/O probing or even component inner

probing.

Virtual prototyping The representation should support the co-simulation of hard-

ware and software in such a way that a virtual prototype could be used to evalu-

ate the functionality, the performance, and the power/energy consumption of the

final product. Such a prototype would contain application software, hardware-

dependent software and platform architecture, elements allowing sufficiently ac-

curate pre-evaluation without the need to dive into more time-consuming RTL-

based prototyping or emulation.

1.3 ESL Design Flow

As a consequence of platform-based design, ESL flows are typically a combination

of bottom-up and top-down approaches. In spite of that, Fig. 1.1 shows an idealized
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Fig. 1.1 An idealized top-down ESL design flow

top-down ESL design flow, which is used here as a frame to illustrate the main

design steps rather than to advocate a particular design flow. Figure 1.1 adopts the

terminology introduced in [1].

From a natural language specification, i.e. a document capturing the product re-

quirements and constraints, the first design step consists in obtaining a specification
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written in an executable or declarative language. (This book focuses on executable

specifications, such as those obtained with SystemC [5]).

The resulting executable model, which captures the functional specification of

a system, is submitted to a preliminary analysis step so as to provide grounds for

future architectural decisions. By means of proper instrumentation, initial estimates

for performance, storage space, power, and communication traffic can be obtained.

Based upon that preliminary analysis, the next design step leads to an architec-

tural specification of a system, obtained from its functional specification through

hardware-software partitioning, i.e. the mapping of algorithms to software running

on target processors or to non-programmable hardware blocks. Although the result-

ing architecture specification captures hardware and software views, they should

be built as interacting engines that execute cooperatively within a unified architec-

tural model. To reach a threshold of simulation performance that enables hardware-

software codesign, such architectural model may rely on the TLM style. (In Chap. 5,

this book proposes an open-source infrastructure to build executable architectural

models that comply with TLM, which is reviewed in Chap. 3).

Once an architectural specification is available after partitioning, it has to be

verified with respect to the original functional specification. Essentially, such post-

partitioning verification aims at demonstrating that the design satisfies the specified

requirements.

A few building blocks are required for the architectural specification, such as

processors, non-programmable hardware components, memories, and buses. On the

one hand, a building block representing a non-programmable hardware component

is easily modeled by its (single) behavior (e.g. the C++ implementation of its under-

lying algorithm). On the other hand, since processors exibit many complex behav-

iors, their executable models are usually generated from declarative processor mod-

els written in an Architecture Description Language (ADL). (This book describes

an open-source ADL in Chap. 2).

The resulting architectural model also enables a post-partitioning analysis step,

where more accurate estimates can be obtained. For instance, performance, storage

space, and power can be evaluated at the light of the chosen target processors; com-

munication traffic can be correlated with the number of transactions. This analysis

leads to the exploration of alternative architectural solutions, for instance by exper-

imenting with distinct target processors. For such an exploration, cross compilers

and binary tools must be available for the target processors. (This book describes

open-source infrastructure for automatically retargeting binary utilities in Chap. 6).

Post partitioning analyses of the hardware and software models provide grounds

for proper hardware and software implementation, giving rise to an RTL model for

the hardware and application binaries for the software.

The resulting implementations have to be verified with respect to the architectural

specification. The ultimate goal of such implementation verification is to demon-

strate that the implementation has no flaws. For this, the observability of a device

under verification has to be increased through white-box techniques allowing the

inspection of a component’s inner structure. (A suitable infrastructure for white-box

verification is proposed in Chap. 7).
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Although, at the first glance, executable models may seem able to track behavior

only (and thereby performance), they have to be extended to simultaneously track

other important issues, like power consumption, for instance. (Chapter 8 shows how

SystemC descriptions can be instrumented to account for power).

This book addresses a few important aspects of the ESL design flow. It focuses on

languages and artifacts used as infrastructure for executable specification, hardware-

software modeling, and design tools (implementation, analysis, and verification).

1.4 Target Audience, Scope and Organization

Although several ESL technologies are currently provided by EDA vendors, this

book focuses on technologies available under open-source licenses, such as Sys-

temC [5], OSCI TLM [12], ArchC [13], and PowerSC [8].

This book intends to provide grounds for further research on ESL, by means of

open-source artifacts and tools, thereby stimulating the unconstrained deployment

of new concepts, tools, and methodologies. It devises electronic system design from

the pragmatic perspective of a SystemC-based ESL representation, by showing how

to build and how to use ESL languages, models, and tools.

Other specification languages suitable for ESL design such as MATLAB [15],

UML [11], SDL [7] and SystemVerilog [6] are outside the scope of this book. Pro-

prietary ESL-compliant processor modeling, such as [3], are also beyond the in-

tended scope.

Most of the requirements enumerated in Sect. 1.2 are covered in the next chap-

ters, which are organized as follows:

• ESL Specification: SystemC is one of the most promising ESL languages. It is

actually a class library that extends the C++ language in such a way that hardware

and software components can be described within an executable specification.

Some relevant aspects of SystemC are reviewed in Chap. 2 as a basis for the

discussions in further chapters.

• ESL-Compliant Processor Modeling: Since describing processor models di-

rectly in SystemC would not be practical, most of processor modeling and soft-

ware toolkit generation relies on ADLs. Since the ADLs designed in the mid-

nineties preceded the rise of SystemC, the executable processor models generated

by them were not thought to be encapsulated as SystemC modules. The ArchC

language is an ADL born in the SystemC era. Instead of directly generating an

executable processor model, a functional or cycle-accurate SystemC model is

produced. The ArchC language is summarized in Chap. 2, while Chap. 4 and

Chap. 5 explain how ArchC can be efficiently used to build ESL-compliant pro-

cessor models. As an important complement, Chap. 6 shows how the ArchC ADL

can be used as a starting point for the automatic generation of assemblers, linkers,

and debuggers.

• TLM-Based ESL Design: A crucial concept to ESL is the separation between

computation and communication of a system module. Since SystemC is already
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built upon that concept, the definition of interfaces to encapsulate communication

protocols within channels allows a convenient style of design representation: the

system can be described as a set of modules (each exhibiting its concurrent be-

havior) that communicate by means of transactions through channels. The TLM

style provides a programmer’s view of the platform that allows early development

of hardware-dependent software. Chapter 3 reviews the main assets of the TLM

design representation.

• ESL Design Verification: Since the SystemC Verification Library is an already

well-established verification infrastructure based on the conventional black-box

approach, Chap. 7 focuses on a complementary verification aspect: the use of data

introspection to enable white-box verification strategies.

• ESL Power-Conscious Exploration: Although SystemC can model hardware

and software functionalities, thereby allowing performance-based exploration, it

does not come with support for modeling power consumption. Chapter 8 shows

how SystemC can be extended to capture signal transitions, to correlate them

with dynamic power consumption, to add up the static power contribution from

technology libraries, and to accommodate distinct power macromodels.
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Chapter 2

Open-Source Languages

Sandro Rigo, Luiz Santos, Rodolfo Azevedo, and Guido Araujo

As stated in Chap. 1, the main goal of this book is to enable ESL research based

on an open-source infrastructure. In order to make it possible to readers that are not

familiar with SystemC and/or ArchC to follow the model and platform descriptions

presented in the remaining chapters of this book, this chapter briefly reviews the

main concepts related to these two open-source languages. Moreover, ArchC will

be put in practical use in Chap. 4. Nevertheless, we strongly encourage such readers

to refer to the literature referenced in the following sections for a more complete

specification of both languages.

2.1 Basic SystemC Concepts

Since the launching of the Open SystemC Initiative (OSCI) in 1999, SystemC has

evolved into one of the most important languages for ESL design. As a consequence,

the SystemC literature comprises not only in-depth explanations on language con-

structs [5, 8], but also extensive overviews on how to put it to practical use [2–4, 7].
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That is why this book focuses instead on how to generate and integrate proces-

sor models into SystemC platform descriptions. However, to pave the way towards

platform descriptions, a few SystemC concepts and constructs will be reviewed by

means of an illustrative example: a minimalist system consisting of a PowerPC pro-

cessor tied to a generic read-write memory.

Figure 2.1 shows the description of such a system. The function sc_main is

the starting point (its arguments have the same meaning as those in the C++ main

function).

The actual description lies between Line 6 and Line 21. In Line 6 an instance

PPC of a PowerPC processor of type ppc is declared. Line 8 describes an instance

MEM of a memory of type mem. The name of an instance is passed as a parameter to

the instance’s constructor for inner storage (so that it could be used for debugging

purposes).

Line 11 describes the connection between the processor’s data memory port

(DM_port) and the memory’s (target_export).

Being essentially the source code for an executable representation, a SystemC

description contains not only the actual instantiation of components and their con-

nections, but also simulation control and post-simulation diagnosis.

That’s why the code inside the sc_main function executes in three phases. In

Phase 1, which is called elaboration, data structures to hold the described compo-

nents are created, initialized, and their connections are built. Since descriptions are

typically hierarchical, creation and initialization are propagated through the sub-

components.

As it will be illustrated in a while, the functionality of each component is cap-

tured by means of one or several processes, which model concurrently executing

behaviors. During the elaboration phase, all the processes attached to the described

components are registered.

In Phase 2, the function sc_start (Line 15) launches the simulation of

the described (sub)system by invoking the attached behaviors. Upon its return,

sc_start marks the beginning of a new phase.

Phase 3 handles the outcome of simulation so that diagnosis reports can be is-

sued. For instance, in Line 21 the inner state of processor PPC is printed (by invok-

ing the method PrintStat() in Line 19). This phase ends by returning a status:

zero meaning success; non-zero, failure. This example assumes that the processor

has an attribute exit_status, which is returned.

To describe the functionality of a system’s component, SystemC employs the

notion of module, which is essentially an encapsulation of the component’s state

and behavior. Therefore, a system is described as a set of interconnected modules.

To grant modules concurrent behaviors, SystemC relies on the notion of process,

which is a special class method of a module that is registered in SystemC’s under-

lying simulation kernel. Processes are invoked by SystemC’s event-triggered sched-

uler, thereby appearing as concurrent behaviors. Although SystemC has three basic

process types, this chapter reviews only the notion of thread, since it is the pre-

dominant process type used throughout this book. Once initiated by the simulation

kernel scheduler, a thread executes until it terminates, although it can be suspended
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1 i n t sc_main ( i n t ac , char ∗av [ ] )

2 {

3 / / Phase 1 : ELABORATION

4

5 / / An i n s t a n c e o f a PowerPC p r o c e s s o r

6 ppc PPC ("PPC" ) ;

7 / / An i n s t a n c e o f a read−w r i t e memory

8 mem MEM("MEM" ) ;

9

10 / / C o n n e c t i o n be tween PPC ’ s and MEM’ s da ta p o r t s

11 PPC . DM_port (MEM. t a r g e t _ e x p o r t ) ;

12

13 / / Phase 2 : SIMULATION

14

15 s c _ s t a r t ( ) ;

16

17 / / PHASE 3: DIAGNOSIS

18

19 PPC . P r i n t S t a t ( ) ;

20

21 r e t u r n PPC . e x i t _ s t a t u s ;

22 }

Fig. 2.1 SystemC top-description of a minimalist system

and resumed during its execution. For a given simulation, a thread is executed only

once.

To illustrate those basic notions and review a few more concepts, let us show a

sketch of a PowerPC description, which consists of two files, as depicted in Fig. 2.2

and Fig. 2.3.

Figure 2.2 describes the module encapsulating PowerPC’s functionality. Observe

the header files being included (Line 1 to Line 5) and note that the description as-

sumes that the processor’s architectural resources and instruction set were described

elsewhere (ppc_arch.H and ppc_isa.H, respectively).

Although SystemC provides a macro (SC_MODULE) to ease module description,

the example shows an alternative style (Line 7) where the module inherits from two

pre-defined classes: ac_module (which itself implicitly inherits from SystemC’s

sc_module class) and ppc_arch (where architectural resources such as register

file, endian, and wordsize are described).

Note that two main attributes of the processor are shown: its instruction pointer

pc (Line 11) and its instruction-set architecture ISA (Line 13), which encapsulates

the description of binary instruction formats and fields.

The class method in Line 16, represents the processor’s global functionality

(whose implementation will be shown later in terms of individual instruction behav-

iors). This method is turned into a process by a combination of SystemC constructs.

First, the module ppc is registered as owner of a process (Line 18), then its method

behavior is registered as a thread (Line 23).
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1 # i n c l u d e "systemc.h"
2 # i n c l u d e "ac_module.H"
3 . . .

4 # i n c l u d e "ppc_arch.H"
5 # i n c l u d e "ppc_isa.H"
6

7 c lass ppc : p u b l i c ac_module , p u b l i c p p c _ a r c h {

8

9 p u b l i c :

10

11 unsigned pc ;

12

13 ppc_parms : : p p c _ i s a ISA ;

14

15 / / ! B e h a v i o r e x e c u t i o n method .

16 void b e h a v i o r ( ) ;

17

18 SC_HAS_PROCESS( ppc ) ;

19

20 / / ! C o n s t r u c t o r .

21 ppc ( sc_module_name nm) : ac_module (nm) , p p c _ a r c h ( ) , ISA (∗

t h i s ) {

22

23 SC_THREAD ( b e h a v i o r ) ;

24 pc = 0 ;

25 }

26

27 v i r t u a l void P r i n t S t a t ( ) ;

28

29 void l o a d ( char∗ program ) ;

30

31 v i r t u a l ~ppc ( ) { } ;

32 } ;

Fig. 2.2 A sketch of the processor’s description (ppc.h)

Thread registration is an essential part of a module’s constructor, whose scope is

illustrated between Line 21 and Line 25. Note that the processor’s module inherits

from predefined constructors (Line 21), registers its thread and initializes its pc.

The corresponding destructor is shown in Line 31.

Two other class methods are shown in Line 27 and Line 29. The first prints statis-

tics for post-simulation diagnosis purposes and the second loads in memory the

program to be executed by the processor. Notice that, as opposed to behavior,

those auxiliarly methods are not registered as processes. They are just ordinary C++

methods that do not represent concurrent behavior.

Let us now focus on Fig. 2.3, which describes the overall processor’s behavior as

a loop (between Line 7 and Line 24) where instructions are endlessly decoded and
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1 # i n c l u d e "ppc.H"
2

3 void ppc : : b e h a v i o r ( )

4 {

5 unsigned i n s _ i d ;

6

7 f o r ( ; ; )

8 {

9 / / I n s t r u c t i o n d e c o d i n g

10

11 i n s _ i d = decode ( pc ) ;

12 swi tch ( i n s _ i d )

13 {

14 . . .

15

16 case 1 0 : / / Decoding outcome f o r add i

17

18 / / I n s t r u c t i o n e x e c u t i o n

19

20 ISA . b e h a v i o r _ a d d i ( / / I n s t r u c t i o n f i e l d s . . . ) ;

21 break ;

22 }

23 break ;

24 }

25 }

Fig. 2.3 A sketch of the processor’s description (ppc.cpp)

executed. Each instruction is assigned an identifier (declared in Line 5) to distin-

guish among instruction behaviors. For a given pc value, the respective instruction

is decoded and its identifier is assigned (Line 11). As a result, one among the vari-

ous instruction behaviors is selected (between Line 12 and Line 22). For simplicity,

all behaviors are omitted, except the one corresponding to the addi instruction

(Line 16), namely the method behavior_addi from the processor’s instruction-

set architecture (Line 20).

Although the most important concepts required throughout this book were briefly

summarized in this example, the reader should refer to SystemC manuals [5, 8] and

specialized books [2–4, 7] for an in-depth study of SystemC concepts, syntax, and

usage.

For the example in Fig. 2.1, we assumed that a SystemC model of a processor

(PPC) was available, as sketched in Fig. 2.2 and Fig. 2.3. Since such a model is too

complex to be written directly in SystemC, it is instead automatically generated from

the ISA description of the processor. The next section introduces an appropriate

language for the generation of SystemC processor models.
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2.2 Introduction to ArchC

The rapidly increasing complexity of modern system architectures raised difficulties

that end up delaying the whole design process and preventing designers from meet-

ing their stringent time-to-market. Such difficulties have forced hardware architects

and software engineers to reconsider how designs are specified, partitioned, and ver-

ified. As a consequence, designers are starting to move from Register-Transfer Level

(RTL) design towards the so-called Electronic System Level (ESL) design and be-

yond the abstraction limitations of Hardware Description Languages (e.g. VHDL,

Verilog) to ESL languages, which offer more levels and styles of abstraction (e.g.

SystemC) and address not only the hardware view, but also its software counterpart.

Therefore, when moving to ESL abstractions, designers have to face several new

issues.

Among them, two issues are directly related to processor modeling at the ESL.

The first is how to produce code for the different target processors under exploration.

This issue is tackled through the automatic generation of a software toolkit (assem-

bler, linker, compiler) for every distinct target processor. Such a generation tool is

commonly based on an Architecture Description Language (ADL) [6]. The second

issue is how to produce cooperative executable models for the multiple processors

of a given platform. Although the generation of an Instruction-Set Simulator (ISS)

has long been one of the goals of an ADL, the integration of multiple cooperating

ISSs withing a platform is a recent aspect of ADL usage. This section introduces

a SystemC-based architecture description language called ArchC, which addresses

the above-mentioned issues.

Besides, their application and well-known suitability for designing and experi-

menting with new architectures in the industry, ADLs can be very useful for aca-

demic purposes, like teaching/researching computer architecture. On the one hand,

at the undergraduate level, models of well-known architectures are the most appro-

priate to learn how a pipelined architecture works (e.g. interlocking, hazard detec-

tion and register forwarding). If allowed by the ADL, this model can be plugged to

different memory hierarchies in order to illustrate how the performance of a given

application can vary, depending on the choice made for cache size, update policy,

associativity, etc. On the other hand, at the graduate level, researchers can use ADLs

to model modern architectures and experiment with their Instruction-Set Architec-

tures (ISAs) and internal organizations with all the flexibility demanded in research

projects.

ArchC [1, 10] is a simple language that follows a SystemC syntax style. Its main

goal is to provide enough information, at the right level of abstraction, in order

to allow users to explore and verify a (new or legacy) processor’s architecture by

automatically generating not only software tools for code generation and inspec-

tion (like assemblers, linkers, and debuggers), but also executable processor models

(integrated ISSs) for platform representation, such as the PPC model invoked in

Fig. 2.1 (Line 6).

Figure 2.4 illustrates a simplified, ADL-based design exploration flow. From the

ADL description of a target processor (and a few auxiliary files) the tool generator
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Fig. 2.4 ADL-based exploration flow

synthesizes a compiler’s backend, an ISS, and a set of binary utilities. The applica-

tion’s source code is compiled, assembled and linkedited, resulting in an executable

code that is run on a processor model (ISS). After code inspection, which may re-

quire disassembly and debugging, the outcome of the simulation is evaluated in

face of the requirements and design criteria. If a requirement or a criterion is not

met, another candidate processor may be selected and the process is repeated until

all constraints and criteria are satisfied. (Since Fig. 2.4 depicts a complete, ADL-

independent flow, a given ADL may not support the generation of the whole toolkit;

e.g. the automatic generation of compilers is not yet available for ArchC.)

The flexibility provided by such design exploration capabilities is mandatory in

an ESL design environment, where multiple processors have to be considered in

the composition of complex virtual platforms. For example, to quickly produce and

evaluate different platform instances based upon distinct processors, all that is re-

quired is the ADL description of each candidate processor. Therefore, the decision

on which processors are best suited to a given application is more accurate when a

broader set of alternatives is explored through efficient ADL-based automatic gen-

eration.

In ArchC, an architecture is represented by two separate descriptions: Instruc-

tion Set Architecture (AC_ISA) and Architecture Resources (AC_ARCH). Within

the AC_ISA description, the designer provides information on instruction formats

(lengths and fields), on instruction decoding and assembly (binary and symbolic en-

codings), along with the behavior of each instruction. In the AC_ARCH description,
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1 AC_ARCH(powerpc) {
2 ac_wordsize 32;
3 ac_mem MEM:8M;
4 ac_regbank GPR:32;
5 ac_reg MSR;
6 ARCH_CTOR(powerpc) {
7 ac_ isa("powerpc_isa.ac");
8 set_end ian("big");
9 };

10 };

Fig. 2.5 Excerpt of the PowerPC AC_ARCH Description

the designer declares how the processor is organized in terms of storage devices,

pipeline structure, endian etc. Based on these two descriptions, ArchC can generate

interpreted simulators (using SystemC) and compiled simulators (using C++), along

with assemblers, linkers, and debuggers (using the GNU Binutils framework [9]).

Section 2.2.1 and Sect. 2.2.2 discuss the descriptions of architecture resources

and ISA by means of examples, whereas Sect. 2.2.3 summarizes the evolution of

ArchC towards platform modeling.

Throughout this book, our illustrative examples rely mainly on samples of ArchC

descriptions for the PowerPC architecture. However, when this choice may limit

our discussion of ADL features, we sometimes also include samples from MIPS,

SPARC-V8, and Intel 8051 ArchC models, which can be downloaded from the

ArchC website [12].

2.2.1 Architecture Resources Description

The architecture resources represent the structural information about the target

architecture, like register banks, memory, pipeline, special registers, endian, etc.

ArchC collects such information from the so called AC_ARCH description.

Obviously, the degree of detail adopted for this description depends on the level

of abstraction required for the desired executable model. Although ArchC allows

(in its version 1.6) the declaration of pipelines and multicycle instructions, in this

book we focus on functional models, which are high-level descriptions suitable for

the building of virtual platform models using TLM and SystemC. (For a complete

ArchC specification, the reader should refer to the language reference manual [11].)

An architecture description at the functional level needs little structural informa-

tion, as shown in Fig. 2.5. This example illustrates the minimum amount of archi-

tecture resource information required to build a PowerPC functional model.

Let us explain the main keywords in the example of Fig. 2.5.

AC_ARCH: An architecture resource description always starts with this keyword.

The designer should provide the model’s name (e.g. powerpc).

ac_wordsize: Declares the size of the processor’s word in number of bits.
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ac_regbank: Declares the register bank and its number of registers (e.g. the GPR
bank has 32 registers).

ac_reg: Declares a single register (e.g. MSR).

ac_mem: Declares a memory of a given size (e.g. MEM has 8 megabytes). The size

can be expressed in bytes (no unit abbreviation needed), in kilobytes (K or k),

in megabytes (M or m), or in gigabytes (G or g).

ac_tlm_port: Declares an external TLM communication port. It is followed by

the name of that port object, a colon, and the size of its address space. This size,

just like in ac_mem, may be expressed either in bytes or its multiples. (Chapter 3

will explore TLM ports in detail).

ac_tlm_intr_port: Declares an interrupt TLM communication port, followed

by the port object name.

ARCH_CTOR: Initializes the AC_ARCH constructor declaration.

ac_isa: Informs the name of the file containing the AC_ISA description (e.g.

powerpc_isa.ac) attached to this architecture description.

set_endian: Defines the architecture’s endianness as “big” or “little”.

2.2.2 Instruction Set Architecture Description

The AC_ISA description provides the behavior of every instruction and all the in-

formation required to automatically synthesize a decoder for a given ISA. This de-

scription is divided in two files, one containing instruction and format declarations,

another containing instruction behaviors.

ISA Specification

For simplicity, the main ArchC keywords appearing in an AC_ISA description are

addressed by means of an example. Figure 2.6 shows a fragment of AC_ISA de-

scription extracted from a PowerPC model and Fig. 2.7 shows another from the

SPARC model.

First, let us focus on the description of instructions, formats, and encodings by

providing an overview of the main keywords. (Chapter 4 will explore their usage to

build processor models).

AC_ISA: An ISA description always starts with this keyword. The designer should

provide the model’s name (e.g. powerpc in Fig. 2.6, Line 1; sparcv8 in

Fig. 2.7, Line 1).

ISA_CTOR: It merely initializes the AC_ISA constructor declaration.

ac_format: It declares an instruction format and its fields (e.g. in Fig. 2.6, Line 2,

a format I1 is defined as the concatenation of four fields; the first, named opcd,

consists of 6 bits). ArchC provides an additional construct that allows fields to

overlap. It can be used to facilitate the description of complex instruction sets,

as illustrated by the example in Fig. 2.7, Line 8. The declaration of alternative
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1 AC_ISA ( powerpc ) {

2 ac_format I1 = "%opcd:6 %li:24:s %aa:1 %lk:1" ;

3 ac_format B1 = "%opcd:6 %bo:5 %bi:5 %bd:14:s %aa:1
%lk:1" ;

4 ac_format XO1 = "%opcd:6 %rt:5 %ra:5 %rb:5 %oe:1 %xos:9
%rc:1" ;

5 ac_format SC1 = "%opcd:6 0x00:5 0x00:5 0x00:4 %lev:7 0
x00:3 0x01:1 0x00:1" ;

6

7 a c _ i n s t r <I1 > b , ba , b l , b l a ;

8 a c _ i n s t r <B1> bc , bca , bc l , b c l a ;

9 a c _ i n s t r <XO1> add , add_ , adc , mullw , divw , s u b f ;

10 a c _ i n s t r <SC1> sc ;

11

12 ac_asm_map r e g {

13 /∗ d e f a u l t gas a s s e m b l e r u s e s numbers as r e g i s t e r

names ∗ /

14 "" [ 0 . . 3 1 ] = [ 0 . . 3 1 ] ;

15 }

16

17 ISA_CTOR ( powerpc ) {

18

19 add . set_asm ("add %reg, %reg, %reg" , r t , ra , rb ) ;

20 add . set_decoder ( opcd =31 , oe =0 , xos =266 , r c =0) ;

21

22 bca . set_asm ("bca %imm, %exp, %addr(pcrel)" , bo , b i , bd

) ;

23 bca . set_decoder ( opcd =16 , aa =1 , l k =0) ;

24

25 lmw . set_asm ("lmw %reg, %imm (%reg)" , r t , d , r a ) ;

26 lmw . set_asm ("lmw %reg, %exp@l(%reg)" , r t , d , r a ) ;

27 lmw . set_decoder ( opcd =46) ;

28

29 s t h . set_asm ("sth %reg, %imm (%reg)" , r s , d , r a ) ;

30 s t h . set_asm ("sth %reg, %exp@l(%reg)" , r s , d , r a ) ;

31 s t h . set_decoder ( opcd =44) ;

32 . . .

33 pseudo_ ins t r ("mr %reg, %reg" ) {

34 "or %0, %1, %1" ;

35 }

36 } ;

37 }

Fig. 2.6 Fragment of the PowerPC ac_isa description

field choices starts with a square bracket (“[”). Additional groups are given

after a vertical bar (“|”). When all alternatives are declared, a closing square

bracket (“]”) ends the declaration. It should be noted that ArchC decodes all
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overlapping fields. However, although they can be accessed independently, not

all are simultaneously valid. The designer has to define which alternative group

is valid according to the value of some other field. For the example at Line 8,

the field “is” plays the role of a selector. When is=1, fields “r2a” and “rs2”

are valid; otherwise “r2b” and “imm7” are the valid fields.

ac_instr<fmt>: It declares an instruction and ties it to a predefined format.

Formats are assigned to instructions using a syntax similar to C++ templates.

In Fig. 2.6, for instance, the instruction add at Line 9 is tied to the instruction

format XO1 declared at Line 4.

set_decoder: It initializes the instruction decoding sequence, which is a key

element to the automatic generation of an instruction decoder for the exe-

cutable processor model. The sequence is composed of pairs <field_name

= value>. In Fig. 2.6 at Line 20, for instance, add.set_decoder states

that a bit stream coming from memory is an add instruction if, and only if,

fields opcd, oe, xos, and rc contain the values 31, 0, 266, and 0, respec-

tively.

Now, let us address the keywords that define symbolic names for instructions,

registers and groups of instructions, since they are the key to the automatic genera-

tion of binary utilities (e.g. assemblers). Chapter 6 will explore such keywords and

binary utilities generation in more depth.

ac_asm_map: Specifies a mapping between assembly symbols and values (e.g. in

Fig. 2.6, Lines 12–15) define the set of register names and their corresponding

numbers in the register bank of the PowerPC architecture).

set_asm: Associates an assembly syntax string and operand encoding to an in-

struction. The syntax of this construct is similar to the printf family used in

the C language. Literal characters must be matched as it appears in the assembly

source program, while conversion specifiers (%) force the assembler to recog-

nize ranges of values or symbols for operands. For each operand, there must be

an associated instruction field, specifying the operand encoding (e.g. in Fig. 2.6,

Line 19, the add instruction uses three operands of type reg with are asso-

ciated, respectively, with the fields rt, ra, and rb of the format declared in

Line 4).

pseudo_instr: Describes a pseudo instruction in terms of previously described

instructions (e.g. in Fig. 2.6, Lines 33–35, the pseudo instruction mr is associ-

ated with the predeclared instruction or).

Instruction Behavior Description

The designer must also provide the operations executed by each instruction. This

is done by means of the so-called behavior methods. ArchC allows three hierarchi-

cal levels for instruction behavior description: the generic behavior, which contains

actions that must be executed for every instruction, the instruction-type behavior,

which describes actions to be executed by the subset of instructions tied to a given
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1 AC_ISA(sparcv8){
2 ac_format Type_F1="%op:2 %disp30:30";
3 ac_format Type_F2A="%op:2 %rd:5 %op2:3 %imm22:22";
4 ac_format Type_F3A="%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %asi:8 %

rs2:5";
5 ac_format Type_F3B="%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %simm13

:13:s";
6 /* format for trap instructions */
7 ac_format Type_FT="%op:2 %r1:1 %cond:4 %op2a:6 %rs1:5
8 %is:1 [%r2a:8 %rs2:5 | %r2b:6 %imm7:7]";
9 a c _ i n s t r <Type_F1> call;

10 a c _ i n s t r <Type_F2A> nop, sethi;
11 a c _ i n s t r <Type_F3A> add_reg, sub_reg;
12 a c _ i n s t r <Type_F3B> add_imm, sub_imm;
13 a c _ i n s t r <Type_FT> trap_reg, trap_imm;
14 ...
15 }

Fig. 2.7 Fragment of the SPARC ac_isa description

Fig. 2.8 The instruction

behavior hierarchy in ArchC

instruction format, and the instruction-specific behavior that distinguishes it from all

other instructions. The idea behind this hierarchy is that designers can factorize the

instruction behavior to minimize the code size of the model. The automatically gen-

erated processor model will rely on such hierarchical behavioral description: every

time a new instruction is fetched, the execution always starts at the generic behav-

ior method and then goes down through the type and specific behaviors. Figure 2.8

illustrates this sequence for the PowerPC’s add instruction, which was declared in

Fig. 2.6.

In ArchC descriptions, instruction behavior methods are actually written in pure

SystemC/C++ code, thereby avoiding that users should learn additional keywords

(beyond those described so far). The designer can even declare helper functions to

perform special actions and use them inside their behavior descriptions. For more

details on how to design a processor model using ArchC, the reader should refer to

Chap. 4, which presents a step-by-step model development process, through a richer

set of illustrative examples.
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2.2.3 The Evolution of ArchC Towards Platform Modeling

ArchC was first designed for processor architecture research, specially for experi-

menting with new instruction sets for application-specific architectures. The main

goal was to generate simulators which were fast enough to run real software applica-

tions by means of a processor description that should be easy to write and maintain.

From the very beginning, SystemC was the choice for the ArchC simulator genera-

tion tool.

The first open-source release of ArchC happened in February 2004. Its first ver-

sions evolved to support interpreted simulator generation in SystemC, compiled

simulation generation and optimization using C++, and software tools like assem-

blers. But, as the number of ArchC users increased, it became clear that its most

popular application was to generate processor models to be embedded into complex

virtual platform models written in SystemC.

Since its 2.0 release in 2001, SystemC was gaining momentum as a language

to enable design in higher abstraction levels. At that time, system-level design was

attracting a lot of attention from the EDA community, and SystemC was one of the

most suitable languages to support this new design paradigm (actually, the main

goal of SystemC was to enable system-level modeling [4]).

In short, with the advent of System-on-Chip (SoC) designs, the whole design

process where ADLs were applied changed. Processor models are not only used for

processor architecture development anymore, but also became an important part of

heterogenous platform models on a SoC design flow, aiding on the application of

the new ESL design methodologies.

Aiming this new horizon for their languages, ADL designers have to increase

not only the expression power of their languages, making them capable of modeling

the modern complex architectures, but also the modularity and portability of their

generated simulators, making them suitable for ESL-based design flows. The most

important aspect on this matter is the communication capabilities of those simu-

lators. An ADL will only be adopted by a platform designer if its simulators are

easily integrated in their platform models, which implies in making them capable of

communicating with other hardware modules.

Although it has always been possible to integrate ArchC models into SystemC

platform models (since they were written in SystemC), this was not an easy task up

to version 1.6. Users had to manually alter the automatically generated simulator to

include a communication channel so as to connect the processor model to a wrapper

or to another SystemC module directly.

As the demand from researchers interested in virtual platforms had grown sub-

stantially and since the so-called Transaction Level Modeling (TLM) style had risen

as the most promising alternative for platform modeling in SystemC-based ESL en-

vironments, ArchC developers decided to add a feature to their automatically gen-

erated functional simulators from version 2.0 on: the capability of declaring TLM

ports. As a result, it became pretty simple for platform designers to use those simu-

lators as processor models within an ESL environment by modeling communication
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in the TLM style. Besides, the new feature also granted the capability of modeling

an interrupt system.

Chapter 3 will introduce the TLM concept and its application in SystemC, and

Chap. 5 will present an in-depth discussion on the platform integration capabilities

of ArchC-generated simulators by means of a few platform design examples.
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Chapter 3

Transaction Level Modeling

Sandro Rigo, Bruno Albertini, and Rodolfo Azevedo

This chapter introduces the Transaction Level Modeling (TLM) design methodol-

ogy. Its main goals are to explain the main concepts behind TLM and to show that

it can work very well in SystemC-based designs. That is why we discuss the strong

relation between SystemC and TLM and emphasize the main features in the Sys-

temC TLM 2.0 standard. As in Chap. 2, the intention is not to serve as a substitute

for the reference manual. Instead, our focus is to provide a good understanding on

the underlying ideas and to show how to put TLM to work in SystemC-based plat-

form designs. (For details, the interested reader should refer to the OSCI TLM 2.0

User Manual.) We finalize this chapter with a simple platform example using the

SystemC TLM standard. Chapter 5 will present more elaborate platform examples

by relying on the main concepts and elements introduced by Chaps. 2–4.

3.1 Introduction

As already discussed in Chap. 1, the rise of SoCs caused a paradigm shift on system

design flow. The TLM methodology was created in the search for a new paradigm

that could allow design representation at an intermediate level of abstraction be-
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tween paper specification and RTL models. That is why TLM plays nowadays an

important role in ESL technologies.

The first key concept behind TLM is that unnecessary details should be avoided

at the early phases of the design flow. By using a high-level of abstraction, TLM

leads to a large gain of simulation speed and modeling productivity, which enables

new design methodologies. The main goal of a TLM model is to be a common

reference model for teams working on software, hardware, architecture analysis,

and verification. For this reason, it should appear very early in the design flow,

preferably right after HW-SW partitioning.

The second key concept is the separation between computation and communi-

cation. In a TLM representation, modules contain concurrent processes that exe-

cute their behaviors, whereas communication is performed through packet exchang-

ing among these modules, which are called transactions. Communication is imple-

mented inside channels, hiding the protocols from the modules, but exposing their

interfaces.

Although TLM is language independent, SystemC fits perfectly its style of repre-

sentation by allowing adequate levels of abstraction and by providing elements for

supporting separate computation and communication. The connection between Sys-

temC and TLM has grown so strong in the recent years that OSCI created a special

TLM Working Group to define the SystemC TLM standard [7].

A TLM-based representation fits well in an ESL design flow. As discussed in

Chap. 1, there are some requirements that a design representation should meet to be

suitable for ESL design, which are:

• provide a unique representation of the platform architecture;

• capture parameters handled by hardware-dependent software;

• allow advance performance evaluation on the target platform;

• allow advance power evaluation on the target platform;

• rely on encapsulation of processor models;

• rely on encapsulation of non-programmable components;

• support platform debugging;

• enable virtual prototyping.

All these requirements were considered in the principles of TLM [2], as we are

going to further discuss in the following sections.

The key to successful TLM usage is a good architecture planning. Designers

should partition hardware into key pieces and model every piece as a SystemC mod-

ule. TLM is then used to model communication between those modules by using

high-level function calls to replace the expensive and slow RTL signal-based com-

munication (which models every event on the system). For a full functional model

of the whole system, software is then integrated into the TLM platform. After proper

validation, the resulting TLM representation can become a golden reference model

for further phases of the design flow (e.g. RTL model validation).
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3.2 The Evolution Towards the OSCI TLM 2.0 Standard

Since its version 2.0 was released in 2001, SystemC has been enabling a TLM ap-

proach for model development. At that time, all the key language constructs for

enabling TLM, like channels, ports, and interfaces, were already available.

The basic hierarchical unit in SystemC is a module. Inside a module, the com-

putation is implemented by processes (methods or threads). Communication is im-

plemented through channels, which can appear in a variety of complexity levels.

A channel can be as simple as a wire or be hierarchically designed to comprise so-

phisticated communication mechanisms. Modules are interconnected through chan-

nels. Channels implement interfaces, which expose to the modules the methods

available to perform communication. Ports are the binding point between modules

and channels. Therefore, every transaction between two modules can be reduced to

the invocation of a function.

At certain point in the evolution of SystemC support for TLM, it became clear

that a commonly accepted standard would be required for the whole SystemC com-

munity so that software, hardware, and verification engineers could be able to

achieve the expected productivity levels. As a result, OSCI founded the so-called

TLM Working group (TLMWG) [7], which became responsible for the definition

of the envisaged standard. This group included representatives of several companies,

such as STMicrolectronics, Mentor Graphics, Cadence, and ARM, among others. In

2005, the 1.0 version of the TLM Standard was approved by OSCI.

Interoperability is a key factor to ESL design because it improves the chances of

in-house and third-party IP reuse for the building of virtual platform models. Unfor-

tunately, the experience proved that TLM 1.0 was not able to strongly promote TLM

model interoperability and did not offer a good balance between model development

time, speed, and accuracy.

TLM 1.0 had a set of functions to standardize both blocking and non-blocking

communication interfaces. However, there was no standard to define which data

structures (or class), would carry the data on transactions. Each designer was re-

sponsible for defining his own data structures to compose the packets transmitted in

each transaction. Each IP designer or provider ended-up creating its own data pay-

load format, which had a clear impact on IP module reuse. The usual solution was to

include a wrapper (or transactor) between two IPs in order to translate between the

different payload formats, thereby establishing the communication. This makeshift

not only increased the modeling effort, but also resulted in a penalty on simulation

performance.

Although interoperability was the main missing point in TLM 1.0, two additional

issues hampered its widespread adoption: there was no timing annotation mecha-

nism and there were some performance limitators. Time delays had to be imple-

mented by calls to the wait() method, which caused context switches and, as a

consequence, slowed down the simulation. Every transaction needed to pass its data

as value or const references, further increasing simulation times. To work around

those issues, designers had to rely on non-standard solutions. Therefore, interoper-

ability and model reuse were indirectly affected.
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As virtual platforms and TLM continued to grow in importance, specially in

performance analysis and design space exploration, the TLMWG kept working on

developing the libraries for TLM in SystemC. Its main goal was to make interopera-

ble TLM a reality for SystemC users. The 2.0 version of the SystemC TLM standard

was finally released in June 2008. The next section introduces its main functionali-

ties.

3.3 Main Features in the TLM 2.0 Standard

TLM 2.0 was developed with memory-mapped bus applications as its main target.

This type of application simulates communication and demands concurrent execu-

tion, which is achieved by means of several SystemC processes. Therefore, TLM

2.0 developers made clear that pure algorithmic models, those which can be sim-

ulated by a single thread and require no inter-process communication, were not a

main concern on the definition of the standard [5]. Since designers could rely on

TLM 1.0 core interfaces to model purely untimed systems, TLM 2.0 focused on

providing proper interfaces for two different coding styles: loosely-timed (LT) and

approximately-timed (AT) [4].

As clearly stated in the OSCI’s TLM 2.0 User Guide, users could come up with

other coding styles, but these two must be enough to model any use case to which

the development of TLM 2.0 was targeted for. The choice between LT and AT styles

depends on what is expected from the models, as we are soon going to discuss

in detail; a good rule of thumb is that, for starting a new design from scratch, it

is advisable to first build a LT model, and then refine it towards an AT model if

necessary.

LT descriptions include enough details to model the communication, but without

considering timing issues. On the one hand, this level of detail is sufficient to model

interrupts and to allow the booting of an OS over a multicore platform. On the

other hand, it is not suitable for bus development due to the lack of timing. LT

platform models are capable of modeling functionalities for components, debug,

and memory maps. This makes them suitable for functional verification, and early

software development. LT models were usually referred as Programmer’s View (PV)

models in former SystemC and TLM literature [1–3]. The LT coding style is better

supported by the blocking transport interface in the TLM 2.0 standard.

Approximately-timed (AT) models present every process running locked to the

simulation time. These models are suitable for architecture exploration and per-

formance analysis, since they can include resource contention and arbitration. In

the AT coding style, transactions are broken into multiple phases, marked by tim-

ing points. The TLM 2.0 standard supports timing annotation and multiple timing

points by means of its non-blocking transport interface. It is important to mention

that, although user-defined protocols may have multiple timing points, to be fully

compatible with the generic payload, the designer must be aware that the base pro-

tocol has four points marking the beginning and end of both the request and the

response.
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Since time penalties increase with timing accuracy, designers usually start from

a full LT model (no timing at all). As the design evolves, modules with some time

accuracy are added, either via decomposition (model partition) or through refine-

ment (adding details to make it more precise). To keep the simulation speed benefits

offered by LT abstraction, different teams use different platforms and load time-

accurate models only when and where needed. This generates an hybrid model,

where parts with no notion of time are synchronized with accurate parts through the

use of time wrappers or explicit synchronization.

Every SystemC model that uses TLM must assume the role of an initiator or a

target. An initiator is responsible for assembling the payload and sending a request

packet through a function call. A target receives the payload and acknowledges it,

returning the call. After processing the data, the target sends a response packet, if

applicable. Modules that are both an initiator and a target are modeled as they where

one or another at a given time, even if the time between a send and a receive is null.

An example of such a module is the so called interconnect modules, whose sole

functionality is to transfer transactions packets from its initiator socket to its target

socket, without modifying its contents.

To become an initiator or a target, a SystemC module only needs to supply a

connection socket and implement one of the four interfaces, according to the type

of communication desired. The four transport interfaces are the blocking and non-

blocking versions for forward, initiator to target, and backward, target to initiator,

communication. These interfaces may be specialized.

The blocking version is used with LT models. In this case, target modules receive

a request packet and must return a response packet. Initiators stay blocked until the

target returns from the call.

The non-blocking interface is more suitable to AT models. The protocol is di-

vided into phases, where both initiator and target take actions. The initiator module

begins a communication in the same way as it would do with a blocking transport

interface, but the target module may return without a response, freeing the initiator

to continue execution. The initiator should accept target packets, that should be the

response to the initiator request. The modeling structure for both types are shared

and unified. This allows the same model to be used as blocking or non-blocking

without changes. Both methods allow timing annotation.

As stated before, all communication using TLM is composed by a payload that

is transferred from one side to another by means of a function call. To promote full

interoperability among IP modules, TLM 2.0 has a fixed guideline for payloads.

It is called generic payload, and contains fields for a command, an address, data,

byte enables, and response status. These attributes were intentionally chosen to suit

memory-mapped bus models.

It could be argued that this packet structure is too restrictive. In practice, only a

few transaction-level models are likely to need something different from a masked

data/address request-response packet. Therefore, it is largely enough to model the

use cases which the standard was targeted for. Nevertheless, it is still possible to de-

sign specific structures for protocols that demand specialized attributes, by extend-

ing the generic payload. However, the less specialized the structure, the higher the
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Fig. 3.1 Relation between interoperability and payload customization

amount of modules compatible with a given design, thereby promoting interoper-

ability and reuse, as clearly stated in Chap. 6 of the OSCI TLM-2.0 User Manual [5].

This notion is illustrated in Fig. 3.1, which shows three alternatives recommended

by OSCI (for designing transaction and protocol types classes for TLM models),

and their increasing level of interoperability.

TLM 2.0 defines a generic payload and three kinds of interfaces: transport, DMI,

and debug. Interfaces were developed to readily supply most, if not all, cases of

communication. As discussed above, the transport interface consists of a request-

reply protocol with blocking and non-blocking versions.

The DMI interface is also called by LT models. DMI returns a pointer to the

requested memory location, thereby allowing a faster access, bypassing all commu-

nication stack, including function calls. Concurrency is solved by reserving memory

chunks for exclusive access and invalidating those pointers after use.

The debug interface gives an initiator access to memory without delay or side-

effect. It passes a normal payload to memory, which is instantly processed. It is not

intended for regular usage, since a memory access seems as if it never happened.

This interface can be called from both LT and AT models.

In order to better understand the interoperability issues involving the three alter-

natives shown in Fig. 3.1, let us first take a look at the so-called combined inter-

faces [5] in TLM 2.0. Figure 3.2 shows an excerpt of the declaration code that may

be found in the tlm_fw_bw_ifs.h file in the TLM 2.0 distribution released by

OSCI in 2008. First, the protocol types’ structure is declared (Line 1). Notice that

it uses the standard generic payload for data transfer and also the standard phase

type for controlling transaction phases. This protocol type classes are passed to

the TYPES argument in the interfaces declaration (Line 8). The combined inter-

faces group the transport, DMI, and debug interfaces. Figure 3.2 shows the forward

combined interface declaration using the types defined in the structure above. The

backward interface declaration follows the same pattern.

Temporal decoupling is allowing SystemC processes to run ahead of the simu-

lation time, which consists in controlled by the SystemC scheduler. The idea is to

speed up simulation by allowing processes to run up to the point where one needs
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1 s t r u c t t l m _ b a s e _ p r o t o c o l _ t y p e s

2 {

3 t ypede f t l m _ g e n e r i c _ p a y l o a d t l m _ p a y l o a d _ t y p e ;

4 t ypede f t l m _ p h a s e t l m _ p h a s e _ t y p e ;

5 } ;

6

7 / / The forward i n t e r f a c e :

8 t empla te <typename TYPES = t l m _ b a s e _ p r o t o c o l _ t y p e s >

9 c lass t l m _ f w _ t r a n s p o r t _ i f :

10 p u b l i c v i r t u a l t l m _ f w _ n o n b l o c k i n g _ t r a n s p o r t _ i f <typename

TYPES : : t l m _ p a y l o a d _ t y p e , typename TYPES : :

t l m _ p h a s e _ t y p e > ,

11 p u b l i c v i r t u a l t l m _ b l o c k i n g _ t r a n s p o r t _ i f <typename TYPES

: : t l m _ p a y l o a d _ t y p e > ,

12 p u b l i c v i r t u a l t lm_fw_d i r ec t_mem_i f <typename TYPES : :

t l m _ p a y l o a d _ t y p e > ,

13 p u b l i c v i r t u a l t l m _ t r a n s p o r t _ d b g _ i f <typename TYPES : :

t l m _ p a y l o a d _ t y p e >

14 { } ;

Fig. 3.2 Combined interfaces declaration. (Extracted from OSCI TLM 2.0 distribution)

synchronization or interaction with another process, also reducing the scheduling

overhead by decreasing the amount of context switches and events. Temporal de-

coupling only makes sense if associated to the LT coding style, since AT models

have a much stronger dependency between timing and data.

A typical case that creates a synchronization barrier is a process reaching a point

where there is a dependency on a value that comes from another process. This value

may not have been updated yet. In a SystemC temporal decoupled implementation

the process has two choices: accepting the current value or returning the control to

the SystemC kernel. The first option allows the process to continue the simulation,

but is up to the process to determine if no harm will be done to the correctness of

the model.

3.4 A Small TLM Platform Example

To conclude this chapter, we exemplify TLM usage by means of a small platform

example. This platform is composed by a PowerPC (PPC) processor model (down-

loaded from the ArchC website [6]), a memory, and a debug IP. The PPC processor

runs a “hello world” program stored on a TLM memory. The debug IP does nothing

until the end of the simulation, when it dumps the memory’s content to a file just

before simulation ends. This platform can be viewed at Fig. 3.3.

Let us first analyze the processor side. The ArchC processor simulator can be

generated with an internal memory or a TLM port to connect to external stor-

age devices. In this example, we are going to connect it to a memory IP using
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Fig. 3.3 Platform example: a PPC processor, a memory, and a debug IP

1 AC_ARCH ( powerpc ) {

2

3 ac_wordsize 3 2 ;

4

5 ac_ t lm_por t MEM: 8M;

6

7 ac_regbank GPR : 3 2 ;

8

9 ac_reg SPRG4 ;

10 ac_reg SPRG5 ;

11 . . .

12 }

Fig. 3.4 Modified PowerPC architecture description in ArchC

the TLM 2.0 transport interface. In order to do that, we just have to change the

line ac_mem MEM:8M; to ac_tlm_port MEM:8M on powerpc.ac file, as

showed in Fig. 3.4 (Line 5). This will generate a simulator instrumented with a

TLM communication port using the same name as the memory but with a _port
suffix, becoming MEM_port. The value (8 MB) is used internally by ArchC to

instantiate the memory. For TLM, it should still be specified for bound checking

purposes. Also, the stack is supposed to be at the end of the memory.

This port is a generic payload initiator socket, as already discussed in this chapter.

The ArchC simulator generator will translate the declaration into a generic payload

initiator socket declaration included in the final PPC model. It can be seen among

the storage device declarations in Fig. 3.5 (line 3), which is a piece of code extracted

from the powepc_arch.cpp file generated by ArchC.

This initiator socket should be binded to any TLM 2.0 compatible target socket,

in this case implemented by the (simple_memory) class depicted in Fig. 3.6

(line 19). The simple_memory memory class implements three TLM interfaces:

blocking transport (line 20), DMI (line 21), and debug (line 22). We discuss how

these interfaces are used later in this section.

Figure 3.7 shows a piece of code extracted from the (sc_main) function im-

plementation for this platform. The platform components are instantiated in lines 7
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1 / / ! S t o r a g e D e v i c e s .

2

3 t l m _ u t i l s : : s i m p l e _ i n i t i a t o r _ s o c k e t <ppc > MEM_port ;

4

5 ac_memport <powerpc_parms : : ac_word , powerpc_parms : :

ac_Hword > MEM;

6 ac_regbank <32 , powerpc_parms : : ac_word , powerpc_parms : :

ac_Dword > GPR;

7 ac_reg <powerpc_parms : : ac_word > SPRG4 ;

8 ac_reg <powerpc_parms : : ac_word > SPRG5 ;

9 ac_reg <powerpc_parms : : ac_word > SPRG6 ;

10

11 . . .

Fig. 3.5 TLM port declaration inside the PPC architecture resources description

and 8. The connection between the processor and the memory is accomplished by

the port binding in line 10.

Every time it is invoked, the PPC will issue a memory request using either the

blocking transport protocol or DMI. The first access is always done through the

blocking transport interface. The memory answers the request using the same packet

assembled by the processor. Figure 3.8 shows the generic payload packet declaration

in line 1 and assembling in lines 3 to 10. The package declaration follows the generic

payload standard, without any customization. The packet assembling is used by the

processor to assemble a read request, although a write request is very similar. The

key points in this packet are:

• data lenght: it is always 4 bytes in ArchC;

• streaming width: must have the same size as the data (ArchC does not use burst

requests);

• byte mask: set to zero to indicate non-usage;

• the last two fields (which are mandatory): set to no DMI and no response
yet.

In our example, the memory IP supports DMI, so the field set_dmi_allowed
that must be set to false by the processor will be set to true when the mem-

ory returns. This is a hint to the processor that the memory supports DMI and that

it should be used to speed up simulation. The answer is expected to change to a

tlm::TLM_OK_RESPONSE or an error pattern (there are a few patterns specified

by OSCI and the user may generate his own error code).

After receiving the response, the processor verifies if DMI is supported and is-

sues a request to a DMI pointer as shown in Fig. 3.9. The structure dmi_packet
is declared as private to the processor class by means of a tlm::tlm_dmi vari-

able. The method get_direct_mem_ptr is implemented by the memory and is

supposed to return true if a valid pointer to the beginning of the memory is avail-

able at dmi_packet.get_dmi_ptr(). For now on, the processor can access

the memory directly using memcpy instead of sending new TLM requests.



34 S. Rigo et al.

1 # i f n d e f SIMPLE_MEMORY

2 # d e f i n e SIMPLE_MEMORY

3

4 # d e f i n e SC_INCLUDE_DYNAMIC_PROCESSES

5

6 # i n c l u d e "systemc"
7 using namespace s c _ c o r e ;

8 using namespace s c _ d t ;

9 using namespace s t d ;

10

11 # i n c l u d e "tlm.h"
12 # i n c l u d e "tlm_utils/simple_initiator_socket.h"
13 # i n c l u d e "tlm_utils/simple_target_socket.h"
14

15 c lass simple_memory :

16 p u b l i c sc_module {

17

18 p u b l i c :

19 t l m _ u t i l s : : s i m p l e _ t a r g e t _ s o c k e t <simple_memory > s o c k e t ;

20 void b _ t r a n s p o r t ( t lm : : t l m _ g e n e r i c _ p a y l o a d& t r a n s ,

s c _ t i m e& d e l a y ) ;

21 bool g e t _ d i r e c t _ m e m _ p t r ( t lm : : t l m _ g e n e r i c _ p a y l o a d&

t r a n s , t lm : : t lm_dmi& dmi_da ta ) ;

22 unsigned i n t t r a n s p o r t _ d b g ( t lm : : t l m _ g e n e r i c _ p a y l o a d&

t r a n s ) ;

23 void d i r e c t _ w r i t e ( u i n t 3 2 _ t ∗ d , u i n t 3 2 _ t a ) ;

24 simple_memory ( sc_module_name module_name , i n t k =

5242880 , i n t t = 0 ) ;

25 ~simple_memory ( ) ;

26 p r i v a t e :

27 u i n t 8 _ t ∗memory ;

28 s c _ t i m e l a t e n c y ;

29 unsigned i n t s i z e ;

30 } ;

31

32 # e n d i f /∗SIMPLE_MEMORY∗ /

Fig. 3.6 A memory implementing transport, DMI, and debug interfaces

Moreover, the processor implements a method invalidate_direct_
mem_ptr, which is used by the memory in the same way as the processor requested

the DMI pointer, but to invalidate any pointer that the processor may be holding. In

such platform, this cannot occur because the processor is the only master module.

However, in a concurrent environment with more than one master, this invalidation

could occur. DMI can be allowed with restrictions like read-only, or can be allowed

only for a few address ranges, not for the full memory. In this example, the memory

allows access to everything, as depicted in Fig. 3.10. If time accuracy is being used,

the property latency hints the processor to annotate the corresponding timing.
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1 i n t sc_main ( i n t ac , char ∗av [ ] )

2 {

3 simple_memory∗ MEM;

4 powerpc∗ ppc ;

5

6 / / I n s t a n t i a t e components

7 memory = new simple_memory ("mem" , 8688608) ;

8 ppc = new powerpc ("processor" ) ;

9

10 ppc−>MEM_port . b ind ( MEM−>s o c k e t ) ;

11

12 . . .

13 }

Fig. 3.7 Module instantiation and TLM port binding

1 t lm : : t l m _ g e n e r i c _ p a y l o a d ∗ p a c k e t = new t lm : :

t l m _ g e n e r i c _ p a y l o a d ;

2

3 packe t −>set_command ( t lm : :TLM_READ_COMMAND ) ;

4 packe t −>s e t _ a d d r e s s ( a d d r e s s ) ;

5 packe t −> s e t _ d a t a _ p t r ( r e i n t e r p r e t _ c a s t <unsigned char∗>(&

d a t a ) ) ;

6 packe t −> s e t _ d a t a _ l e n g t h ( 4 ) ;

7 packe t −>s e t _ s t r e a m i n g _ w i d t h ( 4 ) ;

8 packe t −>s e t _ b y t e _ e n a b l e _ p t r ( 0 ) ;

9 packe t −>s e t _ d m i _ a l l o w e d ( f a l s e ) ;

10 packe t −> s e t _ r e s p o n s e _ s t a t u s ( t lm : :

TLM_INCOMPLETE_RESPONSE ) ;

Fig. 3.8 TLM generic payload usage

1 i f ( packe t −>i s _ d m i _ a l l o w e d ( ) )

2 {

3 d m i _ s u p o r t e d = MEM_port−>g e t _ d i r e c t _ m e m _ p t r ( ∗ packe t ,

dmi_packe t ) ;

4 }

Fig. 3.9 TLM DMI request

The memory IP implements b_transport, which is the method that will an-

swer the processor’s read and write requests and transport_dbg, which imple-

ments the debug interface. The blocking transport is very simple, consisting only in

verifying if the packet is a read or a write (using the same field set by the proces-

sor) and doing a proper memcpy to or from the internal vector that represents the

memory structure itself.
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1 bool simple_memory : : g e t _ d i r e c t _ m e m _ p t r ( t lm : :

t l m _ g e n e r i c _ p a y l o a d& packe t , t lm : : t lm_dmi& dmi_packe t )

{

2 dmi_packe t . a l l o w _ r e a d _ w r i t e ( ) ;

3 dmi_packe t . s e t _ d m i _ p t r ( r e i n t e r p r e t _ c a s t <unsigned char

∗ >( &memory [ 0 ] ) ) ;

4 dmi_packe t . s e t _ s t a r t _ a d d r e s s ( 0 ) ;

5 dmi_packe t . s e t _ e n d _ a d d r e s s ( s i z e −1 ) ;

6 dmi_packe t . s e t _ r e a d _ l a t e n c y ( l a t e n c y ) ;

7 dmi_packe t . s e t _ w r i t e _ l a t e n c y ( 2∗ l a t e n c y ) ;

8 r e t u r n t r u e ;

9 }

Fig. 3.10 TLM DMI response

The debug interface uses the same generic payload as b_transport, but takes

no time at all. The debug IP at this platform issues a read request using the debug

interface to a specific memory position every time it is scheduled. The PPC proces-

sor writes a true value at this position just before program ending, so that the debug

IP monitors the memory position for a change and, afterwards, use the same debug

interface to read every address from the memory and dump its value to a file, before

exiting.

The reader is strongly encouraged to try to reproduce this small platform example

using SystemC and TLM. This exercise will provide the proper background for a

complete understanding of the more advanced platform-based design concepts to be

discussed in depth throughout this book (especially in Chap. 5 and Chap. 7).
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Chapter 4

ArchC Model Design Handbook

Rodolfo Azevedo and Sandro Rigo

4.1 What Is a Model?

Before starting a processor description, one must define the required abstraction

level. In this section, we are going to briefly describe some of the possible abstrac-

tion levels and the implications of designing in such levels. The designer must also

be concerned about his ability to refine the model from a higher to a lower abstrac-

tion level, that is the direction we are going to describe the levels:

Untimed Level In this level, all the instructions are executed correctly, but there

is no time information. It is equivalent to take one cycle to execute each in-

struction, but even this single cycle is not taken into account, only the number

of instructions executed which can be easily converted to time if the first as-

sumption is correct. It is good to start coding at this level to tackle the processor

complexity before you start inserting time to it. The ArchC models at this level

are called functional models and they can run almost all application-level soft-

ware. To run Operating Systems, you will need some external timers and a way

to couple them to the untimed model, probably refining your processor to the

Loosely Timed Level.

Loosely Timed Level Some time information is embedded into the model. Al-

though the information is not very precise, you can get some time statistics and

can also start coupling the processor to timed systems without much problems.

To get such time information you can, usually, add some counters to your model

and some wait clauses in your SystemC code to enable that. Usually, this coun-

ters are incremented by every instruction using the instruction average time, not
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the real time executed for every instance. This time information can be enough

for most of the requirements unless you have a complex timing requirement

external to your model that you need to follow (like a full timed bus). Notice

that adding wait clauses slow down the model execution time. To reduce the

slowdown, you can also use the TLM 2.0 quantumkeeper to call wait once

every N cycles. If you want more precision, you need to go to the Timed Level.

Timed Level Although you cannot synthesize this model, it must behave exactly as

a real circuit implementation regarding to time. Every instruction must have its

precise time assigned and the model should advance the simulation time accord-

ingly. You can couple this model with a full timed bus and control an external

peripheral completely timed using software instructions to make the delays. The

so called ArchC cycle-accurate model is in this abstraction level. The next step

is to go to synthesis by using the RTL level.

RTL If you have your model at the RTL level, it means that you have a synthesiz-

able representation of it. You can use EDA tools to transform your model into

hardware.

ArchC can help designers in the first three mentioned levels and this chapter will

guide them mostly in the first level, giving tips for the other two. As examples, we

are going to use already available models that can be freely downloaded from the

ArchC web site at http://www.archc.org.

ArchC defines versions for processor models taking into account their stability

level. Table 4.1 shows the version number each model will pass and how to cer-

tify this versions. The first and second digits are reserved for the roadmap, the last

one can be used to indicate intermediate development between two versions. This

roadmap indicates that, to aquire stability, the model must execute a huge amount

of instructions in an organized fashion, and generate the correct result. The minimal

stability expected for a model to run big programs is version 0.5.0.

The next sections will guide the designer through the model development process

following this roadmap.

4.2 Start Modeling—Architectural Information

The fist step to model a processor is to describe the architectural resources that it

will use like register file, isolated registers, memories, and caches. In this part we

will also describe some processor features like endian, wordsize, and the way to

inform a second file that contains the instruction set description. All these infor-

mations are described inside the first ArchC file, in the AC_ARCH block. For more

information about syntax, you should refer to Chap. 2 and the ArchC Language

Reference Manual (LRM) [5].

The first step into modeling is to gather some information about the processor.

Table 4.2 gives a brief overview of the information needed for the processors we are

going to use in this Section. Figure 4.1 shows the code for the PowerPC AC_ARCH
description. Notice that, AC_ARCH requires one parameter that is the processor

name. This name will prefix several filenames and variables in the ArchC simulator.

http://www.archc.org
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Table 4.1 ArchC model development roadmap

Version Stage Benchmark Certifies that

0.0.x ac_isa and AC_ARCH – –

0.1.0 ac_isa and AC_ARCH declared – All instructions are

correctly decoded

0.2.0 Instruction behavior – Individual behaviors

are working properly

0.3.0 ac_isa and AC_ARCH completed acStone All programs passed

successfully

0.4.0 ABI design finished – Individual system calls

are working properly

0.5.0 Model description completed Mediabench All selected programs

passes successfully

0.6.0 Testing. . . MiBench (small version) All selected programs

passed successfully

0.7.0 Testing. . . MiBench (large version) All selected programs

passed successfully

1.0.0 Final test SPEC 2000 All selected programs

passed successfully

Table 4.2 Architectural characteristics of the processors

Characteristic PowerPC MIPS SPARC 8051 PIC16F84 ArchC keyword

Word Size 32 32 32 8 8 ac_wordsize

Register Bank Size 32 32 256/32 – 256 ac_regbank

Simulator Memory 8 MB 5 MB 5 MB 64 KB 5 MB ac_mem

Endian big big big – – set_endian

1 AC_ARCH(powerpc) {
2 ac_wordsize 32;
3 ac_mem MEM:8M;
4 ac_regbank GPR:32;
5 ac_reg MSR;
6 ARCH_CTOR(powerpc) {
7 ac_ isa("powerpc_isa.ac");
8 set_end ian("big");
9 };

10 };

Fig. 4.1 Excerpt of the PowerPC AC_ARCH description

From Table 4.2, one can see the PowerPC word size, which is the default size for

all ArchC registers, operators, and memory operations. This is declared in Line 2 of
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1 AC_ARCH(i8051){
2 ac_cache IRAM:255;
3 ac_cache IRAMX:64K;
4 ac_icache IROM:64k;
5 ac_wordsize 8;
6 ARCH_CTOR(i8051) {
7 ac_ isa("i8051_isa.ac");
8 set_end ian("big");
9 };

10 };

Fig. 4.2 Excerpt of the 8051 AC_ARCH description

Fig. 4.1. This description is inside the AC_ARCH block (Line 1) as all the others in

this section.

Although the memory is not expected to be inside the processor, ArchC allows

the designer to declare a memory in AC_ARCH for standalone processor simulator.

By doing so, it is possible to use the processor to run your code before integrat-

ing it to the platform and build a bigger simulator. The memory declaration is done

by the ac_mem clause, as shown in Line 3 of Fig. 4.1. This is the typical way of

declaring memories for Von-Neumman architectures, where both data and instruc-

tions reside in the same memory. The M suffix in the memory size specify MB. For

Harward architectures, you have two options: You can declare two different mem-

ories using ac_mem and ArchC will use the first as the instruction memory. The

second alternative is to use the ac_icache for instructions and the ac_dcache
or ac_cache for data. You can use a syntax identical to the ac_mem as shown in

Fig. 4.2 Lines 2–4.

TIP: For ArchC, memory is always byte addressed, if the processor requires other kind of

addressing, it is up to the designer to provide such interface in the instruction set imple-

mentation.

The next step is to declare the register banks and the standalone architecture

registers. PowerPC has 32 registers of 32 bits, since the ac_wordsize has already

been defined, it is only necessary to declare the general purpose registers (GPR) as

in Line 4 in Fig. 4.1. The 8051, showed in Fig. 4.2, does not have an internal register

file; it declares only a small external memory that holds a few data registers together

with peripheral registers. The SPARC processor (Fig. 4.3) is a little different because

it has a big register file with a register window. In this case, the register bank (RB)

was declared with 256 registers (Line 3 of Fig. 4.3) and a smaller version (REGS)

was declared for processor optimization (Line 4).

The standalone architecture registers are declared using the ac_reg keyword.

There are three different kind of ac_reg declarations, the first and simplest one is

to declare a register using the architecture word size. Line 5 of Fig. 4.1 shows the

declaration of the Machine State Register (MSR) as a 32-bit register. The second

alternative can be found in the Fig. 4.3, Lines 6–8, where three registers are declared

with different sizes, like the Current Window Pointer (CWP) declared with 8 bits,

using the C++ template syntax. The third and last way consists in applying a specific
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1 AC_ARCH(sparcv8){
2 ac_mem DM:5M;
3 ac_regbank RB:256;
4 ac_regbank REGS:32;
5 ac_reg npc;
6 ac_reg<1> PSR_icc_n;
7 ac_reg<8> WIM;
8 ac_reg<8> CWP;
9 ac_wordsize 32;

10 ARCH_CTOR(sparcv8){
11 ac_ isa("sparcv8_isa.ac");
12 set_end ian("big");
13 };
14 };

Fig. 4.3 Excerpt of the SPARCv8 AC_ARCH description

field format to the register. In this case, the register will be broken in several fields

to be accessed individually. To specify the format, replace the register size with the

format’s name. Formats can be declared with the keyword ac_format, which will

be described in the Sect. 4.3.

One must notice that the Program Counter is not declared. ArchC automatically

declares ac_pc for every design and also fetches the instruction pointed by this

register when necessary. Since the SPARC architecture requires two program coun-

ters (npc is the other one) to handle branch delay-slots, npc is declared in Line 5

of Fig. 4.3.

To preserve the look & feel of SystemC, ArchC also requires a block that looks

like a constructor for the architecture. This block is the ARCH_CTOR, presented in

Line 6 of Fig. 4.1. It takes the processor name as a parameter. The name must match

the AC_ARCH name.

Inside the ARCH_CTOR, there are, basically, two different commands. The first,

ac_isa specifies the file that describes the Instruction Set (Line 7 of Fig. 4.1). The

second specifies the architecture endian with the keyword set_endian. All the

examples mentioned used big-endian. The 8051 has word size 8, so it could accept

both endians.

After declaring the AC_ARCH section, the user must prepare the Instruction Set

description in the file specified by ac_isa. The next section will cover the Instruc-

tion Set declaration.

4.3 Declaring Instructions

For now on, we will focus on the instruction declarations.

The Instruction Set must be described in the file specified in the ac_isa clause

of the AC_ARCH file as mentioned before. Figure 4.4 shows an excerpt of the Pow-

erPC ISA file. To better explain it, two formats are described in Table 4.3 and Ta-

ble 4.4. Every field in the format must appear in the declaration. The format size is
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Table 4.3 PowerPC instruction type I1 fields format

Field Name opcd li aa lk

Field Size 6 24 1 1

Signed/Unsigned U S U U

Syntax %opcd:6 %li:24:s %aa:1 %lk:1

Table 4.4 PowerPC instruction type X14 fields format

Field Name opcd rs 0x00 rb xog 0x00

Field Size 6 5 5 5 10 1

Signed/Unsigned U U U U U U

Syntax %opcd:6 %rs:5 0x00:5 %rb:5 %xog:10 0x00:1

1 AC_ISA ( powerpc ) {

2 ac_format I1="%opcd:6 %li:24:s %aa:1 %lk:1" ;

3 ac_format X14="%opcd:6 %rs:5 0x00:5 %rb:5 %xog:10 0x00:1" ;

4 ac_format XO1="%opcd:6 %rt:5 %ra:5 %rb:5 %oe:1 %xos:9 %rc:1" ;

5 ac_instr <I1 > b , ba , b l , b la ;

6 ac_instr <XO1> add , add_ , adc , mullw , divw , subf ;

7 add . set_decoder ( opcd=31 , oe=0 , xos=266 , rc =0) ;

8 add_ . set_decoder ( opcd=31 , oe=0 , xos=266 , rc =1) ;

9 addc . set_decoder ( opcd=31 , oe=0 , xos=10 , rc =0) ;

10 . . .

11 }

Fig. 4.4 Excerpt of the PowerPC ac_isa description

the sum of the sizes of all the fields. Both examples have 32-bit sizes. For architec-

tures that have variable-size instructions, each different size must have, at least, one

format associated to it, as shown in Fig. 4.5. The fields default to unsigned values.

If a field is signed, as field li in Table 4.3, it must be explicitly specified.

Some instruction formats have constant fields, like X14 in Table 4.4, where

0x00:5 represents a 5-bit field with all bits 0. Non-zero values can be declared

in the same way. Figure 4.4 shows the ac_format clauses for these formats.

TIP: You can only repeat a field name in a different format if the field has the same size

and is positioned in the same bit offset in the instruction. This means that field names must

represent exactly the same piece of every instruction they appear. This restriction exists to

simplify the instruction decoder description. In this way, it is common to have some fields,

usually the immediates, suffixed with a number indicating its size (like imm22 and imm7
in Fig. 4.6).

There are some situations where the format must be broken in two just because

one or two different fields. ArchC provides an alternative that allows the creation

of only one format with overlapping fields. One example is shown in Line 8 of

Fig. 4.6. The alternative fields are placed inside brackets and separated by a vertical
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1 AC_ISA(i8051)
2 {
3 ac_helper
4 {
5 sc_uint<17> pc;
6 i n t reg_indx;
7 unsigned long pc_stability;
8 unsigned long old_pc;
9 unsigned long curr_pc;

10 };
11 ac_format Type_3bytes = "%op:8 %byte2:8 %byte3:8";
12 ac_format Type_2bytes = "%op:8 %byte2:8";
13 ac_format Type_OP_R = "%op1:5 %reg:3";
14 ac_format Type_IBRCH = "%page:3 %op2:5 %addr0:8";
15 ac_format Type_1byte = "%op:8";
16 ...
17 }

Fig. 4.5 Excerpt of the i8051 ac_isa description

bar character. In the example, the format Type_FT can have the fields r2a and

rs2 or r2b and imm7.

After all the formats have been declared, it is time to declare the instruc-

tions. ArchC requires that instructions with different decoding bits or formats to

be declared separately. Instructions are declared using a C++ template style as in

Lines 5–6 of Fig. 4.4. The names and number of instructions per line are just re-

lated to organization issues. It is good to have instruction names related to the in-

struction mnemonic but you usually will not be able to always use the mnemonic,

mainly when the processor has several instructions with the same mnemonic as in

Lines 11–12 of Fig. 4.6.

TIP: Beware of the C++ reserved words that can not be used as instruction names, mainly

the logic operators and, bitand, compl, not_eq, or_eq, xor_eq, and_eq, bitor,

not, or, xor.

This file may also contains declarations required to automatically retarget the

binary tools for this architecture. This is the focus of the Chap. 6 and will not be

explained here.

Similar to AC_ARCH, the ac_isa block also has a constructor called ISA_
CTOR. Inside it, there should be the decoding sequence for all the instructions. For

ArchC, a decoding sequence is a sequence of fields and values that uniquely iden-

tifies each instruction. ArchC uses this information to create a decoding tree that

will be embedded into the simulators. Lines 7–9 of Fig. 4.4 shows the way the

set_decoder keyword must be used.

The decoding tree can be seen as a chainned sequence of switch statements

in C, where the sequence of fields specified in the set_decoder clauses. Fig-

ure 4.7 gives an overview of how the decoding tree can be implemented. In the

figure, every three capital letter values should be changed by the respective field
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1 AC_ISA(sparcv8){
2 ac_format Type_F1="%op:2 %disp30:30";
3 ac_format Type_F2A="%op:2 %rd:5 %op2:3 %imm22:22";
4 ac_format Type_F3A="%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %asi:8

%rs2:5";
5 ac_format Type_F3B="%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %simm13

:13:s";
6 /* format for trap instructions */
7 ac_format Type_FT="%op:2 %r1:1 %cond:4 %op2a:6 %rs1:5
8 %is:1 [%r2a:8 %rs2:5 | %r2b:6 %imm7:7]";
9 a c _ i n s t r <Type_F1> call;

10 a c _ i n s t r <Type_F2A> nop, sethi;
11 a c _ i n s t r <Type_F3A> add_reg, sub_reg;
12 a c _ i n s t r <Type_F3B> add_imm, sub_imm;
13 a c _ i n s t r <Type_FT> trap_reg, trap_imm;
14 ...
15 }

Fig. 4.6 Excerpt of the SPARC ac_isa description

1 swi tch (op) {
2 case XXX: swi tch (op2) {
3 case ZZZ:
4 case WWW:
5 case KKK:
6 d e f a u l t: // unknown instruction
7 }
8 case JJJ: swi tch (op3) {
9 case ZZZ:

10 case WWW:
11 case KKK:
12 d e f a u l t: // unknown instruction
13 }
14 d e f a u l t: // unknown instruction
15 }

Fig. 4.7 Simplified version of a decoder implementation

value. This sort of decoding tree usually gets implemented as jump tables by the

compilers improving the speed compared to a sequence of if statements.

To improve simulation performance, ArchC uses a decoder cache to handle the

already decoded instructions. The decoder cache works as follows: everytime one

instruction is accessed for the first time, it is decoded using the aforementioned

steps. After that, the simulator stores the decoded data structures in a cache for

future use. The next time the same memory address is requested, the decoded data

structure will be available.

This method has a problem when dealing with self morphing code. In this case, it

is recommended to use the acsim option --no-dec-cache or -ndc to disable

the decoder cache. Unfortunatelly, the simulator speed will be slower in this case.
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Since the designer writes the decoder sequences instruction by instruction, it is

common to make some mistakes and, in that case, the simulator will run different

instructions or complain about an undeclared instruction. The following are the most

common bugs:

• The designer mistypes one of the field values in the set_decoder and two

different fields get the same decoding sequence. In this case, although implemen-

tation dependant1, the simulator will decode the instruction as the first declared

one.

• The designer declares one instruction with a decoder sequence that is a subset of

another instruction. Although this could not be technically described as a bug, the

result can be different depending on the sequence of the instructions declaration.

As can be seen in Fig. 4.7, the current implementation may select the instruction

with the smaller decoding sequence instead of the longer one. To solve that, you

should declare the instruction with the longer decoder sequence first.

• The designer declares two instructions with different decoder sequences with

fields in different orders. This can be better explained in an example: suppose

two instructions with 3 fields in the set_decoder, say field A, B, and C. Sup-

pose the first instruction asks for a decoding sequence of A = 7, B = 10, C = 15

and the second one asks for A = 7, C = 15, B = 10. Although the decoding se-

quences are different, they refer to the same fields with the same values and only

one of them will be decoded. Designers are recommended to use the fields in the

same sequence as they appear in the format declarations.

acsim has a command line option called --dumpdecoder, or -dd, which

dumps the decoder sequence the simulator will use. The output of this option can

help the designer in detecting what is going on with the simulator.

4.4 Implementing Instructions

After the user has created the first two .ac files, it is now time to execute the

ArchC simulator generator, called acsim. acsim is responsable for reading those

files and creating a set of source files implementing a simulator. We will cover these

files now. For all these examples, we are going to use the PowerPC processor. So,

the two input files are named: powerpc.ac and powerpc_isa.ac.

Makefile.archc This file contains the rules to compile the simulator. After you

created all the required files, the user needs only to execute make -f Make-
file.archc and he will get the simulator compiled.

1When we say that a feature is implementation dependant, it is because there is no formal definition

for such situation and we are referring to the current implementation as the common behavior.

Particularly in the decoder sequence, a different approach to decode instructions could make this

order infeasible.
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1

2 //!Behavior executed before simulation begins.
3 void ac_behavior( begin ){};
4

5 //!Behavior executed after simulation ends.
6 void ac_behavior( end ){};
7

8 //!Generic instruction behavior method.
9 void ac_behavior( instruction ){};

10

11 //! Instruction Format behavior methods.
12 void ac_behavior( I1 ){}
13 void ac_behavior( D1 ){}
14 void ac_behavior( X1 ){}
15

16 //!Instruction lb behavior method.
17 void ac_behavior( add ){}
18

19 //!Instruction lbu behavior method.
20 void ac_behavior( addc ){}

Fig. 4.8 Excerpt of the generated powerpc_isa.cpp.tmpl template file

main.cpp.tmpl The ArchC simulator can be used both as a standalone applica-

tion or as an instruction set simulator inside a platform. This is a template file for

using ArchC as a standalone simulator. It is inside this file that you will find the

sc_main function implementation. The Makefile described above will make

a copy of this file to main.cpp the first time it is executed so that the user

remains with the template file and can change anything he wants in the copy.

powerpc_isa.cpp.tmpl This is another template file, the main focus of this

section. In this file the user must fill the behavior for all the instructions. ArchC

does not write over any user files, that is why this file ends with .tmpl. To start

coding, first rename it to powerpc_isa.cpp. We will cover more of this file

contents latter on this section.

powerpc.cpp This is the main PowerPC simulator file. This is where the instruc-

tion decoder and the main execution loop are declared.

powerpc_arch.cpp This is where the architectural resource elements, like register

bank, memories, etc., are declared.

powerpc.H This is the main simulator header file. Inside this file the main simu-

lator class is declared, with exactly the same name as the processor.

powerpc_isa.H Declares all methods related to the instruction behaviors.

.H files The other .H files are header files for their respective .cpp containing

glue code that can be moved to other places in the future.

The next step, after the first call to acsim, is to rename the powerpc_isa.
cpp.tmpl to powerpc_isa.cpp and start editing it. Figure 4.8 shows a piece

of this file.

For every instruction declared in the ac_isa, there must be a behavior imple-

mentation here. The behavior is the sequence of code required to execute the in-
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1 void ac_behavior(instruction)
2 {
3 ac_pc += 4;
4 }

Fig. 4.9 Global behavior for the PowerPC model

struction, reading data from the register bank, calculating the values, and writing

the results as an example.

TIP: It is recommended that you declare all the instructions before start writing the behav-

iors so that you can get the full template file. In the case you forget any instruction or decide

to include new instructions latter, the template file will be generated again but you should

not rename it over the modified file. Instead, just copy & paste the necessary lines from the

template to your final file.

As mentioned before, ArchC has a hierarchical view for the instruction imple-

mentation. So, for each instruction, three behavior methods are executed: the global

behavior, that is the same for every instruction, the type behavior, that is the same

for every instruction of the same type, and the instruction behavior itself.

The global behavior for PowerPC is shown in Fig. 4.9. There is only one line

that increments the Program Counter (ac_pc) by 4 units every instruction. Usually

this method has a very simple implementation, most of the time comprising of only

incrementing the ac_pc. But there are cases where more code is necessary, like in

the ARM model, shown in Fig. 4.10.

The ARM processor has a common field in every instruction, named cond,

which must be checked in order to execute the instruction. As an example, a value

14 in this field means that the instruction must be always executed. If the value is 0,

the instruction will be executed only if the Z (zero) flag is set. In order to allow deci-

sions in these situations, ArchC has a method named ac_annul which cancel the

instruction being executed, not calling the other two behavior methods. In Fig. 4.10,

the ac_annul is shown in Line 29. This same construction can be used in the Type

behavior to cancel instruction behavior.

The Type behavior is a sequence of code that is executed for all instructions that

have the same format. Most of the processors do not require such behavior. It is

common on cycle-accurate models, which are out of the scope of this book.

The instruction behavior contains all the code required to complete the instruc-

tion functionality. The user is free to use any valid SystemC code inside the method.

Function calls and external (global) variables are also allowed although we recom-

mend the usage of helper functions, described latter in this section.

TIP: The user should be advised to prefer using native C types instead the SystemC ones

whenever possible since the C types simulate faster.

Figure 4.11 shows a simple implementation of an add instruction in the Pow-

erPC. Figure 4.12 shows the same code with an alternative syntax. To execute an

add, it is necessary to read registers ra and rb, add their values and write the re-

sult to register rt. The second syntax is easier to understand since the register bank

is accessed as a vector. The first syntax is more similar to the SystemC coding style.
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1 void ac_behavior( instruction ) {
2 execute = f a l s e;
3 swi tch(cond) {
4 case 0: i f (flags.Z == t r u e) execute = t r u e; break;
5 case 1: i f (flags.Z == f a l s e) execute = t r u e; break;
6 case 2: i f (flags.C == t r u e) execute = t r u e; break;
7 case 3: i f (flags.C == f a l s e) execute = t r u e; break;
8 case 4: i f (flags.N == t r u e) execute = t r u e; break;
9 case 5: i f (flags.N == f a l s e) execute = t r u e; break;

10 case 6: i f (flags.V == t r u e) execute = t r u e; break;
11 case 7: i f (flags.V == f a l s e) execute = t r u e; break;
12 case 8: i f ((flags.C == t r u e)&&(flags.Z == f a l s e))
13 execute = t r u e; break;
14 case 9: i f ((flags.C == f a l s e)||(flags.Z == t r u e))
15 execute = t r u e; break;
16 case 10: i f (flags.N == flags.V) execute = t r u e; break;
17 case 11: i f (flags.N != flags.V) execute = t r u e; break;
18 case 12: i f ((flags.Z == f a l s e)&&(flags.N == flags.V))
19 execute = t r u e; break;
20 case 13: i f ((flags.Z == t r u e)||(flags.N != flags.V))
21 execute = t r u e; break;
22 case 14: execute = t r u e; break;
23 d e f a u l t: execute = f a l s e;
24 }
25 ac_pc += 4;
26 RB.w r i t e(PC, ac_pc);
27

28 i f (!execute)
29 ac_annul();
30 }
31 }

Fig. 4.10 Global behavior for the ARM model

1 void ac_behavior(add)
2 {
3 GPR.w r i t e(rt, GPR.read(ra) + GPR.read(rb));
4 }

Fig. 4.11 Behavior for the PowerPC add instruction (version 1)

Both alternatives are equivalent. The PowerPC add instruction will be executed as

this sequence of three method calls:

1. ac_behavior(instruction)
2. ac_behavior(D1)
3. ac_behavior(add)

Figure 4.13 shows how to load data from memory to implement a load byte in-

struction. In this case, the MEM is accessed with the method read_byte to read a

byte from an effective address. Notice that the behavior checks to see if the source
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1 void ac_behavior(add)
2 {
3 GPR[rt] = GPR[ra] + GPR[rb];
4 }

Fig. 4.12 Behavior for the PowerPC add instruction (version 2)

1 void ac_behavior(lbz)
2 {
3 i n t ea;
4 i f (ra != 0)
5 ea = GPR[ra] + (s h o r t i n t) d;
6 e l s e

7 ea = (s h o r t i n t) d;
8 GPR[rt] = (unsigned i n t) MEM.read_byte(ea);
9 };

Fig. 4.13 Behavior for the PowerPC lbz instruction

1 void ac_behavior(begin)
2 {
3 REGS[0] = 0; //writeReg can’t initialize register 0
4 npc = ac_pc + 4;
5

6 CWP = 0xF0;
7 }

Fig. 4.14 SPARC behavior for begin of simulation

register is zero and, case positive, the register is not added to the ea variable. This

happens because the PowerPC specifies that register 0 must have always the value 0.

This check is usually not necessary for compiled code. Another alternative imple-

mentation is to not allow the GPR[0] to be written.

There are two other behavior methods that are called at special times, the begin
and end behaviors. The PowerPC model uses the first to setup the stack pointer.

The SPARC model (Fig. 4.14) uses it to clear register 0 (Line 3), to setup the npc
register (Line 4), and to setup the CWP (Line 6).

The end behavior is usually used to print statistics or final results from the model

for debugging purposes.

To implement some instructions, the user may find it useful to declare other func-

tions or variables external to the models. The main problem with such external dec-

larations is that they may be misused when more than one processor model is ex-

ecuted at the same time, as in a multicore simulator. To solve this problem, ArchC

has an alternative declaration way, using helper functions and variables.

The helper block is declared inside the ac_helper construct in the ac_isa
file. Since every processor in ArchC is a class, the ac_helper makes everything

inside the block as members of the processor class. This solves the problem men-
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1 ac_helper {
2 sc_uint<17> pc;
3 i n t reg_indx;
4 unsigned long pc_stability;
5 unsigned long old_pc;
6 unsigned long curr_pc;
7 };

Fig. 4.15 Helper variables declared in the i8051 processor

1 acsim powerpc.ac -abi
2 make -f Makefile.archc
3 powerpc.x --load=hello

Fig. 4.16 Command lines required to build a PowerPC simulator and run a binary program

tioned before, allowing more than one instance of the same processor to be instan-

tiated at the same time. Figure 4.15 shows a sample code from the i8051 processor

using ac_helper to declare some auxiliary variables necessary to the processor

model.

Most of the time, the variables declared in the ac_helper clause can also be

declared as registers inside the processor with the ac_reg clause. They are, usually,

necessary when they need to be of a specific type that is not going to be explicitly

declared by ArchC.

Since helper functions are members of the processor class, they can directly ac-

cess all processor resources like memory, register bank, etc., without having to re-

ceive them as parameters.

4.5 Running the Simulator

After the previous steps, it is now time to create and generate the simulator for the

first time. The simplest command lines to generate and run a simulator for PowerPC

are shown in Fig. 4.16. Line 1 shows how to compile the PowerPC model and create

the SystemC simulator. The -abi option indicates that the simulator will emulate

the operating system ABI, that will be detailed in Sect. 4.7. The result will be a set

of SystemC files and a Makefile. Line 2 shows how to build the simulator and Line 3

shows how to run it passing a binary program called hello and, optionally, a few

arguments to this program after the program name.

TIP: Since the make command requires a Makefile and not Makefile.archc, the

user will have to use the -f option to specify the correct file. It is possible to rename

Makefile.archc to Makefile to simplify the command line. But, every time the user

runs acsim, it will recreate Makefile.archc. A common solution to this is to create

a soft link from Makefile.archc to Makefile using the Linux ln command (ln -s
Makefile.archc Makefile).
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Table 4.5 Command line options

Long Short Description

- -abi-included -abi Indicate that an ABI for system call emulation was provided

- -debug -g Enable simulation debug features: traces, update logs

- -delay -dy Enable delayed assignments to storage elements

- -dumpdecoder -dd Dump the decoder data structure

- -help -h Display this help message

- -no-dec-cache -ndc Disable cache of decoded instructions

- -stats -s Enable statistics collection during simulation

- -verbose -vb Display update logs for storage devices during simulation

- -version -vrs Display ACSIM version

- -gdb-integration -gdb Enable support for debbuging programs running on the simulator

- -no-wait -nw Disable wait() at execution thread

1 0 01bce789 0 0 019203819
2 10 0 0 0 0

Fig. 4.17 Sample HEX file

The ArchC simulator accepts several command line options, each of them with a

long and small format. Table 4.5 shows the available options to generate the simu-

lator and their meanings.

ArchC simulators implement two different program loaders. The most common

is the ELF [6] loader, with which the user can load files directly from the compiler

output. ELF is, most of the time, the best option for ArchC simulators. But, some-

times, there is no software toolset for the target architecture. In this case, the HEX

file must be used. HEX is a very simple file format, composed of lines with ad-

dresses and values. Figure 4.17 shows a sample HEX file as an example. Every line

starts with the address, in hexadecimal, followed by a set of processor words to be

loaded in that and in the subsequent addresses. Notice that the values are processor

words, if the processor has 32-bit words, then these values will be considered 32-bit

words. There is no limit in the number of values in each line. In case of address

overlap from different lines, the loader will write all the values in sequence. This

can be useful to configure a peripheral in a platform. The initial Program Counter

value is 0 (zero), so the simulator will start at that address.

When the user does not have a toolset, he probably will not have an operating

system call emulator to stop the simulator. The simplest and easiest way to stop

the simulator in this situation is to jump to outside the memory declared in the

AC_ARCH section. If the Program Counter points to an address outside the system

memory, the simulator will stop warning about it.
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Fig. 4.18 GDB remote

simulator interface

4.6 Debugging the Model—First Steps

After describing all the instructions, or a set of instructions big enough to allow

program execution, the model should be ready to run some code, as explained in the

previous section. Sometimes there will be bugs spread through the code that need to

be detected and solved. This section will describe how to model an interface from

the generated simulator with the GNU GDB [3] debugger. This interface allows the

designer to use an already available GDB and connect it to the simulator to debug

the program running on it. Usually, the first set of programs to be run will be the

acStone suite, a benchmark used to debug models, which will be described at the

end of the section.

4.6.1 Using the GDB Interface

Figure 4.18 shows how the GDB interface must be used with the ArchC simulator.

Four steps are required, the first three are shown in the figure and the fourth is a

command to be issued to GDB:

1. Run the simulator with the target binary. The simulator must be created with

-gdb option. After startup, the simulator will pause waiting for GDB.

2. Open GDB and connect to the simulator. Use the command target remote
localhost:5000 to make the default connection. The first two keyworks say

that GDB should consider a remote simulator and the localhost:5000 is the

socket port to connect.

3. Load the program into GDB. Although the program is already loaded in the sim-

ulator, you need to load it again into the GDB. The program should be compiled

with debug information.

4. Command the simulator from inside the debugger with GDB commands. Usu-

ally, you should first set a breakpoint in main() and then go on simulating your

program step-by-step.
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1 i n t powerpc::nRegs(void) {
2 r e t u r n 140;
3 }

Fig. 4.19 GDB-interface method to return the number of registers in the architecture

4.6.2 Implementing the GDB Interface

The simulator–GDB interface is a socket connection where the commands come

from GDB and the simulator executes and returns the answers. Instead of imple-

menting all the lower level interface, the processor designer needs only to give

some information about the processor model and the ArchC will generate all the

underlying infrastructure. The required information should be implemented in a

file called <processor_name_gdb_funcs.cpp> (for PowerPC, it is called

powerpc_gdb_funcs.cpp). In this file the user must implement methods that

are included in the processor main class, to:

• Inform the number of registers available in the architecture.

• Return a register value given a register number.

• Set a register value given a register number and the value.

• Return a memory word given a memory address.

• Set a memory word given a memory address and the word value.

The following source code snippets are based on the PowerPC processor but the

code is very similar between architectures.

Figure 4.19 shows the nRegs method implementation. This method must return

the number of registers available in the architecture based on the GDB point of

view. GDB sees all the registers as a single big register file. Each register number is

a different register, no matter if one can be an integer and another can be a floating

point register.

For PowerPC, this information can be obtained from the GDB header file called

ppc-tdep.h inside the gdb directory of the GDB source tree. An excerpt of

this file is shown in Fig. 4.20. Notice that the constant PPC_NUM_REGS contains

the total number of registers, which is 140 as shown in Fig. 4.19. In the PowerPC

specific case, this number has been increased recently after the inclusion of the Cell

SPE support.

Figure 4.21 shows the read_reg method implementation. This method re-

ceives a register number, using the GDB single register file convention, and must

return the register value. The write_reg method, shown in Fig. 4.22 is very sim-

ilar, except for writing instead of reading a register.

The mem_read (Fig. 4.23) and mem_write (Fig. 4.24) methods are very sim-

ple to implement. They must read and write a memory word from the processor

memory structure. Usually, for processors with only one global memory, these meth-

ods have only one line each. Although some processors require the memory address

to be aligned, it is usually not necessary to check for alignment here because GDB

does it, if necessary, before asking for a memory word.
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1 /* Register number constants. These are GDB internal
register

2 numbers; they are not used for the simulator or remote
targets.

3 Extra SPRs (those other than MQ, CTR, LR, XER, SPEFSCR)
are given

4 numbers above PPC_NUM_REGS. So are segment registers and
other

5 target-defined registers. */
6 enum {
7 PPC_R0_REGNUM = 0,
8 PPC_F0_REGNUM = 32,
9 PPC_PC_REGNUM = 64,

10 PPC_MSR_REGNUM = 65,
11 PPC_CR_REGNUM = 66,
12 PPC_LR_REGNUM = 67,
13 PPC_CTR_REGNUM = 68,
14 PPC_XER_REGNUM = 69,
15 PPC_FPSCR_REGNUM = 70,
16 PPC_MQ_REGNUM = 71,
17 PPC_SPE_UPPER_GP0_REGNUM = 72,
18 PPC_SPE_ACC_REGNUM = 104,
19 PPC_SPE_FSCR_REGNUM = 105,
20 PPC_VR0_REGNUM = 106,
21 PPC_VSCR_REGNUM = 138,
22 PPC_VRSAVE_REGNUM = 139,
23 PPC_NUM_REGS
24 };

Fig. 4.20 Excerpt from GDB source code file ppc-tdep.h defining the register numbers

1 ac_word powerpc::reg_read( i n t reg) {
2 unsigned i n t n;
3 i f ((reg >= 0) && (reg < 32))
4 r e t u r n GPR.read(reg);
5 e l s e {
6 swi tch (reg) {
7 case 96:
8 n = ac_resources::ac_pc;
9 break;

10 ...
11 d e f a u l t:
12 n = 0;
13 }
14 r e t u r n n;
15 }
16 }

Fig. 4.21 GDB-interface method to read a register
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1 void powerpc::reg_write( i n t reg, ac_word value) {
2 /* general purpose registers */
3 i f ((reg >= 0) && (reg < 32))
4 GPR.w r i t e(reg,value);
5 e l s e {
6 swi tch (reg) {
7 case 96:
8 ac_resources::ac_pc = value;
9 break;

10 ...
11 d e f a u l t:
12 /* Register not implemented */
13 break;
14 }
15 }
16 }

Fig. 4.22 GDB-interface method to write a register

1 unsigned char powerpc::mem_read(unsigned i n t address) {
2 r e t u r n ac_resources::IM->read_byte(address);
3 }

Fig. 4.23 GDB-interface method to read a memory word

1 void powerpc::mem_write(unsigned i n t address, unsigned char

byte) {
2 ac_resources::IM->write_byte(address, byte);
3 }

Fig. 4.24 GDB-interface method to write a memory word

With the GDB interface ready, it is time to compile the model and use the GDB.

For now on, we are assuming that you have a pre-build GDB for your architecture.

The next step is to embed the simulator hook in your simulator. To do so, you must

edit the main.cpp and include a call to the enable_gdb() method right after

the init() method call. Figure 4.25 shows how the code should be after the inclu-

sion of Line 9. Figure 4.26 shows how to create a simulator with the GDB methods.

It is now time to run the simulator and connect the GDB to it. Before doing so,

we will first describe the acStone benchmark, which is designed to check processor

models for correctness by using a set of 75 C source code files. ArchC is shipped

with acStone in its base directory. Every acStone program is numbered and the first

two digits represent the program category, while the other digit represents the pro-

gram sequence inside the category. Each category checks for some basic processor

funcionality, by testing a small set of instructions, as shown in Table 4.6.

Because acStone is written in C, it is necessary to have a C compiler to run it.

If you are designing a new architecture, you will probably not have the required

infrastructure at this moment. Nevertheless, you should look the acStone files trying
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1 i n t sc_main( i n t ac, char *av[])
2 {
3 //! ISA simulator
4 powerpc powerpc_proc1("powerpc");
5 # i f d e f AC_DEBUG
6 ac_trace("powerpc_proc1.trace");
7 # e n d i f

8 powerpc_proc1.init(ac, av);
9 powerpc_proc1.enable_gdb();

10 cerr << endl;
11

12 s c _ s t a r t(-1);
13 ...
14 }

Fig. 4.25 Change to the main.cpp file to support remote GDB connection

1 acsim powerpc.ac -abi -gdb
2 make -f Makefile.archc

Fig. 4.26 Compiling the model together with the GDB interface

Table 4.6 acStone program categories

Category Programs Description

00x 1 Empty program that returns 0

01x 8 Check constants with different data types

02x 7 Check type casts from/to different data types

03x 4 Check additions of different data types

04x 4 Check subtractions of different data types

05x 8 Check multiplications of different data types

06x 8 Check divisions of different data types

07x 5 Check boolean operators

08x 5 Check shifts of different data types

11x 9 Check if clauses

12x 6 Check loops

13x 4 Check function calls

14x 6 Check arrays with different data types

to mimic their contents in assembly in order to check your processor. You will notice

that, by using these simple set of files, you can clean the first big set of bugs in your

processor design.

For those who have a C compiler, acStone can help even more, because there are

also scripts to run the simulator, GDB, and check the results, as we will show latter.
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1 i n t main() {
2 r e t u r n 0;
3 /* Return 0 only */
4 }

Fig. 4.27 First program checked by acStone: 000.main.c. This program only returns 0

1 i n t main() {
2 signed char c;
3 c=0x55; /* After c is 85 */
4 /* Before c is 85 */ c=0xAA; /* After c is -86 */
5 /* Before c is -86 */ c=0x00; /* After c is 0 */
6 /* Before c is 0 */ c=0xFF; /* After c is -1 */
7 /* Before c is -1 */ c=0x80; /* After c is -128 */
8 /* Before c is -128 */ c=0x01; /* After c is 1 */
9 /* Before c is 1 */ c=0x7F; /* After c is 127 */

10 /* Before c is 127 */ c=0xFE; /* After c is -2 */
11 /* Before c is -2 */ r e t u r n 0; /* Return 0 */
12 }

Fig. 4.28 Second program checked by acStone: 011.const.c. This program checks signed
char constants

Figure 4.27 shows the simplest acStone program, 000.main.c, aimed at only

checking the basic runtime infrastructure required by programs in the architecture.

This simple program uses 89 instructions in total for PowerPC, from which 9 are

distinct instructions (bctr, bl, blr, li, lwz, mr, mtctr, stw, stwu). If differ-

ent parameters are considered different instructions, then there are 26 instructions.

If any of these 9 instructions has a serious bug, no PowerPC program can be run.

That is the philosophy behind acStone. If you find a bug running this program, you

will only need to check these 9 instructions.

Going further, let us consider the second acStone file is 011.const.c, shown

in Fig. 4.28. This source file is a little bigger, but you should notice a lot of com-

ments explaining what should happen before and after each instruction. By com-

piling 011.const.c, you generate 105 assembly instructions, from those 10 are

unique (the same 9 from 000.main.c plus stb) and are explored in a total of

34 different parameters. Notice that, by going incrementally, you will probably find

your bugs in the new instructions.

TIP: You can check the instructions in a program by using objdump or ask for ArchC to

dump the instruction statistics by creating your model with -s parameter.

We will use the 011.const.c file as an example for GDB execution together

with the acStone capabilities. The same approach can be used for any other com-

piled program. After compiling it with powerpc-elf-gcc and -ggdb option

(Line 1 of Fig. 4.29), you can run the program using the simulator (Line 2), which

will start and pause at Line 10. On another terminal, you should start GDB (Line 1
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1 $ powerpc-elf-gcc -ggdb 011.const.c -o 011.const.powerpc
2 $ powerpc.x --load=011.const.powerpc
3

4 SystemC 2.2.0 --- Jan 15 2009 14:41:31
5 Copyright (c) 1996-2006 by all Contributors
6 ALL RIGHTS RESERVED
7 ArchC: Reading ELF application file: 011.const.powerpc
8

9 ArchC: -------------------- Starting Simulation -------------
10 AC_GDB: listening to port 5000
11 AC_GDB: connected to port 5000
12 ArchC: -------------------- Simulation Finished -------------
13 SystemC: simulation stopped by user.
14 ArchC: Simulation statistics
15 Times: 0.01 user, 0.05 system, 621.92 real
16 Number of instructions executed: 34
17 Simulation speed: (too fast to be precise)

Fig. 4.29 Running and debugging 011.const.c through the simulator and GDB

of Fig. 4.30), ask it to load the binary program symbols2 (Line 9), connect to a re-

mote target (Line 11) and start debugging. As a result, on the other terminal, ArchC

should show that you have been connected (Line 11). On the GDB terminal, you

will, usually, start setting a breakpoint in your main function (Line 15) and ask the

debugger to continue running (Line 17). A set of step-by-step execution is shown

(starting on Line 22) and a display command (Line 24) to show the c variable after

each step will allow the user to compare the expected value, stated by comments

on acStone, with the real one. If any problem is found, you can check the refer-

ring assembly instructions. When the simulator reaches the end of the program, it

will finish and return to the terminal console. If you want to debug again, you must

restart the simulator.

To simplify even more the program checking task, acStone can help you to com-

pile it. To do so, you should use the Makefile.archc contained in its directory. Fig-

ure 4.31 shows the command and how to use it. Line 1 shows how to compile all

acStone programs to the PowerPC architecture by using the build rule of Make-
file.archc. The other two lines of Fig. 4.31 (Lines 2–3) must be run in different

terminals, the first will start one simulator for each acStone program and the second

will open a GDB for each program to control its simulator. The results will be saved

for future check.

When designing another processor model, it is recommended that you copy and

change those two scripts to point to your simulator. Since acStone uses C files, you

will only need to check for the versions of your compiler, debugger and simulator

2Although ArchC simulator has already load the binary file, it has not loaded the symbols that will

allow for source file debugging.
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1 $ powerpc-elf-gdb
2 GNU gdb 6.1
3 Copyright 2004 Free Software Foundation, Inc.
4 GDB is free software, covered by the GNU General Public

License, and you are
5 welcome to change it and/or distribute copies of it under

certain conditions.
6 Type "show copying" to see the conditions
7 There is absolutely no warranty for GDB. Type "show warranty

" for details.
8 This GDB was configured as "--host=i686-pc-linux-gnu --target

=powerpc-elf".
9 (gdb) file 011.const.powerpc

10 Reading symbols from 011.const.powerpc...done.
11 (gdb) target remote localhost:5000
12 Remote debugging using localhost:5000
13 0x00000000 in _start ()
14 warning: no shared library support for this OS / ABI
15 (gdb) break main
16 Breakpoint 1 at 0x10c: file 011.const.c, line 40.
17 (gdb) c
18 Continuing.
19

20 Breakpoint 1, main () at 011.const.c:40
21 40 c=0x55;
22 (gdb) n
23 43 /* Before c is 85 */ c=0xAA;
24 (gdb) display c
25 1: c = 85 ’U’
26 (gdb) n
27 46 /* Before c is -86 */ c=0x00;
28 1: c = -86 ’ ’
29 (gdb) n
30 49 /* Before c is 0 */ c=0xFF;
31 1: c = 0 ’\0’
32 (gdb) c
33 Continuing.
34

35 Program exited normally.
36 $

Fig. 4.30 Controlling the simulator execution from inside GDB

1 make -f Makefile.archc ARCH=powerpc build
2 run_simulator_powerpc.sh powerpc
3 run_gdb_powerpc.sh powerpc
4 check.sh powerpc

Fig. 4.31 Using acStone scripts
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1 Files 000.main.powerpc.out and data/000.main.data are identical
2 Files 011.const.powerpc.out and data/011.const.data are identical

3 Files 012.const.powerpc.out and data/012.const.data are identical
4 Files 013.const.powerpc.out and data/013.const.data are identical

5 Files 014.const.powerpc.out and data/014.const.data differ
6 ...

Fig. 4.32 Result of acStone scripts

which, in our case, are powerpc-elf-gcc, powerpc-elf-gdb, and pow-

erpc.x.

We will continue using 011.const.c as our example, the same actions hap-

pen to all other programs. First, Line 1 of Fig. 4.31 compiles it and creates

011.const.powerpc. The next line (2) will execute it through the powerpc.x

that we created previously. In another terminal, the next command (Line 3) will

open one GDB instance and use the commands in the file gdb/011.const.gdb

to control it. The output will be saved in the file 011.const.powerpc.out and

must be equal to data/011.const.data, which is the reference answer. The

Line 4 of Fig. 4.31 shows how to use the script to check the result. Figure 4.32

shows an excerpt of the result with correct results for the first 4 programs and an

error detected on the execution of 014.const.powerpc.

Besides acStone and its scripts, there are also other ArchC funcionalities that

may help to debug a model:

Dump the decoder This is the first step if you think that the instructions are not

being correctly executed. This can be done by using the -dd option from ac-

sim.

Detect correct instruction sequence Use the -g to generate program traces and

update logs for your processor. This helps to see the instruction sequence and

also what is happening after each instruction.

Debug inside the simulator Since your code is just a small piece of the simulator,

the best way to debug it is through the simulator source code. One very important

method to set breakpoint is the processor behavior class (for PowerPC, it is

powerpc::behavior inside the powerpc.cpp file). This method contains

the main simulator loop, which will fetch, decode and execute every instruction

in the program.

Debug your instructions After detecting a bug in a specific instruction, you can

set a breakpoint inside it and try to discover what is happening in its execution.

Be particularly careful with signed and unsigned values, usually this kind of

mistake takes a lot of debugging time.

Completely clean and recompile your model After reexecuting acsim with new

parameters, it is often recommended to clean and recompile the model so

as to avoid any problem with remaining files. The most affected file is the
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main.cpp, because ArchC does not create it directly but change a template

file called main.cpp.tmpl and maintain the other file if it exists. To fully

clean acsim generated files, use the distclean option to make.

4.7 Compiler and Operating System Support

Up to now, we have been using a pre-build gcc compiler for our architecture. This is

the simplest way of using it but there are times where you will need to create your

own compiler binary. If it is not your case, you can skip this section. In this section

we will only consider architectures supported by GCC. This means that if you are

designing a whole new architecture, you will have much more work to put GCC to

work for you.

There are several guides on making cross-compilers based on GCC3. We will

focus on the differences between those cross-compilers and the one required by

ArchC. While ArchC tries to maintain most of the processor ABI4, a few specific

architecture rules may be relaxed. Unless otherwise controlled, ArchC simulators

start executing from address 0 (the memory beginning), this is the first difference

noticed. Fortunately, there is a GCC option, -Ttext=0, to ask the linker to start

the program at address 0. In the beginning of your cross-compiler design, you will

also find useful the -nostdinc and -nostdlib options to ask GCC not to use

the standard include files nor the standard libraries. By using these options, you are

also skipping the _start function, which is where the program starts its execution.

To emulate the operating system, ArchC intercepts some function calls5 inside

one of the GCC standard C libraries, named Newlib. In this way, you can emu-

late one system call even if you are not using the same operating system and, for

designers, they only need to implement a few small methods in a similar way to the

GDB interface. But there are other methods to use operating system facilities inside

your simulator: you can emulate them intercepting the system call instruction,

or you can run a real operating system inside your simulator. We will not cover these

last two alternatives.

To make the ABI emulator, the user must:

1. Create the helper methods so that the simulator is able to read and write data

accordingly to the processor’s ABI;

2. Compile the ABI stub library for your architecture, and

3. Provide the startup file for the architecture.

3The ArchC website has one such guide.

4Application Binary Interface—this is the set of rules that controls how processor resources like

registers, memories should be used by software to implement function calls, stacks, etc.

5To use this feature, the -abi option must be passed to acsim.
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1 i n t powerpc_syscall::get_int( i n t argn)
2 {
3 r e t u r n GPR.read(3+argn);
4 }

Fig. 4.33 ABI emulator method to read an integer passed as a parameter to a function

1 void powerpc_syscall::set_int( i n t argn, i n t val)
2 {
3 GPR.w r i t e(3+argn, val);
4 }

Fig. 4.34 ABI emulator method to write an integer passed as a parameter to a function

4.7.1 The Helper Methods

To write the helper methods, the recommended procedure is to copy a sample file

for any other processor and change it accordingly to yours. For PowerPC, this file

is called powerpc_syscall.cpp. The first five methods are related to the way

your processor pass/receive parameters to/from functions. The next does the fixup

to return from system call and the last one moves the command line parameters

from the outside world to the simulated environment. We will cover each one in the

following paragraphs.

We are going to use the write function as example to explain the helper meth-

ods. It has 3 parameters, the first is the file descriptor to write data, the second

is a buffer containing the data to be written and the third is an integer represent-

ing the buffer size. This function prototype is ssize_t write(int fildes,
const void *buf, size_t nbyte).

To use the ABI emulator, a function stub for the write should be included

instead of the original function. This stub will only call the ArchC simulator that

will handle the write operation. To do that, it must know how to get the parameters

from the simulated environment. To read the first parameter, it is necessary to call

the get_int method. This function will receive 0 as parameter, meaning that the

simulator wants the first function parameter. Figure 4.33 shows how simple is to

implement it on PowerPC. It is just a matter of reading a register since PowerPC

passes parameters to function as registers6. Reading the third parameter is similar

to the first since it is also an integer. This method can be used to read integers,

pointers and characters. The opposite of get_int is set_int (Fig. 4.34), which

puts a value in the corresponding parameter. The string version of these functions

are shown in Fig. 4.35 and 4.36.

There is another function called set_buffer_noinvert (Fig. 4.37) that

does not consider the endian while copying the data.

6In a processor that parameters are passed in the stack, this function would need to calculate the

correct address, fetch the value and return it. This is why ArchC needs these helper functions, to

allow a wide range of processors implementations.
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1 void powerpc_syscall::get_buffer( i n t argn, unsigned char*
buf, unsigned i n t size)

2 {
3 f o r (unsigned i n t i = 0; i<size; i++, addr++) {
4 buf[i] = MEM.read_byte(addr);
5 }
6 }

Fig. 4.35 ABI emulator method to read a block of data passed as a parameter to a function

1 void powerpc_syscall::set_buffer( i n t argn, unsigned char*
buf, unsigned i n t size)

2 {
3 unsigned i n t addr = GPR.read(3+argn);
4 f o r (unsigned i n t i = 0; i<size; i++, addr++) {
5 MEM.write_byte(addr, buf[i]);
6 }
7 }

Fig. 4.36 ABI emulator method to write a block of data passed as a parameter to a function

1 void powerpc_syscall::set_buffer_noinvert( i n t argn, unsigned

char* buf, unsigned i n t size)
2 {
3 unsigned i n t addr = GPR.read(3+argn);
4 f o r (unsigned i n t i = 0; i<size; i+=4, addr+=4) {
5 MEM.w r i t e(addr, *(unsigned i n t *) &buf[i]);
6 }
7 }

Fig. 4.37 ABI emulator method to write a block of data passed as a parameter to a function,

ignoring endianess issues

The next method is return_from_syscall (Fig. 4.38) that does the fixup

code to allow a clean function return. By clean function return we mean that there

will not be any return from the function stub so that you must clean any necessary

registers, set the stack (if necessary), and set the program counter to the correct

place.

The last method to implement is related to program command line parameters.

This method, shown in Fig. 4.39, is responsable to receive all the simulator parame-

ters and pass it to the simulation environment so that the program being executed has

access to it. The set_prog_args is called after the simulator starts its execution

and receives argc and argv as parameters. The PowerPC model approach is to re-

serve 512 bytes at the end of the simulation memory space and copy the command

line parameters to there. After that it sets registers r3 and r4 to the parameters

received so that main receives the right parameters.
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1 void powerpc_syscall::return_from_syscall()
2 {
3 unsigned i n t oldr1;
4 unsigned i n t oldr31;
5 oldr1=MEM.read(GPR.read(1));
6 oldr31=MEM.read(GPR.read(1)+28);
7 GPR.w r i t e(1,oldr1);
8 GPR.w r i t e(31,oldr31);
9 ac_pc=LR.read();

10 }

Fig. 4.38 ABI emulator method to do the fixup required to return from a system call

1 void powerpc_syscall::set_prog_args( i n t argc, char **argv)
2 {
3 i n t i, j, base;
4 unsigned i n t ac_argv[30];
5 char ac_argstr[512];
6 base = AC_RAM_END - 512;
7 f o r (i=0, j=0; i<argc; i++) {
8 i n t len = strlen(argv[i]) + 1;
9 ac_argv[i] = base + j;

10 memcpy(&ac_argstr[j], argv[i], len);
11 j += len;
12 }
13 //Write argument string
14 GPR.w r i t e(3, AC_RAM_END-512);
15 set_buffer(0, (unsigned char*) ac_argstr, 512);
16 //Write string pointers
17 GPR.w r i t e(3, AC_RAM_END-512-120);
18 set_buffer_noinvert(0, (unsigned char*) ac_argv, 120);
19 //Set r3 to the argument count
20 GPR.w r i t e(3, argc);
21 //Set r4 to the string pointers
22 GPR.w r i t e(4, AC_RAM_END-512-120);
23 }

Fig. 4.39 ABI emulator method to put the command line parameters inside the processor memory

space to be read in the future

4.7.2 ABI Stub Library

ArchC already provides the ABI stub library so that you will only need to compile.

The library, named libac_sysc is available to download on the ArchC website.

Inside the library there is one file called ac_real_sysc where most of the stubs

are placed. Some other files contains functions that only return 0, they are not being

emulated. By compiling this file with your program you enable it to emulate the

operating system.

The best method to merge the programs is by creating a linker script and a new

spec file for it. Since the linker scripts vary too much from architecture to archi-
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1 .text
2 .align 2
3 .globl _start
4 _start:
5 bl main
6 bl _exit
7 .end _start
8 .align 6

Fig. 4.40 ac_start.s content

tecture, we are not covering it here. We encourage the designers to see the simple

linker version we provide with our models and check if it is possible to convert the

usually complex linker scripts in this way.

4.7.3 Startup File

This is, usually, the simplest part to implement. The startup file, also called

ac_start.smust be written in assembly code but has only to call main as shown

in Line 5 of Fig. 4.40 for the PowerPC processor. Remember that there is no need

to setup parameters since the simulator will call the set_prog_args method be-

fore starting executing. Sometimes you may want to setup stack pointer, the ArchC

PowerPC model does this on the initial behavior.

One question that usually arises is the order in which ABI support and GDB

interface are designed. Certainly, if you could have ABI implementation right at

the beginning, you would easily pass the acStone benchmark. Unfortunatelly, this is

exactly the motivation to have the GDB interface and run acStone at the beginning.

To run a program with any sort of I/O operation, you will need lots of instructions

that must be validated prior to execution. So, we recommend the order presented

here.

4.8 Refining the Model

Now that the basic infrastructure is already done, it is time to run big programs like

those found in Mediabench [2] and MiBench [1].

The selected Mediabench programs are adpcm, gsm, jpeg, mpeg, and peg-
wit. All those programs should be run with their original input and should generate

their expected output7. Both Mediabench and MiBench have README files to ex-

plain their usage. Each program may have some different command line parameters.

We will cover an example here.

7It is possible that a few programs in Mediabench and MiBench generate the output with different

endian compared to the standard one. This should be considered a valid result.
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1 $ powerpc.x --load=bin/cjpeg -dct int -progressive -opt -
outfile output/testout.jpeg input/testimg.ppm

2 $ powerpc.x -load=bin/djpeg -dct int -ppm -outfile output/
testout.ppm input/testimg.jpg

3 $ diff --brief --report-identical-file data/testout.jpeg
output/testout.jpeg

4 $ diff --brief --report-identical-file data/testout.ppm
output/testout.ppm

Fig. 4.41 Commands to execute and check Medibench jpeg program

Lines 1–2 of Fig. 4.41 show how to execute the jpeg encoder and decoder, re-

spectively, while Lines 3–4 show how to check if the result is correct. You must

notice that the execution is done by using the PowerPC simulator (powerpc.x);

the program is loaded as already mentioned and the rest of the command line is

passed directly to the simulated environment to be used by the encoder and decoder.

You must first run and check all selected Mediabench programs. After passing

this level, your model is considered as being at version 0.5, which represents a good

stability level.

The next step is to check the MiBench benchmark. Each program in MiBench

has two input sets: the small input set and the large input set. Version 0.6 considers

all the selected programs using the small input set and version 0.7 considers the

large input set.

The selected MiBench programs are divided into categories, as shown bellow:

Automotive: basicmath, bitcount, qsort, susan
Consumer: jpeg, lame
Network: dijkstra, patricia
Office: stringsearch,

Security: rijndael, sha
Telecomm: crc32, fft, adpcm, gsm

By passing all those programs using both small and large input sets, your model

can be considered stable enough to run any kind of program. Usually, at this mo-

ment, you will have run more than 100 billion instructions and checked for the

program results.

The next and last step is to run SPEC 2000 [4]. All SPEC programs must be run.

SPEC 2000 programs are very big and require a huge amount of simulation time so,

for the time being, no attempt was made to pass the processor models available on

the ArchC website through this benchmark.

4.9 Going Faster—How to Improve Your Simulator Performance

As already mentioned in Sect. 4.3, decoding all the instructions to be executed can

take a significative amount of simulation time. This overhead is highly minimized
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by using the decoder cache provided by ArchC. Whenever possible, you should

use the decoder cache, which is enabled by default on all ArchC simulators. Un-

fortunatelly, there are situations where the decoder cache cannot be used. The main

restriction arrives from the fact that the decoder cache, acts as a instruction cache

without any cache coherence mechanism, even with its own data memory. The two

most common situations you are going to face inconsistency are shown below. To

avoid inconsistency, you should create your simulator passing the -ndc option to

acsim.

Self-modifying code If your program write instructions to memory and try to ex-

ecute them, it will work the first time for each memory address. After that, the

instruction will be cached and will not be redecoded again.

Shared memory Any kind of external use of the processor memory can lead to a

inconsistency in the decoder cache. Usually, this happens when you are building

a platform, which will be shown in the next chapter.

There are also several compiler optimizations that can increase simulators per-

formance. Usually you may want to optimize both the program that will run on the

simulator to reduce the number of simulated instructions and the simulator itself

to execute more instructions per second. The ArchC simulator is designed to take

advantage of inline on its main simulator inside the processor behavior method (for

PowerPC, this method is implemented in the powerpc.cpp file). Some compilers

ask for the direct inclusion of the ISA implementation file (for PowerPC, pow-
erpc_isa.cpp) to inline all instructions behavior. This can be done easily by us-

ing a #include in the top of the main processor file (in our case, powerpc.cpp,

and removing the same file from the Makefile.

The instruction selection is also written in a switch so that the compiler can,

easily, use a branch table to select the correct option. These two optimizations can

significantly reduce simulation time. Unfortunatelly, not all compilers do this by

default. If this is your problem, you should try to find an optimization flag that ask

for branch tables and use it while compiling your model.

When running platforms with external devices, the set_instr_batch_size
method of all ArchC generated processor models can be used to tradeoff between

speed and accuracy. Chapter 5 will show this method in more details.

Almost all ArchC features take time even if they are not being used. If you want

a really fast simulator, avoid any command line option passed to acsim that is not

strictly necessary.
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Chapter 5

Building Platform Models with SystemC

Rodolfo Azevedo, Sandro Rigo, and Bruno Albertini

With the advent of highly complex designs in the embedded market in the last

decade, the available methodologies evolved so that development platforms are key

to design success. Since they are easier to set up and modify, virtual development

platforms are gaining ground over physical platforms, as a starting point for system

design.

This chapter focuses on building virtual platforms and shows examples on how

to do it with the help of languages, models, and tools presented in the previous

chapters. When building a virtual platform, some characteristics must be known in

advance, like memory mapping and interconnection structure, although they can be

changed later if needed.

On the one hand, modifying the address mapping of some peripherals is usually

a simple task, although it may require a few software changes. On the other hand,

changing the interconnection structure typically requires a big effort in rework-

ing the hardware representation of the platform but, usually, requires no changes

in the software counterpart, although it is likely to affect system performance. In

any case, some of the changes are made as the platform evolves and may include

moving pieces of software to hardware, which is much easier to implement in a

virtual platform than in a physical one (since the executable representation of a

non-programmable hardware component is usually a behavioral model that closely

resembles the piece of software to be implemented in hardware).
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1 AC_ARCH(myproc) {
2 ac_wordsize 32;
3 ac_mem MEM:4M;
4 ac_regbank GPR:32;
5 ARCH_CTOR(myproc) {
6 ac_ isa("myproc_isa.ac");
7 };
8 };

1 AC_ARCH(myproc) {
2 ac_wordsize 32;
3 a c _ t l m _ p o r t MEM:4M;
4 ac_regbank GPR:32;
5 ARCH_CTOR(myproc) {
6 ac_ isa("myproc_isa.ac");
7 };
8 };

Fig. 5.1 ArchC 2.0 TLM declaration for standalone and TLM memory model

We focus on processor-centric platforms by exploring designs with one or more

processors in a shared memory environment with a few extra peripherals. Our main

example is an MP3 player, which is organized by splitting its functionality into two

processors and two custom non-programmable hardware components. This chapter

helps the designer to describe the whole system, from the processor to every pe-

ripheral. The memory address mapping is described and the difference between the

memory view of a processor within a platform is distinguished from the memory

view of processor model used as a standalone instruction-set simulator (ISS), since

such difference can affect the compiler’s and the software view of the memory. We

also address endianness as a system issue and show how it can affect processor

modeling.

5.1 ArchC and TLM Interface

ArchC2.0 originally relies on the TLM version 1.0, which is being replaced by the

fresh new TLM 2.0. As TLM 2.0 is backward compatible with TLM 1.x, there is no

problem in using it while ArchC itself is under migration towards the new version.

Every ArchC processor model has a storage element connected to it, which rep-

resents an internal memory. This is done through the ac_storage class, which is

used by every processor model. When declaring such storage element in the ArchC

model file, the user can choose between ac_mem, ac_cache, or ac_tlm_port.

The first two allow the representation of inner memory when the processor model is

used as a standalone ISS. As a consequence, neither the memory representation can

be shared by another instance of a processor model, nor can it be used for memory

mapping I/O device registers.

Since it implements the same methods for read and write, despite the memory

model used, the TLM port can be viewed by a processor model as an ordinary stor-

age element. By employing the TLM port declaration, the processor model redirects

all memory accesses to that port through a TLM socket, which is instantiated into

the model as a blocking initiator transport interface.

Figure 5.1 shows the code for a generic standalone ISS (left side) and for a TLM

memory model ISS (right side). Line 3 is the key to enabling the ArchC TLM.

For standalone processor models, whose focus is on the ISS itself, developers can

use ac_mem, telling ArchC to generate an internal memory. To connect the ISS to



5 Building Platform Models with SystemC 73

1 /// ArchC TLM request type.
2 enum ac_tlm_req_type {
3 READ, WRITE, LOCK, UNLOCK, REQUEST_COUNT
4 };
5 /// ArchC TLM response status.
6 enum ac_tlm_rsp_status {
7 ERROR, SUCCESS
8 };
9 /// ArchC TLM request packet.

10 s t r u c t ac_tlm_req {
11 ac_tlm_req_type type;
12 i n t dev_id;
13 uint32_t addr;
14 uint32_t data;
15 };
16 /// ArchC TLM response packet.
17 s t r u c t ac_tlm_rsp {
18 ac_tlm_rsp_status status;
19 ac_tlm_req_type req_type;
20 uint32_t data;
21 };

Fig. 5.2 ArchC 2.0 TLM protocol

external modules, developers should simply change that line to ac_tlm_port. As

a result, ArchC generates an instrumented model that redirects all memory accesses

to the TLM port. However, it is necessary to preserve the name MEM, since it is

employed inside the module (e.g. ISA declaration). Developers should connect the

resulting processor model to the representation of a communication block, which

can be a simple TLM memory or a complex bus. The definition of a TLM boundary

(e.g. 4 MB in the example) is used to allocate the stack when the application does

not provide one and to detect segmentation faults if the ISS tries to access invalid

memory locations. Example of connections are provided in Sect. 5.2.

All processor read and write requests directed to the TLM socket are associated

with a payload, which consists of a request or response packet. The available TLM

interface is the blocking transport interface, which only allows a request-response

protocol. When the ISA simulator does a memory request, ArchC creates a re-

quest packet containing the respective address and calls the slave transport func-

tion through the TLM channel. The slave module assembles and returns a response

packet containing the requested data.

The format of the ArchC packet is shown in Fig. 5.2. The request types can be

an ordinary read/write access, a bus locking/unlocking action, or simply a counting

request to emulate bus timing. Response packets admit only two types: success or

error. Since request and response packets are different, the packet structure is clearly

not homogeneous.

In the request packet, dev_id is required by some buses and data is used for

interrupt purposes. With TLM 2.0, these structures should change to merge both

packets within a single structure.
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1 c lass ac_tlm_mem :
2 p u b l i c sc_module,
3 p u b l i c ac_tlm_transport_if {
4 p u b l i c:
5 sc_export <ac_tlm_transport_if> target_export;
6 ...
7 ac_tlm_rsp transport(const ac_tlm_req &request) {
8 ac_tlm_rsp response;
9 swi tch(request.type) {

10 case READ: // Packet is a READ one
11 response.status = readm(request.addr,

response.data);
12 break;
13 case WRITE: // Packet is a WRITE
14 response.status = writem(request.addr, request.data);
15 break;
16 d e f a u l t:
17 response.status = ERROR;
18 break;
19 }
20 r e t u r n response;
21 }
22 ...
23 };

Fig. 5.3 ArchC 2.0 TLM slave example

Figure 5.3 shows part of an ArchC 2.0 TLM-compatible memory representation.

Key implementation aspects include the specialization of the interface at Line 3, the

TLM port declaration at Line 5, and the transport function at Line 7. That function

is invoked when the processor performs a request. It opens the request packet, as-

sembles a response packet (declared at Line 8) and returns it to caller. The actual

work of accessing the data structure that emulates a memory (in this case a plain

vector omitted for simplicity) is performed by a pair of internal functions, readm
and writem (which are also not shown for simplicity). Those functions can be used

to annotate time or to wait for some simulation time, so as to emulate a real memory

behavior.

5.2 Platforms with ArchC

To simplify the ArchC usage on platforms, it is recommended to start using the

ArchC Reference Platform (ARP). ARP is nothing more than a way of organizing

all the software required to build the platform in a directory tree with global config-

uration where needed. The list below shows the directories available:

• bin: It contains the available ARP utilities (to be described latter).

• ip: Here are kept the available non-programmable platform components.

• is: It contains the available interconnection structures (e.g. buses, NoCs).
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• platforms: This is the place keeping the main platform files which interconnect

all the required modules.

• processors: Here lay all the available platform processor models (not only ArchC

models, but also processor models developed with other tools).

• sw: It holds all the software to be run on the platform.

• wrappers: Platform wrappers (if needed) are stored in this directory.

Although at the first glance such a splitting directory structure may seem unnec-

essary, it was deliberately designed to allow a same component to be reused across

several distinct platforms. For instance, a single copy of a given processor model,

say PowerPC, is kept in the processors directory, regardless of the number of de-

rived platforms relying on that model and regardless of how many instances of it are

actually used within a given platform.

To simplify the management of all the modules needed for a platform, the ARP

package comes with the arp.py utility. This utility has three usage modes repre-

sented by one of the following options:

--pack It packs all components required to build a platform in a single file that

can be shipped to other workstation.

--unpack It unpacks the single file created with the previous option, thereby allow-

ing it to be executed in the current ARP directory tree.

--list It lists the components inside a given package.

By relying on the ARP utility, developers do not need to worry about the location

of the required files, allowing a more reusable organization. The ARP engine will

locate all the required files and use them.

5.3 Platform Examples

One of the main consequences of providing ArchC processor models with an ex-

ternal connection is that it allows modular platform construction. By using vari-

ous kinds of modules and a default interconnection methodology, developers can

simulate distinct platforms ranging from a simple processor-bus-memory system to

complex heterogeneous architectures. This section illustrates, by means of a few

examples, how to use ARP to describe a platform by showing how to attach ArchC

processor models and how to design software for them.

5.3.1 A Processor-Memory Platform

The first platform has a single processor and an external memory (both compo-

nents will be reused in more elaborate examples later on). The chosen processor is a

PowerPC, whose processor model was addressed in the previous chapters. In this in-

troductory example, the platform software is simply a “Hello World”-like program.
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1 # Variable that points to ArchC installation path
2 PLATFORM := single_ppc
3

4 # Variable that points to SystemC installation path
5 export SYSTEMC := /opt/esl/systemc
6

7 # Variable that points to TLM installation path
8 export TLM_PATH := /opt/esl/tlm
9

10 # Variable that points to ArchC installation path
11 export ARCHC_PATH = /opt/esl/archc

Fig. 5.4 Makefile.arp configuration options

1 IP := ac_tlm_mem
2 IS :=
3 PROCESSOR := powerpc
4 SW := hello_ppc
5 WRAPPER :=

Fig. 5.5 defs.arp configuration file for the single PowerPC platform

As a starting point, appropriate files must be created or moved within ARP’s

directory structure, as follows:

arp/processors/powerpc The files associated with the PowerPC ArchC processor

model.

arp/sw/hello_world The source file of the software to be executed (this name

was used to make it different from the dual core example

we are going to see latter).

arp/platform/single_ppc The file containing SystemC code to connect all modules

and execute the platform.

arp/ip/ac_tlm_mem Contains the implementation of the TLM Memory.

Figure 5.4 shows the configuration variables available in the Makefile.arp
file. The first variable, which indicates the platform name, points to the sin-
gle_ppc directory. This is the only variable that needs to be changed when switch-

ing between platforms. The other three variables point, respectively, to the SystemC,

TLM and ArchC paths.

Another configuration file, called defs.arp, which is placed inside each plat-

form, is located at arp/platform/single_ppc/defs.arp for this example.

Figure 5.5 shows the file content. It consists of one line for each component type.

If more than one component of any type is used, their names must be placed in the

same line (separated by spaces). If the same component is used more than once, it

is not necessary to place its name twice in this file.

These are the only two files required for configuration. The PowerPC processor

model needs only the change made on Fig. 5.1 to convert the local memory to an

external TLM interface. The ac_tlm_mem is the same shown in Fig. 5.3.
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1 # i n c l u d e <stdio.h>
2

3 i n t main( i n t ac, char *av[]){
4 i n t i;
5 f o r(i=0;i<10;i++)
6 printf("Hi from processor PowerPC!\n");
7 }

Fig. 5.6 Software to be executed in the single-core PowerPC platform

1 const char *project_name="powerpc";
2 const char *project_file="powerpc.ac";
3 const char *archc_version="2.0beta1";
4 const char *archc_options="-abi -dy ";
5

6 # i n c l u d e <systemc.h>
7 # i n c l u d e "powerpc.H"
8 # i n c l u d e "ac_tlm_mem.h"
9

10 using user::ac_tlm_mem;
11

12 i n t sc_main( i n t ac, char *av[])
13 {
14 powerpc powerpc_proc1("powerpc");
15 ac_tlm_mem mem("mem", 8*1024*1024);
16

17 powerpc_proc1.MEM_port(mem.target_export);
18

19 powerpc_proc1.init(ac, av);
20 cerr << endl;
21

22 s c _ s t a r t();
23

24 powerpc_proc1.PrintStat();
25 r e t u r n powerpc_proc1.ac_exit_status;
26 }

Fig. 5.7 Single-core platform description in SystemC

For this platform, the software is exactly the same as can be executed in the

standalone PowerPC. Figure 5.6 shows the program that will be executed in the

platform. Notice that this software can be easily executed as an example of Chap. 4.

To finish the example, it is necessary to connect the components within the plat-

form main file. Figure 5.7 contains the sc_main declaration. Lines 1–4 show a few

ArchC parameters that can be used for debugging purposes. Platform components

are declared as SystemC regular components. Line 14 shows how to declare one

PowerPC processor. The memory is declared in a similar way at Line 15, except for

the fact that it requires and extra parameter to specify its size.

After declaration, it is time to bind the PowerPC memory port (MEM_port) to

the memory itself, which is done in Line 17. The ArchC processor model needs to be
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1 $ make
2 $ make run

Fig. 5.8 Executing the platform

initialized by calling its initmethod (Line 19). The simulation is launched as usual

in Line 22. After the platform simulation is concluded, the PowerPC’s PrintStat
method is called (Line 24) to show statistics on the screen, before the simulation

process is terminated (Line 25).

To run the executable representation of the platform, two commands are needed:

one to build the representation, another to execute it, as shown in Fig. 5.8. The

resulting screen, exhibited at simulation completion, is shown in Fig. 5.9. Note that

the welcome messaged is printed 10 times, as expected from Fig. 5.6.

Although some refinements could be done on this platform, it is kept as is for

simplicity. We leave such improvements to the next section, where a dual-core plat-

form will be built through iterative refinements.

5.3.2 Dual Core Platform

A pretty simple platform, derived from the previous one, is described in Fig. 5.10.

It consists of a PowerPC (Line 3), a TLM memory (Line 4), and a simple router

1 SystemC 2.2.0
2 Copyright (c) 1996-2006 by all Contributors
3 ALL RIGHTS RESERVED
4 ArchC: Reading ELF application file: hello_ppc.x
5

6 ArchC: ------- Starting Simulation ----------
7

8 Hi from processor PowerPC!
9 Hi from processor PowerPC!

10 Hi from processor PowerPC!
11 Hi from processor PowerPC!
12 Hi from processor PowerPC!
13 Hi from processor PowerPC!
14 Hi from processor PowerPC!
15 Hi from processor PowerPC!
16 Hi from processor PowerPC!
17 Hi from processor PowerPC!
18 ArchC: ------- Simulation Finished ----------
19 SystemC: simulation stopped by user.
20 ArchC: Simulation statistics
21 Times: 0.01 user, 0.03 system, 0.00 real
22 Number of instructions executed: 17571
23 Simulation speed: (too fast to be precise)

Fig. 5.9 Screen capture—Hello World
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1 i n t sc_main( i n t ac, char *av[])
2 {
3 powerpc ppc_proc1("ppc1");
4 ac_tlm_mem mem("mem", 8 * 1024 * 1024);
5 ac_tlm_router router("router");
6

7 ppc_proc1.MEM_port(router.target_export);
8 router.MEM_port(mem.target_export);
9

10 ppc_proc1.init(ac, av);
11 s c _ s t a r t(-1);
12

13 ppc_proc1.PrintStat();
14 cerr << endl;
15

16 r e t u r n ppc_proc1.ac_exit_status;
17 }

Fig. 5.10 ArchC 2.0 TLM simple single core processor-router-memory platform

1 c lass ac_tlm_router :
2 p u b l i c sc_module,
3 p u b l i c ac_tlm_transport_if
4 {
5 p u b l i c:
6 a c _ t l m _ p o r t MEM_port;
7 sc_export< ac_tlm_transport_if > target_export;
8

9 ac_tlm_rsp transport(const ac_tlm_req &request)
10 {
11 ac_tlm_rsp response;
12 response = MEM_port->transport(request);
13 r e t u r n response;
14 }
15 ac_tlm_router(sc_module_name module_name);
16 ~ac_tlm_router() {};
17 };

Fig. 5.11 TLM router, first version

(Line 5). Note that the main difference between this platform and the previous one

is the presence of a router. The platform’s components are connected through TLM

binding at Lines 7–8. The router was built such that all TLM requests are simply

passed from the processor to the memory and all memory responses are merely

returned to the processor. As a result of full router transparency, this platform can

run exactly the same code as the previous one.

As shown in Fig. 5.11, the router is a very simple module, which essentially con-

sists of two TLM ports. Note that the router is very similar to the memory described

in Fig. 5.3, except from the fact that it passes all incoming requests to the output port

without processing (as opposed to the memory functionality), as can be seen in the
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1 i n t sc_main( i n t ac, char *av[])
2 {
3 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);
4 //! ISA simulator
5 powerpc ppc_proc1("ppc1"), ppc_proc2("ppc2");
6 ac_tlm_mem mem("mem", 8 * 1024 * 1024);
7 ac_tlm_router router("router");
8

9 char *av1[] = {"dual_ppc.x", "--load=hello_dual.x", ""};
10 i n t ac1 = 3;
11 char *av2[] = {"dual_ppc.x", "--load=hello_dual.x", ""};
12 i n t ac2 = 3;
13

14 ppc_proc1.MEM_port(router.target_export1);
15 ppc_proc2.MEM_port(router.target_export2);
16 router.MEM_port(mem.target_export);
17

18 ppc_proc1.init(ac1, av1);
19 ppc_proc2.init(ac2, av2);
20 ppc_proc1.set_instr_batch_size(1);
21 ppc_proc2.set_instr_batch_size(1);
22

23 s c _ s t a r t(-1);
24

25 ppc_proc1.PrintStat();
26 ppc_proc2.PrintStat();
27 r e t u r n ppc_proc1.ac_exit_status + ppc_proc2.ac_exit_status;
28 }

Fig. 5.12 Dual core platform, with two PowerPC processors

transport method (Line 9), more specifically at Line 12. To run this platform, it

is necessary to add its description to ARP’s is directory and to include the line IS
:= ac_tlm_router in the file defs.arp (described in Fig. 5.5).

Now it is time to add a second processor to the derived platform so as to build a

dual-core system. The first modification must be done at the platform main.cpp
file, as shown in Fig. 5.12. First, the two processors (ppc1 and ppc2) are de-

clared at Line 5. Then, we included two command line parameters, one for each

of the processors (Lines 9–11). For the time being, the parameters are exactly the

same: they are serving as placeholders to put two programs to run, one for each

processor (to actually run two different programs, they must be placed in distinct

memory addresses). Then, the previous version of the router was extended (Lines

14–15) with an extra port (target_export1 and target_export2). After

processor model initialization (Lines 18–19) and immediately before simulation
launching, a same parameter was changed in both processor models (Lines 20–21):

set_instr_batch_size was set to 1 so as to allow each underlying ISS to

alternately run one instruction at time, before calling a wait to switch to the other

ISS (usually, each ArchC ISS runs 200 instructions before switching; by setting that

parameter to 1, the simulation more closely resembles the actual parallel execution
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1 //!Generic begin behavior method.
2 void ac_behavior(begin)
3 {
4 /* Here the stack is started */
5 GPR.w r i t e(1, AC_RAM_END - 1024);
6 ...
7 }

Fig. 5.13 PowerPC original ac_behavior(begin) method

at the expense of slowing down the simulation; feel free to play with this parameter

for a tradeoff between speed and precision).

After running this platform, the welcome message “Hi from processor Pow-

erPC!” appears 20 times on the screen, as expected.

At this point, there are two pending issues to be solved for this platform: the two

processors have exactly the same stack and are running exactly the same code. Let

us address each of them at a time.

The initial value for the stack pointer can be set in two different places: in the

startup assembly code or in the processor model description. If the stack pointer

value is set in both places, the startup assembly code will prevail, as expected

in a real platform. To make platform initialization flexible enough for further po-

tential improvements, we prefer to make changes in the processor model. In the

processor description, the place to set the initial value for the stack pointer is in

the ac_behavior(begin) method, as illustrated in Fig. 5.13, where register 1

(the stack pointer) is written with the address AC_RAM_END - 1024. The 1024-

byte offset represents reserved memory space through which the simulator can pass

command-line parameters to the platform.

Let us now show how we can provide multiple stacks by modifying the code in

Fig. 5.13 by defining a stack size and allocating successive stack blocks for each

processor. Fig. 5.14 illustrates the required changes. First, the default stack size is

defined (256 KB) and the number of active processors is initialized. When a pro-

cessor model is activated, its the stack pointer is assigned the address of a 256 KB

block depending on the number of processors activated so far. In this way, we can

automatically handle an arbitrary amount of processors up to the declared memory

limit. Since all the processors share the same memory, they can pass pointers from

the stack to each other.

Now it is time to make the processors run different code. Although this could be

done by loading different codes to different address spaces, we are going to solve

this problem in a straightforward way, by loading exactly the same code but splitting

the processors execution flow on the fly. Like when solving the previous issue, this

is a generic solution that can be applied to an arbitrary number of processors.

We start by creating a new component (ac_tlm_lock), which acts as a hard-

ware lock. We reuse exactly the same code as ac_tlm_mem by changing only the

readm and writem methods. Figure 5.15 shows the modified method (it is even

simpler than the memory’s). The writem method only assign the value private

variable and the readm returns its value and change it to 1. By so doing, we can
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1 # d e f i n e DEFAULT_STACK_SIZE (256 * 1024)
2 s t a t i c i n t processors_started = 0;
3 ...
4 //!Generic begin behavior method.
5 void ac_behavior( begin )
6 {
7 /* Here the stack is started */
8 GPR.w r i t e(1, AC_RAM_END - 1024 - processors_started++ *

DEFAULT_STACK_SIZE);
9 }

Fig. 5.14 PowerPC original ac_behavior(begin) method

1 ac_tlm_rsp_status ac_tlm_lock::writem( const uint32_t &a ,
const uint32_t &d )

2 {
3 value = d;
4 r e t u r n SUCCESS;
5 }
6

7 ac_tlm_rsp_status ac_tlm_lock::readm( const uint32_t &a ,
uint32_t &d )

8 {
9 d = value;

10 value = 1;
11 r e t u r n SUCCESS;
12 }

Fig. 5.15 Lock module readm and writem methods

use this component as a simple hardware lock, which can be checked by the same

software code to split the program flow.

After creating that component, the next step is to connect it to the platform. This

can be easily performed inside our router, by creating a new ac_tlm_port called

LOCK_port (after Line 6 of Fig. 5.11) and changing the transport method as

in Fig. 5.16. To distinguish between ports, an if statement is included in Line 5.

Selection is based on the request address. Note that the address 0x800000 is adopted

for the lock component. When a request is issued with that address, the lock com-

ponent receives the packet. Note that, every time a new component is needed, it is

only a matter of including a new (nested) if statement for selection purposes and

adding a new output port in the router. This make this router easily scalable.

To show that both pending issues were solved by the described mechanisms, we

are now going to change the “Hello World” program. Figure 5.17 shows the changes.

The first change is the inclusion of a RecursiveHello (Line 3) function, which

recursively calls itself several times. We do so to show that the processors actually

have different stacks. To use the lock hardware, we add a pointer to the 0x800000

address. The AcquireLock just has to wait until this pointer has a zero value (re-

member that for every hardware read, the value is changed to one). The Release-
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1 ac_tlm_rsp transport( const ac_tlm_req &request ) {
2

3 ac_tlm_rsp response;
4

5 i f (request.addr != 0x800000)
6 response = MEM_port->transport(request);
7 e l s e

8 response = LOCK_port->transport(request);
9

10 r e t u r n response;
11 }

Fig. 5.16 New transport method for the router

1 # d e f i n e STARTUP_ADDRESS 0x800000;
2 v o l a t i l e i n t procCounter = 0;
3 void RecursiveHello( i n t n, i n t procNumber)
4 {
5 i f (n) {
6 printf("Hi from processor PowerPC %d!\n",

procNumber);
7 RecursiveHello(n - 1, procNumber);
8 }
9 }

10

11 i n t main( i n t ac, char *av[]){
12 i n t procNumber;
13

14 AcquireLock();
15 procNumber = procCounter;
16 procCounter ++;
17 ReleaseLock();
18

19 i f (procNumber % 2) {
20 f o r (i = 0; i < 100000; i ++);
21 }
22 RecursiveHello(10, procNumber);
23 exit(0);
24 r e t u r n 0;
25 }

Fig. 5.17 New Hello World program for a dual core example

Lock is as simple as assigning a zero to the lock pointer. These two functions are

shown in Fig. 5.18. At Fig. 5.17, Line 15, each processor gets a different number by

reading the incrementing the global procCounter variable. Notice that this line

is protected by the lock. In Lines 19–21, we had to implement a delay loop because

the printf function we used is not reentrant1 (if we remove the delay loop, the

1A reentrant function is a function that can be called more than once at the same time, providing
the expected behavior. Usually, this is accomplishing by not using any global buffer.
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1 # d e f i n e LOCK_ADDRESS 0x800000;
2 v o l a t i l e i n t *lock = ( v o l a t i l e i n t *) LOCK_ADDRESS;
3

4 void AcquireLock()
5 {
6 w h i l e (*lock);
7 }
8

9 void ReleaseLock()
10 {
11 *lock = 0;
12 }

Fig. 5.18 AcquireLock and ReleaseLock implementations

welcome message will be printed 20 times, but the messages from each processor

will be mixed in the output screen).

The screen resulting from running the executable platform representation is

shown in Fig. 5.19. Notice that, due to the delay loop, one processor first prints

the welcome message 10 times and, only after that, the other processor prints yet

another 10 times.

Although this solves the reentrance problem, it is not what we expected by run-

ning two processors at the same time. Let us change the code to have the opportunity

of interleaving the printf functions. To do so, we need to have some concurrence

control: we added a new function (PrintHello) to print the welcome message

and changed the Line 6 of Fig. 5.17 to call it. The PrintHello implementation is

shown in Fig. 5.20. Notice that we have just called AcquireLock() before and

ReleaseLock() after the printf. By running this new code, the 20 welcome

messages (10 from processor 0 and 10 from processor 1) will result interleaved.

5.4 The MP3 Example

Up to now, we have seen just a “Hello World” platform. Now we will put together

one full example, an MP3 decoder based on a dual core platform. Although decoding

a MP3 is not a processor-hungry task, it is a very good example of software that can

be partitioned between hardware and software to serve as an example. We will use

the MP3 implementation called dist102.

5.4.1 Profiling

The first required step is to profile the MP3 software decoder to do a hardware-

software partitioning. We will use the gprof. To use profiling with gprof, the de-

2This implementation is considered a base implementation with focus on readability instead of
speed.
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1 SystemC 2.2.0
2 Copyright (c) 1996-2006 by all Contributors
3 ALL RIGHTS RESERVED
4 ArchC: Reading ELF application file: hello_dual.x
5

6 ArchC: --------- Starting Simulation ---------
7 ArchC: Reading ELF application file: hello_dual.x
8

9 ArchC: --------- Starting Simulation ---------
10 Hi from processor PowerPC 0!
11 Hi from processor PowerPC 0!
12 Hi from processor PowerPC 0!
13 Hi from processor PowerPC 0!
14 Hi from processor PowerPC 0!
15 Hi from processor PowerPC 0!
16 Hi from processor PowerPC 0!
17 Hi from processor PowerPC 0!
18 Hi from processor PowerPC 0!
19 Hi from processor PowerPC 0!
20 ArchC: --------- Simulation Finished ---------
21 Hi from processor PowerPC 1!
22 Hi from processor PowerPC 1!
23 Hi from processor PowerPC 1!
24 Hi from processor PowerPC 1!
25 Hi from processor PowerPC 1!
26 Hi from processor PowerPC 1!
27 Hi from processor PowerPC 1!
28 Hi from processor PowerPC 1!
29 Hi from processor PowerPC 1!
30 Hi from processor PowerPC 1!
31 ArchC: --------- Simulation Finished ---------
32 SystemC: simulation stopped by user.
33 ArchC: Simulation statistics
34 Times: 0.18 user, 0.04 system, 0.19 real
35 Number of instructions executed: 22563
36 Simulation speed: 125.35 K instr/s
37 ArchC: Simulation statistics
38 Times: 0.18 user, 0.04 system, 0.17 real
39 Number of instructions executed: 922019
40 Simulation speed: 5122.33 K instr/s

Fig. 5.19 Hello World output for the Dual Core Platform

1 v o l a t i l e i n t canPrint[2] = {0,0};
2

3 void PrintHello( i n t procNumber)
4 {
5 AcquireLock();
6 printf("Hi from processor PowerPC %d!\n", procNumber);
7 ReleaseLock();
8 }

Fig. 5.20 PrintHello function with concurrence control
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1 1.53 0.00 596520/596520 main [1]
2 [2] 43.2 1.53 0.00 596520 SubBandSynthesis [2]
3 0.00 0.00 3/8 mem_alloc [34]
4 0.00 0.00 1/1 read_syn_window [46]
5 -----------------------------------------------
6 0.03 1.26 1060480/1060480 main [1]
7 [3] 36.4 0.03 1.26 1060480 III_hybrid [3]
8 1.26 0.00 1060480/1060480 inv_mdct [4]
9 -----------------------------------------------

10 1.26 0.00 1060480/1060480 III_hybrid [3]
11 [4] 35.6 1.26 0.00 1060480 inv_mdct [4]

Fig. 5.21 Snippet from gprof output for dist10 decoder

coder must be compiled with the -pg option passed to gcc (we also recommend the

inclusion of the -g option for detailed line-by-line profiling). Execution of decoder3

shall generate a gmon.out file. Execute gprof and it will output the profiling re-

sults. We show some snippets of this file in Fig. 5.21. It is out of the scope of this

book to fully interpret the gprof output, but it is important to know that this snip-

pet shows 3 of the 46 functions that were called to decode the MP3 file. The func-

tions are: SubBandSynthesis, III_hybrid, and inv_mdct. This informa-

tion can be easily detected by looking at the Lines 2, 7, and 11 which represent the

numbers associated to these three functions. After the number, comes the percentage

of the total times spent in these functions, which are 43.2% for SubBandSynthe-

sis, 36.4% for III_hybrid, and 35.6% for inv_mdct, followed by the total

time spent inside each function without considering any function called. It is also

important to mention the other lines that are used to represent the call graph of each

module. For the SubBandSynthesis block (Lines 1–4), the report mentions that

this function is called only by main, which is placed before SubBandSynthesis

in the block, and two functions are called: mem_alloc, and read_syn_window.

Based on this very brief description, it is easy to see that if we can move one

function to hardware, this function should be SubBandSynthesis, because it

takes 43.2% of the time (both mem_alloc and read_syn_window take 0% of

the time). If we had enough resources, the second candidate would be inv_mdct,

because it takes 35.6%. Notice that, although III_hybrid takes a larger percent-

age of time (36.4%), it takes only 0.03 s of the total time. Although the profile data

is based on running the application in a specific machine, the results will look very

similar when running on the real hardware.

The platform layout will look like Fig. 5.22 with two IPs and two PowerPC

processors. In the next section, we will move the original code to the platform.

3Please, use a big input file to avoid interference from your environment.
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Fig. 5.22 Proposed MP3
Platform with 2 processors
and 2 IPs
(SubBandSynthesis and
inv_mdct)

5.4.2 Moving the Code to the Platform

Before we continue building the platform, it is necessary to have the dist10 code

running inside our simulator. To do that, we have to make a few changes. The first

one is that our platform is dual-core and the dist10 is not. We have to split the

code into two cores. Indeed, we need to split the code into 4 pieces, two processors

and two IPs. Before we do that, let us first make the code run inside our platform

using only one core. To do that, we change the previous section code (Fig. 5.17)

to split the execution flow into two main functions: main0 and main1. Our main

function only detects the processor number and executes one of the functions de-

pending on the value read. We have chosen this option because this code snippet

can be used into any kind of program you need in the future. We also renamed the

main function from dist10 (file musicout.c) to main_mp3 and included a

prototype in Line 6 of Fig. 5.23. Giving the same command line parameters, the

platform is now capable of decoding an MP3 file.

As you can guess, this software takes a reasonable time to execute, even for small

MP3 files, but the results are the same, which is our goal. It is not our goal to run the

profiling again because, at this time, the profile would be affected by the simulator,

invalidating the reported timing information.

5.4.3 Building the Hardware/Software Interface

The next step is to look into the two functions to see if it is possible to build a

platform, by implementing them as non-programmable hardware components. They

will only require a few small changes to transfer the parameters and the results. For

now on, we are going to call SubBandSynthesis as SBS and inv_mdct as

imdct for simplicity.

The SBS code starts as in Fig. 5.24. The first issue to be solved are the two

pointers received as parameters (bandPtr and samples) but looking at the code,

we can see that both bandPtr and samples are bound by 32, so a memory map

will do the job. The second issue in the conversion are the static variables, mostly

the pointers. Since we will be using a behavior model, some of the internal variables
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1 # d e f i n e LOCK_ADDRESS 0x800000;
2 v o l a t i l e i n t *lock = ( v o l a t i l e i n t *) LOCK_ADDRESS;
3 v o l a t i l e i n t id = 0;
4 void AcquireLock();
5 void ReleaseLock();
6 i n t main_mp3( i n t ac, char *av[]);
7

8 i n t main0( i n t procNumber, i n t ac, char *av[])
9 {

10 }
11 i n t main1( i n t procNumber, i n t ac, char *av[])
12 {
13 main_mp3(ac, av);
14 }
15

16 i n t main( i n t ac, char *av[]){
17 r e g i s t e r i n t i, procNumber;
18

19 AcquireLock();
20 procNumber = id++;
21 ReleaseLock();
22 i f (procNumber == 0)
23 main0(procNumber, ac, av);
24 e l s e

25 main1(procNumber, ac, av);
26 exit(0);
27 r e t u r n 0;
28 }

Fig. 5.23 New main() for the MP3 software

may still be maintained as pointers, but we should avoid those that point to global

values outside the module.

Let us start a new IP design named ac_tlm_sbs based on the ac_tlm_mem
as we did to the ac_tlm_router (see Sect. 5.3.2 for more information). The goal

now is to isolate this function and all the required dependencies. You can do that by

creating a new file and moving the function and all its dependencies to this file.

Notice that you may have to leave two copies of the same function if it is required

by both the IP and the software part. This happened with the mem_alloc function

while the function create_syn_filter could be removed completely.

It is now necessary to build the hardware and the software interfaces for this func-

tion. As already mentioned, both bandPtr and samples are bound by 32 values

in the source code loop. So, they can be easily memory-mapped. It is now time to

map them to the memory. The router needs to be changed as shown in Fig. 5.25.

We just divided the address space into 1 MB blocks and assigned them, as shown

in Table 5.1. Notice that the minimum reserved slot is 1 MB, although the lock IP

requires only one word (4 bytes). We do that to simplify address decoding in the

future hardware implementation.
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1 i n t SubBandSynthesis (bandPtr, channel, samples)
2 double *bandPtr;
3 i n t channel;
4 s h o r t *samples;
5 {
6 r e g i s t e r i n t i,j,k;
7 r e g i s t e r double *bufOffsetPtr, sum;
8 r e g i s t e r long foo;
9 s t a t i c i n t init = 1;

10 t yp ed e f double NN[64][32];
11 s t a t i c NN FAR *filter;
12 t yp ed e f double BB[2][2*HAN_SIZE];
13 s t a t i c BB FAR *buf;
14 s t a t i c i n t bufOffset[2] = {64,64};
15 s t a t i c double FAR *window;
16 i n t clip = 0;
17 ...

Fig. 5.24 Beginning of the SBS function

1 ac_tlm_rsp transport( const ac_tlm_req &request ) {
2 ac_tlm_rsp response;
3 i n t addr = request.addr >> 20;
4 swi tch (addr) {
5 case 0x8: response = LOCK_port->transport(request);
6 break;
7 case 0x9: response = SBS_port->transport(request);
8 break;
9 case 0xA: response = IMDCT_port->transport(request);

10 break;
11 d e f a u l t: response = MEM_port->transport(request);
12 break;
13 }
14 r e t u r n response;
15 }

Fig. 5.25 New router to support the 2 new IPs

Table 5.1 MP3 platform
address space From To Component

0x0000000 0x07FFFFF System memory

0x0800000 0x08FFFFF Lock IP

0x0900000 0x09FFFFF SBS IP

0x0A00000 0x0AFFFFF IMDCT IP

Let us now map the SBS IP to the memory space. Table 5.2 shows the address

mapping of the three input parameters and the output value. We have aligned the

parameters in a 256-byte boundary for didactic purposes.
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Table 5.2 SBS memory
addresses From To Parameter

0x0900000 0x09000FF double bandPtr[32]

0x0900100 0x0900103 int channel

0x0900200 0x090027F short samples[32]

0x0900300 0x0900303 int return_value

This address map will be needed both in the hardware part and in the software.

Figure 5.26 shows the code snippet that we will include in the software whenever

accessing the peripheral. We also include it in the peripheral itself to help decoding

the address space.

The address mapping is only one part of the interface. Now we know how to send

and receive data to our IP. The next step is to define its programming model. From a

function call view, we first must pass all parameters and only after that we can read

the result. We also want to allow the program to read the values recently written to

the parameters, although it is not necessary in this module. To do that, we will main-

tain the memory variable inside the ac_tlm_mem we copied as ac_tlm_sbs.

We then update the writem and readm methods to reflect the SBS behavior.

The writem method, shown in Fig. 5.27, acts in a very similar way to the

ac_tlm_mem, except from the fact that the memory address must have its base

address removed (Line 34). We use byte copying so as to make easy to change the

endian if necessary. However, it is a very good optimization to use word copying

whenever possible.

Figure 5.28 shows the readm method. We implemented the SBS call whenever

the module receives a read request to the return value address (Line 9). To do so,

we assign the pointers with the correct values and call the SBS function (Line 15),

storing the result in the return value so that the next 4 lines always return the correct

values.

The last step is to call the SBS from our program. Instead of changing Fig. 5.23,

we will change the current SBS software implementation (Fig. 5.29). This func-

tion can be divided into three parts: variable declaration, data transfer, and read the

result.

1 # d e f i n e SBS_BASE_ADDRESS 0x0900000
2 # d e f i n e SBS_TOTAL_SIZE 0x400
3 # d e f i n e SBS_bandPtr (0)
4 # d e f i n e SBS_channel (0x100)
5 # d e f i n e SBS_samples (0x200)
6 # d e f i n e SBS_return_value (0x300)

Fig. 5.26 SBS Address map definition in the C/SystemC code

4The base address removal could be done in the router also. Sometimes it is easier to do there and
also make the platform more flexible.
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1 ac_tlm_rsp_status ac_tlm_sbs::writem( const uint32_t &a ,
const uint32_t &d )

2 {
3 i n t addr = a - SBS_BASE_ADDRESS;
4

5 memory[addr] = (((uint8_t*)&d)[0]);
6 memory[addr+1] = (((uint8_t*)&d)[1]);
7 memory[addr+2] = (((uint8_t*)&d)[2]);
8 memory[addr+3] = (((uint8_t*)&d)[3]);
9

10 r e t u r n SUCCESS;
11 }

Fig. 5.27 The writem method to send parameters to the SBS module

1 ac_tlm_rsp_status ac_tlm_sbs::readm( const uint32_t &a ,
uint32_t &d )

2 {
3 i n t *return_value;
4 double *bandPtr;
5 i n t *channel;
6 s h o r t *samples;
7 i n t addr = a - SBS_BASE_ADDRESS;
8

9 i f (addr == SBS_return_value) {
10 bandPtr = (double *) &(memory[SBS_bandPtr]);
11 channel = ( i n t *) &(memory[SBS_channel]);
12 samples = (s h o r t *) &(memory[SBS_samples]);
13 return_value = ( i n t *) &(memory[SBS_return_value]);
14

15 *return_value = SubBandSynthesis(bandPtr, *channel,
samples);

16 }
17 (((uint8_t*)&d)[0]) = memory[addr];
18 (((uint8_t*)&d)[1]) = memory[addr+1];
19 (((uint8_t*)&d)[2]) = memory[addr+2];
20 (((uint8_t*)&d)[3]) = memory[addr+3];
21

22 r e t u r n SUCCESS;
23 }

Fig. 5.28 The readm method to receive results from the SBS module

Variable declaration where we initialize the pointers to the correct position in mem-

ory (the values were defined in Fig. 5.26).

Data transfer Transfer the bandPtr, samples, and channel to the hard-

ware device using pointers. Notice that it is not necessary to

maintain any order, since the processing will be done only

when the return value is read.
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1 i n t SubBandSynthesis (double *bandPtr, i n t channel, s h o r t *
samples)

2 {
3 i n t i;
4 double *target_bandPtr = (double *) (SBS_BASE_ADDRESS +

SBS_bandPtr);
5 i n t *target_channel = ( i n t *) (SBS_BASE_ADDRESS +

SBS_channel);
6 s h o r t *target_samples = (s h o r t *) (SBS_BASE_ADDRESS +

SBS_samples);
7 i n t *return_value = ( i n t *) (SBS_BASE_ADDRESS +

SBS_return_value);
8

9 f o r (i = 0; i < 32; i ++) {
10 target_bandPtr[i] = bandPtr[i];
11 target_samples[i] = samples[i];
12 }
13 *target_channel = channel;
14 r e t u r n *return_value;
15 }

Fig. 5.29 The new SBS software implementation

1 void inv_mdct(in, out, block_type)
2 double in[18];
3 double out[36];
4 i n t block_type;
5 {
6 i n t k,i,m,N,p;
7 double tmp[12],sum;
8 s t a t i c double win[4][36];
9 s t a t i c i n t init=0;

10 s t a t i c double COS[4*36];
11 ...

Fig. 5.30 Beginning of the imdct function

Read the result This is done in the last line, by returning the return_value
variable.

This code could be improved by using a technique called double buffer. In this

technique, the hardware and the software work in parallel, by duplicating the ad-

dress space so that the hardware can work on one set of data while the software is

generating the next set. This technique can also be generalized as multi-buffer,

when the number of buffers is higher than 2.

The imdct function can be transfered to hardware using the same technique

mentioned before. Figure 5.30 shows the beginning of the function. As in the SBS,

the parameters are passed as pointers but, in this case, the return value is also one of

the parameters (the out vector).
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1 # d e f i n e IMDCT_BASE_ADDRESS 0x0A00000
2 # d e f i n e IMDCT_TOTAL_SIZE 0x400
3 # d e f i n e IMDCT_in (0)
4 # d e f i n e IMDCT_out (0x100)
5 # d e f i n e IMDCT_block_type (0x300)
6 # d e f i n e IMDCT_answer_ready (0x304)

Fig. 5.31 IMDCT Address map definition in the C/SystemC code

1 ac_tlm_rsp_status ac_tlm_imdct::writem( const uint32_t &a ,
const uint32_t &d )

2 {
3 i n t addr = a - IMDCT_BASE_ADDRESS;
4

5 memory[addr] = (((uint8_t*)&d)[0]);
6 memory[addr+1] = (((uint8_t*)&d)[1]);
7 memory[addr+2] = (((uint8_t*)&d)[2]);
8 memory[addr+3] = (((uint8_t*)&d)[3]);
9

10 *answer_ready = 0;
11

12 r e t u r n SUCCESS;
13 }

Fig. 5.32 The writem method to send parameters to the IMDCT module

To model the implementation of imdct as a non-programmable hardware com-

ponent, we must follow the same steps as we did for the sbs, resulting in the code

in Figs. 5.31, 5.32, 5.33, and 5.34. In the following, only the differences will be

described.

Instead of having one return value, the IMDCT has the parameter out which is

used to return 36 doubles. So, we trigger the inv_mdct function execution by a

read in any element of the out vector, but we do not want to execute this function for

every element, since they are calculated all at once. We declared a new class property

called answer_ready, initialized with false (0). This property is mapped into

the internal memory. Every time we get a write operation in our device, we assign

false (0) to answer_ready (Fig. 5.32, Line 10), indicating that a read in the

out must first recalculate the outputs. After we recalculate the outputs, we assign

true (1) to answer_ready (Fig. 5.33, Line 14) to indicate that the next read can

be done without recalculation.

To execute the IP implementation (Fig. 5.34), we first send in, and block_
type and then we read out to get the output values. Notice that we do not send

the out values to the IP because we looked into inv_mdct and found that these

values are not used as input.

So far we have finished the parallel IP design. But it is worth to mentioning

an alternative approach to implement such devices that are really useful in some

platforms. We designed the SBS to fire its execution when the user read the output

value return_value. This will make the IP to recalculate the output if we read
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1 ac_tlm_rsp_status ac_tlm_imdct::readm( const uint32_t &a ,
uint32_t &d )

2 {
3 double *in, *out;
4 i n t *block_type;
5

6 i n t addr = a - IMDCT_BASE_ADDRESS;
7

8 i f ((addr == IMDCT_out) && (addr < IMDCT_block_type) &&
9 (! *answer_ready)) {

10 in = (double *) &(memory[IMDCT_in]);
11 out = (double *) &(memory[IMDCT_out]);
12 block_type = ( i n t *) &(memory[IMDCT_block_type]);
13

14 inv_mdct(in, out, *block_type);
15 *answer_ready = 1;
16 }
17 (((uint8_t*)&d)[0]) = memory[addr];
18 (((uint8_t*)&d)[1]) = memory[addr+1];
19 (((uint8_t*)&d)[2]) = memory[addr+2];
20 (((uint8_t*)&d)[3]) = memory[addr+3];
21

22 r e t u r n SUCCESS;
23 }

Fig. 5.33 The readm method to receive results from the IMDCT module

1 void inv_mdct(double in[18], double out[36], i n t block_type)
2 {
3 i n t i;
4 double *target_in = (double *) (IMDCT_BASE_ADDRESS +

IMDCT_in);
5 double *target_out = (double *) (IMDCT_BASE_ADDRESS +

IMDCT_out);
6 i n t *target_block_type = ( i n t *) (IMDCT_BASE_ADDRESS +

IMDCT_block_type);
7

8 f o r (i = 0; i < 18; i ++)
9 target_in[i] = in[i];

10

11 *target_block_type = block_type;
12

13 f o r (i = 0; i < 36; i ++)
14 out[i] = target_out[i];
15 }

Fig. 5.34 The new IMDCT software implementation

the return_value twice in sequence, without changing the input. To solve this,

we may also include a control register to fire the execution at a software command.

Usually, when we do that, we also include a second register to show the IP status, if
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Table 5.3 SBS memory
addresses From To Parameter

0x0900000 0x09000FF double bandPtr[32]

0x0900100 0x0900103 int channel

0x0900200 0x090027F short samples[32]

0x0900300 0x0900303 int return_value

0x0900304 0x0900307 int fire_execution

0x0900308 0x090030B int answer_ready

it has the output value already calculated. This second register may not be necessary

this time since we are designing a functional module which does not follow the

correct timing. But we are going to include both new variables in this example to

serve as a basis for your future designs. Notice also that these two registers could

be unified. For the sake of simplicity, we are not going to merge them. Table 5.3

presented a revised version of Table 5.2 including two new registers. The #define’s

of Fig. 5.26 must also be changed accordingly.

A new change is also required in the readm and writem behaviors. Basi-

cally, we need to move the SubBandSynthesis call from readm to writem
to use the new fire_execution register. The new versions are in Fig. 5.35 and

Fig. 5.36.

Now that we have the two IPs implemented in our platform, the next step is to

create a parallel version of the software to run on our two processors, which is the

focus of the next section.

5.4.4 The Next Steps Towards Parallel Software

To make a parallel version of the MP3 code, the following steps must be executed:

1. Find the places to split it into two or more different parts;

2. Move the variables declaration so as to share them with all the threads;

3. Define the communication protocol;

4. Define the end-of-program flag and use it in all the threads.

The fist step can be made easy if we use the IP calls as boundaries. In this way,

since we have two IPs, it would be easier to divide the code into 3 parts and use 3

processors. However, it is not necessarily the best alternative, because we may end

with a very small piece of code to handle one of the parts. In spite of that, let us look

first to this alternative.

The MP3 decoder is essentially a loop after the initialization code. The two IPs

are called inside III_hybrid and SubBandSynthesis. So the first processor

should do the initialization part (everything prior to the III_hybrid), and then

flag the second one to send the data to execute III_hybrid, sending the data to

inv_mdct and doing everything up to SubBandSynthesis, where it should
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1 ac_tlm_rsp_status ac_tlm_sbs::writem( const uint32_t &a ,
const uint32_t &d )

2 {
3 double *bandPtr = (double *) &(memory[SBS_bandPtr]);
4 i n t *channel = ( i n t *) &(memory[SBS_channel]);
5 s h o r t *samples = (s h o r t *) &(memory[SBS_samples]);
6 i n t *return_value = ( i n t *) &(memory[SBS_return_value]);
7 i n t *fire_execution = ( i n t *) &(memory[SBS_fire_execution])

;
8 i n t *answer_ready = ( i n t *) &(memory[SBS_ready]);
9

10 i n t addr = a - SBS_BASE_ADDRESS;
11

12 memory[addr] = (((uint8_t*)&d)[0]);
13 memory[addr+1] = (((uint8_t*)&d)[1]);
14 memory[addr+2] = (((uint8_t*)&d)[2]);
15 memory[addr+3] = (((uint8_t*)&d)[3]);
16 i f ((addr == SBS_fire_execution) && (*fire_execution != 0))

{
17 *return_value = SubBandSynthesis (bandPtr, *channel,

samples);
18 *answer_ready = 1;
19 }
20 e l s e {
21 *answer_ready = 0;
22 *fire_execution = 0;
23 }
24 r e t u r n SUCCESS;
25 }

Fig. 5.35 The new writem method to send parameters to the SBS module

1 ac_tlm_rsp_status ac_tlm_sbs::readm( const uint32_t &a ,
uint32_t &d )

2 {
3 i n t addr = a - SBS_BASE_ADDRESS;
4

5 (((uint8_t*)&d)[0]) = memory[addr];
6 (((uint8_t*)&d)[1]) = memory[addr+1];
7 (((uint8_t*)&d)[2]) = memory[addr+2];
8 (((uint8_t*)&d)[3]) = memory[addr+3];
9

10 r e t u r n SUCCESS;
11 }

Fig. 5.36 The new readm method to receive results from the SBS module

flag the third processor do execute the SubBandSynthesis and end the loop.

At the end of the processing, the last processor should also finalize the execution.

This sequence is demonstrated in Fig. 5.37a. It is worth mentioning the alternative

implementation of Fig. 5.37b, where the IP calls are moved to the first and second
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Fig. 5.37 Parallel implementation with three processors

Fig. 5.38 Parallel
implementation with two
processors

processors. The ideal solution will be the one with the small overhead and also the

smallest execution time (to be evaluated with a new profiling).

When considering only two processors, the division of the code between them

will also require a new profile. We show one alternative implementation in Fig. 5.38.

The second step, moving the variables declaration is a straightforward one. It is

only necessary to check for each variable in main_mp3 (the old main function we

renamed), which variable crosses the boundaries between two processors. For each

of them, its declaration must be made global and the first processor should give it

the default value.

The third step, defining the communication protocol, is a little tricky because the

synchronization issues not only from the IPs but also from shared variable usage. In-

deed, the IP calls and returns should be safe since they are called by only one of the

processors. So, for every variable that will need a specific control, you must declare

the required auxiliary variables and patch the code accordingly. Figure 5.20 shows

one alternative implementation we did in Sect. 5.3.2. To speedup the software exe-

cution, you may use a technique called double-buffer, that interchanges two buffers

between the communicating modules so that while the first module is writing in one

buffer the second one is reading from the previous buffer. This technique allows for

a very parallel execution and can be applied to this code.



98 R. Azevedo et al.

The last step is to synchronize the end of execution. In our platform, the MP3 file

is opened by the first processor and the output file should be written and closed by

the last processor. In a real hardware platform, you probably will not want to end

the programs, but put the processors in a low power mode, which may also need

some synchronization. The synchronization can be done similarly to the previous

step, with each processor using one variable to flag its end and checking for the

other flags before waiting for new data to process.

This platform will be used in Chap. 7 to illustrate the debug infrastructure.



Chapter 6

Retargetable Binary Tools

Alexandro Baldassin, Paulo Centoducatte, and Luiz Santos

6.1 Introduction

Binary tools is the name usually given to the set of tools which manipulates binary

files. They can be roughly divided into code generation and code inspection tools.

For instance, the assembler and linker are employed to generate object code whereas

the debugger is used to inspect the generated code.

Due to their nature, binary tools are heavily tied to a particular processor archi-

tecture and, to some degree, to the operating system. It is the responsibility of the

application binary interface (ABI) to set the rules that allow an object code to run

on a given operating system. The same object code can be executed, without any

modification, on any system employing a compatible ABI. The format in which the

binary code is stored also plays an important role. Such object code formats come in

different flavours depending on the underlying system. The ELF [3] (Executable and

Linking Format) is worth mentioning due to its widespread use in embedded sys-

tems. ELF is also the current object file format for binaries in the Linux operating

system.

Binary tools are essential in a platform-based design, specially in the early de-

velopment of hardware-dependent software (HDS) since it enables actual hardware-

software co-design. Given a platform, design exploration is crucial to fulfilling func-
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Fig. 6.1 CPU exploration flow with ArchC

tional requirements, as well as real-time, low-power and code-size constraints. De-

sign exploration may require code generation and inspection for several alternative

CPUs, possibly including application-specific instruction-set processors (ASIPs).

In this context, the availability of binary tools for the most popular general purpose

processors does not help much. Besides, the task of manually retargeting binary

tools for each new explored CPU would not be affordable under the time-to-market

pressure.

The ArchC package provides a tool capable of automatically generating the most

important binary utilities, namely an assembler, linker, disassembler and debugger.

The generation process is guided by a high-level description of the target architec-

ture and a set of support files. Figure 6.1 shows the overall exploration flow of CPUs

in a platform-based design employing ArchC and its generated tools.

First of all, notice in Fig. 6.1 the existence of four different flows. The tool-

generation flow starts off with the description of the target CPU and a set of support

files. These files are used as input to the tool generator which in turn generates the

binary tools. It should be noticed that compiler generation is not currently supported.

A simulator can be generated as previously seen in Chap. 4. The code-generation

flow translates source files (written in a high-level programming language) into an

executable file. Several tools are employed during this process. A compiler usually

translates the high-level source file into a set of assembly source code files. These

files are in turn transformed into relocatable object files by the assembler. Finally,

the linker creates an executable file using the previously generated relocatable object
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Table 6.1 Retargeting effort
ArchC Generated Gain

MIPS 284 2226 7.8

SPARC 568 2701 4.7

PowerPC 559 5767 10.3

i8051 424 2508 5.9

PIC16F84 138 2137 15.5

code. The executable code can be run in the instruction-set simulator and its output

checked to see if requirements are met. If that is not the case, then the current CPU

might be changed or even replaced by another one. This last flow is described in

the figure as the evaluation/exploration flow. At last, the code-inspection flow is

commonly used to check the correctness of the executable code. The debugger can

be plugged into the instruction-set simulator and the code can be inspected as the

simulation runs.

To highlight the importance of automatic generation of binary tools, Table 6.1

shows the productivity gain achieved by using the ArchC generation tool when

compared to generated code. The numbers represent lines of source code for five

well-known architectures. For instance, for the MIPS architecture, the table shows

that the user has written 284 lines of source code and the ArchC tool has generated

2226 lines of code, representing a gain of 7.8. The table suggests that, on average,

manual retargeting would require 8.8 times more effort.

The rest of this chapter is organized as follows. Section 6.2 introduces the avail-

able language constructs related to binary tools. Section 6.3 describes the technique

developed to retarget the GNU binutils tools. Finally, Sect. 6.4 presents a quick

guide to get the tools up and running.

6.2 Language Support for Binary Tools

This section describes which information should be made available so that auto-

matic generation of binary tools can be carried out. The generator requires a few

new language constructs and support files to be created. It is important to bear in

mind that the additional information is not mandatory if only simulators are to be

generated.

Overall, there are 7 language constructs required for binary tools genera-

tion: set_endian, ac_format, ac_instr, set_decoder, ac_asm_map,

set_asm, pseudo_instr. The first four of them (which have already been de-

scribed in Chap. 2 and Chap. 4) are also used by the simulator generator. On the

other hand, the remaining three constructs are specific to binary tools and must be

specified in the AC_ISA part of the processor model. These constructs along with

two support files hold all the necessary information for binary tools generation, pro-

viding details about processor-specific assembly language symbols (such as register
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1 ac_asm_map r e g {

2 "%r" [ 0 . . 3 1 ] = [ 0 . . 3 1 ] ;

3 "%g" [ 0 . . 7 ] = [ 0 . . 7 ] ;

4 "%o" [ 0 . . 7 ] = [ 8 . . 1 5 ] ;

5 "%l" [ 0 . . 7 ] = [ 1 6 . . 2 3 ] ;

6 "%i" [ 0 . . 7 ] = [ 2 4 . . 3 1 ] ;

7 "%fp" = 3 0 ;

8 "%sp" = 1 4 ;

9 }

Fig. 6.2 SPARC-V8 register names and encoding values

names), instruction syntax, operand encoding/decoding as well as synthetic instruc-
tions.

6.2.1 Assembly Language Symbols

The ac_asm_map language construct allows one to specify the assembly language
symbols and their corresponding encoding values. A set of symbols can be grouped
and given a unique identifier. The identifier can be referenced later when instruction
operands are described with set_asm , allowing the assembler to recognize only
the specific set of symbols as valid.

As an example, consider Fig. 6.2, which specifies the SPARC register names
and their corresponding encoding values. In this particular example the mapping
identifier is reg (Line 1). This identifier can be used later when the instruction
operands are described (Sect. 6.2.2) in order to constrain the set of valid symbols
recognized by the assembler.

6.2.2 Instruction Syntax and Operand Encoding

The instruction syntax and encoding information are specified by means of two
special methods of an ac_instr object: set_asm and set_decoder. The for-
mer specifies both assembly language syntax and operand encoding, while the latter
specifies the opcode. Notice that set_decoder has already being described in
Chap. 4 and therefore this section only explains how set_asm works.

Figure 6.3 shows the general form of set_asm. Here, insn is an ArchC in-
struction whose assembly syntax and operand encoding are being defined. The con-
struct is split into a syntax string and an optional field list. The syntax string ("mno
%op1,%op2") is always specified between double-quotes and is made up of literal
characters (mno, ,) and operand identifiers (%op1, %op2). The set of characters up
to the first whitespace constitutes the instruction mnemonic (mno). Operand identi-
fiers always start with the special character % and act as placeholders for binary val-
ues assigned at assembling and/or linking time. The place in the instruction where
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Fig. 6.3 Description of an arbitrary instruction

these values are encoded is specified in the field list. For each operand identifier

there must be a corresponding operand field. In the given example, the value hold

by op1 will be placed in instruction field field1, while the value hold by op2
will be placed in instruction field field2.

The set_asm construct specifies how the generated assembler will parse an

assembly source code file and emit the binary code. The purpose of an operand

identifier is twofold: first, it tells the assembler which set of symbols should be re-

garded as valid; second, it provides the corresponding encoding value. For instance,

consider the following declaration:

<insn>.setasm("insn %reg", f1);

Assume we are using the register mapping declared in Fig. 6.2. The operand

reg forces the assembler to accept only the symbols defined in the aforementioned

mapping. For instance, the instruction toy %l7 will be accepted by the assembler

and the corresponding value (23) will be encoded in the instruction field f1. Now

consider the instruction toy label1. It will cause the assembler to emit an error

since the symbol label1 is not defined in the reg mapping.

To simplify the description of operands, the ArchC language provides the fol-

lowing built-in operand identifiers:

• imm: used to represent integer-like immediate operands.

• addr: used for symbolic address operands. In this case, the assembler will not try

to extract the symbol value at assembling time but rather emit a relocation entry

for the symbol.

• exp: used for expressions (a combination of immediate and symbolic operands).

For instance, the operand label1 + 10 is regarded as an expression operand

(label1 is a symbolic address whereas 10 is an immediate value).

6.2.3 Instruction Encoding and Modifiers

The instruction encoding process is performed primarily by the assembler and op-

tionally by the linker (if relocation is present). As explained previously, at assem-

bling time the assembler extracts the value from the operand identifier and encodes

it in the corresponding instruction field specified in the field list. If the value is
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larger than the field’s capacity (i.e. the value requires more bits than available) the

extra bits are discarded. Similarly, if the value requires less bits than available in the

instruction field, then the extra bits will be cleared.

This aforementioned scheme is the default encoding behavior. It handles the com-

mom case, but it may not suffice if a transformation should be applied to an operand

value before encoding takes place. Such a case happens with pc-relative operands,

where the encoding value is the result of the subtraction of the instruction address

(probably added to an offset) from the symbol value. To deal with non-conventional

cases, ArchC introduces the notion of modifiers. A modifier is a function that trans-

forms a given operand value. If a modifier is specified, the assembler and/or linker

first executes the modifier code using the original operand value as input. The mod-

ifier output is then used as the final encoding value.

In ArchC, a modifier can be attached to any operand identifier. All one has to

do is to specify a modifier name and an optional addend after the operand identifier

between parentheses. For instance, the following description:

1 ba . set_asm ("ba %exp(pcrel)" , d i sp22 , an =0) ;

specifies the SPARC instruction ba (branch always) with an operand of type exp.

A modifier named pcrel is assigned to this operand, meaning that the operand

value must be transformed by the pcrel modifier. The modifier code is specified

outside the ArchC model, in a file named modifiers living in the same directory

as the ArchC source files. Two versions need to be specified: one for encoding (used

by the assembler and linker) and another for decoding (used by the disassembler

and debugger). The code should be written in the C language.

Figure 6.4 shows the description of the pcrel modifier. The keywords

ac_modifier_encode and ac_modifer_decode are used to specify the

encoding and decoding modifiers, respectively. The name of the modifier must fol-

low the keyworks inside parentheses (Lines 1 and 6). At least 4 special variables are

defined within the modifier context, accessed through the reloc pointer: input
contains the operand value; address contains the instruction address at assem-

bling or linking time; addend contains an optional value defined as part of the

modifier (not used in the SPARC example); and output contains the modifier’s re-

sult. In Line 3 of Fig. 6.4 one can see the C code for the encoding modifier pcrel.

The encoding value (reloc->output) is computed by subtracting the current in-

struction address (reloc->address) from the symbol value (reloc->input).

Since the value is stored in words (4 bytes), an additional shift to the right by 2 bits

must be performed (Line 3). The decoding modifier is similarly defined in Line 8.

Modifiers can represent complex encoding schemes. It is also possible to have

direct access to the instruction formats and fields (declared with ac_format) in-

side a modifier. This will come in handy if multiple fields must have their values set,

since a single output variable will not suffice. As an example, consider the imme-

diate data processing operands of the ARM architecture. One single operand may

have multiples encoding values and must be encoded into two different instruction

fields. The declaration of such an instruction will be as follows:
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1 ac_modi f ier_encode ( p c r e l )

2 {

3 r e l o c −>o u t p u t = ( r e l o c −>i n p u t − r e l o c −>a d d r e s s ) >> 2 ;

4 }

5

6 ac_modi f ier_decode ( p c r e l )

7 {

8 r e l o c −>o u t p u t = ( r e l o c −>i n p u t << 2) + r e l o c −>a d d r e s s ;

9 }

Fig. 6.4 Modifier code (SPARC)

1 ac_modi f ier_encode ( aimm )

2 {

3 unsigned i n t a ;

4 unsigned i n t i ;

5

6 # d e f i n e r o t a t e _ l e f t ( v , n ) ( v << n | v >> (32 − n ) )

7

8 f o r ( i = 0 ; i < 3 2 ; i += 2)

9 i f ( ( a = r o t a t e _ l e f t ( r e l o c −>i n p u t , i ) ) <= 0 x f f ) {

10 r e l o c −>Type_DPI3 . r o t a t e = i >> 1 ;

11 r e l o c −>Type_DPI3 . imm8 = a ;

12 r e t u r n ;

13 }

14

15 r e l o c −> e r r o r = 1 ;

16 }

Fig. 6.5 Complex modifier code (ARM)

1 and3 . set_asm ("and %reg, %reg, #%imm(aimm)" , rd , rn , r o t a t e

+imm8 ) ;

Note that the third operand (imm) is bound to the pre-defined fields rotate and

imm8 (the symbol + is used here for field concatenation). The modifier aimm is

attached to the operand identifier and its code is presented in Fig. 6.5. Note that

variables and common C structures such as loops (Line 8) can be used inside the

modifier. Since the encoding affects 2 fields, a single output variable is not suffi-

cient. The code hence accesses the instruction formats and fields directly (Lines 10

and 11).
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1 pseudo_ ins t r ("ble %reg, %reg, %exp" ) {

2 "slt $at, %1, %0" ;

3 "beq $at, $zero, %2" ;

4 }

5

6 pseudo_ ins t r ("mul %reg, %reg, %imm" ) {

7 "addiu $at, $zero, %2" ;

8 "mult %1, $at" ;

9 "mflo %0" ;

10 }

Fig. 6.6 Defining synthetic instructions (MIPS)

6.2.4 Pseudo Instructions

Synthetic instructions, or pseudo instructions, are created based on other previously

defined native instructions. ArchC provides the pseudo_instr construct for the

purpose of defining the corresponding native instruction(s).

The first step in describing a synthetic instruction is to declare its syntax. Note

that only the syntax string is necessary. The operand field is not specified since

the pseudo instruction does not have real fields. Following the syntax string, a list

of native instructions (those defined with set_asm) is specified. Parameters from

the pseudo instruction syntax can be used by the native ones by employing the %

character and indicating which parameter from the pseudo must be replaced (similar

to the macro construct used by GNU assemblers).

Figure 6.6 shows two definitions of synthetic instructions used in the MIPS

model. The first one, Lines 1 to 4, create the pseudo instruction ble, which uses

three operands. It is defined as a sequence of two native instructions (Lines 2 and

3): slt and beq. The character % indicates a substitution of parameters. For ex-

ample, the instruction slt in Line 2 uses the literal $at as the first operand, the

second (%1) is the string associated with the second %reg in the pseudo instruction

definition, and the third operand (%0) is associated with the first pseudo instruction

operand.

The second synthetic instruction definition, Lines 6 to 10, creates the instruction

mul with 3 operands. When an instruction such as mul $2, $3, 10 is found by

the generated assembler, it will be expanded into the following three:

1 a d d i u $a t , $zero , 10

2 mul t $3 , $ a t

3 mflo $2
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6.3 Binary Tools Retargeting

This section presents the retargeting technique developed to generate the binary

tools. The GNU binutils framework is first introduced in order to give the reader

an overview of the main components of this important package. After that the text

delves into the retargeting technique itself.

6.3.1 GNU Binutils Package

The GNU binutils package [1] is a collection of tools aimed at binary file manipu-

lation. Its main tools comprise an assembler (gas) and a link editor (ld). In addition,

the package contains library managers (ar and ranlib), object file inspectors (obj-

dump and readelf) and some other minor tools.

In general, a GNU binutils tool has a machine-independent module (the core),

which provides the main tool operation and control flow, and a machine-dependent

module, which implements processor-specific operations. Current processor support

in the package includes RISC, and CISC architectures (AMD 29k, Alpha, ARM,

Intel i386, Motorola 680x0, PowerPC, SPARC and TMS320C54x).

The package’s tools rely on two main libraries known as Opcodes and Binary

File Descriptor (BFD). In order to retarget a tool to a new processor, the machine-

dependent code must be implemented and the main libraries may require extensions.

The purpose of the Opcodes library is to store information related to a processor’s

ISA. Since there is no standard format for this library, every processor port usually

creates its own. In general, the library is described as a large table where each line

represents an instruction, and the columns contain information such as opcodes,

operand and instruction types, decoding information, and so on. The library also

provides an optional application programming interface (API) for decoding pur-

poses. The GNU debugger (gdb) and the GNU disassembler (objdump) are among

the tools relying on this API. For them, the API routines must be retargeted.

The BFD library provides a set of generic routines to operate on object files, re-

gardless of the adopted binary format. Figure 6.7 shows how the library is organized.

Application programs interface with the library’s front-end, which provides a set of

format-independent routines to manipulate object files. The front-end is responsi-

ble for calling the proper back-end routine which in turn executes format-dependent

operations on the object file.

The main advantage of the framework provided by the BFD library is that, once

an object file format is implemented in the backend, it can be reused by all processor

ports. Therefore, although processor-specific information (such as relocation) is still

required, the overall porting effort is substantially reduced.
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Fig. 6.7 BFD library organization

Fig. 6.8 Generation flow of binary utilities

6.3.2 Automatic Binutils Retargeting

The overall generation flow of the binary utilities is summarized in Fig. 6.8. Given

an ADL description of the target CPU, the binary utility generation tool, henceforth

called acbingen, outputs a set of machine-dependent files for the GNU binutils

framework. These files are merged into the original binutils source tree and com-

piled, thereby generating the executable binary utilities for the target processor.

Sections 6.3.3 and 6.3.4 describe in detail the automated retargeting process for

the Opcodes and BFD libraries. The generation of the main binary utilities, assem-

bler and link editor, is discussed in Sects. 6.3.5 and 6.3.6, respectively.
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6.3.3 Opcodes Library Generation

The implementation of this library is done in an ad hoc way by current CPU ports.

We have created a standard format for this library consisting of three tables. The

tables and the ArchC language constructs used to generate them are:

• Opcodes: stores instruction mnemonic, operand types and syntax, base bi-

nary image and instruction format. If the instruction is synthetic, it also stores

a pointer to the native instructions in the Synthetic Instructions ta-

ble (described next). This table is built from the following ArchC constructs:

set_asm, set_decoder, pseudo_instr and ac_format;

• Synthetic Instructions: for each synthetic instruction declared with the

pseudo_instr keyword, this table stores all the native instructions assigned

to it;

• Assembly Symbols: a table representing the mapping between symbols and

values, as declared with the ac_asm_map ArchC construct.

6.3.4 BFD Library Generation

Throughout this Section the ELF object file format is used to illustrate the retarget-

ing concepts. It should be noticed that the same principles could be applied to any

other object file format without loss of generality.

The format-independent routines of the ELF format are already implemented and

used by a large number of CPU ports. The format-dependent routines are automat-

ically generated by acbingen and deal mainly with relocation issues. Relocation

information consists essentially in describing which instruction fields must be edited

and how they should be changed. This information is collect from the ArchC source

files where they are described by means of modifiers. The BFD library provides

a relocation table which contains parameters describing the relocation resolution

mechanism. These parameters are generated by acbingen from the information

provided by the ArchC construct set_asm. Given an instruction operand requiring

link edition, the resolution mechanism is derived according to the rules encoded by

the ADL modifiers.

The steps performed by acbingen to automatically generate the relocation ta-

ble entries are the following:

• Step 1: For each instruction found in the ADL description, check if there are re-

locatable operands (identified by the built-in types addr or exp in the assembly

syntax);

• Step 2: For each relocatable operand, generate a relocation directive according

to the modifiers described in the support file. Check if there exists an equivalent

relocation directive in the relocation table. If not, insert the new directive in that

table.
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The relocation table is completely abstracted by the retargeting technique, i.e.,

the user does not even know it exists. When describing an operand field of an in-

struction, the user can rely on the ADL modifiers to compactly encode its relocation

mechanism.

6.3.5 Assembler Generation

The assembler generated by acbingen is able to output relocatable object files,

which are then merged into a single executable object file by the link editor. The

whole process is shown in Fig. 6.9.

Figure 6.9(a) shows the structure of the assembler. Modules marked with an as-

terisk (*) are automatically generated by acbingen. The assembler core module

provides machine-independent functionality (such as parsing of labels, directives

and expressions). Whenever an architecture-specific operation has to be performed

(such as instruction parsing and encoding), the core module invokes a so-called hook

function, whose implementation lies in the target specific assembler module.

A generic parsing algorithm was implemented and is generated for each target

CPU. The parsing of an assembly source file is guided by the information stored in

the Opcodes library. Once an instruction is syntactically validated, binary code is

emitted and a relocation entry is created for each relocatable operand (according to

its type) using the BFD library. To give an idea of the work involved in retargeting

this module, there are around 25 definitions, 10 global variables and 40 functions

which are machine-dependent and are generated by acbingen.

6.3.6 Link Editor Generation

Figure 6.9(b) shows the link editor structure. Its main purpose is to transform one

or more relocatable object files into an executable object for the target CPU.

The core module starts by reading each input object file and creates two main

tables: a segment table (with information of the sections defined in the input files)

and a global symbol table (with exported and imported symbols). Using the data

contained in these tables and the relocation information, the linker once again pass

through all the input files resolving symbols, assigning addresses to the segments

and adjusting instruction fields according to the relocation entries. It then outputs an

executable object file.

The BFD library is used to read and write the object files. It also contains the

relocation resolution mechanism, which is machine dependent and is generated by

acbingen. The retargeting process of the link editor is done through the linker

emulation module. Each target system must have a distinct linker emulation module

to indicate how certain target-specific issues must be resolved by the core. The emu-

lation module includes a default link editor script and several hook functions which

might be called by the core code in certain stages of the linking process.
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Fig. 6.9 Assembler and link editor structure

A link editor script is written using the linker command language. It describes

how sections in the input files are mapped into the output file and the underlying

memory layout. Figure 6.10 shows a very small example of a link editor script spec-

ifying the memory layout of the output file. The .text sections of the input files

are combined and relocated relative to the base address 0x10000 in the output file.

The same happens for .data (base address 0x200000) and .bss sections (base

address 0x500000) of the input files.

The generation of the link editor emulation module is driven by a shell script

executed during the binutils building process. Three target configuration files are
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SECTIONS
{
. = 0x10000;
.text : { *(.text) }
. = 0x200000;
.data : { *(.data) }
. = 0x500000;
.bss : { *(.bss) }

}

Fig. 6.10 A simple linker script example

read by the script which in turn generates the default linker scripts and the hook

functions. acbingen automatically generates a configuration file containing the

start symbol for the linker and the start address of each object file section (.text,

.data and .bss).

The memory layout used by the automatically generated link editor follows the

memory requirements of ArchC simulators. This choice guarantees that executable

object files generated by the link editor can be loaded and ran on ArchC simulators

during design space exploration. Note, however, that this default memory layout

does not constrain in any way the use of the generated link editor in other environ-

ments, since a suitable memory layout can be provided to the link editor at linking

time.

6.3.7 Summary of Generated Files

Figure 6.11 shows the files automatically generated by acbingen, where [arch]
represents the architecture name.

In addition to the files presented in Fig. 6.11, some auxiliary files (such as

Makefile.in and configure) are automatically patched by our generation

tool in order to correctly build the libraries and tools.

6.4 Putting it to Work

Before starting, make sure you have the binutils and gdb source tarballs (versions

2.16 and 6.4, respectively, are recommended). Uncompress the packages into direc-

tories of your choice, such as BINUTILSDIR for binutils and GDBDIR for gdb.

After that, proceed to install the ArchC package as explained in [2] and pass two

additional options to the configure script:

--with-binutils=$BINUTILSDIR --with-gdb=$GDBDIR
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- binutils
- bfd
. cpu-[arch].c
. elf32-[arch].c
- opcodes
. [arch]-opc.c
- gas
- config
. tc-[arch].h
. tc-[arch].c

- ld
- emulparams
. [arch]elf.sh

- include
- elf
. [arch].h
- opcode
. [arch].h

Fig. 6.11 File tree generated by the acbingen tool

Download the processor model of your choice from the ArchC website [2]

and uncompress it on your hard disk. Let’s assume the PowerPC model is be-

ing used and has been uncompressed into directory PPCMODEL. To generate

the machine-dependent binary tools source code for the PowerPC you will use

the acbingen.sh script (installed with the ArchC installation). Get inside the

PPCMODEL directory and issue the following command (assuming the path to the

script has been correctly set):

acbingen.sh -amyppc -i bin powerpc.ac

This process may take from several minutes to hours depending on your host

machine. The binary utilities will be created and placed into the directory bin under

the PPCMODEL directory.

The tools generated by ArchC are standard binutils and gdb tools. This means

that the machine independent command line options supported by conventional tools

are still supported by the generated tools. The generated assembler also extends the

command line options with the following:

-i, -insensitive-syms
the assembler considers symbolic names as being case insensitive;

-s, -sensitive-mno
the assembler considers mnemonic strings as being case sensitive.

These options change the default behavior of conventional binutils assembler.

There is a third command line option called -archc which displays the ArchC

version used to generate the tool and the architecture name.
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Chapter 7

Debugging SystemC Platform Models

Bruno Albertini, Sandro Rigo, and Guido Araujo

7.1 Introduction

As it was already stated in the previous chapters of this book, new design method-

ologies and tools are being developed to cope with the ever increasing system com-

plexity of modern designs, culminating with the so-called Electronic System Level

(ESL). In this environment, the exploration of several SoC architectural models is

key to achieve application tuning and improved performance. This demands a plat-

form simulation infrastructure capable of doing fast simulation of both software and

hardware, compelling designers to work at higher levels of abstraction.

Besides that, another key factor for a good ESL methodology is the early integra-

tion of verification into the design flow. As stated in Ghenassia’s book on TLM tech-

niques [5], one of the most appealing aspects of TLM is the possibility of reusing

the whole platform infrastructure for both hardware and software development and

verification, which means that the same high-level platform becomes the reference

model on a functional verification flow for hardware IPs, but also is applied by the

software team as their executable system specification.

The lower the abstraction level, the harder it gets to get good debug and analysis

capabilities on it. It is well known that when a system goes to silicon the only points

that can be observed are the external interface pins of the design. This should not be

the case on ESL technologies. Higher levels of abstraction must not be appealing just

for their fast simulation speeds, but also for their flexibility and capabilities when

B. Albertini (�) · S. Rigo · G. Araujo
Computer Systems Laboratory, Institute of Computing, University of Campinas, Campinas, Brazil
e-mail: balbertini@ic.unicamp.br

S. Rigo
e-mail: sandro@ic.unicamp.br

G. Araujo
e-mail: guido@ic.unicamp.br

S. Rigo et al. (eds.), Electronic System Level Design,
DOI 10.1007/978-1-4020-9940-3_7, © Springer Science+Business Media B.V. 2011

117

mailto:balbertini@ic.unicamp.br
mailto:sandro@ic.unicamp.br
mailto:guido@ic.unicamp.br
http://dx.doi.org/10.1007/978-1-4020-9940-3_7


118 B. Albertini et al.

debug and analysis come into play. This creates a demand for new functionalities

related to verification in TLM platform models and/or simulation environments. The
main goals are: to increase verification coverage; increase the designer’s ability to
interact with the platform, for example, by guiding the simulation flow through cer-
tain corner situations by means of specific stimuli injection; and to make simulation
environments more friendly during platform debugging, by enabling breakpoints on

the simulation and data introspection. Bailey et al. [2] divide debug and analysis
capabilities in three primary groups. Observability is simply the ability to see what
is going on into the system. Controllability is to provide means of placing values
into certain registers in order to increase control over the system. Correctability is to

assist the designer in correcting the discovered bugs, which is far easier to provide
in ESL than it is on silicon, but still needs to be addressed by ESL tools.

In this chapter, we discuss a mechanism that relies on computational reflection
to enable designers to, on the fly, interact with the platform simulation. This allows

them to monitor and change signals or even IP internal register values, so as to ex-
plore, in high level of details, what is really happening within each platform module.
This mechanism was first introduced in [1].

7.2 Model Debugging and Verification in SystemC

As discussed in Chap. 2, SystemC is basically composed of a simulation kernel and
a library with common hardware structures and data types, like signals, ports, bit
vectors, etc. Those are standard C++ libraries, with object oriented constructions
commonly found in any structured code. Based on that, SystemC users write their

own models, which are normally organized as a hierarchy of several SystemC mod-
ules.

A problem arises exactly when one needs to debug a SystemC module with stan-
dard C++ debug tools, like GDB, while developing his/her own hardware model.

Hardware designers are not concerned about SystemC internals, but with the model
description they are working on. Unfortunately, ordinary C++ debugging tools do
not understand the isolation between the hardware description and SystemC inter-
nal code, turning debugging into a painful task. That is why specialized tools for

SystemC code debugging become mandatory in order to speed up the development
cycle for SystemC designers. It gets worse in platform-based design, since there
may be several complex modules to put together, demanding to debug not only their
functionality but also the communication capabilities among them.

ARM has a tool suite called RealView Development that they claim to do be

able—despite other things—to do real time SystemC debug, including platform ex-
ploration, low level debug and remote debug (for ARM devices). Vista Design is a
tool from a toolset called Vista Architect, from Mentor Graphics. This is the most
complete debugger tool aiming SystemC designs, allowing projectist to trace trans-

actions, sequence of events and process execution. Platform Architect from CoWare
is on the same track, with a focus on platform exploration and data monitors. XMod-
elink SystemC debugger is another nice tool to trace thread executions in real-time,
but is more limited than their competitors.
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The main problem of those commercial tools is that often they use proprietary

SystemC solutions that were especially developed for debugging purposes. Most of

the time, those kernels comply with the standards, but specific designs and portabil-

ity between IPs can be degraded, not to mention that it prevents the integration with

legacy designs.

SystemCXML and LusSy are nice open-source tools for visualizing SystemC hi-

erarchies, but no real-time debugging support is provided. For real-time debugging,

we could only find GDB and GDB-based tools. GDB is hard to use for SystemC

debugging, mainly because it does not distinguish between SystemC internal code

and user code. If the designer is not careful, he/she may end up inside code from

internal SystemC classes.

The technique presented below fulfill this gap without any SystemC or user in-

tervention. Although it is possible to attach graphical debuggers to the interface, we

do not aim at graphical visualization but at data introspection.

7.3 Why Computational Reflection?

Computational reflection is the ability of a system to observe and to modify itself.

In the software domain, reflection is used to achieve performance optimization, by

means of self-modification performed by the program during runtime, or to dynam-

ically adapt a system for specific situations. Reflection can be classified as static or

dynamic, depending on the mechanism used to generate the additional data structure

needed for achieving the introspection [4]. Static reflection may be used by compil-

ers to do memory optimizations. Reflection is most common on its dynamic form

and in high-level managed programming languages like Java, C#, or Smaltalk.

So, why are we interested in computational reflection in a TLM hardware plat-

form design environment?

One of the features we wanted in our methodology is that the IP designers

should not need to be aware that the IP will be inspected, meaning that designers

will develop their SystemC IPs in exactly the same way they already do. More-

over, it should also be possible to inspect, through the reflection mechanism, IPs

whose source code are not even available. These requisites make static reflection or

user-annotated strategies (where the reflection mechanism or the source code must

be rewritten for every single IP) unsuitable for our purposes. One can claim that

aspect-oriented programming is an interesting alternative to enable such data intro-

spection [3]. In fact, it is well suited for this task. But its main drawback is that it

requires a modification on the programming paradigm in which designers develop

their IPs. Each SystemC module where data introspection would be applied should

be developed following the aspect-oriented programming paradigm. This goes to-

tally against the feature we wanted to provide. Moreover, hardware designers may

not be willing to spend a reasonable amount of time to learn and to change between

different programming paradigms, seriously restricting the adoption of this tech-

nique. Finally, all existent IPs would have to be rewritten in order to make the data

introspection technique applicable.
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Fig. 7.1 Reflection flow using the Reflex-Seal library

7.4 Enabling Data Introspection in SystemC

Let us see how to provide data introspection on SystemC modules by means of an

external reflection library, in our case, the Reflex-SEAL [6] library, designed by

CERN as a part of the ROOT project [7]. The main aspects that make this library

suitable to this task are: it is non-intrusive, provides a semi-automatic information

gathering, imposes no external dependencies (except for the library itself), and there

is no need to modify or replace the compiler.

Let us take a look at the whole software infrastructure used to build this

reflection-enabled framework:

• GCC 4.4.x

• SystemC 2.2.0 (TLM 2.0)

• Reflex SVN r32289

Figure 7.1 shows the generation flow for a reflection-enabled SystemC module

using the Reflex-Seal library. Basically it comprises three steps: information gath-

ering, compilation, and linking.

The information gathering is performed through a script called genreflex,

and comprises two phases. First, GCCXML is used to parse the source code header

file and to generate an object equivalent structure in XML. Second, the XML file

is parsed, generating a compilable dictionary that contains information about the

object structure, like offset and type of the attributes and methods. All information

gathering is done before the compilation and should be done once for every module

to be reflected. Notice that the flow depicted in Fig. 7.1 makes clear that no source

code file (.cpp) is demanded. Moreover, no source code annotation is required.

The dictionary is important to programs which use the reflected data. Through

methods of the Reflex-Seal library, all the internal structure representation of the re-

flected module can be inspected. Usually, a pointer to the reflected object is enough

for performing any reflection operation. Considering the platform design scenario,

we are specially interested in attribute inspection for reading and writing, but calling

methods and non virtual functions are also possible.
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After information gathering, compiling and linking are very straightforward. In

Fig. 7.1, the program which will perform the introspection on the SystemC module

is included into the user input with all the remaining of the platform. This program

must be linked, as long as the module itself, to the reflection library, the dictionary,

and the SystemC library. The produced executable is a SystemC simulator of the

platform capable of performing data introspection to aid during the debugging pro-

cess.

SPIRIT [8] is a consortium created with the main objective of establishing a stan-

dard way to exchange IP information among major EDA companies. Their meta-

descriptions allow any tool able to understand the notation to automatically import,

export, and even compile any hardware module described either in a low-level lan-

guage or in SystemC. One of the standard XML description notations defines Re-

flexBoxes as an introspection tool with inspection, watching, and debugging capa-

bilities. Although ReflexBoxes are covered by the SPIRIT standard specification, the

SPIRIT consortium does not specify the way in which WhiteBox modules should be

implemented, but only their functionality. This SystemC WhiteBox implementation

described using reflection is called ReflexBox.

SystemC hardware modules descriptions are C++ classes. Register contents, in-

put, output, and any other data that may be significant for data introspection are

stored in object attributes or variables. This is exactly the kind of information that

reflection can give us. The ReflexBox implementation consists of a SystemC mod-

ule that has zero delay and communicates to other modules by means of a simple

protocol. It acts like any SystemC module, but it cannot be accessed by another

module because it has no interface. When the ReflexBox process is scheduled by

the SystemC kernel, it uses the dictionary for walking through an instance of the

reflected object (another SystemC module) and gather information.

The ReflexBox is generic and can inspect any kind of SystemC module. The

connection between the ReflexBox and the inspected module is created by the Re-

flexBox’s constructor. It receives a pointer to the object during ReflexBox’s instan-

tiation. Each ReflexBox can handle just one IP instance, but the platform can have

as many ReflexBox instances as required.

At the first execution of their main thread, RefleBoxes generate an internal list

of the attributes and allow the user to set conditions, specifying the attributes of

interest and what to do with them. Moreover, it is also possible to set breakpoints,

used to stop the simulation when one of the conditions is satisfied or just log any

changes suffered by any attribute. When a breakpoint condition is satisfied, the user

is capable of observing the value, of changing it, or of just continuing the simulation.

Remember that the ReflexBox has zero delay, so stopping the simulation does not

advance SystemC’s simulation time. ReflexBox scheduling must be performed in

such a way that it inspects the reflected module on every simulation cycle, when the

module could change its state. A carefully designed sensitivity list for the ReflexBox

should make it sensible to the same events that can trigger the reflected module.

In Sect. 7.5 we present a detailed platform case study, illustrating all the steps

necessary to include the ReflexBox module in order to enable the reflection-based

debugging mechanism.
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Fig. 7.2 MP3 platform

7.5 Debugging a Platform Simulation Model

In this section we use the same MP3 decoder platform that was constructed in

Sect. 5.4, which is composed by two PPC processors, two specialized IPs, and

memory. This platform runs a modified version of the MP3 decoder (dist10) and

is depicted in Fig. 7.2. Here, our main goal is to understand how to achieve module

introspection by applying the reflection mechanism to debugging purposes on this

platform.

As it is detailed in Sect. 5.4, the two functions selected to be implemented in hard-

ware IPs were SBS (Side band synthesizer) and IMDCT (Inverse cosine transform),

which together account for 64% of the processing time in the decoding process. For

demonstration purposes, we are going to reflect the IMDCT IP. In order to do that,

there are three steps to be taken:

1. Generate a dictionary file for the IP;

2. Instantiate a ReflexBox, which is the module that executes data introspection;

3. Compile the platform to produce an executable model.

The three-step process described above assumes that the software infrastructure

listed in the beginning of this chapter (GCC, SystemC, and the Reflex library) is al-

ready installed. The first step is easily accomplished by means of the genreflex
application, which is included in the Reflex package, by running the following com-

mand:

1 genreflex ac_tlm_imdct.h -I <path_to_includes>

It is important to notice that this process does not require the source code, just

the module’s header file ac_tlm_imdct.h. The expected result is a file called

ac_tlm_imdct_rflx.cpp, which represents the dictionary for this IP. This

process needs to be performed once per reflected module and can be done by the

IP provider itself. In Fig. 7.3, we provide an excerpt of one of the classes inside the

ac_tlm_imdct_rflx.cpp file, where the members of the ac_tlm_imdct
class, like the bus port target_export, answer_ready, and memory are

identified (Lines 3–8).
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1 ...
2 //------Delayed data member builder for class ac_tlm_imdct
3 void __user__ac_tlm_imdct_db_datamem(Reflex::Class* cl) {
4 ::Reflex::ClassBuilder(cl)
5 .AddDataMember(type_3877, Reflex::Literal("target_export"),

OffsetOf(__shadow__::__user__ac_tlm_imdct,
target_export), ::Reflex::PUBLIC)

6 .AddDataMember(type_14947, Reflex::Literal("memory"),
OffsetOf(__shadow__::__user__ac_tlm_imdct, memory), ::
Reflex::PRIVATE)

7 .AddDataMember(type_2510, Reflex::Literal("answer_ready"),
OffsetOf(__shadow__::__user__ac_tlm_imdct, answer_ready)
, ::Reflex::PRIVATE);

8 }
9 ...

10 namespace {
11 s t r u c t Dictionaries {
12 Dictionaries() {
13 Reflex::Instance initialize_reflex;
14 __user__ac_tlm_imdct_dict();
15 }
16 ~Dictionaries() {
17 type_5923.Unload(); // class user::ac_tlm_imdct
18 }
19 };
20 s t a t i c Dictionaries instance;
21 }

Fig. 7.3 A dictionary file example

The second step is done in the main file of the platform description (main.cpp),

instantiating the ReflexBox responsible for the runtime debugging and the target IP,

like illustrated in Fig. 7.4.

Line 10 is the IP instantiation. For the purpose of this chapter, it is enough to

know that this IP is a SystemC module. At Line 14, we declare a ReflexBox that is

tied to this IP by its name (ac_tlm_imdct) and the pointer to the object instan-

tiated in Line 10. The last paramenter is a number representing the port which the

ReflexBox shall connect to accomplish the introspection.

By the time the designer compile and run the platform, the SystemC kernel will

instantiate and run each thread, including the ReflexBox. Once all threads are initial-

ized, the ReflexBox will stop the kernel and wait for the connection on the desired

port (in this example, 6000). The designer shall connect to this port either by using a

telnet application or a compatible debugging interface. In this example we use a di-

rect telnet connection. In Fig. 7.5, Lines 1–5 show the connection to the ReflexBox

being stabilished.

This means that the platform is running and it is successfully connected to the

ReflexBox. At this point, simulation is on hold, waiting for instructions to continue.

The platform simulation terminal will show some messages from the ReflexBox. In

order to explore the platform, let’s try some of the ReflexBox’s features.



124 B. Albertini et al.

1
2 i n t sc_main ( i n t ac , char ∗av [ ] )

3 {

4 sc_clock mclock ;

5
6 powerpc ppc_proc1 ("ppc1" ) , ppc_proc2 ("ppc2") ;

7 ac_tlm_mem mem("mem" , 8 ∗ 1024 ∗ 1024) ;

8 ac_t lm_router r o u t e r ("router") ;

9 ac_ t lm_s ta r tup s t a r t u p ("startup" ) ;

10 ac_tlm_sbs sbs ("sbs") ;

11 ac_t lm_imdct imdct ("imdct") ;

12
13 / / ReflexBox i n s t a n t i a t i o n

14 whitebox <ac_tlm_sbs > re f l exbox ("reflexbox" ,"ac_tlm_sbs" ,&sbs ,6000) ;

15
16 char ∗av1 [ ] = {"dual_ppc.x" , "--load=dual_mp3.x" , "-A" , "source.mp3" , "dest.aiff"

, "" } ;

17 i n t ac1 = 5;

18 char ∗av2 [ ] = {"dual_ppc.x" , "--load=dual_mp3.x" , "-A" , "source.mp3" , "dest.aiff"
, "" } ;

19 i n t ac2 = 5;

20
21 # i f d e f AC_DEBUG

22 ac_trace ("ppc_proc1.trace") ;

23 # end i f

24
25 wbmp3sbs . c lock ( mclock ) ;

26 ppc_proc1 . MEM_port ( r o u t e r . ta rge t_expor t1 ) ;

27 ppc_proc2 . MEM_port ( r o u t e r . ta rge t_expor t2 ) ;

28 r o u t e r . MEM_port (mem. ta rge t_expo r t ) ;

29 r o u t e r . STARTUP_port ( s t a r t u p . t a rge t_expo r t ) ;

30 r o u t e r . SBS_port ( sbs . t a rge t_expo r t ) ;

31 r o u t e r . IMDCT_port ( imdct . t a rge t_expo r t ) ;

32
33 ppc_proc1 . i n i t ( ac1 , av1 ) ;

34 ppc_proc2 . i n i t ( ac2 , av2 ) ;

35
36 ppc_proc1 . se t_ i ns t r _ba t ch_s i ze ( 1 ) ;

37 ppc_proc2 . se t_ i ns t r _ba t ch_s i ze ( 1 ) ;

38
39 ce r r << endl ;

40
41 sc_start (−1) ;

42
43 ppc_proc1 . P r i n t S t a t ( ) ;

44 ppc_proc2 . P r i n t S t a t ( ) ;

45 ce r r << endl ;

46
47 # i f d e f AC_STATS

48 ppc_proc1 . ac_sim_stats . t ime = sc_s imula t ion_t ime ( ) ;

49 ppc_proc1 . ac_sim_stats . p r i n t ( ) ;

50 ppc_proc2 . ac_sim_stats . t ime = sc_s imula t ion_t ime ( ) ;

51 ppc_proc2 . ac_sim_stats . p r i n t ( ) ;

52 # end i f

53
54 # i f d e f AC_DEBUG

55 ac_c lose_t race ( ) ;

56 # end i f

57
58 return ppc_proc1 . ac_ex i t _s ta tus + ppc_proc2 . ac_ex i t _s ta tus ;

59 }

Fig. 7.4 The main.cpp file for the MP3 platform
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1 telnet localhost 6000}
2

3 Trying 127.0.0.1...
4 Connected to localhost.
5 Escape character is ’^]’.
6

7 G
8

9 user::ac_tlm_imdct::answer_ready;
10 user::ac_tlm_imdct::memory;

Fig. 7.5 Interacting with to ReflexBox

1 Iuser::ac_tlm_imdct::answer_ready;;OnChange;;TRUE;

Fig. 7.6 Interacting with the ReflexBox

Let’s type the G command, like showed in Fig. 7.5 (Line 7), resulting in a

semicolon-separated list containing all SystemC elements that the ReflexBox could

reflect (and you can play with), like in Line 9.

The ReflexBox can also reflect methods, giving to the user the possibility to call

them. This is not useful into architecture exploration, so we will not show here. The

last lines in Fig. 7.5 show all reflectable attributes of the class ac_tlm_sbs. The

useful ones are the attributes representing IP registers, like answer_ready. This

register should indicate that the IP is idle or processing (values false and true). An

interesting intropection should be a watch over this register, to stop the simulation

when the IP is called (it starts with 0, or idle). In order to do that, type the command

displayed in Fig. 7.6 on the telnet window.

The ReflexBox is supposed to answer “Ok”. If the answer is anything else (in-

cluding nothing), please check for misspelling. Now we must say to the ReflexBox

that we want to continue simulation. If you type the command below, the ReflexBox

will finish the command input phase and start the simulation phase. Typing this at

the beginning (after telnet connection) will execute the platform as no ReflexBox

was connected:

1 Handshake_Finished

The output screen should be similar to that depicted in Fig. 7.7. The first field

is a simulation timestamp, showed as picoseconds from the beginning of the sim-

ulation. At the first line, the control register changed its value to one. This indi-

cates us that the processor took this amount of time to prepare the data, send it to

the ac_tlm_imdct IP, and set the answer_ready register to 1. Consequently,

the IP starts processing. We have the answer_ready register changing again at

9821365500ps. Since the answer_ready changed its value from one to zero,

we conclude that the IP is signaling to the processor that computation is over and

data is ready. The difference between these timestamps represents the amount of
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1 I9819471500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

2 I9821365500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

3 I9821447500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

4 I9823341500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

5 I9823423500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

6 I9825317500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

7 I9825399500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

8 I9827293500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

9 I9827375500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

10 I9829269500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

11 I9829351500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

12 I9831245500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

13 I9831327500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

14 I9833221500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

15 I9833303500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

16 I9835197500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

17 I9835279500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

18 I9837173500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

19 I9837255500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

20 I9839149500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

21 I9839231500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

22 I9841125500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

23 I9841207500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

24 I9843101500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;
FALSE;

25 I9843183500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;
FALSE;

26 ...
27 Connection closed by foreign host.

Fig. 7.7 The reflected attributes accessible through the ReflexBox module
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1 Iuser::ac_tlm_imdct::answer_ready;;ConditionEqual;1;TRUE;
2 Handshake_Finished

Fig. 7.8 Interacting with the ReflexBox

1 Iuser::ac_tlm_imdct::answer_ready;0;OnChange;;TRUE;

Fig. 7.9 Interacting with the ReflexBox

1 Iuser::ac_tlm_imdct::answer_ready;;OnChange;;TRUE;
2 Iuser::ac_tlm_imdct::memory;;OnChange;;TRUE;

Fig. 7.10 Interacting with the ReflexBox

time taken by the IP to process this chunk of data. Using this watch, a designer can

take a lot of information, like: how many times the processor invoked the IP for this

input, if the time spent by both the IP and the processor (between two consecutive

IP executions) is linear or data dependent etc.

Watches are really useful, but we need some more control over the simulation.

Start simulation and connect telnet again. Type the commands depicted in Fig. 7.8

to the ReflexBox.

We are telling the ReflexBox that we want to stop simulation when an-
swer_ready register is equal to ‘1’ and then we finish the preparation phase.

The execution will start and the simulation will hold at the very same point it did in

the last execution, Line 1 in Fig. 7.7.

Simulation is on hold, so we can interact with the ReflexBox again. Suppose we

want to modify the register contents to 0 (telling the processor that the IP is not

processing) and continue the simulation until the end, but as a watch (just printing

values as in the previous example). We can do that by typing the command showed

in Fig. 7.9.

The output is pretty much like in the previous example, but the output file is

wrong. The processor just understood that the IP finished processing and recorded

another chunk of data into the buffer while the IP was still processing the old data,

leading to a complete wrong output. The main point in this example is to illustrate

that the user is capable of modifying the data during the simulation. This can be a

very useful feature to force simulation into corner cases during platform verification.

Now, let’s try to identify an error. Suppose the platform is running fine, but the

output file is not passing the checksum. We can repeat the simulation again, but this

time passing the two commands in Fig. 7.10 on the preparation phase.

These commands define a watch over each one of the registers, answer_ready
and memory (it is a pointer to where the chunk of data to be processed resides).

The output is showed in Fig. 7.11 (the remaining lines are the same as in the first

example):

As showed, the memory changed on 9819471500ps with the answer_
ready register, because the processor had just programmed the IP to the first
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1 I9819471500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;FALSE
;

2 I9819471500 ps;user::ac_tlm_imdct::memory;0x2003EF;FALSE;
FALSE;

3 I9821365500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;FALSE
;

4 I9821447500 ps;user::ac_tlm_imdct::answer_ready;1;FALSE;FALSE
;

5 I9823341500 ps;user::ac_tlm_imdct::answer_ready;0;FALSE;FALSE
;

Fig. 7.11 Introspection output

execution. The problem is that it never changed anymore, meaning that on the sec-

ond IP execution (at 9821447500ps when the control register changed to one

again), the IP processed the same chunk of data, which is not the expected behav-

ior. This platform is implemented using a double buffering scheme, so this address

should be different between two different IP executions.

Obviously the ReflexBox cannot identify errors by itself, but it proved to be a

very handful tool to aid bug discovering. In this last example, using ReflexBox to

manually change the memory value to the correct one is enough to get a correct

simulation, saving a lot of time in searching the bug and correcting the program.
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Chapter 8

SystemC-Based Power Evaluation with PowerSC

Felipe Klein, Rodolfo Azevedo, Luiz Santos, and Guido Araujo

Although SystemC is considered the most promising language for SoC functional

modeling, it does not come with built-in power modeling capabilities. This chap-

ter presents PowerSC, a power estimation framework which instruments SystemC

for power characterization, modeling and estimation. Since it is entirely based on

SystemC, PowerSC allows consistent power modeling from ESL to lower abstrac-

tion levels. Section 8.1 shows how SystemC is extended to handle power, Sect. 8.2

describes how to instrument SystemC descriptions for power estimation, Sect. 8.3 il-

lustrates how PowerSC allows the user to perform estimations either at RTL or gate-

level with the same instrumentation. Finally, Sect. 8.4 explains how to put PowerSC

to work.

8.1 SystemC Extensions for Power Modeling

In this section, we first show an extended design flow, which is fully based on

SystemC, and then describe its supporting framework.
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Fig. 8.1 PowerSC Design
Flow

8.1.1 The Extended Design Flow

Figure 8.1 shows two complementary and orthogonal flows. At the right side, the

usual purely-functional SystemC flow is sketched. At the left side, the power-aware

PowerSC flow is illustrated.

No matter the adopted flow, the starting point is a SystemC description. The flow

to be followed is determined by some configuration files (e.g. Makefiles), which

instruct the C++ compiler to generate either a conventional executable specifica-

tion (by linking the SystemC library only) or to produce an augmented executable

specification (by linking both, the SystemC and PowerSC libraries).

The first step in the power-aware flow is to compile the PowerSC executable

specification, which is instrumented to gather signal statistics during simulation. In

the next step, simulation is launched and, as consequence of proper instrumentation,

design elements are monitored and power information is dynamically recorded. At

simulation completion, the resulting information is summarized in power reports.

Reported bottlenecks can be employed to prompt design refinements. Refined de-

signs should undergo as many iterations through the PowerSC flow as required to

reach adequate power values.

Notice that the user can switch from one flow to another as many times as needed

to optimize power and satisfy design constraints.
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1 ...
2 t empla te < i n t W, c lass T>
3 c lass psc_objinfo : p u b l i c psc_objinfo_base,
4 p u b l i c psc_objinfo_if
5 {
6 ...
7 };
8 ...
9 t empla te < i n t W>

10 c lass psc_bv : p u b l i c sc_bv<W>,
11 p u b l i c psc_objinfo<W, sc_bv<W> >
12 {
13 ...
14 }
15 ...

Fig. 8.2 Extending SystemC classes

8.1.2 The SystemC Extensions

In order to enable the power analysis capabilities in SystemC, some extra classes

were created in order to capture useful information for power calculations (e.g.

switching activity). The main class responsible for such task is named psc_
objinfo, as sketched in Fig. 8.2 (Line 3). Using multiple inheritance, this class

was derived from psc_objinfo_base and psc_objinfo_if classes. The

former implements the base mechanisms for capturing the switching activity and

the latter actually provides the interface with methods for handling the statistics

gathered throughout the simulation.

Moreover, C++ meta-programming has been used to make this class easily adapt-

able, according to two parameters: W (the bit-width of the object being monitored)

and T (the base class which is being extended to be power-aware).

Assisted with this, SystemC signal and data type classes have been extended

so as to inherit properties and behavior from both the original SystemC class and

the psc_objinfo class. An example of such extension is given for the SystemC

bit-vector class in Fig. 8.2 (Line 10). Notice that the prefix used to label PowerSC

classes is “psc_”, following a convention similar to the one employed in SystemC

(“sc_”).

Every PowerSC object is capable of automatically tracking its state throughout

simulation, thereby capturing the switching activity of the associated design ele-

ment. Each object can provide information such as its toggle count (number of

1 → 0 and 0 → 1 transitions), spatial correlation (relation between different sig-

nals) and static probability (probability of a signal being at a certain logic value),

which are essential statistics for obtaining accurate power estimates [4].

To capture the toggle count during simulation, the assignment operator was over-

loaded for all relevant classes. Figure 8.3 shows an example of the underlying mech-

anism when monitoring the switching activity on a signal of type psc_uint<2>
(2-bit unsigned integer).
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Fig. 8.3 Overloading operators for activity monitoring

1 #include <systemc.h>
2 #include <powersc.h> // <-- mandatory modification --
3 #include "muls32.h"
4

5 ...
6 i n t sc_main( i n t argc, char **argv) {
7 ... // modules instantiation
8 s c _ s t a r t( /* simulation time */ );
9 PSC_REPORT_POWER; // <-- this is also necessary --

10 r e t u r n( 0 );
11 }

Fig. 8.4 A PowerSC-enabled SystemC model

Consider the signal named result within proc(). Whenever a value is assigned to

this signal, this operation will be handled by the power-aware SystemC class (i),

which in turn calls the appropriate overloaded operator of the PowerSC data type

class (ii). Then, this method takes care of computing the switching activity statistics

accordingly (iii). It is important to remark that PowerSC is aware of the fact that

the assignment to a signal does not change its value immediately, thus avoiding an

unwanted loss of accuracy.

8.2 Instrumentation of a SystemC Description

Only two modifications are needed in the SystemC description to enable PowerSC

usage. A mandatory change is the inclusion of the main PowerSC header file

(powersc.h) within the model files. Another compulsory change is to invoke a

PowerSC macro at the end of the simulator’s main function (sc_main), in order

to print out the results. These modifications are shown in Fig. 8.4, at Lines 2 and 9,

respectively.
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Fig. 8.5 SystemC gate-level generation

As it can be seen, the effort to enable the power estimation mechanism is mini-

mal, leaving a small footprint in the original SystemC description. It should be noted

that SystemC data types, signals and modules do not need to be manually changed.

PowerSC modifies them automatically.

8.3 Support for Characterization at the Gate Level

To allow the more accurate power figures obtained at the gate level to be employed

for the building of higher-level models, PowerSC provides a mechanism to generate

a gate-level part library for a given technology library. The required generation steps

are depicted in Fig. 8.5.

The base part library (containing components like adders and multipliers) is built

from a technology library written in the so-called Liberty format [6] with a tool from

Forte’s Cynthesizer package [2]. Components are described in SystemC at the RT

level (SC_RTL) and in Verilog at the gate-level (V_GATES).

To enable a unified representation within the PowerSC framework, two convert-

ers were implemented from the external formats into SystemC, as follows:

• the vlog2sc converter translates each netlist found in V_GATES to an equivalent

SystemC gate-level description;

• the lib2psclib and psclib2sc converters translate the technology library from the

Liberty format into a C++ representation.

The files produced by the converters result in the so-called SystemC gate-level

part library (SC_GATES), which replaces the Verilog library.

Let us illustrate the conversion by showing samples of input and output formats.

First, consider the conversion implied from point A to B in Fig. 8.5. A sample de-

scription of a 0.13 µm technology library is given in Fig. 8.6. This sample is de-

scribed in the so-called PSCLib format, which is a simplified format as compared

to Liberty. Note that it first defines the units to be adopted and then describes an

existing library cell (xor2v0x1).
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That description, converted in the form of a C++ technology library, results in

two files: techlibrary.h and techlibrary.cpp. A sample of the latter is shown in Fig. 8.7.

(These files are later used by the components in the SystemC gate-level part library

SC_GATES).

Let us now consider the conversion implied from point C to D in Fig. 8.5. A sam-

ple of the Verilog description of a 4-bit adder at the gate-level is given in Fig. 8.8.

That description is converted to the SystemC model sketched in Fig. 8.9. Notice

(at the first line) that the above-mentioned technology library is included. Observe

that such SystemC model simply instantiates and binds cells from the technology

library (e.g. the I22 instance of a XOR gate), much in the same way as an ordinary

SystemC design.

Thanks to the described converters, the PowerSC user can select the abstraction-

level at which a design component should be simulated (either RTL or gate-level),

by simply selecting the appropriate part library (either SC_RTL or SC_GATES).

Regardless of the chosen abstract level, the PowerSC aspects visible to the user

are exactly the same. The instrumentation of SystemC descriptions, as depicted in

Fig. 8.4, is therefore abstraction-level independent.

8.3.1 Integration of Macromodels in PowerSC

One of the keystones of the PowerSC framework is the support for modeling power

at different levels of abstraction. Power models can be tied to SystemC modules

encapsulating functional, RTL or even gate-level models. To support the integra-

tion of pre-defined power models, PowerSC provides a macromodeling API, which

consists of a set of C++ classes, as described in the following.

In order to add a new part to the library, two classes must be derived:

psc_macromodel and psc_macromodel_parms. The latter encapsulates the

parameters of a given macromodel as attributes (e.g. signal statistics). The former

encapsulates the actual power computation, as sketched in Fig. 8.10, and essentially

consists of two functions:

• init_power_map: it initializes the internal structure of the macromodel (de-

fined by the user) with the power information from the characterization phase.

• get_power: it computes the dissipated power according to the parameters cap-

tured in the derived psc_macromodel_parms class. (It is internally invoked

to generate the power reports from a specific power model.)

It should be noted that the inner details of the derived psc_macromodel class

are hidden from the user. For integration purposes, the user must only create the

code for those virtual functions.

A distinct psc_macromodel class is automatically created for each library

component, since macromodeling techniques usually require a specific behavior for

each component (tables initialized with different values, different power equations,

and so on).
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units {
voltage = 1V;
capacitive_load = 1.00 ff;
time = 1ps;
leakage_power = 1pW;

};
...

xor2v0x1 {
leakage_power = 1074;

input a {
capacitance = 5.34;
fanout_load = 1;

}

input b {
capacitance = 6.7;
fanout_load = 1;

}

output z {
max_fanout = 4;
max_capacitance = 119;
function = (a^b);

internal_power a_z_n:a {
template = pwr_x1_195_5x10;
transition_type = both;

values = {
{11.41, 11.475, 11.535, 11.56, 11.555},
{11.245, 11.33, 11.415, 11.47, 11.475},
{11.285, 11.36, 11.455, 11.52, 11.535},
{11.425, 11.49, 11.585, 11.65, 11.68},
{11.84, 11.86, 11.925, 11.98, 12},
{12.61, 12.58, 12.56, 12.56, 12.56},
{14.01, 13.875, 13.715, 13.6, 13.53},
{16.34, 16.075, 15.69, 15.35, 15.135},
{20.195, 19.75, 19.035, 18.305, 17.805},
{26.445, 25.78, 24.615, 23.285, 22.26}

}
}

}
...

};

Fig. 8.6 Sample of the psclib2sc input format
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const double LibUnits::voltage = 1;
const double LibUnits::capacitive = 1e-15;
const double LibUnits::time = 1e-12;
const double LibUnits::leakage_power = 1e-12;
const double LibUnits::dynamic_power = 0.001;

...
void xor2v0x1::proc()
{

z.write(
( a.read() ^ b.read() )

);
}

xor2v0x1::~xor2v0x1()
{
#ifdef POWER_SIM

sc_interface *_if_a = a.get_interface();
psc_objinfo_if *_p_a = dynamic_cast<psc_objinfo_if*>(_if_a);

sc_interface *_if_b = b.get_interface();
psc_objinfo_if *_p_b = dynamic_cast<psc_objinfo_if*>(_if_b);

sc_interface *_if_z = z.get_interface();
psc_objinfo_if *_p_z = dynamic_cast<psc_objinfo_if*>(_if_z);
...
double E_b_z_n =
psc_geometric_centroid(pts_b_z_n, _p_b->get_net_delay(),

_p_z->get_net_load());

psc_cell_power_info info(name(), celltype);

info.set_level(PSC_GATE_LEVEL);
info.set_leak_power(leakage_power);
psc_pin_power_info pwr_a_z_n(_p_z->get_id(), E_a_z_n);
pwr_a_z_n.set_rel_pins(1, _p_a->get_id().c_str());
info.add(pwr_a_z_n);
psc_pin_power_info pwr_b_z_n(_p_z->get_id(), E_b_z_n);
pwr_b_z_n.set_rel_pins(1, _p_b->get_id().c_str());
info.add(pwr_b_z_n);
PSC_INSERT_CELL(info);

#endif
}

Fig. 8.7 Sample of the psclib2sc output format

Besides, such distinct psc_macromodel classes can also be useful when the

designer wants to explore different macromodel techniques for each component (ei-

ther to improve estimation accuracy or speed).

Actually, several macromodels have already been successfully integrated into the

PowerSC framework, as described in [3]. Most macromodels rely on the following
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module Add4 (a,b,out1);
input [3:0] a, b;
output [3:0] out1;
ha2v0x2 I0 (.co(N53), .so(out1[0]), .a(b[0]), .b(a[0]));
xor2v0x1 I22 (.z(N74), .a(a[1]), .b(b[1]));
mxi2v0x05 I23 (.z(N70), .a0(a[1]), .a1(N53), .s(N74));
iv1v0x1 I24 (.z(N57), .a(N70));
xor2v0x05 I25 (.z(out1[1]), .a(N74), .b(N53));
xor2v0x05 I26 (.z(N85), .a(a[2]), .b(b[2]));
mxi2v0x05 I27 (.z(N81), .a0(a[2]), .a1(N57), .s(N85));
iv1v0x05 I28 (.z(N59), .a(N81));
xor2v0x05 I29 (.z(out1[2]), .a(N85), .b(N57));
xor3v1x05 I3 (.z(out1[3]), .a(a[3]), .b(b[3]), .c(N59));

endmodule

Fig. 8.8 Sample of the vlog2sc input format

signal properties: the input signal probability Pin, the input transition density Din

and the output transition density Dout .

Let us take the so-called EqTab power macromodeling technique [1] as an exam-

ple to illustrate the integration process. That macromodel considers the individual

contribution of each input/output bit position. Let Din(x) and Dout (x) be transition

densities (bit toggles per time unit) measured at the x-th bit position for a stream of

input and output vectors, respectively. For simplicity, Let us generically call them

bit-wise transition densities. Let n and m be, respectively, input and output vector

bit widths. Given a component, its power consumption is modeled by the following

equation, where ci denotes a coefficient:

Power = c0 + c1 ∗ Din(0) + c2 ∗ Din(1) + · · · + cn+m−1 ∗ Dout (m − 2)

+ cn+m ∗ Dout (m − 1).

Actually, the EqTab technique relies on a look-up table which is indexed with

(Pin, Din). For each entry in this table, instead of directly storing a power value, the

corresponding entry actually stores the coefficients of the equation above.

As a result, EqTab estimation consists of three steps: first, an RTL simulation

is run and the bit-wise densities are collected, along with the properties Pin, Din

and Dout ; then, the coefficients stored at entry (Pin, Din) are returned (if (Pin, Din)

does not represent a valid entry, the closest valid point is used instead); finally, the

returned coefficients and the collected bit-wise densities are combined according to

the above equation.

EqTab characterization employs a single input vector stream for each pair (Pin,

Din) and consists in determining the respective set of coefficients. To find a proper

set of coefficients, a system of equations is built as follows.

Let SW be a matrix with as many rows as the number of successive pairs of

vectors in the stream (say, S pairs) and with as many columns as the compound

vector bit-width (n+m). A row of matrix SW stores the bit-wise transition densities

taken between a pair of successive vectors. A column stores the transition density
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#include "techlibrary.h"
...

SC_MODULE(Add4)
{

sc_in<bool> a[4];
sc_in<bool> b[4];
sc_out<bool> out1[4];

xor2v0x1 *I22;
...

psc_signal_bool N74;
...

SC_CTOR(Add4)
{

I22 = new xor2v0x1( "I22" );
I22->z( N74 );
I22->a( a[1] );
I22->b( b[1] );
...
PSC_OBJ_ALIAS(N74, "N74");

}
};

SC_MODULE(Add4_wrapper)
{

sc_in<sc_uint<4> > a;
sc_in<sc_uint<4> > b;
sc_out<sc_uint<4> > out1;

Add4 *add4_0;
...

}

#define Add4 Add4_wrapper

Fig. 8.9 Sample of the vlog2sc output format

of a given bit position along the input stream. Let P be a S × 1 matrix, where each

entry pi stores the power consumed by the i-th pair of input vectors.

Characterization consists in first calculating the bit-wise transition densities for

every successive pair of input vectors (storing them in a row of matrix SW ) and

measuring their resulting power consumption (storing it in an entry of matrix P ).
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1 c lass psc_macromodel {
2 ...
3 p u b l i c:
4 v i r t u a l vo id init_power_map();
5 v i r t u a l double get_power(const psc_macromodel_parms&);
6 ...
7 };

Fig. 8.10 PowerSC macromodeling support

1 SC_MODULE(MulS16) {
2 sc_in <sc_int<16> > in1;
3 sc_in <sc_int<16> > in2;
4 sc_out<sc_int<32> > out1;
5 ...
6 void some_process();
7 ...
8 PSC_MACROMODEL_MulS16;
9 ...

10 SC_CTOR(MulS16);
11 };

Fig. 8.11 Part of a possible implementation for a multiplier in SystemC

Then, the set of fitting coefficients C is obtained by solving the system of equations

SW ∗C = P with standard regression techniques (e.g., least mean squares). Finally,

such coefficients are stored at entry (Pin, Din).

As a practical example for the technique described above, let us consider a com-

ponent such as a 16-bit input multiplier. The code for this component is outlined in

Fig. 8.11.

This sample code shows the main components of the multiplier, such as inputs/

outputs and a process to perform the computation, given the values provided to in-

puts in1 and in2. Also, it shows how the component could be instrumented regarding

the usage of the macromodel created using the EqTab power macromodeling tech-

nique (Line 8).

This macro could be defined elsewhere with the appropriate commands so as to

convert the component into a power-aware multiplier. Figure 8.12 sketches how this

could be accomplished.

As mentioned previously in this section, the two classes psc_macromodel and

psc_macromodel_parms must be derived according to the specific details of

each technique. In this case, for example, the class psc_macromodel_MulS16_
EqTab declares a table (model_coeffs), which keeps the values of the coeffi-

cients computed during characterization of the model. Also, notice that the power

model is instantiated conditionally, depending on the value of the compiler direc-

tive POWER_SIM: if set, the multiplier will instantiate it; otherwise, the component

behaves as the ordinary multiplier component.
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1 ...
2 #ifdef POWER_SIM
3 #define PSC_MACROMODEL_MulS16\
4 s t a t i c const char *celltype;\
5 s t a t i c psc_macromodel_MulS16_EqTab power_model;\
6 ~MulS16()
7 #e l s e

8 #define PSC_MACROMODEL_MulS16
9 #endif

10 ...
11 #define TOTAL_POINTS 59
12 ...
13 c lass psc_macromodel_parms_MulS16_EqTab :
14 p u b l i c psc_macromodel_parms

{
15 p u b l i c:
16 psc_macromodel_parms_MulS16_EqTab();
17 ...
18 };
19

20 c lass psc_macromodel_MulS16_EqTab : p u b l i c psc_macromodel
{

21 p r i v a t e:
22 s t a t i c const double model_coeffs[TOTAL_POINTS+1][64+1];
23

24 p u b l i c:
25 void init_power_map();
26 double get_power(const psc_macromodel_parms & p);
27 ...
28 };

Fig. 8.12 Macromodel implementation for a multiplier

8.4 Putting PowerSC to Work

PowerSC reduces power evaluation infrastructure to a minimum. It only requires

the standard SystemC library, the PowerSC library itself and a C++ compiler. In

this section, we first describe the basic steps to obtain the required packages and

to install them. Then we show how to use PowerSC by means of a few practical

examples.

8.4.1 Downloading

PowerSC is composed of two different package types: (1) the framework itself and

(2) related tools. Both were built using the GNU autotools, so as to make the installa-

tion process easier. If you are familiar with the procedure used with “autotools-like”

packages, you will probably not have difficulties using it.
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Besides, the Liberty parser provided by Synopsys was modified to convert tech-

nology libraries from the Liberty format to our simplified PSCLib format.

Package files are named using the following convention: NAME–VERSION.tar.gz.

The required files are powersc-X.X.X.tar.gz, psclibtools-X.X.X.tar.gz and lib2psclib-

X.X.X.tar.gz, where X.X.X denotes the version of each package.

At the time of writing, those files are not distributed on the web. To obtain them,

please contact the authors via e-mail (addresses are available in the first page of this

chapter).

8.4.2 Checking Requirements

Before installation, please, make sure that the following libraries and tools are in-

stalled in your system:

• SystemC and GCC: their release versions should be at least 2.1 and 3.0, respec-

tively. (Although other version combinations are likely to work, they may require

adaptations in the installation files).

• Synopsis Liberty parser: it is required by the translator from the Liberty format

to the PSCLib format. Synopsys provides this tool for free through its so-called

TAP-in program. More information on how to join this program and obtain this

parser is available at http://www.synopsys.com/partners/tapin.

• ANTLR parser generator: the parsers in the psclibtools package were created

using ANTLR [5], which is capable of automatically generating parsers from

grammatical descriptions to a variety of target languages, such as C, C++, Java,

C#, Python and others. In our case, we target parsers in C++, for both the Verilog

and PSCLib grammars.

8.4.3 Building the Packages

Once you made sure that the required tools and libraries are installed, you can build

the packages as described in the following.

Building PowerSC

1. Choose an appropriate destination for the installation and unpack the PowerSC

code, as follows:

you@somewhere:~$ tar zxf powersc-X.X.X.tar.gz

(As a result, a new directory named powersc-X.X.X will be created, con-

taining all PowerSC files, including source code, examples and the scripts for

installation.)

http://www.synopsys.com/partners/tapin
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2. Prepare the installation by executing the configuration script, as follows:

you@somewhere:~$ cd powersc-X.X.X/
you@somewhere:~$ ./configure --with-systemc=DIR

(Notice that it is mandatory to specify where SystemC is installed using the op-

tion --with-systemc. This command will create the necessary makefiles to

build the library. Among the many optional parameters, you may want to use the

flag --with-examples, which causes useful examples to be built together

with the library).

3. Build the library, by invoking the make command:

you@somewhere:~$ make all

(After the compilation process is finished, you will have the file libpowersc.a
under the directory powersc-X.X.X/src. If you chose to build the examples,

they will be ready for use under the directory powersc-X.X.X/examples.)

Building PSCLibTools

1. Unpack the release file of the tools, as follows:

you@somewhere:~$ tar zxf psclibtools-X.X.X.tar.gz

(As a consequence, the directory psclibtools-X.X.X will be created under

the current directory.)

2. Prepare the installation by executing the configuration script, as follows:

you@somewhere:~$ cd psclibtools-X.X.X/
you@somewhere:~$ ./configure

3. Compile the package and/or install it, as follows:

you@somewhere:~$ make all install

(As a result, the tools vlog2sc and psclib2sc will be ready for use un-

der the directory psclibtools-X.X.X/src; if you chose to install them in

your system, they should have been copied by default to the system’s application

binaries directory).

Building Lib2PSCLib

1. Unpack the release file of the tool, as follows:

you@somewhere:~$ tar zxf lib2psclib-X.X.X.tar.gz

2. Prepare the installation by executing the configuration script, as follows:

you@somewhere:~$ cd lib2psclib-X.X.X/
you@somewhere:~$ ./configure [--enable-debug]
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3. Compile the package and/or install it, as follows:

you@somewhere:~$ make all install

8.4.4 Running PowerSC

In order to illustrate the usage of PowerSC, we pick two designs from the examples
provided with the library:

1. a 32-bit adder (gate-level);
2. a 16-bit input signed multiplier (RTL).

If the preceding steps of installing the required packages and building the
PowerSC library were executed correctly, you should have these designs’ executable
specifications ready to run.

For the first example, the following commands should be entered in your shell
prompt:

you@somewhere:~$ cd powersc-X.X.X/examples/Add32-gatelevel
you@somewhere:~$ ./run_x -i <input vector>

There are several files within each design directory including the design itself
and some other files related to the testbench which instantiates it.

After entering this directory, simply type in the name of the executable (named
run_x) and provide, as input, a file with the stimuli to be applied to the adder’s
inputs. Many examples are already available in the directory input, and can be
used as a template for creating your own stimuli files.

Part of the resulting power report generated upon simulation completion is out-
lined in Fig. 8.13. Each line in the report represents an object (or cell) monitored
during simulation. Columns 1–3 show the abstraction-level at which the object is
described, the name of the cell within the design’s hierarchy, and the type of the
cell, respectively.

For instance, the first line of the report contains an object named I106, described
at the gate level (G), which is an instance of type xor2_1 from the technology li-
brary. The last two columns in this report show, respectively, the leakage and internal
power, in Watts. At the end of the report, a summary of the power consumption of
all objects is presented.

The steps to run the second design are quite similar to the example presented
above and the commands to be typed in are as follows:

you@somewhere:~$ cd powersc-X.X.X/examples/MulS16-rtl-macromodel
you@somewhere:~$ ./run_x -i <input vector>

Figure 8.14 shows a sample power report for this design. Notice, that the first
column contains the value RT, indicating that the object is described at the register-
transfer level. In addition, instead of having the columns Leakage Power and Inter-

nal Power, there is a single column labeled Aggregate Power. This points out that
the power value comes from a power macromodel, and not from values stored in a
technology library.
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L - Cell Name - Cell Type - Leakage Power - Internal Power
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G - tb0.dut.add32_0.I106 - xor2_1 - 7.881970e-11 - 5.573337e-06
G - tb0.dut.add32_0.I107 - and2_2 - 4.385880e-11 - 7.515706e-06
G - tb0.dut.add32_0.I1 - fulladder - 1.132440e-10 - 1.335455e-05
G - tb0.dut.add32_0.I171 - xor2_1 - 7.881970e-11 - 5.662287e-06

...
G - tb0.dut.add32_0.I172 - mux2_2 - 6.996270e-11 - 3.816533e-06
G - tb0.dut.add32_0.I173 - xor2_1 - 7.881970e-11 - 4.930259e-06
G - tb0.dut.add32_0.I175 - mux2_2 - 6.996270e-11 - 3.020991e-06
G - tb0.dut.add32_0.I176 - xor2_1 - 7.881970e-11 - 2.743796e-06
G - tb0.dut.add32_0.I177 - xor2_1 - 7.881970e-11 - 2.767456e-06
G - tb0.dut.add32_0.I178 - mux2_1 - 6.680430e-11 - 2.285534e-06
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Summary:

Switching power : 1.889796e-04W
Internal power : 3.113640e-04W
Leakage power : 6.419074e-09W
Aggregate power : 0.000000e+00W

----------------
TOTALS : 5.003500e-04W

Fig. 8.13 Power report sample for a 32-bit adder (gate-level)

L - Cell Name - Cell Type - Aggregate Power
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RT - tb0.dut - MulS16 - 1.209492e-03
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Summary:

Switching power : 0.000000e+00W
Internal power : 0.000000e+00W
Leakage power : 0.000000e+00W
Aggregate power : 1.209492e-03W

----------------
TOTALS : 1.209492e-03W

Fig. 8.14 Power report sample for a 16-bit input signed multiplier (RTL)
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