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Preface

The evolution of optical remote sensing over the past few decades has enabled the

availability of rich spatial, spectral and temporal information to remote sensing

analysts. Although this has opened the doors to immense possibilities for analysis

of optical remotely sensed imagery, it has also necessitated advancements in signal

processing and exploitation algorithms to keep up with advances in the quality and

quantity of available data. As an example, the transition from multispectral to

hyperspectral imagery requires conventional statistical pattern classification

algorithms to be modified to effectively extract useful information from the high

dimensional hyperspectral feature space. Although hyperspectral imagery is

expected to provide a much detailed spectral response per pixel, conventional

algorithms developed and perfected for multispectral data would often be sub-

optimal for hyperspectral data. At best, they would require a significant increase in

the ground-truth (training) data employed for analysis—something that is often

hard to come by, and is often far too costly. As a result, signal processing and

pattern recognition algorithms for analysis of such data are also evolving to cope

with such issues and result in practical applications.

The last decade has seen significant advances in algorithms that represent,

visualize and analyze optical remotely sensed data. These advances include new

algorithms to effectively compress high dimensional imagery data for efficient

storage and transmission; new techniques to effectively visualize remotely sensed

data; new analysis and classification techniques to analyze and classify remotely

sensed imagery; and techniques to fuse remotely sensed imagery acquired

simultaneously from different sensing modalities. This book brings together

leading experts in these fields with the goal of bringing the cutting edge in signal

processing and exploitation research closer to users and developers of remote

sensing technology. This book is not intended to be a textbook for introductory

remote sensing analysis. There are existing textbooks that provide a tutorial

introduction to signal and image processing methods for remote sensing. This book

is intended to be a valuable reference to graduate students and researchers in the

academia and the industry who are interested in keeping abreast with the current

state-of-the-art in signal and image processing techniques for optical remote
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sensing. This book consists of 15 chapters. Chapter 1 is an introductory chapter

that sets the stage for the remainder of this book. In this chapter, we identify three

key broad challenges and open problems associated with the analysis of modern

optical remotely sensed imagery, and provide a motivation for each of the 14

chapters that follow within the context of these broad challenges. Chapters 2

through 6 present advances in algorithms for effective representation and visual-

ization of high dimensional remotely sensed optical data, including on-board

compressive sensing, coded aperture imaging and visualization techniques.

Chapters 7 through 12 cover advances in statistical pattern classification and data

analysis techniques, including multi-classifier systems and information fusion,

morphological profiles, kernel methods, manifold learning and spectral pixel

unmixing. Chapters 13 through 15 cover advances in multi-sensor data fusion

techniques.

We would like to acknowledge and sincerely thank all contributors who par-

ticipated in this collection. This book represents the state-of-the-art in signal and

image processing research for optical remote sensing and would not have been

possible if these contributors, who are leading experts in the field had not come

together to work on these chapters. Their feedback and review of all chapters in

this book was instrumental in making this a coherent and complete reference.

Mississippi State University, U.S.A., and

Grenoble Institute of Technology, France,

01-July-2010

Saurabh Prasad

Lori M. Bruce

Jocelyn Chanussot
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Introduction

Saurabh Prasad, Lori M. Bruce and Jocelyn Chanussot

As the name suggests, remote sensing entails the use of sensing instruments for

acquiring information remotely about an area of interest on the ground. The term

‘‘information’’ can refer to a wide variety of observable quantities (signals), such

as reflected solar radiation across the electromagnetic spectrum and emitted

thermal radiation from the earth’s surface as measured from handheld [1], airborne

[2] or spaceborne imaging sensors [3, 4]; received back-scattered microwave

radiation from radio detection and ranging (RADAR), synthetic aperture radar

(SAR) [5–8] or light detection and ranging (LIDAR) [9–11] equipment; electrical

conductivity as measured from airborne sensors, etc. Availability and effective

exploitation of such data has facilitated advances in applied fields such as weather

prediction, invasive species management, precision agriculture, urban planning,

etc.

This book focuses on advances in signal processing and exploitation techniques

for optical remote sensing. Optical remote sensing involves acquisition and analysis

of optical data—electromagnetic radiation captured by the sensing modality after

reflecting off an area of interest on ground (within the sensor’s field of view).

Optical remote sensing has come a long way—from gray-scale photogrammetric

images to hyperspectral images. The advances in imaging hardware over recent

decades have enabled availability of high spatial, spectral and temporal resolution

imagery to the remote sensing analyst. These advances have created unique chal-

lenges for researchers in the remote sensing community working on algorithms for

representation, exploitation and analysis of such data. This book is a collection of

chapters representing current state-of-the-art algorithms aimed at overcoming these
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challenges for effective processing and exploitation of remotely sensed optical data.

Undergraduate students and newcomers to remote sensing have access to several

textbooks on remote sensing that provide a tutorial introduction to the various

remote sensing modalities and analysis techniques (e.g., [12–14]). These books are

excellent resources for undergraduate and entry-level graduate students. This book

is intended for a reader who has some working experience with image processing

techniques for remote sensing data and wants to keep abreast with current state-of-

the-art algorithms for data processing and exploitation. In particular, we believe

that this book will be beneficial to graduate students and researchers who are taking

advanced courses in remote sensing, image processing, target recognition and

statistical pattern classification. Researchers and professionals in academia and

industry working in applied areas such as electrical engineering, civil and envi-

ronmental engineering, hydrology, geology, etc., who work on developing or

employing algorithms for remote sensing data will also find this book useful.

1 Optical Remote Sensing: The Processing Chain

Figure 1 illustrates the processing steps in a typical optical remote sensing analysis

chain. In particular, most optical remote sensing systems employ the following

flow

1. Data acquisition and processing: this involves acquiring data from the sensing

modality—handheld sensors (for on-ground data), airborne or satellite imagery

(for remotely sensed data). Processing of acquired data is often necessary for

mitigating affects of noise and distortion in the acquisition process, such as

noise attributed to an over-heated or an improperly calibrated sensor, atmo-

spheric distortion, luminance biases, poor contrast, etc.

2. Data representation: this process refers to representing data efficiently for

storage, transmission or analysis. Often, optical remote sensing datasets also

need to be represented efficiently due to storage and transmission limitations.

Further, for effective analysis with such data (for example, for an analysis task

based on statistical pattern recognition), it often becomes necessary to represent

the data in a ‘‘feature’’ space that is amenable to the analysis task. Such a

representation could be based on extracting relevant spatial statistics (e.g.,

texture information to exploit vicinal-pixel relationships), and spectral

responses (to accurately model individual pixels and sub-pixels) from the

optical imagery.

3. Data analysis: this process involves exploiting the data for answering the

underlying remote sensing question (such as ‘‘What is the soil moisture dis-

tribution of an area’’, or ‘‘What is the land-cover composition of an area’’, or

‘‘Where are strong concentrations of invasive vegetation species for effective

control’’) Depending upon the problem, an appropriate analysis methodology

2 S. Prasad et al.



(such as statistical pattern recognition, regression analysis, unsupervised clus-

tering, image segmentation) is invoked.

This flow results in answers to the posed remote sensing questions for a par-

ticular optical imagery. These are then interpreted for appropriate action by end-

users such as scientists, government agencies, policy makers, etc.

There are three key types of optical sensing modalities: (1) handheld, (2) air-

borne (aerial), and, (3) spaceborne (on board a satellite). In most practical appli-

cations, spaceborne or aerial imagery is employed for analysis [2, 4, 15–18].

Trade-offs exist between spaceborne and airborne imagery, and the decision on

which modality to employ for a particular application is made based on weighing

in the advantages and disadvantages of each. Trade-offs include spatial and

spectral resolution, ability to acquire imagery on demand, etc. versus cost, wider

coverage area, repeatability, etc. Data acquired from handheld sensors is typically

employed for ‘‘ground-truthing’’, that is, for accurately capturing spectral

Fig. 1 Typical flow of optical remote sensing systems
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responses and spatial coordinates of various ‘‘classes’’ (objects of interest on

ground), for effective training and validation of classification systems.

This book focuses on cutting-edge signal processing and exploitation techniques

for addressing challenges in steps 2 and 3 of the flow outlined above. Some good

references for a tutorial overview of various sensing modalities, sensor specifica-

tions, design principles, benefits and limitations of various sensors include

[12–15, 19]. Kerekes et al. [20] provide an advanced overview of cutting-edge

optical imaging systems, including the physics of image generation and sensing

technologies, sources of noise and distortion and their impact on exploitation

algorithms. Richards et al. [14] describe in detail the processing techniques

employed for correcting errors due to atmospheric affects, geometric distortion,

radiometric distortion, and related techniques that are carried out post-acquisition,

such as georeferencing, geocoding, image registration, geometric enhancement,

radiometric enhancement, etc. Examples of good tutorial introductions covering

basics of image analysis and signal processing techniques for hyperspectral

remotely sensed data include Landgrebe [21] and Shaw and Manolakis [22].

2 Optical Remote Sensing: Key Challenges for Signal

Processing and Effective Exploitation

Early optical remote sensing systems relied on multispectral sensors, which are

characterized by a small number of wide spectral bands [12, 13, 15]. Although

multispectral sensors are still employed by analysts, in recent years, the remote

sensing community has seen a steady shift to hyperspectral sensors, which are

characterized by hundreds of fine resolution co-registered spectral bands, as the

dominant technology for various tasks such as land-cover classification, environ-

mental and ecological monitoring, etc. [2, 4, 15–17, 19–26]. Such data has the

potential to reveal the underlying phenomenology as described by spectral charac-

teristics accurately. For example, in the case of vegetation, such imagery can reveal

foliar biophysical and biochemical properties, including the spectral responses at

distinct wavelengths corresponding to leaf pigments, cell structure, water content,

etc. [19]. This ‘‘extension’’ from multispectral to hyperspectral imaging does not

imply that the signal processing and exploitation techniques (such as data com-

pression, visualization and statistical pattern classification) can be simply scaled up

to accommodate the extra dimensions in the data. New techniques are being

developed that exploit the rich information provided by modern optical sensing

modalities. In light of the above discussion, this book addresses the following key

challenges:

1. Challenges in representation and visualization of high dimensional data: high

dimensional optical data, such as hyperspectral data, is traditionally acquired in

full dimensionality before being reduced in dimension prior to any processing

or analysis. Hence, dataset sizes are becoming ever more voluminous, with both

4 S. Prasad et al.



spectral as well as spatial resolutions continuing to increase, resulting in

extremely large quantities of data acquired in typical geospatial sensing sys-

tems, with multi-temporal data exacerbating this issue. Ramifications of this

issue include: (a) it can burden transmission and storage systems, and

(b) displaying the abundant information contained in this high dimensional

space for effective visualization becomes challenging.

Chapters 2 through 6 will present advances in representation and visuali-

zation techniques for such datasets, including on-board compressive sensing,

coded aperture imaging and visualization techniques. In Chap. 2, Christophe

presents an overview of conventional and recently developed methods for

compression of hyperspectral data. In Chap. 3, Fowler et al. present a review of

compressive random projections for compression of hyperspectral imagery—an

approach that facilitates the integration of these random projections directly

into signal acquisition without incurring a significant sender side computational

cost as compared to explicit dimensionality reduction. In Chap. 4, Muise et al.

present an integrated sensing and processing system for hyperspectral imagery.

The proposed information sensing system integrates sensing and processing,

resulting in direct acquisition of data relevant to the application. In Chap. 5,

Gupta et al. review various color science issues that arise in the display and

representation of artificially colored remote sensing images, and analyze the

current state-of-the-art solutions to these challenges. In Chap. 6, Cai et al.

review several layered approaches for effective visualization of hyperspectral

data. The authors propose a feature-driven multi-layer visualization technique

that automatically chooses data visualization techniques based on the spatial

distribution and importance of various endmembers.

2. Challenges in statistical pattern classification and target recognition: most

image analysis techniques for exploiting optical imagery involve statistical

pattern recognition or target recognition based approaches. For such analysis

methods, the high dimensionality of hyperspectral data is often a double edge

sword—the dense spectral sampling per pixel often provides information that

can be potentially useful for target recognition and finely resolved land cover

classification. This high dimensional feature space often also results in reduced

generalization and statistical ill-conditioning. In many practical situations,

limited training datasets for modeling class statistics further exacerbates the ill-

conditioning problem.

Another issue commonly encountered when working with optical imagery is

that of ‘‘mixed’’ pixels. Traditionally, spatial resolution is often compromised

in high spectral resolution imagers. Further, in many situations, relevant fea-

tures of interest may exist at sub-pixel levels. In other words, the imagery could

have ‘‘mixed’’ pixels, representing a spectral response from a mixture of

multiple objects. Hence, each pixel in such an image is typically a mixture of

multiple classes/objects. However, the dense spectral sampling of hyperspectral

data can help in ‘‘unmixing’’ (identifying the relative abundances of each class
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per pixel) such mixed pixels. Other issues that make this problem more chal-

lenging include affects of variations in atmospheric conditions [27], contrast

and luminance variations and general variability in the spectral characteristics

of the objects on ground (depending upon their interaction with their envi-

ronment). Algorithms designed for the analysis of such datasets must address

these issues.

Chapters 7 through 12 cover advances in statistical pattern classification and

data analysis techniques, including multi-classifier systems and information

fusion, morphological profiles, kernel methods, manifold learning and spectral

pixel unmixing. In Chap. 7, Prasad et al. present a divide-and-conquer approach

for statistical pattern classification of high dimensional hyperspectral data. In

the proposed approach, a high dimensional classification task is partitioned into

many independent smaller dimensional classification tasks, and a decision

fusion technique is employed to merge results from this partition. In Chap. 8,

Chanussot et al. study the benefits of morphological profile as a tool for analysis

of remote sensing data. The chapter reviews this method based on principles of

mathematical morphology and granulometry and addresses the key issues when

employing this technique for multispectral and hyperspectral data. In Chap. 9,

Bakos et al. present a multiple classifier, decision fusion technique for vege-

tation mapping and monitoring applications. The authors demonstrate the

benefits of a classifier ensemble approach for vegetation mapping when

employing spatial and spectral information derived from hyperspectral imagery.

In Chap. 10, Camps-Valls et al. present a detailed review of applications and

recent theoretical developments of kernel methods for remote sensing data

analysis. In Chap. 11, Crawford et al. demonstrate the benefits of nonlinear

manifold learning for dimensionality reduction and classification of hyper-

spectral data. In Chap. 12, Plaza et al. present a review of advances in spectral

pixel unmixing and endmember extraction techniques (methods that estimate

the relative abundances of various classes/endmemebers for each pixel in a

mixed-pixel scenario). The chapter reviews both linear and nonlinear pixel

unmixing techniques, as well as benefits of incorporating spatial information for

pixel unmixing tasks

3. Challenges in fusing multi-sensor data: it is now possible to acquire imagery

from different sensing modalities and platforms simultaneously (or nearly

simultaneously) over the region of interest on ground. This implies potential

availability of multiple types of optical data (e.g., high spatial resolution gray-

level or multispectral imagery and high spectral resolution hyperspectral

imagery), or multiple types of passive and active remotely sensed data (e.g.,

optical imagery and SAR or LIDAR imagery). Such multi-source data can

potentially play a complimentary role—for example, (1) high spatial resolution

optical imagery can provide useful vicinal-pixel and texture information, while

high spectral resolution imagery can reveal valuable sub-pixel spectral char-

acteristics, (2) optical imagery can potentially capture and help characterize

surface phenomena (such as reflectance characteristics over the electromagnetic

6 S. Prasad et al.
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spectrum per pixel, texture characteristics between neighboring pixels, etc.),

while a ground-penetrating SAR imagery can reveal sub-surface characteristics,

such as soil moisture, etc. There is hence a potential to improve analysis

techniques by exploiting the diversity of information available with such multi-

sensor data. In this book, we consider the following possible multi-source

scenarios—optical imagery acquired from different sensors with different

specifications (e.g., different spectral and spatial characteristics), or acquired

from the same sensor at different times (e.g., multi-temporal imagery for

change detection tasks), or a combination of optical and active remotely sensed

imagery (e.g., optical and SAR imagery).

Chapters 13 through 15 cover advances in multi-sensor data fusion tech-

niques. In Chap. 13, Bruzzone et al. study and present techniques to minimize

affects of registration noise between images acquired over the same geographic

area at different times on the change detection performance. Fusion of hyper-

spectral imagery with panchromatic or multispectral imagery for enhancing the

spatial resolution of hyperspectral imagery is commonly employed by remote

sensing analysts. In Chap. 14, Garzelli et al. study the effects of such spatial

enhancement of hyperspectral imagery on spectral distributions. In Chap. 15,

Dell’Acqua et al. demonstrate the benefits of fusion of optical and SAR data for

a practical remote sensing task—seismic vulnerability mapping of buildings.
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Hyperspectral Data Compression
Tradeoff

Emmanuel Christophe

Abstract Hyperspectral data are a challenge for data compression. Several factors

make the constraints particularly stringent and the challenge exciting. First is the

size of the data: as a third dimension is added, the amount of data increases

dramatically making the compression necessary at different steps of the processing

chain. Also different properties are required at different stages of the processing

chain with variable tradeoff. Second, the differences in spatial and spectral relation

between values make the more traditional 3D compression algorithms obsolete.

And finally, the high expectations from the scientists using hyperspectral data

require the assurance that the compression will not degrade the data quality. All

these aspects are investigated in the present chapter and the different possible

tradeoffs are explored. In conclusion, we see that a number of challenges remain,

of which the most important is to find an easier way to qualify the different

algorithm proposals.

Keywords Compression � Hyperspectral � Quality evaluation � Quality com-

parison � Data Acquisition � Lossless compression � Lossy compression � Near-
lossless compression

1 Introduction

For the past 20 years hyperspectral data are a challenge for data compression.

Several factors make the constraints particularly stringent and the challenge

exciting. First is the size of the data: as a third dimension is added, the amount of
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data increases dramatically making the compression necessary at different steps of

the processing chain. Second, the differences in spatial and spectral relation

between values make the more traditional 3D compression algorithms obsolete.

And finally, the high expectations from the scientists using hyperspectral data

require the assurance that the compression will not degrade the data quality.

In Sect. 2, the different steps of the processing chain, where compression is

required for hyperspectral data, are detailed: the specific requirements for each

situation are explained and the different possible tradeoffs are explored. The fol-

lowing Sect. 3 goes more deeply into the exploration of some key characteristics of

hyperspectral data that can be successfully used by compression algorithms.

Examples are drawn from the recent published literature on the subject. Finally, in

Sect. 4, requirements for an accurate assessment of image quality are explored.

2 Data Acquisition Process and Compression Properties

Compression is a way to reduce the amount of data to be transmitted or processed.

The compression can be lossless without any impact on the data, or lossy, when the

data values are distorted in the process and the original data cannot be retrieved in

their original form. Compression is a tradeoff between processing capabilities and

size (whether it is storage or transmission). Lossy compression adds a third

dimension to the equation: data quality.

Before defining the compression algorithms, it is important to understand the

context in which they operates and the constraints that led to their definition. There

is not much in common in the requirements for compressing data onboard a

satellite and compressing data on-ground. In the first case, computational power is

limited and any error is unrecoverable, while in the second case, compression is

used for speeding up network transfer or processing but the whole data can be

transmitted if necessary.

The properties required for these algorithms will be strongly dependent on the

aim.

2.1 Data Acquisition Process

The first important question is to find out where the compression is going to take

place. This will define the data to work on, the constraints on the algorithm and the

desirable properties.

The processing chain is similar, whether the data are acquired by space-borne or

air-borne sensor. Data compression usually occurs at several levels in the chain,

where different tradeoffs take place. Figure 1 presents a typical processing chain.

The first place where data compression can occur in the processing chain is in

the acquisition process itself. This is quite a recent paradigm, widely known as

10 E. Christophe



compressed sensing but it will be treated in Reconstructions from Compressive

Random Projections of Hyperspectral Imagery.Wewill focus in the present chapter on

more traditional techniques.

After the signal acquisition, the information will be either stored onboard or

directly transmitted. Direct transmission usually requires constant bitrate: this

requirement can be mitigated by the use of memory buffers. The transmission

which occurs in noisy environment requires redundancy coding. Both compression

(source coding) and redundancy coding (channel coding) can be combined in a

single operation using joint source and channel coding [1]. If the hyperspectral

instrument is space-borne, all this processing is subjected to stringent requirement

in term of complexity. The constraints of onboard compression are detailed in

Sect. 3.

Once the signal is received on the ground, it is transmitted over cable network

and stored for future use. At this part of the processing, the complexity constraint

is greatly relaxed. A transcoding step can occur to keep the data in a more practical

format. However, in some situation the delay between the reception and the final

product must remain short. Different properties of the encoded bitstream are

expected from the user. These properties are detailed in Sect. 4.

Figure 1 presents the most common processing chain where minimal operations

are performed onboard. However, due to the evolution of technology, some simple

Fig. 1 Data acquisition

chain
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operations such as calibration can be applied before compression of the signal.

This will lead to different properties of the data to be compressed that should be

considered during algorithm evaluation by working on the right data. These

considerations are detailed in Sect. 5.

One important factor to keep in mind when designing a compression system is

the end-user. Depending on who the end-user is and what information is intended

to be retrieved from the data, the optimal compression solution can be very dif-

ferent from one case to another. The first point to consider is whether the objec-

tives of the mission are specific or generic. A specific mission would intend to use

hyperspectral data to obtain a detailed land cover map of the area for example. It

could also be used to raise a warning when some anomalies are detected. In these

cases, the purpose of the mission is clearly identified and the final product fully

defined. On the contrary, a generic mission does not preclude any possible

application. In this case, the mission has to transfer the information to the final user

in a form that is as close as possible to the physical measurement.

For both these situations, specific or generic application, the compression

should have no impact from the point of view of the application. No impact does

not necessarily mean no differences as the error could stay within the confidence

interval of the application itself. More details on the error are presented in Sect. 4.

2.2 Lossy, Lossless, Near-Lossless

Lossless compression algorithms enable the users to retrieve exactly the original

data from the compressed bitstream. They are generally based on a predictor

followed by an entropy coder of the residuals. The most recent publications in this

domain [2–5] converge towards a compression ratio around 3:1. Such a com-

pression ratio is insufficient to meet the constraint for onboard systems [6].

However, they are highly relevant for archiving the data and distribution to the

end-user.

Lossy compression on the contrary introduces a distortion in the data and the

original data cannot be retrieved in its exact form. These methods generally have

parameters that can be adjusted to move along the rate–distortion curve. Reducing

the bitrate increase the distortion and vice-versa.

When the distortion remains small, the algorithm can be qualified as near-

lossless. Two main definitions appear in the literature for near-lossless compres-

sion of hyperspectral data. The first definition [6] considers that the compression is

near-lossless if the noise it introduces remains below the sensor noise: the data

quality remains the same. The other definition [7] considers that an algorithm is

near-lossless if the distortion is bounded. We will stick to the former definition

which guaranties no distortion from the application point of view: the compression

remains in the noise of the sensor.
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2.3 Onboard

Amazing acquisition capabilities of satellites make them the ideal candidates for

regular monitoring. Many fields would benefit from regular observations. Since the

launch of Hyperion on EO-1 on November 2000, the feasibility of hyperspectral

space sensors has been demonstrated. Several projects in the coming years will

probably increase the amount of hyperspectral data available.

For satellite sensors, the trend is towards an increase in spatial resolution,

radiometric precision and possibly the number of spectral bands, leading to a

dramatic increase in the amount of bits generated by such sensors. Often, con-

tinuous acquisition of data is desired, which requires scan-based compression

capabilities. Scan-based compression denotes the ability to begin the compression

of the image when the end of the image is still under acquisition. But due to the

amount of data collected and the limited transmission capacity, there is no doubt

that data has to be compressed onboard. Onboard compression presents several

challenges. First, if the compression is lossy, losses are irrecoverable; this is to

contrast with data compressed for transmission to the user, where the compression

can be modified and data retransferred if it appears that there is a need for a higher

quality. This fact makes it particularly challenging to accept onboard lossy com-

pression even if the impact is proven to be negligible.

The second point concerns limited processing capabilities: electronics onboard

a satellite need to be protected from radiation, work in a vacuum environment,

have a low power consumption, limited heating, and support these conditions for

several years. All these conditions cause a lag of several years in terms of pro-

cessing power capabilities between consumer electronics and satellite electronics.

As onboard storage is limited, the data need to be processed on the flow as they

are acquired: the start of the scene is compressed and transmitted before the end of

the scene is even acquired. Satellite acquisition is done in pushbroom mode where

the spectral dimension and one spatial dimension are acquired simultaneously,

while the second spatial dimension is created by the satellite motion. Data ordering

such as bits interleaved per pixel (BIP) or bits interleaved by line (BIL) are

representative of this acquisition process.

Another consequence of this limited onboard storage is that data is often

transmitted while it is acquired. One requirement to enable this transmission is a

constant throughput of the compression system. This requirement can be alleviated

by the use of buffers.

Desirable properties for onboard compression are summarized in Table 1.

2.4 Image Distribution

For image distribution, the challenges are very different. Data transmission is not

the main problem, but the constraint is rather on processing and visualization. Due

Hyperspectral Data Compression Tradeoff 13



to the huge amount of data involved, even compressed images are significant in

size. In this situation, progressive data encoding enables quick browsing of the

image with limited computational or network resources.

When the sensor resolution is below 1 m, images containing more than

30, 000 9 30, 000 pixels are not exceptional. In these cases, it is important to be

able to decode only portions of the whole image. This feature is called random

access decoding.

Resolution scalability is another feature which is appreciated within the remote

sensing community. Resolution scalability enables the generation of a quicklook

of the entire image using just few bits of coded data with very limited computa-

tion. It also allows the generation of low resolution images which can be used by

applications that do not require fine resolution. More and more applications of

remote sensing data are applied within a multiresolution framework [8, 9], often

combining data from different sensors. Hyperspectral data should not be an

exception to this trend. Hyperspectral data applications are still in their infancy and

it is not easy to foresee what the new application requirements will be, but we can

expect that these data will be combined with data from other sensors by automated

algorithms.

Strong transfer constraints are ever more present in real remote sensing

applications as in the case of the International Charter: space and major disasters

[10]. Resolution scalability is necessary to dramatically reduce the bitrate and

provide only the necessary information for the application.

For ground compression, error recovery is not so critical as most of the time

information can be transmitted again on demand.

As the main purpose at this level is to make the image available, it is important

to ensure the wide availability of the decompression algorithm. This is where the

usage of an established standard is particularly relevant. Image users have a wide

variety of software to analyze and process the images. This software usually

implements standard formats. If the data are distributed in a specific format,

transcoding into a standard format is generally required before processing. Having

the data already in a standard format can save this transcoding step.

Finally, the raw pixel data is not the only product of interest for the user. First,

auxiliary data are required to apply correction to the image (geometry or radi-

ometry corrections for example), to extract geographic information, to combine

with other images, etc. Going further, value added products can also be distributed

directly by the data provider: classification, end-members, etc. In these cases, it is

important that the format handles this information seamlessly with the image data.

Desirable properties for compression for image distribution are summarized in

Table 1.

Table 1 Desirable properties

for onboard compression
Constant throughput

Low complexity

On the flow coding

Error resilient
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2.5 Data Availability

When designing a compression algorithm, the choice of the data on which it is

going to be evaluated is important. The choice of the quality measurement is also

critical and will be presented in Sect. 4. Several considerations need to be taken

into account for the choice of the data (Table 2).

The first factor is availability: is there any dataset available that is represen-

tative of the mission? If not, simulations take a particularly important role. In some

cases, similar data might be available from an instrument operating in different

conditions (airborne sensor instead of spaceborne sensor). This is the case for

example of the Aviris data sets [11]. These datasets are widely used and enable a

quick and easy comparison with previous published results. Figure 2 illustrates a

color composition of the four popular datasets: Moffett Field (Fig. 2a) and Jasper

Ridge (Fig. 2b) represents a mix of urban area and vegetation, the two other tracks,

Cuprite (Fig. 2c) and Lunar Lake (Fig. 2d) are more focused on geology appli-

cation as the content is mostly minerals.

The second point is the data level to consider. If onboard compression is

targeted, radiance data should probably be considered or even better, uncalibrated

data if they are representative of the targeted sensor. If compression for the final

user distribution is targeted, the reflectance product or even the final product can

be compressed.

The third point concerns the processing required to simulate the targeted sensor.

For example, if Aviris data are used to qualify a hyperspectral compression system

that would be onboard of a satellite, it is unlikely that the same signal to noise ratio

could be reached. In this case, additional noise should be added to the data before

the compression. Some specific artifacts should also be considered. In [5], for

example, it is shown that the algorithms giving the best results on unprocessed data

are not the same than the best ones on calibrated data (radiance).

3 Trends in Compression Algorithms

Hyperspectral data presents an enticing challenge with an original relation between

spatial and spectral information and a high information value which may rely on

subtle variations of the spectrum. As a consequence, efficient compression remains

an open problem. Several publications tackle the problem taking a diversity of

approaches.

Table 2 Desirable properties

for image distribution
Random access

Progressive decoding

Established standard

Access to value added products
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We can separate these methods into three groups: prediction, vector quantiza-

tion and transform coding. These three different approaches have been succes-

sively refined, leading to an important diversity of methods. Some of the most

recent papers on the subject for prediction-based methods are [2–5, 7, 12–14],

most of them in lossless compression; vector quantization recently appears in [6,

15], and transform methods in [16–28].

3.1 Prediction-Based

Directly following the main trend for lossless compression algorithms for 2D

images, several adaptations for hyperspectral image compression are devised

based on prediction methods. In these approaches, the data are first decorrelated by

Fig. 2 Classic data sets used for compression algorithms evaluation
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a predictor. In a second step, the prediction error is coded by an entropy coder. The

predictor takes advantage of the strong correlation between spectral bands (as

presented in Fig. 3). It also relies on correlation with neighboring pixel values.

As shown on Fig. 3, the correlation is not only between neighboring bands, but

also between bands far apart in the spectrum. This is particularly striking for the

visible part of the spectrum, which is highly correlated with the infrared (for bands

20 and 120, the correlation is above 0.6 for example), but not so much with the

near-infrared (for bands 20 and 60, the correlation is around 0.3 for example). This

is mainly due to the specific response of the vegetation in the near-infrared region

with a strong signal due to chlorophyll. In [29] for example, it is shown that

optimal reordering of the bands for Aviris can lead to a gain of 18.5% in com-

pression performance. However, the optimal reordering might not be feasible

onboard [7] and some simplifications are often used. Most of the time, only the

previous band is used as a predictor. The most promising method in the domain of

prediction-based compression seems to be the use of lookup tables (LUT) [2, 5, 13,

30] or the adaptation of CALIC [4, 7].

3.2 Vector Quantization

Vector quantization (VQ) of hyperspectral data is very tempting as one of the most

popular application of hyperspectral data is classification. When the classification

algorithm only considers pixels one by one, each pixel is assigned to the nearest

class (in term of classification distance). This naturally brings the notion of

codebook, each codeword being the spectrum of one material in the scene. Only

the codebook (the classes) and the map (classification) have to be transmitted. This

Fig. 3 Interband correlation

for the Moffett hyperspectral

image on a gray level scale:

white corresponds to highly

correlated bands while black

to uncorrelated ones.

Abscissa and ordinate

represents the band number
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is a significant reduction of the data. However, most of the time, as generic

applications are targeted, the method is more complex and provides much more

than a classification.

VQ compression has two separate steps: a training step, where the codebook is

constructed and a coding step where each vector is assigned to a codeword. One of

the common methods to generate a codebook is the Generalized Lloyd Algorithm

(GLA). However, high computational costs of this algorithm presents a challenge

for the compression of hyperspectral data [15]. Most of the work focuses on

simplifying this step to relax the complexity constraints.

Work is going on within the Canadian Space Agency [6, 15, 31] as well as in

other teams [32–34] on the use of vector quantization for the compression of

hyperspectral data. In general, the targeted compression rate is high (typically 100)

with a significant distortion on the image but not on classification applications

where the impact is negligible. However, when the compression rate remains

small, the vector quantization algorithms remains acceptable for a wider range of

applications [6].

3.3 Transform Methods

Transform coding works in two steps, the first step is to transform the data in a

domain where the representation of the data is more compact (energy compaction)

and less correlated. The second step is to encode this information as efficiently as

possible. It is during this last step, encoding, that the information loss occurs,

usually through quantization. Most of the algorithms developed for hyperspectral

data compression revolve around this scheme with variations on how the two steps

are defined.

3.3.1 Transform

The correlation between spectral bands is important in hyperspectral data. The

spectral variations are usually much slower that the spatial variations. The con-

sequence is that hyperspectral images are more compressible than traditional

images. Figure 3 presents the correlation of spectral bands with each other. The

correlation coefficient is often above 0.9, even for spectral bands separated by

several hundred nanometers.

From the point of view of signal theory, the most efficient transform in terms of

energy compaction and decorrelation is the Karhunen–Loeve Transform (KLT)

which is strongly related to the Principal Component Analysis (PCA). In [18], it is

shown that using KLT transform to decorrelate the spectral bands lead to a quality

gain of more than 20 dB. The main drawback is that the transform is costly in

terms of computation (Table 3). The basis vectors depend on the data. In the case

of an onboard compression system, a full KLT transform cannot be implemented
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for 200 spectral bands. Several solutions specifically target the simplification of

the KLT transform.

One of the first solutions to avoid the complexity of the KLT is to precompute

the transform coefficients on a set of typical images and reuse these coefficients for

all images. But unfortunately, if it works for multispectral images with few bands

[36], it does not for hyperspectral images as the variations in the spectra between

pixels become too important to be efficiently decorrelated by an average KLT.

Some papers, such as [28, 37] design simplified versions of the KLT transform

to enable its implementation onboard satellites.

The other most popular transform is the wavelet family. In [18], it is shown that

using wavelet transform to decorrelate the spectral bands leads to a quality gain of

more than 15 dB. The extension of the 2D wavelet transform to the 3D space led to

wide range of possibilities. The first variation is on which wavelet to use. The

standard 9/7 and 5/3 wavelets, which were also adopted by the JPEG 2000 stan-

dard are the most popular. Due to complexity and memory constraints, these

wavelets are usually separable. The second variation is on the order in which the

separable wavelets should be applied. The straightforward extention of the Mallat

decomposition to 3D does not lead to the best results and another simple

decomposition appears to be nearly optimal [18]. Several papers uses this

decomposition which is becoming the standard [16, 19, 28, 38]. The decomposi-

tion is illustrated on Fig. 4: first the multiresolution wavelet transform is fully

applied to each spectrum, then the dyadic 2D wavelet decomposition is applied on

each resulting plane.

3.3.2 Coding

Once the energy is compacted to a small number of coefficients, several methods

are used to code these values.

All the subtleties of the different coding methods rely on the more efficient way

to order these data and/or how to predict them. The prediction methods are related

to the methods presented in Sect. 3.1, but remain different as the correlation is

much lower here.

Usually, the first step is quantization, which is the step where the distortion

takes place. Often this occurs indirectly during a bitplane coding. Bitplane coding

is a way to navigate in the binary data to be encoded starting from the one with the

Table 3 Surface of silicium

required to implement a

KLT transform (on ASIC):

without including the

computation of the transform

matrix according to the

number of spectral bands

# Bands Surface (mm2)

16 6

64 99

128 400

256 1,500

The limit in 2006 was around 110 mm2 [35]
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greater impact first. This enables progressive decoding of the final bitstream. For

example, with the example presented in Table 4, the numbers 5, 63, 173 are all

going to be encoded starting by the first bitplane (quantization step q = 128), and

then progressively refined by successive smaller quantization. This process ensures

that the value with the most energy will be coded and transmitted first. As the

distribution of the value to be coded, which is the result of the transform or the

residual of a predictor, is close to a Laplacian distribution, for the higher bitplane,

most of the values will be zero which can be very efficiently coded.

The order in which these bits are going to be visited can be further refined.

As the data are sparse, there is a high number of zeros (at least in the higher

bitplane). The idea is to maximize the number of zeros that can be encoded

together. Some strategies exist to further increase the amount of zeros in the stream

to be encoded, such as the use of signed binary digits [39]. The main strategies to

x
y

Low
frequencies

High
frequencies

λ

Fig. 4 3D Wavelet

decomposition commonly

used for hyperspectral images

Table 4 Example of bitplane

coding
Bitplane q 5 63 173

7 128 0 0 1

6 64 0 0 0

5 32 0 1 1

4 16 0 1 0

3 8 0 1 1

2 4 1 1 1

1 2 0 1 0

0 1 1 1 1

This would typically lead to a bitstream 001000011010011..
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take benefit of long streams of zeros are to exploit the fact that small wavelet

coefficients are clustered in similar spatial areas: if the wavelet coefficient is small

in the low frequency band, it is likely to be small in the high frequency band for

the same spatial location. This fact is used by zerotree algorithms such as EZW,

SPIHT and SPECK that have been successfully adapted to hyperspectral data [19,

40, 41]. In these algorithms, the visiting order of the value is designed to maximize

the probability to code large chunks of zeros using only one symbol.

Once the data visiting order is designed, the data coding itself takes place: using

the minimum number of symbols to code the stream. Arithmetic coders have been

very successful, but the implementation complexity can be a deterrent. Simpler

coders such as run-length, Lempel–Ziv algorithms are also used.

Most of algorithms currently used for compression are a combination of these

different steps, some of them being optional: JPEG 2000 combines the wavelet

transform with a contextual arithmetic coder [42]. 3D-SPIHT combines the

wavelet transform with tree ordering, without the requirement of specific coding

thereafter.

3.4 Lossy to Lossless

One of the current trends in the definition of new compression algorithms for

hyperspectral data is to try to get the best of both worlds and provide a progressive

compressed bitstream which is able to reach lossless quality. Several possibilities

exist:

• use a lossless algorithm that is able to do progressive encoding;

• use an hybrid solution combining a lossy algorithm with error encoding

techniques.

For the first case, JPEG2000 can be used with the 5/3 integer wavelet transform.

The bitstream is progressive: decoding only the beginning of the compressed data

leads to data with a lower quality but adapted to some applications. If the full

stream is decoded, the data are recovered without any distortion. One main

drawback of the method is the relatively low quality obtained for intermediate

bitrates: the integer wavelet transform is not as efficient as the 9/7 for the dec-

orrelation of hyperspectral images.

The second solution encodes the residual error of the lossy encoding.

The residual error can be encoded using a DPCM scheme for example as in [25].

The performance of the lossy compression part is preserved and the residual error

is used only if required, but this causes an increase in the complexity of the

algorithm, particularly in terms of memory handling.

These methods are most likely to find an application in the ground segment for

data archiving where the complexity constraints are relaxed and when no trans-

coding losses are tolerated.
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3.5 What is in Use Now?

All these major trends have been successfully implemented and/or used in real

situation. Here are some examples; note that these have been mainly used in the

case of a demonstration mission to show the capabilities of hyperspectral data.

A system based on onboard classification was planned for the canceled mission

of Cois on the Nemo satellite. This system, named Optical Real-time Adaptive

Signature Identification System (Orasis), enables compression ratios of 30:1 while

preserving good quality for classification applications [43].

On the transform side, the SPIHT algorithm is a good candidate for onboard

hyperspectral data compression. A modified version of SPIHT is currently flying

towards the 67P/Churyumov-Gerasimenko comet and is targeted to reach in 2014

(Rosetta mission) among other examples. This modified version of SPIHT is used

to compress the hyperspectral data of the VIRTIS instrument [44]. This interest is

not restricted to hyperspectral data. The current development of the Consultative

Committee for Space Data Systems (CCSDS, which gathers experts from different

space agencies as NASA, ESA and CNES) is oriented towards zero-trees princi-

ples [45]. The CCSDS currently has a group working on hyperspectral data

compression targeting to reach a standard by 2011.

The vector quantization solution is quite advanced in terms of progress and

demonstrated feasibility with hardware implementation on FPGA [6]. More

importantly, this algorithm was also submitted to an extensive acceptance study by

hyperspectral data users [46]. This study, using a double-blind setup, has dem-

onstrated that compression rate of 10:1 seems acceptable for all applications and

compression rates of 30:1 are for most of them. This is a gain of a factor 3 to 10

compared to lossless compression.

Of course when compression is used to distribute the data to the end user,

established standards benefit from the wide availability of software able to read

and process the data. The JPEG 2000 format is increasingly popular for the dis-

tribution of high resolution satellite data.

4 Ensuring Sufficient Quality

4.1 Why Bothering with Lossy Compression?

Given the fidelity requirement of the final applications whether it is target reco-

gnition (see A Divide-and-Conquer Paradigm for Hyperspectral Classification

and Target Recognition), classification (see Decision Fusion of Multiple

Classifiers for Vegetation Mapping and Monitoring Applications by Means of

Hyperspectral Data) spectral unmixing (see Recent Developments in

Endmember Extraction and Spectral Unmixing) or change detection (see

Change Detection in VHR Multispectral Images: Estimation and Reduction of
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Registration Noise Effects), any loss of information caused by compression is

unacceptable. This is one of the main reasons why lossless compression is still so

popular on hyperspectral data. However, the consideration has to be taken in a

wider range than just image to image comparison. We have to look at the mission

globally to find the optimal tradeoff. Compression enables gathering more data, the

cost being a slight distortion on the final product. The question that needs to be

answered is does the increase in acquisition capability (increasing information)

offset the quality loss (decreasing information)?

For example, the MERIS sensor onboard the ENVISAT satellite acquires

hyperspectral data in 520 spectral bands before averaging some of them and

discarding other to produce the final selectable 15 band products [47]. To further

reduce the output rate, averaging is also performed on the spatial domain.

In the setup of a specific application, the answer to this question can be vali-

dated quite easily using simulations. Using compression could enable an increase

in resolution (providing more details), an increase in swath (reducing the revisit

delay, thus improving multitemporal resolution), more spectral bands or an

increase duty cycle (increasing the amount of images collected per orbit).

If every application would benefit from an increase in the amount of data

collected, most of them would also suffer if the data quality is impacted. This is

especially true when generic applications are targeted. In these conditions, it

makes no sense to target compression ratio higher than 20:1 and a bitrate between

1 and 2 bit per pixel per band (bpppb) seems a reasonable target.

Lossless coding is very reassuring from the point of view of the user. This is the

assurance that the compression algorithm will not change the data at all. But if it is

considered in the more global situation of the mission trade-off, given the fact that

sensor noise affects the data anyway, lossless compression is definitely not the

optimal choice.

4.2 Quality Evaluation

With qualifying lossy compression comes the problem of quality evaluation. The

important point is the impact on the end-user, but it is particularly difficult to

evaluate or compare algorithms from the application point of view. The most

convincing measure is to show the impact on a real application using ground truth

before and after compression. However, a realistic evaluation is not often done in

the literature as compression specialists are rarely also application specialists. The

first shortcut which is often taken is to use a statistical distortion measure (such as

SNR, PSNR or MSE). But such measures, even if widely used, have well-known

drawbacks: see [48] for a review on the topic. The second widely popular shortcut

is to measure how well the compression preserves the results of a benchmark

application. This can be referred as Preservation of Application Results (PAR),

which is a more general case of the Preservation of Classification (POC) presented
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in [16]. Both these cases are different than measuring the true impact of the

compression on the applications.

There is currently no universal method to provide a quality evaluation. For

example, if we review papers on lossy hyperspectral compression published in

IEEE journals in the last three years [6, 17, 18, 20, 21–28], six papers present only

statistical measurement (SNR, spectral angle) [17, 18, 20, 21, 22, 23], five present

additional examples on applications comparing with the results obtained on the

original image, classification [24] or anomaly detection [25–28]. Only two com-

pare with real ground truth [28], for the classification (this paper also evaluate the

anomaly detection performance, but as PAR) and only [6] provides extensive

results on a wide range of real applications with the participation of several experts

using the set up described in [46]. These results are not suprising, and, given the

difficulty to set up a correct evaluation, such a set up cannot be expected for each

paper.

Choosing a suitable quality measure is not an easy task and the amount of

existing criteria to quantify the quality of compressed hyperspectral data is sig-

nificant: for example see [49] for a non-exhaustive list of quality criteria for

hyperspectral images.

The Preservation of Application Results (PAR) supposes that results obtained

from the original data (classification, anomaly detection, …) are as close as pos-

sible to the ground truth. This only is an approximation of what we really want to

measure: the classification accuracy compared to the ground truth or the real

anomaly detection rate. The ideal is of course to compare the results with a ground

truth, but this is not easily available.

There is a trend towards standardizing the datasets used for the evaluation of

hyperspectral compression algorithms (see Sect. 5). This is already a great

improvement. The trend should continue towards the availability of standard

application algorithms with ground truth to make the evaluation and comparison of

quality more objective. The website [50] of the Data Fusion Contest (DFC) 2008

[51] proposes the automatic evaluation of hyperspectral classification with ground

truth. This system can be used to qualify the impact of hyperspectral data com-

pression on this particular application. Another system proposing an automatic

evaluation of anomaly detection would be a very valuable complement to the

existing one. Anomaly detection is an important application of hyperspectral

remote sensing and is neglected by most evaluations (none of the aforementioned

papers compare anomaly detection with a real ground truth). A third one that

would be a perfect complement would be a spectral unmixing application. With

these three applications, a much better evaluation of the impact of hyperspectral

compression could be done.

So we have to separate problems here: how to compare the different algorithms

between each other and how to get a precise evaluation of the impact on the

targeted application. Ideally, these two problems would be one, but given the

number of algorithms available and number of existing applications, it is more

convenient to rely on simpler measure for comparison.
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4.3 Making Comparison Easier

In Sect. 5, we insisted on choosing representative data for the targeted application.

But once again, as comparison is important, results should also be provided for a

classic case. If the algorithm is highly specialized for one particular type of image,

the results can be compared also for a standard algorithm on this case and con-

trasted with the ad-hoc proposed algorithm. If the algorithm is targeting the

minimization of error for a particular application, once again, it can be contrasted

with a standard algorithm. As it is by definition a standard, JPEG 2000, seems the

ideal candidate for this task. Several implementations are freely available and easy

to use. Section 5 will provide the results on the classic images.

5 Reference Results

As it is a widely available solution and standardized, the result for JPEG 2000

compression are presented for reference on some popular data sets. The user

should be able to reproduce these results without trouble and compare with the

implementation of its own algorithm.

However, for simplicity and because it is among the most widely used, we

choose the popular SNR which can be easily converted to the ever popular PSNR

or MSE (meaning that the ranking between algorithms would be the same).

When computing the SNR, one has to be careful about the variance compu-

tation which introduces an additional source of error. Hyperspectral images con-

tains an important number of pixels on a wide range of values, computational

artefacts (which becomes significant when millions of small values are added)

appear in some publications. Depending on the algorithm used for computation,

one has to be careful to use double precision to avoid such artifacts.

Table 5 presents the results for the popular Aviris data set for JPEG 2000

lossless compression. JPEG 2000 is used without any fancy options. The only non

classic option is the use of the multicomponent decomposition (MCT) using

wavelets as defined in the standard [42, 52]. Five levels of decomposition are used

in the spatial and spectral directions. The decomposition is equivalent to the one

illustrated in Fig. 4. The rate allocation is done considering all the wavelet sub-

bands together (default behavior of Kakadu).

The implementation used to obtain those results is Kakadu v6.2.1 [53], most of

the options are the default one apart from the MCT which requires specific

parameters.

The dataset are the first scene of the three popular tracks, in radiance and

reflectance. The original scenes are 614 9 512 pixels. The results are presented for

the original scenes, but also for some common extracts: 512 9 512 pixels and

256 9 256 starting from the top left.

Table 6 presents the results obtained with JPEG 2000 in lossy configuration.

The results are presented in terms of SNR and maximum error. These results can
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easily be obtained for other bitrates as both the images and the JPEG2000

implementation are available. Any new proposal for an hyperspectral compression

algorithm can be easily compared with this reference to provide a convenient

comparison point for the reader.

Table 5 Lossless performances

Scene Size Rate (bpppb) Compression ratio

Moffett Field (sc 1) Radiance 614 5.684 2.815

512 5.654 2.830

256 5.557 2.879

Jasper Ridge (sc 1) Radiance 614 5.598 2.858

512 5.547 2.885

256 5.390 2.968

Cuprite (sc 1) Radiance 614 5.291 3.024

512 5.286 3.027

256 5.261 3.041

Moffett Field (sc 1) Reflectance 614 6.865 2.331

512 6.844 2.338

256 6.767 2.365

Jasper Ridge (sc 1) Reflectance 614 6.619 2.417

512 6.573 2.434

256 6.428 2.489

Cuprite (sc 1) Reflectance 614 6.755 2.369

512 6.763 2.366

256 6.784 2.359

Table 6 Lossy performances at 1.0 bpppb

Scene Size SNR MAD

Moffett Field (sc 1) radiance 614 45.233 90

512 45.453 91

256 45.898 87

Jasper Ridge (sc 1) radiance 614 44.605 96

512 44.807 78

256 45.367 60

Cuprite (sc 1) radiance 614 50.772 58

512 50.920 54

256 51.259 51

Moffett Field (sc 1) reflectance 614 36.110 444

512 36.438 444

256 37.865 260

Jasper Ridge (sc 1) reflectance 614 36.446 225

512 36.983 201

256 37.647 127

Cuprite (sc 1) reflectance 614 34.995 283

512 34.952 283

256 34.829 291
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6 Conclusion

Despite the numerous algorithms proposed, a number of challenges remain in the

area of hyperspectral image compression. One of the main challenges is the

evaluation of the impact of lossy compression. The lack of confidence of the final

users in these evaluations is probably the main reason for the reluctance to accept

near lossless compression in spite of the significant advantage in acquisition

capabilities.

An extensive study conducted in a double blind setup shows that a factor of 3

can be obtained with near lossless compression compared to lossless compression

with no impact from the user point of view. This shows that near-lossless com-

pression is the best tradeoff for onboard compression of generic missions. How-

ever the procedure to evaluate the impact of the distortion needs to be refined as it

is not conceivable to conduct a new extensive study with end-users for each new

algorithm proposal.

Once the procedure for impact evaluation is accepted, more advanced concepts

to reduce the data volume with an acceptable complexity can be proposed. This is

the case of compressed sensing which proposes a shift in the compression para-

digm, shifting most of the complexity at the decoding step.
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Reconstructions from Compressive
Random Projections of Hyperspectral
Imagery

James E. Fowler and Qian Du

Abstract High-dimensional data such as hyperspectral imagery is traditionally
acquired in full dimensionality before being reduced in dimension prior to
processing. Conventional dimensionality reduction on-board remote devices is
often prohibitive due to limited computational resources; on the other hand,
integrating random projections directly into signal acquisition offers an alternative
to explicit dimensionality reduction without incurring sender-side computational
cost. Receiver-side reconstruction of hyperspectral data from such random pro-
jections in the form of compressive-projection principal component analysis
(CPPCA) as well as compressed sensing (CS) is investigated. Specifically con-
sidered are single-task CS algorithms which reconstruct each hyperspectral pixel
vector of a dataset independently as well as multi-task CS in which the multiple,
possibly correlated hyperspectral pixel vectors are reconstructed simultaneously.
These CS strategies are compared to CPPCA reconstruction which also exploits
cross-vector correlations. Experimental results on popular AVIRIS datasets reveal
that CPPCA outperforms various CS algorithms in terms of both squared-error as
well as spectral-angle quality measures while requiring only a fraction of the
computational cost.
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1 Introduction

In the traditional data pipeline used with high-dimensional data such as hyper-
spectral imagery, the data is acquired in its full dimensionality within some typ-
ically remote signal-sensing platform (e.g., a satellite), the data is downlinked to
some central (i.e., earth-based) processing site, and finally the data is subjected to
the desired application-specific processing. In many cases, the dimensionality of
the dataset is reduced prior to the processing. For example, a variety of linear—
e.g., principal component analysis (PCA) [1, 2] and independent component
analysis (ICA) [3, 4]—as well as nonlinear—e.g., locally linear embedding (LLE)
[5, 6]—forms of dimensionality reduction have been applied to reduce spectral
dimensionality of hyperspectral imagery thereby facilitating the deployment of
classifiers to detect specific endmember classes or anomalous pixels. This tradi-
tional data-flow pipeline is illustrated in Fig. 1a.

Unfortunately, there are a number of problematic issues with this traditional
data-flow paradigm. Specifically, dataset sizes are becoming ever more volu-
minous, with both spectral as well as spatial resolutions continuing to increase,
resulting in extremely large quantities of data acquired in typical geospatial
sensing systems, with multi-temporal data exacerbating this issue. As a result, it
would be greatly beneficial if dimensionality reduction could occur before data
downlink, since many signal-acquisition platforms are severely resource-con-
strained (e.g., satellite- and airborne devices). On-board dimensionality reduction
would dramatically cut storage and communication burdens faced by such remote
sensors; however, many approaches to dimensionality reduction are data depen-
dent and exceedingly computationally expensive so as to preclude implementation

downlink

Sensing
Reduction

Dimensionality
(Classification)

Processing

(a)

downlink
Reduction

Dimensionality

Sensing and
Simultaneous

Reconstruction
CS/CPPCA

(Classification)
Processing

(b)

Fig. 1 a Traditional sensing, communication, and processing data-flow pipeline. b Proposed
data flow with simultaneous sensing and dimensionality reduction accomplished with random
projections at the sender and CS or CPPCA reconstruction located at the receiving base station
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within resource-constrained sensing platforms. For instance, the computational
complexity of nonlinear LLE restricts it to small blocks of a large image scene
even on computationally powerful machines.

Recently, it has been demonstrated that projections onto randomly chosen
subspaces can be a particularly powerful form of dimensionality reduction.
Namely, the mathematical theory of compressed sensing (CS) [7–10] establishes
that sparsely representable signals can be recovered exactly from data-independent
random projections. Furthermore, we have recently developed compressive-

projection principal component analysis (CPPCA) [11–13] which recovers an
approximate PCA representation of the original signal from random projections.
Both CS and CPPCA permit sensing platforms to enjoy the benefits of dimen-
sionality reduction (less burdensome storage and communication requirements)
without the expense of computation associated with explicit dimensionality
reduction since the random projections can be accomplished simultaneously with
the sensing and signal-acquisition process, while the more expensive reconstruc-
tion from the projections takes place at the receiver-side base station. Specifically,
we replace the traditional data-flow pipeline of Fig. 1a with that of Fig. 1b in
which random projections enable simultaneous signal-acquisition and dimen-
sionality reduction, while CS or CPPCA reconstruction drives further processing at
the receiving base station.

There have been several recent efforts (e.g., [14–16]) aimed at devising hyper-
spectral sensors that accomplish such simultaneous signal-acquisition and dimen-
sionality reduction at the sender side of the system. As a consequence, we explore
here options for reconstruction of hyperspectral data at the receiver side, comparing
the relative merits of CPPCA and CS reconstruction. We begin by overviewing both
CPPCA and CS in Sects. 2 and 3, respectively. We then present a battery of
experimental results in Sect. 4 in which we observe that CPPCA usually outperforms
CS in terms of both square-error and spectral-angle quality measures while requiring
only a fraction of the computational cost. Finally, we make some concluding remarks
in Sect. 5.

2 Compressive-Projection Principal Component Analysis

(CPPCA)

In brief, CPPCA effectuates a reconstruction from random projections by recov-
ering not only the coefficients associated with the PCA transform, but also an
approximation to the PCA transform basis itself. In the next section, we briefly
overview the theoretical underpinnings of CPPCA—specifically, an extension of
existing Rayleigh–Ritz theory to the special case of highly eccentric distributions
which permits simple approximations to orthogonal projections of eigenvectors.
We then describe in Sect. 2.2 how this analytical result is used to devise the
CPPCA algorithm to recover the PCA transform basis and PCA transform
coefficients.
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2.1 Overview of CPPCA

At the core of the CPPCA technique is a receiver-side process that produces an
approximation to the PCA transform basis. Consider a dataset of M zero-mean
vectors X = [x1 _ xM] , where each xm 2 R

N: The covariance matrix of X is
R ¼ XXT=M; and the PCA transform matrix is the N 9 N matrix W of eigen-
vectors that emanates from the eigendecomposition of R; i.e.,

R ¼ WKWT ; ð1Þ

where W contains the N unit eigenvectors of R column-wise. However, central to
the CPPCA paradigm is that production of the PCA transform matrix occurs at the
receiver rather than at the sender as in the traditional use of PCA; that is, the
CPPCA receiver cannot implement eigendecomposition (1) directly as it does not
know either X or R: Instead, the receiver knows only K-dimensional projections of
X. Specifically, suppose we have K orthonormal vectors pk that form the basis of
K-dimensional subspace P such that P ¼ ½p1 � � � pK � provides an orthogonal pro-
jection onto P: Then, the orthogonal projection of xm onto P is ym ¼ PPTxm;

expressed with respect to the basis pkf g; we have eym ¼ PTxm; such that ym ¼ Peym:
The CPPCA sender produces the projected vectors eY ¼ ½ey1 � � � eyM�; and it is from

projections eY that the CPPCA receiver approximates W. The projected vectors
have covariance

eR ¼ eY eYT=M ¼ PTXXTP=M ¼ PT
RP; ð2Þ

which the CPPCA receiver calculates having received eY from the sender.
Rayleigh–Ritz theory [17] describes the relation between the eigenvectors of

R and those of eR as given by (2). Covariance matrix R has spectrum k Rð Þ ¼
k1 Rð Þ; . . .; kN Rð Þf g; where the eigenvalues satisfy k1 Rð Þ� � � � � kN Rð Þ; and the

corresponding unit eigenvectors are wn. The eigendecomposition of eR ¼ PT
RP is

eR ¼ eU eK eUT ; where eU ¼ ½eu1 � � � euK �; eK ¼ diag k1 eR
� �

; . . .; kK eR
� �� �

; eukk k2¼ 1;

and k1 eR
� �

� � � � � kK eR
� �

: The K eigenvalues kk eR
� �

are called Ritz values;

additionally, there are K vectors, known as Ritz vectors, defined as

uk ¼ Peuk; 1� k�K; ð3Þ

where euk are the eigenvectors of eR: Finally, we define normalized projection vn as
the orthogonal projection of wn onto P; normalized to unit length; i.e.,

vn ¼
PPTwn

PPTwn

�� ��
2

: ð4Þ

These vectors are illustrated for an example distribution in the simple case of
N = 3 and K = 2 in Fig. 2.
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Traditional Rayleigh–Ritz theory is rather limited in that it tells us very little
about the Ritz vectors for K\N, giving only that the Ritz vectors do not typically
align with the orthogonal projections of any of the eigenvectors [17]; i.e., uk 6¼ vn
in general. However, CPPCA is built on the central idea that, if subspace P is
chosen randomly, and the distribution of the vectors in X is highly eccentric in that
eigenvalue kk Rð Þ is sufficiently separated in value with respect to the other
eigenvalues, then it is likely that its corresponding normalized projection, vk, will

be quite close to the Ritz vector, uk, corresponding to the Ritz value kk eR
� �

: Under

the assumption that uk � vk; an algorithm based on projections onto convex sets
(POCS) [18] was devised in [11, 13] to approximate the first L eigenvectors wn

from eY; this algorithm is overviewed next. Suffice it to say, however, that the
entire feasibility of the CPPCA technique rests on the approximation uk � vk:
However, extensive analysis in [12, 13] established the validity of this
approximation.

2.2 The CPPCA Algorithm

We now use the fact, as discussed above, that we can approximate orthogonal
projections of eigenvectors with Ritz vectors to enable a system that uses random
projections at the sender. The corresponding receiver then implements recovery of
not only the PCA coefficients for the transmitted dataset, but also an approximation
to the PCA transform basis itself. In this sense, the resulting CPPCA system in
effect shifts the computational complexity of PCA from the sender to the receiver.

Specifically, in the CPPCA sender, the M vectors of X ¼ ½x1 � � � xM� are merely
each subjected to random projection. On the other hand, the CPPCA receiver then
must recover not only the PCA transform coefficients, but also the basis vectors of
the transform itself, all from the projections. We assume that the receiver knows
only the projection operator and its resulting projections, but not X or its statistics

Fig. 2 Data distribution of
x in R

3 is projected onto 2D
subspace P as y; the first Ritz
vector, u1, lies close to the
normalized projection, v1,
onto P of the first
eigenvector, w1, of x (from
[11], � 2009 IEEE)
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(e.g., covariance). Below, we present an overview of the CPPCA approach which
is explained in more detail in [11, 13].

2.2.1 Eigenvector Recovery

Traditional design methods for PCA produce the transform W via the eigende-
composition given by (1); however, in the CPPCA receiver, one has access to

merely eR and not R as required in (1). The goal of CPPCA is thus to approximate

W from eR without knowledge of R; given that eR results from random projection.
The CPPCA receiver first recovers an approximation to the PCA transform basis
by recovering approximations to the first L eigenvectors of R from random pro-
jections. We observe that, if we knew the true normalized projection v of eigen-
vector w in subspace P; we could form subspace Q as

Q ¼ P? � span vf g; ð5Þ

the direct sum of the orthogonal complement of P with a 1D space containing
v. Clearly, w would lie in Q: Suppose then that we produce J distinct random
K-dimensional subspaces, Pð1Þ through PðJÞ; each containing a normalized pro-
jection, v(1) through v(J), respectively, produced via (4) using the corresponding

projection matrices, P(1) through P(J). We could then form subspaces Qð1Þ through

QðJÞ via (5) using Pð1Þ; . . .;PðJÞ and vð1Þ; . . .; vðJÞ: The eigenvector w would thus be

in the intersection Qð1Þ \ � � � \ QðJÞ: This situation is illustrated in Fig. 3 for the
case of N = 3, K = 2, J = 2, and the eigenvector in question being w1.

Fig. 3 a Two 2D subspaces Pð1Þ and Pð2Þ with corresponding normalized projections v1
(1) and

v1
(2). b Subspaces Qð1Þ and Qð2Þ whose intersection uniquely determines eigenvector w1 up to a

sign. (from [11], � 2009 IEEE)

36 J. E. Fowler and Q. Du



In the CPPCA receiver, though, we do not have access to the true normalized
projections; instead, we can form Ritz vectors in each subspace PðjÞ via an eig-

endecomposition of the corresponding projected covariance matrix eRðjÞ . Moti-
vated by the analysis in [13], we use these Ritz vectors to approximate normalized

projections; i.e., we use uk
(j) instead of vk

(j) to form the spaces QðjÞ: Since the Ritz
vectors will differ slightly from the true normalized projections, the intersection

Qð1Þ \ � � � \ QðJÞ is almost certain to be empty. However, since the QðjÞ are closed
and convex, a parallel implementation of POCS will converge to a least-squares

solution minimizing the average distance to the subspaces QðjÞ [18]; this POCS
solution can then be used to approximate w. Specifically, for iteration i ¼ 1; 2; . . .;
we form an estimate of the eigenvector as

bwðiÞ ¼
1
J

XJ

j¼1

QðjÞQðjÞT bwði�1Þ; ð6Þ

where projection onto QðjÞ is performed by the matrix Q(j), and we initialize bwð0Þ

to the average of the Ritz vectors. (6) will converge to bw; normalizing this bw will
approximate the desired normalized eigenvector w (up to sign).

In order to avoid producing multiple random projections for each vector in our
dataset, the CPPCA sender splits the dataset of M vectors X ¼ ½x1 � � � xM� into
J partitions X(j), each associated with its own randomly chosen projection
PðjÞ; 1� j� J: It is assumed that the dataset splitting is conducted such that each
X(j) closely resembles the whole dataset X statistically and so has approximately

the same eigendecomposition.1 The sender transmits the projected data eYðjÞ ¼

PðjÞXðjÞ to the receiver which is assumed to know the projection operators P(j)

a priori. In the CPPCA receiver, eRðjÞ is calculated from eYðjÞ; a set of Ritz vectors

uk
(j) is produced from eRðjÞ; and then the Ritz vectors are used in place of the

normalized projections to drive the POCS recovery of (6). The CPPCA receiver
repeats this POCS procedure using the first L Ritz vectors to approximate the first
L principal eigenvectors which are assembled into N 9 L matrix W; an approxi-
mation to the L-component PCA transform, L�K:

2.2.2 Coefficient Recovery

Once obtaining W; the CPPCA receiver then proceeds to recover the PCA coef-

ficients by solving eYðjÞ ¼ PðjÞT
W�XðjÞ for PCA coefficients �XðjÞ in the least-squares

1 Dataset subsampling is commonly used to expedite covariance-matrix calculation in traditional
applications of PCA, e.g., [19, 20]; we suggest modulo partitioning such as XðjÞ ¼ xm 2 Xjf
ðm� 1Þ mod J ¼ j� 1g .
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sense for each j. This linear reconstruction can be accomplished in several ways,
for example, by using the pseudoinverse,

�XðjÞ ¼ PðjÞT
W

� �þ eYðjÞ: ð7Þ

3 Compressed Sensing (CS)

In brief, CS (e.g., [7–10]) produces a sparse signal representation directly from a
small number of projections onto another basis, recovering the sparse transform
coefficients via nonlinear reconstruction. Our coverage of CS here will be brief;
we refer to [10] for a more comprehensive treatment.

The main tenet of CS theory holds that, if signal x 2 R
N can be sparsely

represented (i.e., using only L nonzero coefficients) with some basis W ¼

½w1 � � �wN �; then we can recover x from K-dimensional projections ey ¼ PTx under
certain conditions; here P ¼ ½p1 � � � pK �; and K\N. Specifically, it is required that
K must be sufficiently large with respect to the sparsity L (but still much less than
N) and that W and P be mutually incoherent, meaning that P cannot sparsely
represent the wn vectors. It has been shown that, if P is chosen randomly, then
P and W are incoherent for any arbitrary fixed W with high probability [8].

The ideal recovery procedure searches for the �x with the smallest ‘0 norm
consistent with the observed ey; i.e,

�x	 ¼ argmin
�x

�xk k0; such that ey ¼ PT
W�x; ð8Þ

where the ‘0 norm �xk k0 is the number of nonzero coefficients in �x: However, this
‘0 optimization being NP-complete, several alternative solution procedures have
been proposed. Perhaps the most prominent of these is basis pursuit (BP) [21]
which applies a convex relaxation to the ‘0 problem resulting in an ‘1 optimization:

�x	 ¼ argmin
�x

�xk k1; such that ey ¼ PT
W�x: ð9Þ

Often, in practical applications that feature noisy data, or data that is only
approximately sparse, BP with a quadratically relaxed constraint (e.g., [10, 22]) is
employed in the form of

�x	 ¼ argmin
�x

�xk k1; such that PT
W�x� ey

�� ��
2 � �: ð10Þ

BP in the form of (9) and (10) can be implemented effectively with linear
programming; see, for example, ‘1-MAGIC [23]. However, the computational
complexity of BP is often high, leading to recent interest in reduced-complexity
relaxations (e.g., gradient projection for sparse reconstruction (GPSR) [24]) as
well as in greedy BP variants, including matching pursuits, orthogonal matching
pursuits, and sparsity adaptive matching pursuits (SAMP) [25]. Such algorithms
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significantly reduce computational complexity at the cost of lower reconstruction
quality.

The majority of CS literature focuses on the recovery of a single vector x from its
projection ey ¼ PTx: However, for a hyperspectral image, we wish to recover a set of
pixel vectors X ¼ ½x1 � � � xM� which are likely to possess a strong degree of corre-
lation. For recovery of a set of multiple, possibly correlated vectors X ¼ ½x1 � � � xM �;
there have been proposals for multi-vector extensions of CS under the name of
‘‘multi-task’’ [26] or ‘‘distributed’’ CS; these, in turn, link closely to a larger body of
literature on ‘‘simultaneous sparse approximation’’ (e.g., [27–31]). In experimental
results below, we compare the performance of CPPCA to that of Multi-Task
Bayesian Compressive Sensing (MT-BCS) [26] which introduces a hierarchical
Bayesian framework into the multi-vector CS-recovery problem to share prior
information across the multiple vectors.

We note that, on the surface, although CPPCA and MT-BCS appear somewhat
similar in their functionality, there exist some crucial differences. MT-BCS, like
other CS techniques, operates under an assumption of sparsity in a known basisW but
the pattern of sparsity (i.e., which L components are nonzero) is unknown. On the
other hand, CPPCA reconstruction operates under a known sparsity pattern (i.e., the
first L principal components), but the transform W itself is unknown. Additionally,
while MT-BCS can recover the M vectors of X from the same set of projections
eYðjÞ ¼ PðjÞXðjÞ which drive the CPPCA recovery process, it can also function on
arbitrarily small numbers of vectors, even down to M = 1 (in which case, MT-BCS
becomes the special case of ‘‘single-task’’ Bayesian Compressive Sensing (ST-BCS)
recovery as described in [32]). CPPCA, on the other hand, requires M to be suffi-
ciently large to enable covariance-matrix calculation in the J subspaces.

4 Empirical Comparisons on Hyperspectral Imagery

We use hyperspectral images cropped spatially to size 100 9 100 (i.e., M =

10,000); we use the popular ‘‘Cuprite,’’ ‘‘Moffett,’’ and ‘‘Jasper Ridge’’ images,
AVIRIS datasets with N = 224 spectral bands. The mean vector has been removed
from the vectors to impose a zero-mean condition.

The CPPCA and MT-BCS receivers reconstruct approximate pixel vectors
bX ¼ ½bx1 � � � bxM� of the hyperspectral image from random projections. For a given
vector bxm; we can measure the quality of its reconstruction in several ways, for
instance, by using a signal-to-noise ratio (SNR) or a spectral-angle distortion
measure. In the following results, we use a vector-based SNR measured in dB; i.e.,

SNRðxm; bxmÞ ¼ 10 log10
varðxmÞ

MSEðxm; bxmÞ
; ð11Þ

where the varðxmÞ is the variance of the components of vector xm, and the mean
squared error (MSE) is
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MSEðxm; bxmÞ ¼
1
N

xm � bxmk k
2
: ð12Þ

We then average the vector-based SNR over all vectors of the dataset for a
measure of quality of the dataset as a whole. Alternatively, we can measure the
quality of a reconstructed hyperspectral dataset using an average spectral angle,
where the spectral angle in degrees between the reconstructed hyperspectral pixel
vector and its corresponding original vector is averaged over the dataset; i.e.,
�n ¼ mean nmð Þ where

nm ¼ \ xm � bxmð Þ: ð13Þ

4.1 Performance of Single-Task and Multi-Task CS

We first examine performance of various CS strategies on our hyperspectral
datasets. As mentioned above, the most straightforward, at most common, para-
digm of CS usage is to reconstruct only a single vector x from its projection
ey ¼ PTx: To apply this single-vector approach to recover a dataset X ¼ ½x1 � � � xM �;
of M vectors, we simply employ the single-vector reconstruction independently
M times. In line with [26], we refer to this approach as ‘‘single-task’’ CS
reconstruction.

In Figs. 4, 5, 6, 7, 8 and 9, we examine the performance of two prominent
single-task CS reconstruction algorithms. Specifically, we compare GPSR2 [24]
and ST-BCS3 [32], using the MATLAB implementations available from their
respective authors. For each technique, transform W is the well-known length-8
Daubechies orthonormal wavelet. Clearly, the performance of the reconstructions
in each case will depend on the degree of dataset reduction inherent in the pro-
jections; this quantity is characterized as a relative projection dimensionality in the
form of K/N expressed as a percentage. For each value of K, we use exactly the
same random projection matrix P for each algorithm.

In Figs. 4, 5, 6, 7, 8 and 9, we also contrast the performance of the various
ST-CS reconstructions with the alternative to straightforward, single-vector pro-
cessing, namely, ‘‘multi-task’’ CS recovery in the form of MT-BCS [26]. Again,
we use the same random projections P and transform W: It is clear from Figs. 4, 5,
and 6 that, for the same relative projection dimensionality, the multi-task recon-
struction, which is able to exploit the substantial cross-vector correlations that
exist within typical hyperspectral datasets, achieves reconstruction performance of
significantly higher quality in terms of SNR. Additionally, a substantially
smaller average spectral angle �n is observed in Figs. 7, 8, and 9 for MT-BCS.

2 http://www.lx.it.pt/mtf/GPSR/
3 http://www.people.ee.duke.edu/lihan/cs/
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As a consequence, when we compare CS reconstruction to that of CPPCA in the
next section, we limit our attention to multi-task CS.

4.2 Performance of CPPCA and CS

We now examine the performance of CPPCA reconstruction in the form of (6) and
(7), comparing to MT-BCS which was seen above to be the most promising
CS-based reconstruction. For CPPCA, we use J = 20 projection partitions while
L ranges between 3 and 30, depending on the specific K used. For MT-BCS, we

0.2 0.25 0.3 0.35 0.4 0.45 0.5
5

10

15

20

25

30

35

K/N

A
v
e
ra

g
e
 S

A
M

 (
d
e
g
re

e
s
)

MT−BCS

ST−BCS

GPSR

Fig. 7 CS reconstruction
performance for the
‘‘Cuprite’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

K/N

A
v
e
ra

g
e
 S

A
M

 (
d
e
g
re

e
s
)

MT−BCS
ST−BCS
GPSR

Fig. 8 CS reconstruction
performance for the
‘‘Moffett’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

42 J. E. Fowler and Q. Du



0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

K/N

A
v
e

ra
g

e
 S

A
M

 (
d

e
g

re
e

s
)

MT−BCS
ST−BCS
GPSR

Fig. 9 CS reconstruction
performance for the ‘‘Jasper
Ridge’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

11

12

13

14

15

16

17

18

19

K/N

A
v
e
ra

g
e
 S

N
R

 (
d
B

)

 

 

CPPCA

MT−BCS−D4

MT−BCS−DCT

MT−BCS−Haar

Fig. 10 CPPCA and
MT-BCS reconstruction
performance for the
‘‘Cuprite’’ hyperspectral
dataset—average SNR for
varying dimensionality
K/N. (from [11], � 2009
IEEE)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
12

14

16

18

20

22

24

26

28

K/N

A
v
e

ra
g

e
 S

N
R

 (
d

B
)

 

 

CPPCA

MT−BCS−D4

MT−BCS−DCT

MT−BCS−Haar

Fig. 11 CPPCA and
MT-BCS reconstruction
performance for the
‘‘Moffett’’ hyperspectral
dataset—average SNR for
varying dimensionality K/N

Reconstructions from Compressive Random Projections of Hyperspectral Imagery 43



0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

12

14

16

18

20

22

24

K/N

A
v
e
ra

g
e
 S

N
R

 (
d
B

)

 

 

CPPCA

MT−BCS−D4

MT−BCS−DCT

MT−BCS−Haar

Fig. 12 CPPCA and MT-
BCS reconstruction
performance for the ‘‘Jasper
Ridge’’ hyperspectral
dataset—average SNR for
varying dimensionality
K/N. (from [11], � 2009
IEEE)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
7

8

9

10

11

12

13

14

15

K/N

A
v
e
ra

g
e
 S

p
e
c
tr

a
l 
A

n
g
le

 (
d
e
g
re

e
s
) CPPCA

MT−BCS−D4

MT−BCS−DCT

MT−BCS−Haar

Fig. 13 CPPCA and MT-
BCS reconstruction
performance for the
‘‘Cuprite’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

10

11

K/N

A
v
e

ra
g

e
 S

p
e

c
tr

a
l 
A

n
g

le
 (

d
e

g
re

e
s
) CPPCA

MT−BCS−D4

MT−BCS−DCT

MT−BCS−Haar

Fig. 14 CPPCA and MT-
BCS reconstruction
performance for the
‘‘Moffett’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

44 J. E. Fowler and Q. Du



consider several orthonormal bases commonly used with hyperspectral data: an N-
point discrete cosine transform (MT-BCS-DCT) as well as a discrete wavelet
transform (DWT) using both the Haar basis (MT-BCS-Haar) and the length-8
Daubechies basis (MT-BCS-D4). We apply the same random projections as used
for CPPCA. We see from Figs. 10, 11, and 12 that CPPCA yields average SNR
substantially higher than that of the fixed-basis MT-BCS approaches over a broad
range of practical K/N values. Additionally, in Figs. 13, 14, and 15, we see that
CPPCA also usually produces a smaller spectral-angle distortion, the sole
exception being for the ‘‘Cuprite’’ dataset.

4.3 Execution Times

In terms of computational complexity, none of the implementations we employ are
optimized for execution speed. However, we have observed that both the POCS-
based eigenvector recovery of (6) as well as the linear coefficient recovery of (7)
are quite fast, yielding a relatively lightweight computational burden for the
CPPCA receiver. To wit, Table 1 presents execution times for the various algo-
rithms we have considered. In particular, we compare the execution speed of
CPPCA and that of the various single-task and multi-task CS reconstructions.
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Fig. 15 CPPCA and MT-
BCS reconstruction
performance for the ‘‘Jasper
Ridge’’ hyperspectral
dataset—average spectral
angle, �n; for varying
dimensionality K/N

Table 1 Single-thread
execution times in seconds
for the ‘‘Cuprite’’
hyperspectral dataset

K/N

Algorithm 0.1 0.2 0.3 0.4 0.5

CPPCA 4 4 9 16 25
GPSR-D4 59 76 78 72 66
ST-BCS-D4 471 928 1194 1255 1294
MT-BCS-D4 1585 1507 1614 1307 1344
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The CS algorithms all use the length-8 Daubechies DWT as the sparsity transform.
All implementations are run on a single core of a Sun Fire X4600 (2.6 GHz,
32 GB RAM) using MATLAB R2009b running in a single thread. Table 1 presents
execution times for several relative dimensionalities K/N. We find that CPPCA
generally runs 3–10 times faster than GPSR, around 50–200 times faster than
ST-BCS, and about 50–400 times faster than MT-BCS.

5 Conclusions

In this chapter, we have compared the performance of CPPCA to various CS
reconstruction algorithms for the recovery of hyperspectral datasets subject to
random-projection-based dimensionality reduction. We have seen that multi-task
CS reconstruction significantly outperforms single-task CS recovery since the
multi-task technique is designed specifically to exploit the significant correlation
that typically exists between hyperspectral pixel vectors. On the other hand,
CPPCA usually outperforms multi-task CS, consistently achieving higher SNR for
all the AVIRIS datasets we consider in addition to a smaller average spectral-angle
distortion for all but one of the datasets. CPPCA, which features a recovery of not
only the PCA transform coefficients for the dataset in question but also an
approximation to the PCA transform basis from the random projections, runs at a
fraction of the computational cost as compared to the various CS approaches
considered. As a consequence, we conclude that CPPCA constitutes a promising
approach for computationally efficient and high-quality receiver-side reconstruc-
tion when random projection is used at the remote sender to accomplish low-cost
dimensionality reduction.
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Integrated Sensing and Processing
for Hyperspectral Imagery

Robert Muise and Abhijit Mahalanobis

Abstract In this chapter, we present an information sensing systemwhich integrates
sensing and processing resulting in the direct collection of data which is relevant to
the application. Broadly, integrated sensing and processing (ISP) considers
algorithms that are integrated with the collection of data. That is, traditional sensor
development tries to come upwith the ‘‘best’’ sensor in terms of SNR, resolution, data

rates, integration time, and so forth, while traditional algorithm development tasks

might wish to optimize probability of detection, false alarm rate, and class separa-

bility. For a typical automatic target recognition (ATR) problem, the goal of ISP is to

field algorithms which ‘‘tell’’ the sensor what kind of data to collect next and the

sensor alters its parameters to collect the ‘‘best’’ information in order that the algo-

rithm performs optimally. We illustrate the concept of ISP using a near Infrared

(NIR) hyperspectral imaging sensor. This prototype sensor incorporates a digital

mirror array (DMA) device in order to realize a Hadamard multiplexed imaging

system. SpecificHadamard codes can be sent to the sensor to realize inner products of

the underlying scene rather than the scene itself. The developed ISP algorithms

utilize these codes to overcome issues traditionally associated with hyperspectral

imaging (i.e. Data Glut and SNR issues) while also performing a object detection

task. The underlying integration of the sensing and processing results in algorithms

which have better overall performance while collecting less data.
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1 Introduction

This chapter presents the development of algorithms for Integrated Sensing and
Processing (ISP) utilizing a hyperspectral imaging sensor. The ISP paradigm seeks
to determine the best sensing parameters for achieving the performance objectives
of a given algorithm. The exploitation algorithm may also have components which
adapt to the imagery being sensed. In this context, ISP is a coupling between
adaptive algorithms and adaptive sensing. Considering the problem of object
detection/classification in hyperspectral imagery, ISP can increase sensing and
algorithm performance in several ways. Firstly, hyperspectral exploitation usually
suffers from a data glut problem. That is, a hyperspectral sensor generates a cube
of data where each spatial pixel is represented as a spectral vector. The first step in
most exploitation algorithms is some type of data reduction, or spectral band
selection. A question which should naturally arise is: Why sense particular
information which is going to be immediately eliminated through a data reduction
algorithm? If one can design a data collection system that integrates the sensor
with the data reduction algorithm, then only information which is pertinent to the
exploitation task need be sensed. Secondly, traditional hypserspectral imagers can
suffer SNR degradation as compared with broadband imagers. When one is
attempting high spatial resolution imaging and the sensing system separates the
light into a large number of spectral components, then there is a significant loss of
photons being sensed by the detector array. Thus, to get enough light to make a
meaningful image, one must increase the detector integration time. If one is
sensing a dynamic scene, longer integration time cannot be tolerated; which leads
to significant loss of SNR in the final hyperspectral image. In Sect. 2, we show a
solution to this SNR issue using spatial/spectral multiplexing.

In order to investigate algorithms for integrated sensing and processing of
imagery, we use a near infrared (NIR) Hadamard multiplexing imaging sensor. This
prototype sensor was developed by PlainSight Systems (PSS) and incorporates a
digital mirror array (DMA) device in order to realize a Hadamard multiplexed
imaging system. The known Signal-to-Noise (SNR) advantage in Hadamard
spectroscopy [1] extended to imaging systems [2, 3] allows for the collection of a
hyperspectral cube of data with more efficient light collection over standard
‘‘Pushbroom’’ hyperspectral imagers.

Fig. 1 Digital mirror array

acts as an electronic shutter to

select and encode spatial/

spectral features in the scene
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The PlainSight NSTIS is a Spatial Light Modulator (SLM)-based multiplexing
hyperspectral imaging camera, operable in the spectral range of about 900–
1,700 nm, with no macro moving parts. As the SLM device, the system uses a
Digital Micro-mirror Array (DMA) commercially available by Texas Instruments
for projector display applications. The DMA contains 848 columns and 600 rows
of mirrors and measures 10.2 mm 9 13.6 mm. In Fig. 1, a DMA is shown with its
glass cover removed.

When the scene is illuminated on the DMA device, a standard raster scan could
be implemented by turning the first column of mirrors ON, sending this column to
a diffraction grating which results in a spectral representation of the first spatial
column of the scene being illuminated on the detector array. This process is
reflected in Fig. 2.

If multiple slits (columns) in the DMA array are opened as shown in Fig. 3, the
detector array will be presented with the superposition of the spectra of many
columns. Such a system has the advantage of realizing optimal SNR when the
sequence of open slits constitutes a Hadamard pattern [1]. Each individual frame
collected at the detector array is not physically meaningful as an image, but when
all the patterns of the Hadamard sequence have been recorded, the full hyper-
spectral data cube is recoverable by digital post-processing [2].

The PlainSight NSTIS sensor implements the process from Fig. 3 where the
detector array is a standard Indigo Phoenix large-area InGaAs camera operating in
the Near Infrared wavelengths.

During standard operation of the system, the sensor collects 512 raw frames of
data. Each frame is 522 9 256 pixels and represents superposition of spectra vs.
spatial row as shown in Fig. 3. The 512 frames are collected using the 256 Walsh
(0 and 1 s) patterns that determine the columns of the DMA to be opened or
closed. In other words, each column of the DMA is controlled by a bit of the
Walsh code. If the bit is 0, the column is closed whereas if the bit is 1, the column
is open. Since the theory of optimal SNR is based upon Hadamard (1 and -1 s)
patterns, one needs to collect two Walsh patterns to generate a single Hadamard
pattern. Thus, the 512 collected frames represent the required Walsh patterns to
form a full set of 256 Hadamard patterns. Since each column in the DMA array

Scene DMA

Open Slit

Diffraction Grating

row

Wavelength

Detector Array

Spectra of Current Slit

Fig. 2 Pushbroom hyperspectral imaging with a DMA device
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will hit the Diffraction grating at a different location, the spectra will hit the
detector array at a different location per column. We refer to this as a Skewness in
spectra which spreads the information across 522 pixels in the spectral dimension
but represents only 266 actual spectral bins. Of course, this spatial/spectral mixing
and skewness is invertable once all 256 Hadamard patterns have been collected.
The resultant hyperspectral scene is dimension 256 9 256 with 266 spectral bands
from 900 to 1,700 nm.

Given a sensor that accommodates adaptation while imaging, the ISP concepts
we will discuss can be viewed as within the realm of compressive sensing (as
presented by Donoho [4] and Candes et al. [5]) in that we will collect far fewer
image samples than what would normally be required to exploit the entire scene of
interest. Neifeld and Shankar [6] have done similar work on concepts for feature-
specific imaging while Mahalanobis and Daniel [7] have looked at exploitation
driven compression algorithms (another form of ISP).

The outline of this chapter is as follows. Section 2 presents an algorithm for
variable resolution sensing where high resolution imagery is driven by an ATR
metric. Section 3 presents the results of an experiment which demonstrates the
developed algorithms implemented in a prototype ISP hyperspectral sensor, while
Sect. 4 presents concluding remarks and future work.

2 Variable Resolution Hyperspectral Sensing

2.1 Mathematical Representation

Since the sensor encodes data identically and independently on each spatial col-
umn of the scene, we will perform the mathematical analysis given an individual,
but arbitrary spatial column. Thus, for the underlying hyper-spectral scene,
S(k, r, c), we will consider only a particular column of data S(k, r). We wish to
establish a correspondence between the sampling of the hyperspectral row, S(k, r),
as a digital image and a particular mirror of the DMA device. As described in the

Scene DMA
Diffraction Grating

row

Wavelength

Detector Array

Multiplexed SpectraHadamard Pattern

Fig. 3 Multiplexed Hadamard hyperspectral imaging
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description of Fig. 3, each row of the scene hits the diffraction grating at a dif-
ferent place, and thus the entire spectrum is shifted on the focal plane as a function
of the row. This is referred to as spectral ‘‘skewness’’. Thus, as a particular row

enters the system, the underlying scene actually becomes S(k(r), r), where the

spectrum is now a function of row. We now make the substitution x = k(r) and

ignore this dependency for the moment. So we are concerned with sensing the

hyperspectral row image S(x, r). The sampling of this function brought about

from the DMA generates a matrix S of dimension 522 9 256. We are thus

interested in sensing this array with Hadamard vectors of length 256. An example

scene matrix, S, is given in Fig. 4. Recall, this is a spectral x spatial data matrix, so

there is no intrinsic interpretability.

The imaging system will sense this data from Fig. 4 with Hadamard multi-

plexing, thus we will measure a collection of transformations of this data rather

than the data itself. Looking at the Hadamard basis, we are interested in encoding

the spatial component of this data which is of dimension 256. We take a standard

ordering of the Hadamard basis for <256 as shown in the example below which is

of dimension 8.

H8 ¼

1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

1 þ1 þ1 þ1 �1 �1 �1 �1

1 þ1 �1 �1 þ1 þ1 �1 �1

1 þ1 �1 �1 �1 �1 þ1 þ1

1 �1 þ1 �1 þ1 �1 þ1 �1

1 �1 þ1 �1 �1 þ1 �1 þ1

1 �1 �1 þ1 þ1 �1 �1 þ1

1 �1 �1 þ1 �1 þ1 þ1 �1

2
66666666664

3
77777777775

:

S 522x256

rFig. 4 Example scene

matrix S representing the

wavelength 9 spatial row

information for a given

spatial column. Collected

from multiplexing

hyperspectral imager
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It is important to note that

HN ¼ HT
N ¼ H�1

N : ð1Þ

A particular single frame sensed by the camera when in multiplexed mode is
resultant by a particular column of this Hadamard matrix, denoted hi. This ith
frame of collected data is the 522 9 1 vector

fi ¼ Shi: ð2Þ

Therefore, sensing with all 256 Hadamard codes yields the 522 9 256 data
matrix.

F ¼ SH256: ð3Þ

This is the data which gets collected during normal operation of the sensor. It is
easy to see that to exactly recover the underlying scene, S, from the sensed frames,
F, we use Eq. 1 to get

S ¼ FH256: ð4Þ

This implies that if all 256 Hadamard vectors are sequentially encoded into the
mirror array and sensed through the camera, then we can fully recover S from the
actual collected data F. Performing this recovery on all spatial columns of this data
will recover the full hyperspetral data cube.

The relationship between the underlying spectral parameter and our indexing
parameter was previously given by

x ¼ k rð Þ: ð5Þ

Fig. 5 Spectral skewness for
the actual hyperspectral scene
as sensed through the
multiplexing Hadamard
hyperspectral imager. The
diagonal lines show the lines
of constant wavelength
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Specifically, the sensing instrument being used for this discussion introduces a
spectral ‘‘skewness’’ where the underlying spectral representation is shown in

Fig. 5.

Thus, the ‘‘unskewed’’ scene, S(k, r), representation can be garnered from the

recovered data, S(x, r), by following the lines of constant wavelength from Fig. 5.

This is illustrated in Fig. 6.

2.2 Reduced Resolution Imaging

Equation 4 implies that if all 256 Hadamard vectors are sequentially encoded into

the mirror array and sensed through the camera, then we can fully recover the

scene, S, from the data frames, F, collected by the sensor. Since we are interested

in compressed sensing, we desire to know what can be recovered about S if we

sense only a few of the Hadamard vectors. Consider, for example if we sense only

the first 4 codes of the Hadamard matrix.

H256;4 ¼

1 1 1 1

1 ..
.

1 1

1 ..
.

�1 �1

..

.
1 �1 �1

..

.
�1 1 �1

1 ..
.

1 �1

1 ..
.

�1 1

1 �1 �1 1

2
666666666666664

3
777777777777775

: ð6Þ

S 522x 256

r

r

S 256x 256

Fig. 6 Skewness correction

in scene representation. Left

is skewed data representation

while right is the unskewed

version following lines of

constant wavelength from

Fig. 5
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Then, we have sensed the four vectors

F256;4 ¼ SH256;4 ¼ Sh1 Sh2 Sh3 Sh4½ �: ð7Þ

The dimension of F is 522 9 4. Define the approximate scene by Ŝ as follows:

Ŝ ¼ F256;4H
T
256;4 ¼ Sh1 Sh2 Sh3 Sh4½ �HT

256;4 ¼ S h1 h2 h3 h4½ �

hT1

hT2

hT3

hT4

2
6664

3
7775

¼ S h1h
T
1 þ h2h

T
2 þ h3h

T
3 þ h4h

T
4

� �
:

ð8Þ

However, if we let 164 be the 64 9 64 matrix of all 1 s, then it can be shown
that

h1h
T
1 þ h2h

T
2 þ h3h

T
3 þ h4h

T
4

� �
¼ 4

164 0 � � � 0

0 164 ..
.

..

.
164 0

0 � � � 0 164

2

6
6
6
4

3

7
7
7
5
: ð9Þ

Thus,

Ŝ / S

164 0 � � � 0

0 164 ..
.

..

.
164 0

0 � � � 164

2

6
6
6
4

3

7
7
7
5
: ð10Þ

So the underlying scene is approximated by averaging. (i.e. the first 64 columns
of S are averaged and establish the first 64 columns of the approximation). Again,
the dimensions of the matrix S(x, r), are wavelength, x, and spatial row, r,
implying that the spatial row information in Ŝ is the average of 64 spatial rows of
the scene: A low pass filtering in the spatial row dimension. In the wavelength
dimension it is somewhat more complicated. It would appear that the data in the
wavelength dimension is not smoothed along the wavelength axis, but simply
averaged over 64 spatial rows. However, we recall that x = k(r) is a function of
the real spectral parameter which has an index which is a function of the spatial
row. Thus, Ŝ, the coarse scale approximation to S, smoothes S in both the
wavelength and spatial row dimensions.

The lines of constant wavelength used for the coarse resolution ‘‘deskewing’’
are represented in Figs. 7 and 8.

At this point, one can apply a metric to the reduced resolution imagery which

defines which spatial areas are to be sensed at a finer resolution. The process can

then continue until the highest resolution possible is achieved over the spatial areas

desired by the controlling metric.
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To garner more understanding of this process, we need more detail. With the
equations for a coarse scale approximation of the scene defined by sensing four
frames of data,

Ŝ ¼ F256;4H
T
256;4; ð11Þ

we are in a position to establish some type of measurable criteria as to whether any
of the data matrix Ŝ, needs to be approximated to a finer resolution. We will later
establish an Automatic Target Recognition (ATR) criteria in more detail, but for
now we will just assume that a decision is made by some criteria as to where in the
array needs further detail. The extra approximation detail is collected in the same
manner as previously described for the 256 row dimensional case. That is, we will

522x256

r
1

2

266

…

…

Fig. 7 Spectral skewness for
the actual coarse resolution
scene. The diagonal lines

show the lines of constant
wavelength

S 522x256

r

r

λ

S 256x256

Fig. 8 Skewness correction
in coarse scale scene
representation. Left is skewed
data approximation while
right is the unskewed version
following lines of constant
wavelength from Fig. 7
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consider each of the four dyadic spatial row ‘‘blocks’’ which have been averaged in
the first approximation. The next level approximation will be made with the

reduced size Hadamard basis set H64,4. Thus, we will sense the scene as

F64;4 ¼ SH64;4 ¼ Sh1 Sh2 Sh3 Sh4½ �; ð12Þ

where

H64;4 ¼

1 1 1 1

1 ..
.

1 1

1 ..
.

�1 �1

..

.
1 �1 �1

..

.
�1 1 �1

1 ..
.

1 �1

1 ..
.

�1 1

1 �1 �1 1

2
666666666666664

3
777777777777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
4

9

>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

64: ð13Þ

With this formalization,

Ŝ64 ¼ F64;4H
T
64;4: ð14Þ

For the purpose of illustration, if we assume that the second dyadic block has

been flagged for finer resolution approximation, then the next level approximation

becomes

Ŝ64 / S

164 0 � � � 0

0

116 0 � � � 0

0 116
..
.

..

.
116 0

0 � � � 0 116

2

6
6
6
4

3

7
7
7
5

..

.

..

.
164 0

0 � � � 0 164

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

: ð15Þ

This procedure continues until the criteria for further resolution processing is

not satisfied with any of the remaining dyadic blocks. The final approximation will

be something of the form

Ŝfinal / S diag 1k1 ; 1k2 ; . . .; 1kM½ �½ �; ð16Þ

with the parameters {k1, k2, …, kM}defining the local resolution and are deter-

mined iteratively by the controlling criteria metric. For example, a spectral MACH

[8] filter could be inserted at this stage as a controlling criteria for finer resolution

sampling.
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For the final multi-resolution scene representation, the ‘‘skewness’’ is also

multiple scales. This results in a set of piecewise linear lines of constant wave-

length denoted by Fig. 9. An example on real imagery is given in Sect. 3.

3 Experimental Results

In this section, we describe experiments to demonstrate (i) the improvement in

SNR by using a Hadamard encoded coded aperture, and (ii) the benefit of ISP by

imaging a scene in variable resolution that dramatically reduces the amount of raw

hyperspectral data which must be collected. The sensor was placed in a data

collection tower and imagery was collected of a surrogate ‘‘tank’’ target emplaced

in the grass below the tower. Figure 10 shows the target emplacement with a

regular visible camera with approximately the same spatial resolution as the

hyperspectral sensing system. The associated example imagery taken from the

hyperspectral sensor is shown in Fig. 11, where the image is spectral band 210.

3.1 Improving SNR Using Hadamard Multiplexing

The first algorithm demonstrated was in hyperspectral imaging. The SNR gain

from Hadamard multiplexing was tested by gathering a hyperspectral data cube in

a standard raster scan mode. Several different cubes of the same scene were

collected in this mode so that ‘‘signal’’ and ‘‘noise’’ cubes could be estimated. The

‘‘signal’’ cube was estimated as the average data cube and the ‘‘noise’’ cube was

taken as the signal subtracted from each collected cube. With these estimates for

signal and noise, a signal-to-noise ratio was calculated. For a 16 ms integration
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time per frame, the SNR in raster scan mode was calculated as 12 dB while taking
imagery with a 1 ms integration time yielded an SNR of 3 dB. Samples of typical
imagery collected in raster scan mode are shown in Fig. 12.

The same sensing and computations were conducted with the sensor set to
Hadamard multiplexing mode. The SNR gain becomes clear as the 16 ms inte-
gration time yields an SNR of 17 dB. This reflects a 5 dB gain in SNR. For the
1 ms integration time the SNR improvements are more dramatic. The Hadamard
multiplexing mode increases the SNR from 3 to 13 dB, a 10 dB improvement.

Fig. 10 Top: target
emplacement shown with
visible sensor. Tank target is
inside the box. Bottom: close-
up of target taken with visible
camera standing directly in
front of target

Fig. 11 Band 210 from
hyperspectral sensor of target
area. Tank target is inside the
box
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Figure 13 presents typical imagery collected in Hadamard multiplexing mode. The
gain in SNR becomes more pronounced as the light level is decreased. One notices
that the 1 ms raster scan image contains virtually no signal information while the
1 ms Hadamard multiplexing image is comparable to the 16 ms raster scan image.
The SNR gain for Hadamard multiplexing imaging is qualitatively supported by
this experiment.

3.2 Variable Resolution Hyperspectral Sensing

This experimental setup was then used to test the variable resolution hyperspectral
sensing algorithm described in Sect. 2. A training cube was collected and the
average target spectral vector was calculated. This vector was then taken as the
driving characteristic for what areas are identified for finer resolution sensing. For
example, at each sensing level, the current approximate data cube is compared

Fig. 12 Band 20 from hyperspectral sensor in raster scan mode (left: 16 ms integration time;
right: 1 ms integration time)

Fig. 13 Band 20 from hyperspectral sensor in Hadamard multiplexing mode (left: 16 ms
integration time; right: 1 ms integration time)
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against the average target spectra. The L1 norm is used for comparison and if this
norm is smaller than a defined threshold, then that resolution cell is identified as
requiring more resolution. The sensing continues in this manner until the highest
possible resolution is attained. Figure 14 shows band 210 of the hyperspectral
scene used for training. With the training signature calculated, the sequence of
collected frames is shown in Fig. 15.

One notes that the final variable resolution collected by the sensor has full
resolution on the target and less resolution elsewhere. Also, the sensing terminated
on the parking lot area (top left of image) after the very coarsest resolution was
collected. The final collected variable resolution data cube results from sensing

Fig. 14 Band 210 from
hyperspectral sensor used for
training the variable
resolution imaging algorithm

Fig. 15 Band 210 from hyperspectral sensor in variable resolution sensing mode: increased
resolution progresses from the top left to the bottom right. Note the full resolution on the target
and less resolution elsewhere
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only 14% of the pixels required for full resolution everywhere. This represents a
substantial savings in sensing resources as well as addressing the typical data glut
problem associated with hyperspectral data exploitation. The full resolution and
variable resolution images are shown in Fig. 16 for comparison.

The next example in Fig. 17 shows the output of the algorithm adapted to
generate fine resolution only where a certain spatial recognition criteria has been
satisfied. Although any algorithm can be used, ourmetric is a spatial correlation filter
which has been designed to detect the shape of the vehicle in the center of the scene.

Essentially, the image cube is further resolved by applying additional Had-
amard vectors to sense only in regions where there is a potential match with the
object of interest as determined by the response of the filter to low-resolution data.
Large portions of the scene in the background and fore-ground are discontinued
early in the sensing process, whereas resolution is progressively added only to the
region that exhibit peaks that are potentially due to the car. This approach
improves the sensing process by greatly reducing the overall volume of data and
the time required to collect it. In the end, only the spatial information that is salient
for the object recognition algorithm to recognize the car is gathered in detail.

4 Summary

The concept of Integrated Sensing and Processing (ISP) is a unique way to address
the issue of large amounts of data associated with hyperspectral imaging.

Fig. 16 Band 210 from
hyperspectral sensor (left: full
resolution mode; right:
variable resolution mode)

Fig. 17 The image is sensed with task-specific compressed sensing algorithm based upon a
Hadamard multiplexing sensor. The resulting multi-resolution image is represented at the far
right and shows fine resolution on the target and coarse resolution elsewhere
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Typically, much of the data collected by a conventional sensor is often not of
interest and discarded during analysis. In this chapter, we discussed a coded
aperture hyperspectral imager that allows data to be collected at variable resolution
by dynamically controlling the aperture. In an ISP framework, the sensor can
collect relevant information only in areas where features (or objects) of interest
may be present, and thereby greatly reduce the amount of raw data that needs to be
sensed.

Specifically, we first described the conceptual design of the coded aperture
hyperspectral imager developed by Plain Sight Systems [9]. It is noteworthy that
the raw data sensed by this instrument is not a hyperspectral image, but a mix of
coded spatial and spectral information which must be digitally processed to
recover the hyperspectral data cube. We presented the algebraic framework for
reconstructing the hyperspectral data cube using the Hadamard transform matrix,
and described a method for varying resolution in the reconstructed scene.

The coded aperture imager’s ability to collect less data than a conventional

sensor was shown by means of illustrative examples. The essence of the experi-

ments shows that raw data can be collected sparsely across the scene, driven by

performance metrics such as pattern match criteria and therefore only a fraction of

the underlying pixel need to be sensed. Fundamentally, it becomes possible to

retain the salient information in the scene while avoiding the need to measure

irrelevant information. This has the potential to significantly reduce the require-

ments for data links and on-board storage in future generation of sensors that are

based on the ISP paradigm.
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Color Science and Engineering for the
Display of Remote Sensing Images

Maya R. Gupta and Nasiha Hrustemovic

Abstract In this chapter we discuss the color science issues that arise in the
display and interpretation of artificially-colored remote-sensing images, and dis-
cuss some solutions to these challenges. The focus is on visualizing images that
naturally have more than three components of information, and thus displaying
them as a color image necessarily implies a reduction of information. A good
understanding of display hardware and human color vision is useful in con-
structing and interpreting hyperspectral visualizations. After detailing key chal-
lenges, we review and propose solutions to create and refine visualizations to be
more effective.

Keywords Color � Display � Basis functions � White balance � Adaptation

1 Introduction

Visualizing hyperspectral images is challenging because there is simply more
information in a hyperspectral image than we can visually process at once. The best
solution depends on the application. For example, if identifying and differentiating
certain plants is of interest, then classifying pixels into those plants
and using distinct false colors to represent them may be the most useful approach.
Such labeling may be layered on top of a full visualization of the image data.
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Full visualizations can be useful in orienting the viewer, analyzing image content,
and understanding contextually results from classification or un-mixing algorithms.

In this chapter we discuss from a color science perspective some of the prob-
lems and issues that arise in creating and interpreting hyperspectral visualizations,
and describe solutions that may be useful for a variety of visualization approaches.
We hope this chapter will be useful both for those who must make sense of
hyperspectral imagery, and for those who design image processing tools. First, in
Sect. 2 we discuss key challenges: information loss, visual interpretation, color
saturation, pre-attentive imagery, metrics, and then use principal components
analysis as a case study. Then in Sect. 3 we discuss some solutions that can help
address these challenges, including white balance, optimized basis functions, and
adapting basis functions. In Sect. 4 we conclude and consider some of the open
questions in this area.

2 Challenges

Consider a hyperspectral image H with d components, that is, each pixel is a
d-dimensional vector. To visualize H, each pixel can be mapped to a three com-
ponent vector that can be displayed as an RGB value on a monitor. Thus,
hyperspectral visualization can be viewed as a d ? 3 dimensionality reduction
problem, and any standard dimensionality reduction solution can be used.

However, a good visualization will present information in a way that is easy for
a human to quickly and correctly interpret. In the following sections we explain
some of the key issues that make achieving this ideal difficult. To dig further into
the imaging and color science issues presented in this section, we refer the reader
to the following references: for those new to color science, Stone’s book [1]
provides a friendly introduction; formulas and further details for most of the topics
discussed here can be found on Wikipedia; most of these formulas and more
details about practical digital processing for imaging can be found in the recent
book by Trussell and Vrhel [2]. For those whose research involves color engi-
neering, we recommend the compilation of surveys published as Digital Color

Imaging [3]. Additional references for specific issues are provided where they
arise in the text.

2.1 Information Loss

All (static) hyperspectral visualizations are lossy. First, one maps from d dimen-
sions down to three displayed dimensions. Second, most displays are only 8 bits,
and this often entails quantization error. Consider for example principal compo-
nents analysis, which maps the pixel H[i][j] to a displayable three dimensional
RGB pixel as follows:
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R½i�½ j� ¼ pT1H½i�½ j�

G½i�½ j� ¼ pT2H½i�½ j�

B½i�½ j� ¼ pT3H½i�½ j�;

ð1Þ

where p1, p2, and p3 are the first three principal components of the image H. Even
if the original image H is 8-bit, the projections in (1) will generally be a much
higher bit depth, but will have to be quantized to be displayed.

A third cause of information loss is clipping pixel values to the display range,
which makes it impossible to differentiate the clipped pixels. It is common to scale
hyperspectral visualizations in order to increase contrast, but this causes pixels to
exceed the display value range (e.g. [0…1]), and they must be clipped. It is
tempting to increase contrast with a nonlinear scaling, such as a sigmoid function,
but for finite-depth displays (e.g. 8 bit displays), this just moves the information
loss to middle-range pixels because the nonlinearly-scaled values must be quan-
tized to display values.

2.2 Metrics

The right metric for a visualization depends on the application. Once a metric has
been decided upon, a visualization strategy should be formed that directly opti-
mizes for the given metric. A general metric is how well differences in the spectra
correlate to perceived differences in an image. For example, Jacobson and Gupta
looked at the correlation between the chrominance (a*b* distance in CIELAB
space) of different pixels and the angle between the corresponding original
spectra [4]. Cui et al. define a similar correlation-based metric that considers
Euclidean distances of pixels in spectral space and CIELAB color space [5], as well
as separation of features and aspects of interactive visualization as metrics. Visu-
alization methods that employ PCA have used metrics such as component maxi-
mum energy/minimum correlation (MEMC) index and entropy to evaluate
properties of different methods [6].

It is important to recognize that measuring the quality of a visualization by its
energy or related ‘‘information measure’’ such as entropy can reward noise.

Ultimately, the right metric depends on the application, and should be a sub-
jective evaluation of usefulness. However, since one cannot construct visualiza-
tions that directly optimize for subjective evaluations, we must use our knowledge
of human vision and attempt to correlate subjective evaluations with optimizable
objective criteria.

2.3 Visual Interpretation

How do people interpret an image? For a simple false-color visualization with only
a few false colors, distinct false colors such as red, green, blue, orange, and purple
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can be used. Given only a few such false colors, humans will interpret the false
colors as representing unrelated categories. However, sociocultural training and
the natural world colors cause people to instinctively interpret some false colors in
standard ways, particularly that blue means water, brown means ground, green
means dense vegetation, and yellow means lighter vegetation (e.g. grass). Visu-
alizations that agree with these intuitive mappings will be faster and easier to
understand than false color maps that require the viewer to consult a legend for
each color.

If more than a few false colors are displayed, then people do not see a set of
unrelated colors, but instead interpret similar colors as being similar. For example,
if you show a human a remote sensing image with 50 different false colors
including 15 shades of green, the natural inclination is to interpret the green areas
as being related. Exactly how many false colors can be used before humans start to
interpret the colors as image colors depends on contextual clues (if the spatial cues
suggest it is an image, people are more likely to interpret it as an image) as well as
on the person. Color naming research indicates that most people perceive roughly
11 distinct color categories, and so this suggests that up to 11 false colors might be
used as unrelated colors, but we hypothesize that when arranged in an image, it
may take only seven colors before people intuitively interpret the colors as image
colors rather than true false colors. Thus, when using a multiplicity of false colors,
mapping similar concepts to similar colors will match a human’s intuitive
assumptions about what colors mean. This effect is of course dependent on con-
text, for example, in a natural image we do not assume that a red fruit and a red
ball are related.

Given a multiplicity of false colors, people will want to judge the similarity of
the underlying spectra or generating material by how similar the colors appear to
them. It is an ongoing quest in color science to accurately quantify how similar two
colors appear. Measuring the similarity between colors using RGB descriptions is
dangerous. RGB is a color description that is useful for monitors, which almost all
operate by adding amounts of red (R), green (G), and blue (B) light to create an
image. So an RGB color can be directly interpreted by a monitor as how much of
each light the monitor will put out. However monitors differ, and thus a specific
RGB value will look different on two different monitors. For this reason, RGB is
called a device-dependent color description, and how much a difference in RGB
matters depends on the display hardware.

But the problem with using RGB to measure color differences actually has more
to do with the human observer. If a color distance metric is good, then any
difference of 10 units between two colors should appear to be the same difference
to a viewer. But that is simply not the case with RGB values, even if they are
standardized (such as sRGB or Adobe RGB).

A solution to measuring color differences that is considered by color engineers to
work tolerably in most practical situations is to describe the colors in the CIELAB
colorspace, and then measure color difference as Euclidean distance in the CIELAB
space (or a variant thereof, see for example DE94). The CIELAB colorspace is a
device-independent color description based on measuring the actual spectra of light
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representing the color. Nothing in color science is simple however, and there are a
number of caveats about measuring color differences with CIELAB. One caveat is
that the appearance of a color depends upon the surrounding colors (see Fig. 1 for
an example), and CIELAB does not take surrounding colors into account. (More
complicated color appearance models exist that do take surrounding colors into
account [7].) A second caveat is that one must convert a monitor’s RGB colors to
CIELAB colors. Because RGB is a device-dependent colorspace and CIELAB is a
device-independent colorspace, the correct way to map a monitor’s RGB colors to
CIELAB colors requires measuring the spectra of colors displayed by the monitor
in order to fit a model of how RGB colors map to CIELAB colors for that monitor.
However, most monitors have a built-in standardized setting corresponding to the
device-independent sRGB space, and so it is practical to assume the monitor is
sRGB and then use standard sRGB-to-CIELAB calculations.

Another concern in quantifying how humans perceive differences is that humans
interpret hue differences differently than lightness or saturation differences. In the
context of an image, if adjacent pixels have the same hue they are more likely to be
considered part of the same object than if they have different hues. Thus it is
important to consider how hue will be rendered when designing or interpreting a
visualization.

2.4 Color Saturation and Neutrals

We are more sensitive to small variations in neutrals than in bright colors; there
really are many shades of gray. It is easier to consistently judge differences
between neutral colors than between saturated colors. For example, the perceptual
difference between a pinkish-gray and a blueish gray may be the same as the
perceptual difference between a bright red and a cherry red, but it is generally
easier to remember, describe, and re-recognize the difference between the grays.
Further, if a visualization has many strong colors they will cause simultaneous

Fig. 1 Example of simultaneous contrast: the three small gray squares are exactly the same
color, but the gray square on the blue background will appear pinkish compared to the center gray
square, and the gray square on the yellow background will appear dark compared to the center
gray square. If this figure was a visualization, a viewer would likely incorrectly judge the gray
pixels to represent different spectra in the three different places
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contrast, which causes the same color to look significantly different depending on
the surrounding colors. An example is shown in Fig. 1. Simultaneous contrast
makes it difficult to recognize the same color in different parts of an image, and to
accurately judge differences between pixels.

Small regions of bright saturated colors are termed pre-attentive imagery [8],
because such regions draw the viewer’s attention irrespective of the user’s intended
focus. Thus, it is advisable to use bright saturated colors sparingly as highlights,
labels, or to layer important information onto a background visualization.

2.5 Color Blindness

Roughly 5% of the population is color-blind, with the majority unable to distin-
guish red from green at the same luminance. Designing and modifying images to
maximally inform color blind users is an area of active interest [9].

2.6 Case Study: Principal Components Analysis for Visualization

Principal components analysis (PCA) is a standard method for visualizing
hyperspectral images [10]. First, the d-dimensional image is treated as a bag of
d-dimensional pixels, that is, d-dimensional vectors, and orthogonal directions of
maximum variance are found one after another. For visualization, usually the first
three principal component directions p1; p2; p3 2 Rd are chosen, and projecting the
image onto these three principal components captures the most image variance
possible with only three (linear) dimensions. This projection step maps
the d-dimensional H[i][j] 2 Rd to a new three-dimensional pixel v½i�½ j� ¼

½p1 p2 p3�
T
H½i�½ j�: In order to display each projected pixel’s three components as

RGB values, each component is shifted up to remove negative values so that the
smallest value is 0, and then scaled or clipped so that the largest value is 1. The
resulting image often looks completely washed out, so the standard is to linearly
stretch each of the three components so that 2% of pixels are at the minimum and
2% are at the maximum value.

The top images in Figs. 2 and 3 are example PCA visualizations. The visual-
izations are useful in that they highlight differences in the image. However, they
are not optimized for human vision. Specifically, the colors do not have a natural
or consistent meaning; rather one must learn what a color means for each image.
Perceived color differences do not have a clear meaning. Saturated and bright
colors are abundant in the visualizations, leaving no colors for labeling important
aspects or adding a second layer of information (such as classification results).

There are many variations on PCA for visualization that can improve its per-
formance, but which still suffer from most of the above concerns. Tyo et al. suggest
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treating the PCA components as YUV colors, which are more orthogonal than RGB
colors, and then transforming from YUV to RGB for display [11]. ICA or other
metrics can be used instead of PCA to reduce the dimensionality [12]. PCA on the
image wavelet coefficients was investigated to better accentuate spatial relation-
ships of pixels [13]. In the next section, we propose a new method to use principal
components (or other such measures of relative importance of the wavelengths) to
adapt basis functions optimized for human vision.

3 Some Solutions

The challenges described in the last section can be addressed in many ways; in this
section we describe three approaches to these challenges that can be used sepa-
rately, or combined together or with other visualization strategies. First we discuss

Fig. 2 Images are
projections of a 224-band
AVIRIS image of Moffet field
[14]. Top Standard PCA
visualization. Bottom Cosine-
basis function visualization
adapted with principal
components as described in
Sect. 3
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basis functions that optimize for the peculiarities of sRGB display hardware and
human vision. Then we describe two approaches to adapt any given linear pro-
jection to a function of the spectra such as variance or signal-to-noise ratio (SNR).
Our last suggestion is white balance, which can be used as a post-processing step
for any visualization. MATLAB code to implement these solutions is available
from idl.ee.washington.edu/publications.php.

3.1 Optimized Basis Functions

Principal components form basis functions that adapt to a particular image. This
has a strong advantage in highlighting the interesting image information. However,
it has the disadvantages described in the previous section. Recently, Jacobson and

Fig. 3 Images are
projections of a 224-band
AVIRIS image of Jasper
ridge [14]. Top Standard PCA
visualization. Bottom Cosine-
basis function visualization
adapted with principal
components as described in
Sect. 3
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Gupta proposed fixed basis functions that do not adapt to image information, but
do create visualizations with consistent colors and optimized human vision
properties [14, 15].

Two of these basis functions are shown in Fig. 4. The top example shows the
constant luma disk basis functions [15], and as shown in Fig. 5, this basis is
optimal in that each component is displayed with the same brightness (luma)
value, the same saturation, and the same perceptual change between components
as measured in DE (Euclidean distance in CIELAB space). Unfortunately, in order
to have those desirable properties and stay within the sRGB gamut, the constant
luma disk basis function can only produce colors that are not very bright or
saturated, as can be seen in the colorbar beneath the basis functions in Fig. 4 — the
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Fig. 4 Two examples of
basis functions designed to
give equal perceptual weight
to each hyperspectral
component. The basis
functions can be rendered for
any number of components,
here they are shown for
d = 30 components
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colorbar shows for each component (i.e., each wavelength) what color would be
displayed if the hyperspectral image only had energy at that component.

The bottom example shows the cosine basis functions [15]. These basis func-
tions use more of the gamut, but do not have as optimal perceptual qualities, as
shown in Fig. 5.

Figure 6 (left, bottom) shows an example hyperspectral image visualized with
the cosine basis function.

3.2 Adapting Basis Functions

Here we describe a new method to adapt any given set of three basis functions to
take into account up to three measures of the relative importance of the wavelengths.
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Fig. 6 Top The cosine basis function AVIRIS hyperspectral visualization of Jasper ridge has a
slight green color-cast. Bottom The same visualization white-balanced
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For example, the signal-to-noise ratio (SNR) is one such measure that describes how
noisy each wavelength is, and the top three principal components specify three
measures of relative importance of the wavelengths with respect to a specific image.
The three basis functions to be adapted might be the first three principal components
p1; p2; p3, or the basis functions described in the last section, or the color matching
basis functions to accurately reproduce what a human would see over the visible
wavelengths [16], or some other set of three basis functions.

Denote the three basis functions to be adapted r; g; b 2 Rd, and the three
measures of importance f1; f2; f3 2 Rd: For the case of SNR f1 ¼ f2 ¼ f3 ¼ SNR:
As another example, to adapt to the top three principal component vectors, f1 ¼ p1;
f2 ¼ p2; f3 ¼ p3: In this section we discuss two ways to adapt the basis functions: a
simple weighting of the basis functions, and a linear adaptation of the basis
functions, which is a generalization of the SNR-adaptation proposed in [15].

A simple solution is to use the f1; f2; f3 to simply weight the basis functions.
Compute the normalized functions ~fk ¼ fk= maxk fkðkÞð Þ for k = 1, 2, 3. Then form
new basis functions

r0½k� ¼ ~f1½k�r½k�

g0½k� ¼ ~f2½k�g½k�

b0½k� ¼ ~f3½k�b½k�:

Then form normalized basis functions:

~r ¼
r0P
k r

0½k�

~g ¼
g0P
k g

0½k�

~b ¼
b0P
k b

0½k�
:

ð2Þ

Then form the linear sRGB image planes by projecting the hyperspectral image H:

linear R ¼ ~rTH

linear G ¼ ~gTH

linear B ¼ ~bTH:

ð3Þ

These linear values are then gamma-corrected to form display sRGB values,
usually using the standard monitor gamma of 2.2.

Weighting will cause wavelengths with high f to become brighter relative to
wavelengths with high f. We recommend a slightly different solution that adapts the
basis function by transferring the visualization weight of wavelengths with low f

to wavelengths with high f. This re-apportions the visualization basis function, so
that wavelengths with high f use up more of the visualization basis function than
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wavelengths with low f. For example, if f is SNR over wavelengths, and if the cosine
basis function is used, then wavelengths with higher fwill be both brighter and have
a greater hue difference with respect to neighboring wavelengths.

For each fk (k = 1, 2, 3), construct each row of the adapting matrix Ak by
starting at the leftmost column of Ak which does not yet sum to 1, and add to it until
the column sums to 1 or until the row sum is equal to fk(k). If the fk(k) for that row is
not exhausted but the column already sums to 1, then add to the next column in that
row until that column sums to 1 or until the row sum is equal to fk(k).

Then the adapted basis functions are:

r0 ¼ A1r g0 ¼ A2g b0 ¼ A3b: ð4Þ

Example Consider a d = 5 component hyperspectral image H. Here we have
shown how to form the adapting matrix for the basis function r:

f1 ¼

:2
3
1
:5
:3

2
66664

3
77775
; then A1 ¼

:2 0 0 0 0
:8 1 1 :2 0
0 0 0 :8 :2
0 0 0 0 :5
0 0 0 0 :3

2
66664

3
77775
:

As described above for weighting, these basis functions are then normalized to
each sum to 1, the image H is projected onto them to form linear sRGB values,
which are gamma-corrected to form display sRGB values.

Examples of PCA-adapted cosine basis function images are shown as the
bottom images in Figs. 2 and 3. Most of the features visible in one image can be
seen in the other image, but some features are easier to see in one or the other
image. For example, the texture in the lakes in the Moffet field image is more
clearly rendered in the PCA-adapted image, but some of the roads are better
highlighted in the PCA image.

The PCA-adapted images have a number of advantages. Even though the cosine
basis functions in the PCA-adapted images have been adapted independently for
the Moffet field and Jasper ridge image, the color representation is similar aiding
interpretation, and the colors appear somewhat natural, for example in both PCA-
adapted images the vegetation displays as green. The natural palette of the cosine
basis function is preserved, and in the Jasper ridge PCA-adapted image, one single
bright red pixel stands out (easier to see at 200% magnification).

3.3 White Balance

When looking at a scene, we naturally adapt our vision so that the predominant
illuminant appears white, and we call this adaptation white balancing. Many digital
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cameras also automatically white balance photos so that if you take a picture under
a very yellow light, the photo does not come out looking yellowish. We suggest
applying white balance to visualizations for two reasons. First, a visualization will
look more like a natural scene if it is white-balanced. Second, white-balancing
tends to create more grays and neutral colors, and the resulting image may appear
slightly sharper and appear to have higher contrast. To actually increase contrast in
an image, one can scale the pixel RGB values, however this often leads to clipping
values at the extremes, which causes information loss.

A number of methods for white-balancing have been proposed [2, 17]. Typi-
cally, you must decide which original RGB value should appear as white or neutral
in the white-balanced image. One standard approach is to use the maximum
component values in the image to be white. A second standard approach is to make
the so-called ‘‘grayworld assumption,’’ which implies setting the average pixel
value of the image to be an average gray. Both methods are effective in practice,
although each one is better suited for certain types of images: average value for
images rich in color, and maximum value for images with one dominant color.

Here we illustrate one method based on the grayworld assumption, as shown in
Fig. 6. Note that we believe it is more justified to do white-balancing on the linear
sRGB values, as we described, but white-balancing display RGB values will also
be effective. Here are the steps we take:

Step 1: Let ½�r �g �b� be the average linear sRGB value of the image.
Step 2: Denote the linear sRGB value of the ith pixel as ½ri gi bi�. Calculate the

white-balanced linear sRGB value of the ith pixel to be ½~ri ~gi ~bi� ¼

½ri=�r gi=�g bi=�b�. Note that at the end of this step, the mean value of the image is
½1 1 1�.

Step 3: Compute �y ¼ 0:2126�r þ 0:7152�gþ 0:0722�b, which is the relative lumi-
nance of the average linear sRGB value of the image ½�r �g �b� [2].

Step 4: Calculate the normalized white-balanced linear sRGB value of the ith
pixel to be ½̂ri ĝi b̂i� ¼ ½~ri�y ~gi�y ~bi�y�. Note that at the end of this step, the mean
value of the image is ½�y�y�y�, so the relative luminance of the image is preserved.

Step 5: Clip values that are outside the 0 to 1 range.
Step 6: Convert the normalized white-balanced linear sRGB value ½̂ri ĝi b̂i� for the

ith pixel into display sRGB values using the standard sRGB formula.

The disadvantages of white balancing a visualization are that spectra will not be
rendered exactly the same in images with different white balance, and the full
gamut may not be used.

4 Conclusions and Open Questions

In this chapter we have discussed the color science issues that are relevant to false-
color displays of hyperspectral imagery. We hope that the challenges discussed
and some of the partial solutions proposed here will spurn further thought into how
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to design visualizations that take into account the nonlinearities of human vision.
Although theoretically the color science issues raised here are important, there is a
serious lack of experimental evidence documenting what makes a hyperspectral
visualization helpful or effective in practice, and this of course will depend on the
exact application. This research area needs thorough and careful subjective testing
that simulates as close as possible real tasks, ideally with benchmark images and
standardized viewing conditions so that experimental results can be reproduced by
future researchers as they compare their new ideas to the old.
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An Evaluation of Visualization
Techniques for Remotely Sensed
Hyperspectral Imagery

Shangshu Cai, Robert Moorhead and Qian Du

Abstract Displaying the abundant information contained in a remotely sensed
hyperspectral image is a challenging problem. Currently no approach can satis-
factorily render the desired information at arbitrary levels of detail. This chapter
discusses user studies on several approaches for representing the information
contained in hyperspectral information. In particular, we compared four visuali-
zation methods: grayscale side-by-side display (GRAY), hard visualization
(HARD), soft visualization (SOFT), and double-layer visualization (DBLY). We
designed four tasks to evaluate these techniques in their effectiveness at conveying
global and local information in an effort to provide empirical guidance for better
visual analysis methods. We found that HARD is less effective for global pattern
display and conveying local detailed information. GRAY and SOFT are effective
and comparable for showing global patterns, but are less effective for revealing
local details. Finally, DBLY visualization is efficient in conveying local detailed
information and is as effective as GRAY and SOFT for global pattern depiction.

Keywords Hyperspectral data visualization � Color display

1 Introduction

A hyperspectral imaging sensor collects data in hundreds of contiguous and nar-
row spectral bands. Comprehending such a large dataset is very challenging. Thus
initially the data is usually reduced or transformed to bring out the salient aspects.
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Even then, without some visual representation it is almost impossible to under-
stand the data.

There are several traditional ways to visualize these huge datasets. One method
is grayscale side-by-side display, which visualizes the hyperspectral imagery by
selecting particular bands and displaying them as grayscale side-by-side images, or
displaying classification results as grayscale side-by-side images for observation.
We refer to this algorithm as GRAY. Another approach is displaying multispec-
tral/hyperspectral images as hard classification results. Generally, with hard
classification, each pixel is assigned to a single class and the classified results are
visualized as an image with several distinctive colors [1]; or all endmembers are
displayed in one image by assigning to each pixel the color which represents the
most abundant material resident in that pixel area [2]. We will call this visuali-
zation technique HARD. The third is transform-based approaches, which have
been used extensively to visualize hyperspectral data recently. Principal compo-
nent analysis (PCA) can condense the information in a hyperspectral data cube into
several channels. It has been widely used in hyperspectral visualization [3, 4].
Jacobson et al. advocated displaying hyperspectral images as a weighted sum of
signatures [5, 6]. A one-bit-transform based algorithm was introduced by Demir
et al. to generate a color display [7]. A visualization technique based on convex
optimization for preservation of spectral distances was proposed in [8]. A common
property of these visualization techniques is that the visualized image is a color
image with gradual hue transitions. We categorize these algorithms, in which a
pixel represents several endmembers, as SOFT. Du et al. attests that color display
using a classification approach generally produces better class separability than
using a transformation-based approach [9]. Soft classification results, instead of
hyperspectral images, were used to construct SOFT visualizations. A new
approach was presented in [10] for visualizing mixed pixels by employing a
double-layer approach (DBLY), in which one layer uses color mixing to preserve
the global pattern display and the second layer, the pie-chart layer, displays the
material composition information at the subpixel level. Although introduced in
[10], the efficacy of the DBLY visualization algorithm was not rigorously eval-
uated. In this work, we present the results of a user study, evaluating the four
algorithms, GRAY, HARD, SOFT, and DBLY in communicating important
information in hyperspectral imagery, and provide guides for hyperspectral
researchers to employ the suitable visualization methods.

User studies are broadly utilized to evaluate the effectiveness and weaknesses
of visualization techniques [11]. Laidlaw et al. compared six techniques for
visualizing 2D flow fields and measured user performance on three flow-related
tasks for each of the six techniques [12]. Acevedo et al. investigated how the
perceptual interactions among visual elements, such as brightness, icon size, etc.,
affect the efficiency of data exploration based on a set of 2D icon-based visuali-
zation methods [13]. With a user study, Healey built several basic rules for
choosing color effectively to visualize multivariate data [14]. Kosara et al. con-
ducted a user study to find the optimal viewing for layered texture surfaces [15].
Hagh-Shenas et al. compared two alternative algorithms for visualizing multiple
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discrete scalar datasets with color [16]. Ward and Theroux identified three phases
of a user study: defining the goals, creating datasets, and performing studies [17].
We followed the three steps in our user study.

This study focuses on the ability of the four visualization algorithms—GRAY,
SOFT, HARD, and DBLY—to convey information from both global and local
aspects. Unlike Hagh-Shenas et al.’s study involving discrete variables, we inves-
tigated the effectiveness of visualization algorithms to represent the continuous
datasets from hyperspectral imagery. Our experimental results are that HARD
classification is less effective for global pattern display and conveying local detailed
information; that GRAY and SOFT visualization are effective and comparable for
showing global patterns, but are less effective for revealing local details; and that the
DBLY visualization algorithm is efficient at conveying local detailed information
and is as effective as the best traditional methods for global pattern depiction.

2 Image Construction

In a remotely sensed image, the reflectance of a pixel is considered a mixture of
the reflectance of pure materials residing at that location. These materials are
referred to as endmembers. The most commonly used model, the linear mixture
model (LMM), assumes the mixture mechanism is linear [18].

Let r denote a pixel vector with dimensionality L, where L is the number of
spectral bands. Assume the number of endmembers is p. Let M be the signature
matrix of these materials denoted as M ¼ ½m1; . . .;mk; . . .;mp�; where mk is the
signature of the kth endmember. According to the LMM, a pixel vector r can be
represented as

r ¼ Maþ n ð1Þ

where a ¼ a1. . .ak. . .ap
� �T

is a p 9 1 abundance vector, whose kth element ak
represents the proportion of the kth endmember mk present in r. Here, n accom-
modates additive noise or sensor measurement error.

Since a represents abundances, ak for 1 B k B p should satisfy two constraints
[19]: All abundances should be non-negative (the non-negativity constraint), and
the sum of all abundances in a pixel should be one (the sum-to-one constraint).
These two constraints can be stated as

X

p

k¼1

ak ¼ 1 and 0� ak � 1: ð2Þ

Fig. 1 is a 200 9 200 pixel section of a sample band from awell-analyzed dataset
called Lunar Lake. The data were captured by the airborne visible/infrared imaging
spectrometer (AVIRIS). Classifying the subscene with the FCLSLU algorithm [19]
using prior information [20] produces six abundance images. Fig. 2 shows the spatial
distribution of the six materials (Playa Lake, Rhyolite, Vegetation, Anomaly,
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Cinder, Shade); highly saturated colors are used while explaining the visualization
techniques. We used this dataset in part of our user study.

3 Comparative Visualization Techniques

The GRAY technique is demonstrated in Fig. 2. Normally, in a GRAY image, the
material abundance from the lowest to highest is linearly mapped to the grayscale

Fig. 1 Sample band of
AVIRIS Lunar Lake scene
cropped to a 200 9 200 pixel
subscene

PlayaLake(m1) Rhyolite(m2) Vegetation(m3)

Anomaly (m4) Cinder (m5) Shade (m6)

Fig. 2 The abundance images of the AVIRIS Lunar Lake scene

84 S. Cai et al.



range [0, 1]. Hence, in Fig. 2, the darkest pixel represents the lowest abundance
value and a white pixel represents the highest abundance value. This section
briefly introduces the other three visualization techniques used in this study.

3.1 Hard Classification Visualization

In the HARD approach, a pixel is classified to contain only one material. The
abundance images are converted into binary images using the following criterion:

ak ¼
1; if ak is themaximum in a
0; otherwise

:

�

ð3Þ

The resulting HARD maps can be displayed in a single image with a color
representing each material. Fig. 3a shows the resulting color image generated from
the abundance images in Fig. 2. Fig. 3b shows a region of interest (ROI) that
includes the anomaly marked in Fig. 3a.

3.2 Soft Classification Visualization

Unlike the HARD approach, the SOFT approach mixes the colors assigned to each
abundance image to generate the final image. Assuming the color assigned to the
kth endmember is ck ¼ rk; gk; bkð ÞT , then a color matrix can be formed as

C ¼ c1; � � � ; ck; � � � ; cp
� �

¼
r1 . . . rk � � � rp
g1 � � � gk � � � gp
b1 � � � bk � � � bp

2

4

3

5 ð4Þ

The final color c(i, j) for a pixel rij with abundance vector (i, j) is

cði; jÞ ¼ Caði; jÞ ð5Þ

(a) (b)

Fig. 3 HARD classification
using the colors shown in
Fig. 2. a Full image display;
b the region of interest (ROI)
highlighted in (a)
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Because the final color for each pixel is the linear combination of the colors
assigned to endmembers, the final color is a function of the endmember abun-
dances. Fig. 4 demonstrates the SOFT approach. Fig. 4a displays not only the
spatial location of each endmember, but also the distribution variations.

3.3 Double Layer Visualization

The DBLY technique [10] employs the SOFT approach as a background layer and
a pie-chart layer as a foreground layer. A pie-chart is formed by colored fan-shape
regions which represent the different endmembers (Fig. 5). Without loss of gen-
erality, the first endmember is assigned to the first region, and so on. The area of
the fan-shaped region for the kth endmember is proportional to the angle hk, which
is determined by its abundance ak, i.e.,

hk ¼ ak � 360
�

ð6Þ

Its starting and ending positions can be represented as

bsk ¼
Xk�1

j¼1

hj and bek ¼
Xk

j¼1

hj ð7Þ

respectively. They can be related by hk = bk
e
- bk

s, and b1
s
= 0�. Since the

abundances of the endmembers sum to 1, a pixel is shown as a full disk, i.e.,
bp
e
= 360�.
Opacity is the parameter used to control the blending of these two layers. The

opacity of the pie-charts in the foreground layer is associated with a zooming
parameter, which can be set automatically or manually. For the studies presented
here, when the complete image is shown to display the overall distribution, the
opacity of pie-charts is set to 0.2; therefore, the background layer dominates the
image, as shown in Fig. 6a. If the opacity of the pie-chart layer is set to a high
value when viewers zoom in for detail, then the pie-chart for each pixel pops out.
Fig. 6b shows the ROI when the opacity is set to 0.8.

  

(a) (b)

Fig. 4 SOFT classification
using the colors shown in
Fig. 2. a Full image display;
b the ROI highlighted in (a)
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4 Experimental Design and Settings

Hyperspectral imagery is very useful in the discrimination of materials with
similar spectral characteristics. The dominant uses of hyperspectral imagery fall
into one or more of the following domain questions:

• Perceptual Edge: How widely distributed are the endmembers in the region?
(‘‘Where is the edge of the wheat field?’’)

• Relative Position: Where are endmembers relative to each other? (‘‘Where is the
wheat field infested with bugs?’’ or ‘‘Do particular materials co-exist in an
area?’’)

• Classification: What and how many endmembers are present in the image
scene? (A practical domain question would be ‘‘what are the different kinds of
land patterns present in this image?’’)

• Quantification: How much of the endmember is in a small region or the whole
area? (‘‘How many bugs are in this area of the wheat field?’’ or ‘‘Where does the
weed infestation exceed a certain level?’’)

How well a hyperspectral image is understood depends on how well these
questions are answered. The goals of this study were to investigate how well these
questions are answered by the four chosen methods. However, designing a user
study to explicitly test these questions may not be feasible because exploring a real
dataset is a complex cognitive activity. After consulting with several remote
sensing experts, we were encouraged to investigate two important aspects of
understanding hyperspectral images: global patterns and local information. Two
tasks tested the capability of global patterns display and the other two tasks tested

Fig. 5 A fan-shaped
superpixel showing
endmember percentages

(a) (b)

Fig. 6 Double layer
visualization (DBLY). a Full
image display; b the ROI
highlighted in (a)
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the ability to convey the local information. The four tasks are listed in Table 1. As
described in Table 1, we designed two user studies, one based on synthetic
datasets and the other based on a real dataset, namely the Lunar Lake data dis-
cussed in Sect. 2.

Our tasks had a low cognitive level and did not require a strong background in
any one disciple to complete. Ten graduate students participated in the synthetic
study and 15 participants in real dataset. The study was run in a conference room
with a laptop computer, with its display profile set to standard RGB color space.
To reduce any potential training bias, we wrote a training guide so that all par-
ticipants received the same training. Testing continued for 40 min to avoid fatigue
effects.

Table 1 lists the independent and dependent variables measured in the studies.
In order to collect enough answers from each participant, each task was repeated
several times in a test. The quantified dependent variables are response time
(measured for each task), normalized error (measured for the perceptual edge
detection task), and absolute error (measured for all other tasks). Standard error
plots, analyses of variance (ANOVA), and post-hoc comparisons [21] were
employed to analyze dependent variables. We processed outliers in the data with
the procedure described by Barnett and Lewis [22]. We determined outliers on a
case-by-case basis, by examining the tails of the distributions and noting values

Table 1 Independent and dependent variables in studies

Independent Variables
Synthetic datasets Participant 10 (random variable)

Technique 4 GRAY (grayscale side by side)
HARD (hard classification)
SOFT (soft classification)
DBLY (double-layer)

Task 4 Perceptual edge detection
Block value estimation
Class recognition
Target value estimation

Real dataset Participant 15 (random variable)
Technique 4 GRAY (grayscale side by side)

HARD (hard classification)
SOFT (soft classification)
DBLY (double-layer)

Task 4 Perceptual edge detection
Block value estimation
Class recognition
Target value estimation

Dependent Variables
Response time Measured for each task, seconds
Absolute error | user answer – ground truth |
Normalized error user answer�ground truth

bar length
� 100% (measured for perceptual edge

detection.)
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that appeared after conspicuous gaps in the histogram. Each outlier was replaced
by the median of the remaining values in the experimental cell.

5 Experimental Tasks and Results

In this section, we present four tasks on the synthetic datasets and real datasets and
discuss the results for each task. To limit the learning from previous responses,
seven more datasets were generated by flipping and rotating the Lunar Lake
dataset. A sample image is shown in Fig. 7a. Four different 20 9 20 pixel blocks
(indicated by black boxes in Fig. 7a), were selected as ROIs. Synthetic datasets
were designed for each task specifically. Fig. 7b is a sample image of synthetic
data which is used in the perceptual edge detection task. The images and more
details about the synthetic datasets can be found in [23].

5.1 Global Pattern Display Capability

This study investigated the perceptual edge detection and block value estimation
aspects of global pattern display capability using all the image data.

5.1.1 Perceptual Edge Detection

The perceptual edge is the position where a color can no longer be perceptually
distinguished from its surroundings. It is the position where the material abun-
dance goes to zero in an image. This task was designed to test how well each
visualization technique indicates the real edge, which would be important in
determining where irrigation is sufficient or the extent of a covert runway.

(a) (b)

Fig. 7 Sample images used
in user studies. a A sample
image of a real dataset (SOFT
visualization); b a sample
image of a synthetic dataset
(HARD visualization)
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Task

Since it is difficult to identify the precise location of the edges in a hyperspectral
image, a gradient bar was embedded into the first endmember (the top left image
of Fig. 8a). The gradient bar’s value monotonically varied from 0.0 to 1.0. Sample
images are shown in Fig. 8(b–d). For all the images, the matching pixels still
satisfy the non-negative and sum-to-one constraints. For this task we asked the
participants to click on the left perceptual edge of the embedded bar.

Results

We recorded the coordinate of the user’s mouse click for this task. The dependent
variables were response time and normalized error. We recorded a total of 351
answers for synthetic datasets and 452 answers for real datasets. We eliminated 13

(a) GRAY 

(b) HARD (c) SOFT (d) DBLY

Fig. 8 An example of the perceptual edge detection task. The yellow lines indicate the ground-
truth positions
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and 36 normalized error outliers from synthetic datasets and real datasets,
respectively. In addition, 27 response time outliers were replaced in real datasets.
The means with standard error are displayed in Fig. 9. We found main effects of
visualization technique on normalized error ((F, p)sd = (124, 0.00) and (F,
p)rd = (166.49, 0.00)). The subscripts ‘‘sd’’ and ‘‘rd’’ represent ‘‘synthetic data-
sets’’ and ‘‘real datasets’’ in this and other formulas. A post-hoc comparison
indicated that GRAY provides the highest accuracy in delivering the perceptual
edge information. SOFT and DBLY are in the second rank. HARD yields the
biggest error, but participants took the shortest time to find the answer. A weird
phenomenon we found is that the normalized error in SOFT and DBLY increases
almost 20% from synthetic datasets to real datasets. Our explanation of this
phenomenon is that the difficulty of perceptual discrimination increases as the
number of endmembers increases [24]. There are four endmembers in the synthetic
datasets and six in the real datasets. The response time does not change much from
the synthetic datasets to the real datasets except for GRAY, for which the sur-
roundings of the gradient bar have been changed. In synthetic datasets, the gradient
bar is designed as an endmember; however, the gradient bar is embedded into the
first endmember in real datasets.

5.1.2 Block Value Estimation

This task was designed to assess participants’ ability to read accurately the con-
tinuous values encoded by a color, a task that is known to be challenging. In each
region, colors represent overlapped multiple scalars. This skill is useful in quickly
accessing material quantity over an area.

Task

The task asked participants to estimate the average value of the i-th class within a
20 9 20 pixel block. Unlike Hagh-Shenas et al. [16], where the value in the tested
region was constant, the endmember value in the block varies. A sample dataset is
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Fig. 9 Results of the perceptual edge detection task. Left synthetic datasets; right real data. For
this and all figures, absent error bars indicate the standard error is smaller than the symbol size.
The horizontal lines indicate the result of post-hoc comparisons (response time above the grid,
error below). The response time symbol is a circle; the error is indicated by a square
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displayed in Fig. 10. In the sample images, the participants were asked to estimate
the average value of the sixth class (right-bottom in Fig. 10a).

Result

The dependent variables of response time and absolute error were measured. We
recorded a total of 308 answers for the synthetic datasets and 630 answers for the
real datasets. We eliminated 12 absolute error outliers in the synthetic datasets; a
total of 52 absolute error outliers and 37 response time outliers in the real datasets
were replaced. The means with error bars are plotted as Fig. 11 and show that
DBLY has the best performance on both accuracy and response time. The F-value
and p-value tests found main effects of visualization technique on absolute error

((F, p)sd = (11.05, 0.00) and (F, p)rd = (16.46, 0.00)). The post-hoc analysis
indicates that GRAY, SOFT, and DBLY fall in the group which has the best
performance on absolute error.

5.2 Ability to Convey Local Information

We designed two tasks to evaluate the capability of visualization techniques to
convey detailed information at the subpixel level. 20 9 20 pixel blocks were used
to simulate the zooming-in operation. The blending parameter was set to 0.8 in
DBLY to emphasize the pie-chart layer.

(a) GRAY

(b) HARD (c) SOFT (d) DBLY

Fig. 10 A sample of the
block value estimation task.
The red/white box indicates
the position of target blocks
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5.2.1 Class Recognition

The high spectral resolution of hyperspectral imagery enhances the ability to
investigate detailed information in a small area, such as finding a hidden military
target in the woods or the onset of a plant disease. This goal of this task was to
assess participants’ ability to determine the number of the endmembers present
when zooming into the images.

Task

Since the size of the dataset for this task was 20 9 20, each pixel is a single color
square with GRAY, HARD, and SOFT, and a single color square covered by a pie-
chart in DBLY. Each pixel may contain one or more materials to simulate the real-
world situation where several endmembers co-exist at the same location. In this
task, we asked participants to estimate the number of classes present in the given
pixel. Fig. 12 displays a sample dataset.

In the GRAY visualization (Fig. 12a), a perfectly white pixel contains 100% of
that class; otherwise, other classes co-exist in that pixel. In the HARD visuali-
zation, the color of the pixel is the color of the class whose value is the maximum
in the pixel. In the SOFT visualization, the color of the pixel is the mixed color of
all the classes existing in the pixel. In DBLY visualization, the different colors in
the fan-shape region represent the different classes and the angular extent of the
wedge represents the percentage of the corresponding class in the pixel.

Results

We recorded a total of 361 answers of response time and absolute error for the
synthetic datasets and 834 answers for the real datasets. The means are displayed
in Fig. 13. We found main effects of visualization technique on both absolute

error ((F, p)sd = (43.34, 0.00) and (F, p)rd = (91.65, 0.00)) and response time ((F,
p)sd = (13.10, 0.00) and (F, p)rd = (101.93, 0.00)). The results show that DBLY

Fig. 11 The plot of means with error bars for block value estimation. Left synthetic datasets;
right real data. The response time symbol is a circle; the error is indicated by a square
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can achieve a very low absolute error (0.2) compared to the other techniques, and
that participants were significantly faster with DBLY as well. With HARD the task
is basically impossible. Several participants indicated that they resorted to guessing,
which explains the relatively low response time. GRAY and SOFT provide some
clues for participants to speculate on the ground truth. Even these clues do not
provide the precise information; participants can determine the answer by esti-
mating the pixel locations in other abundance images in GRAY and by considering
the appearance of the mixed color in SOFT. These facts explain why GRAY and
SOFT achieve better performance than HARD in absolute error. However,

(b) HARD

(a) GRAY

(c) SOFT (d) DBLY

Fig. 12 A sample set of
images for testing class
recognition with three classes
in the testing pixel. For the
GRAY visualization, the
testing pixel position was
indicated by the red box in
the bottom-middle gray
image; the corresponding
areas in other classes are
marked by the green box.
During the real test, the green
boxes were not displayed. A
black box marks the testing
position in the other
visualization techniques

GRAY HARD SOFT DBLY GRAY HARD SOFT DBLY
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Fig. 13 The means with error bars of response time and absolute error for the class recognition
task. Left synthetic datasets; right real datasets. The response time symbol is a circle; the error is
indicated by a square
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participants took longer to finish the class estimation from the GRAY images. When
conducting the study, we found that some participants tried to align the side-by-side
displayed images by counting the pixels. This indicates that a tool that automatically
aligned the pixels for side-by-side visualization would be useful.

5.2.2 Target Value Estimation

This task was designed to evaluate the ability of the four techniques to convey
quantitative information.

Task

This task is very similar to the ‘‘block value estimation’’ task. Participants were
asked to estimate the average value of a particular endmember in a 2 9 2 pixel
block. Fig. 14 displays an example dataset, where the average value of Class 2 in
the target block is in the range [0.4, 0.6].

Results

The measured dependent variables were response time and absolute error. We
recorded a total of 317 answers for the synthetic datasets and 759 answers for the

(b) HARD

(a) GRAY

(c) SOFT (d) DBLY

Fig. 14 An example of the
local value estimation task.
The red/white boxes indicate
the position
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real datasets. Main effects of visualization technique are found on both absolute

error ((F, p)sd = (22.54, 0.00) and (F, p)rd = (22.54, 0.00)) and response time ((F,
p)sd = (10.24, 0.00) and (F, p)rd = (10.24, 0.00)). The means with error bars of
the two measured dependent variables are displayed as Fig. 15. The result shows a
tradeoff between response time and absolute error (accuracy) for GRAY, SOFT,
HARD, and DBLY. Participants’ responses were very accurate with DBLY, but it
took them longer to study the individual pie charts. GRAY and then SOFT require
a mental combination of colors. The task was very difficult to perform with
HARD, so participants adopted a strategy of answering quickly.

6 Discussion and Conclusions

The studies indicate that the GRAY method is effective in displaying the per-
ceptual edge and for participants to estimate the block value, but GRAY is not
sufficient to visualize the local detailed information. Moreover, the GRAY
approach is space-consuming because endmembers are displayed as separated
images. It is difficult to investigate the relationship among endmembers.

Since a pixel in the HARD algorithm is a pure endmember color, HARD
provides a very quick impression about the information contained in a hyper-
spectral image. In addition, most participants thought the images of the HARD
method were clearer than images of any other algorithm. That could be the reason
that the HARD technique is analyzed relatively faster than other algorithms.
However, the user studies illustrated that the HARD approach is less effective for
perceptual edge detection, block value estimation, and local information display.

The studies attest that the SOFT approach is in the first rank for estimating
block values and has good performance on perceptual edge detection. The results
illustrate that the SOFT algorithm has relatively faster performance than the
GRAY algorithm except on the perceptual edge detection task. However, it is less
efficient in displaying local information.
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The DBLY technique is verified by the studies to be the most accurate method
of the four for conveying local details. Having the same advantages as the SOFT
method, DBLY algorithm is effective in displaying global patterns. The user study
demonstrated that adding a pie-chart layer to the SOFT approach is necessary for
conveying local information while the DBLY algorithm maintains the ability to
display global patterns effectively, which was exhibited by the SOFT method.
However, reading the individual pie-chart results in longer response time to
retrieve the detailed information.
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A Divide-and-Conquer Paradigm
for Hyperspectral Classification
and Target Recognition

Saurabh Prasad and Lori M. Bruce

Abstract In this chapter, a multi-classifier, decision fusion framework is proposed
for robust classification of high dimensional hyperspectral data in small-sample-size
conditions. Such datasets present two key challenges. (1) The high dimensional
feature spaces compromise the classifiers’ generalization ability in that the classifier
tends to over-fit decision boundaries to the training data. This phenomenon is
commonly known as the Hughes phenomenon in the pattern classification commu-
nity. (2) The small-sample-size of the training data results in ill-conditioned esti-
mates of its statistics. Most classifiers rely on accurate estimation of these statistics
for modeling training data and labeling test data, and hence ill-conditioned statistical
estimates result in poorer classification performance. Conventional approaches, such
as Stepwise Linear Discriminant Analysis (S-LDA) are sub-optimal, in that they
utilize a small subset of the rich spectral information provided by hyperspectral data
for classification. In contrast, the approach proposed in this chapter utilizes the entire
high dimensional feature space for classification by identifying a suitable partition of
this space, employing a bank-of-classifiers to perform ‘‘local’’ classification over this
partition, and thenmerging these local decisions using an appropriate decision fusion
mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in
kernel induced spaces) are also proposed within this framework to improve its
robustness over a wide range of fidelity conditions. This chapter demonstrates the
efficacy of the proposed algorithms to classify remotely sensed hyperspectral data,
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since these applications naturally result in very high dimensional feature spaces and
often do not have sufficiently large training datasets to support the dimensionality of
the feature space. Experimental results demonstrate that the proposed framework
results in significant improvements in classification accuracies over conventional
approaches.

Keywords Decision Fusion � Hyperspectral Imagery � Kernel Discriminant
Analysis � Multi-Classifiers � Small-Sample-Size Conditions � Statistical Pattern
Recognition

1 Introduction

In the context of remote sensing applications, land cover classification and auto-
mated target recognition (ATR) systems employ statistical pattern recognition
paradigms for identifying and labeling objects and features of interest in images
using spatial and spectral information. Hyperspectral target recognition and clas-
sification uses the rich information available in spectral signatures of target and
background pixels for identifying targets in an image. Hyperspectral imagery is a
three-dimensional cube where two dimensions are spatial and one dimension is
spectral. Thus, each pixel is actually a vector comprised of a hyperspectral sig-
nature containing up to hundreds or thousands of spectral bands. Recording
reflectance values over a wide region of the spectrum potentially increases the
class separation capacity of the data as compared to gray scale imagery (where
most of the class specific information is extracted from spatial relations between
pixels) or multispectral imagery (where reflectance values at a few spectral bands
are recorded). Availability of this rich spectral information has made it possible to
design classification systems that can perform ground cover classification and
target recognition very accurately. However, this advantage of hyperspectral data
is typically accompanied by the burden of requiring large amounts of training data
to be available a priori for accurate representation of class conditional distribu-
tions, in order to facilitate accurate estimation of class conditional statistics of
hyperspectral data and to avoid ill-conditioned formulations. This however is not
guaranteed in a general remote sensing setup. In fact, in many hyperspectral
applications (for example, the detection of isolated targets), the amount of ground
truth pixels available to the analyst may be less than the dimensionality of the data.
Another ramification of having a high dimensional feature space is over-fitting of
decision boundaries by classifiers [3, 4], and consequently, poor generalization
capacity. In other words, in such high dimensional spaces, it is possible that a good
classifier will learn the decision boundaries based on the training data remarkably
well, but may not be able to generalize well to a test set that varies slightly in its
statistical structure.
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As a result of the problems associated with hyperspectral data outlined above,
in the absence of a large training database, it is common for researchers to either
(a) limit the number of spectral bands they use for analysis, such as in best-bands
selection, or, (b) perform transform based dimensionality reduction, such as with
Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA),
or (c) a combination of both, such as with stepwise LDA (S-LDA) prior to clas-
sification. Techniques such as PCA, LDA, best-bands selection, stepwise feature
extraction (e.g., S-LDA) etc. are successful in reducing the ground truth require-
ment for unbiased modeling by the classifier [3, 5, 6]. However, these are not
necessarily optimal from a pattern classification perspective [7–9]. For example, a
PCA projection may discard useful discrimination information if it were oriented
along directions of small global variance, an LDA projection will be inaccurate for
multimodal class distributions, etc. Another factor that governs the efficacy of such
dimensionality reduction techniques is the amount of training data required to
learn the projections. For example, if the amount of training pixels is insufficient
for a given feature space dimensionality, the sample scatter and covariance
matrices are likely to be ill-conditioned, and transformations such as PCA and
LDA may not yield optimal projections. Techniques such as best-bands selection
[10] are also likely to be sub-optimal for ATR and ground cover classification
tasks, considering the fact that they do not fully utilize the rich spectral infor-
mation in hyperspectral (or multispectral) signatures.

The system proposed in this work employs a multi-classifier, decision fusion
framework to exploit such hyperspectral data. The proposed system is capable of
performing classification tasks on high dimensional data even when a relatively
small amount of training data is available. Based on an intelligent partitioning
scheme, the spectrum of the hyperspectral data is partitioned into smaller sub-
spaces. After appropriate pre-processing, the data in each subspace is applied to a
separate classifier (independent of other subspace classifiers). The local classifi-
cations resulting from this bank of classifiers are fused in an appropriate manner
using decision fusion. This procedure partitions the single classification problem
over the entire hyperspectral space into multiple classification problems, each over
a subspace of a much smaller dimension. In the process, the system uses the entire
available spectral information for classifying pixels, while alleviating the problems
associated with high dimensional data—ill-conditioning due to small-sample-size,
and, over-fitting of decision boundaries due to high dimensionality.

The outline of this chapter is as follows. Section 2 describes the functioning of
the proposed Multi-Classifier and Decision Fusion framework. This includes an
overview of the proposed framework, details of the procedure employed to par-
tition the hyperspectral feature space into multiple smaller dimensional subspaces;
details of two possible pre-processing steps at the subspace level; details of the
classifier employed in this work and details of the decision fusion mechanism
employed to fuse information from the bank of classifiers. Section 3 provides
details of the experimental hyperspectral datasets (handheld and airborne)
employed to demonstrate and quantify the efficacy of the proposed framework.
Section 4 provides a description of the experiments employed and a discussion of
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the results—comparing the classification performance of the proposed framework
with that of traditional single-classifier classification techniques. Section 5 con-
cludes this chapter with a summary of benefits and limitations of the proposed
system, and a discussion on potential future work in this direction.

2 The Proposed Framework

Figure 1 illustrates the proposed Multi-Classifier and Decision Fusion (MCDF)
framework. The hyperspectral space is partitioned into contiguous subspaces such
that the discrimination information within each subspace is maximized, and the
statistical dependence between subspaces is minimized. Each subspace is then
treated as a separate source in a multi-source multi-classifier setup. In doing so, we
do not discard potentially useful information in the hyperspectral signatures, and
also overcome the small-sample-size problem, since the number of training sig-
natures required per subspace is substantially lower than if we directly used all the
bands with a single classifier system. In fact, the minimum number of training
signatures required in this scheme is governed by the size of the largest subspace
formed during partitioning, which is typically much smaller than the size of the
original hyperspectral space. Previous approaches to band grouping [11, 12] use a
combination of correlation between variables (in this case, spectral bands) and
Bhattacharya distance to partition the hyperspectral space. In this work, the

Fig. 1 The proposed divide-and-conquer paradigm for classifying high dimensional hyperspec-
tral imagery
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efficacy of higher order statistical information (using average mutual information)
instead of simple correlation is studied, for a bottom-up band grouping [1, 13].
Benefits of linear (LDA) and nonlinear (KDA) pre-processing at the subspace level
are also studied within the proposed framework.

2.1 Subspace Identification: Partitioning the Hyperspectral Space

Subspace identification is the first step in the proposed multi-classifier, decision
fusion system. It involves intelligent partitioning of the hyperspectral feature space
into contiguous subspaces such that each subspace possesses good class separa-
tion, and the statistical dependence between subspaces is minimized. A classifier is
then dedicated to every subspace, and an appropriate decision fusion rule is
employed to combine the local classification decisions into a final class label for
every test signature. In this work, a bottom-up band grouping algorithm is pro-
posed for subspace identification. Figure 2 depicts the application of the band
grouping procedure on hyperspectral signatures. Using labeled training signatures,
each subspace is grown in a bottom-up fashion (i.e., continue to add successive
bands to the subspace) until the addition of bands no longer improves some per-
formance metric. At this point, growth of the current subspace is stopped and the
procedure is repeated for the next subspace. The metric employed for band
grouping should be such that it simultaneously ensures good class separation
within a group as well as low inter-group dependence. While good class separation
per group is important for accurate decision making at the subspace level, a low
inter-group dependence ensures robust decision fusion of these local decisions. A
band grouping threshold (t) controls the sensitivity of partitioning to changes in the
metric. This threshold is the tolerance value for the percentage change in the
metric used for stopping growth of the subspace being identified. Let Mi�1 be the
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performance metric of the subspace being identified without the addition of the ith
band, and, let Mi be the performance metric of the subspace with the ith band
included, then, the band grouping threshold, t is defined as

t ¼
Mi �Mi�1

Mi�1
: ð1Þ

In this work, the value of t is set to zero, that is, the growth of the subspace
being identified is stopped when addition of the ith band does not change the value
of the performance metric being monitored. In addition to monitoring changes in
the performance metric, upper and lower bounds are imposed on the size of each
subspace during the band grouping procedure. The lower bound (chosen as ten
bands in this work) ensures that the number of subspaces formed does not increase
unreasonably. It also ensures that subspaces are not any smaller than would be
supported by the approximately block diagonal statistical structure of the corre-
lation or mutual information matrices of hyperspectral data. The upper bound
(chosen as 25 in this work) ensures that the size of each subspace is not so large
that supervised dimensionality reduction and classification algorithms fail for that
subspace because of ill-conditioned statistical estimates. This bound should be
adjusted based on the amount of training data available for dimensionality
reduction and classification.

It can be inferred from the preceding discussion that the choice of performance
metric plays an important role in the performance of the proposed system. Pre-
viously [11, 12], various combinations of Bhattacharya distance and feature cross-
correlation have been studied as potential performance metrics. In recent work,
Tsagaris et al. [14] have suggested the use of Mutual Information for defining
blocks of bands of hyperspectral data in the context of color representation. In this
work, a metric using Mutual Information is proposed for band grouping.

In the subspace identification process, a good class separation in every subspace
reduces the local classification errors, while statistical independence between
subspaces ensures diversity in the multi-classifier setup. A multi-classifier, deci-
sion fusion system will be beneficial if there is diversity in the subspaces or in the
models (e.g., classifiers). Redundancy between subspaces is not desired in a
decision fusion setup since it may lead to propagation of errors (e.g., in majority
vote fusion, if two different subspaces produce identical errors in classification, a
single ‘‘type’’ of error contributes to two bad votes and so on). Instead of
restricting the partitioning process to second order statistics (correlation), it is
proposed that incorporating higher order statistics (as quantified by mutual
information) into the metric shall generate a more meaningful partitioning of the
hyperspectral space. Mutual information between two discrete valued random
variables x and y is defined [15] as

Iðx; yÞ ¼
X

i2x

X

j2y

Pði; jÞlog
Pði; jÞ

PðiÞPðjÞ
: ð2Þ
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Here, P(i,j) is the joint probability distribution of x and y, and P(i) and P(j) are
the marginal probability distributions of x and y respectively. These can be esti-
mated using histogram approximations. In the context of hyperspectral images,
x and y represent reflectance values for a pair of bands. Figure 3 shows the global
correlation matrix and the global average mutual information matrix for an
experimental hyperspectral dataset. Details of this dataset are provided in Sect. 3.
Note that both statistical measures reveal an approximate block diagonal structure.
It is this block diagonal nature of feature cross correlation (and mutual informa-
tion) that allows us to partition this space into approximately independent and
contiguous subspaces. Further note that the average mutual information matrix
reveals a finer block diagonal structure as compared to the correlation matrix.
Based on these observations, the metric employed for partitioning in this work is
as follows:

JMAMIn ¼ JMnAMIn; ð3Þ

AMIn is the minimum average mutual information between a candidate band
and the remaining bands in the current (nth) subspace, and JMn is the between
class Jeffries Matsushita (JM) distance of the current subspace, and is given by

JM ¼ 2ð1� e�BDÞ; where BD ¼ �ln
X

x2X

pðxÞqðxÞ

 !
: ð4Þ

BD is the Bhattacharya distance; p(x) and q(x) are the probability distributions of
the two classes between which the distance is being estimated. As will be explained
later, in this chapter, both distributions are assumed to be Gaussian. JM distance is
chosen to measure class separation, because unlike Bhattacharya distance it has an
upper bound. This results in a normalized metric possessing lower and upper
bounds. In a multi-class situation, JMn is evaluated as the minimum pair-wise JM
distance between classes in the current subspace. Previously, correlation has been
employed for partitioning the space into approximately independent subspaces. The

Fig. 3 Global correlation matrix (left) and mutual information matrix (right) for experimental
hyperspectral data
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corresponding metric is similar to the one in (3) and is referred to as JMCorr, where
mutual information is replaced by correlation. In recent work [1], we demonstrated
that a mutual information based metric (JMAMI) for band-grouping yielded a
superior partitioning of the hyperspectral space compared to the correlation based
metric (JMCorr) within the MCDF framework.

2.2 Pre-processing at the Subspace Level

Since each subspace is of a much smaller dimensionality than the dimension of the
original hyperspectral signature, a suitable preprocessing (such as LDA or KDA)
may prove beneficial for the classification task. Note that although such pre-
processing projections might have been ill-conditioned in the original high
dimensional hyperspectral space, they are likely to be well-conditioned at the
subspace level.

2.2.1 Linear Discriminant Analysis (LDA)

For uni-modal class conditional density functions, an LDA based dimensionality
reduction is likely to preserve class separation in an even smaller dimensional
projection. LDA seeks to find a linear transformation y~¼ WTx~; where x~2 <m; y~2
<n and n B c - 1, (c is the number of classes), such that the within-class scatter is
minimized and the between-class scatter is maximized [16]. The transformation
WT is determined by maximizing Fisher’s ratio,

J1ðWÞ ¼ jW
TSbW j=jW

TSwW j; ð5Þ

which can be solved as a generalized eigenvalue problem. The solution is given by
the eigenvectors of the following eigenvalue problem.

S�1w SbW ¼ KW ; ð6Þ

where Sb is the between-class scatter matrix and Sw is the within-class scatter
matrix, defined as

Sb ¼
Xc

i¼1

niðm~i � m~Þðm~i � m~ÞT ;

Sw ¼
Xc

i¼1

X

x~2Ci

ðx~� m~iÞðx~� m~iÞ
T :

ð7Þ
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Recall that we impose an upper bound on the size of subspaces during the
subspace identification process. One of the considerations during choosing an
appropriate upper bound is for the within-class scatter matrices to be well-condi-
tioned. Hence, LDA based dimensionality reduction at the local subspace level is
going to be well-conditioned for most subspaces, as opposed to a single LDA based
projection on the entire hyperspectral space, which is likely to be ill-conditioned in
the absence of a lot of training data.

2.2.2 Kernel Discriminant Analysis (KDA)

Although LDA is a popular pre-processing choice in many classification tasks, in
certain remote-sensing classification tasks, class-conditional distributions are
multi-modal in nature (for example, due to pixel mixing—when the size of each
pixel is larger than the size of the target or features on ground). In such conditions,
LDA will no longer be an optimal projection. Further, if the ‘‘training’’ data is pure
(for example, if acquired via on-ground handheld spectroradiometers), and the
‘‘testing’’ data comprises of mixed pixels (for example when acquired via an
airborne sensor with poorer spatial resolution), decision boundaries learned from
the ‘‘pure’’ pixels/signatures will not generalize well when classifying the test data.
This mismatch can further exacerbate mixed-pixel classification. We propose that
employing a nonlinear dimensionality reduction technique, such as KDA will
alleviate this problem and result in a robust classification performance under
severe pixel mixing conditions. In kernel methods, the key motivation behind
mapping data onto a higher dimensional space is to convert nonlinear decision
boundaries in the input space into linear decision boundaries in the transformed
space via an appropriate nonlinear kernel function [17]. The ‘‘kernel trick’’ allows
for computation of algorithms in a kernel mapped space without explicitly eval-
uating the mapping, as long as the algorithm can be expressed in terms of dot
products of vectors in the input space. In its most general formulations, the kernel
trick states [17] that if an algorithm can be formulated in terms of a positive
definite kernel, k1, it is possible to construct an alternate algorithm by replacing k1
by another positive definite kernel, k2.

In machine learning applications, the most common use of the kernel trick
involves a situation where the kernel k1 is a dot product, although, the original
formulation is not limited to this case. A positive definite kernel is also endowed
with a reproducing property [17]. An example usage of the kernel trick in light of
this property is as follows. Assume that an algorithm in the original (input) space
can be represented entirely in terms of dot products of vectors in the input space,
i.e., in terms of hx, x0i where x and x0 are vectors in the input space. Now consider a
‘‘kernel induced’’ space, created by mapping all points in the original space onto a
higher (possibly infinite) dimensional space—i.e., each vector x in the original
space is mapped onto k(�, x), a vector in the kernel induced space. The algorithm
will still hold in this high dimensional kernel induced space. Further, the kernel
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trick and reproducing property can facilitate easy implementation of the algorithm
in this space. To implement the algorithm in this kernel induced space, we need
inner products of vectors in this space, hk(�, x), k(�, x0)i. Instead of performing the
mapping (from the input space onto the kernel induced space) explicitly and then
evaluating inner products in the kernel induced space, the reproducing property
allows us to replace these inner products by the values of the kernel function
evaluated using vectors in the original space, hk(�, x), k(�, x0)i = k(x, x0). For more
explanation, and a more general formulation of the kernel trick and reproducing
kernel Hilbert spaces, the reader is referred to [17].

Mika et al. [18] extended the conventional Fisher’s LDA technique to a high
dimensional, kernel induced space by employing the kernel trick. Similarly,
Baudat and Anouar [19] proposed an alternative implementation to KDA, referred
to as generalized discriminant analysis. In the kernel LDA setting, if U is a
nonlinear mapping to a feature space F, the linear discriminant function that needs
to be maximized is

JðwÞ ¼
wTSUBw

wTSUWw
; ð8Þ

where SB
U and Sw

U are between-class and within-class scatter matrices [17] of the
mapped training data in F, and w is a vector in F. If F is a very high dimensional
space, obtaining a solution in the above formulation may become intractable. The
solution proposed by Baudat and Anouar [19] is as follows:

(1) Evaluate the empirical kernel (Gram) matrix, K, as Kij = h/(xi), /(xj)i =
k(xi, xj), where k(�, �) is the kernel function and {xi} is the set of all training
data vectors.

(2) Define a block diagonal matrix, W, as W = (Wl)l=1,2,…,N, where Wl is an
(nl 9 nl) matrix with all entries equal to 1/nl. N here is the number of classes,
and nl is the number of samples in the lth class.

(3) Perform the eigenvalue decomposition of K as K = PCPT

(4) Compute the eigenvalues and eigenvectors (k and b) of the system given by
kb = P

T
WPb.

(5) Compute a = PC-1b.

The projection of any point (z) in the input space that maximizes (1) in the
kernel space can be obtained as wT/ðzÞ ¼

PM
i¼1 aikðxi; zÞ; where {ai} is the

coefficient vector learned in the algorithm described above, M is the total number
of training points {xi}, and k(�, �) is the kernel function. In this work, we have
employed the algorithm described above to perform KDA projections on the
feature space. Note that the algorithm description above is provided for com-
pleteness. The reader is referred to Baudat and Anouar [19] for a detailed proof of
this algorithm (which involves reformulating the maximization problem using
inner products, and then employing the kernel trick).

Such a KDA transformation provides two key advantages in pattern classifica-
tion tasks: (i) the kernel mapping onto the higher dimensional space F creates a
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linear class separation structure, which is easier to work with and provides a better
generalization ability; (ii) projection of data from the kernel space into a lower
dimensional space maximizes class separation which in turn ensures good classi-
fication performance in the KDA space. In scenarios where the original (input)
space contains data that is already uni-modal and linearly separable, KDA may not
prove significantly beneficial over conventional LDA. However, in scenarios where
the class conditional distributions in the input space are multi-modal or are not
linearly separable, discriminant analysis in the kernel induced space is likely to be
beneficial. With this in mind, we will study the benefits of KDA as a pre-processing
transformation in the proposed MCDF framework under severe mixed pixel (targets
on ground are sub-pixel) conditions.

The kernel function employed in this work is the Radial Basis Function (RBF)
kernel, defined as [17]:

kðxi; xjÞ ¼ exp � xi � xj
�

�

�

�

2
=r2

� �

; ð9Þ

where r is a user defined parameter of the kernel. Although the key requirement
for the kernel trick to hold is for the kernel function to be positive definite, the
RBF kernel has been successfully applied in machine learning applications, such
as in Support Vector Machine (SVM) implementations for pattern classification
tasks. In various classification applications, this kernel function has resulted in
induced spaces that result in a greater degree of generalization in learning decision
boundaries. Further, this kernel function results in Kernel/Gram matrices that are
full ranked [17]. This is a very important advantage over other kernels, because it
ensures well-conditioned formulations of kernel based algorithms.

It has been pointed out in [17] that the value of r (width of the kernel) governs
the generalization of the decision boundaries learned in the kernel induced space.
The larger this value, the better that classification algorithm would generalize to
arbitrary test data, and vice versa. In this chapter, classification performance will
be studied over a wide range of this parameter space, in an attempt to identify
appropriate parameter values for the classification task at hand.

2.3 Classifier

In this work, quadratic maximum-likelihood classifiers are employed. These clas-
sifiers assume Gaussian class distributions for the ith class, p(x/wi) * N(li, Ri).
Assuming equal priors, the class membership function for such a classifier is given
by [3, 16]

MðwijxÞ ¼ �
1
2
ðx� liÞ

T
R�1i ðx� liÞ �

1
2
ln Rij j: ð10Þ
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Projections such as LDA and KDA tend to generate features that are approx-
imately Gaussian distributed. In fact, in [17], the authors demonstrate that a KDA
transformation followed by a maximum-likelihood classifier is as powerful as a
SVM classifier. Hence, this classifier is a reasonable choice in this framework. The
efficacy of decision fusion techniques (discussed in Sect. 2.4) is dependent on the
accurate estimation of posterior probabilities. Although decision fusion has been
used previously for remote sensing classification tasks [20–22], these methods
have not been tested for alleviating the small-sample-size problem commonly
encountered when classifying hyperspectral data. A typical characteristic of
hyperspectral data is that adjacent bands (and hence features) are highly correlated.
For normally distributed data, a high cross-feature correlation sometimes results in
rank deficient covariance matrices, which makes the estimates of class member-
ship functions or posterior probabilities unreliable. Note that this problem is not
commonly encountered with multispectral data since adjacent bands of a multi-
spectral sensor are separated by a reasonable amount in the wavelength domain.
With hyperspectral data, we need to address this issue for reliable estimation of
posterior probabilities or class membership functions.

It follows from the preceding discussion that for hyperspectral data, Ri can
sometimes be rank deficient even in the presence of sufficient training data,
resulting in an unstable inverse (and hence an ill-conditioned class membership
function). To resolve this issue, the null space of Ri is discarded with the
assumption that this space contains only redundant information (i.e., Ri is rank
deficient only due to highly correlated data, not due to insufficient data). This
assumption is reasonable in the proposed multi-classifier, decision fusion approach,
since each classifier deals with a subspace of a much smaller dimension, and hence
the small-sample-size problem is usually not encountered. Hence, to compute the
inverse of Ri, the Singular Value Decomposition based pseudo-inverse method is
used. Similarly, the determinant of Ri is estimated as the product of its non-zero
significant singular values, in order to discard its null space. This results in stable
estimates of class membership functions and posterior probabilities.

2.4 Decision Fusion

Decision fusion refers to the process of ‘‘fusing’’ local (at the subspace level)
classification outcomes for a unified decision per pixel in the imagery. When class
labels from all subspaces are employed in the fusion process (such as in a majority
vote), the resulting fusion scheme is referred to as hard decision fusion. Soft
decision fusion entails the use of posterior probabilities, or more generally some
class membership function from every classifier for making the final decision.
Unlike hard fusion techniques, soft decision fusion schemes do not rely solely on
class labels from each classifier to make the final decision. A linear opinion pool
[20] uses the individual posterior probabilities of each classifier (j = 1, 2, …, n),
pj(wi/x) to estimate a global class membership function
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CðwijxÞ ¼
Xn

j¼1

ajpjðwijxÞ;

w ¼ arg max
i2f1;2;...;Cg

CðwijxÞ:
ð11Þ

The classifier weights (aj, j = 1, 2, …, n) can either be uniformly distributed
over all classifiers, or can be assigned based on the confidence score of each
classifier. This is essentially a weighted average of posteriors across the classifier
bank. In this work, we employ a linear opinion pool for decision fusion. In this
chapter, a uniform weight assignment is employed, although in recent work, we
have found adaptive weight assignment (where weights are estimated using an
appropriate metric quantifying the strength of each local classifier) to outperform a
uniform weight assignment scheme.

3 Experimental Hyperspectral Datasets

3.1 Handheld Hyperspectral Data

The handheld hyperspectral data employed for testing the proposed system was
collected using an Analytical Spectral Devices (ASD) Fieldspec Pro FR handheld
spectroradiometer [23]. Signatures collected from this device have 2,151 spectral
bands sampled at 1 nm over the range of 350–2,500 nm with a spectral resolution
ranging from 3 to 10 nm. A 25� instantaneous field of view (IFOV) foreoptic was
used. The instrument was set to average ten signatures to produce each sample
signature, and the sensor was held nadir at approximately four feet above the
vegetation canopy. Hyperspectral signatures collected with an ASD spectroradi-
ometer tend to have high levels of noise in the regions associated with longer
wavelengths, particularly when the sensor has been in use for a longer period of
time or under high temperature conditions (due to overheating of the semicon-
ductors). Thus the signatures were truncated at 1,800 nm. Also, the reflectance
values in the regions 1,350–1,430 nm were removed from all signatures to avoid
noise due to atmospheric water absorption.

Signatures in the dataset (Fig. 4) form two classes: (1) an agricultural row crop,
Cotton variety ST-4961, and (2) a weed that is detrimental to the crop’s yield,
Johnsongrass (Sorghum halepense). In this study, 54 signatures of Johnsongrass
and 35 signatures of Cotton are used. These signatures were measured in good
weather conditions in MS, USA, in 2000–2004. A target recognition scenario is
created using this data treating the weed (Johnsongrass) as the target class and the
crop vegetation (Cotton) as the background class, as would be the case when
remote sensing is used for precision agriculture applications. Challenging target
recognition tasks are created by linearly mixing target test signatures with the
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background at various mixing ratios (MR). All experiments reported with this
dataset are performed using a leave-one-out (N-fold cross-validation) [3, 16]
testing procedure. Each test target signature sequestered during the leave-one-out
testing is mixed linearly with a random background signature. To ensure an
unbiased setup, the background signature used in this mixing is not used for
training the system. This makes it a tough and realistic ATR problem because it
creates a mismatched situation where the classifiers are trained on clean target and
background signatures but tested on mixed (corrupt) target signatures. The mixing
ratios/MRs (background percentage to target percentage) for test target signatures
reported in this work range from 10:90 (mild mixing), to 90:10 (severe mixing).
With this setup, target recognition accuracies of these sub-pixel ATR tasks are
estimated using the proposed MCDF system.

3.2 Airborne Hyperspectral Data

The airborne hyperspectral imagery (HSI) used in this chapter was obtained using
a SpecTIRTM airborne hyperspectral sensor [24]. The sensor has 128 bands, which
range from 400 to 994 nm. The flight altitude was chosen to provide a 1 m spatial
resolution. The image was taken on June 6, 2008. HSI acquired in this study is of a
corn field in Brooksville, MS, USA. The field was sprayed with seven different
concentrations of the Glufosinate herbicide diluted with water. This simulates a
real-life scenario where an agricultural crop experiences stress induced by a
chemical it is not resistant to [25, 26], such as when a herbicide drift event occurs
between neighboring farms. The concentrations of herbicide in the solutions were
0 (no-treatment, or control), 1/32, 1/16, 1/8, 1/4, 1/2, and 1/1. Ground truth for the
image was obtained using a mobile GPS unit to measure the positions of points in
the field where we knew the spray concentration. Using this method, the authors

350 450 550 650 750 850 950 1050 1150 1250 1350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

Cotton

Johnsongrass

Fig. 4 Experimental
hyperspectral data—
hyperspectral signatures of
Cotton and Johnsongrass

112 S. Prasad and L. M. Bruce



were able to obtain a total of 2,590 signatures for which the ground truth was
known. Figure 5 illustrates how challenging this classification task is—the mean
signatures of many classes are very similar. Experiments reported with this dataset
are conducted using a jackknifing procedure—the available ground-truthed
(labeled) data is partitioned equally into training and testing data—as before, all
system parameters, supervised dimensionality reduction projections, class condi-
tional distributions etc. are ‘‘learned’’ using the training data, and accuracy esti-
mates (overall classification accuracy, target recognition accuracy, false alarm
rates and other measures derived from the confusion matrix [3, 16]) are made
using the testing data.

4 Experimental Setup and Results

The following sets of experiments quantify the benefits of a divide-and-conquer
paradigm (MCDF) over conventional single-classifier approaches for classification
of high dimensional hyperspectral data. Experiments are reported with both
handheld and airborne hyperspectral data described in the previous section. In
particular, the experiments are setup with the following goals: (1) To study MCDF
performance using both linear and nonlinear pre-processing at the subspace level
(LDA and KDA), (2) To compare performance of MCDF with conventional single-
classifier approaches based on different dimensionality reduction techniques, such
as PCA, S-LDA, regularized LDA, entropy based band-selection etc., (3) To study
MCDF performance over a range of kernel parameter values (for a KDA based pre-
processing), (4) To employ and test the efficacy of the MCDF system on a realistic
operating scenario—using aerial (airborne) hyperspectral imagery to tune and train
the system for land-cover classification. In all experiments, overall recognition
accuracy refers to the rate of correct classification of all labeled test data relative to

400 500 600 700 800 900

500

1000

1500

2000

2500

3000

3500

4000

Wavelength (nm)

D
ig

it
a
l 
n
u
m

b
e
r

control

rate003125x

rate00625x

rate0125x

rate025x

rate05x

rate1x

Fig. 5 Experimental
hyperspectral data—
hyperspectral signatures
acquired from an airborne
sensor (SpecTIR) for Corn
crop under varying degrees of
chemical stress

A Divide-and-Conquer Paradigm for Hyperspectral Classification and Target Recognition 113



the number of available labeled test pixels. For the two-class target recognition task
(with the handheld hyperspectral dataset), false alarm rate refers to the rate of false
alarms (non-target pixels being identified as target pixels), and bars atop all bar
plots indicate the 95% confidence interval in estimating these accuracies.

4.1 Experiments with Handheld HSI Data

4.1.1 Experiment 1: MCDF with LDA Based Pre-processing at the Subspace

Level

In this experiment, the performance of the MCDF framework is compared with
that of conventional algorithms employed by researchers for feature optimization
and extraction in small-sample-size conditions. Towards this end, classification
performance of the following feature extraction and classification systems
is reported: (1) PCA, (2) R-LDA, (3) S-LDA, (4) BNDS, and (5) MCDF.
For algorithms 1–4, a conventional single maximum-likelihood classifier is
employed after each feature extraction method. These algorithms are described in
Sects. 1–5 of Hyperspectral Data Compression Tradeoff. In the PCA approach, the
final dimension was chosen to be equal to the number of significant eigenvalues in
the spectral decomposition of the covariance matrix of the training data. In the R-
LDA approach, a small constant (in this work, 1e - 04) was added to the diagonal
entries of the within-class scatter matrices to avoid unstable inverses in the LDA
formulation. S-LDA (also known as Discriminant Analysis Feature Extraction, or
DAFE in the remote sensing community) is commonly employed by researchers in
classification tasks when the training data size is small relative to the dimen-
sionality of the data. It employs a forward selection and backward rejection
algorithm to identify a smaller subset of available features (hyperspectral bands in
this case) upon which a LDA transformation is applied. More details about this
algorithm can be found in [27, 28]. In this work, area under Receiver Operating
Characteristics (ROC) curve is employed to identify the smaller subset of
hyperspectral bands upon which LDA is applied. This metric has previously shown
to work well with hyperspectral data [27]. In the S-LDA algorithm, the upper limit
of the intermediate feature space dimensionality in the forward selection, back-
ward rejection procedure is set to 10, which is a reasonable value for the given
amount of training data. An entropy based band-selection technique was employed
in the BNDS algorithm, where, the ‘‘top’’ ten features were selected. For algorithm
5, the MCDF framework with JMAMI based band-grouping and MV based deci-
sion fusion was employed for classification, as described in Sect. 2.

Figure 6 depicts the overall recognition accuracy and false alarm rates using
these algorithms, at the three mixing ratios, MR1 (30:70), MR2 (40:60) and MR3
(50:50). PCA is expected to perform poorly, and that is observed in this figure. Not
only does PCA based feature extraction result in poor overall classification
accuracy, the associated false-alarm rate is also very high. Regularizing the scatter
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matrices in the R-LDA approach does not yield superior classification performance
either. LDA applied on a reduced subset of features based on a forward selection
and backward rejection approach (S-LDA) does yield better classification
performance. Entropy based band selection (BNDS) performs slightly better than
S-LDA, but at the expense of a larger false-alarm rate. Finally, the proposed
MCDF framework outperforms the other algorithms at most mixing ratios. It also
generates the least amount of false alarms.

4.1.2 Experiment 2: MCDF with KDA Based Pre-processing

at the Subspace Level

Deterioration in performance of conventional techniques and the LDA basedMCDF
system was observed as the pixels became more severely mixed. We propose that a
nonlinear pre-processing (KDA) at the subspace level will ameliorate affects of pixel
mixing and the consequent multi-modality of the class-conditional distributions. To
this end, we employed a KDA projection as the pre-processing in the MCDF
framework, and studied classification performance under different pixel mixing
conditions. The overall implementation of this algorithm (MCDF-KDA) is similar to
the description of Fig. 1, except that KDA is performed as the pre-processing.

Before comparing performance of a KDA-based MCDF system with other
classification systems the generalization ability of the proposed system is studied
as a function of the kernel parameter, r. As was mentioned previously, the key

Fig. 6 Comparison of the
MCDF framework with
current state-of-the-art. Error
bars atop each value indicate
the 95% confidence interval
for the accuracy estimates
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motivation behind introducing a kernel based transformation in the MCDF
framework is to improve the generalization ability of classification, that is, to
ensure that the classification system is able to generalize well to arbitrary test
data—even the kind that has a slightly different statistical structure as compared to
the test data. This ensures a robust classification because in operational scenarios,
it is rarely the case that we are able to train a classifier on data with spatial and
spectral fidelity precisely similar to the actual test data.

In Fig. 7, overall classification accuracy is reported using the proposed KDA
based MCDF system over a wide range of kernel parameter values, varying r from
0.1 to 4.1. The optimal window size (maximum size of each subspace in the
partition) in the partitioning process was experimentally found to be 50 for this
ASD dataset [2]. Results are reported for light pixel mixing (MR 10:90 and 20:80),
moderate pixel mixing (MR 50:50) and severe pixel mixing (MR 80:20 and
90:10).

As explained in [17], the value of r, the width of the RBF kernel has an impact
on the generalization ability in the kernel induced space. As r increases, the
generalization capacity of a kernel based machine typically increases. Note that for
light to moderate pixel mixing conditions, the statistical structure of training and
test data is very similar. This however is not the case for severe pixel mixing
conditions, where not only the mismatch between training and test conditions is
high, but with increased mixing, the class distributions are likely to be multi-modal
in nature. This observation is reflected in the trends that can be seen in Fig. 7. For
mild to moderate pixel mixing, overall accuracy increases with an increase in r,
obtaining the best classification accuracy at around r = 0.6. However, a further
increase in the parameter results in a drop in overall accuracy. For severe pixel
mixing, it can again be seen that the overall accuracy increases with increasing r.
Note that under severe pixel mixing, the maximum overall accuracy is attained
with a relatively wide kernel (r = 1) as compared to the mild and moderate pixel

Fig. 7 Classification
performance of MCDF-KDA
as a function of the kernel
‘‘width’’, r for the handheld
hyperspectral data. Such
analysis is useful in
ascertaining appropriate
parameters for the
classification task at hand
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mixing case. This is due to the fact that under severe pixel mixing, greater gen-
eralization (obtained by a wider kernel) is needed in the classification framework
to account for multi-modality of class distributions and mismatch in training and
test conditions.

From this figure, it follows that without any a-prior information about the extent
of pixel mixing, a value of r = 1 appears to be a good choice for the kernel
parameter, as it provides high overall accuracy over a wide range of pixel mixing
conditions.

Next, the recognition performance of the proposed system (using the parame-
ters values: window size = 50 and r = 1) will be compared against conventional
state-of-the-art approaches for hyperspectral recognition. In particular, in this
experiment, overall recognition accuracy will be compared in different pixel
mixing conditions using (1) MCDF-KDA (the proposed system), (2) Single-KDA
(employing a single KDA transformation on the entire hyperspectral space, fol-
lowed by a single maximum-likelihood classifier), (3) MCDF-LDA (The multi-
classifier and decision fusion framework using LDA as the pre-processing, instead
of KDA), (4) S-LDA (Stepwise LDA followed by a single maximum-likelihood
classifier), (5) Multi-KDA-FF (Feature fusion of multi-KDA projections, followed
by a single classifier instead of a MCDF framework). Multi-KDA-FF still employs
a partitioning of the hyperspectral space, followed by a KDA transformation in
each subspace of the partition. However, the outcomes of KDA transformations
from each subspace are not fed into a bank-of-classifiers, and instead are fused
(concatenated) into one single feature vector per hyperspectral signature. Finally, a
single maximum-likelihood classifier is employed for classification. This helps in
highlighting the benefits of decision fusion in the proposed MCDF-KDA system,
instead of feature fusion.

Outcomes of these experiments for experimental hyperspectral datasets are
depicted in Fig. 8. Note that in mild pixel mixing conditions (MR 10:90), the
previously proposed MCDF-LDA system provides good classification accuracy.
S-LDA and Single-KDA also perform well in these conditions. However, as pixel
mixing becomes moderate (MR 40:60, 50:50) and severe (MR 60:40 and 90:10),
the MCDF approach starts to break down. Performance of Single-KDA and
S-LDA also starts to deteriorate. However, over this wide range of pixel mixing
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conditions, the proposed MCDF-KDA system outperforms other approaches (more
so in moderate and severe pixel mixing conditions).

4.2 Experiments with Aerial HSI Data

Figure 9 illustrates the RGB color composite for the test field, and stress classi-
fication maps created by the S-LDA based single classifier approach, and the
proposed MCDF approach. The number of labeled pixels employed for training the
system was three times the dimensionality of the data. Each class, represented by a

RGB Composite of the Corn field 

          0 1/32 1/16 1/8 1/4 1/2   1 

   Legend: Increasing stress severity (chemical concentration) from left to right 

Ground-truth (spatial stress severity distribution) of the corn crop 

SLDA + Single Quadratic Maximum-Likelihood Classifier

Multiple Classfiers and Decision Fusion

Fig. 9 Stress classification results for an aerial hyperspectral imagery of a Corn crop, with
training data abundance of 39 relative to the dimensionality of the dataset—that is, the amount of
training data is three times the dimensionality of the data
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unique color in the classification maps, represents the corn crop treated by a
different chemical concentration (The higher this concentration, the more ‘‘stres-
sed’’ the crop). A dark-red color on this map indicates severely stressed crop, while
blue color indicates healthy crop. The overall classification accuracy when using
the S-LDA approach was 46.2%, and when using MCDF was 64.5%. This cor-
relates with a reduced salt-and-pepper noise in the resulting classification map
when employing MCDF. Note that this is a very challenging seven-class statistical
pattern classification task. Due to a mismatch between spatial resolution (despite it
being 1 m) and average size of corn canopy, pixels in this image are expected to be
severely mixed across different classes.

MCDF-KDA is hence expected to outperform conventional LDA for this
classification task. The KDA formulation implemented in this chapter is designed
for a two-class problem. In ongoing work, the authors are working on extending it
to a multi-class formulation for use in such scenarios.

5 Conclusions, Caveats and Future Work

In this chapter, we demonstrated that partitioning a high dimensional hyperspectral
classification problem into multiple smaller dimensional classification tasks alle-
viates problems associated with over-dimensionality and limited training data.
This improved performance of the multi-classifier approach was consistently
observed over different sensing platforms. Although the results reported in this
chapter are with handheld and airborne hyperspectral data, we obtained similar
results with spaceborne HYPERION imagery [29, 30]. A data-dependent adapta-
tion of the MCDF framework can be employed to further boost its performance. In
[1], we demonstrate the benefits of an adaptive weight assignment in the decision
fusion process. Such a weight assignment is expected to be beneficial when fidelity
of hyperspectral signatures is non-uniform over the spectrum, or when certain
classifiers in the bank of classifiers are weak. Such adaptation can be employed in
a real life operating scenario by the use of development data—where the available
labeled training data is partitioned further into training and testing data, and the
system is optimized by maximizing classification accuracies obtained from this
development dataset. In [31], we developed and demonstrated the efficacy of
another possible data-dependent adaptation of the algorithms described in this
chapter for improved classification performance. In this work, the feature selection
process is guided by ‘‘training confusion matrices’’—features that minimize
confusion between the most confused classes are retained while features that most
confuse such classes are pruned away.

It is important to note that although the proposed divide-and-conquer frame-
work employs information from all features in the feature space, it is still not
entirely optimal. Partitioning a high dimensional feature space into smaller
dimensional subspaces can discard potentially useful cross-correlation information
between features in different subspaces. Adverse affects from this issue are
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minimized when the feature space allows for a natural partitioning (such as with
hyperspectral data). If the feature space comprises of a correlation or mutual
information matrix that is full or is not block-diagonal, it would be difficult to find
a good partition. Hence, the ‘‘partitioning’’ process when employing MCDF for a
high dimensional classification task should be carefully chosen—it should mini-
mize the loss of potentially useful cross-feature correlation information, and it
should avoid a partition where the resulting classifiers in the bank result in highly
correlated errors (a loss of diversity within the MCDF framework results in a
reduced decision fusion performance).

In ongoing work, we are extending the two-class KDA formulation to a multi-
class MCDF framework. With this, we can employ the nonlinear dimensionality
reduction technique for various multi-class land-cover classification tasks
involving mixed pixels and variability (mismatch) between training and test data.
It is important to note that the MCDF framework can be employed on different
types of feature spaces, and is not restricted to reflectance signatures. In [32, 33],
this framework was successfully extended to fuse higher order spectral derivative
information with reflectance information for improved classification performance.
In other ongoing work, the MCDF framework is being employed on redundant
wavelet transform features extracted from reflectance signatures, resulting in
significant improvements in classification accuracies under very poor SNR con-
ditions. The MCDF framework can also be extended to fuse features extracted
from different remote sensing modalities. For example, vicinal pixel information,
such as texture information derived from high spatial resolution imagery, can be
effectively fused with sub-pixel spectral information derived from hyperspectral
imagery using MCDF. In future work, we plan to test MCDF with such data fusion
tasks.
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The Evolution of the Morphological
Profile: from Panchromatic
to Hyperspectral Images

Mauro Dalla Mura, Jon Atli Benediktsson, Jocelyn Chanussot and

Lorenzo Bruzzone

Abstract Almost a decade has passed since the concept of morphological profile
(MP) was defined for the analysis of panchromatic remote sensing images. From
that time, the MP has largely proved to be a powerful tool able to model the spatial
information (e.g., contextual relations) of the image by extracting structural fea-
tures (e.g., size, geometry, etc.) from the objects present in the scene. The MP
processes an input image with a sequence of progressively coarser filters. This
leads to a stack of filtered images showing an increasing simplification of the
scene. The evaluation of how the objects in the image interact with the filters gives
information on the objects structural features. The great amount of contributions
present in the literature that address the application of MP to many tasks (e.g.,
classification, object detection, segmentation, change detection, etc.) and to dif-
ferent types of images (e.g., panchromatic, multispectral, hyperspectral) proves
how MP is still an effective and modern tool. Moreover, many variants, extensions
and refinements of its definition have also appeared stating that the MP is still
under continuous development. This chapter presents the MP from its early
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definition to the recent advances based on morphological attribute filters. The
overview of many significant contributions that have appeared in this decade
allows the reader to track the evolution of the MP from the analysis of panchro-
matic to hyperspectral images.

Keywords Morphological profile � Extended morphological profile � Attribute
profiles � Attribute filters

1 Introduction

When the geometrical resolution of remote sensing images approaches meter or
even sub-meter resolution, spatial information becomes very important for the
analysis of the data. It is well known that the sizes, shapes, geometries, morphologies
of geospatial objects are perceptually very important features. In some cases they
can provide the only discriminant feature available to distinguish the objects of
interest. For example, if one aims at extracting a road network in an urban area, the
spectral signature of the roads may be mixed up with the one of buildings, parking
lots, etc., although their geometrical characteristics can help to discriminate them.

In the field of remote sensing, operators belonging to the mathematical mor-
phology framework have proved to be an effective set of tools for including spatial
information in the analysis [1]. Many works have been published in different
application domains such as segmentation [2, 3], classification [4, 5], change
detection [6], etc.

In particular, Morphological Profiles (MPs) are an effective tool for extracting
spatial features from the image in order to describe the objects in the scene [2]. A MP
performs amultiscale decompositionof an image based ona simplification of the scene
through the suppression of progressively larger details. The MP is defined on the
morphological operators of opening and closing by reconstruction (morphological
operators particularly suitable for the analysis of high geometrical resolution images
[7]) and it was first applied in 2001 on panchromatic images [2]. From its presentation,
theMPwas used in an increasing number of applicative domains. Remarkably, theMP
definition has been generalized from the analysis of a single band image (e.g., pan-
chromatic) to hyperspectral images made up of hundreds of spectral channels and has
become one of the state of the art techniques for the analysis of such images [8].

In this chapter we give an overview of the concepts of MP and of its extension
suitable for the analysis of hyperspectral images, Extended Morphological Profile

(EMP). In addition, we present some recent advances which generalize the concepts
of MP and EMP based on morphological attribute filters, which increase the capa-
bilities of the tools in extracting structural features. Furthermore, we give an over-
view of the different techniques involving the MP that have appeared in the literature
allowing the reader to follow the evolution of the MP over this last decade.

The chapter is organized as follows. Fundamental concepts of mathematical
morphology are recalled in Sect. 2. Section 3 is devoted to the presentation of the
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MP (Sect. 3.1) and its generalization based on attribute filters (Sect. 3.2) for the
analysis of panchromatic images. The extension of the concepts for dealing with
hyperspectral images are reported in Sect. 4. In particular, the problem of gen-
eralizing the MP from scalar to vectorial images is treated in Sect. 4.1, the defi-
nition of the EMP (Sect. 4.2) and of its extension based on attribute filters
(Sect. 4.3) are given. An overview of several experiments involving MPs are
presented in Sects. 3.3 and 4.4, respectively, when analyzing panchromatic and
hyperspectral images.

2 Preliminaries of Mathematical Morphology

In this section, the notions about the fundamental operators in mathematical
morphology necessary for the definition of the MP and its extensions are recalled.

2.1 Fundamental Properties

Let us consider a grayscale 2D image f with discrete single tone pixel values.
Then, the image f can be defined as a mapping from E, the image domain (which is
a subset of Z2) into Z. A morphological neighborhood transformation transforms a
pixel p of the image f according to a function w and a neighborhood N(p) of p (set
of pixels connected to p according to a connectivity rule). This can be formulated
as ½wðf Þ�ðpÞ ¼ w½NðpÞ� [7]. Obviously, the output of the transform depends on the
function / considered and on how the neighborhood N is defined. Usually the set
that defines the neighborhood in such transformations is known as a structuring

element (SE) and it is defined by a certain shape and a center. The shape is usually
a discrete representation of continuous shapes (e.g., lines, rectangles, circles, etc.)
on the domain lattice. The center identifies the pixel on which the SE is superposed
when probing the image.

We recall below the definitions of some fundamental properties of morpho-
logical image transformations that will be useful in the following discussion.

• Idempotence. A transformation w is idempotent if the output of the transfor-
mation is independent of the number of times it is applied to the image: i.e.,
wðwðf ÞÞ ¼ wðf Þ.

• Increasingness. A transformation is said to be increasing if and only if it
keeps the ordering relation between images, i.e., f � g , wðf Þ�wðgÞ8f ; g:
The notation f B g means that f(p) B g(p) for each pixel p in the definition
domain of the images.

• Extensivity and anti-extensivity. A transformation w is extensive if, for each
pixel, the transformation output is greater or equal to the original image, i.e.,
f B w(f). The correspondent property is anti-extensivity and is satisfied when
f C w(f) for all the pixels in the image.
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• Absorption property. The absorption property is fullfilled when two transfor-
mations, defined by different parameters i, j, are applied to the image, and the
following relation is verified: wiwj ¼ wjwi ¼ wmaxði;jÞ.

Another fundamental concept is that of the so-called connected component. In a
grayscale image a connected component (also called a ‘‘flat zone’’) is defined as
a set of connected iso-intensity pixels. Two pixels are connected according to a
connectivity rule. The connected components of a grayscale image are called flat
zones. Common connectivity rules are the 4- and 8-connected, where a pixel
is said to be adjacent to four or eight of its neighboring pixels, respectively.
The connectivity can be extended by more general criteria defining a connectivity
class [9].

2.2 Opening and Closing by Reconstruction

The two fundamental neighborhood transformations in mathematical morphology
are erosion and dilation. Most morphological operations are based on a selected
combination of erosion and dilation. Erosion and dilation are denoted by eB and dB,
where B refers to the structuring element used in the operation. The erosion or
dilation operators transform an input image by giving as output for each pixel p the
infimum (^) or supremum (_) of the intensity values of the set of pixels included
by the SE when it is centered on p, respectively. It is important to note that
infimum and the supremum are the minimum and maximum of an ordered set,
respectively. The definition of the erosion and dilation transformation for a
grayscale discrete image f is given below.

eBðf Þ ¼
^

b2B

f�b; ð1Þ

dBðf Þ ¼
_

b2B

f�b: ð2Þ

The sequential composition of erosion and dilation leads to the definition of the
morphological opening and closing transformations. Morphological opening of an
image f by a structuring element B is defined as the erosion of f by B followed by
the dilation of the eroded output by �B, the reflected structuring element with
respect to B:

cBðf Þ ¼ d�B½eBðf Þ�: ð3Þ

In contrast, a morphological closing of an image f by a structuring element B is
defined as the dilation of f by B followed by the erosion of the dilated output by the
reflected structuring element �B:

/Bðf Þ ¼ e�B½dBðf Þ�: ð4Þ
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While the output of an erosion would have an effect on all the brighter structures
independent of the size, an opening flattens bright objects that are smaller than the
size of the structuring element and, because of dilation, mostly preserves the bright
large areas. Similar conclusion can be drawn for darker structures when a closing
is performed. The terms brighter and darker are considered with respect to the
surroundings gray tones.

The morphological opening and closing operators usually lead to severe effects
on the image especially when the SE is large with respect to the size of the
structures in the image. Moreover, with these operators, the geometrical charac-
teristics of the structures can be distorted or completely lost. This is obviously an
undesirable effect when information on the objects of interest have to be retrieved
after the filtering.

Morphological operators based on the geodesic reconstruction can effectively
process the image by overcoming this issue. This is achieved by either completely
removing or preserving the connected components in the image according to their
interaction with the SE of the transformation. In greater detail, if a component in
the image is larger than the SE then it will be unaffected, otherwise it will be
merged to a brighter or darker adjacent region depending upon whether a closing
or opening is respectively applied. An opening by reconstruction is performed in
two separated phases and can be formally defined as:

c
ðiÞ
R ðf Þ ¼ Rd

f ½e
ðiÞðf Þ�: ð5Þ

The first transformation, ei(f), is an erosion of the image f with an SE of size i,
which defines the size of the opening. This aims at creating the so called marker
image for the reconstruction operation. The second phase performs a reconstruc-
tion by dilation, Rd

f ð�Þ, of the marker image taking as reference mask f. This
operation is an iterative procedure that applies geodesic dilation (which is defined
as the infimum of the elementary dilation and the mask image) on the marker

image until idempotence (dðnÞf ¼ d
ðnþ1Þ
f ):

Rd
f ð�Þ ¼ d

ðnÞ
f ð�Þ ¼ d

ð1Þ
f � d

ð1Þ
f . . .d

ð1Þ
f ð�Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

: ð6Þ

The reconstruction phase permits to fully retrieve all those structures that are not
completely suppressed by the erosion and it potentially needs several iterations
before reaching stability.

By duality, a closing by reconstruction is defined as the reconstruction by
erosion of f from the dilation of f using a structuring element of size n:

/
ðiÞ
R ðf Þ ¼ Re

f ½d
ðiÞðf Þ�: ð7Þ

It is important to note that the result obtained with operators by reconstruction is
less dependent on the shape of the selected structuring element then in the case of
morphological opening or closing. Operators by reconstruction are also less severe
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than the corresponding morphological ones, i.e., which can be explained by ana-
lyzing the ordering relations between the operators:

c� cR� f �/R�/: ð8Þ

2.3 Attribute Filters

Morphological attribute filters are morphological transformations that process an
image according to a criterion. A generic criterion T can be defined as a mapping
of the set S of values considered by T to the couple of Booleans {false, true}.
The criterion is evaluated on each connected component of the image. If the
criterion is verified, then the component is preserved. If it is not verified,
the component is removed. The criteria are usually related to the question whether
the value of an attribute a of the component C fulfills a predefined condition, e.g.,
T(C) = a(C) C k, with faðCÞ; kg 2 R or Z for scalar attributes, where the attri-
butes can actually be any measure computable on the image regions. This leads to
great flexibility in the behavior of attribute filters, which consequently improves
their capability in modeling the spatial information with respect to operators based
on fixed SEs. For example, the attributes considered can be purely geometric (e.g.,
area, length of the perimeter, image moments, shape factors), textural (e.g., range,
standard deviation, entropy), etc.

Since attribute filters can only transform an image by merging its connected
components these filters belong to the family of connected filters [10]. Actually,
morphological attribute filters are connected filters and the morphological opera-
tors by reconstruction are included in their definition [10].

A very important property of the criterion considered in the transformation is
increasingness. A criterion is said to be increasing when, if it is verified for a
connected component, then it will be also true for all the components nested in it.
This property leads to have for example T(Cj) = true when also T(Ci) = true for
any Cj � Ci. Examples of increasing criteria involve increasing attributes (e.g.,
area, volume, size of the bounding box, etc.) and an inequality relation (e.g., C). In
contrast, non increasing attributes, such as scale invariant measures (e.g., homo-
geneity, shape descriptors, orientation, etc.), lead to non increasing criteria. In the
following the implications of this property for attribute filters will be discussed.

Attribute openings for binary images consider an increasing criterion T. They
are obtained by computing a trivial opening, CT ; on the output of a connected
opening, CF; applied to all the connected components of a binary image F. Given a
pixel p in the image domain and a connected component C, the connected opening
is computed as:

Cf ðpÞ ¼
C if p 2 C;

£ otherwise:

�

ð9Þ
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The trivial opening keeps the regions for which the increasing criterion T holds.
This can be expressed as:

CTðCÞ ¼
C if T ¼ true;

£ otherwise:

�

ð10Þ

Attribute opening is then given by:

CTðf Þ ¼
[

p2F

CTðCFðpÞÞ: ð11Þ

If the criterion considered is increasing, the resulting transformation is increasing,
idempotent and anti-extensive (i.e., it is an opening). In contrast, if the increas-
ingness property is not fulfilled by the criterion, the filter remains idempotent and
anti-extensive but not increasing anymore. For this reason, the transformation
based on a non-increasing criterion is not an opening, but a thinning.

Analogous considerations can be made for the dual transformation by consid-
ering the background regions instead of the foreground ones. If the criterion is
increasing, the transformation is actually a closing otherwise it is a thickening.

The extension of the operators from binary to gray-scale images is straight-
forward when the criterion is increasing because of the principle of threshold
superposition [11]. Since a grayscale image can be expressed as the sum of all its
binary thresholds, than the output image of these filterings is the sum of all the
filtered input threshold images,

cTðf Þ ¼
XK

k¼0

CTðFkÞ ð12Þ

with Fa the binary threshold image f at graylevel k [ [0,K] the destination domain
of the grayscale values. Equation 12 can also be expressed as:

cTðf ÞðpÞ ¼ maxfk : CTðFkÞðpÞ ¼ 1g p 2 E: ð13Þ

When the attribute criteria are not increasing, the extension to numerical
functions is not straightforward anymore. For example, let us consider a numerical
function f and a binary criterion T that acts on the binary sections Fk of f at
successive thresholds k1\ k2\ k3. We may have Fk2 ¼£, whereas Fk 6¼£ for
k = {k1, k3}. Thus, the results of the transformation applied to successive sections
of the image do not decrease as k increases. Therefore, they cannot be considered
as the stack of sections of a function. The simplest way to force the decreasingness
of the sequence is to replace the image Fk by the union of all the binary thresholds
from the top section, i.e., by F0k = [{Fi(f), i C k}. This leads to the following
definition of grayscale attribute thinning with a non increasing criterion ~T:

c
~T
maxðf ÞðpÞ ¼ maxfk : C

~TðF0kÞðpÞ ¼ 1g: ð14Þ
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This solution leads the grayscale attribute thinning (see (13)), which is referred to
as max rule in [12]. However, other arbitrary filtering strategies can be imple-
mented in order to achieve different output effects when extending the binary
thinning and thickening to numerical images [12, 13]. For example, Urbach et al.
[13] found that the so-called subtractive rule is particular suitable when consid-
ering shape descriptors as attributes:

c
~T
subðf ÞðpÞ ¼

XK

k¼0

C
~TðFkÞðpÞ: ð15Þ

If the criterion is increasing, then (14) and (15) are equal to (13). Similar con-
clusions can be drawn for attribute closing and thickening.

Attribute filters computed on gray-level images according to the definitions
given in Sect. 2.3 are not efficient in terms of implementation. However, it is
possible to take advantage of an efficient representation of the image called Max-
tree, which represents the image as a hierarchical linked structure of its connected
components [12]. An example of max-tree is reported in Fig. 1. As one can see in
Fig. 1b, the image is composed by connected components of iso-intensity pixels.
The max-tree maps each of all the connected components of the image to a node
organized in a hierarchical tree structure (see Fig. 1c). The root node of the tree
represents the whole image at his lowest gray-level. The tree grows by connecting
the nodes of the progressively nested connected components in the image till
the leaves of the tree that correspond to the regional maxima in the image.
The computation of the attribute filters on the max-tree structure is composed by
three steps which are detailed in the following:

1. Max-tree creation. This step aims at generating the tree from the image by
identifying the connected components in the image and by modeling the
hierarchical representations between nested nodes. This phase of the process is
computationally most demanding.

2. Evaluation of the criterion. After the creation of the tree, the criterion is
evaluated by comparing the attribute extracted from each node and the
threshold value (k) which is considered as reference and defines the degree of
filtering. Then, the tree is pruned by removing those nodes that do not fulfill the
criterion. If the criterion is non increasing, different filtering rules can be
implemented as reported above (see (14, 15)). They correspond to different
strategies in pruning the tree [12, 13].

3. Image restitution. The final step is the conversion of the pruned tree back to an
image.

Since the max-tree is constructed by growing the tree from the lowest grayscale
value to the maximum one, this structure is suitable for transformations such as
opening and thinning. On the contrary, for operators of closing and thickening, the
min-tree is considered. A min-tree is the representation of the image dual with
respect to max-tree and can be simply computed as the max-tree of the comple-
ment of the input image.
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3 Morphological Profiles for the Analysis of Panchromatic

Images

3.1 Morphological Profiles

In general, for real applications it is unlikely that filtering of an image with a single
opening and closing by reconstruction completely models the spatial information
in a complex scene. This behavior might limit the capability of the image for
analysis. A common procedure is to filter an image with a sequence of many
different SEs in order to extract more information on the scene. Granulometries
and anti-granulometries are examples of this approach. A granulometry is obtained
by the application of a series of opening with SEs of increasing sizes and fixed
shape. An anti-granulometry is generated analogously by closing operators. By
analyzing the result of a granulometry one is able to gather information on the size

(a) (b)

(c)

Fig. 1 Example of Max-tree. a Gray-scale image with intensities ranging from 0 to 3; b image in
a with its connected components labelled; and c Max-tree of (a). This shows the relations
between the nodes associated to the connected components in (b)
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distribution of those objects brighter than the surrounding background. Thus, we
can refer to this procedure as a multi-scale analysis. When performing such an
analysis with operators based on the geodesic reconstruction, the progressive
simplification of the image does not come at the detriment of the geometry of those
objects that are not cancelled from the image.

The morphological profiles are based on these ideas. Morphological profiles
were introduced by Pesaresi and Benediktsson in [2] and defined as a concate-
nation of an anti-granulometry followed by a granulometry performed by closing
and opening by reconstruction transformations, respectively. The anti-granulom-
etry is referred as closing profile P/ and the granulometry as opening profile Pc:
The morphological opening n profile of an image f is an array of n openings
performed on the original image using a SE of size k, and it is defined as

Pcðf Þ ¼ Pckðf Þ : Pckðf Þ ¼ ckRðf Þg k ¼ 0; 1; . . .; n: ð16Þ

Thus by duality, the morphological closing profile composed by n levels can be
denoted by

P/ðf Þ ¼ fP/k
ðf Þ : P/k

ðf Þ ¼ /k
Rðf Þg k ¼ 0; 1; . . .; n: ð17Þ

Therefore, both the opening and closing profiles are generated by opening and
closing by reconstruction operators with the image f taken as mask and with SEs of
fixed shape and size increasing on the n levels. When a closing profile and an
opening profile, both of size n, are joined a morphological profile is obtained.
The MP is of size 2n - 1, because when k = 0 the opening and closing profiles
are equal to the original image (Pc0 ¼ c0Rðf Þ ¼ PU0 ¼ U0

Rðf Þ ¼ f ) and thus they
are considered only once (see Fig. 2).

MPðf Þ ¼
P/k
ðf Þ; k ¼ ðn� 1þ iÞ i 2 ½1; n�;

Pckðf Þ; k ¼ ði� n� 1Þ i 2 ½nþ 1; 2nþ 1�;

� �

: ð18Þ

The derivative of a MP, denoted as Differential Morphological Profile (DMP)
[2], is defined and can be computed as the differences between two adjacent levels
of the MP,

Fig. 2 Example of MP composed by five levels, obtained by two openings and two closings
(j[ i). For generating this MP a squared SE was considered, with size of 5 (i) and 9 (j) pixels
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DMPðf Þ ¼
D/k
ðf Þ; k ¼ ðn� 1þ iÞ; i 2 ½1; n�;

Dckðf Þ; k ¼ ði� n� 1Þ; i 2 ½nþ 1; 2n�;

� �

ð19Þ

with the differential closing profile D/k
and differential opening profile Dck simply

defined as

Dc ¼ fDck : Dck ¼ Pck�1 �Pckg k ¼ 1; 2; . . .; n; ð20Þ

D/ðf Þ ¼ fD/k
: D/k

¼ P/k �P/k � 1g k ¼ 1; 2; . . .; n: ð21Þ

The DMP stores the residuals of the sequential transformations applied to the
image. This can be particular useful when the multi-scale analysis has to be
visualized, since the most important components of the profiles are more evident
than when the MP is considered.

Moreover, from the DMP the information on the scale of the objects in the
image can be extracted. In [2], this information was used for generating from the
image a multiscale segmentation map, called morphological characteristic. In
greater detail, each pixel in the image is labelled with the index of the level in the
MP in which the maximum of its derivative (i.e., DMP) occurs.

3.2 Attribute Profiles

In this section the concept of Attribute Profile (AP) as an extension of the mor-
phological profile is reviewed. First the limitations of MP are reported and sub-
sequently the AP is presented.

Although MPs proved to be an effective tool for performing a multi-scale
analysis of the image, they have their main limitation in the capability to model
other feature than the size of the objects. For example, if one attempts to filter the
image according to different degrees of spectral homogeneity or according to
different shape descriptors, the results would be rather cumbersome. This limita-
tion is particularly important when the discriminative power of the analysis could
have been increased by modeling other features rather than the size (e.g., contrast,
texture, geometry, etc.).

Attribute filters can overcome this limitation of the MPs [14]. Indeed, according
to the attribute considered, different information can be extracted from the image.
For example, if an increasing attribute is considered (e.g., the area of the regions)
the AP performs an analysis based on the scale of the structures in the scene which
is analogous to a MP. Instead, if, for example, a measure of the texture, shape,
morphology, or contrast (which are, usually, non increasing attributes) is consid-
ered as an attribute, it is possible to gather information on different image
descriptors. Moreover, from a computational viewpoint, an AP requires much less
resources than an equivalent MP. The MP always requires two complete proce-
dures of processing the image, one performed by a closing and the other by an
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opening transformation for each level of the profile. In contrast, the AP builds up
the trees (one max-tree for the thinnings and one min-tree for the thickening) only
once and performs the sequential filtering processing as sequential prunings of the
tree with different values of k. This greatly reduces the demand of the analysis
with respect to MPs.

In greater detail, attribute profiles perform a multi-level decomposition of the
input image based on attribute filters [15]. The great flexibility of the attribute
filters in defining the criterion which drives the filtering allow one to filter
the image according to features of the image that are not only related to the size of
the structures but that can be of any kind. However, this comes at a prize. While
MPs are cumulative functions because they are a sequential composition of
openings and closings and thus, the absorption property is always fullfilled, this
characteristic might not be always verified by AP. This is an important condition
because it leads to achieve a progressively increased simplification of the image
when the filters values are increased and makes the computation of the derivative
of the profile well defined. In greater detail, APs verify this property when the
criterion considered is increasing. When it is not, a constraint on the criterion has
to be applied. The family of criteria Ti considered in the profile must be formally
ordered. This boils down to cTi � cTj and /Ti � /Tj for i B j. The imposed con-
dition does not make the criterion increasing since this property involves two input
functions and one criterion, i.e., f � g) cTðf Þ� cTðgÞ, a condition which is not
fulfilled for thickening and thinning transformations.

Analogously to the MP, the AP can be defined as a concatenation of a thick-
ening attribute profile, P

/T 0 , and an thinning attribute profile, PcT
0 computed with

a generic ordered criterion T0:

APðf Þ ¼
P

/
T 0
k
; k ¼ ðn� 1þ iÞ; 8k 2 ½1; n�;

P
c
T0
k
; k ¼ ði� n� 1Þ; 8k 2 ½nþ 1; 2nþ 1�:

( )
: ð22Þ

Since T 0 ¼ fT1; T2; . . .; Tng the set of ordered criteria, for Ti, Tj [ T0 and j C i the
relation Tj�Ti holds.

It is possible to compute the derivative of the AP analogously to the MP case.
We refer the reader to [15] for further details.

3.3 Experimental Results and Discussion

Morphological profiles were first applied in [2] for segmenting two 800 9 800
pixels HR panchromatic images acquired by Indian Remote Sensing 1C (IRS-1C)
with a 5-m geometric resolution on a dense urban area of Milan, Italy, and on an
agricultural area of Athens, Greece. The application of operators by reconstruction
to the two images showed a better representation of the geometry of the objects in
the scene with respect to the processing with standard morphological operators.
Moreover, the segmentation maps obtained by the morphological characteristic of
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the images were not affected by the oversegmentation effect that was noticeable
when a classical watershed segmentation was performed.

In [4], the MPs were applied for the first time in a classification task. An IRS-
1C panchromatic image of Athen, Greece (Fig. 3a), and an IKONOS panchromatic
image from Reykjavik, Iceland (Fig. 3b), were classified with a conjugate gradient
neural network. In both the experiments, eight closings and eight openings were
applied to the original images leading to a 17-dimensional feature vector con-
sidered as input to the neural network. In order to reduce the dimensionality of the
filtered data, two feature extraction methods and a feature selection technique were
investigated. The considered approaches were: (1) discriminant analysis feature
extraction (DAFE) [16]; (2) decision boundary feature extraction (DBFE) [16];
and (3) a simple feature selection based on sorting the indexes of the DMP using
the value of the discrete derivative. The obtained classification results showed as
the use of the features extracted by the MP increased the overall accuracy from
69.4 to 70.9% of the original panchromatic image to 77.7 and 95.1% when con-
sidering the entire differential profile for the IRS-C1 and IKONOS image,
respectively. Among the techniques of feature reduction, the DBFE outperformed
DAFE and the feature selection technique. However, lower accuracies than those
obtained by considering the whole DMP were obtained.

The morphological profile was built in [17] by applying alternating sequential
filters (ASF) by reconstruction instead of the operators of opening or closing by
reconstruction. Alternating sequential filters by reconstruction are iterative
sequential applications of an opening and a closing by reconstruction (or vice
versa) of increasing size. The MP built on ASF were applied to the IKONOS
panchromatic image in Fig. 3b. The feature extracted were classified by a neural
network. Although the standard MP performed better than the one with ASF on the

Fig. 3 Panchromatic images. a IRS-1C image of the city of Athens, Greece (800 9 800 pixels,
5.8 m geometrical resolution, spectral range 0.5–0.75 lm; b IKONOS image of the city of
Reykjavik, Iceland (975 9 639 pixels, 1 m geometrical resolution, spectral range 0.53–0.93 lm
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original, the latter showed to be more robust when analyzing the image corrupted
by Gaussian noise.

In [18] the DMP was interpreted as a fuzzy measure of the characteristic size
and contrast of the objects in the image. The fuzzy measure extracted from the
DMP was compared to predefined possibility distributions in order to derive a
membership degree for the thematic classes of the samples in the image. This
fuzzy measure can be compared to predefined possibility distributions to derive a
membership degree for a set of given classes. The decision is taken by selecting
the class with the highest membership degree. The experimental results were
obtained from the analysis of the Reykjavik IKONOS image in Fig. 3b and
achieved an overall accuracy of 52.1% outperforming the one obtained by a neural
network of about 12%.

In order to perform a better modeling of the spatial features in the image, in [19]
the computation of two MPs with SEs of different shape was proposed for clas-
sification. The authors considered in their analysis a disk-shaped SE and a linear
SE with different orientations (which generate directional profiles [1]). While the
MP built with the former SE is suitable to extract the smallest size of the struc-
tures, the latter allows one to infer the largest size of the objects. Moreover, an
interesting variant of the geodesic reconstruction called ‘‘partial reconstruction’’
was presented. The proposed reconstruction procedure performs a partial geodesic
reconstruction (the iterative process is converging to idempotency). This leads to
reaching a trade-off between the preservation of the objects geometries and a
reduction of the over segmentation effect introduced by standard reconstruction.
Two study areas were considered in the analysis, an IKONOS and a Quickbird
panchromatic images both acquired on the area of Ghent (Belgium). The proposed
technique significantly outperformed the results obtained without considering any
spatial feature in the analysis. Furthermore, an increase in the overall accuracies
with respect to the case with standard reconstruction of about 2 and 7%, was
achieved by considering the two MPs built with partial reconstruction for the two
sites, respectively.

The APs were considered in [15] for the classification of two Quickbird pan-
chromatic images acquired on the city of Trento (Italy). The images showed two
complex urban areas of size 400 9 400 and 900 9 900 pixels. In the analysis,
three attributes were selected: (1) area; (2) moment of inertia [20]; and (3) standard
deviation. The area attribute was chosen for modeling the size of the structures in
the image, the moment of inertia for extracting information on the shape of the
regions and the standard deviation was considered as a descriptor of the spectral
homogeneity of the objects. At first, each AP was considered separately and then,
all the features extracted by the APs were taken into account simultaneously. The
data were classified by a random forest classifier [21]. The analysis of the results
was carried out by considering both thematic and the geometric errors [22] in
representing some reference objects in the scene. The obtained results showed a
significant increase of the accuracies, both geometric and thematic, when con-
sidering spatial features in classification with respect to the original panchromatic
bands. The geometrical errors were assessed by five indeces modeling the effects
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of over-segmentation, under-segmentation, fragmentation, the precision in
retrieving the shape and the borders of some objects in the image taken as ref-
erence. We refer the interested reader to [22] for more details on the geometrical
error indeces. The thematic errors were evaluated by the overall error and the
kappa error. The overall error was computed as the percentage of the number of
wrongly classified patterns over the whole set of samples used for the test. The
kappa error was obtained as 1 - j, being j the kappa coefficient. The latter
estimates the percentage of the agreement between the labels of the classified
patterns and the correct labels which would be expected by chance and it ranges
between 0 and 1 [23]. In the experiments, the classification with APs gave similar
performances to the classification with the MP, but the profiles were able to extract
complementary information from the scene leading to increasing accuracies when
considered in classification (decreases in the kappa error were up to 38 and 17%
with respect to the original panchromatic image and the MP, respectively).

4 Extended Morphological Profiles to the Analysis of Multi-

spectral and Hyperspectral Images

4.1 Problem of Extending the Morphological Operators to Multi-

tone Images

The extension of the concept of a morphological profile from the analysis of
single-tone images to multi-tone images (e.g., multispectral and hyperspectral
imagery) is certainly a non trivial task because the extension of the morphological
operators for scalar to multivariate values is an ill-posed problem. In fact, the
output of a generic morphological operator processesing an image, is usually the
result of a function computed on an ordered set of values (e.g., the infimum for
erosion, the median for the median filter, the supremum for dilation, etc.). When
dealing with scalar images, the ordering of the values mapped by the image f(p) ?
k, with p [ E and k 2 f0; . . .;Kg � Z, is well defined. The scalar elements in the
partially ordered set {0, ..., K} have an unique infimum and supremum. Thus, the
morphological operators are well defined. In contrast, when the image destination
domain becomes a subset of a multivariate domain, e.g., f(p) ? k, k 2 Z

n the
ordering relation between the mapped vectorial values is not defined anymore. For
this reason, the direct application of concepts seen in previous sections to multi- or
hyperspectral images is not possible.

In order to overcome this issue several solutions have been presented in the
literature. One possible approach relies on the arbitrary re-definition of the con-
cepts of morphological filters for handling multi-valued images by forcing an
ordering relation on the vectorial set of values. In in [24], Plaza et al. proposed a
reduced vector ordering scheme based on the spectral purity index of the pixel
vectors. The input vectors are ordered according to a spectral-based distance
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measure (i.e., scalar value). Three distance measures commonly used in hyper-
spectral analysis were considered: (1) spectral angle distance (SAD); (2) spectral
information divergence (SID); and (3) hidden Markov model-based information
divergence (HMMID). Having defined an ordering relation between vectorial
values, the definitions of the morphological operators of opening and closing by
reconstruction computed according to this ordering relation can be applied to the
hyperspectral data. A reader who is interested in greater details on the extensions
of the mathematical morphology concept to multi-valued images can refer to
[25–28].

Another approach for extending morphological transformations to vectorial
data deals at first with the reduction of the hyperspectral data to only one (or few)
channels and subsequently to the application of the morphological operators to
each obtained image separately.

The reduction of the dimensionality can be done by means of several tech-
niques. The first work based on this approach considered Principal Component
Analysis (PCA) as feature reduction technique [29, 30] (see Sect. 4.2 for details).
In [29] Independent Component Analysis was used. Kernel PCA (KPCA) was
exploited in [31, 32]. In [33] the reduction of the dimensionality was performed by
PCA, KPCA, Non-parametric Weighted Feature Extraction , Decision Boundary
Feature Extraction (DBFE) and Bhattacharyya Distance feature selection (BDFE)
techniques [16] .

4.2 Extended Morphological Profile

The extension of the MP to hyperspectral data presented in [30], which led to the
definition of the Extended Morphological Profile, is achieved through a two step
procedure. At first, the multidimensional data is reduced through a PCA to few
informative dimensions (i.e., the first principal components, PCs). The PCs cor-
responds to the eigenvectors of the estimated covariance matrix of the data and are
ordered increasingly according to the values of the correspondent eigenvalues. The
first PCs are meaningful for data representation since they account for most of the
variance of the data in the original feature space. In general, the first considered
PCs accumulate most of the total variance of the data (e.g., usually a threshold on
99% is taken). Subsequently, on each PC a full MP is computed. Thus, the EMP of
the first c principal components can be formalized by

EMPðf Þ ¼ fMPðPC1Þ;MPðPC2Þ; . . .;MPðPCcÞg: ð23Þ

As it is seen from (23), the EMP is the concatenation of MPs on a single stack.
Since the dimensionality of the EMP can rapidly increase when increasing the
number of considered PCs and the levels of the MP, in [30] the application of
feature extraction techniques was proposed in order to decrease the curse of
dimensionality phenomenon [34]. Feature extraction techniques for classification
should be considered in order to achieve a dimensionality reduction and an
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effective separation of the distributions of the classes in the transformed feature
space [35]. An example of an EMP is reported in (Fig. 4).

4.3 Extended Attribute Profiles

Since the EMP is computed by morphological operators by reconstruction, similar
comments can be addressed to the limited capability in modelling the spatial
information as done in Sect. 3.2. Thus, it is possible to compute EMPs by com-
position of APs leading to the definition of Extended Attribute Profiles (EAPs)
[36]. Again, the main advantage of using attribute filters instead of operators based
on the geodesic reconstruction relies in their greater capability in modelling many
image descriptors. Thus, similar to Sect. 4.2, the EAP is obtained by computing an
AP on each of the c principal components extracted from the original hyper-
spectral data:

EAPðf Þ ¼ fAPðPC1Þ;APðPC2Þ; . . .;APðPCcÞg: ð24Þ

It is worth noticing that the EAP includes in its definition the EMP (because the
operators by reconstruction can be viewed as a particular set of morphological
attribute filters) and, thus, it can be considered as its generalization. Moreover, also
from a computational perspective, the generation of an EAP requires a reduced
load with respect to the calculation of an EMP. In fact, taking advantage of the
representation of the image as a max- and a min-tree, the demand of the filtering
stage can be significantly reduced. Examples of EAPs computed with different
attributes are depicted in Fig. 5

The concept of the EAP can be further extended by considering many different
attributes in the analysis, by creating an EAP for each attribute considered. When
the different EAPs are sequentially stacked in a single data structure, we obtain an
Extended Multi-Attribute Profile (EMAP) [36]. An EMAP composed by m dif-
ferent EAPs can be easily formulated as:

EMAPðf Þ ¼ fEAPa1ðf Þ;EAP
0
a2
ðf Þ; . . .;EAP0amðf Þg ð25Þ

with ai a generic attribute and EAP0 = EAP\{PC1, ..., PCc}. The latter relation is
necessary for avoiding the multiple presence of the c principal components.

Fig. 4 Example of EMP computed on the first two PCs and composed by five levels for each MP
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On the one hand, when considering an EMAP, greater capabilities in extracting
spatial information are gained with respect to considering only a single EAP; on
the other, this leads to an increase in the dimensionality.

4.4 Experimental Results and Discussion

The extended morphological transformations based on the ordering of the pixels
multidimensional values done by considering spectral-distance metrics were
applied to two hyperspectral images acquired by AVIRIS and DAIS sensors.

Fig. 5 Examples of EAPs computed on the first two PCs of a sample image. Each row shows a
EAP built by different attributes. Attributes, starting from the first row are: area, length of the
diagonal of the bounding box, moment of inertia and standard deviation. Each EAP is composed
by the concatenation of two APs computed on PC1 and PC2. Each AP is composed by three
levels, a thickening image /T, the original PC and a thinning image cT. All the thickening and
thinning transformations were computed with the following attributes value, ks. Area: 5,000;
Length of the diagonal: 100; Moment of inertia: 0.5; Standard deviation: 50
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The AVIRIS image was acquired on Salinas Valley (CA) and is composed by
512 9 217 pixels with 192 spectral bands with 3.7 m of spatial resolution. The
DAIS image showed a 400 9 400 pixels scene of the center of Pavia (Italy) with a
5-m geometrical resolution. The results obtained by the proposed techniques
outperformed the classification of the original hyperspectral images up to 8 and 7%
for the two images, respectively.

The EMP presented in Sect. 4.2 was applied in [30] to two hyperspectral
images, one acquired by the DAIS sensor on the center of Pavia (400 9 400
pixels, 80 spectral bands, 2.4 geometrical resolution) and the other collected by the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) over the
Washington DC Mall area (1,280 9 307, 189 spectral bands, 2.8 m spatial reso-
lution). The experiments were obtained by considering the first two PCs for
building the EMP. When considering the features extracted by the EMP, the
overall accuracy in classifying the test sites with a neural network significantly
increased with respect to considering only the hyperspectral data (+45% and +12%
for the two images, respectively). Moreover, DAFE, DBFE, and NWFE [16] were
considered for reducing the dimensionality of the data before the classification.
Although a significant reduction of the dimensionality of the data was achieved
(i.e., reducing the load for the classification stage) no increase in terms of overall
accuracy were accounted with respect to considering the EMP with full dimen-
sionality. However, among the considered feature extraction techniques, in both
cases NWFE performed the best among the others in terms of classification
accuracies reaching values of accuracy close to those obtained by the full EMP.

In [37] the features extracted by an EMP computed on the first PC were con-
sidered by using five classifiers (Maximum Likelihood for Gaussian data, Fisher
linear discriminant, the ECHO classifier, Fuzzy ARTMAP and a feed forward
neural network classifier) along with two feature extraction techniques (DAFE and
DBFE). The data used in the experiments involved two test sites on the urban area
of Pavia, Italy, acquired with the Digital Airborne Imaging Spectrometer (DAIS).
Each hyperspectral image was composed of 80 channels with a spatial resolution
of 2.6 m. When considering the morphological features the overall accuracy
increased by more than 27% with respect to considering the first PC alone.
Moreover, the reduction of the feature size with the DBFE technique further
improved the accuracy of about 2%.

In [29], ICA was considered instead of PCA for computing the EMP. ICA, in
contrast to PCA, leads to a better extraction of the information sources (espe-
cially when they are non Gaussian). In experiments an hyperspectral image of the
center of Pavia (Italy) acquired by the ROSIS-03 sensor (see 6(a)) was consid-
ered. The classification was performed with a maximum likelihood classifier. The
overall accuracy obtained by the EMP built on the independent components
outperformed by 5% the overall accuracy of the classification of the original
hyperspectral data.

Kernel Principal Component Analysis instead of the conventional PCA was
considered in [32] as feature reduction technique for computing the EMP. Results
were obtained for three hyperspectral images, two acquired on the city of Pavia
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(Italy) (Fig. 6a, b) and one on Washington DC Mall (1,280 9 307, 189 spectral
bands, 2.8 m spatial resolution). An SVM classifier with linear and Gaussian
kernels was considered in the experiments. The results obtained proved that KPCA
can extract more informative components with respect to PCA. In fact, the EMP
computed on the KPCs increased up to +20% and +5% the overall accuracy
obtained by the classification of the hyperspectral data and with the EMP with
PCA, respectively.

Several feature extraction and selection methods were considered for building
the EMP. The classification maps obtained with a random forest and an SVM
classifier applied to the hyperspectral images reported in Fig. 6a and b, showed
how the EMP with PCA is not adequate in terms of overall accuracy with respect
to other techniques. In particular, NWFE and BDFS performed the best on the
experiments with both the classifiers.

The work presented in [5] was devoted to the fusion of spatial features extracted
through a standard EMP and the original hyperspectral data. This approach was
proposed to increase the amount of spectral information considered in the clas-
sification task. The experimental analysis was carried out on two hyperspectral
images of the city of Pavia (Italy) both acquired by ROSIS-03 sensor. The two
original images are shown in Fig. 6a and b. Feature extraction techniques were
also employed for reducing the dimensionality of the data and an SVM classifier
was used for generating the classification maps. For the university site (see
Fig. 6b), the overall accuracy increased from 79 to 84% without feature extraction
and to 88% with feature extraction, with respect to the EMP obtained with the
proposed approach.

In [38], an extension of the segmentation procedure based on the analysis of
DMPs for panchromatic images [2] was proposed. The novel segmentation tech-
nique was developed for automatic object detection in high-resolution images by

Fig. 6 Hyperspectral images
acquired by ROSIS-03 sensor
over the area of Pavia (Italy)
with 2.6 m of spatial
resolution. a Pavia, city
center, 1,096 9 715 pixels,
102 spectral bands; b Pavia,
University area, 610 9 340
pixels, 103 spectral bands
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combining spectral and structural information. In contrast to [2], the DMPs
computed on the first PCs extracted from the images were analyzed in order to
extract the connected components that best represent each object in the scene.
Three hyperspectral images were considered: the image of the center of Pavia
(Fig. 6a), the HYDICE image acquired over Washington DC Mall (1,280 9 307,
189 spectral bands, 2.8 m spatial resolution), and a 500 9 500 pansharpened
IKONOS image of Ankara (Turkey). The obtained results showed a more precise
segmentation of the images and a reduced oversegmentation effect with respect to
the maps obtained by the morphological characteristic of [2].

The extension of the EMP obtained by considering attribute filters (EAP,
EMAP Sect. 4.3) was used for the classification of two hyperspectral images
acquired on Pavia (see Fig. 6a, b) [36]. For the two data sets, the first four principal
components were initially considered in the analysis in order to extract more than
the 99% of the total variance of the multivariate original data. Four attributes were
considered in the analysis: (1) area of the regions; (2) diagonal of the box
bounding the region (as the area, this is a measure of the size of the regions); (3)
first moment invariant of Hu, or moment of inertia (it measures the elongation of
the regions), [20]; (4) standard deviation of the gray-level values of the pixels in
the regions (index related to the homogeneity of the regions). For each attribute an
EAP was computed with four thresholding values. The four EAPs were also
considered together as an EMAP (see Sect. 4.3). A random forest classifier was
employed for classifying the data. Again, the inclusion of the spatial information
led to an increase in accuracy up to 21.9% for the university data set with respect
to considering only the PCs. The EMAP performed best in terms of overall
accuracy for the center image with a gain with respect to the single PCs and the
EMP of about 2 and 1%, respectively. For the image of the university, the best
performance was achieved by the EAP with area attribute, which showed an
increase of overall accuracy of 2% and 12% over the EMAP and EMP,
respectively.

5 Conclusion

In this chapter an overview of the morphological profile (MP) in remote sensing
applications has been given. The MP proved to be an effective tool for the analysis
of high geometrical resolution remote sensing images because it is defined as a
composition of opening and closing by reconstruction transformations. Operators
by reconstruction permit to filter the image by entirely preserving the geometry of
those structures that are not erased from the scene. A recent generalization of the
MP based on morphological attribute filters led to the definition of attribute pro-
files, which, in contrast to MPs, show a great flexibility in modeling many different
structural features. The features of attribute filters make the attribute profiles, at the
present, one of the most promising developments of the MP concept.
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The problem of extending the morphological operators from scalar to multi-
tone images was also reviewed in this chapter and the solution that led to the
definition of the extended morphological profile (EMP) for multispectral and
hyperspectral images was presented. The vectorial image is reduced through
Principal Component Analysis for constructing the EMP to a reduced number of
images, on which MPs are computed. The EMP is finally obtained as the con-
catenation of the single MPs. As for the MP, the extension of the EMP based on
attribute filters was also investigated.

An overview of results obtained by experimental analysis of various techniques
developed using the MP and EMP were reported. A significant increase in clas-
sification accuracies was observed when features extracted by MP/EMP (or its
variants or extensions) were used for classification in comparison to approaches
that only use spectral information. Moreover, the capabilities of modeling the
structural features were further improved when considering the profiles computed
with morphological attribute filters. The better characterization of the spatial
information increased the classification accuracy. This analysis proves the
important role of the morphological profile for classification.
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Decision Fusion of Multiple Classifiers
for Vegetation Mapping and Monitoring
Applications by Means of Hyperspectral
Data

Karoly Livius Bakos, Prashanth Reddy Marpu and Paolo Gamba

Abstract In this chapter, we introduce methodologies for fusion of multiple
classifiers and a neural network architecture for mapping vegetation by means of
remote sensing imagery. It is very normal that different classification schemes
yield slightly different results for different classes. This effect is even more
prominent in vegetation mapping applications due to the inconsistent spectral
signatures of the vegetation classes. We study the possibility of combining the
results of different classifiers by considering the best results for individual classes
to produce an improved classification result. We propose two types of method-
ologies, one which uses only the classification result and the other which uses the
class membership values produced by the weak classifiers. A comparison is also
done with the simple majority voting scheme of the multiple classifiers. Our
experiments clearly show the improvement of classification accuracy using the
proposed fusion techniques.
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1 Introduction

Remote sensing data interpretation techniques presently play a key role in many
earth science, environmental and conservation applications. The availability of
these datasets simplifies and speeds up the procedure of carrying out several tasks
in those fields. Hyperspectral images are being increasingly made available in the
last few years and are slowly being used in several applications. These images are
characterized by their huge feature size with data recorded at a very fine spectral
resolution in hundreds of narrow frequency bands. These bands provide a wealth
of information regarding the physical nature of different objects in the scene
imaged by the sensors. However, the high dimensionality of the data also makes it
more difficult to use the data efficiently for classification. Moreover, there is a lot
of redundancy in the data which has to be reduced.

In general, in hyperspectral data interpretation, multiple steps are required in
order to achieve the final result which is most often a classification map of any
kind. The collection of these multiple steps is often referred to as processing chain.
In this study, we use the term processing chain according to [1], which consists of
two levels of processing with a providers side (radiometric correction, geometric
correction and atmospheric correction), and a user side (feature extraction/selec-
tion, classification, post-processing). Here, we only study the user side of the
processing chain, which means that we try to find optimal solution for the data
dimensionality reduction and the classification process.

In this chapter, we focus on vegetation mapping using hyperspectral data.
Vegetation is generally difficult to observe using remote sensing techniques, but
serves the basis of environmental and ecological applications of remotely sensed
data. For a long time now, remote sensing data interpretation was used to derive
land cover maps by mainly using multispectral imagery or aerial photography
interpretation techniques that have the great advantage of cutting down the
required field work, which is very demanding on resources. While using multi-
spectral imagery, the information that can be derived from the data is limited, and
apart from some broad approximation of a few physical properties of the observed
surfaces, it is mostly limited to the identification of the general land cover types in
the imagery. With hyperspectral images, it might also be possible to distinguish
between the sub-classes within the general land cover types.

The inconsistent spectral signature of vegetative surfaces makes most of the
existing interpretation methodologies very scene-specific. Therefore, most of them
can only have some indication on how a new scene could be processed. Because of
this, we suggest that only adaptive techniques can be applied in order to construct a
generally applicable processing chain for vegetation mapping. Because of the
nature of the problem, and the high level of complexity, it can be clearly seen that
adaptive learning from the data is crucial on each scene, whereby the proposed
methodologies are capable to extract useful information from the scene in a
supervised manner. The learning depends on the number of training samples, the
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distribution of the training samples and the methodologies used to carry out data
dimensionality reduction steps.

For supervised classification, different approaches and algorithms are available
[2]. In most cases, as was shown in previous studies [3] single stage classification
systems are not flexible enough to adapt to the complexity of the datasets.
Therefore, accurate classification becomes a particularly difficult task to carry out.
Although, there are both data dimensionality reduction techniques and classifi-
cation algorithms that are reported to be superior than others, the different studies
also shows that the performance is dependent on the class that is being detected
[4]. The methodologies that will be introduced in this chapter to combine the
results of multiple classifiers will address this situation by taking into account that,
even on a single scene, there can be land cover classes for which different pro-
cessing chains distinguish between different classes in a different way. A simple
example is when we have an image on which the best performance in terms of
overall accuracy can be achieved for instance using support vector machine (SVM)
[5] when the first 20 components of the principal components analysis (PCA)[6]
transformed image are used as inputs to the classifier. However, imagine that there
are two classes that show higher separability, when the first 15 components of the
minimum noise fraction (MNF) [7] transformation image are used for classifica-
tion using a simple Maximum Likelihood (ML) [8] decision rule. If such multiple
results can be combined to make a better decision, then more accurate classifi-
cation maps can be produced.

2 Study Area

The study area we selected for the experiments is the Indian Pine AVIRIS test site
located in the USA. It contains two-thirds of agriculture (some of the crops are in
early stages of growth with low coverage), and one-third of forest, two highways, a
rail lane and some houses. Ground truth determines 16 different classes (not
mutually exclusive) shown in Table 2.

2.1 Image Data

To carry out the experiments, we used the standard dataset acquired using Air-
borne Visible Infrared Imaging Spectrometer (AVIRIS) on June 12, 1992. This
dataset is often used for demonstration of new methodologies or making com-
parison among different image interpretation techniques. Water absorption bands

Table 1 Characteristics of
the Indian Pines AVIRIS data
set

Spectral range: 400–2,500 nm
Spectral resolution: 10 nm
Spatial resolution: 1.5 m (variable)
Swath width: 1.0 km (variable)
Sampling: scene based (145 samples, 145 lines)
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(104–108, 150–163 and 220) were removed [9], obtaining a 200 band spectrum at
each pixel (Table 1).

A false colour composite of the image using bands 90, 42, 11 for red, green and
blue respectively is shown in Fig. 1.

2.2 Field Data

The available field data for the Indian Pines site is shown in Fig. 2 and Table 2
showing the number of samples within each class.

The image contains 16 different land cover classes as listed in Table 2. Because
of the limited number of pixels available in some of the classes, we used only a
nine class subset of the original ground truth. This was done because of the fact
that the classes with limited representation do not allow to appropriately train the
different classifiers and to have enough samples to assess the interpretation accu-
racy without biasing the results. The choice of using the dataset with only the nine
classes we selected is also adopted in few other studies because of the same reason.

The ground truth that was used within the framework of the study is shown in
Fig. 3.

2.3 Training Data

The training set was obtained by systematic stratified random sampling of the nine
class ground truth image to get 10% of the ground truth coverage. The number of
training samples per class can be seen in Table 3.

Fig. 1 The Indian Pines
1992 dataset in false colour
composite

Fig. 2 The training data for
the AVIRIS Indian Pines
1992 dataset
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As can be observed in Table 3, there are classes that are over-represented within
the training and the ground truth data. Therefore, to measure the accuracy levels we
do not use the overall accuracy exclusively, but we also measure the accuracy levels
on a class by class basis and identify significant changes among them as introduced

Table 2 The Indian Pines
1992 AVIRIS data land cover
classes

Land cover class Number of pixels

Alfalfa 54
Corn not tillage 1434
Corn min. tillage 834
Corn 234
Grass-pasture 497
Grass-tree 747
Grass-pasture-mowed 26
Hay windrowed 489
Oats 20
Soybean to tillage 968
Soybean min. tillage 2468
Soybean clean 614
Wheat 212
Woods 1294
Bldg.-grass-tree-drives 380
Stone-steel-towers 95

Fig. 3 The nine class ground
truth map that was used in the
study where the colour table
is identical to the 16 class
ground truth image

Table 3 The number of
samples per classes within the
training data

Class # Class name # of training samples

1 Corn not tillage 143
2 Corn min. tillage 83
3 Grass-pasture 50
4 Grass-tree 75
5 Hay windrowed 49
6 Soybean to tillage 97
7 Soybean min. tillage 247
8 Soybean clean 61
9 Woods 129
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in Sect. 4. In doing this, we mitigate the effect of the number of samples on the final
evaluation. For instance Class 7 has significantly more samples for validation than
any other class and hence very small change in the accuracy value of this class has
huge effect on the final overall accuracy of the classification.

3 Methods for Fusion of Multiple Classifiers

A large number of methods have been developed for fusing the results of multiple
classifiers often named as decision fusion, ensemble of classifiers or mixture of

experts [10–16]. There are generally two ways of fusing the classifiers. We can
either make a decision based on the results of individual classifiers (e.g., a simple
majority voting where the pixel is assigned to the class which gets the majority
votes using all the classifiers) or combine the classifiers before a decision is made
by them, to generate a final result using the membership values of the classes as
calculated by the individual classifiers. A very good overview of the types of
multiple classifier fusion methods is given in [17–19]. In this chapter, we present
methodologies of both the mentioned types.

3.1 Decision Fusion Using Hierarchical Tree Structure

Hierarchical classification and ensembles are well known in data classification
methods [2]. In this part, we introduce a methodology to create an ensemble of
different classifiers using a hierarchical tree structure by means of a simple learning
algorithm. The learning is based on the initial analysis of the available data and it
optimizes the structure of a binary decision tree (BDTC) like ensemble in terms of
nodes, inputs, and decision rules to be applied at each node. This can be useful when
sets of data dimensionality reduction techniques and classification algorithms are
already available for the user. The aim is to combine the classification results of
different processing chains using an ensemble that enables to achieve higher
mapping accuracy level than any of the individual processing chains.

The proposed algorithm uses an approach where the learning uses a per class
approach as opposed to traditional learning techniques where a ‘‘per sample’’
approach is employed. The learning mechanism starts with a series of initial pre-
classifications of a limited subset of the data and class confusions are measured.
Using the obtained confusion values the following information is aimed to be
obtained:

• for each class the processing chain that enables the most accurate discrimination
of the particular class

• a ranking of classes based on the previously identified best possible discrimi-
nation from highest to lowest accuracy level

152 K. L. Bakos et al.



This information then enables the generation of a hierarchical decision tree like
ensemble design which we use together with a sequential data classifier. In
practice, the design of the decision tree structure starts with the full set of con-
fusion matrices obtained from the results of different classifiers, each one con-
taining all the vegetation classes in the training data (nine classes in our test set,
see Table 2). The procedure iteratively identifies the combination of a class and an
input source for which the effective accuracy defined using (1) is maximal. After
the class-input set has been identified, the class is removed from the full set of
confusion matrices and the diagonal element of the selected class is set to 0. The
procedure is then repeated until each class is selected once. Eventually, a decision
tree configuration is obtained by means of the selected input and class combina-
tions. The first chosen pair corresponds to the first node of the BDTC, while other
combinations are used to build the BDTC classifier by means of a top-down
approach.

The effective accuracy, Aw for the estimation procedure is calculated using the
formula:

Aw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
p � A

2
u

q

2
ð1Þ

where Ap, Au are the producer and user accuracy values respectively for the class
of interest. An example representation of a BDTC design can be seen in Fig. 4 and
Table 4.

In this example, according to Table 2 the sequential classification starts with the
classification of the MNF transformed data with the ML algorithm. For the next
node, we mask out the pixels labelled as class A from all the available inputs. The
masked pixels are labelled as belonging to class A in the final result. We then
classify the PCA input using the SVM classifier and repeat the same procedure as
for Class B. Iteratively, the full map is obtained.

Fig. 4 Hierarchical tree
structure of the ensemble
classifier where at each node
a different input is used and a
different decision rule is
applied for sequential
extraction of classes
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3.2 Decision Fusion Using the Hierarchical Tree and Class

Membership Values

The previous methodology can be improved using a simple learning mechanism
that uses class membership values provided by the various classifiers. Most of the
classifiers use a likelihood estimate for classification, hence for each pixel, it is
possible to define a membership value to see how probable is that the pixel belongs
to a particular class. We use these class membership values obtained by the weak
classifiers for creating an ensemble classifier. One disadvantage of the method-
ology is that the different classifications must be obtained for the full scene in
advance and therefore it is not computationally effective as opposed to the hier-
archical tree structure estimation introduced earlier in the chapter. In order to
reduce computational costs, we used the hierarchical structure and only considered
those processing chains that were identified to be suitable for the hierarchical tree
structure ensemble.

We carry out the classification on the full scene using therefore only the
selected processing chains and store class membership values for each class.
The learning algorithm then works as follows:

• at every pixel, the best three classifiers are identified by ranking the maxima of
membership values calculated for each classifier

• membership values are weighted using values 3, 2 and 1 respectively and are
mapped into a data cube

• the class label having the highest aggregated membership value is assigned to
the pixel.

The process is shown in Fig. 5.
In the figure above it can be seen how the procedure described earlier works.

The threshold unit thresholds adaptively the soft classification results and keeps
only the three highest probability values. Afterward the weighting unit weights
each of these triplets with 3, 2 and 1 from highest to lowest respectively and maps
the values into a data cube. The data cube aggregates the weighted probability
values for each class. The weights applied are only empirical and are used to
emphasize the most appropriate classifications at each simple processing chain.
At the last step the final map is generated by rule classification of the mapped data
cube by selecting the highest possible aggregated weighted probability value and
labels the pixel accordingly.

Table 4 The design for the BDTC ensemble: in Fig. 4 MNF refers to minimum noise fraction
transformation, PCA referrers to principal components analysis transformation, and FS referrers
to selected features

Node # Class to label Input Decision rule

1 B MNF Maximum likelihood
2 A PCA Support vector machine
3 C and D FS Spectral Angle Mapper
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3.3 Class-Dependent Neural Networks Ensemble

Feed-forward neural networks are well established as one of the standard methods
for classification applications [20, 21]. Class-dependent neural networks are
simply the feed forward neural networks that can ideally map the input values of
the class of interest to a value of 1 and the values of the rest of the classes to a
value of 0 [22]. A fusion of these class-dependent networks may be done using
a second level neural network which compares the pattern of the result of class-
dependent networks and produces a final probability of all the classes. Fig. 6
shows the architecture of ensemble of class-dependent neural networks. NN1, NN2,
…, NNK are the class-dependent networks for K classes. The second level network
NNtot uses the output of the class-dependent networks and maps the patterns to
final probabilities (m1, m2, …, mK). To ensure a proper training of the networks,
Kalman filter training is first used and the weights are refined using the scaled-
conjugate gradients algorithm [23]. To avoid the problem of over fitting, only two
layered neural networks are used and the number of neurons in the hidden layer of
the networks depends on the number of input nodes. The number of hidden
neurons is one more than the number of input nodes.

There are certain advantages using this architecture. It uses the fact that we do
not require the entire feature space to distinguish one class of interest from the
other classes. Every class has maximum separability with other classes in a dif-
ferent feature subspace. So, by dealing with the classes in a parallel manner with
different inputs to each of the class-dependent networks, we may reduce the
redundancy. As we are dealing with relatively smaller feature sub-spaces, it also
accounts for the Hughes phenomenon which says that the classification accuracies
are affected in a higher dimensional feature space when only a limited number of
training samples are present [24].

While the mentioned advantages make the architecture attractive, it still has
some problems when the classes are not fully separable and when there are not
sufficient number of training samples. When the classes are not fully separable, the
patterns produced by the class-dependent networks may vary a lot within the class
and this further complicates the result of the second-level network leading to lower
accuracies for the non-separable classes compared to the regular classifiers which

Fig. 5 The representation of
class probability based
ensemble classifier structure,
where CLn refers to different
classifiers the TU is a
threshold unit WU is the
weighting unit and CLtot

refers to the final classifier
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deal with all the classes in the same feature space. So, it is very important that a
proper feature sub-space is selected to attain an appropriate classification result.

The following options can be considered for instance, when identifying the
features for every class.

• The univariate Jeffries-Matusita distance for every class combination in every
band can identify the features in which the class combinations are highly sep-
arable [2, 25]. These features can be used to build the feature sub-space. In the
cases where the classes are partially separable, more than one feature can be use
for the classification.

• The decision boundary feature extraction (DBFE) method can be used to
identify the projections in which the individual class combinations are most
separable, and a feature space for every class can be built using the features
extracted using DBFE over all the class combinations involving the class of
interest.

Please note that although the architecture is presented as decision fusion
architecture, it can be used as a regular classifier in the hierarchical decision tree
classifier explained in Sect. 3.1.

4 Accuracy Assessment

For testing classification accuracy levels obtained by all the above mentioned
approaches confusion matrices are used. The overall accuracy is suitable when
the number of observations for each of the classes is not so different. This may not
be possible in all the cases like the example used in this chapter. In this chapter, we
use the accuracies of the individual classes separately to analyze which of the
classes are classified well. Another reason to consider the individual classes

Fig. 6 The architecture of
ensemble of class-dependent
neural networks
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separately is to determine the relative significance of classification accuracies of
different classification results as will be discussed in Sect. 4.1.

4.1 Comparison of Classification Results

A simple comparison of the accuracies of each class when comparing the results of
two different classifiers is not the right way to establish the superiority of one
classifier over other. A very important consideration is the fact that accuracy
assessment is a statistical method which demands a reasonable number of obser-
vations to establish the significance. The results of accuracy assessment are not
reliable with a small number of observations. Following [13], this section explains
how to compare two classifiers when the number of test observations is different
for different classes.

The estimated variance of the misclassification rate can be derived as [13]

r̂2 ¼
ĥ 1� ĥ
� �

n
ð2Þ

where n is the number of observations and ĥ is the estimated misclassification rate.
The equation of estimated variance of misclassification rate has an interesting

outcome. We can determine the number of observations required to claim that two
values resulted from the classifications using two different classifiers are signifi-
cantly different. For example, consider a misclassification rate of h = 0.1, i.e.,
90% accuracy. If we want to claim that 95 and 90% accuracies are significantly
different then the standard deviations should not be greater than 0.025 i.e., 2.5%.
Using Eq. 2, n is equal to 144.

It has to be noted that we need 144 samples in the above case just to say that the
accuracies are significantly different but then even more samples are required to
actually establish that the difference of 5% is valid. As the differences decrease,
even more samples would be required.

Ac1 ¼
Acþ ð4=nÞð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Acþ ð4=nÞð Þ2� 1þ ð4=nÞð Þ � Ac2ð Þ
q

1þ ð4=nÞð Þ

Ac2 ¼ Acþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
n
� Ac � ð1� AcÞ

r

ð3Þ

On the other hand, if we have to compare two classifiers using the same number
of test observations, Eq. 3 may be used to derive the lower and upper limits of
range of values which are not significantly different with respect to the given
classifier. Given a class with n test observations and the accuracy of the class using
a classifier CL1 as Ac, we can calculate the values Ac1, Ac2 as the lower and upper
limits of the range of values around Ac in which the results of the other classifiers
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are statistically not significantly different from the result of CL1. The result of a
classifier CL2 can be regarded as significantly different to that of the result of CL1,
if the accuracy of CL2 is not in the range defined by [Ac1, Ac2].

5 Results

To provide significant results, a huge number of processing chains were tested, but
only the most relevant chains will be mentioned here. For the study, we used
combinations of numerous feature selection/feature reduction methods and clas-
sification methods for preliminary assessment of classification performance. The
applied methods are summarised in Tables 5 and 6.

We will first summarize the results of the classification algorithms and then
compare them with the results of the proposed multi-classifier fusion algorithms.
Even if the class dependent networks architecture is an ensemble classifier and
should be seen as a fusion algorithm, it is still used as a regular classifier as it is
also seen as a modification of feed forward neural networks. There are currently
ongoing attempts to use a similar architecture using different types of classifiers
instead of just neural networks.

5.1 Results of Various Tested Classifiers

The results of the classifiers are shown in Figs. 7, 8, 9, 10, and 11 using different
inputs and will be first summarized. The results of class dependent networks
architecture will be then provided with a comparison to the regular classifiers. We
then provide the results of the proposed multi-classifier fusion algorithms and
check if there is any significant improvement in the results after the fusion. As
mentioned before, different classifiers with different inputs will produce very
different classification results. The differences can be easily observed from the
results provided in this section. This not only gives some idea on the differences
among different processing chain performances, but also gives the opportunity for
direct comparison with the introduced decision fusion methodology results.

Just by visual inspection of the different classification maps obtained by single
stage classifications of the data, it can be seen that the methodologies for classi-
fication behave differently and it is also visible that the results of some of the

Table 5 The applied data
dimensionality reduction
techniques

1 Feature selection based on transformed divergence index (FS)
2 Principal components analysis (PCA)
3 Minimum noise fraction transformation (MNF)
4 Decision boundary feature extraction (DBFE)
5 Independent Components Analysis (ICA)
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inputs (transformed data) have similar tendencies on the final map. For instance, it
can be seen that using any of the methodologies, if the input is MNF, ICA or PCA
transformed layer there are more pixels that are labelled to belong to class 2 (corn
no tillage). Also, it is worth mentioning that comparing the images, only MNF and
ICA images enabled any of the classifier to detect homogeneous areas of class 6
(Soybean no tillage) and most of the other data dimensionality reduction tech-
niques resulted in only sparse individual pixels labelled as the same class. Beside
the classification maps obtained, the accompanying accuracy tables are also very
important in order to understand the differences among different processing
chains. The accuracy tables are quite large amount of tabular data. Therefore, we
do not present them entirely but we show the user and the producer accuracy
values on a per class basis. The overall classification accuracy values are also
given in the tables (Tables 7, 8, 9, 10, and 11) for the processing chains.

In general, it can be seen that different classifiers result different accuracy values
both in terms of overall accuracy and in terms of accuracy measured on a per class
basis as can be expected. The classification using the FS image did not produce
better accuracies with any of the classifiers that were used, while ICA, MNF, PCA
and DBFE in most cases produced satisfactory results. The more advanced

Table 6 The applied decision rules for data classification

1 Minimum distance classifier (MD)
2 Spectral Angle Mapper (SAM)
3 Mahalanobis distance classifier (MAH)
4 Maximum likelihood classifier (ML)
5 Support vector machine (radial basis function kernel) (SVM)
6 Neural network classification with back propagation algorithm (NNBP)
7 Neural Network using mixed Kalman filter and scale conjugate gradient learning (NNK+S)
8 Class dependent neural network

FS ICA MNF

PCA DBFE

Fig. 7 Classification images
obtained by Mahalanobis
distance classifier using
different data dimensionality
reduction techniques
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FS ICA MNF

PCA DBFE

Fig. 8 Classification images
obtained by minimum
distance classifier using
different data dimensionality
reduction techniques

FS ICA MNF

PCA DBFE

Fig. 9 Classification images
obtained by maximum
likelihood classifier using
different data dimensionality
reduction techniques

FS ICA MNF

PCA DBFE

Fig. 10 Classification
images obtained by SVM
classifier using different data
dimensionality reduction
techniques
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FS ICA MNF

PCA DBFE

Fig. 11 Classification
images obtained by neural
network classifier using
different data dimensionality
reduction techniques

Table 7 Accuracy values for the Mahalanobis classifier

Class FS ICA MNF PCA DBFE

P U P U P U P U P U

1 66.74 56.33 77.55 70.03 80.89 71.78 77.41 67.72 74.48 68.11
2 21.58 19.89 50.72 40.52 64.39 43.69 44.96 39.39 43.53 42.81
3 69.01 60.49 66 83.25 82.29 89.69 65.79 82.78 76.46 85.01
4 93.57 83.61 94.78 82.42 94.24 89.8 94.91 83.31 95.45 89.24
5 99.59 96.63 99.59 98.58 99.59 100 99.59 98.38 99.39 99.59
6 46.8 40.77 79.55 64.33 80.37 64.56 79.13 63.57 79.44 61.67
7 41.33 61.15 50.69 79.43 49.11 80.05 48.82 77.94 54.21 80.6
8 62.7 38.85 73.45 44.43 78.18 58.54 76.87 43.78 71.34 40.78
9 80.29 97.65 91.04 99.92 95.36 100 91.42 99.92 93.66 99.84
OA (%) 59.5292 71.7817 74.9171 70.9898 72.4131

Table 8 Accuracy values for the minimum distance classifier

Class FS ICA MNF PCA DBFE

P U P U P U P U P U

1 58.65 30.35 77.75 70.88 72.45 75.89 58.58 31.37 58.86 31.56
2 16.79 27.13 53.96 36.41 51.32 36.03 18.11 25.04 16.31 23.78
3 3.22 6.56 66 84.54 66 86.09 3.22 8.79 2.01 6.71
4 77.11 62.07 96.12 82.72 98.39 79.55 81.53 69.76 82.86 68.93
5 97.96 74.49 99.39 100 99.59 100 99.39 77.39 99.18 78.35
6 8.16 26.33 70.76 48.04 76.55 43.33 10.54 35.29 12.29 42.5
7 12.72 62.18 36.35 78.55 29.13 69.54 14.91 63.12 16.53 67.44
8 37.46 12.06 68.4 41.14 71.82 44.59 48.05 14.38 46.42 13.9
9 93.97 79.43 93.04 99.92 97.45 99.84 87.56 77.71 90.42 78.16
OA (%) 41.6372 67.4478 66.1209 42.8036 43.6169
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Table 9 Accuracy values for the maximum likelihood classifier

Class FS ICA MNF PCA DBFE

P U P U P U P U P U

1 70.92 62.13 80.68 78.49 88.15 82.51 83.33 77.2 83.54 79.5
2 58.75 51.91 79.14 74.83 83.33 72.7 79.14 75.86 38.25 89.36
3 85.71 86.06 94.57 95.53 97.18 93.79 95.37 94.42 90.34 95.74
4 96.79 97.31 98.13 96.19 98.8 97.36 97.59 96.56 97.59 96.3
5 99.39 99.79 98.98 100 99.59 100 98.98 100 99.18 100
6 61.05 55.23 77.69 78.74 85.54 80 81.3 79.1 64.88 84.98
7 55.71 68.78 79.9 81.09 76.18 87.16 75.73 83.55 90.96 62.81
8 67.92 64.95 79.8 86.27 86.48 86.76 85.67 80.18 20.68 94.07
9 98.69 96.16 99.54 99.38 99.38 99.46 99.69 99.38 99.61 97.5
OA (%) 72.7876 85.6715 87.6619 85.7571 79.9251

Table 10 Accuracy values for the SVM classifier

Class FS ICA MNF PCA DBFE

P U P U P U P U P U

1 62.9 61.49 81.87 77.03 85.5 81.62 77.62 74.9 84.87 82.4
2 33.09 61.33 61.39 77.81 64.27 87.01 59.71 81.77 70.86 87.82
3 93.76 79.66 98.19 87.3 97.99 87.91 97.18 87.34 97.18 87.18
4 96.12 95.23 97.19 96.93 97.59 98.91 95.72 97.01 98.39 97.74
5 99.39 98.98 99.39 100 99.59 100 99.59 100 99.39 100
6 6.82 45.52 66.22 77.6 77.48 80.99 69.21 78.73 77.27 79.24
7 80.92 53.78 83.02 75.47 84.52 79.35 83.47 75.38 84.32 79.28
8 44.63 55.02 73.13 81.64 85.83 87.83 75.57 77.33 73.94 83.92
9 95.6 99.6 98.61 99.84 99.54 99.54 99.15 99.53 99.54 99.61
OA (%) 68.7212 83.4778 86.8486 83.1782 86.4955

Table 11 Accuracies of NN classifier (using Kalman filter and scaled gradient training)

Class FS ICA MNF PCA DBFE

P U P U P U P U P U

1 64.99 64.54 79.64 78.33 88.91 83.17 78.45 72.49 88.42 83.2
2 64.39 62.08 66.43 76.52 80.1 84.77 65.47 73.39 74.7 89.51
3 90.54 83.03 94.16 87.15 93.36 87.71 91.95 87.72 93.96 88.28
4 96.65 93.89 96.52 97.3 96.12 95.23 92.9 93.91 95.85 95.21
5 98.98 98.17 99.39 99.79 99.39 98.98 100 98 99.59 98.58
6 61.26 66.04 81.3 75.31 86.16 83.99 73.97 73.29 81.61 80.04
7 73.26 70.71 82.17 82.01 83.63 85.36 80.23 79.94 86.43 84.61
8 66.61 83.47 79.97 83.93 78.5 90.26 69.87 79.15 78.34 88.42
9 96.52 97.05 98.76 98.69 99.3 98.47 97.84 97.84 98.92 98.61
OA (%) 76.88 85.13 88.56 82.42 88.23
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techniques such as SVM and NN classifiers are performing better than the other
classifiers with an exception of ML classification on MNF image, which resulted in
a good value in terms of accuracy. We used this classification as a reference for
assessing the performance of different classifiers. The reason for this is that ML is
the most commonly used methodology by users as it does not require much com-
putational power or experience.

5.2 Results of Class Dependent Neural Networks

Based on the results of neural network classification from the previous section,
only MNF, ICA and DBFE inputs are used as they give better results compared to
the other inputs. When MNF and ICA subsets are used, all the available features
are used at the input layer of all the class dependent networks. This is to ensure the
maximum separability as it is difficult to find feature subspaces in the image data
which is already a subset of MNF or ICA transformation. To use different inputs
for different classes, we used the DBFE algorithm to find features for all the class
combinations and those features identified for every class are used at the input
layer of the corresponding class dependent network. In Tables 12 and 13, DBFE
corresponds to the case when all the DBFE features are used at the input layer of
the class dependent networks and DBFE-CD corresponds to using different fea-
tures extracted using the DBFE algorithm for the individual class combinations.

Also, as the classes have different number of training samples, a classification is
also done by making copies of the training samples of every class to have a similar
number to that of the maximum available training samples for any class. This we
believe removes the bias to the classes having more samples. But at the same time,
as we are not adding any extra information, the overall classification is still not
better when we only have limited samples to generalize the entire distribution of
the class or when the classes are not completely separable. This is the case with the

Table 12 Results of class dependent networks architecture

Class ICA MNF DBFE DBFE-CD

P U P U P U P U

1 75.03 74.57 86.05 80.87 78.87 85.1 82.15 41
2 52.52 74.87 60.79 87.72 62.35 83.6 59.71 86.16
3 91.55 77.65 85.31 95.28 84.1 88.75 83.1 91.17
4 95.58 93.21 93.04 95.86 95.05 96.47 95.58 93.95
5 99.59 99.59 99.59 93.65 99.59 99.8 98.77 97.97
6 76.45 72.91 75.1 68.78 68.7 79.07 71.69 82.13
7 76.18 70.04 79.74 74.18 85.74 68.39 84.4 71.07
8 60.26 75.05 69.22 82.52 66.12 82.69 64.66 78.93
9 98.07 98.83 99.23 96.83 97.99 99.61 99.3 97.57
OA (%) 79.5 82.95 82.63 82.88
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present dataset. The class combinations 1–2, 1–6, 1–7, 2–6, 2–7, 3–4, 6–7, 7–8 are
not completely separable with most of the problem with classes 2, 6, 7, 8, and there
are limited samples for classes 2, 3, 5 and 8. So, we generally expect lower
accuracies using the class dependent networks architecture compared to a feed
forward neural network classifying all the classes at a time unlike the example in
[14] where the architecture performed better due to better separability of the
classes and reasonable size of the training data.

By comparing the results, it can be easily observed that the bias towards class 7
is reduced and classes 2, 6, 8 have better accuracies. The overall accuracy is
misleading here because it is biased towards classes having more observations.
However, as explained before, the architecture does not outperform the regular
neural network classifier due to the poor separability of the classes but the results
can still be used in the other decision fusion methods.

5.3 Results of Decision Fusion Using Hierarchical

Tree Structure

The performance of the hierarchical ensemble was assessed by comparing the
performance of classification on a per class basis with the traditional single stage
classification based processing chains. Here we also use the results of the best
performing single stage classifier based processing chain (ML algorithm on MNF
image) to see whether there are any improvements by applying an ensemble.

As shown in Table 14, the hierarchical tree structured ensemble uses different
inputs and classification rules at different nodes adapting to the data properties. In
Fig. 12 the visual differences among the best single stage methodology is
visualized.

Table 13 Results of class dependent networks architecture after duplicating the training samples
for classes having fewer samples

Class ICA MNF DBFE DBFE-CD

P U P U P U P U

1 75.45 71.28 85.36 74.95 81.45 79.08 80.13 80.86
2 66.79 50.91 75.9 61.82 66.07 75.79 70.26 72.52
3 91.35 75.67 89.34 91.55 82.49 85.42 82.7 85.09
4 93.04 93.16 94.91 93.04 95.18 97.4 94.51 96.45
5 97.34 98.14 99.59 99.8 98.57 98.77 97.55 98.96
6 85.64 63.23 89.15 61.86 80.68 68.39 78.2 69.64
7 52.96 80.83 56.69 86.73 76.13 74.33 72.93 72.46
8 75.9 67.44 81.11 77.45 65.8 81.62 63.19 72.12
9 96.29 97.12 98.76 98.16 98.3 99.53 99.07 97.86
OA (%) 76.10 80.64 81.95 80.86
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For comparison we also tested the methodology against a known method of
ensemble classification the majority voting approach [2]. However it is important
to mention that while the majority voting approach by its nature requires the
classification to be done for the full scene using all methodologies as opposed to
the proposed optimization methodology for the hierarchical ensemble where only a
small subset of the image must be processed. This is because majority voting
approach is using the final labels of different classifications on a per pixel basis for
the whole scene for labelling (Fig. 13).

As seen in the figures above, just by visual interpretation it is difficult to
identify differences among the different classification results. However the accu-
racy levels per class given in Table 15 are better reflecting the differences among
different approaches.

The hierarchical ensemble classification (see Table 15) not only outperforms
the best single stage classifier based processing chain but also gains higher
accuracy levels than a majority voting procedure. At the same time the approach
requires less computational power than carrying out majority voting and also only
the relevant inputs and methodologies are selected to be included within the
classification procedure.

There are some limitations of the methodology too as mentioned earlier in this
chapter such as the inability to significantly boost the accuracy level and the
requirement for good quality training and validation samples for the design pro-
cedure. The former limitation is simply based on the fact that it is not a novel
classification methodology but only a way to create ensemble with a reasonably

Table 14 The hierarchical
tree structure for the Indian
Pines dataset

Node # Class to label Input Decision rule

1 5 MNF ML
2 9 DBFE SVM
3 4 MNF SVM
4 3 MNF ML
5 8 MNF SVM
6 1 MNF NN
7 7 DBFE CDNN
8 6/2 ICA NN

Fig. 12 Classification image
of the hierarchical tree
ensemble and the best single
stage processing chain
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optimal design and hence the absolute performance of the system is determined by
the classifiers that are used to create the ensemble structure. The latter limitation is
also valid for any other classification. While using the top-down hierarchical
design approach the ensemble classifier can be misled and more significant errors
can be introduced than when a single stage data splitting is carried out.

5.4 Results of Hierarchical Tree Coupled with Probability

Labels

The results of the approach is shown in Fig. 14 to visually compare with the best
performing single stage classifier based processing chain (ML on MNF input) and
also accuracy levels on a per class basis are provided in tabular format.

The visual inspection of the classification maps shows that the ensemble
classifier that uses probability labels resulted in a smoother classification image
containing less individual pixel errors compared to the single stage classification
approach. Also the field boundaries are more recognisable without less pixel noise
(Table 16).

The methodology provided the highest overall accuracy level among the dif-
ferent classifiers tested on the image. The classification image looks more realistic

Fig. 13 Classification image
obtained by the majority
voting approach

Table 15 The accuracy levels per class of hierarchical ensemble, best single stage classification
and majority voting procedures

Class BDTC ML_MNF Majority vote

P U P U P U

1 92.19 82.73 88.15 82.51 91 77.59
2 80.1 95.43 83.33 72.7 76.62 89.25
3 98.19 92.6 97.18 93.79 95.37 95.18
4 99.2 98.15 98.8 97.36 99.6 95.63
5 99.59 100 99.59 100 99.59 99.59
6 81.1 86.93 85.54 80 88.12 85.81
7 85.78 86.66 76.18 87.16 77.35 89
8 91.04 87.76 86.48 86.76 90.39 73.71
9 99.61 99.54 99.38 99.46 99.54 99.84
OA (%) 90.4839 87.6619 88.3253
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containing less individual pixel errors. However, as most of the classifiers are
producing relatively high accuracy values, it is more difficult to improve it.

5.5 The Assessment of Significance of the Accuracy Values

The assessment was done according to the methodology described in Sect. 4 the
accuracy assessment section of the chapter. The results are shown in tabular format
where the sign ‘‘+’’ and sign ‘‘-’’ shows the significantly higher and the signifi-
cantly lower accuracy levels against the best achieved accuracy level per classes
respectively.

As can be seen in Table 17, the probability based ensemble outperformed the
maximum likelihood approach on the MNF input band in case of the class 7
(Soybean no tillage) and class 1(Corn no tillage) and has similar accuracies for all
the other classes. However, as mentioned before, class 7 is not separable with most
of the other classes and furthermore had the highest number of samples in the
scene. In comparison with the BDTC approach, the probability based ensemble
performs significantly better in the case of classes 6 and 7 but has lower accuracies

Fig. 14 The classification
map obtained by using the
class probability label
approach compared with the
best performing single stage
classifier

Table 16 The accuracy
levels per class of
hierarchical ensemble using
probability labels

Probability label

Class P U

1 90.38 84.98
2 82.35 94.88
3 96.98 92.15
4 99.06 96.99
5 99.59 99.39
6 83.97 83.03
7 88.61 87.41
8 83.63 94.63
9 99.61 99.46
OA (%) 90.8964
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in the case of classes 1 and 8. But on the whole, it is clear that the decision fusion
methodologies are improving the results.

6 Conclusions

As it was shown within this chapter decision fusion is a relatively better technique
for hyperspectral data processing. The class based selection of features and the
actual classification that were carried out using the decision fusion methods
enabled to carry out a better quality interpretation of the hyperspectral dataset as
opposed to processing chains using single stage classification algorithms. The
main aim of the experiments was to study the possibility of fusing decisions while
classifying an image and this is successfully realized.

In this study, we introduced decision fusion methodologies that are relatively
simple and are capable of improving the quality of hyperspectral data processing
aimed at generic vegetation mapping applications. The challenge of taking into
account the vegetation specific properties of spectral signatures were addressed by
the flexible approaches that enable the class labelling procedure to be done using
the most appropriate features on a per class basis. We also introduced the class
dependent neural network algorithm where both the training and the actual clas-
sification are carried out using separated features that are specific for the classes
that are being detected. Even if it did not provide better results for the dataset used
in this study due to the issue of poor separability of classes, it can be seen as a fair
methodology when the classes can be separated using a non-linear decision
boundary.

A methodology was introduced that is capable of designing a hierarchical tree
structured ensemble for decision fusion of multiple classifiers. A methodology was
also proposed for fusing decisions by using class membership values. Although the
proposed methods enable users to improve their data classification, there are
certain limitations that require further research in the area. The usage of class
membership values produced by different processing chains has to be further

Table 17 The lower and upper limit of significance calculated for the best performing classifier
for producer and user accuracy levels per classes

Class Lower limit, P Probability, P Upper limit, P ML on MNF, P CDFNN, P BDTC, P

1 88.7 90.38 91.93 - - +

2 79.46 82.35 84.9 -

3 94.79 96.98 98.36 -

4 98.05 99.06 99.77
5 98.49 99.59 100.17
6 81.38 83.97 86.25 - -

7 87.23 88.61 89.85 - - -

8 80 83.63 86.24 - +

9 98.98 99.61 99.91

168 K. L. Bakos et al.



studied instead of using the current empirical weighting of the three best results.
This can be very useful for end users who already have some processing chain
elements implemented or as a part of a commercial software and want to combine
them. Both the BDTC and the probability value based ensemble methodology are
simple enough to be easily adopted. This is particularly useful in cases when there
are classes present on the scene that cannot be mapped using the same processing
chain because there is no processing chain that is suitable for both the classes
evenly.

Also we see many areas of class-dependent neural network classifier that could
be investigated to improve the classification of hyperspectral datasets even if the
classes are not completely separable. This can be done for instance by using
different configurations for the individual class dependent networks to better adapt
to the data properties and the used inputs. Regarding the hierarchical ensemble tree
structure, a simple way was introduced for selecting the optimal design for the
structure. It would be worth investigating to select multiple processing chains at
every node instead of basing the decision on the best processing chain at that node.
Also, another significant improvement would be to use the spatial information
(e.g., class labels or class membership values of the neighbouring pixels) for
decision fusion of multiple classifiers.
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1 Introduction

Remotely sensed images allow Earth Observation with unprecedented accuracy.
New satellite sensors acquire images with high spectral and spatial resolution, and
the revisiting time is constantly reduced. Processing data is becoming more
complex in such situations and many problems can be tackled with recent machine
learning tools. One of the most critical applications is that of image classification,
but also model inversion and feature extraction are relevant in the field. This
chapter will focus on these important problems that are subsequently outlined.

1.1 Classification with Kernels

The characteristics of the acquired images allow the characterization, identifi-
cation, and classification of the land covers [1]. However, traditional classifiers
such as Gaussian maximum likelihood or artificial neural networks are affected
by the high input sample dimension, tend to overfit data in the presence of noise,
or perform poorly when a low number of training samples are available [2, 3]. In
the last few years, the use of support vector machines (SVMs) [4, 5] for remote
sensing image classification has been paid attention basically because the method
integrates in the same classification procedure (1) a feature extraction step, as
samples are mapped to a higher dimensional space where a simpler (linear)
classification is performed, becoming nonlinear in the input space; (2) a regu-

larization procedure by which model’s complexity is efficiently controlled; and
(3) the minimization of an upper bound of the generalization error, thus fol-
lowing the Structural Risk Minimization (SRM) principle. These theoretical
properties, which will be reviewed in the next section, make the SVM in par-
ticular, and kernel methods in general, very attractive in the context of remote
sensing image classification [6].

Another different concern is that a complete and representative training set
is essential for a successful classification. In particular, it is noteworthy that
few attention has been paid to the case of having an incomplete knowledge of
the classes present in the investigated scene. This may be critical since, in
many applications, acquiring ground truth information for all classes is very
difficult, especially when complex and heterogeneous geographical areas are
analyzed. In this chapter, we revise the one-class SVM for remotely-sensed
image classification with incomplete training data. This method is a recent
kernel-based development that only considers samples belonging to the class of
interest in order to learn the underlying data class distribution. The method was
originally introduced for anomaly detection [7], then analyzed for dealing with
incomplete and unreliable training data [8], and recently reformulated for
change detection [9].
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Remote sensing image classification is hampered by both the number and
quality of labeled training samples. In order to alleviate this problem, SVMs (or
any other kernel-based classifier) should exploit the information contained in the
abundant unlabeled samples along with the low number of labeled samples thus
working under the semisupervised learning (SSL) paradigm [10]. In this chapter,
we also review the SSL literature and provide some experimental evidence of the
use of semisupervised approaches for classification in challenging remote sensing
problems.

1.2 Model Inversion with Kernels

Remote sensing very often deals with inverting a forward model. To this aim, one
has to produce an accurate and robust model able to predict physical, chemical,
geological or atmospheric parameters from spectra, such as surface temperature,
water vapour, ozone, etc. This has been an active research field in remote sensing
for years, and kernel methods offer promising non-parametric semi-empirical
solutions. Kernel developments have been published in the last years: support
vector regression (SVR) methods have been used for parameter estimation [11–
14], and a fully-constrained kernel least squares (FC-KLS) for abundance esti-
mation [15]. Also, under a Bayesian perspective, other forms of kernel regression
have been applied, such as the relevance vector machine (RVM) [16] or the
Gaussian process (GP) regression [17, 18].

1.3 Feature Extraction with Kernels

Recently, some attention has been paid to develop kernel-based feature extraction
methods for remote sensing data processing. The main interest is to extract a
reduced number of (nonlinear) features with high expressive power for either
classification or regression. Particular applications to remote sensing are the
Kernel Principal Component Analysis (KPCA) [5] and the Kernel Partial Least
Squares (KPLS) [19].

The rest of this chapter is outlined as follows. Section 2 presents a brief
introduction to kernel methods, fixes notation, and reviews the basic properties.
Section 3 is devoted to review the classification setting, under the paradigms of
supervised, semisupervised, and one-class classification. Section 4 presents the
advances in kernel methods for regression and model inversion. Section 5 reviews
the field of nonlinear feature extraction with kernels. Section 6 reviews the recent
developments and foresees the future trends in kernel machines for remote sensing
data analysis. Section 7 concludes the chapter with some final remarks.
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2 Introduction to Kernel Methods

This section includes a brief introduction to kernel methods. After setting the
scenario and fixing the most common notation, we give the main properties of
kernel methods. We also pay attention to kernel methods development by means of
particular properties drawn from linear algebra and functional analysis [20, 21].

2.1 Measuring Similarity with Kernels

Kernel methods rely on the notion of similarity between examples. Let us define a
set of empirical data ðx1; y1Þ; . . .; ðxn; ynÞ 2 X � Y, where xi are the inputs taken
from X and yi 2 Y are called the outputs. Learning means using these data pairs to
predict well on test examples x 2 X : To develop machines that generalize well,
kernel methods try to exploit the structure of the data and thus define a similarity
between pairs of samples.

Since X may not have a proper notion of similarity, examples are mapped to a
(dot product) space H, using a mapping / : X ! H; x 7!/ðxÞ. The similarity
between the elements in H can now be measured using its associated dot product
h�; �iH. Here, we define a function that computes that similarity, K : X � X ! R,
such that ðx; x0Þ 7!Kðx; x0Þ. This function, called kernel, is required to satisfy:

Kðx; x0Þ ¼ h/ðxÞ;/ðx0ÞiH: ð1Þ

The mapping / is its feature map, and the space H its feature space.

2.2 Positive Definite Kernels

The class of kernels that can be written in the form of (1) coincides with the class
of positive definite kernels.

Definition 1 A function K : X � X ! R is a positive definite kernel if and only if

there exists a Hilbert space Hand a feature map / : X ! H such that for all

x; x0 2 X we have Kðx; x0Þ ¼ h/ðxÞ;/ðx0ÞiH:

In practice, a real symmetric n 9 n matrix K, whose entries are Kðxi; xjÞ or
simply Kij, is called positive definite if for all c1; . . .; cn 2 R;

Pn
i;j¼1 cicjKij� 0:

Note that a positive definite kernel is equivalent to a positive definite Gram matrix
in the feature space.

Therefore, algorithms operating on the data only in terms of dot products can be
used with any positive definite kernel by simply replacing h/ðxÞ;/ðx0ÞiH with
kernel evaluations Kðx; x0Þ, a technique also known as the kernel trick [5]. Another
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direct consequence is that, for a positive definite kernel, one does not need to know
the explicit form of the feature map since it is implicitly defined through the kernel.

2.3 Basic Operations with Kernels

We now review some basic properties with kernels. Note that, although the space
H can be very high-dimensional, some basic operations can still be performed:

Translation A translation in feature space can be written as the modified
feature map ~/ðxÞ ¼ /ðxÞ þ C with C 2 H: Then, the translated
dot product for h~/ðxÞ; ~/ðx0ÞiH can be computed if we restrict C
to lie in the span of the functions f/ðx1Þ; . . .;/ðxnÞg 2 H:

Centering The previous translation allows us to center data fxig
n
i¼1 2 X in

the feature space. The mean of the data in H is /l ¼
1
n

Pn
i¼1 /ðxiÞ which is a linear combination of the span of

functions and thus fulfills the requirement for C. One can center
data inH by computing K HKH where entries of H are Hij ¼

dij � 1
n
and the Kronecker symbol di,j = 1 if i = j and zero

otherwise.
Subspace
projections

Given two points W and C in the feature space, the projection of

W onto the subspace spanned by C is W0 ¼ hC;WiH
kCk2H

C: Therefore

one can compute the projection W0 expressed solely in terms of
kernel evaluations.

Computing
distances

The kernel corresponds to a dot product in a Hilbert SpaceH; and
thus one can compute distances between mapped samples entirely
in terms of kernel evaluations:

dðx; x0Þ ¼ /ðxÞ � /ðx0Þk kH¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðx; xÞ þ Kðx0; x0Þ � 2Kðx; x0Þ
p

Normalization Exploiting the previous property, one can also normalize data in
feature spaces:

Kðx; x0Þ  
/ðxÞ

k/ðxÞk
;
/ðx0Þ

k/ðx0Þk

� �

¼
Kðx; x0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðx; xÞKðx0; x0Þ
p

2.4 Standard Kernels

The bottleneck for any kernel method is the definition of a kernel mapping
function / that accurately reflects the similarity among samples. However, not all
kernel similarity functions are permitted. In fact, valid kernels are only those
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fulfilling Mercer’s Theorem (roughly speaking, being positive definite similarity
matrices) and the most common ones are the linear K(x, z) = hx, zi, the poly-
nomial K(x, z) = (hx, zi ? 1)d, d 2 Z

þ, and the Radial Basis Function (RBF)

Kðx; zÞ ¼ exp �kx� zk2=2r2
� �

; r 2 R
þ: Note that, by Taylor series expansion,

the RBF kernel is a polynomial kernel with infinite degree. Thus the corresponding
Hilbert space is infinite dimensional, which corresponds to a mapping into the
space of smooth functions C1: The RBF kernel is also of practical convinience –
stability and only one parameter to be tuned–, and it is the preferred kernel
measure in standard applications.

2.5 Kernel Development

Taking advantage of some algebra and functional analysis properties [20, 21], one
can derive very useful properties of kernels. Be K1 and K2 two positive definite
kernels on X � X , A a symmetric positive semidefinite matrix, dð�; �Þ a metric
fulfilling distance properties, f any function, and l[ 0. Then, the following ker-
nels are valid [5]:

Kðx; x0Þ ¼ K1ðx; x
0Þ þ K2ðx; x

0Þ ð2Þ

Kðx; x0Þ ¼ lK1ðx; x
0Þ ð3Þ

Kðx; x0Þ ¼ K1ðx; x
0Þ � K2ðx; x

0Þ ð4Þ

Kðx; x0Þ ¼ x>Ax0 ð5Þ

Kðx; x0Þ ¼ expð�dðx; x0ÞÞ ð6Þ

Kðx; x0Þ ¼ Kðf ðxÞ; f ðx0ÞÞ ð7Þ

These basic properties give rise to the construction of refined similarity measures
better fitted to the data characteristics. In remote sensing, one can sum dedicated
kernels to spectral, contextual or even temporal information of pixels through (2).
A scaling factor to each kernel can also be added (Eq. 3). Also, the (more
appropriate) spectral angle distance between pixels is a valid kernel by (6). Recent
advances for kernel development are:

Convex
combinations

By exploiting (2) and (3), one can build kernels by linear
combinations of kernels working on feature subsets:

Kðx; x0Þ ¼
XM

m¼1

dmKmðx; x
0Þ
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This field of research is known as multiple kernel learning
(MKL) and different algorithms exist to optimize the weights
and kernel parameters jointly. Note that this kernel offers
some insight in the problem, since relevant features receive
higher values of dm, and the corresponding kernel parameters
hm yield information about pairwise similarity scales.

Deforming
kernels

The field of semisupervised kernel learning deals with
techniques to modify the values of the training kernel
including the information from the whole data distribution:
K is either deformed through a graph distance matrix built with
both labeled and unlabeled samples, or by means of kernels
built from clustering solutions.

Generative
kernels

Exploiting Eq. (7), one can construct kernels from probability
distributions by defining Kðx; x0Þ ¼ Kðp; p0Þ, where p; p0 are
defined on the space X : This kind of kernels is known as
probability product kernels between distributions and is
defined as:

Kðp; p0Þ ¼ hp;p0i ¼

Z

X

pðxÞp0ðxÞdx:

Joint input-output
mappings

Typically, kernels are built on the input samples. Lately the
framework of structured output learning deals with the
definition of joint input-output kernels, Kððx; yÞ; ðx0; y0ÞÞ:

3 Kernel Methods in Remote Sensing Data Classification

Classification maps are the main product of remote sensing data analysis and, in the
last years, kernel methods have demonstrated very good performance. The most
successful kernel method are the support vector machines as extensively reported in
[6]. SVMs have been applied to both multispectral [22, 23] and hyperspectral [6, 9,
24] data in a wide range of domains, including object recognition [25], land cover
and multi-temporal classification [9, 26, 27], and urban monitoring [28].

3.1 Support Vector Machine

The support vector machine (SVM) is defined as follows. Notationally, given a
labeled training data set fxi; yig

n
i¼1, where xi 2 R

N and yi [ { -1, +1}, and given a
nonlinear mapping /ð�Þ, the SVM method solves:
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min
w;ni;b

1
2
kwk2 þ C

Xn

i¼1

ni

( )
ð8Þ

constrained to:

yiðh/ðxiÞ;wi þ bÞ� 1� ni 8i ¼ 1; . . .; n ð9Þ

ni� 0 8i ¼ 1; . . .; n ð10Þ

where w and b define a linear classifier in the feature space, and ni are positive
slack variables enabling to deal with permitted errors (Fig. 1a). Appropriate choice
of nonlinear mapping / guarantees that the transformed samples are more likely to
be linearly separable in the (higher dimension) feature space. The regularization
parameter C controls the generalization capability of the classifier, and it must be
selected by the user. Primal problem (8) is solved using its dual problem coun-
terpart [5], and the decision function for any test vector x* is finally given by

f ðx�Þ ¼ sgn
Xn

i¼1

yiaiKðxi; x�Þ þ b

 !
ð11Þ

where ai are Lagrange multipliers corresponding to constraints in (9), being the
support vectors (SVs) those training samples xi with non-zero Lagrange multipliers
ai 6¼ 0;Kðxi; x�Þ is an element of a kernel matrix K defined as in Eq. (1); and the
bias term b is calculated by using the unbounded Lagrange multipliers as

b ¼ 1=k
Pk

i¼1ðyi � h/ðxiÞ;wiÞ, where k is the number of unbounded Lagrange
multipliers ð06ai\CÞ and w ¼

Pn
i¼1 yiai/ðxiÞ [5].

3.2 m-Support Vector Machine

One interesting variation of the SVM is the m-support vector machine (m-SVM)
introduced by Schölkopf et al. [29]. In the SVM formulation, the soft margin is
controlled by parameter C, which may take any positive value. This makes dif-
ficult to adjust it when training the classifier. The idea of the m-SVM is forcing the
soft margin to lie in the range [0, 1]. This is carried out redefining the problem as

min
w;ni;b;q

1
2
kwk2 þ mqþ

1
n

Xn

i¼1

ni

( )
ð12Þ

subject to:

yiðh/ðxiÞ;wi þ bÞ� q� ni 8i ¼ 1; . . .; n ð13Þ

q� 0; ni� 0 8i ¼ 1; . . .; n ð14Þ
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In this new formulation, parameter C has been removed and a new variable q with
coefficient m has been introduced. This new variable q adds another degree of
freedom to the margin, the size of the margin increasing linearly with q. The old
parameter C controlled the trade off between the training error and the general-
ization error. In the m-SVM formulation, this is done adjusting m in the range [0, 1],
which acts as an upper bound on the fraction of margin errors, and it is also a lower
bound on the fraction of support vectors.

( b )( a )

( d )( c )

Fig. 1 Illustration of kernel classifiers. a SVM: Linear decision hyperplanes in a nonlinearly
transformed, feature space, where slack variables ni are included to deal with errors. b SVDD:
The hypersphere containing the target data is described by center (a) and radius R. Samples in the
boundary and outside the ball are unbounded and bounded support vectors, respectively. c OC-
SVM: another way of solving the data description problem, where all samples from the target
class are mapped with maximum distance to the origin. d KFD: Kernel Fisher’s Discriminant
separates the classes by projecting them onto a hyperplane where the difference of the projected
means (l1, l2) is large, and the variance around means r1 and r2 is small
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3.3 Support Vector Data Description

A different problem statement for classification is given by the support vector
domain description (SVDD) [30]. The SVDD is a method to solve one-class
problems, where one tries to describe one class of objects, distinguishing them
from all other possible objects.

The problem is defined as follows. Let fxig
n
i¼1 be a dataset belonging to a given

class of interest. The purpose is to find a minimum volume hypersphere in a high
dimensional feature space H, with radius R[ 0 and center a 2 H, which contains
most of these data objects (Fig. 1b). Since the training set may contain outliers, a
set of slack variables ni� 0 is introduced, and the problem becomes

min
R;a

R2 þ C
Xn

i¼1

ni

( )
ð15Þ

constrained to

k/ðxiÞ � ak2�R2 þ ni 8i ¼ 1; . . .; n ð16Þ

ni� 0 8i ¼ 1; . . .; n ð17Þ

where parameter C controls the trade-off between the volume of the hypersphere
and the permitted errors. Parameter m, defined as m = 1/nC, can be used as a
rejection fraction parameter to be tuned as noted in [31].

The dual functional is a quadratic programming problem that yields a set of
Lagrange multipliers (ai) corresponding to constraints in (16). When the free
parameter C is adjusted properly, most of the ai are zero, giving a sparse solution.
The Lagrange multipliers are also used to calculate the distance from a test point to
the center R(x*):

Kðx�; x�Þ � 2
Xn

i¼1

aiKðxi; �Þ þ
Xn

i;j¼1

aiajKðxi; xjÞ ð18Þ

which is compared with ratio R. Unbounded support vectors are those samples xi
satisfying 06ai\C, while bounded SVs are samples whose associated ai = C,
which are considered outliers.

3.4 One-Class Support Vector Machine

In the one-class support vector machine (OC-SVM), instead of defining a hyper-
sphere containing all examples, a hyperplane that separates the data objects from
the origin with maximum margin is defined (Fig. 1c). It can be shown that when
working with normalized data and the RBF Gaussian kernel, both methods yield
the same solutions [31].
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In the OC-SVM, we want to find a hyperplane w which separates samples xi
from the origin with margin q. The problem thus becomes

min
w;q;n

1
2
kwk2 � qþ

1
mn

Xn

i¼1

ni

( )
ð19Þ

constrained to

h/ðxiÞ;wi� q� ni 8i ¼ 1; . . .; n ð20Þ

ni� 0 8i ¼ 1; . . .; n ð21Þ

The problem is solved through its Langrangian dual introducing a set of Lagrange
multipliers ai. The margin q can be computed as q ¼ hw;/ðxiÞi ¼

P
j ajKðxi; xjÞ:

3.5 Kernel Fisher’s Discriminant

Assume that, n1 out of n training samples belong to class -1 and n2 to class +1.
Let l be the mean of the whole set, and l� and lþ the means for classes -1 and
+1, respectively. Analogously, let R be the covariance matrix of the whole set, and
R� and Rþ the covariance matrices for the two classes. The Linear Fisher’s
Discriminant (LFD) seeks for projections that maximize the interclass variance
and minimize the intraclass variance [32, 33]. By defining the between class

scatter matrix SB ¼ ðl� � lþÞðl� � lþÞ
> and the within class scatter matrix

SW ¼ R� þ Rþ, the problem reduces to maximize

JðwÞ ¼
w>SBw

w>SWw
ð22Þ

The Kernel Fisher’s Discriminant (KFD) is obtained by defining the LFD in a
high dimensional feature space H. Now, the problem reduces to maximize:

JðwÞ ¼
w>S

/
Bw

w>S
/
Ww

ð23Þ

where now w; S/B and S
/
W are defined in H; S

/
B ¼ ðl

/
� � l

/
þÞðl

/
� � l

/
þÞ
>, and

S
/
W ¼ R

/
� þ R

/
þ:

We need to express (23) in terms of dot-products only. According to the
reproducing kernel theorem [5], any solution w 2 H can be represented as a linear
combination of training samples in H. Therefore w ¼

Pn
i¼1 ai/ðxiÞ and then

w>l
/
i ¼

1
ni

Xn

j¼1

Xni

k¼1

ajKðxj; x
i
kÞ ¼ a>Mi ð24Þ
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where xk
i represents samples xk of class i, and ðMiÞj ¼

1
ni

Pni
k¼1 Kðxj; x

i
kÞ: Taking

the definition of S
/
B and (24), the numerator of (23) can be rewritten as

w>S
/
Bw ¼ a>Ma, and the denominator as w>S/Ww ¼ a>Na, where

M ¼ ðM� �MþÞðM� �MþÞ
> ð25Þ

N ¼
X

j¼f�1;þ1g

KjðI� 1njÞK
>
j ð26Þ

Kj is a n 9 nj matrix with ðKjÞnm ¼ Kðxn; xjmÞ (the kernel matrix for class j), I is
the identity and 1nj a matrix with all entries set to 1/nj. Finally, Fisher’s linear
discriminant in H is solved by maximizing

JðaÞ ¼
a>Ma

a>Na
; ð27Þ

which is solved as in the linear case. The projection of a new sample x onto w can
be computed through the kernel function:

w>/ðxÞ ¼
Xn

i¼1

aiKðxi; xÞ ð28Þ

3.6 Experimental Results for Supervised Classification

Here we compare the performance of m-SVM, OC-SVM, LFD and KFD methods
in a remote sensing multisource image classication problem: the identification of
classes ‘urban’ and ‘non-urban’. For the m-SVM, LFD and KFD the problem is
binary. For OC-SVM, we take the class ‘urban’ as the target class. The images
used are from ERS2 SAR and Landsat TM sensors acquired in 1999 over the area
of Naples, Italy [34]. The dataset has seven Landsat bands, two SAR backscat-
tering intensities (0–35 days), and the SAR interferometric coherence. Since these
features come from different sensors, the first step was to perform a specific
processing and conditioning of optical and SAR data, and to co-register all images.
Then, all features were stacked at a pixel level. A small area of the image of
400 9 400 pixels was selected.

We used 10 randomly selected samples of each class to train the classifiers (only
10 ‘urban’ samples for the one-class experiment). Except the LFD, the other
classifiers have free parameters that must be tuned in the training process. To do
this, the training set was split following a v-fold strategy.1 For all methods, we used

1 In v-fold, the training set is divided in v subsets, then during v times v - 1 subsets are used for
training, and the remaining subset is used for validation. At the end, the parameters that have
worked the best in the v subsets are selected.
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the RBF kernel where r was tuned in the range ½10�3; 103� in logarithmic incre-
ments of 10. The m-SVM and OC-SVM have and additional parameter to tune:
m was varied in the range [0.1, 0.5] in increments of 0.1. Experiments were repeated
10 times with different random realizations of the training sets. Averaged results are
shown using four different error measures obtained from the confusion matrices:
the estimated kappa statistic (j) [35]; the precision (P), defined as the ratio between
the number of true positives and the sum of true positives and false positives; the
recall (R), defined as the ratio between the number of true positives and the sum of
true positives and false negatives. The last one is the F-Measure (or unbiased F-
Score), computed as F ¼ 2 P�R

PþR, which combines both measures. Table 1 shows the
mean results and the percentage of support vectors for the 10 different training sets.

3.6.1 Linear versus nonlinear

From Table 1, several conclusions can be obtained concerning the suitable kernel.
In the case of m-SVM, linear kernel yields slightly favourable results but differ-
ences to the RBF kernel are not statistically significant. On the contrary, for the
case of Fisher’s discriminants, KFD is better than the linear LFD. Particularly
interesting is the case of the OC-SVM. Here, using the RBF Gaussian kernel has
the problem of adjusting the width r using only samples from the target class. The
problem is quite difficult because, as reliable measures like the estimated kappa
statistic or the F-Measure cannot be computed using only samples of the target
class, r should be adjusted by measuring only the true positive ratio and con-
trolling model’s complexity through the rate of support vectors. In those cases
where a proper value for r cannot be found, the linear kernel may perform better,
as it has no free parameter to adjust.

3.6.2 m -SVM versus OC-SVM

In terms of the estimated kappa statistic, the m-SVM classifier generally works
better than the OC-SVM in this example. This result is not surprising since this
experiment is essentially a binary problem and the m-SVM has, in the training

Table 1 Mean and standard deviation of estimated kappa statistic (j), precision, recall, F-
Measure and rate of support vectors for the ten realizations

Method j Precicision Recall F-Measure SVs (%)

m-SVC lin 0.81 ± 0.06 0.83 ± 0.07 0.90 ± 0.07 0.86 ± 0.04 33 ± 0.13
m-SVC RBF 0.80 ± 0.07 0.86 ± 0.08 0.85 ± 0.10 0.85 ± 0.05 36 ± 0.24
LFD 0.72 ± 0.06 0.76 ± 0.08 0.84 ± 0.05 0.79 ± 0.04 –
KFD 0.82 ± 0.03 0.87 ± 0.04 0.86 ± 0.05 0.86 ± 0.02 –
OC-SVM lin 0.70 ± 0.06 0.78 ± 0.11 0.79 ± 0.13 0.77 ± 0.05 15 ± 0.05
OC-SVM RBF 0.68 ± 0.16 0.93 ± 0.06 0.64 ± 0.21 0.74 ± 0.15 37 ± 0.12

Best results are boldfaced

A Review of Kernel Methods in Remote Sensing Data Analysis 183



phase, information about both classes, whereas the OC-SVM is trained using only
information of the class ‘urban’. Comparing the results in terms of precision, the
m-SVM performs better than OC-SVM using the linear kernel, but worse when
OC-SVM uses the RBF kernel. On the other hand, the m-SVM obtains better results
in terms of recall, meaning that it has less false negatives for the target class.
Evaluating the performance with the F-Measure, which takes into account both
precision and recall, the m-SVM obtains better overall results. Finally, results
clearly show that sparser classifiers are obtained when using the OC-SVM with the
linear kernel.

3.6.3 Support Vector versus Fisher’s Discriminant

Algorithms based on support vectors using the RBF kernel have a similar (but
slightly lower) performance than the KFD algorithm. This better performance may
be due to the low number of training samples used (being non-sparse, KFD has a
full—dense—representation of the training data) and the squared loss function
used is better suited to the assumed (Gaussian) noise in the data.

3.7 Semisupervised Image Classification

Remote sensing image classification is a challenging task because only a small
number of labeled pixels is typically available, and thus classifiers tend to overfit
the data [2]. In this context, semisupervised learning (SSL) naturally appears as a
promising tool for combining labeled and unlabeled information thus increasing
the accuracy and robustness of class predictions [10, 36]. The key issue in SSL is
the general assumption of consistency, which means that: (1) nearby points are
likely to have the same label; and (2) points on the same data structure (cluster or
manifold) are likely to have the same label. This argument is often called the
cluster assumption [37, 38]. Traditional SSL methods are based on generative
models, which estimate the conditional density and have been extensively applied
in remote sensing image classification [39]. Recently, more attention has been paid
to discriminative approaches, such as: (1) the Transductive SVM (TSVM) [4, 40],
which maximizes the margin for labeled and unlabeled samples simultaneously;
(2) Graph-based methods, in which each pixel spreads its label information to its
neighbors until a global steady state is achieved on the whole image [41, 42]; and
(3) the Laplacian SVM (LapSVM) [43, 44], which deforms the kernel matrix of a
standard SVM with the relations found by building the graph Laplacian. Also, the
design of cluster and bagged kernels [37] have been successfully presented in
remote sensing [45, 46], whose essential idea is to modify the eigenspectrum of the
kernel matrix that in turn implies an alteration of the distance metric. Figure 2
illustrates a typical semisupervised learning situation where distribution of unla-
beled samples helps to improve the generalization of the classifier.
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3.7.1 Manifold-Based Regularization Framework

Regularization helps to produce smooth decision functions that avoid overfitting to
the training data. Since the work of Tikhonov [47], many regularized algorithms
have been proposed to control the capacity of the classifier [5, 48]. Regularization
has been applied to both linear and nonlinear algorithms in the context of remote
sensing image classification, and becomes strictly necessary when few labeled
samples are available compared to the high dimensionality of the problem. In the
last decade, the most paradigmatic case of regularized nonlinear algorithm is the
support vector machine: in this case, maximizing the margin is equivalent to
applying a kind of regularization to model weights [5, 6]. These regularization
methods are especially appropriate when a low number of samples is available, but
are not concerned about the geometry of the marginal data distribution. This has
been recently treated within a more general regularization framework that includes
Tikhonov’s as a special case.

3.7.2 Semisupervised Regularization Framework

The classical regularization framework has been recently extended to the use of
unlabeled samples [43] as follows. Notationally, we are given a set of l labeled

samples, fxig
l
i¼1 with corresponding class labels yi, and a set of u unlabeled

samples fxig
lþu
i¼lþ1. Let us now assume a general-purpose decision function f. The

regularized functional to minimize is:

L ¼
1
l

Xl

i¼1

Vðxi; yi; f Þ þ cLkfk
2
H þ cMkfk

2
M; ð29Þ

Fig. 2 Left classifier obtained using labeled data (red and blue denote different classes). Right
classifier obtained using labeled data plus unlabeled data distribution (black dots denote
unlabeled data)
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where V represents a generic cost function of the committed errors on the labeled
samples, cL controls the complexity of f in the associated Hilbert space H, and cM
controls its complexity in the intrinsic geometry of the data distribution. For
example, if the probability distribution is supported on a low-dimensional mani-

fold, kfk2M penalizes f along that manifold M: Note that this semisupervised
learning framework allows us to develop many different algorithms just by playing

around with the loss function, V, and the regularizers, kfk2H and kfk2M:

3.7.3 Laplacian Support Vector Machine

Here, we briefly review the Laplacian SVM as an instantiation of the previous
framework. More details can be found in [43], and its application to remote
sensing data classification in [44].

The Laplacian support vector machine (LapSVM) uses the same hinge loss
function as the traditional SVM:

Vðxi; yi; f Þ ¼ maxð0; 1� yif ðxiÞÞ; ð30Þ

where f represents the decision function implemented by the selected classifier and
the predicted labels are y� ¼ sgn f ðx�Þð Þ. Hereafter, unlabeled or test samples are
highlighted with *.

The decision function used by the LapSVM is f ðx�Þ ¼ hw;/ðx�Þi þ b, where
/ð�Þ is a nonlinear mapping to a higher dimensional Hilbert space H, and w and
b define a linear decision function in that space. The decision function is given by

f ðx�Þ ¼
Plþu

i¼1 aiKðxi; x�Þ þ b. The regularization term kfk2H can be fully expressed
in terms of the corresponding kernel matrix and the expansion coefficients a:

kf k2H ¼ kwk
2 ¼ ðUaÞ>ðUaÞ ¼ a>Ka: ð31Þ

Essentially, for manifold regularization, the LapSVM relies on the Laplacian
eigenmaps (LE), which tries to map nearby inputs (pixels) to nearby outputs
(corresponding class labels), thus preserving the neighborhood relations between
samples.2 Therefore, the geometry of the data is modeled with a graph in which
nodes represent both labeled and unlabeled samples connected by weightsWij [10].
Regularizing the graph follows from the smoothness (or manifold) assumption and
intuitively is equivalent to penalize ‘‘rapid changes’’ of the classification function
evaluated between close samples in the graph:

kfk2M ¼
1

ðlþ uÞ2

Xlþu

i;j¼1

Wijðf ðxiÞ � f ðxjÞÞ
2 ¼

f>Lf

ðlþ uÞ2
; ð32Þ

2 In our case, nearby points are those pixels spectrally similar and thus the assumption is applied
to the (high) dimensional space of image pixels.
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where L = D-W is the graph Laplacian, whose entries are sample and graph-

dependent; D is the diagonal degree matrix of W given by Dii ¼
Plþu

j¼1 Wij and

Dij = 0 for i = j; the normalizing coefficient 1
ðlþuÞ2

is the natural scale factor

for the empirical estimate of the Laplace operator [43]; and f ¼ ½f ðx1Þ; . . .;

f ðxlþuÞ�
> ¼ Ka, where we deliberately dropped the bias term b.

3.7.4 Transductive SVM

The Transductive SVM (TSVM), originally proposed in [4] and further extended
to deal with the peculiarities of remote sensing data in [40], aims at choosing a
decision boundary that maximizes the margin on both labeled and unlabeled data.

The TSVM optimizes a loss function similar to (29), but cMkfk
2
M is replaced by a

term related to the distance of unlabeled samples to the margin. The TSVM
functional to be minimized is:

L ¼
1
l

Xl

i¼1

Vðxi; yi; f Þ þ cLkfk
2
H þ k

Xlþu

j¼lþ1

L�ðf ðx�j ÞÞ; ð33Þ

where l and u are the number of labeled and unlabeled examples, k is a free
parameter that controls the relevance of unlabeled samples, and L

* is the sym-
metric hinge loss function:

L�ðf ðx�ÞÞ ¼ maxð0; 1� jf ðx�ÞjÞ: ð34Þ

The optimization of L* can be seen as ‘‘self-learning’’, i.e., we use the prediction
for x* for training the mapping for that same example. Minimizing (34) pushes
away unlabeled samples from the margin, either negative or positive, thus mini-
mizes the absolute value.

3.8 Experimental Results for Semisupervised Classification

This section presents the experimental results of semisupervised methods in the
same urban monitoring application presented in the previous section [34]. How-
ever, different sets of labeled and unlabeled training samples were used in order to
test the performance of the SSL methods. Training and validation sets consisting
of l = 400 labeled samples (200 samples per class) were generated, and u = 400
unlabeled (randomly selected) samples from the analyzed images were added to
the training set for the LapSVM and TSVM. We focus on the ill-posed scenario
and vary the rate of both labeled and unlabeled samples independently, i.e.
{2, 5, 10, 20, 50, 100}% of the labeled/unlabeled samples of the training set were
used to train the models in each experiment. In order to avoid skewed conclusions,
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we run all experiments for a number of realizations where the used training
samples were randomly selected.

Both linear and RBF kernels were used in the SVM, LapSVM, and TSVM. The
graph Laplacian, L, consisted of l ? u nodes connected using k nearest neighbors,
and computed the edge weights Wij using the Euclidean distance among samples.
Free parameters cL and cM were varied in steps of one decade in the range
½10�4; 104�, the number of neighbors k used to compute the graph Laplacian was
varied from 3 to 9, and the Gaussian width was tuned in the range r ¼
f10�3; . . .; 10g for the RBF kernel. The selection of the best subset of free
parameters was done by cross-validation.

Figure 3 shows the validation results for the analyzed SVM-based classifiers.
Several conclusions can be obtained. First, LapSVM classifiers produce better
classification results than SVM in all cases (note that SVM is a particular case of
the LapSVM for cM = 0) for both the linear and the RBF kernels. LapSVM also
produces better classification results than TSVM when the number of labeled
samples is increased. Differences among methods are numerically very similar
when a low number of labeled samples is available. The j surface for the LapSVM
highlights the importance of the labeled information in this problem.

4 Kernel Methods in Biophysical Parameter Estimation

Robust, fast and accurate regression tools are a critical demand in remote sensing.
The estimation of physical parameters, y, from raw measurements, x, is of special
relevance in order to better understand the environment dynamics at local and
global scales [49]. The inversion of analytical models introduces a higher level of
complexity, induces an important computational burden, and sensitivity to noise
becomes an important issue. In the recent years, nevertheless, the use of empirical
models adjusted to learn the relationship between the acquired spectra and actual
ground measurements has become very attractive. Parametric models have some
important drawbacks, which typically lead to poor prediction results on unseen
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(test) data. As a consequence, non-parametric and potentially nonlinear regression
techniques have been effectively introduced [50]. Different models and architec-
tures of neural networks have been considered for the estimation of biophysical
parameters [50–52]. However, despite their potential effectiveness, neural net-
works present some important drawbacks: (1) design and training often results in a
complex, time-consuming task; (2) following the minimization of the empirical
risk (i.e. the error in the training data set), rather than the structural risk (an upper
bound of the generalization error), can lead to overfit the training data; and (3)
performance can be degraded when working with low-sized data sets. A promising
alternative to neural networks is the use of kernel methods analyzed in this section,
such as support vector regression (SVR) [11, 53], relevance vector machines
(RVM) [16], and Gaussian Processes (GP) [17].

4.1 Support Vector Regression

The support vector regression (SVR) is the SVM implementation for regression
and function approximation [5, 54], which has yielded good results in modeling
some biophysical parameters and in alleviating the aforementioned problems of
neural networks [11, 55, 56].

The standard SVR formulation uses Vapnik’s e-insensitive cost function, in
which errors ei up to e are not penalized, and all further deviations will incur in a
linear penalization. Briefly, SVR estimates weights w by minimizing the following
regularized functional:

1
2
kwk2 þ C

X

i

ðni þ n�i Þ ð35Þ

with respect to w and fnð�Þi g
n
i¼1, constrained to:

yi � w>/ðxiÞ � b� eþ ni 8i ¼ 1; . . .; n ð36Þ

w>/ðxiÞ þ b� yi� eþ n�i 8i ¼ 1; . . .; n ð37Þ

ni; n
�
i � 0 8i ¼ 1; . . .; n ð38Þ

where ni
(*) are positive slack variables to deal with training samples with a pre-

diction error larger than e (e[ 0), and C is the penalization parameter applied to
these ones. Note that C trade-offs the minimization of errors and the regularization
term, thus controling the generalization capabilities. The usual procedure for
solving SVRs introduces the linear restrictions (36)–(38) into (35) using Lagrange
multipliers ai, computes the Karush-Kuhn-Tucker conditions, and solves the dual
problem using QP procedures [57], which yields the final solution:

ŷi ¼
Xn

j¼1

ðaj � a�j ÞKðxi; xjÞ þ b: ð39Þ
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Again, non-zero multipliers are called SVs. Sparsity in the SVR is a direct con-
sequence of the loss function; as the value of e increases, the number of support
vectors is reduced.

4.2 Relevance Vector Machines

Despite the good performance offered by the SVR, it has some deficiencies: (1) by
assuming an explicit loss function (usually, the e-insensitive loss function) one
assumes a fixed distribution of the residuals, (2) the free parameters must be tuned
usually through cross-validation methods, which result in time consuming tasks,
(3) the nonlinear function used in SVR must fulfil Mercer’s Theorem [58] to be
valid, and (4) sparsity is not always achieved and a high number of support vectors
is thus obtained.

Some of these problems of SVRs are efficiently alleviated by the relevance
vector machine (RVM), which was originally introduced by Tipping in [59]. The
RVM constitutes a Bayesian approximation to solve extended linear (in the
parameters) models, i.e. nonlinear models. Therefore, the RVM follows a different
inference principle from the one followed in SVR. In this case, a particular
probability model for the support vectors is assumed and can be constrained to be
sparse. In addition, it has been claimed that RVMs can produce probabilistic
outputs (which theoretically permits to capture uncertainty in the predictions),
RVMs are less sensitive to hyper-parameters setting than SVR, and the kernel

function must not necessarily fulfil Mercer’s conditions.
Once the kernel has been defined, and a particular Gaussian likelihood assumed

for the target vector y ¼ ½y1; . . .; yn�
> given the weights w, a maximum likelihood

approach could be used for estimating model weights. However, a certain risk of
overfitting arises and a priori models of weight distribution are commonly used in
the Bayesian framework [60]. In the RVM learning scheme, rather than attempting
to make sample-based (or point) predictions, a Gaussian prior distribution of zero
mean and variance r2wj

	 a�1j is defined over each weight:

pðwjaÞ ¼
Yn

j¼1

Nðwjj0; a
�1
j Þ ¼

Yn

j¼1

ffiffiffiffiffiffi

aj

2p

r

exp �
1
2
ajw

2
j

� �

; ð40Þ

where the key to obtain sparsity is the use of n independent hyperparameters

a ¼ ðao; a1; . . .; anÞ
>, one per weight (or basis function), which moderate the

strength of the prior. After defining the prior over the weights, we must define the
hyperpriors over a and the other model parameter, the noise variance rn

2. These
quantities were originally proposed to be Gamma distributions [59].

Now, with the prior (40) and the likelihood distribution, the posterior distri-
bution over the weights is Gaussian and can be computed using Bayes’ rule:

pðwjy; a; r2nÞ ¼
pðyjw; r2nÞpðwjaÞ

pðyja; r2nÞ

N ðwjl;RÞ ð41Þ
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where the covariance and the mean are respectively given by R ¼ ðr�2n U
>
Uþ AÞ�1

and l ¼ r�2n RU
>y, with A ¼ diagðaÞ: Hence, the Gaussian likelihood distribution

over the training targets can be ‘‘marginalized’’ by integrating out the weights to
obtain the marginal likelihood for the hyperparameters:

pðyja; r2nÞ ¼

Z
pðyjw; r2nÞpðwjaÞdw
Nð0;CÞ ð42Þ

where the covariance is given by C ¼ r2nIþUA�1U>: For computational effi-
ciency, the logarithm of the evidence is maximized:

LðaÞ ¼ log pðyja; r2nÞ ¼ �
1
2
n log 2pþ log jCj þ y>C�1y
	 


; ð43Þ

which is commonly done using the standard type-II maximum likelihood proce-

dure. However, [59] did not suggest direct minimization of the negative log evi-
dence for training the RVM, but rather the use of an approximate Expectation-
Maximization (EM) procedure [61].

In the RVM learning scheme, the estimated value of model weights is given by
the mean of the posterior distribution (41), which is also the maximum a posteriori

(MAP) estimate of the weights. The MAP estimate of the weights depends on the
value of hyperparameters a and the noise rn

2. The estimate of these two variables
ðâ and r̂2nÞ is obtained by maximizing the marginal likelihood (42). The uncer-
tainty about the optimal value of the weights reflected by the posterior distribution
(41) is used to express uncertainty about the predictions made by the model as
follows. Given a new input x*, the probability distribution of the corresponding
output y* is given by the (Gaussian) predictive distribution:

pðy�jx�; â; r̂
2
nÞ ¼

Z
pðy�jx�;w; r̂

2
nÞpðwjy; â; r̂

2
nÞdw
Nðy�; r

2
�Þ ð44Þ

where the mean and the variance (uncertainty) of the prediction are y� ¼ ðUÞi;:l

and r2� ¼ r̂2n þ ðUÞi;:RðUÞ
>
i;::

In the iterative maximization of LðaÞ, many of the hyperparameters aj tend to
infinity, yielding a posterior distribution (41) of the corresponding weight wj that
tends to be a delta function centered around zero. The corresponding weight is thus
deleted from the model, as well as its associated basis function, /jðxÞ: In the RVM
framework, each basis function /jðxÞ is associated to a training sample xj so that
/jðxÞ ¼ Kðxj; xÞ: The model is built on the few training examples whose associ-
ated hyperparameters do not go to infinity during the training process, leading to a
sparse solution. These examples are called the Relevance Vectors (RVs), resem-
bling the SVs in the SVM framework.
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4.3 Gaussian Processes

An important concern about the suitability of RVM Bayesian algorithms in bio-
physical parameter estimation was raised: oversparseness was easily obtained due
to the use of an improper prior, which led to inaccurate predictions and poor
predictive variance estimations outside the support. Recently, the introduction of
Gaussian Processes (GPs) has alleviated the aforementioned problem at the cost of
providing non-sparse models [62]. GPs are also a Bayesian approach to non-
parametric kernel learning. Very good numerical performance and stability has
been reported in remote sensing parameter retrieval [17, 63].

Gaussian processes for regression define a distribution over functions
f : X ! R fully described by a mean m : X ! R and a covariance (kernel)
function K : X � X ! R such that mðxÞ ¼ E½f ðxÞ� and Kðx; x0Þ ¼ E½ðf ðxÞ � m

ðxÞÞ>ðf ðx0Þ � mðx0ÞÞ�: Hereafter we set m to be the zero function for the sake of
simplicity. Now, given a finite labeled samples dataset fx1; . . .; xng we first
compute its covariance matrix K in the same way as done for the Gram matrix in
SVM. The covariance matrix defines a distribution over the vector of output values

fx ¼ ½f ðx1Þ; . . .; f ðxnÞ�
>, such that fx
Nð0;KÞ, which is a multivariate Gaussian

distribution. Therefore the specification of the covariance function implies the
form of the distribution over the functions. The role of the covariance for GPs is
the same as the role of kernels in SVM, both specify the notion of similarity in the
space of functions.

For training purposes, we assume that the observed variable is formed by noisy
observations of the true underlying function y = f(x) ? e. Moreover we assume
the noise to be additive independently and identically Gaussian distributed with
zero mean and variance rn

2. Let us define the stacked output values

y ¼ ðy1; . . .; ynÞ
>, the covariance terms of the test point Ki ¼ ½Kðxi; x1Þ; . . .;

Kðxi; xnÞ�
>, and Kii ¼ Kðxi; xiÞ. From the previous model assumption, the output

values are distributed according to:

y

f ðxiÞ

� �

N 0;

Kþ r2nI Ki

K>i Kii

� �� �
ð45Þ

For prediction purposes, the Gaussian Processes (GP) is obtained by computing the
conditional distribution f ðxiÞjy; fx1; . . .; xng; xi, which can be shown to be a

Gaussian distribution with predictive mean K>i ðKþ r2nIÞ
�1
y and predictive vari-

ance Kii �K>i ðKþ r2nIÞ
�1
Ki. Therefore, two hyperparameters must be optimized:

the kernel K and the noise variance rn
2.

Note that the GP mean predictor yields exactly the same solution that the
obtained in the context of kernel ridge regression (i.e. unconstrained kernel
regression with squared loss function and Tikhonov’s regularization). Even more
important is the fact that not only a mean prediction is obtained for each sample
but a full distribution over the output values including an uncertainty of the
prediction.
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The optimization of GP hyperparameters can be done through standard cross-
validation tecniques. However, a good property of the GP framework is the
possibility to optimize all involved hyperparameters, h, iteratively through
gradient-descent. This is done by maximizing the negative log marginal likelihood,
pðyjx; hÞ, and its partial derivatives w.r.t. the hyperparameters3:

o log pðyjx; hÞ

ohj
¼

1
2
y>K�1

oK

ohj
K�1y

�
1
2
Tr K�1

oK

ohj

 �
¼

1
2
Tr ðaa> �KÞ�1

oK

ohj

 �
;

ð46Þ

where a ¼ K�1y, which is only computed once. This optimization is done by a
particular gradient-based optimization, resulting in a relatively fast method that
scales well for less than a few thousand training samples [62]. This technique not
only avoids running heuristic cross-validation methods but also optimizing very
flexible kernel functions and estimating the noise variance consistently.

4.4 Experimental Results

In this section, we evaluate the performance of SVR, RVM and GP in the esti-
mation of oceanic chlorophyll-a concentration from measured reflectances. We
compare the models in terms of accuracy, bias, and sparsity. We use the SeaBAM
dataset [64], which gathers 919 in-situ measurements of chlorophyll concentration
around the United States and Europe. The dataset contains in situ pigments and
remote sensing reflectance measurements at wavelengths present in the SeaWiFS
sensor.4

Developing a SVR requires selecting the following free parameters: r (varied
between 0.1 and 30), C (varied logarithmically between 10-2 and 105), and e

(varied logarithmically between 10-6 and 10-1). For the case of the RVM algo-
rithm, the r was logarithmically varied between 0.1 and 30. For the GP, we used a

scaled anisotropic RBF kernel, Kðx; x0Þ ¼ m expð�
PD

d¼1 0:5r
�2
d ðx

ðdÞ � xðdÞ
0

Þ
2
Þ

þr2ndxx0 , where m is a kernel scaling factor accounting for signal variance, D is the
data input dimension (d indicates dimension), rd is a dedicated lengthscale for
feature d, and rn is the magnitude of the independent noise component. It is worth
noting that in order to obtain a good set of optimal parameters, a cross-validation
methodology must be followed. The available data were randomly split into two
sets: 460 samples for cross-validation and the remaining 459 samples for testing

3 log pðyjxÞ 	 log pðyjx; hÞ ¼ �1
2y
>ðKþ r2nIÞ

�1
y� 1

2 logðdetðKþ r2nIÞÞ �
n
2 logð2pÞ:

4 More information about the data can be obtained from http://seabass.gsfc.nasa.gov/seabam/
seabam.html.
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performance. Before training, data were centered and transformed logarithmically,
as in [65].

Table 2 presents results in the test set for SVR, RVM and GP models. For
comparison purposes, we include results obtained with a feedforward neural net-
work trained with back-propagation (NN-BP), which is a standard approach in
biophysical parameters retrieval. Also, we include results for the model Morel-1,
and the final SeaWiFS chlorophyll-a algorithm OC2 from [66]. We can observe
that (1) SVR, RVM and GP show a better performance than empirical Morel and
OC2 models, and also better than artificial neural networks (NN-BP); (2) the SVR
and GP techniques are more accurate (RMSE, MAE); (3) RVM and GP are less
biased (ME) than the rest of the models, and in the case of the RVMs, drastically
much more sparse (only 4.9% of training samples were necessary to attain good
generalization capabilities). Comparing SVR and RVM, we can state that RVMs
provide accurate estimations (similar to SVR) with small number of relevant
vectors. GP provides more accurate results than SVR and RVM.

5 Kernel Methods for Feature Extraction

The curse of dimensionality refers to the problems associated with multivariate
data analysis as the dimensionality increases. This problem is specially relevant in
remote sensing since, as long as new technologies improve, the number of spectral
bands is continuously increasing. There are two main implications of the curse of
dimensionality, which critically affect pattern recognition applications in remote
sensing: there is an exponential growth in the number of examples required to
maintain a given sampling density (e.g., for a density of n examples per bin with
d dimensions, the total number of examples should be nd); and there is an expo-
nential growth in the complexity of the target function (e.g., a density estimate or a
classifier) with increasing dimensionality. In these cases, feature extraction
methods are used to create a subset of new features by combinations of the existing

Table 2 Mean error (ME), root mean-squared error (RMSE), mean absolute error (MAE), and
correlation coefficient between the actual and the estimated Chl-a concentration (r) of models in
the test set

ME RMSE MAE r SVs/RVs
(%)

Morel-1y; -0.023 0.178 0.139 0.956 –

Ocean Chlorophyll 2,
OC2

-0.031 0.169 0.133 0.960 –

NN-BP, 4 hidden nodes -0.046 0.143 0.111 0.971 –
e-SVR -0.070 0.139 0.105 0.971 44.3
RVM -0.009 0.146 0.107 0.970 4.9

GP -0.009 0.103 0.107 0.961 –

Best results are boldfaced
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features. Even though the use of linear methods such as principal component
analysis (PCA) or partial least squares (PLS) is quite common, recent advances to
cope with nonlinearities in the data based on multivariate kernel machines have
been presented [67]. In the rest of the section we will briefly review the linear and
nonlinear kernel versions of PCA and PLS.

5.1 Mutivariate Analysis Methods

The family of multivariate analysis (MVA) methods comprises several algorithms
for feature extraction that exploit correlations between data representation in input
and output spaces, so that the extracted features can be used to predict the output
variables, and viceversa.

Notationally, a set of training pairs fxi; yig
n
i¼1, with xi 2 R

N; yi 2 R
M, where

x are the observed explanatory variables in the input space (i.e. spectral channels
or bands) and y are the target variables in the output space (e.g., class material or
corresponding physical parameter), are given. This can be also expressed using

matrix notation, X ¼ ½x1; . . .; xn�
> and Y ¼ ½y1; . . .; yn�

>, where superscript >

denotes matrix or vector transposition. ~X and ~Y denote the centered versions of
X and Y, respectively, while Cxx ¼ 1

n
~X> ~X represents the covariance matrix of the

input data, and Cxy ¼
1
n
~X> ~Y the covariance between the input and output data.

Feature extraction is typically used before the application of machine learning
algorithms to discard irrelevant or noisy components, and to reduce the dimen-
sionality of the data, what helps also to prevent numerical problems (e.g., when
Cxx is rank deficient). Linear feature extraction can be carried out by projecting the
data into the subspaces characterized by projection matrices U and V, of sizes
N 9 np and M 9 np, so that the np extracted features of the original data are given
by ~X0 ¼ ~XU and ~Y0 ¼ ~YV:

5.1.1 Principal Component Analysis

Principal component analysis [68], also known as the Hotelling transform or the
Karhunen-Loeve transform, projects linearly the input data onto the directions of
largest input variance. To perform principal component analysis (PCA), the
covariance matrix is first estimated Cxx ¼ 1=n

Pn
i¼1 ~xi~x

>
i : Then, the eigenvalue

problem Cxxui ¼ kiui is solved, which yields a set of sorted eigenvalues
fkig

np
i¼1ðki� kiþ1Þ and the corresponding eigenvectors fuig

np
i¼1. Finally, new data

are projected onto the eigenvectors with largest eigenvalues ~X0 ¼ ~XU:
This can also be expressed more compactly as:

PCA:U ¼ argmax
U

TrfU>CxxUg

subject to: U>U ¼ I

ð47Þ
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where I is the identity matrix of size np � np. Using Lagrange multipliers, it can be
shown (see, e.g. [19]) that the solution to (47) is given by the singular value
decomposition (SVD) of Cxx.

The main limitation of PCA is that it does not consider class separability since
it does not take into account the target variables y of the input vectors. PCA simply
performs a coordinate rotation that aligns the transformed axes with the directions
of maximum variance of the original data distribution. Thus, there is no guarantee
that the directions of maximum variance will contain good features for discrimi-
nation or regression.

5.1.2 Partial Least Squares

Partial least squares [69] assumes that the system of interest is driven by a few
latent variables (also called factors or components), which are linear combinations
of observed explanatory variables (spectral bands). The underlying idea of partial
least squares (PLS) is to exploit not only the variance of the inputs but also their
covariance with the target, which is presumably more important.

The goal of PLS is to find the directions of maximum covariance between the
projected input and output data:

PLS:U;V ¼ argmax
U;V

TrfU>CxyVg

subject to: U>U ¼ V>V ¼ I

ð48Þ

The solution to this problem is given by the singular value decomposition of Cxy.

5.2 Kernel Multivariate Analysis

All previous methods assume that there exists a linear relation between the ori-
ginal data matrices, ~X and ~Y, and the extracted projections, ~X0 and ~Y0, respec-
tively. However, in many situations this linearity assumption is not satisfied, and
nonlinear feature extraction is needed to obtain acceptable performance. In this
context, kernel methods are a promising approach, as they constitute an excellent
framework to formulate nonlinear versions from linear algorithms [5, 19]. In this
section, we describe the kernel PCA (KPCA) and kernel PLS (KPLS)
implementations.

Notationally, data matrices for performing the linear feature extraction (PCA

or PLS) in H are now given by U ¼ ½/ðx1Þ; . . .;/ðxnÞ�
> and Y ¼ ½y1; . . .; yn�

>. As
before, the centered versions of these matrices are denoted by ~U and ~Y:
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Now, the projections of the input and output data will be given by ~U0 ¼ ~UU

and ~Y0 ¼ ~YV, respectively, where the projection matrix U is now of size
dimðHÞ� np: Note, that the input covariance matrix inH, which is usually needed
by the different MVA methods, becomes of size dimðHÞ � dimðHÞ and cannot be
directly computed. However, making use of the representer’s theorem [19], we
can introduce U ¼ ~U>A into the formulation, where A ¼ ½a1; . . .; anp � and ai is an
n-length column vector containing the coefficients for the ith projection vector,
and the maximization problem can be reformulated in terms of the kernel matrix.

Note that, in these kernel feature extraction methods, the projection matrix
U in H might not be explicitly calculated, but the projections of the input data
can be obtained. Therefore, the extracted features for a new input pattern x* are
given by:

~/0ðx�Þ ¼ ~/ðx�ÞU ¼ ~/ðx�Þ ~U
>A ¼

~Kðx1; x�Þ

..

.

~Kðxn; x�Þ

2
64

3
75A ð49Þ

which is expressed in terms of the inner products in the centered feature space (see
Sect. 2.3).

5.2.1 Kernel Principal Component Analysis

As in the linear case, the aim of kernel principal component analysis (KPCA) is to
find directions of maximum variance of the input data inH, which can be obtained
by replacing ~X by ~U in (47), i.e. by replacing Cxx by ~U> ~U :

KPCA:U ¼ argmax
U

Tr fU> ~U
> ~UUg

subject to: U>U ¼ I

ð50Þ

Making use of the representer’s theorem one can introduce U ¼ ~U>A into the
previous formulation, and the maximization problem can be reformulated as
follows:

KPCA:A ¼ argmax
A

Tr fA> ~Kx
~KxUg

subject to: A> ~KxA ¼ I

ð51Þ

where we have defined the symmetric centered kernel matrix ~Kx ¼ ~U ~U
>

con-
taining the inner products between any two points in the feature space.

The solution to the above problem can be obtained from the singular value
decomposition of ~Kx

~Kx represented by ~Kx
~Kxa ¼ k~Kxa, which has the same

solution as ~Kxa ¼ ka.
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5.2.2 Kernel Partial Least Squares

As in the linear case, the aim of kernel partial least squares (KPLS) is to find
directions of maximum covariance between the input data in H and Y, and can
thus be expressed as:

KPLS:U;V ¼ argmax
U;V

Tr fU> ~U
> ~YVg

subject to: U>U ¼ V>V ¼ I

ð52Þ

Again, making use of the representer’s theorem, one can introduce U ¼ ~U>A into
the previous formulation, and the maximization problem can be reformulated as
follows:

KPLS:A;V ¼ argmax
A;V

Tr fA> ~Kx
~YVg

subject to: A> ~KxA ¼ V>V ¼ I

ð53Þ

The solution to the above problem can be obtained from the singular value
decomposition of ~Kx

~Y.

5.3 Experimental Results

Figure 4 illustrates the performance of linear and kernel MVA feature extraction
methods in a 2D toy example. KPCA and KPLS used an RBF kernel with the same
sigma value fixed to the mean distance among all training samples. It can be
observed that linear methods (PCA and PLS) cannot cope with the non-linearly
separable problem, while kernel methods accommodate data relations in the kernel
and define local boundaries. Performance of KPLS results in more accurate
boundaries and perfectly separates the two classes, while KPCA fails as no class
label information is used. Results in remote sensing image classification are
reported in [67, 70].

PCA PLS KPCA KPLS

Fig. 4 First extracted component by linear (PCA, PLS) and nonlinear kernel (KPCA, KPLS)
methods
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6 Future Trends in Remote Sensing Kernel Learning

Even though the chapter presented an updated literature review, new kernel-based
learning methodologies are being constantly explored. The special peculiarities of
the acquired images lead to develop new methods. And viceversa, the new learning
paradigms available offer new ways of looking at old, yet unsolved, problems in
remote sensing. In what follows, we review recent research directions in the
context of remote sensing kernel-based learning.

6.1 Multiple Kernel Learning

Composite kernels have been specifically designed and applied for the efficient
combination of multitemporal, multisensor and multisource information [9, 71].
The previous approaches exploited some properties of kernel methods (such as the
direct sum of Hilbert spaces, see Sect. 2.3) to combine kernels dedicated to pro-
cess different signal sources, e.g., a kernel on spectral feature vectors can be
summed up to a kernel defined over spatially-extracted feature vectors. This
approach yielded very good results but it was limited to the combination of few
kernels [26], as the optimization of kernel parameters was an issue. Lately, the
composite framework approach has been extended to the framework of multiple
kernel learning (MKL) [72]. In MKL, the SVM kernel function is defined as a
weighted linear combination of kernels built using subsets of features. MKL works
iteratively optimizing both the individual weights and the kernel parameters [73].
So far, the only application in remote sensing of strict MKL can be found in [74]
and, taking advantage of a similar idea, spectrally weighted kernels are proposed
in [75]. Not only a certain gain in accuracy is observed but also the final model
yields some insight in the problem. In [46], the relevant features of remote sensing
images for automatic classification are studied through this framework.

6.2 Transfer Learning

A common problem in remote sensing is that of updating land-cover maps by
classifying temporal series of images when only training samples collected at one
time instant are available. This is known as transfer learning or domain adaptation.
This setting implies that unlabeled test examples and training examples are drawn
from different domains or distributions. The problem was initially tackled with
partially unsupervised classifiers, both under parametric formalisms [76] and
neural networks [77]. The approach was then successfully extended to domain
adaptation SVM (DASVM) [78].

A related problem is also that of classifying an image using labeled pixels from
other scenes, which induces the sample selection bias problem, also known as
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covariance shift. Here, unlabeled test data are drawn from the same training
domain, but the estimated distribution does not correctly model the true underlying
distribution since the number (or the quality) of available training samples is not
sufficient. These problems have been recently presented by defining mean map
kernel machines that account for the dispersion of data in feature spaces [45].

6.3 Structured Learning

Most of the techniques revised so far assume a simple set of outputs. However,
more complex output spaces can be imagined, e.g. predicting multiple labels (land
use and land cover simultaneously), multi-temporal image sequences, or abun-
dance fractions. Such complex output spaces are the topic of structured learning,
one of the most recent developments in machine learning. Only a computer vision
application [79] and the preliminary results in [80] have been presented for image
processing. Certainly this field of learning joint input-output mappings will receive
attention in the future.

6.4 Active Learning

When designing a supervised classifier, the performance of the model strongly
depends on the quality of the labeled information available. This constraint makes
the generation of an appropriate training set a difficult and expensive task
requiring extensive manual human-image interaction. Therefore, in order to make
the models as efficient as possible, the training set should be kept as small as
possible and focused on the pixels that really help to improve the performance of
the model. Active learning aims at responding to this need, by constructing
effective training sets.

In remote sensing, application of active learning methods that select the most
relevant samples for training is quite recent. A SVM method for object-oriented
classification was proposed in [81], while maximum likelihood classifiers for
pixel-based classification was presented in [82]. Recently, this approach was
extended in [83] by proposing boosting to iteratively weight the selected pixels.
In [84, 85] information-based active learning was proposed for target detection,
and in [86], a model-independent active learning method was proposed for very-
high resolution satellite images.

6.5 Parallel Implementations

Kernel methods in general, and the SVM in particular, have the problem of scaling
at least quadratically with the number of training samples. With the recent
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explosion in the amount and complexity of hyperspectral data, and with the
increasing availability of very high resolution images, the number of labeled
samples to train kernel classifiers is becoming a critical problem. In this scenario,
parallel processing constitutes a requirement in many remote sensing missions,
especially with the advent of low-cost systems such as commodity clusters and
distributed networks of computers. Several efforts are being pursued to develop
parallel implementations of SVMs for remote sensing data classification: boss-
worker approaches [87–89] and parallelization through decomposition of the
kernel matrix have been successfully explored [90].

7 Conclusions

Kernel methods allow us to transform almost any linear method into a nonlinear
one, while still operating with linear algebra. The methods essentially rely on
embedding the examples into a high dimensional space where a linear method is
designed and applied. Access to the mapped samples is done implicitly through
kernel functions. This chapter reviewed the field of kernel machines in remote
sensing data processing. The important topics of classification, model inversion,
and feature extraction with kernels have been revised. The impact and develop-
ment of kernel methods in this area during the last decade has been large and
fruitful, overcoming some of the problems posed both by the recent satellite
sensors acquired data, and the limitations of other machine learning methods. New
developments are expected in the near future to encompass both remote sensing
data complexity and new problem settings.
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exploitation of nonlinear characteristics of these data. Advances in manifold
learning developed within the machine learning community are now being adapted
for analysis of hyperspectral data. This chapter investigates the performance of
popular global (Isomap and KPCA) and local manifold nonlinear learning methods
(LLE, LTSA, LE) for dimensionality reduction in the context of classification.
Experiments were conducted on hyperspectral data acquired by multiple sensors at
various spatial resolutions over different types of land cover. Nonlinear dimen-
sionality reduction methods often outperformed linear extraction methods and
rivaled or were superior to those obtained using the full dimensional data.

Keywords Manifold learning � Dimensionality reduction � Classification �
Hyperspectral � Isometric feature mapping � Kernel principal component analysis �
Locally linear embedding � Local tangent space alignment � Laplacian eigenmaps

M. M. Crawford (&)
School of Civil Engineering and Department of Agronomy, Purdue University, West
Lafayette, IN, USA
e-mail: mcrawford@purdue.edu

L. Ma
State Key Laboratory for Multi-spectral Information Processing Technologies,
Huazhong University of Science and Technology, Wuhan, China
e-mail: lma@purdue.edu

W. Kim
Department of Civil Engineering, Purdue University, West Lafayette, IN, USA
e-mail: wkkim@purdue.edu

S. Prasad et al. (eds.), Optical Remote Sensing,
Augmented Vision and Reality, 3, DOI: 10.1007/978-3-642-14212-3_11,
� Springer-Verlag Berlin Heidelberg 2011

207



1 Introduction

Remote sensing data from airborne and space-based hyperspectral sensors are
becoming increasingly available and potentially provide greatly improved capa-
bility for discriminating, characterizing, and monitoring complex chemistry-based
processes. Dimensionality reduction (DR) via feature extraction is an important
preprocessing step for many approaches to analysis of hyperspectral image data,
including visualization, regression, clustering, classification, and anomaly detec-
tion. While commonly used linear feature extraction methods such as principal
component analysis (PCA) and linear discriminant analysis (LDA) are simple and
easily implemented, the dramatic increase in spectral resolution associated with
hyperspectral data allows representation of inherent nonlinearities in physical
processes, motivating nonlinear dimensionality reduction, namely manifold

learning.
The machine learning community has demonstrated the potential of manifold

learning approaches for nonlinear dimensionality reduction and modeling of
nonlinear structure by determining coordinate systems that lie on the nonlinear
manifold represented by the data [1–5]. The potential value of manifold learning
has also been demonstrated for hyperspectral remote sensing applications
including feature extraction [6–10], classification [11–18], and anomaly detection
[19]. However, it should be noted that while many manifold learning methods
provide excellent results for synthetic data, the topology of natural data sets is
often much more difficult to characterize, and linear methods often outperform
nonlinear methods, particularly when applied blindly [20]. Manifold methods
inherently assume smoothness in the manifold structure, but remotely sensed data
acquired over disparate classes often do not vary smoothly and may contain
spatially disjoint clusters in the embedded space, potentially reducing the advan-
tages offered by these nonlinear approaches for some applications.

This study is motivated by the need to better understand characteristics of
hyperspectral data in the manifold domain, with the goal of improving the
development and application of these methods for analysis of hyperspectral data.
In this context, we investigate nonlinear manifold learning methods for dimen-
sionality reduction in classification of hyperspectral data. Approaches are imple-
mented and evaluated in an empirical study involving several space-based and
airborne hyperspectral data sets which are widely used by the remote sensing
community to evaluate classification methods. Focusing on issues related to
dimensionality reduction rather than performance related to classifiers, the
k-Nearest Neighbor (k-NN) method with k = 1 is used as the common base
classifier. The paper is organized as follows: Sect. 2 provides a summary of each of
the manifold learning methods investigated in the study; the four data sets used in
the study are described in Sect. 3; experimental results are contained in Sect. 4;
observations are summarized in Sect. 5.
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2 Nonlinear Manifold Learning for Dimensionality Reduction

Nonlinear manifold learning methods are broadly characterized as global or local
approaches. Global manifold methods retain the fidelity of the overall topology of
the data set, but have greater computational overhead for large data sets, while
local methods preserve local geometry and are computationally efficient because
they only require sparse matrix computations. Although global manifolds seek to
preserve geometry across all scales of the data and have less tendency to overfit the
data, which is beneficial for generalization in classification, local methods may
yield good results for data sets which have significantly different sub-manifolds.

Development of representative metrics to characterize manifold topology is a
current topic of significant research interest in machine learning [18, 20]. Both
qualitative and quantitative approaches are being used to compare various mani-
fold learning methods. Qualitative approaches typically involve visualization,
while quantitative approaches employ metrics for reconstruction error and results
of subsequent analysis such as classification, anomaly detection, or measures of
intra- and inter-class distances.

The basic ideas and mathematical formulations of each of the manifold learning
methods in this study are presented in the following sections. To improve com-
parison of the different methods, the formulation of each methodology is described
using a graph embedding framework [21, 22], which provides a common formu-
lation for both the global and the local manifold learning algorithms. A list of
symbols used in this chapter is provided in Table 1.

Table 1 Symbol definitions

Symbol Definition Symbol Definition

Ra Space of real numbers (dimension a) B Constraint matrix
R
a 9 b Space of real numbers (a 9 b) C Covariance matrix

U Feature mapping D Degree matrix
G Graph E Reconstruction error matrix
K Kernel function F Reconstruction matrix
O Computational complexity H Centering matrix
c Number of classes I Identity matrix
dij Kronecker delta function K Gram matrix
k Number of neighborhood samples L Laplacian matrix
k Eigenvalue K Eigenvalue matrix
m Dimension of original data M Inner product matrix
n Number of samples H Local tangent space coordinates
n1 Number of training data samples Sstp Shortest path distance matrix
n2 Number of testing data samples V Eigenvector matrix
p Target dimension of manifold coordinates W Similarity matrix
p0 Dimension of the local tangent space X Data matrix
r Gaussian kernel parameter Xi Neighborhood set of i-th sample
a Expansion coefficients Y Manifold coordinates
e Vector of ones
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2.1 Dimensionality Reduction Within a Graph Embedding

Framework

Given data samples in a data matrix X = [x1, x2, …, xn], xi [ Rm where n is the
number of samples and m is the feature dimension, the dimensionality reduction
problem seeks to find a set of manifold coordinates Y = [y1, y2, …, yn], yi [ Rp,
where typically, m � p, through a feature mapping U: x ? y, which may be
analytical (explicit) or data driven (implicit), and linear or nonlinear.

For the dimensionality reduction problem, the graph embedding framework
assumes an undirected weighted graph G = {X, W} with data samples X and
algorithm dependent similarity matrix W. Once the graph is constructed, the graph
Laplacian L plays an important role in the framework. Here, L = D - W with a
diagonal degree matrix defined by Dii ¼

P
j Wij; 8 i:

In the one-dimensional case, where the resultant manifold coordinate for
n samples is a vector y = [y1, y2,…, yn], the dimensionality reduction criterion for
the methods used in this study can be represented as

y� ¼ arg min
yByT¼r

X

i 6¼j

yi � yj
�

�

�

�

2
Wij ¼ arg min

yByT¼ r
yLyT ð1Þ

where r is a constant and B is a constraint matrix that depends on the dimensionality
reduction method. The underlying goal is for sample pairs of larger weight to have
manifold coordinates that are closer to each other, under a unique data geometry
characterized by the graph Laplacian L. The solution of the optimization problem
can be obtained by solving the eigen-decomposition problem Ly = kBy, where the
one-dimensional manifold coordinates y are given by the eigenvector with the
smallest non-zero eigenvalue. This one-dimensional case can be easily generalized
to the multi-dimensional case through the following expansion

Y� ¼ arg min
YBYT¼R

trðYLYTÞ ð2Þ

where R is a diagonal matrix. Analogous to the one-dimensional case, the manifold
coordinates Y of target dimension p can be obtained from the eigenvectors corre-
sponding to the p smallest non-zero eigenvalues. Each of the manifold learning
algorithms in this study can be described in terms of this common framework with
different Laplacian matrices and constraints. In the following sections, each algo-
rithm and the respective formulations are presented using the general framework.

2.2 Global Manifold Learning

Isometric Feature Mapping (Isomap) and Kernel PCA are the most widely utilized
global manifold learning approaches for nonlinear dimensionality reduction. Basic
implementations of both approaches are outlined in the following sub-sections.
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2.2.1 Isometric Feature Mapping (Isomap)

The Isomap method assumes that the local feature space formed by the nearest
neighbors is linear, and the global nonlinear transformation can be found by
connecting these piecewise linear spaces. Isomap uses a user-defined neighbor-
hood of size k and the shortest path algorithm to discover the manifold [1]. It first
defines Xi = [xi1, …, xik], the set of neighborhood nodes of node xi, to create a
distance matrix S0: A distance to node xj is computed by using the following rule.
If xj [ Xi, S0ij = sij; otherwise S0ij = ?, where sij is the distance between the two
nodes. Isomap then accumulates the distance beyond the set Xi along the shortest
path to obtain a shortest path network Sstp. The shortest path algorithm, typically
implemented in Isomap via the Dijkstra method [23], finds the paths from a root
node to all other nodes to minimize the sum of the individual path lengths. The
process is repeated for each sample, which in turn becomes the root node, to create
Sstp. Dimensionality reduction is then accomplished through multidimensional
scaling (MDS), a dimensionality reduction technique that places a set of samples
in a meaningful dimensional space that explains the similarity between samples.

Isomap can be represented in the graph framework by defining the weight
matrix W with the shortest path distance matrix Sstp. The Laplacian matrix is

L = HTH/2, where H = I - (1/n)eeT and Tij ¼ ½ðSstpÞij�
2: The matrix W can

then be constructed by setting Wij = -Lij, i = j; else 0. The constraint matrix is
set to the identity matrix, B = I.

The shortest path algorithm is computationally demanding. Several approaches
have been proposed to mitigate this problem for large data sets. Examples include
a divide and conquer method coupled with realignment of subset manifolds [6] and
various implementations using landmarks (L-Isomap) in conjunction with
embedding of non-landmark points via the derived embedding vectors reducing
the complexity of computing the shortest path distance matrix [7, 15, 24, 25].

2.2.2 Kernel Principal Component Analysis (KPCA)

Kernel PCA is a nonlinear extension of linear PCA in a feature space induced by a
kernel function [26]. The estimated covariance matrix of the sample data in the
feature space is obtained from

C :¼
1
n

Xn

j¼1

UðxjÞUðxjÞ
T ð3Þ

The principal components are then computed by solving the eigen-decompo-
sition problem CV = kV. The low dimensional embedding can be obtained from
yi ¼ Vp � UðxiÞ; where Vp is a matrix of the eigenvectors corresponding to the
p largest eigenvalues. However, the feature mapping U need not to be known
explicitly if the ‘‘kernel trick’’ is employed, by assuming a feature space induced
by a positive definite kernel function K given by K(xi, xj): = (U(xi), U(xj)).
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Once the kernel function is defined, the feature coordinates are represented by
yi ¼

P
j ajKðxj; xiÞ where a denotes expansion coefficients. Using the kernel

framework, the eigen-decomposition problem above is converted to nka = Ka

such that k(aTa) = 1, where K is an n 9 n Gram matrix whose entries are
obtained from evaluation of the kernel function between the samples: Kij = K(xi,
xj). KPCA can also be formulated in the general kernel framework after a slight
modification of the objective function. Given a kernel function, the optimization is
over the expansion coefficients because the manifold coordinates are determined
by a.

a
� ¼ arg min

aTKBKa¼I
a
TKLKa ð4Þ

The similarity matrix and Laplacian matrix are given by Wij = 1/n, L = I-eeT/n,
respectively. The constraint matrix B = I.

2.3 Local Manifold Learning

Three local manifold learning methods are investigated in this study: locally
linear embedding (LLE), local tangent space alignment (LTSA) and Laplacian
eigenmaps (LE). All three methods are initiated by constructing a nearest
neighborhood for each data point, and the local structures are then used to obtain
a global manifold. According to the framework, by solving the eigenvalue
problem LY = kBY, the embedding Y is provided by the eigenvectors corre-
sponding to the 2 * (p ? 1) smallest eigenvalues (the eigenvector that corre-
sponds to the smallest zero eigenvalue is a unit vector with equal elements and is
discarded).

2.3.1 Locally Linear Embedding (LLE)

In LLE [2], the local properties of each neighborhood are represented by the linear
coefficients that best reconstruct each data point from its neighbors. Let F [ Rn9n

be composed of the reconstruction coefficients of all the data points, which is
obtained by minimizing the reconstruction error according to

eðf iÞ ¼ xi �
X

i

fijxij

�

�

�

�

�

�

�

�

�

�

2

s:t:
X

j

fij ¼ 1 ð5Þ

where fij denotes the reconstruction weight of xi from its j-th neighbor xij. The
embedding is then obtained by retaining these coefficients in the low dimensional
space via the objective function:
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UðYÞ ¼
X

i

yi �
X

j

fijyj

�

�

�

�

�

�

�

�

�

�

2

s:t:
1
n

X

i

yiy
T
i ¼ I;

X

i

yi ¼ 0 ð6Þ

which can be minimized by solving Eq. 2, where the Laplacian matrix
L = (I 2 FT)(I 2 F), constraint matrix B = I, and the similarity matrix
W = F ? FT

2 FTF.

2.3.2 Local Tangent Space Alignment (LTSA)

In LTSA [27], the local geometry is described by the local tangent space of each
data point, and the global manifold is determined by aligning the overlapping local
tangent spaces. Let Xi be the k nearest neighbors of point xi, and Hi of dimen-
sionality p0 be the local tangent coordinates of Xi. The Hi relate to the global
coordinates Yi by an affine transformation

YiH ¼ TiHi þ Ei ð7Þ

where Ti [ Rp9p0 is the transformation matrix, H [ Rk9k is the centering matrix,
and Ei [ Rp9k is the reconstruction error matrix. Ei is minimized to retain the local
geometry in the embedded space according to

UðYÞ ¼
X

n

i¼1

ð E�i

�

�

�

�

2

F
Þ ¼

X

n

i¼1

ð YiUik k2FÞ s:t: YYT ¼ I ð8Þ

where Ui ¼ HðI�H
T
i ðHiH

T
i Þ
�1
HiÞ. The embedding Y is obtained by solving

Eq. 2, where L, also referred to as the alignment matrix, is constructed with
LðIi; IiÞ  LðIi; IiÞ þ UiU

T
i ;Ii is the index of Xi, and B = I. The dimensionality of

the local tangent space (p0) and the dimensionality of the global manifold (p) could
be different [28]; thus, they can be selected separately to provide greater flexibility
in applications. This could be advantageous for large, heterogeneous data sets.

2.3.3 Laplacian Eigenmaps (LE)

In LE [29], the weighted neighborhood graph of each data point is obtained by
calculating the pairwise distances between neighbors, where the distance is nor-
mally calculated using a Gaussian kernel function with parameter r. Let W [ Rn9n

be the adjacency matrix that summarizes the neighborhood relations. The
embedding Y is obtained by minimizing the total distance between each data point
and its neighbors in the low dimensional space:

UðYÞ ¼
X

i;j

yi � yj
�

�

�

�

2
Wij s:t: YDYT ¼ I ð9Þ
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which is analogous to Eq. 2 with L = D 2 W, B = D. It is also equivalent (up to
scaling) to the eigenvalue decomposition of the normalized graph Laplacian

matrix defined by D�1=2ðD�WÞD�1=2 [30, 31].

2.4 Supervised Local Manifold Learning

Both unsupervised and supervised implementations of local manifold learning
have been developed. In unsupervised local manifold learning (ULML) approa-
ches, the k spectral neighbors of a given point are searched. Supervised local
manifold learning (SLML) approaches identify only the neighbors that are of the
same class as the given point, making these methods more attractive for classifi-
cation [18, 32, 33]. SLML maps all the training data from the same class onto a
single point in the embedded space. Assuming there are c classes, the outputs of
SLML are c orthogonal points Yc

= [y1,…,yc] [ Rp9c. Each point yi has only one
nonzero element and represents all the training data from the ith class. Because the
last c bands of the outputs of SLML are meaningful, and each separates one class
from the others, we set p = c. SLML also results in an eigen-decomposition of the
Laplacian matrix L, a block diagonal matrix composed of Li for each class, where
Li is the matrix computed over the training data from the ith class. Since each Li

has one zero eigenvalue, L has c associated zero eigenvalues.
Based on the properties of SLML and a new SLML-weighted k-NN classifier

[18], we utilize SLML outputs of training data, where yi is equal to 1 in the i-th
coordinate and the remaining coordinates are zero. As a result, the SLML coor-
dinates of the labeled data can be obtained without calculation. This coordinate is
superior to the original SLML coordinate when used in conjunction with the k-NN
classifier because it reduces the impact of imbalanced data sets [18].

2.5 Kernel-Based Out-of-Sample Extension

Traditional manifold learning methods are implemented on training data and lack
generalization to new data. The kernel-based out-of-sample extension method [31,
34] mitigates this problem. From the kernel view, the manifold learning methods
can be represented as kernel PCA on specially constructed kernel matrices [30].
The kernel matrix of Isomap is equal to the negative of its Laplacian matrix [31,
34]. The kernel matrix of the three local manifold learning methods can be defined
as K = I 2 L (size of n 9 n) on training data, and its 2 * (p ? 1) major
eigenvectors (the first uniform eigenvector is discarded) provide the embedding
results. K can also be obtained by the kernel function K(�,�) computed over pairs of
training data. As a result, the kernel function should be learned such that
K(xi,xj) = Kij = dij - Lij, where d is the Kronecker delta. Generally, K(xi, xj) is
determined not only by (xi, xj), but also by the other training data. Therefore, K(�,�)
is a ‘‘data-dependent kernel’’ [31]. By defining the respective K(�,�) for each LML
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method, the embedding of a new data point x0 can be generalized via the Nyström
formula

yT0 ¼
Xn

i¼1

Kðx0; xiÞy
T
i K
�1 ð10Þ

where the p 9 p dimensional diagonal matrix K is composed of the largest
2 * (p ? 1) eigenvalues of the kernel matrix K. The definition of K(�,�) for LLE,
LTSA and LE is introduced in Refs. [31, 34] and Ma et al. [35].

For supervised localmanifold learningmethods, thematrixK has c eigenvalues that
are equal to 1 becauseK = I 2 L, andL has c zero eigenvalues. As a result,K ¼ I in
Eq. 10, and the out-of-sample extension of SLML for the testing point x0 becomes

y0 ¼
Xn

i¼1

Kðx0; xiÞyi ð11Þ

In classification of hyperspectral data, two strategies are used to obtain the
manifold coordinates for (unsupervised) manifold learning methods. One applies
manifold learning to both training and testing data; the other employs manifold
learning on training data and the kernel-based out-of-sample extension methods on
testing data. The former can obtain more accurate manifold coordinates, while the
latter is suitable when there are large quantities of testing data. Because the data
sets in this study are small enough for manifold learning methods to handle
directly, we employed the first strategy. However, for supervised methods, we
must use the out-of-sample extension method for testing data.

3 Remotely Sensed Data for Comparative Experiments

Four hyperspectral remotely sensed data sets which are commonly used to evaluate
classification methods were analyzed in this comparative study. The data were
acquired by sensors covering approximately the same range of wavelengths in the
visible and short wave infrared portions of the spectrum in 10-nm spectral bands at
spatial resolutions from 2 to 30 m. Spectral signatures of classes are complex and
often overlapping, and spatial patterns include natural vegetation and agricultural
fields in both fragmented and regular geometric patterns. Site and class related
information is listed in Table 2. Important characteristics of each data set are
summarized in the remainder of this section.

3.1 Botswana Hyperion Data (BOT)

Hyperion data with 9 identified classes of complex natural vegetation were
acquired over the Okavango Delta, Botswana, in May 2001. The general class
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groupings include seasonal swamps, occasional swamps, and woodlands. Signa-
tures of several classes are spectrally overlapped, typically resulting in poor
classification accuracies. After removing water absorption, noisy, and overlapping
spectral bands, 145 bands were used for classification experiments. Classification
results are reported for all 9 classes and separately for Class 3 (riparian) and Class
6 (woodlands), which are particularly difficult to discriminate, with the goal of
illustrating both the capability of the dimensionality reduction methods in a gen-
eral c-class setting and for specific classes of interest.

3.2 Kennedy Space Center AVIRIS Data (KSC)

Airborne hyperspectral data were acquired by the NASA AVIRIS sensor at 18-m
spatial resolution over Kennedy Space Center during March 1996. Noisy and water
absorption bands were removed, leaving 176 features for 13 wetland and upland
classes of interest. Cabbage Palm Hammock (Class 3) and Broad Leaf/Oak
Hammock (Class 6) are upland trees; Willow Swamp (Class 2), Hardwood Swamp

Table 2 Class labels and number of labeled samples

BOT KSC ACRE

ID Class name ID Class name ID Class name

1 Water (158) 1 Scrub (761) 1 Corn—heavy till A (116)
2 Floodplain (228) 2 Willow swamp (243) 2 Corn—heavy till B (116)
3 Riparian (237) 3 Cabbage palm hammock

(256)
3 Soybeans—Med till A (116)

4 Firescar (178) 4 Cabbage palm/oak (252) 4 Soybeans—Med till B1
(116)

5 Island interior
(183)

5 Slash pine (161) 5 Corn—no till A (116)

6 Woodlands (199) 6 Oak/broadleaf hammock
(229)

6 Corn—no till B (116)

7 Savanna (162) 7 Hardwood swamp (105) 7 Soybeans—no till (116)
8 Short mopane

(124)
8 Graminoid marsh (431) 8 Grass (116)

9 Exposed soils
(111)

9 Spartina marsh (520) 9 Soybeans—combined (116)

10 Cattail marsh (404) 10 Soybeans—Med till B2
(116)

11 Salt marsh (419)
12 Mud flats (503)
13 Water (927)

IND PINE

ID Class name

3 Corn—min till (834)
12 Soybeans—heavy till (614)
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(Class 7), Graminoid Marsh (Class 8) and Spartina Marsh (Class 9) are trees and
grasses in wetlands. Their spectral signatures are mixed and often exhibit only
subtle differences. Results for all 13 classes and for these ‘‘difficult’’ classes are
reported for the manifold learning experiments.

3.3 Indian Pine AVIRIS Data (IND PINE)

Experiments included the Indiana Indian Pine 16-class data set acquired by the
NASAAVIRIS sensor in June 1992 at 20-m spatial resolution. After removingwater
absorption bands, 200 bands were available for analysis. The scene is primarily
comprised of agricultural fields with regular geometry, providing an opportunity to
evaluate the impact of within-class variability at medium spatial resolution. The
corn and soybean fields, which had been recently planted, exhibit differences related
to tillage practices and soils (including soil moisture). Selected results are included
for Class 3 (corn, min tillage) and Class 12 (soybeans, high tillage) which are
difficult to discriminate during the early part of the growing season.

3.4 ACRE ProspectTIR Data (ACRE)

Airborne hyperspectral data were collected by a ProspecTIR instrument at 2-m
spatial resolution in November 2008 over the Agronomy Center for Research and
Education (ACRE) farm operated by Purdue University. The agricultural research
plots have 10 classes, which include corn, soybeans, and sorghum which had been
harvested and tilled using various practices for research on crop yield, erosion,
water quality, and carbon sequestration. Crop rows are visible in many of the
fields, soil moisture varies within fields, and signatures represent mixtures of soil
and remaining residue. Classification results obtained from 178 bands are reported
for 10 classes, with class dependent results provided for class pair (3, 9). These
results demonstrate the impact of intra-class spectral variability at very high spatial
resolution on dimensionality reduction.

4 Experimental Results

All labeled data sets were randomly sampled to provide 50% training and 50%
testing samples, with 20 replications of each experiment. The same data points for
each of the four data sets were used for each dimensionality reduction method to
provide consistent comparisons. A grid search was used to select parameters for
the classification process. Extensive experiments were performed, and selected
results are reported here to illustrate trends and demonstrate important charac-
teristics of the manifold learning methods. Classification results are provided for
the two global manifold learning methods (Isomap and KPCA) and the three local

Exploring Nonlinear Manifold Learning for Classification of Hyperspectral Data 217



manifold learning methods (unsupervised and supervised LLE, LTSA, and LE),
and compared to two linear dimensionality reduction methods (PCA and LDA).
The base classifier was k-NN with k = 1 in all experiments. Results are also
included for the original data, where similarities are based Euclidean distance and
spectral angle [36, 37]. In the implementation of the manifold learning methods,
dimensionality reduction was performed using spectral angle similarity in the
nearest neighbor search on the original data, and Euclidean distance was employed
thereafter in the transformed manifold space, as the physical relationship with
spectral angle is lost in the transformation.

The parameters and computational complexity of the 10 dimensionality
reduction methods are listed in Table 3. We consider the complexity of the most
demanding step, which is eigen-decomposition of the m 9 m matrix for PCA and
LDA, eigen-decompostion of n 9 n matrix for Isomap and KPCA, and identifi-
cation of the k nearest neighbors for the local methods (unsupervised and super-
vised). It should be noted that for SLML, the manifold coordinates of the training
data are obtained without calculation. Therefore, searching neighbors for the
testing data is the most computationally demanding step, which requires mn1n2,
where n1 and n2 are the number of training data and testing data, respectively.

Experiments were conducted across all methods to investigate performance
related to the dimensionality of the resulting data. Classification accuracies are
provided in Sect. 4.1 and 4.2 as a function of dimension for several c-class
experiments and for some example classes which are difficult to discriminate.
Additionally, plots of transformed data are provided in Sect. 4.3 to illustrate the
impact of linear and nonlinear dimensionality reduction methods on class sepa-
ration in various band combinations.

4.1 Performance of Dimensionality Reduction Methods (DR)

for BOT Hyperion Data

Experimental results for Botswana data are included to illustrate performance of
the various dimensionality reduction methods for all 9 classes and for Classes 3

Table 3 Classifier parameter
and computational
complexity

Method Parameter Computational complexity

PCA p O(m3)
LDA None O(m3)
Isomap k; p O(n3)
KPCA p O(n3)
LLE k; p O(mn2)
LTSA k; p; p0 O(mn2)
LE k; p; r O(mn2)
SLLE k O(mn1n2)
SLTSA k; p0 O(mn1n2)
SLE k; r O(mn1n2)
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(riparian) and 6 (woodlands). Figures 1-6 contain plots of experimental results
obtained from the 1-NN classifier, over a range of the parameter values for the
respective methods. The mean values of the Kappa statistics are plotted as a
function of dimension for each nonlinear learning method and for PCA, and
compared to those obtained using the original full dimensional data with both
Euclidean (EU) and Spectral Angle Mapper (SAM). Figures 1–5 show results for
unsupervised global and local manifold learning methods where dimensionality is
variable, and Fig. 6 shows results of supervised local manifold learning as a
function of k, as dimensionality is fixed p = 5*100. For KPCA, we use the radial
basis function (RBF) kernel. For global methods dimension p = 1*20, while for
local methods. Several trends are suggested by these results. Similar results were
observed in experiments using the KSC, IND PINE, and ACRE data sets.

• Figure 1 indicates that KPCA and PCA have very similar performance for the
BOT data. While neither dimensionality reduction method is able to achieve
the accuracy of the 1-NN classifier, obtained using the full 145 band data set, the
differences are larger for the 2-class problem than for the full 9-class experi-
ments. Results are insensitive to the parameter r, except for r = 1. High
dimensional inputs are needed to compensate for the small value of r. Negli-
gible improvement in accuracy is achieved with more than 5 bands in the Class
(3, 6) experiments or more than 7 bands for the 9-class studies.

• Figure 2 illustrates results for Isomap, where it outperforms both PCA and 1-NN
(EU) for the 2-class problem, but is somewhat worse for the full 9-class
experiments. The 1-NN classifier with SAM achieves the highest accuracies for
both sets of experiments. Isomap is generally able to achieve higher accuracies
at lower dimensions than PCA. With proper values of k, Isomap achieves higher
accuracies than PCA for the 2-class problem and similar results for the 9-class
problem. Results are affected by the value of k at low values of p, but asymptotic
accuracies are insensitive, except when k is extremely large in the 9-class
problem.

Fig. 1 Classification results using 1-NN with KPCA DR data a BOT Classes 3 and 6, b BOT
Classes 1–9
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Fig. 2 Classification results using 1-NN with ISOMAP DR data a BOT Classes 3 and 6, b BOT
Classes 1–9

Fig. 3 Classification results using 1-NN with LLE DR data a BOT Classes 3 and 6, b BOT
Classes 1–9

Fig. 4 Classification results using 1-NN with LTSA DR data a BOT Classes 3 and 6, b BOT
Classes 1–9
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• Figure 3 indicates that LLE outperforms PCA and 1-NN (EU and SAM) for
both sets of BOT data. For the 2-class problem, the highest accuracy is achieved
for p = 15, while larger values are required for the more complex 9-class
problem. LLE achieves higher accuracies for the Class (3, 6) experiments than
both global methods, and marginally better results than global methods for the
9-class problem, but requires significantly larger p([ 20) to obtain these results.
For the 2-class problem LLE performance degrades when p is very large ([ 40)
for some values of k.

• Performance of LTSA shown in Fig. 4 is better than either PCA or 1-NN. For
the 2-class problem, good performance can be achieved for p = 5 with some
large values of k. Similarly for the 9-class problem, LTSA achieves higher
accuracies than PCA and the 1-NN methods, but requires more bands. Larger
values of dimension p are required to compensate for smaller numbers of local
neighbors k, although results are relatively insensitive to p([ 20).

Fig. 5 Classification results using 1-NN with LE DR data a BOT Classes 3 and 6, b BOT
Classes 1–9

Fig. 6 Classification results using 1-NN with SLML DR data a BOT Classes 3 and 6, b BOT
Classes 1–9
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• LE outperforms PCA and 1-NN (EU) for the 2-category classification, but has
lower accuracies for all 9-class experiments. The best results are obtained for
k = 3, with small values of p being adequate for the 2-class problem, and larger
p([ 20) being required for the 9-class experiments.

• The performance of the supervised learning methods, which have fixed
dimension, is shown in Fig. 6, where the Kappa statistic is plotted versus the
parameter k. SLLE and SLTSA have better performance than LDA for k[ 25.
SLE and k-NN (applied to the original data with spectral angle similarity) have
lower accuracies for both the 2-class and 9-class experiments, with the best
performance for k\ 5, after which it steadily degrades for both classifiers. The
optimal 00k00 is much smaller for SLE than the other two methods, SLLE and
SLTSA. Note: Recall that 00k00in ORG ? SAM is the number of neighbors for
the k-NN classifier, whereas 00k00 in the other supervised methods (SLE, SLLE,
SLTSA) relates to the number of neighbors searched during manifold learning,
and does not relate to k-NN.

4.2 Comparison of DR Methods for BOT, KSC, IND PINE,

and ACRE Sites

Results obtained by each of the methods were also evaluated across sites. Accu-
racies from all methods are shown in Fig. 7, where optimal parameters were used
for each method, and results are shown as function of dimension, where p B 40.
Table 4 contains a summary of mean classification accuracies and associated
standard deviations obtained from Fig. 7 with the best value of p. The following
were observed:

• With an adequate number of features, accuracies of the best DR methods are
always at least as high as 1-NN applied to the original data (EU and SAM).

• When applied to the original data, the SAM-based similarity measure consis-
tently yields higher accuracies than Euclidean distance for the k-NN classifier.

• Results obtained from PCA and KPCA are very similar for all data sets.
• Isomap generally yields better results than both KPCA and LE, achieving good
results using a small number of features. The only exceptions are the full class
experiments for BOT and ACRE, where Isomap has worse results for p[ 3.

• For a large number of features, the LTSA and LLE local manifold learning
methods are consistently better than both global DR methods, while LE is
not.

• Accuracies for difficult classes exhibit more variability than results from the
full set of classes at each site. Supervised manifold learning methods mitigate
this effect, yielding higher accuracies with smaller standard deviations
(Table 4).

• In general, both local and global manifold learning methods are better able to
capture the nonlinear structure of the associated manifolds and achieve higher
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Fig. 7 Comparison of manifold learning methods a BOT Classes 3 and 6, b BOT Classes 1–9,
c KSC Classes 3 and 6, d KSC Classes 2, 7, 8, and 9, e KSC Classes 1–13, f IND PINE Classes 3
and 12, g ACRE Classes 3 and 9, and h ACRE Classes 1–10
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accuracies for small numbers of classes than for problems with large numbers of
categories. This is due to the complexity of the manifolds represented in
problems with many disparate classes. The data for similar classes actually
reside on sub-manifolds which are more easily characterized with fewer features
than the full c-class problems.

Fig. 8 Manifold coordinates of BOT Classes 3 and 6 a PCA, b KPCA, c Isomap, d LLE,
e LTSA, f LE, g SLLE, h SLTSA, i SLE, j LDA
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4.3 Manifold Coordinates for DR Methods

To better understand the performance of the DR methods, plots of manifold
coordinates are provided for the 9-class BOT data, with optimal parameters
for each set of results. The following discussion summarizes observations. Plots
of selected coordinates for each DR method are shown in Fig. 8 for the BOT
class (3, 6) data. Figures 9–16 contain plots of the first eight coordinates (in pairs)
for each method applied to the BOT 9-class data. The similarity between PCA and
KPCA is consistent with the classification accuracies. Nonlinear structures are
clearly exhibited, and are quite different for the various methods. The superior
performance of LDA and the supervised local manifold learning methods for the
2-class problem is clear.

• In Fig. 9a–d the first eight bands of PCA demonstrate that the information
contributing to classification is primarily contained in the first four bands.
Figure 10a–d shows that the KPCA transformed data have similar characteris-
tics to that of PCA.

• Both the nonlinearity and the potential contribution of larger numbers of bands
to classification are exhibited in the Isomap plots shown in Fig. 11.

Fig. 8 (continued)
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• Figure 12 indicates that many bands of LLE transformed data are meaningful
for classification. For example, class 3 (riparian) and class 6 (woodlands), the
most difficult class pair, can be well separated using bands 7 and 8 (Fig. 12d).
Class 5 (island interior) and class 7 (savannah) can be distinguished by band 4
(Fig. 12b).

• The first eight bands for the LTSA transformation also illustrate the contribution
of larger numbers of bands for improved classification, with band 7 being
meaningful for classifying class pair (5, 7) and band 8 providing good separation
for class pair (3, 6) (Fig. 13d) .

• Structures provided by LE (Fig. 14) are significantly different from those of
LLE and LTSA. Similar to other nonlinear methods, difficult classes are not well
separated by low order bands. Class pairs (3, 6) and (5, 7) are well distinguished
using bands 7 and 8 (Fig. 14d).

• Results for the supervised local manifold learning methods are similar, so plots
are provided only for SLLE. Here, each band clearly separates one class from
the rest. For example, in band 1 (Fig. 15a), only points from class 1 have large
values while points from all other classes have small values. Every band is thus
equally useful for classification.

Fig. 9 PCA DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and 6,
d bands 7 and 8
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Fig. 11 Isomap DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and
6, d bands 7 and 8

Fig. 10 KPCA DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and
6, d bands 7 and 8
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• Results of LDA (Fig. 16), the supervised linear transformation included for
comparison, indicate that the first 4 bands are primarily useful for discrimination
of the BOT data.

5 Summary and Conclusions

The goal of this study was to investigate the characteristics of nonlinear manifold
learning methods for dimensionality reduction in classification of hyperspectral
data. The investigation sought to better understand the performance of nonlinear
dimensionality reduction on real world data with characteristics commonly
observed in classification of multi-class land cover problems. The study was also
motivated by the greater complexity of hyperspectral data relative to example data
sets typically used machine learning examples, which could impact the value of
these approaches for analysis of remote sensing data. While achieving the best
possible classification accuracies was not a focus of the study, results should
inform other investigations for which that may be the goal.

An extensive empirical study was conducted, where the most common global
and local manifold learning methods were implemented in conjunction with a
nearest neighbor classifier for a range of parameter settings. While results are
specific to the data sets used in this study, several trends emerged which may
generalize to other multi-class hyperspectral data sets.

Fig. 12 LLE DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and 6,
d bands 7 and 8
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• Global manifold learning methods capture the overall structure of these data
with fewer bands than local manifold learning methods.

• For complex geometry, local manifold methods represent the data better than the
global methods evaluated herein, but require more features.

• Isomap generally outperforms KPCA with the RBF kernel as a global learning
method, and for these data sets KPCA offers little advantage relative to PCA.

• Among the local manifold learning methods, LLE and LTSA consistently yield
better results than LE. Isomap also outperforms LE.

• When implemented with the best parameters, LLE and LTSA have the best
overall performance, with higher mean accuracies and greatly reduced standard
deviations for difficult classes. They also have good capability over a wide range
of parameter values for both two-category data and problems with many classes.

• Supervised local manifold learning methods are advantageous in the classifi-
cation framework, if training data are reliable.

• Both global and local methods have better performance for small numbers of
classes than for large c-class problems. This is indicative of the difficulty of
recovering structure for complex data, and possibly indicates that hierarchical or
pairwise approaches may be advantageous for dimensionality reduction within a
classification framework.

Fig. 13 LTSA DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and 6,
d bands 7 and 8
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Fig. 15 SLLE DR results of BOT May 2001 Classes 1–9 a bands 1 and 2, b bands 3 and 4,
c bands 5 and 6, d bands 7 and 8

Fig. 14 LE DR results of BOT Classes 1–9 a bands 1 and 2, b bands 3 and 4, c bands 5 and 6,
d bands 7 and 8
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Overall, nonlinear manifold learning methods are promising as dimensionality
reduction methods. However, PCA can outperform manifold methods if methods
are implemented without regard to parameter settings and dimensionality selec-
tion. Computational complexity of nonlinear methods suggests that these
approaches should be used judiciously and that their greatest advantage is realized
for discriminating difficult classes. Further, investigation of multi-manifold rep-
resentations may have merit for supervised classification problems. The interaction
of dimensionality reduction and classifier design should be explored, particularly
with respect to generalization. Further investigation with additional hyperspectral
data sets is also warranted.
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Recent Developments in Endmember
Extraction and Spectral Unmixing

Antonio Plaza, Gabriel Martín, Javier Plaza, Maciel Zortea and

Sergio Sánchez

Abstract Spectral unmixing is an important task for remotely sensed hyper-
spectral data exploitation. The spectral signatures collected in natural environ-
ments are invariably a mixture of the pure signatures of the various materials
found within the spatial extent of the ground instantaneous field view of the
imaging instrument. Spectral unmixing aims at inferring such pure spectral
signatures, called endmembers, and the material fractions, called fractional

abundances, at each pixel of the scene. In this chapter, we provide an overview of
existing techniques for spectral unmixing and endmember extraction, with par-
ticular attention paid to recent advances in the field such as the incorporation of
spatial information into the endmember searching process, or the use of nonlinear
mixture models for fractional abundance characterization. In order to substantiate
the methods presented throughout the chapter, highly representative hyperspectral
scenes obtained by different imaging spectrometers are used to provide a quan-
titative and comparative algorithm assessment. To address the computational
requirements introduced by hyperspectral imaging algorithms, the chapter also
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includes a parallel processing example in which the performance of a spectral
unmixing chain (made up of spatial–spectral endmember extraction followed by
linear spectral unmixing) is accelerated by taking advantage of a low-cost com-
modity graphics co-processor (GPU). Combined, these parts are intended to pro-
vide a snapshot of recent developments in endmember extraction and spectral
unmixing, and also to offer a thoughtful perspective on future potentials and
emerging challenges in designing and implementing efficient hyperspectral
imaging algorithms.

Keywords Hyperspectral imaging � Spectral unmixing � Endmember extraction �
Neural networks � Intelligent training � Parallel processing � GPUs

1 Introduction

Spectral mixture analysis (also called spectral unmixing) has been an alluring
exploitation goal from the earliest days of hyperspectral imaging [1] to our days [2,
3]. No matter the spatial resolution, the spectral signatures collected in natural
environments are invariably a mixture of the signatures of the various materials
found within the spatial extent of the ground instantaneous field view of the
imaging instrument [4]. For instance, it is likely that the pixel collected over a
vegetation area in Fig. 1 actually comprises a mixture of vegetation and soil. In
this case, the measured spectrum may be decomposed into a combination of pure
spectral signatures of soil and vegetation, weighted by areal coefficients that
indicate the proportion of eachmacroscopically pure signature in themixed pixel [5].

Fig. 1 The mixture problem in remotely sensed hyperspectral data analysis
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The availability of hyperspectral imagers with a number of spectral bands that
exceeds the number of spectral mixture components [6] has allowed to cast the
unmixing problem in terms of an over-determined system of equations in which,
given a set of pure spectral signatures (called endmembers) the actual unmixing to
determine apparent pixel abundance fractions can be defined in terms of a
numerical inversion process [7].

A standard technique for spectral mixture analysis is linear spectral unmixing
[8, 9], which assumes that the collected spectra at the spectrometer can be
expressed in the form of a linear combination of endmembers weighted by their
corresponding abundances. It should be noted that the linear mixture model
assumes minimal secondary reflections and/or multiple scattering effects in the
data collection procedure, and hence the measured spectra can be expressed as a
linear combination of the spectral signatures of materials present in the mixed
pixel (see Fig. 2a). Although the linear model has practical advantages such as
ease of implementation and flexibility in different applications [10], nonlinear
spectral unmixing may best characterize the resultant mixed spectra for certain
endmember distributions, such as those in which the endmember components are
randomly distributed throughout the field of view of the instrument [11, 12].
In those cases, the mixed spectra collected at the imaging instrument is better
described by assuming that part of the source radiation is multiply scattered before
being collected at the sensor (see Fig. 2b).

In this chapter, we provide an overview of existing techniques for spectral
unmixing and endmember extraction, covering advances in both the linear and
nonlinear mixture model, and with particular attention paid to recent advances in
the field. The chapter is organized as follows. In Sect. 2, the chapter first focuses
on the linear mixture model, introducing the formulation of the mixture problem
under this model and further describing several classic approaches for endmember
extraction (using different concepts) and linear spectral unmixing models
(unconstrained, partially constrained and fully constrained). This section also
covers recent developments in the linear mixture model by means of the incor-
poration of spatial information into the process of automatically extracting spectral
endmembers from the image data, and further analyzes the impact of spatial
information in the subsequent unmixing process. Section 3 addresses the nonlinear

Fig. 2 Linear versus nonlinear mixture models: single versus multiple scattering
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mixture model by means of neural network-based techniques aimed at learning the
complexity of nonlinear mixtures by means of automatic training sample selection
algorithms which are used in the framework of a supervised learning procedure to
characterize other mixed signatures in the input data. Section 4 presents a quan-
titative and comparative assessment of the different techniques for spectral
unmixing presented in this chapter (linear and nonlinear), using hyperspectral data
sets obtained by different instruments, such as the Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS), operated by NASA/JPL, and the Digital Air-
borne (DAIS 7915) and Reflective Optics System (ROSIS) imaging spectrometers,
operated by DLR in Germany. Section 5 presents an implementation case study in
which a spectral unmixing chain made up of a spatial–spectral endmember
extraction algorithm followed by a linear (unconstrained) fractional abundance
estimation technique are implemented in parallel using commodity graphics pro-
cessing units (GPU). Finally, Sect. 6 concludes with some remarks and hints at
plausible future research avenues.

2 Linear Spectral Unmixing

2.1 Problem Formulation

Let us assume that a remotely sensed hyperspectral scene with n bands is denoted
by I, in which the pixel at the discrete spatial coordinates (i, j) of the scene is
represented by a vector Xði; jÞ ¼ ½x1ði; jÞ; x2ði; jÞ; . . .; xnði; jÞ� 2 <n; where <
denotes the set of real numbers in which the pixel’s spectral response xk(i, j) at
sensor channels k = 1, ..., n is included. Under the linear mixture model
assumption, each pixel vector in the original scene can be modeled using the
following expression:

Xði; jÞ ¼
Xp

z¼1

Uzði; jÞ � Ez þ nði; jÞ; ð1Þ

where Ez denotes the spectral response of endmember z, Uz(i, j) is a scalar value
designating the fractional abundance of the endmember z at the pixel X(i, j), p is
the total number of endmembers, and n(i, j) is a noise vector. Two physical
constrains are generally imposed into the model described in (1), these are the
abundance non-negativity constraint (ANC), i.e., Uz(i,j) C 0, and the abundance
sum-to-one constraint (ASC), i.e.,

Pp
z¼1 Uzði; jÞ ¼ 1 [8]. The solution of the fully

constrained linear spectral mixture problem described in (1) relies on two major
requirements:

1. A successful estimation of how many endmembers, p, are present in the input
hyperspectral scene I, and
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2. The correct determination of a set E = {Ez }z=1
p of endmembers and their

correspondent abundance fractions U(i, j) = {Uz(i, j) }z=1
p at each pixel X(i, j).

In order to address the first requirement, a successful technique in the literature
has been the virtual dimensionality (VD) [13]. The VD concept formulates the
issue of whether a distinct signature is present or not in each of the spectral bands
as a binary hypothesis testing problem, where a so-called Neyman-Pearson
detector is generated to serve as a decision-maker based on a prescribed PF (i.e.,
false alarm probability). In light of this interpretation, the issue of determining an
appropriate value for p is further simplified and reduced to setting a specific value
of PF. As will be shown in experiments, a suitable empirical choice is PF = 10-3

or PF = 10-4, where the method used in this work to estimate the VD is the one
developed by Harsanyi, Farrand and Chang [13] (referred to as HFC method) later
modified by including a noise whitening process as preprocessing to remove the
second-order statistical correlation. The purpose is that signal sources can be
decorrelated from the noise to achieve better signal detection. The resulting
method will be referred to as the noise-whitened HFC (NWHFC). The second
requirement for successful implementation of the linear mixture model (avail-
ability of endmember extraction and abundance estimation techniques) will be
addressed in the following subsections.

2.2 Endmember Extraction

Over the last decade, several algorithms have been developed for automatic or
semi-automatic extraction of spectral endmembers [9]. Classic techniques include
the pixel purity index (PPI) [14], N-FINDR [15–17], iterative error analysis (IEA)
[18], optical real-time adaptive spectral identification system (ORASIS) [19],
convex cone analysis (CCA) [20], vertex component analysis (VCA) [21], and an
orthogonal subspace projection (OSP) technique in [22]. Other advanced tech-
niques for endmember extraction have been recently proposed [23–29], but none
of them considers spatial adjacency. However, one of the distinguishing properties
of hyperspectral data is the multivariate information coupled with a two-dimen-
sional (pictorial) representation amenable to image interpretation. Subsequently,
most endmember extraction algorithms listed above could benefit from an inte-
grated framework in which both the spectral information and the spatial
arrangement of pixel vectors are taken into account. An example of this situation is
given in Fig. 3, in which a hyperspectral data cube collected over an urban area
(high spatial correlation) is modified by randomly permuting the spatial coordi-
nates (i, j) of the pixel vectors, thus removing the spatial correlation. In both
scenes, the application of a spectral-based endmember extraction method would
yield the same analysis results while it is clear that a spatial–spectral technique
could incorporate the spatial information present in the original scene into the
endmember searching process.

Recent Developments in Endmember Extraction and Spectral Unmixing 239



To the best of our knowledge, only a few attempts exist in the literature aimed
at including the spatial information in the process of extracting spectral end-
members. Extended morphological operations [30] have been used as a baseline to
develop an automatic morphological endmember extraction (AMEE) algorithm
[31] for spatial–spectral endmember extraction. Also, spatial averaging of spec-
trally similar endmember candidates found via singular value decomposition
(SVD) was used in the development of the spatial spectral endmember extraction
(SSEE) algorithm [32]. Recently, a spatial preprocessing (SPP) algorithm [33] has
been proposed which estimates, for each pixel vector in the scene, a spatially
derived factor that is used to weight the importance of the spectral information
associated to each pixel in terms of its spatial context. The SPP is intended as a
preprocessing module that can be used in combination with an existing spectral-
based endmember extraction algorithm.

In the following, we describe in more detail three selected spectral-based
algorithms (N-FINDR, OSP, VCA) and three spatial–spectral endmember
extraction algorithms (AMEE, SSEE, SPP) that will be used in our comparison in
this chapter. The reasons for our selection are: (1) these algorithms are repre-
sentative of the class of convex geometry-based and spatial processing-based
techniques which have been successful in endmember extraction; (2) they are fully
automated; (3) they always produce the same final results for the same input
parameters (for the N-FINDR, there is a random initialization step that also con-
ditions the final output); and (4) the number of endmembers to be extracted, p, is
an input parameter for all algorithms, while the AMEE, SSE and SPP have
additional input parameters related with the definition of spatial context around
each pixel in the scene.

2.2.1 N-FINDR

This algorithm looks for the set of pixels with the largest possible volume by
inflating a simplex inside the data. The procedure begins with a random initial
selection of pixels (see Fig. 4a). Every pixel in the image must be evaluated in
order to refine the estimate of endmembers, looking for the set of pixels that
maximizes the volume of the simplex defined by selected endmembers.

Fig. 3 Example illustrating
the importance of spatial
information in hyperspectral
analysis
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The corresponding volume is calculated for every pixel in each endmember
position by replacing that endmember and finding the resulting volume. If the
replacement results in a an increase of volume, the pixel replaces the endmember.
This procedure is repeated until there are no more endmember replacements (see
Fig. 4b). The mathematical definition of the volume of a simplex formed by a set
of endmember candidates is proportional to the determinant of the set augmented
by a row of ones. The determinant is only defined in the case where the number of
features is p - 1, p being the number of desired endmembers [34]. Since in
hyperspectral data typically n �p, a transformation that reduces the dimension-
ality of the input data, is required. In this study, the principal component transform
(PCT) has been used [35, 36], although another widely used alternative that
decorrelates the noise in the data is the maximum noise fraction (MNF) [37]. As a
final comment, it has been observed that different random initializations of N-
FINDR may produce different final solutions. Thus, our N-FINDR algorithm was
implemented in iterative fashion, so that each sequential run was initialized with
the previous algorithm solution, until the algorithm converges to a simplex volume
that cannot be further maximized. Our experiments show that, in practice, this
approach allows the algorithm to converge in a few iterations only.

2.2.2 Orthogonal Subspace Projection (OSP)

This algorithm starts by selecting the pixel vector with maximum length in the
scene as the first endmember. Then, it looks for the pixel vector with the maximum
absolute projection in the space orthogonal to the space linearly spanned by the
initial pixel, and labels that pixel as the second endmember. A third endmember is
found by applying an orthogonal subspace projector to the original image [22],
where the signature that has the maximum orthogonal projection in the space

Fig. 4 Graphical interpretation of the N-FINDR algorithm in a three-dimensional space. a N-
FINDR initialized randomly (p=4); b final volume estimation by N-FINDR
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orthogonal to the space linearly spanned by the first two endmembers. This pro-
cedure is repeated until the desired number of endmembers, p, is found [38].

2.2.3 Vertex Component Analysis (VCA)

This algorithm also makes use of the concept of orthogonal subspace projections.
However, as opposed to the OSP algorithm described above, the VCA exploits the
fact that the endmembers are the vertices of a simplex, and that the affine trans-
formation of a simplex is also a simplex [21]. As a result, VCA models the data
using a positive cone, whose projection onto a properly chosen hyperplane is
another simplex whose vertices are the final endmembers. After projecting the data
onto the selected hyperplane, the VCA projects all image pixels to a random
direction and uses the pixel with the largest projection as the first endmember. The
other endmembers are identified in sequence by iteratively projecting the data onto
a direction orthogonal to the subspace spanned by the endmembers already
determined. The new endmember is then selected as the pixel corresponding to the
extreme projection, and the procedure is repeated until a set of p endmembers is
found [21]. In our experiments with VCA, we select the corresponding pixel
original spectra as the VCA solution, not the noise-smoothed solution produced by
the original algorithm. In practice, our approach is expected to slightly reduce the
performance of VCA for low signal-to-noise (SNR) ratios, but we also believe that
this decision allows a fair comparison of VCA to N-FINDR and OSP, which do not
incorporate such noise reduction stage.

2.2.4 Automatic Morphological Endmember Extraction (AMEE)

The automatic morphological endmember extraction (AMEE) [31] algorithm runs
on the full data cube with no dimensional reduction, and begins by searching
spatial neighborhoods around each pixel vector X(i, j) in the image for the most
spectrally pure and mostly highly mixed pixel. This task is performed by using
extended mathematical morphology operators [30] of dilation and erosion, which
are graphically illustrated on Fig. 5. Here, dilation selects the most spectrally pure
pixel in a local neighborhood around each pixel vector X(i, j), while erosion
selects the most highly mixed pixel in the same neighborhood. Each spectrally
pure pixel is then assigned an eccentricity value, which is calculated as the spectral
angle distance (SAD) [5, 10] between the most spectrally pure and mostly highly
mixed pixel for each given spatial neighborhood. This process is repeated
iteratively for larger spatial neighborhoods up to a maximum size that is pre-
determined. At each iteration the eccentricity values of the selected pixels are
updated. The final endmember set is obtained by applying a threshold to the
resulting greyscale eccentricity image, which results in a large set of endmember
candidates. The final endmembers are extracted after applying the OSP method to
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the set of candidates in order to derive a final set of spectrally distinct endmembers
{ Ez }z=1

p , where p is an input parameter to the OSP algorithm.

2.2.5 Spatial Spectral Endmember Extraction (SSEE)

The spatial–spectral endmember extraction tool (SSEE) uses spatial constraints to
improve the relative spectral contrast of endmember spectra that have minimal
unique spectral information, thus improving the potential for these subtle, yet
potentially important endmembers, to be selected. With SSEE, the spatial char-
acteristics of image pixels are used to increase the relative spectral contrast
between spectrally similar, but spatially independent endmembers. The SSEE
algorithm searches an image with a local search window centered around each
pixel vector X(i, j) and comprises four steps [32]. First, the singular value
decomposition (SVD) transform is applied to determine a set of eigenvectors that
describe most of the spectral variance in the window or partition (see Fig. 6).
Second, the entire image data are projected onto the previously extracted eigen-
vectors to determine a set of candidate endmember pixels (see Fig. 7).

Fig. 5 Toy example
illustrating extended
morphological operations of
dilation and erosion

Fig. 6 First step of the SSEE algorithm. a Original data. b Subset data after spatial partitioning.
c Set of representative SVD vectors used to describe spectral variance. This scene is reproduced
from the one originally presented in [32]
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Then, spatial constraints are used to combine and average spectrally similar
candidate endmember pixels by testing, for each candidate pixel vector, which
other pixel vectors are sufficiently similar in spectral sense (see Fig. 8). Instead of
using a manual procedure as recommended by the authors in [32], we have used
the OSP technique in order to derive a final set of spectrally distinct endmembers
{Ez }z=1

p , where p is an input parameter to the OSP algorithm.

Fig. 7 Second step of the SSEE algorithm. a Original data. b Spectral distribution in two-
dimensional space. c Projection of data onto eigenvectors. d Set of candidate pixels. This scene is
reproduced from the one originally presented in [32]

Fig. 8 Third step of the SSEE algorithm. a Set of candidate pixels. b Updated candidate pixels
after including pixels which are spectrally similar to those in the original set. c Spatial averaging
process of candidate endmember pixels using a sliding window centered on each candidate.
d First iteration of spatial–spectral averaging. Averaged pixels shown as thick lines, with original
pixels shown as thinner lines. e Second iteration of spatial–spectral averaging. f Continued
iterations compress endmembers into clusters with negligible variance. This scene is reproduced
from the one originally presented in [32]
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2.2.6 Spatial Pre-Processing (SPP)

The SPP [33] serves as a preprocessing module which can be combined with
existing spectral-based algorithms such as the N-FINDR, OSP and VCA. The
method estimates, for each input pixel vector, a scalar factor which is intimately
related to the spatial similarity between the pixel and its spatial neighbors, and
then uses this scalar factor to spatially weight the spectral information associated
to the pixel. A simple geometric interpretation of the scalar factor is illustrated in
Fig. 9, given as a toy example in which only two spectral bands of an input
hyperspectral scene are represented against each other for visualization purposes.
The idea behind the SPP is to center each spectral feature in the data cloud around
its mean value, and then shift each feature straight towards the centroid of the data
cloud (denoted by O0 in Fig. 9). The shift is proportional to a similarity measure
calculated using both the spatial neighborhood around the pixel under consider-
ation and the spectral information associated to the pixel, but without averaging
the spectral signature of the pixel. The correction is performed so that pixels
located in spatially homogenous areas (such as the pixel vector labeled as ‘1’ in
Fig. 9) are expected to have a smaller displacement with regards to their original
location in the data cloud than pure pixels surrounded by spectrally distinct sub-
stances (e.g., the pixel vectors labeled as ‘2’ and ‘3’ in Fig. 9).

Resulting from the above operation, a modified simplex is formed, using not
only spectral but also spatial information. It should be noted that the vertices of the
modified simplex are more likely to be pure pixels located in spatially homoge-
nous areas. Although the proposed method is expected to privilege homogeneous
areas for the selection of endmembers, no pixel is excluded from the competitive

Fig. 9 Geometric
interpretation of the SPP
method for spatial
preprocessing prior to
endmember extraction. This
scene is reproduced from the
one originally presented in
[33]
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endmember extraction process that follows the preprocessing. As it can be inferred
from Fig. 9, the proposed method is also expected to be robust in the presence of
outliers. It is important to notice that the modified simplex in Fig. 9 is mainly
intended to serve as a guide for a subsequent competitive endmember extraction
process, conducted using a user-defined algorithm. However, such modified sim-
plex is not intended to replace the simplex in the input hyperspectral scene. To
achieve this, the spatial coordinates of the endmembers extracted from the pre-
processed image are retained, but the spectral signatures associated to those spatial
coordinates are obtained from the original hyperspectral scene.

2.3 Unconstrained Versus Constrained Linear Spectral Unmixing

Once a set of endmembers E = {Ez }z=1
p have been extracted, their correspondent

abundance fractions U(i, j) = { Uz(i, j) }z=1
p in a specific pixel vector X(i, j) of the

scene can be estimated (in least squares sense) by the following unconstrained
expression [10]:

ÛUCði; jÞ ¼ ðETEÞ�1
ETXði; jÞ: ð2Þ

However, it should be noted that the fractional abundance estimations obtained by
means of Eq. 2 do not satisfy the ASC and ANC constraints. Imposing the ASC
constraint results in the following optimization problem:

minUði;jÞ2D Xði; jÞ � Uði; jÞ � Eð ÞT Xði; jÞ � Uði; jÞ � Eð Þ
� �

;

subject to: D ¼ Uði; jÞ?
X

p

z¼1

Uzði; jÞ ¼ 1

( )

:
ð3Þ

Similarly, imposing the ANC constraint results in the following optimization
problem:

minUði; jÞ2D Xði; jÞ � Uði; jÞ � Eð ÞT Xði; jÞ � Uði; jÞ � Eð Þ
� �

;

subject to: D ¼ Uði; jÞ?Uzði; jÞ� 0 for all 1� z� p
n o

:
ð4Þ

As indicated in [13], a non-negative constrained least squares (NCLS) algorithm
can be used to obtain a solution to the ANC-constrained problem described in
Eq. 4 in iterative fashion [39]. In order to take care of the ASC constraint, a new
endmember signature matrix, denoted by E0, and a modified version of the pixel
vector X(i, j), denoted by X0(i, j), are introduced as follows:

E0 ¼ dM

1T

� �

;U0ði; jÞ ¼ dUði; jÞ
1

� �

; ð5Þ
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where 1 ¼ ð1; 1; . . .; 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

p

ÞT and d controls the impact of the ASC constraint. Using

the two expressions in (5), a fully constrained estimate can be directly obtained
from the NCLS algorithm by replacing E and U(i, j) used in the NCLS algorithm
with E0 and U0(i, j). Hereinafter, we will refer to the fully constrained (i.e. ASC-
constrained and ANC-constrained) linear spectral unmixing model by the acronym
FCLSU.

3 Nonlinear Spectral Unmixing

3.1 Problem Formulation

Under the nonlinear mixture model assumption, each pixel vector in the original
scene can be modeled using the following expression:

Xði; jÞ ¼ f E;Uði; jÞð Þ þ nði; jÞ; ð6Þ

where f is an unknown nonlinear function that defines the interaction between
E and U(i, j). Various learning-from-data techniques have been proposed in the
literature to estimate f. In particular, artificial neural networks have demonstrated
great potential to decompose mixed pixels due to their inherent capacity to
approximate complex functions [40]. Although many neural network architectures
exist, for decomposition of mixed pixels in terms of nonlinear relationships mostly
feed-forward networks of various layers, such as the multi-layer perceptron
(MLP), have been used [12, 41, 42]. It has been shown in the literature that MLP-
based neural models, when trained accordingly, generally outperform other non-
linear models such as regression trees or fuzzy classifiers [43].

A variety of issues have been investigated in order to evaluate the impact of
training in mixed pixel classification accuracy, including the size and location of
training sites, and the composition of training sets, but most of the attention has
been paid to the issue of training set size, i.e., the number of training samples
required for the learning stage [44]. Sometimes the smallness of a training set
represents a major problem [45]. This is especially apparent for analyses using
hyperspectral sensor data, where the requirement of large volumes of training sites
is a serious limitation [46]. Even if the endmembers participating in mixtures in a
certain area are known, proportions of these endmembers on a per-pixel basis are
difficult to be estimated a priori. Therefore, one of the most challenging aspects in
the design of neural network-based techniques for spectral mixture analysis is to
reduce the need for very large training sets. Studies have investigated a range of
issues [47], including the use of feature selection and feature extraction methods to
reduce the dimensionality of the input data [48], the use of unlabeled and semi-
labeled samples [46], the accommodation of spatial dependence in the data to
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define an efficient sampling design [32], or the use of statistics derived on other
locations [49]. Our speculation is that the problem of mixed pixel interpretation
demands intelligent training sample selection algorithms, able to seek for the most
informative training samples, thus optimizing the compromise between estimation
accuracy (to be maximized) and ground-truth knowledge (to be minimized).

A second issue that has not received attention in neural network-based mixed
pixel analysis has to do with initial model conditions. For instance, the MLP neural
network is typically trained using the error back-propagation algorithm [40]. It is a
supervised technique of training with three phases. In the first one, an initial vector
is presented to the network, which leads to the activation of the network as a
whole. The second phase computes an error between the output vector and a vector
of desired values for each output unit, and propagates it successively back through
the network. The last phase computes the changes for the connection weights,
which are randomly generated in the beginning. According to algorithm design, a
good and effective learning algorithm should not depend on initial conditions,
which can only affect the algorithm convergence rate, but should not alter the final
results. The matter of fact is that this is generally not true in learning algorithms
used for neural networks, where the choice of initial weights determines which
minimum the algorithm will converge to [11]. In order for a mixture model to be
effective, initial values must be representative and cannot be arbitrary.

In this section, we develop a combined linear/nonlinear mixture model which
assumes that most of the mixed spectra in the data can be modeled via a combi-
nation of single and multiple scattering effects. The abundance fractions of end-
member substances are first estimated via a linear mixture model and used to
establish the initial condition, including the initial weight matrix. Such an initial
estimation is then refined using an MLP neural network, coupled with unsuper-
vised algorithms for intelligent selection of training samples from the available
data. One of our main reasons to select an MLP neural network for demonstration
is that this architecture has been often claimed to be sensitive to network archi-
tecture parameters, such as the arrangement and number of neurons in the different
layers [41]. In our experience, however, a very simple MLP network configuration
can produce stable results when initialized and trained accordingly, a fact that
leads us to believe that both initialization and training can indeed be more
important than the choice of a specific network architecture in mixture analysis
applications.

3.2 Neural Network-Based Spectral Unmixing

Figure 10 shows a schematic block diagram of the proposed neural network-based
unmixing architecture. The first step consists of an estimation of the number of
endmembers, p, in the input data. For this purpose, in this work we use the VD
concept [13]. Then, the model is initialized via a fully constrained linear mixture
model based on automatic endmember extraction. Finally, the model is refined by
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a supervised MLP neural network. The latter step is supported by an unsupervised
algorithm for intelligent selection of training samples (both pure and mixed) from
the data in order to estimate the final endmember fractional abundances. The
number of neurons at the input layer of the MLP architecture equals the number of
spectral endmembers found in the initialization stage. The input patterns to the
input layer are vectors of endmember fractional abundances for each sample
vector X(i, j), first estimated by FCLSU. The second layer is the hidden layer, and
the third layer is the output layer. The number of neurons at the output layer, p,
equals the number of estimated endmembers. It should be noted that the number of
hidden neurons in the MLP architecture can be fine-tuned depending on the
problem under consideration [40]. However, in this work we are mainly interested
in exploring training mechanisms and their implications, without particular
emphasis on careful adjustment of neural network configuration parameters.
Subsequently, finding optimal parameters for the hidden layer is beyond our scope.
Based on previous results in the literature and our own experimentation, we have
considered one hidden layer only, with the number of neurons empirically set to
the square root of the product of the number of input features and information
classes, a configuration that has been shown to be successful for MLP-based mixed
pixel characterization in previous work [43].

At this point, it is worth noting that most available neural models for multi-
dimensional data analysis in the literature assume that the neuron count at the input
layer equals the dimension of the input vectors, i.e., each neuron in the input layer
is associated with one of the n spectral bands in which a pixel’s reflectance
spectrum is measured. However, the above configuration may easily suffer from
limited training samples in hyperspectral analyses, where training data are often of
limited quantity relative to input space dimensionality [36]. This leads any induced
classifier to potentially feature a poor generalization capability, an effect known as
the Hughes effect or curse of the dimensionality. Numerous analyses have been

Fig. 10 Neural network-based spectral unmixing architecture
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undertaken founded on the desire to reduce the dimensionality of the input data
prior to the analysis. In order to overcome the limitations above, in this work we
adopt a simple, yet natural approach to represent an n-dimensional pixel vector as
a p-dimensional vector of endmember fractional abundances at the pixel. This
strategy allows for a reduction in the number of network connections without
losing the information that is crucial for spectral unmixing applications. It should
be noted that the issue of how to select the most informative training data (in terms
of mixing knowledge) is of great importance for the success of the nonlinear
learning stage. In the following subsection, we develop an unsupervised algorithm
which selects training samples based on the mixture information they contain, thus
allowing us to accommodate the information provided by mixed pixels into the
learning process.

3.3 Automatic Selection and Labeling of Training Samples

The quality of training has a significant effect on mixed pixel characterization
using neural networks [44]. Conventional approaches for selection of training
samples often perform this task randomly, or by choosing the samples located in
exemplar regions of each class only, while atypical cases are often removed or
down-weighted in training set refinement operations. Such exemplar training
patterns are located near the central core of the class in feature space. However, a
key concern in the context of mixed pixel interpretation is how to identify and
characterize the response of sites that lie away from the class core, and near to the
decision boundaries commonly used in conventional, pure pixel classification.
Therefore, border [47] (or, equivalently, mixed) training samples may be useful to
refine a set of fractional abundance estimations obtained by using only spectrally
pure training samples.

In this section, we describe a new technique for automatic selection and
labeling of training samples from the input hyperspectral data. The proposed
technique, called mixed training algorithm (MTA), first uses Winter’s N-FINDR
algorithm [15] as an approach to automatically label spectrally pure training
samples (endmembers) without prior knowledge. Then, it iteratively seeks for the
most highly mixed pixels in the input data set by following a procedure which
behaves in an opposite way as N-FINDR and other convex geometry-based end-
member extraction methods [9], i.e. it automatically selects and labels highly
mixed training samples. Different sets of training samples, obtained by the MTA
discussed in this section, will be used in the following section to investigate the
impact of the composition of the training set on the characterization of mixed
pixels. The MTA can be summarized by the following steps:

1. Compute Cp ¼ ð1=pÞ
Pp

z¼1 Ez; i.e., the centroid of the simplex defined by the
set of spectral endmembers E = {Ez }

p
z=1 produced for the input hyperspectral

scene by an endmember extraction algorithm such as N-FINDR.
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2. At iteration j C 1, calculate a point-wise spectral distance between each pixel
vector X(i, j) in the input hyperspectral data and Cp, and mark the pixel vector
which provides the lowest distance value (i.e., the most spectrally similar to Cp)
as a new training sample Tj.

3. Remove the pixel previously selected as a training sample from the input
hyperspectral scene and apply a spectral screening algorithm to identify the
pixel vectors with associated spectral signatures within a small spectral angle h
from any of the previously selected training samples, removing those samples
from the input data as well.

4. Repeat from step 2 until a final set of kmixed labeled training samples {Tj }j=1
k is

generated from the input hyperspectral scene.

It should be noted that the MTA algorithm was implemented using various
spectral similarity measures [5, 10], such as the SAD or the spectral information
divergence (SID). In all cases, the results obtained were very similar. As a result,
this paper only reports experiments based on using SAD for demonstration
purposes.

4 Experimental Results

In this section we present two experiments focused on evaluating the endmember
extraction and spectral unmixing techniques discussed throughout the chapter.
In our first experiment, we focus on a mineral mapping application and further
discuss the role of endmember extraction and the use of spatial information for
linear spectral unmixing purposes, using AVIRIS image data collected over the
Cuprite mining district in Nevada. In our second experiment, we provide a com-
parison of linear versus nonlinear spectral unmixing techniques in the context of a
real agriculture and farming application in the region of Extremadura, Spain, using
hyperspectral data sets collected by the DAIS 7915 and the ROSIS imaging
spectrometers operating simultaneously at multiple resolutions.

4.1 First Experiment: AVIRIS Hyperspectral Data

In this experiment we use the well-known AVIRIS Cuprite data set, available
online in reflectance units1 after atmospheric correction. This scene has been
widely used to validate the performance of endmember extraction algorithms. The
portion used in experiments corresponds to a 350 9 350-pixel subset of the sector
labeled as f970619t01p02_r02_sc03.a.rfl in the online data. The scene (displayed
in Fig. 11a) comprises 224 spectral bands between 0.4 and 2.5 lm, with full width

1 http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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at half maximum of 10 nm and spatial resolution of 20 m per pixel. Prior to the
analysis, several bands were removed due to water absorption and low SNR in
those bands, leaving a total of 192 reflectance channels to be used in the experi-
ments. The Cuprite site is well understood mineralogically [50, 51], and has
several exposed minerals of interest included in a spectral library compiled by the
U.S. Geological Survey (USGS).2 A few selected spectra from the USGS library,
corresponding to several highly representative minerals in the Cuprite mining
district (see Fig. 11b), are used in this work to substantiate endmember signature
purity.

Two different metrics have been used to compare the performance of end-
member extraction and spectral unmixing algorithms in the AVIRIS Cuprite scene.
The first metric is the SAD between each extracted endmember and the set of
available USGS ground-truth spectral signatures. For the sake of clarity, we
remind that the SAD between two pixel vectors X(i, j) and X(r, s) can be simply
defined as follows:

SADðXði; jÞ;Xðr; sÞÞ ¼ cos�1 Xði; jÞ � Xðr; sÞ
kXði; jÞkkXðr; sÞk: ð7Þ

It should be noted that SAD is given by the spectral angle formed by n-dimen-
sional vectors (in radians). As a result, low SAD scores mean high spectral sim-
ilarity between the compared vectors. This spectral similarity measure is invariant
in the multiplication of X(i, j) and X(r, s) by constants and, consequently, is
invariant before unknown multiplicative scalings that may arise due to differences
in illumination and angular orientation [5]. The SAD metric allows us to identify
the USGS signature which is most similar to each endmember automatically

Fig. 11 a AVIRIS Cuprite data cube. b USGS spectral signatures of five representative minerals
in the Cuprite mining district

2 http://speclab.cr.usgs.gov/spectral-lib.htm
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extracted from the scene by observing the minimum SAD distance reported for
such endmember across the entire set of USGS signatures. The second metric is
based on the assumption that a set of high-quality endmembers (and their corre-
sponding FCLSU-estimated abundance fractions) may allow reconstruction of the
original hyperspectral scene (by means of Eq. 1) with higher precision than a set of
low-quality endmembers.

A second metric employed to evaluate the goodness of the reconstruction is the
RMSE between the original and the reconstructed hyperspectral scene, which can
be defined as follows. Let us assume that I(O) is the original hyperspectral scene,
and that I(R) is a reconstructed version of I(O), obtained using Eq. 1 with a set of
endmembers, automatically derived by a certain algorithm from the original scene,
and their corresponding FCLSU-estimated fractional abundances. Let us also
assume that the pixel vector at spatial coordinates (i, j) in the original hyper-
spectral scene is given by X(O)(i, j) = [x1

(O)(i, j), x2
(O)(i, j), ..., xn

(O)(i, j)], while the
corresponding pixel vector at the same spatial coordinates in the reconstructed
hyperspectral scene is given by X(R)(i, j) = [x1

(R)(i, j), x2
(R)(i, j), ..., xn

(R)(i, j)]. With
the above notation in mind, the RMSE between the original and the reconstructed
hyperspectral scenes is calculated as follows:

RMSEðIðOÞ; IðRÞÞ ¼ 1
s� l

Xs

i¼1

Xl

j¼1

1
n

Xn

k¼1

½xðOÞk ði; jÞ � x
ðRÞ
k ði; jÞ�2

 !1=2

: ð8Þ

Table 1 tabulates the SAD scores (in degrees) obtained after comparing the
USGS library spectra of five highly representative minerals in the Cuprite mining
district (alunite, buddingtonite, calcite, kaolinite and muscovite) with the corre-
sponding endmembers extracted by different algorithms from the AVIRIS Cuprite
scene. In all cases, the input parameters of the different endmember extraction
methods tested have been carefully optimized so that the best performance for
each method is reported. The smaller the SAD values across the five minerals in
Table 1, the better the results. It should be noted that Table 1 only displays the
smallest SAD scores of all endmembers with respect to each USGS signature for
each algorithm. For reference, the mean SAD values across all five USGS

Table 1 SAD-based spectral similarity scores (in degrees) between the USGS mineral spectra
and their corresponding endmember pixels produced by several endmember extraction algorithms

Algorithm Alunite Buddigntonite Calcite Kaolinite Muscovite Mean

N-FINDR 9.96� 7.71� 12.08� 13.27� 5.24� 9.65�
OSP 4.81� 4.16� 9.62� 11.14� 5.41� 7.03�
VCA 10.73� 9.04� 6.36� 14.05� 5.41� 9.12�
AMEE 4.81� 4.21� 9.54� 8.74� 4.61� 6.38�
SSEE 4.81� 4.16� 8.48� 11.14� 4.62� 6.64�
SPP+N-FINDR 12.81� 8.33� 9.83� 10.43� 5.28� 9.34�
SPP+OSP 4.95� 4.16� 9.96� 10.90� 4.62� 6.92�
SPP+VCA 12.42� 4.04� 9.37� 7.87� 6.18� 7.98�
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signatures is also reported. In all cases, the number of endmembers to be extracted
was set to p = 14 after using the VD concept in [10]. Table 1 reveals that the
AMEE provides very good results (all SAD scores below 10�), with the SSEE and
the SPP+OSP being the algorithms that can provide comparable—but slightly
worst—results. Table 1 also reveals that, in this real example, spatial prepro-
cessing generally improves the signature purity of the endmembers extracted by
spectral-based algorithms.

On the other hand, Fig. 12 graphically represents the per-pixel root mean square
error (RMSE) obtained after reconstructing the AVIRIS Cuprite scene using
p = 14 endmembers extracted by different methods. It can be seen that the
methods using spatial preprocessing (SPP+OSP, SPP+N-FINDR, SPP+VCA)
improve their respective spectral-based versions in terms of the quality of image
reconstruction, while both AMEE and SSEE also provide lower reconstruction
errors than OSP, N-FINDR and VCA. These results suggest the advantages of
incorporating spatial information into the automatic extraction of image end-
members from the viewpoint of obtaining more spatially representative spectral
signatures which can be used to describe other mixed signatures in the scene.

4.2 Second Experiment: DAIS 7915 and ROSIS

Hyperspectral Data

In this section, a set of scenes collected over a so-called Dehesa semi-arid
ecosystem (formed by quercus ilex or cork-oak trees, soil and pasture) is used as a
case study to illustrate the applicability of nonlinear neural network-based

N-FINDR(5.90) OSP(9.18) VCA(9.22) AMEE(5.44)

SSEE(5.53) SPP+N-FINDR(5.44) SPP+OSP(4.81) SPP+VCA(6.43)

0.5

1

1.5

2

2.5

0.5
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1.5
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Fig. 12 RMSE reconstruction errors (in percentage) for various endmember extraction
algorithms after reconstructing the AVIRIS Cuprite scene
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unmixing to a real problem. In the Iberian Peninsula, Dehesa systems are used for
a combination of livestock, forest and agriculture activity [52]. The outputs of
these systems include meat, milk, wool, charcoal, cork bark and grain. Around 12–
18% of the area is harvested on a yearly basis. The crops are used for animal feed
or for cash cropping, depending on the rainfall of the area. Determination of
fractional land-cover using remote sensing techniques may allow for a better
monitoring of natural resources in Dehesa agro-ecosystems. Our choice of this
type of landscape for evaluating spectral unmixing techniques was made on sev-
eral accounts. The first one is the availability of hyperspectral image data sets with
accurate geo-registration for a real Dehesa test site in Caceres, SW Spain, col-
lected simultaneously in July 2001 by two instruments operating at multiple spatial
resolutions: DAIS 7915 and ROSIS, operated by the German Aerospace Agency
(DLR). A second major reason is the simplicity of the Dehesa landscape, which
greatly facilitates the collection of reliable field data for model validation
purposes. It is also important to emphasize that the scenes were collected in
summertime, so atmospheric interferers were greatly minimized. Before describ-
ing our experiments, we first provide a comprehensive description of the data sets
used and ground-truth activities in the study area.

4.2.1 Data Description

The data used in this study consisted of two main components: image data and field
measurements of land-cover fractions, collected at the time of image data acqui-
sition. The image data is formed by a ROSIS scene collected at high spatial reso-
lution, with 1.2-m pixels, and its corresponding DAIS 7915 scene, collected at low
spatial resolution with 6-m pixels. The spectral range from 504 to 864 nm was
selected for experiments, not only because it is adequate for analyzing the spectral
properties of the landscape under study, but also because this spectral range is well
covered by the two considered sensors through narrow spectral bands. Figure 13
shows the full flightline of the ROSIS scene, which comprises a Dehesa area located
between the facilities of University of Extremadura in Cáceres (leftmost part of the
flightline) and Guadiloba water reservoir at the center of the flightline. Figure 14a
shows the Dehesa test site selected for experiments, which corresponds to a highly
representative Dehesa area that contains several cork-oak trees (appearing as dark
spots) and several pasture (gray) areas on a bare soil (white) background. Several
field techniques were applied to obtain reliable estimates of the fractional land
cover for each DAIS 7915 pixel in the considered Dehesa test site:

1. First, the ROSIS image was roughly classified into the three land-cover com-
ponents above using a maximum-likelihood supervised classification approach
based on image-derived spectral endmembers, where Fig. 14b shows the three
endmembers used for mapping that were derived using the AMEE algorithm.
Our assumption was that the pixels in the ROSIS image were sufficiently small
to become spectrally simple to analyze.
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2. Then, the classified ROSIS image was registered with the DAIS 7915 image
using a ground control point-based method with sub-pixel accuracy [53].

3. The classification map was then associated with the DAIS 7915 image to
provide an initial estimation of land cover classes for each pixel at the DAIS
7915 image scale. For that purpose, a 6 9 6-m grid was overlaid on the
1.2 9 1.2-m classification map derived from the ROSIS scene, where the
geographic coordinates of each pixel center point were used to validate the
registration with sub-pixel precision.

4. Next, fractional abundances were calculated within each 6 9 6-m grid as the
proportion or ROSIS pixels labeled as cork-oak tree, pasture and soil located
within that grid, respectively.

5. Most importantly, the abundance maps at the ROSIS level were thoroughly
refined using field measurements (see Fig. 15a) before obtaining the final

Fig. 13 Flightline of a ROSIS hyperspectral scene collected over a Dehesa area in Cáceres,
Spain

Fig. 14 a Spectral band (584 nm) of a ROSIS Dehesa subset selected for experiments.
b Endmember signatures of soil, pasture and cork-oak tree extracted by the AMEE algorithm,
where scaled reflectance values are multiplied by a constant factor
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proportions. Several approaches were developed to refine the initial
estimations:

• Fractional land cover data were collected on the ground at more than thirty
evenly distributed field sites within the test area. These sites were delineated
during the field visit as polygons, using high-precision GPS coordinates (see
Fig. 15b).

• Land cover fractions were estimated at each site using a combination of
various techniques. For instance, field spectra were collected for several areas
using an ASD FieldSpec Pro spectro-radiometer. Of particular interest were
field measurements collected on top of tree crowns (Fig. 15c), which allowed
us to model different levels of tree crown transparency.

• On the other hand, the early growth stage of pasture during the summer season
allowed us to perform ground estimations of pasture abundance in selected
sites of known dimensions, using pasture harvest procedures supported by
visual inspection and laboratory analyses.

After following the above-mentioned sequence of steps, we obtained a set of
approximate fractional abundance labels for each pixel vector in the DAIS 7915
image. Despite our effort to conduct a reliable ground estimation of fractional
land-cover in the considered semi-arid environment, absolute accuracy is not
claimed. We must emphasize, however, that the combined use of imagery data at
different resolutions, sub-pixel ground control-based image registration, and
extensive field work including high-precision GPS field work, spectral sample data
collection and expert knowledge, represents a novel contribution in the area of
spectral mixture analysis validation, in particular, for Dehesa-type ecosystems.

4.2.2 Fractional Abundance Estimation Results

In order to evaluate the accuracy of linear mixture modeling in the considered
application, Fig. 16 shows the scatterplots of measured versus FCLSU-estimated
fractional abundances for the three considered land-cover materials in the DAIS
7915 (low spatial resolution) image data set, where the diagonal represents perfect
match and the two flanking lines represent plus/minus 20% error bound. Here, the

Fig. 15 Ground measurements in the area of study. a Spectral sample collection using an ASD
FieldSpec Pro spectroradiometer. b High-precision GPS geographic delimitation. c Field spectral
measurements at different altitudes
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three spectral endmembers were derived using the AMEE algorithm, which
incorporates spatial information into the endmember extraction process.
As expected, the flatness of the test site largely removed topographic influences in
the remotely sensed response of soil areas. As a result, most linear predictions for
the soil endmember fall within the 20% error bound (see Fig. 16a). On the other
hand, the multiple scattering within the pasture and cork-oak tree canopies (and
from the underlying surface in the latter case) complicated the spectral mixing in
nonlinear fashion, which resulted in a generally higher number of estimations
lying outside the error bound, as illustrated in Fig. 16b, c. Also, the RMSE scores
in abundance estimation for the soil (11.9%), pasture (15.3%) and cork-oak tree
(16.9%) were all above 10% estimation error in percentage, which suggested that
linear mixture modeling was not flexible enough to accommodate the full range of
spectral variability throughout the landscape.

In order to characterize the Dehesa ecosystem structure better than linear
models do, we hypothesized that intelligently selected training data might be
required to better characterize nonlinear mixing effects. For this purpose, we
applied the MTA algorithm to automatically locate highly descriptive training sites

Fig. 16 Abundance estimations of cork-oak tree (a), pasture (b) and soil (c) by the fully
constrained linear mixture model from the DAIS 7915 image

Fig. 17 Abundance estimations of cork-oak tree (a), pasture (b) and soil (c) by the MLP-based
mixture model (trained using MTA) from the DAIS 7915 image
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in the DAIS 7915 scene and then used the obtained samples (and the ground-truth
information associated to those samples) to train the proposed MLP-based neural
network. Figure 17 shows the scatter plots of measured versus predicted fractional
abundances for soil, pasture and cork-oak tree by the proposed MLP-based model,
trained with the three endmembers derived by AMEE (see Fig. 14b) plus 40
additional training samples selected by MTA, which represent less than 1% of the
total number of pixels in the DAIS 7915 scene. These samples were excluded from
the testing set made up of all remaining pixels in the scene. From Fig. 17, it is
clear that the utilization of intelligently selected training samples resulted in fewer
points outside the two 20% difference lines, most notably, for both pasture and
cork-oak abundance estimates. The pattern of the scatter plots obtained for the soil
predictions (see Fig. 17a) was similar (in particular, when the soil abundance was
high). Most importantly, the RMSE scores in abundance estimation were signifi-
cantly reduced (with regards to the experiment using FCLSU) for the soil (6.1%),
pasture (4%) and cork-oak tree (6.3%). These results confirm our intuition that
nonlinear effects in Dehesa landscapes mainly result from multiple scattering
effects in vegetation canopies.

Before concluding the chapter it is worth noting that, although abundance
sum-to-one and abundance non-negativity constraints were not imposed in our
proposed MLP-based learning stage, negative and/or unrealistic abundance esti-
mations (which usually indicate a bad fit of the model and reveal inappropriate
endmember/training data selection) were very rarely found in our experiments.
Summarizing, the experimental validation carried out in this section indicated that
the intelligent incorporation of mixed training samples can enable a more accurate
representation of nonlinearly mixed signatures. It was apparent from experimental
results that the proposed neural network-based model was able to generate
abundance estimates that were close to abundance values measured in the field,
using only a few intelligently generated training samples. The need for mixed
training data does, however, require detailed knowledge on abundance fractions
for the considered training sites. In practice, these data are likely to be derived
from imagery acquired at a finer spatial resolution than the imagery to be classi-
fied, e.g., using data sets acquired by sensors operating simultaneously at multiple
spatial resolutions as it is the case of the DAIS 7915 and ROSIS instruments
considered in this experiment. Such multi-resolution studies may also incorporate
prior knowledge or ancilliary information, which can be used to help target the
location of training sites, and to focus training site selection activities on regions
likely to contain the most informative training samples.

5 Parallel Implementation Case Study

The endmember extraction and spectral unmixing techniques introduced in pre-
vious sections of this chapter introduce new processing challenges, in particular,
for very high-dimensional data sets [54]. From a computational perspective, these
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algorithms can be extremely time consuming when applied to real hyperspectral
data sets such as the AVIRIS scene in Fig. 11a, with 137 MB in size, or the ROSIS
scene in Fig. 13, with about 1 GB of size for the full flightline. At the same time,
these techniques exhibit inherent parallelism at multiple levels [55]: across pixel
vectors (coarse grained pixel-level parallelism), across spectral information (fine
grained spectral-level parallelism), and even across tasks (task-level parallelism).
As a result, they map nicely to massively parallel systems such as clusters of
computers or heterogeneous networks of workstations [56]. Unfortunately, these
systems are expensive and difficult to adapt to on-board data processing scenarios,
in which low-weight and low-power integrated components are mandatory to
reduce mission payload [57].

An exciting recent development in the field of commodity computing is the
emergence of programmable graphics processing units (GPUs) [58, 59], mainly
due to the advent of video-game industry. The speed of graphics hardware doubles
approximately every six months, which is much faster than the improving rate of
the CPU. The ever-growing computational requirements introduced by hyper-
spectral imaging applications can benefit from this kind of commodity hardware
and take advantage of the compact size and relatively low cost of these units,
which make them appealing for on-board data processing at much lower costs than
those introduced by other hardware devices such as clusters. In the following, we
develop a GPU-based implementation of a spectral unmixing chain made up of
spatial–spectral endmember extraction using the AMEE algorithm followed by
unconstrained linear spectral unmixing (LSU). The chain was implemented using
NVidiaTM CUDA,3 a collection of extensions to the C programming language and
a runtime library. CUDA’s functionality primarily allows a developer to write C
functions to be executed on the GPU. CUDA also includes memory management
and execution configuration, so that a developer can control the number of GPU
processors and threads that are to be invoked during a function’s execution. GPU-
based algorithms developed in CUDA are constructed by chaining so-called
kernels, which take one or more streams as inputs and produce one or more
streams as outputs.

The first issue that needs to be addressed when porting a hyperspectral imaging
algorithm to a GPU is how to map a hyperspectral image onto the GPU memory.
Since the size of hyperspectral images usually exceeds the capacity of such
memory, we split them into multiple spatial-domain partitions [56] made up of
entire pixel vectors (see Fig.18), i.e., each spatial-domain partition incorporates all
the spectral information on a localized spatial region and is composed of spatially
adjacent pixel vectors. Once the hyperspectral image has been allocated onto the
GPU memory, a set of kernels are applied to perform the desired operations. In our
case, the kernels needed to implement the AMEE algorithm for endmember
extraction followed by LSU for linear spectral unmixing can be summarized as
follows:

3 http://www.nvidia.com/object/cuda_home.html
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• Cumulative distance. For each pixel vector, this kernel accumulates the SAD
with all the neighboring pixels in order to complete a core operation in the
AMEE endmember extraction algorithm. It is based on a single-pass kernel that
computes the SAD between two pixel vectors using the inner products and
norms produced by the previous kernel. Finally, the kernel calculates, for each
pixel vector, the cumulative spectral angle between the pixel and all its
neighbors.

• Max/min finding. Extended morphological erosion and dilation used by the
AMEE algorithm are implemented at this stage through a kernel that applies
minimum and maximum reductions. This kernel uses as inputs the cumulative
values generated in the previous stage and produces a stream containing (for
each pixel) the relative coordinates of the neighboring pixels with maximum and
minimum cumulative distance.

• Eccentricity update. This kernel updates the morphological eccentricity scores
using the maximum/minimum and point-wise distance streams. A comple-
mentary kernel applies a threshold to select a set of final AMEE-derived end-
members at the end of the process.

• Spectral unmixing. Finally, this kernel uses as inputs the final endmembers
selected in the previous stage and produces a set of endmember fractional
abundances for each pixel using the unconstrained inversion process in Eq. 2.

The proposed endmember extraction algorithm has been implemented using the
Intel C/C++ compiler. The system used in experiments is based on an Intel Core 2
Quad Q6600 CPU running at 2.4 GHz and with 4 GB of RAM. The computer is
equipped with an NVidiaTM GeForce 8800 GTX with 16 multiprocessors, each
composed of eight SIMD processors operating at 1,350 Mhz. Each multiprocessor
has 8,192 registers, a 16 KB parallel data cache of fast shared memory, and access
to 768 MB of global memory. The GPU architecture is graphically illustrated in
Fig. 19. The hyperspectral data set used in our experiments is the AVIRIS Cuprite
scene.

Fig. 18 Spatial-domain decomposition for parallelization of hyperspectral imaging algorithms
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Table 2 shows the execution times and speedups measured for the GPU-based
implementations of the AMEE and unconstrained LSU algorithms compared to
their execution in the quad-core CPU of the system in which the GPU was inte-
grated. The speedup achieved by the GPU implementation of the AMEE algorithm
over its respective CPU implementations is close to 25. It should be noted that the
speedup achieved for the GPU implementation of AMEE was independent of the
structuring element size (the results displayed in Table 2 correspond to a structuring
element of 5 9 5 pixels in size which appropriate for endmember extraction from
the AVIRIS Cuprite scene, but similar speedups were achieved with other struc-
turing element sizes). On the other hand, Table 2 indicates that the speedup
achieved for the parallel implementation of the LSU stage was lower. This is mainly
due to the fact that the serial version of LSU is only takes around 5 s to be completed
in the quad-core CPU, and it is more difficult to achieve significant speedups in this
case since the communication time needed to transfer the data from the CPU to the
GPU is more relevant in this case when compared to the total time to finalize the
computations in the GPU. As a result, the ratio of computations to communications
is smaller for the parallel version of LSU than for the parallel version of AMEE,
which has an effect on the achieved speedup. Despite these observations, it can be
seen from Table 2 that the considered AVIRIS data cube could be processed in
parallel by a full unmixing chain made up of spatial–spectral endmember extraction
followed by linear spectral unmixing in just 2.975 s. This response is not strictly in
real-time since the cross-track line scan time in AVIRIS, a push-broom instrument,
is quite fast (8.3 ms to collect 512 full pixel vectors), which introduces the need to
process the considered scene (350 9 350 pixels) in 1.985 s to fully achieve real-
time performance. However, we believe that the achieved (near) real-time response
time would be relevant in many application domains. Further developments will be

Fig. 19 Architecture of the NVidiaTM GeForce 8800 GTX graphics card used in experiments

Table 2 Processing time
(seconds) and speedups for
the dual-core CPU and GPU
implementations

Algorithm Processing
time (CPU)

Processing
time (GPU)

Speedup

AMEE 42.797 1.678 25.504
LSU 4.953 1.297 3.818
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pursued in future work in order to approximate real-time performance for on-board
data exploitation.

6 Conclusions and Future Research

Endmember extraction is the process of selecting a collection of pure signature
spectra of the materials present in a remotely sensed hyperspectral scene. These
pure signatures are then used to decompose the scene into abundance fractions by
means of a spectral unmixing algorithm. Most techniques available in the end-
member extraction literature rely on exploiting the spectral properties of the data
alone. As a result, the search for endmembers in a scene is conducted by treating
the data as a collection of spectral measurements with no spatial arrangement. In
this chapter, we have discussed the role of spatial information in the search for
spectral endmembers and further demonstrated via experimental results, using
AVIRIS hyperspectral data collected in the framework of a mineral mapping
application, that the linear mixture model can benefit from the integration of
spatial and spectral information in the task of selecting endmembers. An inves-
tigation on the use of the considered spatial–spectral endmember extraction
algorithms in conjunction with source separation techniques, such as those
described in [60], is a topic deserving future research in this context.

When complex mixtures are present in hyperspectral scenes, nonlinear mixture
models may best characterize the resultant mixed spectra for certain endmember
distributions. In order to address this issue, we have developed a nonlinear, neural
network-based mixture model which is initialized using linear spectral unmixing
concepts. The proposed approach is trained with highly representative training sets
which can accurately explain the complex nature of the data using only a few
training samples. Our study reveals that the most informative training samples for
nonlinear mixture characterization are the most highly mixed signatures in the
input data set. This observation is in contrast with the overall approach in linear
spectral unmixing in which only the purest spectral signatures are used to char-
acterize and decompose spectral mixtures. Critically, if the regions expected to
contain the most highly informative training samples for spectral mixture mod-
eling can be identified in advance, then it is possible to direct the training data
acquisition procedures to these regions, and thus reduce the number of required
training sites without loss of prediction accuracy. This issue is of particular
importance in real applications based on the use of airborne/satellite images, in
which the acquisition of large training sets is generally very costly in terms of time
and finance. To illustrate the concepts above, we have conducted experiments
using a set of real hyperspectral images, collected at different altitudes by the
DAIS 7915 and ROSIS imaging spectrometers in the framework of an agriculture
and farming application in the region of Extremadura, Spain. Although the
reported results are promising, it would be also useful to explore in future work the
behaviour of spatial–spectral methods in cases where the linear mixture model
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assumption is no longer valid to describe the mixing systematics of the observed
materials, thus conducting a more detailed evaluation of linear versus nonlinear
mixture models in different application domains.

Finally, in order to address the extremely high computational requirements
introduced by endmember extraction and spectral unmixing applications, this
chapter has also presented a parallel implementation case study in which an
unmixing chain made up of spatial–spectral endmember extraction followed by
unconstrained linear spectral unmixing has been implemented on a specialized
graphics processor (GPU). Our experimental results indicate that a low-weight and
low-power specialized hardware device such as a GPU has the potential to bridge
the gap towards real-time analysis of high dimensional data. This kind of spe-
cialized, on-board processing devices are essential to reduce mission payload and
obtain analysis results quickly enough for practical use in real applications. Further
experimentation will additional hyperspectral scenes will be pursued in future
work in order to approximate real-time performance of endmember extraction and
spectral unmixing applications for on-board data exploitation.
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Change Detection in VHR Multispectral
Images: Estimation and Reduction
of Registration Noise Effects

Lorenzo Bruzzone, Silvia Marchesi and Francesca Bovolo

Abstract In this chapterweaddress theproblemofchangedetection (CD) inveryhigh
geometrical resolution (VHR) optical images by studying the effects of residual mis-
registration (registration noise) between images acquired over the same geographical
area at different times. According to an experimental analysis driven from a theoretical
study, we identify the main effects of RN in VHR images and derive some important
properties exploiting a polar framework for change vector analysis (CVA).On the basis
of the identifiedproperties,wepropose: (i) a techniquefor anadaptiveandunsupervised
explicit estimation of theRNdistribution based on amultiscale analysis of the behavior
of spectral change vectors in the polar domain and the Parzen windowmethod; and (ii)
anautomatic context-sensitive technique robust to registrationnoise (RN) forCDbased
on amultiscale analysis in a quantized polar domain. Experimental results obtained on
simulated and real VHR multitemporal images confirm the validity of the proposed
analysis on RN, the reliability of the derived properties and the effectiveness of the
proposed techniques for the estimation of RN distribution and change detection.
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1 Introduction

Remote sensing images regularly acquired by satellites over the same geographical
area, make the analysis of multitemporal data, one of the most interesting research
topics for the remote sensing community.

In the last years, the ever increasing availability of multitemporal very high
geometrical resolution (VHR) (i.e. 0.6–2.05 m) remote sensing images resulted in
new potentially relevant applications related to environmental monitoring and land
control and management. Most of these applications are associated with the analysis
of dynamic phenomena that occur at different scales and result in changes on the
Earth surface. The effects of these phenomena can be detected developing change-
detection (CD) techniques capable to automatically identify changes occurred
between two VHR images acquired at different times. Several different automatic
CD techniques have been proposed in the image processing and remote sensing
literature [1–4]. These techniques have been successfully employed in many dif-
ferent application domains, like analysis of growth of urban areas, cadastral map
updating, risk analysis, damage assessment, etc. However, most of the available
methods are oriented to the analysis of images acquired by medium resolution (MR)
sensors and result completely ineffective when dealing with images showing metric
resolution (e.g., Ikonos, QuickBird, EROS, SPOT-5, GeoEye-1, World View-2).
Therefore it is necessary to develop novel methodologies capable to exploit the
properties of VHR images in detecting changes between multitemporal images.

Change-detection techniques generally compare two images acquired at dif-
ferent times by assuming that they are similar to each other except for the presence
of changes occurred on the ground. Unfortunately, this assumption is seldom
completely satisfied due to differences in atmospheric and sunlight conditions, as
well as in the sensor acquisition geometry. In order to satisfy the similarity
assumption, pre-processing steps are required, including: image co-registration,
radiometric and geometric corrections, and noise reduction. Among the others,
co-registration plays a fundamental role as it allows one to obtain a pair of images
where corresponding pixels are associated with the same position on the ground.
However, in practice, it is not possible to obtain a perfect alignment between
images acquired at different times. This may significantly affect the accuracy of
the change-detection process. The co-registration procedure becomes more com-
plex and critical (and therefore intrinsically less accurate) when VHR images
acquired by the last generation sensors (e.g. Ikonos, QuickBird, EROS, SPOT-5,
GeoEye-1, and World View-2) are considered. These images can be acquired with
different view angles and often show different geometrical distortions that, even
after proper geometric corrections, strongly affect the precision of the registration
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process, thus resulting in a significant residual registration noise (RN). This noise
sharply decreases the accuracy of the change-detection process [5–7].

Another important problem in change detection on VHR images concerns the
modeling of the spatial context information of the scene. Most of the classical
change-detection techniques generally assume spatial independence among pixels,
which is not reasonable in high geometrical resolution data. In order to better
exploit the spatial correlation among neighboring pixels and to get accurate and
reliable CD maps (both in regions corresponding to border or geometrical details
and in homogeneous areas), it is necessary to integrate the spectral information
with the spatial one and to model the multiscale properties of the scene. In the
literature only few techniques capable to exploit the above-mentioned concepts
[8–10] are available.

This chapter aims at analyzing the properties of RN in multitemporal VHR
images in order to develop: (i) an adaptive technique for the explicit estimation of
the RN distribution; and (ii) an adaptive context-sensitive technique, which: (a)
reduces the impact of registration noise in CD on VHR images through a multi-
scale strategy; (b) considers the spatial dependencies of neighborhood pixels by
the definition of multitemporal parcels. The whole analysis is developed in the
context of a polar framework for change vector analysis (CVA) recently intro-
duced in the literature for change detection in medium resolution multispectral
images [11]. The definition of this framework is based on the analysis of the
distribution of spectral change vectors (SCVs) computed according to the CVA
technique in the polar domain. The experiments carried out on multitemporal VHR
images confirm the validity of the theoretical analysis and the effectiveness of the
proposed techniques both in the estimation of the registration noise distribution
and in the change-detection approach.

The chapter is organized into seven sections. The next section introduces the
notation and background of the polar framework proposed in [11]. Section 3
describes the experimental setup for the study of the properties of RN on simulated
multitemporal VHR images and derives the properties of RN. Sections 4 and 5
illustrate an approach to the estimation of the distribution of RN in the polar domain
and an adaptive multiscale and context-based technique for CD on VHR images,
respectively. Section 6 presents the experimental results obtained on real multi-
temporal Quickbird images. Finally, Sect. 7 draws the conclusion of this work.

2 Notation and Background

In order to analyze the effects of the RN and to develop a change-detection
technique robust to such kind of noise, we take advantage from the theoretical
polar framework defined for unsupervised change detection based on CVA pro-
posed in [11]. According to the behavior of SCVs in such polar domain we derive
the properties and adaptively estimate the distribution of registration noise. In the
following we briefly recall the main concepts of this framework.
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Let us consider two VHR multispectral images X1 and X2 (e.g. Ikonos,
QuickBird, EROS, SPOT-5, GeoEye-1, and World View-2 images) acquired on
the same geographical area at different times t1 and t2, respectively. Let us assume
that these images do not show significant radiometric differences; in particular,
let us consider that the spectral channels at the two times have the same mean
values (this can be easily obtained with very simple radiometric correction pro-
cedures). Let X ¼ xn;Xcf g be the set of classes of changed and no-changed pixels
to be identified. In greater detail, xn represents the class of no-changed pixels,
while Xc ¼ xc1 ; . . .;xcKf g the set of the K possible classes (kinds) of change
occurred in the considered area. For simplicity, the polar framework as well as the
whole analysis on the registration noise properties is presented considering a two-
dimensional feature space (however it can be generalized to the case of more
features, see [11] for details). In this manner, it is possible to represent the
information in a 2-D domain and to better understand the implications of
the analysis. Let XD be the multispectral difference image computed according to
the CVA technique by subtracting the spectral feature vectors associated with each
corresponding spatial position in the two considered images. XD is a multidi-
mensional image made up of SCVs defined as:

XD ¼ X2 � X1 ð1Þ

Under the assumption of 2-D feature vectors, the change information contained
in the SCVs can be univocally described by the change vector magnitude q and
direction # defined as:

# ¼ tan�1
X1;D

X2;D

� �

and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1;D
� �2

þ X2;D
� �2

q

ð2Þ

where Xb,D is the random variable representing the bth component (spectral
channel) of XD (b = {1, 2}). The magnitude-direction domain MD (in which all
the SCVs of a given scene are included) can be defined as:

MD ¼ q 2 0; qmax½ � and # 2 0; 2p½ �f g ð3Þ

where qmax is the highest magnitude of SCVs in the considered images.
According to the previous definitions, the change information for a generic

pixel in spatial position (i,j) can be represented in the magnitude-direction domain
with a vector zij having components qij and #ij computed according to (2). From
the theoretical analysis reported in [11] and under the above-mentioned assump-
tions, it is expected that in the polar representation no-changed and changed SCVs
result in separate clusters. Unchanged SCVs show a low magnitude and are uni-
formly distributed with respect to the direction variable. In the polar domain the
region associated with them is the circle of no-changed pixels Cn, defined as:

Cn ¼ q; # : 0\q� T and 0�#\2pf g ð4Þ
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This circle is centered at the origin and has a radius equal to the optimal (in the
sense of the theoretical Bayesian decision theory) threshold T that separates
no-changed from changed pixels. On the opposite, changed SCVs are expected to
show a high magnitude. The region associated with them in the polar domain is the
annulus of changed pixels Ac, which is defined as:

Ac ¼ q; # : T � q\qmax and 0�#\2pf g ð5Þ

This annulus has inner radius T and outer radius given by the maximum among
all possible magnitudes for the considered pair of images (qmax). As no-changed
SCVs show preferred directions according to the kind of change occurred on the
ground, different kinds of changes can be isolated with a pair of threshold values
#k1 and#k2ð Þ in the direction domain. Each pair of thresholds identifies an annular

sector Sk of change xk 2 Xc in the annulus of changed pixels Ac defined as:

Sk ¼ q; # : q� T and #k1 �#�#k2 ; 0�#k1\#k2 � 2pf g ð6Þ

All the mentioned regions are depicted in Fig. 1. The reader is referred to [11]
for further details on both the polar framework and the general properties of SCVs
in this kind of representation.

3 Analysis of Registration Noise Properties

As previously mentioned, residual misregistration affects multitemporal data and
represents an important source of noise. In particular, this noise becomes more
relevant when dealing with VHR images, as the process of co-registration is more
complex and critical. Indeed, images acquired by VHR sensors of the last gen-
eration can be acquired with different view angles and often show different geo-
metrical distortions that strongly affect the registration process. Thus, they result in
a significant amount of residual registration noise. For this reason, it is very

Fig. 1 Representation of the
regions of interest in the CVA
polar framework
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important to study the properties of RN and to define CD techniques robust to such
kind of noise.

The residual registration noise can be modeled as the effect of different types of
transformations between the images, such as scale variation, rotation, translation
and skew [6]. In this section, for space constraints, only examples modeling the
registration noise as a translational effect are reported; however this choice is
reasonable as, according to [6], non-translational effects show (from a statistical
viewpoint) a behavior similar to that of the translational ones. This behavior is
confirmed by experimental results obtained with misregistered data sets generated
considering relative rotation and roto-translation, which are not reported here for
space constraints.

3.1 Experimental Setup

In order to study the registration noise in the polar CVA domain several data sets
have been selected by considering: (i) very high geometrical resolution images
acquired by different sensors (i.e., Quickbird, Ikonos, and Pleiades simulator);
and (ii) areas with different characteristics, representative of the most frequent
land-cover types (i.e., urban, rural, and forestry). Three different experiments
have been defined to understand the behavior of RN on unchanged and changed
pixels when the misalignment between images increases and the resolution level
decreases. To avoid intrinsic differences between images typical of real multi-
temporal data sets (e.g., atmospheric differences, etc.), in the first phase of the
analysis a single-date image has been considered for each data set, while the
second acquisition has been simulated.

In the following we describe the experiments considering the analysis con-
ducted on a Quickbird image acquired on the city of Trento (Italy) in July 2006

Fig. 2 Channel 4 of pan-sharpened image of the city of Trento (Italy) acquired by the Quickbird
VHR multispectral sensor in July 2006 a original image without simulated changes, b original
image with simulated changes (pointed out with white circles)
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(X1). The selected test site is a section of a full scene including both rural and
urban areas (Fig. 2a). Results obtained on other data sets (which contain areas with
other characteristics and images acquired by other sensors) are very similar to
those reported here, and thus omitted for space constraints. In the following, after
an accurate preliminary analysis, among the four available spectral channels, only
the red and the near-infrared ones were considered for analyzing the distributions
in the polar domain, as they demonstrated to be the most effective in emphasizing
the properties of RN (with respect to both changed and unchanged pixels) on the
adopted data set. Different choices led to poorer visual representations but to
similar conclusions.

3.1.1 Experiment 1: Effects of Increasing Misregistration on Unchanged

Pixels

From the considered image X1 different simulated images X2 have been generated
introducing some pixels of misregistration according to translations in several
directions. This resulted in different multitemporal data sets made up of the ori-
ginal image X1 and of its shifted versions X2. In particular, we considered mis-
registration between 1 and 6 pixels, which are possible values when taking into
account large VHR images acquired with different view angles and/or in complex
areas. After the application of the CVA, the SCV distributions were analyzed in the
polar scatterograms in order to derive the properties of RN on unchanged pixels. It
is worth noting that the application of the CVA technique to X1 and a copy of itself
when images are perfectly co-registered leads to a multispectral difference image
made up of SCVs with all zero components. Thus the representation in polar

Fig. 3 Scatterograms in the polar coordinate system obtained by applying CVA to the simulated
multitemporal data sets (which do not contain any change) that show a 2 pixels, and b 6 pixels of
residual misregistration (Experiment 1)
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coordinates of SCVs collapses in a single point at the origin. This is no longer valid
if the CVA is applied to misregistered images; in this case the distribution of SCVs
in the polar domain corresponds to the distribution of registration noise (as no
changes are present in the considered data set). Figure 3 shows an example of the
behaviors of scatterograms obtained by applying the CVA technique to X1 and its
2- and 6-pixels shifted versions, respectively. An analysis of these scatterograms
allows us to derive the properties of registration noise when no changes are present
between the considered images (see Sect. 3.2).

3.1.2 Experiment 2: Effects of Increasing Misregistration on Changed Pixels

From the considered image X1 a new image X2 has been generated by adding
simulated changes. These changes have been accurately introduced in order to be
as similar as possible to real changes. In particular, some buildings have been
added to the scene (see regions marked with white circles in Fig. 2b) taking their
geometrical structures and spectral signatures from other real buildings present in
the image. All the mentioned buildings have similar spectral signatures and are
located on agricultural fields. Therefore the solution to the simulated change-
detection problem requires the identification of a single class of changed pixels
xc1ð Þ. As in the first experiment, from the simulated image six new images have
been generated introducing some pixels of residual misregistration. This resulted
in seven multitemporal data sets made up of the original image (X1) and one of the
simulated images (X2). In particular, the two images in the first data set are
perfectly aligned and differ only for the simulated changes, while the images in the
other data sets show also a residual misregistration between 1 and 6 pixels. It is
worth noting that when the images are perfectly co-registered the application of
the CVA technique to X1 and to the image obtained introducing simulated changes
leads to a multispectral difference image made up of SCVs with non-zero values
only for the simulated changes. Other non-zero SCVs (associated with RN) appear
if we compute the scatterograms of pair of misregistered images. Figure 4 shows
an example of the behaviors of such scatterograms obtained by applying the CVA
technique to the image X1 and: (a) the simulated image perfectly aligned; (b) the
simulated image with 2 pixels of residual misregistration; and (c) the simulated
image with 6 pixels of residual misregistration. An analysis of these scatterograms
(and of the others obtained for different values of misregistration) allowed us to
derive the properties of the registration noise on the class of changed pixels
(see Sect. 3.2).

3.1.3 Experiment 3: Effects of Misregistration at Different Scales

Further data sets have been generated from the considered image (X1) and the
simulated image including changes with a 4-pixel misregistration (X2) by applying
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to them a decomposition filter. In this manner two sets of images (Xn
1 and Xn

2;
n = 1, 2, …, N) have been generated that have lower scale (resolution) than the
original ones. These images show a consistent decrease in detail content. In order
to obtain the multiscale representation of the images, in the experimental phase
different decomposition approaches have been used, as Laplacian/Gaussian
pyramid decomposition, iterative sliding window low pass filter, recursively
upsampled bicubic filter, wavelet transform. All these approaches provided similar
results. For this reason we report only the analysis obtained by applying to X1 and
X2 the Daubechies-4 stationary wavelet transform [12, 13]. In the following, as an
example, the results achieved considering the pair of images obtained at the third
decomposition level (n = 3) are reported. It is worth noting that the choice of the
level of decomposition is strictly data and application dependent. Figure 5 reports
the scatterograms obtained by applying the CVA technique to images X1 and X2

(full resolution) and to X3
1 and X3

2; respectively. By comparing these scatterograms

Fig. 4 Scatterograms in the polar coordinate system obtained by applying CVA to the simulated
data sets containing changes in the case of a perfect alignment between images, b 2 pixels of
residual misregistration, and c 6 pixels of residual misregistration (Experiment 2)
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(and the others obtained for different values of misregistration and at different
resolution levels, which are not reported for space constraints) it is possible to
study the effects of multiscale decomposition on the distribution of registration
noise and of real changes (see Sect. 3.2).

3.2 Properties of RN in VHR Images

An analysis of the scatterograms obtained from the three sets of previously
described experiments, and a study on the behavior of SCVs in the polar domain
for each investigation setup allowed us to derive some important properties of the
registration noise on both unchanged and changed pixels.

Property 1 RN affects unchanged pixels by: (a) increasing the spread of the

cluster in the circle of unchanged pixels Cn with respect to the case of perfectly

aligned images; (b) generating clusters of dominant registration noise in the

annulus of changes Ac that have properties very similar to those of changed pixels.

Experiment 1 makes it possible the study of the behavior of the distribution of
registration noise (associated with the distribution of SCVs) versus different
amounts of misregistration in the polar domain. As the misalignment increases, the
number of multitemporal pixels having the same coordinates but that do not
correspond to the same position on the ground at the two dates increases.
Therefore, the CVA technique performs a comparison between pixels that are not
associated to the same area on the ground due to the misalignment. This results in
two different contributions to the distribution of RN in the polar domain: (i) the

Fig. 5 Scatterograms in the polar coordinate system obtained by applying the CVA technique to
the simulated data sets containing changes a at full resolution, and b at a lower scale (level 3)
(Experiment 3)
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first one is related to the comparison of pixels that belong to the same object in the
two images, but that are not associated with the same position on the ground due to
misregistration (slightly different spectral signatures due to the heterogeneity of
objects in VHR images); (ii) the second one comes from the comparison between
pixels that belong to different objects in the two images (pixels associated with
details and border regions). These contributions result in: (a) an increase of
the standard deviation of the cluster of unchanged pixels when RN increases,
and (b) the generation of cluster of unchanged pixels with properties very similar
to those of real changes.

Sub-property 1.a The spread of the cluster in Cn increases by increasing the

misalignment.

Let us consider at first only the effect of the spectral differences between
misaligned pixels of the same object. This effect can be observed in the scatter-
ograms of Fig. 3, where some SCVs associated with unchanged pixels that should
stay in Cn fall in Ac. Nevertheless, they still show a relative low magnitude and a
rather uniform distribution along the direction variable, as it happens for medium
resolution images [11] (see regions marked with the continuous line circle in
Fig. 3). We can observe that the spread of the cluster of unchanged pixels
increases, exhibiting an effect that is sharply amplified with respect to medium
resolution images, due to the higher spectral heterogeneity within the objects. It is
worth noting that the rather uniform distribution of SCVs along the direction is due
to the fact that the structure of objects are usually different for different elements
in the scene.

A quantitative analysis carried out on both the magnitude and the direction of
SCVs shows that the standard deviation rxn

of the class of unchanged patterns xn

increases in a nonlinear way by increasing the misalignment (see Fig. 6) and, as
expected, it tends to saturate when the residual registration noise is over a given
threshold.

Statistically, as reported in [11] for the class of unchanged pixels, registration
noise generated by the comparison of pixels that belong to the same object can be
modeled as a mixture of Gaussian distributions with the same mean values (as the
distributions at the two dates are related to the same class) in the Cartesian domain,

Fig. 6 Behaviors of the standard deviation of a the magnitude and b the direction of the SCVs in
the cluster of unchanged pixels versus the number of pixels of misalignment (Experiment 1)
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which corresponds to a Rayleigh distribution along the magnitude variable of the
polar domain and to a uniform distribution along the direction variable.

Sub-property 1.b The clusters of dominant registration noise in Ac have properties

very similar to those of real changes and are made up of a number of patterns that

increases by increasing the misalignment.

Let us now consider the effects of pixels that at the two acquisition dates belong
to different objects on the ground. In this case significantly different spectral
signatures are compared leading to SCVs with large magnitude values. This
behavior can be observed in the scatterograms of Fig. 3 where it is possible to note
that a large number of unchanged SCVs show a magnitude significantly higher
than expected, thus falling in Ac (see regions marked with dashed circles in Fig. 3).
In the medium resolution case the distribution of such SCVs is nearly uniform
along the direction [11]. On the contrary, when dealing with VHR images, their
distribution has preferential directions, resulting in clusters of pixels of registration
noise in Ac that exhibit properties very similar to those of changed pixels. Such an
effect is mainly due to the comparison of misaligned pixels belonging to different
objects with similar structures in different positions of the images. This can be
explained, for example, with the regular structure of the urban areas and of the
crop rows, as well as with the high frequency content of the VHR images. The
number of SCVs composing these clusters increases by increasing the amount of
RN. It is worth noting that, on the contrary, when dealing with medium resolution
images, the number of misregistered pixels belonging to different objects is small
and the effects of registration noise less evident and more uniformly distributed
along the direction variable. This is due to both the small amount of geometrical
details contained in such images, and the intrinsic effectiveness of classic regis-
tration algorithm on medium resolution data. We define the annular sectors in the
polar domain associated with these clusters as sectors of dominant registration

noise SDRNi
:

SDRNi
¼ q; # : q� T and #i1 �#�#i2 ; 0�#i1\#i2\2pf g ð7Þ

Each SDRNi
can be represented in the polar domain as a sector within Ac bounded

from two angular thresholds #i1 and #i2 : This is not surprising as SCVs due to
misregistration, exactly as SCVs of true changes, are originated from the com-
parison of pixels that are associated with different objects on the ground at the two
acquisition dates. It follows that sectors of dominant registration noise are very
critical because at full resolution they cannot be distinguished from sectors of true
changes, resulting in a significant false alarm rate in the change-detection process.
Statistically, as reported in [11] for the class of changed pixels, registration noise
generated by the comparison of pixels that belong to different classes can be
modeled as a mixture of Gaussian distributions with different mean values in the
Cartesian domain which corresponds to a Ricean distribution along the magnitude
variable of the polar domain and to a non-uniform distribution along the direction
variable.
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Property 2 Statistical properties of clusters associated with changed pixels in Ac

slowly vary with the amount of misalignment.

Experiment 2 points out the behaviors of SCVs associated with changed pixels
versus the amount of misalignment that affects the considered simulated data sets.
Observing Fig. 4 it is possible to note that SCVs associated with the class of
changed pixels xc1are not significantly affected by an increase of the amount of
misregistration between images. Indeed, the cluster of changed pixels can be easily
identified in all the three scatterograms and shows quite stable behaviors (see
regions marked with circles in Fig. 4). The position of the annular sector S1 (which
identifies pixels belonging to xc1 ) is almost invariant with the misregistration. This
behavior allows one to conclude that the registration noise does not affect sig-
nificantly the properties of the cluster of changed pixels. This is confirmed from a
quantitative analysis of the behavior of the mean value lxc

and standard deviation
rxc

of the magnitude of SCVs in the cluster of changed pixels xc (for simplicity of
notation in the following xc1 will be indicated as xc) versus the amount of mis-
registration (in pixels). As one can see from Fig. 7, these behaviors do not show
significant variations by increasing misregistration.

Nonetheless, the RN indirectly affects the detection of changed pixels (see
Property 1) as: (i) the overlap between clusters of changed and unchanged pixels
increases when the standard deviation of the patterns in Cn increases; (ii) the
presence of sectors of dominant RN in Ac results in false alarms.

Property 3 Clusters of dominant registration noise in Ac exhibit significant

variations of properties versus the scale (resolution) of the images.

From Experiment 3 we can observe the effects of a multiscale decomposition of
the images on pixels associated with both changed and unchanged areas. Let us
first consider only unchanged pixels (changed pixels will be discussed in Property
4). As the resolution of the images decreases the presence of small and thin
structures diminishes. This results in a reduced impact of registration noise at
lower scales (resolutions) as the details and border regions are smoothed out from
the low-pass effects associated with scale reduction. Comparing the scatterograms

Fig. 7 Behaviors of a the mean value lxc
and b the standard deviation rxc

of the magnitude of
SCVs in the cluster of changed pixels versus registration noise in the considered images
(Experiment 2)
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of Fig. 5 (derived from Experiment 3) it can be observed that reducing the scale,
SCVs associated with registration noise tend to disappear. In other words,
decreasing the resolution sectors of dominant registration noise tend to disappear,
thus exhibiting a non-stationary behavior with respect to the scale. In particular,
such SCVs tend to collapse within Cn. This is confirmed from Fig. 8, which reports
the behavior of the mean value of the magnitude of SCVs associated with RN
versus the resolution level (scale). As can be seen from the continuous line in the
diagram, the mean value of RN clusters rapidly decreases by reducing the
resolution.

Property 4 Clusters associated with changed pixels in Ac exhibit slow varying

statistical properties versus the scale (resolution) of the images.

From Experiment 3 it is also possible to observe the behavior of the cluster of
changed pixels when the scale decreases. Observing regions marked with circles in
Fig. 5, it is possible to note that the cluster of pixels associated with true changes
reduces its spread, but it is not completely smoothed out when the resolution
decreases. In other words, it shows a nearby stationary behavior versus the reso-
lution. This is confirmed by an analysis of the behavior of the mean value of the
magnitude of SCVs associated with true changes versus the scale. As it can be seen
from the dashed line in Fig. 8, the mean value slightly varies with the resolution,
but it decreases slower than the one of SCVs associated with registration noise
(continuous line in Fig. 8).

From Properties 3 and 4 it follows that the behaviors of changed and
unchanged (i.e., the ones due to RN) SCVs that fall in Ac versus the resolution
are different: decreasing the resolution, sectors of changes, unlike sectors of
dominant registration noise, are preserved. It is worth noting that this property is
true under the reasonable and realistic assumption that given the very high
geometrical resolution of the sensor, the true significant changes are associated
with objects with a non-negligible size. This results in an intrinsic robustness of
changes to the scale. On the contrary, misregistration appears in the difference
image with linear (or nonlinear) and relatively thin structures having different
orientations, that are smoothed out from the scale reduction process. These
properties suggest us a multiscale strategy for developing: (i) the adaptive
technique for the estimation of registration noise distribution described in the
next section; and (ii) the change-detection technique robust to such kind of noise,
described in Sect. 5.

Fig. 8 Behavior of the mean
value of the magnitude of
SCVs versus the resolution
levels (scale) for clusters of
change (dashed line) and of
registration noise (continuous
line)

282 L. Bruzzone et al.



4 Proposed Technique for the Adaptive Estimation

of the Registration Noise Distribution

As pointed out in the previous section, the properties of RN suggest us to
exploit the behaviors of SCVs in the polar domain at different resolution levels
(scales) for explicitly estimating the statistical distribution of RN. Properties 3
and 4, in fact, clearly show the usefulness of a multiresolution decomposition
in identifying and separating annular sectors of dominant registration noise
from annular sectors of real changes. If we reduce the resolution of images, we
implicitly decrease the impact of the registration noise with respect to that on
the original scene (Property 3), while true changes maintain a good stability
(Property 4). In other words, the lower is the geometrical resolution, the lower
is the probability of identifying in the polar representation annular sectors of
dominant registration noise. This means that at low resolution, in the annulus of

changed pixels mainly sectors (i.e., clusters) due to the presence of true
changes on the ground are detected. Thus, by comparing the clusters present in
the polar domain at full resolution and at reduced resolution, it is possible to
identify annular sectors dominated from registration noise and separate them
from annular sectors of changes. It is worth noting that this is made possible
from the thin structures associated with RN that result in strong changes in the
corresponding SCV clusters when the low pass effect of the scale reduction is
considered.

On the basis of the aforementioned analysis, we propose an adaptive multi-
scale strategy that exploits the behaviors of SCVs to identify the distribution of
the registration noise. The proposed technique compares the distribution of the
SCVs at the highest resolution level with the one at a lower level in order to
derive the distribution of registration noise at full resolution. In particular, first of
all the two multitemporal images are decomposed according to a multiscale
transformation (as described in Sect. 3 different algorithms can be used,
like stationary wavelet transform, recursively upsampled bicubic filter, etc.).
In greater detail we applied the two-dimensional discrete stationary wavelet
transform (2D-SWT); this decomposition technique is obtained as an extension
of the one-dimensional discrete stationary wavelet transform by applying one-
dimensional filters independently along both dimensions of the considered
image. In particular, two filters with different impulse responses are considered
to built up the SWT filter bank: (i) a low-pass filter with impulse response l(.);
and (ii) a high-pass filter with impulse response h(.). A one-step wavelet
decomposition applies both filters separately, first along columns and then along
rows. The original image Xi (i = 1, 2) is decomposed into a low resolution
image (the approximation sub-band XLL

i ), containing low spatial frequencies in
both the horizontal and the vertical direction, and three detail images XLH

i , XHL
i

and XHH
i , which correspond to the horizontal, vertical and diagonal detail sub-

bands at resolution level 1, respectively. Note that, superscripts LL, LH, HL and
HH specify the order on which high- and low-pass filters have been applied to
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obtain the considered sub-band. The multiscale decomposition is obtained by
recursively applying the described procedure to the approximation sub-band
obtained at each scale 2n. Thus the output at a generic resolution level n can be
express analytically as follows:

XLLðnþ1Þ
i ði; jÞ ¼

XDn�1

p¼0

XDn�1

q¼0

ln½p�ln½q�XLLn
i ðiþ p; jþ qÞ

XLHðnþ1Þ
i ði; jÞ ¼

XDn�1

p¼0

XDn�1

q¼0

ln½p�hn½q�XLLn
i ðiþ p; jþ qÞ

XHLðnþ1Þ
i ði; jÞ ¼

XDn�1

p¼0

XDn�1

q¼0

hn½p�ln½q�XLLn
i ðiþ p; jþ qÞ

XHHðnþ1Þ
i ði; jÞ ¼

XDn�1

p¼0

XDn�1

q¼0

hn½p�hn½q�XLLn
i ðiþ p; jþ qÞ

ð8Þ

where Dn is the length of the wavelet filters at resolution level n. At each
decomposition step, the length of the impulse response of both high- and low-pass
filters is upsampled by a factor 2. Thus, filter coefficients for computing sub-bands
at resolution level n ? 1 can be obtained by applying a dilation operation to the
filter coefficients used to compute level n. In particular, 2n-1 zeros are inserted
between the filter coefficients used to compute sub-bands at the lower resolution
level. This allows a reduction in the bandwidth of the filters by a factor 2 between
subsequent resolution levels. Filter coefficients of the first decomposition step for
n = 0 depend on the selected wavelet family and on the length of the chosen
wavelet filter. To this purpose, we selected the Daubechies wavelet family and set
the filter length to 8. The finite impulse response of the high-pass filter for the
decomposition step is obtained by satisfying the properties of the quadrature
mirror filters. This is done by reversing the order of the low-pass decomposition
filter coefficient and by changing the sign of the even indexed coefficients [13].

In order to perform the proposed analysis, one must return to the original image
domain. This is done by applying only to the approximation sub-bands the two-
dimensional inverse discrete stationary wavelet transform (2D-ISWT) at each
resolution level independently. In this manner we obtain two sets of images XMSi ¼

X0
i ; . . .;X

n
i ; . . .;X

N�1
i

� �
where the subscript i (i = 1, 2) denotes the acquisition

date, and the superscript n (n = 0, 1,…, N - 1) indicates the resolution level (note
that X0

i � Xi). Then the CVA technique is applied to each corresponding pair of
images Xn

1;X
n
2

� �
and the distributions of the direction of SCVs at different reso-

lution levels are analyzed. In particular, the behaviors of SCVs in Ac are studied. To
this purpose, we compute the conditional density of the direction of pixels in Ac. In
order to estimate this distribution we take advantages from the Parzen windows
technique [14–17], which is a basic and effective estimation method for one
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dimensional problems. According to this technique the density estimation can be
computed as:

p̂nð#jq� TÞ ¼ 1
Mn

XMn

m¼1

1
hn
c

#� #m

hn

� �

ð9Þ

where T is the threshold value that separates the circle of unchanged pixels from the
annulus of changed pixels (it can be retrieved either manually or in an automatic
way through one of the algorithms proposed in the literature [18, 19], see Sect. 2),
n (n = 0, 1,…, N - 1) denotes the resolution level at which the estimation is
computed, #m represents the direction value of the mth SCV in Ac,Mn is the number
of SCVs in Ac at scale n, c(.) is the kernel function used in the estimation process
and hn is the width of the kernel window (smoothing parameter) at scale n.

In particular, we used Gaussian kernel, so that the final estimation is given by:

p̂nð#jq� TÞ ¼ 1
Mn

X

Mn

m¼1

1

hn
ffiffiffiffiffiffi

2p
p exp �

1
2

#� #m

hn

� �2
" #

ð10Þ

For what concerns the smoothing parameter, which in our case is represented by
the standard deviation of the Gaussian function, we propose to compute it as a
function of the number of pixels that fall in Ac. In particular, considering a
Gaussian kernel, the width value at scale n can be derived as in [14]:

hn ¼ sig �
4

3Mn

� �1=5
ð11Þ

where:

sig ¼ median
m¼1;...;Mn

#m � median
m¼1;...;Mn

ð#mÞ

	

	

	

	

	

	

	

	

=0:6745 ð12Þ

Then we observe the behaviors of p̂nð#jq� TÞ versus the scale. According to
the properties of RN, this density decreases at lower resolutions in the annular

sectors of dominant registration noise SDRNi
; whereas it remains nearby constant in

the annular sectors of true changes Sk. On the basis of this analysis, we propose to
estimate the conditional density of registration noise in the direction domain
p̂RNð#jq� TÞ as:

p̂RNð#jq� TÞ ¼ C P0ðq� TÞp̂0ð#jq� TÞ � PN�1ðq� TÞp̂N�1ð#jq� TÞ½ � ð13Þ

where Pnðq� TÞ is the probability of SCVs to be in Ac at scale n, p̂0ð#jq� TÞ and
p̂N�1ð#jq� TÞ are the marginal conditional densities of the direction of pixels in
Ac at the full resolution and at the lowest considered resolution level (N - 1),

respectively, and C is a constant defined such that
R

þ1

�1

p̂RNð#jq� TÞd# ¼ 1.
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The term Pnðq� TÞ in (13) is necessary in order to obtain a reliable comparison
between distributions at different resolution levels.

In this way we obtain an explicit estimation of the distribution of registration
noise that is adaptive (in the sense that it intrinsically takes into account the
properties of the considered images). It is worth noting that this estimated distri-
bution represents the behavior of RN at full scale (resolution). In the proposed
technique the analysis at the lowest resolution is only used for separating the RN
contribution from that of true changes (and of other possible sources of noise).

5 Proposed Change-Detection Technique Robust

to Registration Noise

As previously pointed out, the multiscale properties of RN not only allow us to
define a strategy for the estimation of RN noise, but also are important for the
definition of the proposed change-detection technique robust to such kind of noise.
Starting from the same assumption (true significant changes are associated with
objects with a non-negligible size, while misregistration appears in the multi-
spectral difference image with relatively thin structures having different orienta-
tions) and taking advantages from the multiscale technique for the adaptive
estimation of RN distribution, we propose a change-detection technique that
exploits a multiscale decomposition in order to automatically extract information
about registration noise, and generates the final change-detection map working at
full resolution. In this way we preserve the high geometrical detail content of VHR
images. In addition, in order to exploit the specific properties of VHR images, the
proposed technique adaptively models also the spatial context information.
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Fig. 9 General architecture of the proposed multiscale and parcel-based change-detection
technique
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The proposed method can be divided into two main phases: (i) registration noise
identification; and (ii) context-sensitive decision strategy for the generation of the
final change-detectionmap. Themain idea of the developed technique is to detect the
regions of the polar framework where the registration noise is dominant according to
a multiscale strategy, and to consider the spatial-context information through the
definition of multitemporal parcels in order to generate the final change-detection
map (see Fig. 9). In the following details on the two phases are reported.

5.1 Registration Noise Identification

The first phase of the proposed technique aims at identifying in an automatic way
the regions related to registration noise in the polar domain. To this purpose, we
take advantages from the technique described in the previous section; in particular,
we exploit the multiscale analysis and we add some steps for retrieving in an
automatic way a label for each pixel related to its membership to registration noise
or not. In order to identify registration noise, we apply an analysis based on the
following three steps: (1) CVA at full resolution (identification at full resolution of
regions in the polar domain candidate to include registration noise SCVs, i.e. Ac);
(2) quantization-based analysis of the SCV distributions at different resolution
levels; and (3) adaptive identification of registration noise cells.

In the first step the CVA technique is applied to the original images X1 and X2,
and the threshold value T that separates the circle of no-changed pixels from the
annulus of changed pixels is estimated. SCVs in Cn are labeled as no-changed
SCVs, whereas pixels in Ac should be further analyzed in order to separate SCVs
associated with registration noise from pixels of true changes.

To this end, in the second step, Ac is divided into M uniformly distributed
quantization cells qm (m = 1, …, M) (Ac = {q1, q2, …, qM}) of fixed shape and
size. Each cell is characterized by its extension Dq and D# in the magnitude and in
the direction coordinates respectively (see Fig. 10). It is worth noting that the
choice of the cell size is an important aspect to consider; however, similar results

Fig. 10 Quantized
magnitude-direction polar
domain
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can be obtained with different quantization values in consistent ranges of Dq and
D#. Once cells have been defined, the two multitemporal images are decomposed
according to a multiscale transformation obtaining two sets of images XMSi ¼
X0

i ; . . .;X
n
i ; . . .;X

N�1
i

� �
; as described in the previous section. The CVA technique

is applied to each corresponding pair Xn
1; Xn

2

� �
, n = 1, 2, …, N - 1, of low

resolution images in XMS1 and XMS2 : Then the distribution of SCVs within each
cell is studied at different scales. In particular, for each set of pixels with SCVs
falling in a given cell qm (m = 1, 2, …, M) at full resolution, the behavior of the
distribution of the same SCVs at resolution level N - 1 (i.e., the lowest considered
one) is analyzed in order to identify whether the cell is associated with registration
noise or not. It is worth noting that the maximum level of decomposition N - 1
has to be selected according to the size of expected main change structures in the
considered images. As for the definition of the registration noise distribution, the
main idea of this procedure is to identify cells of registration noise through a
comparison between the distribution of the magnitude of SCVs at full resolution
and at the lowest considered resolution. In particular, in this procedure the
behavior of the mean value of SCVs on the magnitude variable at different res-
olutions is analyzed, considering the multiscale properties of RN. In the proposed
method the mean value l0q;qm of the magnitude q of SCVs that fall within a cell qm
at full resolution (level 0) is compared with the mean value lN�1q;qm

that the same
SCVs have at resolution level N - 1.1 A cell is associated with RN or not (RNfree)
according to the following decision rule:

qm 2
RNfree if l0q;qm � lN�1q;qm

	
	
	

	
	
	\K

n o

RN if l0q;qm � lN�1q;qm

	
	
	

	
	
	�K

n o

8

><

>:

ð14Þ

where K is a threshold value empirically set as equal to the difference between the
mean value of all the SCVs falling in Ac at full resolution and the mean value of
the corresponding SCVs at the lowest level, i.e.:

K ¼ l0q;Ac
� lN�1q;Ac

ð15Þ

It is worth noting that small variations of the threshold value around the
automatic retrieved one do not significantly affect the identification of registration
noise clusters. Let qRNm be a generic cell qm associated with registration noise
according to (14). A generic SCV zij is associated with registration noise if it falls
within a cell qRNm , i.e.

1 It is worth noting that in order to identify cells of registration noise we do not analyze the
behavior of SCVs that fall within the same cell at different resolution levels, but we consider
SCVs that at the highest resolution fall within a cell and the same SCVs at the lowest considered
level. This approach allows us to follow the low-pass effect of the decomposition filter, which
causes a migration of SCVs toward the origin of the polar domain.
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zij 2
RN if zij 2 qRNm

RNfree otherwise

(
ð16Þ

In this way we locate the SCVs affected by registration noise in the polar
domain.

5.2 Context-Sensitive Decision Strategy for the Generation

of the Final Change-Detection Map

The retrieved information on each adaptive cell is used for properly driving the
generation of the final change-detection map according to a context-sensitive
parcel-based procedure. Parcels are defined as regions that adaptively characterize
the local neighborhood of each pixel in the considered scene and are homogeneous
in both temporal images [9, 20]. The adaptive nature of multitemporal parcels
allows one to model complex objects in the investigated scene as well as borders
of the changed areas and geometrical details. In order to generate multitemporal
parcels from the two original images we first compute two segmentation maps
P(X1) and P(X2) applying a segmentation algorithm separately to images X1 and
X2, respectively. In this work a region growing segmentation algorithm was
considered, however any different kind of technique can be adopted. Each P(Xt)
represents a partition of image Xt (t = 1, 2) in disjoint regions of spatially con-
tiguous pixels. Each single region in both partitions satisfies a homogeneity
measure H(.) that involves spectral and spatial properties [21, 22]. The desired
representation of the spatio-temporal context of the considered scene is obtained
merging the two segmentations. The final output is a partition P(X1, X2) shared by
both considered images made of N regions pr (r = 1, …, R) called parcels. The
defined multitemporal parcels satisfy the following conditions:

H X1 prð Þ½ � ¼ true AND H X2 prð Þ½ � ¼ true

H X1 prð Þ [ X1 pkð Þ½ � ¼ false OR H X2 prð Þ [ X2 pkð Þ½ � ¼ false

8 r; k ¼ 1; . . .;Rand r 6¼ k

ð17Þ

where Xt(pr) represent the portion of image Xt (t = 1, 2) covered by parcel pr
(r = 1, …, R) and pr and pk are adjacent.

The spatial-context information associated to each parcel is integrated to the
information about presence or absence of registration noise retrieved from the
multiscale analysis in the previous phase. Let Zr be the set of spectral change
vectors corresponding to the pixels included in parcel pr, i.e. Zr ¼ zijjzij 2 pr

� �
:

Each SCV in Zr can assume one out of three labels. Therefore the SCVs (i.e., the
pixels) in a generic parcel pr can be divided into three subsets: (i) ZRN

r which
includes SCVs of registration noise labeled according to (16); (ii) ZRNfree

r which
includes SCVs that are not affected by registration noise according to (16); and
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(iii) Zxn
r which includes SCVs that fall into Cn. According to this notation, all the

SCVs in a generic parcel pr and thus the parcel itself are classified as changed or
no-changed according to the following majority rule:

pr 2
xn if

ZRN
r

	
	

	
	þ Zxn

r

	
	

	
	

Zrj j � 0:5

Xc otherwise

8

><

>:

ð18Þ

where |.| is the mathematical operator that returns the cardinality of sets. In other
words a parcel pr (and therefore all the pixels in it) is labeled as no-changed if the
most of the SCVs belonging to it either have been classified as SCVs affected by
registration noise according to (16) or fall into Cn. It is worth noting that the
proposed approach allows us to create a relationship between the RN information
retrieved in the polar domain (related to spectral change vectors) and the spatial
information of the original images (related to pixels and parcels). The final change-
detection map is obtained at full resolution, as low resolution components
extracted from the multiscale analysis are used only for detecting quantization
cells associated with registration noise. Thus the obtained change-detection map
adequately models geometrical details present in the analyzed VHR images,
reproducing accurately both border and homogeneous changed regions.

6 Experimental Results

In this section the experimental analysis conducted on real data is presented. First
of all the data set is described, then the experimental analysis on both the reli-
ability of the derived properties of RN and the effectiveness of the proposed
method to estimate the distribution of RN on real multitemporal images is pre-
sented. Finally, the proposed multiscale and parcel-based technique is applied to
real data.

6.1 Data Set Description

In order to assess the effectiveness of the proposed techniques, a multitemporal
data set made of two images acquired on the city of Trento (Italy) by the Quickbird
multispectral sensor in October 2005 and July 2006 was considered. In the
pre-processing phase the two images were: (i) pan-sharpened; (ii) radiometrically
corrected; and (iii) co-registered. In particular, we considered pan-sharpened
images as we expect that the pan-sharpening process can improve the results of the
change-detection process, as demonstrated in previous work [23]. To this purpose
we applied the Gram–Schmidt procedure implemented in the ENVI software
package [24] to the panchromatic channel and the four bands of the multispectral

290 L. Bruzzone et al.



images. Concerning radiometric corrections, we simply normalized the images by
subtracting from each spectral channel of the two considered images its mean
value. The registration process was carried out by using a polynomial function of
order 2 according to 14 ground control points (GCPs), and by applying a nearest
neighbor interpolation [24]. In our experiments we did not use more
advanced registration techniques and procedures for geometric corrections for
better assessing the robustness of the proposed method to the residual registration
noise. The final data set was made up of two pan-sharpened multitemporal and
multispectral images of 984 9 984 pixels (a section of the full scene) with a
spatial resolution of 0.7 m on the ground, which have a residual misregistration
of about 1 pixel on GCPs. Figure 11a, b shows channel 4 of the pan-sharpened
images X1 and X2, respectively. Between the two acquisitions two kinds of
changes occurred: (i) simulated changes that consist of new houses introduced on
the rural area (white circles in Fig. 11b); and (ii) real changes that consist of some
roofs rebuilt in the urban area (black circles in Fig. 11b). It is worth noting that

Fig. 11 Channel 4 of pan-sharpened images of the Trento city (Italy) acquired by the Quickbird
VHR multispectral sensor in: a October 2005; and b July 2006 (simulated changes appear in the
regions marked with white circle, while real changes occurred between the two acquisition dates
appear in regions marked with black circles). c Change-detection reference map
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simulated changes have been accurately introduced in order to be as similar as
possible to real changes. Simulated buildings have been added to the scene taking
their geometrical structures and spectral signatures from other real buildings
present in other portions of the available full scene in order to take into account the
image dynamic and noise properties. Moreover, between the two dates also sig-
nificant seasonal differences in the crop rows and in the shape of shadows are
present, due to the different acquisition seasons (i.e., summer and autumn) of the
considered images. It is worth noting that from the theoretical viewpoint the
proposed technique identifies all significant spectral changes occurred between the
two images, as no semantic information is exploited for discriminating different
kinds of spectral changes.

To perform a quantitative assessment of the effectiveness of the proposed
method, a reference map (which includes 20,602 changed pixels and 968,256
no-changed pixels) was defined according to both the available prior knowledge on
the considered area and to a visual analysis of images (see Fig. 11c). The reference
map only reports changes that are significant with respect to the considered
application.

6.2 Estimation Results

For applying the proposed method to the estimation of registration noise, the
original images X1 and X2 were transformed to lower scales through a four-step
stationary wavelet transform [12, 20] using 4th order orthogonal filters of the
Daubechies family. The maximum level of decomposition was selected according
to a tradeoff between the degree of sensitivity desired in the RN estimation and the
size of the expected main change structures present in the images. Then the CVA
technique was applied to the images at different scales. In order to separate the
circle of unchanged pixels (Cn) from the annulus of changed pixels (Ac), for each
data set a proper threshold value T on the magnitude variable was retrieved
according to a trial-and-error procedure (we did not use an automatic technique for
avoiding biases introduced from the threshold selection method in the evaluation
of the effectiveness of the proposed method). However, at an operational level, one
of the thresholding algorithms proposed in the literature can be used [18, 19].
In greater detail, in order to find the optimal threshold for our purposes, the whole
analysis for the estimation of the RN distribution has been conducted for different
values of the thresholds T in a consistent range of the magnitude values. All of
them provided similar results in the estimation of registration noise. For space
constraints, in the following only the results obtained with a single threshold value
for each data set are reported. The marginal conditional densities of the directions
of pixels in Ac at the highest resolution and at a lower resolution levels (see
Fig. 12) were computed according to (10), and finally the conditional density of
registration noise was estimated according to (13) (see Fig. 13). From an analysis
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Fig. 12 Marginal weighted
conditional densities
Pnðq� TÞp̂nð#jq� TÞ of
the direction in Ac at full
resolution (continuous line)
and at level 4 of the
Daubechies stationary
wavelet transform
(dashed line)

Fig. 13 Estimated
conditional density
p̂RNð#jq� TÞof registration
noise obtained with the
proposed technique

Fig. 14 Scatterograms in the polar coordinate system of a the full resolution original difference
imageX0

D; and b the low resolution image X4
D obtained at level 4 of the wavelet decomposition.

Dashed circles separate Cn from Ac, while continuous circles indicate sectors of true changes
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of the behavior of p̂RNð#jq� TÞ it is possible to identify three main modes, which
potentially define sectors where the registration noise is dominant. A comparison
between the scatterograms at full and at low resolution (see Fig. 14) points out that
in the sectors corresponding to the three modes of p̂RNð#jq� TÞ the density of the
magnitude of SCVs in the annulus of changed pixel reduces significantly when the
resolution decreases, whereas in the others it is nearly constant. In particular, it is
possible to verify that the sectors in which the behavior of SCVs is quite stable
correspond to sectors of true changes (continuous circles in Fig. 14). This behavior
also confirms the properties derived from the simulated data sets.

To further understand the effectiveness of the proposed estimation technique,
we identified sectors of dominant registration noise by thresholding the conditional
density of registration noise as defined in (13). In other words pixels with a high
probability of being of registration noise were isolated. Fig. 15 shows the pixels
with a probability of being of registration noise higher than 1 9 10-4. This
threshold was set empirically and led to the definition in the annulus of changed
pixels (i.e., Ac={q,0: q[310}) of two sectors of dominant registration noise. The
first sector has direction values between 35� and 115� whereas the second one has
direction values between 225� and 265�.

A visual analysis of (Fig. 15) confirms that the regions identified as registration
noise by the proposed technique are associated with areas that show the effects of
misregistration between the multitemporal images, as they mainly refer to border
regions of buildings located in the urban area, to roads and to crop rows. In
addition, it is possible to note that the regions identified in the registration-noise
map do not belong to areas of changes. This behavior confirms the effectiveness of
the proposed technique that properly distinguishes between registration noise and
true changes contributions in the estimation of p̂RNð#jq� TÞ (Fig. 15).

6.3 Change-Detection Results

The effectiveness of the proposed change-detection technique was tested on the
real data set described in Sect. 6.1. The CVA technique was applied to the red and

Fig. 15 Registration-noise
map obtained by thresholding
the p̂RNð#jq� TÞ obtained
with the proposed technique
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near-infrared spectral channels of the original images. According to the proposed
technique the decision threshold that separates Ac from Cn was computed in an
automatic way (T was set equal to 220). SCVs in Cn were labeled as no-changed
SCVs, whereas the annulus of changed pixels was divided into quantization cells
of size Dq	 D# in order to further distinguish between registration noise pixels
and changed pixels. In the following, for simplicity, the results obtained with a
quantization equal to 300 9 10 are reported. We refer the reader to [25] for a more
detailed analysis of the effects of the quantization values on the CD results. The
CVA technique was also applied to the low resolution images obtained through
the decomposition procedure described in Sect. 4 and the adaptive analysis of
the SCVs distribution was performed. For each cell the difference in the mean
value of the magnitude of SCVs between the resolution level 0 and 4 was com-
puted and compared with the threshold K derived according to (15) (for T equal to
220 the value of K resulted equal to 190). SCVs falling into cells in which the
difference was greater than K were classified as belonging to registration noise
according to [14]. At this stage, for comparison purposes, a change-detection map
was computed by assigning SCVs in Cn and SCVs of registration noise to the class
of no-changed pixels and all the others to the class of changed pixels (see Results
for the pixel-based proposed technique in Table 1). Finally, the information about
adaptive cells of registration noise was used within the parcel-based decision
strategy for computing the final change-detection map according to the proposed
strategy. To this end, multitemporal parcels were generated as described in
Sect. 5.2 and SCVs in each parcel were labeled according to (18). As one can see
from Table 1, the use of the spatial-context information significantly reduces both
false and missed alarms. It is worth noting that the use of spatial-context
information retrieved according the parcel-based strategy allows one to obtain a
regularized change-detection map without affecting the geometrical details content
of the map itself. For a further assessment of the effectiveness of the proposed
technique, change detection was performed according to the standard pixel-based
[18] and parcel-based [20] change vector analysis ignoring the information about
registration noise. In both cases (see Table 1) it is clear that standard methods are
sharply affected by the presence of registration noise, which involves a high

Table 1 Change-detection results obtained both at a pixel and at a parcel level by the proposed
adaptive and multiscale technique, the standard CVA technique and the manual approach

Technique False alarms Missed alarms Overall error Overall accuracy (%)

Pixel based

Proposed 62,867 4,728 67,595 93.02
Standard CVA 173,676 1,470 175,146 81.91
Manual 55,984 5,768 61,752 93.62
Parcel based

Proposed 29,616 3,382 32,998 96.59
Standard CVA 106,580 734 107,314 88.92
Manual 23,160 4,192 27,352 97.18
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number of false alarms mainly located in the high frequency regions of the images.
On the contrary, the proposed method significantly reduces false alarms both at
pixel (from 173,676 to 62,867) and at parcel level (from 106,580 to 29,616), and
generates change-detection maps characterized by high accuracy both in homo-
geneous and border areas. Figure 16 allows one a visual comparison between the
change-detection map obtained at parcel level with the proposed technique
(Fig. 16a) and the standard CVA (Fig. 16b). A final comparison is made with
the results achieved according to a manual trial-and-error approach. In this case
the final change-detection map is computed assigning SCVs that fall into Cn to xn,
and applying manual thresholds for isolating within Ac SCVs associated with
changed pixels from those associated with registration noise on the basis of some
prior information. Two maps were generated. The first considers the spatial-
context information arising from multitemporal parcels while the second does not.
Results yielded with this procedure can be considered as an upper bound for the
proposed technique. Observing Table 1, one can conclude that the proposed
method performs effectively both at a pixel and at a parcel level, as it exhibits
overall accuracies that are close to those obtained by the manual (optimal)
approach (i.e., 93.02% vs. 93.62% for the pixel-based case and 96.59% vs. 97.18%
for the parcel-based one).

As final remark it is important to notice that the change-detection map derived
by the proposed approach presents residual false alarms mainly due to the different
acquisition seasons of the considered images (i.e., summer and autumn). This
characteristic resulted in significant radiometric differences related to seasonal
variations in the crop rows and in the shape of shadows. The false alarms due to
such acquisition conditions can be reduced only considering additional semantic
information associated with changes. However, the overall accuracy achieved by
the proposed context-sensitive technique robust to registration noise (i.e., 96.59%)
due to sharp reduction of false alarms and the high fidelity in the reproduction of
changed objects (both in uniform and contour regions) confirms its validity.

Fig. 16 Change-detection maps obtained with: a proposed multiscale approach with the adaptive
estimation of the cell dimension at a parcel level; and b the standard parcel-based CVA
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7 Discussion and Conclusion

In this chapter we have analyzed the properties of registration noise on VHR
multitemporal remote sensing images. This analysis was carried out in the context
of a polar framework for change vector analysis (CVA), where both the magnitude
and the direction information of SCVs are represented. On the basis of the derived
properties, at first a novel method for an adaptive estimation of the statistical
distribution of RN in multitemporal VHR images has been proposed and then a
context-sensitive multiscale technique robust to such kind of noise for change
detection on VHR multispectral images has been derived.

When dealing with change detection in multitemporal VHR images one of the
most significant sources of errors is registration noise. Such kind of noise is due to
the impossibility to perfectly align multitemporal images even if accurate
co-registration techniques are applied to the data. In order to understand how to
reduce the impact of residual misregistration on the change-detection process, in
this work we carried out an analysis of the behaviors of registration noise that affect
multitemporal VHR data sets. Images acquired by several sensors and with dif-
ferent land-cover types were considered in the analysis. From them, some simu-
lated data sets have been generated in order to study the effects of RN when: (i) the
misregistration between the two considered images increases; and (ii) the resolu-
tion of the original images decreases. From this analysis four different properties of
the RN in VHR images have been derived, associated with both unchanged and
changed pixels. These properties point out that misregistration may significantly
affect the accuracy of change detection and show some important effects due to this
specific kind of noise on VHR images. In particular, it was observed that SCVs that
fall into the annulus of changed pixels but are associated with registration noise
(and therefore are a possible source of false alarms) exhibit significant variations of
statistical properties as the scale is reduced. According to this observation, we
defined a novel technique for the estimation of RN. This technique derives the
conditional density of RN with respect to the direction variable in the annulus of
changed pixels on the basis of a multiscale analysis of the distributions of SCVs.
Even if the proposed technique exploits a multiscale decomposition for identifying
RN and modeling its conditional distribution, the resulting estimate represents the
behavior of the RN at full resolution. Thus the estimated distribution can be used
for analyzing the images at full scale, as the low-pass component used in the
proposed strategy does not affect the scale of the estimation. This estimation
provides us valuable information for the design of a change-detection procedure.
The proposed change-detection approach, in fact, at first performs a quantization-
based multiscale analysis of SCVs in the magnitude-direction domain in order to
identify SCVs associated with registration noise. The retrieved information on
registration noise is then exploited in the framework of a parcel-based decision
strategy that takes advantage of spatial-context information in defining the final
change-detection map. This step is performed at full resolution in order to preserve
all the high geometrical detail information characteristic of VHR images.
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The effectiveness of both the proposed techniques has been tested on a data set
made up of a pair of QuickBird images. Results obtained confirm: (i) the capa-
bilities of the estimation technique in identifying and modeling RN also in pres-
ence of real multitemporal noisy images acquired under different conditions; and
(ii) the accuracy of the proposed CD technique, which involves a low amount of
false alarms in change-detection maps and a high accuracy in modeling both
geometrical details and homogeneous areas. The achieved results are significantly
better than the ones yielded by standard change-detection techniques. The effec-
tiveness of the proposed techniques was also tested on other data sets acquired by
different remote sensing sensors, which confirmed the conclusion drawn for the
presented QuickBird data. It is worth noting that despite the proposed analysis was
developed for VHR remote sensing images (as the impact of misregistration on
this kind of data is more relevant), it can be suitable also for the analysis of optical
data at lower resolution.

As future developments of this work we plan to fully exploit both the derived
properties and the technique for the estimation of the registration noise distribution
to develop adaptive co-registration strategies based on the estimated local behavior
of the registration noise. With regard to the change-detection strategy we plan to
extensively test the proposed method on other multitemporal images acquired by
different sensors representing different change-detection problems.
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Effects of the Spatial Enhancement
of Hyperspectral Images
on the Distribution of Spectral Classes

Andrea Garzelli and Luca Capobianco

Abstract In this chapter, we present a study on the effects of the spatial enhance-
ment of hyperspectral (HS) images on the distribution of spectral classes. The
analysis is based on the concept of dimensionality reduction, the transformation of
high-dimensional data into a meaningful representation of reduced dimensionality
which may favor visualization and understanding of high-dimensional data. Non-
linear techniques of dimensionality reduction are applied to original Hyperion HS
data (30 m) and to fusion products with the panchromatic channel of ALI (10 m)
obtained from different sharpening methods, in order to evaluate possible advantages
or critical situations deriving from multi-sensor, multi-resolution data fusion.

Keywords Image fusion � Hyperspectral � Spectral signatures

1 Introduction

Hyperspectral (HS) spatial enhancement refers to the joint processing of HS
imagery along with panchromatic (Pan) or multispectral (MS) imagery of higher
spatial resolution in order to obtain a hyperspectral image product that exhibits,
ideally, the spectral characteristics of the observed hyperspectral image at the
spatial resolution and sampling of the higher spatial resolution image [1].
A sensing platform that has the capability to concurrently capture HS and MS+Pan
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data is the NASA Earth Observing 1 (EO-1) satellite through its optical sensors
Hyperion (220 bands at 30 m resolution) and Advanced Land Imager (ALI)
(6 bands at 30 m and a 10 m Pan band). The difference in spatial resolution is
generally a result of the fundamental tradeoff between spatial resolution, spectral
resolution, and radiometric sensitivity in the design of electro-optical sensor
systems.

Most of the approaches that can be used for hyperspectral resolution
enhancement have heritage in the sharpening of multispectral imagery based on
higher resolution panchromatic imagery (pan-sharpening). Spatial enhancement of
hyperspectral (HS) imagery, however, is more complex than pan-sharpening of
multispectral (MS) data, for three main reasons:

1. the huge number of HS bands normally does not allow to apply fusion methods
based on local context, either in the original spatial domain or in a transformed
(multiresolution) domain;

2. the spectral coverage of the panchromatic (Pan) image does not match the
wavelength acquisition range of the HS bands;

3. the spatial scale ratio (SR) between HS and Pan may not be a power of two,
e.g., SR = 3 in the case of Hyperion data (30 m) and the panchromatic channel
of ALI (10 m).

A specific spectral fusion model is required to preserve the spectral information
of the data with lower spatial resolution, or even to enhance it through the
unmixing of the coarse-resolution HS pixels, based on information extracted from
the high-resolution Pan data. Spatial details that are not available for HS bands
have to be inferred through the model, starting from the high spatial frequency
components of Pan. The fusion model should be as simple as possible, in order to
limit the computational complexity, and the model parameters should be spatially
invariant, band dependent, and should be easily, yet accurately, estimated from the
available dataset.

The Chapter presents a study on the effects of the spatial enhancement of HS
images on the distribution of spectral classes. The analysis is based on the concept
of dimensionality reduction, the transformation of high-dimensional data into a
meaningful representation of reduced dimensionality which may favor visualiza-
tion and understanding of high-dimensional data. Non-linear techniques of
dimensionality reduction applied to original Hyperion HS data (30 m) and to
fusion products with the panchromatic channel of ALI (10 m) obtained from
different sharpening methods are investigated. The goal is to evaluate possible
advantages (unmixing capabilities) or critical situations (reduced class separabil-
ity) deriving from multi-sensor, multi-resolution data fusion.

Different spatial-resolution enhancement algorithms are tested on Hyperion HS
and ALI Pan data in order to compare their performances and investigate on
potential drawbacks of pan-sharpening of HS images. To this aim, the paper focuses
on the objective analysis of the intrinsic spectral information of the fusion products.

Section 2 introduces the problem of spatial enhancement of HS images and
indicates different approaches and practical solutions. Section 3 describes the
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dimensionality reduction methods applied to assess the performances of different
pan-sharpening algorithms. The experimental results obtained on true HS/Pan data
are reported in Sect. 4 and conclusions are drawn in Sect. 5

2 Spatial Enhancement of Hyperspectral Images

Few algorithms, mainly derived from methods for pan-sharpening of MS images,
may be successfully applied to HS spatial enhancement [1, 2].

An extensive number of pan-sharpening methods for MS data have been pro-
posed in the literature, starting from the second half of the 1980s. Most of them are
based on a general protocol in which high-frequency spatial information is
extracted from the Pan image and injected into the resampled MS bands by
exploiting different models. In general, the image fusion methods described by this
protocol can be divided into two main families: the techniques based on a linear
spectral transformation followed by the substitution of a component in the trans-
formed domain (component substitution, CS, methods), and the algorithms that
perform spatial injection after applying a spatial frequency decomposition usually
performed by means of multiresolution analysis (MRA).

2.1 Component Substitution Methods

Basically, CS techniques linearly transform the MS data set into a more uncorre-
lated vector space. Then, one of the transformed bands, usually the low-resolution
intensity I, is replaced by the sharp panchromatic image P, histogram-matched
to the I component itself, before the inverse transformation (Intensity–Hue–
Saturation, IHS) is applied. This procedure is equivalent to inject, i.e., add, the
difference between P and I into the resampled MS data set [3, 4]. The intensity
image I can be obtained by weighting the MS bands with a set of coefficients whose
choice is related to the spectral responses of Pan and MS bands [5, 6].

Principal component analysis (PCA) is an alternative to the IHS techniques. It is
analogous to the IHS scheme since the Pan image is substituted by the first
principal component (PC1). Histogram matching of Pan to PC1 is mandatory
before substitution because the mean and variance of PC1 are generally far greater
than those of Pan. It is well established that PCA performances are better than
those of IHS [7] and, in particular, that the spectral distortion in the fused bands is
usually less noticeable, even if it cannot completely be avoided. Generally
speaking, if the spectral responses of the MS bands are not perfectly overlapped
with the bandwidth of Pan, as it happens with the most advanced very high
resolution imaging sensors, IHS- and PCA-based methods may yield poor results
in terms of spectral fidelity [8]. Another CS technique reported in the literature is
Gram-Schmidt (GS) spectral sharpening, which was invented by Laben and
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Brower in 1998 and patented by Eastman Kodak [9]. The GS method is widely
used since it has been implemented in the Environment for Visualizing Images
(ENVI) software. The GS method is efficient since it benefits from a detail
injection rule by which, for each MS band, the injection gain is proportional to the
covariance value between the synthesized intensity and the expanded MS band as
reported in [10]. As a matter of fact, since the sharp P and the smooth I have
generally a different local radiometry, spectral distortions can arise in the fusion
results. A mitigation of the consequent color changes can be obtained if I matches
as much as possible the spectral response of Pan. This result is achieved by
designing I as a linear combination of the MS bands which is based on the spectral
responses of the MS and Pan image sensors [5]. Such coefficients can be further
optimized by minimizing the distance between P and I, for example in the mini-
mum mean square error sense [10], applying a genetic algorithm [11] that opti-
mizes the Q4 score parameter defined in [12] or imposing MMSE constraints on
the multispectral images [13]. The last method may be considered as a hybrid
CS-MRA pan-sharpening technique.

2.2 Multiresolution Methods

The spectral quality of CS fusion results may be sufficient for most applications
and users. Generally, lower spectral distortion may be obtained by injecting zero-
mean high-pass spatial details, taken from the Pan image without resorting to any
transformation. In fact, since the pioneering high-pass filtering (HPF) technique
[7], fusion methods based on injecting high-frequency components into resampled
versions of the MS data have demonstrated a superior spectral fidelity [14–16].
HPF basically consists of an addition of spatial details, taken from a high-
resolution Pan observation, into a bicubically resampled version of the low reso-
lution MS image. Such details are obtained by taking the difference between the
Pan image and its low-pass version achieved through a simple local pixel aver-
aging, i.e., a box filtering. Later improvements have been obtained with the
introduction of multiresolution analysis (MRA), by employing several decompo-
sition schemes, specially based on the discrete wavelet transform (DWT) [17, 18],
uniform rational filter banks (borrowed from audio coding) [19], and Laplacian
pyramids (LP) [20, 21]. The DWT has been extensively employed for remote
sensing data fusion [22–24]. According to the basic DWT fusion scheme, couples
of subbands of corresponding frequency content are merged together. Afterwards
the fused image is synthesized by taking the inverse transform. Fusion schemes
based on the ‘‘à trous’’ wavelet algorithm and Laplacian pyramids were succes-
sively proposed [25, 26]. Actually, unlike the DWT which is critically subsampled,
the ‘‘à trous’’ wavelet and the LP are overcomplete representations. The missing of
the decimation step allows an image to be decomposed into nearly disjointed band-
pass channels in the spatial frequency domain, without losing the spatial con-
nectivity (translation invariance property) of its high-pass details, e.g., edges and
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textures. This property is fundamental because, for critically sub-sampled
schemes, spatial distortions, typically ringing or aliasing effects may be present in
the fused products and originate shifts or blur of contours and textures.

Data-fusion methods require the definition of a model that establishes how the
missing high-pass information is injected into the resampled MS bands [23]. In
other words, the model, referred to as interband structure model (IBSM), deals
with the radiometric transformation (gain and offset) of spatial structures (edges
and textures) when passing from the Pan to MS images. The model is generally
inferred at the coarser resolution and extrapolated to the finest resolution. This
condition has been proven to be satisfactory for the MS and Pan data whose scale
ratio is equal to four by investigating a Kalman-based fusion method which per-
forms a prediction of fusion parameters across scales [27]. It should also be
advisable to compute a high-resolution IBSM (HRIBSM) by considering addi-
tional information on the MS-imaging system. Notable examples of injection
models are additive combination of ‘à-trous’ wavelet frames, as in the additive
wavelet to the luminance component (AWL) technique [25], the injection of
wavelet details after applying intensity–hue–saturation (IHS) transformation or
principal component analysis [28], the spectral distortion minimization (SDM)
with respect to the resampled MS data [15], or the spatially adaptive injection, as
in the context-based-decision (CBD) algorithm [29] and in the RWM method [30].
More efficient schemes can be obtained by incorporating the Modulation Transfer
Functions (MTFs) of the MS scanner and of the Pan sensor in order to design the
MRA reduction filters or the decimation filters generating the MS and Pan data at
degraded scales. In this way, it is possible to avoid a poor enhancement that
sometimes occurs when MTFs are assumed to be ideal filters [31]. Theoretical
considerations on injection models and experimental comparisons among
MRA-based pan-sharpening methods can be found in [32].

A further issue concerns the adoption of global or local injection models.
Computational cost is lower for global models but results are superior in general
for local ones even if some caution should be adopted for local models since due
their nature they are responsible for local improvements but also for possible local
distortions or impairments.

2.3 Selected Methods for Testing on HS+Pan Images

Among the methods introduced in Sect. 2 , we have focused our attention on few
sharpening algorithms that can be easily applied to HS images. In order to give
evidence to different effects of spatial enhancement on the distribution of spectral
classes, we are interested on

• efficient fixed-scheme injection methods, since the computational complexity of
the injection strategies based on local statistics is unacceptable for HS image
enhancement;

• classical, well-established methods, even if their performances are not excellent.
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The following fusion methods are selected and tested on the considered data
set:

1. the Global MMSE fusion method with band-dependent generalized intensity
(GMMSE) [13];

2. the Generalized Intensity–Hue–Saturation method (GIHS) [3];
3. the High-pass filtering (HPF) method [7];
4. a modified version of the HPF method, referred as HPF-P with a filter char-

acterized by 1/3 cutoff frequency and not introducing any spectral distortion
with respect to the original HS image data.

The GMMSE pan-sharpening method [13] is optimal in the minimum mean
squared error sense and it is characterized by low computational complexity. This
solution adopts a linear injection model in which an optimal detail image extracted
from the panchromatic band is calculated for each MS/HS band ðBk; k ¼ 1; . . .;NÞ
by evaluating a band-dependent generalized intensity from the N original bands.
The fusion equations are

BF
k ¼ B

"
k þ gk P�

XN

j¼1

wk;jB
"
j

 !
; k ¼ 1; . . .;N; ð1Þ

where Bk
F is the kth pan-sharpened band and Bk

: indicates the kth original band
upsampled to the Pan resolution. The N

2 weights wk,j, of the linear combination
equations which provide the generalized intensity images (one for each band to be
fused), and the N gains gk that regulate the spatial detail injection are jointly

calculated at degraded resolution according to a minimum mean squared error
criterion [13]. This procedure has been demonstrated to be fast and reliable thanks
to the computation of N different intensity images.

The Generalized Intensity Hue Saturation (GIHS) fusion method [3] computes a
generalized intensity image I by a weighted linear combination of the original MS/
HS bands (the generalized Intensity–Hue–Saturation transform), and subtracts it
from the Pan image histogram-matched to I, denoted as Phm. Such difference
image is added to each MS/HS band:

BF
k ¼ B

"
k þ ðPhm � IÞ; k ¼ 1; . . .;N; ð2Þ

Its main critical point, due to the generalized intensity generation, is that the
fusion products may exhibit important spectral distortions.

The HPF method [7] consists of an addition of spatial details, taken by local
pixel averaging (box filtering) from a high-resolution Pan observation, into a
bicubically resampled version of the low-resolution MS image. Its modified ver-
sion, referred as HPF-P, substitutes the box filter with a quasi-ideal zero-phase
lowpass filter with 1/3 cutoff frequency: it is therefore more suitable for merging
30 m Hyperion with 10 m ALI image data. In addition, it injects a spatial detail
image which is pixel-wise projected along the direction of the original HS pixel in
the N-dimensional hyperspectral space.
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2.4 Evaluation of Spatial Enhancement Methods

There are several ways for evaluating an algorithm for spatial enhancement of HS
images, which may also depend on the particular use of the enhanced data
products.

1. Objective quality assessment by score indexes.

a. The index can be applied to original HS images as reference data for pan-
sharpened images obtained from spatially degraded HS and Pan images. The
degradation factor equals the spatial resolution ratio between original HS
and Pan data. This evaluation protocol is used, among others, by ERGAS
[23] and the recent Q2n index [33].

b. Quality may be assessed without a reference image, i.e., directly at the
spatial resolution of Pan, by evaluating the QNR index [34].

2. Effects on classification. The objective evaluation of a classification phase
applied to both original (HS+Pan), and pan-sharpened HS data may provide
useful indications on which spatial enhanced method is more suitable for
classification. Interesting results have been presented in [35] for pan-sharpened
very high resolution (VHR) MS images.

3. Effects on change detection. The impact of pan-sharpening on the accuracy of
change detection can be evaluated to investigate whether the improvement in
geometrical resolution of change detection maps given by pan-sharpening is
affected or not by possible artifacts introduced by the pan-sharpening process.
A theoretical and experimental study on VHR MS data has been presented in
[36].

4. Effects on target detection. The effects of spatial enhancement through a
panchromatic band on target detection applications has been investigated in
[37].

5. Effects on the distribution of spectral classes. This approach is adopted in the
present Chapter: it allows to verify to which extent the process of spatial
enhancement affects the spectral information of the original HS image.

3 Dimensionality Reduction for the Assessment

of Pan-Sharpening Algorithms

This section introduces a data fusion case study, where a real hyperspectral image
is employed to assess the performance of the pan-sharpening methods indicated in
Sect. 2.3.

The analysis is concerned with the effects that the fusion algorithms have in the
spectral subspace containing the data when spatial information is injected: in other
words, we are interested in the description of the pixel (or) sample distribution of
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the original data and the re-distribution after the fusion process. A complete
description of the subspace spanned by data samples or visualization of full data
would be prohibitive for two main reasons: on one hand, the processing of the
whole hyperspectral data would be computationally very demanding and, on the
other hand, the information mining of huge data with no prior information is not
feasible. Hence, the reasonable approach used in the chapter involves a ‘subspace
spectral sampling’ by means of the selection of many pixel-based regions of

interest (ROI’s), shown in Fig. 1. The ground truth composed by the ROI’s is used
to build different datasets to carry out different analysis. In this way, it is possible
to understand if and how similar pixels (such as those belonging to the same class)
are displaced in the feature space (assessment of local effects) and how spectral
information and related properties are modified (assessment of global effects).

The used data set has been acquired over the region of Palo Alto (USA) on June
23, 2002 by the HYPERION and ALI sensors mounted on the EO-1 platform. The
220 HS bands of Hyperspectral sensor span from 0.4 to 2.5 lm with a spatial
resolution of 30 m. The PAN band acquired by the ALI scanner approximately
covers a short interval of HS (from 0.45 to 0.69 lm) with a spatial resolution of
10 m. After removing low SNR and water-absorption bands, we considered a total
of 85 bands for data analysis. The data set has been radiometrically calibrated from
digital counts, geocoded, i.e., resampled to uniform ground resolutions of 30 m
(HS) and 10 m (PAN) ground spatial distance, and packed in 16-bit words.

Fig. 1 ALI Pan image. Five near-homogeneous classes are labeled and highlighted in the image.
The region ‘‘Subspace’’ represents a near-linear mixture of the five selected classes
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Hence, in the following, band values are to be intended as being the radiance
values, with SI Unit (Watt sr-1 m-2 nm-1).

Visual analysis of these data reveals the presence of sea, marshes, urban areas,
vegetated areas, roofs, streets, and shadows. (more information and images are
available at http://eo1.usgs.gov/).

The highlighted classes shown in Fig. 1 were selected for their near-homogeneity
properties, through spectral analysis and color photointerpretation of many false
RGB compositions, with the help of 3D spectral projections as shown in Figs. 2
and 3.

The class marked in yellow in Fig. 1 and named ‘Subspace’ describes in many
three-dimensional projections a geometric shape whose vertices are covered by the
other classes: the ‘Subspace’ class plays an important role in the subsequent analysis,
since it appears to be a quasi-linear mixture of the five homogeneous classes.

In the following, Ns stands for the number of spectral samples xi 2 X 2
RN ; i ¼ 1; . . .;Ns , each one with dimension N = 85.
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Fig. 2 3D ScatterPlot of radiance values in bands 10,30: a five classes; b five classes and image
subspace
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Fig. 3 3D ScatterPlot of radiance values in bands 5, 50, 70: a five classes; b five classes and
image subspace
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By using the above mentioned selection of classes, we are confident that the
spectral samples contain different ‘degrees of homogeneity’, hence we will be able
to assess the effects of pan-sharpening on ‘pure’ pixels and ‘mixed’ pixels. For
example, the 3D scatter plots in Figs. 2 and 3 show that the class ‘Sea/Water’
(Cyan) is very clustered, even if it is composed by disconnected areas of the
image, while the class ‘Street’ (Red) is less clustered and contains more spectral
variability or, roughly speaking, each class pixel contains many materials at the
given sensor resolution.

The results reported in Sect. 4 have general validity: the objective of the
analysis is to provide results not concerned with a particular remote sensing
application, such as classification or target, anomaly and change detection. Ana-
lyzing data with algorithms using a large number of parameters is avoided for the
same reason, and also for the complexity in managing high dimensional data.

4 Experimental Results

This section is concerned with the analysis and comparison results of the fusion
methods described in Sect. 2.3, obtained by exploiting different methodologies,
from the simplest ‘Visual Approach’ to the more sophisticated algorithms, such
Kernel PCA, up to the Linear Preserving Projection algorithm, developed for
maintaining local and global structure in dimensionality reduction. All the
experiments are carried out at the same time on two different kinds of datasets: the
former is built by considering only five classes of the user’s ground truth (Dataset
#1), while the latter includes also the ‘Subspace’ class, i.e. the whole ground truth,
(Dataset #2).

4.1 ‘Visual’ Approach

The analysis begins with the simplest possible approach: original and pan-
sharpened data are visualized in three-dimensional scatterplots, as already
explained. The high correlation between spectral bands in hyperspectral data
allows the usage of this methodology since, even if different triplets of band are
chosen for visualization (see as instance Figs. 2 and 3), the results are not sur-
prisingly different. Figure 4 shows the same projection of Fig. 2, but rescaled so
that all the results are scattered in a subspace at the same scale.

4.1.1 GIHS

The effects of the GIHS fusion algorithm may be assessed by looking at the shape
of the pixel distribution in Fig. 5a. Spectral bands appear to be more correlated due
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to the spectral distortion caused by the spatial injection from Pan: note that the
pixels belonging to the selected classes appear more linearly scattered, which
means that local spatial information prevails upon spectral information or, in other
words, that GIHS privileges local spatial information with respect to the spectral
one: this appears clear in the cluster formed by pixels belonging to Sea/Water
(cyan) since, after the fusion, it splits into two smaller classes that, actually, are the
two disconnected regions marked in Fig. 1. However, it is worth noting that the
pixels in the classes are still on the edges of the subspace spanned by the pixels in
class ‘Subspace’, even if the linearity hypothesis in this case is weaker than in the
original case.

4.1.2 HPF

Same considerations can be done for the HPF fusion algorithm, whose results are
depicted in Fig. 5b; in this case the unbalanced usage of spatial and spectral
information is greater than for the GIHS case, since the phenomena of pixel
diffusion in the direction of linear correlation is definitely more relevant. More-
over, the radiance band values of many pixels are set to zero and a relevant amount
of information is lost during the fusion process. Besides, the distribution of the
classes is completely changed and the linearity hypothesis in this case does not
hold at all.

4.1.3 HPF-P

In this case, the pixel distribution follows a ‘cone’ behavior, for the definition itself
of the algorithm. In fact, since the fusion is based on projection measures, the
evaluation can be considered in some sense ‘angle-based’: pixels with high
spectral angles are projected in the new distribution close to zero. The results are
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Fig. 4 Data visualization with 3D ScatterPlot radiance values in bands 10, 30. Scattering of
original values as contained in the data, Dataset #1 (left) and Dataset #2 (right)
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(a) GIHS (b) HPF

(c) HPF-P (d) GMMSE
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Fig. 5 Data visualization with 3D ScatterPlot radiance values in bands 10,30. Scattering of data
values after fusion, Dataset #1 (upper part) and Dataset #2 (lower part)
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shown in Fig. 5c, where each class appears scattered along a cone whose width is
given by the projection of the pixel with the maximum angle.

4.1.4 GMMSE

Finally, Fig. 5d shows results for the MMSE fusion process: distribution of classes
are almost unchanged and the mixture model is unchanged. Even with a low
spectral distortion, the method can be considered to have a good balance between
spectral preservation and spatial injection.

It is worth noting that the partial analysis employed in this section is very useful
to understand how the algorithms works and to assess how spatial and spectral
information are balanced by each algorithm: however, it is useful to remark that
the analysis is concerned on the global variations of the spectral distribution: the
‘visual’ approach used in this section might give an idea about the ‘local’ effects of
pan-sharpening on the hyperspectral data, but it does not allow for a global
comprehension of the spectral re-distribution. In the following, different tech-
niques are used to globally capture the subspace transformations.

4.2 Linear and Non-Linear Sample Similarity Measures

Given Ns spectral samples, each one with dimension N, some measures of spectral
‘similarity’ between samples are given by kernel matrices K of dimension Ns � Ns,
where a value in (i, j), kij stands for a similarity measure between sample xi and
sample xj. In the following, the basic principles of kernel theory are recalled to
introduce the experimental analysis. For a more complete review of kernel
methods for remote sensing, the reader may refer to Chap. 10.

The entries in the kernel matrix are defined by

kij ¼ jðxi; xjÞ ð3Þ

where j is a kernel function. Subsequently, the kernel matrix K is centered using
the following modification of the entries

kij ¼ kij �
1
Ns

X

l

kil �
1
Ns

X

l

kjl þ
1

Ns
2

X

lm

klm: ð4Þ

The centering operation corresponds—in the original domain—to subtracting
the mean of the features. It makes sure that the features in the high-dimensional
space defined by the kernel function are zero-mean.

It is possible to define the measure of similarity kij in Eq. 3 in different ways:
if a linear function (or ‘linear kernel’) is used, i.e.

kij ¼ xTi xj ð5Þ
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the kernel function is actually the correlation between the two samples. However,
many other function can be chosen to evaluate the similarity. Valid kernel function
largely used are

kij ¼ eð�kxi�xjk
2=ð2r2ÞÞ Gaussian Kernel ð6Þ

kij ¼ ððx
T
i xjÞ þ 1Þd Polynomial Kernel: ð7Þ

Figure 6 reports some measures of correlation between the pixels belonging to
the selected classes, except those for the ‘Subspace’, and the linear and Gaussian
kernel have been used. The matrix containing the samples is organized with
contiguous pixels of each class, so that the ideal matrix K would be composed by
high correlation squares on the diagonal and zero outside, and the size of each

Fig. 6 Kernel matrices on the original data (first line) and kernel matrices on the fused data
(linear and Gaussian, second and third row, respectively): samples are sorted so that the ideal
matrix K would be composed by high correlation squares on the diagonal and zero outside
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square equals the number of the pixels in the corresponding class. In the eval-
uation of the Gaussian kernel matrices, the same value for the r = 102 has been
used and no centering operation has been performed: this value is justified by the
fact that in the experiments only the order of magnitude is set, and with r = 10
or r = 103 results show no variability. The linear kernel matrices instead have
been centered with the formula in Eq. 4 to balance the output of the linear
function: for this reason, the third class, marked by the third square on the
diagonal, appears more clustered (or correlated) than the others. The results
related to linear correlation and reported in Fig. 6 confirm and extend the
properties of the data described in the previous section: pixels in GIHS, HPF and
HPF-P have a linear correlation much lower than those in the original data and in
the GMMSE fused dataset, even if results for HPF-P are better than those for
GIHS and HPF.

However, if the similarity is measured by means of a Gaussian kernel, pixels
still appear to be correlated (even if in a non linear fashion): results show that in
the subspace of the fused images the pixels can still be considered as clustered.

To validate this hypothesis, data correlation is analyzed in the following by
means of linear and non linear methods.

4.3 PCA

Principal Components Analysis (PCA) [38] is a linear technique for data analysis,
and it can also be used for dimensionality reduction: it embeds a linear transfor-
mation from the subspace containing the original data into a linear subspace of
lower dimensionality. Although there exist various linear techniques, PCA, known
also as Karhunen–Loève transform, is by far the most popular (unsupervised)
linear technique.

PCA constructs a low-dimensional representation of the data that describes as
much of the variance in the data as possible. The new representation is achieved by
means of a linear transformation from the original space to a transformed space,
having a sorted vector basis of reduced dimensionality so that the amount of
variance in the data is shifted and misplaced in descending order.

In mathematical terms, PCA attempts to find a linear mapping M that maxi-
mizes the cost function trace MT cov(X)M subject to MTM = I, where covðXÞ ¼
1=Ns

PNs

i xix
T
i is the estimate of the covariance matrix of the data X and I is the

identity matrix of size Ns � Ns: It can be shown that this linear mapping is formed
by the n principal eigenvectors (i.e., principal components) of the sample
covariance matrix of the zero-mean data. Hence, PCA solves the eigenproblem

covðXÞM ¼ kM: ð8Þ

The eigenproblem is solved for the n principal eigenvalues k. The low-dimensional
data representations yi of the datapoints xi are computed by mapping them onto the
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linear basis M, i.e., Y = XM. For a deeper and complete insight to PCA trans-
formation refer also to Chap. 10.

Figure 7 shows the scores of the first 5 eigenvalues of the PCA decomposition,
related to the principal components: values have been normalized with respect to
the first eigenvalue of the decomposition of the original data. In Sect. 4.1 the high
correlation due to a strong injection of spatial information in the HPF and HPF-P
methods has already been outlined: moreover, the PCA quantitative analysis
confirm that in the case of the data sharpened by means of these algorithms, there
is a direction (i.e. the first principal component) with a strong correlation (Fig. 8).
In fact, the scatter of data reported in Fig. 9b, c reveals by far the strong corre-
lation among the pixels that can not be described by a single direction. This
explains why also the second eigenvalue is definitely stronger for these datasets
than that for the case of original data and the case of GMMSE, that are mutually
very similar (see also Fig. 9d). Quite different is the case of data generated by the
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(a) GIHS (b) HPF

(c) HPF-P (d) GMMSE
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Fig. 9 PCA transformation: 3D ScatterPlot of the first principal components. Scattering of
principal components output, Dataset #1 (upper part) and Dataset #2 (lower part)
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GIHS algorithm: the lower value of the first eigenvalue in the PCA decomposition
gives the idea that the data contains less correlation and, hence, more information.
Nevertheless the high score of the second eigenvalue almost equals the first one and
those of the HPF andHPF-P, while the values of a generic PCA analysis are expected
to decrease. However, the analysis in Sect. 4.1 and the matrices in Fig. 6 reveal that
the correlation introduced may be supposed to be not linear, thus it can not be caught
by a linear method such as PCA. Hence in the following, the effects of the pan-
sharpening algorithms are assessed with the help of non-linear techniques.

In recent years in fact, in contrast to traditional linear techniques such as PCA
described and applied in this section, nonlinear techniques for dimensionality
reduction are often used for the identification of correlation in marginal distribu-
tion of high dimensional and complex data.

4.4 Kernel PCA

Kernel PCA (KPCA, see also Chap. 10) is the reformulation of traditional linear
PCA in a high-dimensional space that is constructed using a kernel function [39].
Lately, the reformulation of linear techniques based on the dot product using the
‘kernel trick’, has led to the proposal of many techniques such as kernel ridge
regression and Support Vector Machines (SVM) in many research fields and in
hyperspectral data analysis as well [40]. Similarly to PCA, Kernel PCA finds the
principal components of the distribution, by computing the eigenvector decom-
position of the kernel matrix, rather than that of the covariance matrix. In other
words, the reformulation of traditional PCA in kernel space is obtained by means
of the kernel estimates, that are similar to the inner product of the datapoints in the
high-dimensional space that is constructed using the kernel function. The appli-
cation of PCA in kernel space provides Kernel PCA the property of constructing
nonlinear mappings.

The algorithm can be summarized in the following steps [38]: first, kernel PCA
computes the kernel matrix K of the datapoints xi. Subsequently, the principal
d eigenvectors vi of the centered kernel matrix are computed. It can be shown that
the eigenvectors of the covariance matrix ai (in the high-dimensional space con-
structed by j) are scaled versions of the eigenvectors of the kernel matrix vi

ai ¼
1
ffiffiffiffi

ki
p vi: ð9Þ

In order to obtain the low-dimensional data representation, the data is projected
onto the eigenvectors of the covariance matrix. The result of the projection
(i.e., the low-dimensional data representation Y) is given by

Y ¼
X

j

a1jðxj; xÞ;
X

j

a2jðxj; xÞ; . . .;
X

j

a1jðxj; xÞ
( )

ð10Þ
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where j is the kernel function that was also used in the computation of the kernel
matrix. Since Kernel PCA is a kernel-based method, the mapping performed by
Kernel PCA highly relies on the choice of the kernel function j.

Figures 10 and 11 reports the results for Kernel PCA: Gaussian kernel has been
used, with r = 104, and transformation has been performed with and without the
samples in class ‘Subspace’, which have been subsampled for computational
issues. The value selected for r is significant only for its order of magnitude,
similarly to that used in Sect. 4.2. We avoided to apply a tuning operation on each
dataset to make possible a straightforward comparison of different data (before and
after fusion, for datasets #1 and #2). The three-dimensional projection of samples
before pan-sharpening show that the non-linear transformation describes effi-
ciently the information contained in the data and, at the same time, the mixture
model effectively holds and class samples are very clustered. Furthermore, column
(a) relative to GIHS method reveals that by using the kernel version of PCA, the
principal components are much more uncorrelated than the linear case and, in
addition, the classes are much more clustered and separated, as in Fig. 11d that
shows the results for GMMSE. In both cases, it lightly holds the hypothesis for the
class in yellow to be a mixture of the remaining classes, since pixels belonging to
the ground truth are scattered on the vertices of the subspace.

Quite different results are provided by the HPF and HPF-P methods: if the
KPCA is fed without the samples belonging to the subspace data, the high cor-
relation is poorly exploited, while results obtained in the case of the complete data
set appear more consistent. The lines of sight used for visualization of Fig. 11c,
d—to directly compare results with other methods—are definitely not clear: same
images, but with different angles of sight are reported in Fig. 12. These images,
compared to those in Fig. 9 show that the two HPF algorithms introduce a severe
spectral distortion. In fact, although KPCA does summarize the non linear-
correlation in the HPF and HPF-P data, similarly to PCA, it is not sufficient to
describe efficiently the subspace, since the classes do not lie on the vertices but on
the edges of the distribution. Eventually, the analysis reveals that in this case, what
really matters is the distortion of spectral information.
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Fig. 10 Kernel PCA transformation: 3D ScatterPlot of the first principal components. Scattering
of kernel principal components output, Dataset #1 (left) and Dataset #2 (right)
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(a) GIHS (b) HPF

(c) HPF-P (d) GMMSE
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Fig. 11 Kernel PCA transformation: 3D ScatterPlot of the first principal components. Scattering
of kernel principal components output, Dataset #1 (upper part) and Dataset #2 (lower part)
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4.5 Linearity Preserving Projection (LPP)

Linearity Preserving Projection (LPP) is a technique that aims to combine the
benefits of linear techniques and local nonlinear techniques for dimensionality
reduction. The task is accomplished through the minimization of a cost function
defined so that local properties of the data distribution are preserved based on
the pairwise distances between near neighbors. Briefly, LPP computes a low-
dimensional representation of the data in which the distances between a sample
and its kNN nearest neighbors are minimized by finding a linear mapping that
minimizes the cost function defined as [38, 41]:

/ðYÞ ¼
X

ij

ðyi � yjÞwij ð11Þ

where yi represents the samples in the low-dimensional representations and wij are
the weights of the edges. In the cost function, large weights wij correspond to small
distances between the samples xi and xj. Hence, the difference between their low-
dimensional representations yi and yj highly contributes to the cost function. As a
consequence, nearby points in the high-dimensional space are closer in the low-
dimensional representation.

In detail, similar to many other methods for dimensionality reduction such as
Laplacian Eigenmaps, LPP starts with the construction of a nearest neighbor graph
G(V, E), defined subsequently, in which every sample xi is connected to its kNN
nearest neighbors xij. For all points in graph G(V, E) that are connected by an edge,
the weight of the edge in the graph is computed using the Gaussian kernel func-
tion, as defined in (3), leading to a matrix W with entries

wij ¼ e
�
kxi�xjk

2

2r2 : ð12Þ

(HPF projected)(HPF)
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Fig. 12 Kernel PCA transformation: supplementary 3D scatter of the first kernel principal
components
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The minimization is achieved by rewriting the problem in terms of graph Lapla-
cian L, introduced in the following through the definition of many mathematical
issues.

First, define the graph G(V, E) with a set of n nodes, V, connected by a set of
edges, E. The edge connecting nodes i and j has an associated weight, Wij [42].
In this framework, the nodes are the samples, and the edges represent the similarity
among samples in the data. A proper definition of the graph is the key to accurately
introduce data structure in the machine.

Two mathematical tools have to be introduced to understand how matrix L is
constructed [43, 44]:

• D is the degree matrix of size n 9 n. Basically, D is a diagonal matrix D ¼
½d1; . . .; dn� containing the number of connections to a node (degree);

• A is the adjacency matrix of size n 9 n, where the nondiagonal entry is the
number of connection from node i to node j, and the diagonal entry is either
twice the number of loops at vertex i or just the number of loops. In our case, it
is a matrix containing only (0, 1).

Finally, the Laplacian matrix L is defined as L = D - W, where W is obtained
from A, the adjacency matrix, by assigning weights to each connection. Also, a
normalized version of L can be obtained as

Lij ¼
1 if i ¼ j and dj 6¼ 0

� 1
ffiffiffiffiffiffi

didj
p if i and j are adjacent

0 otherwise:

8

<

:

where subscripts i and j stand for the row and column indexes as well as the edges
as defined before.

Once found the matrix L, LPP solves the generalized eigenproblem

ðX � �XÞTLðX � �XÞt ¼ kðX � �XÞTDðX � �XÞt: ð13Þ

It can be shown that the eigenvectors vi corresponding to the d smallest nonzero
eigenvalues form the columns of the linear mapping T that minimizes the cost
function in Eq. 11. The low-dimensional data representation Y is thus given by
Y ¼ ðX � �XÞT :

Figure 13 shows the scatter plots of samples from data before and after
transformation with a graph built by setting r = 1 in the Gaussian kernel, while
for the construction of the graph there is no need to set the number of nearest
neighbors since the matrix D is filled straightforwardly with the distances. The
relative low value of r is justified by a simple consideration: the higher is the
value introduced, the more the algorithm would inject increasing information
about the structure of the distribution through the graph Laplacian. However, the
analysis has revealed that the usage of spatial information does not change
coherently the marginal distribution of the classes, or in other words, it produces
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a diffusion effect whose entity depends on the local spatial distribution and
pureness of pixels. Hence, the analysis has to be concerned on the spreading of
the relative distances among nearby samples, and not on the global structure of
classes distributions.

Regarding the results on the original data it is worth noting that the LPP
algorithm produces excellent results since, even if not fed with supervised
information, classes appear definitely clustered and separated. Hence, the task is
to understand by means of the LPP algorithm, how local distances are
maintained.

The upper parts in Fig. 14 report the results of LPP carried out without con-
sidering the class ‘Subspace’ that, in some sense, represents the connection
between all the other classes. In the case of GIHS and GMMSE both algorithms
performs very well and with similar results (except the fact that the features are
flipped); moreover, classes appear more clustered than in the original case (see
Class ‘Vegetation’, in green). Similar considerations can be done for the GIHS and
GMMSE in the case of full data LPP processing.

As well as the case of the KPCA method, HPF and HPF-P behave differently. In
particular, when the LPP is fed without the ‘Subspace’ Class, lack or weakness of
the graph connections produce poor results; the spatial injection introduces a
spectral distortion with a spreading effect on the samples, that can be captured by
using higher values of r in the Gaussian kernel.

When the samples belonging to the ‘Subspace’ class contribute to the input of
the LPP algorithm (see lower part in fig. 14), a connecting effect is introduced in
the samples graph, hence the results appear more consistent: given the same
values of r, the introduction of a greater number of samples fills the empty space
between them, so the weights contributing to the graph creation are higher and
consequently the algorithm can estimate better the main directions of the data
scatter. The analysis reveals that the distances between samples are higher in the
case of HPF and its HPF-P version.
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Fig. 14 Kernel LPP transformation: 3D ScatterPlot of the results. Scattering of the three
components of the output, Dataset #1 (upper part) and Dataset #2 (lower part)
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5 Conclusions

We have presented an experimental study on the effects of spatial enhancement of
HS images on the distribution of spectral classes. The comparative analysis has
been performed on original and pan-sharpened HS images by means of both linear
and non-linear dimensionality reduction methods. The methodology for data
analysis has proven to be consistent with traditional quality assessment of pan-
sharpened data, and to be useful for understanding whether a particular fusion
algorithm may improve or not application-specific HS processing. The results
show that, as expected, the GIHS fusion algorithm privileges local spatial infor-
mation with respect to the spectral one, since it introduces spectral distortion. The
HPF and, to a lesser extent, the HPF-P methods suffer from weak preservation of
the spectral correlation of the original data. Among the four pan-sharpening
algorithms considered, GMMSE guarantees the best preservation of spectral dis-
tribution, almost unchanged class mixture model, good preservation of data cor-
relation in the spectral dimension, and capability of maintaining or even improving
clustering of data in the hyperspectral space.
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Fusion of Optical and SAR Data
for Seismic Vulnerability Mapping
of Buildings

Diego Polli and Fabio Dell’Acqua

Abstract Seismic risk depends not only on seismic hazard, but also on the vul-
nerability of exposed elements since it is important in providing the necessary
information to policy and decision-makers in order to prevent and mitigate the loss
in lives and property. Currently, the estimation of seismic vulnerability of build-
ings relies on accurate, complex models to be fed with large amounts of in situ
data. A limited geographical scope is a natural consequence of such approach,
while extensive assessment would be desirable when risk scenarios are concerned.
Remote sensing might be fruitfully exploited in this case, if not for a gap between
information required by current, accurate, data-hungry vulnerability models and
information derivable from remotely sensed data. In this context, naturally the
greatest amount of information should be collected, and data fusion is more a
necessity than an option. Fusion between optical and radar data allows covering
the widest range of information pieces; in this chapter we will describe how such
information may be extracted and how it can be profitably fed to simplified seismic
vulnerability models to assign a seismic vulnerability class to each building. Some
examples of real cases will also be presented with a special focus on the test site of
Messina, Italy, a notorious seismic-prone area, where an intensive campaign of
data collection is in progress within our research group.
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1 Introduction

Optical remote sensing has a long story [1] of success in wide-scale classification
of land cover as well as in retrieving features and characteristics of selected items
such as vegetation [2] and water [3]. Yet some pieces of information or conditions
of operation are definitely out of the reach for very-short-wavelength remote
sensing, such as directly detecting conductive or moving objects, or operating in
poor weather conditions.

Apart from these extreme cases, it is a well known fact that optical and radar
remote sensing can complement each other very well and provide, when exploited
together, more information than the sheer sum of single contributions. In general,
it is correct to assume that improvements in terms of classification accuracy,
rejection rate, and interpretation robustness can only be achieved at the expense of
additional independent data delivered by sensors. Data fusion is a concept that
formalizes the combination of these measurements. In this chapter a review will be
provided on the fusion of optical and radar data, with a specific attention to fusion
between very-high-resolution data from the two realms.

2 Fusion of Optical and Radar Data

Data fusion [4] gathers together a large number of methods and mathematical
tools, ranging from spectral analysis to plausibility theory. Fusion is not specific to
a theme or an application; tools used in a data fusion process for a given appli-
cation may instead be tailored to the case at hand.

Despite the fact the fusion of optical and radar data is potentially very
advantageous, the difficulty inherent in combining so largely different types of
data prevented it from becoming commonplace. Optical and radar data may not be
both available with the given characteristics at the target site; or they may be
available, but with such a long time span between them that some relevant
information may become uncorrelated. Even when suitable data has been retrieved
from both sources, the image pair needs to be accurately co-registered, which is
not a painless procedure. Traditional, correlation-based methods [5], which used to
work for optical-to-optical image registration, are not applicable when optical-
to-radar image registration is concerned.

Correlation-based methods indeed assume similar types of sensors and tend to
fail for registration of optical and radar images, because those two images have no
radiometric correlation at all, due to the extremely different wavelengths.

Other approaches were then developed which do not assume radiometric corre-
lation: matching connected-groups of pixels (blobs) in the two images [6, 7]; chain-
codes description of contours [8]; application of active contour models [9–11].

Even these methods will often fail to accurately register optical and radar
images for at least two reasons. The first is—again—that the two images have
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different radiometric characteristics, and in many cases the contrast between
objects can be even reversed. Correlations between such dissimilar images will
rarely yield a peak, even when correlation is computed locally. The second
important reason for failure lies in speckle noise, which introduces strong dis-
tortions in the apparent shape of the areas found in the radar image with respect to
the optical one, and this may be sufficient to prevent matching of the corre-
sponding areas. More recently [12], edge-based methods have been proposed
which get around the problem of radiometric correlation and are capable of pro-
viding good geometric agreement between the registered images, at least at the
resolutions typical for the elder generation of Earth Observation (EO) satellites
(i.e., on the order of 10 m).

Nowadays, however, we are witnessing a turnover from the old generation of
10-m radar satellites (ERS, ASAR, JERS) to the new, meter-resolution synthetic
aperture radar, with the launch of satellites like COSMO/SkyMed [13], TerraSAR-X
[14], and RADARSAT-2 [15]. The new generation of very high resolution (VHR)
radar satellites brings finest achievable radar resolution once more very close to that
of optical satellites, thusmaking the scales of the two types of data comparable again.
It is on urban areas that the finest spatial resolution of such data is best appreciated,
given the extreme spatial variability of the urban environment. At these resolutions,
details of the buildings can be seen on both types of data, and their fusion can
theoretically achieve the best results.

Sportouche et al. [16] have presented a method for building information
extraction with the purpose of a 3D reconstruction exploiting data fusion. They use
the optical image to obtain the footprint of the building; later they validate building
detection and extract height information exploiting SAR data. Other methods
employ high-resolution In-SAR data and optical imagery to extract facilities such
as buildings or bridges [17, 18]. In case of a seismic event, damage mapping can
be very useful and data fusion is still a very powerful tool for this purpose [19, 20].
It is possible to exploit both the high repetition observation rate available with the
new generation of SAR systems and the fine level of detail available even in a
single multiband optical image with the aim of change detection [21]. Again for
the same purpose, i.e. change detection, images are used, acquired at different
times during the process of construction of a city or reconstruction of an urban area
stricken by a natural disaster [22].

Although still limited in its extent by the relative novelty of the data, fusion
between very high-resolution optical and radar data clearly represent a very fertile
terrain for the construction of powerful tools for information extraction through
remote sensing. Even more so for urban areas, whose inherent complexity makes
the fine spatial discrimination granted by these data highly desirable for enabling
large-scale exploitation of the wealth of information contained in the acquired
data.

In the next section, we will illustrate some of the issues raised by the optical and
radar data fusion at very high resolution by analyzing a concrete example.
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3 Data Fusion for Vulnerability Assessment

In order to illustrate the usefulness of data fusion, we focus our attention on a
particular application (seismic vulnerability assessment), which is particularly
interesting as it is relatively new.

3.1 The Aim

Seismic risk depends on both seismic hazard (i.e. how likely an earthquake of
given intensity is to occur) and vulnerability of exposed elements (i.e. how likely
is a building to suffer damage of a given extent as a consequence of a seismic input
of a given intensity), although it is more commonly thought of in terms of hazard
alone.

The contribution of remote sensing to seismic hazard computation is generally
indirect, as it consists of collecting clues on, e.g. seismic faults location and pat-
terns, to be used as input to probabilistic models, which in turn provide an estimate
of the earthquake probabilities. The information fed in through remote sensing is
often replaceable with input from other sources, like, e.g. global fault models.

On the other side, the contribution of remote sensing to seismic vulnerability
estimation can be substantial. At a very different scale with respect to the factors
connected with seismic hazard, vulnerability assessment can help mapping seismic
risk at a deep detail level. Thus, a capability to map vulnerability on a wide
geographical scope can be very beneficial to improve disaster preparedness on the
one side, and to make early-stage damage estimation more precise and reliable by
incorporating vulnerability models into damage estimation algorithms.

As already mentioned, the seismic vulnerability of a structure can be defined as
its susceptibility to be damaged from ground shaking of a given intensity, usually
described in terms of probability of damage and discrete levels of damage,
respectively. Evaluating the vulnerability of existing building stock is certainly
pivotal in this framework and indeed it has a long history of method proposed
along the years [23], based either on empirical, analytical or even hybrid
approaches. In general the various methods proposed need a considerable amount
of information to be collected; for example, when the response of a single building
is considered, existing approaches essentially require several studies on the
structure as an accurate examination of the possible local mechanisms of damage
and collapse, the selection of a probable non linear response mechanism, and so
on. This may represent a severe limitation on the geographic scope of the vul-
nerability estimation procedure, either because historical data are unavailable at
the desired precision or format, or because the in situ collection of data is too
expensive and time-consuming to make it practical to collect the required infor-
mation. Though, it may become feasible once suitable methods become available
and trading precision for geographical scope is a viable option. Recently, new
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algorithms have been developed for vulnerability assessment, which require fewer
data, normally available from census on the building stock, e.g. year of con-
struction, number of storeys, materials, etc. One of such methods, termed Sim-
plified Pushover-Based Earthquake Loss Assessment (SP-BELA) [24] can provide
a sensible output for comparison purposes even with a very limited set of inputs.
These include the footprint of the building and the number of storeys—the latter
parameter being more important than the total height of the structure. Remote
sensing techniques, which by definition can operate on far larger scales than in situ
data collection, are in a position to complete the framework [25]. The 3D shape of
the building is a most relevant input item. In literature it is possible to find lots of
building height extraction methods, both for optical and SAR imagery. Existing
methodologies are either based on shadow analysis or on interferometric data
[26, 27]. However, the calculation of the interferogram fails if all of the roof
backscattering is sensed before the double bounce area and therefore superimposes
with the ground scattering in the layover region, which is usually the case for high
buildings. In order to tackle the problem of signal mixture from different altitudes
methods founded on interferometric or polarimetric data or stereoscopic SAR are
proposed [28, 29]. Recently, methods based on multi-aspect data where the same
area is measured from different flight paths, were proposed [30]. Generally
speaking, as testified by the amount of relevant literature, the problem of
extracting a building 3D shape is quite a complex one. For our purposes, however,
such problem can be split into two sub-problems, namely footprint extraction and
determination of the number of storey. This latter problem is quite a new one in the
remote sensing research scenario, and a simpler one with respect to traditional
building height extraction. Our final intent is a wide range scanning of the urban
environment, using optical data to extract footprints of buildings and, due to its
side-looking nature, using SAR data to extract the number of storey. These pieces
of information will then represent the basic input to the vulnerability model.

3.2 Remote Sensing as a Tool

It is thus clear that a combination of optical and radar data, both at a very high
resolution, can satisfy the information needs related to wide-scale vulnerability
assessment in urban areas.

High-resolution (HR) optical data seems to be a good means to determine items
such as shape and size, footprint of the building, relative location and orientation
of neighbouring buildings. The main issue with HR optical data is related to its
cost, currently around 20 € per square kilometre for archive data, rising up to
40–50 € per square kilometre if multi-vantage point acquisition is involved, useful
for, e.g. cross-checking the height of the building with the value determined from
shadow length or from estimation of the number of floors.

High-resolution SAR data, as already mentioned, is starting to become more
widely available thanks to the launch and activation of a new generation of
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satellites with ground resolution around 1 m. Such systems have started producing
radar images of the Earth surface at an unprecedented spatial resolution, at least for
spaceborne systems. This is opening up new possibilities, as these systems com-
bine the all weather, night and day operation typical of radar systems with a fine
geometrical resolution, which allows sensing details of the scene previously
concealed. Such ability allows for example an accurate updating of the disaster-
prone areas, because mapping of the significant elements can be performed as soon
as the acquired data becomes available, through a mapping process. This is con-
nected with vulnerability, in the sense of affording an updated scenario of possible
life-lines, escape routes and population distribution. It is however difficult to
estimate the cost of using such images as most of the data distribution is still made
for scientific purposes only, at subsidized prices.

In order to better illustrate the issues involved in seismic vulnerability deter-
mination from combined optical and radar satellite data, we will focus on a specific
test site, i.e. the city of Messina, Italy. This city is famous to the earthquake
scientist community because of the disastrous 1908 event, which triggered also a
tsunami resulting in its almost complete destruction. Several studies are underway
on this test site and the 2008 Applied Geophysics Conference took place in
Messina to celebrate 100 years of progress in disaster mitigation and management.
The vulnerability of Messina building stock was analysed through a statistical
approach where the assessment unit was the census tract.

Extraction of building footprint, as well as extraction of the number of storeys,
is performed relying extensively on a linear feature extractor termed W-Filter
which is part of a feature extraction software named BREC [31]. The footprint of
the building (Fig. 2) was extracted by applying the linear feature extractor to an
optical, very-high-resolution image. This latter consisted of the panchromatic band
of a Quickbird image, purchased for this specific purpose, whose features are
reported in Table 1. A quick look of the image is visible in Fig. 1.

A procedure has been set up, capable of connecting the extracted linear seg-
ments into a ‘‘reasonable’’ footprint for the considered building. This procedure
allows to outline the building footprint shape and size and to determine its across
and along size, two most important parameters for vulnerability assessment.

The following step is the SAR image analysis: as we can see (Fig. 3a) radar
images feature quite apparent rows of scatterers, probably originated by the corner
structures constituted by the protruding balconies, in addition to the corner
reflector structure at the pavement/façade meeting point. If we assume the foot-
print of the building is available, so is also the dominant direction of the façade in

Table 1 Information on the quickbird image

Sensor
vehicle

Acquisition
date

Total off
nadir
angle

Area max
off nadir
angle

Area max
sun
elevation

Total
cloud
cover pct.

Area
cloud
cover pct.

Imaging
bands

QB2 28/07/2006 18.63� 17.96� 67.01� 4% 5% Pan ? MS1
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the image. Directional filtering enables turning such rows of scatterers into a more
homogeneous, linear bright area, which can be easily detected by the linear feature
extractor, as seen in Fig. 3. Quite apparent here are the three parallel lines which
mark the associated three storeys. Counting the longest parallel lines extracted
from the image results in determining the number of storeys in the building. The
overall information flow is shown in Fig. 4.

The experiments have shown that, unfortunately, although apparently the
information on the number of floors can be extracted from visual interpretation, the
procedure set up seems to be somehow too simplistic and sometimes it fails to
deliver the correct number of floors (Fig. 5).

The main problem seems to be in the directional filtering, failing to sufficiently
highlight the edges between reflector rows for the extractor to work correctly.

Fig. 1 Preview of
the purchased image
�DigitalGlobe
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This issue was addressed by introducing two important novelties:

• Use of hard decision (strong scatterer/no strong scatterer) on each pixel.
• SAR ? SAR ? optical fusion instead of SAR ? optical alone.

Fig. 2 Steps in generation of building footprint estimate: a the original grayscale image,
b preliminary feature extraction, c feature merging, d footprint hypothesis

Fig. 3 a SAR image of the selected building, b segments extracted from north-west façade,
c segments extracted from north facade

336 D. Polli and F. Dell’Acqua



The first modification was introduced to account for the insufficient contrast
created by the directional filter. Instead of attempting to make the impulse
response of the filter sharper and sharper, a strategy that has proved to be basically
ineffective, a binary logic was introduced. A preliminary step is introduced, in
which pixels contained in the image are tested for being local maxima. If so, they
are marked with a ‘‘1’’ on a resulting mask image, ‘‘0’’ otherwise. Strong scat-
terers, despite their spatially spread response probably due to the SAR distributed

Fig. 4 Flow-chart of the applied method

Fig. 5 Steps in number-of-storeys-extraction (a) and (e): original images, (b-c), (f-g): after
rotation to align reflector lines with principle direction and filtering; (d) and (h): examples of
reflector row extractions.
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impulse response, are turned into single 1’s in the mask image. The mask image is
then rotated by the orientation angle retrieved from the optical image.

At this stage, a morphological dilation is performed using a constituting element
whose shape is that of a row of pixels—equivalent to extending the ‘‘1’’ marked
area along rows, given the rotation of the mask image. This results in merging
together the scatterers constituting a row marking a floor boundary. A final stage
consists of counting the number of 0–1–0 transitions along each column, as this is
expected to be connected to the number of floors. Isolated transitions are not taken
into account as they may be connected with speckle spikes.

The second modification was introduced to make the overall procedure more
robust. On the test site, as already mentioned, more than one SAR image was
available from different vantage points. Thus, a second image of the same building
from a more favourable azimuth to see a different façade of the building was
considered, and underwent the same procedure.

Figure 6 shows a flowchart representing this second method used to assess then
number of floors of a given building:

3.3 Decision-Level Fusion

A final fusion step between the estimates of the floor number is then performed as
visible in Fig. 7. The number of floors results from majority voting between the
numbers of transitions extracted from the mask image along its columns,

Fig. 6 Flow-chart of the second method
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according to the criteria discussed in the former subchapter. The experiments
report a large number of errors on single columns yet with a large majority of
correct counts.

It can be argued that the method developed is very case-specific as on the
particular site of Messina several airborne radar images were available along
different flight lines and thus with different azimuth view angles. This naturally
makes exploration of scatterers from different sides of the buildings easier. This
situation can however be effectively simulated through the use of spaceborne radar
images acquired on ascending and descending orbits on the same site. If left- and
right-looking capabilities are also available, the total number of images available
at different azimuth vantage points rises to 4, which is probably sufficient for many
sites.

This method seems to have marked a step forward in reliability of the floor
number estimation.

4 Conclusions

In this chapter, the topic of optical and radar data fusion at a very high resolution
has been discussed. Fusion of HR SAR and HR optical data has been shown to be
useful to make each type of data fill in the other’s gaps. Just to mention a few basic
examples, severe geometric distortions in radar data may be inverted where near-
nadir HR optical data are available, faithfully reproducing the shape of the objects.
On the other hand, height information may be more easily extracted from radar
shadows than from nadir HR optical data.

In order to discuss more specifically the issues related to optical and radar data
fusion, a particular application, i.e. seismic vulnerability assessment, has been

Fig. 7 Flow-chart of the final data fusion
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addressed. It has been shown in a practical case how the optical and radar image
can complement the information one may extract from the two types of data,
together providing a fairly complete set of features of an observed building.

Still, the usefulness of VHR optical ? radar data fusion is still somehow hin-
dered by the complex behavior of responses from objects observed at those finest
resolutions. The literature on this sort of data fusion is still somehow scarce,
although it is expected to increase considerably in the coming years thanks to the
ever increasing availability of this type of data.
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