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Preface

The analysis and measurement of the spectrum of a speech signal is one of the
most important areas of sound signal processing for a number of fields, yet it is not
an area to which a book has been specifically devoted. The accurate determination
of the speech spectrum is commonly pursued in diverse areas including speech
processing, recognition, and acoustic phonetics. With this book I hope to make the
subject of spectrum analysis understandable to a wide audience, which I imagine
could include those with a solid background in general signal processing (but not
necessarily in speech), and also speech scientists and students with some acoustic
phonetics experience who have limited knowledge of signal processing. In keeping
with these goals, this is not a book that replaces or attempts to cover the material
found in a general signal processing textbook. Some essential signal processing
concepts are presented in Chap. 2, but even there the concepts are presented in a
generally understandable fashion as far as is possible. Throughout the book, the
focus will be on applications to speech analysis and the measurement of important
descriptive speech parameters. No attention is paid to parametrizing speech purely
for coding or decorrelation for further processing. Mathematical theory will be
provided for completeness, but many of these developments are set off in boxes for
the benefit of those readers with sufficient background. Other readers may proceed
through the main text, where the key results and applications will be presented in
plain language as far as possible, and illustrated with software routines and
practical ‘‘show-and-tell’’ discussions of the results.

At some points, the book refers to and uses the implementations in the Praat
speech analysis software package, which has the advantages that it is used by many
scientists around the world, and it is free and open source software, obtainable on
the internet from the Praat homepage. At other points, special software routines
have been developed and made available to complement the book, and these are
provided in the Matlab programming language. If the reader has the basic Matlab
package, he/she will be able to immediately implement most of the programs in that
platform—only Chap. 7 requires the extra Signal Processing toolbox. A few other
freely available toolboxes are also needed, and all the Matlab code is made
available for download at the Springer website for additional materials.
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And finally, as was written by Lord Kelvin and Professor Tait in their Treatise
on Natural Philosophy (1912), ‘‘I confidently hope that few erratums of serious
note will now be found in the work.’’

Fresno, October 2010 Sean Fulop
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Chapter 1

Introduction

The vibration of sound itself contains melody, harmony,

and rhythm

Vangelis

The quote from the composer and musician Vangelis sounds at first like an
artist’s mystical musing, but really it couldn’t be more true, particularly of speech
sound. When the vocal cords vibrate (as they do during ‘‘voiced’’ speech sounds),
they contact each other and produce air pressure pulses in a repeating rhythm
between 70–250 times each second. This rhythm is so rapid that it yields a sound
in the surrounding air having the vibration rate as its fundamental frequency,
which is heard as a pitched tone (melody). Moreover, the complicated mechanical
nature of the vocal cord vibration gives rise to a series of harmonic frequencies in
the sound, which are integer multiples of the lowest frequency.

Spectrum analysis is essentially a tool for separating the melody, harmony and
rhythm of a complicated sound. Its generalization to time–frequency analysis
provides a view of how the sound spectrum changes through time, and such
analyses are sometimes described as akin to a ‘‘musical score.’’ The spectrum of
frequencies within a speech sound is the primary means by which the human
auditory system can distinguish different sounds, since it is the spectrum which
characterizes the distinct sound timbres or ‘‘qualities of tone.’’ The features of the
spectrum also permit us to infer properties of the speech mechanism, so accurate
spectrum analysis will always be an invaluable tool in speech science and lin-
guistics. Indeed, numerous current problems in speech science can be addressed
through improvements in spectrum analysis. The measurement of speech formant
frequencies is the most obvious example, for which no adequate solution has yet
been developed.

A spectrum, in the narrowest sense, is a pure frequency representation of a
sound that ignores any changes that may occur over time. Since speech is a
dynamically changing signal, the analysis of the frequency spectrum as such has
immediate limitations. The development of methods to show how the spectrum
of a sound varies through time is commonly known as time–frequency analysis,
and new techniques in this area have significant potential to improve upon the
older methods which most practitioners use. Time–frequency representations
with ‘‘high resolution’’ compared to the standard can be used to investigate less
understood aspects of speech sound, such as the finely detailed and rapid

S. A. Fulop, Speech Spectrum Analysis, Signals and Communication Technology,
DOI: 10.1007/978-3-642-17478-0_1, � Springer-Verlag Berlin Heidelberg 2011

1



variations of the formants and vocal cord impulses within the confines of
individual glottal periods.

The term spectrum has an interesting history; it was first used by scientists in
the 17th century to refer to the range of colors observed from light passed through
a prism. By the 19th century, light was understood as a wave phenomenon, and the
spectrum of colors was known to result from a spectrum of frequencies of the
waves. In the early 19th century, J. Fourier showed how a complicated function,
such as a sound signal, could be represented as a number of superposed functions
each with a simple frequency. During the 20th century, the range of such functions
(represented by their frequencies) present within a signal, showing their relative
amplitudes, came to be called the ‘‘spectrum’’ of frequencies, although I have not
determined precisely when this term was first applied to sound. Early practitioners
in speech science used other terminology to refer to what was essentially a fre-
quency spectrum of a speech sound, like ‘‘harmonic analysis’’ [4] and ‘‘composite
frequency analysis’’ [2], but then Lewis [3] can be found using ‘‘spectrum’’ in a
matter-of-fact way in his 1936 study of vocal resonance.

The present book treats speech spectrum analysis like any other complete
subject, with its own foundation, history, established practice, and new frontiers.
The next two chapters deal with the fundamentals and history of the subject,
respectively. These chapters go beyond the usual nutshell treatments, and I hope
that even highly experienced readers will find something of interest in them.
Chapter 2 is specifically designed to permit readers with less mathematical
experience to learn the theory behind signal processing, Fourier analysis, and
digital implementation. A quick overview of phonetics is also provided, chiefly for
readers from an engineering background.

Chapter 4 discusses mostly time-worn techniques in spectrum analysis
involving the Fourier power spectrum (a pure frequency analysis) and short-time
Fourier spectrogram (a time–frequency analysis). I have found that, in spite of the
age and prevalence of these methods, there is no literature which coherently and
systematically outlines the many parameters which govern the analyses generated.
While I expect that the treatment in Chap. 4 will be of greatest value to beginning
researchers and students, I again believe that even highly experienced readers will
find some tidbits of useful information about these well-known methods.

Chapter 5 is the first which deals with ‘‘non-standard’’ methods of time–
frequency analysis. The so-called quadratic or bilinear time–frequency repre-
sentations are similar to a spectrogram but use different computational methods
to obtain considerably different images; they have been introduced and studied in
the signal processing literature since the 1980s. Applied researchers would
benefit from understanding something about this area, but the literature tends to
be inscrutable, offering little beyond theoretical equations and proofs of math-
ematical properties. There is no ‘‘how-to’’ literature. I digested some of the
theoretical literature and scoured around for implementations by experts in the
field; the fruits of my hunting are distilled and provided here tailored to the
speech researcher. Some of these techniques have the potential to outperform
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conventional spectrograms, or perhaps provide a complementary view of speech
sounds, and I have chosen one such bilinear representation to demonstrate.

Chapter 6 introduces the method of reassigning a spectrogram, which yields a
new sort of time–frequency image that has unparalleled precision in its repre-
sentation of components and impulses. It achieves this in part by discarding
information about the bandwidth of components, but much of this information in a
spectrogram is tainted by the short-time Fourier procedure in any case. A dis-
cussion of the concept of the instantaneous frequency is included in Chap. 2, and it
is especially relevant to reassigned spectrograms. Reassignment acts upon the
information found in a spectrogram, changing the location of points in the time–
frequency plane so that they line up more closely to the locations of the instan-
taneous frequencies of components, as well as to the precise time instants at which
events have been recorded. It will be shown how the increased precision of the
resulting time–frequency analysis of speech reveals a considerable amount of
previously obscured information, leading to a variety of avenues for the investi-
gation of hitherto unobservable properties of speech spectra.

Both the theory and practice of so-called parametric spectrum estimation is
described in the final chapter, which focuses largely on the method of linear

prediction. This class of techniques is a double-edged sword; it yields simplified
spectral analyses which are easy to mine for measurements automatically, but
there is no guarantee of accurate results. Once again, my goal is to enable readers
to understand how the various inputs to a linear prediction analysis affect the
spectrum estimate which results, and to therefore select the best possible procedure
for their purposes. The chapter concludes by introducing a promising extension of
the linear prediction framework known as autoregressive moving average

modeling.
While I have tried to discuss all methods of speech spectrum analysis which

I feel deserve detailed understanding by applied researchers in many fields, this
book was never intended to be completely comprehensive like the typical book on
‘‘speech signal processing.’’ At least two major topics related to our subject have
not been treated at all here, namely cepstral processing and automated tracking of
either formants or pitch. The former of these, while widely used in speech engi-
neering, has little to offer the practicing speech scientist in my opinion. Cepstral
smoothing of a speech spectrum cannot show any advantages over the other
methods presented, so it seemed that including a chapter on it would chiefly serve
tradition rather than expedience, and would risk bloating a fairly concise book. On
the other hand, a discussion of tracking algorithms has been left out because these
are essentially heuristic ad hoc methods for extracting maximally consistent and
reasonable results from spectral analyses. Tracking is a post hoc procedure that has
no theory governing it, and which relies for its effectiveness on a high-quality
spectrum analysis in the first place.

In writing this book I have tried to straddle a deadly fence, which has tripped up
many who have gone before. The presentation is intended to be especially useful
for applied speech scientists and linguistic phoneticians, but it is also more
mathematical than probably any other book with this audience in view. On the
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other hand, while it is essential to include a few of the most important equations in
the discussion, most things are explained in English, and I have also tried to
segregate the ‘‘heavier’’ mathematics that can be safely ignored into areas with a
gray background which I refer to as ‘‘math boxes.’’ In this way, I have made an
attempt at providing ‘‘everything a speech scientist wanted to know about signal
processing, but was afraid to ask.’’ At the same time, I have also tried to make the
book useful for engineers and scientists from a richer mathematical background.
I believe it can serve this second purpose because all the relevant mathematics is
presented in some way, each chapter has an extensive bibliography of primary
sources, and there are many discussions of methodology specific to speech analysis
which are not found in other literature.

In order to make the book as practical and inviting as possible, Matlab code has
been written for it which implements nearly all procedures discussed, and par-
ticularly all that cannot be performed using Praat analysis software [1]. Chapters 4,
5, 6, 7 which deal with practical methodology each conclude with an appendix
detailing how Praat can be used and manipulated to perform the procedures when
possible, and also detailing how the accompanying Matlab code should be used.

References
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Chapter 2

Phonetics and Signal Processing

2.1 Essentials of Phonetics

As this book is only about speech spectrum analysis, it is not intended to give a
serious overview of phonetics or speech science. Most readers are probably
acquainted with this subject, and so the purpose of this section is merely to present
the essential concepts of phonetics as I interpret them. This will allow the defi-
nition of all the phonetic terminology to be employed throughout the book, rather
than trying to rely on other authors’ definitions found throughout the literature.
After all, even well-informed readers may not have read all the same books that
I have, or believed all the same controversial phonetic theories, so the goal of this
section is to put everyone on the same page, as it were.

When the need arises, speech examples throughout the book may be presented
in the standard transcription of the International Phonetic Alphabet, although
knowledge of this system will rarely be critical for understanding the text.
Readers who desire a reference on the IPA are invited to either visit the internet
address of the International Phonetic Association, or consult a recent phonetics
textbook (e.g. [26]).

2.1.1 Speech Production Fundamentals

2.1.1.1 Phonation

The process of human speech production relies foremost on breathing out. The
lungs expel air during speech at a carefully controlled rate (often called ‘‘speech
breathing’’ [47]). The air passes through the larynx, which contains the vocal folds
(often called ‘‘vocal cords,’’ with the term glottis technically referring to the space
between them), whose positioning can be finely tuned by a panoply of laryngeal
muscles [30]. When the vocal folds are adducted (closed) somewhat gently, then a
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certain amount of air pressure from the lungs below (subglottal pressure) can set
the folds into a self-sustaining oscillation. This condition is called phonation or
voicing; and it involves a delicate balance of tissue coupling forces and aerody-
namic forces whose overall description is still a current research topic; a relatively
recent state of our understanding has been called the ‘‘myomucoviscoelastic-
aerodynamic theory’’ of phonation [30]. The length of time taken by one complete
phonation cycle we may call the fundamental period of phonation; the reciprocal
of this period generally determines the perceived pitch of the voice, and is called
the fundamental frequency of phonation.

The laryngeal muscles are able to position the vocal folds in such a wide variety
of postures that a number of distinct phonation types are important in speech, and
are indeed more important in some languages than in others. The most common
type of phonation generally involves a vocal fold oscillation from a completely
closed position (called the closed phase of phonation) to a more open state (called
the open phase) and back again, and is usually termed modal phonation. It is also
possible to maintain phonation with a larger adductive force acting to close the
glottis. At its most extreme, such phonation is called creaky, and is marked by a
very low fundamental frequency and a very small amount of air flow, both of
which result from an extremely long closed phase within the phonation period.
Phonation with considerably higher frequency and airflow than in creaky voice,
but still with greater adductive force than modal phonation, has often been termed
stiff phonation [25].

At the other end of this ‘‘scale’’ of phonation types, one may point to many
instances of phonation which do not in fact exhibit any closed phase. Such pho-
nation is termed breathy, and is caused by there being only a very small adductive
force acting to close the vocal folds. In such phonation, the vocal folds vibrate
more in the fashion of the double reed in a woodwind instrument such as the oboe.
As one might imagine, such phonation is also characterized by a very large amount
of air flow, which often creates additional aeroacoustic noise. One may also point
to instances of phonation which involve considerably less adductive force than is
typical of modal phonation, but which do not yet allow the vocal folds to remain
open throughout the phonation period. Such phonation has often been termed slack
phonation [25], and is usually characterized by a long open phase within the
phonation period, together with a relatively lower fundamental frequency. In the
study of languages which involve an important opposition between stiff and slack
or breathy phonation, these states of the larynx have very often been called
registers:

It is also possible to position the vocal folds so that they are closed through
approximately 60% of their length anteriorly, while being abducted at the posterior
points where they attach to the arytenoid cartilages, thus producing a small tri-
angular opening. It is this posture which is naturally used in whispering, and so it is
called whisper when there is no phonation. It is also possible, however, for the
anterior portion of the vocal folds to undergo a more or less modal phonation in the
posture of whisper, and the superposition of this phonation upon the aeroacoustic
noise of the whisper is usually called whispery phonation [8, 27].
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2.1.1.2 Sources and Filters

In modern phonetics and speech science, speech production is usually conceived in
the ‘‘source-filter’’ paradigm that grew out of early twentieth century acoustic speech
studies. The paradigm is commonly credited to thework of Fant [11], but the ideawas
essentially introduced to the phonetics community by Joos [22], and had earlier
precursors [28]. A speech sound can generally be described as created from a sound
source whose output is modified by the vocal tract, viewed as a resonating chamber,
or resonant filter (see the section below on filters). Vowels and many other voiced
sounds chiefly rely on the vocal cords as a source, and the phonation output is then
filtered through the prominent vocal tract resonances called formants. Many con-
sonant sounds have their main source at some place of articulation in the vocal tract,
where the release or passage of air past that point generates an aeroacoustic noise that
may subsequently be filtered by the vocal tract. The filtering will be neglible in the
case of consonants whose primary sound source involves articulation with the lips,
since there is no need for the sound to pass through the vocal tract before it emerges.

The source-filter model of speech has been very fruitful, and facilitated a
greater understanding of how vocal tract resonance shapes speech sounds such as
vowels. On the other hand, speech in fact involves complex and dynamic aeroa-
coustic sound production in which the flowing air is very important. The source-
filter theory effectively ignores any specific effects from the airflow, and so it is not
a perfect model of speech production by any means. In later chapters, we will have
several opportunities to test the limits of the source-filter model, and to present
findings that can lead to a more accurate understanding of speech production.

2.1.2 Syllables and Speech Sounds

Although fluent speech clearly presents a continuous stream of sound, it has often
been said that the smallest ‘‘units’’ of speech are syllables: That is to say, syllables
are postulated as the smallest pieces of speech which are relevant for the human
prodution and perception mechanisms [47, 23]. To quote a simple truism from
Ladefoged, ‘‘nobody, not even a baby, can utter anything less than a syllable; he
certainly cannot make a [p] or a [b] by itself’’ [23]. I present this view here because
I currently subscribe to it, but it is by no means universally held. Fortunately, for
the purposes of this book, the absolute truth of this idea is not particularly
important, and we can safely adopt it as our methodological viewpoint.

Whatever one thinks about the syllable, it is clear that the notion has never been
clearly and completely defined—a fact that will not be rectified here. A syllable
can be related to speech production by noting that speech inevitably involves
moving the jaw, tongue, and lips from more open to more closed postures.
A syllable is then approximately a single speech gesture of this kind, a movement
of or within the mouth from a more closed to a more open posture (and often
includes a subsequent return to a more closed posture).

2.1 Essentials of Phonetics 7



Of course, even upon beginning to define a syllable, one must immediately note
that syllables can potentially be further subdivided. This is apparent from a variety
of simple facts, such as the English speaker’s ability to distinguish the syllables
constituting the words bee and pea; which differ only in their intial speech ges-
tures. A speech gesture, i.e. a component of a syllable, which can be contrasted or
swapped in this way with other speech gestures at particular linear positions in the
speech output is what is commonly called a segment: Other roughly equivalent
terms are ‘‘speech sound’’ and ‘‘phone.’’ I will at no point (except in this very
sentence) make use of the theoretically loaded term ‘‘phoneme,’’ since there is no
need to engage that debate in this book.

Linguists commonly consider the ‘‘structure’’ of syllables, viewing them as
containers for segments. The central position of a syllable, containing the main
segment that gives a speaker or listener the sensation that there is a syllable, is
known as the nucleus. Any segments preceding the nucleus are together called the
onset; while segments following the nucleus are called the coda. For example, the
English word pea includes an onset as well as the nucleus (which is obligatory for
a syllable), while the word please includes a (somewhat larger) onset as well as a
coda in its single syllable.

Unfortunately, a proper definition of a segment is as elusive as that of a syllable.
It is common to assert that a segment is some kind of subunit of syllables, but how
big is it, and which gestures of speech production are included in it? For example,
standard treatments of English phonetics would transcribe the one-syllable word
plea as either ½phli� or using three segments. The notation ½ph� indicates a single
segment whose final phase involves a sort of ‘‘h’’-sound called aspiration in the
context of a stop consonant. In this sense the segment is ‘‘complex.’’ The alter-
native includes a symbol for a ‘‘devoiced’’ ‘l’-sound. Is the voiceless portion part
of the ‘p’, or part of the ‘l’? For a further example, in the Southeast Asian language
Hmong, a very similar syllable would be transcribed by linguists as ½plhi� using just
two segments, where the first ‘‘laterally released and aspirated’’ ‘p’ is more
complex than any one of the English segments. There is, however, no way to
demonstrate a purely phonetic difference between a complex segment and a
sequence of simpler segments; the reason for prefering one analysis over another
in a given case is a methodological one only.

2.1.3 Vowels and Consonants

Phonetics has traditionally classified the segments of speech into two basic vari-
eties which are called vowels and consonants: Once again, there has never been a
straightforward definition of these terms. Early linguists in India also grappled
with the concepts of vowel, consonant, and syllable around 800 BC, and they
recognized that the three notions are hopelessly intertwined [1]. The definitions
used here will be similar to those of the ancient Sanskrit scholars, and in fact, the
development of modern phonetics in the West owes much to the transmission of
knowledge in translation from the Sanskrit sources.
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A vowel is defined as a ‘‘vowel-like segment’’ (what Pike [32] termed a vocoid)
that occupies the nucleus of a syllable. A segment is considered to be a vocoid
when its articulation permits the relatively free passage of air through the center of
the mouth. This definition is also rather loose, but in roughly familiar terms, most
segments that are at least as open as an English w or y-sound (the latter is tran-
scribed [j] in IPA) are vocoids, all others being non-vocoids. A consonant is then
defined simply as a non-vocoid, no matter what syllable position it occupies. This
imperfect dichotomy leaves room for a middle category, that of the semivowel,
which is defined as a vocoid located outside the nucleus of a syllable. Semivowels,
in spite of being vocoids, are usually regarded as a special sort of consonant (often
called a ‘‘glide’’) in the interests of preserving the consonant–vowel dichotomy.
The interplay of consonants, vowels, and syllables in the speech stream is given a
slightly different (more acoustic) view by Orlikoff and Kahane:

Consonants differ from vowels primarily by the amount of vocal tract constriction
employed in their production … Speech can be considered to be an overlay of consonants
on the vocal signal. The dispersion of consonants results in an amplitude modulation of the
acoustic energy that, for the most part, gives rise to our perception of syllables. [30] p. 158

As so many of the speech examples shown in this book are drawn from
American or Canadian English, it will be illustrative to give an inventory of the
segments found in most major ‘‘standard’’ English dialects of North America, to
provide a specific example while the classification of speech sounds is described.
Table 2.1 lists the vowels and shows a one-syllable word using each. The one
vowel not found in the list is the ‘‘schwa’’ transcribed [E], as this vowel is found
only in unstressed syllables of English (e.g. about; [Ebaut]) and so is not normally
present in isolated one-syllable words.

Vowels are traditionally classified using a number of phonetic features which
have more recently been determined to have a largely auditory basis. The feature
of height (see Table 2.2) is chiefly measured by the frequency of the lowest

Table 2.1 The vowels of
North American English

Example word IPA symbol

Beat [i]
Bit [I]
Bait [eI]
Bet [e]
Bat [æ]
Bought [OE] or [A]
Bot [a] or [A]
Boat [ou]
Book [u]
Boot [u]
But [V]
Bird [g]
Bite [aI]
Bout [au]
Boy [OI]
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characteristic resonance of the vowel, known as F1; the first formant frequency.
The feature of front-back or ‘‘backness’’ is chiefly measured from the frequency of
F2; the second formant. At this point, the discussion gets tricky, since F2 is also the
chief auditory determinant of the degree of lip rounding in a vowel, which is the
last of the three major vowel features. Many authors also suggest that the most
important backness metric is in fact the difference F2 � F1; but in any case the
second formant is crucial. The role of F3 is not fully understood in this connection,
but it is known to play at most a secondary role except in determining the rhoticity
or ‘‘r’’-ness of a vowel as in bird: Because the measurement of formants is so
important for characterizing vowels, we will find in later chapters that formant
measurement is, and indeed has always been, one of the chief reasons for
undertaking speech spectrum analysis.

The consonants of a language are traditionally classified into a number of
different varieties using articulatory criteria—these are the manners of articula-

tion. Table 2.3 shows the stops found in English, which are defined as those
consonants whose oral airflow is completely occluded for a brief period (and
which are not nasals). A number of these segments are restricted to occur in certain
environments, as is reflected in the choice of exemplifying words; for example, the
voiced stops [b, d, g] normally do not initiate a word (although they may).
The uniquely brief tap sound [|] is included with the other stops because of its
overall similarity to them.

The fricatives are defined as those consonants whose oral airflow passes
through a constriction which is sufficiently narrow to yield an aeroacoustic noise

Table 2.2 Vowels of English in the traditional chart

i u high

I u

eI E ou
e V OE

æ a A low

front back

Table 2.3 The stops of
American English

Example word IPA symbol

Purr ½ph�
Rubber [b]
Upper [p]
Too ½th�
Stew [t]
Patty/paddy [|]
Redo [d]
Cool ½kh�
School [k]
Lagoon [g]
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source. Table 2.4 gives the nine fricatives of English together with exemplifying
words. It is useful to note that most treatments of English phonetics also recognize
two special complex single segments [T, F], found at the beginning and end of the
respective words church, judge. These combinations of a stop and a fricative are
known as ‘‘affricates,’’ but in truth there is no special phonetic evidence to
determine that these sound sequences are indeed single segments. It should also be
pointed out that the example words in Table 2.4 illustrating the fricatives [S, Z]
show them in the word-medial position.

Having come this far in the description of consonants, it must be pointed out
that, in addition to the place and manner of articulation, consonants are usually
identified as either voiced or voiceless: A voiceless consonant is one during which
the vocal cords do not phonate, while a voiced consonant is one during which
phonation does take place. We often encounter pairs of consonants in a language
which are distinguished only by this means, such as [f, v].

The other manners of articulation have smaller inventories in English, and so do
not require tabulation. The nasals [m, n, n] are defined as consonants whose
airflow is completely diverted through the nasal sinus. The words meat, neat, king
are sufficient to exemplify. It is noteworthy that the third one of these cannot
initiate an English word. An approximant is defined as a consonant whose artic-
ulatory constriction is slightly more open than that of a fricative, to the point that
aeroacoustic noise is not produced. The only examples of such a segment in
English are provided by the voiced [1], as in less, or its voiceless counterpart
exemplified above in please: The remaining segments of English are the
semivowels [j, w, ¤], as in yet, wet, right.1

Table 2.4 The fricatives of
American English

Example word IPA symbol

Fat [f]
Vat [v]
Thin [h]
This [ð]
Sip [s]
Zip [z]
Pressure ½

R

�
Pleasure [Z]
hot [h]

1 It might be noted that most treatments (including the IPA itself) classify English [¤] of right as
an approximant rather than a semivowel, but I believe this is not consistent with the definitions
of the terms, and is mostly done because of tradition. I have to thank my colleague Chris
Golston for convincing me that [¤] is a semivowel.
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2.1.4 Uses of Vocal Pitch

As nearly all words in the languages of the world include a voiced vowel or
approximant (though there are noteworthy exceptions [20]), a word must be
spoken with a particular choice of vocal cord vibrational frequency. The funda-
mental frequency of phonation is usually named by the perceptual term pitch in
phonetics, since the scale of perceived pitch is very nearly equal to the physical
frequency scale in the range of normal speech (50–350 Hz). There are, however,
sometimes reasons for saying that the perceived voice pitch is not equal to the
fundamental frequency, usually because there is some kind of ‘‘abnormal’’
phonation process that makes the pitch ambiguous. In any case, it is clear that the
voice pitch is very important to the linguistic phonetic pronunciation of language,
acting to manifest many prosodic ‘‘above the segment’’ aspects of the speech.

The overall pitch melody of an utterance is called its intonation. Different
intonations are frequently used for the purpose of questions, emphasis, and many
forms of speaker attitude expression. On a different note, many languages require
words to have specified pitch melodies applied to each syllable; this phenomenon
is called tone; with such languages being called tone languages. Finally, pitch is of
considerable importance in other prosodic aspects of language besides tone;
English syllable stress provides but one example, where we normally find that
stressed syllables differ substantially in pitch from neighboring syllables.

2.2 Essentials of Digital Signal Processing

The term signal is used to mean any quantity y that varies over time. In general, a
signal could be multidimensional, but in a book about speech sound our concern is
entirely with the acoustic output of the voice. This is usually measured as the
varying voltage output from a microphone responding to the acoustic pressure
wave of the voice, a single scalar quantity which varies as a function of time.

Signals can be classified in a number of fundamental ways. A natural signal is
generally continuous-time (or simply continuous), meaning that yðtÞ has values for
every real number time value in the time interval through which the signal exists.
This is true of the microphone voltage signal, for example. It is possible to use an
analog device to perform analog signal processing on such a signal, but these
approacheswill only be considered in the historical review chapter. Normally the first
thing that happens in modern signal processing is the sampling of a continuous signal
at regular time intervals to yield a discrete or digital version of the signal that is also
discrete in the y-axis showing the signal (voltage) values. In this case, the signal is
represented as a sequence sðnÞ of the sample values for each whole number time
sample point n; which in Matlab software is a one-dimensional matrix or vector:

Another important dichotomy is the distinction between deterministic and
stochastic or random signals. A random signal is formally a single realization of a
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stochastic process that generates it; each time the signal is realized, it is somewhat
different owing to the randomness of the process. A deterministic signal can then
simply be defined as resulting from a process that is not at all random. As the
reader can already imagine, there is often sufficient randomness in human speech
production to allow the treatment of speech signals as random. On the other hand,
speech is never totally random. In practice, speech signal analysis treats speech as
random or deterministic, whichever is most convenient for a given approach. This
chapter will focus almost entirely on defining concepts for deterministic signals;
spectrum analysis procedures which treat speech as a random signal will be dealt
with in other chapters.

2.2.1 Periodic and Aperiodic Signals

A periodic signal is one that repeats a pattern at regular time intervals. The time
taken for one repetition or cycle of the pattern is called the period; and the
reciprocal of the period is called the fundamental frequency of the signal. With
time measured in seconds, the unit of frequency then becomes the ‘‘cycle per
second’’ or Hertz, written Hz. A signal that does not have a recurrent period is an
aperiodic signal. We will see that even this sort of signal can be represented as a
sum or integral of periodic functions, however.

Periodic signals are of great importance, not least because the most funda-
mental kind of signal is periodic, and is described by either of the fundamental
functions of trigonometry.

When a point Q moves uniformly in a circle, the perpendicular QP drawn from its position
at any instant to a fixed diameter AA0 of the circle, intersects the diameter in a point P;
whose position changes by a simple harmonic motion. ([36] p. 38)

A

A’

O

PQ
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Then, thanks to trigonometry, the displacement s of such a point P performing a
simple harmonic motion back and forth across a zero position is a trigonometric
function of time:

sðtÞ ¼ A cosð2pft þ /Þ; ð2:1Þ
in which A is the maximum displacement (amplitude), f is the fundamental
frequency, and / is a time offset called the phase which is included for generality
(so it can be specified where we start the motion at t ¼ 0). The angle value inside
parentheses is always expressed in radians rather than degrees; recall that a
complete circle subtends an angle of 2p radians. Those familiar with signal pro-
cessing will be well aware of its many conventions, including the convention of
using the angular frequency x (radians/s) to stand for 2pf :

Let us remind ourselves of Euler’s relations between sinusoidal and complex
exponential functions involving exponents of the number e, also written
exp½��:

eixt ¼ cosð2pftÞ þ i sinð2pftÞ ð2:2Þ

A cosð2pftÞ ¼ A

2
eixt þ A

2
e�ixt ð2:3Þ

A sinð2pftÞ ¼ A

2i
eixt � A

2i
e�ixt: ð2:4Þ

It will usually prove convenient to use the complex exponential functions
instead of sin and cos; since the mathematics of spectrum analysis is much
easier to deal with by involving complex numbers.

In the discrete-time regime, a sinusoid is expressed as a function of a set of
integer time indices marking points at which the signal samples occur; the variable
ranging over the time indices (or points) is normally symbolized as n:

sðnÞ ¼ A cosð2pfnþ /Þ; ð2:5Þ
where now f is a frequency in cycles per sample rather than Hz. In fact, the highest
frequency that can exist in the discrete-time regime is 1=2 cycle per sample. Let us
note that a periodic discrete-time signal with period N meets the condition that
sðnþ NÞ ¼ sðnÞ: The total energy in a discrete-time signal is defined as the sum of
the squared absolute signal values:

E ¼def
X

1

n¼�1
j sðnÞ j2 ð2:6Þ

Any signal whose total energy is finite is usually called an energy signal.
A periodic signal represented for the entire time domain ð�1;1Þ then has to
have infinite total energy.
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2.2.2 Sampling of Analog Signals

In order to perform digital signal processing on a real signal it has to be sampled
and quantized. This is often called analog-to-digital conversion. Sampling is the
process by which values of the signal (what used to be called ordinates)
are recorded at equally spaced time intervals separated by the sampling period.
The reciprocal of the sampling period is the sampling frequency or sampling rate.

If the signal values could be recorded with arbitrary precision when sampling
was performed, then one would have a discrete-time signal with continuous
ordinates. This type of signal is theoretically of importance, but in practice the
signal values are also assigned to a discrete set of values. This was true even when
sampling was (a long time ago) performed by hand from some kind of analog
record like an oscillogram. When a digital computer is used, the signal values are
assigned to a value within a discrete set by a process known as quantizing. Such a
fully discrete signal is also called a digital signal.

When a digital signal results from sampling an analog signal at a frequency fs
(e.g. 44.1 kHz in the case of standard digital audio), the highest frequency that can
be represented in the digital signal is the Nyquist frequency fmax ¼ fs=2; or
22.05 kHz in this case. This is because the highest frequency for a digital signal
must be 1=2 cycle per sample. For speech, a very useful sampling rate available on
most soundcards is 22,050 Hz, since this preserves the sound frequencies up to
11,025 Hz, and very little important energy is present in speech at higher
frequencies than this.

As a result of the above ‘‘Nyquist theorem’’ governing sampling rates and the
frequencies of digital signals, it is critical to somehow filter or cut off the fre-
quency range of an analog signal when it is sampled, so that it is bandlimited

below fmax: In modern practice, the hardware A-to-D converters found in computer
sound cards and digital recorders do all the hard work of bandlimiting, sampling
and quantizing, so all the user generally needs to worry about is the sampling rate.
In modern consumer-grade equipment, the quantizing is not user-adjustable, but it
is fixed to such a high fidelity that almost no distortion will be introduced that way.
As a result, no one besides a hardware engineer needs to be concerned with the
particulars of amplitude quantizing; the typical computer sound card digitizes a
sound using 65,536 ð216Þ discrete amplitude steps, and professional hardware often
provides more than this.

2.2.3 Autocorrelation

A useful quantity that is computable from a signal is its autocorrelation, which is,
roughly speaking, a function obtained by multiplying the signal sðnÞ by a time-
shifted copy of itself sðn� ‘Þ; the time shift ‘ is standardly called the lag; and the
autocorrelation is really a function of the lag. The subject of autocorrelation brings
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us to a terminology problem (highlighted in [3]), because it is one of the subjects
where the signal processing literature intersects with literature on statistics of
sampled signals (usually called time series), and these two disciplines have distinct
terminological fashions and traditions. In the time series literature, what signal
engineers call the autocorrelation is instead called the autocovariance, and then the
autocorrelation is usually defined as the autocovariance normalized by (i.e. divided
by) the particular autocovariance value for zero lag—which in turn is just the
statistical variance of the signal.

In this book I will feel free to follow signal processing authors in using the term
‘‘autocorrelation’’ to refer to what is strictly a form of the autocovariance, since as
a practical matter it is not too important which of the various defining equations is
used (see box for details). This is because we do not usually care about the actual
value of the autocorrelation function, we chiefly care about the lag times where it
has large peaks. Any of these quantities allows us to probe the same properties of a
signal; in particular these quantities are highly sensitive to periodicity which may
be present in an otherwise adulterated or noisy signal. A lag time showing a large
peak in the autocorrelation function is indicative of a period in the signal equal to
that lag. Intuitively, the autocorrelation takes a large value whenever the time-
shifted copy of the signal matches the original well—the signal is highly correlated
with itself at those lags.

In literature on time series statistics such as [33], there are two common
estimates (from a finite sample) of the theoretical autocovariance of a ran-
dom process, expressed as a function of lag time ‘: The first is:

Rssð‘Þ ¼def
1

N � ‘

X

N�1

n¼‘

ðsðnÞ � �sÞðsðn� ‘Þ � �sÞ ð2:7Þ

in which �s is the sample mean of the signal, used as an estimate of the overall
process mean. The above ‘‘sample autocovariance’’ is asymptotically
unbiased.

An alternative definition is given by:

Rssð‘Þ ¼def
1
N

X

N�1

n¼‘

ðsðnÞ � �sÞðsðn� ‘Þ � �sÞ: ð2:8Þ

This sample autocovariance is often referred to as the ‘‘periodogram-based
estimate’’ (the meaning of this will be made clear in a later section). It is
biased, but has smaller mean square error than the first alternative. It is this
quantity that is computed by Matlab time series tools, as shown in Fig. 2.1.
A related sample autocorrelation estimate can be obtained from either of the
above, by simply dividing by the signal variance, which is the same thing as
the autocovariance at ‘ ¼ 0:
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In the signal processing literature on the other hand, we must be aware of a
number of differences in the definitions [39]. First of all, what is above called
the autocovariance is generally called the autocorrelation. Moreover, the
signal mean is usually not subtracted, and further there is usually no factor of
N or N � ‘ put into the denominator. Finally, the resulting quantity is
applied willy–nilly to random signals or deterministic ones. The ‘‘autocor-
relation’’ of an energy signal sðnÞ is nowadays standardly defined in the
signal processing literature as [34]:

rssð‘Þ ¼def
X

1

n¼�1
sðnÞsðn� ‘Þ ð2:9Þ

For a finite-duration signal consisting of N samples, the definition becomes:

rssð‘Þ ¼def
X

N�jkj�1

n¼j

sðnÞsðn� ‘Þ; ð2:10Þ

in which for non-negative lags one sets j ¼ ‘; k ¼ 0; and for negative lags
one sets j ¼ 0; k ¼ ‘: In turns out that this function is symmetric about zero,
so it is sufficient to compute it only for non-negative lags.

Example 2.1 Figure 2.1 shows a 45 ms snippet of the English vowel in the word
‘‘how’d.’’ The obvious periodicity results from the vocal cord vibration. Also shown
in the figure is a plot of the autocorrelation, also known as the correlogram; produced
in Matlab. This example shows how the correlogram can be used to find the main
period in a periodic signal—it is equal to the first positive lag where there is a high
autocorrelation value. The highest positive peak occurs at a lag of 417 samples, which
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Fig. 2.1 Left panel a brief portion of a natural vowel, the first part of the English diphthong [au]
in ‘‘how’d.’’ Right panel a plot of the autocorrelation of the signal at left, produced by Matlab
time series tools. The lag time is shown in units of samples. Note how the function is symmetric
about zero
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equals 8.14 ms for the signal’s sampling rate (51.2 kHz). This is the fundamental
period of the vocal cord vibration, on average, during the 45 ms displayed.

2.2.4 Fourier’s Series and Transform Spectra

Drawing on the work of predecessors Leonhard Euler and Daniel Bernoulli the
elder, Jean–Baptiste Joseph Fourier devised the first proof [12] that a periodic
function can be represented as a sum of elementary periodic functions (i.e. sinu-
soidal or their equivalent exponential functions). In this section I will present the
fundamentals of Fourier’s results, which are at the heart of spectrum analysis.
The treatment is drawn chiefly from [33] and [34].

2.2.4.1 Fourier’s Series Spectrum

Consider a periodic signal sðtÞ in continuous time, having period T ; over the entire
time domain �1\t\1: Fourier’s series representation of the signal is then
given by the following formula:

sðtÞ ¼def
X

1

k¼�1
ck exp½2pikf0t� ð2:11Þ

in which f0 ¼ 1=T is the fundamental frequency of the periodic signal sðtÞ: The
content of this historic equation is that a periodic function (one which also meets
certain broad conditions) can be expressed as a sum of exponential (i.e. sine and
cosine) ‘‘component’’ functions, and each of these has a frequency which is an
integer multiple of the fundamental frequency. Components with such frequencies
are called ‘‘harmonics’’ of the function.

This formula is only valid for representing a signal with infinite support in the
time domain, and thus Fourier’s series representation is strictly a theoretical object
only. The values fckg for all integers k; called the Fourier series coefficients,
represent both the amplitudes and phases of the harmonics; as such they are in
general complex numbers, and are specified by the following integral formula:

ck ¼ f0

Z

T

sðtÞ exp½�2pikf0t�dt ð2:12Þ

where the interval of integration covers the signal over one period T exactly. One
useful fact is that when the signal is real, then the pair of coefficients ck and c�k are
complex conjugates2 for all k; as a result, for real signals it is sufficient to compute

2 Recall that for complex number aþ bi; its conjugate is a� bi: For complex number Aeih

expressed in polar form, its conjugate is Ae�ih:
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the Fourier series coefficients for non-negative integers k; meaning we do not have
to bother with the negative frequencies for physical signals.

The total energy in an infinite-time periodic signal sðtÞ is also infinite; the
energy over a span of one period ð�T=2; T=2Þ; however, is given by the integral
expression:

Z

T=2

�T=2

s2ðtÞdt;

and a consequence of ‘‘Parseval’s relation’’ (another historic result from Fourier’s
era) is that

Z

T=2

�T=2

s2ðtÞdt ¼ T
X

1

k¼0

j ck j2 : ð2:13Þ

The above is an extremely important equation at the foundation of spectrum
analysis; it shows that all the information about energy in a signal is present in the
(squared) magnitudes of the Fourier series coefficients.

The energy in a certain number of periods is usually thought of in terms of energy
per unit time, or power: From the above Eq. 2.13, dividing by the time span T yields

the total power in the signal as
P1

k¼0 jckj
2: Then each quantity jckj2 (which is now

real) measures the contribution to the total power from the particular term in Fourier’s

series for sðtÞ with frequency k=T Hz. If we plot the y-axis values jckj2 against the x-
axis values k=T; we obtain a discrete power spectrum describing how the power is
distributed over the harmonic components of sðtÞ: This kind of spectrum is some-
times called a power density spectrum, but this terminology is inaccurate because the
spectrum is discrete, and so is formally not a density function.

In graphing the spectra of acoustic signals, it is typical to show the energy/power
on a logarithmic axis that is defined using the decibel; a relative unit of power that is

formally dimensionless. Representing the squared signal amplitude by jckj2 for a
single Fourier series component, which would have units of squared normalized
voltage in the case of a signal from a microphone, the decibel value of this amplitude
is calculated relative to a reference level p2ref using the following definition:

AdB ¼def 10 log10
jckj2
p2ref

: ð2:14Þ

When graphing a spectrum in practice, the reference level is somewhat arbitrary,
and quite irrelevant when one considers that negative dB values can just as easily
be shown. This means that the reference level in practice serves to determine the
position of the 0 dB point on the magnitude axis, and does not at all affect the
overall shape of the spectrum graph, or the relative dB amplitudes of the signal
components.
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Once again, let me emphasize that an infinite-time signal and its discrete
spectrum are purely theoretical objects. No physical signal has a precisely discrete
Fourier series spectrum. It is therefore not possible to illustrate the foregoing
considerations with any real physical example or numerical computation. Let us
instead concoct a simple theoretical example, in the form of an infinite-time real
signal composed of two sinusoids, one at the fundamental frequency f ¼ 250 Hz
and another of twice the amplitude at the next harmonic frequency 2f ¼ 500 Hz.
A snippet of this function is shown in Fig. 2.2.

Euler’s relation tells us that such a signal comprises four exponential
components in two complex-conjugate pairs:

sinð2pftÞ þ 2 sinð4pftÞ ¼ 1
2i
e2pift þ 1

2i
e�2pift þ ie4pift þ ie�4pift ð2:15Þ

c1 ¼ c�1 ¼ 1=2i ð2:16Þ

jc1j2 ¼ jc�1j2 ¼ 1=4 ð2:17Þ

c2 ¼ c�2 ¼ i ð2:18Þ

jc2j2 ¼ jc�2j2 ¼ 1 ð2:19Þ

The end result of the math in the box is to find that the fundamental frequency
component, which has half the amplitude of the double frequency component in
the signal, ends up contributing 1=4 as much to the total power. On a decibel scale,
we find that a component with half the amplitude is 6 dB less (v. Fig. 2.3). One
also finds that using the complex exponential form of the Fourier series introduces
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a component with a negative frequency for every positive frequency component.
Normally the negative components are ignored in applications, since they have no
physical interpretation and are basically like mathematical ‘‘echoes’’ which result
from working in the complex number plane.

2.2.4.2 Fourier’s Series in Discrete Time

For a periodic signal in discrete-time, Fourier’s series representation can have at
most N terms, or frequency components, for a signal of period N (v. [34]). The first
equation below represents a discrete-time signal as a Fourier series, while the
second gives the formula for the Fourier coefficients in the series.

sðnÞ ¼
X

N�1

k¼0

ck exp
2pikn
N

� �

ð2:20Þ

ck ¼
1
N

X

N�1

n¼0

sðnÞ exp �2pikn
N

� �

ð2:21Þ

Owing to the complex conjugate pair c�k ¼ c�k (asterisk indicates complex
conjugation) for real signal sðnÞ; a further identity follows, namely jckj ¼ jcN�kj:
The important result of this is that now the coefficients for 0� k�N=2 (for even
period N) form a complete spectrum, since the ‘‘upper half’’ of the coefficient
sequence simply repeats the same information. For odd period N; one uses the
coefficients for 0� k� N�1

2 : So, a Fourier spectrum of a discrete-time signal is
invariably redundant, and only the lower half of the coefficients are needed to
represent the complete information.
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Fig. 2.3 Discrete power spectrum of the (complex) Fourier coefficients computed from the
function shown in the previous figure. Left panel shows the raw power, right panel shows the
components using a decibel scale, where the highest amplitude components have the reference
level
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2.2.4.3 Fourier Transform and Spectrum

The Fourier integral representation of a signal is, in essence, the mathematical form
taken by the Fourier series representationwhen the signal is aperiodic. Fourier showed
this when he realized that an aperiodic function could be viewed as a periodic function
taken to the limit of an infinite period (see box for a derivation).

Recalling Eqs. (2.11) and (2.12), one can represent a signal as its Fourier
series in the following way:

sðtÞ ¼ 1
T

X

1

k¼�1

Z

T

�T

sðxÞ exp �2pikx
T

� �

dx

0

@

1

A exp
2pikt
T

� �

ð2:22Þ

Define ð2pkÞ=T as an angular harmonic frequency variable x: In the limit as
T ! 1; ð2pÞ=T can be taken as an infinitesimal dx: This is about the point
where mathematicians squirm because of the lack of rigor in making such a
manoeuver, but this derivation is found in essentially this form in many
textbooks, and pretty well represents Fourier’s original derivation. It is
possible to make it a more solid mathematical derivation. In any event, this
‘‘step’’ results in the following equation:

sðtÞ ¼ 1
2p

Z

1

�1

Z

1

�1

sðxÞeixxdx

0

@

1

Aeixtdx ð2:23Þ

The above was derived by Fourier in 1811, and is now called the Fourier
Integral Theorem. The inner integral defines what is now called the Fourier
transform(ation) of the signal function, discussed below.

For a continuous function of time (i.e. a signal) sðtÞ; the Fourier transform
(rewritten in the first equation below) defined by the Fourier Integral Theorem
above is a function of frequency obtained from an infinite integral over the
time domain, and is often taken to provide a mathematical definition of the pre-
mathematical physical concept of ‘‘frequency.’’

Sðf Þ ¼def
Z

1

�1

sðtÞe�2piftdt ð2:24Þ

sðtÞ ¼
Z

1

�1

Sðf Þe2piftdf ð2:25Þ

The second equation shows that the signal can in turn be expressed as a similar
integral (over the frequency domain) of its own Fourier transform, which is then
called the inverse Fourier transform. A function and its Fourier transform are
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commonly called a Fourier transform pair, since they are in essence transforms of
each other. The Fourier transform is often expressed as a function of angular
frequency x ¼ 2pf ; but this induces slight changes in the form of the transform
definitions (see box for details).

The Fourier transform and its inverse are commonly expressed using the

angular frequency x ¼def 2pf ; for which there are two or three different
conventions [44]. Here is one pair of equations of this sort:

SðxÞ ¼def
Z

1

�1

sðtÞe�ixtdt ð2:26Þ

sðtÞ ¼ 1
2p

Z

1

�1

SðxÞeixtdx ð2:27Þ

In any such definition using x in place of f for a frequency variable, one of
the integrals (it makes no difference which) must be preceded by the factor
1=2p because of the substitution of angular frequency. A third way is to
restore the symmetry of the transform pair by placing a factor of 1=

ffiffiffiffiffiffi

2p
p

in
front of both integrals.

An aperiodic signal has a well-defined Fourier transform only if it vanishes at
infinity (unlike a periodic signal which is assumed to have infinite support), and
therefore has a finite total energy. Just as with a periodic signal, the total energy in
the continuous-time real signal sðtÞ is

R1
�1 s2ðtÞdt; but now the analog of

Parseval’s relation leads to the following equation involving the integral transform
in place of the Fourier series coefficients (cf. Eq. 2.13):

Z

1

�1

s2ðtÞdt ¼
Z

1

�1

jSðf Þj2df : ð2:28Þ

Although often credited to Parseval or Plancherel for the originating concepts, the
above equation was derived in this particular form by Wiener [38]. The content of
the equation is to say that, for aperiodic signals, the analog to the discrete spectrum
of Fourier series coefficient magnitudes is now a continuous-frequency function,
commonly called an energy density spectrum, which is determined by the squared
magnitude of the Fourier transform. It is this equivalence which leads to the
commonly expressed notion that the Fourier transform of a signal gives us its
spectrum. As before, it is common to graph the spectrum as a function of frequency
using a decibel-scaled axis for the magnitude.

The energy density spectrum is often called the periodogram in the context of
random signals and other time series data. It can also be connected directly to the
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autocovariance, since it is in fact the Fourier transform of the latter (e.g. [33]); the
intrepid reader can try to verfy this by writing out the discrete Fourier transform (see
below) of Eq. 2.8 (the periodogram-based estimate of the sample autocovariance).

Once again, let me emphasize that the preceding treatment relates a continuous-
time signal sðtÞ to its continuous-frequency Fourier transform Sðf Þ; and so none of
the above facts can be computed or illustrated numerically with a computer.
In order to progress to the kind of Fourier spectrum which can be, and commonly
is, computed, we must move from functions which are continuous in time and
frequency to functions which are discrete in time and frequency.

2.2.4.4 Discrete-Time Fourier Transform

For a discrete-time function sðnÞ, the discrete-time Fourier transform is now
defined as an infinite sum over the domain of time integer indices, instead of an
integral over continuous time:

SðxÞ ¼def
X

1

n¼�1
sðnÞe�ixn ð2:29Þ

where now x is an angular frequency value in radians/sample. If sðnÞ is sampled
from a continuous signal sðtÞ; the discrete-time Fourier transform does approxi-
mate the Fourier transform of sðtÞ:

The sampling causes the discrete-time Fourier transform to be periodic in the
frequency domain, with period equal to the sampling frequency, which is 2p
radians/sample [42]. The necessity of this periodicity in angular frequency derives
from the periodicity of the exponential function, which is easily expressed [33]:

exp½�iðxþ 2pkÞn� ¼ exp½ixn� for all integers k: ð2:30Þ

The inverse discrete-time Fourier transform is now the following:

sðnÞ ¼ 1
2p

Z

p

�p

SðxÞeixndx ð2:31Þ

This is the same as in the continuous case, except that now the perodicity of the
transform function in angular frequency allows the interval of integration to
be limited to ð�p; pÞ: Now that we have taken care of the time sampling, we can
take the final step to define a Fourier transform which is discrete in the frequency
domain as well.

2.2.4.5 Discrete Fourier Transform

In applications, one cannot perform a discrete-time Fourier transform literally
because it would require calculating over the entire time domain. In practice, one
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is limited to a sampled sequence having a finite length L; which is often called the
window length. Then Eq. 2.29 for the discrete-time Fourier transform becomes:

SðxÞ ¼
X

L�1

n¼0

sðnÞe�ixn ð2:32Þ

The above transform function is still impossible in digital computer applications
because it is specified over a continuous range of frequencies. To represent the
function digitally, we make it discrete-frequency by evaluating SðxÞ at a finite set
fxkg of N equally spaced frequencies across one interval of length 2p:

fxkg ¼def 2pk
N

; k ¼ 0; . . .; N � 1: ð2:33Þ

This makes the transform into the discrete Fourier transform (DFT), also called
the finite Fourier transform [5], which is discrete in both time and frequency [42]:

SðxkÞ ¼def
X

L�1

n¼0

sðnÞ exp �2pikn
N

� �

: ð2:34Þ

In applications it is typical to make certain that the number of discrete frequency
points N in the transform (also called the frame size) is greater than the number of
signal samples L in the window, and when that is the case the transform takes the
following standard form:

SðxkÞ ¼def
X

N�1

n¼0

sðnÞ exp �2pikn
N

� �

: ð2:35Þ

This form of the DFT no longer refers to the window length, but only the frame
size, and so in order to ensure that the signal is not used beyond the intended
window length, the signal value sðnÞ is set equal to zero for all sample points
n� L: This common procedure is called ‘‘zero-padding’’ beyond the analysis
window to yield an analysis frame which is longer than the window but which does
not include any extra information. By doing this, the frequency sampling resolu-
tion need not be small when we analyze a short window of the signal.
The downside of this standard definition is that the frequency sampling resolution
has to be large when we analyze a long window, which can be inconvenient
because of computation time.

The DFT evaluates enough frequency components to allow its inverse transform
to reconstruct the segment of the signal that was analyzed. It is sometimes interpreted
as reconstructing one period of a periodic signal, assuming that exactly one period
was analyzed in the first place. The following gives the inverse DFT formula:

sðnÞ ¼ 1
N

X

N�1

k¼0

SðxkÞ exp
2pikn
N

� �

: ð2:36Þ
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The magnitude spectrum induced by the N-point DFT is just given by jSðxkÞj2
analogous to the continuous Fourier transform, and is commonly graphed as a
function of frequency with a decibel-scaled magnitude axis. Now, however, the
spectrum is once again in a discrete form, which is usually taken to approximate
the ‘‘ideal’’ continuous form. Each discrete frequency xk or fk is referred to as a
frequency bin. The reader should at this point note the similarity between the
above Eq. 2.35 for the discrete Fourier transform and the earlier Eq. 2.21 for the
discrete Fourier series coefficients. Modulo a multiplying factor, they are in fact
the same. This shows that, for a digital approximation to a signal (resulting from
time-sampling), the digital approximation to the Fourier transform (the DFT,
which is also discrete in frequency) is essentially the digital version of the Fourier
series [5]. Fourier’s series and transform are thus unified in the digital realm.

Owing to the periodicity of the transform that was induced by the passage to
discrete-time, the highest frequency that can be found in the DFT is equal to the
signal’s sampling frequency fs: In addition, for a real signal the DFT exhibits a
symmetry, so that SðfkÞ ¼ S�ðfN�kÞmod N [41]. This means that the DFT spectrum
is half-redundant, so that the upper half of the frequency bins have the same
magnitude spectrum (in mirror image) as the lower half. We already obtained this
result earlier, from deriving the Fourier series of a discrete-time (sampled) signal.
In fact, then, the highest frequency that can be non-redundantly represented in a
DFT spectrum is equal to the signal’s Nyquist frequency fs=2: It is a consequence
of this redundancy that a 256-point DFT, for example, would yield a spectrum plot
showing magnitudes for just the first 128 frequency bins. The other 128 simply
repeat the information in reverse order, and so are not standardly shown.

2.2.4.6 Fast Fourier Transform

The above formula for computing the discrete Fourier transform has been known, in
essence, since the 1870s [21], and it was also recognized at an early point that it is
not a tractable formula—i.e. its computational complexity is too high. In particular,
for a signal frame of N samples, the simple DFT formula requires N2 multiplica-
tions of complex numbers and NðN � 1Þ complex addition operations [43].

Improving on the complexity of the basic DFT formula, a class of algorithms
exists known as Fast Fourier transform algorithms. After extensive research and
reinvention of these algorithms over a period of 100 years, it is now firmly
established that the upper bound on the computational complexity of these
methods is always on the order of N log2 N when N is a power of 2. There is,
interestingly, no extant proof that this upper bound is the lowest achievable upper
bound on the complexity of an exact DFT computation.

Most of the algorithms are fastest when N is a power of 2, and the algorithms
known as ‘‘radix 2’’ (e.g. [9]) reduce the number of complex multiplications to the
order of ðN=2Þ log2 N; although these methods require that N be a power of 2.
Because of the popularity of the radix 2 FFT algorithms, it has often been
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erroneously written (e.g. [24, 17]) that a fast Fourier transform can only be per-
formed on a data frame consisting of some power of 2 samples, but this is not at all
true of the other varieties of FFT algorithms [10].

2.2.5 Practical Computing of Fourier Spectra

2.2.5.1 DFT and Discrete Fourier Series

The earliest computations of the discrete Fourier transform of speech signals
(e.g. [21, 35]) would invariably analyze a periodic signal one period at a time.
The computation over a signal window of exactly one period makes the DFT
analysis provide a discrete Fourier series of a (fictitious) signal that repeats the one
period over all time. Moreover, these early analysts saw no reason to alter the
recorded sound signal for analysis. They just simply ‘‘clipped out’’ a signal win-
dow equal to one period from an analog record, manually measured the signal
values at equally spaced sample points, and computed the discrete Fourier series.

In later years, it was realized that the discrete Fourier series was constrained to
find only those frequencies which are integer multiples of the fundamental, being
the reciprocal of the period analyzed. The DFT can also be understood from a
different perspective, since it also provides a digital approximation to the Fourier
transform of a possibly aperiodic function. The DFT itself construes every function
provided to it as periodic, having a period equal to the frame length. The only
frequencies that can be correctly found by the DFT to have a significant amplitude
are the reciprocal of the analysis frame length (which equals the frequency of the
first DFT bin), and integer multiples of that—the DFT just is a discrete Fourier
series, after all. This entails that a DFT energy spectrum, plotted as a graph, will
look smoother for longer analysis frames—the discrete Fourier series frequencies
will better ‘‘sample’’ the continuous frequency dimension.

Example 2.2 This example is computed using Praat speech analysis software.
Consider the following signal that was examined theoretically before:

sðtÞ ¼ 1
4
sinð250� 2ptÞ þ 1

2
sinð500� 2ptÞ; ð2:37Þ

being a superposition of two sine functions of frequencies 250 and 500 Hz, in
which the higher frequency is double the amplitude of the lower. These two are
harmonics, so this signal would have a very simple exact Fourier series if it were
extended for all time—only two frequencies would have amplitudes in the spec-
trum. The squared magnitude of the DFT (its lower-frequency half, expressed in
decibels) is plotted against frequency, providing a graph of the power spectrum—it
is technically power and not energy, since the DFT inherently presumes the
function extends for all time although we provide only one period, and so it is
assumed to have infinite total energy.
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Figure 2.4 shows two graphs; the one made up of straight line segments is the
result of computing the DFT the ‘‘classical’’ way, using exactly one period of the
signal as the analysis frame. The smoother line results from computing the DFT
from an analysis frame encompassing eight periods. The first graph demonstrates
what the Fourier series demands; the lowest frequency is the fundamental of the
signal, and the next frequency is its harmonic, and above that there is one more
frequency with negligible amplitude resulting from sampling error. The second
graph is the result of computing a Fourier series using eight real signal periods as a
new fundamental period. From this, the ‘‘fundamental’’ frequency will be
31.25 Hz (one eighth of the original), and all integer multiples of that will possibly
have non-zero amplitude. It can be seen in the graph that, because there are
nonetheless only two sinusoids, only those two ‘‘harmonics’’ of 31.25 Hz actually
have large amplitudes; the small magnitudes in some other frequencies are largely
a result of sampling error.

What all this means is that, whenever one computes a DFT, one is in fact
computing a Fourier series of a fictitious infinite-time signal that is infinitely
repeating the content of the analysis frame. The analysis frame length will then
automatically determine the fundamental frequency of the Fourier series
(regardless of whether this is the fundamental of the signal), and this will be the
frequency of the first bin in the DFT. Simply ‘‘cutting out’’ the analysis frame as
I have done so far is generally not going to give pleasing results, however. It works
well here because the analysis frames were equal to signal periods to within
sampling error. But what if we used an analysis frame of some other length, which
might cut off the signal after, say, 2.5 periods, or 8.893 periods?

2.2.5.2 Window Functions

Example 2.3 Figure 2.5 shows the power spectrum that results from computing
the DFT of the same signal as before, using a 34 ms analysis frame—2 ms longer
than eight periods. The two component sinusoids are still the prominent peaks in
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Fig. 2.4 The straight line
segments connect the
frequencies of just three
components discovered from
a DFT of one period of the
sines signal. The smoother
curve results from a DFT of
eight periods of the same
signal

28 2 Phonetics and Signal Processing



the spectrum, but now they are obscured by an unwanted and uninformative
broadening of the peaks at their bases. This phenomenon is often called ‘‘spectral
leakage,’’ because it appears that the power at the true component frequencies has
‘‘leaked out’’ into adjacent frequencies.

The cause of spectral leakage is not sampling error, it is the abrupt truncation
and juxtaposition of signal frames in the fictitious periodic signal whose Fourier
series we are computing, which introduces jump discontinuities at the boundaries
between frames that are akin to impulses which have broad frequency content
(v. Fig. 2.6). Leakage will come about whenever the frame length (34 ms, in this
case) is not commensurate with the natural period of the signal. Another way to see
the problem in the above example is to notice that the actual frequencies of the two
signal components now lie between center frequencies of DFT bins, whereas in the
preceding example the harmonic frequencies equalled (modulo sampling error)
two of the bin frequencies. These two facts (one is a time-domain fact, the other a
frequency-domain fact) go hand in hand, inducing leakage effects.

The way to mitigate leakage is to apply a window function to the analysis
window on the signal which is tapered at the ends, in a more-or-less Gaussian bell
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spectrum computed by a DFT
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Fig. 2.6 The left panel shows the 34 ms frame clipped out of our manufactured signal consisting
of two sinusoids (this contains 1,506 samples). The right panel is a close-up of the region where
one instance of the frame is appended to another, as is implicitly done by the DFT computation.
Note the obvious jump discontinuity, which will induce spectral leakage
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shape. Normally, a window function the same length as the analysis window is
created using a formula, and then the signal window and window function are
multiplied to yield a tapered or ‘‘windowed’’ signal window [46] (v. Fig. 2.7).
Then, the fictitious signal which endlessly repeats the ‘‘windowed’’ window has
much smaller jump discontinuities at the boundaries. There are many different
window functions and families of functions which have been proposed over the
years; we can look at just a few examples.

Two popular and effective windows use versions of a formula which derives the
window from a cosine function. The Hann and Hamming windows were so named
after their respective developers, although for reasons unknown to me, the Hann
window came to be called by the made-up moniker ‘‘Hanning’’ as some sort of
jokey allusion to ‘‘Hamming,’’ and now the funny made-up name is more widely
known. The Hann and Hamming windows are demonstrated in Fig. 2.7; their
formulas are given in the math box below.

Another important class of windows is derived directly from the Gaussian
function (see box for details). Figure 2.8 demonstrates. The reason there are so
many different window functions proposed in the literature is chiefly due to the
trade-off between a window’s effect on leakage reduction and its deterioration of
the component precision in the power spectrum, but there are a number of other
minor factors which should be included in an assessment of a window’s effec-
tiveness in a DFT spectrum application. The reader is referred to Harris [18] for
the most complete treatment of window functions I am aware of. By Harris’
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Fig. 2.7 The left panel shows a 1,506-point Hann window function, and also the result of
multiplying this window by the 1,506-point frame of the sines signal. The right panel shows a
similar figure using a Hamming window
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criteria, the Hann and Hamming windows are quite effective, but the Gaussian
windows (with e.g. a ¼ 2:5) are often considerably better at leakage reduction
(also known as ‘‘sidelobe rejection’’) while maintaining comparable component
precision. Figure 2.9 demonstrates the differences between the Hann, Hamming,
and Gaussian window effects on a DFT spectrum, where it can be seen that the
Hann and Hamming spectra generally have broader peaks (which is not what is
wanted in this instance).

As yet another alternative, Kaiser derived a very effective window family from
the zero-order modified Bessel function I0 well-known in physics [2, 40];
frequently called the Kaiser–Bessel window in homage to its source, it has been
judged the best-performing window function overall [18]. Figure 2.10
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Fig. 2.9 The left panel compares the DFT power spectra of the 1,506-point sines signal frame as
computed by Praat software, windowed using the Hann function (dotted) and a Gaussian. The
right panel shows a similar comparison between the Hamming (dotted) and Gaussian windowed
power spectra
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Fig. 2.10 Compares the power spectra of the 1506-point sines signal frame resulting from
applying each of two Kaiser windows currently available in Praat. Observe how one of these
(with a high value of the parameter b in the formula) fails to precisely locate the signal
components. The other more moderate choice appears to be the best-performing window we have
tried on this example function
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demonstrates the performance of a couple of different Kaiser window functions.
Detailed formulae are given in the math box below.

The Hann or ‘‘Hanning’’ window is commonly defined by the first equation
below (as a function of discrete sample sequence fng, containing N sam-
ples), while the Hamming window is given by the second equation [18].

wðnÞ ¼def 0:5� 0:5 cos
2pn
N þ 1

� �

ð2:38Þ

wðnÞ ¼def 0:54� 0:46 cos
2pn
N þ 1

� �

ð2:39Þ

The family of Gaussian windows is defined using the following equation
which includes a parameter a; the reciprocal standard deviation of the nor-
mal density function defined by the Gaussian.

wðnÞ ¼def exp �1
2

a
n

N=2

� �2
" #

ð2:40Þ

The following equation defines the Kaiser family of window functions,
parameterized by b:

wðnÞ ¼def
I0 pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2n
N
� 1

� �2
q

� �

I0ðpbÞ
; ð2:41Þ

in which I0 denotes the standard zero-order modified Bessel function [2].

Because the tapering action of any window function effectively decreases the
DFT spectrum resolution (in relation to the original unwindowed signal), it is
better to use a rectangular window (in other words, don’t use a window function,
just clip the signal) in the event the analysis frame length can be made
commensurate with the natural fundamental period of the signal. This fact is
demonstrated in Fig. 2.11.

2.2.5.3 Zero-Padding the Analysis Frame

In our earlier description of the discrete Fourier transform, the procedure of
zero-padding the analysis frame was briefly mentioned, but it will be useful to
expand on those remarks now. When a discrete-time signal is submitted to a DFT,
the number of samples in the DFT frame determines two important things: the
frequency sampling resolution of the resulting spectrum, and (in most
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implementations) the speed of the FFT algorithm. There can be some trade-offs
involved, since oftentimes a very short analysis window on the signal is desired, but
clearly the best sampling resolution in frequency will be achieved by a long DFT
frame.

For example, suppose I have a speech signal which is sampled at only 10 kHz,
which old-timers will remember as once being quite commonly done to save on
storage space. Suppose next that, for reasons which will become clear in the
upcoming chapters, I wish to compute a spectrum for an 8 ms slice of the signal.
These 8 ms will be represented by just 80 sample points. Suppose I simply run an
FFT using this 80-point frame. Because the DFT is redundant for its upper half,
only 40 frequency bins will be available for sampling the 0–5,000 Hz frequency
range that is represented in the discrete signal. This is, you may easily imagine, a
pretty rough frequency sampling.

Next considering the FFT speed issue, which can still be quite important when
spectrograms are computed (as will become apparent later), 80 is not a power of 2,
so the FFT algorithm’s speed will not be optimized. It is therefore desired to be
able to compute an FFT of the 80-point window using, say, a 1,024-point frame.
There is an easy way to do this; simply place the (windowed) discrete signal values
into the first 80 points of a 1,024-point frame, and put zeros in for the remaining
944 points. Because the zeros amount to nothing, they have a zero spectrum,
so their presence does not adulterate the spectrum of the signal window. But now,
we are able to compute an FFT using a frame length which is a power of 2, and
moreover, we will now have 512 frequency bins sampling the 0–5,000 Hz range,
which will yield a much nicer-looking discrete spectrum than 40 bins.

This procedure seems like a cheap trick which is too easy to be free of defects,
but in practice a zero-padded long frame can actually yield an improved look at the
spectrum versus a shorter frame which exactly matches the signal window
(v. Fig. 2.12), because the discontinuities that cause spectral leakage are even
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Fig. 2.11 A signal frame exactly eight periods long was cut from the sines signal, and the figure
compares resulting DFT power spectra computed in Praat using a Gaussian and a rectangular
window (dashes). In this case, the rectangular window is best because the signal frame length is
commensurate with the natural signal period, obviating any need for a tapering window
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further reduced by this method.3 There are no disadvantages that I am aware of,
except perhaps in the artificial cases when a window can be precisely tailored to
the major periods in the signal. In spite of this, writers such as Hamming [16] can
still be found who speak out against zero-padding. But Hamming’s objections
seem to be concerned purely with the precise coefficients of the discrete Fourier
transform, and these will of course be different with different frame lengths,
zero-padded or not. Here, our concern is solely with the power spectrum which
these coefficients determine.

2.2.6 Filters

In signal processing, a filter is any type of system that acts on an input signal to
yield an output signal, whose action changes the frequency content of the input.
The action of a filter in the frequency domain is usually put in the following way
[19]. Given an input signal xðtÞ and an output signal yðtÞ; let us write their
respective Fourier transforms as XðxÞ, YðxÞ: The filter action, called the
frequency response, can be written HðxÞ; and then the input and output spectra are
related by the equation:

YðxÞ ¼ HðxÞXðxÞ: ð2:42Þ
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Fig. 2.12 Compares the Kaiser-windowed power spectra of the 1,506-point sines signal frame
(dotted) and the same windowed signal zero-padded to 2,048 points. Note that zero-padding the
frame provides almost the same spectral peak shapes, but the leakage between peaks is even
further ameliorated. An added advantage here is that the FFT computation using 2,048 points
should be faster than that using 1,506 points

3 The reader has probably noticed that my intentional choice of terminology in discussing these
matters uses the term window to refer to the possibly tapered (windowed) slice of the signal
being analyzed, while the term frame is used to refer to the discrete Fourier transform analysis
length. This terminology will be used throughout the book.
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Filters are often classified according to broad aspects of their frequency
response. For example, a low-pass filter is one which attenuates frequencies above
a certain value. A band-pass filter is one which attenuates frequencies below and
above a certain range. Filters can also be found to have more complicated
responses, such as attenuating a number of different frequency ranges for the effect
of a multiple band-pass.

An especially important type of filter from a speech perspective is often called a
resonant filter or a tuned system. Such a filter has a frequency response that has a
peak at some frequency x0; with a pass band surrounding the peak so that the
transmitted power rolls off at increasingly distant frequencies. The filter bandwidth

2Dx is specified by the half-power points [19], so that jHðx0 þ Dxj2 ¼
jHðx0Þj2=2 and jHðx0 � Dxj2 ¼ jHðx0Þj2=2: The bandwidth is often cited as a

quality factor Q which is frequency-dependent, so that Q ¼defx0=ð2DxÞ: In speech
science, a resonance frequency of the vocal tract may be characterized as a
resonant filter which acts on the input sound provided by the vocal cords.

2.2.7 Analytic Signals

In speech signal processing, it is only natural that we wish to deal with signals that
are real-valued only, since these are the only signals that have an obvious physical
meaning. In signal processing, however, it is common to deal with complex-valued
signals, and we will find some use for these for the reasons to be explained now.
For any real signal sðtÞ; a particular complex signal zðtÞ associated to it was
originally defined by Gabor [14]:

zðtÞ ¼def sðtÞ þ iziðtÞ: ð2:43Þ

Observe that the real part of zðtÞ is just sðtÞ; so what is the imaginary part for and
how should it be specified? It was a matter of some importance at that time to
figure out the best way of mathematically defining the phase of a signal, so that the
derivative of the signal phase would correspond to the instantaneous frequency

(see the next section). Gabor also noted that the spectrum of a real signal, as given
by its Fourier transform, formally contains negative frequencies whose power
spectrum mirrors the positive frequencies (recall Fig. 2.3). It is possible to define a
complex signal which has no negative frequencies in its spectrum, and whose
complex phase derivative is indeed the average frequency at each instant, thereby
making it a good value to call the instantaneous frequency. Gabor defined zðtÞ so
that the Fourier transform ZðxÞ ¼ 0 for all negative frequencies, while ZðxÞ ¼
2SðxÞ for all positive frequencies, SðxÞ being the Fourier transform of the original
real signal. This associated complex signal effectively takes the power from the
negative frequencies and ‘‘moves it’’ to the positive side where the values are
doubled (thus preserving the energy).
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It was Ville [37] who introduced the term analytic signal to refer to Gabor’s
complex zðtÞ constructed from a real sðtÞ; because zðtÞ meets the mathematical
definition of being an analytic complex-valued function. Gabor had also shown
that the analytic signal’s imaginary part is guaranteed to be the Hilbert transform

of the real part, and vice versa (see box for details). A very important raison d’être
for the analytic signal, which was highlighted by Ville, is that this is the particular
kind of signal for which the concept of instantaneous frequency can be provided a
sensible mathematical definition as the phase derivative (see the next section).

The two main properties defining the analytic signal—viz. that it has no
negative frequencies, and its real and imaginary parts form a Hilbert transform
pair—provide us with two means of actually defining it, which ideally come to the
same end, but in the discrete-time realm they are always slightly different. This
leaves us with a choice of two definitions for the ‘‘discrete analytic’’ signal (which
is no longer formally analytic) that is associated to a real discrete signal sðnÞ: We
could compute a second real signal ziðnÞ by a discrete Hilbert transform of sðnÞ;
and then simply set zðnÞ ¼def sðnÞ þ iziðnÞ: This has been advocated as the best
technique [4], but Marple [29] demonstrated that the frequency-domain method is
superior. For this second method, I have implemented some recent improvements
[31]; we first compute the N-point DFT of our real signal sðnÞ (of length N

samples), to yield the discrete complex sequence X½m�: Then we form the DFT
Z½m� of the associated ‘‘analytic’’ signal by setting it equal to 2X½m� in the range
1�m�N=2; and zero elsewhere (with a couple of adjusted points; see the paper
[31] or the Matlab file newhilbert.m for the specific algorithm). The complex
‘‘analytic’’ signal z½n� is then computed from Z½m� by an inverse DFT. We will
have several occasions in this book to consider analytic signals instead of real
ones.

In the continuous-time regime, the Hilbert transform of a signal sðtÞ (which
may in general be complex-valued) has the following definition [19]:

H½sðtÞ� ¼def 1
p

Z

1

�1

sðsÞ
t � s

ds ð2:44Þ

H½sðtÞ� ¼ 1
p
lim
e!0

Z

t�e

�1

sðsÞ
t � s

dsþ
Z

1

tþe

sðsÞ
t � s

ds

2

4

3

5 ð2:45Þ

Because the integral in the defining expression is improper (the denominator
has a zero), it is evaluated using its Cauchy principal value, which is a sum
of two limit integrals that excludes the zero point.

The Hilbert transform produces a new function that is ‘‘in quadrature’’
with the original; formally, the two are orthogonal in their function space,
having an inner product of zero. Resulting from this, the Hilbert transform of
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a Hilbert transform gets us back to the original function with a minus sign:
�H½H½sðtÞ�� ¼ sðtÞ: For example, the Hilbert transform of sinðxt þ
/Þ is � cosðxt þ /Þ; and the Hilbert transform of cosðxt þ /Þ is sinðxt þ
/Þ [19].

Another important mathematical fact concerns the relation between the
Fourier transform (spectrum) of a signal and the Fourier transform of its
Hilbert transform. Let us denote the Hilbert transform of sðtÞ as ŝðtÞ; and then
the Fourier transform of it into a frequency function can be written Ŝðf Þ:
The following facts are presented from [13].

Ŝðf Þ ¼ �i sgnðf ÞSðf Þ ð2:46Þ

Sðf Þ ¼ i sgnðf ÞŜðf Þ ð2:47Þ

in which sgnðf Þ denotes the signum function that simply returns a value 1,
�1 or 0 depending upon the sign of f : This relationship explains why the
analytic signal created from a real signal ends up with a one-sided Fourier
transform (zero for negative frequencies).

Originally, the Hilbert transform was conceived by David Hilbert in 1905,
during work on a problem concerning analytic functions that is now called
the Riemann–Hilbert problem [45].

2.2.8 Concepts of Frequency

In the end, we perform a spectrum analysis of a signal in order to find out about the
frequencies that it contains, presumably because this information can in turn lead
to useful inferences about the source of the signal. The trouble is, the notion of
‘‘frequencies in a signal’’ is not rigorously defined. Indeed, the notion of ‘‘fre-
quency’’ is somewhat colloquial, referring as it does in simple language to the rate
at which some process of interest repeats or recurs. The mathematical treatment of
signals, however, demands a mathematical definition of ‘‘frequency,’’ and here
there are two distinct approaches that accord with the colloquial notion in differing
ways.

The first definition emerges directly from the Fourier series or transform rep-
resentation of a signal. The ‘‘frequencies’’ in a signal are represented therein by the
trigonometric (or complex exponential) component signals, each of which exists
only at one frequency. This definition has served well in many applications, and
there is no doubt about its mathematical correctness. The question is, does this
definition suitably model the colloquial notion of frequency? A problem arises
when we consider the related colloquial notion of a changing frequency. Gabor
[14] reminds us that ‘‘if the term frequency is used in the strict mathematical sense
which applies only to infinite wave-trains, a ‘changing frequency’ becomes a
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contradiction in terms.’’ Therein lies the rub: the Fourier components of a signal
are infinite in time, meaning that strictly speaking, only an infinitely long sine
wave can have just a single frequency component. But surely, we all realize that a
pure sine wave of just one frequency can be started and stopped, or its frequency
can be changed (modulated) in time. Do these actions somehow give it more
frequencies, or can we agree there is still only one frequency in a sine wave of a
changing nature? This idea provides the intuitive concept of an ‘‘instantaneous
frequency’’ of a modulated sine wave.

An arbitrary real signal sðtÞ can be written in terms of an instantaneous
amplitude and frequency modulation:

sðtÞ ¼ AðtÞ cos/ðtÞ; ð2:48Þ

and one might imagine that by doing so, the derivative of the frequency function
/ðtÞ could provide us with an instantaneous frequency for the signal. However, it
turns out that the above signal decomposition is not unique [5], so that no
coherent definition may be derived from it. This is a moment in the sun for the
associated analytic signal, because for any (continuous-time) signal sðtÞ its
analytic associate zðtÞ (see Eq. 2.43) is unique, and when expressed in complex
polar form:

zðtÞ ¼ AsðtÞ ei/sðtÞ ð2:49Þ

the pair of functions AsðtÞ;/sðtÞ giving respectively the amplitude and complex
phase modulations is the unique canonical pair associated to sðtÞ [5]. As we
already saw, the real part of zðtÞ is just sðtÞ; which may now be decomposed as

sðtÞ ¼ AsðtÞ cos/sðtÞ; ð2:50Þ

which defines the canonical representation of sðtÞ [5]. So now, the
instantaneous frequency of sðtÞ can be properly defined as the derivative of the
canonical frequency modulation /sðtÞ; a definition that dates back to Carson and
Fry [7] based upon Carson’s [6] earlier conception of the ‘‘generalized frequency.’’

It is important to note that while we require an analytic signal in order to define
the instantaneous frequency, this is shown above to be the instantaneous frequency
of the associated real signal also. Ville [37] showed, moreover, that the average
frequency at each instant of a changing sinusoidal signal equals the complex phase
derivative of its analytic associate. In plain language, this means that the mathe-
matical instantaneous frequency just defined accords precisely with another intu-
itively defined ‘‘instantaneous’’ frequency, viz. the average sinusoidal frequency at
an instant. In the end we have two useful coexisting models of the notion ‘‘fre-
quency’’: the Fourier model, in which frequencies are formally a property only of
infinite unchanging signals; and the model owing to Gabor, Ville, and Carson and
Fry, in which instantaneous frequencies are defined by means of analytic signals.
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Chapter 3

History of Speech Spectrum Analysis

This chapter traces the history of sound (and in particular, speech) spectrum
analysis from its very beginnings in the theory developed by Fourier in the early
1800s. A particular goal of this historical outline is to describe not just the events
and developments through the years, but also the beliefs and attitudes of scientists
as these changed with the development of a better understanding. Some of the
scientists whose work is discussed here are still widely known and cited, while
others’ contributions have been unjustly forgotten. With this chapter, I also hope to
straighten out the historical record in this respect, giving all due credit to those
pioneers who uncovered many facts about speech spectra that are now taken for
granted.

3.1 Fourier Analysis of Speech

3.1.1 Early History

The concept of spectrum analysis is rooted in the idea of expressing one function
(the signal) as a combination of other functions, each of which can be interpreted
physically as some kind of frequency. The constituent functions are the basic
functions of trigonometry, the sine and cosine, as shown in the previous chapter.
The first mathematical work investigating this sort of decomposition of a function
was probably that of Leonhard Euler, which is hardly a surprise when we
remember that Euler’s work is so often important to the history of modern
mathematics. In a number of publications beginning around 1748, Euler explored
how some functions could be rewritten as infinite series, such as infinite series of
sine or cosine functions. Euler did not seem to have frequency spectrum analysis in
mind as an application, however he did seek to solve differential equations with the
aid of such series. It was also Euler who related the sine and cosine, which are real
functions of a real variable, to the more general complex exponential function eix

which underlies our fullest understanding of spectrum analysis.
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Perhaps the first application of Euler’s ideas to the physics of vibration was due
to Daniel Bernoulli (the elder), who published a paper in 1753 proposing a novel
solution to the vibrating string equation. He founded his solution on the physical
theory, known from Pythagorean times, wherein a vibrating string of length l is
modeled as a superposition of all its characteristic modes of vibration, which is
naturally described as a sum of simple harmonic (trigonometric) functions:

f ðxÞ ¼ a sin
px

l
þ b sin

2px
l

þ � � �

This suggested form of the solution does indeed satisfy the differential equation for
the vibrating string, the so-called wave equation which is foundational to linear
acoustics.

In a manuscript dated 1807, Joseph Fourier showed how to derive both a sine
and a cosine series representation of an ‘‘arbitrary’’ function, which he pursued as
a means of solving the differential equation governing heat transfer [23]. Fourier
was also aware that the vibrating string was governed by a similar differential
equation, and he remarked in the manuscript that his methods would also work to
represent functional solutions to that problem, thereby providing solutions to the
wave equation. The following quote is my translation of Fourier.

These objections make clear how much it was necessary to show that an unspecified
function can always be developed in a series of sines or cosines of multiple arcs, and of all
the proofs of this proposition, the most complete is that which consists of solving effec-
tively an arbitrary function in such a series, by assigning the values of the coefficients. The
preceding theorems satisfy this condition, and I am convinced, indeed, that the movement
of the vibrating string is also exactly represented in all possible cases by trigonometric
developments using the integral which contains arbitrary functions [23] art. 75.

Fourier’s key contribution in this realm was not exactly the invention of the
trigonometric series representation, but rather the work to establish the generality
of such representation, and also his work to extend the discrete series form to an
integral form capable of representing aperiodic functions. Indeed, most of the
details of Fourier’s series and integral were invented independently by another
giant of history, Carl Gauss. Gauss’s manuscript on what are now called Fourier’s
series and integral was not published until his collected works appeared in 1866,
but historians have agreed that this particular manuscript was most likely written
in 1805 [28].

In spite of contemporaneous work by Gauss, and despite Fourier’s drawing
upon previous publications for inspiration, his claims of such complete generality
for his functional representations were greeted with skepticism. Fourier may have
been convinced that his series representation was general enough to represent a
very wide class of reasonable functions, but most of his contemporaries were not.
Lagrange, although Fourier’s doctoral advisor, famously remained opposed to
Fourier’s series until his death. The initial poor reception afforded Fourier’s work
seems in part to be due to academic politics, but was also due to the low level of
mathematical rigor in many of Fourier’s proofs. The wide applicability of
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Fourier’s series representation finally became a firmly proven result thanks to the
labors of Johann P. G. L. Dirichlet, whose results on the issue were largely pre-
sented in two papers published in 1829 and 1837. In the end, the results have
passed down to us as the ‘‘Dirichlet conditions’’ for the convergence of Fourier’s
series.

Further work on solving differential equations led Fourier from his series to
what is now called the Fourier transform, by means of the Fourier Integral The-
orem [26], a result he obtained in 1811 but which was not widely circulated until
the publication of his book in 1822. He derived his integral representation of a
function by considering the behavior of his earlier series expansions in the limit as
the period approaches infinity, as was derived in the previous chapter. The Fourier
transform relation and its reciprocal nature was discovered independently by yet
another giant of the era, Augustin Cauchy (v. Note 19 in [9]).

3.1.2 The Physical Reality of Fourier Components

The application of Fourier’s series to physical problems in which a natural signal
was to be analyzed into its spectrum of harmonic sinusoids began to be explored in
the late 1800s, after the initial skepticism surrounding Fourier’s results had soft-
ened. Such analyses were performed on a variety of signals, including sunspot
records, tidal height records, optical (light) signals,1 and sound recordings. The
results of these studies were not always universally accepted, and the ‘‘physical
reality’’ of Fourier spectra was the subject of considerable debate for some time.
A representative quote here comes from a paper by Godfrey published in 1900.

[T]he equations of optics find their simplest solution in circular [trigonometric] functions.
It is desirable to inquire how far we may resolve a natural luminous motion with a sum of
simple wave-trains by means of Fourier’s ‘‘Theorem of Double Integrals.’’ This procedure
was first suggested by Gouy [1886]. Doubts have often been entertained as to the per-
missibility of this process. Writers have been sceptical as to the physical meaning and
independence of the simple waves thus introduced. ([24], p. 331)

Godfrey discussed Gouy’s [25] description of analyzing ‘‘any disturbance’’
using Fourier’s series. Gouy had considered a function defined on some interval of
time; such may be analyzed into a sum of trigonometric functions of time, the
periods of the terms being the interval itself and all integer ‘‘submultiples’’
(fractions 1

2 ;
1
3 ;

1
4 ; . . .) of it, as we have already seen. To this point, Gouy was

talking of the Fourier series analysis of a periodic signal. By 1886, this procedure
was already being carried out both in the analog continuous regime (using analog
calculating devices) and the discrete-time regime (using hand calculation).

1 Until the early 1900s, light was not recognized as an electromagnetic particle/wave
phenomenon, but rather was erroneously thought to involve waves in an otherwise undetectable
substrate known as the ether:
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Gouy went on to suggest that it was unnecessary to restrict the analysis to
periodic functions. This suggestion invokes the passage to the limit (shown in the
previous chapter), by which the Fourier integral transform is understood as the
limit of Fourier’s series when the fundamental period of oscillation goes toward
infinity. Godfrey considered the question, prominent at the time, ‘‘have the simple
elements meaning in the limit, when their number is infinite, and the sum becomes
an integral?’’ [24]. He went on to mention Poincaré’s objection to Gouy’s idea,
which highlighted an apparent paradox arising from Fourier’s integral represen-
tation of a signal:

Each of the component vibrations exists unchanged through all time. This is true whatever
be the nature of the disturbance we are analysing. But this disturbance may, for instance,
be zero, except within a certain definite interval of time [24] p. 333.

In other words, there was thought to be a problem with general Fourier analysis
because the aperiodic signal at issue will generally have finite support, while the
sinusoidal components have to have infinite support. Godfrey attempted in his
paper to explain away this paradox by some incorrect reasoning, but he was trying
his best to argue that Fourier’s integral transform can provide a spectrum asso-
ciated with a signal that has some physical meaning, even if ‘‘the different simple
elements of the Fourier integral cannot in general be said to have any independent
physical existence’’ [24].

Concerns about the physical meaning of a Fourier spectrum were aired some-
what later by Miller:

If a curve representing some physical phenomenon is periodic, then each separate term of
the Fourier [series] equation of the curve may be presumed to correspond to something
which has a physical existence; it is the belief in this statement, amply supported by
investigation, which leads one to analyze sound waves by this method; … each term is
presumed to correspond to a simple partial tone which actually exists. If the curve rep-
resenting the physical phenomenon is non-periodic, any portion of the curve may be
analyzed, and it will be completely represented as to form by the Fourier equation, within
the limits analyzed, but not beyond these limits. In this case, the separate terms of the
Fourier series may not correspond to anything having a separate physical existence; …
There is no general method for analyzing non-periodic curves, that is, for curves con-
taining [inharmonic] or variable components; such a method is very much desired for the
study of … all speech sounds except the simple vowels. ([40] pp. 140–141)

Note that Miller, who was a physicist investigating musical and speech
acoustics, sees every possible spectrum as being the discrete kind computed from
the Fourier series coefficients. While Godfrey was trying to argue in favor of
physically interpreting the continuous spectrum implicit in the Fourier transform
representation of an aperiodic signal, Miller seems unsympathetic to the prospect.

The desire to attribute an independent physical existence to the components
found by Fourier analysis has often been a powerful influence on the interpretation
of spectral representations. Nevertheless, it is now recognized that the Fourier
analysis of a function provides us with a different representation which is math-
ematically correct overall, but whose individual components may not correspond
to anything physical in an obvious way. For example:
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If we consider a quantity which can be represented in a Fourier manner, i.e., by a super-
position of monochromatic components, then it is the superposition which has a physical
meaning, but not the isolated Fourier components. If we deal, for example, with a swinging
chord whosemotion can be described by a series of harmonics, a movie of this motion would
reveal that the chord has a very complicated form at each moment, and that it varies
incessantly according to a complex rule. Nothing in this motion allows us to distinguish the
various monochromatic components: these components exist only in the minds of theorists
who endeavor an abstract analysis of this motion ([5] as translated in [19]).

Finally, Bouasse tartly reminds us that ‘‘… unless one has lost the most
elementary common sense, it is impossible to attribute an objective existence to
the harmonic oscillations which emerge in the Fourier series’’ ([4], as translated
in [19]).

3.1.3 Recording Sound Signals

Before applying Fourier’s theorem to periodic sound signals, it was first nec-
essary to somehow display a sound signal as a function of time. A number of

Fig. 3.1 A diagram of the
phonautograph, together with
waveform tracings obtained
using it [40]
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mechanisms for graphing a ‘‘wave-form’’ (a term perhaps due to Jenkin and
Ewing, see below) visualizing sound as a vertical undulation against a horizontal
time axis were developed beginning in the late 1800s. The first of these was the
phonautograph of Leon Scott, which was a precursor of the earliest Edison
phonograph. It did not make a sound recording, but used a rudimentary trans-
ducer to drive a small lever which would trace back and forth against a turning
smoked cylinder (v. Fig. 3.1).

The phonograph of Thomas Edison, in its original configuration, was apparently
inspired by the phonautograph since it, too, used a simple transducer to drive a
lever whose stylus traced an impression on tinfoil wrapped around a turning
cylinder. The phonograph record had the advantage that it could be replayed by a
reading stylus that drove a simple loudspeaker, thus providing the earliest means
of sound recording. The ‘‘groove’’ traced on the phonograph foil was very small,
far too small to be useful as a graphical device. As a result, techniques for
reproducing and magnifying the groove were devised, the first of which seems to
be that of Jenkin and Ewing [30] (v. Fig. 3.2). The tin foil record on the cylinder at
the upper right was read by a stylus which drove a system of levers ending in ‘‘one
of Sir W. Thompson’s electrical squirting recorder tubes, which magnified the
depth of the indentations 400 times,’’ [17] and thereby transmitted the waveform
with ink droplets squirted onto a strip of telegraph paper wound around the large
wheel W . The speed of the wheel was such as to magnify the length of the
waveform seven times.

Fig. 3.2 An original figure
from Jenkin and Ewing [30]
diagramming their
mechanism for visualizing
the sound waveform recorded
on a phonograph foil
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A particularly interesting method of sound visualization known as the mano-

metric flame method was first described in 1872 by Koenig [32]. It does not
provide a waveform, but is worth discussing in our historical chapter if only
because it is so peculiar and impractical, and thus became an historical curiosity
after a few decades. In spite of this, it was quite an important tool during the last

Fig. 3.3 At top, a photograph of the equipment set-up for creating manometric flames [40].
At bottom are Koenig’s meticulous drawings of the flames generated by five vowel sounds sung
on each of 15 musical notes
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decades of the nineteenth century. The best concise description comes from
Edward Scripture:

The vowel is sung or spoken into a trumpet leading to a small box known as the ‘man-
ometric capsule.’ This box is divided in two parts by a thin rubber membrane … One part
is a tight chamber through which illuminating gas is flowing; the gas is lighted at the end
of a small jet. As the sound waves descend they strike the rubber membrane, set it in
vibration and thus produce movements of the gas analogous to those of the air in the sound
waves [51] p. 26.

The rapidly changing flames were best viewed with the aid of revolving mir-
rors, and at first could only be recorded by hand-drawing. Figure 3.3 shows an old
picture of the apparatus, together with flames produced from five French vowels
sung on 15 musical notes.

An important development in the recording of sound was the invention of the
microphone, which according to Miller [40] was due to Hughes in 1878. The
original microphone transduced sound vibrations into electromagnetic waves,
which could be received by the oscillograph developed by Blondel (published in
1893 by the Paris Academy of Science). The oscillograph responded to the elec-
tromagnetic waves as a galvanometer which vibrated a tiny mirror, which in turn
was used together with a light source to produce a waveform of excellent quality
recorded on photographic film.

Another means for recording a waveform photographically involved a device
called the phonodeik, which was developed and described by Dayton Miller [40]
(v. Figs. 3.4, 3.5).

The sensitive receiver of the phonodeik is a diaphragm, d, of thin glass placed at the end
of a resonator horn h; behind the diaphragm is a minute steel spindle mounted in
jeweled bearings, to which is attached a tiny mirror m; one part of the spindle is
fashioned into a small pulley; a string of silk fibers, or a platinum wire 0.0005 in. in
diameter, is attached to the center of the diaphragm and being wrapped once around the
pulley is fastened to a spring tension piece; light from a pinhole l is focused by a lens
and reflected by the mirror to a moving film f in a special camera. If the diaphragm
moves under the action of a sound wave, the mirror is rotated by an amount proportional
to the motion, and the spot of light traces the record of the sound wave on the film [40]
p. 79.

The resulting 5-in. wide photographs of waveforms were of the highest fidelity
obtainable at the time; the apparatus was sensitive to sound frequencies up to
10 kHz.

Fig. 3.4 Miller’s [40]
schematic of the phonodeik
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3.1.4 Early Methods of Fourier Analysis

In the earliest days of practical Fourier analysis, beginning in the late 1870s,
investigators sought chiefly to compute the coefficients in a Fourier series that
would serve to analyze a given naturally occurring periodic signal into a number of

Fig. 3.5 Photograph of a phonodeik [40]
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harmonics. There quickly arose two types of methods for carrying out this task:
using a machine of special design to perform what was in essence an ‘‘analog
computation’’ of the harmonics and their amplitudes, or manually sampling a
period of the signal and computing the discrete-time Fourier series coefficients by
hand calculation. The special-purpose analog computers for performing the
analysis were generally called harmonic analyzers. The first such instrument was
designed by Thomson (Lord Kelvin) [55] for the computation of tidal frequencies,
and was described in some detail in [56]. Harmonic analyzers worked by har-
nessing the natural relationship between trignometric simple harmonic motion and
circular motion. The given natural periodic signal had to be presented as a
waveform graph and carefully traced by a stylus, and the stylus in turn transferred
components of its motion to a number of cylinders or spheres, each of which
would output the amplitude of its particular harmonic. A harmonic analyzer
sensitive enough to analyze a traced sound waveform was devised by Henrici in
1894, and thereafter perfected (v. Fig. 3.6) and frequently used for sound spectrum
analysis. The mechanisms and operating principles behind Henrici’s analyzer, as
well as six other harmonic analyzers, were described in considerable detail by
Carse and Urquhart [7].

Concerning the interpretation of the results provided by harmonic analyzers,
which relates to the topic (discussed above) of the ‘‘reality’’ of Fourier transform
components, Harry Hall [27] had this to say:

Transient sounds represent continuous spectra whose amplitude and phase distributions
are determined by the sound. These spectra are considered to exist throughout time, but

Fig. 3.6 Photograph of a Henrici analyzer used in Miller’s investigations [40]
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may be observed only during the lifetime of the original sound and are not fully indicated
until the full sound has passed … If a Henrici analyzer is used to analyze selected waves
taken from different parts of such a short sound, it will not give the true spectrum, but will
give the line spectrum which would be produced if the particular wave in question were
being repeated in a steady state.

These remarks represent an early attempt to define the notion of a ‘‘short-time’’
Fourier spectrum, meaning one which is valid only for a brief segment of a signal.
We will later see how this notion was more firmly codified, so that it forms the
foundation of the spectrogram.

The first investigators to compute the Fourier series coefficients (and thus a
discrete spectrum) for a vowel sound were Schneebeli [50], who used a phonau-
tograph to record speech waveforms, and Jenkin and Ewing [30], who used an
Edison phonograph to trace the waveforms on tin foil (see above for some details).
In the latter case the waveform was naturally bandlimited by the apparatus to
frequencies below approximately 1,200 Hz, and was manually sampled 12 times
per period, with the vertical (ordinate) value being measured to an accuracy of
0.005 in. The periodic motion was approximated as being composed of six har-
monics. Jenkin and Ewing missed their opportunity to publish the first power
spectrum graphs in a simple format, and instead presented their computed spectra
as rather confusing tables of numbers.

In an appendix on ‘‘Practical Harmonic Analysis,’’ Carslaw [8] summarizes the
established methods of the early twentieth century for performing what is, in
essence, a hand calculation of the discrete-time Fourier series coefficients using
samples of a periodic signal. He then notes that ‘‘Runge gave a convenient scheme
for evaluating these constants in the case of 12 equidistant points’’ in a single
period, which was first published in 1903 and 1905. Standard forms which facil-
itated the implementation of Runge’s method using either 12 or 24 sample points
were made available by Whittaker and Robinson in the many editions of their book
beginning in 1924 [57]. A different method of quick computation of the Fourier
series coefficients, which improved upon the speed of Runge’s techniques by using
an approximation, was described by Thompson [54], and was thereafter used for
speech spectrum analysis by Steinberg [52].

Although Runge’s main method for computing the discrete-time Fourier series
coefficients was quite efficient in exploiting trigonometric symmetries, cutting the
number of required computations considerably, he had apparently given some
hints which, when implemented, could further improve the efficiency of the
scheme. Danielson and Lanczos [15] were seemingly the first to apply Runge’s
suggestions, implementing a matrix transformation which further improved the
efficiency of Runge’s more well-known scheme without resorting to approxima-
tion, effectively making the number of calculations proportional to N logN for N
sample points or ‘‘ordinates’’. Their contribution was independently reinvented
during the computer age, whereupon it was christened the Fast Fourier Transform
[11]. So, the Fast Fourier Transform methods which render Fourier analysis rel-
atively tractable for modern computers have surprisingly distant historical
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origins—the general approach arose as a means of making ‘‘practical Fourier
analysis’’ more tractable for calculation by hand!

3.2 History of Speech Spectra

3.2.1 Vowels and Formants Early Years

For many decades, speech science debated the question of which model of vowel
production was more accurate, that of Robert Willis or that of Hermann
Helmholtz.

Willis [59] maintains two theses: 1. that a vowel consists of [at least] two tones, a cord
tone and a mouth tone; 2. that the mouth tone is independent of the cord tone in regard to
pitch. The theory of Willis was later taken up by Ludimar Hermann in the 1890s, but was
criticised by Wheatstone, who supposed that the vowels arose from the vibrations of the
vocal cords through the strengthening of certain overtones by the resonances of the mouth.
Wheatstone’s view was expounded as a general hypothesis by Grassmann and developed
into a theory by Helmholtz [51] p. 407.

This debate, in the light of present understanding, has in essence been settled in
favor of both positions, with each explaining a different aspect of a vowel sound.
Indeed, the debate should have settled a long time earlier thanks to an authoritative
treatment of the matter by Lord Rayleigh [53]; more will be said about that below. At
any rate, the earlier view propounded by Willis reflects that the vocal cords indeed
produce their own ‘‘tone,’’ which is what is now called the voice source, by means of
their periodic vibration. Then, asWillis had stated, each ‘‘puff’’ of air from the vocal
cords excites the resonances of the mouth. We now know that the chief acoustic
excitement comes from the pressure change that occurs when the cords close, rather
than from the puff, which is more of an aerodynamic event than an acoustic one.

A vowel sound can also be profitably understood according to Helmholtz’s
view [29] that the periodic vocal cord vibration gives rise to a set of harmonics of
the fundamental which are filtered by the vocal tract, thereby emphasizing certain
harmonics over others. Helmholtz [29] measured what he called the ‘‘proper
tones’’ of German vowels physically, by using tuning forks held up to the mouth
configured for a particular vowel. He was able to find only one formant for the
vowels [a, o, u], which was presumably the first formant, but he found that the
front vowels [e, e, i] ‘‘have each a higher and a deeper tone.’’ It is reasonable to
interpret his measurements as indicating he found the first and second formants of
these vowels, which are much more widely separated than for the other three
vowels.

Helmholtz credits Donders [16] with the first empirical finding that ‘‘the cavity
of the mouth for different vowels is tuned to different pitches’’ [29]. Donders had
measured by ear the main pitch of the noise produced by whispering vowels. Lloyd
later refined an ‘‘analysis-by-synthesis’’ technique in which he drove a resonance
bottle using a ‘‘hissing-tube’’ that produced a noise similar to a glottal whisper.
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‘‘On listening thus to the sounds issuing from the bottle it is soon found that they
have often, and indeed generally, a more or less striking resemblance to whispered
vowels …’’ [37]. Lloyd perfected the art of using such a device to determine
formant frequencies, since the known dimensions of the adjustable resonators
permitted these to be calculated, while the character of the artificial vowel could be
altered to suit the experimenter’s audition of a desired sound.

One of the first thorough investigations of vowels to include spectrum analysis
was due to Jenkin and Ewing [30], who introduced the term wave-form for the
tracing of the phonograph groove recording the sound. This term (without the
hyphen) is used to this day in speech science to refer to the standard graph showing
the output voltage of the microphone as a function of time. Their experiments
focused on the English vowels [o] and [u] sung by six speakers. The vowels were
sung on a wide range of notes of the musical scale, in order to see whether the
relative amplitudes of the six partials characterizing a particular vowel would
remain the same for different musical pitches.

Jenkin and Ewing found that the vowel spectra did not remain the same for
different pitches at all. For the vowel [o], they noted a ‘‘specially strong rein-
forcement’’ of whatever upper partial was nearest to a particular frequency (rep-
resenting the first formant of the vowel in this case), over a large range of the
fundamental frequency. They struggled with strange data from the singing of [u],
and from the nature of their lengthy discussion it can reasonably be inferred that
they observed many instances in which the low first formant of the vowel was in
close proximity to the fundamental. Additionally they found ‘‘that the experiments
have given thorough confirmation of Helmholtz’s discovery that vowel quality is
not dependent on phase relation, so long as the constituent tones are unchanged.’’
Their concluding remarks include the following remarkably prescient passage:

In distinguishing vowels the ear is guided by two factors, one depending on the harmony
of a group of relative partials, and the other on the absolute pitch of the reinforced
constituents … We are forced to the conclusion … that the ear recognises the kind of oral

cavity by which the reinforcement is produced. . . The vowel-producing resonance cavities
are clearly distinguished in virtue of two properties—first, the absolute pitch at which they
produce a maximum reinforcement; and, second, the area of pitch over which reinforce-
ment acts. The latter property, when it is extensive, is very probably due to the existence of
subordinate proper tones not far from each other in pitch [30] pp. 772–773.

Merritt [39] developed a method for photographing manometric flames, and
was able to successfully measure the fundamental frequency of a sung vowel [a]
across a wide range. The fundamental and harmonics appear to correspond to the
individual small flames in the photographs (v. Fig. 3.7), with the harmonic series
(up to around 1,000 Hz or so) visible numerous times as a repeating pattern from
left to right. He measured the first formant of vowels by noting which harmonics
were emphasized by more prominent flames in the photographs. He was thus able
to measure the first formant frequency of [a] as averaging 736 Hz, a value in good
agreement with modern measurements.

Scripture observed, in all recordings of vowels studied, at least one ‘‘tone of
constant pitch—independent of the tone on which it is sung.’’ According to
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Scripture, this characteristic tone of a vowel was christened with the term formant

by Ludimar Hermann.2 The following quote is representative of Scripture’s gen-
eral understanding of speech production:

Fig. 3.7 Manometric flames photographed by Merritt [39], showing four vowels each sung on
four notes

2 I have been unable to ascertain which of Hermann’s many papers first uses this term, but it was
certainly published around 1890.
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It seems evident that in most cases the cords act by emitting a series of more or less sudden
explosions that set the air in the resonance cavities in free oscillation. The periodical
changes from strong to weak in these oscillations produce the cord tone as heard, just as a
series of sharp noises from a card held against a toothed wheel or puffs from a siren will
produce a note. The groups of similar vibrations indicate separate puffs from the cords. . .
The cavity tones in a vocal sound probably always include more than two tones. These
tones change with the constantly changing shapes of the cavities and probably never
remain constant.

Scripture noted that Hermann had measured only one formant for most German
vowels, but had found two formants for three of the vowels.

The question of how many formants were needed to characterize a vowel
sound, and the manner in which they do so, was among the most important in
acoustic phonetics during the late 1800s. It was Lloyd [36] who first championed
the idea that more than one formant was essential for a correct account of vowel
acoustics, noting that the different resonances which would be produced by
speakers of differing sizes can then be understood to determine the same vowel
by the prime importance of their relation, rather than their absolute frequency
values. Scripture appeared to agree with Lloyd’s general ideas about vowel
formants, but it took some decades before the ideas were universally held. For
example, a news article which appeared in Nature in 1901 [41] virtually ignored
Lloyd’s publications on vowels, while discussing at length the various theories of
vowels and formants under the assumption that there is only one formant for a
vowel.

Scripture made his own measurements of vowel formants, but did not seem to
find the values worth publishing much of the time. His materials often consisted of
waveforms traced from the grooves of grammophone records (i.e. discs rather than
phonograph cylinders) of natural speech. He computed the harmonic series of
naturally occurring vowels and other speech sounds using the above-mentioned
manually calculated discrete-time Fourier series method initiated by Jenkin and
Ewing, though he employed Hermann’s specific methodology published in 1890.
In his book [51], Scripture did report finding a lower formant for [a] at around
675 Hz, and also an upper formant around 1,150 Hz.

Scripture was also among the first to confront the conundrum of the lowest
resonance found in voiced speech, or what is now called the voice bar. He sug-
gested that he measured some low resonances which ‘‘may be trachea tones,’’ and
relied on suggestions made earlier by Pipping [45].

Pipping considered as chest tones the low ones found in the neighborhood of the note 250
[Hz] in a series of Finnish vowels. The lower resonance tone of constant pitch found in a
number of cases of [a] in [ai] (‘I, eye,’ etc.) may possibly arise from the chest instead of
the mouth and pharynx. . . [51] p. 294.

We will see later that the voice bar remains something of an enduring mystery
that was ‘‘swept under the rug’’ for a long time.

Scripture spilled some ink criticizing the Helmholtz vowel theory, and his
concerns largely stemmed from a misunderstanding that seems to have been
endemic in the era. Firstly, Helmholtz already recognized that if a vowel’s
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resonances act to reinforce harmonics emanating from the vocal cords, then the
particular number of the harmonic which is emphasized must vary as the funda-
mental frequency varies. In his own (translated) words, ‘‘when I sing the vowel [a]
on the note e[1, the reinforced tone is. . . the 12th partial, and when I sing the same
vowel on the note b2 it is the second one.’’ Secondly, Helmholtz mistakenly
believed that the above fact necessitated that the mouth shape must accommodate
itself to one harmonic, and when this changes to a certain extent due to changes in
the fundamental, then the mouth must readjust itself to some other harmonic. This
idea came to be called the ‘‘accommodation theory’’ of vowel production, and the
need for such a strange aspect of speech gestures caused Scripture and others great
concern. We now know that no such deliberate accommodation is necessary,
because it does not matter if the formant exactly matches any particular harmonic.
This is a key reason why both the Willis and Helmholtz theories of vowels are
correct, and this fact was not grasped by most practitioners early on. The root of
the misunderstanding was the mistaken view that a resonator had to be driven
precisely at its resonance frequency in order to emphasize a harmonic component.

Insofar as Scripture favored the Willis–Hermann vowel theory completely,
many of his proposed modifications to the theory are essentially correct. ‘‘I would
amend the Willis–Hermann view by saying that the cords emit a series of puffs
whose nature may vary from the sharpest of explosions to a perfectly smooth
sinusoid. I would also add … that the character of the sound emitted by the cords
depends essentially on the nature of the puff.’’ Yet it is surprising that Scripture
and others were still debating these matters (and would still for decades more),
when any conflict between the Willis and Helmholtz vowel theories had already
been shown to be illusory by Lord Rayleigh [53] in his typical correct and con-
clusive fashion:

[Helmholtz’s] view of the action of a resonator is of course perfectly correct; but at
first sight it may appear essentially different from, or even inconsistent with, the
account of the matter given by Willis. For example, according to the latter the mouth-
tone may be, and generally will be, inharmonic as regards the larynx-tone. …

Although the natural vibrations of the oral cavity may be inharmonic, the forced

vibrations can include only harmonic partials of the larynx note … From these con-
siderations it will be seen that both ways of regarding the subject are legitimate and
not inconsistent with one another [53].

That the treatment of vowels in the second edition of Rayleigh’s magnum opus
Theory of Sound,3 now probably the most currently read physics book from the
nineteenth century, could have been so perfectly overlooked by an entire com-
munity of speech investigators from all backgrounds is surely one of the most
nagging historical puzzles connected with speech analysis. Alas, the resolution of
this puzzle today must be left for historians of science.

3 The treatment of vowels was apparently not in the first edition of 1878, though I have not seen
this version firsthand.

56 3 History of Speech Spectrum Analysis



3.2.2 Vowel Spectra 1915–1960

Miller [43] obtained vowel waveforms using his phonodeik described above, and
then obtained harmonic spectra from the waveforms with a specially constructed
Henrici analyzer. His results were originally published in 1916. By drawing
smooth curves over the harmonic spectra (v. Fig. 3.8) he was able to locate the first
two formants of most of the English front vowels, and the values he obtained for
F1 at least are generally plausible. Owing to deficiencies of his equipment, Miller
could find only the first formant of English back vowels, thereby propagating the
earlier conclusions of Helmholtz and Scripture, to the effect that back vowels
generally have one important formant and front vowels have two. Miller disagreed
with Scripture’s position on the vowel theories, and advocated the Helmholtz view
as the most in accord with his experimental results. In contrast to many precursors,
Miller apparently understood that the application of this theory required no special
‘‘accommodation’’ of the mouth to match the formant to a harmonic, but still the
seeming ignorance of Lord Rayleigh’s resolution of the matter is puzzling in the
light of Miller’s physics background.

Significant advances in speech spectrum analysis were made by Crandall and
Sacia at Bell Labs, and published in a series of papers [12–14]. They used an
improved oscillograph to obtain photographic records of speech waveforms, and
then obtained Fourier spectra using a photomechanical harmonic analyzer
designed by Sacia [48]. Although Crandall and Sacia began with the assumption
(taken from Miller and also Fletcher [20]) that English back vowels were char-
acterized by a single formant, they obtained more accurate results than any pre-
vious, and ultimately Crandall realized that all the vowels they recorded showed at
least two important formants [13]. In fact, they also discovered the importance of
the low F3 in the English rhotic vowel [g], and related its appearance to the
retroflex tongue posture. They interpreted their results as favoring a ‘‘harmonic’’
theory of vowel production (i.e. the Helmholtz view), but also suggested that the
inharmonic theory (i.e. Willis–Hermann) may also be needed as a complement to
it, pointing to different decay properties of formants which were transiently excited
by each vocal cord cycle (as Willis had originally asserted). The discussion by
Crandall and Sacia is the first demonstrated understanding in the literature that, not
only are the two models of vowel production equally correct, but that each model
is needed to understand the disparate aspects of speech production. They also hold
the distinction of being the first to publish power spectrum graphs of speech
sounds in the format commonly used to the present day (v. Fig. 3.9).

Steinberg [52] analyzed vowels and other speech sounds by a discrete ‘‘fast’’
approximate Fourier transform computation owing to Thompson [54], and described
the vowel spectra as consisting of harmonic partials which showed at least two
regions of reinforced amplitude, one below 1,000 Hz and one between 1,000
and 2,000 Hz. Clearly he was able to locate the first and second formants by
examining the spectra of harmonics. To record speech, Steinberg used a condenser
microphone and an oscillograph which had a flat response up to 10 kHz to create an
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Fig. 3.8 Vowel spectra from Miller’s book [40]. Characteristics curves for the distribution of the
energy in vowels of Class I, having a single region of resonance. Characteristics curves for the
distribution of the energy in vowels of Class II, having two regions of resonance
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oscillograph record of the waveform of the sentence ‘‘Joe took father’s shoe bench
out.’’ Individual periods of the waveform were analyzed by a (hand-calculated)
discrete-time Fourier series using up to 60 sample points over a single period. The
power spectra thus calculated did reveal formants, and were laid out in a sequence to
show the changes in the spectrum over time—Steinberg was the first to publish time-
varying spectra, and his display technique is truly a forerunner of the spectrogram
(v. Fig. 3.10). Steinberg presented his formant measurements for all the vowels in
the utterance, and compared his values to those obtained previously by Crandall and
Sacia, and also to those obtained by Paget [43] through analysis of synthetic vowels
produced with a physical vocal tract model. His analysis method did not have a
frequency resolution sufficient to resolve closely spaced formants of [u], [u], which
had been successfully resolved by Paget using synthetic speech.

Fig. 3.9 Power spectrum
graphs from Crandall [12] for
13 English vowels
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The next big advance in speech spectrum analysis was made by Lewis [35],
who made oscillographic records of about a half-second long from a variety of
vowels in sustained sung notes. He then traced the oscillographs over selected
periods with a 40-component Henrici analyzer, yielding, approximately, the

Fig. 3.10 A figure from
Steinberg [52] showing a
time sequence of power
spectra. The formant peaks
are hand-drawn over the
computed discrete spectra
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Fourier series spectrum of the first 40 harmonics. The singer had been instructed to
sing the vowels using his normal vibrato technique, with the result that different
periods of the oscillograph had slightly different fundamental frequencies. For
each vowel, a number of periods at different frequencies were selected for analysis,
with the goal of checking whether the voice source and ‘‘filter’’ were independent.
Indeed, Lewis published graphs showing the resulting vowel spectra which were
created by overlaying the harmonic analyses from a number of different phonation
periods at different fundamental frequencies (v. Fig. 3.11). No matter the

Fig. 3.11 A figure from Lewis [35] showing vowel power spectra drawn with a harmonic
analyzer. Formant peaks are hand-drawn over the computed spectra
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particular frequencies of the harmonics, their spectral amplitudes followed the
same overall outline, which Lewis took to be the resonance spectrum of the vocal
tract.

His spectra showed frequency components up to 4 kHz, and four or five for-
mants were clearly visible for each vowel. F1 and F2 for [a] were measured to be
675 and 1,150 Hz, respectively. Other vowels’ formant values are equally plau-
sible by modern standards. Lewis’s landmark study was the first to demonstrate
that there are generally five formants for any vowel, and also that the amplitude
differences between formants play an important role in the vowel quality. He
imagined that each formant was the output of a simple resonator represented in the
vocal tract somehow. He also proposed the prescient conjecture that ‘‘the typical

quality of a vowel is determined by the two resonators of lowest frequency, with
individual voice differences resulting from the action of the other resonators.’’
Because he studied vowels in a singing voice, Lewis also discovered (without
realizing it) what is now often called the singer’s formant, which manifested as a
3,200 Hz formant present in most every vowel in the analyses.

Chiba and Kajiyama [10] presented power spectra of the harmonics in a variety
of Japanese vowels, though they did not describe their method of computing the
spectra. As far as interpreting their results, the nineteenth century debate over the
best theory of vowel production was regarded as still unresolved by Chiba and
Kajiyama [10]. They were led to follow Scripture in favoring the ‘‘inharmonic
theory’’ of Willis and Hermann because they frequently found formant frequencies
which did not coincide with any harmonic in their calculated spectra. The nature of
this finding and the way it is interpreted reflects the very same misunderstanding of
the action of a resonator that had befuddled Scripture before them.

Harvey Fletcher [21, 22] was, to his credit, possibly the first prominent speech
scientist to understand that these two competing models of vowel production are
not incompatible, and are both correct. It was seemingly Fletcher who first called
the Willis theory ‘‘inharmonic,’’ since it postulates that the formant frequencies are
excited directly by each glottal pulse in turn, and so need have no relation to the
series of harmonics of the glottal fundamental frequency. The Helmholtz theory
(which had originated with Wheatstone) was then dubbed the ‘‘harmonic’’ theory,
since it postulates that the series of harmonics of the glottal fundamental are
selectively emphasized, possibly in groups, by the formant frequencies which are
in fact resonances. Fletcher made it clear that a formant resonance can act to
emphasize harmonics emanating from the voice source no matter whether the
formant frequency coincides with any one of them, thus obviating the need for any
previously supposed ‘‘accommodation’’ of the vocal tract to the harmonics. This
new understanding of the physical basis of vowel acoustics would eventually be
called the source-filter theory.

Vowel sounds had already been described, in essence, in terms of a source-filter
theory by Lewis.

This theory, which might well be called the cord-tone-resonance theory, states in effect
that the vocal cords, during phonation, set up in air immediately adjacent to them a
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complex motion which consists of a fundamental component and a large number of its
overtones. This complex motion constitutes the so-called cord-tone. The theory further
states that the vocal cavities, on which the cord-tone acts as a force, have the properties of
simple resonators and thus serve to modify the spectrum of the energy flowing from the
cords. In terms of this theory, a vowel sound, as emitted from the mouth, is due to both
selective generation and selective transmission … and it is composed mainly of a har-
monic series of simple motions, each of which has a determinable magnitude [35].

Lewis sounds like he is summarizing someone else’s theory, but he gives no
citation; as far as I can tell his discussion is a synthesis of his own devise. The
ideas trace back to Wheatstone, but Lewis’s summary gives an excellent (albeit
early) account of what would come to be accepted as the source-filter theory of
speech production, particularly after it was presented to the linguistic phonetics
community by Joos [31].

3.2.3 Spectrographic Analysis

Just as speech spectrum analysis was coming to be better developed in both the
analog and discrete-time regimes, providing a picture of the distribution of speech
energy across the frequency range, the spectrograph device was developed as a
means of providing ‘‘a permanent visual record showing the distribution of energy
in both frequency and time’’ [33]. While the spectrogram image output by the
spectrograph is now usually described as a logarithmic plot (in dB) of the squared
magnitude of the short-time Fourier transform (to be presented in detail in the next
chapter), in fact the analog spectrogram bears a closer affinity to other analog
signal processors like the Henrici analyzer, and predated the explicit specification
of this transform by more than 20 years. The first ‘‘sound spectrograph’’ device
was developed at Bell Labs shortly before World War II, was closely held fol-
lowing the outbreak of war, and was finally described in the open literature fol-
lowing the war’s end [33]. At that point, the short-time spectra it output were only
understood from the perspective of electrical filters, since the original spectrograph
was an entirely analog electrical signal processing device.

The spectrogram would ultimately prove to be the most universally valuable
representation for the analysis of speech spectra, because speech is such an
inherently time-varying signal. It was shown in some of the earliest papers [34]
that the time course of vowel formants could be readily imaged by setting the
spectrograph filter to a ‘‘wide’’ bandwidth. Kopp and Green called the resulting
images of formants ‘‘resonance bars,’’ owing to their appearance as thick bands of
dark grey on the spectrogram, an image now familiar to thousands of speech
scientists around the world (v. Fig. 3.12). Such spectrograms effectively performed
a very short-time spectral analysis due to the short impulse response of the filter,
and it was possible to observe the impulses generated by the vocal cords as
‘‘vertical striations’’ through the frequency range. It was also possible to perform a
‘‘narrowband’’ analysis using the spectrograph, which yielded a spectrogram with
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sufficient frequency resolution to show the fundamental frequency of voicing
together with the harmonics; the longer impulse response of the narrowband filter
made it impossible to simultaneously resolve the vocal cord impulses, however.

An important publication by Joos [31] helped bring spectrographic analysis of
speech to the attention of the phonetics community, as did the book by Potter et al.
[46]. In the ensuing years, the spectrographic analysis of speech became a standard
approach in phonetics. An archetypical publication by Potter and Steinberg [47]
delved into many issues of speech features in spectrograms, and was very
instructive as to measurement methods. This paper also demonstrated how to
exploit the spectrograph’s capability of computing a single power spectrum
analysis at a given time point, in conjunction with a spectrogram. Through the
1950s, the spectrograph’s analyses became quite frequently used to measure
speech features such as vowel formants (e.g. [18, 44]), but there remained debate
about the best ways of making the desired measurements.

Near the end of the 1960s, thanks to the re-invention of the fast Fourier
transform algorithm (discussed above), digital computers had become powerful
enough to be able to compute spectrograms which could simulate the analog
output of the spectrograph device. The general algorithm for a digital spectrogram
(presented in the next chapter) was widely disseminated by several proponents,
including Oppenheim [42]. In recent years, the procedure of making measurements
‘‘manually’’ from a spectrogram has fallen somewhat out of favor, and has been

Fig. 3.12 Some of the first speech spectrograms ever published [34]
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gradually replaced by parametric spectral analysis, to be discussed in the next
section. Current developments in spectrographic, or more generally time–fre-
quency analysis, are nevertheless very promising, and it is not unreasonable to
suggest that the new methods presented in the upcoming chapters may yet revive
the perceived utility of spectrogram reading.

3.3 Parametric Spectral Analysis

By the 1960s, the ‘‘source-filter theory’’ of speech production was coming to the
fore, and as a result the vocal tract began to be viewed as a resonant filter which
was describable by a few parameters, in particular its resonance frequencies and
their bandwidths and relative amplitudes. These in turn are compactly represented
using the transfer function of the filter, which will be treated more thoroughly in
Chap. 7. It is the modeling of the vocal tract as a linear filter which led to a number
of related approaches to speech spectrum analysis that have been termed
‘‘parametric.’’

The analysis-by-synthesis scheme was outlined as follows by Bell et al. [2]. The
speech was first sent through a ‘‘filter set,’’ and the outputs were sampled digitally
and stored. This yielded a basic spectrum estimate which was like a spectrogram.
A ‘‘spectrum generator’’ was then used to synthesize speech according to a linear
source-filter model, governed by parameters of a voice source and vocal-tract
transfer function (i.e. formants) input by the user. A ‘‘comparator’’ then computed
a measure of the difference between the input speech spectra (which are non-
parametric but rather imprecise) and those generated by the spectrum generator.
When a synthesized spectrum providing minimum error was obtained, the
parameters of its transfer function and source characteristics were used to produce
the parametric spectral estimate. Since this was a rather involved and cumbersome
procedure, it was a priority to develop a means of estimating a vocal tract filter
model from some input speech without actually performing analysis by synthesis,
and thus a number of approaches to spectral estimation by analysis of the speech
‘‘time series’’ data (i.e. the waveform) were developed during the late 1960s.

In the field of time-series statistics that I have alluded to previously, many
decades of the twentieth century and beyond have been spent on the development
of models for time series data, and for statistically estimating the parameters of
such models. One of the earliest models for certain kinds of time series was
christened linear prediction by Wiener [58], but this idea appears to have its roots
in work by Carl Gauss in 1795 [38]. With the advent of digital speech processing
and the analysis-by-synthesis techniques just described, the notion arose that a
digital speech waveform can be viewed as time series data, since it is in essence
just a sequence of ordinate values at equally spaced time points. The application of
linear prediction models to speech ‘‘time series’’ was initiated by Saito and Itakura
[49], and also by Atal and Schroeder [1]. The method was developed into a
standard approach during the 1970s, particularly through the seminal book by
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Markel and Gray [38], who proved many mathematical facts about the various
possible means of working with such models, while also teaching the community
various algorithms for the method. A different statistical time series model known
as the maximum entropy method was introduced by Burg [6], but this was soon
recognized as yet another algorithm for linear prediction analysis [3]. It is left to
the modern era to refine and further improve upon speech spectrum analysis, some
of the methods for which are to be described in the upcoming chapters.
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Chapter 4

The Fourier Power Spectrum

and Spectrogram

This chapter covers the traditional speech analysis methods which rely on the
discrete Fourier transform and its extension to the ubiquitous time–frequency
representation known as the spectrogram. The first topic is the power spectrum of
a signal window, which is derived from the magnitude of the Fourier transform in
the manner explained in Chap. 2. Here, I discuss some of the methods for making
power spectra of speech sounds, in an effort to show the best ways of accom-
plishing the desired imaging. Power spectra may be used to examine the formants
of vowels and other resonant sounds, and when treated statistically they may also
illuminate aspects of the noise produced during voiceless consonants. A third
important application of power spectra is in the analysis and detection of different
phonation types such as creaky and breathy voicing. Numerous figures provide
examples of power spectra illustrating the points discussed in the text.

The second topic is the spectrogram; since this has not been treated properly here
until the present chapter, the discussion is divided into first theoretical and then
practical matters. The mathematical definition of the spectrogram is presented with
an eye toward both its computational and historical aspects, a simplified algorithm
for spectrogram computation is provided, and the ever-present problem of the
uncertainty principle is discussed. Turning to more practical concerns of the speech
scientist, guidelines are given for setting the various user-defined parameters of the
spectrogram in order to obtain the best possible images for showing attributes of
speech such as formants, transient consonant events and noise, and finally the
fundamental frequency of voicing. The effects of the various parameter settings are
illustrated in spectrograms of a variety of synthetic and natural speech sounds.

4.1 The Power Spectrum in Speech Analysis

What speech scientists normally call the power spectrum of a digital signal
is simply the squared magnitude of the discrete Fourier transform defined in
Eq. 2.35, graphed showing a decibel-scaled amplitude as a function of frequency
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(v. Figs. 2.7, 2.8). Furthermore, it is important to note that in practice the fre-
quency range of the graph is limited to show only the lower half of the positive
frequencies computed by the DFT. As was explained in the previous chapter,
neither the negative frequencies nor the upper half-range of the positive fre-
quencies add any new information. This standard form of the graph is displayed
automatically by the typical speech software (e.g. Praat) functions for obtaining
and showing a power spectrum.

4.1.1 Vowel Spectra

In the previous chapter, the nature of vowels was discussed from an historical
perspective on spectrum analysis. We concluded that according to current
understanding, a vowel sound can be analyzed in the frequency domain as com-
prising harmonics of a fundamental (which is the frequency of the phonation)
passed through resonant filters called formants. On the other hand, vowels and
other voiced speech sounds have a second valid model, which is to simply say that
the formants are excited by each glottal impulse during phonation. This is what we
may call the ‘‘harmonic-inharmonic duality’’ of voiced speech, in analogy to the
famous wave-particle duality of light that came to be recognized also during the
early 20th century. Just as light can be detected as particles or waves, depending
on the type of phenomenon examined, so voiced speech can be measured as having
either a harmonic spectrum or an inharmonic spectrum, depending on the type of
analysis performed.

A good benchmark from which to test the performance of many spectrum analysis
methods is to examine synthesized vowels whose formants and other parameters can
be known in advance. An excellent simple vowel synthesizer is included with recent
versions of the Praat software [5], and this has been used to create the synthesized
vowels examined in this book. The Praat synthesizer operates by invoking the source-
filter model; beginning with a fairly simple glottal source vibrating with a user-input
fundamental frequency, the algorithm computes the output from a virtual vocal tract
having user-input values of four formants. The scheme is a typical implementation of
what has come to be known as a ‘‘formant synthesizer.’’

To create a small corpus of synthesized vowel tokens, a number of vowels were
synthesized using Praat to have English-like characteristics. These vowels have
already been used for a study of formant measurement accuracy [12], but here they
are recruited for a variety of tests and illustrations through the remainder of the
book. Figure 4.1 shows two kinds of power spectra overlaid for each of three
English-style vowels. The vowel [æ] is synthesized with formants F1 ¼ 731Hz
and F2 ¼ 1; 768Hz; [i] has F1 ¼ 306Hz and F2 ¼ 2; 241Hz; [O] has F1 ¼ 602Hz
and F2 ¼ 884Hz: Perceptual studies have generally shown that these two formants
are by far the most important for determining the perceived vowel quality, so the
remaining formants were set to F3 ¼ 2; 500Hz and F4 ¼ 3; 500Hz in all vowel
tokens. The standard glottal source spectral amplitude rolloff employed by Praat
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makes the fourth formant almost absent from the sounds. All tokens were gen-
erated for approximately 300 ms using a glottal source having a frequency
beginning at 120 Hz and descending at a rate of 2 octaves per second. This results
in a fairly natural baritone falling intonation for English.
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Fig. 4.1 Short (12 ms) and
long (40 ms) window power
spectra of synthetic vowels
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The ‘‘squiggly’’ spectra in Fig. 4.1 were computed in Praat with a 40 ms
Gaussian window.1 This window length encompasses several glottal impulses in
the synthesized phonation, and as a result the Fourier spectrum shows the fun-
damental frequency of phonation and its many harmonics as the numerous little
peaks in the graph. The harmonics are not well resolved here because the fun-
damental frequency changed slightly during the course of the analysis window,
which normally happens during real vowels. This type of long-window spectrum is
for historical reasons called ‘‘narrowband,’’ and it is the right sort of frequency
analysis to highlight the harmonic nature of vowels. The formants can be seen, just
as Helmholtz had stated [18], as regions in the frequency range within which
harmonics are emphasized.

The smoother spectra in Fig. 4.1 were computed using a 12 ms Gaussian
window, meaning about 6 ms from the signal was effectively used, and so the
window encompasses a domain smaller than one complete cycle of the glottal
source. This makes it impossible to detect the frequency of phonation, so the single
glottal impulse is analyzed as a transient which excites the formants. The window
was centered on the portion of the signal waveform lying between glottal impulses,
in order to focus on the resonance of the formants and deemphasize the spectrum
of the transient impulse which is very broadband. This kind of short window
spectrum is for historical reasons called ‘‘wideband,’’ and it is the right sort of
frequency analysis to highlight the inharmonic nature of vowels.

The three synthesized vowels of Fig. 4.1 were chosen because they represent
three commonly encountered extremes of vowel quality. The vowel [æ] has its
three major formants well separated in frequency, while [i] has F2 and F3 in close
proximity, and [O] has F1 and F2 in close proximity.

Vowel formants can in principle be measured from either the short or long-
window power spectrum. A commonly used procedure at one time [26] was to
hand-draw a smooth line around the harmonic peaks in a long-window spectrum,
and in this way the actual peaks of the formants can be estimated. It is not wise to
select a harmonic and measure its peak as that of a formant, since the two kinds of
peaks will not coincide in general (this is a reminder that the Helmholtz
‘‘accommodation theory’’ is not correct). On the other hand, in Fig. 4.1 it is quite
plain that the closely spaced F2 and F3 of the vowel [i] cannot be discerned at all in
the long-window spectrum, while they are able to be measured from the short-
window spectrum. This brief example demonstrates that, for synthesized vowels, a
short-window power spectrum gives a better look at the formants and enables their
estimation from the peaks with relative ease.

Turning our attention to vowels occurring in natural speech, it quickly becomes
apparent that each different spectral analysis seems to provide conflicting

1 It should be noted that a Gaussian window function is strongly tapered, and so the computed
spectrum is mostly derived from the center half of the window length. Praat has a number of
features intended to compensate for this, to be described in the appendix.
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information about the vowel. In particular, the problem of formant estimation
cannot so easily be solved by a single power spectrum. Figure 4.2 shows two
power spectra from the [i] of heed. Both spectra are computed from 12 ms
Gaussian windows; the key difference is the position of the window with respect to
a phonation cycle. The dark line uses a window centered between glottal impulses,
and appears to give a much more usable result, although there nevertheless appears
to be a low peak at around 140 Hz that cannot be attributed to a formant. The first
peak above this is located at 400 Hz, and a weak peak is visible at 2,170 Hz on the
left shoulder of a larger peak located at 2,440 Hz. The speaker is male, so these are
at least plausible values of the first three formants for this vowel. The lowest peak
is probably a glimpse of the fundamental frequency resulting from the window
barely encompassing two glottal impulses.

The lighter line in Fig. 4.2 uses a window centered on a glottal impulse. The
formant frequencies are greatly obscured in this spectrum, resulting chiefly from
the tremendous amount of broadband energy present in the impulse itself. It takes a
millisecond or more for the resonances to appear following the glottal transient
excitation, and the spectrum of the excitation itself does not contain well-resolved
formants.

Figure 4.3 uses a 41 ms Gaussian window, yielding a look at the harmonics of
the voicing. It is plain to see that formants cannot readily be measured or easily
separated in this spectrum. The second harmonic is very loud, and so one might
guess that the first formant is nearly coincident with it, but its frequency of 287 Hz
is not a very plausible formant value. The reinforcement of this harmonic probably
results from the lower resonance band known as the voice bar, which will be the
subject of a later discussion. A comparison of the short and long window spectra
reveals some disagreement; there is no evidence in the long frame spectrum of
Fig. 4.3 to support the presence of the 400 Hz formant that appears in Fig. 4.2.
How could this be? We will see in Chap. 6 that the chief reason for this is the
nonstationary nature of the speech signal even at the time scale of a single glottal
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cycle. The long-window analysis provides a long-term spectrum in which the
frequencies resulting from excitation of the formants has been obscured by the
glottal impulse spectral information.

Figure 4.4 demonstrates that real speech can present seemingly insurmountable
difficulties for measuring formants by simple spectrum analysis. The figure shows
two power spectra computed from a 12 ms and a 41 ms Gaussian window during
the vowel [O] of hawed. With an average male speaker pronouncing this vowel,
phonetic theory informs us that the values of F1 and F2 are in proximity and must
both lie between 500 and 1,000 Hz. Sadly, neither type of power spectrum permits
us to locate two formants in this expected range. The short-window spectrum does
display an additional peak at 250 Hz, but this cannot be one of the defining vowel
formants and is most likely a manifestation of the voice bar. The fundamental
frequency of this vowel at the point of analysis is about 104 Hz.
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4.1.2 Obstruent Spectra and Averaging Techniques

Obstruent sounds such as fricatives are chiefly characterized by noise, which is by
definition a random signal. Normally the long-frame spectrum of such noise will
betray the randomness by being completely ‘‘filled in’’ without any fundamental or
harmonics apparent, although the noise spectrum of a speech sound is nevertheless
shaped by the vocal tract. Example spectra of three English fricatives are shown in
Fig. 4.5. That these spectra have different shapes partly accounts for our percep-
tion of these as different speech sounds in English, although consonants require
being uttered in the context of a syllable in order to be most reliably perceived, and
in that context other transitional acoustic features become important as well.

4.1.2.1 Spectral Moments

It has often proven difficult for phoneticians to describe such noisy obstruent
spectra in a useful way. This is a result of the randomness; obstruent spectra are
not as consistent from utterance to utterance as vowel spectra, and the features that
are observable are rather vague, in the vein of noticing that the spectrum of [s] in
Fig. 4.5 ‘‘has a broad peak around 8 kHz,’’ or that the spectrum of [h] ‘‘is very
spread out’’ (e.g. [16]). These descriptions are not easy to quantify, so phoneticians
have sought ‘‘metrics’’ of obstruent noise spectra that are more quantitative. One
frequently used set of metrics for speech noise spectra are the spectral moments.

Since the power spectrum of a noise is statistically random, it is not unrea-
sonable to treat it literally as a probability density function, which is a mathe-
matical object characterizable by an infinite set of numbers called its moments.
The first moment is generally equivalent to the simple mean of the spectrum,
thereby providing a basic measure of location for the spectrum along the frequency
axis. The second moment is equivalent to the variance (square of the standard
deviation), thereby providing a rough measure inverse to how tightly the spectrum
is crowded around its mean. Higher moments, if used, should simply be thought of
as numbers which further quantify the power spectrum.

I do not wish to discuss the mathematical statistics behind the moments (for this
see [33]) since the computation of spectral moments is really a data reduction
procedure and not a spectrum analysis method per se; it is sufficient for our
purpose here to note that Praat software, among others, has the ability to compute
several moments characterizing any power spectrum. The idea of computing
statistical moments to quantify noisy speech spectra dates back at least to Forrest
et al. [11]. The method was used with some success in later studies of fricatives.
Most of the studies which have used spectral moments concluded that the first two
are by far the most important for characterizing obstruent power spectra (e.g. [21]).

Fulop et al. [14] used moments to classify the burst spectra of click sounds in
Yeyi, and also discussed a number of statistical issues with the interpretation of
spectral moments. Figure 4.6 shows example spectra of a dental click burst, which
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also illustrates the importance of a good window function. The original study [14]
used rectangular windows, which was likely not such a good procedure as it may
have fatally affected the data to the point of altering the results. An alveolar click
burst spectrum is shown in Fig. 4.7, which shows apparent differences from the
dental. These differences were quantifiable for good classification using the
moments alone, in spite of the rectangular windows.
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Fig. 4.5 Power spectra of
English fricatives, entire
length (150–180 ms). [s]
(top); [S] (middle); [h]
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4.1.2.2 Time and Ensemble Average Spectra

Since obstruent noise is inherently random, one way to increase the resolution of
pertinent information out of the randomness involves averaging the spectra of a
number of windows on the same speech sound. It can be proven that applying this
technique (which was first promoted in [35]) to a statistically random process will
generally decrease the variance of the resulting average, and provide a more highly
resolved picture of the spectrum. To give a conceptual analogy, if you wanted to
check that 100 coin tosses yields an expected 50 heads, it is a good idea to perform
the 100-toss experiment 10 times and average the results, since this average is
much more likely to be very near to 50 than any single run of the experiment.

Two fairly simple ways of implementing this concept have been described for
fricatives in the literature [30, 31]. One method is to clip out a number of (possibly
overlapping) analysis frames from different time points within a single fricative
token, and compute an average of their power spectra. The result is called a time

average spectrum. An alternative approach requires a number of tokens of the same
fricative repeated by the same speaker. We compute a spectrum for one analysis
window per token and then compute an average spectrum from these. This is called
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Fig. 4.6 Power spectra computed from a 26 ms dental click burst in Yeyi. Left panel uses a
Gaussian window (which is the recommended procedure), right panel uses a rectangular window
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an ensemble average spectrum, and is illustrated in Fig. 4.8. Average spectra will
depend upon the stage at which the averaging operation is performed, and this is not
always explicitly stated in the literature. The ‘‘raw’’ spectrum, being the result of a
Fourier transform, is a vector of complex numbers, and it would not be meaningful
to average these. In the linked Matlab code here, the averaging is performed on the
squared magnitude of the Fourier transform, before conversion to a logarithmic
(dB) scale. The results would look different if averaging was performed on the
magnitude spectrum without first squaring, or after conversion to dB.

4.1.3 Phonation Types

Long frame power spectra showing voicing harmonics have proven to be very
useful tools for detecting a key acoustic difference between different phonation
types. A number of studies [24, 34] have demonstrated that, all else being equal
(meaning the speaker and the other speech sound features), the relative amplitudes
of the fundamental harmonic H1 and the next two harmonics H2;H3 in the series
usually distinguish two or more different phonation types when they occur in any
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Fig. 4.8 Top line: power spectra of 55 ms windows from English fricatives [S, s]; Bottom line:
ensemble average power spectra of the same two fricatives, each using 10 repetitions from one
speaker
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given language. Normally, creaky phonation is typified by the lowest amplitude of
H1 relative to H2 and H3; modal phonation displays a somewhat higher H1

amplitude or somewhat lower H2 or H3 than in creaky phonation, while breathy
phonation is characterized by the highest relative H1 amplitude overall. These
descriptions are illustrated in Fig. 4.9, showing creaky, modal, and breathy voice
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for the steady vowel [e]. The creaky example is characterized by high amplitudes
of several harmonics above the fundamental; the modal example has a relatively
high amplitude of H2 alone, while the breathy example has H1 as the loudest
harmonic.

A recent small study [13] of the Hmong language has demonstrated that breathy
and whispery phonation can also be distinguished by the relative harmonic
amplitudes in similar fashion to the above. Example power spectra from that study
are shown in Fig. 4.10, in which it can be observed that the modal vowel has a
smaller relative H1 amplitude than the breathy vowel, which in turn is less than
that of the vowel following a whispery voiced stop release. These differences were
found to be so robust in the Hmong words studied that they did not require
statistical validation.

Another means of distinguishing phonation types uses a measure of the
amplitude of all the harmonics relative to the noise in the speech. There have been
a number of methods for computing this harmonicity metric (sometimes called the
harmonics-to-noise ratio) presented in the literature; an excellent metric of this
kind is computable using Praat software. The above mentioned study [13] of
Hmong phonation types also demonstrated that the modal, breathy, and whispery
phonations of Hmong can be distinguished by means of the harmonicity. It was
found that the modal vowels usually had less harmonicity than the breathy vowels
(which was surprising), while the whispery phonation had substantially less har-
monicity than the modal (which was expected).

4.2 Principles of the Spectrogram

A spectrogram is a particular time–frequency representation, which is a function
of both time and frequency that represents the energy distribution in a signal over
the time–frequency plane. It is derived similarly to a power spectrum, from an
extension of the Fourier transform to a joint time–frequency setting known as a
short-time Fourier transform (sometimes also called the Gabor transform, which is
strictly speaking not quite the same thing).

4.2.1 Definitions of the Spectrogram

The spectrogram will be defined intuitively here, with the details relegated to a
math box below.

4.2.1.1 Sequence of Fourier Transforms

Before defining the spectrogram it is necessary to define the short-time Fourier
transform (STFT). This can be understood as a time series of Fourier transforms,
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where for each time point the Fourier transform is computed for a time-limited
analysis window on the signal. The purpose of the window is to localize the
Fourier transform’s view of the signal to the vicinity of a particular point in time.
The STFT Swðt;xÞ is then parameterized by the window function w (so there is
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Fig. 4.10 Power spectra
from the first 50 ms (approx.)
of the vowel following
release of stops in three
distinct Hmong syllables.
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(whispery stop release);
Bottom: (breathy)
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really an infinite family of such functions), and is a function of both time and
frequency.

Since the STFT is derived from the Fourier transform, like the latter it is
generally complex-valued and invertible, meaning that the signal itself results
from an inverse transform of its STFT. Recall that the (time-independent) energy
density spectrum was defined as the squared magnitude of the Fourier transform.
The time–frequency spectrogram Spgmw is then defined as the squared magnitude

of the STFT, so that Spgmwðt;xÞ ¼
def

jSðt;xÞj2: The picture it provides is three-
dimensional, a sort of ‘‘running power spectrum’’ of successive windowed slices of
the signal. It is not difficult to imagine how important the window function is to the
particular properties of a spectrogram. To actually compute a short-time Fourier
transform, as usual we need to work in a digital setting; the particulars are rele-
gated to the math box, but a simplified algorithm will also be presented below.

In a continuous-time setting, the short-time Fourier transform of a signal
sðsÞ is usually defined by the following equation [9]:

Swðt;xÞ ¼
def

Z

1

�1

sðsÞwðt � sÞe�ixs ds; ð4:1Þ

in which the function wðtÞ is a real-valued window function having finite
support (normally this will be one of the window functions considered in
Chap. 2). Comparing with Eq. 2.25, it can be seen that at each time point t0
the function Swðt0;xÞ is simply the Fourier transform of a portion of the
signal windowed by w around t0: This definition is equivalent to what much
literature calls the Gabor transform in the analog regime, but the digital
version of the STFT described presently uses a different method than the
digital Gabor transform, so it is inaccurate to simply identify the two.

Another form of the STFT which is sometimes used is given by:

S0wðt;xÞ ¼
def

Z

1

�1

sðsþ tÞwð�sÞe�ixs ds ð4:2Þ

This alternate form is also called the moving window transform [22], and its
result is equivalent to that from the previous definition except for a linear
frequency term added to the phase [9]. The spectrogram can be equivalently
defined as the squared magnitude of the STFT (Eq. 4.1) or of the moving
window transform (Eq. 4.2), because the two transforms do not differ in
magnitude.

The STFT in either of the above forms is invertible using the same window
function in the analog regime; the following inversion formula corresponds to
Eq. 4.1:
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sðsÞ ¼
1
2p

Z Z

1

�1

Swðt;xÞwðt � sÞeixs dt dx: ð4:3Þ

The inverse STFT can be thought of as providing an ‘‘expansion’’ of the
signal using a continuum of ‘‘elementary signals’’ representing the time- and
frequency-shifted windows [3]. It is really a signal synthesis formula, while
the STFT itself is an analysis formula.

To present the mathematics behind the digital spectrogram I will rely on
[28]. The digital STFT method starts from the analysis formula (Eq. 4.1) and
samples it in time and frequency. First, let us define the discrete-time STFT at
particular time point n0:

Sðn0;xÞ ¼
def

X

1

m¼�1

sðmÞwðn0 � mÞe�ixm ð4:4Þ

where m takes integer values. Comparing with Eq. 2.29, this is just the
discrete-time Fourier transform of the product of the signal with the analysis
window. Next, make the time point a variable, thus defining the discrete-time
STFT as a function of time point n and frequency x:

Sðn;xÞ ¼
def

X

1

m¼�1

sðmÞwðn� mÞe�ixm ð4:5Þ

So much for the discrete-time part; the last step is to move to discrete-
frequency as well. Just as the discrete Fourier transform of Eq. 2.35 yields
frequency samples of the discrete-time transform, and is thus suitable for
digital implementation, there is a similar equation for the discrete (digital)
STFT which frequency-samples the discrete-time version above:

Sðn;xkÞ ¼
def

X

N�1

m¼0

sðmÞwðn� mÞ exp
�2pikm

N

� �

ð4:6Þ

Computing the result of this equation with a digital signal and specific window
function yields a matrix of complex numbers, one for each ‘‘cell’’ in the time–
frequency grid. To get a digital spectrogram from this, one should simply
compute the magnitude of each number in the STFT matrix and square it.

Equation 4.6 is now the digital version of the analysis formula; one might
think that a corresponding inversion formula could likewise be produced by
analogy with the continuous regime, but the discretization process has ren-
dered the situation mathematically more complicated, so if we tried to use the
sampled inversion formula to invert the sampled analysis formula, it would be
improper [1]. Gabor originally approached the problem from the synthesis
angle, and his signal expansion yields a discrete version of an inversion
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Comparing the final definition of the digital STFT above with the DFT equation
(2.35), it is plain that the digital STFT is simply a sequence of DFTs of signal-
window products, in which the window is ‘‘sliding’’ along the signal. The defining
equation above assumes that the window is moved by one time sample for each
new DFT. It is usual practice to decimate the above definition, so that the signal-
window products sðmÞwðnL� mÞ are taken only for integer multiples of some
integer L[ 1—i.e. the window is customarily slid along by more than one sample
point. The practical STFT parameter L is variously called the ‘‘hop size’’ or ‘‘time
step’’ or ‘‘frame advance.’’

It is important to keep the frame advance less than the window length, and
preferably less than the effective length (about half of the window), or the spec-
trogram will be decimated too much and the successive windowed frames will not
overlap enough to yield a good representation.2 On the other hand, given the way
most digital spectrograms are displayed (to be described below) it is not usually
worthwhile to have a very small frame advance, and this does lead to greatly
increased computation times. The importance of the proper frame advance is
illustrated in Fig. 4.11 showing three spectrograms of the word dad. The similarity
of the first two spectrograms there is notable given that the second one required far
more FFTs to be calculated; both of these are fairly optimal in performance for the
parameters employed, but the top example is far more efficient. The lower image
is, by contrast, over-decimated and totally undesirable.

4.2.1.2 STFT from a Filter Bank

The earliest spectrograms were computed using analog electronics, without any
Fourier transforms being directly performed. The intuition behind this process
begins with considering a single fixed frequency within a short-time Fourier
transform of a signal. Such a frequency band of an STFT is equal to the signal first
modulated by the fixed frequency and passed through a filter whose impulse
response is the analysis window. In the digital realm, the STFT has just a certain
number of frequency bins, and each frequency row of the STFT matrix can be
similarly computed as the signal passed through a bandpass filter whose impulse

formula rather than an analysis formula. It is possible to derive both a syn-
thesis (now called a Gabor expansion) and a corresponding analysis formula
(the Gabor transform) in the digital regime, with the snag that each now must
utilize different window functions which are mathematically dual in an
interesting way that has inspired quite a bit of research on the topic (e.g. [8]).

2 From the mathematical theory of time–frequency analysis, a deep result called the Balian–Low
theorem [17] establishes that a digital STFT must have overlapping windows in order to
completely represent the signal (see also [2] for discussion).
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Fig. 4.11 Spectrograms of the English word dad [dæd], computed with 12 ms Gaussian window
using Praat. Top panel uses the Praat standard frame advance of 2 ms; middle panel uses a frame
advance of 0.1 ms; lower panel uses a frame advance of 6 ms
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response equals the analysis window. The reader is referred to [28] for details
concerning this ‘‘filter bank’’ method of computing the STFT. It will be significant
in later chapters that when the STFT is viewed in this fashion, each frequency row
in the matrix is itself an analytic signal whose instantaneous frequency can be
calculated.

4.2.1.3 Algorithm for the Spectrogram

We can assume that a digital signal is represented as a vector (basically just a list)
of ordinate values, one for each time sample. To compute a spectrogram in a high-
level environment such as Matlab, the following rough algorithm can be
implemented:

1. Divide the signal into ‘‘slices’’ which overlap, and which are each the length of
the desired analysis window.

2. Index each slice by the time point at its center. The signal is now represented
redundantly as a vector of slices.

3. Multiply each slice by a tapering function (or if you want rectangular windows,
skip this step).

4. Compute the FFT of each slice, keeping in mind that the FFT frame length can
always be longer than the slice if it is zero-padded properly. Matlab automat-
ically takes care of this.

5. Discard the negative frequency range and the upper half of the positive fre-
quencies. You now have a vector of the discrete Fourier transforms of the signal
slices. This is referred to as the STFT matrix; it is a two-dimensional matrix of
complex numbers, in which each cell lies at an intersection of time and fre-
quency. The time points are the center points of the signal slices; the fre-
quencies are the values in the FFT. The number of frequencies in the matrix
depends on the length of the FFT frame—e.g. a 1,024-sample FFT frame will
yield 512 frequency bins.

6. Take the absolute value of each number in the STFT matrix, then square the
results of that. You now have the spectrogram matrix.

When applied to sound signals, it is customary to scale the spectrogram mag-
nitude logarithmically, as a decibel scale. When a spectrogram is plotted for a
screen view or printable image, it is standard to show the decibel magnitude by
linking the values to a colormap. In this way, the color plot can be used to show the
magnitudes over the two-dimensional matrix. While full-color spectrograms can
be useful with a good choice of colormap, it is a long-standing tradition that
spectrograms are shown using a grayscale colormap, thus mimicking the appear-
ance of the old analog spectrograms that were singed electrically onto Teledeltos
paper. The highest amplitudes are then plotted in the darkest gray or black, and the
gray gets lighter as the amplitudes get smaller. To facilitate readability of a digital
spectrogram plot, it is important to use a graphical plotting routine that does
‘‘interpolated shading’’ from cell to cell of the spectrogram matrix. This makes the
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digital spectrogram look ‘‘analog,’’ which is what humans need to be able to read
it. It is possible to plot the digital spectrogram matrix literally as a matrix of blocks
of different colors (this is, inexplicably, the way some spectrogram routines work),
but the result is almost unreadable.

4.2.2 Development of Spectrogram Theory

I already mentioned the spectrogram’s origins, and its ensuing influence on speech
science, in the previous chapter. But the success of the spectrogram as an analysis
tool in the early going relied solely on a device that produced spectrograms. A
complete theoretical understanding of the spectrogram, which would ultimately
facilitate the switch to digital computation, took about twenty more years to
congeal. The first mathematical attack on this sort of time–frequency analysis was
carried out by Gabor [15], in apparent ignorance of the existence of the spectro-
graph device (although Gabor did mention it in a footnote that was added fol-
lowing acceptance of his paper). Gabor developed a digital form of the inverse
STFT formula mentioned above, which is usually called the Gabor signal
expansion, but its relationship to the STFT analysis formula was not understood
until many others had studied the idea decades later. Gabor did not himself
characterize his representation as a short-time power spectrum.

The short-time power spectrum was given its first rigorous mathematical
treatment by Fano [7], but this was limited to a particular impractical form of the
time window. The first short-time power spectrum allowing an arbitrary (contin-
uous-time) window function was derived by Schroeder and Atal [29], although
these authors did not identify their function (which was defined in continuous time
essentially as in Eq. 4.1) as an invertible short-time Fourier transform—as Gabor
had only developed the synthesis formula in the discrete regime, these authors
developed only the analysis formula in the analog regime, so the relationship
between the two was still muddled for a while. A further treatment was completed
by Montgomery and Reed [27], who generalized Helstrom’s [19] work on Gabor’s
signal expansions and examined both the synthesis and analysis formulae, showing
for the first time that an STFT in the analog regime is generally invertible like a
plain Fourier transform. By the 1970s, the analysis formula was standardly called
the short-time Fourier transform, and in its digital ‘‘sampled’’ form this is most
frequently said to be equivalent to the Gabor transform, although the two have
disparate algorithmic aspects.

4.2.3 Uncertainty Principle

The uncertainty principle, often named after the physicist Heisenberg, can be
stated in the most general terms as in [10]: A nonzero function and its Fourier

transform cannot both be sharply localized. Heisenberg introduced this as a
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general constraint on observational precision in quantum physics. In that regime,
the principle implies, among other things, that the position and momentum in
a quantum state cannot both be precisely determined. In the regime of sig-
nal analysis, to which Gabor [15] introduced the uncertainty principle, it implies
that a signal sðtÞ and its Fourier spectrum cannot both have a small domain. This is
often stated in the literature by saying that a signal cannot be both highly time-
limited and highly band-limited in frequency [10]. It is important to emphasize
that, owing to the uncertainty principle, ‘‘obtaining an intrinsic and infinitely
precise description of the ‘time–frequency content’ of a signal is out of the
question’’ [6].

The above general uncertainty principle is a global constraint on an entire signal;
when performing time–frequency analysis, however, we normally are interested in
viewing some kind of breakdown of a complicated signal into ‘‘events’’ in time and
‘‘components’’ in frequency—it is local time–frequency content that interests us.
Moreover, the usual discussion of uncertainty in signal processing mentions only
the global signal uncertainty as above; when a signal is analyzed with a spectro-
gram, additional uncertainty is introduced by the windowing operation to yield
what has been termed the spectrographic uncertainty [25].

Speaking in general terms, a spectrogram can be thought of as displaying a
time–frequency distribution which has a statistical variance in both the time and
frequency directions—this is why the image is smeared. Operating locally, at each
time–frequency cell there will be a conditional time variance for that frequency
and a conditional frequency variance at that time. Each of these will be partly
determined from the window function used to compute the spectrogram. The
product of these two conditional variances must be locally greater than a certain
quantity; this is the local spectrographic uncertainty principle [25], which provides
a lower bound on the possible precision of a spectrogram at each time–frequency
cell. The spectrographic uncertainty is often described in speech science as the
‘‘resolution trade-off’’ between time and frequency. We will see in the next chapter
that it is possible to work with other time–frequency representations that do not
have nearly as much uncertainty as the spectrogram.

4.3 Spectrographic Analysis of Speech

‘‘There is no uniqueness of a time–frequency representation: there are many dif-
ferent ways of describing the ‘time–frequency content’ of a signal’’ [6]. Owing to
the quoted fact, computing a spectrogram of a bit of speech is not something that
can be done effectively without taking care to understand and set the values of a
number of parameters which have a dramatic effect on the analysis and its
appearance in a display. The most important of these are:

• the length of the analysis window;
• the particular window function to be used;
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• the number of points used to compute the Fourier transform of each windowed
segment;

• the frame advance;
• the dynamic range of the amplitude plot;
• whether to use pre-emphasis for the display.

Let us now discuss each of these in turn.

4.3.1 General Guidelines

A spectrogram provides a time–frequency representation of a signal that by nature
assumes the signal is ‘‘short-time stationary,’’ meaning that the spectrogram is
unable to detect any changes in the signal during the span of one analysis window.
Accordingly, the most important parameter to be set when computing a speech
spectrogram is the window length. A window whose effective length is shorter
than one glottal cycle during voiced segments will provide the most generally
useful and informative type of speech spectrogram, often called a ‘‘wideband’’
spectrogram in reference to the original filterbank computation method. With such
a short analysis window, the spectrographic uncertainty principle causes the fre-
quency resolution and precision to be fairly poor, with the consequence that the
individual component frequencies such as formants are ‘‘smeared’’ in the fre-
quency axis. Nevertheless, a wideband spectrogram is essential for observing the
formant frequencies which are excited with each glottal impulse, and also for
observing the brief events associated with consonants such as stop burst noises.

By contrast, a window whose effective length encompasses more than two
glottal cycles will show the fundamental frequency of voicing and the harmonics
associated to it, and will no longer show formant frequencies as being directly
excited. In this type of ‘‘narrowband’’ spectrogram, formants can be observed only
indirectly as groups of harmonics having a higher intensity. The spectrographic
uncertainty principle then causes brief events to be less resolved, and smeared in
the time axis. The spectrogram with longer window is unable to detect any
changes, such as glottal impulses, that occur within the window’s span.

From the discussion of window functions for power spectra in the previous
chapter, it was concluded that the optimal choices are drawn from either the
Gaussian or Kaiser families of functions. It has been noted, however, that window
performance for a single spectrum computation does not necessarily translate to
the time–frequency regime for spectrograms. One study specifically examining
spectrogram performance concluded that a Gaussian window provides optimal
time–frequency localization (i.e. minimal smearing) [20]. For reasons of tradition,
the Hamming and ‘‘Hanning’’ windows have been perennial favorites in speech
analysis, but more recently the Gaussian window has begun to get promoted in our
field as well. I would recommend that readers choose either Gaussian or Kaiser
windows for creating spectrograms. Figure 4.12 compares spectrograms computed
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with rectangular, Hann, and Gaussian windows. Decreased separation of F1 from
the voice bar is observable in the Hann windowed example versus the Gaussian, as
well as slightly broader formants.
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Fig. 4.12 Spectrograms of
the English word hide [haId],
computed with 6 ms
rectangular window (top),
Hann window, and Gaussian
window (bottom) using Praat
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The number of points used to compute the Fourier transforms for the spec-
trogram will normally be at least as long as the analysis window, but beyond this it
affects the frequency sampling of the resulting image (see the discussion of zero-
padding in the preceding chapter). A 256-point frame, for example, will provide
only 128 frequency bins to sample the entire frequency range whether it is plotted
or not. Supposing we have a sound whose highest recorded frequency is 22.5 kHz,
this is not a very rich frequency sampling. In general, I recommend using at least
1,024 points for the Fourier transforms, and 2,048 points is often useful as well.
Unfortunately, many popular programs such as Praat do not allow the user to set
the FFT frame size independently of the window length, and will automatically set
the frame size to some value like the first power of 2 greater than the window
length.

Recall that a spectrogram is plotted by linking the decibel amplitude values
over the time–frequency matrix to a colormap, usually a grayscale. We do not
normally want to show the lowest amplitudes in the STFT matrix computed from a
signal, since these are frequently just unwanted noise. The spectrographic
parameter commonly called the dynamic range has to be set by the user; this is the
value that sets how large an amplitude value needs to be to ‘‘make the cut’’ and get
plotted in the spectrogram. It is standard for the dynamic range to be a decibel
value that refers to the difference between the loudest and quietest amplitudes to be
plotted. A good value for speech is usually around 50 dB; this means that time–
frequency cells with amplitude more than 50 dB down from the loudest cells will
simply be ‘‘clipped’’ out of the plot. A value of 30 dB will usually show too little
of the time–frequency content of the signal, losing a lot of valuable information,
while a value of 70 dB or greater would only be suitable for high-quality sound
recordings made with a soundbooth and an expensive microphone, since otherwise
a lot of noise will be shown as light gray in the plot.

In the old days of analog spectrograms, the best dynamic range that could be
obtained using the Teledeltos paper was around 35 dB. This presented a problem
for speech applications, since the average person’s glottal source sound decreases
in amplitude as the frequencies get higher, at a rate of -6 dB/octave. As a result,
everyone’s F1 is generally their loudest formant, with F2 somewhat quieter, and so
on up the frequency scale. A spectrogram of a vowel that is plotted using 35 dB of
dynamic range will only show F3 very faintly, and higher formants may be missing
from the plot. A solution to this that was employed in the early spectrograph
devices was called pre-emphasis, and it involves artificially changing the spectral
amplitude slope by some amount to counteract the natural roll-off of the voice
source. A common standard pre-emphasis was 6 dB/octave, the precise opposite of
the average person’s natural roll-off. The intended result was to even out the
amplitudes of the formants across the frequency range. Pre-emphasis is generally
effective for this purpose, but I find that in the modern world of spectrograms with
much better dynamic range, it can also be detrimental to an accurate picture of the
time–frequency content of speech. There is no longer quite as much reason to even
out the amplitudes of speech formants artificially; a spectrogram with at least
50 dB dynamic range is usually good enough to show all the formants reasonably
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well. The down side of pre-emphasis is chiefly that it increases the amplitude of
high-frequency consonant noise far too much, preventing a realistic picture of the
speech time–frequency content. For the most realistic spectrograms, I recommend
against pre-emphasis, but anyone following this advice should turn up the dynamic
range slightly so that high formants are not too quiet. Figure 4.13 shows two
spectrograms of the same utterance, with and without pre-emphasis.

4.3.2 Short Window (Wideband) Analysis

Wideband (short window) spectrograms have often been described in the literature
as displaying poor frequency resolution and precision, which is true. When applied
in speech science, however, it has often been written that such spectrograms are
unable to resolve the harmonics of the glottal source, and hence the formants look
like fat dark bars. That is to say, formants are supposedly so fat because there are a
number of harmonics resonating within each one, and these are all mushed

Fig. 4.13 Spectrograms of
the author’s name Sean [SAn],
computed with 12 ms
Gaussian window using
Praat. Upper panel uses
40 dB of dynamic range with
6 dB/octave pre-emphasis,
while the lower panel uses
55 dB of dynamic range with
no pre-emphasis
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together in the spectrogram [23]. This way of understanding a wideband spec-
trogram of voiced speech is not correct.

A better way of understanding wideband versus narrowband speech spectro-
grams is to think in terms of the ‘‘harmonic–inharmonic duality’’ of speech that
was discussed earlier. A wideband spectrogram is the right sort of time–frequency
analysis for showing the inharmonic aspect of voiced speech. Each formant is
shown as it is excited by the glottal impulses, albeit as a fat smeared bar due to the
spectrographic uncertainty principle. An important consequence of this view is
that an often-stated ‘‘problem’’ stemming from higher fundamental voicing fre-
quency is not necessarily a problem at all:

The higher the fundamental frequency, the fewer [are] the harmonics which define the
formant and the greater [is] the probability that the most prominent harmonic will be
distant from the center frequency of the formant. [26]

The above quoted statement of the problem surely does apply if one elects to
examine formants using a narrowband analysis showing the harmonics, but it need
not apply to a wideband analysis because the latter does not literally portray a
smeared version of the former. From the inharmonic model of voiced speech, we
can recognize that each formant is excited by the glottal impulses nonetheless,
whether the fundamental frequency is low or high. It is worth commenting that the
supposed ‘‘problem’’ resurrects the forgotten debate over the accommodation
theory that was chronicled in Chap. 3.

4.3.2.1 Vowels

Wideband spectrograms of vowels are chiefly useful for showing the formants.
Such images were also widely used at one time to measure the formant frequen-
cies, but this is no mean feat because of the smearing. As a result, ‘‘manual’’
measurement of formants from spectrograms has fallen somewhat into disuse in
recent years, at least for research studies where a large number of formants have to
be measured.3 For the best possible localization of formants in a spectrogram, a
window should be used whose effective length is only about 1 or 2 ms shorter than
one glottal cycle. Shorter windows yield fatter-looking formants, while longer
windows will begin to show harmonics.

Figure 4.14 shows wideband spectrograms of two synthesized vowels, com-
puted using 14 ms Gaussian windows (the effective length is about 7 ms). It is
essentially impossible to distinguish F2 from F3 in [i], and F1 is difficult to discern
from F2 in [O]. The low F1 of [i] is also very poorly localized. Since formants are
excited with each glottal closure, one might think to try zooming in the analysis to
show only a few glottal cycles. An attempt at this is shown for [O] in the figure, and

3 One anonymous grant reviewer once wrote to me that nobody uses spectrograms anymore,
except for showing speech sounds to phonetics students.
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it is somewhat surprising how much it does help in discerning the two lowest
formants, in spite of the poor frequency localization.

We have just seen that wideband spectrograms, while they do show formants,
are not much good for measuring them precisely even in clean synthesized vowels
which exactly obey the source-filter theory of speech production. Knowing this,
one can only dread the prospect of measuring formants from spectrograms of real

Fig. 4.14 Spectrograms of
synthetic vowels [i] (top), [O]
(middle), [O] 40 ms segment,
computed with 14 ms
Gaussian window using Praat
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speech, and indeed the values are even less clear for in vivo vowels. The reasons
for this are chiefly these two: first, real vowels generally have a voice bar, which is
a low resonance around 200–250 Hz (higher for smaller vocal tracts) that is dif-
ficult to resolve from F1 in high vowels4; second, real phonation and speech does
not precisely obey the source-filter theory because the air flow makes aeroacoustic
processes relevant, and this in turn introduces complicating features into the
spectrum.

Figure 4.15 shows spectrograms of English words containing the vowels [æ, i,
O]. The formants of [æ] are maximally separated from each other and from
the voice bar, so in this case the challenge is minimal. The real trouble is evident in
the other two spectrograms. F1 of [i] is difficult or impossible to separate from the
voice bar, while F1 and F2 of [O] cannot be discerned from each other.

4.3.2.2 Obstruents

Stop consonants have a number of attributes that are visible and measurable with
the aid of a wideband spectrogram. These include the burst event, prevoicing
during the closure, aspiration following release, breathy voicing following release,
as well as vowel formant transitions going in to the closure and emerging from the
release. To best observe these attributes, the wideband spectrogram should be set
to have similar parameters to those most useful for vowels. For a given speaker,
the window duration should be set to slightly less than one glottal cycle. Pre-
emphasis is likely to be a very bad option for any obstruent spectrogram, since it
will artifically increase the amplitude of all the high-frequency noise, making the
stop burst and aspiration appear louder than it actually is. Measuring the formant
transitions going in to and coming out of a stop is at least as problematic as
measuring vowel formants in the first place, but a spectrogram can at least give
some impression of the transitional values, and these are generally indicative of the
place of articulation. A spectrogram is not the best thing for analyzing stop burst
spectra; for this, a carefully windowed power spectrum (shown in the previous
section) is probably the best tool.

Figure 4.16 shows spectrograms of English words pronounced ½khAt] and [gAt],
in which many of the attributes mentioned above can be observed. The initial ½kh�
appears to begin with two closely spaced burst events, not an uncommon occur-
rence for velar stops. The bursts are followed by a period of broadband aspiration
noise, during which it is possible to detect formants in the noise. The initial [g]
begins with a voiced closure, which is visible as a voice bar. The vowel begins
immediately after the stop burst, and so in this case the formant transitions out of
the stop are easier to measure. This example shows a common characteristic of

4 The controversial notion that the voice bar is a separate resonance will be discussed in Chap. 6.
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velar stops, with F2 and F3 appearing to emerge from origin points very close to
each other. Formant transitions can also be observed heading into the final [t] of
both these words.

Fig. 4.15 Spectrograms of English words had [hæd], heed [hid], hawed [hOEd] spoken by the
author in an American English dialect. Computed with 12 ms Gaussian window using Praat
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While fricative noise spectra are best quantified using the power spectrum
techniques discussed previously, a wideband spectrogram can provide a general
look at a fricative that allows one to check whether it is voiced, whether the noise
spectrum changes appreciably through the duration (this will not be detected with
a single power spectrum), and also permits examination of the formant transitions
in surrounding vowels, which can help confirm a place of articulation. When
examining fricatives, it is useful to use a frequency range with good extension in to
the high values. The examples in Fig. 4.17 show that English [f] has noise
extending over 14 kHz, and [s] extends above 11 kHz. It is also easy to observe
the large differences between [f] and [v], resulting from the voicing diminishing
the airflow power that is available to generate a noise with labiodental origin.

4.3.2.3 Sonorants

Approximants and semivowels are chiefly characterized by formants, in similar
fashion to vowels, although they may be very brief sounds. Accordingly, they can
be observed using the same spectrographic parameters normally employed for

Fig. 4.16 Spectrograms of
English words caught [kh At],
got [gAt] spoken by the author
in an American English
dialect. Computed with
12 ms Gaussian window
using Praat
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vowels. Figure 4.18 shows spectrograms illustrating word-initial [¤] and [l] in
English. This variety of [l] is characterized by a very large frequency spread
between its lower and upper formants. The English [¤] sound is quite uncommon in
the world’s languages; it is characterized by a very low F3 (below 2,000 Hz),
which can be seen rising rapidly out into the vowel in this example.

The nasals have formants which can appear quite different from those of oral
sounds. They are generated by the coupled oral and nasal cavities, and are gen-
erally more damped as a result, increasing their bandwidth; this can make nasal
formants appear even more smeared in frequency than oral formants. The coupled
cavities also cause the spectrum to contain at least one zero, or frequency at which
energy is absent. It is impossible to directly observe a zero in a spectrogram,
although it may be evident in a single power spectrum of a nasal. Figure 4.19
shows spectrograms illustrating word-initial [m] and [n] in English. There it can
be observed that the different nasals do have slightly different upper formants
(which are invariably very faint); nasals in general always have a strong resonance
around 250 Hz, however [32], which is often called the ‘‘nasal murmur.’’ The
different nasals are distinguished spectrally by their distinctive upper formants, but
also by formant transitions in nearby vowels in similar fashion to the oral stops.

Fig. 4.17 Spectrograms of
English word pairs fan [fæn],
van [væn] (upper) and sip

[sIp], shone [San], spoken by
the author in an American
English dialect. Computed
with 12 ms Gaussian window
using Praat
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4.3.3 Long Window (Narrowband) Analysis

So far, only wideband speech spectrograms have been closely examined; these are
generally the most useful for observing the acoustic correlates of phonetic artic-
ulations during speech. The term ‘‘narrowband’’ is traditionally given to spectro-
grams computed using an analysis window that is at least two glottal periods in
duration. This increased time of assumed signal stationarity now ‘‘observes’’ the
glottal periodicity in each window, and then the Fourier transform of each window
contains the fundamental voicing frequency and its co-occurring harmonics. The
spectrographic uncertainty induces the ‘‘time–frequency resolution tradeoff,’’
whereby the longer analysis window prevents good time localization of any brief
events or transitions. Figure 4.20 compares a wideband (12 ms Gaussian window)
with a narrowband (120 ms Gaussian) spectrogram of the English word syllable.
The wideband image as usual shows the glottal impulses as vertical lines, the time
precision is good, and the frequency precision is not good. In contrast, the nar-
rowband image cannot resolve the glottal impulses, but the fundamental and its

Fig. 4.18 Spectrograms of
English words light [laIt],
right [¤aIt] spoken by the
author in an American
English dialect. Computed
with 12 ms Gaussian window
using Praat
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harmonics are shown. Here the time precision is poor, however, and formants are
shown only indirectly as groups of louder harmonics.

It is evident from any example such as Fig. 4.20 that a narrowband spectrogram
is not preferable to a wideband one for measuring formants. However, since the
fundamental frequency and harmonics are shown relatively well, one can observe
in this example that the pitch of the voice goes up and down over the course of the
word. The narrowband spectrogram is, in fact, a reasonably good way to track and
measure the pitch of the voice (usually equated with the fundamental frequency,
but I will discuss this more at a later point), which is useful for studies of stress or
intonation. A standard type of tool known as a pitch-tracking algorithm is most
commonly employed for this purpose, but such algorithms are partly probabilistic,
have to be heuristically guided, and have many parameters that must be tinkered
with to achieve even modest performance. Figure 4.21 shows just the low-fre-
quency range of a sentence portion in which the speaker says a stressed syllable is

usually, viewed as a narrowband spectrogram with the pitch track provided from
Praat’s algorithm overlaid as a white line. While the fundamental frequency is

Fig. 4.19 Spectrograms of
English words map [mæp],
nap [næp] spoken by the
author in an American
English dialect. Computed
with 12 ms Gaussian window
using Praat
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observable in the spectrogram during voiced segments, it is not very well localized,
which makes careful manual measurement of the center of the gray line a required
procedure for measuring the voice pitch from this image. The pitch tracking

Fig. 4.21 Low-frequency
range of narrowband
spectrogram (120 ms
Gaussian windows), showing
the annotated phrase uttered
in a sentence context. Praat
pitch track is overlaid in
white

Fig. 4.20 Spectrograms of
the English word syllable

spoken by the author in a
Canadian English sentence
context. Top with 12 ms
Gaussian window; Bottom
with 120 ms Gaussian
window
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algorithm is semi-automated and the data can be stored as soon as it is calculated;
nevertheless, anyone would agree that the results in this case (an unremarkable
example) are far from excellent. In fact, the computed pitch track (which I tried to
make as good as possible by tinkering with the settings) is only occasionally in
agreement with the fundamental in the spectrogram; indeed, it is only occasionally
able to be computed at all in this example. The spectrogram must be viewed as the
gold standard here because it is just a time–frequency analysis and not a heuristic
method, so this shows that a narrowband spectrogram is a more accurate and
reliable pitch-tracking method than a state of the art algorithm.

4.4 Appendix: Praat and Matlab Techniques

4.4.1 Praat Functions

To create vowel sounds using a formant synthesizer, select the following from the
Object view:

New��[ Sound��[ Create sound from Vowel Editor

The vowel editor allows one to set four formants manually; the first two can also
be set by positioning the cursor in a vowel space and listening for the result. The
user also sets the duration and intonation of the synthesized sound.

There are a few ways to get a power spectrum in Praat. The simplest is from the
Edit sound view, where under the Spectrum menu there is a function to
View spectral slice from a selected area. The window function will be
whatever the spectrogram viewing windows are set to, under the spectrogram
settings described below.

Often it will be useful to obtain a spectrum object rather than just a view. First,
the target sound segment may need to be extracted from a longer sound, and for
this the function Extract selected sound (windowed) should be used
from the File menu in the sound editing view. Upon selecting this function, a
dialog box appears allowing the window function to be set; one of the Gaussian or
Kaiser options is always recommended.

There are two options for a spectrum object to be computed from a sound, using
the Spectrum menu in the Object view. If a raw complex Fourier spectrum is
desired or measurements are to be taken, then To spectrum should be selected.
The resulting spectrum object can be exported to use the raw values, it can be
viewed and measured using an edit view (in which it is shown as a power spectrum
on a dB scale), or it can be drawn as a power spectrum in the Picture area. If
only a power spectrum picture will be needed, a useful selection is To ltas,
which stands for long-term average spectrum. As far as I can tell, the resulting
power spectrum is the same as the one computed from a Spectrum object, but
the ltas object can only be drawn in the picture area and cannot be measured
using an edit view.
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Spectral moments can be computed from a Spectrum object under the Query
menu. Any of the central moments (which are normally used) can be precisely
obtained from the selection Get central moment; alternatively, various sta-
tistical quantities related to the moments can be obtained individually, such as the
mean (center of gravity, equal to the first ‘‘central’’ moment),5 skewness (a sort of
normalized 3rd moment), and kurtosis (a sort of normalized 4th moment).

The harmonicity of a target sound can be obtained directly from the sound
object under the Periodicity menu, by selecting any of the harmonicity
functions which compute a harmonicity object. The harmonicity object is a vector
of dB values computed at a sequence of time points from the beginning to the end
of the target sound, which may be queried at particular points, drawn as a graph, or
exported as text. The values measure the harmonics-to-noise ratio using Boersma’s
published algorithm [4].

A spectrogram is optionally displayed in Praat’s edit view of a sound, under the
waveform. The appearance of this spectrogram is set by the spectrogram settings
under the Spectrum menu of the edit view. The regular settings allow the user to
set the frequency range shown, the analysis window length, and the dynamic range
of the view. The window function is set to a Gaussian by default for this view;
users should be aware that the Gaussian window length is automatically doubled
for the computation, so that the length setting corresponds more closely to the
effective length for the analysis. If 10 ms windows are really wanted, then 5 ms
should be used for the setting. The advanced settings allow the user to make
further adjustments including the maximum number of time points and frequency
points for which the spectrogram is computed, but these settings should not nor-
mally require adjustment (v. the Praat manual for more information). The window
tapering function can be changed here if desired, and the pre-emphasis function
can be set to a specific amount of roll-off. Setting this to zero turns off pre-
emphasis.

It is also possible, under the menu obtained by pressing Spectrum from the
object list, to compute a Spectrogram object from any sound object. The spec-
trogram object can then be optimally displayed in the picture section. When the
object is first created, the user sets the window length and tapering function, as
well as the highest frequency computed in the spectrogram. The default time and
frequency steps are generally adequate here. Once the spectrogram object exists,
then one selects Draw --[ Paint to display an image in the Praat picture
section. It is at this point that a number of important spectrogram display options
are set, including the time and frequency range to be displayed, and the dynamic
range and pre-emphasis settings. All of the spectrograms presented in this chapter
were created using this procedure.

5 Although commonly phrased this way, strictly speaking there is no such thing as a first central
moment; the quantity commonly so called is technically known as the first moment about zero,
with the nth central moment being generally defined in terms of the n� 1th moment [33].
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4.4.2 Matlab Code

I have provided several m-files (a term for Matlab programs) for computing and
displaying a traditional spectrum and spectrogram. The m-files discussed here also
depend upon the presence of other ancillary m-files which are provided as part of
the code package. A user should first learn to use the Matlab built-in function
wavread to read sound files in the .wav format into a Matlab vector variable.

½signal; Fs; bits� ¼ wavreadð‘yourfile:wav’Þ;

The above Matlab command will read the contents of the named file into the vector
signal, and will also extract the sampling rate as Fs and the quantization bit
depth as bits. The bit depth is usually irrelevant for our purposes, but the
sampling rate is usually of critical importance.

The file powerspec.m provides a basic Fourier power spectrum from an FFT,
and is invoked using

½PS; f� ¼ powerspecðsignal; Fs; low; highÞ;

where the spectrum vector can be stored as PS and the frequency axis vector as f.
Using these variables is optional, so the functions here can always be called using
only the command to the right of the equals sign if an image is all that is desired. In
the above command, signal should be replaced with the name of the target
signal vector stored in the workspace, Fs should be the correct sampling rate, and
low, high should be the low and high limits of the frequency range to be shown.

The file powerspec_ensemble.m provides an average power spectrum
from a target matrix of signals, one in each column (so the signals must all be the
same length). It is invoked using

½PS; f� ¼ powerspec ensembleðsignals; Fs; low; highÞ;

The file specgram_2010.m provides a conventional spectrogram of the sort
provided by Praat, and is invoked using

½STFTpos; f; tforspgm� ¼ specgram 2010ðsignal; Fs; window;

overlap; fftn; low; high; clipÞ;

in which the analysis window length (in samples) is set in the 3rd argument, the
number of samples by which successive windows overlap is set in the 4th argu-
ment, the FFT frame size is set in the 5th argument, and the dynamic range is set as
a negative dB value in the 8th argument. For example assuming a 44.1 kHz
sampling rate, to compute a spectrogram with 1,024 frequency bins using 10 ms
windows overlapped by 7 ms, use 441 for window, 309 for overlap, and 2,048
for fftn. The window function is set to Kaiser by default, but this can be changed
by altering one line of the code. The optional storage variables can keep the
displayed portion of the complex STFT, the frequency axis vector, and the time
axis vector.
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Chapter 5

Alternative Time–Frequency

Representations

The spectrogram is a well-studied time–frequency representation, but there are
numerous others. There has been a rich literature on this subject, and many
different time–frequency representations have been devised, studied, and applied
to various signal analysis problems (e.g. [1]). Unfortunately, the subject has never
to my knowledge been made accessible to speech scientists, with the result that we
have rarely availed ourselves of any such representations other than the spectro-
gram. This chapter is an attempt to rectify this situation somewhat, although the
presentation takes on a more advanced mathematical character at certain points.

Any time–frequency representation can be viewed pragmatically in two ways.
Firstly, it can be thought of as an attempt to show how the energy in a signal is
distributed in the time–frequency plane; certainly, a spectrogram can be viewed in
this way. This view gave rise to the term distribution being used in place of
representation much of the time. Quite often, however, a subject signal is in some
physical sense known to consist of a number of distinct ‘‘components,’’ each
having its own frequency that may be changing through time. Thus, just as a
Fourier spectrum is often viewed as a ‘‘decomposition’’ of a stationary signal
showing its frequency components, a time–frequency representation of a non-
stationary signal may often be viewed as a decomposition showing how the var-
ious component signals change in frequency with the passage of time. In this
context, the distinct elements of a multicomponent signal are called line compo-

nents. What is really sought in many cases is then the instantaneous frequencies of
the line components in a signal, although this is not a notion that is rigorously
definable [13].

This chapter introduces the general theory of quadratic, or bilinear, time–
frequency representations in the most gentle way I could come up with. In order to
do this, it is necessary to discuss the Wigner–Ville distribution, which plays a
central part in defining the class of quadratic distributions. My ultimate goal,
however, is to promote a particular quadratic time–frequency representation called
the Zhao–Atlas–Marks distribution, as a possible alternative to the spectrogram
for speech analysis. The idea here is to describe the representation, show a few
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examples comparing it to spectrograms, and enable the reader to be able to go
ahead and try the ZAM distribution in various situations where a spectrogram
might be applied. It is certainly not necessary to acquire a deep understanding of
the theoretical points, any more than most speech scientists have ever understood
the spectrograms which they have employed nevertheless.

5.1 Wigner–Ville Distribution

The Wigner–Ville distribution (WVD) is of tremendous theoretical importance in
time–frequency analysis [6]. It has many interesting and contradictory properties
which make it at once appealing for applied signal analysis, but also virtually useless
for this purpose. Understanding the WVD is important as an entrée into the realm of
the ‘‘quadratic’’ time–frequency distributions, all of which are definable and
understandable in terms of the WVD. It is useful to note at first that, while the STFT
is a linear transform and is not a member of the quadratic class, the spectrogram
derived from it is a quadratic distribution which can be defined using the WVD
instead of the STFT. Considering the good points, the WVD of a linear frequency
modulated sinusoid (i.e. a linear FM chirp) exactly shows the instantaneous fre-
quency of the chirp, which is enticing for those of us interested in determining the
instantaneous frequencies of signal components. Secondly, the theoretical WVD
does not depend on a choice of window; it is in this sense the ‘‘canonical’’
time–frequency analysis of a signal, depending only upon the signal itself.

On the minus side, unlike a spectrogram the WVD’s real values are quite often
negative, which spoils the physical interpretability, and generally the images of a
WVD are displayed to show only the positive part. Secondly, while the WVD can
precisely follow the instantaneous frequency of certain simple test signals, for
more complicated modulations or multicomponent signals, the bilinearity of the
transform introduces interferences and ‘‘cross-terms’’ in the time–frequency
distribution which make it virtually unreadable as an analysis of speech.
Nevertheless, we will observe later in the chapter that a close relative of the WVD
is in many respects an improvement upon the spectrogram for speech spectrum
analysis.

5.1.1 Definition and Theory

The Wigner–Ville distribution of a signal zðtÞ is defined using the following
integral in continuous time [5]:

Wzðt;xÞ ¼
def

Z

1

�1

z t þ
s

2

� �

z� t �
s

2

� �

e�ixs ds: ð5:1Þ
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It was first derived by the physicist Eugene Wigner for use in quantum mechanics,
where he attempted to represent a probability distribution over paired physical
properties which are not simultaneously measurable [21]. The distribution was
thereafter derived in a signal analysis setting by Ville [20], who provided no evi-
dence that he was aware of Wigner’s quasi-probability distribution of a similar
nature. In the context of signals, time and frequency play the roles of the physical
properties which are not simultaneously measurable. This distribution, like most
other relatives including the Zhao–Atlas–Marks representation, works best for
signal analysis when zðtÞ is the analytic signal associated to a real signal of interest.

The core of the expression for the WVD clearly resembles the definition of
autocorrelation, except that there are two time variables, s for the lag and t for the
signal time. This function:

Kzðt; sÞ ¼ z t þ
s

2

� �

z� t �
s

2

� �

ð5:2Þ

is also known as the instantaneous autocorrelation, and we can now see that the
WVD is its Fourier transform from lag to frequency. Since I already mentioned
how a simple power spectrum is the Fourier transform of a non-normalized
autocorrelation (i.e., an autocovariance), it is at least plausible that the WVD will
serve as a kind of ‘‘instantaneous’’ spectrum, being as it is the Fourier transform of
the instantaneous autocorrelation.

5.1.2 Discrete Implementation

While the STFT was in some sense originally conceived as a discrete transform
by Gabor, a fair amount of ingenuity was involved in the initial formulation of
a discrete Wigner–Ville distribution by Claasen and Mecklenbräuker [10].
The discrete version of the WVD can be obtained by sampling the continuous
distribution, but some snags have to be dealt with.

The method for N samples of a digital signal zðnÞ with sampling rate fs
involves sampling the instantaneous autocorrelation function at the core of
the transform, using integer index m to represent the lag samples and integer
index k to represent the discrete frequency bins as in a DFT. The correctness
of the following expression is proven in [8]:

Wz

n

fs
;
kfs

2N

� �

¼ 2
X

jmj\N=2

z
nþ m

fs

� �

z�
n� m

fs

� �

exp
i2pkm
N

� �

ð5:3Þ

Changing variables to get rid of the sampling rate yields the following
expression for the discrete Wigner–Ville distribution of zðnÞ:
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Wzðn; kÞ ¼
def

2
X

jmj\N=2

zðnþ mÞz�ðn� mÞ exp
i2pkm
N

� �

ð5:4Þ

By comparing with Eq. 2.35 for the DFT, it can be seen that the above
expression involves a DFT of the sampled instantaneous autocorrelation
(assuming the necessary periodicity of the DFT), and so the above definition
can be slightly recast in a format friendly to computation [8]:

Wzðn; kÞ ¼ 2DFT
m!k

fzðnþ mÞz�ðn� mÞg: ð5:5Þ

An improvement upon the above specification of a discrete WVD has
recently been published [19], but I hope I am correct in my judgement that
the practical differences for our purposes will be slight.

In order to implement the above equation a number of finer algorithmic points
need to be dealt with, which unfortunately seem never to have been discussed at
length in the signal processing literature. To expound on this I am relying on a few
tips scattered around [2, 9], together with my own analysis of some public domain
Matlab code released by Auger and colleagues [4]. Given a digital signal sðnÞ; the
following steps can be taken to compute its discrete WVD. The reader is referred
to the linked Matlab code for exact details.

1. Compute the associated analytic signal zðnÞ;
2. Initialize a vector t of numbers from 1 to the length of the signal (in samples),

stepping uniformly by some number step.
3. The length N of the lag window must be set; it is normally input by the user.
4. Initialize the discrete Wigner–Ville matrix with N frequency bins and

length(t) time columns.
5. For each time column ti positioned at a sample point in time vector t, set up

the lag window vector tau to be centered around 0 with length N, or some
smaller length as needed to prevent the lag window from running beyond the
ends of the signal.

6. Optionally, initialize a tapered window function (e.g. Kaiser, Gaussian) the
same length as the lag window.

7. Using the current lag window, compute the current time column of the instanta-
neous autocorrelation matrix as zðtiþ tauÞz�ðti� tauÞ; optionally multiply-
ing pointwise by the tapered window function; using a tapered window will
produce a discrete pseudo-Wigner–Ville distribution that is smoothed in frequency.

8. When the autocorrelation matrix has been constructed column-by-column in this
fashion, the discrete WVD is computed as the real part of the FFT of the matrix.

The above outlined procedure contains a number of parameters not present in
the ‘‘pure’’ Wigner–Ville distribution. First of all, we set a time step of a certain
number of samples; this amounts to a time frame of samples over which the signal
is assumed to be unchanging. In practice, this ‘‘time window’’ decimates the
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transform to reduce computational requirements, and should be ‘‘smaller than the
local time of stationarity’’ [9]; to approximate the pure WVD, the value of step
should be set to 1 (i.e. not decimated). Secondly, the procedure sets up a ‘‘lag
window’’ that is possibly shorter than the entire signal; again this is to facilitate
computation, and to approximate the pure WVD the value N should be set to the
entire signal. Strictly, the WVD with a lag window is called the pseudo-Wigner–

Ville distribution [17]; as with the spectrogram, a rectangular window is not the
best choice, and it is conventional to multiply by a tapered window function wðsÞ
in the lag domain. A window in the lag domain has the effect of smoothing in the
frequency dimension, and is often referred to as a frequency-smoothing window.

The action of a lag window as a frequency smoothing window derives from
the following identity for a signal zðtÞ [12]:

Z

1

�1

hðsÞz t þ
s

2

� �

z� t �
s

2

� �

e�i2pms ds ¼
Z

1

�1

Hðm� f ÞWzðt; f Þ df ; ð5:6Þ

in which hðsÞ is a lag window, Hðm� f Þ is its Fourier transform involving a
second frequency variable m known as the Doppler (it is formally dual to the
lag as frequency is dual to the time), and Wzðt; f Þ is the Wigner–Ville dis-
tribution of the signal.

5.1.3 Features of the Wigner–Ville Distribution

The Wigner–Ville distribution is of interest here chiefly to allow the introduction of
other quadratic time–frequency distributions, but letme illustrate some of its features
in contrast with the spectrogram. The spectrogram is fundamentally a short-time
analysis, meaning the choice of time window is its most important parameter. The
WVD, by contrast, does not necessarily involve a window as such, except where
needed to make computation tractable. Fundamentally, in its unvarnished form the
WVD provides a joint time–frequency representation of an entire signal at once, by
making use of the instantaneous autocorrelation function. These factors are illus-
trated in Fig. 5.1, in which spectrograms are compared with a WVD of a simple
double sine wave. The upper panel, with rectangular windows, shows the extreme
importance of a tapering function for a spectrogram; there is a great deal of spectral
leakage everywhere. The middle panel, with 100 ms Gaussian windows, shows how
even a long window like this does not produce a spectrogram with fabulous fre-
quency localization; the sine waves are rendered as fat bands. The Wigner–Ville
distribution in the bottom panel, by contrast, has remarkable frequency localization
on the sine waves, but it is contaminated by the presence of a ‘‘false component’’ at a
frequency midway between the true components. Such artifacts are called cross-

terms, and their presence in every WVD is what makes the representation all but
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useless for speech analysis. Technically, a spectrogram still has cross-terms, but they
only arise between components or events whose STFTs overlap [15]—i.e., when the
components (or events) are too close in frequency (or time) to be fully resolved
because of the spectrographic uncertainty principle.

Figure 5.2 shows four Wigner–Ville distributions of a sine wave with an up and
down frequency modulation in the middle. The top left is a ‘‘pure’’ WVD (approx-
imated as closely as possible by the discrete algorithm here). This representation is
highly localized on the signal itself, but is once again contaminated by interference.

Fig. 5.1 The top two panels

show spectrograms of a
signal consisting of two sine
waves (50 and 150 Hz); both
are computed using 100 ms
analysis windows, only the
middle panel uses a Gaussian
taper function. The lower

panel shows a Wigner–Ville
distribution of the same
signal, computed with
0.512 s rectangular lag
windows, and 1.56 ms time
steps. This somewhat
approximates the ‘‘pure’’
WVD
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These are not cross-terms since there is only one component here, but are instead
known as inner interferences [12] resulting from amodulating component interfering
with itself; either way, they are a most undesirable feature of the WVD.

The top right panel uses 100 ms time steps, which as in a spectrogram has the
effect of assuming the signal is unchanging over 100 ms increments. You can see
that this assumption is totally unwarranted for the signal at hand, so that the linear
frequency modulation is no longer properly located. The bottom left goes back to
the fine 1 ms time steps, only this time a 5 ms rectangular window in the lag
domain is employed, thus making a pseudo-Wigner–Ville distribution. This has a
smoothing effect in the frequency domain, which eliminates a large amount of the
interference. The bottom right shows a pseudo-Wigner–Ville distribution which is
equivalent to the left panel, but with a Kaiser window function applied to the 5 ms
lag frames. It compares very favorably to the two spectrograms of the same signal
shown in Fig. 5.3. You can see that the pseudo-WVD seems to be quite a useful
representation because of the tapering function. In general, however, this simple
approach to smoothing the distribution is not very effective at eliminating cross-
terms, so we next move to the more successful and more complicated approach
involving generalized quadratic distributions.

5.2 Zhao–Atlas–Marks Distribution

We have so far seen that the Wigner–Ville distribution has excellent theoretical
time–frequency resolution, but even in ‘‘pseudo-’’ form with a tapered lag window,
it displays too much interference and cross terms to be a useful analytical tool.

Fig. 5.2 Four Wigner–Ville distributions showing a sine wave with up and down linear
frequency modulation. Top row: 1 ms time step, full signal lag window (approximates pure
WVD); 100 ms time step, 410 ms rectangular lag window. Bottom row: 1 ms time step, 5 ms
rectangular lag window; 1 ms time step, 5 ms Kaiser lag window
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The spectrogram displays very little interference and cross terms, but its time–
frequency resolution is not so good. The Zhao–Atlas–Marks distribution family
[25] (also known as the ‘‘cone-shaped kernel’’ distributions) is one example of a
good compromise; its resolution is ‘‘quite superior to the spectrogram and the
interference is quite insignificant’’ [3]. The ZAM has properties that are well-
suited to examining speech signals [3], and which can improve upon spectrograms
in many cases. ‘‘Heuristically, we can say that the time–frequency smoothing by a
spectrogram is based on only one ‘degree of freedom,’ as it employs a unique
short-time window’’ [12]. With the ZAM, however, it is possible to take both the
time and frequency dimensions into consideration, and proceed to develop
smoothing that has two degrees of freedom.

5.2.1 Quadratic Distributions

I showed in the previous section that the Wigner–Ville distribution derives directly
from the instantaneous autocorrelation function by a Fourier transform in the lag

Fig. 5.3 Two spectrograms
of the same signal from the
previous figure. Top: 200 ms
Gaussian window; bottom:
20 ms Gaussian window
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variable. It was also shown that the pseudo-Wigner–Ville distribution in turn derives
from the pure WVD through multiplying by a lag window wðsÞ inside the Fourier
transform, and that this can smooth the frequency dimension of theWVD. It was first
shown by Cohen [11] in a quantum mechanics context that a more general approach
to smoothing the WVD is both possible and desirable; instead of just multiplying by
a lag window, one can perform a time convolution1 of the instantaneous autocor-
relation with a two-dimensional function Gðt; sÞ called the time-lag kernel, and this
has the effect of smoothing both the time and frequency dimensions of the final
distribution. The following expression defines the general class of quadratic time–
frequency distributions which can be computed in this fashion:

qzðt; f Þ ¼ F
s!f

Gðt; sÞ�
t
z t þ

s

2

� �

z� t �
s

2

� �h in o

ð5:7Þ

where the symbol F is the Fourier transform operation and �
t
indicates a time

convolution. A great deal of research in time–frequency analysis has been devoted
to the development of useful kernels within this so-called ‘‘Cohen class.’’ It is also
important to remember that the spectrogram itself can be defined and computed in
a similar fashion to the WVD, thus showing that the spectrogram is a special
member of Cohen’s class—in particular it is a type of quadratic distribution which
is always positive and has maximally suppressed interference and cross-terms.

5.2.2 Discrete Implementation

Converting the expression (5.7) for a general quadratic time–frequency distribu-
tion into discrete time–frequency requires a number of steps similar to the deri-
vation of the discrete WVD; the reader is referred to [6] for an account of the steps
which lead from the above equation to the discrete time–frequency version:

qzðn; kÞ ¼ 2DFT
m!k

fGðn;mÞ�
n
½zðnþ mÞz�ðn� mÞ�g ð5:8Þ

where n is the sampled time, m is the sampled lag, and k is the sampled frequency.
The above definition is intended to be friendly to computation; a rough algorithm
for computing any particular quadratic time–frequency distribution from a digital
signal sðnÞ is equal to the earlier algorithm for the discrete WVD, with the addition
of one step following (or during) computation of the instantaneous autocorrelation.
That step is to perform a discrete convolution in n (time) with the discrete form of
the smoothing kernel Gðn;mÞ: In some cases, an approximation to the discrete
convolution may be the best option, owing to difficulties with the discrete-time
version of the smoothing function. Detailed considerations on this point are
presented in the math box below.

1 The process of convolution will be defined below in the discrete-time context.

5.2 Zhao–Atlas–Marks Distribution 115



When the smoothing kernel for the Zhao–Atlas–Marks distribution family is
converted to its discrete counterpart, it takes the following form parame-
terized by a [8]:

Gðn;mÞ ¼ wðmÞ rect
an

4m

� �h i

� �sincðnÞsincðmÞ; ð5:9Þ

in which wðmÞ is a typical kind of tapering function (Kaiser, Gaussian),

rect(x) is the standard rectangular step function [23], sincðxÞ ¼ sinðpxÞ
px

is the
standard (normalized) cardinal sine function [24], and where the double
convolution is required in continuous-time before sampling the lag vector.
This is computationally impossible, and can only be approximated using
digital oversampling. A less computationally intensive way is to devise a
different discrete time-lag kernel which approximates the effects of the
convolutions in the above expression. Two possible approximate ZAM
kernels are [7]:

Gðn;mÞ ¼
def wðmÞ if janj � j2mj

0 otherwise;

�

ð5:10Þ

Gðn;mÞ ¼
def wðmÞ

2
½1þ tanhðj4mj � j2anjÞ� ð5:11Þ

The algorithm due to Auger et al. [4] employed in the linked Matlab code
computes the ZAM distribution using discrete convolution in time only (see
below for a definition) of the instantaneous autocorrelation with the first
approximate kernel above. This method also adds a separate time window
using a convolution operation, so the implementation is really a time-
smoothed ZAM.
The discrete convolution of two complex-valued functions f ; g on the inte-
gers (e.g. sampling indices) is given by [22]:

ðf � gÞðnÞ ¼
def

X

1

m¼�1

f ðmÞgðn� mÞ ¼
X

1

m¼�1

f ðn� mÞgðmÞ ð5:12Þ

The algorithm employed here for the ZAM distribution employs both a time
window and a lag window, in contrast to the original ZAM distribution which has
a lag window only. The two windows contribute to smoothing the interferences in
the time and frequency dimensions respectively; the user can potentially change
the tapering function that is applied in each window, a flexibility that generalizes
the original Zhao–Atlas–Marks distribution into what we might call the smoothed

ZAM. In addition to changing the smoothing window, a user also has independent
control over the time frame used to smooth in time versus frequency; this is in
contrast to the spectrogram where one always suffers from the trade-off between
time and frequency smoothing/resolution. Since there is only one window for us to
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set when computing a spectrogram, it affects both time and frequency localization.
When the spectrogram time window is long, one sees good frequency localization
but poor time localization; when the window is short, the opposite is true. With the
ZAM, the time window does not affect the apparent localization of frequencies,
and the lag window does not affect the time localization.

Figure 5.4 illustrates four ZAM images of an artificial signal composed of two
sine waves, one of which includes a linear frequency modulation up and down.
The different window values illustrate the effects of varying degrees of smoothing/
resolution in each dimension. A shorter time window yields better time resolution
in the ZAM, without any trade-off in the frequency dimension. A longer lag
window yields better frequency resolution, with no loss of time resolution. It
should be noted that, as with the WVD images presented above, these ZAM
images discard negative amplitudes which may be present in the raw transform.

The top left panel of Fig. 5.4 shows the ZAM of the signal with a very short
time window and a moderate lag window. Frequency localization is acceptable,
but the interference between components is too spread out. This type of interfer-
ence is in a sense ‘‘physically real,’’ since it results from the phenomenon of
beating between components. The top right panel of Fig. 5.4 shows the ZAM with
longer 22 ms time window and shorter lag window; indeed it is easy to see that the
resolution is poorer in both dimensions. The bottom left panel uses the 22 ms time
window with a very long 205 ms lag window, which greatly improves the fre-
quency localization. These three images were all computed using Kaiser window
functions. It is important to note that the ZAM distribution can only be computed
with a time window that is not longer than the lag window. The bottom right image

Fig. 5.4 ZAM distributions of a signal comprised of a sine wave and a second sinusoid with
linear frequency modulations. Top row: 3 ms time, 51.3 ms lag windows; equal 22 ms time and
lag windows. Bottom row: 22 ms time, 204.7 ms lag windows; the same but with rectangular
windows (no taper)
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is computed with the same parameters as the bottom left, only using rectangular
windows instead of Kaiser; the need for the tapered windows is apparent from this.

In the realm of quadratic time–frequency representations, the trade-offs among
time–frequency resolution, cross-term attenuation, and positivity presents some-
thing of a paradox. It is not possible for an alternative distribution to significantly
improve upon the resolution of a spectrogram without introducing more cross-
terms and/or more negative values. The ZAM distribution pushes a significant
amount of the signal energy into the negative amplitudes, where it will not be
plotted because it has no meaningful physical interpretation. The overall effect of
this can rob a ZAM image of some of the signal energy that we would expect to
see; in speech signals, the effect can lead to ZAM displays which show compo-
nents having improperly small bandwidths [14], or improperly small amplitudes.
From a certain perspective, at least the first of these problems can be an advantage,
since it means that speech components can appear to be quite concentrated around
their instantaneous frequencies, rendering these easier to measure. Nonetheless,
the various tradeoffs negate the utility of the ZAM for measuring the amplitudes of
the components in a multicomponent signal such as speech, as could be discerned
from the detailed study by Hlawatsch et al. [14].

5.2.3 Speech Analysis with ZAM

For our first speech example, let us take a look at the ZAM distributions in Fig. 5.5,
showing the same English utterances depicted as spectrograms in Fig. 4.15 in the
previous chapter. I don’t think it is outrageous to judge that much of the relevant
spectral information is more clearly presented in the ZAM distributions here,
although this distribution does tend to eliminate some of the signal information that
we might wish to see (probably the missing energy has been pushed over to false
components with negative amplitudes which are not displayed). The ZAM images
appear to favor the frequency components of the signal rather more than the
impulsive events or the noise, for one thing, and this may or may not be desirable in
every application. When it comes to depicting the formant frequencies, the ZAM
images do seem to come out ahead of the spectrograms. The formants are narrower
in the ZAM images, and thus more easily separated from each other and from the
voice bar—in spite of the ZAM images having been computed with shorter
smoothing windows, whose effect generally would be to decrease the frequency
localization. Note in particular that F1 in heed is well-separated just above the much
louder voice bar, and also that F1 and F2 in hawed can be discerned below and
above 500 Hz respectively. The improved formant localization is due to the ZAM
distribution being governed by its own variation of the uncertainty principle, which
is more favorable to time–frequency localization than the spectrographic uncer-
tainty. There is no way to ‘‘beat’’ the uncertainty principle entirely, but it is evi-
dently possible to improve upon the spectrogram in this respect.
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Figure 5.6 illustrates the flexibility of the smoothed ZAM for speech, stemming
from the two window parameters. The top panel shows an image computed with
8 ms time and lag windows, producing something reminiscent of a wideband
spectrogram but with superior frequency localization. The middle panel uses 40 ms
for both windows, which yields something similar to a narrowband spectrogram.
The lower panel mixes the two conditions; the 40 ms lag window is long enough to
resolve the harmonics of the voice, while the 8 ms time window is short enough that
we can observe the vocal cord impulses represented as specks between harmonics,
and also show the release burst of the final [d] with excellent time localization. This
kind of mixed ‘‘wide and narrowband’’ time frequency representation cannot be
contemplated, much less approximated, by means of a spectrogram.

Turning to our little corpus of synthesized vowels, Fig. 5.7 revisits two of the
problematic vowels that were shown in spectrograms in Fig. 4.14. In the ZAM
images, there is significantly improved formant localization. Moreover, in these
cases it is of considerable utility to zoom in on a small number of glottal

Fig. 5.5 Zhao–Atlas–Marks
distributions of English words
had, heed, hawed (top to

bottom). Computed with 8 ms
time and lag window
dimensions, using a Kaiser
tapering function
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Fig. 5.6 ZAM distributions
of English word had. Top
image computed using 8 ms
time and lag smoothing
windows; middle image

computed with 40 ms time
and lag windows; bottom
image computed with 8 ms
time window and 40 ms lag
window

Fig. 5.7 ZAM distributions of synthesized vowels, all computed with 7 ms Kaiser windows in
time and lag. Top row: [i] full length and close-up of a few glottal pulses. Bottom row: [ c] full
length and close-up of glottal pulses
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pulsations. F2 and F3 can be observed separately following the initial impulse
excitations during the vowel [i], while F1 and F2 of [ c] can be quite readily
separated and measured with reasonable precision. It is also worth keeping in mind
that these synthesized vowels do not, by design, include a voice bar, which is so
often observed in natural speech (v. the discussion in the next chapter).

One notable feature is the apparent ‘‘splitting’’ of F1 that is evident in the
magnified analysis of [i]. This feature has been noted in ZAM distributions of
speech signals [16], where it was explained that the apparent splitting of a com-
ponent can be indicative of a sudden phase shift (also explained in greater detail in
[12]), and the authors speculated that the feature could indicate a phase jump that
is theoretically predicted to occur at the instant of glottal closure. This glottal
phase jump is expected because the fundamental frequency of phonation is in
general not commensurate with the formants, and so each new glottal impulse
effectively ‘‘cuts’’ the formant off abruptly when it begins anew. The Wigner–Ville
and ZAM distributions are both much more sensitive to phase shifts in a
component than the spectrogram.

In the spectrograms of these vowels in Fig. 4.14, it was observed that the
formants are too poorly localized to be measured reliably. F2 and F3 were smeared
together in the vowel [i], F1 and F2 were smeared together in the vowel [ c], and
zooming in to show a few glottal pulsations showed extremely fat formants that
would be very difficult to accurately measure. The difference in time–frequency

Fig. 5.8 Comparing
spectrogram (top) with ZAM
distribution of a few glottal
pulses from synthesized [ c]
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localization between spectrogram and ZAM is starkly illustrated in Fig. 5.8,
although the ZAM image has the drawback that faint signal components are
attenuated too much, so that they can hardly be found. The ZAM in the figure was
computed with 100 dB (i.e. complete) dynamic range in an effort to bring out the
faint F3 of this vowel.

The superior resolution and precision of the ZAM distribution makes it more
amenable to zooming in on small portions of a speech signal. Figure 5.9 shows two
ZAM close-ups of the author’s phonation during the vowels of English heed and had.
While these ‘‘magnified’’ images of phonation show formants more clearly than the
spectrograms of Fig. 4.15, it is still not obvious that one could make a good mea-
surement of all of the relevant formants. In particular, F1 of [i] is still indiscernible
from a voice bar.With these kinds of close-up images, however, it is possible to view
the fine structure of phonation inmuch greater detail than has previously been typical.
Such images lead to new questions concerning the very nature of the time–frequency
structure of phonation, questions which I will attempt to address by applying yet a
new approach to time–frequency analysis in the next chapter.

5.3 Appendix: Matlab Routines

When using the routines provided for the WVD and ZAM distributions, it is
extremely important to first convert the subject signal to its associated analytic
signal, as this will prevent a large amount of the aliasing that is inherent from the
discretization of the schemes. The mfile newhilbert.m has been written to

Fig. 5.9 ZAM distributions
showing natural English
vowels [i] (top) and [æ],
computing using 9.3 ms
Kaiser windows in the time
and lag domains
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incorporate some very recent developments to refine the algorithm for computing
the discrete analytic signal by means of the Hilbert transform [18]. It is invoked
simply by:

output ¼ newhilbert ðxr; nÞ;

where output names the new analytic signal, xr is the input real signal
(optionally a matrix of signal columns can be used to transform multiple signals at
once) and optional parameter n is the frame length for the transform, which is set
equal to the signal length if the parameter is missing.

The basic Wigner–Ville distribution is produced using mfile Wigner-

Ville.m according to the following template:

½wvd; f; t� ¼ WignerVilleðsignal; Fs; step; fftn; low; high; clipÞ

where the step parameter sets the hop size from one analysis point to the next (if
it is greater than one, the resulting distribution is decimated), and fftn sets the
WVD overall length (and also the frequency sampling), which is the maximum lag
window length (the lag window is altered throughout the distribution, so that it
stays within the confines of the signal). The hop size effectively introduces a kind
of time window that does no smoothing; a larger step assumes longer-term sta-
tionarity of the signal. All such parameters in the code which set a particular length
within the signal are currently in units of samples.

A form of pseudo-Wigner–Ville distribution is carried out by WinWigner-

Ville.m, using a Kaiser tapering function applied to the lag window. As usual in
all these mfiles, the functions can be called with or without the value-passing
variables and the equals sign. For the Wigner–Ville and Zhao–Atlas–Marks
functions, the core algorithm is taken from the public-domain Matlab code
released by Auger and colleagues [4].

The smoothed Zhao–Atlas–Marks distribution can be created using ZAM.m for
a full-color plot, or ZAMgray.m for a spectrogram-like grayscale. All color time–
frequency routines here use my customized colormap myjet.m to plot ampli-
tudes. This color scheme uses a ‘‘rainbow’’ progression from dark red (loudest)
through red, orange, and yellow, to green (quietest). The two ZAM functions are
called according to the following:

½zam; f; t� ¼ ZAMðsignal; Fs; window; step; fwin; fftn; low; high; clipÞ

in which there are numerous parameters to be provided. This modified form of
ZAM involves fully separated smoothing in time and frequency; the lengths of
these smoothing windows (tapered by a Kaiser function in the code) are set by
window and fwin, respectively. Note that this algorithm requires the windows to
have an odd number of samples. The value of step determines the hop size
between points of analysis, and fftn is the Fourier transform frame size which
determines the frequency sampling. Should the intrepid or knowledgeable reader
choose to examine my code, it is useful to remember that these functions which
compute a bilinear time–frequency representation invariably perform a Fourier
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transform of an instantaneous autocorrelation matrix, and all the action is in the
creation of the latter matrix by discrete convolution.

One may choose to try measuring frequencies of components, such as formants,
using a ZAM image. To facilitate this, an additional function ZAMm.m has been
included, which adds a small figure in the lower left of the screen that displays the
precise frequency under the mouse pointer in the main ZAM figure. This fre-
quency is still reported after changing the zoom view of the main image.
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Chapter 6

The Reassigned Spectrogram

This chapter introduces a relatively new modified form of the spectrogram which
has variously been described by the term reassigned, or by the phrase time-cor-

rected instantaneous frequency. While the latter is more descriptive of the scheme,
the former is shorter and seems to have gained supremacy in the (still rather
sparse) literature on the subject. The reassignment process yields a modification of
a spectrogram which effectively ‘‘sharpens’’ it, concentrating the smeared out
spectrographic points around tighter lines in both the frequency and time dimen-
sions. This approach relies on the understanding of the spectrogram as showing
instantaneous frequencies of line components, and sharpens that view of things
while doing away with the idea of showing how energy is distributed in the time–
frequency plane.

In the first section, I describe how reassignment of the spectrogram works from
a theoretical and historical perspective. Next, an algorithm for reassignment is
presented in some detail. Following this, I describe a further modification of a
reassigned spectrogram using a process I call pruning; this allows one to selec-
tively eliminate ‘‘spurious’’ points from the image which are not likely to be
associated to either a line component or an impulse in the signal. Such extra points
arise from randomness that afflicts the reassignment scheme at low amplitudes,
and also from the interference terms that are a natural element of the spectrogram
prior to reassignment.

Having described all of the processing methods, I turn next to the applications.
It will first be observed that reassigned spectrograms can provide unprecedented
imaging of the fine time–frequency structure of the phonation process at high
magnification. Indeed, so many new aspects of phonation are revealed with the
technique that our current understanding of the phonation process itself is inade-
quate to explain them all. After discussing phonation as such, I turn to the problem
of formant measurement, which is now found to be both easier because of the
clarity of the image, and harder because the detailed view of phonation spotlights
the shortcomings of simple speech production models. The chapter goes on to
show reassigned spectrograms applied to consonants, and finally to pitch tracking;

S. A. Fulop, Speech Spectrum Analysis, Signals and Communication Technology,
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enormous success can be realized with this last technique. This chapter is partly a
revision of a previously published paper [5]. It has been rewritten to suit the
current purpose, with updated discussion and all new figures.

6.1 Reassignment: History and Definitions

The historical development of the spectrogram and its mathematical represen-
tation as the short-time Fourier transform have been treated in Chap. 4. It was
just following the complete derivation of the short-time Fourier transform in the
1960s [20, 27], when a paper was published by Rihaczek [26] that set the stage
for the development of the reassignment method. Rihaczek, in fact, was far from
thrilled by the STFT (or the spectrogram, presumably); he dismissed it as a
relative curiosity because of its smearing, which prevents it from capturing the
time–frequency energy distribution with precision. Rihaczek tried to do better
than the STFT, and derived a complex energy density of the signal over the
time–frequency plane. Integrating over each time–frequency cell of this density
yields an energy distribution which is distinct from a spectrogram; it is today
understood as another of the quadratic distributions considered in the preceding
chapter. The important thing about it is the time–frequency points where
Rihaczek’s distribution gets most of its energy from, and how this pertains to the
short-time Fourier transform.

A digital STFT provides, in effect, a ‘‘stack’’ of complex analytic signals, one
for each frequency bin in the matrix. This perspective on the STFT was first
highlighted by Kodera et al. in 1976 [17]; these authors recognized that most of
the energy in Rihaczek’s distribution (in its discrete form) is concentrated around
the instantaneous frequencies of these ‘‘signals’’ provided at each frequency bin.
So while the STFT frequency bins quantize the frequency range at regular
intervals, the actual instantaneous frequency of a signal component within a
particular bin can be computed more accurately using Rihaczek’s equations—
assuming there is only one significant component in a bin. Kodera et al. showed
that the instantaneous frequency of a particular row in the STFT matrix can be
computed from the time derivative of the complex argument (also called the
complex phase) of the STFT, as is implied from Rihaczek’s paper. I believe this
marks the first point in history when anyone found much use for the complex
phase in the STFT—prior to this, the STFT was seen purely as a means of
defining the spectrogram, which is computed using the magnitude of the STFT
and discarding the phase. It turns out that there is a great deal of important
information hidden in the STFT complex phase, and this fact is what makes
reassignment of the spectrogram possible.

The instantaneous frequencies as a function of time, which correspond to
the stack of frequency bins in the STFT matrix, are altogether called the
channelized instantaneous frequency (CIF) of the signal [22], and this is
defined as the time derivative of the STFT phase. If there is just one signal
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component dominant in the neighborhood of a frequency bin, then the CIF
spectrum will show the instantaneous frequency of that component with
arbitrary precision (i.e. not quantized by the discrete time–frequency grid).
The CIF thus provides us with a holy grail of time–frequency analysis, viz.
the time-varying instantaneous frequencies of the line components in a mul-
ticomponent signal.

An analogous (indeed, a mathematically dual) relationship holds for the
quantized time axis of the digital STFT. First, one must recognize that the dual
value to the instantaneous frequency in the time domain is the group delay, which
can be thought of as the transit time or time delay introduced by the transmission
of a signal through whatever system we are studying, such as the vocal tract.
In order to get the output times exactly right, they need to be corrected by using the
group delay, which can be thought of profitably as a ‘‘local time correction’’ for
each time point. One can treat each time index in an STFT matrix (which corre-
sponds to a ‘‘column vector’’ of values across frequency bins in the matrix) as a
signal in the frequency domain, whose group delay for each frequency can also be
computed using Rihaczek’s equations, thus yielding a new vector of corrected
event times for each matrix cell. The entire matrix of these time corrections
was termed the local group delay (LGD) by Nelson [22], and is defined as the
frequency derivative of the STFT phase.

For this chapter, the short-time Fourier transform is defined in continuous
time in the following way for any window function hðtÞ:

STFThðx; TÞ ¼

Z

1

�1

f ðt þ TÞhð�tÞe�ixt dt: ð6:1Þ

The signal time variable is now represented with capital T. The channelized
instantaneous frequency and local group delay are defined with the following
equations in continuous time:

CIFðx; TÞ ¼
o

oT
argðSTFThðx; TÞÞ ð6:2Þ

LGDðx; TÞ ¼ �
o

ox
argðSTFThðx; TÞÞ ð6:3Þ

These definitions of the CIF and LGD were first put into practice digitally
by Kodera et al. [16, 17]. Since both definitions are just derivatives of the
complex phase of a function that we already would have in digital form
(viz. the STFT matrix), it is sufficient to use the finite differences of the
phases in the matrix to get digital versions of the CIF and LGD. For
example, the CIF can be defined as follows using a difference expression
in place of the derivative; this involves the values of the complex phase at
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times offset by e; which should be something small such as two sample
points.

CIFðx;TÞ ¼
def 1

e
/ T þ

e

2
;x

� �

� / T �
e

2
;x

� �h i

; ð6:4Þ

where the symbol / stands for the argument (phase) of the STFT.
A possible problem with the simple finite difference procedure just shown
is that the complex phase is a quantity that ‘‘rotates’’ modulo 2p: Being as
it is an angular measurement it is inherently confined to a circle; the
quantity may take any value from 0 to 2p but then there is in general a
discontinuity point, so that all integer multiples of 2p ¼ 0 as the circle
repeats. When the phase is allowed to have arbitrary values, it is said to be
in its unwrapped form without explicitly being confined to an interval
½0; 2pÞ; this is the best form to compute finite differences from because
there is not an explicit discontinuity to contend with, but normally when
the complex STFT is computed, the argument is wrapped, i.e. confined to
an interval of length 2p:
Another way to compute the finite difference approximation to the STFT
phase derivatives was devised by Nelson [21, 22], who made use of the
following ‘‘self-cross-spectral’’ surfaces defined using the STFT matrix:

Cðx;T ; eÞ ¼
def

STFT x;T þ
e

2

� �

STFT� x; T �
e

2

� �

; ð6:5Þ

Lðx;T ; eÞ ¼
def

STFT xþ
e

2
; T

� �

STFT� x�
e

2
; T

� �

: ð6:6Þ

Nelson noted that the surface C encodes the channelized instantaneous
frequency in its complex argument, while L encodes the local group delay in
its argument. It can be proven [8] that the complex phase of these discrete
functions provides precisely what would be obtained from the finite differ-
ence procedure described above. The advantage of Nelson’s innovation is
that there is no longer any concern about the wrapped phase causing prob-
lems, because the finite phase difference is indirectly calculated.

It was Kodera, de Villedary and Gendrin [17] who first realized that the channelized
instantaneous frequency and local group delay can form the basis of a remapping
procedure, whereby the time–frequency matrix values of a digital spectrogram can be
repositioned to new locations given by the corresponding instantaneous frequencies
(found in the CIF matrix) and the time index points corrected by the LGD matrix
values. The reassignment of the spectrogram matrix is then defined as a mapping of
each magnitude value from its original frequency–time location at ðx; TÞ to a new
location in the frequency–time plane defined by ½CIFðx; TÞ; T þ LGDðx; TÞ�:

As a first illustration of the results of the above considerations, Fig. 6.1 shows a
spectrogram of a signal composed of two sine waves, together with its reassigned
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version. The reassigned spectrogram was actually computed using Nelson’s
method (detailed below).

6.2 Reassigning the Spectrogram

6.2.1 Nelson’s Algorithm

The equations behind two approaches to the reassignment method are given in the
box above, as developed by Kodera et al. and by Nelson. Other methods for
computing reassigned spectrograms have also been developed; the three primary
methods are described and compared by Fulop and Fitz [8]. For the purposes of
this book, I have settled on the method of Nelson as the simplest both to compute
and describe. Let me now lay out an algorithm for Nelson’s reassignment
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Fig. 6.1 The figure contrasts the conventional spectrogram (upper panel) with the reassigned
spectrogram of a signal composed from a 50 and 150 Hz sine wave for 1 s, sampled at 32 kHz.
Some interference artifacts can be noted. Both images computed using 1,600 point (50 ms)
Kaiser windows and 20 point frame advance
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technique in considerable detail. The input to the procedure is a signal sampled at
Fs Hz, together with a number of user-defined parameters as needed below.

1. First, one builds two matrices S and Sdel of tapered signal windows of length
win_size (user-supplied) time samples. Sdel has windows that are delayed
by one sample with respect to S. A Kaiser window function should be used (see
below). The signal windows must overlap by a user-input amount, which
should in practice be around 95% of the window for the best display.

2. One next computes three short-time Fourier transform matrices; each column is
an fftn-length DFT of a signal window, computed with a fast Fourier transform
function here called fft. The length fftn is user-input; if it is longer than
win_size (often an excellent idea), it is then zero-padded beyond that.

STFTdel = fft(Sdel)

STFT = fft(S)

STFTfreqdel is just STFT ‘‘frequency delayed,’’ which is to say rotated by
one frequency bin—shift the rows of STFT up by one step and move the
former last row to the new first row.

3. Now it is time to compute Nelson’s cross-spectral matrix:

C ¼ STFT� STFTdel�; where the notation A� B denotes a pointwise product
among the elements of the matrices, and the asterisk denotes the complex
conjugate of the matrix, pointwise. The resulting C is now a matrix of complex
numbers; each row’s phase angles encode the CIF values in the ‘‘channel’’ or
bin indexed by that row.

4. So now one can compute the channelized instantaneous frequency:

CIF ¼
Fs

2p
� argðCÞ: ð6:7Þ

5. For the local group delay, one first computes Nelson’s other cross-spectral
matrix: L ¼ STFT� STFTfreqdel�: The result is also a matrix of complex
numbers; each column’s phase angles encode the LGD values over all fre-
quencies at the time index of the column.

6. Now one can compute the local group delay:

LGD ¼
�fftn

2pFs
� argðLÞ: ð6:8Þ

We now have what is needed to reassign the spectrogram. To perform the image
plot as shown in Fig. 6.1, compute the log of the square of the magnitude of each
value in the original matrix STFT, thereby obtaining the ordinary spectrogram
matrix. Then each spectrogram amplitude value is repositioned on the time axis at
its new corrected time by adding to its signal time the coindexed value in the LGD
matrix, plus an additional time offset of win size

2Fs : The offset is required because the
LGD computation corrects the time relative to the leading edge of the analysis
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window, but it is conventional to reference the signal time to the center of the
window. For the frequency repositioning of each point in the spectrogram,
one uses the coindexed instantaneous frequency in the CIF matrix. Note that the
reassigned spectrogram plotted in this fashion can have multiple points of different
amplitudes plotted at the same location on the time–frequency axes; it isn’t any
longer a ‘‘matrix’’ that is being plotted. A useful Matlab plotting routine that
handles this type of 3-dimensional data with arbitrary positions is the 3D scat-
terplot, which is used for the reassigned spectrograms in this book.

The earlier discussions of windowing functions prove to be very handy at this
juncture, because perhaps surprisingly, the selection of an optimal window func-
tion is even more critical for the reassigned spectrogram than it is for the con-
ventional one. This is because the regular spectrogram is quite smeared due to its
inherent uncertainty, with the result that only large amounts of spectral leakage
will be noticeable (such as if rectangular windows are used). The reassignment
procedure, on the other hand, effectively moves all the spectrogram points sur-
rounding a component’s instantaneous frequency to that instantaneous frequency.
If there are any spurious peaks nearby resulting from spectral leakage when
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Fig. 6.2 Reassigned spectrograms of glottal pulses from the synthesized [e] vowel. Computed
with 7 ms windows, rectangular in the upper panel and Hann function in the lower

6.2 Reassigning the Spectrogram 133



suboptimal tapering is used, it will reassign points to those peak instantaneous
frequencies as well. Moreover, leakage around a spectral peak can also act to move
the location of the peak slightly. Figures 6.2 and 6.3 show several reassigned
spectrograms of our synthesized vowel [e], and it is quite evident that the Kaiser
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Fig. 6.3 Reassigned spectrograms of glottal pulses from [e] as in the previous figure. Top panel:
7 ms Gaussian windows with a ¼ 2:5; middle panel: Gaussian with a ¼ 3:5; bottom panel:
Kaiser windows with b ¼ 3
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window is the best performing (as was originally concluded by Harris [14]). All
further reassigned spectrograms shown in this book will be computed using Kaiser
windows with b ¼ 3:

Since the reassignment method will be unfamiliar to most speech researchers, it
is important to be assured that the resulting spectrograms are indeed completely
accurate. The reassigned spectrogram is in effect a ‘‘sharpening’’ of the conven-
tional spectrogram which eliminates the time–frequency smearing that is induced
by the spectrographic uncertainty principle. Any point in the original spectrogram
having a significant amplitude will be reassigned closer to some time–frequency
‘‘ridge’’ that it was associated to. The reassigned spectrogram is thus completely
faithful to the original and does not introduce anything spurious, as was clearly
demonstrated by Gardner and Magnasco [12]. A drawback of this faithfulness,
however, is that the reassignment also serves to sharpen spectrographic points and
ridges that arose from interference terms in the first place, and these merely clutter
the resulting image because they do not represent anything of interest in the signal.
The next section shows how this problem can be greatly ameliorated.

6.2.2 Reassigned Power Spectrum

As a brief addendum, I will mention that it is possible to perform reassignment in
the frequency domain by computing the channelized instantaneous frequency
vector corresponding to a single-frame FFT of a signal, and in such a way obtain a
single reassigned power spectrum showing instantaneous frequencies of signal
components, instead of Fourier frequencies. Such representations can potentially
replace the traditional Fourier power spectra of Chap. 4 with more precise ren-
derings. Figure 6.4 shows CIF power spectra of both a short (one glottal cycle)
window and a long window from an English vowel [O]. The short window analysis
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Fig. 6.4 CIF spectra (scatterplots) of natural English vowel [O], using a 10 ms analysis window
(left, with Fourier spectrum overlaid as a smooth line) and a 40 ms window
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shows the formant peak locations with greater precision than the overlaid Fourier
spectrum, and the long-window analysis shows the harmonic spectrum of the
phonation with great precision. It is useful to keep in mind, however, that the time-
varying nature of most speech attributes such as formants militates against relying
upon any single-frame frequency analysis.

6.3 Pruning the Reassigned Spectrogram

The reassigned spectrograms shown in the Figs. 6.1–6.3 have been computed
using the algorithm given above, without any further processing applied. A major
problem just mentioned above that arises with ‘‘pure’’ reassigned spectrograms is
that some of the plotted points are not affiliated to anything of interest in the signal,
and neither were they so affiliated in the original spectrogram. The post-processing
method I call pruning was first outlined by Nelson [22, 23], and involves the
computation of the second-order mixed partial derivative of the STFT complex
phase (the reassignment method itself involves computing just the first derivatives
of this phase). The purpose of pruning is to selectively eliminate points from the
plot of a reassigned spectrogram which are not associated to signal elements of
particular interest. There are in general two different kinds of signal elements
which can be retained and thus effectively emphasized by means of this pruning,
namely quasisinusoidal line components possibly having some frequency or
amplitude modulation (often called AM/FM components), and impulse-like events.
One can choose to keep points affiliated to either or both of these kinds of elements
using the procedure now to be outlined.

6.3.1 General Definitions

The second-order mixed derivative of the STFT phase is equivalent to either the
frequency derivative of the CIF, or the time derivative of the LGD, since it is a
fundamental theorem of calculus that the mixed partial derivative can be taken in
either order. Nelson [22, 23] argued that the nearly stationary AM/FM components
of a signal xðTÞ should have a second-order mixed phase derivative near zero. By
plotting just those points in a reassigned spectrogram meeting this condition on the
phase derivative to within a threshold, a spectrogram showing chiefly the line
components can be drawn. For further explication of this fact, the reader is referred
to other papers [9]. The numerical threshold can be empirically determined, and
will in practice depend on the degree of deviation from a pure sinusoid that is
tolerable in the application at hand. This means that greater tolerance in this
threshold will be required where line components having high AM/FM rates are
expected—for speech signals an absolute value of the derivative on the order of
0.2 is often a reasonable threshold, but a smaller value can often be useful as well.

136 6 The Reassigned Spectrogram



On the other hand, a numerical derivative threshold value which is several orders
of magnitude smaller can be used to eliminate nearly every point that does not
represent a pure sinusoid with no frequency modulation, as is illustrated in
Fig. 6.5.

Nelson [23] further asserted that the impulses in a signal xðTÞ should have a
mixed phase derivative close to 1. By plotting just those points meeting this
condition to within a threshold, a spectrogram showing chiefly the impulsive
events in a signal can alternatively be drawn. For display purposes it is appropriate
to be quite tolerant in this threshold, depending on what sort of signal content we
desire to regard as ‘‘impulsive.’’ A derivative value between 0.75 and 1.25 usually
yields good results for speech signals, without straying too far from identifiably
impulse-like events. Plotting all points meeting the disjunction of the above
conditions results in a spectrogram showing quasisinusoidal components and
impulses together, to the exclusion of most everything else.

Nelson’s conditions on the second-order mixed partial STFT phase deriva-
tive take the following general forms in continuous time. The first expression
holds of line components, while the second holds of impulses.

o
2

oxoT
argðSTFThðx; TÞÞ ¼

o

ox
CIFxðx; TÞ � 0: ð6:9Þ

o
2

oTox
argðSTFThðx; TÞÞ ¼

o

oT
LGDxðx; TÞ � 1: ð6:10Þ
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Fig. 6.5 Another view of the double sine wave shown in Fig. 6.1, this time showing only those
points whose absolute value second-order mixed partial derivative of the STFT phase is less
than 10�4
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6.3.2 Cross-Spectral Method

The mathematical theory behind cross-spectral expressions for all higher-order
partial derivatives of the STFT phase is completely presented in prior literature
[23], and we have relied on this in developing the particular algorithm for the
second-order mixed partial derivative that is presented below. The steps in the
computational method will be based on Nelson’s algorithm for the reassigned
spectrogram described above. Readers are invited to refer to that algorithm to
complement that presented below. It is important to note that, just as with the
cross-spectral method for computing the first-order STFT phase derivatives (and
thereby the reassigned spectrogram) discussed above, the method presented here
will compute an approximation of the second-order mixed partial STFT phase
derivative. This approximation is generally so close that it might not matter for
practical purposes. An alternative method which is more computationally complex
has also been published [9], which computes an exact value of the mixed partial
derivative.

1. Referring to the algorithm for the Nelson method that was outlined above,
compute the three STFT matrices:

STFTdel = fft(Sdel)

STFT = fft(S)

STFTfreqdel is STFT rotated by one frequency bin—this can be accom-
plished by shifting the rows in STFT up by one step and moving the former last
row to the new first row.

2. Additionally compute one more STFT matrix:

STFTfrtimedel is STFTdel similarly rotated by one frequency bin.

3. Next compute a cross-spectral surface by applying Nelson’s theory:

MixCIF ¼ STFT� STFTdel� � ðSTFTfreqdel� STFTfrtimedel�Þ� ð6:11Þ

4. Now the partial frequency derivative of the channelized instantaneous fre-
quency can be computed:

CIFderiv ¼
fftn � Fs

2p � win size
� argðMixCIFÞ � argðMixCIFÞ ð6:12Þ

where the argð�Þ function is valued in the range ð0; 2pÞ; and Fs is the sampling
rate (in Hz) of the signal.

The final quantity computed by the above algorithm is equivalent to the partial
time derivative of the local group delay, and either of these represents the (unique)
second-order mixed partial derivative of the STFT phase. It is then simple enough,
depending upon the plotting routine, to plot only those points in a reassigned
spectrogram whose coindexed values in the CIFderiv matrix are within what-
ever threshold of 0 (for highlighting components), or 1 (for highlighting impulses).
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6.3.3 Justifying the Interpretation of the Phase Derivative

The following brief discussion is taken from [9]. In regions where the
CIF is not changing with frequency, the spectrum is dominated by a single
component that is highly concentrated in frequency (i.e. a sinusoid). In these
regions, all nearby spectral data is mapped to the frequency of the dominant
sinusoid, so that the variation (partial derivative) with respect to frequency is
near zero. Similarly, in regions in which all spectral data is mapped to the
time of a dominant component that is highly concentrated in time (i.e. an
impulse), the variation (partial derivative) of the reassigned time with
respect to time is near zero. Since the reassigned time is computed by adding
the LGD to the nominal time, t,

0 ’
o

ot
t þ LGDðt;xÞ½ � ¼ 1þ

o

ot
LGDðt;xÞ ð6:13Þ

so

1 ’ �
o

ot
LGDðt;xÞ ð6:14Þ

That is, as the nominal time, t, increases, the time correction (LGD) for data
in the neighborhood of a dominant impulse decreases proportionally.

6.3.4 Separation of Formants from Glottal Impulses

The features of a voiced speech sound which are of primary interest in a
spectrogram are the line components and the glottal impulses. It is therefore
quite useful to apply the pruning procedure in order to highlight these signal
elements while excluding other spectrographic points that are likely insignifi-
cant or which result from interferences. In a wideband (short window) spec-
trogram, the significant line components will normally be formants and other
resonances. By pruning a reassigned spectrogram of a portion of voiced speech,
it is possible to retain only points affiliated to resonances, or only points
affiliated to impulses. It is also possible to retain both kinds of points, which
results in a spectrogram that shows all the significant signal elements while
eliminating unimportant clutter. Figures 6.6 and 6.7 show several examples of
pruned reassigned spectograms of our synthesized vowels [æ] and [O]. Pruning
parameters for spectrograms are reported as the threshold value for each kind
of signal element that is retained. That is, a spectrogram which highlights
components with a ‘‘threshold of 0.1’’ retains only points whose mixed STFT
phase derivative lies between �0:1 and 0.1. Similarly, a spectrogram which
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highlights impulses with a ‘‘threshold of 0.2’’ retains only points whose mixed
STFT phase derivative lies between 0.8 and 1.2.

The improvement in image quality resulting from the pruning procedure is
evident in the real speech examples shown in Figs. 6.8 and 6.9. Even a tight partial
derivative threshold of 0.01 can be quite useful for highlighting formants, as
shown in the lower panel of Fig. 6.9.

6.4 Analyzing Phonation

6.4.1 Beyond Source-Filter Theory

The source-filter theory of speech production models phonation as a purely
acoustic process, the excitation of a linear filter by an impulse train. The vocal cord
source is modeled as a pure volume velocity source that provides an acoustic
excitation when the vocal cords come together and produce an abrupt change in
the pressure and volume velocity. Key to the source-filter approximation is that
possible acoustic effects from the flowing air itself, known as aeroacoustic effects,
are neglected. Such a pure acoustic source is known as a monopole source in
current aeroacoustic theory [19]; this is what Lord Rayleigh termed a ‘‘simple
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Fig. 6.6 Four reassigned spectrograms showing several glottal cycles of synthesized [æ], all
computed with 7 ms Kaiser windows. Top line shows an unprocessed reassigned spectrogram,
and one pruned using thresholds of 0.1 for components and 0.25 for impulses. Bottom line shows
two spectrograms pruned to show components only; the left image uses a component threshold of
0.1 (so separating out the components from the right hand plot on the upper line); the right image
uses a tighter threshold of 0.01
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source’’ in his seminal discussion [30]. The filter resonances of the mouth are then
predicted to ‘‘ring’’ after excitation by each pulse, yielding the formants of a
speech sound.

In reality, the natural phonation process does not conform to these conditions,
and can only be modeled this way to a first approximation [4]. The degree to which
ordinary modal phonation deviates from the ideal monopole source has been the
subject of some recent findings and debate, but it is by now clear that sources of
sound in phonation cannot be completely characterized by volume velocity at the
glottis [19]. McGowan’s theoretical efforts predicted the presence of an aeroa-
coustic dipole source due to an oscillating rotational flow in the glottis, along with
the monopole volume velocity source, and the dipole source was identified as the
main source of random noise in breathy voicing. McGowan did not suggest that
the dipole source would be dominant in modal phonation, but predicted that it
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Fig. 6.7 The figure compares a previously shown spectrogram of several glottal cycles from the
synthesized [O] with a reassigned spectrogram pruned to show components only using a tight
threshold of 0.01
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Fig. 6.8 Conventional and reassigned spectrograms of the English word right. The middle

reassigned image is pruned to show components and impulses, while the lower image is pruned to
components only
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Fig. 6.9 Conventional and reassigned spectrograms of the English word how0d: The middle

reassigned image is pruned to show components only with a loose threshold for the partial
derivative of \0:1; while the lower image is pruned to show components meeting a tight
threshold of \0:01
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would become more important at higher frequencies and with greater airflow
through the glottis.

Stevens [29] was careful to note that the acoustic source at the glottis can be
approximated by a monopole only on the condition that ‘‘the mode of vocal fold
vibration is such that the glottis is closed or remains sufficiently narrow over a
cycle of vibration.’’ The validity of this approximation for modal phonation was
tested by Zhao et al. [31], and it was not found to accord with the detailed picture
of phonation. These authors performed a rigorous computational aeroacoustic
study of the acoustic effects of airflow through oscillating (virtual) vocal cords,
finding as expected that the glottal source was indeed an aeroacoustic monopole
when there was zero airflow. However, when a more realistic mean flow was
provided through the glottis model, it was found that glottal motion in the flow
induced unsteady vortex shedding, and the unsteady force thereby exerted on the
glottis produced a dipole source which dominated all other sources by orders of
magnitude. The monopole source was not only not a valid approximation at higher
airflows, it was actually negligible.

In spite of this, Zhao et al. [31] did find that it is still possible to approximate
the glottal dipole source with a pure volume velocity source in order to model the
gross features of phonation. However, the so-called ‘‘fine structure’’ of the glottal
wave—the features other than the gross periodicity—were not successfully
modeled by invoking this commonplace approximation. In particular, the addi-
tional sound sources downstream of the glottis are missing. These include the
unsteady forces on the downstream side of the vocal folds (a dipole source) and the
unsteady flow downstream of the glottis (a quadrupole source) [31]. Quatieri [25]
has pointed to evidence of such ‘‘secondary sources’’ in real speech signals, which
can appear in a glottal waveform as a renewed excitation approximately 2/3 of the
way through the glottal cycle. This feature is consistent with the notion that it is a
chiefly aeroacoustic source due to vortex impaction downstream from the glottis
[25]. Moreover, the secondary sources, being (in Quatieri’s terms) ‘‘nonacoustic,’’
have different travel times in general from the glottal acoustic source and excite
different regions of the vocal tract. The sum of this finding is that different sources
can excite different formants, an explanation put forth by Shadle et al. [28] to
explain inconsistencies in the glottal waveform estimated using inverse filtering
based on linear source-filter theory.

Apart from the chiefly aeroacoustic nature of the glottal source, it has also been
recognized that there is significant source–tract interaction over the course of a
glottal cycle, particularly near the first formant frequency where the input
impedance of the vocal tract is nearest to the resistance of the glottal source [4].
Flanagan pointed to experimental observations of pitch-synchronous variations in
the tuning and damping of F1; which he attributed to significant source–tract
interaction. Quatieri [25] explained that the first formant frequency is expected to
rise at the onset of the glottal open phase, and fall near the termination of this
phase, owing to the changing glottal impedance. Source-filter theory, in contrast,
generally assumes that the glottal impedance can be approximated by a fixed value
equal to that of a closed glottis.
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The sum of all this is that only vowels whose production closely conforms to
the source-filter model can be expected to display well-defined vertical impulses
and well-defined horizontal formants in a reassigned spectrogram. Our synthesized
vowels have been created strictly according to the source-filter model, and so can
serve as a kind of benchmark in this respect. Vowels of real speech can be
expected to yield reassigned spectrograms which deviate somewhat from the
appearance of those provided for the synthesized vowels. The degree of deviation
in the image from that of a synthesized vowel can be regarded in a loose sense as a
qualitative metric of the degree of deviation of the real speech production from the
source-filter theory. It will next be observed that the degree of deviation from the
source-filter model depends chiefly upon the phonation type employed during
speech production, and also upon various idiosyncratic characteristics of the
phonation process in a particular speaker.

6.4.2 Observations on Phonation Types

A steady vowel [e] was produced by the author in four phonation types: creaky,
stiff (vocal cords pressed together firmly), modal, and breathy. To discuss the fine
details of the different phonation types, we refer to the reassigned spectrograms of
Fig. 6.10. The figure shows the four segments of [e] in each of the four phonation
types, post-processed by the pruning technique to eliminate all points that are not
affiliated to either a line component or an impulsive event. The different character
of the phonation in each panel is easily noted, particularly in the breathy voiced
example, which appears to have very indistinct glottal impulses and very unsteady
formants.

Creaky phonation is of great interest as a baseline case because it has extremely
small airflow volume, and the closed phase takes up a maximally large proportion
of the phonatory cycle. These properties render the creaky phonation process as
purely acoustic as possible in human speech—i.e. aeroacoustic effects are expected
to be negligible. As would be expected then, the creaky [e] spectrogram of
Fig. 6.10 displays glottal impulses which are very straight and sharply defined, and
formants which are cleanly excited and which do not change in frequency—except
for some aberrations which occur during the very brief open phase immediately
preceding the impulse (which arises from the closing event).

During the open phase, F1 is observed to suddenly change, splitting into a
discernible component whose frequency increases and a second, more robust
component whose frequency decreases. The increase of formant frequencies dur-
ing the glottal open phase, as discussed above, has been widely predicted [4], but
the appearance of a lower frequency component during this phase (labeled ‘‘voice
bar’’ in the figure) is unexpected. Nevertheless, this low-frequency component will
appear as a band traditionally called a voice bar on a spectrogram showing a much
longer segment of a vowel. The nature and origin of the voice bar remains mys-
terious at this point in time, since it has never been addressed clearly in the
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literature. It was identified by Fant [3] (p. 109) as an ‘‘extra voice bar formant,’’
but this remark was not explained, and its physiological origin is not obvious.

Some suggestive findings in this connection have been published by Castelli
et al. [1], which were further validated by Dang and Honda [2]. These groups of
authors both found that a low resonance at around 250 Hz can appear in a vowel
spectrum as a result of coupling with the nasal sinus, even through the closed
velum in a nonnasalized vowel. This phenomenon is referred to as ‘‘transvelar
coupling,’’ and it might be a plausible explanation of the voice bar’s origin.
As discussed by Dang and Honda, ‘‘the 250 Hz peak is clearly seen for open
vowels since their first vowel formant is higher’’ [2]. The effect of the voice bar on
the first formant of high vowels can be to obscure its true value; these effects will
be further explored below.

The voice bar is commonly observable in the speech of men as well as women
(in whom it has a higher frequency), but it is not normally used in synthesized
vowels, where its absence probably relates to the stereotypical ‘‘reedy’’ sound of a
computer voice. Nevertheless, in Chap. 5, it was noted that a high-resolution
analysis of synthesized phonation using the ZAM distribution can often display an
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Fig. 6.10 Vowel [e] spoken with four phonation types, imaged using reassigned spectrograms
which highlight both the line components and the impulsive events. Top row shows creaky and
stiff voice (computed using a 7.8 ms window), bottom row shows modal and breathy voice
(computed using a 5.9 ms window)
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apparent splitting of F1 in the vicinity of the glottal closure, and this feature of the
analysis can appear remarkably similar to a voice bar resonance. Indeed, it is often
difficult or impossible to ascertain from a single time–frequency representation
(e.g. a reassigned spectrogram) of a vowel whether a voice bar is present, or
whether a low F1 is splitting due to a phase shift at the moment of glottal closure.
In cases where this is not clear, corroborating evidence of a voice bar’s presence or
absence can be provided from a linear prediction analysis of the subject vowel, as
will be elaborated in Chap. 7.

In spite of the very long closed phase and very brief open phase manifested by
the creaky [e] segment, it is nevertheless easy to see evidence of the secondary
excitations at higher formants during the open phase (labeled ‘‘echoes’’ in the
panel) that were discussed by Quatieri [25], which he attributed to aeroacoustic
sources. At any rate, these echoes are not predicted by the source-filter model.

Under more natural airflow conditions, the phonation process is expected to
become more significantly aeroacoustic (following the computational simulations
of [31]), meaning that the higher airflow cannot be neglected and may have clearly
observable effects on the excitation of resonances. Several effects can be observed
in the stiff-voiced and modal-voiced [e] panels of Fig. 6.10, and these include
random disturbances and back-and-forth undulation of the impulses, particularly in
the upper frequency range. The increasing randomness of the impulse events due
to the increasing importance of the aeroacoustic dipole source as the frequency
increases was a prediction of McGowan [19].

The stiff-voiced [e] panel of the figure displays a longer open phase, during
which the low-frequency voice bar formant is excited for a longer time period than
in the creaky voiced case. It appears that this voice bar is ‘‘out of phase’’ with the
first formant; the former dominates the open phase, while the latter dominates
the closed phase. In the modal-voiced panel, the spectral randomness induced by
the strong airflow is now beginning to dominate the image, although the principal
formants are still relatively easy to track. The voice bar is now no longer apparent
in this example, which has a much higher F0; but the effect of a voice bar (i.e. a
resonance sounding lower than F1) can be seen to arise from the rising and falling
of F1 during each glottal cycle. Meanwhile, the formants above F3 in this example
are greatly disturbed by random effects, and the F2–F3 region shows clearly
observable secondary excitations approximately 2/3 of the way through each cycle
(as was discussed in [25]). These echo impulses are also observable as a second,
roughly vertical, event in between the primary impulses near the top of the fre-
quency range.

The panel of Fig. 6.10 showing a breathy-voiced [e] segment displays a great
deal of random fluctuations in the formants, which are now impossible to track
precisely. The voice bar itself now seems more perturbed, and dominates the low
range for an interval of each cycle about equal to that in which F1 is dominant. The
glottal ‘‘impulses’’ are now completely perturbed by random fluctuation, as well. It
is also fairly easy to see the ‘‘classic’’ acoustic correlates of the different phonation
types emergent in the panels of Fig. 6.10, namely relative spectral tilt. A number
of studies have shown both theoretically (e.g. [29]) and through direct
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measurement (e.g. [18]) that more pressed or creaky phonation yields less relative
amplitude of the lowest spectral components (lessening the spectral tilt), while
more slack or breathy phonation yields greater relative amplitude of the lowest
components (increasing the spectral tilt). Stevens’ calculations of spectra from
various glottal airflow waveforms correlate the observed higher amplitude in the
upper components in creaky and stiff voicing with the decreased duration of the
airflow pulse. The use of spectral tilt in some form as a metric of phonation type
was also discussed in Chap. 4.

Further examples of these detailed features of phonation are shown in Fig. 6.11,
which displays a few glottal cycles drawn from naturally produced vowels [e] in
head and [æ] in had. Once again one can observe the secondary excitations of
higher formants in the middle of each cycle, as well as the trading between F1 and
voice bar as the glottis shifts from closed to open phase. This figure also
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Fig. 6.11 The vowels [e] (upper) and [æ] are shown, with the partial derivative thresholding set
to highlight both components and impulses. Annotations in the images indicate the formants,
voice bar, and the appearance of secondary excitations (echoes)
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demonstrates that the voice bar is extremely low (below 250 Hz) even for a low
vowel such as [æ] with a higher F1: This demonstrates that whatever its source, the
voice bar does not appear to bear any relationship to the value of F1:

6.4.3 Phonation as a Biometric

It has been noted (e.g. [24]) that glottal vibration videos show large variations in
the movement patterns of the vocal folds from one person to another. These
idiosyncratic features of phonation have different effects on the aeroacoustics of
the glottal output, which results in each person’s phonation presenting a notably
distinct reassigned spectrogram in a close-up view. These images, however, are
largely consistent for one person’s voice in any given phonation type and vowel,
leading to the prospect that they are individuating and can be matched within the
same speaker [7].

Research into the use of reassigned spectrograms of phonation as biometrics is
currently just beginning, so only a few remarks will be made here as this is by no
means a proven technique. At the very least, however, reassigned spectrograms of
the phonation of different speakers are obviously very different, as shown in
Fig. 6.12. The differences are manifold, and include the shape of the undulating
vertical impulse representing the glottal closure pressure pulse, the excitation of
different formants at different times relative to this impulse, the presence or
absence of a voice bar and its phase relationship to F1; patterns of formant
movement and ‘‘splitting’’ within each glottal cycle, and the location of echo
impulses between the primary glottal pressure pulses.

Figure 6.13 shows the potential for such spectrograms to be ‘‘matched’’ for a
particular speaker’s vowels. The two male speakers shown in the figure are saying
the same word two times each, but the similarity between the speakers is evidently
much less than the self-similarity of each speaker’s repetitions. This degree of
similarity in the fine structure of a given speaker’s phonation has been found
(anecdotally) to remain stable across time spans of up to two years between
repetitions [7].

6.5 Dynamics of Formants

One study [6] has recently established that the known formants of synthesized
vowels can be measured manually from reassigned spectrograms with excellent
accuracy. However, the study failed to notice or compensate for the expected
systematic differences between known production formant values for the vowels,
and the values of formant spectral peaks which were directly compared to them
(this issue will be discussed in detail in Chap. 7). In spite of this flawed procedure,
formant measurements performed on a set of synthesized vowels (the same tokens
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used in this book) were usually within 10 Hz of the production value, and the
greatest difference noted was 1.6%.

The question which presents itself now concerns the actual method of mea-
suring a formant ‘‘manually’’ from a reassigned spectrogram. Figure 6.14 shows

Fig. 6.12 Phonation spectrograms (vowel [æ]) for nine speakers
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that for a synthesized vowel, such measurement is very easy. I used a version of
the reassigned spectrogram routine (included with the linked Matlab code) which
is augmented with a tool that automatically reports the precise frequency at the
mouse pointer on the spectrogram image. I made a reassigned spectrogram of a
few glottal cycles in the vowel, using a very large window overlap (corresponding
to a frame advance of four samples) and a reasonably large FFT frame (the length
of the FFT performed was 2,048 in this and most other examples). These
parameter settings allow the image to retain good resolution when zoomed in
(v. lower panel of the figure), although they do not improve the fundamental
accuracy of the reassigned spectrogram. By zooming in on each formant and
positioning the mouse pointer carefully on the obvious line component repre-
senting the formant after the initial excitation has tapered, a measurement accurate
to within 1 Hz is easily obtained.

When a real vowel is examined, the simplicity of the synthesized phonation
and formants shown above is replaced by a much more complicated picture,
v. Fig. 6.15. The reassigned spectrograms in the figure were made in much the
same fashion as for the synthesized vowels, although for each set of glottal cycles
examined, it is important to customize the length of the analysis window so that it
is between three quarters of a cycle and one cycle. A longer window will always
provide the best possible resolution of close formants; it is possible to use a
window slightly longer than one cycle to maximize resolution, because the
tapering function will shorten the effective window length.

Figure 6.15 shows three particular features which are typical of real phonation
that are not evident in synthesized vowels, all of which militate against accurate
formant measurement. Firstly, there is the voice bar, rumbling along below F1 and
often quite a bit louder as well. It is often difficult to clearly separate these two low
resonances; one aspect that helps here is their phase difference, since the voice bar
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Fig. 6.13 Matching phonation spectrograms of vowel [æ], one male speaker each column
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seems more prominent during the open phase (although it may also be observed
during the closed phase), while F1 is clearly excited by the pressure pulse that
initiates the cycle’s closed phase. Secondly, each formant may be observed to
change in frequency during the course of one glottal cycle. This leads to the
obvious question whether it even makes sense to report a single value for such a
dynamic component. Thirdly, different formants may apparently be excited at
different times during the cycle (as predicted, [28]), making it impossible to apply
a simple standard such as reporting the value at a certain time relative to the
closing pulse.

The only thing clear from all this is that the clearer view of phonation and
formants provided by the reassigned spectrogram is opening a ‘‘can of worms.’’
Although these images show the fine structure of phonation more clearly than ever,
they raise hitherto unasked questions about just how a given formant ought to be
measured. It seems to me that no one is currently in a position to offer definitive

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Time (ms)

F
re

q
u
en

cy
 (

H
z)

21 22 23 24 25 26

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

Time (ms)

F
re

q
u
en

cy
 (

H
z)

Fig. 6.14 Illustration of how to measure formants in a synthesized vowel [e]. Top panel shows a
reassigned spectrogram of several glottal cycles, computed using 7 ms windows and pruned to
show components with a threshold of 0.1. Bottom panel simply zooms in the upper figure to
magnify F2 and F3 in a single cycle. Each formant would be measured by positioning the mouse
pointer along the apparent line component after the initial formant excitation has tapered

152 6 The Reassigned Spectrogram



0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

Time (ms)

F
re

q
u
en

cy
 (

H
z)

11 12 13 14 15 16 17 18 19 20

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Time (ms)

F
re

q
u
en

cy
 (

H
z)

11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

700

800

900

1000

Time (ms)

F
re

q
u
en

cy
 (

H
z)

Fig. 6.15 Three reassigned spectrograms of the first part of natural English [eI]. The middle

panel zooms in for measuring the F2–F3 region; lower panel shows the F1 region including the
voice bar. Computed using 9.4 ms windows, and a pruning threshold to highlight components
only
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answers to these questions; no doubt, considerable further study and experience
with reassigned spectrograms of speech will be essential to progress in this area.
In spite of the present state of ignorance, I have gone ahead with reporting a
number of formant measurements obtained using the above techniques. Some
formant values obtained for my own English vowels are provided in Table 6.1, and
only one value is reported for each, following tradition (perhaps unwisely).
Generally, I report the value of a formant where it is most clearly separated from
other proximal resonances. At other times the same formant may change in fre-
quency, and this dynamic aspect is not reported in the tables. Most formants have a
‘‘fatter’’ segment in the spectrograms when they are strongly excited, which tapers
to a point in one direction or the other; in these cases, the frequency of the tapered
point is reported, since this strategy proves to be the most accurate method for
synthesized vowels.

Table 6.2 reports some formant values for Finnish long vowels, measured in the
same way as above with a female subject. Figure 6.16 shows some exemplary
reassigned spectrograms from this subject’s vowel [e�]. One interesting finding that
emerges from this data is the female’s voice bar being consistently higher than that
of the male English speaker.

The most important general finding about formants that has emerged from
working with reassigned spectrograms is that they are more dynamic and myste-
rious than is often recognized. Given this, could such mysterious properties of
formants be used as the primary phonetic features behind a linguistic sound
contrast? Preliminary investigation of the rare and peculiar vowel feature known as

Table 6.1 Formant values
for natural English vowels
spoken by the author,
manually measured from
reassigned spectrograms

Vowel Voice bar F1 F2 F3

[i] 195 380 2,363 3,220
[I] 227 479 2,290 2,771
[eI] 197 412 2,527 2,988
[e] 221 471 2,164 2,782
[æ] 205 667 1,917 2,516
[O] 175 505 712 2,655
[ou] 184 364 705 2,428
[u] 291 350 879 2,387
[u] 130 350 715 3,034

Table 6.2 Formant values
for some Finnish long
vowels, female speaker,
manually measured from
reassigned spectrograms

Vowel Voice bar F1 F2 F3

[a�] 280 725 1,544 2,683
[æ�] 247 771 1,808 2,704
[e�] 271 621 2,403 2,860
[i�] 271 473 2,452 2,952
[y�] 326 449 1,753 2,489
[o�] 262 621 1,403 2,703
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Advanced Tongue Root has provided some data suggesting that, indeed, some
vowel contrasts could be mediated by unexpected aspects of the dynamic
formants.
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Fig. 6.16 Three reassigned spectrograms of Finnish vowel [e�]. The middle panel zooms in for
measuring the F2–F3 region, lower panel shows the F1 region including the voice bar. Computed
using 6.3 ms windows, and a pruning threshold to highlight components only
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Some languages, almost all within Africa, possess a system of vowels which
includes several pairs of similar vowels that are distinguished by positioning of the
tongue root (i.e. the base of the tongue muscle primarily forming the anterior
pharynx wall). Generally in these cases, one vowel of a pair is produced with a
more advanced (forward) tongue root posture (and thus an expanded pharynx
cavity), while the other is produced with a more retracted tongue root (and thus a
more constricted pharynx). These articulatory facts have been verified occasion-
ally using imaging technology. Acoustic studies (e.g. [10, 13]) have uniformly
demonstrated that most tongue root vowel pairs are discriminable chiefly by the
value of F1; in particular, the more advanced vowel usually has a lower F1: This
acoustic manifestation of the contrast was, however, not found in the case of the
Degema low vowels ½a

a
; a
‘
� (the first of these diacritics under the vowels shows

advanced tongue root, the second retracted) [10]. In fact, the cited study of
Degema tongue root contrasts could find no consistent acoustic difference between
these two allegedly distinct vowels, and one of the study’s conclusions was that the
contrast between the low vowels could currently be neutralized.

Revisiting some of the recordings of Degema low vowels which were examined
in the earlier study, I noticed some indications that the ‘‘alleged’’ contrast between
the two low vowels could perhaps be mediated by more complicated differences
in the resonance dynamics. A representative example showing the lower formants
of the two low vowels is shown in Fig. 6.17. It should be noted that the dynamics
of F1; together with a mysterious additional resonance between F1 and F2 (possibly
nasal in origin), are completely different between the two vowels. Measurements
from these data show that for the advanced vowel, the apparent F1 begins at
983 Hz and descends to 769 Hz, and reappears during the open phase at 677 Hz.
Showing a different pattern, the retracted vowel initially excites resonances at
932 Hz and 541 Hz, which later ‘‘merge’’ to an apparent single resonance at
782 Hz. This example is provided only as an indication of the complexity of facts
about vowels which can be revealed using reassigned spectrograms. There is not
yet a complete analysis of the situation in all our Degema recordings.

6.6 Nasals and Nasalization

Nasalization has long posed a problem when measuring formants, owing to a
number of factors which include the introduction of nasal zeros which further
damp (and thus smear) vowel formants, as well as nasal formants which are often
proximal to the oral formants. The reassigned spectrogram is relatively immune to
such effects, since it shows only the instantaneous frequencies of components and
does not show their overall energy distribution (i.e., bandwidth). It must be rec-
ognized, however, that a reassigned spectrogram can only show components, so
it cannot show the location of zeros. Of course, the conventional spectrogram
can only show a zero implicitly, by the absence of energy, and this can be an
ambiguous feature.
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Figure 6.18 shows a reassigned spectrogram highlighting just the line compo-
nents of an oral vowel [æ] found in had spliced beside a nasalized ½~�� found in
clan. These are expected to have very similar oral articulation. The formants in the
nasalized vowel are not any more difficult to observe in the reassigned spectro-
gram, and the imaging of numerous other distracting resonances helps to provide a
clear picture of what happens as a result of the nasal coupling. Theoretical con-
siderations of the two coupled resonance cavities in a nasalized low front vowel
[29] predict that the original oral formants will shift. In particular, F1 is calculated
to shift downward considerably, while F2 is calculated to shift downward slightly,
and the formant values observed and labeled in the figure accord reasonably well
with this. It can be further noted that both F1 and F2 appear to be ‘‘split’’ when first
excited by each pulse in the nasalized vowel, and these split components then later
converge during the glottal cycle. The upper part of the split F1 is labeled ‘‘nasal
formant’’ because such a resonance just above F1 is predicted to occur from
Stevens’ calculations, induced by the coupling of the nasal and oral cavities. It
may be postulated that the split F2 also results from a proximal nasal formant.
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Fig. 6.17 Reassigned spectrograms of two Degema vowels, zoomed in to the F1–F2 region.
Upper panel shows advanced tongue root ½a

a
�; lower panel shows retracted tongue root ½a

‘
�:

Computed using 8 ms windows, and a pruning threshold to highlight components only
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Figure 6.19 shows reassigned spectrograms of the vowel-nasal transition period
in the English words clam and clan. The vowel formants are somewhat perturbed
during the transition, but the formants of the nasal consonant are reasonably well
highlighted in the reassigned spectrograms. The clear differences between the
labial and alveolar nasal formants are easier to pinpoint than in a conventional
spectrogram.

6.7 Stops and Fricatives

Obstruents (stops and fricatives) usually have a significant noise event associated
with them, and this is where a weakness of the reassigned spectrogram is revealed.
Because the representation is designed to decompose every signal into compo-
nents, it will still do so during random noise. Since noise does not contain any
actual components, the representation of noise in this setting looks like a random
walk involving numerous ever-changing ‘‘components,’’ all of which are physi-
cally unreal. Gardner and Magnasco [12] explained that the apparent components
in the noise are actually lines which separate spectrographic zeros. This takes a
little getting used to, and cannot be regarded as an advantage of the reassigned
spectrogram, but it is worth living with given the manifold advantages. In the end,
however, a conventional spectrogram usually provides an equally useful image of
a fricative noise.

In spite of the failure of the reassigned spectrogram to provide a better picture
of noise, it can be very useful for probing various aspects of obstruents aside from
the noise itself. Figure 6.20 shows the formant transitions coming out of an
English [b], for instance. Sounds with multiple or ‘‘sloppy’’ release events can be
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imaged with remarkable time precision using the reassigned spectrogram, owing to
the time reassignment using local group delay. Figure 6.21 shows a dental ejective
click (which is probably uvular) in the Yeyi language.1 Click sounds character-
istically involve two stop releases; the first anterior ingressive release uses the
front of the tongue in a sucking action from a dental point of articulation in this
instance, while the subsequent ejective release here involves forcing air out with
the rising larynx with the back of the tongue releasing from the uvula. Both of
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Fig. 6.19 Glottal pulsations in the portion of [æm] (top) and [æn] at the closing of the vowel and
the beginning of the nasal. Computed using 7 ms analysis windows, pruned to show components
with threshold of 0.15

1 The click sound shown is taken from recordings that were described by Fulop, Ladefoged, Liu
and Vossen [11], although the original judgement that this click was not uvular has been revised.
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these are quite sloppy, and it is easy to observe as closely spaced impulses the
multiple release events in both the anterior and the dorsal release. A comparable
level of detail is not seen in the conventional spectrogram.

6.8 Pitch Tracking

All of the spectrograms presented so far for speech analysis have been of the
‘‘wideband’’ variety using short windows, since the focus has been on the imaging
of resonances and impulses. Moving to a long analysis window allows the display
of a narrowband spectrogram, which can be useful for pitch tracking. Indeed, the
narrowband reassigned spectrogram with pruning applied to show only the line
components (which are the harmonics in a long-window analysis) appears to be a
much more informative and robust method for pitch tracking than dedicated pitch
tracking algorithms. In fact, the reassigned spectrogram has recently been shown
to significantly outperform standard methods on the task of fundamental frequency
tracking [15], mainly because the usual techniques (namely autocorrelation or the
cepstrum) rely on what the cited authors call the ‘‘local stationarity assumption,’’
and this is violated by any frequency-modulated signal.

Figure 6.22 compares a conventional pitch track with a reassigned spectrogram,
applied to a portion of a naturally spoken sentence. The pitch track provided by
Praat software is completely inaccurate and worthless in this example, although
efforts were made to tweak the parameters of the tracking algorithm.2 The
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Fig. 6.20 Reassigned spectrogram showing the first portion of bad. Pruning thresholds were set
to 0.25 for both components and impulses; 8.9 ms windows were used

2 The unusually poor performance of the Praat pitch tracker here may be due to an instability of
the baseline voltage which is a common shortcoming of cheap microphones. Such ‘‘wavering’’ of
the voltage spoils the values used by Praat’s autocorrelation-based algorithm.
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reassigned spectrogram, on the other hand, shows the fundamental frequency quite
well throughout every voiced sound, except at the point of lowest excursion during
the final [l]-sound of syllable. The dropout of F0 here may be due to the limits of
the low-fidelity microphone having been reached; higher harmonics are also
shown in the image, and they can easily be used to measure the pitch. If the first
harmonic above the fundamental is tracked, one need only divide the measured
values by 2.

Fig. 6.21 Conventional and reassigned spectrograms, the latter highlighting just impulses using
a pruning threshold of 0.25, showing the dental ejective uvular click in the Yeyi words [ku
qj’akasa] (to drizzle). Computed using 5 ms analysis windows
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6.9 Appendix: Matlab Techniques

There are six mfiles included for computing and displaying reassigned spectro-
grams. Three of these are for displaying complete images, and the remaining three
are for displaying pruned images using the partial derivative threshold technique.
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Fig. 6.22 Standard pitch tracking algorithm (Praat software, upper panel) performance
contrasted with reassigned narrowband spectrogram computed with 40 ms windows and pruned
to highlight harmonics. The subject signal is excised from a naturally produced English sentence,
aligned with the analyses above
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All six are invoked using nearly the same template including a mandatory eight
arguments and an optional five (or six) output variables. The file Nelsonspec.m
is the most basic of the group; it computes and displays a grayscale reassigned
spectrogram according to the template:

½STFTpos; CIFpos; LGDpos; f; t� ¼ Nelsonspecðsignal;

Fs; window; overlap; fftn; low; high; clipÞ

where the inputs are the same as for the conventional spectrogram routine; window
and overlap set respectively the length of the STFT analysis window (in samples)
and the number of samples by which successive windows overlap—so this is the
complement of the hop size, which iswindow–overlap. Themain difference in the
display (apart from the reassignment of the values) is that here I use a 3D scatterplot
instead of an interpolated shaded plot; this makes it important to use Nelsonspec and
relatives with a very large overlap, usually at least 90% of the window, while this
much overlap is just wasted computation in a conventional spectrogram.

The output variables (if used) will send back respectively the displayed portion
of the complex STFT, the coindexed channelized instantaneous frequency values
(Hz), the coindexed local group delay values (seconds), and the frequency (Hz)
and time (seconds) axis vectors. Other files called with the same syntax and
options are as follows: Nelsonspecjet.m is the same as above, except the
image is displayed using my custom colormap. Nelsonspecm.m is also the
same, but adds a small window in the lower left of the screen where the frequency
under the mouse pointer is reported. This feature is intended to facilitate manual
measurement, and still functions if the zoom is changed. All three of these
functions include the option, after displaying the reassigned spectrogram, of also
displaying a conventional spectrogram in a separate figure. The tapering window is
set to Kaiser by default in the code.

The three related functions which display a pruned reassigned spectrogram are
called using the following template:

½STFTpos; CIFpos; LGDpos; CIFderiv; f; t� ¼ Nelsonspec both

ðsignal; Fs; window; overlap; fftn; low; high; clipÞ

This is identical to the above functions except for the additional output variable
CIFderiv, which (if used) will return the matrix of mixed partial derivative
values corresponding to each reassigned data point in the spectrogram. There are
two similar functions:

Nelsonspecjet_both.m displays the pruned image using my custom
colormap.
Nelsonspecjet_bothm.m includes the frequency measurement tool in the
color version. All three of these functions have the degree of pruning set in the
code; the relevant line sets the variable named plot_these, and includes
numerical thresholds for the mixed partial derivative of the STFT phase in the
following expression:
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ðabsðCIFderivÞ\ x j absðCIFderiv � 1Þ\ yÞ

In the actual code, the placeholders x and y are filled by numbers between 0 and 1
which set the thresholds for line components and impulses, respectively. The
default settings are x ¼ 0:1 and y ¼ 0:25; which I have found works well for
highlighting components and impulses in speech while removing most everything
else. If the user prefers to see components only, simply set y ¼ 0 in the code
directly.

As an added bonus, two mfiles are included which plot a reassigned power
spectrum, which is a channelized instantaneous frequency spectrum computed
from a single FFT of a signal using no time reassignment. Nelsonpower.m is
invoked with the following command template:

½PS; CIF; f� ¼ Nelsonpowerðsignal; Fs; low; highÞ

The optional output variables provide the spectral amplitudes, the vector of
channelized instantaneous frequencies, and the frequency axis vector respectively.
Nelsonpowerm.m is essentially the same function, with the addition of a tool
which reports the frequency and intensity values at the mouse pointer.
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Chapter 7

Linear Prediction and ARMA Spectrum

Estimation

Up to this point, I have presented speech analysis methods which obtain spectral or
time–frequency information from the signal data directly by means of some kind
of transformation. It has been shown how different processing schemes can extract
such information from the signal in different ways, but none has relied on any
special assumptions about a speech signal beyond the most general and widely-
held sort. In this chapter, I introduce an entirely different approach to what is often
called ‘‘spectral estimation,’’ in which the signal is explicitly assumed to conform
to the outlines of a model. The parameters of the assumed model are then esti-
mated from the signal data, and the values of the parameters are used as a kind of
proxy estimate of corresponding signal properties. This general type of spectral
analysis is often called parametric; in opposition to the nonparametric methods to
which I have limited the presentation thus far.

Confronted with such a general description of the parametric approach, a reader
might well ask ‘‘why would I want to do that?’’ This question really does need to
be taken seriously, it will be seen. Parametric spectrum estimation came on the
scene in the 1960s, whereupon it was frequently argued as being capable of
providing superior spectral estimates over Fourier analysis for many different
kinds of signals (e.g. [8, 31]). In reality, parametric spectra are only superior to
Fourier spectra when the signal conforms quite well to the assumptions made by
the underlying model [20], to say nothing of the more recent nonparametric
methods like reassignment. This caveat notwithstanding, the parametric method
known here as linear prediction analysis (and by many other names in the wider
literature) has found wide acceptance in the speech analysis and processing
community. This is partly because speech signals, we will observe, often do
conform reasonably well to the assumptions of the underlying model. Another
reason, however, has more to do with expedience than prudence. Parametric
methods, having relatively few parameters to estimate, lend themselves more
readily to automation. After all, why peer at a computer screen all day making
tedious measurements when a computer can do it for you?

S. A. Fulop, Speech Spectrum Analysis, Signals and Communication Technology,
DOI: 10.1007/978-3-642-17478-0_7, � Springer-Verlag Berlin Heidelberg 2011
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Like most of the present book, this chapter has both an expository and a meth-
odological goal. Carrying out the first goal involves explaining the fundamentals of
linear time-invariant systems (i.e. filters), and how these are commonly represented
on the complex number plane with the aid of the z-transform (v. Sect. 7.3). I also
explain the relationship between filters and linear predictive (i.e. autoregressive)
processes. The connection to speech modeling involves the source-filter theory,
wherein the speech signal is assumed to emanate from a source (the vocal cords) and
is subsequently filtered through some resonances.With the vocal tract beingmodeled
as a linear filter, it becomes possible to model a speech signal as a linear predictive
process (v. Sect. 7.2). The computable parameters of such a process are a set of
coefficients of a polynomial, which are commonly known as either the linear
prediction coefficients or the filter coefficients. After computing these parameters, it
is then possible to either compute a power spectrum of the resulting speechmodel, or
to compute each resonance frequency (and bandwidth) of the model in turn. In this
way, the speech model resonances can be used as ‘‘proxy estimates’’ of the reso-
nances in the vocal tract (v. Sect. 7.3).

Given a desire to estimate speech resonances using linear prediction analysis, it
is important for the practitioner to make informed decisions concerning a variety
of methodological variables during the procedure. Accordingly, I discuss the pros
and cons of a number of possible procedures which strongly affect the results of
linear prediction analysis (v. Sect. 7.4). Examples of linear prediction results for a
variety of procedures are provided for synthesized vowels as well as real speech,
so the reader can judge for him or herself how the accuracy of the modeling can be
optimized through judicious choices of methodology (v. Sect. 7.5). Finally, it is
shown how the methods of linear prediction can be extended to the realm of more
complicated autoregressive moving average modeling of speech (v. Sect. 7.6). As
usual, an appendix is provided in which the use of both Praat functions and the
supplied Matlab code are detailed.

7.1 Preliminaries

In order to make the subject of linear prediction understandable, it is necessary
to first go through some preliminaries that were not presented in Chap. 2. The
whole subject is quite mathematical, but I have tried to minimize the number of
equations or relegate them to the math boxes. I first go through the theory of
linear filters, and show how a digital filter can be specified with the aid of the
z-transform, which is a relative of the Fourier transform. The essential equiva-
lence between a filter and an autoregressive process (the basis of linear pre-
diction) is also shown. I next introduce the source-filter theory of speech in this
connection, showing how speech can be modeled as an autoregressive process.
For this section I have relied on some standard sources such as [14, 24, 29, 30]
for the mathematics and facts.
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7.1.1 Linear Filters and the z-Transform

A discrete-time system (filter) is linear just when it satisfies the superposition prin-
ciple, meaning that if we input a weighted sum a1x1ðnÞ þ a2x2ðnÞ of two or more
digital signals, the output can be decomposed into a weighted sum of the system
responses to the component signals. Another important property in our current setting
is time-invariance. A discrete-time system is time-invariant (also called shift-invari-
ant) just in the case that if we delay our input signal by k points in time to provide
xðn� kÞ, the resulting output is simply delayed by the same k time points, but is
otherwise equal to the output function yðnÞ that results from an undelayed input xðnÞ.

It can be shown how any discrete-time linear and time-invariant (LTI) system
with input function x and output function y obeys a difference equation of the
following form:

yðnÞ ¼ �
X

N

k¼1

akyðn� kÞ þ
X

M

‘¼0

b‘xðn� ‘Þ ð7:1Þ

in which the sets fakg and fb‘g of coefficients contain only constants which are
independent of the input and output. An LTI system is completely characterized by
its impulse response hðnÞ, which is its output when provided with a unit sample
sequence. Specifically, the output of a system given arbitrary input function x is
computed by the discrete convolution of x with h:

yðnÞ ¼
X

1

k¼�1

xðkÞhðn� kÞ ð7:2Þ

The form of a typical impulse response function is not very illuminating about
the system possessing it. Furthermore, computing convolutions directly is incon-
venient. A more convenient setting for the analysis of discrete LTI systems and
their input–output relations results from application of the z-transform. The
z-transform of a discrete-time signal xðnÞ is defined:

XðzÞ ¼
def

X

1

n¼�1

xðnÞz�n ð7:3Þ

where z is a complex variable.Note first of all that this is a power series expansion quite
similar in form to a discrete Fourier transform, only there is no exponential function
involved. Here a signal is effectively represented in the complex number plane.

The z-transform is actually a well-studied type of complex power series
called a Laurent series expansion [1]. It was introduced in discrete-time
signal processing (and given its name) by Ragazzini and Zadeh [32]. To
complete the representation of a signal using a z-transform, one must keep
account of the region of convergence of the transform, i.e. the part of the
complex plane within which the power series does not go infinite. If the unit
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circle jzj ¼ 1 is within the region of convergence, then we can evaluate the
z-transform on the circle, as

XðzÞjz¼eix ¼
X

1

n¼�1

xðnÞe�ixn: ð7:4Þ

The astute reader will recognize this as being the discrete Fourier transform
of xðnÞ; so this shows the relation between the two transforms. The DFT of a
signal is precisely its z-transform evaluated on the unit circle.

The z-transform has many useful properties which make computation in the z

domain easier to manage; perhaps the most important of these is the convolution
property, which states that the z-transform of a convolution of two functions is just
the product of their two z-transforms. Thanks to this fact, the input–output relation
of Eq. 7.2 describing an LTI system has the following form in the z domain:

YðzÞ ¼ HðzÞXðzÞ ð7:5Þ

where the functions Y;H;X are the respective z-transforms of the output, impulse
response, and input functions. The function HðzÞ is commonly called the system

function characterizing the LTI system at hand.
By computing the z-transforms of both sides of the difference equation (7.1)

describing an LTI system, the system function can be shown to take the following
form:

HðzÞ ¼
YðzÞ

XðzÞ
¼

PM
‘¼0 b‘z

�‘

1�
PN

k¼1 akz
�k

ð7:6Þ

which is known as a rational system function. The points in the complex plane at
which such a function goes to zero are precisely those points at which the numerator
is zero. The zeros, or roots, of the numerator polynomial1 are therefore called the
zeros of the system. On the other hand, the zeros of the denominator expression are
points in the z-plane where the system function goes infinite; these points are known
as the poles of the system, following the terminology of complex analysis. Such
systems can exist in some important particular forms; the most important for our
purposes currently is the case in which the numerator is a trivial constant, so that
HðzÞ is completely characterized by the N poles whose values are determined by the
parameters fakg. This sort of case is called an all-pole system or filter.

This way of viewing an LTI system is mathematically equivalent to viewing the
output function as a random process. In particular, if we go back to Eq. 7.1,
observe that in the all-pole case just described we can deal only with the first

1 The expressions in the numerator and denominator are not strictly polynomials, but are actually
a more general sort of creature called a Laurent polynomial, in which the indeterminate z is
allowed to take negative powers.

170 7 Linear Prediction and ARMA Spectrum Estimation



summation, since the second reduces to a constant. Then we can write the equation
in a slightly different form [29]:

yðnÞ � a1yðn� 1Þ � � � � � aNyðn� NÞ ¼ en ð7:7Þ

where now we have introduced a representative value of a random process feng to
serve as the input function. This equation is nothing but a multiple linear
regression equation from the theory of statistics, in which en plays the part of an
error term. It is thus shown how the output of an all-pole system can be regarded as
a linear regression on its own past values, which in the terminology of time series
statistics is called an autoregressive (AR) process.

Another view of the same fact derives from noticing that in Eq. 7.7, the error
term en is just the difference between the signal’s value yðnÞ at time n and the
weighted sum of its N past values. Thus, the signal can be approximated, or
‘‘predicted,’’ to within a certain error by a linear combination of its past values.
This explains the commonplace term linear prediction being invoked when this
kind of signal model is employed.

7.1.2 Source-Filter Model of Speech

The source-filter model of speech production decomposes the speech process into
a number of component systems through which the input signal from the vocal
cords must pass before being emitted from the body. In the z domain, the linear
‘‘source-filter’’ speech production model can be written very succinctly indeed
[24]:

SðzÞ ¼ EðzÞGðzÞVðzÞLðzÞ ð7:8Þ

in which the vocal tract output system function SðzÞ is given (thanks to the work of
Fant [13]) as a product of four component systems. EðzÞ here stands for the input
system, a sequence of simple impulses from the vocal cords separated by the
fundamental period of voicing. Since the vocal cords in fact emit filtered impulses,
the system function GðzÞ represents a ‘‘glottal shaping model’’ which is typically
implemented as a simple low-pass filter. The main vocal tract system VðzÞ is a
fairly complicated resonating filter, which models the formant frequencies.
Finally, LðzÞ represents the effects of the lip opening on the ultimately radiated
sound. All of these filters have been theoretically argued [14] to be well repre-
sented by all-pole system functions.

It has been shown in a number of sources (e.g. [14]) how the above model can
be approximately implemented using a single resonant filter with an all-pole
system function, in place of the three all-pole system functions G;V; L. This
source-filter model of speech is standardly written in the form of the first equation
below, in which the denominator is a Laurent polynomial whose roots are the poles
of the vocal tract system including the glottal shaping and the lip radiation:
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SðzÞ ¼
EðzÞ

1�
PN

k¼1 akz
�k

ð7:9Þ

ŜðzÞ ¼
Gain

1�
PN

k¼1 akz
�k

ð7:10Þ

The second of the two equations is an approximation of the first that relies on the
explicit separation of the source function EðzÞ from the filter [22]. To write the
second equation, the source is replaced by a value called the gain factor, so then
the estimated vocal tract output ŜðzÞ only approximates SðzÞ by taking the glottal
source out of the picture.

Here is the situation we have arrived at. The Eq. 7.7 for a linear predictive
(autoregressive) process was derived from Eq. 7.1 describing the input–output
relation of a linear time-invariant filter. The coefficients fakg are generally called
the prediction coefficients, and their number N is called the prediction order. Then,
Eq. 7.10 was derived from an approximate model of the speech production pro-
cess. Notice that it has the form of a simple input constant multiplied by a rational
system function as in (7.6), but with only the coefficients fakg in the denominator.
These coefficients may be called the filter coefficients, and their number N is called
the filter order. Now recall that Eq. 7.6 was also derived from Eq. 7.1 by moving
to the z domain. The two sets of coefficients fakg are really the same set. So this
demonstrates that an approximate speech production model represents the vocal
tract as an LTI filter, whose z-transform is of the all-pole variety, and in which the
coefficients of the denominator polynomial are in fact a set of linear prediction
coefficients modeling the output of the filter—i.e., the speech. The gain factor is
indeed just a form of the prediction error en:

This confluence of the two mathematical streams—filters and linear prediction
of a process—is certainly interesting. Since when do filters have anything to do
with prediction of a signal from its own past? Indeed, cautionary tales lurk here. It
must be remembered that the process of linear prediction is really just a type of
parametric signal modeling, also called autoregressive modeling, and filters need
not be used to develop this concept. A wide range of signals can be profitably
modeled using linear prediction, including random noise and musical sounds, and
there is no filter represented directly in the autoregressive process definition of
Eq. 7.7. The prediction coefficients can only be sensibly interpreted as poles in the
transfer function of a filter under the happy circumstance that some sort of filtering
of a source is actually taking place. In the case of speech, this is a reasonable view
of the process, but only when the number of coefficients equals the number of
poles in the physical vocal tract filter. In the case of, say, an electric guitar, it is
not likely to be a profitable perspective in any event. Yet a linear prediction model
of an electric guitar note can be quite a good representation, depending on the
parameters and what is desired from them, as will be shown in the next section.
The moral here is that, just because we can represent a signal using a linear
prediction model which is mathematically equivalent to an all-pole filtering
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model, this alone cannot guarantee that actual filters in the real world are busy
filtering the signal. In simple terms, mathematical equivalence among models is
not the same as actual equivalence among the things being modeled.

7.2 Speech Spectra from Linear Prediction

In speech science, linear prediction is commonly referred to as ‘‘LPCanalysis,’’where
the abbreviation is for ‘‘linear predictive coding.’’ This terminology is somewhat
inaccurate, because although linear prediction is commonly used for speech coding
and processing, phoneticians and speech scientists who use linear prediction are not
normally doing any speech coding. Let us instead use the phrase ‘‘linear prediction
analysis,’’ or the shorter ‘‘LP analysis,’’ to refer to the use of linear predictionmethods
in a typical phonetic application. The ultimate goal of linear prediction analysis is
normally to obtain an approximation of the speech spectrum with the glottal source
removed, including estimates of key values such as the frequencies of resonances. An
expression (7.10) for the approximate transfer function ŜðzÞ of the signalwas obtained
above in the z domain. From this one can derive the approximate Fourier transform of
the signal, which yields an approximation, or ‘‘smoothing,’’ of the spectrum.

Given the facts presented in the math box in the preceding section, the
approximate Fourier transform representation ŜðxÞ of the signal can be
derived from ŜðzÞ by setting z ¼ eixTs , with Ts equal to the sampling period
of the digital signal (i.e. the reciprocal of the sampling frequency). From the
discussion of Chap. 2, we may recall that the power spectrum we are after is
the square of the magnitude of ŜðxÞ, which may be written in terms of the
discrete Fourier transform in the following way [22]:

jŜðxÞj2 ¼
Gain2

1�
Pp

k¼1 ake
�ikxTs

�

�

�

�

2 ð7:11Þ

From the foregoing considerations it may be seen that in a practical algorithm for
linear predictive speech analysis there will be three general steps. The first thing is to
compute the set of p predictor (filter) coefficients fa1; . . .; apg, for a user-selected
number p. The second step is to compute the gain factor; this together with the
coefficients is sufficient for many purposes. If desired, the estimated power spectrum
can then be computed from these parameters using Eq. 7.11.

7.2.1 Computing the LP Coefficients

The computation of the predictor coefficients is the most technical part, and for our
purposes here it would be too long-winded to discuss the specific methods for
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computing these in any detail. Indeed, entire books [24] have been devoted to this topic
alone, so I am not ashamed to simply refer the interested reader to the rich array of
literature. Inmodern practice there are a number of different techniques availablewhich
will compute the p predictor coefficients from a window of the signal. Praat software
andMatlab (with Signal Processing toolbox installed) both provide three choices for the
algorithm which are usually termed the ‘‘autocorrelation,’’ ‘‘covariance,’’ and ‘‘Burg’’
methods. These are nowclassicmethodswhichhave beendiscussed inmanypapers and
books; the autocorrelation and covariance algorithms are treated in [23, 24], while
Burg’s ‘‘maximum entropymethod’’ dating from [9] is given a fully fledged algorithm
in [2]. As the Matlab signal processing toolbox costs extra, I also included a Matlab
procedure froma freely available toolbox that uses an alternativemethod for computing
the linear prediction coefficients from the statistical cumulants of the signal window
[16]. All of these methods work well when a tapered speech signal window encom-
passes a few glottal cycles; anywhere from 25 to 40 ms is a commonly chosen window
range. This general approach is usually called a pitch-asynchronous analysis, because
no special care is taken to align the analysis window with the glottal cycles.

The essential equality of the autocorrelation and covariance methods over suffi-
ciently long windows was shown by Markel and Gray [24], while the identity
between the Burg and autocorrelation methods was shown by van den Bos [5]. Thus
in practice, any of the three methods applied to a 40 ms tapered speech window will
all yield identical results. The cumulant-basedmethod is the newest, and can actually
depart significantly from the others and may improve upon them under certain
conditions. How it works depends on a parameter to the procedure called the
‘‘cumulant order,’’ which sets how the statistical cumulant series is calculated and
used to estimate the linear prediction model. If the cumulant order is 2, then only
second-order cumulants are used. These are simply autocorrelations, which renders
the technique identical to the autocorrelation algorithm in this case. The cumulant
order may also be set to 3 or 4, however, and using higher-order cumulants in the
calculation will practically always yield a different model of the speech.

The covariance method can also be applied to good effect when a window
shorter than one glottal cycle is selected [24]. This is known as a closed phase

analysis, and it is trickier to do properly because the window on the signal must be
untapered (rectangular) and has to start precisely at the glottal impulse generated
by the closing of the vocal cords. This technique theoretically provides the most
accurate formant estimates for speech analysis [24], but in practice it has some
pitfalls. All the above methods will be compared anecdotally with some examples
in a subsequent section.

7.2.2 Computing the Gain and Power Spectrum

The simplest way to compute the gain factor is discussed by Markel and
Gray [24], who present it in terms of the signal autocorrelation function r as
defined in Eq. 2.10:
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Gain ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

p

i¼0

airðiÞ

s

ð7:12Þ

in which the ‘‘zeroth’’ prediction coefficient a0 ¼ 1. The linear prediction
coefficients by themselves are sufficient to estimate the shape of the signal
spectrum. The purpose of the gain factor is to bring the absolute power of the
estimated spectrum into close alignment with the raw power spectrum that
results from a Fourier transform. In fact, the resulting estimated spectrum
will always have a slightly higher average value than the power spectrum
from an FFT [24]. The accompanying Matlab code provides precise details
of the gain computation by the above means.

It is fairly simple to compute the power spectrum determined by the linear
prediction coefficients and the gain factor. As given in Eq. 7.11, Makhoul [23]
states that one may proceed by ‘‘dividing Gain2 by the magnitude squared of the
FFT of the sequence: 1; a1; a2; . . .; ap. Arbitrary frequency resolution can be
obtained by simply appending an appropriate number of zeros to this sequence
before taking the FFT.’’ This last remark is very important, since for a typical
speech prediction order of p ¼ 10, the FFT of the coefficient sequence alone would
be an 11-point FFT, which would then provide just 5 frequency bins to cover the
relevant frequency range. The computation of the linear prediction power spec-
trum thus provides one of the most striking demonstrations of the utility of zero-
padding, belying Hamming’s qualms [18]—one can use an 11-point coefficient
sequence followed by 2,037 zeros to compute a perfectly nice 2,048-point FFT for
the spectrum, which will then be quantized into 1,024 frequency bins.

7.3 Interpretation as Filter Spectrum

Linear prediction spectrum analysis came on the scene in the 1960s, but not every
developer was interested in speech spectra. Burg, for instance, came up with his
algorithm to examine other kinds of natural signals [9]. As was mentioned above, a
linear prediction model can be used to generate a smoothed power spectrum of a
wide range of signals—the smaller the number of coefficients, the smoother the
spectrum. The limit as the number of coefficients increases is just the precise
Fourier transform spectrum of the signal window. Figure 7.1 illustrates the
smoothing of the power spectrum of a 70 ms Kaiser-windowed snippet of an
electric guitar note. The 14-coefficient model shows a broad outline of the spectral
shape, while the 60-coefficient model shows every harmonic peak while still
smoothing away the aperiodic components found between peaks. There is no
profitable way to view these smoothed spectra as literally showing resonance
peaks of a filter that has been applied.
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7.3.1 Poles and Resonances

Notwithstanding the above, it has been shown that the linear predictionmodel can be
represented as a source-filter model in Eq. 7.10. If the model is applied to speech,
then the all-pole filter can faithfully model the speech ‘‘filter’’ (i.e. the vocal tract)
separately from the glottal source. We should thus be able to get a good look at the
formants if we choose our parameters well. The ultimate question of the ‘‘reality’’ of
the resonances in a linear prediction filter model for a signal is analogous to the
question of the reality of components revealed in the Fourier spectrum. In each case,
the mathematical soundness of the representation is beyond doubt, but the resulting
representation may not directly show things that are ‘‘real’’ in a physical sense.

This is really the main problem with the application of linear prediction analysis
to speech, because speech is a special sort of signal that is actually produced using
a filter that has discoverable physical properties. We therefore wish to select a
number of coefficients (poles) for our model that will allow the results to have a
physical interpretation in terms of actual vocal tract resonances. Turning to the
z-transform view in which the fakg act as coefficients in the polynomial deter-
mining the filter, it can be shown how each root of this polynomial has a particular
role to play in the smooth LP power spectrum. From this one can deduce
approximately the number of coefficients that will be ‘‘just right’’ for a model, as
this number must equal the number of roots.

The theory of filters is well-understood in terms of system functions expressed
in the z domain, so I will just provide a simple explanation and refer readers
interested in details of this theory to a standard signal processing textbook [30]. An
all-pole filter (Eq. 7.10) of the kind emulating a vocal tract must be some sort of
linear resonating filter, having a number of resonances which are emphasized in its
frequency response. The roots of the denominator polynomial (i.e. poles of the
filter) could in principle be either real or complex numbers, but it turns out that for
a well-behaved resonating filter any complex roots must come in conjugate pairs,
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while real roots may be singletons. It is a further fact of filter theory that a pair of
complex conjugate roots determines a resonance in the filter’s frequency response
spectrum (in fact the root in the upper half of the z-plane determines the positive
frequency, while its conjugate root simply reflects this information as a negative
frequency). The proximity of a root to the unit circle determines the sharpness
(i.e. bandwidth) of a corresponding resonance peak. A pair of roots which are not
particularly near the unit circle will determine a very broad resonance that is not
recognizable in the spectrum as a peak, because it may simply ‘‘shape’’ the sides of
other sharper peaks. Similarly, a real root (one is present whenever an odd number of
poles is used) may change the shape of the spectrum but cannot add a peak of its own.

The precise relationship between a complex pole and a resonance was first
presented in a linear prediction context by Atal and Hanauer [3]. Christensen
et al. [10] gave similar formulae which express the resonance frequency in
terms of the argument (angle) of the pole and the bandwidth in terms of the
magnitude. So for a complex pole z ¼ xþ iy ¼ reih one has the following
expressions for the frequency F and bandwidth B of the resonance:

F ¼
h

2pTs
¼

atan2ðy; xÞ
2pTs

ð7:13Þ

B ¼
lnðrÞ

pTs
¼

lnðx2 þ y2Þ

2pTs
; ð7:14Þ

where Ts is the sampling period and atan2 is the four-quadrant arctangent
function [36]. Observe how the frequency of the resonance is determined
completely from the argument (angle) of the pole, while the bandwidth is
determined completely by the magnitude of the pole.

Figure 7.2 illustrates the relationship between the complex roots (poles) of the
filter transfer function and the spectrum, both derived from linear prediction analysis
with 10 poles of the synthesized vowel [æ]. The peaks of the spectrum were found
using a typical sort of peak-picking algorithm,while the poles of the transfer function
were determined by solving the roots of the Laurent polynomial in the denominator
(Eq. 7.10) using aMatlab root solving routine. The two sets of values are presented in
Table 7.1 for two differentmethods of computing the filter coefficients, alongside the

Table 7.1 Linear prediction 10-pole spectrum peaks (Hz) for vowel [æ] compared to known
values and solved roots, cf. Fig. 7.2

Known 731 1,768 2,500 3,500
Peaks (Burg) 732 1,787 2,471 3,291
Peaks (rcest) 723 1,777 2,481 3,369
Roots (Burg) 728 1,791 2,480 3,344 1,012
Roots (rcest) 723 1,777 2,503 3,452 1,305

The Burg LP algorithm results are compared with those from the cumulant-based estimates
labeled ‘‘rcest’’ applied to the same 50 ms Kaiser window of the vowel
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resonance values which were used to synthesize the vowel. In this context where one
has actual resonances, it is common to think of LP analysis as a tool for estimating, or
‘‘measuring,’’ the resonance frequencies and bandwidths.2

Peak-picking of the spectrum in Fig. 7.2 yields reasonably accurate measure-
ments of the lower two formants, but the accuracy decreases for the higher for-
mants which are lower in amplitude (and also less important for vowel
characterization). Meanwhile, the analysis using ten poles presents the problem
that there are five resonance frequencies which correspond to the pole pairs. Three
of these are at least as accurate as those provided by peak-picking, while the extra
resonance from each LP method represents a ‘‘shaping’’ resonance rather than a
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Fig. 7.2 Upper panel shows
the ten poles of an LP model
of synthesized [æ]; lower
panel shows the
corresponding power
spectrum (smooth line)
together with the Fourier
spectrum of the analysis
window

2 The view of LP analysis as a measurement tool is fraught with difficulty; should a scientist
accept a measurement from a tool that would provide ‘‘wrong’’ measurements if it were not
specially set up using partial foreknowledge of the desired outcome?
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spectral peak; this fact can be recognized from its much higher computed band-
width (not shown here) than those of the peak resonances. The frequencies of the
spectral peaks are generally different from the values found by solving the roots;
the reason for these discrepancies will now be discussed.

7.3.2 Picking Peaks Versus Solving Roots

Given any linear prediction analysis of speech, we have seen two ways of
extracting the resulting estimates of the resonance frequencies: direct solution of
the polynomial roots (a method which does not even require a power spectrum to
have been calculated), and picking peak values from the corresponding power
spectrum. McCandless [25] discussed pros and cons of each method, and settled on
peak-picking for reasons of computational tractability and reliability. Polynomial
root-solving is indeed an intensive numerical procedure, but its intractability is less
of an issue with today’s faster computers. In truth, however, there is a subtlety
which distinguishes the two methods that is often overlooked, as it was by
McCandless (op. cit.) and also by Christensen et al. [10] in their comparison of LP
formant extraction methods.

It is important to recognize that the resonances that are computed directly from
the LP filter polynomial are estimated values of assumed physical resonances in
the filter—one might say they are the ‘‘production resonances.’’ The filter spec-
trum, meanwhile, can be understood as a superposition of the spectra of the various
resonances. This superposition introduces the prospect for the individual resonance
peaks to influence each other’s location, with the result that the locations of peaks
in the combined frequency response may be slightly different from the production
resonances. Nevertheless, it must be admitted that humans can only detect reso-
nances by hearing them, which in some fashion involves hearing the combined
frequency response spectrum. So, the peaks in the filter spectrum are essentially
like ‘‘auditory resonances,’’ whose values may differ somewhat from the pro-
duction resonances.3 It is therefore effectively impossible for us to hear, or
otherwise detect acoustically, the ‘‘true’’ formants that are involved in speech.

To evaluate the accuracy of the formants estimated with linear prediction,
I often rely on synthesized vowels whose formants are known. In doing so, the
above discussion must be kept in mind; the known ‘‘true’’ formants of the syn-
thesized vowels are in fact the production formants, which may differ somewhat
(just how much depends on the spectral shape) from the formant peaks in the
resulting spectrum. The formants estimated from a speech spectrum using any
means including reassigned spectrograms etc. cannot be expected to be exactly
equal to the true production formants in general. Table 7.2 provides another set of
values comparing the estimated formants from root-solving and peak-picking the

3 It was Paul Boersma who pointed out this important fact to me.
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same linear prediction analysis of a synthesized vowel. The ‘‘extra’’ pole at
995 Hz has a large bandwidth, which could be used to identify it as a shaping
resonance rather than as a peak.

It seems that there are quite a number of factors that need to be weighed in order
to decide upon a favorite method for determining the filter resonances from an LP
analysis. It is also true that our response to these factors could well be different
today from what it would have been in the 1970s, which was the last time the
matter was seriously examined in the literature. So let us lay down our hand and
look at the cards, as it were.

The method of peak-picking the LP spectrum has a couple of strong points:
(1) the peaks thus found will realistically correspond to spectral peaks detectable
by the auditory process; (2) it is computationally tractable (indeed very fast) to
pick peaks automatically from a spectrum. This method is, however, seriously
hampered by a severe weakness, which is that picking peaks may miss actual
peaks because of apparent merging in the spectrum, even when they have in fact
been separated by the LP analysis into two distinct pole pairs. In practice, two
distinct resonances have to be farther apart than the minimum resolvability dis-
tance in order to be split into two obvious peaks in the power spectrum, and this
seriously hinders the resolution of the peak-picking procedure.

The method of root-solving the transfer function denominator has the advantage
that, with a good root-solving algorithm, pole pairs (and thus, resonances) that are
quite proximal can nevertheless be resolved. The potential formant resolving
power is indeed superior to that of even the reassigned spectrogram for higher-
pitched voices. The computational intractability of the scheme should not deter us
in the present and future eras, as it deterred our predecessors in the 1970s.
Nevertheless, this technique has two negative features, only one of which can be
mitigated through careful methodology.

The first problem is that a good LP model of speech has to provide at least one
or two more pole pairs than the number of expected resonances (formants),
because of the need to include the glottal shaping and lip radiation filters in the
model. This means that a good model should have shaping resonances in the
spectrum as well as resonances which produce peaks. But, the root-solving tech-
nique will in general find all of the poles, so some pole pairs will indicate shaping
resonances (as has already been seen in examples above).

Fortunately, the bandwidth of a resonance can be computed from its poles using
Eq. 7.14, and this value can be used as a threshold to decide a shaping resonance
from a peak. Experience has shown that the great majority of computed resonances
with bandwidth greater than about 300–400 Hz are not peaks, but are shaping
resonances that should not be reported as formants or anything else. The precise

Table 7.2 Linear prediction (Burg) 10-pole spectrum peaks (Hz) for synthesized vowel [i]
compared to known values and solved roots

Known 306 2,241 2,500 3,500
Peaks 317 2,217 2,485 3,291
Roots 318 2,207 2,499 3,343 995
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value of the ‘‘resonance peak threshold’’ can be empirically adjusted in each
circumstance, but the general application of a bandwidth condition is a simple way
to report only spectral peaks. It is a further matter to decide which peaks are
formants as against other kinds of resonances; there is no generally applicable way
of doing this other than guesswork.

The second problem with using root-solving to report spectral peaks is that, as
discussed above, the peaks thus found are the ‘‘production resonances’’ rather than
the auditory ones actually present in the power spectrum. There is no way to
mitigate this, but one accuracy study [34] found that the size of the systematic
difference between peaks derived from poles and the corresponding peaks in the
LP spectrum rarely exceeded the formant perception difference limens found by
Kewley-Port and Watson [21]. In my judgement, the superior ability to find and
resolve spectral peaks using the poles of the LP filter model gives the root-solving
methodology a definite advantage overall in comparison with spectral peak-
picking, even in view of the former method’s being limited to locating production
resonances. This is naturally true for accuracy studies on synthesized vowels, in
which the known formants are actually the production resonances.

7.4 Practical Spectrum Analysis and Formant Extraction

A point in favor of using linear prediction analysis for locating formants is that the
values can be reported by automatic procedures which examine the LP transfer
function (in the case of root-solving) or spectrum (in the case of peak-picking).
Having decided to employ linear prediction analysis, one is confronted with a
number of options governing the overall methodology. Some of these are more
critical than others, and some have been dealt with above. The goal of this section
is to indicate the general accuracy that can be achieved with LP analysis, while
offering suggestions as to the best choices for the various parameters.

7.4.1 Linear Prediction Accuracy Studies

The most complete study of formant measurement accuracy for synthesized
vowels seems to be that of Monsen and Engebretson [26]. Their study pitted
spectrographic manual measurement against a linear predictive analysis procedure
of a sort typically used in speech science at that time. The spectrographic mea-
surement procedure was rather flexible but did not use wideband analysis directly;
three experts were provided with a wideband spectrogram ‘‘for orientation,’’
paired with a single narrowband power spectrum for each vowel token. The
readers could only use the narrowband power spectrum to measure the formant
values, which they would have to do by manually smoothing the spectrum to
locate the peaks by eye.
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The linear predictive analysis was performed manually as well. The procedure
was inadequately described, but seems to have involved deliberately overfitting the
power spectrum using a linear prediction filter having 22 poles. The values of the
first three formants would have to have been extracted from the expected 10 or 11
computed resonances by manual inspection. No mention was made of the specific
means for deciding on the formant values from the overfit analysis, although it was
mentioned that smoother linear prediction spectra having a smaller number of
poles yielded decreased measurement accuracy.

Monsen and Engebretson found that the linear prediction-estimated F1;F2 and
F3 of their synthesized vowels were only accurate to within �60 Hz, and that
manual spectrographic measurement performed comparably on the lower two
formants, and less well on F3: They further suggested that this margin of error is
contained within the difference limens for formant perception, but this is appar-
ently not correct. Kewley-Port and Watson’s [21] later comprehensive study of
formant perception in synthesized vowels reports difference limens of 14 Hz for
formants below 800 Hz and 1.5% for higher formants.

The inaccuracies of linear prediction have occasionally been more systemati-
cally studied in the literature. Vallabha and Tuller [34] distinguished several
sources of systematic errors in linear prediction-estimated formants using a typical
pitch-asynchronous methodology, which include the quantization of the frequency
range by the harmonics of phonation, as well as the ‘‘error’’4 introduced by
approximating the speech spectrum peaks by using the resonance values computed
directly from the roots of the predictor polynomial. They found the order of
magnitude of all of these errors to be approximately the same as the difference
limens of perception found by Kewley-Port and Watson (op. cit.). We should keep
in mind, however, that these kinds of ‘‘systematic’’ errors do not tell the whole
story of the actual measurement errors, which may not in general be the result of
anything systematic. My own small study of nine synthesized vowel tokens [15]
did not rigorously quantify measurement accuracy, but found that pitch-asyn-
chronous LP roots yielded F1 and F2 values which were usually too high by a
considerable amount, up to 17%.

7.4.2 Analysis Windows

The parameters that are the simplest to assign are the length of the analysis
windows which are used to develop the LP model, and the tapering function that is
applied to these windows prior to the modeling. For a typical pitch-asynchronous
analysis, window lengths ranging from 15 to 50 ms have been profitably used. The
length must at least be longer than one glottal period to get a reasonable spectrum

4 The discussion in the previous section clarifies how this systematic difference is not really an
error.
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estimate, but be short enough to ensure that the speech formants do not vary ‘‘all
that much’’ within one window. The LP model will in any event compute only one
set of coefficients for one window, and this means that if the formants change from
the beginning to the end of the window, the estimated formants will end up being
some sort of compromise. This is then a strong deterrent against choosing a much
longer window when speech is examined, but as usual there is a countering
argument that the formant estimates are generally more accurate when longer
windows are used. The analyses of the synthesized vowels that are shown are
usually computed from a longer window of around 40–50 ms, but there is no
danger in this since these vowels have been constructed so that their formants do
not change.

As for the choice of window function, the discussion of windows in Chap. 2
suggests the same advice for linear prediction: try a Gaussian or Kaiser window for
best results. The analyses presented here from the Matlab code use a Kaiser
window and Praat software is currently limited to a Gaussian, but in the literature,
tradition has more often led to the use of the suboptimal Hamming or Hann
windows. In truth, the length of the window has a much greater effect on the results
of linear prediction than the choice of tapering function. Figure 7.3 compares
10-pole LP spectra computed from the synthesized vowel [i]; one spectrum uses a
50 ms Kaiser window, while another uses a 16 ms Hamming window (adopted for
a large study of American English vowels [19]). Observe that the formant values
estimated with the shorter Hamming window are slightly less accurate, an effect
largely due to the decreased window length. The discussion of windows here
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[i] Known (Hz) 306 2241 2500 3500
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Peaks (16 ms)   322 2207 2485 3276

Fig. 7.3 Ten-pole LP spectra of synthesized [i], computed using 50 ms Kaiser window (solid
line) and 16 ms Hamming window (dotted)
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pertains only to a pitch-asynchronous approach; the special methods required for
closed phase LP analysis will be discussed separately below.

7.4.3 Filter Order and Pre-Emphasis

The number of poles that are expected to provide an adequate smoothed spectrum
showing the ‘‘actual’’ vocal tract filter depends first of all on the total frequency
range that is available, which is in turn determined directly by the sampling rate.
Since the vocal tract filter is expected from theoretical considerations (e.g. [13]) to
have a clear resonant structure only in the range below 5.5 kHz or so, it is common
to use a digital speech signal that is sampled at around 10 or 11 kHz. For signals
that have been recorded at a higher rate, this is commonly achieved by a
resampling procedure which can be performed by available software such as Praat.
Resampling (also called downsampling) is then a frequently necessary first step
when performing linear predictive analysis.

After resampling, the number of expected resonances in the spectrum must be
theoretically considered. For our synthesized vowels here it is precisely 4, but real
speech often provides 5 or even 6 formants together with other possible resonances
(e.g. the voice bar, subglottal resonances, nasal resonances). If just 4 formants are
expected, this dictates that 8 LP coefficients (poles) must be in the model.
Moreover, the original argument discussed earlier which determined that the
speech filter could be approximated by a linear all-pole filter included some
additional transfer functions besides the vocal tract formants. There were also
simpler filters representing the glottal system and the lip radiation system. It is
generally argued (e.g. [24]) that something like two additional poles should be
added to the linear prediction model to account for these systems, although the
effects of these additional elements are hoped to be more like a broad shaping
point in the spectrum rather than a sharp peak, since neither the glottal model nor
the lip radiation model is supposed to introduce additional peaks. If these further
considerations are on the right track, we should get a better smooth spectrum of
our synthetic vowel from a linear prediction model using 10 or 11 coefficients than
is obtained using 8 coefficients, and this is indeed the case. Figure 7.4 shows three
LP spectra for the vowel [i] together with a table of resonance values computed
from the poles of the transfer function. The 8-pole analysis fails to resolve the
closely spaced F2 and F3, and so even the root-solving routine only finds two clear
peaks. The other two resonances have bandwidths greater than 500 Hz, making
them extremely poor candidates for actual peak values. The 10-pole spectrum
yields the most accurate estimates of F1 and F3, yet the 11-pole spectrum yields
the most accurate estimates of F2 and F4.

When LP analysis is applied in speech science, a working principle is often
applied to the effect that if one LP spectrum fails to resolve presumed closely-
spaced formants, simply redo the procedure adding more poles until the formants
are resolved (e.g. Hillenbrand et al. [19]). This generally works up to a point, but
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care must be taken with the number of poles in a deliberately ‘‘overfit’’ filter model.
What is the reason a linear prediction model with more poles can get worse rather
than better? In accord with the earlier discussion of modeling, a linear prediction
spectrum can be expected to estimate the vocal tract filter well only under the
condition that it is an optimal model of the physical facts. If we add more poles
willy–nilly, the resulting model eventually loses all correspondence with reality,
and the spectrum will revert to a simple smoothing of the Fourier power spectrum.
For a reasonable number of poles, such a smoothing still corresponds to a resonance
spectrum fairly well, but the limit of this process for a large number of poles just is
the Fourier power spectrum of the window. In a pitch-asynchronous analysis, where
the window is normally quite long, the Fourier spectrum shows all of the harmonics.

A signal which is to be modeled using LP analysis may optionally be subjected
to pre-emphasis (recall from Chap. 4) prior to analysis. From the beginning there
has been a theoretical argument in favor of this procedure [24], though if pre-
emphasis is performed the resulting spectrum must be de-emphasized at the
conclusion of the procedure to avoid skewing it. This procedure has not been
provided with any Matlab code here, but it is possible to do it in Praat. Figure 7.5
shows the 10-pole LP spectra for synthesized vowels [ae, i] which have proven to
be quite accurate, together with 10-pole spectra computed using a pre-emphasis
algorithm (followed by de-emphasis). The decreased accuracy of the peak loca-
tions is easy to observe in the pre-emphasized spectra. In my experience I have not
gained any advantage from pre-emphasis as part of LP analysis, theoretical
arguments in its favor notwithstanding.
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Spectral resonances (Hz, from poles) for different filter orders:

Known 306 2241 2500 3500

8 pole   319 2348       –       –

10 pole 318 2207 2499 3343

11 pole 330 2265 2555 3425

 

Fig. 7.4 LP (Burg) spectra for synthesized vowel [i] using 8 (solid line), 10 (dotted) and 11 poles
(dashed)
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7.4.4 Pitch-Asynchronous Versus Closed Phase

The closed phase procedure for LP speech analysis was argued early on to be
potentially superior [24]. To carry it out, one must use an untapered signal window
(rectangular window) which begins at the moment of glottal closure, and which
extends through to nearly the end of one glottal cycle. For mathematical reasons
which will not be explained here, only the covariance algorithm for computing the
LP coefficients can be used with such a short analysis window. The number of
poles in the model should be the same as would be used for a pitch-asynchronous
analysis, so I still use 10 poles for the synthesized vowels. Figure 7.6 realizes the
potential of this method, providing the most accurate estimates yet shown of the
formants in a synthesized [æ] vowel. The roots of the resulting filter polynomial
are exactly equal to the formants which were used in creating the vowel.5

Figure 7.7 provides another demonstration of the ‘‘perfection’’ of this method,
at least for synthesized vowels. When applied to a vowel having closely spaced
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Fig. 7.5 10-pole LP spectra
for synthesized vowels [æ]
(upper panel) and [i]. Dotted
line spectra use a standard
6 dB/octave pre-emphasis
procedure, to no good end

5 A spurious peak in the spectrum has been introduced at 5 kHz, which is perhaps a result of
resampling to 10 kHz.
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Fig. 7.6 Synthesized [æ] spectra comparing the closed phase covariance method (dotted) with
the pitch-asynchronous Burg method, both using ten poles
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Comparing spectral peaks from poles with the known formants:

Known          306 2241 2500 3500

Closed poles 306 2242 2501 3508 5000

Fig. 7.7 Synthesized [i] spectra comparing the closed phase covariance method (dotted) with the
pitch-asynchronous Burg method, both using ten poles
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formants such as synthesized [i], however, these can appear merged in the com-
puted spectrum even when the calculated roots are correct, making it impossible to
use a peak-picking routine to uncover them. Clearly the closed phase method is
superior for synthesized vowels, although it must be carried out with care. Another
advantage is that it is possible to increase the number of poles in the LP model
without worrying about reverting to the harmonic spectrum—there is no harmonic
spectrum from a single glottal cycle.

7.5 Application to Real Speech

The analysis of real speech introduces numerous challenges for an investigator
seeking to ‘‘measure’’ formants using LP procedures. Many do not involve difficulties
with linear prediction itself, but derive instead from the numerous ways in which real
speech distinguishes itself from the output of a formant synthesizer. Briefly:

• While vowels are synthesized with Praat (or similar systems) in perfect adher-
ence to the source-filter model of speech, real speech departs significantly from
this model due to its aeroacoustic aspects and changing impedance at the glottis.

• The only resonances in a synthesized vowel are the formants; in real speech one
may also find a voice bar, a nasal resonance or two, and two or three subglottal
resonances.

• The values of all resonances in real speech generally change within the course of
a single glottal cycle.

• Any amount of breathiness in the voice is the result of pure aeroacoustic noise
generation from the glottal outflow, which is expected to hinder the linear
prediction model fit to the vowel.

• In the case of real speech, there is no way of knowing what the production
formants are in fact, and hence we are prevented from so easily evaluating the
accuracy of the formants found by LP analysis.

Before performing LP analysis on a real speech signal, it should be resampled
to 10 or 11 kHz; this is the simplest way to ensure that all resonance peaks found
in the LP model could possibly correspond to actual physical resonances of the
vocal system, since no such resonances are generally expected above at most
5.5 kHz. Most examples here are sampled at 10 kHz, so 5 kHz becomes the cutoff
frequency of the power spectrum; 11 kHz is a better sampling rate for female
voices, since the formants are expected to be somewhat higher. Most voices
exhibit five formants in the range up to 5 kHz; there is also likely to be a voice bar,
and there is the possibility of additional resonances which are not formants of the
oral tract. This dictates that an LP model should have at least 14 poles, including
an extra pair for the glottal and lip radiation systems. This was indeed the number
of poles used by Hillenbrand et al. [19] in their study of American English vowels,
although they would sometimes increase the number of poles in search of better
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resolution. Pre-emphasis was demonstrated in the preceding section, but was not
shown to be of much use.

It was already decided above that peaks in the LP model spectrum should be
determined by solving the roots of the polynomial and applying a bandwidth
threshold to weed out the resonance frequencies which are not peaks. This will
provide superior resolution over computing the LP power spectrum and picking its
peaks directly. Beyond this, we also need to decide whether to use a pitch-asyn-
chronous analysis (this seems to be the most common method in the literature for
LP analysis of real speech) or a closed-phase analysis. The results presented above
for synthesized vowels suggest that a closed-phase analysis is the most promising.

While this is not the place to present an exhaustive study, it is not possible to
prescribe a specific linear prediction methodology without at least checking a
few possibilities for relative accuracy. Table 7.3 presents values measured for the
voice bar and first three formants in a natural English vowel [æ] spoken by
the author, and resampled to 10 kHz. Recall that the LP peak-picked values are
directly comparable to those measured from a reassigned spectrogram, while the
LP root-derived values are expected to be somewhat different from the spectral
peaks. In spite of this, it appears that the overall best LP method in this case was
the 14-pole closed phase root computation.

Since we have settled on root-solving over LP spectrum peak-picking to find
resonance values for a number of reasons I will stop including picked peak values
in the further comparisons below. A considerable number of the author’s own
English vowels are used to compare some different LP parameter settings which
use root-solving in Table 7.4. Estimates labeled ‘‘Burg’’ use a pitch-asynchronous
scheme with a Kaiser window of approximately 50 ms, while estimates labeled
‘‘closed’’ use the covariance algorithm with a short rectangular analysis window
containing one glottal cycle. Only root-derived resonance values whose computed
bandwidths are less than 300 Hz are reported in the table; some resonances whose
presence is expected are not discovered by some analyses, or do not have a
bandwidth meeting the condition.

Let me discuss some of the discrepancies and difficulties which are apparent in
Table 7.4. A number of vowels (notably [i, I, e, u]) have F1 measured considerably
higher using the reassigned spectrogram. This could be due to two different

Table 7.3 Comparing resonance values for English vowel [æ] found from several LP methods;
the number of poles in each LP analysis is given

Voice bar F1 F2 F3 (Hz)

Reassigned 205 667 1,917 2,516
12 Burg peaks 132 693 1,880 2,456
12 Burg roots 186 707 1,879 2,479
12 closed peaks 98 649 1,919 2,568
14 Burg peaks 171 689 1,934 2,559
14 Burg roots 191 694 1,940 2,600
14 closed roots 126 661 1,915 2,561

Values measured from reassigned spectrogram provide a benchmark
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factors. Firstly, due to the dynamics of real speech formants within a single glottal
cycle, it is difficult to decide what value to report from the reassigned spectrogram.
My standard procedure here is to report the value of F1 that typically stabilizes 1 or
2 ms after the closure impulse. A second factor, however, may be that LP analysis
tends to report a value of F1 that is too low (as was noted by Di Benedetto [11]).
While the specific reasons for this tendency are not certain, it may be due to
proximity of F1 with the voice bar, which would explain why the problem is
chiefly observed in high vowels (having lower F1 values).

Another thing to note from Table 7.4 is the wide range of formant values
discovered using different LP methods for the same vowel—some of the F1 values

Table 7.4 Resonance values for nine natural English vowel tokens derived from pitch-asyn-
chronous and closed phase LP analysis are compared with values measured from reassigned
spectrograms

Voice bar F1 F2 F3 (Hz)

[i] Reassigned 195 380 2363 3220
14 Burg 158 354 2359 3390
14 closed 155 305 2352 3286
[I] Reassigned 227 479 2290 2771
14 Burg 267 – 2294 2752
16 Burg 250 345 2310 2767
14 closed 153 295 2306 2793
[e] Reassigned 197 412 2527 2988
14 Burg 245 303 2528 2864
16 Burg 231 320 2520 2845
14 closed 186 313 2518 2909
½e� Reassigned 221 471 2164 2782
14 Burg 223 477 2164 2832
14 closed 175 476 2162 2820
[æ] Reassigned 205 667 1917 2516
14 Burg 191 694 1940 2600
14 closed 126 661 1915 2561
[O] Reassigned 175 505 712 2655
14 Burg 228 533 737 2706
14 closed 66 487 729 2685
[o] Reassigned 184 364 705 2428
14 Burg – 363 728 2428
14 closed – 378 725 2434
[u] Reassigned 291 350 879 2387
14 Burg – 332 870 2437
14 closed – 349 869 2405
[u] Reassigned 130 350 715 3034
14 Burg 204 – 704 3001
18 Burga 156 318 715 3008
18 closeda – – 710 3016

The number of poles in each LP analysis is given
a There is a spurious formant in each of these analyses having a bandwidth that meets the
condition
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vary by 10% or more. Let me finally point out that in a few vowels, LP analyses of
reasonable filter order (i.e. 14) were unable to detect or separate expected formants
(e.g. the case of [u]). In some cases, when the number of poles is increased in order
to resolve resonances, extra resonances can be introduced which may or may not
reflect anything physically real (such as a subglottal resonance). These problems
should inspire considerable skepticism concerning the degree of accuracy that can
reasonably be ascribed to formant values measured using linear prediction
techniques.

To test performance on a female voice, six Finnish long vowels from a female
native speaker have their formant estimates presented in Table 7.5. These tokens
were resampled to 11.025 kHz for the LP analyses, since the resulting higher
frequency range is more appropriate for a female subject. Compared to the formant
and voice bar values measured from reassigned spectrograms, the LP estimates
betray a number of problems. For one thing, the pitch-asynchronous and closed
phase estimates do not agree with each other very well at all. It appears that in the
case of this speaker, the closed phase LP methodology has not been so successful.
One possible reason for this is that the female phonation typically has a ‘‘softer’’
glottal closing gesture than that produced by males. Beyond the fact that the closed
phase values are not very reliable, numerous formants and also the voice bar were
not discovered at all in several cases of LP analysis. When F1 was estimated, its
value is lower than that measured from reassigned spectrograms.

Table 7.5 Resonance values for six Finnish long vowel tokens from a female native speaker

Voice bar F1 F2 F3 (Hz)

[a�] Reassigned 280 725 1,544 2,683
14 Burg – 715 1,576 2,710
14 closed – 616 1,528 2,752
[æ�] Reassigned 247 771 1,808 2,704
14 Burg – 756 1,816 2,753
14 closed – 736 1,809 2,770
[e�] Reassigned 271 621 2,403 2,860
14 Burg 367 589 2,308 2,881
14 closed 119 562 2,403 2,757
[i�] Reassigned 271 473 2,452 2,952
14 Burg 232 522 2,650 –
14 closed 235 – – 2,856
[y�] Reassigned 326 449 1,753 2,489
16 Burg – 370 1,756 2,472
18 Burg 333 398 1,776 2,469
14 closed 321 – 1,808 2,538
[o�] Reassigned 262 621 1,403 2,703
14 Burg 291 553 – 2,667
16 Burg – 566 1,433 2,638
14 closed 276 501 1,277 2,722

LP formant estimates (by root-solving) from pitch-asynchronous and closed phase analyses are
compared to values measured using reassigned spectrograms
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7.6 Autoregressive Moving Average Modeling

Looking back at Eq. 7.6 defining a rational LTI system in general, we should now
recall that the linear prediction (autoregressive) model assumes that the system has
no zeros, so that the numerator polynomial in the equation is replaced by a con-
stant known as the gain factor (Eq. 7.10). Such an all-pole model is perfect for
modeling a linear system involving a resonant filter with no zeros. Now, while the
speech production system can often be profitably modeled as such a system,
circumstances arise in which the speech system is theoretically thought to involve
some zeros in the system function. In such a circumstance, no all-pole model is
going to be terribly good [17], so when linear prediction analysis does not work
very well for speech spectrum estimation, one possible cause is the presence of
zeros in the system. In this section I will briefly show how to estimate speech
spectra by invoking a pole-zero model, in which both the numerator and
denominator polynomials in Eq. 7.6 are nontrivial.

7.6.1 A Little ARMA Theory

Looking back at Eq. 7.7 defining an autoregressive process, output series yðnÞ is
there represented as a linear combination of its own past values together with the
current value of a random process. In the math box below it is shown how an output
series yðnÞ can alternatively be represented as a linear combination of current and
past values of a supposed random process, rather than of its own past. Such a process
is known as a moving average (MA) process. In the language of LTI systems, this is
equivalent to a systemwith a rational function (Eq. 7.6) in which only the numerator
is nontrivial; the system has only zeros, instead of only poles. Combining the two
types of process into a single representation yields a ‘‘mixed’’ autoregressivemoving
average (ARMA) process, which was originally called an autoregressive process
with moving average errors. This corresponds to an LTI system with a rational
system function having poles and zeros—a pole-zero model.

The following is Priestley’s [29] equation for a moving average process:

yðnÞ ¼ en þ b1en�1 þ � � � þ bMen�M ð7:15Þ

in which the set fb1; . . .; bMg are the MA coefficients. This can be combined
with Eq. 7.7 to yield:

yðnÞ ¼ en � a1yðn� 1Þ � � � � � aNyðn� NÞ þ b1en�1 þ � � � þ bMen�M ð7:16Þ

as an equation for an ARMA process, where I have changed the (arbitrary)
signs on the coefficients fakg to match the treatment in [17]. The LTI system
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function for such a process has been given earlier, in Eq. 7.6; it involves
both poles and zeros. Just as it was shown earlier how the AR (linear
prediction) coefficients fakg are also the filter coefficients in the denominator
of the system function, it can also be shown that the MA coefficients fb‘g are
precisely the filter coefficients in the numerator of the system function.

7.6.2 ARMA Computation

While the computation of the predictor (i.e. pole series) coefficients in the service of
LP analysis is basically a linear algebra problem, the computation of both the pole
and zero series coefficients together is a nonlinear problem, and is therefore con-
siderably more problematic [33]. As with the LP method, I do not wish to go into the
details of how the coefficients can be computed. Suffice it to say that a number of
methods for computing the ARMA model coefficients have been proposed over the
years, and unfortunately there appears to be very poor agreement among the results
of the methods. This is quite in contrast to the situation for linear prediction, where
most of the disparate computational algorithms amount to the same solution in
practice. Since we cannot here embark on an effort to validate methods of estimating
ARMA model parameters, I have provided two methods which, while they give
different results, both appear to be sound, are backed up by refereed publications,
and have the advantage of Matlab code already freely available.

One ARMA computation method included here is an extension of the cumu-
lant-based LP computation method due to Giannakis and Mendel [16] that was
mentioned in an earlier section. The ARMA coefficients are calculated by first
obtaining an autoregressive solution for the denominator coefficients fakg
(Eq. 7.6) using the earlier described technique, and then using this solution to
write a so-called ‘‘residual time series’’ that is then solved as a moving average
problem to obtain the numerator coefficients fb‘g. The other included method
called ARMASA is documented by Broersen [7] (whose implementation is used),
but it is originally due to Durbin [12]. It is similar to the first method in that it first
solves an autoregressive sequence and then uses the result to solve a moving-
average problem, but the two techniques clearly differ in their details.

Whichever ARMA algorithm is selected, once both coefficient sequences have
been obtained, it is then possible to proceed similarly to the case of LP analysis,
where only the sequence fakg was used. In particular, the poles of the system
function in the z-domain are obtained as the roots of the (Laurent) polynomial in
the denominator just as before, while the zeros of the system function are obtained
analogously from the roots of the numerator polynomial. The frequency and
bandwidth of each resonance determined by the poles can still be computed using
Eqs. 7.13 and 7.14; Eq. 7.13 can be also be applied to compute the frequency of
each spectral zero determined by the system zeros. The power spectrum itself can
be computed using an extension of Eq. 7.11 (see box).
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The theoretical equation for the power spectrum of an ARMA process can be
found in a number of sources [6, 29], but it ismore difficult (andmore useful) to
find an equation in digital form suitable for implementation. The power
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inwhichTs is the samplingperiodof the signal,Df is the frequencybinwidth, and
r2 is the variance of the ARMA process (analogous to the squared LP gain
factor). I had trouble finding a good method for computing this variance.
Broersen’s ARMASAMatlab routines include a method which he shows how to
use, but when tested it appeared to give incorrect results. The notion that the
squared LP gain (which does not take into account the MA part of the ARMA
model) might serve as a suitable estimate of the ARMA variance is implied in
[35], so this is how it is estimated in the plots shown.

7.6.3 Applications to Speech

It has been established a number of times (e.g. [17]) that using an LP model to find
the spectral peaks of a process containing zeros can lead to serious errors in the
location of the peaks. It is also well-known that speech sounds can contain spectral
zeros, particularly when nasalization of any kind is involved. It therefore behooves
the would-be speech analyst hoping to rely on a parametric spectral estimate to at
least try an ARMA model in many circumstances. The main reason is not to find
the locations of spectral zeros, since this is frequently not valuable information
about a speech spectrum, but rather to simply get a better estimate of the peak
locations. One study, for example, demonstrated the superiority of ARMA mod-
eling applied to synthesized nasals involving 8 poles and 5 zeros [27].

First of all, let us see how ARMA modeling compares with linear prediction.
I have computed the ARMA parameters using both supplied methods for two of the
Finnish vowels analyzed above,whichwere notwell-represented by their LPmodels.
Table 7.6 compares the resonance values found earlier for these vowels using LP
analysis, with the values found using the ARMA ‘‘residual time series’’ (rts) method
and theDurbinmethod (suppliedwith the software name ‘‘ARMASA’’ byBroersen).
Bothmethods are applied using 14 poles and 2 zeros, under the assumption that there
are few, if any, zeros expected in an oral vowel, but also to test the idea that modeling
a couple of zeros might be more accurate than no zeros. Power spectra from each of
theARMAmodels for [o�] are plotted in Fig. 7.8,where it is plain to see howdifferent
the models are (and that they are plotted with a somewhat incorrect power gain,
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which does not affect the pole locations). It turns out that neither modeling method is
obviously a great improvement over LP modeling for these vowels.

Given the ARMA modeling success with synthesized nasals cited above, we
should examine some nasals. As an example, the nasals [m, n] recorded in the
English words clam, clan have been analyzed to find out the resonance spectra. It
is notable that there are many more resonances for the bilabial nasal, so the
number of poles (and zeros) in the models have been adjusted to meet expecta-
tions. The LP method and the ARMA models are about equally mediocre as far as
the accuracy of the located peaks, and all of these parametrics have missed some
resonance peaks (Table 7.7). The ARMA model for [m] was set to have 22 poles
and 5 zeros while the model for [n] was set to have 14 poles and 2 zeros, but the
number of zeros is really just a guess based upon the number of resonances, and
the location of the poles is not improved from the pure LP analysis.

Table 7.6 Formants of two Finnish vowels compared from reassigned spectrograms, Burg LP
analysis, and two ARMA estimation methods (cf. Fig. 7.8)

Voice bar F1 F2 F3 (Hz)

[a�] Reassigned 280 725 1,544 2,683
14 Burg – 715 1,576 2,710
(14, 2) ARMArts – 744 1,544 2,677
(14, 2) ARMASA – 683 1,539 2,702
[o�] Reassigned 262 621 1,403 2,703
14 Burg 291 553 – 2,667
(14, 2) ARMArts 243 535 738 –
(14, 2)ARMASA 300 556 – 2,695

Table 7.7 Resonance values for English nasals as measured using a reassigned spectrogram,
Burg LP analysis, and cumulant-based ARMA modeling

[m] Reassigned 172 371 893 1,146 1,430 1,752 2,020 2,695 3,393 3,900
22 Burg 169 257 – 1011 1,398 1,756 2,138 2,689 3,404 4,123
(22, 5) ARMArts 149 338 – – 1,350 – 2,043 2,688 3,426 4,141
(22, 5) ARMASA 134 248 990 – 1,406 – 2,048 2,671 3,428 3,978
[n] Reassigned 222 339 1,590–1,482 2,680 3,944
14 Burg 195 – 1491 2,681 3,919
(14, 2) ARMArts 173 365 1491 – 3,857

Table 7.8 Degema advanced versus retracted tongue root low vowels following [m], as mea-
sured using reassigned spectrograms, LP analysis, and (24, 2) ARMA models

½ma
a
� Reassigned 186 983–769 1429 2017 2441

24 Burg 185 821 1408 1954 2615
(24, 2) ARMArts 158 822 1415 1958 2607
(24, 2) ARMASA 172 864 1434 1945 2607
½ma

‘
� Reassigned 210 538 933 1445 2334

24 Burg 203 615 999 1422 2335
(24, 2) ARMArts 163 576 973 1421 2337
(24, 2) ARMASA 198 592 989 1418 2337
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For another example, resonances were measured in the purportedly distinct low
vowels of Degema (discussed in the previous chapter) in syllables initiated with a
nasal. This environment provides the possibility of slight nasalization, and there is
also reason to suspect a more convoluted resonance cavity during vowels produced
using tongue root manipulation. Thus, there is the prospect that an ARMA model
could be better than LP for such vowels. 24-pole models were tried, in view of the
large number of observed resonances below 5 kHz; there were 5 resonances easily
measured below 2,500 Hz, and the data here focusses on these only (Table 7.8). In
this case, some moderate success with the ARMA models is observed. Particularly
in the case of the retracted tongue root ½a

‘
�, the ARMA models’ added zeros appear

to have improved the accuracy of some peak locations. It should also be kept in
mind that, because these procedures inherently use one set of peaks to represent a
highly dynamic process as resonance properties of a single span of time on the
order of 45 ms, there is not any guarantee that even a ‘‘perfect’’ model would
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return the values reported from the reassigned spectrogram, since the latter anal-
ysis uses much shorter analysis windows.

I hope that readers feel ready to try some ARMA modeling on sounds that have
proven problematic for LP analysis. One obvious disadvantage, however, is the
need to guess at the number of zeros for the model, in addition to the poles.
Mitigating this difficulty is the relatively low sensitivity of the pole locations to
the zero locations in these solution methods, as can be verified by increasing the
number of zeros in the modeling of the Degema vowels (Table 7.8).

7.7 Appendix: Praat and Matlab Techniques

7.7.1 Praat Functions

When a sound object in the list is selected, you will see a button for ‘‘Formants &
LPC’’ which accesses all LP analysis features of Praat. Depressing this button
brings a pop-up menu with the LP options. Praat can compute a raw LPC object,
using any one of four algorithms which are all essentially equivalent for pitch-
asynchronous analysis. Praat is only useful for pitch-asynchronous LP analysis,
since it forces the use of a Gaussian taper on the analysis window. Also on the
menu is a ‘‘To Formant’’ function, which further automates some of the steps in LP
formant estimation.

It may be necessary to downsample the sound object before using an LPC
function. As mentioned above, for a good LP model of sonorant speech sounds, the
sampling rate should be set to 10 kHz for males and around 11 kHz for female
speakers. Resampling is available in Praat when a sound object is selected, as one
of the functions accessible by the ‘‘Convert’’ button. Upon selecting one of the
functions ‘‘To LPC,’’ a dialog opens which allows you to set the prediction order
(number of poles), the analysis window length (automatically doubled with a
Gaussian taper applied), the time step between successive LP coefficient compu-
tations, and the frequency at which pre-emphasis begins. Setting the latter to some
frequency higher than the Nyquist frequency will turn off pre-emphasis (e.g.
6,000 Hz for a sound sampled at 10 kHz).

The result of the above LPC function will be an LPC object in the list, which
represents filter coefficients as a function of time, stored in successive frames with
a constant sampling period [4]. It is important to remember the actual window
length (double what was entered above), the time step, and pre-emphasis fre-
quency in order to be able to work with an LPC object effectively. The LPC object
can be acted upon in a number of ways, not all of which I can address here. The
actual coefficients can be accessed for each analysis window using the ‘‘Inspect’’
button below the object list. The function ‘‘To Spectrum’’ will compute a spectrum
object from the LPC object; it is important to enter the de-emphasis frequency
equal to whatever pre-emphasis frequency was entered before. The time point of
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the analysis window within the LPC object that is desired for the spectral slice
must also be entered. Leaving the value set to zero will choose the first analysis
frame. Once a spectrum object has been created, it can be viewed using ‘‘Edit’’ or
drawn as a graph in the picture area, just as with a Fourier power spectrum object.

Starting from an LPC object, there is also the function ‘‘To Formant,’’ which is
useful for getting the frequency and bandwidth values of the various resonances
determined by the LP coefficients. The function yields a formant object added to
the list, which provides frequency and bandwidth information (by root solving)
about discovered formants for each analysis frame in the corresponding LPC
object. The formant values can be read for each successive analysis frame by first
computing the Formant object and then using the ‘‘Inspect’’ button. The formant
function tries to heuristically eliminate certain resonances which are not peaks; if
every resonance and its bandwidth is desired (which will include any shaping
resonances that are not peaks), use ‘‘To Formant (keep all)’’ instead.

Starting from a sound object which has not been downsampled, it is also
possible to bypass some of the details of LP analysis by selecting ‘‘To Formant’’
from the ‘‘Formants & LPC’’ functions. This function brings up a dialog requiring
you to enter the number of formants sought or expected; the number entered will
simply be doubled to determine the number of poles for the analysis. From the
discussion in this chapter, it can be gleaned that this is not generally the optimal
number of poles, since something like two additional poles should be included in
order to model the lip radiation and glottal production filters. Therefore, you might
try increasing the number of formants you enter by one, to get a better LP model.
The dialog also asks for the maximum frequency of the formants, which should be
5,500 Hz for a female and 5,000 Hz for a male. The function will then automat-
ically resample the sound before computing the LP coefficients and formant
properties therefrom. Once again, the analysis window length (automatically
doubled by Praat) and the desired starting frequency for any pre-emphasis should
also be entered in this dialog. The result of this function will be a formant object,
as described above.

7.7.2 Matlab Functions

Readers who wish to use the supplied mfiles for this chapter will need to have
installed the Signal Processing Toolbox for Matlab, which costs extra. Some of the
routines (in particular, all of the ARMA routines) also rely on two free toolboxes,
Higher Order Spectral Analysis and ARMASA, both available through the Matlab
Central file exchange service. Rather than using the functions in these toolboxes
directly, I have written ‘‘wrapper’’ functions which in turn call functions from the
toolboxes, and in this way the output and plots precisely suit the purposes to which
they have been put here.

The three functions to be described are intended for LP or ARMA modeling of
a ‘‘single slice’’ of a speech signal. The signal provided to the functions for pitch-
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asynchronous analysis should be around 20–60 ms in length, not windowed. Praat
is useful for cutting out the desired slice of a speech sound. For closed-phase
analysis, the provided signal should instead comprise a single glottal cycle from
beginning to end. Praat can also be used to downsample the signal in preparation
for the parametric procedures provided here. For modeling of the vocal tract
resonances in sonorant speech sounds, male speakers should be resampled at
10 kHz, and females at around 11 kHz.

The main function for computing a linear prediction model from a signal and
plotting its power spectrum is lpcspectrum.m, which is called using the fol-
lowing template:

½peaks; amps� ¼ lpcspectrumðsignal; order; Fs; taper; alg; linestyleÞ

The argument signal is a vectorized signal that need not have had a tapered
window applied, order is the number of LP coefficients in the model, and Fs is
the signal sampling rate. The argument taper should be entered as ‘yes’ or
‘no’ (including the single quotes, per Matlab syntax). The argument alg should
be entered as one of ‘autocor’, ‘cov’, ‘burg’, or ‘rcest’. These
values will compute the LP model using, respectively, the autocorrelation method,
the covariance method, the Burg method, and the third-order cumulant-based
method of [16]. For computing an LP model using the closed phase of a glottal
cycle, set alg to covariance with no taper applied. All pitch-asynchronous models
should have tapering applied, unless the provided signal was already tapered by
other software. The argument linestyle is useful for overlaying plots with
different lines; it should be one of the Matlab LineStyle property specifiers, such as
‘-’ for a plain line or ‘:’ for a dotted line.

When lpcspectrum is called, a set of LP coefficients is computed using the
specified algorithm, the resulting model power spectrum is plotted, and a number
of peak frequencies are automatically picked using a routine from the HOSA
toolbox and reported in the Matlab command window. The desired number of
peaks to be sought is set in the code, as the value of npeaks, which equals 6 by
default. The discovered peaks and their power amplitudes can also be returned
using the so named output variables in the template, which are optional. At the
conclusion of the routine, the user is asked whether to overlay the Fourier power
spectrum, where the answer ’h’ will not overlay but will ‘‘hold’’ the plot so that
future runs through the routine will overlay the next LP spectrum. This is useful
for comparing spectra of LP models with differing numbers of poles, for instance.

The function lpcroots.m is used for computing an LP model and getting the
resonances by solving the polynomial roots, instead of peak-picking a spectrum. It
is invoked using the following template:

½output; amps� ¼ lpcrootsðsignal; order; Fs; taper; algÞ

where the arguments have the same meaning as with the lpcspectrum routine
above. Running the function automatically prints all solved roots (positive and
negative) as frequency values together with bandwidths of the resonances. The
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negative-frequency roots simply repeat the information contained in the positive
roots. If desired, a two-column matrix of resonance frequencies and bandwidths
can be output using the variable of that name. The variable named amps will
return a vector of the power amplitudes of the resonances; as usual the routine can
be called without using output variables.

The main function for ARMA modeling provided is armaspectrum.m, and
it combines the features of the above LP routines. The function is invoked using
the following template:

½formants;amps;zeros� ¼ armaspectrumðsignal;arorder;maorder;Fs;algÞ

in which the arguments have the same meaning as in the LP routines above, except
that now two orders (for the autoregressive part and the moving average part of the
model) have to be specified, giving the number of poles and zeros respectively.
The argument alg should be either ‘rts’ (for the HOSA toolbox algorithm) or
‘ARMASA’. Running the function produces a plot of the model power spectrum,
although the gain has been estimated using the LP gain factor which is known to
be incorrect. The frequencies of all poles (with their bandwidths) and zeros found
by root-solving are automatically printed to the command window. The output
variable formants returns a two-column matrix of resonance frequencies and
bandwidths, amps returns a vector of the resonance amplitudes, and zeros

returns a vector of the frequencies of spectral zeros.
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