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Preface

In this book we study the effect of interference and methods of coping with it in a

wireless network. We approach the problem from three different perspectives. The

first which involves physical layer is a method to cancel out interference in a multi-

access channel. We consider J transmitter units each equipped with N transmit an-

tennas over wireless Rayleigh fading channels. Previously, it was proved that when

each transmitter unit has N transmit antennas, using (J − 1)N + r receive anten-

nas for any r ≥ 1, the receiver can completely separate the signals of J users. The

provided diversity to each user was shown to be Nr if the units employ space-time

trellis codes even if the units transmit asynchronously. Here, we consider the case

when all units are synchronized and employ Quasi-Orthogonal Space-Time Block

Codes (N > 2). It is proved that in this case a receiver with J + r −1 antennas, with

r ≥ 1, can separate the transmitted signals of all units and provide each unit with a

diversity order of Nr .

Based on our interference cancellation technique, we then offer an array process-

ing scheme which provides trade-off between diversity and spatial multiplexing.

It is shown via simulations that this array processing scheme performs better than

well-known modulation schemes, e.g. space-time block codes and BLAST, for a

moderate number of receive antennas. We then derive the diversity order of these

multiple antenna multi-user cancellation and detection schemes.

In our second approach we assume the physical layer did not remove interference

fully. We then try to optimize our medium-access control (MAC) layer. We consider

the problem of joint routing, scheduling and power control in multi-hop wireless

networks. We use a linear relation between link capacity and signal to interference

noise ratio in our formulation. In a previous work, using a duality approach, the op-

timal link scheduling and power control that minimizes the total average transmis-

sion power is found. We formulate this problem as a linear programming problem

with exponential number of constraints. To cope with the exponential number of

constraints, we propose an iterative algorithm based on the cutting plane method.

The separation Oracle for the cutting plane algorithm turns out to be an element-

wise concave optimization problem that can be effectively solved using branch and

bound algorithm.

vii



viii Preface

We extend the same method to find the optimal routing scheduling and power

control. Simulation results show that this methodology is more efficient and scalable

compared to the previously proposed algorithm.

As a third approach we investigate the connectivity of fading wireless ad-hoc

networks. We first define interference, and based on that propose a few metrics of

connectivity. We then study the effect of interference on connectivity based on each

of those metrics.

Seyed Javad Kazemitabar
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Chapter 1

Introduction

When two or more sources talk at the same time we will have interference. In wire-

less networks, interference is a common phenomenon due to sharing the medium,

i.e. sky, by all the sources. Since, degrees of freedom, e.g. band-width, number of or-

thogonal codes, and time, are limited, interference is inevitable. It will then be useful

to first, model this interference and then cope with it in different layers of network.

In this book we address this issue from three different perspectives of physical layer,

medium-access control layer, and network connectivity.

1 Coping with Interference in Physical Layer

Multi-user Communication and Interference Cancellation

Modern communication systems need to consider multi-user transmission (multi-

access) or multi-user reception (broadcast) in their designs. During the past few

decades, a large effort has been made in finding the capacity of such channels for

AWGN [2–4] and Rayleigh fading [5–8] scenarios. After the introduction of notions

like diversity and multiplexing [9–12] to the area of wireless communications, re-

cently researchers have started considering them in the previously defined problems

of network information theory [13, 14].

In this chapter we consider a multiple antenna multi-access scenario where by

usage of receive antennas one can cancel out the interference of other users. To the

best of our knowledge, the first interference cancellation technique that specifically

addresses multiple antenna equipped users is [1]. In this work, Tarokh et al. con-

sider the case where each user is equipped with N transmit antennas. They show

that one can decode each user separately by using enough number of receive anten-

nas (N times the number of users). Using properties of orthogonal space-time block

codes [10, 11], Naguib et al. [15] provided an interference cancellation method that

required much less number of receive antennas, i.e. as many as the number of users.

However, this method was only for users equipped with 2 transmit antennas. The
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2 1 Introduction

work was improved in [16] for higher number of transmit antennas but only for

J = 2 users. In this chapter we show why the work started by Naguib et al. can-

not be applied to higher number of transmit antennas when complex constellations

are used. Moreover, we offer an alternative that is based on a similar modulation

scheme named Quasi-Orthogonal Space-Time Block Code (QOSTBC) [17, 18]. Our

scheme also requires having receive antennas as many as the number of users only.

Previously, when the number of transmit antennas, N , was more than 2, one needed

approximately N times the number of users for decoding; we reduce this number to

almost one N th of what was required.

Trade off Between Rate and Diversity

Space-time codes are designed in a way to provide highest possible transmit diver-

sity when multiple antennas are available. On the other hand, codes like BLAST

[19] are designed specifically to achieve the tremendous potential rate promised by

information theory [20, 21] using multiple antenna systems. The diversity order in

these codes, cannot be as high as space-time codes [12]. Therefore, designing codes

that provide high diversity order while maintaining rate is appreciated. Examples of

such codes are golden [22] and perfect [23] codes. These two codes have full diver-

sity and at the same time provide a high rate. The drawback of these codes, however,

is that they require as many receive antennas as the number of transmit antennas, in

order to use sphere decoding. The next challenge then, will be to add the property

of simple decodablity and reduction in number of required receive antennas while

having previous properties.

There is a direct relationship between any multi-user detection (MUD) scheme

and a single user modulation scheme with multiple transmit antennas. Once the

multi-user scheme is designed one can think of each user as one antenna or a group

of antennas embedded in the transmit antenna array of a single transmitter unit. Us-

ing the multi-user decoding method we develop in this chapter, we provide a single

user scheme that trades between diversity and spatial multiplexing. It turns out, as

it is shown in the simulation results, that the new single user scheme outperforms

many well-known multiple antenna schemes. We explain this part of our work in

Chap. 2.

Diversity Analysis of Multi-user systems

Although, there has been a lot of work in the area of multiple antenna multi-user

detection, there is a lack of performance analysis. To the best of our knowledge,

a mathematical calculation of the diversity order of these MUD schemes is missing

in the literature. Therefore, we were motivated to find the exact value of diversity

for these schemes.

In a recent work [31] however, the authors provide a mathematical model for

calculating the equivalent signal-to-noise-ratio (SNR) of different MUD methods.
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Their work gives us a tool for analyzing the performance of these schemes. In this

chapter we will derive the diversity order of two of the described methods based

on the formulation introduced in [31]. We then extend the results to more than two

transmit antenna case. We explain this part of our work in Chap. 3.

2 Coping with Interference in Medium-Access Control (MAC)

Layer

Assuming the physical layer could not remove the interference fully, it will then be a

problem how to design MAC. Wireless mesh networks rely on multi-hop transmis-

sion to provide connectivity between end users. In such systems it is highly desirable

to minimize the total power consumption to increase energy efficiency of the system

and to minimize interference with other telecommunication systems working in the

same environment. Three separate set of control variables that determine the energy

consumption in a network are: (i) Routing which specifies path(s) that are used to

transfer data between every source-destination (S-D) pair in the network and the

fraction of traffic that on average is sent through each selected path. (ii) Scheduling

which specifies the set of active links that transfer data at each time slot. (iii) Power

control which determines power transmission of active links at each time slot. For a

given traffic matrix which specifies traffic demand between every source-destination

pair our goal is to find the optimal routing, scheduling, and transmission power that

minimize the total power consumption in the network.

Capacity of a link in wireless networks is not fixed and it depends on many factors

including the transmission power over the link and interference caused by transmis-

sions over other links in the network. The interdependence and coupling between

link capacities is one of the fundamental characteristics that should be considered in

modeling and design of wireless networks and algorithms.

The physical layer models that consider interference result in complicated math-

ematical relations between power and link capacity which are multi-variable and

non-convex. Therefore, conventional convex optimization algorithms are not ap-

plicable anymore. Furthermore, to cope with the interdependence and coupling of

variables in wireless networks, it is well-known that a cross-layer design approach

that jointly optimizes routing, scheduling and power control can substantially re-

duce total power. In this work, we propose a cross-layer global optimal algorithm

that minimizes the total power consumption in the network and consider non-convex

inter-dependent model for wireless links.

Optimization approaches for wireless network resource allocation are developed

in several works. Our approach is similar to [37], where the problem of joint rout-

ing, scheduling and power control for wireless multi-hop network is considered.

They present a centralized algorithm to find optimal scheduling and power con-

trol to minimize the total average power consumption in the network, subject to

constraints regarding the peak power and minimum data rate over each link. In ad-

dition, using the dual variable as the link cost they propose a gradient based algo-

rithm to find the optimal routing iteratively. However, number of constraints of the
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scheduling and power allocation problem, which should be solved in every iteration,

grows exponentially with the number of links. Hence, this approach is impractical

for large size networks. We propose efficient relaxation methods and introduce an

algorithm that simultaneously finds the optimal routing, scheduling and power al-

location. Even though the worst case complexity of the relaxation methods can be

exponential, these algorithms turn out to be very efficient for practical problems.

In fact, by using the simulation results, we show that our proposed algorithms for

routing, scheduling and power control is even much more efficient than the direct

approach proposed in [37, 38] for scheduling and power control (with fixed routing).

Kodialam and Nandagopal [39] consider the problem of determining the achiev-

able rates in multi-hop wireless networks. They consider a node-exclusive inter-

ference model, which means that transmitters use orthogonal channels and there-

fore there is no interference between transmissions of separate node pairs. They use

polynomial time approximation schemes for solving the routing problem and rely on

graph edge coloring methods for scheduling. In their model the transmission power

over each link is fixed and hence there is no power control problem. Bhatia and

Kodialam [40] consider the problem of joint routing, scheduling and power control

for wireless multi-hop networks. They derive a performance guaranteed polynomial

time approximation algorithm for jointly solving these three problems. Similar to

[39] they also assume orthogonal channels and hence there is no interference be-

tween the channels. Lin, Lin and Shroff [42] use the same model presented in [40]

and find a low complexity distributed algorithm for routing, scheduling and power

control. Their proposed algorithm is sub-optimal and its power consumption can

be twice as large as the optimal solution. Further, since their interference model is

also based on the node-exclusiveness assumption, they do not consider interference

caused by simultaneous transmission of separate nodes. In the simulation results

section, we discuss that the adopted interference model has profound impact on the

optimal routing characteristics.

Motivations and Applications

Wireless cross-layer design algorithms can be distributed or centralized. The dis-

tributed algorithms are generally designed to dynamically adapt to the network and

users conditions and requirements. Therefore, they often trade-off performance for

low computational complexity and communication overhead [42]. The algorithm

proposed in this paper is centralized and even though it may not be applicable as an

adaptive on-line algorithm it has several applications in the design and analysis of

wireless networks such as:

• Minimum Bandwidth Guarantees: Our algorithm can be used to reserve a fraction

of the time slots to efficiently provide minimum bandwidth guarantees between

source-destination pairs, while for the rest of the time slots we can use a dis-

tributed algorithm to dynamically allocate the bandwidth. Distributed algorithms
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may be able to provide long term (asymptotic) throughput (or fairness) guaran-

tees, however it is much more challenging to provide short term performance

guarantees with these algorithms [42, 43]. This becomes even more dramatic if

we use random access methods such as 802.11 for distributed scheduling [44,

45], where starvation of some connections may occur. Under these circumstances

a combination of centralized algorithms for minimum bandwidth guarantees and

distributed algorithms for the rest of the capacity can be very desirable.

• Path Selection: Convergence of distributed routing algorithms can be very slow

and before convergence we can have loops in the paths. We can use the centralized

algorithm proposed in this chapter to select a good candidate set of the paths and

then use distributed scheduling algorithms to distribute the load among selected

paths [46]. Furthermore, our algorithm will also provide good set of the links that

can be scheduled together in order to simplify the distributed scheduling.

• Bench-marking: Our algorithm can be used to study performance of alternative

scheduling and routing algorithms and to understand how far they are from the

optimal possible performance. We can also use our algorithm to detect and un-

derstand fundamental bounds and bottle-necks of a network architecture.

• Design Insights: Our algorithm can be used to study and answer questions re-

garding structure and properties of the optimal solution for wireless networks.

As an example consider number of the paths that we need between every source-

destination pair. In the wired networks, it is a common practice to use multiple-

paths to do load-balancing in the network. However, our studies and simulations

show that in many scenarios this is not a good idea in wireless networks. Note that

in wireless networks, due to link coupling effect, multiple paths means greater in-

terference which could lower the over-all capacity of the network.

Solution Overview

In [37] the problem of minimizing total power consumption of a multi-hop wire-

less network subject to a given offered load and a fixed routing is formulated as

an element-wise concave optimization problem. Hence, the optimal power vector

solutions reside on the extreme points of the feasible power region. Consequently,

the optimization problem can be formulated as a linear program which has one con-

straint for every extreme point of the feasible power region. Therefore, complexity

of this problem grows exponentially with the number of the links in the network,

which makes it not scalable.

In our approach, using the relaxation method, instead of solving the LP with all

constraints, at each iteration we solve a relaxed version of it with a few number of

constraints. We use a non-linear optimization problem Oracle to check if the relaxed

LP solution satisfies all constraints. If it does not, then the Oracle specifies one of

the violated constraints that we will add to the constraint set of the relaxed LP. We

continue until the relaxed LP solution satisfies all constraints. Even though in theory,

it is possible that we need to add all of the constraints to the relaxed LP, practically

it converges after a few iterations (relative to the number of links in the network).
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We extend the Oracle to provide the routing solution too. In [37], they use a

gradient based algorithm to update the routing. At each iteration, after the routing

update, the optimal scheduling and power allocation should be re-computed. This is

a very time consuming and inefficient procedure, so that it is reported to be efficient

only for networks with at most 15 links [38]. In comparison, our simulation results

show that the proposed algorithm can work for large networks with 100 links and

more. Further, since we rely on global optimization algorithms, our approach can

be extended and applied to other non-linear physical layer link models. We explain

this part of our work in Chap. 4.

3 Effect of Interference on Connectivity

Regardless of how we deal with the interference in physical or MAC layers, it has

inevitable effects on the connectivity of the network. Investigating the connectiv-

ity of radio networks goes back to four decades ago. In his pioneering work of [62],

Gilbert studied the connectivity of infinite random networks relying on the so-called

geometric disk model. In the geometric disk model, a random topology network is

represented by a disk graph in which two nodes are directly connected if their dis-

tance is smaller than a given transmission radius. As evidenced by the works of [57,

67, 68], the connectivity of infinite random ad-hoc networks by means of the geo-

metric disk model has recently received much attention. In addition, a survey of the

literature reveals a large number of articles in the context of connectivity of ad-hoc

networks with a finite number of mobile nodes. Some of the related articles in this

area are [56, 58, 59, 70]. Interestingly, connectivity in random networks represented

by graphs of mixed short and long edges can also be related to small world net-

works [74]. Although originally attractive for studying connectivity, the disk model

measures connectivity relying on a pure distance-based metric which is far from

the reality of wireless networks. The main disadvantages of the disk model are not

considering the effects of fading, attenuation, interference, noise, and mobility.

In [63], Signal-to-Interference-Noise-Ratio (SINR) is proposed as the metric of

connectivity in wireless ad-hoc networks. According to SINR metric, two nodes in

a random topology are connected if their minimum SINR is greater than a given

threshold. The two connectivity studies of [55] and [60] rely on the SINR model.

While SINR is a more realistic metric of connectivity compared to the geometric

disk model, it still falls short of fully capturing the connectivity phenomenon in

wireless ad-hoc networks. In reality, a pair of nodes in an ad-hoc network are con-

nected if a sequence of transmitted symbols from one can be received at another. In

addition, variations of the channel in time and frequency can also affect connectiv-

ity. Utilizing Capacity (C) and/or Symbol Error Rate (SER) can better describe the

connectivity phenomenon because those quantities are functions of not only fading,

shadowing, and power but modulation and antenna configuration.

The use of space-time coding techniques in wireless networks is of special inter-

est because it can substantially reduce the effects of multipath fading in the wire-

less channels through antenna diversity. Transmit antenna diversity in the form of
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Space-Time Block Codes (STBCs) of [10] and [11] has been adopted in WCDMA

and CDMA2000 standards. Receive antenna diversity schemes such as Maximum

Ratio Combining (MRC) are already in widespread use in communication systems.

The contributions of our work are in the following areas. We introduce a pair of

probabilistic connectivity metrics for wireless ad-hoc networks relying on an anal-

ysis of the time-varying fading wireless channels. We utilize central limit theorem

and Gaussian approximation in our analysis to represent the combined interference

and noise signal affecting the links of an ad-hoc network. Our first metric is de-

fined based on the capacity of Multiple-Input Multiple-Output (MIMO) channels.

Our second metric is defined based on the symbol error rate of such channels. We

also provide a special treatment of our connectivity metrics for ergodic channels.

We study this in Chap. 5.



Chapter 2

Multi-User Communication and Interference
Cancellation

As the first effort to cope with interference, we try to minimize its effect in physical

layer. One of the most common cases where interference will be crucial is when the

base station is receiving data from several users at the same time. In this chapter we

will propose a method to cancel out interference in this case using antennas at the

base station.

1 The Channel Model

We model a multi-user wireless communication system where the receiving unit

is equipped with M = J + r − 1 receive antennas, where r ≥ 1 is the receive an-

tenna redundancy. There are J transmitter units and each unit j, j = 1,2, . . . , J is

equipped with N antennas.

Let ct,n(j) denote the transmitted symbol from the n-th antenna of user j at

transmission interval t and rt,m be the received word at the receive antenna m at the

base unit. Then, for the received signal we will have

rt,m =

J
∑

j=1

N
∑

n=1

αn,m(j)ct,n(j) + ηt,m (2.1)

2 Interference Cancellation Using Space-Time Block Coding

It is well-known that one can separate signals sent from J different users each

equipped with N transmit antennas, with (J − 1)N + 1 receive antennas [1]. We

can simply form a decoding matrix that is orthogonal to the space spanned by chan-

nel coefficients of the users to be eliminated:

Rt = CtH + Nt (2.2)
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where

Ct = (Ct (1),Ct (2), . . . ,Ct (J ))

Rt = (rt,1, rt,2, . . . , rt,M)

Nt = (ηt,1, ηt,2, . . . , ηt,M)

H =
(

H(1)T |H(2)T | · · · |H(J )T
)

(2.3)

with

Ct (j) = (ct,1(j), ct,2(j), . . . , ct,N (j))

H(j) =

⎛

⎜

⎜

⎜

⎜

⎝

α1,1(j) α1,2(j) · · · α1,M (j)

α2,1(j) α2,2(j) · · · α2,M (j)

...
...

. . .
...

αN,1(j) αN,2(j) · · · αN,M(j)

⎞

⎟

⎟

⎟

⎟

⎠

(2.4)

Therefore, one can rewrite (3.4) as follows:

Rt =

J
∑

j=1

Ct (j)H(j) + Nt (2.5)

To decode user 1, one can simply find a zero-forcing (ZF) matrix Z such that

H(1)Z �= 0

H(j)Z = 0 for j �= 1
(2.6)

In other words, Z should null the space spanned by the row vectors of all H(j)s, for

j = 2,3, . . . , J . Also, it should not null at least one row vector of H(1). Since all

the rows of H(j)s might be linearly independent, the dimension of Z, i.e. M , must

be at least equal to the number of these rows, or (J − 1)N + 1. Each antenna group

(user) can employ a modulation scheme to benefit transmit diversity; as if it is the

only group that is sending data.

One might naturally think that using some smart coding in space and/or time,

may reduce the number of required receive antennas. In fact that is true; in [15] it is

shown that when N = 2 and users are equipped with Alamouti code, i.e. Orthogonal

Space-Time Block Code (OSTBC) for N = 2, the number of required receive an-

tennas is reduced to J . Also, in [16], same task is accomplished for a larger group of

OSTBCs when only J = 2 users exist. To the best of our knowledge, for users with

more than 2 transmit antennas and for general number of users, such an example

does not exist in the literature. In what follows we describe the algorithm in [15]

except that we use ZF instead of minimum mean square error (MMSE) that requires
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matrix inversion. We then show why it is not possible to repeat what Naguib et al.

did for higher order OSTBCs for an arbitrary number of users1 and then offer an

alternative.

Consider 2 users each transmitting an Alamouti block to a receiver unit equipped

with at least 2 receive antennas. The received signal can be written in the following

format:

(

r1,m

r2,m

)

=

(

s1(1) s2(1)

−s∗
2 (1) s∗

1 (1)

)

·

(

α1,m(1)

α2,m(1)

)

+

(

s1(2) s2(2)

−s∗
2 (2) s∗

1 (2)

)

·

(

α1,m(2)

α2,m(2)

)

+

(

η1,m

η2,m

)

(2.7)

The idea behind interference cancellation arises from separate decodability of

each symbol; at each receive antenna we perform the decoding algorithm as if there

is only one user. This user will be the one the effect of whom we want to cancel

out. Then, we simply subtract the soft-decoded value of each symbol in one of the

receive antennas from the rest and as a result remove the effect of that user. This

procedure is presented in the following lines:

(

r1,m

r∗
2,m

)

=

(

α1,m(1) α2,m(1)

α∗
2,m(1) −α∗

1,m(1)

)

·

(

s1(1)

s2(1)

)

+

(

α1,m(2) α2,m(2)

α∗
2,m(2) −α∗

1,m(2)

)

·

(

s1(2)

s2(2)

)

+

(

η1,m

η∗
2,m

)

(2.8)

As one can easily check, the matrix multiplied to (s1(1), s2(1))T is multiple of a

unitary matrix. Therefore, we can simply write

(

α∗
1,m(1) α2,m(1)

α∗
2,m(1) −α1,m(1)

)(

r1,m

r∗
2,m

)

= (|α1,m(1)|2 + |α2,m(1)|2)

(

s1(1)

s2(1)

)

+

(

α∗
1,m(1) α2,m(1)

α∗
2,m(1) −α1,m(1)

)(

α1,m(2) α2,m(2)

α∗
2,m(2) −α∗

1,m(2)

)(

s1(2)

s2(2)

)

+

(

η′
1,m

η′
2,m

)

(2.9)

for m = 1,2, . . . ,M . η′
i,m is a zero mean Gaussian random variable, with variance

2(|α1,m(1)|2+|α2,m(1)|2)

SNR
. The above analysis is a part of decoding for any orthogonal

space-time block code [25, Chap. 4]. To completely eliminate the effect of user

No. 1, it remains to divide (9) by (|α1,m(1)|2 + |α2,m(1)|2) and subtract the terms

1When there are only 2 users, it is possible to do interference cancellation with a class of OST-

BCs [16].
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for m = 1 from that of m = 2, . . . ,M . The resulting terms will be

{

1

|α1,m(1)|2 + |α2,m(1)|2

(

α∗
1,m(1) α2,m(1)

α∗
2,m(1) −α1,m(1)

)(

α1,m(2) α2,m(2)

α2,m(2)∗ −α1,m(2)∗

)

−
1

|α1,1(1)|2 + |α2,1(1)|2

(

α∗
1,1(1) α2,1(1)

α∗
2,1(1) −α1,1(1)

)(

α1,1(2) α2,1(2)

α∗
2,1(2) −α∗

1,1(2)

)}

×

(

s1(2)

s2(2)

)

+

(

η′′
1,m

η′′
2,m

)

(2.10)

for m = 2, . . . ,M . The distribution of η′′
i,m is Gaussian, and its variance is equal

to 2
SNR(|α1,m(1)|2+|α2,m(1)|2)

+ 2
SNR(|α1,1(1)|2+|α2,1(1)|2)

. It can be easily shown that the

overall matrix multiplied by (s1(2), s2(2))T above is also a multiple of a unitary ma-

trix. Therefore, the system in (2.10) is equivalent to one that transmits an orthogonal

design. We can simply apply Maximum-Likelihood (ML) decoding, which is sepa-

rate for each of the symbols due to having a unitary channel matrix. Note that only

M = J = 2 receive antennas are needed for gaining full transmit diversity, N = 2;

using more receive antennas will result in a multiplicative receive diversity, such

that the overall diversity will be 2r , with r = M − J + 1.

Lemma 1 The interference cancellation technique performed on Alamouti struc-

ture cannot be extended to higher order OSTBCs when having more than 2 users.

Proof After eliminating the first user there will be K equations left each produced

by eliminating one of the symbols (s1(1), s2(1), . . . , sK(1))T , where K is the num-

ber of symbols in the block code. The algorithm described above requires that after

elimination of the first user, the resulting equations be in the following format

J
∑

i=2

Ui · si (2.11)

where si = (s1(i), s2(i), . . . , sK(i))T and Ui is a multiple of a unitary matrix. A set

of equations with the form of U · s is equivalent to usage of a K × N orthogonal

block code in the transmitter. A block code sending K symbols in K time slots is

rate one. However, we know that rate one complex orthogonal design is impossible

for more than 2 transmit antennas [11, 24]. Therefore, after eliminating the first

user, the resulting system cannot enjoy simple decoding as it did for the case of

2 transmit antennas in [15]. Therefore, users No. 2 and above cannot be cancelled

out. This means that the algorithm used in [15] cannot be extended to more than 2

transmit antennas for an arbitrary number of users. �

Note that all this discussion happens when the first user is cancelled. Therefore,

we might be able to perform interference cancellationinterference cancellation using
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OSTBCs for the case of J = 2 as [16] suggests. In addition, since there exist rate

one real orthogonal designs, we can apply the same algorithm to them as we show

in the following lemmas.

Definition A generalized real orthogonal design is a T × N matrix C with real

entries s1,−s1, s2,−s2, . . . , sK ,−sK such that

CT C = κ
(

s2
1 + s2

2 + · · · + s2
K

)

IN (2.12)

Lemma 2 A generalized real orthogonal design can be written as

C =

K
∑

k=1

skEk (2.13)

where matrices Ek are T × N real matrices and satisfy

{

ET
k Ek′ + ET

k′Ek = 0N k �= k′

ET
k Ek = IN k = 1,2, . . . ,K

(2.14)

Proof Refer to [25]. �

Lemma 3 For any number of transmit antennas, with usage of real orthogonal

space-time block codes, and using a real constellation, we can simply decode a

group of J users given the same number of receive antennas.

Proof Consider a real channel with channel matrix H and noise vector N . Assume

we have J users each equipped with N antennas and transmitting a T × N real

orthogonal code C. At each receive antenna m, for m = 1,2, . . . ,M we have

RT
m =

J
∑

j=1

HT
m(j) · CT (j) + N T

m =

J
∑

j=1

HT
m(j)

K
∑

k=1

sk(j)ET
k + N T

m

=

J
∑

j=1

K
∑

k=1

sk(j)�m
k (j) + N T

m

=

J
∑

j=1

(s1(j), s2(j), . . . , sK(j)) · �m(j) + N T
m (2.15)

where �
m
k (j) = HT

m(j)ET
k is the kth row of a K × T matrix �m(j) and contains

T elements. These elements are a function of N path gains α1m(j),α2m(j), . . . ,

αNm(j). It can be easily shown that [25]

�m(j) · �T
m(j) =

(

N
∑

n=1

α2
nm(j)

)

IK (2.16)
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For example, let us assume we want to eliminate the effect of user No. 1. We simply

multiply each Rm by �
T
m(1), divide it by

∑N
n=1 α2

nm(1) and subtract the term for

m = 1 from that of m = 2, . . . ,M :

RT
m · �T

m(1)
∑N

n=1 α2
nm(1)

−
RT

1 · �T
1 (1)

∑N
n=1 α2

n1(1)
=

J
∑

j=2

(s1(j), s2(j), . . . , sK(j))

·

{

�m(j) · �T
m(1)

∑N
n=1 α2

nm(1)
−

�1(j) · �T
1 (1)

∑N
n=1 α2

n1(1)

}

+ N ′

(2.17)

To prove that we can continue eliminating other users, we need to show that the

following matrix is also multiple of a unitary matrix:

�m(j) · �T
m(1)

∑N
n=1 α2

nm(1)
−

�1(j) · �T
1 (1)

∑N
n=1 α2

n1(1)
(2.18)

For that, it would be enough to show �m1
(j1) · �

T
m2

(j2) is a multiple of a unitary

matrix.2 The latter is true due to the following:

[

�m1
(j1) · �T

m2
(j2)

]T [

�m1
(j1) · �T

m2
(j2)

]

= �m2
(j2) · �T

m1
(j1) · �m1

(j1) · �T
m2

(j2) (2.19)

Since K = T [25], �ms are K × K square matrices and (2.16) implies

�
T
m(j) · �m(j) =

(

N
∑

n=1

α2
nm(j)

)

IK (2.20)

Therefore, (2.19) can be simplified as following

�m2
(j2) ·

(

N
∑

n=1

α2
nm1

(j1)

)

IK · �T
m2

(j2) =

(

N
∑

n=1

α2
nm1

(j1)

)(

N
∑

n=1

α2
nm2

(j2)

)

IK

(2.21)

This concludes the proof that the matrix in (2.18) is a multiple of a unitary matrix.

Therefore, once we eliminate the first user we can apply the same method on the

remaining M − 1 signals and eliminate the second user. The reason is because the

corresponding � matrix at each stage of elimination is square and multiple of a

unitary matrix and the above proof guarantees the same property for the matrix of

the next stage. �

2Since we know that the two subtracted terms will have the same format and will keep it after

subtraction.
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However, as discussed earlier, complex OSTBCs, except for N = 2, are not good

candidates for interference cancellation when the goal is reducing the number of

receive antennas. In next section, we offer another modulation scheme that fulfills

the task for higher number of transmit antennas.

3 Interference Cancellation Using Quasi-Orthogonal

Space-Time Block Coding

We use Quasi-Orthogonal Space-Time Block Codes (QOSTBCs) as follows [17]:

C =

⎛

⎜

⎜

⎜

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3

s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎟

⎟

⎟

⎠

(2.22)

In this design each column of the generator matrix is orthogonal to all other columns

except one. As a result a pairwise decoding of the symbols is possible. Using rota-

tion for some of the symbols, full diversity QOSTBCs are realizable [18, 23].

We describe the decoding when there is one user. The multi-user case is next

to be studied. Assuming perfect channel state information is available, the receiver

computes the decision metric

M
∑

m=1

4
∑

t=1

∣

∣

∣

∣

∣

rt,m −

4
∑

n=1

αn,m(1)ct,n(1)

∣

∣

∣

∣

∣

2

(2.23)

over all possible symbols to replace s1, . . . , s4 in C and decides in favor of constella-

tion symbols that minimize this sum. Since we have only one user and for simplicity

specify one receive antenna, we do not mention indexing of group or receive antenna

in the rest of this section. Simple algebraic manipulation shows that ML decoding

for the code in (2.22) is equivalent to minimizing the following sum [17]:

f13(s1, s3) + f24(s2, s4) (2.24)

where f13(s1, s3) is independent of (s2, s4) and f24(s2, s4) is independent of (s1, s3).

Therefore, the pairs (s1, s3) and (s2, s4) can be decoded separately and the scheme

is pairwise decodable.

In [27] a new decoding method was introduced by which differential decoding of

a QOSTBC for non-coherent systems became possible. Let us review this decoding

method. For M = 1 receive antenna, let us define the received signals at four time

slots by r1, r2, r3, r4. Then, the set of input-output equations is equivalent to [27]:

R1 = S1H1 + N1 (2.25)
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where

R1 = (r13,1, r24,1)
T = (r1 + r3, r2 + r4)

T

H1 = (α13,1, α24,1)
T = (α1 + α3, α2 + α4)

T

N1 = (η1 + η3, η2 + η4)
T

S1 =

(

s13,1 s24,1

−s∗
24,1 s∗

13,1

)

=

(

s1 + s3 s2 + s4

−(s∗
2 + s∗

4 ) s∗
1 + s∗

3

)

and

R2 = S2H2 + N2 (2.26)

where

R2 = (r13,2, r24,2)
T = (r1 − r3, r2 − r4)

T

H2 = (α13,2, α24,2)
T = (α1 − α3, α2 − α4)

T

N2 = (η1 − η3, η2 − η4)
T

S2 =

(

s13,2 s24,2

−s∗
24,2 s∗

13,2

)

=

(

s1 − s3 s2 − s4

−(s∗
2 − s∗

4 ) s∗
1 − s∗

3

)

We can consider (2.25) and (2.26) as two equivalent subsystems, each of which

has two transmit antennas. We can see that S1 and S2 have the structure of Alamouti

code [10]. This is the key property in multi-user decoding as we discuss in the next

section. The ML decoding metric for this system is3

X = |r13,1 − α13,1s13,1 − α24,1s24,1|
2 + |r24,1 + α13,1s

∗
24,1 + α24,1s13,1|

2

+ |r13,2 − α13,2s13,2 − α24,2s24,2|
2

+ |r24,2 + α13,2s
∗
24,2 − α24,2s

∗
13,2|

2 (2.27)

We need to find symbols s1, s2, s3, s4 that minimize X. Expanding the expression

for X we get

X = |r1|
2 + |r2|

2 + |r3|
2 + |r4|

2 + 2f13(s1, s3) + 2f24(s2, s4) (2.28)

Therefore, the choice of {s1, s2, s3, s4} that minimize X, will minimize the ML met-

ric of the original system as well. In other words, our transformation is lossless, and

the error performance is the same as the optimal decoding of the system in (2.22).

Then, using the method in Sect. III for multi-user detection of Alamouti equipped

transmitters, we decode the whole group.

3The reason we can write ML metric like this is because the new noise terms are still independent

and Gaussian.
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Recalling the model in Sect. II and having in mind that users are sending QOST-

BCs, at each receive antenna m we receive the following signals in the four time

slots

r1,m =

J
∑

j=1

α1,m(j)s1(j) + α2,m(j)s2(j) + α3,m(j)s3(j) + α4,m(j)s4(j) + η1,m

r2,m =

J
∑

j=1

−α1,m(j)s∗
2 (j) + α2,m(j)s∗

1 (j) − α3,m(j)s∗
4 (j) + α4,m(j)s∗

3 (j) + η2,m

r3,m =

J
∑

j=1

α1,m(j)s3(j) + α2,m(j)s4(j) + α3,m(j)s1(j) + α4,m(j)s2(j) + η3,m

r4,m =

J
∑

j=1

−α1,m(j)s∗
4 (j) + α2,m(j)s∗

3 (j) − α3,m(j)s∗
2 (j) + α4,m(j)s∗

1 (j) + η4,m

(2.29)

where ηi,ms are i.i.d. zero mean Gaussian random variables with variance 4
SNR

. Sim-

ilarly, for the signals at each receive antenna we form two equivalent 2-antenna sys-

tems as follows

R1,m =

(

r1,m + r3,m

r2,m + r4,m

)

=

J
∑

j=1

(

s1(j) + s3(j) s2(j) + s4(j)

−(s2(j) + s4(j))∗ (s1(j) + s3(j))∗

)

×

(

α1,m(1) + α3,m(1)

α2,m(1) + α4,m(1)

)

+

(

η1,m + η3,m

η2,m + η4,m

)

R2,m =

(

r1,m − r3,m

r2,m − r4,m

)

=

J
∑

j=1

(

s1(j) − s3(j) s2(j) − s4(j)

−(s2(j) − s4(j))∗ (s1(j) − s3(j))∗

)

×

(

α1,m(1) − α3,m(1)

α2,m(1) − α4,m(1)

)

+

(

η1,m − η3,m

η2,m − η4,m

)

(2.30)

Without loss of generality we assume that we eliminate the effect of user No. 1

first. By applying complex conjugation on the second row of both systems we get

R′T
1,m =

(

r1,m + r3,m

r∗
2,m + r∗

4,m

)T

=

J
∑

j=1

(s1(j) + s3(j), s2(j) + s4(j))

·

(

α1,m(j) + α3,m(j) (α2,m(j) + α4,m(j))∗

α2,m(j) + α4,m(j) −(α1,m(j) + α3,m(j))∗

)

+

(

η1,m + η3,m

η∗
2,m + η∗

4,m

)T
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=

J
∑

j=1

(s1(j) + s3(j), s2(j) + s4(j)) · G(α1,m(j) + α3,m(j),α2,m(j)

+ α4,m(j)) + N1,m (2.31)

and

R′T
2,m =

(

r1,m − r3,m

r∗
2,m − r∗

4,m

)T

=

J
∑

j=1

(s1(j) − s3(j), s2(j) − s4(j))

·

(

α1,m(j) − α3,m(j) (α2,m(j) − α4,m(j))∗

α2,m(j) − α4,m(j) −(α1,m(j) − α3,m(j))∗

)

+

(

η1,m − η3,m

η∗
2,m − η∗

4,m

)T

=

J
∑

j=1

(s1(j) − s3(j), s2(j) − s4(j)) · G(α1,m(j) − α3,m(j),α2,m(j)

− α4,m(j)) + N2,m (2.32)

where

G(x, y) =

(

x y∗

y −x∗

)

(2.33)

The advantage of representing the received signals in the above format is hidden

in the structure of the equivalent channel matrices:

�1,m(j) =

(

α1,m(j) + α3,m(j) (α2,m(j) + α4,m(j))∗

α1,m(j) + α3,m(j) −(α1,m(j) + α3,m(j))∗

)

= G(α1,m(j) + α3,m(j),α2,m(j) + α4,m(j))

�2,m(j) =

(

α1,m(j) − α3,m(j) (α2,m(j) − α4,m(j))∗

α1,m(j) − α3,m(j) −(α1,m(j) − α3,m(j))∗

)

= G(α1,m(j) − α3,m(j),α2,m(j) − α4,m(j))

Since both �1,m(j) and �2,m(j) are multiples of a unitary matrix, we can simply

separate and therefore eliminate the effect of each group from the received signal.

R′T
1,m · �

†
1,m(1)

= (|α1,m(1) + α3,m(1)|2 + |α2,m(1) + α4,m(1)|2)(s1(j) + s3(1), s2(1) + s4(1))

+

J
∑

j=2

(s1(j) + s3(j), s2(j) + s4(j)) · G′((α1,m(j) + α3,m(j))
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× (α1,m(j) + α3,m(j))∗ + (α2,m(j) + α4,m(j))∗(α2,m(1) + α4,m(1))

× (α1,m(j) + α3,m(j))(α2,m(j) + α4,m(j))∗

− (α2,m(j) + α4,m(j))∗(α1,m(1) + α3,m(1))) + N ′
1,m (2.34)

R′T
2,m · �

†
2,m(1)

= (|α1,m(1) − α3,m(1)|2 + |α2,m(1) − α4,m(1)|2)(s1(j) − s3(1), s2(1) − s4(1))

+

J
∑

j=2

(s1(j) − s3(j), s2(j) − s4(j)) · G′((α1,m(j) − α3,m(j))

× (α1,m(j) − α3,m(j))∗ + (α2,m(j) − α4,m(j))∗(α2,m(1) − α4,m(1))

× (α1,m(j) − α3,m(j))(α2,m(j) − α4,m(j))∗

− (α2,m(j) − α4,m(j))∗(α1,m(1) − α3,m(1))) + N ′
2,m (2.35)

where

G′(x, y) =

(

x y

−y∗ x∗

)

(2.36)

N ′
1,m and N ′

2,m are the new noise vectors corresponding to the mth receive antenna.

Noting that �i,m matrices are multiples of unitary, the distribution of each element

of N ′
1,m will be Gaussian with variance

8(|α1,m(1)+α3,m(1)|2+|α2,m(1)+α4,m(1)|2)

SNR
. The

two elements will still be i.i.d. Same thing is true for N ′
2,m with a change of sign.

Let us reconsider (2.34) and (2.35) for all receive antennas m = 1,2, . . . ,

J + r − 1. If we subtract the expression for the first receive antenna, m = 1, from

that of the other antennas we will have J + r − 2 equations as follows

R′T
1,m · �

†
1,m(1)

|α1,m(1) + α3,m(1)|2 + |α2,m(1) + α4,m(1)|2

−
R′T

1,1 · �
†
1,1(1)

|α1,1(1) + α3,1(1)|2 + |α2,1(1) + α4,1(1)|2

=

J
∑

j=2

(s1(j) + s3(j), s2(j) + s4(j)) · G′(A1m(j),B1m(j))

+
N ′

1,m

|α1,m(1) + α3,m(1)|2 + |α2,m(1) + α4,m(1)|2

−
N ′

1,1

|α1,1(1) + α3,1(1)|2 + |α2,1(1) + α4,1(1)|2
(2.37)
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and

R′T
2,m · �

†
2,m(1)

|α1,m(1) − α3,m(1)|2 + |α2,m(1) − α4,m(1)|2

−
R′T

2,1 · �
†
2,1(1)

|α1,1(1) − α3,1(1)|2 + |α2,1(1) − α4,1(1)|2

=

J
∑

j=2

(s1(j) − s3(j), s2(j) − s4(j)) · G′(A2m(j),B2m(j))

+
N ′

2,m

|α1,m(1) − α3,m(1)|2 + |α2,m(1) − α4,m(1)|2

−
N ′

2,1

|α1,1(1) − α3,1(1)|2 + |α2,1(1) − α4,1(1)|2
(2.38)

where

A1m(j) =
(α1,m(j) + α3,m(j))(α1,m(1) + α3,m(1))∗ + (α2,m(j) + α4,m(j))∗(α2,m(j) + α4,m(j))

|α1,m(1) + α3,m(1)|2 + |α2,m(1) + α4,m(1)|2

−
(α1,1(j) + α3,1(j))(α1,1(1) + α3,1(1))∗ + (α2,1(j) + α4,1(j))∗(α2,1(j) + α4,1(j))

|α1,1(1) + α3,1(1)|2 + |α2,1(1) + α4,1(1)|2

B1m(j) =
(α1,m(j) + α3,m(j))(α2,m(1) + α4,m(1))∗ − (α2,m(j) + α4,m(j))∗(α1,m(1) + α3,m(1))

|α1,m(1) + α3,m(1)|2 + |α2,m(1) + α4,m(1)|2

−
(α1,1(j) + α3,1(j))(α2,1(1) + α4,1(1))∗ − (α2,1(j) + α4,1(j))∗(α1,1(1) + α3,1(1))

|α1,1(1) + α3,1(1)|2 + |α2,1(1) + α4,1(1)|2

(2.39)

and

A2m(j) =
(α1,m(j) − α3,m(j))(α1,m(1) − α3,m(1))∗ + (α2,m(j) − α4,m(j))∗(α2,m(j) − α4,m(j))

|α1,m(1) − α3,m(1)|2 + |α2,m(1) − α4,m(1)|2

−
(α1,1(j) − α3,1(j))(α1,1(1) − α3,1(1))∗ + (α2,1(j) − α4,1(j))∗(α2,1(j) − α4,1(j))

|α1,1(1) − α3,1(1)|2 + |α2,1(1) − α4,1(1)|2

B2m(j) =
(α1,m(j) − α3,m(j))(α2,m(1) − α4,m(1))∗ − (α2,m(j) − α4,m(j))∗(α1,m(1) − α3,m(1))

|α1,m(1) − α3,m(1)|2 + |α2,m(1) − α4,m(1)|2

−
(α1,1(j) − α3,1(j))(α2,1(1) − α4,1(1))∗ − (α2,1(j) − α4,1(j))∗(α1,1(1) − α3,1(1))

|α1,1(1) − α3,1(1)|2 + |α2,1(1) − α4,1(1)|2

(2.40)
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where m can be 2, . . . , J + r − 1.4 The variance will be equal to
8

SNR(|α1,m(1)±α3,m(1)|2+|α2,m(1)±α4,m(1)|2)
+ 8

SNR(|α1,1(1)±α3,1(1)|2+|α2,1(1)±α4,1(1)|2)
re-

spectively. Equations (2.37) and (2.38) have the same structure as (2.34) and (2.35).

We note that G′ is also multiple of a unitary matrix as5 G . It is as if, in (2.34) and

(2.35) we have J + r −2 receive antennas and J −1 user groups. Therefore, we can

separate and eliminate user No. 2 similar to user No. 1; except that the number of

equivalent receive antennas will be one less, i.e. (J + r − 2). Eliminating user No. 2

gives us J + r − 3 equations with J − 2 users. If we continue this procedure, we

will have r equations for user No. J with no interference from other users. We can

simply decode this user. Since we have r equations and our metric is ML, diversity

gain will be equal to 4 × r . One should note that better performance is possible, if

we use more complex decoding methods. For example, since we break down our

code to two Alamouti structures, the MMSE-ZF method used in [15] for 2 transmit

antenna systems can be applied here. This method that involves a matrix inversion,

will provide a better error rate, compared with our simple ZF method. Also, one can

decode users on the order of the strength of their respective channel and improve

the performance. Our proposed algorithm can be combined with different decoding

methods. The goal in here is to show it is possible to do multi-user detection for any

number of transmit antennas,6 using very few number of receive antennas. It is not

meant to find the best performance, and there is no claim of optimality.

The flow of decoding is summarized below. In what follows we assume we want

to decode user No. J ; we can then simply change the ordering of users in case we

are interested in decoding another user.

Algorithm

(1) Initialization. Let i = 1. Also, for all values of j = 1,2, . . . , J and m =

1,2, . . . ,M let:

A1m(j) = α1,m(j) + α3,m(j)

B1m(j) = α2,m(j) + α4,m(j)

A2m(j) = α1,m(j) − α3,m(j) and

B2m(j) = α2,m(j) − α4,m(j)

Construct R′
1,1,R′

1,2, . . . ,R′
1,M and R′

2,1,R′
2,2, . . . ,R′

2,M from the M received sig-

nal vectors R1,R2, . . . ,RM .

(2) For all values of j = i, i + 1, . . . , J and m = i, i + 1, . . . ,M : if

i = 1 let �1,m(j) = G(A1m(j),B1m(j)) and �2,m(j) = G(A2m(j),B2m(j)) else

let �1,m(j) = G′(A1m(j),B1m(j)) and �2,m(j) = G′(A2m(j),B2m(j)).

4The distribution of noise will not be i.i.d. for M > 2. We describe this in the next chapter along

with he optimal decoding method for it.

5One can easily show that had the channel matrix been G′ instead of G , we would have ended with

G′ as our equivalent channel, after suppressing the interference of the first user. Therefore, we will

face G′ at cancellation of all users except the first.

6As will be seen in the end of this section.
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(3) For all values of j = i + 1, i + 2, . . . , J and m = i + 1, i + 2, . . . ,M :

R′
1,m =

�∗
1,m(i)

1
2
‖�1,m(i)‖2

F

· R′
1,m −

�∗
1,i(i)

1
2
‖�1,i(i)‖

2
F

· R′
1,i

R′
2,m =

�∗
2,m(i)

1
2
‖�2,m(i)‖2

F

· R′
2,m −

�∗
2,i(i)

1
2
‖�2,i(i)‖

2
F

· R′
2,i

if i = 1

A1m(j) =
A1m(j)A∗

1m(i) + B∗
1m(j)B1m(i)

|A1m(i)|2 + |B1m(i)|2
−

A1i(j)A∗
1i(i) + B∗

1i(j)B1i(i)

|A1i(i)|2 + |B1i(i)|2

B1m(j) =
A1m(j)B∗

1m(i) − B∗
1m(j)A1m(i)

|A1m(i)|2 + |B1m(i)|2
−

A1i(j)B∗
1i(i) − B∗

1i(j)A1i(i)

|A1i(i)|2 + |B1i(i)|2

A2m(j) =
A2m(j)A∗

2m(i) + B∗
2m(j)B2m(i)

|A2m(i)|2 + |B2m(i)|2
−

A2i(j)A∗
2i(i) + B∗

2i(j)B2i(i)

|A2i(i)|2 + |B2i(i)|2

B2m(j) =
A2m(j)B∗

2m(i) − B∗
2m(j)A2m(i)

|A2m(i)|2 + |B2m(i)|2
−

A2i(j)B∗
2i(i) − B∗

2i(j)A2i(i)

|A2i(i)|2 + |B2i(i)|2

else

A1m(j) =
A1m(j)A∗

1m(i) + B1m(j)B∗
1m(i)

|A1m(i)|2 + |B1m(i)|2
−

A1i(j)A∗
1i(i) + B1i(j)B∗

1i(i)

|A1i(i)|2 + |B1i(i)|2

B1m(j) =
−A1m(j)B1m(i) + B1m(j)A1m(i)

|A1m(i)|2 + |B1m(i)|2
−

−A1i(j)B1i(i) + B1i(j)A1i(i)

|A1i(i)|2 + |B1i(i)|2

A2m(j) =
A2m(j)A∗

2m(i) + B2m(j)B∗
2m(i)

|A2m(i)|2 + |B2m(i)|2
−

A2i(j)A∗
2i(i) + B2i(j)B∗

2i(i)

|A2i(i)|2 + |B2i(i)|2

B2m(j) =
−A2m(j)B2m(i) + B2m(j)A2m(i)

|A2m(i)|2 + |B2m(i)|2
−

−A2i(j)B2i(i) + B2i(j)A2i(i)

|A2i(i)|2 + |B2i(i)|2

(4) Let i = i + 1. If i < J go to Step 2, otherwise stop the algorithm and decode

the following system

R′T
1,m = (s1(J ) + s3(J ), s2(J ) + s4(J )) · G′(A1m(J ),B1m(J )) + noise

R′T
2,m = (s1(J ) − s3(J ), s2(J ) − s4(J )) · G′(A2m(J ),B2m(J )) + noise

for all m = J,J + 1, . . . ,M . �
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As can be noticed the complexity of this algorithm is linear in terms of the num-

ber of users and receive antennas. Also, the diversity provided in the last equation is

4 × (M − J + 1) as discussed earlier.7

The relationship between the power of noise, at the beginning of each state and

that of the end of the stage can be derived by comparing the ones in the first stage.

Let us assume we are at Step i of detection and the noise power at the beginning of

the step is σ 2. Based on what we found for the noise distribution in Step 2 and the

recursive algorithm above, the noise power at the end of the step i at receive antenna

m will be

σ 2

|A1m(i)|2 + |B1m(i)|2
+

σ 2

|A1i(i)|2 + |B1i(i)|2
(2.41)

One can use a similar approach and perform the task of interference cancellation

for users equipped with 3 transmit antennas. We should simply remove one of the

columns of the code matrix, e.g. fourth column, in encoding. In decoding, i.e. can-

cellation, we can use the above algorithm except that we put zero for every α4,m(j).

Note that the resulting code from column removal may not be optimal in terms of

delay.

Theorem Using modulation schemes in the form of
(

A B
B A

)

, one can extend the

above interference cancellation technique to users with any number of transmit an-

tennas in the form of power of 2.

Proof We use induction. Due to the structure of the code, we can convert the original

2n transmit antenna system to two 2n−1 transmit antenna systems. Then, we use

interference cancellation for each of those systems using M = J receive antennas,

and finally decode the two systems together. �

Corollary We can extend this algorithm to users with any number of transmit anten-

nas, by finding the first power of 2 not smaller than N , and the modulation scheme

designed for that many transmit antennas using the method in the above theorem.

Then, we can use the column removal method mentioned earlier to get the desired

number of transmit antennas.

4 Interference Cancellation Using Minimum Decoding

Complexity Quasi-Orthogonal Space-Time Block Codes

(MDC-QOSTBC)

In [28], a new Quasi-Orthogonal design has been introduced that trades a small

amount of performance loss with simpler decoding. These codes, provide separate

7The diversity claims will be proved in the next chapter rigorously.
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Fig. 2.1 Simulation results after interference cancellation when there are 2 users each transmitting

QOSTBC with QPSK modulation

decoding complexity rather than pairwise, while maintaining full diversity and unit

rate. In this section we briefly show that our introduced algorithm will work for this

family of codes as well. The main idea is that, these codes can be presented as a

mapping of the original QOSTBCs. We consider the code presented in [28] as an

example

C′(x1, x2, x3, x4) =

⎛

⎜

⎜

⎜

⎜

⎝

xR
1 + jxR

3 xR
2 + jxR

4 −xI
1 + jxI

3 −xI
2 + jxI

4

−xR
2 + jxR

4 xR
1 − jxR

3 xI
2 + jxI

4 −xI
1 − jxI

3

−xI
1 + jxI

3 −xI
2 + jxI

4 xR
1 + jxR

3 xR
2 + jxr

4

xI
2 + jxI

4 −xI
1 − jxI

3 −xR
2 + jxR

4 xR
1 − jxR

3

⎞

⎟

⎟

⎟

⎟

⎠

(2.42)

where xR
i = ℜ{xi} and xI

i = ℑ{xi}. Recalling the definition of C used in the algo-

rithm from (22), we realize that

C′(x1, x2, x3, x4) = C(s1, s2, s3, s4)

s1 = xR
1 + jxR

3

s2 = xR
2 + jxR

4 (2.43)
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Fig. 2.2 Bit error probability vs. SNR for the new array processing scheme, and OSTBC at

2 bits/s/Hz; 8 transmit and 2 receive antennas

s3 = −xI
1 + jxI

3

s4 = −xI
2 + jxI

4

Therefore, in order to cancel out the interference of users equipped with MDC-

QOSTBC, we will only need to map it to the corresponding QOSTBC. From there,

we can apply the algorithm of previous section and detect the desired user. Then,

we do the reverse mapping on the detected symbols and get the original ones.

5 Application of the New Interference Cancellation Scheme

in Array Processing

Assume we have an interference cancellation scheme. The scheme does not put any

assumption on the location of the users. Therefore, even if the users are all together,

unified as part of a bigger user, the proposed decoding works and provides transmit

diversity. If we unify J of such users, the spatial multiplexing of the overall system

will be J times that of the individual users alone. In other words, if we have a system

with JN transmit antennas, we can use a combination of J space-time codes with

interference cancellation decoding, that sends J times more symbols per time slot
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Fig. 2.3 Bit error probability vs. SNR for the new array processing scheme, and QOSTBC at

6 bits/s/Hz; 8 transmit and 2 receive antennas

than each of the individual space-time codes. This gives us an idea to apply the

newly introduced scheme for increasing the rate in multiple antenna systems.

For example, let us assume we have 8 transmit antennas. We can always use a

space-time code designed for 8 transmit antennas with full diversity, 8M , and send

at most one symbol per time slot [9]. Instead, we can exchange diversity for rate

and use 2 separate QOSTBCs as mentioned in the previous section. This way we

can send twice as many symbols and enjoy an acceptable diversity gain equal to

4(M − 1).

As it is seen in the example above, our scheme provides a trade-off between rate

and diversity. Since this scheme requires relatively less number of receive antennas,

one may think of comparing its performance with popular multiple antenna schemes

like OSTBC, QOSTBC, or BLAST. This task is performed in the next section.

6 Simulation Results

In this section we provide simulation results that confirm our analysis explained in

the previous sections. The performance of our multi-user detection scheme is shown

in Fig. 2.1. We consider 2 users each equipped with 4 antennas and transmitting
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Fig. 2.4 Bit error probability vs. SNR for the new array processing scheme, and BLAST-ML at

8 bits/s/Hz; 8 transmit and 2 receive antennas

QOSTBCs. We compare this result with the one offered by [1] when it uses the

same code, i.e. QOSTBC.8 The constellation used is QPSK which provides a rate

equal to 2 bits per channel use. The method offered in [1] requires at least 8 receive

antennas for cancelling the interference whereas ours requires 2. It can be seen that

our algorithm with usage of 3 receive antennas outperforms the old method when it

uses 8 receive antennas.

Figures 2.2, 2.3, and 2.4 represent the comparison of the array processing scheme

discussed in Sect. 5 with orthogonal space-time block codes, quasi-orthogonal

space-time block codes, and BLAST respectively. We use ML for the BLAST code

in Fig. 2.4. In Figs. 2.5 and 2.6, however, we are comparing the performance of

our array processing scheme with ZF-BLAST with 8 and 12 antennas respectively.

The array processing system in Figs. 2.1–2.5 consists of two 4-transmit antenna

QOSTBC transmitters unified in one unit. In Fig. 2.2, we compare this system with

the 16 × 8 orthogonal design in [11] and [25] using 256-QAM modulation. We

use QPSK for the array processing scheme so that both systems provide a rate

equal to 4 bits per channel use. In Fig. 2.3 we have used the 8-transmit antenna

quasi-orthogonal design mentioned in [17] and [18], using rotation to provide full

8When [1] was published, QOSTBCs were not known; however, the method in that work allows

usage of any modulation scheme including QOSTBCs.
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Fig. 2.5 Bit error probability vs. SNR for the new array processing scheme, and BLAST-ZF at

8 bits/s/Hz; 8 transmit and 8 receive antennas

diversity. For this experiment we have used 256-QAM for the 8-transmit antenna

QOSTBC and 8PSK for the array processing system to provide the desired rate of 6

bits per channel use. In the case of BLAST in Fig. 2.4 we have used the regular 8-

transmit antenna V-BLAST encoding with ML decoding. Note that the performance

of the BLAST using the usual nulling and cancellation methods is much worse than

that of BLAST using ML decoding. The constellation used for BLAST is BPSK

and the one used for array processing system is 16-QAM; both systems transmit at

a rate equal to 8 bits per channel use. In Fig. 2.5 both systems have 8 transmit and

8 receive antennas both using ZF as decoding method. The array processing system

is using 16-QAM, and the BLAST code uses BPSK. Figure 2.6 shows comparison

of a BLAST code with 12 transmit and receive antennas and the array processing

system with same number of antennas. The array processing system consists of 3

unified 4 antenna users. Decoding method and constellation size is chosen the same

as those of Fig. 2.5. For the experiments shown in Figs. 2.2, 2.3, and 2.4 we have

considered 2 receive antennas at the receiver. In Figs. 2.5 and 2.6, however, we used

the same number of receive antennas as that of the transmit antennas. The reason

for this is that, many codes in the literature need at least as many receive antennas

as the number of transmit antennas. This simulation gives a chance to compare the

new scheme with those codes.

Note that both OSTBC and QOSTBC schemes have higher diversity order than

our proposed scheme, and will take over at high enough Signal-to-Noise-Ratio.
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Fig. 2.6 Bit error probability vs. SNR for the new array processing scheme, and BLAST-ZF at

12 bits/s/Hz; 12 transmit and 12 receive antennas

However, our scheme performs better in a practical range of SNR and error rate.

In the following, we summarize the main results of this chapter.

1. When there is J > 2 users each with N > 2 transmit antennas using a complex

constellation, and orthogonal design, we show that one cannot perform interfer-

ence cancellation with M = J or less receive antennas.

2. When using a real constellation, we offer an interference cancellation technique

that works for any number of users, J , having any number of transmit anten-

nas; our algorithm only requires M = J receive antennas, using real orthogonal

designs.

3. For N > 2 transmit antenna equipped users using a complex constellation, we

offer an interference cancellation technique that works for any number of users;

again, our technique only requires receive antennas as many as the number of

users.

4. We offer a joint array processing and space-time coding scheme for point to

point communication (single user). The resulting code outperforms a number of

popular modulation schemes, e.g. BLAST, OSBTC, and QOSTBC.



Chapter 3

Diversity Analysis of Multiple-Antenna
Multi-User Systems

In this chapter we analyze the performance of the scheme we introduced in the

previous chapter. We show that our intuitive guess about the diversity order of this

method was correct. In other words, when J users each with N transmit antennas

are sending data to a receiver with M antennas, the diversity order with usage of

array processing will be N(M − J + 1).

1 Diversity Order in a Communication Scheme

Diversity is usually defined as the exponent of the Signal-to-Noise-Ratio (SNR) in

the error rate expression, high-SNR scenario [9],

d = − lim
SNR→∞

logPe

log SNR
(3.1)

where Pe represents the probability of decoding error. One can derive other variants

of diversity definition from the above formula. We mention one that will be used

frequently in this chapter. In [12] the authors show that in every open-loop MIMO

system, the error event is dominated by Outage. Outage is the scenario when the

instantaneous SNR, due to bad channel realization, is unable to support the desired

rate. The result from [12] states that

lim
SNR→∞

logPe

log SNR
= lim

SNR→∞

logPout

log SNR
(3.2)

Therefore, when finding the diversity order, it is sufficient to know the outage be-

havior of the system [32]

d = lim
ǫ→0+

logPr{Instantaneous SNR < ǫ}

log ǫ
(3.3)
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2 Multi-User Detection Using Alamouti

Consider two users transmitting data simultaneously to a single receiver. Assume

also, that they are using the Alamouti scheme. We denote the first user’s message by

c = (c1, c2)
T , and the second user’s message by s = (s1, s2)

T . When using Alam-

outi the original code transmitted will be in the form of
( c1 c2

−c∗
2 c∗

1

)

and
( s1 s2

−s∗
2 s∗

1

)

. As

described in [29] however, one can derive an equivalent notation as following

r = H · c + G · s + n (3.4)

where r has entries ri = [r1i − r∗
2i]

T with r1i and r2i being the signals received

at the ith receive antenna over two consecutive symbol periods. n has a Gaussian

distribution with E[nn∗] = 2
SNR

I. Also, H and G are the equivalent channel matri-

ces from the first and second user to the receiver respectively. Assuming 2 receive

antennas, H and G will have an Alamouti structure as follows

H =

(

H1

H2

)

and G =

(

G1

G2

)

Hi =

(

h1i h2i

−h∗
2i h∗

1i

)

and Gi =

(

g1i g2i

−g∗
2i g∗

1i

)

i = 1,2

(3.5)

In order to decode the message of each user one can use several techniques as men-

tioned in [15, 31]. The most trivial and computationally complex method is decod-

ing both users together. This method, also known as ML, finds c and s as follows.

argmaxp(r|c, s) =
1

π2σ 4
exp

(

−
1

2σ 2
‖r − Hc − Gs‖2

)

(3.6)

The second method is Array-Processing (AP) and is sometimes named as Zero-

Forcing (ZF) or soft interference cancellation. It requires very little computation and

has linear decoding complexity. The following shows the process of this decoding

method,

(

I2 −G1G−1
2

−H2H−1
1 I2

)(

r1

r2

)

=

(

H′ 0

0 G′

)(

c

s

)

+

(

n′
1

n′
2

)

(3.7)

Note that the inverse of the any Alamouti is a multiple of its Hermitian and therefore

easy to compute.

In what follows, first, we prove a few lemmas that we use in the calculation of

the diversity order in next section.
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Lemma 1 The following equality is valid for all H and G matrices of the form (3.5):

‖H‖2‖G‖2 − ‖H†G‖2

=

(

a5b1 − a6b2 − a7b3 − a8b4 + a1b5 + a2b6 + a3b7 + a4b8

−
2(a1b4 + a3b2 + a4b1 − a2b3)(b1b8 + b2b7 − b3b6 + b4b5)

b2
1 + b2

2 + b2
3 + b2

4

)2

+

(

a6b1 + a5b2 − a8b3 + a7b4 + a1b6 − a2b5 + a3b8 − a4b7

−
2(a1b4 + a3b2 + a4b1 − a2b3)(−b1b7 + b2b8 + b3b5 + b4b6)

b2
1 + b2

2 + b2
3 + b2

4

)2

+

(

a7b1 + a8b2 + a5b3 − a6b4 + a1b7 − a2b8 − a3b5 + a4b6

+
2(a1b4 + a3b2 + a4b1 − a2b3)(−b1b6 + b2b5 − b3b8 − b4b7)

b2
1 + b2

2 + b2
3 + b2

4

)2

+

(

a8b1 − a7b2 + a6b3 + a5b4 + a1b8 + a2b7 − a3b6 − a4b5

+
2(a1b4 + a3b2 + a4b1 − a2b3)(b1b5 + b2b6 + b3b7 − b4b8)

b2
1 + b2

2 + b2
3 + b2

4

)2

(3.8)

where,

h11 = a1 − ja2, h21 = −a3 + ja4

h12 = −a5 − ja6, h22 = −a7 − ja8

g11 = b1 + jb2, g21 = b3 + jb4

g12 = b5 + jb6, g22 = b7 − jb8

(3.9)

Proof See Appendix A. �
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Lemma 2 Assume a communication channel as Y = HX+N with H = α.β , where

α and β are i.i.d. complex Gaussian random variables with zero mean and unit

variance. The diversity order of this communication system is 1.

Proof See Appendix A. �

Diversity Order of the ML Decoding

Consider the system described in (3.4) with M receive antennas. When using ML,

the receiver finds the codeword that satisfies the minimum distance criterion for the

following system

(

r11 r12 · · · r1M

r21 r22 · · · r2M

)

=

(

c1 c2 s1 s2

−c∗
2 c∗

1 −s∗
2 s∗

1

)

⎛

⎜

⎜

⎜

⎜

⎝

h11 h12 · · · h1M

h21 h22 · · · h2M

g11 g12 · · · g1M

g21 g22 · · · g2M

⎞

⎟

⎟

⎟

⎟

⎠

+

(

n11 n12 · · · n1M

n21 n22 · · · n2M

)

(3.10)

The diversity of the above system is equal to the minimum rank of all the difference

code matrices times the number of receive antennas [25]. For the above system this

value will be 2M . For more than two users, the diversity order will remain the same

since the minimum rank does not change.1

Diversity Order of the Array-Processing Method

When there are two Alamouti-equipped transmitters, the effective SNR for user

number one when using array-processing has been derived in [31] to be2

SNRAP =
‖H‖2

σ 2
(1 − ‖�‖2) (3.11)

where � is defined as

� =
H†G

‖H‖‖G‖
(3.12)

1The rank of J concatenated Alamoutis-a 2J × 2 matrix-is always 2.

2In [31], the authors refer to this structure as Zero-Forcing (ZF).
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We now apply the formula in (3.3) to derive the diversity order.

dAP = lim
ǫ→0+

logPr{SNRAP < ǫ}

log ǫ
= lim

ǫ→0+

logPr{
‖H‖2.‖G‖2−‖H†G‖2

σ 2‖G‖2 < ǫ}

log ǫ
(3.14)

We can use (3.8) to simplify the numerator as shown in (3.13) on top of the next

page, where b = [b1b2 · · ·b8]. In that equation, conditioned on b, each of the terms

inside the 4 main parentheses is a zero-mean real Gaussian random variable due

to independence of ais. Once divided by the square root of the denominator their

variance will become equal to one. Moreover, it can be easily checked that these

Gaussian random variables are independent. Therefore, the sum of their squares

is Chi-square distributed with 4 degrees of freedom and has the following density

function

f (x) = xe−x x > 0 (3.15)

For small enough ǫ,

∫ σ 2ǫ

0

f (x)dx = σ 4ǫ2 + O(σ 4ǫ2) (3.16)

where f (x) = O(g(x)) means there is a positive constant c such that f (x) ≤ cg(x)

for the desired range of x. Since the quantity in (3.16) is independent of b, its ex-

pected value with respect to b will remain the same. Therefore, we have

d = lim
ǫ→0+

log(σ 4) + log(ǫ2)

log(ǫ)
= 2 (3.17)

The Case with More than 2 Receive Antennas

Let us now assume the previous system with the exception that there are 3 receive

antennas rather than two. For this system we have

r1 = H1 · c + G1 · s + n1

r2 = H2 · c + G2 · s + n2

r3 = H3 · c + G3 · s + n3

(3.18)

After applying the array processing algorithm and cancelling the effect of user cor-

responding to message s we get

r′
1 =

(

G
†
2H2

‖G2‖2
−

G
†
1H1

‖G1‖2

)

c + n′
1

r′
2 =

(

G
†
3H3

‖G3‖2
−

G
†
1H1

‖G1‖2

)

c + n′
2

(3.19)



2 Multi-User Detection Using Alamouti 37

Conditioned on Gis, the noise terms n′
1 and n′

2 are correlated Gaussian random vari-

ables. Similar statement applies to the new channel matrices (
G

†
2H2

‖G2‖
2 −

G
†
1H1

‖G1‖
2 ) and

(
G

†
2H2

‖G2‖
2 −

G
†
1H1

‖G1‖
2 ). In [33] it is shown that in a Rayleigh fading system with receive

correlation, like the one we have here, the diversity order will be NM as long as the

correlation matrix of the channel is full-rank. Since, [33] assumes white noise, the

equivalent correlation matrix in our case will be correlation matrix of the channel

multiplied by the inverse of that of the noise. Clearly, the inverse of the correla-

tion matrix of the noise accounts for the noise-whitening operation. Therefore, if

we show that both of the these two correlation matrices are full-rank, we can con-

clude that the system in (3.19) provides a diversity order of 4 (N = 2,M = 2). The

correlation matrix of noise is equal to

⎛

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

I2
σ 2

‖G1‖
2 I2

σ 2

‖G1‖
2 I2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

I2

⎞

⎠ (3.20)

where I2 is the 2 × 2 identity matrix. This matrix is clearly full-rank for almost

(surely) all Gi realizations. It remains now to find the correlation matrix of the

equivalent channel. Since both lines in (3.19) represent an Alamouti scheme, we

can convert them back into the regular Alamouti representation as follows

y1 =

(

c1 c2

−c∗
2 c∗

1

)

·

(

A1 + jA2

A3 + jA4

)

+ noise

y2 =

(

c1 c2

−c∗
2 c∗

1

)

·

(

B1 + jB2

B3 + jB4

)

+ noise

(3.21)

where the coefficients are normalized so that the noise terms have unit power. Using

the SNR result from [31] and (3.8) we can write

A1 =

a5b1 − a6b2 − a7b3 − a8b4 + a1b5 + a2b6 + a3b7 + a4b8 −
2(a1b4+a3b2+a4b1−a2b3)(b1b8+b2b7−b3b6+b4b5)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

8

A2 =

a6b1 + a5b2 − a8b3 + a7b4 + a1b6 − a2b5 + a3b8 − a4b7 −
2(a1b4+a3b2+a4b1−a2b3)(−b1b7+b2b8+b3b5+b4b6)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

8

A3 =

a7b1 + a8b2 + a5b3 − a6b4 + a1b7 − a2b8 − a3b5 + a4b6 +
2(a1b4+a3b2+a4b1−a2b3)(−b1b6+b2b5−b3b8−b4b7)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

8

A4 =

a8b1 − a7b2 + a6b3 + a5b4 + a1b8 + a2b7 − a3b6 − a4b5 +
2(a1b4+a3b2+a4b1−a2b3)(b1b5+b2b6+b3b7−b4b8)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

8

B1 =

a9b1 − a10b2 − a11b3 − a12b4 + a1b9 + a2b10 + a3b11 + a4b12 −
2(a1b4+a3b2+a4b1−a2b3)(b1b12+b2b11−b3b10+b4b9)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

4 + b2
9 + · · · + b2

12
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B2 =

a10b1 + a9b2 − a12b3 + a11b4 + a1b10 − a2b9 + a3b12 − a4b11 −
2(a1b4+a3b2+a4b1−a2b3)(−b1b11+b2b12+b3b9+b4b10)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

4 + b2
9 + · · · + b2

12

B3 =

a11b1 + a12b2 + a9b3 − a10b4 + a1b11 − a2b12 − a3b9 + a4b10 +
2(a1b4+a3b2+a4b1−a2b3)(−b1b10+b2b9−b3b12−b4b11)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

4 + b2
9 + · · · + b2

12

B4 =

a12b1 − a11b2 + a10b3 + a9b4 + a1b12 + a2b11 − a3b10 − a4b9 +
2(a1b4+a3b2+a4b1−a2b3)(b1b9+b2b10+b3b11−b4b12)

b2
1+b2

2+b2
3+b2

4

σ

√

b2
1 + · · · + b2

4 + b2
9 + · · · + b2

12

(3.22)

The above values are real and imaginary parts of the channel coefficients. Instead

of finding the complex correlation matrix we can find the following real correlation

matrix

C = E{[A|B]T [A|B]} (3.23)

where A = [A1 A2 A3 A4] and B = [B1 B2 B3 B4]. It can be easily shown that if

C is full-rank so will be the complex channel correlation matrix. We already know

that {Ai} and {Bi} are each uncorrelated among themselves. Calculating E{AiBj }

we will have

C =
1

σ 2

(

I X

X I

)

(3.24)

where

X =
1

√

(b2
1 + · · · + b2

8)(b
2
1 + · · · + b2

4 + b2
9 + · · · + b2

12)

⎛

⎜

⎜

⎝

b5 b6 b7 b8

b6 −b5 b8 −b7

b7 −b8 −b5 b6

b8 b7 −b6 −b5

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

b9 b10 b11 b12

b10 −b9 −b12 b11

b11 b12 −b9 −b10

b12 −b11 b10 −b9

⎞

⎟

⎟

⎠

(3.25)

From [34] we have

det(C) =
1

σ 16
det(I − XT · X)

=
1

σ 16

(

1 −
(b2

5 + · · · + b2
8)(b

2
9 + · · · + b2

12)

(b2
1 + · · · + b2

8)(b
2
1 + · · · + b2

4 + b2
9 + · · · + b2

12)

)

I �= 0 (3.26)

Therefore, the system described in (3.21) will provide full diversity, i.e. 2 × 2 = 4.

This means that the described array processing scheme provides a diversity order

equal to N × (M − J + 1) for the case of N = 2, J = 2, and M = 3.

We now further inspect the diversity order of the scheme by considering the

general case of M receive antennas, while keeping the same number of users and
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transmit antennas. After cancelling the effect of user corresponding to message s we

get

r′
1 =

(

G
†
2H2

‖G2‖2
−

G
†
1H1

‖G1‖2

)

c + n′
1

r′
2 =

(

G
†
3H3

‖G3‖2
−

G
†
1H1

‖G1‖2

)

c + n′
2

...

r′
M−1 =

(

G
†
MHM

‖GM‖2
−

G
†
1H1

‖G1‖2

)

c + n′
M−1

(3.27)

We will again form the correlation matrix for noise and the equivalent Alamouti

channel coefficients and examine whether they are full-rank. The noise correlation

matrix will be

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

I2
σ 2

‖G1‖
2 I2 · · · σ 2

‖G1‖
2 I2

σ 2

‖G1‖
2 I2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

I2 · · · σ 2

‖G1‖
2 I2

...
...

. . .
...

σ 2

‖G1‖
2 I2

σ 2

‖G1‖
2 I2 · · ·

(

σ 2

‖G2‖
2 + σ 2

‖GM‖2

)

I2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.28)

which is equal to

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

σ 2

‖G1‖
2 · · · σ 2

‖G1‖
2

σ 2

‖G1‖
2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

· · · σ 2

‖G1‖
2

...
...

. . .
...

σ 2

‖G1‖
2

σ 2

‖G1‖
2 · · ·

(

σ 2

‖G2‖
2 + σ 2

‖GM‖2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗ I2 (3.29)

The left hand side matrix is full-rank since it has M − 1 nonzero eigenvalues as

following3

σ 2

‖G2‖2
+

σ 2

‖G1‖2
,

σ 2

‖G3‖2
+

σ 2

‖G1‖2
, . . . ,

σ 2

‖GM‖2
+

σ 2

‖G1‖2
(3.30)

3The eigenvectors of this matrix are e1, e2, . . . , eM−1.
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We should now examine the channel correlation matrix. In the general case of M

receive antennas, we will have

C =
1

σ2

⎛

⎜

⎜

⎜

⎝

I X12 · · · X1M−1

X21 I · · · X2M−1

...
...

. . .
...

X(M−1)1 X(M−1)2 · · · X(M−1)(M−1)

⎞

⎟

⎟

⎟

⎠

(3.31)

where Xij = BiB
T
j with

Bi =
1

√

b2
1 + · · · + b2

4 + b2
4i+1 + · · · + b2

4(i+1)

·

⎛

⎜

⎜

⎝

b4i+1 b4i+2 b4i+3 b4(i+2)

b4i+2 −b4i+1 b4(i+2) −b4i+3

b4i+2 −b4(i+2) −b4i+1 b4i+2

b4(i+1) b4i+3 −b4i+2 −b4i+1

⎞

⎟

⎟

⎠

(3.32)

It can be checked easily that Bi · BT
i =

b2
4i+1+···+b2

4(i+1)

b2
1+···+b2

4+b2
4i+1+···+b2

4(i+1)

I = βiI. It proves C

full-rank if we can find 4(M − 1) × 4(M − 1) matrix U such that

UT CU (3.33)

has rank equal to 4(M − 1). We will try to construct U based on the following

structure

U =
(

u1 | · · · | uM−1

)

(3.34)

where uis are 4(M − 1) × 4. The following two lemmas will lead us construct the

U matrix.

Lemma 3 Given ai = 1
λ∗+βi−1

where λ∗ is a root of
∑M−1

i=1
βi

λ+βi−1
= 1 we have

C ·

⎛

⎜

⎜

⎜

⎝

a1B1

a2B2

...

aM−1BM−1

⎞

⎟

⎟

⎟

⎠

= λ

⎛

⎜

⎜

⎜

⎝

a1B1

a2B2

...

aM−1BM−1

⎞

⎟

⎟

⎟

⎠

(3.35)

Proof See Appendix A. �

Lemma 4 The following equation has M − 1 distinct non-zero roots

M−1
∑

i=1

βi

λ + βi − 1
= 1 (3.36)
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Proof See Appendix A. �

We name these distinct non-zero roots λ∗
1, . . . , λ

∗
M−1. Let us now define ui vec-

tors as following

ui =

⎛

⎜

⎜

⎜

⎝

a1iB1

a2iB2

...

a(M−1)iB(M − 1)

⎞

⎟

⎟

⎟

⎠

(3.37)

where ami = 1
λ∗

i +bm−1
for i,m = 1, . . . ,M − 1. From Lemma 3 and properties of

Bj s it is clear that

C · ui = λ∗
i ui

uT
i ui =

∑

j βja
2
jiI = SiI

(3.38)

Also, since λ∗
i s are distinct we have

uT
i Cuj = uT

i λ∗
j uj = λ∗

j uT
i uj and

uT
i Cuj = uT

i CT uj = (Cui)
T uj = λ∗

i uT
i uj =⇒ uT

i uj = 0 given i �= j.

(3.39)

We are now ready to show why C is full-rank as follows

⎛

⎜

⎜

⎜

⎜

⎜

⎝

uT
1

uT
2

...

uT
M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

· C ·
(

u1 | u2 | · · · | uM−1

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

uT
1

uT
2

...

uT
M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

·
(

Cu1 | Cu2 | · · · | CuM−1

)

= diag
(

S1λ
∗
1, S1λ

∗
1, S1λ

∗
1, S1λ

∗
1, . . . , SM−1λ

∗
M , SM−1λ

∗
M−1, SM−1λ

∗
M−1,

SM−1λ
∗
M−1

)

(3.40)

which is clearly full-rank and it proves the same property for the matrix C. There-

fore, the channel correlation matrix is full-rank and the provided diversity for the

scheme described in (3.27) is 2(M − 1).



42 3 Diversity Analysis of Multiple-Antenna Multi-User Systems

The Case with More than 2 Users

Let us now assume the multi-user system with 3 users and 3 antennas at the receiver

as follows

r1 = H1 · c + G1 · s + K1 · x + n1

r2 = H2 · c + G2 · s + K2 · x + n2

r3 = H3 · c + G3 · s + K3 · x + n3

(3.41)

Once we apply the cancellation technique on the user corresponding to message x

we get

r′
1 = K−1

1 r1 − K−1
3 r3 =

(

K−1
1 H1 − K−1

3 H3

)

c +
(

K−1
1 G1 − K−1

3 G3

)

s + z1

r′
2 = K−1

2 r2 − K−1
3 r3 =

(

K−1
2 H2 − K−1

3 H3

)

c +
(

K−1
2 G2 − K−1

3 G3

)

s + z2

(3.42)

We note that K−1
i =

K
†
i

‖Ki‖
2 . Conditioned on Kis, the above system represents a

Rayleigh fading channel with 2 users and 2 receive antennas. Therefore, similar

to the system in (3.19) all the diversity claims of a 2 user systems (conditionally)

apply.4 In other words, the diversity order will be equal to 2. Taking the expecta-

tion over all Kis will not change this constant value and the diversity will remain 2.

Similarly, when having M receive antennas for multi-user detection of 3 users we

get diversity order of 2(M − 3 + 1). Using induction on the number of users then,

we can prove the following theorem.

Theorem 1 Suppose we have J Alamouti-equipped users transmitting to the same

receiver in the same frequency band and are time synchronized. Let us also assume

that at the receiver we have M antennas and we use array processing as explained

in [30]. The diversity provided to each user then will be equal to 2(M − J + 1).

3 Multi-User Detection for More than Two Transmit Antennas

In this section we first briefly explain the scheme in [30] and then find its provided

diversity. Suppose, we have two users each with 4 transmit antennas equipped with

QOSTBC. They are synchronously transmitting data to a receiver with two receive

4The only difference is that the noise and the channel coefficients are correlated. However, this

will not affect the diversity results since the correlation matrices are exactly like those in (3.20)

and (3.55) and therefore full-rank.
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antennas as following

⎛

⎜

⎜

⎝

r11

r21

r31

r41

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

h11

h21

h31

h41

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3

s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

g11

g21

g31

g41

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

n11

n21

n31

n41

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

r12

r22

r32

r42

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

h12

h22

h32

h42

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3

s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

g12

g22

g32

g42

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

n12

n22

n32

n42

⎞

⎟

⎟

⎠

(3.43)

We then define

r1 =

(

r11 + r31

−r∗
21 − r∗

41

)

, r′
1 =

(

r11 − r31

−r∗
21 + r∗

41

)

(3.44)

Assuming similar definitions for r2 and r′
2 we will have

r1 = H1c+ + G1s+ + n1, r′
1 = H′

1c− + G′
1s− + n′

1

r2 = H2c+ + G2s+ + n2, r′
2 = H′

1c− + G′
1s− + n′

2

(3.45)

where

H1 =

(

h11 + h31 h21 + h41

−h∗
11 − h∗

31 h∗
21 + h∗

41

)

, H′
1 =

(

h11 − h31 h21 − h41

−h∗
11 + h∗

31 h∗
21 − h∗

41

)

c+ =

(

c1 + c3

c2 + c4

)

, c− =

(

c1 − c3

c2 − c4

)
(3.46)

and the rest of the matrices are defined similarly.
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Equation (3.45) reminds us of (3.4) and (3.5). Using the same array-processing

algorithm one can cancel the effect of s and get the following

r+ = G−1
1 r1 − G−1

2 r2 =
(

G−1
1 H1 − G−1

2 H2

)

c+ +
(

G−1
1 n1 − G−1

2 n2

)

= As+ + z

r− = G′
1
−1

r′
1 − G′

2
−1

r′
2 =

(

G′
1
−1

H1 − G′
2
−1

H′
2

)

c− +
(

G′
1
−1

n1 − G′
2
−1

n′
2

)

= A′c− + z′

(3.47)

where A and A′ can be shown to be in the form of

A =

(

α1 α2

−α∗
2 α∗

1

)

A′ =

(

α′
1 α′

2

−α′
2
∗

α′
1
∗

) (3.48)

Conditioned on Gi and G′
i values, the noise terms will be i.i.d. complex Gaussian

random variables. Similar argument applies to αi and α′
i . Now, if we perform the

reverse of the conversion in (3.43)–(3.45) we get

R =

⎛

⎜

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

α1+α′
1

2
α2+α′

2
2

α1−α′
1

2
α2−α′

2
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ i.i.d. noise (3.49)

Conditioned on Gi and G′
i values, the above system is equivalent to a single-user

QOSTBC with independent noise and Rayleigh fading channel coefficients. This

system clearly provides a diversity order of four,5 even after taking the expectation.

Therefore, in the case of J = 2 users, N = 4 transmit, and M = 2 antennas the

diversity order is 4 = N(M − J + 1).

The Case with More than 2 Receive Antennas

Let us consider the above system with the exception that there are three receive

antennas instead of two. For this system we have

r1 = H1c+ + G1s+ + n1, r′
1 = H′

1c− + G′
1s− + n′

1

r2 = H2c+ + G2s+ + n2, r′
2 = H′

2c− + G′
2s− + n′

2

r3 = H3c+ + G3s+ + n3, r′
3 = H′

3c− + G′
3s− + n′

3

(3.50)

5This is assuming rotated constellation for c3 and c4.
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After canceling out s we get

r+
1 = G−1

2 r2 − G−1
1 r1 =

(

G−1
2 H2 − G−1

1 H1

)

c+ +
(

G−1
2 n2 − G−1

1 n1

)

= A1s+ + z1

r−
1 = G′

1
−1

r′
1 − G′

2
−1

r′
2 =

(

G′
1
−1

H1 − G′
2
−1

H′
2

)

c− +
(

G′
1
−1

n1 − G′
2
−1

n′
2

)

= A′
1c− + z′

1

r+
2 = G−1

3 r3 − G−1
1 r1 =

(

G−1
3 H3 − G−1

1 H1

)

c+ +
(

G−1
3 n3 − G−1

1 n1

)

= A2s+ + z2

r−
2 = G′

3
−1

r′
3 − G′

1
−1

r′
1 =

(

G′
3
−1

H3 − G′
1
−1

H′
1

)

c− +
(

G′
3
−1

n3 − G′
1
−1

n′
1

)

= A′
2c− + z′

2

(3.51)

where

A1 =

(

α11 α21

−α∗
21 α∗

11

)

, A′
1 =

(

α′
11 α′

21

−α′∗
21 α′∗

11

)

A2 =

(

α12 α22

−α∗
22 α∗

12

)

, A′
2 =

(

α′
12 α′

22

−α′∗
22 α′∗

12

)

(3.52)

Although Gaussian, neither the noise terms, nor the channel fades are uncorrelated.

The correlation matrix for the (z1 z2)
T will be equal to

⎛

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

I2
σ 2

‖G1‖
2 I2

σ 2

‖G1‖
2 I2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

I2

⎞

⎠ (3.53)

and for (z′
1 z′

2)
T it will be

⎛

⎝

(

σ 2

‖G′
2‖

2 + σ 2

‖G′
1‖

2

)

I2
σ 2

‖G′
1‖

2 I2

σ 2

‖G′
1‖

2 I2

(

σ 2

‖G′
3‖

2 + σ 2

‖G′
1‖

2

)

I2

⎞

⎠ (3.54)

The correlation matrix of (A1 A2) and (A′
1 A′

2) will be of the form

1

σ 2

(

I X

X I

)

(3.55)
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where X is in the form of 6

X =
1

√

(b2
1 + · · · + b2

8)(b
2
1 + · · · + b2

4 + b2
9 + · · · + b2

12)

⎛

⎜

⎜

⎝

b5 b6 b7 b8

b6 −b5 b8 −b7

b7 −b8 −b5 b6

b8 b7 −b6 −b5

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

b9 b10 b11 b12

b10 −b9 −b12 b11

b11 b12 −b9 −b10

b12 −b11 b10 −b9

⎞

⎟

⎟

⎠

(3.56)

Clearly, all these correlation matrices are full-rank. Now, similar to the 2 receive

antenna case, we can perform the reverse conversion and write the above equation

in the following form

R =

⎛

⎜

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α11+α′
11

2

α12+α′
12

2

α21+α′
21

2

α21+α′
22

2

α11−α′
11

2

α12−α′
12

2

α21−α′
21

2

α22−α′
22

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ noise (3.57)

The correlation matrix of the new channel and noise terms can be derived via row

operations and block-concatenation of the correlation matrices in (3.53)–(3.56).

Therefore, they will also be full-rank and the diversity order of the equivalent

scheme shown in (3.57) will be 4 × 2 = 8.

For the general case of M receive antennas, one can perform similar operations

and get to the following noise correlation

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

σ 2

‖G1‖
2 · · · σ 2

‖G1‖
2

σ 2

‖G1‖
2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

· · · σ 2

‖G1‖
2

...
...

. . .
...

σ 2

‖G1‖
2

σ 2

‖G1‖
2 · · ·

(

σ 2

‖G2‖
2 + σ 2

‖GM‖2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⊗ I2 (3.58)

and channel correlation

C =
1

σ2

⎛

⎜

⎜

⎜

⎝

I X12 · · · X1M−1

X21 I · · · X2M−1

...
...

. . .
...

X(M−1)1 X(M−1)2 · · · X(M−1)M−1

⎞

⎟

⎟

⎟

⎠

(3.59)

6This just shows the structure. In order to rigorously calculate these terms refer to (3.21)–(3.25).
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matrices. After reverse conversion, the equivalent single-user system will look like

R =

⎛

⎜

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

α11+α′
11

2

α12+α′
12

2
· · ·

α1M−1+α′
1M−1

2
α21+α′

21
2

α22+α′
22

2
· · ·

α2M−1+α′
2M−1

2
α11−α′

11
2

α12−α′
12

2
· · ·

α1M−1−α′
1M−1

2
α21−α′

21
2

α22−α′
22

2
· · ·

α2M−1−α′
2M−1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ noise

(3.60)

which provides the diversity order of 4(M −1) due to the full-rank correlation argu-

ment. Therefore, for the case of J = 2 users, N = 4 transmit antennas and general

M receive antennas, the diversity order will be N(M − J + 1).

The Case with More than 2 Users

Let us now assume the multi-user system with 3 users and 3 antennas at the receiver

as follows

⎛

⎜

⎝

r11

r21

r31

r41

⎞

⎟

⎠
=

⎛

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3
c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

h11

h21

h31

h41

⎞

⎟

⎠
+

⎛

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3
s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

g11

g21

g31

g41

⎞

⎟

⎠

+

⎛

⎜

⎝

x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3
x3 s4 X1 s2

−x∗
4 x∗

3 −x∗
2 x∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

k11

k21

k31

k41

⎞

⎟

⎠
+

⎛

⎜

⎝

n11

n21

n31

n41

⎞

⎟

⎠

⎛

⎜

⎝

r12

r22

r32

r42

⎞

⎟

⎠
=

⎛

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3
c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

h12

h22

h32

h42

⎞

⎟

⎠
+

⎛

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3
s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

g12

g22

g32

g42

⎞

⎟

⎠

+

⎛

⎜

⎝

x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3
x3 s4 X1 s2

−x∗
4 x∗

3 −x∗
2 x∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

k12

k22

k32

k42

⎞

⎟

⎠
+

⎛

⎜

⎝

n12

n22

n32

n42

⎞

⎟

⎠

⎛

⎜

⎝

r13

r23

r33

r43

⎞

⎟

⎠
=

⎛

⎜

⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3
c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

h13

h23

h33

h43

⎞

⎟

⎠
+

⎛

⎜

⎝

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3
s3 s4 s1 s2

−s∗
4 s∗

3 −s∗
2 s∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

g13

g23

g33

g43

⎞

⎟

⎠

+

⎛

⎜

⎝

x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3
x3 s4 X1 s2

−x∗
4 x∗

3 −x∗
2 x∗

1

⎞

⎟

⎠
·

⎛

⎜

⎝

k13

k23

k33

k43

⎞

⎟

⎠
+

⎛

⎜

⎝

n13

n23

n33

n43

⎞

⎟

⎠

(3.61)
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Now, if we perform the conversion to Alamouti form we get to the following

r1 = H1c+ + G1s+ + n1, r′
1 = H′

1c− + G′
1s− + K′

1x− + n′
1

r2 = H2c+ + G2s+ + n2, r′
2 = H′

2c− + G′
2s− + K′

2x− + n′
2

r3 = H3c+ + G3s+ + n3, r′
3 = H′

3c− + G′
3s− + K′

3x− + n′
3

(3.62)

Once we apply the cancellation technique on the user corresponding to message x

we get

r+
1 = K−1

2 r2 − K−1
1 r1 = A1s+ + B1x+ + z1

r−
1 = K′

1
−1

r′
1 − K′

2
−1

r′
2 = A′

1c− + B′
1x− + z′

1

r+
2 = K−1

3 r3 − K−1
1 r1 = A2s+ + B2x+ + z2

r−
2 = K′

3
−1

r′
3 − K′

1
−1

r′
1 = A′

2c− + B′
2x− + z′

2

(3.63)

Conditioned on Kis and K′
is, the above system represents a Rayleigh fading chan-

nel with 2 users and 2 receive antennas. Therefore, similar to the system in (3.19)

all the diversity claims of a 2 user systems (conditionally) apply.7 In other words,

the diversity order will be equal to 4. Taking the expectation over all Kis and K′
is

will not change this constant value and the diversity will remain 4. Similarly, when

having M receive antennas for multi-user detection of 3 users we get diversity order

of 4(M − 3 + 1). Using induction on the number of users then, we can prove the

following theorem.

Theorem 2 Suppose we have J QOSTBC-equipped users transmitting to the same

receiver in the same frequency band and are time synchronized. Let us also assume

that at the receiver we have M antennas and we use array processing as explained

in the previous chapter. The diversity provided to each user then will be equal to

4(M − J + 1).

In the previous chapter we showed how, using
(

A B
B A

)

one can generalize the array

processing method to all number of transmit antennas. The trick when N = 2k is to

break the system into two systems with N = 2k−1 and then perform the interference

cancellation technique on each of them separately. Then, one can combine them

back and get to the original system. Similar to the method we showed for converting

the N = 4 to N = 2 systems, one can perform the same diversity analysis on any

N = 2k transmit antenna system with
(

A B
B A

)

structure. In addition, the result can be

extended to non-power-of-2s with column removal method to form the following

corollary.

7The only difference is that the noise and the channel coefficients are correlated. However, this

will not affect the diversity results since the correlation matrices are exactly like those in (3.56)

and (3.58) and therefore full-rank.
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Corollary Assume we have J users each with N transmit antennas using the
(

A B
B A

)

structure explained above. They are all sending data synchronously to a receive with

M ≥ J receive antennas. The diversity of the array processing method will be equal

to N(M − J + 1).

4 Joint Array Processing and Space-Time Coding

Suppose we have an interference cancellation scheme. The scheme does not put any

assumption on the location of the users. Therefore, even if the users are all together,

unified as part of a bigger user, the proposed decoding works and provides transmit

diversity. If we unify J of such users, the number of independent streams of the

overall system will be J times that of the individual users alone. In other words, if

we have a system with 2J transmit antennas, we can use a combination of J space-

time codes with interference cancellation, that sends J times more symbols per

time slot than each of the individual space-time codes. It was shown in the previous

chapter that these type of codes outperform several classes of known space-time

codes in a large range of SNRs.

The diversity order of these codes will be equal to the diversity order of each of

sub-systems used within, due to symmetry of the problem. Therefore, if for example,

we use two combined Alamouti codes in a 4-transmit antenna system, with 2 receive

antennas and use array-processing at the receiver, the diversity will be 2.

Similarly, in ML method the diversity order J combined N transmit antenna

systems will be NM where M is the number of total receive antennas.

5 Discussion

Our diversity analysis concurs with the simulation results provided in Fig. 3.1. Intu-

itively, one can think of one of the J − 1 of the receive antennas as the canceler and

the rest as the combiner. The diversity of a 2 Tx by (M − J + 1) Rx system then, is

expected to be equal to 2(M − J + 1). In the scheme proposed by Tarokh et al. [1]

which is similar to VBLAST, the diversity for different users (different streams) is

unequal. First user has the highest diversity and the last user has the least. In the

system that we described all users (streams) have the same diversity.

Appendix A

Proof of Lemma 1 The equality can be checked easily after applying the variable

change. Here, we show the steps how to derive it.
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Fig. 3.1 Comparison of the two MUD systems with two Alamouti equipped users

The goal is to represent ‖H‖2‖G‖2 − ‖H†G‖2 in terms of sum of square terms.

For that purpose, let

h11 = a1 − ja2, h21 = −a3 + ja4

h12 = −a5 − ja6, h22 = −a7 − ja8

g11 = b1 + jb2, g21 = b3 + jb4

g12 = b5 + jb6, g22 = b7 − jb8

(3.64)

We use Degen’s eight-square identity [35]

(

a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7 + a2

8

)(

b2
1 + b2

2 + b2
3 + b4 + b2

5 + b2
6 + b2

7 + b2
8

)

= (a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7 − a8b8)
2

+ (a2b1 + a1b2 + a4b3 − a3b4 + a6b5 − a5b6 − a8b7 + a7b8)
2

+ (a3b1 − a4b2 + a1b3 + a2b4 + a7b5 + a8b6 − a5b7 − a6b8)
2

+ (a4b1 + a3b2 − a2b3 + a1b4 + a8b5 − a7b6 + a6b7 − a5b8)
2

+ (a5b1 − a6b2 − a7b3 − a8b4 + a1b5 + a2b6 + a3b7 + a4b8)
2

+ (a6b1 + a5b2 − a8b3 + a7b4 − a2b5 + a1b6 − a4b7 + a3b8)
2
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+ (a7b1 + a8b2 + a5b3 − a6b4 − a3b5 + a4b6 + a1b7 − a2b8)
2

+ (a8b1 − a7b2 + a6b3 + a5b4 − a4b5 − a3b6 + a2b7 + a1b8)
2 (3.65)

After simplification we get

‖H‖2‖G‖2 − ‖H†G‖2

= (a5b1 − a6b2 − a7b3 − a8b4 + a1b5 + a2b6 + a3b7 + a4b8)
2

+ (a6b1 + a5b2 − a8b3 + a7b4 − a2b5 + a1b6 − a4b7 + a3b8)
2

+ (a7b1 + a8b2 + a5b3 − a6b4 − a3b5 + a4b6 + a1b7 − a2b8)
2

+ (a8b1 − a7b2 + a6b3 + a5b4 − a4b5 − a3b6 + a2b7 + a1b8)
2

+ 4(a1b4 + a)3b2 + a4b1 − a2b3).(a8b5 − a7b6 + a6b7 − a5b8) (3.66)

Let us define A1,A2,A3,A4,B1,B2,B3,B4 as follows,
⎛

⎜

⎜

⎜

⎜

⎝

A1

A2

A3

A4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

a5 −a6 −a7 −a8

a6 a5 −a8 a7

a7 a8 a5 −a6

a8 −a7 a6 a5

⎞

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

b1

b2

b3

b4

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

B1

B2

B3

B4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b5 −b6 −b7 −b8

b6 b5 −b8 b7

b7 b8 b5 −b6

b8 −b7 b6 b5

⎞

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

a1

a2

a3

a4

⎞

⎟

⎟

⎟

⎟

⎠

(3.67)

Plugging in these variables in (3.66) we get

(A1 + B1)
2 + (A2 + B2)

2 + (A3 + B3)
2 + (A4 + B4)

2

−
4(a8b5 − a7b6 + a6b7 − a5b8)

(b2
6 + b2

5 + b2
7 + b2

8)(a
2
6 + a2

7 + a2
5 + a2

8)

×

⎡

⎢

⎢

⎢

⎢

⎣

(−b8B1 + b7B2 − b6B3 + b5B4)(a5A1 + a6A2 + a7A3 + a8A4)

+ (b7B1 + b8B2 − b5B3 − b6B4)(a6A1 − a5A2 − a8A3 + a7A4)

+ (−b6B1 + b5B2 + b8B3 − b7B4)(a7A1 + a8A2 − a5A3 − a6A4)

+ (b5B1 + b6B2 + b7B3 + b8B4)(a8A1 − a7A2 + a6A3 − a5A4)

⎤

⎥

⎥

⎥

⎥

⎦

(3.68)

Without loss of generality, we can assume that

a2
5 + a2

6 + a2
7 + a2

8 = 1 and b2
5 + b2

6 + b2
7 + b2

8 = 1 (3.69)
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This, along with the fact that the original expression in (3.66) is homogeneous leads

to

(A1 + B1)
2 + (A2 + B2)

2 + (A3 + B3)
2 + (A4 + B4)

2

− 4(a8b5 − a7b6 + a6b7 − a5b8)

×

⎡

⎢

⎢

⎢

⎢

⎣

(−b8B1 + b7B2 − b6B3 + b5B4)(a5A1 + a6A2 + a7A3 + a8A4)

+ (b7B1 + b8B2 − b5B3 − b6B4)(a6A1 − a5A2 − a8A3 + a7A4)

+ (−b6B1 + b5B2 + b8B3 − b7B4)(a7A1 + a8A2 − a5A3 − a6A4)

+ (b5B1 + b6B2 + b7B3 + b8B4)(a8A1 − a7A2 + a6A3 − a5A4)

⎤

⎥

⎥

⎥

⎥

⎦

(3.70)

We note that det([u1|u2|u3|u4]) = det([v1|v2|v3|v4]) = −1. In fact {u1,u2,u3,u4}

and {v1,v2,v3,v4} are two orthonormal bases for R4. Therefore, for every vector

x ∈ R4 we have

x = (x.u1)u1 + (x.u2)u2 + (x.u3)u3 + (x.u4)u4

x = (x.v1)v1 + (x.v2)v2 + (x.v3)v3 + (x.v4)v4

(3.71)

Therefore, we can write the original expression in (3.66) in the form of

(A + B) · (A + B) − 4(u4 · v4)[(B · u1)(A · v1) + (B · u2)(A.v2)

+ (B · u3)(A · v2) + (B · u3)(A · v3) + (B · u4)(A · v4)] (3.72)

where A = [A1 A2 A3 A4]
T and B = [B1 B2 B3 B4]

T . Note that

|u1| = |u2| = u3| = |u4| = |v1| = |v2| = |v3| = |v4| = 1

u1 · v1 = u2 · v2 = u3 · v3 = u4 · v4

u1 · v2 = −u2 · v1 = −u3 · v4 = u4 · v3

u1 · v3 = −u3 · v1 = u2 · v4 = −u4 · v2

u1 · v4 = −u4 · v1 = −u2 · v3 = u3 · v2

(3.73)

Let us assume A = α1u1 +α2u2 +α3u3 +α4u4 and B = β1u1 +β2u2 +β3u3 +β4u4.

Also, we define the auxilary vector C = α1v1 + α2v2 + α3v3 + α4v4. Therefore, the

expression in (3.72) can be rewritten as

(A + B)2 − 4(u1 · v1)C · B (3.74)



5 Discussion 53

We also note that

A · C =

(

∑

j

αj uj

)

·

(

∑

i

αivi

)

=
∑

j

∑

i

αjαiuj · vi

=
∑

i

α2
i ui · vi +

∑

i<j

αiαj (uj · vi + ui · vj )

= (u1 · v1)
∑

i

α2
i (3.75)

Using this we can further simplify the expression in (3.74)

(A + B)2 − 4
A · C

|C|2
C · B = |A|2 + |B|2 + 2A ·

(

B − 2
C · B

|C|2
C

)

= |A|2 +

∣

∣

∣

∣

B − 2
C · B

|C|2
C

∣

∣

∣

∣

2

+ 2A ·

(

B − 2
C · B

|C|2
C

)

=

(

A + B − 2
C · B

|C|2
C

)2

(3.76)

Plugging in ai and bi in the last term results in

‖H‖2‖G‖2 − ‖H†G‖2

=

(

A + B − 2
C · B

|C|2
C

)2

=
∑

i

(

Ai +

[

B − 2
C · B

|C|2
C

]

i

)2

=

(

a5b1 − a6b2 − a7b3 − a8b4 + a1b5 + a2b6 + a3b7 + a4b8

−
2(a1b4 + a3b2 + a4b1 − a2b3)(b1b8 + b2b7 − b3b6 + b4b5)

b2
1 + b2

3 + b2
4 + b2

2

)2

+

(

a6b1 + a5b2 − a8b3 + a7b4 + a1b6 − a2b5 + a3b8 − a4b7

−
2(a1b4 + a3b2 + a4b1 − a2b3)(−b1b7 + b2b8 + b3b5 + b4b6)

b2
1 + b2

2 + b2
3 + b2

4

)2

+

(

a7b1 + a8b2 + a5b3 − a6b4 + a1b7 − a2b8 − a3b5 + a4b6

+
2(a1b4 + a3b2 + a4b1 − a2b3)(−b1b6 + b2b5 − b3b8 − b4b7)

b2
1 + b2

2 + b2
3 + b2

4

)2
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+

(

a8b1 − a7b2 + a6b3 + a5b4 + a1b8 + a2b7 − a3b6 − a4b5

+
2(a1b4 + a3b2 + a4b1 − a2b3)(b1b5 + b2b6 + b3b7 − b4b8)

b1 + b2
2 + b2

3 + b2
4

)2

(3.77)

which proves the lemma. �

Proof of Lemma 2 Instantaneous SNR equals |α|2.|β|2. Therefore, using (3.3) we

have

Diversity = lim
ǫ→0

logPr{|α|2.|β|2 < ǫ}

log ǫ
= lim

ǫ→0

∫∞

0 fβ(z)P r{|α|2 < ǫ
z
}dz

log ǫ

= lim
ǫ→0

log(
∫∞

0 e−z[1 − e−ǫ/z]dz)

log ǫ

= lim
ǫ→0

log(
∫ ǫ1−δ

0 e−z[1 − e−ǫ/z]dz +
∫∞

ǫ1−δ e−z[1 − e−ǫ/z]dz)

log ǫ

= lim
ǫ→0

log(B + A)

log ǫ
(3.78)

Given δ > 0 and small enough ǫ

∫ ∞

ǫ1−δ

e−z ǫ1+δ

z
dz ≤ A ≤

∫ ∞

ǫ1−δ

e−z ǫ

z
dz (3.79)

Also,

.5e−2 =

∫ 2

1

e−2

2
dz ≤

∫ 2

1

e−z

z
dz ≤

∫ ∞

ǫ1−δ

e−z

z
dz

=

∫ 1

ǫ1−δ

+

∫ ∞

1

e−z

z
dz ≤

∫ 1

ǫ1−δ

1

z1+δ
+

∫ ∞

1

1

z2
dz =

ǫ−δ(1−δ) − 1

δ
+ 1

(3.80)

Therefore,

ǫ1+δ

2e2
≤ A ≤

ǫ1−δ+δ2
− ǫ

δ
− ǫ (3.81)

In addition,

ǫ1+δ.
1

2
.ǫ1−δ2

≤ ǫ1+δ.e−ǫ1−δ

[1−e−ǫ1−δ

] ≤ B ≤ [ǫ1−δ −0+].e0+

.[1−e
− ǫ

0+ ] = ǫ1−δ

(3.82)



5 Discussion 55

The left-most inequality in the above equation is correct for 0 < δ < 1 and small

enough ǫ for which e−ǫ1+δ
≤ 1

2
and ǫ1−δ2

≤ [1 − e−ǫ1−δ
] as used in (3.81). There-

fore,

1 + δ ≤ lim
ǫ→0

log(B + A)

log ǫ
≤ 1 − δ (3.83)

This is true for all 0 < δ < 1, therefore taking the limit gives us

Diversity = lim
δ→0

(1 − δ) = lim
δ→0

(1 + δ) = 1 (3.84)

�

Extention of Lemma 2 When channel H equals

√

∑M
i=1 |αi |

2.
∑

M
i=1|βi |

2, with αi

and βi being i.i.d. complex Gaussian random variables, the diversity order is M .

This can be proved using the same technique as above.

Proof of Lemma 3 Plugging in C by

C =

⎛

⎜

⎜

⎜

⎜

⎝

I B1BT
2 · · · B1BT

M−1

B2BT
1 I · · · B2BT

M−1

...
...

. . .
...

BM−1BT
1 BM−1BT

2 · · · I

⎞

⎟

⎟

⎟

⎟

⎠

(3.85)

we get

C ·

⎛

⎜

⎜

⎜

⎝

a1B1

a2B2

...

aMBM−1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

(a1 + a2β2 + · · · + aM−1βM−1)B
T
1

(a1β1 + a2 + · · · + aM−1βM−1)B
T
2

...

(a1β1 + a2β2 + · · · + aM−1)B
T
M−1

⎞

⎟

⎟

⎟

⎟

⎠

(3.86)

and solving for ai and λ we get

for i = 1,2, . . . ,M − 1 (3.87)

We can always normalize ai coefficients such that
∑M−1

i=1 aiβi = 1. Therefore

ai =
1

λ + βi − 1
and

M−1
∑

i=1

aiβi =

M−1
∑

i=1

βi

λ + βi − 1
= 1

(3.88)

which proves the lemma. �
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Proof of Lemma 4 It is clear why none of the roots can be zero. Because, if it is so

we will have
∑M

i=1
βi

βi−1
= 1 which is impossible since βi − 1 < 0 and βi > 0 by

definition. Also, from the definition we know βis are distinct. Therefore, without

loss of generality we can assume β1 < · · · < βM−1. It will then be easy to show that

f (λ) =
∑M−1

i=1
βi

λ+βi−1
is monotonic over the following M − 1 intervals

(1 − βM−1,1 − βM−2), . . . , (1 − β2,1 − β1), (1 − β1,∞) (3.89)

For the first M −2 intervals, f (λ) takes all the values from −∞ to +∞. For the last

interval, it takes ∞ at the proximity of 1 − β1 and 0 when λ goes to ∞. Therefore,

it takes the value of 1 in all of these M − 1 intervals exactly once, which proves the

lemma. �

Appendix B

In this section we briefly review maximum likelihood decoding of an Alamouti code

after interference cancellation. As explained in the chapter, when having more than

2 receive antennas, noise terms will be correlated. Therefore, one will need noise-

whitening in order to optimally decode the signal. We will show, that this operation

will not affect the simple decodablity of Alamouti as follows.

As shown earlier, after canceling the first user we have

r′
1 =

(

G
†
2H2

‖G2‖2
−

G
†
1H1

‖G1‖2

)

c + n′
1 = H′

1c + n′
1

r′
2 =

(

G
†
3H3

‖G3‖2
−

G
†
1H1

‖G1‖2

)

c + n′
2 = H′

2c + n′
2

(3.90)

where the correlation matrix of the noise is

Cn =

⎛

⎝

(

σ 2

‖G2‖
2 + σ 2

‖G1‖
2

)

I2
σ 2

‖G1‖
2 I2

σ 2

‖G1‖
2 I2

(

σ 2

‖G3‖
2 + σ 2

‖G1‖
2

)

I2

⎞

⎠ (3.91)

Let us define

r = (r1 r2)
T

H = (H′
1 H′

2)
T

(3.92)

The maximum likelihood decoding metric will the be

arg min
c

(r − Hc)†C−1
n (r − Hc). (3.93)

It can be shown [36] that

C−1
n =

(

xI yI

yI tI

)

(3.94)
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Then, the ML criterion will be

(

r
†
1 − c†H

†
1r

†
2 − c†H

†
2

)

(

xI yI

yI tI

)(

r1 − H1c

r2 − H2c

)

= x‖r1 − H1c‖2 + t‖r2 − H2c‖2 + 2yRe
{(

r
†
1 − c†H

†
1

)

(r2 − H2c)
}

= x‖r1 − H1c‖2 + t‖r2 − H2c‖2 + 2yRe
{

r
†
1r2 − r

†
1H2c − c†H

†
1r2 + c†H

†
1H2c

}

(3.95)

The only part in the above equation that could generate cross-terms and therefore

cause non-separate decoding is c†H
†
1H2c. Before we expand this term, we note that

H
†
1H2 is in the form of an Alamouti and can be written like

( h1 h2

−h∗
2 h∗

1

)

. Having that

in mind the last term in (3.95) can be written as

Re
{

h1|c1|
2 + h∗

1|c2|
2 + h2c

∗
1c2 − h∗

2c
∗
2c1

}

= Re{h1}
(

|c1|
2 + |c2|

2
)

+ 2Re
{

j · Im{h2c
∗
1c2}

}

= Re{h1}
(

|c1|
2 + |c2|

2
)

(3.96)

which clearly does not have any cross-terms and therefore c1 and c2 can be decoded

separately.



Chapter 4

Global Optimal Routing, Scheduling and Power
Control for Multi-Hop Wireless Networks

with Interference

It happens often that the physical layer algorithm in use is not capable of removing

the interference. It then will be with the MAC layer on how to optimize the trans-

mission in order to use less resources of the network, e.g. power. In this chapter

we assume full interference from all links in the network with their corresponding

weight. After approximating the capacity formula, we then introduce an efficient

joint routing, scheduling and power control algorithm that minimizes the consumes

power while providing the end-to-end data flow.

1 Modeling and Problem Formulation

Suppose there are N stationary nodes, labeled by the integers 1,2, . . . ,N . A set ε of

Lε = |ε| transmission links, among the possible N(N − 1) links between nodes,

make a network topology. These active links are chosen based on the distance,

Signal to Interference Noise Ratio (SINR) or some other connectivity measure

[47–50]. For simplicity, we assume in this chapter that two nodes constitute a link

if the distance between them is less than a threshold. For a given link l = (i, j), the

transmitter node i uses a signal power P(l). The “path gain” from node i to node

j is given by G(i, j), and models the effects of signal attenuation due to distance,

channel fading and shadowing, as well as antenna gain patterns. We assume that

the path gains G(i, j) are constant. The transmitting and receiving nodes of link l

are denoted by T (l) and R(l) respectively. The received signal power at node R(l)

from the transmitter T (l) thus is given by P(l)G(T (l),R(l)). However, signals em-

anating from other transmitters appear the receiver R(l) as interference, and there is

thermal noise as well. The SINR for link l is defined as

γ (l) =
G(T (l),R(l))P (l)

∑

k �=l P(k)G(T (k),R(l)) + nR(l)

(4.1)

where nj is the noise power at node j . Let us assume that the efficient bandwidth of

channel l is W(l). Assuming Gaussian noise plus interference, the maximum mutual
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information of link l will be X(l) = W(l). log2(1 + γ (l)). In a low power regime,

the SINR value, γ (l), is very small. Therefore, we can use the linear approximation

for log function and obtain

X(l) = W(l).γ (l) (4.2)

Scheduling and Power Control

We start with reviewing the problem formulation given in [37]. For simplicity of

exposition, we divide time into slots, each of equal duration and indexed by pos-

itive integers. Transmissions begin and end on slot boundaries. Generalizing the

notation introduced earlier, let Xt (l) and Pt (l) be the data rate for link l in slot t ,

and transmission power for the transmitter T (l) for link l in slot t , respectively. Let

Pt = (Pt (1),Pt (2), . . . ,Pt (Lε)) be the network power vector for slot t . Let P max(i)

be the maximum transmission power for node i. Also, let ε(i) be the links in ε

that originate at node i. Each node must conform to the peak transmission power

constraint in every slot:

0 ≤
∑

l∈ε(i)

Pt (l) ≤ P max(i) and

0 ≤ Pt (l), for all t ≥ 1 and l ∈ ε

(4.3)

The above constraints form a polytope in
−→
P space. Let us denote this polytope by P.

Using (4.1) and (4.2), the maximum achievable data rate for link l in slot t is

Xt (l) = W(l)

(

G(T (l),R(l))Pt (l)
∑

k �=l G(T (k),R(l))Pt (k) + nR(l)

)

(4.4)

The average rate of link l is then defined as Xavg(l) = lim inft→∞
1
t

∑t
k=1 Xk(l).

For each link l, let C(l) be a given minimum required average data rate, i.e. we

must have

Xavg(l) ≥ C(l), for all l ∈ ε (4.5)

Define the required minimum average rate vector as
−→
C = (C(1),C(2), . . . ,C(Lε)).

The average power consumed by the transmitter of link l is then Pavg(l) =

lim supt→∞
1
t

∑t
k=1 Pk(l). Define the average power vector as

−−→
Pavg = (Pavg(1),

Pavg(2), . . . ,Pavg(Lε)). There may or may not exist a sequence of network power

vectors P1,P2, . . . that satisfy (4.3) and (4.5). If there does exist a sequence of such

network power vectors, our aim is to minimize a linear function of Pavg. An example

of such a linear function is simply the total average power

h(Pavg) =
∑

l∈ε

Pavg(l) (4.6)
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The Scheduling and Power Control Problem is then defined as

minh(Pavg) subject to (4.3) and (4.5) (4.7)

Let us define the value of this cost function as a function of
−→
C denoted by H(

−→
C ).

We can absorb constraint (4.5) into the cost function and define the potential func-

tion

V (
−→
P ,β) = h(

−→
P ) +

∑

l∈ε

β(l)[C(l) − X(l)] (4.8)

Using duality methods, we can show that [37]

H(
−→
C ) = max

β≥0

{

min
−→
P

V (
−−→
Pavg, β) subject to (4.3)

}

(4.9)

Computation of (4.9) involves optimizing over all schedules of network power vec-

tors satisfying the peak power constraint in every slot. However, since the potential

function V is linear in
−→
P ,

−→
C , and

−→
X , it follows that (4.9) can be computed by an

optimization over a single slot [37, 38]. Therefore, we can just focus on solving

max
β≥0

{

min
−→
P

V (
−→
P ,β)

}

s.t.
−→
P ∈ P

(4.10)

It can be shown [37] that V is element-wise concave in terms of
−→
P . Therefore,

the minimization problem takes its optimal value at the extreme points of poly-

tope P. In other words, the optimal schedule should be in such a way that at most

one of the links emanated from each node is active. That link, if there is any, should

be sending data at full allowable power [38].

For simplicity, we show the mth extreme point of P by P m
ext. Considering M as

the total number of extreme points, we will need to solve the following max-min

problem:

H(
−→
C ) = max

β≥0

{

min
m

V
(

P m
ext, β

)

: 1 ≤ m ≤ M
}

(4.11)

This optimization problem can be solved by a linear program:

max T

s.t.

T −
∑

ł∈ǫ

P m
ext(l) −

∑

l∈ǫ

β(l)(C(l) − Xm(l)) ≤ 0 m = 1, . . . ,M
(4.12)

The problem with this method is, M , the number of extreme points (constraints)

grows exponentially with the number of links in the network, and therefore it is not

possible to find the solution for large values of M . In the next section, we introduce

an efficient mechanism to solve this optimization problem.
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The number of the extreme (edge) points that minimize V (
−→
P ,β) is in general

more than one. Let us denote these extreme points by P i . If the assigned rate vector
−→
C is feasible, an optimal schedule of network power vectors exists that consists

solely of these extremal network power vectors P i . Moreover, since a hyperplane in

(Lε + 1) dimensional Euclidean space is determined by (Lε + 1) linearly indepen-

dent points contained within it, an optimal policy can be constructed that consists

of at most (Lε + 1) extremal network power vectors P i . Let K be the number of

extremal network power vectors P i such that (10) holds. It is easy to see that in

any optimal policy (assuming feasibility), the average rate on each link l, Xavg(l),

is exactly equal to C(l). Otherwise, we could have transmitted less power and still

satisfy the rate constraints. Let Xi(l) denote the rate of link l corresponding the op-

timal extremal network power vector P i . Assuming feasibility, it can be shown that

there exists a vector
−→
λ such that [37]:

K
∑

i=1

λi = 1

Xavg(l) =

K
∑

i=1

λiX
i(l) = C(l)

(4.13)

The value of λi indicates the relative frequency that the power vector P i should

be utilized in an optimal policy. This then determines a family of optimal policies,

which can be constructed by alternating between the optimal extremal power vectors

in accordance with the weight vector λi .

Therefore, the main challenge is to find the optimal solutions of (4.12). In our

algorithm, as will be shown in the next section, we insert the constraints iteratively

to take advantage of the fact that we need at most Lǫ + 1 transmission modes in the

optimal solution.

Scheduling, Power Control, and Routing

In the power control-scheduling problem link rates, C(l), were fixed and the al-

gorithm finds the optimal power allocation vectors and their scheduling frequency.

The routing problem should find the optimal link rates for a given end-to-end traffic

demand matrix as well.

Now, assume we have a set of source-destination (S-D) pairs {(i, j)}. Suppose

that for each S-D pair the desired traffic demand is known. Solution to the joint

routing, scheduling and power control problem specifies links’ average traffic rates,

power vectors and scheduling frequency of power vectors such that the given traffic

demand and maximum power constraints are satisfied. Our objective is to find the

solution with minimum average power consumption. Let us then define vij (l) as

the portion of flow in link l that belongs to the S-D pair {(i, j)}. The mathematical
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statement of the joint routing scheduling, and power control problem will be as

follows,

min
∑

l

Pavg(l)

s.t.

a. 0 ≤
∑

l∈ε(i)

Pt (l) ≤ P max(i) and

b. 0 ≤ Pt (l), for all t ≥ 1 and l ∈ ǫ

c.
∑

l∈Ip

vij (l) −
∑

l∈Op

vij (l) =

⎧

⎪

⎨

⎪

⎩

0 p �= i or j

−dij n = i

dij n = j

d.
∑

ij

vij (l) = C(l)

e. Xavg(l) ≥ C(l), for all l ∈ ǫ

(4.14)

where In and On are sets of links entering and leaving node n respectively. Equa-

tions (4.14c) and (4.14d) define a polytope that we denote by C. For a rate vector
−→
C to be a route, it must be on this polytope. In [37], a gradient projection algorithm

is proposed to find the routing, i.e. the power-optimal rate vector
−→
C . At each iter-

ation for the given rate vector
−→
C on C, the scheduling and power control problem

described in Sect. II.A is solved. Then, the gradient projection method is used to

update vector
−→
C while keeping it on C. Note that the gradient directions are given

by the dual variables β [38].

This algorithm is not scalable for large networks for two reasons. First, recall

that the proposed solution for scheduling and power control needs to consider all

extreme points of the power polytope P, which grows exponentially with number of

links. Second, we have to iteratively solve the scheduling and power control problem

after each update of the rate vector using gradient projection method, which itself is

very time-consuming. It is needless to mention that it will use up a lot of memory

to store all the constraints for the linear program of the scheduling algorithm. The

algorithm then, will not be efficient for networks with more than 15 links [38].

2 Power Control, Scheduling and Routing Algorithm

In this section we will introduce a new algorithm that can find the optimal power

control, scheduling, and routing for large networks. We first explain the power

control-scheduling algorithm for the fixed routing and then extend the algorithm

to compute the optimal power control, scheduling, and routing simultaneously.

The Power Control-Scheduling Algorithm

Recall that to compute the optimal scheduling and power control for a given routing

we have to solve the optimization problem given in (4.12). The problem with this
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method is that the number of extreme points (constraints), M , grows exponentially

with the number of links in the network, and therefore it is not possible to find the

solution for large values of M .

A common approach to deal with large number of constraints in linear programs

is cutting plane methods [51].1 Instead of dealing with all constraints, cutting plane

algorithm considers a subset of constraints I and form the relaxed problem:

maxT

s.t.

T −
∑

ł∈ǫ

P m(l) −
∑

l∈ǫ
m∈I

β(l)(C(l) − Xm(l)) ≤ 0
(4.15)

We use Kelly’s convex cutting plane algorithm [51] which is basically an iterative

algorithm for introducing new constraints into the constraint subset. We initialize the

constraint set I1 by selecting one of the extreme points of P arbitrarily and forming

its corresponding constraint.

At each iteration, e.g. k, we solve the relaxed optimization problem (4.15) with

constraint set Ik instead of I . Let (Tk, βk) be the optimal solution of the relaxed

problem. There are two possibilities: (1) If (Tk, βk) is a feasible solution for the

original optimization problem, then we are done and we have found an optimal

solution for that problem too. (2) If (Tk, βk) is not feasible we have to find a violated

constraint and add it to the constraint set to form Ik+1 and start the next iteration.

We need a method to check if (Tk, βk) is a feasible solution.

Definition Suppose that we have a candidate solution for an LP. A separation Ora-

cle determines if the solution is feasible. If the solution is not feasible, the separation

Oracle finds a hyperplane that separates the solution from the feasible region.

We formulate the following Oracle optimization problem:

min

(

∑

l

P(l) + βk(l)(C(l) − X(P (l)))

)

s.t.

−→
P ∈ P

(4.16)

As explained before, subject to feasibility, there is always an optimal solution in

the extreme points of the power polytope, P. Therefore, similar to the concave pro-

gramming problems, branch and bound algorithms converge in finite number of it-

erations, and in fact, in most practical cases the algorithm finds the optimal solution

1In fact, cutting plane methods are usually used in the more general context of convex program-

ming.
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Fig. 4.1 Flowchart of the power control-scheduling algorithm

fast. We use GAMS [52] software which is based on the branch and bound algo-

rithm. The library of GAMS that analytically finds the global optimum is BARON

[53]. BARON uses a modified branch and bound method named as branch and re-

duce. The linear program as well as the core code is performed by MATLAB soft-

ware. We link the two softwares via MATGAMS, a free interface for GAMS and

MATLAB. In the simulation results we elaborate more on the computation time of

the algorithm. The essence of the algorithm is as follows.

Figure 4.1 shows the flow chart of the power control-scheduling algorithm. In

summary, at iteration k, we solve the following linear program:

maxT

T −
∑

l∈ǫ

P m(l) −
∑

l∈ǫ

β(l)(Cm(l) − Xm(l)) ≤ 0

m = 1, . . . , k

(4.17)

Let βk be the solution of the above LP in iteration k, which will be used in the

following non-linear Oracle problem to test optimality:

min
−→
P

(

∑

l

P(l) +
∑

l

βk(l)(C(l) − X(l))

)

s.t.

−→
P ∈ P

(4.18)
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We then add the new
−→
P vector to form a new constraint for the next iteration. In the

following we prove that the algorithm converges in finite iterations to the optimal

solution.

Lemma 1 The proposed algorithm converges after finite number of iterations.

Proof At the end of each iteration, if the convergence criterion is not satisfied, it

means that the Oracle has found a new power vector that its corresponding constraint

is violated. Since solutions of the Oracle are extreme points of the power polytope,

and there are finite number of them, it proves that the algorithm converges in finite

iterations. �

In fact, in our simulations, algorithm converges after around Lǫ iterations.

Lemma 2 After convergence the value of both linear and nonlinear (global) opti-

mizers will be equal to H(
−→
C ).

Proof Let us denote the total number of extreme points by M . At the kth iteration

we will have k power modes (extreme points). Let us define

gk(β) = min
−→
P 1,...,

−→
P k

V (
−→
P ,β) (4.19)

As was shown for LP in (4.14), it is easily seen the value of the linear program

at Iteration k, T k , will be equal to maxβ≥0 gk(β). We know the global minimum

of V (P,β) is on one of the extreme points. Therefore, the solution of the Oracle

problem defined in (4.16) at the kth iteration is

min
−→
P 1,...,

−→
PM

V (
−→
P ,βk) = gM(βk) (4.20)

where βk is the optimal β vector found by the linear program (15) in Iteration k.

By definition, gk(β) ≥ gM(β). Therefore,

gk(βk) = max
β≥0

gk(β) ≥ max
β≥0

gM(β) = H(
−→
C ) (4.21)

This means min−→
P 1,...,

−→
P k

V (
−→
P ,βk) ≥ min−→

P 1,...,
−→
PM

V (
−→
P ,βM).

Suppose the algorithm converges after m iterations. The convergence criterion

suggests the value of nonlinear program being more than or equal to the value of

linear program:

min
−→
P 1,...,

−→
PM

V (
−→
P ,βm) ≥ max

β≥0
min

−→
P 1,...,

−→
Pm

V (
−→
P ,β) = min

−→
P 1,...,

−→
PM

V (
−→
P ,βk) (4.22)

From that, we conclude that

gM(βM) = max
β≥0

gM(β) ≥ gM(βm) ≥ gm(βm) (4.23)
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This along with (4.21) results in

gM(βM) = H(
−→
C ) = gm(βm) (4.24)

which proves the lemma. �

Theorem 1 The set of power modes after convergence, {
−→
P 1, . . . ,

−→
P m}, satisfy the

rate requirement. In other words, there is a non-negative time sharing, λ1, . . . , λm

that

a.
∑

λi = 1

b.
∑

λi .
−→
X i =

−→
C

c.
∑

λi

∑

l

P i(l) = H(
−→
C )

(4.25)

Proof Let us rewrite the linear program in the iteration that leads to convergence.

We use the standard form of convex optimization, i.e. cost-constraint format. We

denote the cost function of the LP problem by f and the constraint functions by

hi [54].

f (T ,β(1), . . . , β(L)) = T

h1(T ,β(1), . . . , β(L)) = T −
∑

l

β(l)(C(l) − X1(l)) −
∑

l

P 1(l) ≤ 0

...

hm(T ,β(1), . . . , β(L))= T −
∑

l

β(l)(C(l) − Xm(l)) −
∑

l

P m(l) ≤ 0

(4.26)

Since the linear program finds the global minimum of the convex (linear) cost

function, K.K.T. conditions are satisfied.

∇f =

m
∑

i=1

λi∇hi (4.27)

The above vector equation gives us Lǫ + 1 scalar equations. The first one is
∑

i λi = 1, and the rest are

∑

i

λiX
i(l) = C(l) for l = 1, . . . ,Lǫ (4.28)

This proves (25a) and (25b). Then, as Lemma 2 suggests, after convergence T =

H(
−→
C ). One of the conclusions of the K.K.T. theorem is that at the optimal point,
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either the dual variable, λ, or the constraint, h, should be equal to zero [54]. Using

this fact along with (4.28) we get

∑

λi

∑

l

P i(l) = H(
−→
C ) (4.29)

�

It can be shown that the λ coefficients are the dual variables of the LP (4.17)

and since they satisfy (4.28), they present the frequency of use of each transmission

mode. Therefore, we do not need to solve the additional LP given in (4.13) to find

the scheduling frequencies.

Power Control, Scheduling and Routing

We extend the power control-scheduling algorithm developed in Sect. III.A to find

the optimal routing too. The routing algorithm described in [37] has scalability prob-

lems, since it has to consider all extreme points of the power polytope explicitly and

relies on iterative gradient based updates of the routing parameters. Both these is-

sues are resolved in our algorithm.

The problem formulation is given in (4.14). In Sect. II.A, we explained that by

using duality and due to linearity in P and X, we need to only solve the optimization

problem given in (4.10). Similarly, we can use the duality theorem for linear pro-

grams and linearity of (4.14) in P , X and C to show that for the joint power control,

scheduling, and routing problem it is sufficient to solve the following optimization

problem.

max
β≥0

{

min
−→
P ,

−→
C

V (
−→
P ,β,

−→
C )

}

s.t.

−→
P ∈ P and

−→
C ∈ C

(4.30)

Here, we introduce
−→
C as one of the arguments of function V (), since it is not con-

stant and we seek to find its optimal value. The problem can be rewritten as an LP:

maxT

s.t.

T − V (
−→
P ,β,

−→
C ) ≤ 0 for all

−→
P ∈ P and

−→
C ∈ C

(4.31)

Recall that the function V () is element wise concave in
−→
P and linear in

−→
C . Hence,

the optimal solution can be found in extreme points of polytopes P and C. Similar
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Fig. 4.2 Flowchart of the routing algorithm

to the power control-scheduling case we use the Kelly’s cutting plane method to

devise an iterative algorithm as follows:

At Iteration k we solve the following master linear program with k constraints:

maxT

T −
∑

ł∈ǫ

P m(l) −
∑

l∈ǫ

β(l)(Cm(l) − Xm(l)) ≤ 0

m = 1, . . . , k

(4.32)

Let (Tk, βk) be the optimal solution of (4.32) at Iteration k; βk , will be used in the

following non-linear Oracle problem

min
−→
P ,

−→
C

(

∑

l

P(l) +
∑

l

βk(l)(C(l) − X(l))

)

s.t.

−→
C ∈ C and

−→
P ∈ P

(4.33)

If the Oracle optimal value is less than Tk , then the corresponding solution

(
−→
P k+1,

−→
C k+1) forms a violated constraint that should be added to the master LP

constraint set for the next iteration. Otherwise, the algorithm has converged.

Figure 4.2 shows the algorithm explained above.
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We can further simplify the last step as follows. The potential function in (4.33)

is separable to two functions. The first one, i.e.
∑

l βk(l)C(l), is the sum of weighted

C(l)s and can be minimized via Dijkstra algorithm. The second one is simply the

potential function in the previous subsection minus a constant value. Therefore, it

does not require a new technique to find the minimum for.

Similar to the scheduling-only case, since the optimal solution is in the extreme

points of the power and routing polytopes, the cutting plane algorithm converges in

finite number of steps.

After convergence, the optimal routing vector and the optimal transmission strat-

egy will be superposition of all the
−→
C k vectors and

−→
C k vectors respectively. The

corresponding coefficients are similar and are found in the same manner as de-

scribed in the proof of Theorem 1.

3 Nonlinear vs. Linear

Throughout the chapter so far, we have assumed that we can approximate the nonlin-

ear logarithm formula of capacity with its linear equivalent, in the low SNR regime.

In this section, we briefly describe the solution for the nonlinear case where we do

not approximate. The minimization problem to consider is,

min
∑

l

Pavg(l)

s.t.

a. 0 ≤
∑

l∈ε(i)

Pt (l) ≤ P max(i) and

b. 0 ≤ Pt (l), for all t ≥ 1 and l ∈ ǫ

c.
∑

l∈Ip

vij (l) −
∑

l∈Op

vij (l) =

⎧

⎪

⎨

⎪

⎩

0 p �= i or j

−dij n = i

dij n = j

d.
∑

ij

vij (l) = C(l)

e. XNL
avg (l) ≥ C(l), for all l ∈ ǫ

(4.34)

where

XNL
t (l) = W(l) log

(

1 +
G(T (l),R(l))Pt (l)

∑

k �=l G(T (k),R(l))Pt (k) + nR(l)

)

XNL
avg (l) = lim inf

t→∞

1

t

t
∑

k=1

XNL
k (l)

(4.35)

The structure of the above formulation is similar to that of (4.14) except for nonlin-

earity of the X function. Also, in the proof of Lemmas 2–3 and Theorem 1 we did
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not use the linearity of X function (or concavity of the potential function). There-

fore, we can use the iterative algorithm in the previous section along with the cut-

ting plane method. After convergence of the algorithm, we can make sure we have

reached the globally optimal solution. The only remaining issue is Lemma 1 which

means that for this problem, the algorithm is not guaranteed to converge in finite

time, due to the nonlinearity of the log function (non-concavity of the new potential

function). Since our goal in this section is not optimizing the nonlinear problem and

is just comparison with the linear case, the above described algorithm will serve us

adequately.

In order to compare the results of the nonlinear, i.e. actual, model with that of the

linear, i.e. approximate, model we need to set the traffic demands fairly for the test.

In other words, the value of the traffic demand of the two models should be the same.

The average value of the final rate in linear model was calculated to be superposition

of linear combination of Xm vectors, with Xm = W.
−−−→
SINRm. Therefore, to have a fair

comparison, we need the linear combination of W. log(
−−−→
SINRm)s in the linear model

to be equal to the traffic demand of the nonlinear model.

As mentioned earlier, the algorithm we proposed for nonlinear model is theoret-

ically not guaranteed to converge in finite time. In real simulations however, they

all did converge but took much longer time compared with the linear model.2 This

slowness was due to two facts. First, as the theory predicted, the number of iter-

ations it took the program to run before convergence was increased. Second, the

operations in each iteration were computationally more complex because of intro-

ducing the logarithm function.

As will be discussed in the next section, the result of the series of simulations

showed that the accuracy of the linear model depends on the value of P max. We

know that the final solution proposed by the linear model is superposition of some

power modes. Each power mode in the linear case is such that only one link per

node is at most active, and is transmitting with full power, i.e. P max. Therefore, in

order for the model to be precise, we intuitively need log(1 + P max

η
) to be close to

P max

η
. This intuition is verified as shown in simulation results of the next section.

4 Simulation Results and Discussion

We consider a square area of 200 by 200 meters for our simulations. The node loca-

tions are selected by a uniform random generator in this area. We consider networks

with 7 to 50 nodes in our simulations. However, in most of the experiments the

number of nodes ranges from 7 to 30. There is an edge between two nodes of the

network graph if the distance between them is less than a specific value denoted by

dmax. The number of edges ranges from 9 to 102 in our experiments, with 9 corre-

sponding to a network with 7 nodes and 102 to a network with 50 nodes. Each edge

2In some cases up to 5 times slower.
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Fig. 4.3 One of the simulated networks with 50 nodes

represents two uni-directional communication links in the network. Therefore, the

number of communication links is twice the number of edges of the network graph.

For example, in the network of Fig. 4.3 we have 102 edges which is equivalent to

204 uni-directional links. The path-loss and shadowing parameter, G(i, j), is con-

sidered proportional to inverse square of the distance between nodes i and j . The

algorithm, however, works for any other choice of G(i, j).

The efficient bandwidth of links is 1 MHz, and the noise power .000010 Watt.

The maximum power of a node is 1 Watt. For each network, we randomly pick

the source-destination pairs. The number of source-destination pairs in a network is

about 20% of the total number of nodes. The end-to-end data-rate from each source

to its corresponding destination is 10 Kbps, so that in all experiments a feasible solu-

tion exists. However, the data rate value does not affect the properties and efficiency

of the algorithm. For each network size, multiple random networks were generated

and the results were consistent among different runs. Here, we report the average

results of at least 3 experiments for each network size. Three separate algorithms

are studied here: (1) optimal scheduling and power control using an LP with all ex-

treme points constraint with minimum hop routing, (2) our proposed algorithm for

scheduling and power control with minimum hop routing and (3) our proposed joint

routing, scheduling and power control algorithm.

In Fig. 4.3 the source and destination pairs and the links that are utilized in the

optimal routing solution for each pair are specified. We represent each source node

by ⊲ and the destination node by �. The same color is used for these symbols and

the links that are in the optimal route between them.
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Fig. 4.4 Comparison of the final constraint counts in the optimization LP

Figure 4.4 shows the number of constraints that are in the final version of the

optimization problem. In our algorithms, we add one more constraint after each

iteration, therefore this is the number of iterations for our algorithm too. The fact

that the number of iterations is very close to the number of links, shows that our

algorithm is very efficient. Recall that in the optimal solution there are at least Lǫ +1

active constraints, hence there should be at least this number of constraints present in

the final LP. We compare this value with the corresponding value in the all-constraint

method, which is the total number of extreme points. As was explained in the chapter

this number increases exponentially with the number of links in the network.

The number of constraints directly affects the running time of the algorithm. Fig-

ure 4.5 compares the running time of the algorithms.3 We were not able to run the

all-constraint method for networks with more than 12 edges. Besides the time, mem-

ory is also an issue for the all-constraint method. For example, a 15-edged network

has at least 215×2 = 1 Gig extreme points that needs to be stored. Both algorithms

introduced in this chapter are much more time efficient than the previously proposed

algorithms.

If we compare running time curves of the two algorithms introduced here, it

becomes clear that finding the optimal routing can be very time consuming. In the

following we compare the total power consumption of the optimal routing with the

minimum hop routing when we use optimal scheduling and power control in both

3All simulations were performed by a 2.6 GHz Compaq Xeon computer, with 256 kb cache and

1 GB of memory.
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Fig. 4.5 Comparison of the time it takes for each algorithm to converge

cases to quantify the performance gain achieved with optimal routing. In Fig. 4.6

we have plotted the amount of power consumed for two different algorithms. The

optimal routing algorithm, on average, consumes around 15 percent less power. This

shows that the minimum-hop routing is not power efficient and we can reduce the

power consumption by using optimal routes.

In the following, we compare the characteristics of the minimum-hop routing

with the optimal routing. Figure 4.7 shows the number of active links in each rout-

ing. As can be seen the number of links used by the joint routing and scheduling

method is more than that of the minimum-hop method. However, the difference is

not significant and it becomes marginal for larger networks. This result may seem

to be counter-intuitive since it suggests that the optimal routing would not distribute

the traffic among the links in the network.

To further study optimal routing characteristics, Fig. 4.8 shows the topology and

optimal routes for 3 separate networks with 102 links. The optimal paths tend to use

the same links. This observation seems to be in contrary to the previous results in

distributed algorithms [42, 43]. There are two issues that should be considered here:

(i) For those algorithms that are based on the notion of back-pressure scheduling

[43], the proposed distributed algorithms are asymptotically optimal so they may

very slowly converge to the optimal paths suggested by our algorithm. However

their transient behavior can be very poor since they start with distributing the traffic

among many links. (ii) It is very important to understand and distinguish the inter-

ference model that is considered for different algorithms. For instance, in [42] it is

assumed that there is no interference between two links that do not have any com-
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Fig. 4.6 Comparison of the total consumed power

Fig. 4.7 Comparison of the number of active links
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Fig. 4.8 Generated routes for 2 networks with 51 two-way links (102 single-way links)

Fig. 4.9 Comparison of the linear approximation with the actual nonlinear model

mon node. In other words, it is assumed that each node has an orthogonal channel

for communication, and hence there is no interference between the transmission of

two nodes as long as they have separate receiving nodes. However, in our model we

assume that interference is a function of distance between the nodes. In this case

using separate links in different paths would increase the interference, and hence we

may need to consume more power for communication. These results suggest that

the interaction between routing, scheduling and power control is very complex and
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it is very important to consider appropriate physical and MAC layer models in the

design of algorithms.

In Fig. 4.9 we ran a series of simulations to test the preciseness of the solution

provided by the linear model. We considered a network with one source-destination

pair and traffic demand of 200 Kbps. The solution of the nonlinear method is glob-

ally optimal, in the sense that it gives the absolute minimum required power to

satisfy the traffic demand, i.e. the end-to-end rate from source to destination. The

solution of the linear method however solves a power minimization algorithm based

on a linear approximation of the capacity formula. Intuitively, we expect that these

two solutions be close when the original approximation is tight. The results of our

simulations confirm our hypothesis. As can be seen in the plots of Fig. 4.9, the lower

the maximum transmitting power, P max becomes, the closer the two curves will get.



Chapter 5

Connectivity in Wireless Networks

In the previous chapters, we tried to find methods to cope with interference in a

wireless network in different layers. However, regardless of what method we use,

the interference has impacts on the connectivity of the network. We sure want to

have a connected network all the time. The question then will be whether this is

possible or not. In this chapter we first define a few connectivity measures and then

investigate the connectivity of a network based on those metrics.

1 The Capacity Metric

The discussion of this section revolves around defining a pair of probabilistic and

deterministic metrics of connectivity based on the capacity of wireless MIMO chan-

nels. While our general probabilistic metric is defined based on an outage capacity

analysis for such channels, our ergodic metric provides a simplified deterministic

treatment of the probabilistic metric.

Probabilistic Capacity Metric

In this subsection, we introduce our first probabilistic metric of connectivity relying

on the concepts of outage capacity and outage probability. Calculating estimates or

upper bounds of capacity in the case of uncorrelated and correlated Single-Input

Single-Output (SISO) and MIMO channels both with Gaussian and non-Gaussian

noise has been the subject of heavy research in the past years. The concept of outage

capacity was first introduced in [61]. Outage capacity provides an elegant descrip-

tion of the achievable rate of a communication channel. Simply put, it represents a

probabilistic measure of the maximum number of bits per cycle that can be transmit-

ted for a given error rate. The authors of [61] also provided approximations of the

capacity of Identically and Independently Distributed (IID) MIMO Rayleigh chan-

nels. In [20], methods of calculating the capacity of correlated MIMO channels with
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Gaussian noise were proposed. The authors of [65] numerically verified that the ap-

proximations of capacity derived in [61] work well under various fading conditions

in the presence of Rayleigh distributed interference, for a wide Signal-to-Noise Ra-

tio (SNR) range, and even when the channel is semi-temporally correlated.

Our discussion below represents a treatment of the subject material relying on

the cited literature articles above. In order to be consistent with the literature work

of capacity for MIMO channels, the analysis is carried out by explicitly working

with the input and output signals of a fading channel.

Consider an ad-hoc topology with q wireless flat fading links {L1, . . . , Lq} on

which transmission powers are {P1, . . . ,Pq}, respectively. Link i is associated with

the i-th transmitter/receiver pair. Each link may be connecting multiple antenna

mobile nodes. Suppose, per symbol transmission power Pi is equally distributed

among Mi transmit antennas of link i. The number of receive antennas for link i is

assumed to be Ni . Further, let us assume that the matrix Hij represents the fading

channel between the transmitter of link j and the receiver of link i. Denoting Si as

the Mi × T symbol matrix of link i transmitted over T discrete time blocks, the

received symbol matrix at link i is the following Ni × T matrix

Ri = HiiSi + Ŵi (5.1)

where the channel matrices Hii consist of complex Gaussian random variable ele-

ments and Ŵi =
∑

j �=i Hij Sj + ni represents the combined effects of interference

and noise. We assume that the receiver of link i knows the channel matrix Hii while

the transmitter of link i only knows its distribution. The quantities (Ŵi |Hij ) can be

considered to form a Gaussian random process due to the following lines of rea-

soning. As discussed in Chap. 2 of [25], we know that the codewords Sj should

be chosen from a Gaussian distribution to be capacity achieving. Further, Hij ’s are

known at the receiver. Since the elements Hij Sj are linear combinations of inde-

pendent Gaussian random variables, they are themselves Gaussian. In addition, any

Sj or ni term at any given time slot is independent of its counter parts at other time

slots. Since the transmitter does not know the channel, it assigns the codewords inde-

pendently at each time slot. Therefore, (Ŵi |Hij ) forms a Gaussian random process.

The covariance matrix for the resulting noise term is expressed as

Ki = E{Ŵi .Ŵi
†}

= E

{(

∑

j �=i

Hij Sj + ni

)

.

(

∑

k �=i

HikSk + ni

)†}

= E

{

∑

j �=i

Hij Sj S
†
jH

†
ij

}

+ P
(n)

i I (5.2)

where the superscript † indicates the Hermitian operator, E represents the expecta-

tion operator, and P
(n)

i is the average power of noise. Since we are assuming that
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Hij coefficients are known at the receiver,

Ki =
∑

j �=i

HijE{Sj S
†
j }H

†
ij + P

(n)

i I

=
∑

j �=i

Hij�jH
†
ij + P

(n)

i I (5.3)

where I is the identity matrix and �j indicates the covariance matrix of the input

signal vector of link j . Then, the mutual information I between Si and Ri is derived

as1

I(Si;Ri) = log2 det
(

I + K−1
i Hii�iH

†
ii

)

(5.4)

To find the capacity, one needs to maximize I(Si;Ri) subject to a transmission

power constraint Tr(�i) ≤ Pi on link i where Tr(�i) and Pi denote the trace of �i

and the transmission power of link i, respectively.

The choice of covariance matrix achieving the capacity in (5.4) depends on the

realization of the channel matrix. When the channel is not known at the transmitter,

the best strategy is to distribute the input power equally among the transmit anten-

nas. The latter results in a covariance matrix �i that is a multiple of the identity

matrix. Considering the constraint Tr(�i) ≤ Pi , we have �i =
Pi

Mi
I resulting in the

following capacity determination

Ci = log2 det

(

I +
Pi

Mi

K−1
i HiiH

†
ii

)

bps/Hz (5.5)

Note that the capacity can be expressed in terms of a natural logarithm rather than

a base 2 logarithm assuming the unit of measurement is changed from bps/Hz to

nats/s/Hz.

In the most general case, the capacity expression of (5.5) can be only calculated

numerically. When the number of links is relatively large, one can utilize central

limit theorem to conclude that the covariance matrix of (5.3) can be expressed as

a multiple of the identity matrix. The reasoning follows. Relying on the equation

�i =
Pi

Mi
I , we note that the first term of the covariance matrix Ki is in the form

of
∑

j �=i

Pj

Mj
HijH

†
ij . Since the non-diagonal entries of the first term are the sum

of zero-mean random variables, central limit theorem implies that they tend to the

mean value of the random variables, zero. Further, the diagonal entries of the first

term consist of the sum of the square of the magnitudes of the channel coefficients

from interfering links. Consequently, they represent the power of interfering signals.

Thus, the covariance matrix of (5.3) is expressed in the following form

Ki ≃
[

P
(I )

i + P
(n)

i

]

I (5.6)

1The symbol I used to denote mutual information should be distinguished from the symbol I to

denote the identity matrix.
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where P
(I )

i and P
(n)

i are the average power of interference and noise, respectively.

Therefore, (5.5) can be rewritten as follows

Ci ≃ log2 det

(

I +
SINRi

Mi

HiiH
†
ii

)

bps/Hz (5.7)

with SINRi denoting the average signal-to-interference-noise-ratio. Next, we note

that the capacity in (5.7) is defined for a fixed realization of the fading channel

Hii at link i over a large block length. Every realization of the channel has some

probability attached to it through the statistical model of Hii . We assume that the

matrix Hii consists of zero-mean Gaussian random variables, i.e., each element of

the matrix has a fading envelope described by Rayleigh distribution. It is well known

[66] that the sum of q zero-mean IID complex Gaussian random variables with a

standard deviation 1√
2λ

is a zero-mean Gaussian random variable with a standard

deviation

√

q
2λ

. Since the channel matrices Hii are random in nature, the capacity in

(5.7) can be treated as a random variable.

According to Singular Value Decomposition (SVD) theorem, Ci can be calcu-

lated in terms of the positive eigenvalues of HiiH
†
ii as

Ci ≃
ρ

∑

l=1

log2

[

1 +
SINRi

Mi

σl

]

bps/Hz (5.8)

where σl’s with l ∈ {1, . . . , ρ} denote the positive eigenvalues of HiiH
†
ii and ρ is

the rank of Hii . Therefore, the capacity Ci represents a scalar function of the set

of random variables {σ1, . . . , σρ}. Our work of [48] describes how the Probability

Density Function (PDF) of capacity can be calculated depending on the values of

Mi and Ni . Here, we summarize the results. The PDF of HiiH
†
ii for the case of

Mi × Ni = 1 × 1 is described in the form of

fz(z) = λe−λz (5.9)

The PDF identified above represents the only positive eigenvalue of the scalar func-

tion HiiH
†
ii . For the cases of Mi × Ni = 2 × 1 and Mi × Ni = 1 × 2, the PDF of

HiiH
†
ii is expressed as

fz(z) = λ2ze−λ2z (5.10)

Again, the PDF identified above represents the only positive eigenvalue of HiiH
†
ii .

The results for the case of Mi × Ni = 2 × 2 are numerically calculated similar to

the case of Mi × Ni = 2 × 1 with an Hii matrix consisting of four pairs of complex

Gaussian random variables.

Treating capacity as a random variable with a given PDF provides us with an

opportunity to represent a novel connectivity metric based on the concept of outage

capacity. We introduce our first metric of connectivity as

Pr(Ci < Cout) ≤ �C (5.11)
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where Pr(.), Cout, and �C represent probability, the threshold of connectivity also

known as outage capacity, and the outage probability, respectively. While our defi-

nition of outage matches that of [61], it differs slightly from that of [20]. According

to [20], the outage is defined as

inf
Tr(�i )≤Pi

Pr(Ci < Cout) ≤ �C (5.12)

The main difference between the two definitions is that the latter may assign zero

power to some of the transmit antennas while the former utilizes all of the antennas.

According to our outage capacity metric matching the former definition, two nodes

are connected if the probability of the outage event for the link between them is less

than a given value.

Deterministic Capacity Metric

In this subsection, we provide a deterministic treatment of the connectivity metric

of the previous subsection assuming the underlying wireless channel is ergodic. The

ergodic capacity Ci of link i can be expressed as [20]

Ci = E[Ci] ≃ E

[

log2 det

(

I +
SINRi

Mi

HiiH
†
ii

)]

bps/Hz (5.13)

Utilizing SVD theorem and the results of random matrix theory, the following ex-

pression can be derived for the ergodic capacity of MIMO channels.

Ci ≃ u

∫ ∞

0

log2

(

1 +
SINRi

Mi

x

)

fx(x) dx (5.14)

In (5.14), fx(.) represents the PDF of a randomly selected eigenvalue of the Wishart

matrix defined as

fx(x) =
1

u

u−1
∑

k=0

k!xv−ue−x

(k + v − u)!
[

�v−u
k (x)

]2
, x ≥ 0 (5.15)

with parameters u = min(Mi,Ni) and v = max(Mi,Ni). In (5.15), �m
k (x) denotes

the Laguerre polynomial of order k defined as

�m
k (x) =

exx−m

k!
dk

dxk
{e−xxk+m} =

k
∑

h=0

(−1)h
(

k + m

k + h

)

xh

h!
(5.16)

where
(

k+m
k+h

)

is the binomial coefficient.
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In [73], a simplified expression for the ergodic capacity of (5.14) is derived under

average transmit power and equal power allocation constraints as

Ci ≃ e

Mi
SINRi log2 e

u−1
∑

k=0

k
∑

l=0

2l
∑

m=0

[

(−1)m(2l)!(v − u + m)!
22k−ml!m!(v − u + l)!

×
(

2k − 2l

k − l

)(

2l + 2v − 2u

2l − m

) v−u+m
∑

n=0

�n+1

(

Mi

SINRi

)]

(5.17)

where �n(z) is defined as

�n(z) =
∫ ∞

1

e−zxx−n dx, n = 0,1, . . . (5.18)

with Re(z) > 0.

Using the ergodic capacity of (5.13) or equivalently (5.17), we can introduce a

more simplified connectivity metric in the form of

Ci ≥ Cout (5.19)

where Cout is the threshold of connectivity.

2 The SER Metric

The discussion of this section revolves around providing probabilistic and determin-

istic measures of connectivity based on symbol error rate. Symbol error rate can in

turn be related to the characteristics of the underlying communication system such

as SINR, modulation, and antenna configuration.

Probabilistic SER Metric

Once again, consider the ad-hoc topology described previously consisting of q flat

fading wireless links {L1, . . . , Lq} on which transmission powers are {P1, . . . ,Pq},
respectively. Associated with each element Hij (n,m) of channel matrices, we de-

fine the fading factors Fij (n,m) = |Hij (n,m)|2. For each link i, the SER can be

derived as an exact function of the average SINR and the corresponding fading fac-

tors Fii(n,m).

We start by investigating the expressions of SER for 1 × Ni link i. In [72], the

expressions of SER for 1 × Ni link i in terms of the number of signal points in the

constellation and the average SNR can be found. The calculations of [72] are carried

out under the assumption of facing a complex Gaussian noise signal. As one of the

operating scenarios, the calculations are carried out for a Rayleigh fading channel
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and utilizing PSK modulation. Because the quantity of interest is SINR rather than

SNR in the context of current discussion, we need to investigate the effects of in-

terference signals in (5.1). First, we claim that the product Hij Sj remains Gaussian

in (5.1). Using a limited constellation set like BPSK with a uniform distribution for

each signal instead of capacity achieving codebook, we verify the claimed statement

for the case of 1 × 1 link. Generalization to L-PSK modulation and Mi × Ni link

is then straightforward. If we use BPSK modulation, Hij Sj will be a scalar random

variable with the following description

Xj = Hij Sj =

{

Hij , with probability 0.5

−Hij , with probability 0.5
(5.20)

To see why Xj is a complex Gaussian random variable, we need to show that both

real and imaginary parts of this random variable are normally and independently

distributed. Since

Re{Xj } = Re{Hij Sj } =

{

Re{Hij }, with probability 0.5

−Re{Hij }, with probability 0.5
(5.21)

We have

Pr(Re{Xj } < x) =
1

2
Pr(Re{Hij } < x) +

1

2
Pr(−Re{Hij } < x)

= Pr(Re{Hij } < x) (5.22)

Therefore, the distribution of the real part of Xj is normal. Relying on the same

argument, the distribution of the imaginary part of Xj is normal. Next, we observe

Pr(Re{Xj } < x | Im{Xj } < y)

= Pr(Re{Xj } < x | Im{Xj } < y,Sj = 1)Pr(Sj = 1)

+ Pr(Sj .Re{Xj } < x | Im{Xj } < y,Sj = −1)Pr(Sj = −1)

=
1

2
Pr(Re{Xj } < x | Im{Xj } < y,Sj = −1)

+
1

2
Pr(−Re{Xj } < x| − Im{Xj } < y,Sj = −1)

=
1

2
Pr(Re{Xj } < x) +

1

2
P(−Re{Xj } < x)

= Pr(Re{Xj } < x) (5.23)

which concludes our reasoning of independence.

Since the product Hij Sj remains Gaussian in (5.1) and the sum of Gaussian

random variables is still Gaussian [66], the signal Ŵi can still be treated as Gaussian.

However, the resulting Gaussian noise is now colored rather than being white. We

note that applying Maximum Likelihood (ML) decoding as utilized by [72] to a
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colored Gaussian noise results in sub-optimality, i.e., identifying upper bounds of

the SER. Based on the argument above, the analysis of [72] can still be applied to

the case of SINR utilizing the model of (5.1) the same way it is applied to SNR.

According to Sect. 9.2 of [72], the expressions of SER are calculated for a 1×Ni

link i utilizing MRC and BPSK modulation as

SERi ≃ Q

(

√

√

√

√2

Ni
∑

n=1

Fii(n,1)SINRi

)

(5.24)

where SINRi is the average received signal-to-interference-noise ratio and the Gaus-

sian Q function is defined as

Q(x) =
1

√
2π

∫ ∞

x

exp

(

−
z2

2

)

dz =
1

π

∫ π/2

0

exp

(

−
x2

2 sin2 φ

)

dφ (5.25)

Relying on the discussion of Sect. 4.9 of [25], we note that the MRC expressions

of (5.24) can also be applied to Alamouti STBCs of [11] with proper scaling factors.

Particularly, the results of a 1 × 2 link utilizing MRC codes can be applied to the

case of a 2 × 1 link utilizing Alamouti codes. Similarly, the results of a 1 × 4 link

utilizing MRC codes can be applied to the case of a 2 × 2 link utilizing Alamouti

codes.

Utilizing BPSK modulation and under the assumption of facing a Rayleigh fad-

ing channel, the symbol error rate of link i can be derived from the latter analysis

as

SERi ≃ Q

(
√

2ηϒiSINRi

)

(5.26)

where SINRi is the average signal-to-interference-noise-ratio of link i and η is a

constant that depends on the antenna configuration. While the value of η is 1 for

1 × 1 and 1 × 2 links utilizing MRC, it changes to 0.5 for 2 × 1 and 2 × 2 links

utilizing STBCs of [10]. Further, ϒi is defined as

ϒi =
Mi
∑

m=1

Ni
∑

n=1

Fii(n,m) (5.27)

Since the quantity SERi as specified by (5.26) represents a function of random

variables, it suffices to examine the distribution of Fii(n,m) in order to obtain fading

statistics of SERi . We start from the case of a single transmit and single receive

antenna link, i.e., Fii = Fii(1,1) and Mi = Ni = 1. In a 1×1 link case and when the

channel matrix is identified by a complex Gaussian noise element, one can conclude

that ri = |Hii | has a marginal Rayleigh density function [66] in the form of

pr(ri) =
rie

−r2
i /2μ2

i

μ2
i

, ri ≥ 0 (5.28)



2 The SER Metric 87

where μ2
i equals to half of the average power of all of the multipath components.

The PDF of Fii can be expressed [66] as

pF (Fii) =
1

2
√

Fii

pr(
√

Fii) (5.29)

Once the PDFs of Fii terms are calculated and assuming they are spatially uncorre-

lated, the PDF of ϒi is specified [66] as defined in (5.27). Finally, the PDF of SERi

as defined in (5.26) can be numerically calculated in terms of the PDFs of random

variables ϒi .

Having captured the distribution of the symbol error rate for a MIMO link, we

are now ready to express our second metric of connectivity in terms of the quantities

of interest. We introduce our second metric of connectivity as

Pr(SERi > Sout) ≤ �S (5.30)

where Pr(.), Sout, and �S represent probability, the threshold of connectivity, and

the outage probability, respectively.

Deterministic SER Metric

In this subsection, we assume that the time-varying fading wireless channel is er-

godic. Under the assumption of facing an ergodic Rayleigh channel and utilizing

BPSK modulation, the random variable SERi of (5.26) can be substituted by its

average value SERi defined as

SERi ≃
∫ ∞

0

1

π

∫ π/2

0

exp

(

−
2ηϒiSINRi

2 sin2 τ

)

dτ pϒ (ϒi) dϒi (5.31)

where pϒ (.) is the PDF of the random variable ϒi . The result is also valid for L-PSK

modulation as

SERi ≃
∫ ∞

0

1

π

∫
(L−1)π

L

0

exp

(

−
2ηϒiSINRi

2 sin2 τ

)

dτ pϒ (ϒi) dϒi (5.32)

In [75], closed-form expressions of the integral of (5.32) are calculated. The ex-

pressions describe the symbol error rate of a MIMO channel in terms of the number

of signal points in the constellation and the average signal-to-noise ratio. We carry

out our calculations under the assumption of facing a slow fading ergodic Rayleigh

channel and utilizing the PSK modulation scheme. In what follows, we provide the

results of our calculations considering the fact that in the current discussion the

quantity of interest is SINR rather than SNR. First, we introduce the symbol error

rate of a 1 × Ni link i using MRC as

SERi ≃
Li − 1

Li

−
1

π

√

ϑi

1 + ϑi
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×

{

(

π

2
+ tan−1 θi

)Ni−1
∑

j=0

(

2j

j

)

1

[4(1 + ϑi)]j

+ sin(tan−1 θi)

Ni−1
∑

j=1

j
∑

k=1

ζkj

(1 + ϑi)j

× [cos(tan−1 θi)]2(j−k)+1

}

(5.33)

where ϑi = SINRi sin2( π
Li

), θi =
√

ϑi

1+ϑi
cot π

Li
and ζkj = (2j

j )

(2(j−k)
j−k )4i [2(j−k)+1]

.

Noting that the number of bits per symbol is related to the number of signal

points in the constellation Li as log2 Li , the result of (5.33) for a 1 × 1 link utilizing

BPSK modulation with Li = 2 is expressed as

SERi ≃
1

2

(

1 −

√

SINRi

1 + SINRi

)

(5.34)

Similarly, the result of (5.33) for a 1×2 link utilizing BPSK modulation is expressed

as

SERi ≃
1

2

[

1 −

√

SINRi

1 + SINRi

(

1 +
1

2(1 + SINRi)

)]

(5.35)

We observe that the symbol error rate of a 1 × 2 link is improved compared to that

of a 1 × 1 link due to the receive diversity gain.

Further, we note that the symbol error rate of Alamouti STBCs of [10] and [11]

can be derived from Sect. 2.1 of [75]. Based on that discussion and for a fixed

transmit power, one can derive the symbol error rate of a 2 × 1 link by replacing

SINRi with SINRi

2
in (5.35). Similarly, one can obtain the symbol error rate of a

2 × 2 link by using the results of a 1 × 4 link. With the choice of BPSK modulation,

the result for a 2 × 2 link is expressed as

SERi ≃
1

2
−

1

2

√

SINRi

2 + SINRi

(

3
∑

j=0

(

2j

j

)

1

[2(2 + SINRi)]j

)

(5.36)

Using the ergodic symbol error rates above, we can introduce a simplified con-

nectivity metric in the form of

SERi ≤ Sout (5.37)

where Sout is the threshold of connectivity.
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3 Capturing Temporal Correlation of Ergodic Channels

Up until now, we have assumed that the wireless fading channel is flat implying

no temporal correlation exists among the symbols of a single frame. In this sec-

tion, we capture the effects of temporal correlation on our connectivity metrics. We

propose a scheme in which the temporally correlated fading channel is modeled by

a finite-state Markov chain. Our scheme can be applied to the cases of our ergodic

connectivity metrics. Capturing temporal correlation in the cases of our probabilistic

metrics is more complex and the subject of our future study.

A finite-state Markov chain is a discrete-time representation of the behavior of

a random variable. Each state is associated with an average quantity representing

the value of the random variable at that state. The chain is fully specified by the set

of average per state quantities and a set of per state steady-state probabilities. For

an S-state chain, S per state average quantities and S steady-state probabilities can

be calculated by partitioning the PDF of a random variable with a set of threshold

values {ξ0, . . . , ξS} associated with the observed behavior of the random variable.

While such Markov chain modeling approach can be applied to any number of

states, we note that utilizing a larger number of states improves the accuracy of

the model at the cost of increasing the complexity of calculations. We propose the

use of a two-state chain with two states G and B to address the tradeoff between

computational complexity and model accuracy. Utilizing a two-state Markov chain

applied to the PDF of Ci in (5.8), the ergodic connectivity metric of (5.19) still holds

when the ergodic average Ci of link i is expressed as

Ci = π
(C)
i,G Ci,G + π

(C)
i,B Ci,B (5.38)

where π
(C)
i,G and π

(C)
i,B represent per state steady-state probabilities derived from the

ratios of surface integrals of the PDF of Ci within appropriate threshold bounds.

Further, average per state quantities Ci,G and Ci,B are specified as the ratios of ex-

pectation integrals and surface integrals of the PDF of Ci within appropriate thresh-

old bounds [76]. Similarly and utilizing a two-state Markov chain applied to the

PDF of SERi in (5.26), the ergodic connectivity metric of (5.37) still holds when the

ergodic average SERi of link i is expressed as

SERi = π
(SER)
i,G SERi,G + π

(SER)
i,B SERi,B (5.39)

with similar description of quantities in (5.38) derived from the PDF of SERi in

(5.26) instead of those derived from the PDF of Ci in (5.8).

4 Experimental Verification of Analysis

This section is dedicated to the evaluation of effectiveness for the information the-

oretic metrics of connectivity introduced in previous sections. It consists of two

subsections. The objective of the first subsection is to show why utilizing a metric
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purely based on SINR cannot capture the reality of connectivity in fading ad-hoc

networks. The objective of the second subsection is to investigate the results of ap-

plying the metrics of previous sections to a random network topology.

Justification of Proposed Connectivity Metrics

We open this section by providing a justification of using our proposed metrics of

connectivity instead of the SINR metric.

For different choices of antenna configurations of a given link, Fig. 5.1 depicts

normalized values of 1−CDF(SER) versus Sout where CDF(SER) indicates the Cu-

mulative Distribution Function (CDF) of SER. For a choice of Sout on the horizontal

axis of each figure, the corresponding value on the vertical axis represents the value

Pr(SER > Sout). Thus, the connectivity metric may be satisfied if the horizontal line

representing �S is located above the value of Pr(SER > Sout). The figure reveals the

fact that the probabilistic measure of the symbol error rate can be different for the

same threshold Sout based on the antenna configuration. For example, for the choice

of (Sout,�S) = (0.15,0.1), the connectivity metric of (5.30) is satisfied for 2 × 1,

1 × 2, and 2 × 2 antenna configurations but not 1 × 1 antenna configuration. While

not shown here, similar results are observed in the case of outage capacity metric of

connectivity.

For an isolated point-to-point transmission scenario and different antenna con-

figurations, Fig. 5.2 depicts C as defined in (5.17) versus SINR. We note that in an

isolated point-to-point communication scenario, there is no interference term and

as a result the term SINR is the same as SNR. The figure reveals that the capacity

can be different for the same signal strength based on the antenna configuration. For

example for the choice of SINR = 10 dB and Cout = 5 bps/Hz in Fig. 5.2, the con-

nectivity metric of (5.19) is only satisfied for 2 × 2 wireless links but not the other

antenna configurations.

Hence, depending on the thresholds of connectivity Cout, Sout, �C , and �S that

are determined by the computing platform of a mobile node, a pure measurement

of the signal strength such as SINR is not sufficient to capture the connectivity phe-

nomenon.

Connectivity Experiments

In this subsection, we apply our proposed connectivity metrics to a moderate size

random ad-hoc topology. In order to provide a meaningful basis of comparison,

we compare our results for the same random topology. In our random topology,

200 nodes are distributed on a 2-D domain with an area of 1000 square meters

according to a Poisson point process [64]. When measuring connectivity, we assume

all of the nodes can transmit at the same time. We note that the use of Gaussian
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Fig. 5.1 Normalized BPSK plots of 1 − CDF(SER) versus Sout for a wireless link utilizing differ-

ent antenna configurations with SINR = 3 dB

approximation according to central limit theorem is justified for different antenna

configurations as the result of allowing simultaneous transmissions and considering

the number of interfering nodes. More specifically, we have conducted a number

of experiments to quantify the number of independent interference terms necessary

for accurate use of Gaussian approximation. Our experiments have revealed that the

use of Gaussian approximation is acceptable with an accuracy of 0.01% when the

number of interference terms, each term contributed by an individual path, exceeds

30. The latter translates to 30 nodes in the case of 1 × 1 antenna configurations and

no more than 8 nodes in the case of 2 × 2 antenna configurations.

The following describes general settings of our experiments. All of the nodes

are assumed to be utilizing BPSK modulation. In our probabilistic experiments, we

assume that the slow fading wireless channel characterized by a Rayleigh distri-

bution is quasi-static and flat implying there is no temporal correlation between a

pair of symbols belonging to the same frame. In our ergodic experiments, we uti-

lize a two-state Markov chain when partitioning the PDFs of the random variables

associated with capacity and symbol error rate. In both cases, we set the partition-

ing thresholds as {ξ0, ξ1, ξ2} = {0,1.2039,10}. We assume that each node utilizes

a total transmission power of P = 1W on the combined set of its outgoing links.

In the case of multiple antenna nodes, the total transmission power is split equally

among the antenna paths, i.e., Mi signals are transmitted simultaneously from the

Mi transmit antennas at each time slot using Alamouti STBCs of [10] and [11]. The
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Fig. 5.2 BPSK plots of C versus SINR for an isolated wireless link utilizing different antenna

configurations

expected value of the noise power on each path is assumed to be 10 µW. Depending

on a specific experiment, a pair of nodes are considered to form a direct link if one

of the probabilistic connectivity metrics of (5.11) and (5.30) or one of the ergodic

connectivity metrics of (5.19) and (5.37) holds. A direct link is formed only if both

of its nodes can transmit and receive from each other under a connectivity criterion.

For the random topology described above, we consider three scenarios. In the

first scenario which serves as our base line SISO scenario, the network is only ac-

commodating single antenna mobile nodes. We refer to this scenario as the 1 × 1

case. In the second scenario exactly half of the mobile nodes are randomly selected

to be equipped with double antennas. We refer to this scenario as the HYBRID

case. In the third scenario to which we refer as the 2 × 2 case, the network is only

accommodating double antenna mobile nodes.

We provide the results of our experiments in the case of the probabilistic mea-

sures of (5.11) and (5.30) as well as ergodic measures of (5.19) and (5.37). It is

important to note that all of our measures implicitly capture the effects of shadow-

ing and distance in addition to fading. The latter is due to the fact that the measures

are all expressed as a function of average SINR. We refer the reader to the work

of [76] to see how shadowing, distance, and fading are captured in the calculations

of average SINR. For the random topology network above, Fig. 5.3 includes sample

connectivity graphs chosen from among a large set of experiments run with different

combinations of simulation parameters. While the parameter settings of the graphs
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Fig. 5.3 Connectivity graphs of a random topology network in a square domain of 1000 square

meters. The columns from left to right correspond to single antenna, hybrid, and double antenna

mobile nodes. (a) The illustrations of the first row show the results of utilizing probabilistic connec-

tivity metric of (5.11) with Cout = 2 bps/Hz and �C = 0.01. (b) The illustrations of the second row

show the results of utilizing ergodic connectivity metric of (5.19) with Cout = 4 bps/Hz. (c) The

illustrations of the third row show the results of utilizing probabilistic connectivity metric of (5.30)

with Sout = 0.02 and �S = 0.01. (d) The illustrations of the fourth row show the results of utilizing

ergodic connectivity metric of (5.37) with Sout = 0.0001

merely represent our sampling choices, the results of all of our experiments remain

consistent. We refer the reader to our related work of [47] where we investigate the

effects of parameter variations on connectivity.

Reviewing the connectivity graphs, we observe that they vary depending on not

only the SINR measure but modulation, antenna configurations, and other settings of

the nodes. While a pure measurement of the signal strength such as SINR is not quite

capable of describing the phenomenon of connectivity, utilizing one of our proposed
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Table 5.1 A comparison of

the relative sizes of the largest

connected cluster utilizing

outage capacity connectivity

metric

Cout = 2 Cout = 1.5 Cout = 1

�C = 0.01 �C = 0.01 �C = 0.02

1 × 1 1.5% 2% 7%

HYBRID 12.0% 31.0% 90.5%

2 × 2 90.5% 94.0% 98.0%

Table 5.2 A comparison of

the relative sizes of the largest

connected cluster utilizing

ergodic capacity connectivity

metric

Cout = 3.8 Cout = 4

1 × 1 32.5% 17.5%

HYBRID 85.5% 85.5%

2 × 2 98.0% 98.0%

Table 5.3 A comparison of

the relative sizes of the largest

connected cluster utilizing

probabilistic SER

connectivity metric

Sout = 0.01 Sout = 0.02 Sout = 0.05

�S = 0.01 �S = 0.01 �S = 0.02

1 × 1 1.5% 1.5% 7%

HYBRID 29.5% 33.0% 87.5%

2 × 2 68.5% 83.5% 92.5%

Table 5.4 A comparison of

the relative sizes of the largest

connected cluster utilizing

ergodic SER connectivity

metric

Sout = 0.0001 Sout = 0.01

1 × 1 1% 8.0%

HYBRID 4.0% 87.0%

2 × 2 17.5% 92.5%

metrics provides a better way of properly capturing the effects of the quantities of

interest when investigating connectivity.

From the results of the experiments, we can also calculate the percentages of the

nodes belonging to the largest connected cluster of nodes. The larger the percentage,

the closer the network to being fully connected and a measure of 100% is associated

with a fully connected network. Utilizing the connectivity metrics of (5.11) and

(5.19), Tables 5.1 and 5.2 report the connectivity results for different combination

of choices of Cout and �C with similar other settings. We observe that decreasing

the value of Cout and increasing the value of �C increases the size of the largest

cluster of the connectivity graph.

Similarly, utilizing the SER connectivity metrics of (5.30) and (5.37), Tables 5.3

and 5.4 report the results for different combination of choices of Sout and �S with

similar other settings. We notice that increasing the values of Sout and �S increases

the size of the largest cluster observed in the connectivity graph.
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At the end of this section, it is worth mentioning that the calculation costs of

our measures of connectivity, accrued at each node and particularly under mobil-

ity, are relatively higher than those of the distance and SINR measures. Nonethe-

less, we believe that the increased computational cost of our approach is justified

in order to create accurate benchmarks capable of truly capturing the connectivity

phenomenon. While this work has proposed analytical measures for studying con-

nectivity, we are currently working on developing intelligent schemes resulting in

the reduction of the calculation costs of our measures under mobility. Finally, we

would like to point out that the existence of error recovery and scheduling schemes

utilized by Medium Access Control (MAC) technologies at the link layer can and

will affect connectivity. Capturing the combined effects of PHY and MAC layers is

outside the scope of this study and is the subject of future studies.
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